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Chapter 1: Whatis R
Programming Language?
Introduction & Basics

Whatis R?

R is a programming language developed by Ross Thaka and Robert
Gentleman in 1993. R possesses an extensive catalog of statistical and
graphical methods. It includes machine learning algorithm, linear
regression, time series, statistical inference to name a few. Most of the
R libraries are written in R, but for heavy computational task, C, C++
and Fortran codes are preferred.

R is not only entrusted by academic, but many large companies also
use R programming language, including Uber, Google, Airbnb,
Facebook and so on.

Data analysis with R is done in a series of steps; programming,
transforming, discovering, modeling and communicate the results

e Program: R is a clear and accessible programming tool

e Transform: R is made up of a collection of libraries designed
specifically for data science

e Discover: Investigate the data, refine your hypothesis and
analyze them

e Model: R provides a wide array of tools to capture the right
model for your data

o Communicate: Integrate codes, graphs, and outputs to a report
with R Markdown or build Shiny apps to share with the world



What is R used for?

e Statistical inference
e Data analysis
e Machine learning algorithm

R by Industry

If we break down the use of R by industry, we see that academics come
first. R is a language to do statistic. R is the first choice in the
healthcare industry, followed by government and consulting.



Visits to R by industry

Based on visits to Stack Overflow questions from the US/UK in January-August 2017,
The denominator in each is the total traffic from that industry.
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R package

The primary uses of R is and will always be, statistic, visualization, and
machine learning. The picture below shows which R package got the
most questions in Stack Overflow. In the top 10, most of them are
related to the workflow of a data scientist: data preparation and
communicate the results.



Most Mentioned R Packages in Stack Overflow Q&A

In non-deleted questions and answers up to September 2017,

dplyr
gaplot2
data.table
shiny

plyr
reshape2
tidyr
stringr
lubridate
z00
devtools
tidyverse
XML
microbenchmark
Repp

grid

knitr
raster
scales

gridExtra

=

5,000 10,000 15,000
# of mentions in Stack Overflow questions and answers

All the libraries of R, almost 12k, are stored in CRAN. CRAN is a free
and open source. You can download and use the numerous libraries to
perform Machine Learning or time series analysis.
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Communicate with R

R has multiple ways to present and share work, either through a
markdown document or a shiny app. Everything can be hosted in
Rpub, GitHub or the business's website.

Below is an example of a presentation hosted on Rpub




R Markdown Allow users to share ...

your work
sof R. The

Allow users to
comment your work

" Host your work on
Rpubs

Rstudio accepts markdown to write a document. You can export the
documents in different formats:

e Document :
o HTML
o PDF/Latex
o Word
e Presentation
o HTML
o PDF beamer



It is really easy to use

What can we dO With R markdown to create report,

papers, book and presentation

This is an R Markdown document. Markdown is a simple
formatting syntax for authoring HTML, PDF, and MS Word
documents. For more details on using R Markdown see
http://rmarkdown.rstudio.com.
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Rstudio has a great tool to create an App easily. Below is an example of
app with the World Bank data.



Choose indicator:
GOP (current USS) . | Choose Choropleth map to color countries as the indicator or
ScatterPlot graph to add markers on the map

Choose graph: Choose marker:
Agriculture, value added (% of GDP)

ScatterPlot - circle bd

Industry, value added (3 of GDP)
Services, etc., value added (% of GDP)
GDP (current US5)

GOP growth (annual %)

GODP per capita (current US3)

5T

This is a Shiny app

Why use R?

Data science is shaping the way companies run their businesses.
Without a doubt, staying away from Artificial Intelligence and
Machine will lead the company to fail. The big question is which
tool/language should you use?

They are plenty of tools available in the market to perform data
analysis. Learning a new language requires some time investment. The
picture below depicts the learning curve compared to the business
capability a language offers. The negative relationship implies that
there is no free lunch. If you want to give the best insight from the

data, then you need to spend some time learning the appropriate tool,
which is R.



DS4B Tools: Capability Vs Learning Curve

R has a longer learning curve but has a massive business capability rating

10 ‘m

Learning Curve Rating

0 1 2 8 4 5 6 7 8 9 10
Data Science For Business Capability Rating

On the top left of the graph, you can see Excel and PowerBI. These two
tools are simple to learn but don't offer outstanding business
capability, especially in term of modeling. In the middle, you can see
Python and SAS. SAS is a dedicated tool to run a statistical analysis for
business, but it is not free. SAS is a click and run software. Python,
however, is a language with a monotonous learning curve. Python is a
fantastic tool to deploy Machine Learning and AI but lacks
communication features. With an identical learning curve, R is a good
trade-off between implementation and data analysis.

When it comes to data visualization (DataViz), you'd probably heard
about Tableau. Tableau is, without a doubt, a great tool to discover
patterns through graphs and charts. Besides, learning Tableau is not
time-consuming. One big problem with data visualization is you might
end up never finding a pattern or just create plenty of useless charts.
Tableau is a good tool for quick visualization of the data or Business
Intelligence. When it comes to statistics and decision-making tool, R is
more appropriate.



Stack Overflow is a big community for programming languages. If you
have a coding issue or need to understand a model, Stack Overflow is
here to help. Over the year, the percentage of question-views has
increased sharply for R compared to the other languages. This trend is
of course highly correlated with the booming age of data science but, it
reflects the demand of R language for data science.

Stack Overflow Traffic to Programming Languages

Based on visits to Stack Overflow questions from World Bank high-income countries.
The more-visited languages of Python, JavaScript, Java, C#, and PHP were omitted.
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In data science, there are two tools competing with each other. R and
Python are probably the programming language that defines data



science.

Should you choose R?

Data scientist can use two excellent tools: R and Python. You may not
have time to learn them both, especially if you get started to learn data
science. Learning statistical modeling and algorithm is far
more important than to learn a programming language. A
programming language is a tool to compute and communicate your
discovery. The most important task in data science is the way you deal
with the data: import, clean, prep, feature engineering, feature
selection. This should be your primary focus. If you are trying to learn
R and Python at the same time without a solid background in
statistics, its plain stupid. Data scientist are not programmers. Their
job is to understand the data, manipulate it and expose the best
approach. If you are thinking about which language to learn, let's see
which language is the most appropriate for you.

The principal audience for data science is business professional. In the
business, one big implication is communication. There are many ways
to communicate: report, web app, dashboard. You need a tool that
does all this together.

Is R difficult?

Years ago, R was a difficult language to master. The language was
confusing and not as structured as the other programming tools. To
overcome this major issue, Hadley Wickham developed a collection of
packages called tidyverse. The rule of the game changed for the best.
Data manipulation become trivial and intuitive. Creating a graph was
not so difficult anymore.

The best algorithms for machine learning can be implemented with R.
Packages like Keras and TensorFlow allow to create high-end machine
learning technique. R also has a package to perform Xgboost, one the



best algorithm for Kaggle competition.

R can communicate with the other language. It is possible to call
Python, Java, C++ in R. The world of big data is also accessible to R.
You can connect R with different databases like Spark or Hadoop.

Finally, R has evolved and allowed parallelizing operation to speed up
the computation. In fact, R was criticized for using only one CPU at a

time. The parallel package lets you to perform tasks in different cores

of the machine.

Summary

In a nutshell, R is a great tool to explore and investigate the data.
Elaborate analysis like clustering, correlation, and data reduction are
done with R. This is the most crucial part, without a good feature
engineering and model, the deployment of the machine learning will
not give meaningful results.



Chapter 2: How to Download
& Install R, RStudio,
Anaconda on Mac or

Windows

R is a programming language. To use R, we need to install an
Integrated Development Environment (IDE). Rstudio is the
Best IDE available as it is user-friendly, open-source and is part of the
Anaconda platform.

Install Anaconda

What is Anaconda?

Anaconda free open source is distributing both Python and R
programming language. Anaconda is widely used in the scientific
community and data scientist to carry out Machine Learning project or
data analysis.

Why use Anaconda?

Anaconda will help you to manage all the libraries required for Python,
or R. Anaconda will install all the required libraries and IDE into one
single folder to simplify package management. Otherwise, you would
need to install them separately.



Mac User

Step 1) Go to https://www.anaconda.com/download/ and
Download Anaconda for Python 3.6 for your OS.

By default, Chrome selects the downloading page of your system. In
this tutorial, installation is done for Mac. If you run on Windows or
Linux, download Anaconda 5.1 for Windows installer or Anaconda 5.1
for Linux installer.

Windows Users
— ~
S
A\

:
% ¥

acOS A Linu

("s

Anaconda 5.1 For macOS Installer

Python 3.6 version ” Python 2.7 version ”

&, Download & Download
64-8it Graphical Installer (595 MB) 4.8it Graphical Installer (S88 MB)
4.8t Commandt-Line Installer (511 MB) 4-8it Command-Line Installer (506 M8)

Step 2) You are now ready to install Anaconda. Double-click on the
downloaded file to begin the installation. It is .dmg for mac and .exe
for windows. You will be asked to confirm the installation. Click
Continue button.



This package will run a program to

. determine if the software can be installed.
To keep your computer secure, you should only run
programs or install software from a trusted source. If

you're not sure about this software's source, click
Cancel to stop the program and the installation.

Go Back Continue

You are redirected to the Anacondag Installer.



& e Install Anaconda3 -

Welcome to the Anaconda3 Installer

You will be guided through the steps necessary to install this

¢ Introduction
software.

Read Me

License
Destination Select
Installation Type
Installation
Microsoft VSCode

Summary

dl s
.
3
&,

|

ANACONDA

Step 3) Next window displays the ReadMe. After you are done
reading the document, click Continue



& '« Install Anaconda3 -

Important Information

Anaconda is the most popular Python data science platform. See

@ Introduction https://www.anaconda.com/downloads/.
® ReadMe By default, this installer modifies your bash profile to put
License Anaconda3 in your PATH. To disable this, choose "Customize"
T at the "Installation Type" phase, and disable the "Modify PATH"
Destination Select option. If you do not do this, you will need to add ~/anaconda3/
Installation Type bin to your PATH manually to run the commands, or run all
_ Anaconda3 commands explicitly from that path.
Installation
Microsoft VSCade To install to a different location, select "Change Install
Location..." at the "Installation Type" phase, then choose "Install
Summary on a specific disk...", choose the disk you wish to install on, and
click "Choose Folder...". The "Install for me only" option will
o install Anaconda3 to the default location, ~/anaconda3.
i
*"D The packages included in this installation are:

ANACONDA - defaults::alabaster 0.7.10

defaults::anaconda-client 1.6.9
= defanlts: anaconda-nroiect (.82

Print... Save... Go Back

Step 4) This window shows the Anaconda End User License
Agreement. Click Continue to agree.



® w Install Anaconda3 fal

Software License Agreement

» Introduction Anaconda End User License Agreement

¢ Read Me
5 Copyright 2015, Anaconda, Inc.
© License

Destination Select All rights reserved under the 3-clause BSD License:
Redistribution and use in source and binary forms, with or without

Installation Type
" maodification, are permitted provided that the following conditions are met:

Installation
* Redistributions of source code must retain the above copyright notice,
Microsoft VSCode this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
Summary notice, this list of conditions and the following disclaimer in the
documentation andfor other materials provided with the distribution.
S * Neither the name of Anaconda, Inc. ("Anaconda, Inc.”) nor the names
::' ) of its contributors may be used to endorse or promote products derived
‘e, from this software without specific prior written permission.
AN ACO N D A THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AMD

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

Print... Save... Go Back

Step 5) You are prompted to agree, click Agree to go to the next step.



w Install Anaconda3 i

To continue installing the software you must agree to the terms of
the software license agreement.

int Click Agree to continue or click Disagree to cancel the installation and
Re; quit the Installer.
¢ Lic
Del - :
Read License Disagree Agree
Ins
B el
Installation
) * Redistributions of source code must retain the above copyright notice,
Microsoft VSCode this list of conditions and the following disclaimer.
8 * Redistributions in binary form must reproduce the above copyright
Summary notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
¥ * Meither the name of Anaconda, Inc. ("Anaconda, Inc.") nor the names
g' of its contributors may be used to endorse or promote products derived
" from this software without specific prior written permission.

A N ACO N DA THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS 15" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

Print... Save... Go Back Continue

Step 6) Click Change Install Location to set the location of
Anaconda. By default, Anaconda is installed in the user environment:
Users/YOURNAME/.



b e Install Anaconda3
Standard Install on "Macintosh HD"

This will take 2,05 GB of space on your computer.

Introduction
' Read Me Click Install to perform a standard installation of this software
it in your home folder. Only the current user of this computer will
icense

be able to use this software.
Destination Select

& Installation Type
Installation
Microsoft VSCode

Summary

ANACONDA

Change Install Location...

Customize Go Back Install

Select the destination by clicking on Install for me only. It means
Anaconda will be accessible only to this user.



L] W Install Anaconda3

Select a Destination

» Introduction How do you want to install this software?
©» Read Me

o License — ; i
| Install for all users of this computer

» Destination Select

¢ Installation Type ﬁ Install for me only 1
Installation :
Microsoft VSCode i Install on a specific disk...
Summary
L Installing this software requires 2,05 GB of space.
:‘....D You have chosen to install this software in your home folder.

Only the current user will be able to use this software.

ANACONDA

Continue

Step 7) You can install Anaconda now. Click Install to proceed.
Anaconda takes around 2.5 GB on your hard drive.



@ ' Install Anaconda3 -
Standard Install on "Macintosh HD"

& TG S This will take 2,05 GB of space on your computer.

= Read Me Click Install to perform a standard installation of this software
; on the disk "Macintosh HD".
¢ License
» Destination Select
o Installation Type
Installation
Microsoft VSCode

Summary

,)

ANACONDA

st
Pl 7 1N

Change Install Location...

A message box is prompt. You need to confirm by typing your
password. Hit Install Software



% Install Anaconda3 ™

Installing Anaconda3
# Introduction
s Read Me F Installer is trying to install new software.
11 11
* License E Enter your password to allow this.
» Destination Select
User Name: The

» Installation Type
+ Installation Password:

Microsoft VSCode

Summary Install Software
ANACONDA

The installation may take sometimes. It depends on your machine.



"

Installing Anaconda3

Introduction
Read Me
License
Destination Select Writing files...
Installation Type
¢ Installation
Microsoft VSCode

Summary

B

ANACONDA

Install time remaining: About 5 minutes

—y
P T

Step 8) Anaconda asks you if you want to install Microsoft VSCode.
You can ignore it and hit Continue



) ' Install Anaconda3 -

Microsoft Visual Studio Code

» Introduction Anaconda has partnered with Microsoft to bring you
Visual Studio Code. Visual Studio Code is a free, open

¢ Read Me source, streamlined cross-platform code editor with

e License excellent support for Python code editing, IntelliSense,

A debugging, linting, version control, and more.

o Destination Select

» Installation Type To install VS Code, you will require Internet Connectivity.

@ Installation

& Microsoft VSCode

Click the button below to install Visual Studio Code

Visual Studio Code License

Summary

. ) Install Microsoft VSCode

ANACONDA

an,
I 1

Step 9) The installation is completed. You can close the window.



@ ' Install Anaconda3 -

The installation was completed successfully.

Anaconda is the most popular Python data science platform.
o Introduction

1
e Read Ma Share your notebooks and packages on Anaconda Cloud!

Sign up for free
o License

© Destination Select
© Installation Type
o Installation

o Microsoft VSCode
» Summary

_)

ANACONDA

i
A

You are asked if you want to move "Anacondag" installer to the Trash.
Click Move to Trash



w Install Anaconda3 =

Do you want to move the "Anaconda3"”

. A Installer to the Trash? |
form.
o Introductic To keep this package in its current location,
click Keep.
© Read Me
; Keep
» License

» Destination Select
@ Installation Type
o Installation

o Microsoft VSCode
© Summary

,)

ANACONDA

s
P 1

Go Back

You are done with the installation of Anaconda on a macOS
system

Windows User

Step 1) Open the downloaded exe and click Next



) Anaconda3 5.1.0 (64-bit) Setup (3 — .4

Welcome to Anaconda3 5.1.0
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
5.1.0 (64-hit).

ANACONDA.

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboat your
computer,

Click Mext to continue.

Step 2) Accept the License Agreement



- Anaconda3 5.1.0 (64-bit) Setup (1B = o
License Agreement

'.) ANACONDA Flease review the license terms before installing Anaconda3 5. 1.0
(&4-bit).

Press Page Down to see the rest of the agreement.

{Copyright 2015, Anaconda, Inc.

All rights reserved under the 3-dause BSD License:

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

W
If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Anaconda3 5. 1.0 (64-bit).

dnaconda, Inc, - ——

< Back | I Agree Cancel

Step 3) Select Just Me and click Next



') Anaconda3 5.1.0 (64-bit) Setup

Select Installation Type

{ ) ANACONDA Please select the type of installation you would like to perform for
Anacondad 5. 1.0 (64-hit).

@ =

s

Install for:

(®)3ust Me (recommended);

() All Users (requires admin privileges)

#naconda, Inc,

< Badk

| Cancel

Step 4) Select Destination Folder and Click Next




2 Anaconda3 5.1.0 (64-bit) Setup [i8 —

g5 Choose Install Location
{ ) ANACONDA Choose the folder in which to install Anaconda3 5. 1.0 {64-hit).

Setup will install Anaconda3 5. 1.0 (64-hit) in the following folder. To install in a different
folder, dick Browse and select another folder. Clidk Mext to continue.

Esﬁnaﬁun Folder

Browse...

Space reguired: 2.5GB
Space available: 61.6G8

#naconda, Inc,

=

Step 5) Click Install in next Screen



- Anaconda3 5.1.0 (64-bit) Setup [ig —

Advanced Installation Options
f.) AMNACONDA Customize how Anaconda integrates with Windows

Advanced Options

[ liAdd Anaconda to my PATH environment variable:

Mot recommended. Instead, open Anaconda with the Windows Start
menu and select "Anaconda (64-hit)", This "add to PATH" option makes
Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

gister Anaconda as my default Python 3.6

pvill allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and M5I binary packages, to automatically
detect Anaconda as the primary Python 3.6 on the system.

Step 6) Installation will begin



_ Anaconda3 5.1.0 (64-bit) Setup e s

Installing
'-) ANACONDA Please wait while Anaconda3 5. 1.0 {64-bit) is being installed.

Extract: python-3.6.4-h65338335_1.tar.bz2

= Show details

| e P Kl e —— ]
< DECK MEeXT = Lancel

Once done, Anaconda will be installed.

Install R

Mac users

Step 1) Anaconda uses the terminal to install libraries. The terminal
is a quick way to install libraries. We need to be sure to point the
installation toward the right path. In our case, we set the location of
Anaconda to the Users/USERNAME/. We can confirm this by
checking anacondag folder.

Open Computer and select Users, USERNAME and anaconda3.



It confirms that we installed Anaconda on the right path. Now, let's see
how macOS write the path. Right-click, and then Get Info

L] 5 H Thomas's MacBook Pro
< 2N = [ENE: R X =) 3 Qs
Eavorites Name A Date Modifi
£ learning ¥ & Macintosh HD Today at 01
E VAT » [ Applications Today at O
> @ Library Today at 01
7] Desktop » [ System 1Dec 2017
g Dropbox ¥ @ Users 13 Dec 201
m F 0 Guest 16 Oct 201
Thomas » [ Shared Today at 0!
0 Downlo... ¥ 4 Thomas [ Today at 0
| = anacontad :
- Open in New Tab
Dovioes > [ Applications
Shared » [0 Desktop Maove to Trash
» [ Docker
* ¥ Documents e
F & Downloads
» B Dropbox Compress "anaconda3"”
> | Jupyter_notebook DuDIIcat_e
> Bl Movies Make Alias
> B Music Quick Look "anaconda3"
» |8 Pictures Share

Select the path Where and click Copy



b & " anaconda3 Info

anaconda3 6,83 GB
Modified: Yesterday 0B:56

¥ General:

Kind: Folder
Size: 6 827 799 462 bytes (7 B on disk) for 228 679 items
Where: Macintosh HD « Users - )
Created: Tuesday 24 October 2017 LOOk Up “Macintosh HD » L

Modified: Yesterday 08:56 Search with Google

Shared folder
o T @

¥ More Info:

o Share
¥ Name & Extension: Spelling and Grammar
anaconda3 . Substitutions
. Speech
» Comments: - Get Current Selection (Do t

Add to iTunes as a Spoken

¥ Preview:

Step 2) For Mac user:

e The shortest way is to use the Spotlight Search and write
terminal.



IO\ termjnal I

TOP HITS

s ITerm — ncurses-6.0-ha932d30.1

APPLICATIONS
Term — ncurses-6.0-hd04f020_2

SIRI SUGGESTED WEBSITES
thermomix.vorwerk.com
espace-recettes.fr

. thermomix.vorwerk.fr

SIRI KNOWLEDGE

& Thermomix
WEBSITES

@ cookidoo.fr i
DEFINITION Terminal

> B

B term
DEVELOPER

& B replace_missing.html

- e e e

The terminal sets the default working directory to
Users/USERNAME. As you can see in the figure below, the path of
anacondag and the working directory are identical. In macOS, the
latest folder is shown before the $. For me, it is Thomas. The
terminal will install all the libraries in this working directory.

If the path on the text editor does not match the working directory,
you can change it by writing cd PATH in the terminal. PATH is the
path you pasted in the text editor. Don't forget to wrap the PATH with
"PATH". This action will change the working directory to PATH.

L BN ) Untitled —
¢z v m . B uE 10 5=

1~ || Helvetica
o
___________ A ‘T T e e B e T | ‘ |
o 2 4 & 8 )
This is the working directony, IUsers/Thomas ‘

By defoult, it beging be the user nare P Tseswww
ie. Mlsers/UOR NAME

Step 4) We are ready to install R. I recommend you to install all
packages and dependencies with the conda command in the terminal.

## In the terminalconda install r-essentials --yes

r-essentials means conda will install R and all the necessary libraries



used by data scientist.

[ NN - Thomas — conda install r-essentials --yes — 8B0x24

Last login: Wed Feb 21 ©86:39:55 on ttyseee

Thomass-MacBook-Pro:~ Thomas$ conda install r-essentials --yes
Solving environment: / [ L L L L L b L 1 & bt b Lt b

aw o ')’E‘S
| MEans we actept anuy
charngs

Conda is downloading the libraries

It takes some time to upload all the libraries. Be patient...you are all
set.

@9 # Thomas — -bash — 80x=24

Last login: Wed Feb 21 @6:39:55 on pan

Thomass-MacBook-Pro:~ Thomas%$ conda
Solving environment: done

## Package Plan ##

environment location: fUsers/Thomas/anaconda3d

added / updated specs:
- r-essentials

4 : r - -¥es
The following NEW packages 11 be INSTALLED:
il P ey ol Confirms autormatically fe

r-essentials: 1.7.8-r342h&faBfb2_0 Cnonges

FPreparing transaction:
Verifying transaction:
Executing transaction:
Thomass-MacBook-Pro:~

In the terminal, you should see Executing transaction: done. If so, you
have successfully installed R.

You can check where R is located.

2] 2] “~ Thomas — -bash — 80x24
Last login: Wed Feb 21 @6:44:25 on ttys@ee

Thom -M k-Pro:~ Th which r e can creck wrere P s
SUsers/Thomas/anaconda3/bin/r ooated

Thomass-MacBook-Pro:~ Thomass |




Windows User

Step 1) Open the Anaconda command prompt

[ A Filters ~~

Best match

- Anaconda Prompt
Desktop app

Apps

@ Backup and Sync from Google

Search suggestions

/D an - See web results 5
Folders (5+)

Documents (2+)

Settings (4+)

Step 2) In the command prompt

1. Enter the R install command
2. Environment will be determined



3. List of packages to be installed will be listed

B Anaconda Prompt - conda install r-essentials

sershyAdmin»conda install r-essential
ronment: done

e Plan ##
enviromment locatiom: C:\ rsh\Admin\Anaconda3
added / updated
- r-essentials
The following packages will be downloaded:

build

r-mnormt
m2wed-tc

r342har

Step 3) Enter y and hit the return key to start installation



2 #####################################################"

B 2 T e S S L S S e S

1: #HHHEHHEH AR R

RS S R S R s R S R S S R S e S S S S R

1.1.6: HEHEHEHEEEEEHEREEEHEREHE R

e e e S e S R S D S e S S e S e

g e e i L S S S S i LR

e L S S S S S i L

I e e T L S S L S S e S

M 22 L S e S L S S e S

M 22 L S e S S L S S e

SRR R

B 2088 R S R R R S R S SR S S SR S S R SR

s ##########################################################"
2.9 3 HHHEHEHEHREREEEE R 2

3.4.% R
rvest 8.3.: R

tidyverse A
dﬂalpha 1 A
reshape2 1.4.2: ##HHEHEEHHHEHEEEEEE
modelr 8.1.1: #EFHHITT T
eparing transaction] done
rifying transaction] done
cecuting transaction] done

Install Rstudio

Mac User



In the terminal, write the following code:
## In the terminalconda install -c r rstudio --yes

£ i “ Thomas — -bash — 80x24
Last login: Wed Feb 21 ©6:46:38 oo

Thomass-MacBook-Pro:~ Thomas$ conda -5' a T ‘ 5'
Solving environment: done _&'ﬁ
## Package Plan ## '“;
1
environment location: fUsers/Thomas/anaconda3 Ec
f
added / updated specs: ¥
- rstudio o *'/ﬁ
e g - -yes
The following NEW packages will be INSTALLED: Confirmns autornatically fne
Cranges

rstudio: 1.1.383-h4B814884_2 r

Preparing transaction:|done
Verifying transaction:|done
Executing transaction:|done
Thomass-MacBook-Pro:~ YRomas

In the terminal, you should see Executing transaction: done. If so, you
have successfully installed Rstudio.

You are all set now, congratulation!

Windows User

Step 1) Enter command to install R Studio in the Anaconda prompt

B Anaconda Prompt - conda install -c rrstudio

Admin»conda install -c r
1 environmendl: B

Step 2) You will be shown a list of packages that will be installed.
Entery



Froceed ([y]/n)? vy

L B R A A A R S S
FHAH S A I I
HH R
FHHHH R

FHHHHHEEE R

Warning

Avoid as much as you can to install a library using pip for Python, and
R. Conda libraries gather a lot of packages, you don't need to install
libraries outside of conda environment.

Run Rstudio

Directly run the command line from the terminal to open Rstudio. You
open the terminal and write rstudio. You can also use Desktop
Shortcut

B Anaconda Prompt

chvAadmin>rstudio

Admins

Or



H O @&

Best match

RStudio Desktop

Desktop app

Search suggestions
}:’ s - See web results
Folders (4+)

Documents (2+)

Settings (1)

A new window will be opened with Rstudio.



eve RStudio

O - - H 5 || A Gotofe/function - Addins « B Project: (None) =
O] Untitled1* —[7 Environment History. ‘Cor
H Source onSave O 7 - =Run | "%  +Source - = | | [7*import Dataset -

1 summary(cors)| 7k Global Environment = ),

Environment is empty

Global
Environment

Files Plots Packages ™ H
O NewFolder @ Delete .
A Home
A Name

& _gitignore
Fre

Explorer

" anaconda3

Console  Terminal | Applications
P =0 | Desktop

- | Docker

1:14  (Top Level) = R Script =

During startup - Warning messages: © Documents

1: Setting LC_CTYPE failed, using “C*

2: Setting LC_COLLATE failed, using "C" Powstoads

3: Setting LC_TIME failed, using "C" Console ! Dropbox

4: Setting LC_MESSAGES failed, using "C" | Jupyter_notebook
5: Setting LC_MOMETARY failed, using "C"

[Workspace loaded from ~/.RData] 4 Library
o Movies

> Ll Muskc

Test

Open Rstudio from the terminal and open a script. Write the following
command:

1. ## In Rstudio summary/(cars)
2. Click Run
3. Check Output



€3 Rstudio
File Edit Code View Plots Session Build Debug Profile Tools Help
O - OB - - - Addins ~

@' Untitled1* - e

Source on Save &q A - (’ = Run b 4
1 summary{cars) -

ey

21 [Top Level) = I

Console  Terminal ¥ |

R version 3.4.2 (2017-09-28) -- "short Summer" ¥ |
copyright (c) 2017 The R Foundation for Statistical Computing Y |
Platform: x86_64-wbd-mingw32/x64 (64-bit) ¥ |

R is free software and comes with ABSOLUTELY NO WARRANTY. ’
You are welcome to redistribute it under certain conditions. s
Type "license()' or 'licence()’ for distribution details. ¥ |

R is a collaborative project with many contributors. ¥ §
Type "contributors()' for more information and
‘citation()’ on how to cite R or R packages in publicatiops.

Type ‘demo()’ for some demos, "help()’ for on-Tine helg, or
'help.start()" for an HTML browser interface to he};f

Type 'q()’ to quit R. i
> summary(cars) J’
speed dist ,"’

Min. : 4.0 Min. : 2.00 ‘f
1st Qu. :12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean  42.98
3rd Qu.:19.0 3rd Qu.: 56.00
0 Max. :120.00

Max. Z2hi

If you can see the summary statistics, it works. You can close Rstudio
without saving the files.

Install package

Install package with anaconda is trivial. You go to your favorite
browser, type the name of the library followed by anaconda r.



EBovare

<

(=
ro—

[ randomforest anaconda r

Google Search I'm Feeling Lucky

You choose the link that points to anaconda. You copy and paste the
library into the terminal.

GIJ G% B randomforest anaconda r L Q

All Shopping Images Videos News More Settings Tools

About 97,800 results (0.45 seconds)

R Randomforest :: Anaconda Cloud

https://anaconda.org/rir-randomforest »

conda install. linux-64 v4.6_12; win-32 v4.6_12; osx-64 v4.6_12; linux-32 v4.6_12; win-64 v4.6_12. To
install this package with conda run: conda install -c r r-randomforest ...

You visited this page on 2/14/18.

Badges :: Anaconda Cloud

https://anaconda.org/r/r-randomforest/badges ~

r/ packages / r-randomforest. 0. Classification and regression based on a forest of trees using random
inputs. Conda - Files - Labels - Badges. Click on a badge to see how to embed it in your web page.
badge. * ...

GitHub - conda-forge/r-randomforest-feedstock: A conda-smithy ...
hitps://github.com/conda-forge/r-randomforest-feedstock v

A conda-smithy repository for r-randomforest. Contribute to r-randomforest-feedstock development by
creating an account on GitHub.

For instance, we need to install randomForest for the tutorial on
random forest; we go https://anaconda.org/r/r-randomforest.



r [ packages / r-randomforest 46 12

Classification and regression based on a forest of trees using random inputs.

Bi License: GPL (>=2)
& 148226 total downloads

Installers
conda install @

A linux-64 JRETRV]

va6_12

A linux-32 [RETEV]
[ o O

To install this package with conda run:
lconda install -c¢ r r-randomforest I
Run conda install -c¢ r r-randomforest --yes from the terminal.

‘Thomass-MacBook-Pro:~ Thnmas$|cnnda install -c r r-randomforest --yes I

Solving environment: done

## Package Plan ##
environment location: /fUsers/Thomas/anaconda3
- ————— -

added / updated specs:
- r-randomforest

The following packages will be downloaded:

package | build

r-randomforest-4.6_12 | r3dzh@fezaif_4 154 KB r
The following packages will be UPDATED:

r-randomforest: 4.6_12-r342h@f92a3f_4 ——> 4.6_12-r342h0f92a3f_4 r

Downloading and Extracting Packages

r-randomforest 4.6_12: #Ssssssy HEAALARRR BB HARARR BB R AARARRERGARRARREEREN | 100%
Preparing transaction:
Verifying transaction:
Executing transaction:
Thomass-MacBook-Pro:~

The installation is completed.



Note that Thorough this tutorial, you won't need to install many
libraries as the most used libraries came with the r-essential conda
library. It includes ggplot for the graph and caret for the machine
learning project.

Open a library

To run the R function randomForest(), we need to open the library
containing the function. In the Rstudio script, we can write
library(randomForest)

## In Rstudiolibrary(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.

Warning: Avoid as much as possible to open unnecessary packages.
You might ended up creating conflicts between libraries.

Run R code

We have two ways to run codes in R

1. We can run the codes inside the Console. Our data will be stored
in the Global Environment but no history is recorded. We won't
be able to replicate the results once R is closed. We need to write
the codes all over again. This method is not recommended if we
want to replicate our save our codes



Console  Terminal

R version 3.4.2 (2017-09-28) -- "short Summer™
Copyright (C) 2017 The R Foundation for statistical Computing
Platform: x86_64-wbd-mingw32,/x64 (64-bit) e

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type "Ticense()' or "Ticence()’ for distribution details.

R is a collaborative project with many contributors. OOda
Type "contributors()’ for more information and

"citation{)’ on how to cite R or R packages in publications. o

Type "demo()’ for some demos, '"help()" for on-line help, or

"help.start{)" for an HTML browser interface to help. Y |

Type 'q()’ to quit R. -
_—-——_‘_

= 51ice_vector =- c(l,Z,E,ri,S,E,F,B,Q,lO}"

» s1ice_vector[1:5]

[1]1 2345

=

> |

& Check outpur

2. Write the code in the script. We can write as many lines of codes
as we want. To run the code, we simple select the rows we want to
return. Finally, click on run. We can see the output in the Console.
We can save our script and open it later. Our results won't we lost.



@ Untitled1*

: I+ | | Source on Save Q /’ -| § = Run wep | | o Source
Elice_vector <- ¢(1,2,3,4,5,6,7,8,9,10)
slice_wvector[1:5]

Sglect both lines of code that

Wov want 1o execvte

————O

R version 3.4.2 (2017-09-28) -- "short Summer"
copyright (c) 2017 The R Foundation for statistical caolputing
Platform: x86_64-wbd-mingw32,/x64 (64-bit) ,

R is free software and comes with ABSOLUTELY ND WAR TY.
You are welcome to redistribute it under certain comditions.
Type "license()’ or "licence()’ for distribution details.

R is a collaborative project with many contribugbrs.
Type 'contributors()' for more information andf
‘citation()' on how to cite R or R packages #fn publications.

Type ‘demo()’ for some demos, 'hE1p3;{€r on-1line help, or

"help.start()’ for an HTML browser i rface to help.

r ol it R.
Type 'q()' to qui ‘4’

» 5lice_vector <- c(1,2,3 4J£ 7,8,5,10)
> slice_wvector[1:5]

[1]12345 e."

Observe Qutput

Warning: In we point the cursor at the second row (i.e.,
slice_vector[1:5]), the Console displays an error. That's, we didn't run
the line number 1.



9 Untitled1®

] Source on Save Q, ,f' - = Run "
1 slice_vector <- ¢(1,2,3,4,5,6,7,8,9,10)
2 [Plice_vector[1:5] -
’ ¥
3 ‘ﬂ'
-
? 1
21 [Top Level) = ‘
Console  Terminal ‘.‘
ety ‘
R version 3.4.2 (2017-09-28) -- "short Summer"” ‘
Copyright (C) 2017 The R Foundation for statistical CDmpdking
Platform: xB86_64-w64-mingw32,/%x64 (64-bit) ]

R is free software and comes with ABSOLUTELY NO WARRANW.l
You are welcome to redistribute it under certain cond‘it‘io"nf..
Type 'license()’ or '"licence()’ for distribution deta'i'lsj'

R is a collaborative project with many contributors. s
Type 'contributors()" for more information and

‘citation()' on how to cite R or R packages in publ 1}{t'i ons.
Type 'demo()’' for some demos, "help()' for on-linefhelp, or
"help.start()’ for an HTML browser interface to hgfip.

Type "q()’' to quit R. Y ;

> s5lice_wvector[1l:5] 4
Error: object 'slice_vector’ not found e ‘
-

Similarly, if we point the cursor to an empty row and click on run, R
return an empty output.



@] Untitled1®

% ' | Source on Save Q f =| § = Run
1 slice_vector <- c(1,2,3,4, 5 6,7,8, 91[}}"
2 slice_vector[1:5] e
il Ll L Tt
@

Console Terminal

§
£
31 (Top Level) = "
B
!

= f

R version 3.4.2 (2017-09-28) -- "short Summer'
Copyright (C) 2017 The R Foundation for Stat'ift'ica'l Computing
Platform: x86_64-wbd-mingw32,/x64 (64-bit) ‘

R is free software and comes with AESULUTEHE NO WARRANTY.
You are welcome to redistribute it under gkrtain conditions.
Type "license()’ or '"licence()’ for d'ist'ibut'ir::n details.

R is a collaborative project with marng contributors.
Type 'contributors()’ for more infggmation and
"citation()' on how to cite R or @ packages in publications.

Type 'demo()' for some demo "hEWP()' for on-line help, or
"help.start ()’ for an HTM# Drowser interface to help.

Type 'q()' to guit R. o

> sl|ice_wvector (
Error: objecke®Slice_vector’ not found
-

"4



Chapter 3: R Data Types,
Arithmetic & Logical
Operators with Example

Basic data types

R Programming works with numerous data types, including

e Scalars
e Vectors (numerical, character, logical)
e Matrices
e Data frames
e Lists
Basics types
e 4.51is a decimal value called numerics.
e 4 is a natural value called integers. Integers are also numerics.
e TRUE or FALSE is a Boolean value called logical.
e The value inside " " or ' ' are text (string). They are called

characters.
We can check the type of a variable with the class function

Example 1:

# Declare variables of different types
# Numeric

X <- 28

class(x)

Output:



## [1] "numeric"

Example 2:
# String

y <- "R is Fantastic"
class(y)

Output:

## [1] "character"

Example 3:
# Boolean

z <- TRUE
class(z)

Output:

## [1] "logical"

Variables

Variables store values and are an important component in
programming, especially for a data scientist. A variable can store a
number, an object, a statistical result, vector, dataset, a model
prediction basically anything R outputs. We can use that variable later
simply by calling the name of the variable.

To declare a variable, we need to assign a variable name. The name
should not have space. We can use _ to connect to words.

To add a value to the variable, use <- or =.

Here is the syntax:

# First way to declare a variable: wuse the "<-°
name_of_variable <- value
# Second way to declare a variable: use the "=



name_of_variable = value

In the command line, we can write the following codes to see what
happens:

Example 1:
# Print variable x

X <- 42
X

Output:

## [1] 42

Example 2:

y <- 10
y

Output:

## [1] 10

Example 3:

# We call x and y and apply a subtraction
X-y

Output:

## [1] 32

Vectors

A vector is a one-dimensional array. We can create a vector with all the
basic data type we learnt before. The simplest way to build a vector in
R, is to use the ¢ command.

Example 1:



# Numerical
vec_num <- c(1, 10, 49)
vec_num

Output:

## [1] 1 10 49

Example 2:
# Character

VeC_Chr <_ C("a", Ilbll’ "C")
vec_chr

Output:

## [1] llall llbll IICII

Example 3:

# Boolean
vec_bool <- Cc(TRUE, FALSE, TRUE)
vec_bool

Output:

##[1] TRUE FALSE TRUE

We can do arithmetic calculations on vectors.

Example 4:

# Create the vectors

vect_1 <- c(1, 3, 5)

vect_2 <- c(2, 4, 6)

# Take the sum of A_vector and B_vector
sum_vect <- vect_1 + vect_2

# Print out total_vector

sum_vect

Output:

[1] 3 7 11



Example 5:

In R, it is possible to slice a vector. In some occasion, we are interested
in only the first five rows of a vector. We can use the [1:5] command to
extract the value 1 to 5.

# Slice the first five rows of the vector

slice_vector <- ¢(1,2,3,4,5,6,7,8,9,10)
slice_vector[1:5]

Output:

## [1] 123 45

Example 6:

The shortest way to create a range of value is to use the: between two
numbers. For instance, from the above example, we can write ¢(1:10)
to create a vector of value from one to ten.

# Faster way to create adjacent values
c(1:10)

Output:

## [1] 1 2 3 4 5 6 7 8 9 10

Arithmetic Operators

We will first see the basic arithmetic operations in R. The following
operators stand for:

Operator Description
+ Addition

- Subtraction

* Multiplication

/ Division



A or ** Exponentiation

Example 1:

# An addition
3+ 4

Output:

## [1] 7

You can easily copy and paste the above R code into Rstudio Console.
The output is displayed after the character #. For instance, we write
the code print('Gurugg') the output will be ##[1] Gurugg.

The ## means we print an output and the number in the square
bracket ([1]) is the number of the display

The sentences starting with # annotation. We can use # inside an R
script to add any comment we want. R won't read it during the
running time.

Example 2:

# A multiplication
3*5

*

Output:
## [1] 15
Example 3:

# A division
(5+5)/2

Output:

## [1] 5

Example 4:



# Exponentiation
275

Output:
Example 5:
## [1] 32

# Modulo
28%%6

Output:

## [1] 4

Logical Operators

With logical operators, we want to return values inside the vector
based on logical conditions. Following is a detailed list of logical
operators available in R

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Exactly equal to

1= Not equal to

Ix Not x

X y

X&Y X AND vy

isTRUE(x) Test if Xis TRUE

The logical statements in R are wrapped inside the []. We can add
many conditional statements as we like but we need to include them in



a parenthesis. We can follow this structure to create a conditional
statement:

variable_name[ (conditional_statement)]

With variable_name referring to the variable, we want to use for the
statement. We create the logical statement i.e. variable_name > 0.
Finally, we use the square bracket to finalize the logical statement.
Below, an example of a logical statement.

Example 1:

# Create a vector from 1 to 10
logical_vector <- c(1:10)
logical_vector>5

Output:

## [1]FALSE FALSE FALSE FALSE
FALSE TRUE TRUE TRUE TRUE TRUE

In the output above, R reads each value and compares it to the
statement logical_vector>5. If the value is strictly superior to five,
then the condition is TRUE, otherwise FALSE. R returns a vector of
TRUE and FALSE.

Example 2:

In the example below, we want to extract the values that only meet the
condition 'is strictly superior to five'. For that, we can wrap the
condition inside a square bracket precede by the vector containing the
values.

# Print value strictly above 5
logical_vector[(logical_vector>5)]

Output:

# [1] 6 7 8 9 10



Example 3:
# Print 5 and 6

logical_vector <- c(1:10)
logical_vector[(logical_vector>4) & (logical_vector<7)]

Output:

## [1] 5 6



Chapter 4: R Matrix Tutorial:
Create, Print, add Column,
Slice

What is a Matrix?

A matrix is a 2-dimensional array that has m number of rows and n
number of columns. In other words, matrix is a combination of two or
more vectors with the same data type.

Note: It is possible to create more than two dimensions arrays with R.



Example of different matrix dimension

2x2 matrix columnl  column2
row 1 1 2
row 2 2 4
3x3 matrix column 1 column2 Column 3
row 1 1 2 3
row 2 4 5 6
row 3 i 8 9
5x2 matrix columnl  column2
row 1 1 2
row 2 3 4
row 1 5 b
row 4 7 8
row 5 9 10

How to Create a Matrixin R

We can create a matrix with the function matrix(). This function takes
three arguments:

matrix(data, nrow, ncol, byrow = FALSE)

Arguments:

e data: The collection of elements that R will arrange into the rows
and columns of the matrix \
¢ nrow: Number of rows



e ncol: Number of columns

¢ byrow: The rows are filled from the left to the right. We use
“byrow = FALSE" (default values), if we want the matrix to be
filled by the columns i.e. the values are filled top to bottom.

Let's construct two 5x2 matrix with a sequence of number from 1 to 10,
one with byrow = TRUE and one with byrow = FALSE to see the
difference.

# Construct a matrix with 5 rows that contain the numbers 1 up
to 10 and byrow = TRUE

matrix_a <-matrix(1:10, byrow = TRUE, nrow = 5)
matrix_a

Output:

= matrix_a

(.11 [,2]
[1,]
[2,]

[3,] 5 6
[4,] 7 8
[5,] 9 10

Print dimension of the matrix with dim()

# Print dimension of the matrix with dim()
dim(matrix_a)

Output:

## [1] 5 2

Construct a matrix with 5 rows that contain the numbers 1
up to 10 and byrow = FALSE

# Construct a matrix with 5 rows that contain the numbers 1 up



to 10 and byrow = FALSE
matrix_b <-matrix(1:10, byrow = FALSE, nrow = 5)
matrix_b

Output:

> matrix_b

B 2
[1,]
[2.]
3.1 3 &
[4,] 4 9
N 5 10

Print dimension of the matrix with dim()

# Print dimension of the matrix with dim()
dim(matrix_b)

Output:
## [1] 5 2

Note: Using command matrix_b <-matrix(1:10, byrow = FALSE, ncol
= 2) will have same effect as above.

You can also create a 4x3 matrix using ncol. R will create 3 columns
and fill the row from top to bottom. Check an example

matrix_c <-matrix(1:12, byrow = FALSE, ncol = 3)
matrix_c

Output:

## [,1] [,2] [,3]
## [1,] 1 5 9
# [2,] 2 6 10
## [3,] 3 7 11



## [4,] 4 8 12

Example:

dim(matrix_c)

Output:

## [1] 4 3

Add a Column to a Matrix with the
cbind()

You can add a column to a matrix with the cbind() command. cbind()
means column binding. cbind()can concatenate as many matrix or
columns as specified. For example, our previous example created a 5x2
matrix. We concatenate a third column and verify the dimension is 5x3

Example:
# concatenate c(1:5) to the matrix_a
matrix_al <- cbind(matrix_a, c(1:5))

# Check the dimension
dim(matrix_al)

Output:

## [1] 5 3

Example:

matrix_ail

Output

## [,1] [,2] [,3]
# [1,] 1 2 1
# [2,] 3 4 2
## [3,] 5 6 3



## [4,] 7 8 4
## [5, ] 9 10 5

Example:

We can also add more than one column. Let's see the next sequence of
number to the matrix_ a2 matrix. The dimension of the new matrix
will be 4x6 with number from 1 to 24.

matrix_a2 <-matrix(13:24, byrow = FALSE, ncol = 3)

Output:

## [,1] [,2] [,3]
## [1,] 13 17 21
## [2,] 14 18 22
## [3,] 15 19 23
## [4,] 16 20 24

Example:

matrix_c <-matrix(1:12, byrow = FALSE, ncol = 3)
matrix_d <- cbind(matrix_a2, matrix_c)
dim(matrix_d)

Output:

## [1] 4 6

NOTE: The number of rows of matrices should be equal for cbind
work

cbind()concatenate columns, rbind() appends rows. Let's add one row
to our matrix_ ¢ matrix and verify the dimension is 6x3

matrix_c <-matrix(1:12, byrow = FALSE, ncol = 3)
# Create a vector of 3 columns

add_row <- c(1:3)

# Append to the matrix

matrix_c <- rbind(matrix_b, add_row)

# Check the dimension



dim(matrix_c)

Output:

## [1] 6 3

Slice a Matrix

We can select elements one or many elements from a matrix by using
the square brackets [ ]. This is where slicing comes into the picture.

For example:

e matrix_c[1,2] selects the element at the first row and second
column.

e matrix_c[1:3,2:3] results in a matrix with the data on the rows 1,
2, 3 and columns 2, 3,

e matrix_c[,1] selects all elements of the first column.

e matrix_c[1,] selects all elements of the first row.

Here is the output you get for the above codes



> matrix_c

[1] ©
> matrix_c[1:3
add_co

6 1 .}

Fi
B 3
> matrix_c[,1]

1
> matrix_c[1,]

1
> |

P

2 3

add_col

-
T.'h"

-
-
‘Iq-..l

6 108



Chapter 5: Factor in R:
Categorical & Continuous
Variables

What is Factor in R?

Factors are variables in R which take on a limited number of different
values; such variables are often referred to as categorical variables.

In a dataset, we can distinguish two types of variables: categorical
and continuous.

¢ In a categorical variable, the value is limited and usually based on
a particular finite group. For example, a categorical variable can
be countries, year, gender, occupation.

e A continuous variable, however, can take any values, from integer
to decimal. For example, we can have the revenue, price of a
share, etc..

Categorical Variables

R stores categorical variables into a factor. Let's check the code below
to convert a character variable into a factor variable. Characters are
not supported in machine learning algorithm, and the only way is to
convert a string to an integer.

Syntax

factor(x = character(), levels, labels = levels, ordered =
is.ordered(x))



Arguments:

e x: A vector of data. Need to be a string or integer, not decimal.

e Levels: A vector of possible values taken by x. This argument is
optional. The default value is the unique list of items of the vector
X.

e Labels: Add a label to the x data. For example, 1 can take the
label "male” while 0, the label "female".

¢ ordered: Determine if the levels should be ordered.

Example:

Let's create a factor data frame.

# Create gender vector

gender_vector <- c("Male", "Female", "Female", "Male", "Male")
class(gender_vector)

# Convert gender_vector to a factor

factor_gender_vector <-factor(gender_vector)
class(factor_gender_vector)

Output:

## [1] "character"
## [1] "factor"

It is important to transform a string into factor when we perform
Machine Learning task.

A categorical variable can be divided into nominal categorical
variable and ordinal categorical variable.

Nominal Categorical Variable

A categorical variable has several values but the order does not matter.
For instance, male or female categorical variable do not have ordering.

# Create a color vector
color_vector <- c('blue', 'red', 'green', 'white', 'black',



'yellow')

# Convert the vector to factor
factor_color <- factor(color_vector)
factor_color

Output:

## [1] blue red green white black yellow
## Levels: black blue green red white yellow

From the factor_color, we can't tell any order.

Ordinal Categorical Variable

Ordinal categorical variables do have a natural ordering. We can
specify the order, from the lowest to the highest with order = TRUE
and highest to lowest with order = FALSE.

Example:

We can use summary to count the values for each factor.

# Create Ordinal categorical vector

day_vector <- c('evening', 'morning', 'afternoon', 'midday',
'midnight', 'evening')

# Convert “day_vector®™ to a factor with ordered level
factor_day <- factor(day_vector, order = TRUE, levels
=c('morning', 'midday', 'afternoon', 'evening', 'midnight'))
# Print the new variable

factor_day

Output:

## [1] evening  morning afternoon midday
midnight evening

Example:

## Levels: morning < midday < afternoon < evening < midnight
# Append the line to above code
# Count the number of occurence of each level



summary(factor_day)

Output:
## morning midday afternoon evening midnight
Hit 1 1 1 2 1

R ordered the level from 'morning' to 'midnight' as specified in the
levels parenthesis.

Continuous Variables

Continuous class variables are the default value in R. They are stored
as numeric or integer. We can see it from the dataset below. mtcars is
a built-in dataset. It gathers information on different types of car. We
can import it by using mtcars and check the class of the variable mpg,
mile per gallon. It returns a numeric value, indicating a continuous
variable.

dataset <- mtcars
class(dataset$mpg)

Output

## [1] "numeric"



Chapter 6: R Data Frame:
Create, Append, Select,
Subset

What is a Data Frame?

A data frame is a list of vectors which are of equal length. A matrix
contains only one type of data, while a data frame accepts different
data types (numeric, character, factor, etc.).

In this tutorial, you will learn-

How to Create a Data Frame

We can create a data frame by passing the variable a,b,c,d into the
data.frame() function. We can name the columns with name() and
simply specify the name of the variables.

data.frame(df, stringsAsFactors = TRUE)
Arguments:

e df: It can be a matrix to convert as a data frame or a collection of
variables to join
o stringsAsFactors: Convert string to factor by default

We can create our first data set by combining four variables of same
length.

# Create a, b, c, d variables
a <- c(10,20,30,40)



b <- c('book', 'pen', 'textbook', 'pencil_case')
Cc <- c(TRUE, FALSE, TRUE, FALSE)

d <- c(2.5, 8, 10, 7)

# Join the variables to create a data frame
df <- data.frame(a,b,c,d)

df

Output:

## a bcd

## 1 1 book TRUE 2.5

## 2 2 pen TRUE 8.0

## 3 3 textbook TRUE 10.0

## 4 4 pencil _case FALSE 7.0

We can see the column headers have the same name as the variables.
We can change the column name with the function names(). Check the
example below:

# Name the data frame
names(df) <- c('ID', 'items',6 'store', 'price')

df

Output:

#it ID items store price

## 1 10 book TRUE 2.5

## 2 20 pen FALSE 8.0

## 3 30 textbook TRUE 10.0

## 4 40 pencil_case FALSE 7.0

# Print the structure

str(df)

Output:

## 'data.frame': 4 obs. of 4 variables:
## $ ID : num 10 20 30 40

## $ items: Factor w/ 4 levels '"book","pen",'"pencil_case",..: 1
2 4 3

## $ store: logi TRUE FALSE TRUE FALSE
## $ price: num 2.5 8 10 7



By default, data frame returns string variables as a factor.

Slice Data Frame

It is possible to SLICE values of a Data Frame. We select the rows and
columns to return into bracket precede by the name of the data frame.

A data frame is composed of rows and columns, df[A, B]. A represents
the rows and B the columns. We can slice either by specifying the rows
and/or columns.

From picture 1, the left part represents the rows, and the right part is
the columns. Note that the symbol : means to. For instance, 1:3
intends to select values from 1 to 3.

af[[1:4 |, 1:4 ]

s %
it £
:"'.\:.r i;. ‘tn"-*_ -
"-._A"..j'l"‘_.i'. L Jﬂ;-..;-

In below diagram we display how to access different selection of the
data frame:

The yellow arrow selects the row 1 in column 2

The green arrow selects the rows 1 to 2

The red arrow selects the column 1

The blue arrow selects the rows 1 to 3 and columns 3 to 4

Note that, if we let the left part blank, R will select all the rows. By
analogy, if we let the right part blank, R will select all the columns.
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We can run the code in the console:

## Select row 1 in column 2

df[1, 2]

Output:

## [1] book
## Levels: book pen

## Select Rows 1 to
df[1:2, ]

Output:
HH# ID items store

## 1 10 book TRUE
## 2 20 pen FALSE

## Select Columns 1
df[, 1]

Output:
## [1] 10 20 30 40

## Select Rows 1 to
df[1:3, 3:4]

pencil_case textbook

2

price
2.5
8.0

3 and columns 3 to 4



Output:

i store price
## 1 TRUE 2.5
## 2 FALSE 8.0
## 3 TRUE 10.0

It is also possible to select the columns with their names. For instance,
the code below extracts two columns: ID and store.

# Slice with columns name
df[, c('ID', 'store')]

Output:

H# ID store
## 1 10 TRUE
##t 2 20 FALSE
## 3 30 TRUE
## 4 40 FALSE

Append a Column to Data Frame

You can also append a column to a Data Frame. You need to use the
symbol $ to append a new variable.

# Create a new vector
gquantity <- c¢(10, 35, 40, 5)

# Add "quantity’ to the "df  data frame
df$quantity <- quantity

df

Output:

# ID items store price quantity
## 1 10 book TRUE 2.5 10
## 2 20 pen FALSE 8.0 35
## 3 30 textbook TRUE 10.0 40
## 4 40 pencil_case FALSE 7.0 5



Note: The number of elements in the vector has to be equal to the no
of elements in data frame. Executing the following statement

guantity <- c¢(10, 35, 40)

# Add "quantity’ to the "df  data frame
df$quantity <- quantity

Gives error:
Error in “$<-.data.frame ( *tmp*°, quantity, value = c(10, 35,
40))

replacement has 3 rows, data has
4

Select a Column of a Data Frame

Sometimes, we need to store a column of a data frame for future use or
perform operation on a column. We can use the $ sign to select the
column from a data frame.

# Select the column ID
df$ID

Output:

## [1] 1 2 3 4

Subset a Data Frame

In the previous section, we selected an entire column without
condition. It is possible to subset based on whether or not a certain
condition was true.

We use the subset() function.

subset(x, condition)
arguments:
- X: data frame used to perform the subset



- condition: define the conditional statement

We want to return only the items with price above 10, we can do:

# Select price above 5
subset (df, subset = price > 5)

Output:
ID items store price
2 20 pen FALSE 8

3 30 textbook TRUE 10
4 40 pencil_case FALSE 7



Chapter 7: List in R: Create,
Select Elements with Example

What is a List?

A list is a great tool to store many kinds of object in the order
expected. We can include matrices, vectors data frames or lists. We
can imagine a list as a bag in which we want to put many different
items. When we need to use an item, we open the bag and use it. A list
is similar; we can store a collection of objects and use them when we
need them.

How to Create a List

We can use list() function to create a list.

list(element_1, ...)

arguments:

-element_1: store any type of R object

-...: pass as many objects as specifying. each object needs to
be separated by a comma

In the example below, we create three different objects, a vector, a
matrix and a data frame.

Step 1) Create a Vector

# Vector with numeric from 1 up to 5
vect <- 1:5

Step 2) Create a Matrices

# A 2x 5 matrix
mat <- matrix(1:9, ncol = 5)



dim(mat)
Output:
## [1] 2 5

Step 3) Create Data Frame

# select the 10th row of the built-in R data set EuStockMarkets
df <- EuStockMarkets[1:10, ]

Step 4) Create a List

Now, we can put the three object into a list.

# Construct list with these vec, mat, and df:
my_list <- list(vect, mat, df)

my_list

Output:

## [[1]]

## [1] 1 23 4 5

## [[2]]

#it [,1] [,2] [,3] [,4] [,5]

## [1,] 1 3 5 7 9

## [2,] 2 4 6 8 1

## [[3]]

Hit DAX SMI CAC FTSE
## [1,] 1628.75 1678.1 1772.8 2443.6
## [2,] 1613.63 1688.5 1750.5 2460.2
## [3,] 1606.51 1678.6 1718.0 2448.2
## [4,] 1621.04 1684.1 1708.1 2470.4
## [5,] 1618.16 1686.6 1723.1 2484.7
## [6,] 1610.61 1671.6 1714.3 2466.8
## [7,] 1630.75 1682.9 1734.5 2487.9
## [8,] 1640.17 1703.6 1757.4 2508.4
## [9,] 1635.47 1697.5 1754.0 2510.5

## [10,] 1645.89 1716.3 1754.3 2497.4



Select Elements from List

After we built our list, we can access it quite easily. We need to use the
[[index]] to select an element in a list. The value inside the double
square bracket represents the position of the item in a list we want to
extract. For instance, we pass 2 inside the parenthesis, R returns the
second element listed.

Let's try to select the second items of the list named my_ list, we use
my_ list[[2]]

# Print second element of the list
my_list[[2]]

Output:

i [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 1

Built-in Data Frame

Before to create our own data frame, we can have a look at the R data
set available online. The prison dataset is a 714x5 dimension. We can
get a quick look at the bottom of the data frame with tail() function. By
analogy, head() displays the top of the data frame. You can specify the
number of rows shown with head (df, 5). We will learn more about the
function read.csv() in future tutorial.

PATH <-'https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/prison.csv'

df <- read.csv(PATH)[1:5]

head(df, 5)

Output:

## X state year govelec black
## 1 1 1 80 0 0.2560



## 2 2 1 81 0 0.2557
## 3 3 1 82 1 0.2554
## 4 4 1 83 0 0.2551
## 5 5 1 84 0 0.2548

We can check the structure of the data frame with str:

# Structure of the data

str(df)

Output:

## 'data.frame': 714 obs. of 5 variables:

#H P X :int 1 23 4567 8 9 10

## $ state : int 11 11111111...

## $ year : int 80 81 82 83 84 85 86 87 88 89
## $ govelec: int 001 0001000 ...

## $ black : num ©.256 0.256 0.255 0.255 0.255

All variables are stored in the numerical format.



Chapter 8: R Sort a Data
Frame using Order()

In data analysis you can sort your data according to a certain variable
in the dataset. In R, we can use the help of the function order(). In R,
we can easily sort a vector of continuous variable or factor variable.
Arranging the data can be of ascending or descending order.

Syntax:

sort(x, decreasing = FALSE, na.last = TRUE):
Argument:

¢ x: A vector containing continuous or factor variable

¢ decreasing: Control for the order of the sort method. By default,
decreasing is set to "FALSE ".

e last: Indicates whether the "NA" 's value should be put last or not

Example 1

For instance, we can create a tibble data frame and sort one or
multiple variables. A tibble data frame is a new approach to data
frame. It improves the syntax of data frame and avoid frustrating data
type formatting, especially for character to factor. It is also a
convenient way to create a data frame by hand, which is our purpose
here. To learn more about tibble, please refer to the vignette:
https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html

library(dplyr)

set.seed(1234)

data_frame <- tibble(
cl rnorm(50, 5, 1.5),
c2 rnorm(50, 5, 1.5),



c3 = rnorm(50, 5, 1.5),
c4 = rnorm(50, 5, 1.5),
c5 = rnorm(50, 5, 1.5)

)
# Sort by c1

df <-data_frame[order(data_frame$cl), ]

head (df)

Output:

# A tibble: 6 x 5

H#it cl c2 c3 c4 c5

H <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.481453 3.477557 4.246283 3.686611 6.0511003
## 2 1.729941 5.824996 4.525823 6.753663 0.1502718
## 3 2.556360 6.275348 2.524849 6.368483 5.4787404
H# 4 2.827693 4.769902 5.120089 3.743626 4.0103449
## 5 2.9088510 4.395902 2.077631 4.236894 4.6176880
## 6 3.122021 6.317305 5.413840 3.551145 5.6067027
Example 2

# Sort by c3 and c4
df <-data_frame[order(data_frame$c3, data_frame$c4), ]
head (df)

Output:

# A tibble: 6 x 5

H# cl c2 c3 c4 c5
H#i#t <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2.988510 4.395902 2.077631 4.236894 4.617688
## 2 2.556360 6.275348 2.524849 6.368483 5.478740
## 3 3.464516 3.914627 2.730068 9.565649 6.016123
## 4 4.233486 3.292088 3.133568 7.517309 4.772395
## 5 3.935840 2.941547 3.242078 6.464048 3.599745
## 6 3.835619 4.947859 3.335349 4.378370 7.240240

Example 3



# Sort by c3(descending) and c4(acending)
df <-data_frame[order(-data_frame$c3, data_frame$c4), ]
head(df)

Output:

# A tibble: 6 x 5

Hit cl c2 c3 c4 c5
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 4.339178 4.450214 8.087243 4.5010140 8.410225
## 2 3.959420 8.105406 7.736312 7.1168936 5.431565
## 3 3.339023 3.298088 7.494285 5.9303153 7.035912
## 4 3.397036 5.382794 7.092722 0.7163620 5.620098
## 5 6.653446 4.733315 6.520536 0.9016707 4.513410
## 6 4.558559 4.,712609 6.380086 6.0562703 5.044277



Chapter 9: R Dplyr Tutorial:
Data Manipulation(Join) &
Cleaning(Spread)

Introduction to Data Analysis

Data analysis can be divided into three parts

e Extraction: First, we need to collect the data from many sources
and combine them.

e Transform: This step involves the data manipulation. Once we
have consolidated all the sources of data, we can begin to clean
the data.

e Visualize: The last move is to visualize our data to check
irregularity.

One of the most significant challenges faced by data scientist is the
data manipulation. Data is never available in the desired format. The
data scientist needs to spend at least half of his time, cleaning and
manipulating the data. That is one of the most critical assignments in
the job. If the data manipulation process is not complete, precise and
rigorous, the model will not perform correctly.

R has a library called dplyr to help in data transformation.

The dplyr library is fundamentally created around four functions to
manipulate the data and five verbs to clean the data. After that, we can
use the ggplot library to analyze and visualize the data.

In this tutorial, we will learn how to use the dplyr library to
manipulate a data frame.



Merge with dplyr()

dplyr provides a nice and convenient way to combine datasets. We
may have many sources of input data, and at some point, we need to
combine them. A join with dplyr adds variables to the right of the
original dataset. The beauty is dplyr is that it handles four types of
joins similar to SQL

e Left_join()
e right_join()
e inner_join()
e full_join()

We will study all the joins types via an easy example.

First of all, we build two datasets. Table 1 contains two variables, ID,
and y, whereas Table 2 gathers ID and z. In each situation, we need to
have a key-pair variable. In our case, ID is our key variable. The
function will look for identical values in both tables and bind the
returning values to the right of table 1.



Table 1 Table 2

30
21
22
25
29
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library(dplyr)
df_primary <- tribble(
~ID, -y,
IIAH’ 5’
IIBII, 5’
"C", 8,
IIDH’ 0’
IIFH’ 9)
df_secondary <- tribble(
~1D, ~Y,
"A", 30,
"B", 21’
Ilcll, 22’
"D", 25’
IlEll’ 29)

left_join()

The most common way to merge two datasets is to use the left_join()
function. We can see from the picture below that the key-pair matches
perfectly the rows A, B, C and D from both datasets. However, E and F
are left over. How do we treat these two observations? With the
left_join(), we will keep all the variables in the original table and don't
consider the variables that do not have a key-paired in the destination
table. In our example, the variable E does not exist in table 1.
Therefore, the row will be dropped. The variable F comes from the
origin table; it will be kept after the left_join() and return NA in the
column z. The figure below reproduces what will happen with a



left_join().

Table 1
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Left_join()
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Table 2
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Table 3
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left_join(df_primary, df_secondary, by ='ID')

Output:

#it

# A tibble: 5 x 3

#it ID y.x Y.y
##  <chr> <dbl> <dbl>
## 1 A 5 30
## 2 B 5 21
## 3 C 8 22
#t#t 4 D 0 25
## 5 F 9 NA
right_join()

The right_join() function works exactly like left_join(). The only
difference is the row dropped. The value E, available in the destination
data frame, exists in the new table and takes the value NA for the

columny.

Y
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A



right_join()
_—
Table 1 Table 2
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right_join(df_primary, df_secondary, by = 'ID')

Output:

H#

# A tibble: 5 x 3

Hit ID Y. X Y.y
##  <chr> <dbl> <dbl>
## 1 A 5 30
Hit 2 B 5 21
## 3 C 8 22
Hi#t 4 D €] 25
#H# 5 E NA 29
inner_join()

When we are 100% sure that the two datasets won't match, we can
consider to return only rows existing in both dataset. This is possible
when we need a clean dataset or when we don't want to impute
missing values with the mean or median.

The inner_join()comes to help. This function excludes the unmatched
rOWsS.
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Table 3
1D

QoM m

inner_join(df_primary, df_secondary, by ='ID')

output:

H#t

# A tibble: 4 x 3

H#t ID y.x Y.y
##  <chr> <dbl> <dbl>
## 1 A 5 30
#H#t 2 B 5 21
## 3 C 8 22
#Hit 4 D o] 25
full_join()

Finally, the full_join() function keeps all observations and replace

missing values with NA.

\
|

v

(=1 - - R

30
21
22
25
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full_join()

———————————————~
Table 1 Table 2

1D v D ]

A 5 A 30

B 5 B 21 -y,

C 8 c 22 %
D 0 D 25 l
F 9 E

= ¥
Table 3

D ¥
A 5 30
5 21
B 22
0 25
MA 29
9 MNA

mm Qo hw

full_join(df_primary, df_secondary, by = 'ID'")

Output:

## # A tibble: 6 x 3
H#H# ID y.X y.y
##  <chr> <dbl> <dbl>
## 1 A 5 30
Hit 2 B 5 21
## 3 C 8 22
#H# 4 D 0] 25
HH# 5 F 9 NA
## 6 E NA 29
Multiple keys pairs

Last but not least, we can have multiple keys in our dataset. Consider
the following dataset where we have years or a list of products bought
by the customer.



Table 1 Table 2

(¥} year itemns [s] year price

A 2015 3 A 2015 9

A 2016 7 A 2016 8

A 2017 6 A 2017 12 o g R,

B 2015 4 B 2015 13 \

B 2016 8 B 2016 14 \

B 2017 7 B 2017 & I

C 2015 4 c 2015 15 l

C 2016 6 C 2016 15 '

C 2017 B C 2017 13 *
Table 3
[v] year items price
A 2015 3 9
A 2016 7 8
A 2017 6 12
B 2015 4 13
B 2016 8 14
B 2017 7 6
[= 2015 4 15
C 2016 [ 15
C 2017 & 13

If we try to merge both tables, R throws an error. To remedy the
situation, we can pass two key-pairs variables. That is, ID and year
which appear in both datasets. We can use the following code to merge
table1 and table 2

df_primary <- tribble(
~ID, ~year, ~items,
"A", 2015, 3,
"A", 2016,7,
"A", 2017,6,
"B", 2015, 4,
"B", 2016, 8,
"B", 2017,7,
"c", 2015,4,
"C", 2016,6,

"c", 2017,6)
df_secondary <- tribble(
~ID, ~year, ~prices,
"A", 2015,9,
"A", 2016, 8,
"A", 2017,12,
"B", 2015,13,
"B", 2016, 14,
"B", 2017,6,
"c", 2015, 15,
"C", 2016, 15,
"c", 2017,13)



left_join(df_primary, df_secondary, by = c('ID', 'year'))

Output:

## # A tibble: 9 x 4

#it ID year items prices
#i#t <chr> <dbl> <dbl> <dbl>
## 1 A 2015 3 9
H# 2 A 2016 7 8
H# 3 A 2017 6 12
H# 4 B 2015 4 13
## 5 B 2016 8 14
H# 6 B 2017 7 6
H# 7 C 2015 4 15
H# 8 C 2016 6 15
#H# 9 C 2017 6 13

Data Cleaning functions

Following are four important functions to tidy the data:

gather(): Transform the data from wide to long
spread(): Transform the data from long to wide
separate(): Split one variable into two

unit(): Unit two variables into one

We use the tidyr library. This library belongs to the collection of the
library to manipulate, clean and visualize the data. If we install R with
anaconda, the library is already installed. We can find the library here,
https://anaconda.org/r/r-tidyr.

If not installed already, enter the following command
install tidyr : install.packages("tidyr")

to install tidyr

gather()



The objectives of the gather() function is to transform the data from
wide to long.

gather(data, key, value, na.rm = FALSE)

Arguments:

-data: The data frame used to reshape the dataset
-key: Name of the new column created

-value: Select the columns used to fill the key column
-na.rm: Remove missing values. FALSE by default

Below, we can visualize the concept of reshaping wide to long. We
want to create a single column named growth, filled by the rows of the
quarter variables.

Gather() gather(year, growth, q1_2017:q4_2018)

Messy
country | gl_2017 q2_2017 g3_2017 q4_2017
A 0.03 0.05 0.04 0.03
B 0.05 0.07 0.05 0.02
e 0.01 0.02 0.01 0.04 | tidier
country | time growth
A gl 2017 0.03
B gl 2017 0.05
i q1_2017 0.01
A q2_2017 0.05
8 q2_2017 0.07
c q2_2017 0.02
A q3_2017 0.04
] q3_2017 0.05
c 43_2017 0.01
A q4_2017 0.03
library(tidyr)

# Create a messy dataset
messy <- data.frame(

Country — C("A", "B", IICII)’

ql 2017 = c(0.03, 0.05, 0.01),

q2_2017 = ¢(0.05, 0.07, 0.02),

g3_2017 = c(0.04, 0.05, 0.01),

q4_2017 = c(0.03, 0.02, 0.04))
messy

Output:



#it country ql1_2017 g2_2017 q3_2017 q4_2017

## 1 A 0.03 0.05 0.04 0.03
## 2 B 0.05 0.07 0.05 0.02
## 3 C 0.01 0.02 0.01 0.04

# Reshape the data
tidier <-messy %>%
gather(quarter, growth, q1_2017:94_2017)

tidier

Output:

# country quarter growth
#i# 1 A ql_2017 0.03
## 2 B ql1_2017 0.05
H# 3 C g1_2017 0.01
## 4 A q2_2017 0.05
HH# 5 B g2_2017 0.07
Hit 6 C g2_2017 0.02
HHt 7 A (3_2017 0.04
Hi# 8 B q3_2017 0.05
H#Hi# 9 C g3_2017 0.01
## 10 A q4_2017 0.03
## 11 B g4_2017 0.02
## 12 C g4_2017 0.04

In the gather() function, we create two new variable quarter and
growth because our original dataset has one group variable: i.e.
country and the key-value pairs.

spread()

The spread() function does the opposite of gather.

spread(data, key, value)
arguments:

e data: The data frame used to reshape the dataset
¢ key: Column to reshape long to wide
e value: Rows used to fill the new column



We can reshape the tidier dataset back to messy with spread()

# Reshape the data
messy_1 <- tidier %>%
spread(quarter, growth)

messy_1

Output:

## country ql_2017 gq2_2017 q3_2017 q4_2017
## 1 A 0.03 0.05 0.04 0.03
H# 2 B 0.05 0.07 0.05 0.02
## 3 C 0.01 0.02 0.01 0.04
separate()

The separate() function splits a column into two according to a
separator. This function is helpful in some situations where the
variable is a date. Our analysis can require focussing on month and
year and we want to separate the column into two new variables.

Syntax:

separate(data, col, into, sep= "", remove = TRUE)

arguments:

-data: The data frame used to reshape the dataset

-col: The column to split

-into: The name of the new variables

-sep: Indicates the symbol used that separates the variable,
i.e. : ll_ll’ II_II’ II&II

-remove: Remove the old column. By default sets to TRUE.

We can split the quarter from the year in the tidier dataset by applying
the separate() function.

separate_tidier <-tidier %>%

separate(quarter, c("Qrt", "year"), sep ="_")
head(separate_tidier)

Output:



#it country Qrt year growth

## 1 A ql 2017 0.03
H# 2 B ql 2017 0.05
## 3 C ql 2017 0.01
## 4 A Q2 2017 0.05
## b B Qg2 2017 0.07
#H# 6 C g2 2017 0.02
[ J
unite()

The unite() function concanates two columns into one.

Syntax:

unit(data, col, conc ,sep= "", remove = TRUE)

arguments:

-data: The data frame used to reshape the dataset

-col: Name of the new column

-conc: Name of the columns to concatenate

-sep: Indicates the symbol used that unites the variable,
l.e: ll_ll, II_II’ II&II

-remove: Remove the old columns. By default, sets to TRUE

In the above example, we separated quarter from year. What if we
want to merge them. We use the following code:

unit_tidier <- separate_tidier %>%

unite(Quarter, Qrt, year, sep ="_")
head(unit_tidier)

output:

# country Quarter growth

## 1 A q1_2017 0.03
## 2 B q1_2017 0.05
## 3 C gql1_2017 0.01
## 4 A g2_2017 0.05
## 5 B g2_2017 0.07
## 6 C g92_2017 0.02



Summary

Following are four important functions used in dplyr to merge two
datasets.

Function | Objectives Arguments Multiple keys

data, origin,

Merge two datasets. Keep all origin, destination,

left_join() observations from the origin table 51165? nation, by = by = ¢("ID", "ID2")
Merge two datasets. Keep all data, origin, . . o

. . . . .. D origin, destination,

right_join() | observations from the destination destination, by = by = ¢("ID", "ID2")

table "ID" y= ’

inner_join() Merge two datasets. Excludes all gzgi’r?:tli% Irll’ by = origin, destination,

—J unmatched rows "D » 0¥ = by = c¢("ID", "ID2")
data, origin, .. N

full_join() Merge two datasets. Keeps all destination, by = origin, destination,

observations by = c¢("ID", "ID2")

HIDH

Using the tidyr Library you can transform a dataset with the gather(),
spread(), separate() and unit() functions.

Function Objectives Arguments

gather() |Transform the data from wide to long (data, key, value, na.rm = FALSE)
spread() |Transform the data from long to wide (data, key, value)

separate() Split one variables into two (data, col, into, sep="", remove = TRUE)

unit() Unit two variables into one (data, col, conc ,sep="", remove = TRUE)



Chapter 10: Merge Data
Frames in R: Full and Partial
Match

Very often, we have data from multiple sources. To perform an
analysis, we need to merge two dataframes together with one or more
common key variables.

Full match

A full match returns values that have a counterpart in the destination
table. The values that are not match won't be return in the new data
frame. The partial match, however, return the missing values as NA.

We will see a simple inner join. The inner join keyword selects
records that have matching values in both tables. To join two datasets,
we can use merge() function. We will use three arguments :

merge(x, y, by.x = x, by.y =vy)

Arguments:

-X: The origin data frame

-y: The data frame to merge

-by.x: The column used for merging in x data frame. Column Xx to
merge on

-by.y: The column used for merging in y data frame. Column y to
merge on

Example:
Create First Dataset with variables

¢ surname



e nationality
Create Second Dataset with variables

e surname
e movies

The common key variable is surname. We can merge both data and

check if the dimensionality is 7x3.

We add stringsAsFactors=FALSE in the data frame because we don't
want R to convert string as factor, we want the variable to be treated as

character.
# Create origin dataframe(

producers <- data.frame(
surname

= c("Spielberg", "Scorsese", "Hitchcock", "Tarantino", "Polanski"),
nationality = c("us","us", "uk","us", "Poland"),

stringsAsFactors=FALSE)

# Create destination dataframe
movies <- data.frame(
surname = c("Spielberg",
"Scorsese",
"Hitchcock",
"Hitchcock",
"Spielberg",
"Tarantino",
"Polanski"),
title = c("Super 8",
"Taxi Driver",
"Psycho",
"North by Northwest",
"Catch Me If You Can",

"Reservoir Dogs", "Chinatown"),

stringsAsFactors=FALSE)

# Merge two datasets

ml <- merge(producers, movies, by.x = "surname")

ml
dim(ml)



Output:

surname nationality title

1 Hitchcock UK Psycho

2 Hitchcock UK North by Northwest
3 Polanski Poland Chinatown

4 Scorsese us Taxi Driver

5 Spielberg us Super 8

6 Spielberg us Catch Me If You Can
7 Tarantino us Reservoir Dogs

Let's merge data frames when the common key variables have
different names.

We change surname to name in the movies data frame. We use the
function identical(x1, x2) to check if both dataframes are identical.

# Change name of °~ movies ° dataframe

colnames(movies)[colnames(movies) == 'surname'] <- 'name'

# Merge with different key value

m2 <- merge(producers, movies, by.x = "surname", by.y = "name")
# Print head of the data

head(m2)

Output:

##surname nationality title

## 1 Hitchcock UK Psycho

## 2 Hitchcock UK North by Northwest
## 3 Polanski Poland Chinatown

## 4 Scorsese us Taxi Driver

## 5 Spielberg us Super 8

## 6 Spielberg us Catch Me If You Can

# Check if data are identical
identical(mi, m2)

Output:

## [1] TRUE

This shows that merge operation is performed even if the column
names are different.



Partial match

It is not surprising that two dataframes do not have the same common
key variables. In the full matching, the dataframe returns only rows
found in both x and y data frame. With partial merging, it is
possible to keep the rows with no matching rows in the other data
frame. These rows will have NA in those columns that are usually filled
with values from y. We can do that by setting all.x= TRUE.

For instance, we can add a new producer, Lucas, in the producer data
frame without the movie references in movies data frame. If we set
all.x= FALSE, R will join only the matching values in both data set. In
our case, the producer Lucas will not be join to the merge because it is
missing from one dataset.

Let's see the dimension of each output when we specify all.x= TRUE
and when we don't.

# Create a new producer

add_producer <- c¢('Lucas', 'US')

# Append it to the ° producer’ dataframe
producers <- rbind(producers, add_producer)
# Use a partial merge

m3 <-merge(producers, movies, by.x = "surname", by.y = "name",
all.x = TRUE)
m3
Output:
5 édd_pr‘oducer <- c("Lucas", "us")
> producers <- rbind(producers, add_producer)
> m3 <-merge{producers, movies, by.x = "surname", by.y = "name", all.x = TRUE)
> m3
surname nationality title
1 Hitchcock UK Psycho
2 Hitchcock UKk North by Mocthwe
3 Lucas us
4  polanski poland Tnatown
5 Scorsese us Taxi Driver
6 spielberg us Super 8
7 spielberg Us Catch Me If You Can
8 Tarantino us Reservoir Dogs

# Compare the dimension of each data frame
dim(ml)



Output:
## [1] 7 3

dim(m2)

Output:
## [1] 7 3
dim(m3)
Output:
## [1] 8 3

As we can see, the dimension of the new data frame 8x3 compared
with 7x3 for m1 and m2. R includes NA for the missing author in the
books data frame.



Chapter 11: Functions in R
Programming (with Example)

What is a Function in R?

A function, in a programming environment, is a set of instructions. A
programmer builds a function to avoid repeating the same task, or
reduce complexity.

A function should be

written to carry out a specified a tasks
may or may not include arguments
contain a body

may or may not return one or more values.

A general approach to a function is to use the argument part as
inputs, feed the body part and finally return an output. The Syntax
of a function is the following;:

function (arglist) {
#Function body

¥

R important built-in functions

There are a lot of built-in function in R. R matches your input
parameters with its function arguments, either by value or by position,
then executes the function body. Function arguments can have default
values: if you do not specify these arguments, R will take the default
value.



Note: It is possible to see the source code of a function by running the
name of the function itself in the console.

S0ource on 5ave 4
str

> str
function (object, ...)
UseMethod({"str™)

<bytecode: 0x00000254cd8c08cO>
<environment: namespace:utils=
-

We will see three groups of function in action

¢ General function
e Maths function
e Statistical function

General functions

We are already familiar with general functions like cbind(),
rbind(),range(),sort(),order() functions. Each of these functions has a
specific task, takes arguments to return an output. Following are
important functions one must know-

diff() function

If you work on time series, you need to stationary the series by



taking their lag values. A stationary process allows constant
mean, variance and autocorrelation over time. This mainly improves
the prediction of a time series. It can be easily done with the function
diff(). We can build a random time-series data with a trend and then
use the function diff() to stationary the series. The diff() function
accepts one argument, a vector, and return suitable lagged and
iterated difference.

Note: We often need to create random data, but for learning and
comparison we want the numbers to be identical across machines. To
ensure we all generate the same data, we use the set.seed() function
with arbitrary values of 123. The set.seed() function is generated
through the process of pseudorandom number generator that make
every modern computers to have the same sequence of numbers. If we
don't use set.seed() function, we will all have different sequence of
numbers.

set.seed(123)

## Create the data

X = rnorm(1000)

ts <- cumsum(x)

## Stationary the serie
diff_ts <- diff(ts)

par (mfrow=c(1,2))

## Plot the series
plot(ts, type='l")
plot(diff(ts), type='l")
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length() function

In many cases, we want to know the length of a vector for
computation or to be used in a for loop. The length() function counts
the number of rows in vector x. The following codes import the cars
dataset and return the number of rows.

Note: length() returns the number of elements in a vector. If the
function is passed into a matrix or a data frame, the number of
columns is returned.

dt <- cars

## number columns
length(dt)

Output:
## [1] 1

## number rows
length(dt[,1])



Output:

## [1] 50

Math functions

R has an array of mathematical functions.

Operator Description
abs(x) Takes the absolute value of x

Takes the logarithm of x with base y; if base is

log(x,base=y) not specified, returns the natural logarithm

exp(x) Returns the exponential of x
sqrt(x) Returns the square root of x
factorial(x) Returns the factorial of x (x!)

# sequence of number from 44 to 55 both including incremented by
1

Xx_vector <- seq(45,55, by = 1)

#logarithm

log(x_vector)

Output:

## [1] 3.806662 3.828641 3.850148 3.871201 3.891820 3.912023
3.931826
## [8] 3.951244 3.970292 3.988984 4.007333

#exponential
exp(x_vector)

#squared root
sqrt(x_vector)

Output:
## [1] 6.708204 6.782330 6.855655 6.928203 7.000000 7.071068

7.141428
## [8] 7.211103 7.280110 7.348469 7.416198

#factorial



factorial(x_vector)

Output:

## [1] 1.196222e+56 5.502622e+57 2.586232e+59 1.241392e+61
6.082819e+62

## [6] 3.041409e+64 1.551119e+66 8.065818e+67 4,274883e+69
2.308437e+71

## [11] 1.269640e+73

Statistical functions

R standard installation contains wide range of statistical functions. In
this tutorial, we will briefly look at the most important function..

Basic statistic functions

Operator Description

mean(x) Mean of x

median(x) Median of x

var(x) Variance of x

sd(x) Standard deviation of x
scale(x) Standard scores (z-scores) of X
quantile(x) The quartiles of x

summary(x) Summary of x: mean, min, max etc..



speed <- dt$speed

speed

# Mean speed of cars dataset
mean(speed)

Output:
## [1] 15.4

# Median speed of cars dataset
median(speed)

Output:
## [1] 15

# Variance speed of cars dataset
var (speed)

Output:

## [1] 27.95918

# Standard deviation speed of cars dataset
sd(speed)

Output:

## [1] 5.287644

# Standardize vector speed of cars dataset
head(scale(speed), 5)

Output:

#Hit [,1]
## [1,] -2.155969
## [2,] -2.155969
## [3,] -1.588609
## [4,] -1.588600
## [5,] -1.399489

# Quantile speed of cars dataset



quantile(speed)

Output:

## 0% 25% 50% 75% 100%
## 4 12 15 19 25

# Summary speed of cars dataset

summary(speed)

Output:

#i#t Min. 1st Qu. Median Mean 3rd Qu. Max.
H# 4.0 12.0 15.0 15.4 19.0 25.0

Up to this point, we have learned a lot of R built-in functions.

Note: Be careful with the class of the argument, i.e. numeric, Boolean
or string. For instance, if we need to pass a string value, we need to
enclose the string in quotation mark: "ABC" .

Write function in R

In some occasion, we need to write our own function because we have
to accomplish a particular task and no ready made function exists. A
user-defined function involves a name, arguments and a body.

function.name <- function(arguments)

{

computations on the arguments
some other code

}

Note: A good practice is to name a user-defined function different
from a built-in function. It avoids confusion.

One argument function



In the next snippet, we define a simple square function. The function
accepts a value and returns the square of the value.

square_function<- function(n)

{

# compute the square of integer "n°
nA2

3

# calling the function and passing value 4
square_function(4)

Code Explanation:

¢ The function is named square_ function; it can be called whatever
we want.

e It receives an argument "n". We didn't specify the type of
variable so that the user can pass an integer, a vector or
a matrix

e The function takes the input "n" and returns the square of the
input.

When you are done using the function, we can remove it with the
rm() function.

# after you create the function

rm(square_function)
square_function

On the console, we can see an error message :Error: object
'square_function' not found telling the function does not exist.

Environment Scoping

In R, the environment is a collection of objects like functions,
variables, data frame, etc.

R opens an environment each time Rstudio is prompted.



The top-level environment available is the global environment,
called R_GlobalEnv. And we have the local environment.

We can list the content of the current environment.

1s(environment())

Output

## [1]
"diff_ts" "dt" "speed" "square_fun
## [5] "ts" "x" "x_vector"

You can see all the variables and function created in the R_GlobalEnv.

The above list will vary for you based on the historic code you execute
in R Studio.

Note that n, the argument of the square_ function function is not in
this global environment.

A new environment is created for each function. In the above
example, the function square_ function() creates a new environment
inside the global environment.

To clarify the difference between global and local environment,
let's study the following example

These function takes a value x as an argument and add it to y define
outside and inside the function



UL O

1 v <- 10

2> T «- function(x)
3 X + ¥}

4 T(5

3y

(5]

Consaole T inal

> F(5)

[1] 15

> ## [1] 15
> N

[1] 10

>

The function f returns the output 15. This is because y is defined in the
global environment. Any variable defined in the global environment
can be used locally. The variable y has the value of 10 during all
function calls and is accessible at any time.

Let's see what happens if the variable y is defined inside the function.

We need to dropp 'y prior to run this code using rm r



@] Untitled1*

1 Source on save
~ F <— function(x) {
y <— 10
X+ Yy

(5)

i 5 B I R R L

F
y
I

Console Terminal

Error: object ®y' not found

The output is also 15 when we call f(5) but returns an error when we
try to print the value y. The variable y is not in the global environment.

Finally, R uses the most recent variable definition to pass inside the
body of a function. Let's consider the following example:



@] Untitled1*

Source on Save

T ¥y < 2
2> f «<- function(x)
3 Yy <- 4
4 X+ ¥
S |
B T(5)
Console inal
L
= T{5)
[1] 9

R ignores the y values defined outside the function because we
explicitly created a y variable inside the body of the function.

Multi arguments function

We can write a function with more than one argument. Consider the
function called "times". It is a straightforward function multiplying
two variables.

times <- function(x,y) {
X*y
}

times(2,4)
Output:

## [1] 8



When should we write function?

Data scientist need to do many repetitive tasks. Most of the time, we
copy and paste chunks of code repetitively. For example,
normalization of a variable is highly recommended before we run a
machine learning algorithm. The formula to normalize a variable is:

X — Xmin

normalize =
Xmax — Xmin

We already know how to use the min() and max() function in R. We
use the tibble library to create the data frame. Tibble is so far the most
convenient function to create a data set from scratch.

library(tibble)
# Create a data frame
data_frame <- tibble(

cl = rnorm(50, 5, 1.5),
c2 = rnorm(50, 5, 1.5),
c3 = rnorm(50, 5, 1.5),

)

We will proceed in two steps to compute the function described above.
In the first step, we will create a variable called c1_norm which is the
rescaling of c1. In step two, we just copy and paste the code of
c1_norm and change with c2 and c3.

Detail of the function with the column ci:
Nominator: : data_frame$ci1 -min(data_frame$ci))
Denominator: max(data_frame$ci1)-min(data_frame$ci1))

Therefore, we can divide them to get the normalized value of column
ci:

(data_frame$cl -min(data_frame$cl))/(max(data_frame$cl)-



min(data_frame$cl))

We can create ¢c1_norm, c2_norm and ¢3_norm:

Create cl_norm: rescaling of c1

data_frame$cl_norm <- (data_frame$cl -
min(data_frame$cl))/(max(data_frame$cl)-min(data_frame$cl))
# show the first five values

head(data_frame$cl_norm, 5)

Output:

## [1] 0.3400113 0.4198788 0.8524394 0.4925860 0.5067991

It works. We can copy and paste

data_frame$cl_norm <- (data_frame$cl -
min(data_frame$cl))/(max(data_frame$cl)-min(data_frame$cl))

then change c1_norm to c2_norm and c1 to c2. We do the same to
create c3_norm

data_frame$c2_norm <- (data_frame$c2 -
min(data_frame$c2))/(max(data_frame$c2)-min(data_frame$c2))
data_frame$c3_norm <- (data_frame$c3 -
min(data_frame$c3))/(max(data_frame$c3)-min(data_frame$c3))

We perfectly rescaled the variables c1, c2 and c3.

However, this method is prone to mistake. We could copy and forget
to change the column name after pasting. Therefore, a good practice is
to write a function each time you need to paste same code more than
twice. We can rearrange the code into a formula and call it whenever it
is needed. To write our own function, we need to give:

¢ Name: normalize.

¢ the number of arguments: We only need one argument, which is
the column we use in our computation.

e The body: this is simply the formula we want to return.

We will proceed step by step to create the function normalize.



Step 1) We create the nominator, which is . In R, we can store the
nominator in a variable like this:

nominator <- Xx-min(Xx)

Step 2) We compute the denominator: . We can replicate the idea
of step 1 and store the computation in a variable:

denominator <- max(x)-min(x)

Step 3) We perform the division between the nominator and
denominator.

normalize <- nominator/denominator

Step 4) To return value to calling function we need to pass normalize
inside return() to get the output of the function.

return(normalize)

Step 5) We are ready to use the function by wrapping everything
inside the bracket.

normalize <- function(x){
# step 1: create the nominator
nominator <- Xx-min(Xx)
# step 2: create the denominator
denominator <- max(x)-min(x)
# step 3: divide nominator by denominator
normalize <- nominator/denominator
# return the value
return(normalize)
3

Let's test our function with the variable c1:

normalize(data_frame$cil)
It works perfectly. We created our first function.

Functions are more comprehensive way to perform a repetitive task.



We can use the normalize formula over different columns, like below:

data_frame$cl_norm_function <- normalize (data_frame$cl)
data_frame$c2_norm_function <- normalize (data_frame$c2)
data_frame$c3_norm_function <- normalize (data_frame$c3)

Even though the example is simple, we can infer the power of a
formula. The above code is easier to read and especially avoid to
mistakes when pasting codes.

Functions with condition

Sometimes, we need to include conditions into a function to allow the
code to return different outputs.

In Machine Learning tasks, we need to split the dataset between a
train set and a test set. The train set allows the algorithm to learn from
the data. In order to test the performance of our model, we can use the
test set to return the performance measure. R does not have a function
to create two datasets. We can write our own function to do that. Our
function takes two arguments and is called split_data(). The idea
behind is simple, we multiply the length of dataset (i.e. number of
observations) with 0.8. For instance, if we want to split the dataset
80/20, and our dataset contains 100 rows, then our function will
multiply 0.8%100 = 80. 80 rows will be selected to become our training
data.

We will use the airquality dataset to test our user-defined function.
The airquality dataset has 153 rows. We can see it with the code below:

nrow(airquality)

Output:

## [1] 153

We will proceed as follow:



split_data <- function(df, train = TRUE)

Arguments:

-df: Define the dataset

-train: Specify if the function returns the train set or test
set. By default, set to TRUE

Our function has two arguments. The arguments train is a Boolean
parameter. If it is set to TRUE, our function creates the train dataset,
otherwise, it creates the test dataset.

We can proceed like we did we the normalise() function. We write the
code as if it was only one-time code and then wrap everything with the
condition into the body to create the function.

Step 1:

We need to compute the length of the dataset. This is done with the
function nrow(). Nrow returns the total number of rows in the dataset.
We call the variable length.

length<- nrow(airquality)
length

Output:

## [1] 153
Step 2:

We multiply the length by 0.8. It will return the number of rows to
select. It should be 153%0.8 = 122.4

total_row <- length*0.8
total_row

Output:

## [1] 122.4

We want to select 122 rows among the 153 rows in the airquality
dataset. We create a list containing values from 1 to total_row. We



store the result in the variable called split

split <- 1:total_row
split[1:5]

Output:

## [1] 1 23 4 5

split chooses the first 122 rows from the dataset. For instance, we can
see that our variable split gathers the value 1, 2, 3, 4, 5 and so on.
These values will be the index when we will select the rows to return.

Step 3:

We need to select the rows in the airquality dataset based on the
values stored in the split variable. This is done like this:

train_df <- airquality[split, ]
head(train_df)

Output:

##[1] Ozone Solar.R Wind Temp Month Day
##[2] 51 13 137 10.3 76 6 20
##[3] 15 18 65 13.2 58 5 15
##[4] 64 32 236 9.2 81 7 3
##[5] 27 NA NA 8.0 57 5 27
##[6] 58 NA 47 10.3 73 6 27
##[7] 44 23 148 8.0 82 6 13
Step 4:

We can create the test dataset by using the remaining rows, 123:153.
This is done by using — in front of split.

test_df <- airquality[-split, ]
head(test_df)

Output:

##[1] Ozone Solar.R Wind Temp Month Day



##[2] 123 85 188 6.3 94 8 31
##[3] 124 96 167 6.9 91 9 1
##[4] 125 78 197 5.1 92 9 2
##[5] 126 73 183 2.8 93 9 3
##[6] 127 91 189 4.6 93 9 4
##[7] 128 47 95 7.4 87 9 5
Step 5:

We can create the condition inside the body of the function.
Remember, we have an argument train that is a Boolean set to TRUE
by default to return the train set. To create the condition, we use the if
syntax:

if (train ==TRUE){
train_df <- airquality[split, ]
return(train)
} else {
test_df <- airquality[-split, ]
return(test)

¥

This is it, we can write the function. We only need to change airquality
to df because we want to try our function to any data frame, not only
airquality:

split_data <- function(df, train = TRUE){
length<- nrow(df)
total_row <- length *0.8
split <- 1:total_row
if (train ==TRUE){
train_df <- df[split, ]
return(train_df)
} else {
test_df <- df[-split, ]
return(test_df)
3

¥

Let's try our function on the airquality dataset. we should have one
train set with 122 rows and a test set with 31 rows.

train <- split_data(airquality, train = TRUE)



dim(train)

Output:
## [1] 122 6

test <- split_data(airquality, train = FALSE)
dim(test)

Output:

## [1] 31 6



Chapter 12: IF, ELSE, ELSE IF
Statementin R

The if else statement

An if-else statement is a great tool for the developer trying to return an
output based on a condition. In R, the syntax is:

if (condition) {

Expril
} else {
Expr2
}
Start
Yes Mo
Condition
true? :
'
.'-f‘.
Execute code in Execut EIEDdE in
if block else block
Execute code

outside if block



We want to examine whether a variable stored as "quantity" is above
20. If quantity is greater than 20, the code will print "You sold a lot!"
otherwise Not enough for today.

# Create vector quantity
guantity <- 25
# Set the is-else statement
if (quantity > 20) {

print('You sold a lot!"')
} else {

print('Not enough for today')
¥

Output:

## [1] "You sold a lot!"

Note: Make sure you correctly write the indentations. Code with
multiple conditions can become unreadable when the indentations are
not in correct position.

The else if statement

We can further customize the control level with the else if statement.
With elif, you can add as many conditions as we want. The syntax is:

if (conditionl) {

expril

} else if (condition2) {
expr2

} else if (condition3) {
expr3

} else {

expré

3

We are interested to know if we sold quantities between 20 and 30. If
we do, then the pint Average day. If quantity is > 30 we print What a
great day!, otherwise Not enough for today.



You can try to change the amount of quantity.

# Create vector quantiy
gquantity <- 10
# Create multiple condition statement
if (quantity <20) {
print('Not enough for today')
} else if (quantity > 20 &quantity <= 30) {
print('Average day')
} else {
print('wWhat a great day!')
¥

Output:

## [1] "Not enough for today"
Example 2:

VAT has different rate according to the product purchased. Imagine
we have three different kind of products with different VAT applied:

Categories Products VAT
A Book, magazine, newspaper, etc.. 8%
B Vegetable, meat, beverage, etc.. 10%
C Tee-shirt, jean, pant, etc.. 20%

We can write a chain to apply the correct VAT rate to the product a
customer bought.

category <- 'A'
price <- 10
if (category =='A'"'){
cat('A vat rate of 8% is applied.', 'The total price is', price
*1.08)
} else if (category =='B'){
cat('A vat rate of 10% is applied.', 'The total price
is',price *1.10)
} else {
cat('A vat rate of 20% is applied.', 'The total price
is',price *1.20)

3



Output:

# A vat rate of 8% 1is applied. The total price is 10.8



Chapter 13: For Loop in R
with Examples for List and
Matrix

A for loop is very valuable when we need to iterate over a list of
elements or a range of numbers. Loop can be used to iterate over a list,
data frame, vector, matrix or any other object. The braces and square
bracket are compulsory.

For Loop Syntax and Examples

For (i in vector) {
Exp

3

Here,

R will loop over all the variables in vector and do the computation
written inside the exp.



Loop counter variable
increment/decrement

Is loop
condition
satisfied?

¥
= Execution block

R For Loop

Let's see a few examples.

Example 1: We iterate over all the elements of a vector and print the
current value.

# Create fruit vector
fruit <- c('Apple', 'Orange', 'Passion fruit', 'Banana')
# Create the for statement
for ( 1 in fruit){
print(1i)
}

Output:

## [1] "Apple"
## [1] "Orange"
## [1] "Passion fruit"
## [1] "Banana"

Example 2: creates a non-linear function by using the polynomial of
x between 1 and 4 and we store it in a list

# Create an empty list

list <- c()

# Create a for statement to populate the list
for (i in seq(1, 4, by=1)) {



list[[i]] <- i*i

3
print(list)

Output:

## [1] 1 4 9 16

The for loop is very valuable for machine learning tasks. After we have
trained a model, we need to regularize the model to avoid over-fitting.
Regularization is a very tedious task because we need to find the value
that minimizes the loss function. To help us detect those values, we
can make use of a for loop to iterate over a range of values and define
the best candidate.

For Loop over a list

Looping over a list is just as easy and convenient as looping over a
vector. Let's see an example

# Create a list with three vectors

fruit <- list(Basket = c('Apple', 'Orange', 'Passion fruit',
'Banana'),

Money = c(10, 12, 15), purchase = FALSE)

for (p in fruit)

{

¥

print(p)

Output:

## [1] "Apple" "Orange" "Passion fruit" "Banana"
## [1] 10 12 15
## [1] FALSE

For Loop over a matrix

A matrix has 2-dimension, rows and columns. To iterate over a matrix,



we have to define two for loop, namely one for the rows and another

for the column.

# Create a matrix

mat <- matrix(data = seq(10, 20, by=1),

for (r in 1:nrow(mat))
for (c in 1:ncol(mat))
print(paste("Row",
mat[r,c]))

Output:

## [1] "Row 1 and column 1
## [1] "Row 1 and column 2
## [1] "Row 2 and column 1
## [1] "Row 2 and column 2
## [1] "Row 3 and column 1
## [1] "Row 3 and column 2
## [1] "Row 4 and column 1
## [1] "Row 4 and column 2
## [1] "Row 5 and column 1
## [1] "Row 5 and column 2
## [1] "Row 6 and column 1
## [1] "Row 6 and column 2

ry

have
have
have
have
have
have
have
have
have
have
have
have

"and column",c,

values
values
values
values
values
values
values
values
values
values
values
values

nrow
# Create the loop with r and c to iterate over the matrix

of
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of
of
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10"
16"
11"
17"
12"
18"
13"
19"
14"
20"
15"
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6, ncol =2)

"have values of",



Chapter 14: While Loop in R
with Example

Aloop is a statement that keeps running until a condition is satisfied.
The syntax for a while loop is the following:

while (condition) {
Exp
3

R While Loop

Start
Yes & 113
Execute while - Y cc';:ﬂ:f . ;;
block code e ' g

. o

.__.-"
Mo

Execute code

outside while

block
While Loop Flow Chart

Note: Remember to write a closing condition at some point otherwise



the loop will go on indefinitely.
Example 1:

Let's go through a very simple example to understand the concept of
while loop. You will create a loop and after each run add 1 to the stored
variable. You need to close the loop, therefore we explicitely tells R to
stop looping when the variable reached 10.

Note: If you want to see current loop value, you need to wrap the
variable inside the function print().

#Create a variable with value 1
begin <- 1

#Create the loop
while (begin <= 10){

#See which we are
cat('This is loop number', begin)

#add 1 to the variable begin after each loop
begin <- begin+1

print(begin)

¥

Output:

## This 1s loop number 1[1]
## This is loop number 2[1]
## This 1s loop number 3[1]
## This 1s loop number 4[1]
## This is loop number 5[1]
## This 1s loop number 6[1]
## This 1s loop number 7[1]
## This is loop number 8[1]
## This 1s loop number 9[1]
## This is loop number 10[1] 11

R O0Oo~NO Ok WN

Example 2:

You bought a stock at price of 50 dollars. If the price goes below 45, we



want to short it. Otherwise, we keep it in our portfolio. The price can
fluctuate between -10 to +10 around 50 after each loop. You can write
the code as follow:

set.seed(123)

# Set variable stock and price
stock <- 50

price <- 50

# Loop variable counts the number of loops
loop <- 1

# Set the while statement
while (price > 45){

# Create a random price between 40 and 60
price <- stock + sample(-10:10, 1)

# Count the number of loop
loop = loop +1

# Print the number of loop
print(loop)
}

Output:

## [1]
## [1]
## [1]
## [1]
## [1]
## [1]

~NOoO Ok WN

cat('it took', loop, 'loop before we short the price. The lowest
price is',price)

Output:

## it took 7 loop before we short the price.The lowest price 1is
40



Chapter 15: apply(), lapply(),
sapply(), tapply() Function in
R with Examples

This tutorial aims at introducing the apply() function collection. The
apply() function is the most basic of all collection. We will also learn

sapply(), lapply() and tapply(). The apply collection can be viewed as a
substitute to the loop

The apply() collection is bundled with r essential package if you
install R with Anaconda. The apply() function can be feed with many
functions to perform redundant application on a collection of object
(data frame, list, vector, etc.). The purpose of apply() is primarily to
avoid explicit uses of loop constructs. They can be used for an input
list, matrix or array and apply a function. Any function can be passed
into apply().

apply() function

We use apply() over a matrice. This function takes 5 arguments:

apply(X, MARGIN, FUN)

Here:

-X: an array or matrix

-MARGIN: take a value or range between 1 and 2 to define where
to apply the function:

-MARGIN=1": the manipulation is performed on rows

-MARGIN=2": the manipulation is performed on columns
-MARGIN=c(1,2)  the manipulation 1is performed on rows and
columns

-FUN: tells which function to apply. Built functions like mean,
median, sum, min, max and even user-defined functions can be
applied>



The simplest example is to sum a matrice over all the columns. The

code apply(m1, 2, sum) will apply the sum function to the matrix 5x6
and return the sum of each column accessible in the dataset.

ml <- matrix(C<-(1:10),nrow=5, ncol=6)

ml

a_ml <- apply(mi, 2, sum)

a_mi

Output:
= ml

[ 21 [.31 E.A31 .51 L.&l

[1,] Y 6 1 6 1 6
[2,] 2 7 2 7 2 7
[3,] 3 8 3 8 3 8
[4,] 4 g 4 g 4 g
5.1 5 | J1o 5 10 5 10
> a_ml =- ply(ml, 2, sum
s Ly Bom of
1] 15 70 15 40 15 40 .
= Colupn

Best practice: Store the values before printing it to the console.

lapply() function

lapply (X, FUN)

Arguments:

-X: A vector or an object

-FUN: Function applied to each element of x

1 in lapply() stands for list. The difference between lapply() and apply()
lies between the output return. The output of lapply() is a list. lapply()
can be used for other objects like data frames and lists.

lapply() function does not need MARGIN.

A very easy example can be to change the string value of a matrix to



lower case with tolower function. We construct a matrix with the name
of the famous movies. The name is in upper case format.

movies <- c("SPYDERMAN", "BATMAN", "VERTIGO", "CHINATOWN")
movies_lower <-lapply(movies, tolower)
str(movies_lower)

Output:

## List of 4

## $:chr'"spyderman"
## $:chr'"batman"

## $:chr'"vertigo"
## $:chr'chinatown"

We can use unlist() to convert the list into a vector.

movies_lower <-unlist(lapply(movies, tolower))
str(movies_lower)

Output:

## chr [1:4] "spyderman" "batman" "vertigo" "chinatown"

sapply() function

sapply() function does the same jobs as lapply() function but returns a
vector.

sapply (X, FUN)

Arguments:

-X: A vector or an object

-FUN: Function applied to each element of x

We can measure the minimum speed and stopping distances of cars
from the cars dataset.

dt <- cars

Imn_cars <- lapply(dt, min)
smn_cars <- sapply(dt, min)
Imn_cars



Output:

## $speed
## [1] 4
## $dist
## [1] 2

smn_cars

Output:

## speed dist
Hit 4 2

Imxcars <- lapply(dt, max)
smxcars <- sapply(dt, max)
Imxcars

Output:

## $speed
## [1] 25
## $dist
## [1] 120

smxcars

Output:

## speed dist
Hit 25 120

We can use a user built-in function into lapply() or sapply(). We create
a function named avg to compute the average of the minimum and
maximum of the vector.

avg <- function(x) {

( min(x) + max(x) ) / 2}
fcars <- sapply(dt, avg)
fcars

Output



## speed dist
## 14.5 61.0

sapply() function is more efficient than lapply() in the output returned
because sapply() store values direclty into a vector. In the next
example, we will see this is not always the case.

We can summarize the difference between apply(), sapply() and
“lapply() in the following table:

Function Arguments Objective Input Output
apol apply(x, Apply a function to the rows or | Data frame or | vector, list,
PPy MARGIN, FUN) | columns or both matrix array
Apply a function to all the List, vector or .
lapply lapply(X, FUN) elements of the input data frame list
Apply a function to all the List, vector or | vector or
sapply sappy(X FUN) elements of the input data frame matrix

Slice vector

We can use lapply() or sapply() interchangeable to slice a data frame.
We create a function, below_ average(), that takes a vector of
numerical values and returns a vector that only contains the values
that are strictly above the average. We compare both results with the
identical() function.

below_ave <- function(x) {
ave <- mean(x)
return(x[x > ave])

}

dt_s<- sapply(dt, below_ave)

dt_l<- lapply(dt, below_ave)

identical(dt_s, dt_1)



Output:

## [1] TRUE

tapply() function

The function tapply() computes a measure (mean, median, min, max,
etc..) or a function for each factor variable in a vector.

tapply (X, INDEX, FUN = NULL)

Arguments:

-X: An object, usually a vector

-INDEX: A list containing factor

-FUN: Function applied to each element of X

Part of the job of a data scientist or researchers is to compute
summaries of variables. For instance, measure the average or group
data based on a characteristic. Most of the data are grouped by ID,
city, countries, and so on. Summarizing over group reveals more
interesting patterns.

To understand how it works, let's use the iris dataset. This dataset is
very famous in the world of machine learning. The purpose of this
dataset is to predict the class of each of the three flower species: Sepal,
Versicolor, Virginica. The dataset collects information for each species
about their length and width.

As a prior work, we can compute the median of the length for each
species. tapply() is a quick way to perform this computation.

data(iris)
tapply(iris$Sepal.width, iris$Species, median)

Output:

#it setosa versicolor virginica
H#Hit 3.4 2.8 3.0



Chapter 16: Import Data into
R: Read CSV, Excel, SPSS,
Stata, SAS Files

Data could exist in various formats. For each format R has a specific
function and argument. This tutorial explains how to import data to R.

Read CSV

One of the most widely data store is the .csv (comma-separated values)
file formats. R loads an array of libraries during the start-up, including
the utils package. This package is convenient to open csv files
combined with the reading.csv() function. Here is the syntax for
read.csv

read.csv(file, header = TRUE, sep = ",")
Argument:

e file: PATH where the file is stored

e header: confirm if the file has a header or not, by default, the
header is set to TRUE

e sep: the symbol used to split the variable. By default, °,".

We will read the data file name mtcats. The csv file is stored online. If
your .csv file is stored locally, you can replace the PATH inside the
code snippet. Don't forget to wrap it inside ' '. The PATH needs to be a
string value.

For mac user, the path for the download folder is:

"/Users/USERNAME/Downloads/FILENAME.csv"



For windows user:

"C:\Users\USERNAME\Downloads\FILENAME.csv"

Note that, we should always specify the extension of the file name.
.CSV

xlsx
Jaxt

PATH <- 'https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/mtcars.csv'

df <- read.csv(PATH, header = TRUE, sep = ',"')
length(df)

Output:
## [1] 12

class(df$X)

Output:

## [1] "factor"

R, by default, returns character values as Factor. We can turn off this
setting by adding stringsAsFactors = FALSE.

PATH <- 'https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/mtcars.csv'

df <-read.csv(PATH, header =TRUE, sep = ', ', stringsAsFactors

=FALSE)
class(df$X)

Output:

## [1] "character"

The class for the variable X is now a character.



Read Excel files

Excel files are very popular among data analysts. Spreadsheets are
easy to work with and flexible. R is equipped with a library readxl to
import Excel spreadsheet.

Use this code

require(readxl)

to check if readxl is installed in your machine. If you install r with r-
conda-essential, the library is already installed. You should see in the
command window:

Output:

Loading required package: readxl.

If the package does not exit, you can install it with the conda library or
in the terminal, use conda install -¢c mittner r-readxl.

Use the following command to load the library to import excel files.

library(readxl)

readxl_example()

We use the examples included in the package readxl during this
tutorial.

Use code

readxl_example()

to see all the available spreadsheets in the library.



= reédx?_exampWe()

[1]1 "cTippy.x1s" "clippy.x1sx” "datasets.x1s" "datasets.xlIsx" "deaths.x1s" "deaths. x1sx"
"geometry.x1s" “geometry.xlIsx"
[9] "type-me.x1s" "type-me.x1sx"

To check the location of the spreadsheet named clippy.xls, simple use

readxl_example('"geometry.xls")

> r_'eadx"l_exan’eb'le("géonaetr‘y.x'lé"'}
[1] "c:/users/admin/anaconda3/R/1ibrary/readx]/extdata/geometry.x1s"

If you install R with conda, the spreadsheets are located in
Anaconda3g/lib/R/library/readxl/extdata/filename.xls

read excel()

The function read_ excel() is of great use when it comes to opening xls
and xIsx extention.

The syntax is:

read_excel(PATH, sheet = NULL, range= NULL, col_names = TRUE)
arguments:

-PATH: Path where the excel is located

-sheet: Select the sheet to import. By default, all

-range: Select the range to import. By default, all non-null
cells

-col_names: Select the columns to import. By default, all non-
null columns

We can import the spreadsheets from the readxl library and count the
number of columns in the first sheet.

# Store the path of “datasets.xlsx’
example <- readxl_example("datasets.xlsx")
# Import the spreadsheet

df <- read_excel(example)

# Count the number of columns

length(df)



Output:

## [1] 5

excel sheets()

The file datasets.xlsx is composed of 4 sheets. We can find out which
sheets are available in the workbook by using excel_sheets() function

example <- readxl_example("datasets.xlsx")

excel_sheets(example)

Output:

[1] "irdis" "mtcars" "chickwts" "quakes"

If a worksheet includes many sheets, it is easy to select a particular
sheet by using the sheet arguments. We can specify the name of the
sheet or the sheet index. We can verify if both function returns the
same output with identical().

example <- readxl_example("datasets.xlsx")

quake <- read_excel(example, sheet = "quakes")

quake_1 <-read_excel(example, sheet = 4)
identical(quake, quake_1)

Output:

## [1] TRUE
We can control what cells to read in 2 ways

1. Use n_max argument to return n rows
2. Use range argument combined with cell_rows or cell_cols

For example, we set n_max equals to 5 to import the first five rows.

# Read the first five row: with header
iris <-read_excel(example, n_max =5, col_names =TRUE)



> WIS
# A tibble: 5 x 5
sepal.Length Sepal.width Petal.Length Petal.width Species

<dbl=> zdb1= <dbl> <dbl=> =chr>
1 3 3t 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 Fid i [ 0.2 setosa
5 2.0 3.6 1.4 0.2 setosa
>

If we change col_names to FALSE, R creates the headers
automatically.

# Read the first five row: without header
iris_no_header <-read_excel(example, n_max =5, col_names =FALSE)

iris._ no_header

In the data frame iris_no_header, R created five new variables named
X 1,X 2,X 3, X g4andX_ 5

# A tibble: 5 x 5 '
=chr> <chr= <chr= <chr= =chr= ja 3

1 i i ez 0riginal Header

2 x e i i g | 1.4 0.2 setosa

3 4.9 3 1.4 0.2 setosa BLLOME ROW # |

4 e s T 1.3 0.2 setosa

5 4.6 Fel g o 0.2 setosa

p

We can also use the argument range to select rows and columns in the
spreadsheet. In the code below, we use the excel style to select the
range A1 to B5.

# Read rows Al to B5
example_1 <-read_excel(example, range = "A1:B5", col_names

=TRUE)
dim(example_1)

Output:

## [1] 4 2



We can see that the example_ 1 returns 4 rows with 2 columns. The
dataset has header, that the reason the dimension is 4x2.

A B c
1 |Sepal.Length Sepal.Width petal.length  Petal.W
2 i 2.5 1.4
3 4.9 3 1.4
a a.7 3.2 1.3
5 4.6 2.1 15
6 5 3.6 1.4
7 5.4 3.9 1.7
8 46 3.4 1.4

In the second example, we use the function cell_rows() which controls
the range of rows to return. If we want to import the rows 1 to 5, we
can set cell_rows(1:5). Note that, cell_rows(1:5) returns the same
output as cell_rows(5:1).

# Read rows 1 to 5

example_2 <-read_excel(example, range =cell_rows(1:5),col_names
=TRUE)

dim(example_2)

Output:
## [1] 4 5
The example_ 2 however is a 4x5 matrix. The iris dataset has 5

columns with header. We return the first four rows with header of all
columns

fil B C D E
1 |Sepal.Length Sepal.Width Petal.Length Petal.Width Species
2| 51 3.5 14 0.2 setosa
3 _ 4.9 3 14 0.2 setosa
a| | a7 3.2 1.3 0.2 setosa
3 | 4.6 3.1 1.5 0.2 setosa

In case we want to import rows which do not begin at the first row, we



have to include col_names = FALSE. If we use range = cell_rows(2:5),
it becomes obvious our data frame does not have header anymore.

iris_row_with_header <-read_excel(example, range
=cell_rows(2:3), col_names=TRUE)
iris_row_no_header <-read_excel(example, range
=cell_rows(2:3),col_names =FALSE)

» read_excel(example, range = cell_rows(2:3), col_names = TRUE)

# A tibble: 1 x 5

*5.1° "3.5" "1.4° "0.2° setosa (—--- Wrorg Colurmins rame

<dbls> <dbl> <dbl> <dbl> <chr>

1 4.9 3 1.4 0.2 setosa

> read_excel(example, range = cell_rows(2:3), col_names = FALSE)

# A tibhle: 2 x 5
[ X1 Xx_2 X_3 X_4 X_5 |« mmmmm Correct coumns rame
=dbl> =dbl> <dbl>= =dbl> =chr=>

1 5.1 35 1.4 0.2 setosa

Z 49 3.8 1.4 0.2 setosa

We can select the columns with the letter, like in Excel.
# Select columns A and B

col <-read_excel(example, range =cell cols("A:B"))
dim(col)

Output:

## [1] 150 2

Note : range = cell_cols("A:B"), returns output all cells with non-null
value. The dataset contains 150 rows, therefore, read_ excel() returns
rows up to 150. This is verified with the dim() function.

read_ excel() returns NA when a symbol without numerical value
appears in the cell. We can count the number of missing values with
the combination of two functions

1. sum
2. 1s.na

Here is the code

iris_na <-read_excel(example, na ="setosa")



sum(is.na(iris_na))

Output:

## [1] 50

We have 50 values missing, which are the rows belonging to the setosa
species.

Import data from other Statistical
software

We will import different files format with the heaven package. This
package support SAS, STATA and SPSS softwares. We can use the
following function to open different types of dataset, according to the
extension of the file:

e SAS: read_sas()
e STATA: read_dta() (or read_stata(), which are identical)
e SPSS: read_sav() or read_por(). We need to check the extension

Only one argument is required within these function. We need to know
the PATH where the file is stored. That's it, we are ready to open all
the files from SAS, STATA and SPSS. These three function accepts an
URL as well.

library(haven)

haven comes with conda r-essential otherwise go to the link or in the
terminal conda install -c conda-forge r-haven

Read sas

For our example, we are going to use the admission dataset from
IDRE.



PATH_sas <- 'https://github.com/guru99-edu/R-
Programming/blob/master/binary.sas7bdat?raw=true'’
df <- read_sas(PATH_sas)

head(df)

Output:

## # A tibble: 6 x 4
## ADMIT GRE GPA RANK
## <dbl> <dbl> <dbl> <dbl>

## 1 0] 380 3.61 3
## 2 1 660 3.67 3
## 3 1 800 4.00 1
## 4 1 640 3.19 4
## 5 0 520 2.93 4
## 6 1 760 3.00 2

Read STATA

For STATA data files you can use read_ dta(). We use exactly the same
dataset but store in .dta file.

PATH_stata <- 'https://github.com/guru99-edu/R-
Programming/blob/master/binary.dta?raw=true’

df <- read_dta(PATH_stata)

head (df)

Output:

## # A tibble: 6 x 4
##  admit gre gpa rank
##  <dbl> <dbl> <dbl> <dbl>

## 1 0] 380 3.61 3
## 2 1 660 3.67 3
## 3 1 800 4.00 1
## 4 1 640 3.19 4
## 5 0 520 2.93 4
## 6 1 760 3.00 2

Read SPSS



We use the read_sav()function to open a SPSS file. The file extension

" "

Sav

PATH_spss <- 'https://github.com/guru99-edu/R-
Programming/blob/master/binary.sav?raw=true'
df <- read_sav(PATH_spss)

head(df)

Output:

## # A tibble: 6 x 4
##  admit gre gpa rank
##  <dbl> <dbl> <dbl> <dbl>

## 1 0] 380 3.61 3
## 2 1 660 3.67 3
## 3 1 800 4.00 1
## 4 1 640 3.19 4
## 5 0 520 2.93 4
## 6 1 760 3.00 2

Best practices for Data Import

When we want to import data into R, it is useful to implement
following checklist. It will make it easy to import data correctly into R:

e The typical format for a spreadsheet is to use the first rows as the
header (usually variables name).

e Avoid to name a dataset with blank spaces; it can lead to
interpreting as a separate variable. Alternatively, prefer to use '_
or'-.'

e Short names are preferred

¢ Do not include symbol in the name: i.e: exchange_rate_$_€ is
not correct. Prefer to name it: exchange_rate_dollar_euro

e Use NA for missing values otherwise; we need to clean the format
later.

Summary



Following table summarizes the function to use in order to import

different types of file in R. The column one states the library related to

the function. The last column refers to the default argument.

Library

utils

readxl

haven

haven

haven

Objective Function Default Arguments

Read CSVfile  |read.csv() | file, header =,TRUE, sep = ","

Read EXCEL file |read_excel() | path, range = NULL, col_names = TRUE

Read SAS file read_sas() path

Read STATA file |read_stata() | path

Read SPSS fille read_sav() path

Following table shows the different ways to import a selection with
read__excel() function.

Function

Objectives

read_excel() |Read n number of rows

Select rows and columns like in excel

Select rows with indexes

Select columns with letters

Arguments

n_max = 10

range = "A1:D10"

range= cell_rows(1:3)

range = cell_cols("A:C")



Chapter 17: How to Replace
Missing Values(NA) in R:
na.omit & na.rm

Missing values in data science arise when an observation is missing in
a column of a data frame or contains a character value instead of
numeric value. Missing values must be dropped or replaced in order to
draw correct conclusion from the data.

In this tutorial, we will learn how to deal with missing values with the
dplyr library. dplyr library is part of an ecosystem to realize a data
analysis.

Data

Lo analysis
" -‘---""----’*\\..::"'-------‘N

Data Cleaning Visualize

v K

Five verbs Grammar of Graphs

dplyr library ggplot2 library

- filter -ggplot()

- select -geom_point()
- arrange -geom_line()
= mutate i

- group_by




mutate()

The fourth verb in the dplyr library is helpful to create new variable or
change the values of an existing variable.

We will proceed in two parts. We will learn how to:

¢ exclude missing values from a data frame
¢ impute missing values with the mean and median

The verb mutate() is very easy to use. We can create a new variable
following this syntax:

mutate(df, name_variable_1 = condition, ...)

arguments:

-df: Data frame used to create a new variable
-name_variable_1: Name and the formula to create the new
variable

-...: No limit constraint. Possibility to create more than one
variable inside mutate()

Exclude Missing Values (NA)

The na.omit() method from the dplyr library is a simple way to exclude
missing observation. Dropping all the NA from the data is easy but it
does not mean it is the most elegant solution. During analysis, it is
wise to use variety of methods to deal with missing values

To tackle the problem of missing observations, we will use the titanic
dataset. In this dataset, we have access to the information of the
passengers on board during the tragedy. This dataset has many NA
that need to be taken care of.

We will upload the csv file from the internet and then check which
columns have NA. To return the columns with missing data, we can
use the following code:



Let's upload the data and verify the missing data.

PATH <- "https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/test.csv"

df_titanic <- read.csv(PATH, sep = ",")

# Return the column names containing missing observations
list_na <- colnames(df_titanic)[ apply(df_titanic, 2, anyNA) ]
list_na

Output:

## [1] "age" '"fare"

Here,

colnames(df_titanic)[apply(df_titanic, 2, anyNA)]
Gives the name of columns that do not have data.
The columns age and fare have missing values.

We can drop them with the na.omit().

library(dplyr)

# Exclude the missing observations
df_titanic_drop <-df_titanic %>%
na.omit()

dim(df_titanic_drop)

Output:

## [1] 1045 13

The new dataset contains 1045 rows compared to 1309 with the
original dataset.
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We could also impute(populate) missing values with the median or the
mean. A good practice is to create two separate variables for the mean
and the median. Once created, we can replace the missing values with
the newly formed variables.

We will use the apply method to compute the mean of the column with
NA. Let's see an example

Step 1) Earlier in the tutorial, we stored the columns name with the
missing values in the list called list_na. We will use this list

Step 2) Now we need to compute of the mean with the argument
na.rm = TRUE. This argument is compulsory because the columns



have missing data, and this tells R to ignore them.

# Create mean
average_missing <- apply(df_titanic[,colnames(df_titanic) %in%
list_na],
2,
mean,
na.rm = TRUE)
average_missing

Code Explanation:
We pass 4 arguments in the apply method.

e df: df titanic[,colnames(df titanic) %in% list_na]. This code will
return the columns name from the list_na object (i.e. "age" and
"fare")

¢ 2: Compute the function on the columns

e mean: Compute the mean

¢ na.rm = TRUE: Ignore the missing values

Output:

#i age fare
## 29.88113 33.29548

We successfully created the mean of the columns containing missing
observations. These two values will be used to replace the missing
observations.

Step 3) Replace the NA Values

The verb mutate from the dplyr library is useful in creating a new
variable. We don't necessarily want to change the original column so
we can create a new variable without the NA. mutate is easy to use, we
just choose a variable name and define how to create this variable.
Here is the complete code

# Create a new variable with the mean and median
df_titanic_replace <- df_titanic %>%
mutate(replace_mean_age = ifelse(is.na(age),



average_missing[1], age),
replace_mean_fare = ifelse(is.na(fare), average_missing[2],
fare))

Code Explanation:

We create two variables, replace_mean_age and replace_mean_ fare
as follow:

e replace_mean_age = ifelse(is.na(age), average missing[1], age)
e replace_mean_ fare = ifelse(is.na(fare), average missing[2],fare)

If the column age has missing values, then replace with the first
element of average_missing (mean of age), else keep the original
values. Same logic for fare

sum(is.na(df_titanic_replace$age))

Output:

## [1] 263

Perform the replacement

sum(is.na(df_titanic_replace$replace_mean_age))

Output:

## [1] ©

The original column age has 263 missing values while the newly
created variable have replaced them with the mean of the variable age.

Step 4) We can replace the missing observations with the median as
well.

median_missing <- apply(df_titanic[,colnames(df_titanic) %in%
list_na],

2,

median,

na.rm = TRUE)



df_titanic_replace <- df_titanic %>%
mutate(replace_median_age = ifelse(is.na(age),
median_missing[1], age),
replace_median_fare = ifelse(is.na(fare),
median_missing[2], fare))
head(df_titanic_replace)

Output:
X pclass survived name sex age sibsp
| [ | 1 a Allen, Miss. Elisabeth walton female 29.0000 0
22 1 1 Allison, Master. Hudson Trewvor male 0.9167 1
3 3 1 0 Allison, Miss. Helen Loraine female 2.0000 1
4 4 1 o] Allison, Mr. Hudson Joshua creighton male 30.0000 1
55 1 0 Allison, Mrs. Hudson 1 € (Bessie waldo Daniels) female 25.0000 1
6 6 1 1 Anderson, Mr. Harry male 48,0000 0
parch ticket fare cabin embarked home. dest replace_median_age
1 0 24160 211.3375 BS s St Louis, MO 29. 0000
2 2 113781 151.5500 C22 C26 S Montreal, PQ / Chesterville, ON 0.9167
3 2 113781 151.5500 C22 C26 s Montreal, PQ / Chesterville, ON 2.0000
4 2 113781 151.5500 C22 C26 S Montreal, PQ / Chesterville, ON 30. 0000
5 2 113781 151.5500 €22 C26 s Montreal, PQ / Chesterville, ON 25. 0000
6 0 19952 26.3500 E12 s New York, NY 48. 0000
replace_median_fare
1 211. 3375
2 151. 5500
3 151. 5500
4 151. 5500
2 151. 5500
31 26. 5500

Step 5) A big data set could have lots of missing values and the above
method could be cumbersome. We can execute all the above steps
above in one line of code using sapply() method. Though we would not
know the vales of mean and median.

sapply does not create a data frame, so we can wrap the sapply()
function within data.frame() to create a data frame object.

# Quick code to replace missing values with the mean
df_titanic_impute_mean < -data.frame(
sapply(
df_titanic,
function(x) ifelse(is.na(x),
mean(x, na.rm = TRUE),

x)))

Summary



We have three methods to deal with missing values:

e Exclude all of the missing observations
e Impute with the mean
e Impute with the median

The following table summarizes how to remove all the missing
observations

Library Objective Code
base List missing observations colnames(df)[apply(df, 2, anyNA)]
dplyr Remove all missing values na.omit(df)

Imputation with mean or median can be done in two ways

e Using apply
e Using sapply

Method Details Advantages Disadvantages
Step by | Check columns with missing, compute You know the | More execution time.
step with |mean/median, store the value, replace with value of Can be slow with big
apply mutate() means/median | dataset

Quick Use sapply() and data.frame() to
way with | Jautomatically search and replace missing
sapply | values with mean/median

Short code and |Don't know the
fast imputation values



Chapter 18: R Exporting Data

to Excel, CSV, SAS, STATA,
Text File

How to Export Data from R

In this tutorial, we will learn how to export data from R environment
to different formats.

To export data to the hard drive, you need the file path and an
extension. First of all, the path is the location where the data will be
stored. In this tutorial, you will see how to store data on:

e The hard drive
e Google Drive
e Dropbox

Secondly, R allows the users to export the data into different types of
files. We cover the essential file's extension:

® CSV
xlsx
RDS
SAS
SPSS
STATA

Overall, it is not difficult to export data from R.

Export to Hard drive



To begin with, you can save the data directly into the working
directory. The following code prints the path of your working
directory:

directory <-getwd()
directory

Output:

## [1] "/Users/15_Export_to_do"

By default, the file will be saved in the below path.

For Mac OS:

/Users/USERNAME/Downloads/

For Windows:

C:\Users\USERNAME\Documents\

You can, of course, set a different path. For instance, you can change
the path to the download folder.

Create data frame

First of all, let's import the mtcars dataset and get the mean of mpg
and disp grouped by gear.

library(dplyr)
df <-mtcars % > %

select(mpg, disp, gear) % > %

group_by(gear) % > %

summarize(mean_mpg = mean(mpg), mean_disp = mean(disp))
df

Output::

## # A tibble: 3 x 3
#it gear mean_mpg mean_disp



## <dbl> <dbl> 1t;dbl>
## 1 3 16.10667 326.3000
## 2 4 24.53333 123.0167
## 3 5 21.38000 202.4800

The table contains three rows and three columns. You can create a
CSV file with the function write.csv().

Export CSV

The basic syntax is:

write.csv(df, path)

arguments

-df: Dataset to save. Need to be the same name of the data frame
in the environment.

-path: A string. Set the destination path. Path + filename +
extension i.e. "/Users/USERNAME/Downloads/mydata.csv" or the
filename + extension if the folder is the same as the working
directory

Example:

write.csv(df, "table_car.csv")

Code Explanation

e write.csv(df, "table_car.csv"): Create a CSV file in the hard drive:
o df: name of the data frame in the environment
o "table car.csv": Name the file table car and store it as csv

Note: You can use the function write.csv2() to separate the rows with
a semicolon.

write.csv2(df, "table_car.csv")

Note: For pedagogical purpose only, we created a function called
open_ folder() to open the directory folder for you. You just need to
run the code below and see where the csv file is stored. You should see



a file names table_car.csv.

# Run this code to create the function

open_folder <-function(dir){
if (.Platform['0OS.type'] == "windows"){
shell.exec(dir)
} else {
system(paste(Sys.getenv("R_BROWSER"), dir))

}

3
# Call the function to open the folder

open_folder(directory)

Export to Excel file

Export data to Excel is trivial for Windows users and trickier for Mac
OS user. Both users will use the library xIsx to create an Excel file. The
slight difference comes from the installation of the library. Indeed, the
library xlsx uses Java to create the file. Java needs to be installed if not
present in your machine.

Windows users

If you are a Windows user, you can install the library directly with
conda:

conda install -c r r-xlsx

Once the library installed, you can use the function write.xlsx(). A new
Excel workbook is created in the working directory

library(x1lsx)
write.xlsx(df, "table_car.xlsx")

If you are a Mac OS user, you need to follow these steps:

o Step 1: Install the latest version of Java
e Step 2: Install library rJava
e Step 3: Install library xlsx



Step 1) You could download Java from official Oracle site and install
it.

You can go back to Rstudio and check which version of Java is
installed.

system("java -version")
At the time of the tutorial, the latest version of Java is 9.0.4.

Step 2) You need to install rjava in R. We recommended you to install
R and Rstudio with Anaconda. Anaconda manages the dependencies
between libraries. In this sense, Anaconda will handle the intricacies
of rJava installation.

First of all, you need to update conda and then install the library. You
can copy and paste the next two lines of code in the terminal.

conda - conda update
conda install -c r r-rjava

Next, open rjava in Rstudio

library(rJava)

Step 3) Finally, it is time to install xlsx. Once again, you can use
conda to do it:

conda install -c r r-xlsx

Just as the windows users, you can save data with the function
write.xlsx()

library(x1lsx)

Output:
## Loading required package: xlsxjars

write.xlsx(df, "table_car.xlsx")



Export to different software

Exporting data to different software is as simple as importing them.
The library "haven" provides a convenient way to export data to

® SpsSS
e sas
e stata

First of all, import the library. If you don't have "haven", you can go
here to install it.

library(haven)

SPSS file

Below is the code to export the data to SPSS software:

write_sav(df, "table_car.sav")

Export SAS file

Just as simple as spss, you can export to sas

write_sas(df, "table_car.sas7bdat")

Export STATA file

Finally, haven library allows writing .dta file.

write_dta(df, "table_car.dta")

R



If you want to save a data frame or any other R object, you can use the
save() function.

save(df, file ='table_car.RData')
You can check the files created above in the present working directory

* & » ThisPC » Documents

o o] Marne Date modified Type Size

B 20-03-2018 12:20...  Data Source Name 1KB

19 | Rhistory 19-03-2018 06:04 ...  RHISTORY File 15KB
'__,n table_car.dta 19-03-20183 047 ... DTAFile 11 KB

Ebook _| table_car.sas7bdat 19-03-2018 k47 ... SASTBDAT File 9 KB
| table_car.sav 19-03-2018 047 ... SAV File 5KB

iy -] table car 19-03-2018 041 ... Microsoft Excel C... 2 KB

Interact with the Cloud Services

Last but not least, R is equipped with fantastic libraries to interact
with the cloud computing services. The last part of this tutorial deals
with export/import files from:

e Google Drive
e Dropbox

Note: This part of the tutorial assumes you have an account with
Google and Dropbox. If not, you can quickly create one for — Google
Drive: https://accounts.google.com/SignUp?hl=en - Dropbox:
https://www.dropbox.com/h

Google Drive

You need to install the library googledrive to access the function
allowing to interact with Google Drive.

The library is not yet available at Anaconda. You can install it with the



code below in the console.

install.packages("googledrive")

and you open the library.

library(googledrive)

For non-conda user, installing a library is easy, you can use the
function install.packages('NAME OF PACKAGE) with the name of the
package inside the parenthesis. Don't forget the ' '. Note that, R is
supposed to install the package in the "libPaths() automatically. It is
worth to see it in action.

Upload to Google Drive

To upload a file to Google drive, you need to use the function
drive_upload().

Each time you restart Rstudio, you will be prompted to allow access
tidyverse to Google Drive.

The basic syntax of drive_upload() is

drive_upload(file, path = NULL, name = NULL)

arguments:

- file: Full name of the file to upload (i.e., including the
extension)

- path: Location of the file- name: You can rename it as you
wish. By default, it is the local name.

After you launch the code, you need to confirm several questions

drive_upload%<("table_car.csv'", name ="table_car")

Output:

## Local file:
## * table_car.csv
## uploaded into Drive file:



## * table_car: 1hwb57eT-9qSgDHt9CrVt5Ht7RHogQaMk
## with MIME type:
## * text/csv

You type 1 in the console to confirm the access
Use a local file ('.httr-ocauth'), to cache QAuth access credentials between R sessions?

1: Yes g===,
2: No |
1] access

Type 1 to allow the

Selection: 1

Then, you are redirected to Google API to allow the access. Click
Allow.



Google

Hi Krishna
O y@gmail.com

tidyverse api packages wants to

L, View and manage the files in your Google
Drive

Allow tidyverse api packages to do this?

&I JE T i B o ] A falefn.

My Accoumnt

Once the authentication is complete, you can quit your browser.

- & 0 () localhost:1410/?state=P6GJuvbF2a8icode=4/AADRvcYA1i50RLHPicn5) fiTIIBZGg-onzlylJYlkhkQ5

Authentication complete. Please close this page and return to R.

In the Rstudio's console, you can see the summary of the step done.
Google successfully uploaded the file located locally on the Drive.

Google assigned an ID to each file in the drive.



adding .httr-oauth to .gitignore
waiting for authentication in browser._,

Press Esc/Cctrl + C to abort 1 3

authentication complete. ‘

Local file: \
table_car.csv V

uploaded into Qrive file:
table_car: JAT-N/TLetNN|1XZTLTUBSNUFGS5FXOEKA
with MIME type:
text/csy

You can see this file in Google Spreadsheet.

drive_browse("table_car")
Output:

You will be redirected to Google Spreadsheet

& table_car e Open with Google Sheets | «

mean_mpg mean_disp
16.10666667 326.3
24.53333333 123.0166667

21.38 202.48

Import from Google Drive

Upload a file from Google Drive with the ID is convenient. If you know
the file name, you can get its ID as follow:

Note: Depending on your internet connection and the size of your
Drive, it takes times.

X <-drive_get('"table_car")
as_id(x)



> X <- drive_get("table_car")

> as_jd{x)
[1] 1AT-N7TLetNn1ixzTLTUBShUFGSFXOEKA" |

attr(, class )
[1] "drive_id"

You stored the ID in the variable x. The function drive_download()
allows downloading a file from Google Drive.

The basic syntax is:

drive_download(file, path = NULL, overwrite = FALSE)

arguments:

- file: Name or id of the file to download

-path: Location to download the file. By default, it is
downloaded to the working directory and the name as in Google
Drive

-overwrite = FALSE: If the file already exists, don't overwrite
it. If set to TRUE, the old file is erased and replaced by the
new one.

You can finally download the file:

download_google & 1lt; - drive_download(as_id(x), overwrite =
TRUE)

Code Explanation

¢ drive_download(): Function to download a file from Google Drive

e as_id(x): Use the ID to browse the file in Google Drive

e overwrite = TRUE: If file exists, overwrite it, else execution halted
To see the name of the file locally, you can use:

Output:

L Wl oI Ve
> download_google <- drive_download({as_id(x), overwrite = TRUE)
File downloaded:

* table_car
saved locally as:

* table_car

The file is stored in your working directory. Remember, you need to



add the extenstion of the file to open it in R. You can create the full
name with the function paste() (i.e. table_car.csv)

google_file <-download_google$local_path
google_file

path <-paste(google_file, ".csv", sep = "")
google_table_car <-read.csv(path)
google_table_car

Output:

## X gear mean_mpg mean_disp
11 3 16.10667 326.3000
2 2 4 24.53333 123.0167
33 5 21.38000 202.4800

#* HF
#* H I

Finally, you can remove the file from your Google drive.

## remove file
drive_find("table_car") %>%drive_rm()

Output:

200 200 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2
300 2400 2500 2600 2700 2800 2900 3000 3100 3200 2300 3400 3500 3600 3700 3800 3900 4000 4100 4200
4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 3400 5500 5600 5700 5B00 5900 6000 6100 62
00 6300 6400 6500 6600 6700 G800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100

8200 B300 8400 EB500 B600 8700 EB00 8900 9000 9100 9200 9300 92400 9500 9600 9700 9800 9900 10000 10
100 10200 10300 10400 10500 10600 10700 10800 10900 11000 11100 11200 11300 11400 11500 11600 1170
0 11800 11900 12000 12100 12200 12300 12400 12500 12600 12700 12800 12900 13000 13100 13200 13300

13400 13500 13600 13700 13800 13900

It's a slow process. Takes time to delete

Export to Dropbox

R interacts with Dropbox via the rdrop2 library. The library is not
available at Anaconda as well. You can install it via the console
install.packages('rdrop2')

library(rdrop2)



You need to provide temporary access to Dropbox with your
credential. After the identification is done, R can create, remove
upload and download to your Dropbox.

First of all, you need to give access to your account. The credentials are
cached during all session.

drop_auth()

You will be redirected to Dropbox to confirm the authentication.

rdrop2 would like access to the files and folders in your
Dropbox. Learn more

- ()

You will get a confirmation page. You can close it and return to R

&« C 1} | @ localhost:1410/?state=P6GJuvbF2a&code=43-j1KWjbHKAAAAAAAAGCzDZ oRRy0qgs58kIRg Tskxik

Authentication complete. Please close this page and return to R.

You can create a folder with the function drop_ create().

e drop_create('my_first_drop'): Create a folder in the first branch
of Dropbox

e drop_create('First_branch/my_first_drop'): Create a folder
inside the existing First_branch folder.



drop_create('my_first_drop')

Output:

> drop_create( 'my_first_drop')

Folder /my_first_drop created successfully
In DropBox
e H
°»e ome
Home Starred
Files

When you star items, th show up here for .

Paper
Showcase

my first drop
Opened just now - Dropbox

To upload the .csv file into your Dropbox, use the function
drop_upload().

Basic syntax:

drop_upload(file, path = NULL, mode = "overwrite")
arguments:

- file: local path

- path: Path on Dropbox

- mode = "overwrite": By default, overwrite an existing file.
If set to "add’, the upload is not completed.

drop_upload('table_car.csv', path = "my_first_drop")

Output:



> drop_upload('table_car.csv’, path = "my_first_drop")
File table_car.csv uploaded as /my_first_drop/table_car.csv successfully =

At DropBox

Dropbox > my first_drop

table carcsv

You can read the csv file from Dropbox with the function
drop_read_csv()

dropbox_table_car <-drop_read_csv("my_first_drop/table_car.csv")
dropbox_table_car

Output:

## X gear mean_mpg mean_disp

## 1 1 3 16.10667 326.3000
## 2 2 4 24.53333 123.0167
## 3 3 5 21.38000 202.4800

When you are done using the file and want to delete it. You need to
write the path of the file in the function drop_ delete()

drop_delete('my_first_drop/table_car.csv')
Output:

> drop_delete('my_first_drop/table_car.csv’)
/my_first_drop/table_car.csv was successfully deleted

It is also possible to delete a folder

drop_delete('my_first_drop')



Output:

"Grop_deTecal my_first_drop'y

/my_first_drop was successfully deleted

Summary

We can summarize all the functions in the table below

Library

base

xlsx

haven

haven

haven

base

googledrive

googledrive

googledrive

googledrive

googledrive

Objective

Export csv

Export excel

Export spss

Export sas

Export stata

Export R

Upload Google Drive

Open in Google Drive

Retrieve file ID

Dowload from Google Drive

Remove file from Google Drive

Function

write.csv()

write.xlsx()

write_sav()

write_sas()

write_dta()

save()

drive_upload()

drive_browse()

drive_get(as_id())

download_ google()

drive_rm()



rdrop2

rdrop2

rdrop2

rdrop2

rdrop2

Authentification

Create a folder

Upload to Dropbox

Read csv from Dropbox

Delete file from Dropbox

drop_auth()

drop_ create()

drop_upload()

drop_read_csv

drop_delete()



Chapter 19: Correlation in R:
Pearson & Spearman with
Matrix Example

A bivariate relationship describes a relationship -or correlation-
between two variables, and . In this tutorial, we discuss the concept of
correlation and show how it can be used to measure the relationship
between any two variables.

There are two primary methods to compute the correlation between
two variables.

e Pearson: Parametric correlation
e Spearman: Non-parametric correlation

Pearson Correlation

The Pearson correlation method is usually used as a primary check for
the relationship between two variables.

The coefficient of correlation, , is a measure of the strength of the
linear relationship between two variables and . It is computed as
follow:

Cov(x,y)
r =

0,0y

with



— -
o Hx= E (I I) , i.e. standard deviation of
oo -
. Dy b3 (}? y:} , 1.e. standard deviation of
The correlation ranges between -1 and 1.

e A value of near or equal to 0 implies little or no linear relationship
between and .

e In contrast, the closer comes to 1 or -1, the stronger the linear
relationship.

We can compute the t-test as follow and check the distribution table
with a degree of freedom equals to :

r
L ————an=2

Spearman Rank Correlation

A rank correlation sorts the observations by rank and computes the
level of similarity between the rank. A rank correlation has the
advantage of being robust to outliers and is not linked to the
distribution of the data. Note that, a rank correlation is suitable for the
ordinal variable.

Spearman's rank correlation, , is always between -1 and 1 with a value
close to the extremity indicates strong relationship. It is computed as
follow:

_ Cov(rgx 7gy)

Org, Jrg},




with stated the covariances between rank and . The denominator
calculates the standard deviations.

In R, we can use the cor() function. It takes three arguments, , and the
method.

cor(x, y, method)

Arguments:

¢ Xx: First vector
¢ y: Second vector
e method: The formula used to compute the correlation. Three
string values:
o "pearson"

o "kendall"
o "spearman"

An optional argument can be added if the vectors contain missing
value: use = "complete.obs"

We will use the BudgetUK dataset. This dataset reports the budget
allocation of British households between 1980 and 1982. There are
1519 observations with ten features, among them:

wfood: share food share spend

wfuel: share fuel spend

wcloth: budget share for clothing spend
walc: share alcohol spend

wtrans: share transport spend

wother: share of other goods spend
totexp: total household spend in pound
income total net household income

age: age of household

children: number of children

Example

library(dplyr)



PATH <-"https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/british_household.csv"
data <-read.csv(PATH)
filter(income < 500)
mutate(log_income = log(income),
log_totexp = log(totexp),
children_fac = factor(children, order = TRUE, labels =
C("NO", llYeSll)))
select(-c(X,X.1, children, totexp, income))
glimpse(data)

Code Explanation

e We first import the data and have a look with the glimpse()
function from the dplyr library.

e Three points are above 500K, so we decided to exclude them.

e Itis a common practice to convert a monetary variable in log. It
helps to reduce the impact of outliers and decreases the skewness
in the dataset.

Output:

## Observations: 1,516## Variables: 10

## $ wfood <dbl> 0.4272, 0.3739, 0.1941, 0.4438, 0.3331,
0.3752, 0O...

## $ wfuel <dbl> 0.1342, 0.1686, 0.4056, 0.1258, 0.0824,
0.0481, 0O...

## $ wcloth <dbl> 0.0000, 0.0091, 0.0012, 0.0539, 0.0399,
0.1170, 0O...

## $ walc <dbl> 0.0106, 0.0825, 0.0513, 0.0397, 0.1571,
0.0210, O...

## $ wtrans <dbl> 0.1458, 0.1215, 0.2063, 0.0652, 0.2403,
0.0955, 0...

## $ wother <dbl> 0.2822, 0.2444, 0.1415, 0.2716, 0.1473,
0.3431, 0O...

## $ age <int> 25, 39, 47, 33, 31, 24, 46, 25, 30, 41,
48, 24, 2...

## $ log_income <dbl> 4.867534, 5.010635, 5.438079, 4.605170,
4.605170, ...

## $ log_totexp <dbl> 3.912023, 4.499810, 5.192957, 4.382027,
4.499810, ...

## $ children_fac <ord> Yes, Yes, Yes, Yes, No, No, No, No, No,
No, Yes,



We can compute the correlation coefficient between income and wfood
variables with the "pearson" and "spearman" methods.

cor(data$log_income, data$wfood, method = "pearson")

output:

## [1] -0.2466986

cor(data$log_income, data$wfood, method = "spearman')

Output:

## [1] -0.2501252

Correlation Matrix

The bivariate correlation is a good start, but we can get a broader
picture with multivariate analysis. A correlation with many variables is
pictured inside a correlation matrix. A correlation matrix is a
matrix that represents the pair correlation of all the variables.

The cor() function returns a correlation matrix. The only difference
with the bivariate correlation is we don't need to specify which
variables. By default, R computes the correlation between all the
variables.

Note that, a correlation cannot be computed for factor variable. We
need to make sure we drop categorical feature before we pass the data
frame inside cor().

A correlation matrix is symmetrical which means the values above the
diagonal have the same values as the one below. It is more visual to
show half of the matrix.

We exclude children_ fac because it is a factor level variable. cor does
not perform correlation on a categorical variable.



# the last column of data is a factor level. We don't include it
in the code

mat_1 <-as.dist(round(cor(data[,1:9]),2))

mat_1

Code Explanation

e cor(data): Display the correlation matrix
e round(data, 2): Round the correlation matrix with two decimals
e as.dist(): Shows the second half only

Output:

#it wfood wfuel wcloth walc wtrans wother age
log_income

H#

wfuel 0.11

## wcloth -0.33

-0.25

## walc -0.12

-0.13 -0.09

## wtrans -0.34 -0.16 -0.19
-0.22

## wother -0.35 -0.14 -0.22
-0.12 -0.29

## age 0.02 -0.0605 0.04

-0.14 0.03 0.02

## log_income -0.25

-0.12 0.10 0.04 0.06 0.13 0.23

## log_totexp -0.50

-0.36 0.34 0.12 0.15 0.15 0.21 0.49

Significance level

The significance level is useful in some situations when we use the
pearson or spearman method. The function rcorr() from the library
Hmisc computes for us the p-value. We can download the library from
conda and copy the code to paste it in the terminal:

conda install -c r r-hmisc



The rcorr() requires a data frame to be stored as a matrix. We can
convert our data into a matrix before to compute the correlation
matrix with the p-value.

library("Hmisc")
data_rcorr <-as.matrix(data[, 1: 9])

mat_2 <-rcorr(data_rcorr)
# mat_2 <-rcorr(as.matrix(data)) returns the same output

The list object mat_ 2 contains three elements:

¢ 1: Output of the correlation matrix
e n: Number of observation
e P:p-value

We are interested in the third element, the p-value. It is common to
show the correlation matrix with the p-value instead of the coefficient
of correlation.

p_value <-round(mat_2[["P"]], 3)
p_value

Code Explanation

e mat_2[["P"]]: The p-values are stored in the element called P
e round(mat_2[["P"]], 3): Round the elements with three digits

Output:

wfood wfuel wcloth walc wtrans wother age
log_income log_totexp

wfood NA 0.000 0.000 0.000 0.000 0.000
0.365 0.000 0
wfuel 0.000 NA 0.000 0.000 0.000 0.000
0.076 0.000 0
wcloth 0.000 0.000 NA 0.001 0.000 0.000
0.160 0.000 0
walc 0.000 0.000 0.001 NA 0.000 0.000
0.000 0.105 0
wtrans 0.000 0.000 0.000 0.000 NA 0.000
0.259 0.020 0



wother 0.000 0.000 0.000 0.000 0.000 NA
0.355 0.000 0

age 0.365 0.076 0.160

0.000 0.259 0.355 NA 0.000 0
log_income 0.000 0.000 0.000 0.105 0.020 0.000
0.000 NA 0]

log_totexp 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 NA

Visualize Correlation Matrix

A heat map is another way to show a correlation matrix. The GGally
library is an extension of ggplot2. Currently, it is not available in the
conda library. We can install directly in the console.

install.packages("GGally")



1 in5ta11.pacEagES{“GGaWWy”}
2 |

21 (Top Level} =

‘onsole Terminal
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1so installing the dependenc

UUY UL uuy WL ol uL ugg
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ontent type 'application/zi
ownloaded 26 KB
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The library includes different functions to show the summary statistics
such as the correlation and distribution of all the variables in a matrix.

The ggcorr() function has lots of arguments. We will introduce only
the arguments we will use in the tutorial:

The function ggcorr

ggcorr(df, method = c("pairwise", "pearson"),
nbreaks = NULL, digits = 2, low = "#3B9AB2",
mid = "#EEEEEE", high = "#F21A00",
geom = "tile", label = FALSE,
label _alpha = FALSE)

Arguments:

o df: Dataset used

e method: Formula to compute the correlation. By default,
pairwise and Pearson are computed

e nbreaks: Return a categorical range for the coloration of the

coefficients. By default, no break and the color gradient is

continuous

digits: Round the correlation coefficient. By default, set to 2

low: Control the lower level of the coloration

mid: Control the middle level of the coloration

high: Control the high level of the coloration

geom: Control the shape of the geometric argument. By default,

"tile"

e label: Boolean value. Display or not the label. By default, set to
"FALSE"

Basic heat map

The most basic plot of the package is a heat map. The legend of the
graph shows a gradient color from - 1 to 1, with hot color indicating
strong positive correlation and cold color, a negative correlation.



library(GGally)
ggcorr(data)

Code Explanation

e ggcorr(data): Only one argument is needed, which is the data
frame name. Factor level variables are not included in the plot.

Output:
log_totex
log_income
age
wother - L
05
wirans 0.0
walc 05
i
wcloth
wiuel
wfood

Add control to the heat map

We can add more controls to the graph.

ggcorr(data,
nbreaks = 6,

low = "steelblue",
mid = "white",
high = "darkred",
geom = "circle")



Code Explanation

nbreaks=6: break the legend with 6 ranks.

low = "steelblue": Use lighter colors for negative correlation

mid = "white": Use white colors for middle ranges correlation
high = "darkred": Use dark colors for positive correlation

geom = "circle": Use circle as the shape of the windows in the heat
map. The size of the circle is proportional to the absolute value of
the correlation.

Output:
log_tote>
Icg_incom.
age
| @ [-1.-0.67]
wother {-0.67,-0.33]
wtrans gt
(0,0.33]
walc ' ® (033,067
wcloth e el
wiuel
wfood ® @ o '-fi-}'
Add label to the heat map

GGally allows us to add a label inside the windows.

ggcorr(data,
nbreaks = 6,
label = TRUE,



label_size = 3,
color = "grey50")

Code Explanation

e label = TRUE: Add the values of the coefficients of correlation
inside the heat map.

e color = "grey50": Choose the color, i.e. grey

e label_size = 3: Set the size of the label equals to 3

Output:

log_tote:

log r‘:tr_:-.

age 02 02

. [-1-0.67]

wother 0 0.1 0.2

(-0.67,-0.33]
wtrans 0.3 0 04 041 (-0.33,0]
(0,0.33]

wale €02 01 01 0 .{manﬁ?]

0.87.1
wcloth =01 =02 0.2 0 01 . .{ ]

wiue| -02 -01 -02 -0.1 0 =0.1

wiood 04 -03 -0.1 REIS S0 0 0.2 | -0.5

ggpairs

Finally, we introduce another function from the GGaly library. Ggpair.
It produces a graph in a matrix format. We can display three kinds of
computation within one graph. The matrix is a dimension, with equals
the number of observations. The upper/lower part displays windows
and in the diagonal. We can control what information we want to show



in each part of the matrix. The formula for ggpair is:

ggpair(df, columns = 1: ncol(df), title = NULL,
upper list(continuous = '"cor"),
lower list(continuous "smooth"),
mapping = NULL)

Arguments:

df: Dataset used

columns: Select the columns to draw the plot

title: Include a title

upper: Control the boxes above the diagonal of the plot. Need to
supply the type of computations or graph to return. If continuous
= "cor", we ask R to compute the correlation. Note that, the
argument needs to be a list. Other arguments can be used, see the
[vignette]("http://ggobi.github.io/ggally/#custom_ functions")
for more information.

¢ Lower: Control the boxes below the diagonal.

e Mapping: Indicates the aesthetic of the graph. For instance, we
can compute the graph for different groups.

Bivariate analysis with ggpair with
grouping

The next graph plots three information:

e The correlation matrix between log_totexp, log_income, age and
wtrans variable grouped by whether the household has a kid or
not.

¢ Plot the distribution of each variable by group

¢ Display the scatter plot with the trend by group

library(ggplot2)
ggpairs(data, columns = c("log_totexp", "log_income", "age",
"wtrans"), title = "Bivariate analysis of revenue expenditure by

the British household", upper = list(continuous = wrap("cor",
size = 3)),



lower = list(continuous = wrap("smooth",
alpha = 0.3,
size = 0.1)),

mapping = aes(color = children_fac))

Code Explanation

"nn

columns = c¢("log_totexp", "log_income", "age", "wtrans"): Choose
the variables to show in the graph

title = "Bivariate analysis of revenue expenditure by the British
household": Add a title

upper = list(): Control the upper part of the graph. I.e. Above the
diagonal

continuous = wrap("cor", size = 3)): Compute the coefficient of
correlation. We wrap the argument continuous inside the wrap()
function to control for the aesthetic of the graph (i.e. size = 3) -
lower = list(): Control the lower part of the graph. I.e. Below the
diagonal.

continuous = wrap("smooth",alpha = 0.3,size=0.1): Add a scatter
plot with a linear trend. We wrap the argument continuous inside
the wrap() function to control for the aesthetic of the graph (i.e.
size=0.1, alpha=0.3)

mapping = aes(color = children_ fac): We want each part of the
graph to be stacked by the variable children_fac, which is a
categorical variable taking the value of 1 if the household does not
have kids and 2 otherwise

Output:



Bivariate analysis of revenue expenditure by the British hc
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Bivariate analysis with ggpair with partial
grouping

The graph below is a little bit different. We change the position of the
mapping inside the upper argument.

ggpairs(data, columns = c("log_totexp", "log_income", "age",
"wtrans"),
title = "Bivariate analysis of revenue expenditure by the
British household",
upper = list(continuous = wrap('"cor",
size = 3),
mapping = aes(color
lower = list(
continuous = wrap('"smooth",
alpha = 0.3,
size = 0.1))

children_fac)),

)

Code Explanation



e Exact same code as previous example except for:

e mapping = aes(color = children_ fac): Move the list in upper =
list(). We only want the computation stacked by group in the
upper part of the graph.

Output:

Bivariate analysis of revenue expenditure by the British hc

log_totexp log_income age wirans
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Summary
We can summarize the function in the table below:

library Objective method | code

Base bivariate correlation Pearson cor(dfx2, method = "pearson")

Base bivariate correlation Spearman |cor(dfx2, method = "spearman")



Base

Base

Hmisc

Ggally

Multivariate correlation

Multivariate correlation

P value

heat map

Multivariate plots

pearson

Spearman

cor(df, method = "pearson")

cor(df, method = "spearman")

rcorr(as.matrix(data[,1:9]))[["P"]]

ggcorr(df)

cf code below



Chapter 20: R Aggregate
Function: Summarise &
Group_by() Example

Summary of a variable is important to have an idea about the data.
Although, summarizing a variable by group gives better information
on the distribution of the data.

In this tutorial, you will learn how summarize a dataset by group with
the dplyr library.

For this tutorial, you will use the batting dataset. The original dataset
contains 102816 observations and 22 variables. You will only use 20
percent of this dataset and use the following variables:

playerID: Player ID code. Factor

yearID: Year. Factor

teamID: Team. factor

l1gID: League. Factor: AA AL FL NL PL UA

AB: At bats. Numeric

G: Games: number of games by a player. Numeric
R: Runs. Numeric

HR: Homeruns. Numeric

SH: Sacrifice hits. Numeric

Before you perform summary, you will do the following steps to
prepare the data:

e Step 1: Import the data
o Step 2: Select the relevant variables
e Step 3: Sort the data

library(dplyr)



# Step 1
data <- read.csv("https://raw.githubusercontent.com/guru99-
edu/R-Programming/master/lahman-batting.csv") % > %

# Step 2
select(c(playerID, yearID, AB, teamID, 1gID, G, R, HR, SH)) % >
%

# Step 3
arrange(playerID, teamID, yearID)

A good practice when you import a dataset is to use the glimpse()
function to have an idea about the structure of the dataset.

# Structure of the data
glimpse(data)

Output:

Observations: 104,324

Variables: 9

$ playerID <fctr> aardsda®l1, aardsda®@l1, aardsda®@l1, aardsda0Oil,
aardsda0i, a...

$ yearID <int> 2015, 2008, 2007, 2006, 2012, 2013, 2009, 2010,
2004, 196...

$ AB <int> 1, 1, 0, 2, 0, 0, 0, 0, O, 603, 600, 606, 547,
516, 495, :

$ teamID <fctr> ATL, BOS, CHA, CHN, NYA, NYN, SEA, SEA, SFN,
ATL, ATL, A...

$ 1gID <fctr> NL, AL, AL, NL, AL, NL, AL, AL, NL, NL, NL,
NL, NL, NL,

$ G <int> 33, 47, 25, 45, 1, 43, 73, 53, 11, 158, 155,
160, 147, 15...

$ R <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 117, 113, 84, 100,
103, 95, 75...

$ HR <int> 0, 0, 0, 0, 0, 0, 0, O, O, 44, 39, 29, 44, 38,
47, 34, 40...

$ SH <int> 09, 0, 0, 1, 0, 0, 0, 0, 0, ©, @, 0, 0, O, O, O,
0, 1, 6,

Summarise()



The syntax of summarise() is basic and consistent with the other verbs
included in the dplyr library.

summarise(df, variable_name=condition)
arguments:

- "df : Dataset used to construct the summary statistics
- “variable name=condition’: Formula to create the new variable

Look at the code below:

summarise(data, mean_run =mean(R))
Code Explanation

e summarise(data, mean_run = mean(R)): Creates a variable
named mean_ run which is the average of the column run from
the dataset data.

Output:

HH mean_run
## 1 19.20114

You can add as many variables as you want. You return the average
games played and the average sacrifice hits.

summarise(data, mean_games = mean(G),
mean_SH = mean(SH, na.rm = TRUE))

Code Explanation

e mean_SH = mean(SH, na.rm = TRUE): Summarize a second
variable. You set na.rm = TRUE because the column SH contains
missing observations.

Output:

H#H# mean_games mean_SH
## 1 51.98361 2.340085



Group_ by vs no group_ by

The function summerise() without group_by() does not make any
sense. It creates summary statistic by group. The library dplyr applies
a function automatically to the group you passed inside the verb
group_by.

Note that, group_by works perfectly with all the other verbs (i.e.
mutate(), filter(), arrange(), ...).

It is convenient to use the pipeline operator when you have more than
one step. You can compute the average homerun by baseball league.

data % > %

group_by(1lgID) % > %
summarise(mean_run = mean(HR))

Code Explanation

e data: Dataset used to construct the summary statistics
e group_by(IgID): Compute the summary by grouping the variable

“1gID
e summarise(mean_run = mean(HR)): Compute the average
homerun
Output:
#it
# A tibble: 7 x 2
it 1gID mean_run
##  <fctr> <dbl>
## 1 AA 0.9166667
#i 2 AL 3.1270988
## 3 FL 1.3131313
#H# 4 NL 2.8595953
## 5 PL 2.5789474
## 6 UA 0.6216216
## 7  <NA> 0.2867133

The pipe operator works with ggplot() as well. You can easily show the



summary statistic with a graph. All the steps are pushed inside the
pipeline until the grap is plot. It seems more visual to see the average
homerun by league with a bar char. The code below demonstrates the
power of combining group_ by(), summarise() and ggplot() together.

You will do the following step:

Step 1: Select data frame

Step 2: Group data

Step 3: Summarize the data

Step 4: Plot the summary statistics

library(ggplot2)

# Step 1

data % > %

#Step 2

group_by(1lgID) % > %

#Step 3

summarise(mean_home_run = mean(HR)) % > %

#Step 4

ggplot(aes(x = 1gID, y = mean_home_run, fill = 1gID)) +
geom_bar(stat = "identity") +
theme_classic() +

labs(
x = "baseball league",
y = IIAVerage home rUn",

title = paste(
"Example group_by() with summarise()"
)

Output:



Example group_by() with summarise()
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Function in summarise()

The verb summarise() is compatible with almost all the functions in R.
Here is a short list of useful functions you can use together with
summarise():

Objective Function | Description

Basic 'mean() | Average of vector x

| 'median() | Median of vector x

\ |sum() |Sum of vector x

variation |sd() |standard deviation of vector x

] IQRO |Interquartile of vector x

Range 'min() Minimum of vector x

‘ 'max() Maximum of vector x

| |quantile() | Quantile of vector x

Position | first() | Use with group_by() First observation of the group
\ last() |Use with group_by(). Last observation of the group

\ 'nth() | Use with group_by(). nth observation of the group
| I I




Count n() Use with group_by(). Count the number of rows
n_distinct() Use with group_by(). Count the number of distinct observations

We will see examples for every functions of table 1.

Basic function

In the previous example, you didn't store the summary statistic in a
data frame.

You can proceed in two steps to generate a date frame from a
summary:

e Step 1: Store the data frame for further use
¢ Step 2: Use the dataset to create a line plot

Step 1) You compute the average number of games played by year.

## Mean
exl <- data % > %
group_by(yearID) % > %
summarise(mean_game_year = mean(G))
head(ex1)

Code Explanation

e The summary statistic of batting dataset is stored in the data
frame exi.

Output:

## # A tibble: 6 x 2
##  yearID mean_game_year

## <int> <dbl>
## 1 1871 23.42308
H# 2 1872 18.37931
## 3 1873 25.61538
H# 4 1874 39.05263
## b 1875 28.39535
#H# 6 1876 35.90625



Step 2) You show the summary statistic with a line plot and see the
trend.

# Plot the graph

ggplot(ex1l, aes(x = yearID, y = mean_game_year)) +
geom_line() +
theme_classic() +

labs(
x = "Year",
y = "Average games played",

title = paste(
"Average games played from 1871 to 2016"
)

Output:
Average games played from 1871 to 2016
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Subsetting

The function summarise() is compatible with subsetting.



## Subsetting + Median

data % > %

group_by(lgID) % > %

summarise(median_at_bat_league = median(AB),
#Compute the median without the zero
median_at_bat_league_no_zero = median(AB[AB > 0]))

Code Explanation
e median_at_bat_league no_zero = median(AB[AB > 0]): The

variable AB contains lots of 0. You can compare the median of the
at bat variable with and without o.

Output:

## # A tibble: 7 x 3

#i 1gID median_at_bat_league median_at_bat_league_no_zero
##  <fctr> <dbl> <dbl>
## 1 AA 130 131
## 2 AL 38 85
H#Hi# 3 FL 88 97
## 4 NL 56 67
HH# 5 PL 238 238
Hit 6 UA 35 35
Hit

7 <NA> 101 101
Sum

Another useful function to aggregate the variable is sum().

You can check which leagues have the more homeruns.

## Sum

data % > %
group_by(1lgID) % > %
summarise(sum_homerun_league = sum(HR))

Output:

## # A tibble: 7 x 2



#t 1gID sum_homerun_league

## <fctr> <int>
## 1 AA 341
#H# 2 AL 29426
## 3 FL 130
#H# 4 NL 29817
## 5 PL 98
#H# 6 UA 46
H# 7 <NA> 41

Standard deviation

Spread in the data is computed with the standard deviation or sd() in
R.

# Spread

data % > %
group_by(teamID) % > %
summarise(sd_at_bat_league = sd(HR))

Output:

## # A tibble: 148 x 2
#it teamID sd_at_bat_league

#H# <fctr> <dbl>
## 1 ALT NA
H# 2 ANA 8.7816395
## 3 ARI 6.0765503
## 4 ATL 8.5363863
## 5 BAL 7.7350173
## 6 BFN 1.3645163
#H# 7 BFP 0.4472136
## 8 BL1 0.6992059
## 9 BL2 1.7106757
## 10 BL3 1.0000000
## # ... with 138 more rows

There are lots of inequality in the quantity of homerun done by each
team.



Minimum and maximum

You can access the minimum and the maximum of a vector with the
function min() and max().

The code below returns the lowest and highest number of games in a
season played by a player.

# Min and max
data % > %
group_by(playerID) % > %
summarise(min_G = min(G),
max_G = max(G))

Output:

## # A tibble: 10,395 x 3
## playerID min_G max_G
## <fctr> <int>
## 1 aardsda01 53 73
## 2 aaronha01 120 156
## 3 aasedoO1 24 66
## 4 abadfe0l 18 18
## 5 abadijo01 11 11
## 6 abbated01l 3 153
## 7 abbeybe0d1l 11 11
## 8 abbeycho1l 80 132
## 9 abbotglol 5 23
## 10 abbotjiol 13 29
## # ... with 10,385 more rows
Count

Count observations by group is always a good idea. With R, you can
aggregate the the number of occurence with n().

For instance, the code below computes the number of years played by
each player.

# count observations



data % > %
group_by(playerID) % > %
summarise(number_year = n()) % > %
arrange(desc(number_year))

Output:

## # A tibble: 10,395 x 2
#it playerID number_year
#t <fctr> <int>
## 1 pennoheOl 11
## 2 joostedOl 10
## 3 mcgulide0Ol 10
## 4 rosepedl 10
## 5 davisha0l 9
## 6 johnssiol 9
## 7 kaatjiol 9
## 8 keelewiOl 9
## 9 marshmiol 9
## 10 quirkjaol 9
## # ... with 10,385 more rows

First and last

You can select the first, last or nth position of a group.

For instance, you can find the first and last year of each player.

# first and last
data % > %
group_by(playerID) % > %
summarise(first_appearance = first(yearID),
last_appearance = last(yearID))

Output:

## # A tibble: 10,395 x 3

#it playerID first_appearance last_appearance
#i <fctr> <int> <int>
## 1 aardsda01 2009 2010
## 2 aaronhaol 1973 1975

## 3 aasedo0O1 1986 1990



## 4 abadfe0l 2016 2016

## 5 abadijo01 1875 1875
## 6 abbatedO1l 1905 1897
## 7 abbeybe01 1894 1894
## 8 abbeycho1l 1895 1897
## 9 abbotglol 1973 1979
## 10 abbotjiol 1992 1996
## # ... with 10,385 more rows

nth observation

The fonction nth() is complementary to first() and last(). You can
access the nth observation within a group with the index to return.

For instance, you can filter only the second year that a team played.

# nth

data % > %
group_by(teamID) % > %
summarise(second_game = nth(yearID, 2)) % > %
arrange(second_game)

Output:

## # A tibble: 148 x 2
i teamID second_game
# <fctr> <int>
## 1 BS1 1871
HH# 2 CH1 1871
#Hi#t 3 Fwl 1871
## 4 NY?2 1871
H# 5 RC1 1871
## 6 BR1 1872
HH# T BR2 1872
#H# 8 CL1 1872
## 9 MID 1872
## 10 TRO 1872
## # ... with 138 more rows

Distinct number of observation



The function n() returns the number of observations in a current
group. A closed function to n() is n_ distinct(), which count the
number of unique values.

In the next example, you add up the total of players a team recruited
during the all periods.

# distinct values

data % > %
group_by(teamID) % > %
summarise(number_player = n_distinct(playerID)) % > %
arrange(desc(number_player))

Code Explanation

e group_by(teamID): Group by year and team

e summarise(number_player = n_ distinct(playerID)): Count the
distinct number of players by team

e arrange(desc(number_player)): Sort the data by the number of
player

Output:

## # A tibble: 148 x 2
#it teamID number_player

#it <fctr> <int>
## 1 CHN 751
## 2 SLN 729
## 3 PHI 699
#H# 4 PIT 683
## 5 CIN 679
H# 6 BOS 647
#H# 7 CLE 646
## 8 CHA 636
## 9 DET 623
## 10 NYA 612
## # ... with 138 more rows

Multiple groups



A summary statistic can be realized among multiple groups.

# Multiple groups

data % > %
group_by(yearID, teamID) % > %
summarise(mean_games = mean(G)) % > %
arrange(desc(teamID, yearID))

Code Explanation

e group_by(yearID, teamID): Group by year and team

e summarise(mean_games = mean(G)): Summarize the number of
game player

o arrange(desc(teamID, yearID)): Sort the data by team and year

Output:

## # A tibble: 2,829 x 3
## # Groups: yearID [146]

## yearID teamID mean_games
#H# <int> <fctr> <dbl>
## 1 1884 WSU 20.41667
## 2 1891 WwS9 46.33333
## 3 1886 wS8 22.00000
## 4 1887 WwS8 51.00000
## 5 1888 wS8 27 .00000
H# 6 1889 WS8 52.42857
## 7 1884 WS7 8.00000
## 8 1875 WS6 14.80000
## 9 1873 WS5 16.62500
## 10 1872 WS4 4,20000
## # ... with 2,819 more rows
Filter

Before you intend to do an operation, you can filter the dataset. The
dataset starts in 1871, and the analysis does not need the years prior to
1980.

# Filter
data % > %



filter(yearID > 1980) % > %
group_by(yearID) % > %
summarise(mean_game_year = mean(G))

Code Explanation

e filter(yearID > 1980): Filter the data to show only the relevant
years (i.e. after 1980)

e group_by(yearID): Group by year

e summarise(mean_game_year = mean(G)): Summarize the data

Output:

## # A tibble: 36 x 2

## yearID mean_game_year
#Ht <int> <dbl>
## 1 1981 40.64583
##t 2 1982 56.97790
## 3 1983 60.25128
## 4 1984 62.97436
## 5 1985 57.82828
## 6 1986 58.55340
H# 7 1987 48.74752
## 8 1988 52.57282
## 9 1989 58.16425
## 10 1990 52.91556
## # ... with 26 more rows

Ungroup

Last but not least, you need to remove the grouping before you want to
change the level of the computation.

# Ungroup the data
data % > %
filter(HR > 0) % > %
group_by(playerID) % > %
summarise(average_HR_game = sum(HR) / sum(G)) % > %
ungroup() % > %
summarise(total_average_homerun = mean(average_HR_game))



Code Explanation

e filter(HR >0) : Exclude zero homerun

e group_by(playerID): group by player

e summarise(average_ HR_game = sum(HR)/sum(G)): Compute
average homerun by player

e ungroup(): remove the grouping

e summarise(total_average_homerun =
mean(average_ HR_game)): Summarize the data

Output:

## # A tibble: 1 x 1
it total_average_homerun

H#H# <dbl>
## 1 0.06882226
Summary

When you want to return a summary by group, you can use:

# group by X1, X2, X3
group(df, X1, X2, X3)

you need to ungroup the data with:

ungroup(df)

The table below summarizes the function you learnt with summarise()

method function code
mean mean summarise(df, mean_x1 = mean(x1))

median median summarise(df, median_x1 = median(x1))



sum

standard deviation

interquartile

minimum

maximum

quantile

first observation

last observation

nth observation

number of occurrence

sum

sd

IQR

min

max

quantile

first

last

nth

summarise(df, sum_x1 = sum(x1))

summarise(df,sd_x1 = sd(x1))

summarise(df,interquartile_x1 = IQR(x1))

summarise(df, minimum_x1 = min(x1))

summarise(df, maximum_x1 = max(x1))

summarise(df,quantile_x1 = quantile(x1))

summarise(df, first_x1 = first(x1))

summarise(df, last_x1 = last(x1))

summarise(df,nth_x1 = nth(x1, 2))

summarise(df,n_x1 = n(x1))

number of distinct occurrence | n_ distinct| summarise(df,n_distinct _x1 = n_distinct(x1))



Chapter 21: R Select(),
Filter(), Arrange(), Pipeline
with Example

The library called dplyr contains valuable verbs to navigate inside the
dataset. Through this tutorial, you will use the Travel times dataset.
The dataset collects information on the trip leads by a driver between
his home and his workplace. There are fourteen variables in the
dataset, including:

DayOfWeek: Identify the day of the week the driver uses his car
Distance: The total distance of the journey

MaxSpeed: The maximum speed of the journey

TotalTime: The length in minutes of the journey

The dataset has around 200 observations in the dataset, and the rides
occurred between Monday to Friday.

First of all, you need to:

¢ Jload the dataset
e check the structure of the data.

One handy feature with dplyr is the glimpse() function. This is an
improvement over str(). We can use glimpse() to see the structure of
the dataset and decide what manipulation is required.

library(dplyr)

PATH <- "https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/travel_times.csv"

df <- read.csv(PATH)

glimpse(df)

Output:



## Observations: 205
## Variables: 14

## $ X <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14,

## $ Date <fctr> 1/6/2012, 1/6/2012, 1/4/2012,
1/4/2012, 1/3/20...

## $ StartTime <fctr> 16:37, 08:20, 16:17, 07:53, 18:57,
07:57, 17:3...

## $ DayOfWeek <fctr> Friday, Friday, Wednesday, Wednesday,
Tuesday, ...

## $ GoingTo <fctr> Home, GSK, Home, GSK, Home, GSK,
Home, GSK, GS...

## $ Distance <dbl> 51.29, 51.63, 51.27, 49.17, 51.15,
51.80, 51.37...

## $ MaxSpeed <dbl> 127.4, 130.3, 127.4, 132.3, 136.2,
135.8, 123.2...

## $ AvgSpeed <dbl> 78.3, 81.8, 82.0, 74.2, 83.4, 84.5,
82.9, 77.5,...

## $ AvgMovingSpeed <dbl> 84.8, 88.9, 85.8, 82.9, 88.1, 88.8,
87.3, 85.9, ...
## $ FuelEconomy <fctr>, , , ,, , -, -, 8.89, 8.89, 8.89,
8.89, 8.89...

## $ TotalTime <dbl> 39.3, 37.9, 37.5, 39.8, 36.8, 36.8,
37.2, 37.9,...

## $ MovingTime <dbl> 36.3, 34.9, 35.9, 35.6, 34.8, 35.0,
35.3, 34.3, ...

## $ Taked407All <fctr> No, No, No, No, No, No, No, No, No,
No, No, No...

## $ Comments <fctr>, , , , , , ., ., ., 9, ., ., , , Put

snow tires o...

This is obvious that the variable Comments needs further diagnostic.
The first observations of the Comments variable are only missing
values.

sum(df$Comments =="")

Code Explanation

_m "nn

e sum(df$Comments ==""): Sum the observations equalts to "" in
the column comments from df

Output:



## [1] 181

select()

We will begin with the select() verb. We don't necessarily need all the
variables, and a good practice is to select only the variables you find
relevant.

We have 181 missing observations, almost 90 percent of the dataset. If
you decide to exclude them, you won't be able to carry on the analysis.

The other possibility is to drop the variable Comment with the select()
verb.

We can select variables in different ways with select(). Note that, the
first argument is the dataset.

- “select(df, A, B ,C) : Select the variables A, B and C from df

dataset.
- "select(df, A:C) : Select all variables from A to C from df

dataset.
- “select(df, -C) : Exclude C from the dataset from df dataset.

You can use the third way to exclude the Comments variable.

step_1_df <- select(df, -Comments)
dim(df)

Output:

## [1] 205 14

dim(step_1_df)

Output:

## [1] 205 13

The original dataset has 14 features while the step_1_df has 13.



Filter()

The filter() verb helps to keep the observations following a criteria.
The filter() works exactly like select(), you pass the data frame first
and then a condition separated by a comma:

filter(df, condition)
arguments:

- df: dataset used to filter the data
- condition: Condition used to filter the data

One criteria
First of all, you can count the number of observations within each level
of a factor variable.

table(step_1_df$GoingTo)
Code Explanation

¢ table(): Count the number of observations by level. Note, only
factor level variable are accepted

e table(step_1_df$GoingTo): Count the number of of trips toward
the final destination.

Output:

##
## GSK Home
## 105 100

The function table() indicates 105 rides are going to GSK and 100 to
Home.

We can filter the data to return one dataset with 105 observations and
another one with 100 observations.

# Select observations



if GoingTo == Home
select_home <- filter(df, GoingTo == "Home")
dim(select_home)

Output:

## [1] 160 14

# Select observations
if GoingTo == Work

select_work <- filter(df, GoingTo == "GSK")
dim(select_work)

Output:

## [1] 105 14

Multiple criterions

We can filter a dataset with more than one criteria. For instance, you
can extract the observations where the destination is Home and
occured on a Wednesday.

select_home_wed <- filter(df, GoingTo == "Home" & DayOfWeek ==
"Wednesday")
dim(select_home_wed)

Output:

## [1] 23 14

23 observations matched this criterion.

Pipeline

The creation of a dataset requires a lot of operations, such as:

e importing



merging
selecting
filtering
and so on

The dplyr library comes with a practical operator, %>%, called the
pipeline. The pipeline feature makes the manipulation clean, fast and
less prompt to error.

This operator is a code which performs steps without saving
intermediate steps to the hard drive. If you are back to our example
from above, you can select the variables of interest and filter them. We
have three steps:

e Step 1: Import data: Import the gps data
e Step 2: Select data: Select GoingTo and DayOfWeek
e Step 3: Filter data: Return only Home and Wednesday

We can use the hard way to do it:

# Step 1
step_1 <- read.csv(PATH)

# Step 2

step_2 <- select(step_1, GoingTo, DayOfWeek)

# Step 3

step_3 <- filter(step_2, GoingTo == "Home", DayOfWeek ==

"Wednesday")

head(step_3)

Output:

##  GoingTo DayOfWeek

## 1 Home Wednesday
## 2 Home Wednesday
## 3 Home Wednesday
## 4 Home Wednesday
## 5 Home Wednesday
## 6 Home Wednesday



That is not a convenient way to perform many operations, especially in
a situation with lots of steps. The environment ends up with a lot of
objects stored.

Let's use the pipeline operator %>% instead. We only need to define
the data frame used at the beginning and all the process will flow from
it.

Basic syntax of pipeline

New_df <- df %>%

step 1 %>%

step 2 %>%

arguments

- New_df: Name of the new data frame

- df: Data frame used to compute the step

- step: Instruction for each step

- Note: The last instruction does not need the pipe operator
"%, you don't have instructions to pipe anymore

Note: Create a new variable is optional. If not included, the
output will be displayed in the console.

You can create your first pipe following the steps enumerated above.

# Create the data frame filter_home_wed.It will be the object
return at the end of the pipeline
filter_home_wed <-

#Step 1

read.csv(PATH) % > %

#Step 2

select(GoingTo, DayOfWeek) % > %

#Step 3

filter(GoingTo == "Home", DayOfWeek == "Wednesday")

identical(step_3, filter_home_wed)

Output:

## [1] TRUE



We are ready to create a stunning dataset with the pipeline operator.

arrange()

In the previous tutorial, you learn how to sort the values with the
function sort(). The library dplyr has its sorting function. It works like
a charm with the pipeline. The arrange() verb can reorder one or many
rows, either ascending (default) or descending.

- “arrange(A) : Ascending sort of variable A

- "arrange(A, B) : Ascending sort of variable A and B

- “arrange(desc(A), B) : Descending sort of variable A and
ascending sort of B

We can sort the distance by destination.

# Sort by destination and distance
step_2_df <-step_1_df %>%

arrange(GoingTo, Distance)
head<step_2_df)

Output:

it X Date StartTime DayOfWeek GoingTo Distance
MaxSpeed AvgSpeed

## 1

193 7/25/2011 08:06 Monday GSK 48.32 121.2

## 2

196 7/21/2011 07:59 Thursday GSK 48.35 129.3

## 3 198 7/20/2011 08:24

Wednesday GSK 48.50 125.8 75.7

## 4 189 7/27/2011 08:15

Wednesday GSK 48.82 124.5 70.4

## 5 95

10/11/2011 08:25 Tuesday GSK 48.94 130.8 85.7
## 6 171 8/10/2011 08:13

Wednesday GSK 48.98 124.8 72.8

##  AvgMovingSpeed FuelEconomy TotalTime MovingTime Take407All
## 1 78.4 8.45 45.7 37.0 No
Hit 2 89.0 8.28 35.6 32.6 Yes

## 3 87.3 7.89 38.5 33.3 Yes



H#HH# 4 77 .8 8.45 41.6 37.6 No
H#H# 5 93.2 7.81 34.3 31.5 Yes
H## 6 78.8 8.54 40.4 37.3 No
Summary

In the table below, you summarize all the operations you learnt during
the tutorial.

Verb Objective Code Explanation
glimpse | check the structure of a df | glimpse(df) Identical to str()
. select(df, A, B .

select() |Select/exclude the variables ) Select the variables A, B and C
select(df, A:C) Select all variables from A to C
select(df, -C) Exclude C

. Filter the df based a one or | filter(df, o

filter() many conditions D One condition
filter (df, .
conditionl ondition2)

arrange() Sort the dgtaset with one or arrange(A) Ascending sort of variable A

many variables

arrange(A, B) gscendlng sort of variable A and
arrange(desc(A), Descending sort of variable A and
B) ascending sort of B

%% Create a pipeline between | step 1 %>% step 2

each step

%>% step 3



Chapter 22: Scatter Plotin R
using ggplot2 (with Example)

Graphs are the third part of the process of data analysis. The first part
is about data extraction, the second part deals with cleaning and
manipulating the data. At last, the data scientist may need to
communicate his results graphically.

The job of the data scientist can be reviewed in the following picture

e The first task of a data scientist is to define a research question.
This research question depends on the objectives and goals of the
project.

o After that, one of the most prominent tasks is the feature
engineering. The data scientist needs to collect, manipulate and
clean the data

e When this step is completed, he can start to explore the dataset.
Sometimes, it is necessary to refine and change the original
hypothesis due to a new discovery.

Refine hypothesis
and models E;;—

% L
‘ r
Is the results convinces?
a w} If yes, proceed to next - ____?
. step
else, keep exploring

b 'i Collect,
manipulate and
clean data

¢ When the explanatory analysis is achieved, the data scientist
has to consider the capacity of the reader to understand the
underlying concepts and models.



e His results should be presented in a format that all stakeholders
can understand. One of the best methods to communicate the
results is through a graph.

e Graphs are an incredible tool to simplify complex analysis.

ggplot2 package

This part of the tutorial focuses on how to make graphs/charts with R.

In this tutorial, you are going to use ggplot2 package. This package is
built upon the consistent underlying of the book Grammar of graphics
written by Wilkinson, 2005. ggplot2 is very flexible, incorporates
many themes and plot specification at a high level of abstraction. With
ggplot2, you can't plot 3-dimensional graphics and create interactive
graphics.

In ggplot2, a graph is composed of the following arguments:

data

aesthetic mapping
geometric object
statistical transformations
scales

coordinate system
position adjustments
faceting

You will learn how to control those arguments in the tutorial.

The basic syntax of ggplot2 is:

ggplot(data, mapping=aes()) +
geometric object

arguments:

data: Dataset used to plot the graph

mapping: Control the x and y-axis

geometric object: The type of plot you want to show. The most



common object are:
- Point: “geom_point()"
- Bar: "geom_bar()"

- Line: “geom_line()"
- Histogram: “geom_histogram()"

Scatterplot

Let's see how ggplot works with the mtcars dataset. You start by
plotting a scatterplot of the mpg variable and drat variable.

Basic scatter plot

library(ggplot2)
ggplot(mtcars, aes(x = drat, y = mpg)) +
geom_point()

Code Explanation

You first pass the dataset mtcars to ggplot.

Inside the aes() argument, you add the x-axis and y-axis.

The + sign means you want R to keep reading the code. It makes
the code more readable by breaking it.

e Use geom_ point() for the geometric object.

Output:



25-

mpg
[ ]

20- ™

10-
3.0 35 4.0 4.5 5.0
drat

Scatter plot with groups

Sometimes, it can be interesting to distinguish the values by a group of
data (i.e. factor level data).

ggplot(mtcars, aes(x = mpg, y = drat)) +
geom_point(aes(color = factor(gear)))

Code Explanation

e The aes() inside the geom_ point() controls the color of the group.
The group should be a factor variable. Thus, you convert the
variable gear in a factor.

¢ Altogether, you have the code aes(color = factor(gear)) that
change the color of the dots.

Output:



4.5~

. s factor(gear)
4.0-

® @ s . 3
B -
= . . 4
o ® ™
] * 5
3.5 +
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% .
L I N L ®
30- @
L ]
3 '
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mpg

Change axis

Rescale the data is a big part of the data scientist job. In rare occasion
data comes in a nice bell shape. One solution to make your data less
sensitive to outliers is to rescale them.

ggplot(mtcars, aes(x = log(mpg), y = log(drat))) +
geom_point(aes(color = factor(gear)))

Code Explanation

¢ You transform the x and y variables in log() directly inside the
aes() mapping.

Note that any other transformation can be applied such as
standardization or normalization.

Output:



Axis transform in log scale

144 ' A - :

: s s 4, factor(gear)
3

L

¢ 5

log(drat)
L ]

1.2f

' ke B S . I -
L_IIF Z.50 275 300 375 50 |
log(mpg)

Scatter plot with fitted values

You can add another level of information to the graph. You can plot
the fitted value of a linear regression.

my_graph <- ggplot(mtcars, aes(x = log(mpg), y = log(drat))) +
geom_point(aes(color = factor(gear))) +
stat_smooth(method = "1m",
col = "#C42126",
se = FALSE,
size = 1)
my_graph

Code Explanation

e graph: You store your graph into the variable graph. It is helpful
for further use or avoid too complex line of codes

e The argument stat_smooth() controls for the smoothing method

¢ method = "Im": Linear regression



e col = "#C42126": Code for the red color of the line
e se = FALSE: Don't display the standard error
e size = 1: the size of the line is 1

Output:

Fitted line

1.4-
factor(gear)
3
* 4

5

log(drat)

1.2-

2.50 275 3.00 3.25 3.50

log(mpg)

Note that other smoothing methods are available

e glm
* gam
e loess: default value
e rim

Add information to the graph

So far, we haven't added information in the graphs. Graphs need to be
informative. The reader should see the story behind the data analysis
just by looking at the graph without referring additional



documentation. Hence, graphs need good labels. You can add labels
with labs(function.

The basic syntax for lab() is :

lab(title = "Hello Guru99")

argument:

- title: Control the title. It is possible to change or add
title with:

- subtitle: Add subtitle below title

- caption: Add caption below the graph

- X: rename Xx-axis

- y: rename y-axis

Example:lab(title = "Hello Guru99", subtitle = "My first plot")

Add a title

One mandatory information to add is obviously a title.

my_graph +
labs(
title = "Plot Mile per hours and drat, in log"

)

Code Explanation

e my_graph: You use the graph you stored. It avoids rewriting all
the codes each time you add new information to the graph.
e You wrap the title inside the lab().

e Code for the red color of the line
e se = FALSE: Don't display the standard error
e size = 1: the size of the line is 1

Output:



Title of the graph

Plot Mile per hours and drat, in log

14-
factor(gear)
3
s 4

log(drat)

¥ 5

1.2-

1.0+

2.50 2.75 3.00 3.25 3.50

log(mpg)

Add a title with a dynamic name

A dynamic title is helpful to add more precise information in the title.

You can use the paste() function to print static text and dynamic text.
The basic syntax of paste() is:

paste("This is a text", A)

arguments

- " ": Text inside the quotation marks are the static text

- A: Display the variable stored in A

- Note you can add as much static text and variable as you want.
You need to separate them with a comma

Example:

A <-2010
paste("The first year is", A)



Output:
## [1] "The first year is 2010"
B <-2018

paste("The first year is", A, "and the last year is", B)

Output:

## [1] "The first year is 2010 and the last year is
2018"

You can add a dynamic name to our graph, namely the average of mpg.

mean_mpg <- mean(mtcars$mpg)
my_graph + labs(

title = paste("Plot Mile per hours and drat, in log. Average
mpg 1is'", mean_mpg)

)
Code Explanation

e You create the average of mpg with mean(mtcars$mpg) stored in
mean_ mpg variable

e You use the paste() with mean_mpg to create a dynamic title
returning the mean value of mpg

Output:



Plot Mile per hours and drat, in log. Average mpg is 20.090625

A

1.6~ - ess==s=e Dynamic title

14-
factor(gear)

3
e 4

log(drat)
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2.50 2.75 3.00 3.25 3.50
log(mpg)

Add a subtitle

Two additional detail can make your graph more explicit. You are
talking about the subtitle and the caption. The subtitle goes right
below the title. The caption can inform about who did the computation
and the source of the data.

my_graph +

labs(
title =
"Relation between Mile per hours and drat",
subtitle =
"Relationship break down by gear class",
caption = "Authors own computation"

)

Code Explanation

e Inside the lab(), you added:



o title = "Relation between Mile per hours and drat": Add title
o subtitle = "Relationship break down by gear class": Add
subtitle
o caption = "Authors own computation: Add caption
o You separate each new information with a comma, ,
e Note that you break the lines of code. It is not compulsory, and it
only helps to read the code more easily

Output:

Relation between Mile per hours and drat
Relationship break down by gear class | 4 Subtitle. Always below the title

16- 1

factor(gear)
3

log(drat)

. 4
» 5

2.50 275 3.00 3.25 3.50
Caption. Always in the log(mpg)
right corner ¥ | Authors own computaticnI

Rename x-axis and y-axis

Variables itself in the dataset might not always be explicit or by
convention use the _ when there are multiple words (i.e. GDP_CAP).
You don't want such name appear in your graph. It is important to
change the name or add more details, like the units.

my_graph +



labs(

x = "Drat definition",

y = "Mile per hours",

color = "Gear",

title = "Relation between Mile per hours and drat",
subtitle = "Relationship break down by gear class",
caption = "Authors own computation"

)
Code Explanation

e Inside the lab(), you added:
o x = "Drat definition": Change the name of x-axis
o y = "Mile per hours": Change the name of y-axis

Output:
Relation between Mile per hours and drat New x and y axis name

Relationship break down by gear class

1.6+ s \ =

14~
Gear

| Mile per hours

12~

1.0-

[ 1 1 ] 1]
2.50 2.75 300 ¥ 3.25 350
| Drat definition

Authors own computation

Control the scales



You can control the scale of the axis.

The function seq() is convenient when you need to create a sequence
of number. The basic syntax is:

seq(begin, last, by = x)
arguments:
- begin: First number of the sequence

- last: Last number of the sequence

- by= x: The step. For instance, if x is 2, the code adds 2 to
"begin-1" until it reaches "last’

For instance, if you want to create a range from o0 to 12 with a step of 3,
you will have four numbers, 0 4 8 12

seq(0, 12,4)

Output:

## [1] © 4 8 12

You can control the scale of the x-axis and y-axis as below

my_graph +
scale_x_continuous(breaks = seq(1, 3.6, by = 0.2)) +
scale_y continuous(breaks = seq(1, 1.6, by = 0.1)) +
labs(
x = "Drat definition",
y = "Mile per hours",
color = "Gear",
title = "Relation between Mile per hours and drat",
subtitle = "Relationship break down by gear class",
caption = "Authors own computation"

)

Code Explanation

e The function scale_y_ continuous() controls the y-axis
e The function scale_x_continuous() controls the x-axis.
e The parameter breaks controls the split of the axis. You can
manually add the sequence of number or use the seq()function:
o seq(1, 3.6, by = 0.2): Create six numbers from 2.4 to 3.4 with



a step of 3

o seq(1, 1.6, by = 0.1): Create seven numbers from 1 to 1.6 with

a step of 1
Output:
Relation between Mile per hours and drat Both axis have customised
Relationship break down by gear class scales
16+ + .
1.5- »
w [14-
5
Q
e
T |1.3-
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=
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1.0- . . : . . .
24 26 2.8 3.0 3.2 34
Drat definition
Authors own computation

Finally, R allows us to customize out plot with different themes. The
library ggplot2 includes eights themes:

theme_bw()
theme_ light()
theme_ classis()
theme_linedraw()
theme_dark()
theme_minimal()
theme_ gray()



e theme void()

my_graph +
theme_dark() +
labs(
x = "Drat definition, in log",
y = "Mile per hours, in log",
color = "Gear",
title = "Relation between Mile per hours and drat",
subtitle = "Relationship break down by gear class",
caption = "Authors own computation"
)
Output:
Relation between Mile per hours and drat New theme

Relationship break down by gear class
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After all these steps, it is time to save and share your graph. You add
ggsave('NAME OF THE FILE) right after you plot the graph and it will
be stored on the hard drive.



The graph is saved in the working directory. To check the working
directory, you can run this code:

directory <-getwd()
directory

Let's plot your fantastic graph, saves it and check the location

my_graph +
theme_dark() +
labs(
x = "Drat definition, in log",
y = "Mile per hours, in log",
color = "Gear",
title = "Relation between Mile per hours and drat",
subtitle = "Relationship break down by gear class",
caption = "Authors own computation"
)
Output:
Relation between Mile per hours and drat
Relationship break down by gear class
1.6
g
£ 14 Gear
1)
=
o}
=
2
o 12
=
1.0

2.50 275 3.00 3.25 3.50
Drat definition, in log
Authors own computation

ggsave("my_fantastic_plot.png")



Output:

## Saving 5 x 4 in image

Note: For pedagogical purpose only, we created a function called
open_folder() to open the directory folder for you. You just need to
run the code below and see where the picture is stored. You should see
a file names my_ fantastic_ plot.png.

# Run this code to create the
function
open_folder <- function(dir) {
if (.Platform['0S.type'] == "windows") {
shell.exec(dir)
} else {
system(paste(Sys.getenv("R_BROWSER"), dir))
¥

}

# Call the
function to open the folder open_folder(directory)

Summary

You can summarize the arguments to create a scatter plot in the table
below:

Objective Code

ggplot(df, aes(x = x1, y =y)) +

Basic scatter plot geom._point()

ggplot(df, aes(x = x1, y =vy)) +
Scatter plot with color group geom_point (aes(color = factor(x1)) +
stat_smooth(method = "1m")

ggplot(df, aes(x = x1, y =vy)) +
Add fitted values geom_point(aes(color = factor(x1))

ggplot(df, aes(x = x1, y = y)) +



Add title

Add subtitle

Rename x

Renamey

Control the scale

Create logs

Theme

Save

geom_point() + labs(title = paste("Hello
Guru99"))

ggplot(df, aes(x = x1, y =vy)) +
geom_point() + labs(subtitle =
paste("Hello Guru99"))

ggplot(df, aes(x = x1, y =vy)) +
geom_point () + labs(x = "X1")

ggplot(df, aes(x = x1, y =vy)) +
geom_point() + labs(y = "y1")

ggplot(df, aes(x = x1, y =y)) +
geom_point() + scale_y_continuous(breaks
seq(10, 35, by = 10)) +
scale_x_continuous(breaks = seq(2, 5, by
1)

ggplot(df, aes(x =log(x1), y = log(y))) +
geom_point()

ggplot(df, aes(x = x1, y =vy)) +
geom_point() + theme_classic()

ggsave("my_fantastic_plot.png")



Chapter 23: How to make
Boxplot in R (with EXAMPLE)

You can use the geometric object geom_ boxplot() from ggplot2 library
to draw a box plot. Box plot helps to visualize the distribution of
the data by quartile and detect the presence of outliers.

We will use the airquality dataset to introduce box plot with ggplot.
This dataset measures the airquality of New York from May to
September 1973. The dataset contains 154 observations. We will use
the following variables:

e Ozone: Numerical variable
e Wind: Numerical variable
e Month: May to September. Numerical variable

Create Box Plot

Before you start to create your first box plot, you need to manipulate
the data as follow:

e Step 1: Import the data

Step 2: Drop unnecessary variables

Step 3: Convert Month in factor level

Step 4: Create a new categorical variable dividing the month with
three level: begin, middle and end.

Step 5: Remove missing observations

All these steps are done with dplyr and the pipeline operator %>%.

library(dplyr)
library(ggplot2)

# Step 1

data_air <- airquality % > %



#Step 2
select(-c(Solar.R, Temp)) % > %

#Step 3
mutate(Month = factor(Month, order = TRUE, labels = c("May",
"June", "July", "August'", "September")),

#Step 4
day_cat = factor(ifelse(Day < 10, "Begin'", ifelse(Day < 20,
"Middle", "End"))))

A good practice is to check the structure of the data with the function
glimpse().

glimpse(data_air)

Output:

## Observations: 153

## Varliables: 5

## $ Ozone  <int> 41, 36, 12, 18, NA, 28, 23, 19, 8, NA, 7, 16,
11, 14,

## $ Wind <dbl> 7.4, 8.0, 12.6, 11.5, 14.3, 14.9, 8.6, 13.8,
20.1, 8.6...

## $ Month <ord> May, May, May, May, May, May, May, May, May,
May, May, ...

## $ Day <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, ...

## $ day_cat <fctr> Begin, Begin, Begin, Begin, Begin, Begin,
Begin, Begi...

There are NA's in the dataset. Removing them is wise.

# Step 5
data_air_nona <-data_air %>% na.omit()

Basic box plot

Let's plot the basic box plot with the distribution of ozone by month.



# Store the graph
box_plot <- ggplot(data_air_nona, aes(x = Month, y = Ozone))
# Add the geometric object box plot
box_plot +
geom_boxplot()

Code Explanation

e Store the graph for further use
o box_plot: You store the graph into the variable box_plot It is
helpful for further use or avoid too complex line of codes
¢ Add the geometric object box plot
o You pass the dataset data_air_nona to ggplot.
o Inside the aes() argument, you add the x-axis and y-axis.
o The + sign means you want R to keep reading the code. It
makes the code more readable by breaking it.
o Use geom_boxplot() to create a box plot

Output:
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Change side of the graph

You can flip the side of the graph.

box_plot +

geom_boxplot()+
coord_flip()

Code Explanation

e box_plot: You use the graph you stored. It avoids rewriting all the
codes each time you add new information to the graph.
e geom_boxplot(): Create the box plot

e coord_flip(): Flip the side of the graph
Output:
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Change color of outlier



You can change the color, shape and size of the outliers.

box_plot +
geom_boxplot(outlier.colour = "red",
outlier.shape = 2,
outlier.size = 3) +
theme_classic()

Code Explanation

e outlier.colour="red": Control the color of the outliers

e outlier.shape=2: Change the shape of the outlier. 2 refers to
triangle

¢ outlier.size=3: Change the size of the triangle. The size is
proportional to the number.

Output:
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Add a summary statistic



You can add a summary statistic to the box plot.

box_plot +
geom_boxplot() +
stat_summary(fun.y = mean,

geom = "point",
size = 3,
color = "steelblue") +

theme_classic()

Code Explanation

e stat_summary() allows adding a summary to the box plot

e The argument fun.y controls the statistics returned. You will use
mean

e Note: Other statistics are available such as min and max. More
than one statistics can be exhibited in the same graph

e geom = "point": Plot the average with a point

e size=3: Size of the point

e color ="steelblue": Color of the points

Output:
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Box Plot with Dots

In the next plot, you add the dot plot layers. Each dot represents an
observation.

box_plot +
geom_boxplot() +
geom_dotplot(binaxis = 'y',
dotsize = 1,
stackdir = 'center') +
theme_classic()

Code Explanation

e geom_dotplot() allows adding dot to the bin width

e binaxis='y'": Change the position of the dots along the y-axis. By
default, x-axis

e dotsize=1: Size of the dots

e stackdir='center': Way to stack the dots: Four values:



o "up" (default),
o "down"
o "center"
o "centerwhole"
Output:
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Control Aesthetic of the Box Plot

Change the color of the box

You can change the colors of the group.

ggplot(data_air_nona, aes(x = Month, y = 0zone, color = Month))
+

geom_boxplot() +

theme_classic()



Code Explanation

e The colors of the groups are controlled in the aes() mapping. You
can use color= Month to change the color of the box according to

the months
Output:
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Box plot with multiple groups

It is also possible to add multiple groups. You can visualize the
difference in the air quality according to the day of the measure.

ggplot(data_air_nona, aes(Month, Ozone)) +

geom_boxplot(aes(fill = day_cat)) +
theme_classic()

Code Explanation



e The aes() mapping of the geometric object controls the groups to
display (this variable has to be a factor)
o aes(fill= day_ cat) allows creating three boxes for each month in

the x-axis
Output:
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Box Plot with Jittered Dots

Another way to show the dot is with jittered points. It is a convenient
way to visualize points with a categorical variable.

This method avoids the overlapping of the discrete data.

box_plot +
geom_boxplot() +
geom_jitter(shape = 15,
color = "steelblue",
position = position_jitter(width = 0.21)) +



theme_classic()
Code Explanation

e geom_jitter() adds a little decay to each point.

e shape=15 changes the shape of the points. 15 represents the
squares

e color = "steelblue": Change the color of the point

e position=position_jitter(width = 0.21): Way to place the
overlapping points. position_jitter(width = 0.21) means you move
the points by 20 percent from the x-axis. By default, 40 percent.

Output:
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You can see the difference between the first graph with the jitter
method and the second with the point method.

box_plot +
geom_boxplot() +
geom_point(shape = 5,



color = "steelblue") +
theme_classic()
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Notched Box Plot

An interesting feature of geom_boxplot(), is a notched box plot. The
notch plot narrows the box around the median. The main purpose of a
notched box plot is to compare the significance of the median between
groups. There is strong evidence two groups have different medians
when the notches do not overlap. A notch is computed as follow:

IQR

n

median + 1.57 =

with is the interquartile and number of observations.



box_plot +
geom_boxplot(notch = TRUE) +
theme_classic()

Code Explanation

e geom_boxplot(notch=TRUE): Create a notched box plot

Output:
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Summary

We can summarize the different types of box plot in the table below:

Objective Code

ggplot(df, aes( x = x1, y =y)) +

Basic box plot geom_boxplot ()



ggplot(df, aes( x = x1, y =y)) +

ﬂip the side geom_boxplot() + coord_flip()

ggplot(df, aes( x = x1, y =y)) +

Notched box plot geom_boxplot (notch=TRUE)

ggplot(df, aes( x = x1, y =y)) +
Box plot with jittered dots geom_boxplot() + geom_jitter(position =
position_jitter(0.21))



Chapter 24: Bar Chart &
Histogram in R (with
Example)

A bar chart is a great way to display categorical variables in the x-axis.
This type of graph denotes two aspects in the y-axis.

1. The first one counts the number of occurrence between groups.
2. The second one shows a summary statistic (min, max, average,
and so on) of a variable in the y-axis.

You will use the mtcars dataset with has the following variables:

e cyl: Number of the cylinder in the car. Numeric variable

e am: Type of transmission. 0 for automatic and 1 for manual.
Numeric variable

e mpg: Miles per gallon. Numeric variable

How to create Bar Chart

To create graph in R, you can use the library ggplot which creates
ready-for-publication graphs. The basic syntax of this library is:

ggplot(data, mapping = aes()) +
geometric object

arguments:

data: dataset used to plot the graph

mapping: Control the x and y-axis

geometric object: The type of plot you want to show. The most
common objects are:

- Point: “geom_point()"
- Bar: “geom_bar()"



- Line: “geom_line()"
- Histogram: “geom_histogram()"

In this tutorial, you are interested in the geometric object geom_bar()
that create the bar chart.

Bar chart: count

Your first graph shows the frequency of cylinder with geom_bar(). The
code below is the most basic syntax.

library(ggplot2)

# Most basic bar chart

ggplot(mtcars, aes(x = factor(cyl))) +
geom_bar ()

Code Explanation

e You pass the dataset mtcars to ggplot.

¢ Inside the aes() argument, you add the x-axis as a factor
variable(cyl)

e The + sign means you want R to keep reading the code. It makes
the code more readable by breaking it.

e Use geom_bar() for the geometric object.

Output:
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factor(cyl)

treats the variables as numeric. See the example below.
Numeric scale
\~~
\\
| \ y
: l| §
2 # Correct format
ggplot(mtcars ,[ aes(x=cy'|.:J)+ ggplot(mtcars, p )+
geom_bar() — . .

Note: make sure you convert the variables into a factor otherwise R
Wrong format:
Sacioricyt)
# Wrong format
geom_bar()



Customize the graph

Four arguments can be passed to customize the graph:

- “stat’: Control the type of formatting. By default, “bin" to
plot a count in the y-axis. For continuous value, pass “stat =
"identity""

- "alpha’: Control density of the color

- "fill : Change the color of the bar

- 'size : Control the size the bar

Change the color of the bars

You can change the color of the bars. Note that the colors of the bars
are all similar.

# Change the color of the bars

ggplot(mtcars, aes(x = factor(cyl))) +
geom_bar(fill = "coral") +
theme_classic()

Code Explanation

e The colors of the bars are controlled by the aes() mapping inside
the geometric object (i.e. not in the ggplot()). You can change the
color with the fill arguments. Here, you choose the coral color.

Output:
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count

4 6 8
factor{cyl)

You can use this code:

grDevices: :colors()

to see all the colors available in R. There are around 650 colors.

Change the intensity

You can increase or decrease the intensity of the bars' color

# Change intensity

ggplot(mtcars,
aes(factor(cyl))) +
geom_bar(fill = "coral",

alpha = 0.5) +
theme_classic()

Code Explanation

e Toincrease/decrease the intensity of the bar, you can change the



value of the alpha. A large alpha increases the intensity, and low
alpha reduces the intensity. alpha ranges from o to 1. If 1, then the
color is the same as the palette. If 0, color is white. You choose

alpha = o0.1.
Output:
A 6 8
factor(cyl)
Color by groups

You can change the colors of the bars, meaning one different color for

each group. For instance, cyl variable has three levels, then you can
plot the bar chart with three colors.

# Color by group
ggplot(mtcars, aes(factor(cyl),
fill = factor(cyl))) +
geom_bar ()

Code Explanation



e The argument fill inside the aes() allows changing the color of the
bar. You change the color by setting fill = x-axis variable. In your
example, the x-axis variable is cyl; fill = factor(cyl)

Output:
10-
factor(cyl)
3
5-
0-
4 6 8
factor(cyl)
Add a group in the bars

You can further split the y-axis based on another factor level. For
instance, you can count the number of automatic and manual
transmission based on the cylinder type.

You will proceed as follow:

e Step 1: Create the data frame with mtcars dataset

e Step 2: Label the am variable with auto for automatic
transmission and man for manual transmission. Convert am and
cyl as a factor so that you don't need to use factor() in the ggplot()



function.
o Step 3: Plot the bar chart to count the number of transmission by
cylinder

library(dplyr)

# Step 1

data <- mtcars % > %

#Step 2

mutate(am = factor(am, labels = c("auto", "man")),
cyl = factor(cyl))

You have the dataset ready, you can plot the graph;

# Step 3

ggplot(data, aes(x = cyl, fill = am)) +
geom_bar () +
theme_classic()

Code Explanation

e The ggpplot() contains the dataset data and the aes().

e In the aes() you include the variable x-axis and which variable is
required to fill the bar (i.e. am)

e geom_bar(): Create the bar chart

Output:



10 1

count

o 4

4 6
cyl

The mapping will fill the bar with two colors, one for each level. It is

effortless to change the group by choosing other factor variables in the
dataset.

Bar chart in percentage

You can visualize the bar in percentage instead of the raw count.
# Bar chart in percentage
ggplot(data, aes(x = cyl, fill = am)) +

geom_bar(position = "fill") +
theme_classic()

Code Explanation

e Use position = "fill" in the geom_bar() argument to create a
graphic with percentage in the y-axis.



Output:
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Side by side bars

It is easy to plot the bar chart with the group variable side by side.
# Bar chart side by side
ggplot(data, aes(x = cyl, fill = am)) +

geom_bar (position = position_dodge()) +
theme_classic()

Code Explanation

e position=position_dodge(): Explicitly tells how to arrange the
bars

Output:
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Histogram

In the second part of the bar chart tutorial, you can represent the
group of variables with values in the y-axis.

Your objective is to create a graph with the average mile per gallon for
each type of cylinder. To draw an informative graph, you will follow
these steps:

e Step 1: Create a new variable with the average mile per gallon by
cylinder

Step 2: Create a basic histogram

Step 3: Change the orientation

Step 4: Change the color

Step 5: Change the size

Step 6: Add labels to the graph

Step 1) Create a new variable



You create a data frame named data_ histogram which simply returns
the average miles per gallon by the number of cylinders in the car. You
call this new variable mean_mpg, and you round the mean with two
decimals.

# Step 1

data_histogram <- mtcars % > %
mutate(cyl = factor(cyl)) % > %
group_by(cyl) % > %

summarize(mean_mpg = round(mean(mpg), 2))

Step 2) Create a basic histogram

You can plot the histogram. It is not ready to communicate to be
delivered to client but gives us an intuition about the trend.

ggplot(data_histogram, aes(x = cyl, y = mean_mpg)) +
geom_bar(stat = "identity")

Code Explanation

e The aes() has now two variables. The cyl variable refers to the x-
axis, and the mean_ mpg is the y-axis.

e You need to pass the argument stat="identity" to refer the
variable in the y-axis as a numerical value. geom_bar uses
stat="bin" as default value.

Output:
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Step 3) Change the orientation

You change the orientation of the graph from vertical to horizontal.

ggplot(data_histogram, aes(x = cyl, y = mean_mpg)) +
geom_bar(stat = "identity") +
coord_flip()

Code Explanation
e You can control the orientation of the graph with coord_ flip().

Output:
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Step 4) Change the color

You can differentiate the colors of the bars according to the factor level
of the x-axis variable.

ggplot(data_histogram, aes(x = cyl, y = mean_mpg, fill = cyl)) +
geom_bar(stat = "identity") +
coord_flip() +
theme_classic()

Code Explanation

e You can plot the graph by groups with the fill= cyl mapping. R
takes care automatically of the colors based on the levels of cyl
variable

Output:
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Step 5) Change the size

To make the graph looks prettier, you reduce the width of the bar.

graph <- ggplot(data_histogram, aes(x = cyl, y = mean_mpg, fill
= cyl)) +
geom_bar(stat = "identity",
width = 0.5) +
coord_flip() +
theme_classic()

Code Explanation

e The width argument inside the geom_ bar() controls the size of the
bar. Larger value increases the width.

e Note, you store the graph in the variable graph. You do so because
the next step will not change the code of the variable graph. It
improves the readability of the code.

Output:
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Step 6) Add labels to the graph

The last step consists to add the value of the variable mean_mpg in the
label.

graph +
geom_text(aes(label = mean_mpg),
hjust = 1.5,
color = "white",
size = 3) +
theme_classic()

Code Explanation

e The function geom_ text() is useful to control the aesthetic of the
text.
o label=: Add a label inside the bars
o mean_mpg: Use the variable mean_mpg for the label
e hjust controls the location of the label. Values closed to 1 displays
the label at the top of the bar, and higher values bring the label to



the bottom. If the orientation of the graph is vertical, change hjust
to vjust.

¢ color="white": Change the color of the text. Here you use the
white color.

e size=3: Set the size of the text.

Output:
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Summary

A bar chart is useful when the x-axis is a categorical variable. The y-
axis can be either a count or a summary statistic. The table below
summarizes how to control bar chart with ggplot2:

Objective code

Count ggplot(df, eas(x= factor(x1l)) + geom_bar()




Count with different color of fill

Count with groups, stacked

Count with groups, side by side

Count with groups, stacked in %

Values

ggplot(df, eas(x= factor(x1), fill
factor(x1))) + geom_bar()

ggplot(df, eas(x= factor(x1), fill
factor(x2))) +
geom_bar (position=position_dodge())

ggplot(df, eas(x= factor(x1), fill
factor(x2))) + geom_bar()

ggplot(df, eas(x= factor(x1), fill
factor(x2))) +
geom_bar (position=position_dodge())

ggplot(df, eas(x= factor(x1)+ y = x2) +
geom_bar (stat="identity")



Chapter 25: T Test in R: One
Sample and Paired (with
Example)

What is Statistical Inference?

Stastitical inference is the art of generating conclusions about the
distribution of the data. A data scientist is often exposed to question
that can only be answered scientifically. Therefore, statistical inference
is a strategy to test whether a hypothesis is true, i.e. validated by the
data.

A common strategy to assess hypothesis is to conduct a t-test. A t-test
can tell whether two groups have the same mean. A t-test is also called
a Student Test. A t-test can be estimated for:

1. A single vector (i.e., one-sample t-test)
2. Two vectors from the same sample group (i.e., paired t-test).

You assume that both vectors are randomly sampled, independent and
come from a normally distributed population with unknown but equal
variances.

What is t-test?

The basic idea behind a t-test is to use statistic to evaluate two
contrary hypotheses:

e Ho: NULL hypothesis: The average is the same as the sample
used



e H3: True hypothesis: The average is different from the sample
used

The t-test is commonly used with small sample sizes. To perform a t-
test, you need to assume normality of the data.

The basic syntax for t.test() is:

t.test(x, y = NULL,
mu = 0, var.equal = FALSE)
arguments:
- X : A vector to compute the one-sample t-test
- y: A second vector to compute the two sample t-test
- mu: Mean of the population- var.equal: Specify if the variance
of the two vectors are equal. By default, set to "FALSE"

One-sample t-test

The t-test, or student's test, compares the mean of a vector against a

theoretical mean, K The formula used to compute the t-test is:
m-—u

&,
Vn

=

Here

e m refers to the mean

. H to the theoretical mean
e sis the standard deviation
¢ n the number of observations.

To evaluate the statistical significance of the t-test, you need to
compute the p-value. The p-value ranges from o to 1, and is
interpreted as follow:



e A p-value lower than 0.05 means you are strongly confident to
reject the null hypothesis, thus H3 is accepted.

o A p-value higher than 0.05 indicates that you don't have enough
evidences to reject the null hypothesis.

You can construct the pvalue by looking at the corresponding absolute
value of the t-test in the Student distribution with a degrees of

df =1~

freedom equals to

For instance, if you have 5 observations, you need to compare our t-
value with the t-value in the Student distribution with 4 degrees of
freedom and at 95 percent confidence interval. To reject the null
hypothesesis, the t-value should be higher than 2.77.

Cf table below:
90% 05% 97.5% 009% 99.5% 99.95% | 1-Tail Confidence Level
80% 90% 95% 98% 99% 99.9% 2-Tail Confidence Level
0.100 0.050 0.025 0.010 0.005 0.0005 1-Tail Alpha
,ff 0.20 0.10 0.05 0.02 0.01 0.001 2-Tail Alpha
1 3.0777 6.3138 12.7062 31.8205 63.6567 636.6192
2 1.8856 2.9200 4.3027 6.9646 9.9248 21.5991 p—
3 1.6377 2.3534 3.1824 :‘i 150? 5.8409 12.9240 The T vl for 4 dEﬂTﬂES
4 1.5332 2.1318 I_E.?Tfr-# | 3.7463 4.6041 8.6103 of Froedom s 233 For
5 1.4759 2.0150 2.5706 3.3649 4.0321 6.8688 a5, confidence ervad
6 1.4398 1.9432 2.4469 3.1427 3.7074 5.9588
Example:

Suppose you are a company producing cookies. Each cookie is
supposed to contain 10 grams of sugar. The cookies are produced by a
machine that adds the sugar in a bowl before mixing everything. You
believe the machine does not add 10 grams of sugar for each cookie. If
your assumption is true, the machine needs to be fixed. You stored the
level of sugar of thirty cookies.

Note: You can create a randomized vector with the function rnorm().



This function generates normally distributed values. The basic syntax
is:

rnorm(n, mean, sd)

arguments

- n: Number of observations to generate

- mean: The mean of the distribution. Optional

- sd: The standard deviation of the distribution. Optional

You can create a distribution with 30 observations with a mean of 9.99
and a standard deviation of 0.04.

set.seed(123) sugar_cookie <- rnorm(30, mean = 9.99, sd = 0.04)
head(sugar_cookie)

Output:

## [1] 9.967581 9.980793 10.052348 9.992820 9.995172
10.058603

You can use a one-sample t-test to check whether the level of sugar is
different than the recipe. You can draw a hypothesis test:

e Ho: The average level of sugar is equal to 10
e H3: The average level of sugar is different than 10

You use a significance level of 0.05.

# HO : mu = 10
t.test(sugar_cookie, mu = 10)

Here is the output



Degree of freedom = n-1
|  One Sample t-test P value: below 0.05, we can

T reject the Null hypothesis

data: gfr i

t = -1.6588, EF = 29,\p-value = 0.1@?9'

alternative hypothesis: trueé mean 1S not equal to 10
5 percent confidence interval:

9.973463 10.002769 - _
sample estimates: this interval with a

mean of x probability of 95%
o.088116 | Mean of X

The true mean is between

The p-value of the one sample t-test is 0.1079 and above 0.05. You can
be confident at 95% that the amount of sugar added by the machine is
between 9.973 and 10.002 grams. You cannot reject the null (Ho)
hypothesis. There is not enough evidence that amount of sugar added
by the machine does not follow the recipe.

Paired t-test

The paired t-test, or dependant sample t-test, is used when the mean
of the treated group is computed twice. The basic application of the
paired t-test is:

e A/B testing: Compare two variants
e Case control studies: Before/after treatment

Example:

A beverage company is interested in knowing the performance of a
discount program on the sales. The company decided to follow the
daily sales of one of its shops where the program is being promoted. At
the end of the program, the company wants to know if there is a
statistical difference between the average sales of the shop before and
after the program.

e The company tracked the sales everyday before the program



started. This is our first vector.

e The program is promoted for one week and the sales are recorded
every day. This is our second vector.

¢ You will perform the t-test to judge the effectiveness of the
program. This is called a paired t-test because the values of both
vectors come from the same distribution (i.e., the same shop).

The hypothesis testing is:

e Ho: No difference in mean
e H3: The two means are different

Remember, one assumption in the t-test is an unknown but equal
variance. In reality, the data barely have equal mean, and it leads to
incorrect results for the t-test.

One solution to relax the equal variance assumption is to use the
Welch's test. R assumes the two variances are not equal by default. In
your dataset, both vectors have the same variance, you can set
var.equal= TRUE.

You create two random vectors from a Gaussian distribution with a
higher mean for the sales after the program.

set.seed(123)

# sales before the program

sales_before <- rnorm(7, mean = 50000, sd = 50)

# sales after the program.This has higher mean
sales_after <- rnorm(7, mean = 50075, sd = 50)

# draw the distribution

t.test(sales_before, sales_after,var.equal = TRUE)
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You obtained a p-value of 0.04606, lower than the threshold of 0.05.
You conclude the averages of the two groups are significantly different.
The program improves the sales of shops.

Summary

The t-test belongs to the family of inferential statistics. It is commonly
employed to find out if there is a statistical difference between the
means of two groups.

We can summarize the t-test is the table below:

test Hypothesis to test P~ code optional
value argument

one-sample t- Mean of a vector is different from the 0.0n | E-testix, mu =

test theoretical mean ‘05 |Imean)

paired Mean A is different from mean B for 0.06 | L-test (A,B, mu |var.equal=

sample t-test | the same group : = mean) TRUE

If we assume the variances are equal, we need to change the parameter
var.equal= TRUE.



Chapter 26: RANOVA
Tutorial: One way & Two way
(with Examples)

What is ANOVA?

Analysis of Variance(ANOVA) helps you test differences between two
or more group means. ANOVA test is centered around the different
sources of variation (variation between and within group) in a typical
variable. A primarily ANOVA test provides evidence of the existence of
the mean equality between the group. This statistical method is an
extension of the t-test. It is used in a situation where the factor
variable has more than one group.

One-way ANOVA

There are many situations where you need to compare the mean
between multiple groups. For instance, the marketing department
wants to know if three teams have the same sales performance.

e Team: 3 level factor: A, B, and C
e Sale: A measure of performance

The ANOVA test can tell if the three groups have similar
performances.

To clarify if the data comes from the same population, you can
perform a one-way analysis of variance (one-way ANOVA
hereafter). This test, like any other statistical tests, gives evidence
whether the Ho hypothesis can be accepted or rejected.



Hypothesis in one-way ANOVA test:

e Ho: The means between groups are identical
e H3: At least, the mean of one group is different

In other words, the Ho hypothesis implies that there is not enough
evidence to prove the mean of the group (factor) are different from
another.

This test is similar to the t-test, although ANOVA test is recommended
in situation with more than 2 groups. Except that, the t-test and
ANOVA provide similar results.

Assumptions

We assume that each factor is randomly sampled, independent and
comes from a normally distributed population with unknown but
equal variances.

Interpret ANOVA test

The F-statistic is used to test if the data are from significantly different
populations, i.e., different sample means.

To compute the F-statistic, you need to divide the between-group
variability over the within-group variability.

The between-group variability reflects the differences between the
groups inside all of the population. Look at the two graphs below to
understand the concept of between-group variance.

The left graph shows very little variation between the three group, and
it is very likely that the three means tends to the overall mean (i.e.,
mean for the three groups).



The right graph plots three distributions far apart, and none of them
overlap. There is a high chance the difference between the total mean
and the groups mean will be large.

Low discriminiation between group High discrimination between group
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The within group variability considers the difference between the
groups. The variation comes from the individual observations; some
points might be totally different than the group means. The within
group variability picks up this effect and refer to the sampling error.

To understand visually the concept of within group variability, look at
the graph below.

The left part plots the distribution of three different groups. You
increased the spread of each sample and it is clear the individual
variance is large. The F-test will decrease, meaning you tend to accept



the null hypothesis

The right part shows exactly the same samples (identical mean) but
with lower variability. It leads to an increase of the F-test and tends in
favor of the alternative hypothesis.

High level of variance within group Low level of variance within group

|

L/

You can use both measures to construct the F-statistics. It is very
intuitive to understand the F-statistic. If the numerator increases, it
means the between-group variability is high, and it is likely the groups
in the sample are drawn from completely different distributions.

In other words, a low F-statistic indicates little or no significant
difference between the group's average.

Example One way ANOVA Test



You will use the poison dataset to implement the one-way ANOVA
test. The dataset contains 48 rows and 3 variables:

e Time: Survival time of the animal
e poison: Type of poison used: factor level: 1,2 and 3
e treat: Type of treatment used: factor level: 1,2 and 3

Before you start to compute the ANOVA test, you need to prepare the
data as follow:

e Step 1: Import the data
e Step 2: Remove unnecessary variable
e Step 3: Convert the variable poison as ordered level

library(dplyr)

PATH <- "https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/poisons.csv"

df <- read.csv(PATH) %>%

select(-X) %>%

mutate(poison = factor(poison, ordered = TRUE))
glimpse(df)

Output:

## Observations: 48

## Variables: 3

## $ time <dbl> 0.31, 0.45, 0.46, 0.43, 0.36, 0.29, 0.40,
0.23, 0.22, 0...

## $ poison <ord> 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1,
1, 2, 2, 2...

## $ treat <fctr> A, A, A, A, A, A, A, A, A, A, A, A, B, B, B,
B, B, B,

Our objective is to test the following assumption:

e Ho: There is no difference in survival time average between group
e H3: The survival time average is different for at least one group.

In other words, you want to know if there is a statistical difference
between the mean of the survival time according to the type of poison
given to the Guinea pig.



You will proceed as follow:

e Step 1: Check the format of the variable poison

e Step 2: Print the summary statistic: count, mean and standard
deviation

e Step 3: Plot a box plot

¢ Step 4: Compute the one-way ANOVA test

e Step 5: Run a pairwise t-test

Step 1) You can check the level of the poison with the following code.
You should see three character values because you convert them in
factor with the mutate verb.

levels(df$poison)

Output:

## [1] lllll ll2l| ll3l|

Step 2) You compute the mean and standard deviation.

df % > %
group_by(poison) % > %
summarise(
count_poison = n(),
mean_time = mean(time, na.rm = TRUE),
sd_time = sd(time, na.rm = TRUE)
)
Output:
Hit
# A tibble: 3 x 4
##  poison count_poison mean_time sd_time
#it <ord> <int> <dbl> <dbl>
## 1 1 16 0.617500 0.20942779
Hit 2 2 16 0.544375 0.28936641
## 3 3 16 0.276250 0.06227627

Step 3) In step three, you can graphically check if there is a difference
between the distribution. Note that you include the jittered dot.



ggplot(df, aes(x = poison, y = time, fill = poison)) +
geom_boxplot() +
geom_jitter(shape = 15,
color = "steelblue",
position = position_jitter(0.21)) +
theme_classic()

Output:
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Step 4) You can run the one-way ANOVA test with the command aov.
The basic syntax for an ANOVA test is:

aov(formula, data)
Arguments:

- formula: The equation you want to estimate
- data: The dataset used

The syntax of the formula is:

y ~ X1+ X2+...+Xn # X1 + X2 +... refers to the independent
variables

y ~ . # use all the remaining variables as independent variables



You can answer our question: Is there any difference in the survival
time between the Guinea pig, knowing the type of poison given.

Note that, it is advised to store the model and use the function
summary() to get a better print of the results.

anova_one_way <- aov(time~poison, data = df)
summary(anova_one_way)

Code Explanation

e aov(time ~ poison, data = df): Run the ANOVA test with the
following formula
e summary(anova_one_way): Print the summary of the test

Output:

# Df Sum Sg Mean Sq F value Pr(>F)

## poison 2 1.033 0.5165 11.79 7.66e-05 ***

## Residuals 45 1.972 0.0438

Hit ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' ©0.05 '.' 0.1 " '
1

The p-value is lower than the usual threshold of 0.05. You are
confident to say there is a statistical difference between the groups,
indicated by the "*".

Pairwise comparison

The one-way ANOVA test does not inform which group has a different
mean. Instead, you can perform a Tukey test with the function
TukeyHSD().

TukeyHSD(anova_one_way)

Output:



Tukey multiple comparisons of means
95% family-wise confidence level

$poison &= 4
diff lwr upr p adj€===‘;¢

2-1 -0.073125 -0.2525046} 0.10625464 0.5881654

3-1 -0.341250 -0.5206296 }-0.16187036 0.0000971

3-2 -0.268125 -@.44?5@46;:-@.3-88?4536 0.0020924= =

- -

g™l 1

Two-way ANOVA

A two-way ANOVA test adds another group variable to the formula. It
is identical to the one-way ANOVA test, though the formula changes
slightly:

y=X1+X2

with is a quantitative variable and and are categorical variables.

Hypothesis in two-way ANOVA test:

e Ho: The means are equal for both variables (i.e., factor variable)
e H3: The means are different for both variables

You add treat variable to our model. This variable indicates the
treatment given to the Guinea pig. You are interested to see if there is
a statistical dependence between the poison and treatment given to the
Guinea pig.

We adjust our code by adding treat with the other independent
variable.

anova_two_way <- aov(time~poison + treat, data = df)
summary(anova_two_way)



Output:

##
##
##
##
##

Df Sum Sgq Mean Sq F value Pr(>F)
poison 2 1.0330 0.5165 20.64 5.7e-07 ***
treat 3 0.9212 0.3071 12.27 6.7e-06 ***
Residuals 42 1.0509 0.0250

You can conclude that both poison and treat are statistically different
from 0. You can reject the NULL hypothesis and confirm that
changing the treatment or the poison impact the time of survival.

Summary

We can summarize the test in the table below:

Test code
One way aov(y ~ X, data = df)
ANOVA

Pairwise TukeyHSD (ANOVA summary)

Two way aov(y ~ X1 + X2, data =
ANOVA df)

hypothesis

H3: Average is different for at least one
group

H3: Average is different for both group

p -
value

0.05

0.05

0.05



Chapter 27: R Simple,
Multiple Linear and Stepwise
Regression [with Example]

Simple Linear regression

Linear regression answers a simple question: Can you measure an
exact relationship between one target variables and a set of predictors?

The simplest of probabilistic models is the straight line model:

y=8p+ p1x+e&

where

¢ yv = Dependent variable
¢ x = Independent variable
[

€ =random error component

Bo = intercept
B1 — Coefficient of x

Consider the following plot:
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The equation is ¥ = Fo T B1x + £.5o ig the intercept. If x equals to 0, y

will be equal to the intercept, 4.77. is the slope of the line. It tells in
which proportion y varies when x varies.

To estimate the optimal values of Po and P , you use a method called
Ordinary Least Squares (OLS). This method tries to find the
parameters that minimize the sum of the squared errors, that is the
vertical distance between the predicted y values and the actual y
values. The difference is known as the error term.

Before you estimate the model, you can determine whether a linear

relationship between y and x is plausible by plotting a scatterplot.

Scatterplot

We will use a very simple dataset to explain the concept of simple
linear regression. We will import the Average Heights and weights for
American Women. The dataset contains 15 observations. You want to



measure whether Heights are positively correlated with weights.

library(ggplot2)

path <- 'https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/women.csv'

df <-read.csv(path)

ggplot(df,aes(x=height, y = weight))+

geom_point()

Output:

160 -
150 - 5

140 -

weight

130 -
120 - L

B0 64 68 72
height

The scatterplot suggests a general tendency for y to increase as x

increases. In the next step, you will measure by how much increases
for each additional .

Least Squares Estimates

In a simple OLS regression, the computation of 0 and Po is
straightforward. The goal is not to show the derivation in this tutorial.



You will only write the formula.

You want to estimate: @ Bo + Bix + €

The goal of the OLS regression is to minimize the following equation:
Z(yi - i:g,i)ﬁ = Eel;z

where

M

Yi is the actual value and Vi is the predicted value.
The solution for Po is Bo =Y —Bix

Note that- X means the average value of x

f_? B _ Cov(x,y)
The solution for ' is Var(x)

B

In R, you can use the cov()and var()function to estimate and you
can use the mean() function to estimate a

beta <- cov(df$height, df$weight) / var (df$height)
beta

Output:

##[1] 3.45

alpha <- mean(df$weight) - beta * mean(df$height)
alpha

Output:



## [1] -87.51667

The beta coefficient implies that for each additional height, the weight
increases by 3.45.

Estimating simple linear equation manually is not ideal. R provides a
suitable function to estimate these parameters. You will see this
function shortly. Before that, we will introduce how to compute by
hand a simple linear regression model. In your journey of data
scientist, you will barely or never estimate a simple linear model. In
most situation, regression tasks are performed on a lot of estimators.

Multiple Linear regression

More practical applications of regression analysis employ models that
are more complex than the simple straight-line model. The
probabilistic model that includes more than one independent variable
is called multiple regression models. The general form of this
model is:

Y= B[} + lel + ﬁzX2+. e +,8ka + £
In matrix notation, you can rewrite the model:

Y=06X+¢

The dependent variable y is now a function of k independent variables.

The value of the coefficient 'Bi determines the contribution of the

independent variable i and B 0,

We briefly introduce the assumption we made about the random error
€ of the OLS:

e Mean equal to 0



e Variance equal to 02
e Normal distribution
e Random errors are independent (in a probabilistic sense)

You need to solve for ‘S , the vector of regression coefficients that
minimise the sum of the squared errors between the predicted and
actual y values.

The closed-form solution is:
B =Xy Ty
with:

¢ indicates the transpose of the matrix X

. (XTX)_l_

indicates the invertible matrix

We use the mtcars dataset. You are already familiar with the dataset.
Our goal is to predict the mile per gallon over a set of features.

Continuous variables

For now, you will only use the continuous variables and put aside
categorical features. The variable am is a binary variable taking the
value of 1 if the transmission is manual and o for automatic cars; vs is
also a binary variable.

library(dplyr)

df <- mtcars % > %

select(-c(am, vs, cyl, gear, carb))
glimpse(df)

Output:

## Observations: 32



## Variables: 6

## $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4,
22.8, 19....

## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0,
146.7, 1...

## $ hp  <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123,
123, 180, ...

## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69,
3.92, 3.9...

## $ wt  <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570,
3.190, 3...

## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84,
20.00, 2...

You can use the Im() function to compute the parameters. The basic
syntax of this function is:

Im(formula, data, subset)
Arguments:
-formula: The equation you want to estimate
-data: The dataset used
-subset: Estimate the model on a subset of the dataset

Remember an equation is of the following form
Yy = Bo + Bix1 + Boxo+... +Bix + €
in R
e The symbol = is replaced by ~
e Each x is replaced by the variable name
¢ If you want to drop the constant, add -1 at the end of the formula

Example:

You want to estimate the weight of individuals based on their height
and revenue. The equation is

weigh = 8, + B, height, + p,revenue, + ¢

The equation in R is written as follow:



y ~ X1+ X2+...+Xn # With intercept
So for our example:
e Weigh ~ height + revenue

Your objective is to estimate the mile per gallon based on a set of
variables. The equation to estimate is:

mpg = ,80 + ,Gldis‘pl + }gzhpz + Bgdrﬂtg + ,84,Wt4 + &

You will estimate your first linear regression and store the result in the
fit object.

model <- mpg~.disp + hp + drat + wt
fit <- 1lm(model, df)
fit

Code Explanation

e model <- mpg ~. disp + hp + drat+ wt: Store the model to
estimate
¢ Im(model, df): Estimate the model with the data frame df

Hit

## Call:

## 1m(formula = model, data = df)

Hit

## Coefficients:

Hit

(Intercept) disp hp drat wt
H#Hit 16.53357 0.00872 -0.02060 2.01577 -4.3854
##t gsec

Hit 0.64015

The output does not provide enough information about the quality of
the fit. You can access more details such as the significance of the
coefficients, the degree of freedom and the shape of the residuals with
the summary() function.

summary(fit)



Output:

## return the p-value and coefficient

Hit

## Call:

## 1lm(formula = model, data = df)

Hit

## Residuals:

#it Min 1Q Median 3Q Max

## -3.5404 -1.6701 -0.4264 1.1320 5.4996

Hit

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 16.53357 10.96423 1.508 0.14362
## disp 0.00872 0.01119 0.779 0.44281
## hp -0.02060 0.01528 -1.348 0.18936
## drat 2.01578 1.30946 1.539 0.13579
## wt -4.38546 1.24343 -3.527 0.00158 **
## (gsec 0.64015 0.45934 1.394 0.17523
HHt - --

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' ©0.05 '.' 0.1 " '
1

Hit

## Residual standard error: 2.558 on 26 degrees of freedom
## Multiple R-squared: 0.8489, Adjusted R-squared: 0.8199
## F-statistic: 29.22 on 5 and 26 DF, p-value: 6.892e-10

Inference from the above table output

o The above table proves that there is a strong negative relationship
between wt and mileage and positive relationship with drat.
e Only the variable wt has a statistical impact on mpg. Remember,
to test a hypothesis in statistic, we use:
o Ho: No statistical impact
o H3: The predictor has a meaningful impact on y
o If the p value is lower than 0.05, it indicates the variable is
statistically significant
e Adjusted R-squared: Variance explained by the model. In your
model, the model explained 82 percent of the variance of y. R
squared is always between 0 and 1. The higher the better

You can run the ANOVA test to estimate the effect of each feature on



the variances with the anova() function.

anova(fit)

Output:

## Analysis of Variance Table

Hit

## Response: mpg

## Df Sum Sg Mean Sq F value Pr(>F)

## disp 1 808.89 808.89 123.6185 2.23e-11 ***
## hp 1 33.67 33.67 5.1449 0.031854 *
## drat 1 30.15 30.15 4.6073 0.041340 *
## wt 1 70.51 70.51 10.7754 0.002933 **
## qsec 1 12.71 12.71 1.9422 0.175233

## Residuals 26 170.13 6.54

HHt ---

## Signif. codes: 0 '***' 0.001 '**' ©0.01 '*' 0.05 '.' 0.1 "' '
1

A more conventional way to estimate the model performance is to
display the residual against different measures.

You can use the plot() function to show four graphs:
- Residuals vs Fitted values
- Normal Q-Q plot: Theoretical Quartile vs Standardized residuals

- Scale-Location: Fitted values vs Square roots of the standardised
residuals

- Residuals vs Leverage: Leverage vs Standardized residuals

You add the code par(mfrow=c(2,2)) before plot(fit). If you don't add
this line of code, R prompts you to hit the enter command to display
the next graph.

par (mfrow=(2,2))

Code Explanation



(mfrow=c(2,2)): return a window with the four graphs side by
side.

The first 2 adds the number of rows

The second 2 adds the number of columns.

If you write (mfrow=c(3,2)): you will create a 3 rows 2 columns

window
plot(fit)
Output:
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The Im() formula returns a list containing a lot of useful information.
You can access them with the fit object you have created, followed by
the $ sign and the information you want to extract.

- coefficients: “fit$coefficients’
- residuals: “fit$residuals’

- fitted value: “fit$fitted.values"®



Factors regression

In the last model estimation, you regress mpg on continuous variables
only. It is straightforward to add factor variables to the model. You
add the variable am to your model. It is important to be sure the
variable is a factor level and not continuous.

df <- mtcars % > %
mutate(cyl = factor(cyl),
vs = factor(vs),
am = factor(am),
gear = factor(gear),
carb = factor(carb))
summary(1lm(model, df))

Output:

Hit

## Call:

## 1lm(formula = model, data = df)

Hit

## Residuals:

#it Min 1Q Median 3Q Max

## -3.5087 -1.3584 -0.0948 0.7745 4.6251

Hit

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])
## (Intercept) 23.87913 20.06582 1.190 0.2525
## cyl6 -2.64870 3.04089 -0.871 0.3975
## cyl8 -0.33616 7.15954 -0.047 0.9632
## disp 0.03555 0.03190 1.114 0.2827
## hp -0.07051 0.03943 -1.788 0.0939
## drat 1.18283 2.48348 0.476 0.6407
## wt -4.,52978 2.53875 -1.784 0.0946
## qsec 0.36784 0.93540 0.393 0.6997
H#H# vsl 1.93085 2.87126 0.672 0.5115
## aml 1.21212 3.21355 0.377 0.7113
## gear4 1.11435 3.79952 0.293 0.7733
## gear5b 2.52840 3.73636 0.677 0.5089
## carb2 -0.97935 2.31797 -0.423 0.6787
## carb3 2.99964 4.29355 0.699 0.4955
## carb4 1.09142 4.44962 0.245 0.8096
## carb6 4.47757 6.38406 0.701 0.4938



## carb8 7.25041 8.36057 0.867 0.3995

Hif - --

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' ©0.05 '.' 0.1 " '
1

Hit

## Residual standard error: 2.833 on 15 degrees of freedom

## Multiple R-squared: 0.8931, Adjusted R-squared: ©0.779

## F-statistic: 7.83 on 16 and 15 DF, p-value: 0.000124

R uses the first factor level as a base group. You need to compare the
coefficients of the other group against the base group.

Stepwise regression

The last part of this tutorial deals with the stepwise regression
algorithm. The purpose of this algorithm is to add and remove
potential candidates in the models and keep those who have a
significant impact on the dependent variable. This algorithm is
meaningful when the dataset contains a large list of predictors. You
don't need to manually add and remove the independent variables.
The stepwise regression is built to select the best candidates to fit the
model.

Let's see in action how it works. You use the mtcars dataset with the
continuous variables only for pedagogical illustration. Before you
begin analysis, its good to establish variations between the data with a
correlation matrix. The GGally library is an extension of ggplot2.

The library includes different functions to show summary statistics
such as correlation and distribution of all the variables in a matrix. We
will use the ggscatmat function, but you can refer to the vignette for
more information about the GGally library.

The basic syntax for ggscatmat() is:

ggscatmat(df, columns = 1:ncol(df), corMethod = "pearson")
arguments:

-df: A matrix of continuous variables

-columns: Pick up the columns to use in the function. By



default, all columns are used

-corMethod: Define the function to compute the correlation
between variable. By default, the algorithm uses the Pearson
formula

You display the correlation for all your variables and decides which
one will be the best candidates for the first step of the stepwise
regression. There are some strong correlations between your variables
and the dependent variable, mpg.

library(GGally)
df <- mtcars % > %

select(-c(am, vs, cyl, gear, carb))
ggscatmat(df, columns = 1: ncol(df))

Output:
mpg disp hp drat wi qgsec
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Stepwise regression

Variables selection is an important part to fit a model. The stepwise



regression will perform the searching process automatically. To
estimate how many possible choices there are in the dataset, you

k
compute 2% with k is the number of predictors. The amount of
possibilities grows bigger with the number of independent variables.
That's why you need to have an automatic search.

You need to install the olsrr package from CRAN. The package is not
available yet in Anaconda. Hence, you install it directly from the
command line:

install.packages("olsrr")

You can plot all the subsets of possibilities with the fit criteria (i.e. R-
square, Adjusted R-square, Bayesian criteria). The model with the
lowest AIC criteria will be the final model.

library(olsrr)

model <- mpg-~.

fit <- 1m(model, df)

test <- ols_all_subset(fit)
plot(test)

Code Explanation

e mpg ~.: Construct the model to estimate

Im(model, df): Run the OLS model

ols_all_subset(fit): Construct the graphs with the relevant
statistical information

plot(test): Plot the graphs

Output:
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Linear regression models use the t-test to estimate the statistical
impact of an independent variable on the dependent variable.
Researchers set the maximum threshold at 10 percent, with lower
values indicates a stronger statistical link. The strategy of the stepwise
regression is constructed around this test to add and remove potential
candidates. The algorithm works as follow:



the final model has

only the intercept

If no variable lower
than the threshold,
the final model has

one predictor —
.--.----------------
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e Step 1: Regress each predictor on y separately. Namely, regress
Xx_1ony,x_2onytox_n. Store the p-value and keep the
regressor with a p-value lower than a defined threshold (0.1 by
default). The predictors with a significance lower than the
threshold will be added to the final model. If no variable has a p-
value lower than the entering threshold, then the algorithm stops,
and you have your final model with a constant only.

e Step 2: Use the predictor with the lowest p-value and adds



separately one variable. You regress a constant, the best predictor
of step one and a third variable. You add to the stepwise model,
the new predictors with a value lower than the entering threshold.
If no variable has a p-value lower than 0.1, then the algorithm
stops, and you have your final model with one predictor only. You
regress the stepwise model to check the significance of the step 1
best predictors. If it is higher than the removing threshold, you
keep it in the stepwise model. Otherwise, you exclude it.

Step 3: You replicate step 2 on the new best stepwise model. The
algorithm adds predictors to the stepwise model based on the
entering values and excludes predictor from the stepwise model if
it does not satisfy the excluding threshold.

The algorithm keeps on going until no variable can be added or
excluded.

You can perform the algorithm with the function ols_ stepwise() from
the olsrr package.

ols_stepwise(fit, pent = 0.1, prem = 0.3, details = FALSE)

arguments:

-fit: Model to fit. Need to use "1lm() before to run
"ols_stepwise()

-pent: Threshold of the p-value used to enter a variable into
the stepwise model. By default, 0.1

-prem: Threshold of the p-value used to exclude a variable into
the stepwise model. By default, 0.3

-details: Print the details of each step

Before that, we show you the steps of the algorithm. Below is a table
with the dependent and independent variables:

Dependent variable Independent variables

mpg

disp

hp



drat

gsec

Start

To begin with, the algorithm starts by running the model on each
independent variable separately. The table shows the p-value for each
model.

## [[1]]

## (Intercept) disp
## 3.576586e-21 9.380327e-10
Hit

## [[2]]

## (Intercept) hp
## 6.642736e-18 1.787835e-07
Hit

## [[3]]

## (Intercept) drat
## 0.1796390847 0.0000177624
Hit

## [[4]]

## (Intercept) wt
## 8.241799e-19 1.293959e-10
Hit

## [[5]

## (Intercept) gsec
## 0.61385436 0.01708199

To enter the model, the algorithm keeps the variable with the lowest p-
value. From the above output, it is wt

Step 1

In the first step, the algorithm runs mpg on wt and the other variables
independently.



## [[1]]

## (Intercept) wt disp
## 4.910746e-16 7.430725e-03 6.361981e-02
Hit

## [[2]]

## (Intercept) wt hp
## 2.565459e-20 1.119647e-06 1.451229e-03
Hit

## [[3]]

## (Intercept) wt drat
## 2.737824e-04 1.589075e-06 3.308544e-01
Hit

## [[4]]

## (Intercept) wt gsec

## 7.650466e-04 2.518948e-11 1.499883e-03

Each variable is a potential candidate to enter the final model.
However, the algorithm keeps only the variable with the lower p-value.
It turns out hp has a slighlty lower p-value than qsec. Therefore, hp
enters the final model

Step 2

The algorithm repeats the first step but this time with two
independent variables in the final model.

## [[1]]

## (Intercept) wt hp disp
## 1.161936e-16 1.330991e-03 1.097103e-02 9.285070e-01
Hit

## [[2]]

## (Intercept) wt hp drat
## 5.133678e-05 3.642961e-04 1.178415e-03 1.987554e-01
Hit

## [[3]]

## (Intercept) wt hp gsec
H#H#t 2.784556e-03 3.217222e-06 2.441762e-01 2.546284e-01

None of the variables that entered the final model has a p-value
sufficiently low. The algorithm stops here; we have the final model:

HH#
## Call:



## 1lm(formula = mpg ~ wt + hp, data = df)

Hit

## Residuals:

# Min 1Q Median 3Q Max

## -3.941 -1.600 -0.182 1.050 5.854

Hit

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 37.22727 1.59879 23.285 < 2e-16 ***
## wt -3.87783 0.63273 -6.129 1.12e-06 ***
## hp -0.03177 0.00903 -3.519 0.00145 **
HHt ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
1

Hit

## Residual standard error: 2.593 on 29 degrees of freedom
## Multiple R-squared: 0.8268, Adjusted R-squared: ©0.8148
## F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-

12

You can use the function ols_ stepwise() to compare the results.

stp_s <-ols_stepwise(fit, details=TRUE)
Output:

The algorithm founds a solution after 2 steps, and return the same
output as we had before.

At the end, you can say the models is explained by two variables and
an intercept. Mile per gallon is negatively correlated with Gross
horsepower and Weight

## You are selecting variables based on p value...
## 1 variable(s) added....

## Varliable Selection Procedure

## Dependent Variable: mpg

Hit

## Stepwise Selection: Step 1

Hit

## Variable wt Entered

Hit

#it Model



summary
Hit
## R

## R-Squared

## Adj. R-Squared
## Pred R-Squared
Hit
Hit
Hit
Hit
ANOVA

Sum

Hit
Regression
Hit
Residual

847.725

278.322

1126.047

##

##

Beta t

Hit
(Intercept)
Hit

37.285
-5.344

## 1 variable(s) added...

Squares
Sig.

RMSE: Root Mean Square Error
MSE: Mean Square Error
MAE: Mean Absolute Error

1 847.725

9.277

Std.
upper

Std. Error
lower

## Stepwise Selection: Step 2

91.375

19.858
-9.559

0.

00



Hit
Hit
Hit
Hit
Summary
Hit
## R

## R-Squared

## Adj. R-Squared
## Pred R-Squared
Hit

Variable hp Entered

RMSE: Root Mean Squa
MSE: Mean Square Err
MAE: Mean Absolute E

Sum

Square
Si

H#
Regression
HH
Residual

930.999

195.048

##

H##

Hit
(Intercept)
Hit

37.227

wt -3.878

Model
0.909 RMSE
0.827 Coef. Var
0.815 MSE
0.781 MAE
re Error
or
rror
ANOVA
S DF Mean
g.
2 465.500
29 6.726
31
Parameter
Std. Error Std.
lower upper
1.599
0.633

-0.630

69.211 0.

23.285 0.0
-6.129



## No more variables to be added or removed.

Machine learning

Machine learning is becoming widespread among data scientist and is
deployed in hundreds of products you use daily. One of the first ML
application was spam filter.

Following are other application of Machine Learning-

Identification of unwanted spam messages in email
Segmentation of customer behavior for targeted advertising
Reduction of fraudulent credit card transactions
Optimization of energy use in home and office building
Facial recognition

Supervised learning

In supervised learning, the training data you feed to the algorithm
includes a label.

Classification is probably the most used supervised learning
technique. One of the first classification task researchers tackled was
the spam filter. The objective of the learning is to predict whether an
email is classified as spam or ham (good email). The machine, after
the training step, can detect the class of email.

Regressions are commonly used in the machine learning field to
predict continuous value. Regression task can predict the value of a
dependent variable based on a set of independent variables
(also called predictors or regressors). For instance, linear regressions
can predict a stock price, weather forecast, sales and so on.



Here is the list of some fundamental supervised learning algorithms.

e Linear regression

e Logistic regression

e Nearest Neighbors

e Support Vector Machine (SVM)

¢ Decision trees and Random Forest
e Neural Networks

Unsupervised learning

In unsupervised learning, the training data is unlabeled. The
system tries to learn without a reference. Below is a list of
unsupervised learning algorithms.

K-mean

Hierarchical Cluster Analysis

Expectation Maximization

Visualization and dimensionality reduction
Principal Component Analysis

Kernel PCA

Locally-Linear Embedding

Summary

Ordinary least squared regression can be summarized in the table
below:

Library Objective Function Arguments

Compute a linear

. Im(Q) formula, data
regression

base

base Summarize model summarize() fit



base Exctract coefficients Im()$coefficient

base Exctract residuals Im()$residuals
base Exctract fitted value Im() $fitted.values
olsrr Run stepwise regression |ols_stepwise() fit, pent = 0.1, prem = 0.3, details =

FALSE

Note: Remember to transform categorical variable in factor before to
fit the model.



Chapter 28: Decision Tree in
R with Example

What are Decision Trees?

Decision trees are versatile Machine Learning algorithm that can
perform both classification and regression tasks. They are very
powerful algorithms, capable of fitting complex datasets. Besides,
decision trees are fundamental components of random forests, which
are among the most potent Machine Learning algorithms available
today.

Training and Visualizing a decision trees

To build your first decision trees, we will proceed as follow:

Step 1) Import the data

If you are curious about the fate of the titanic, you can watch this video
on Youtube. The purpose of this dataset is to predict which people are
more likely to survive after the collision with the iceberg. The dataset
contains 13 variables and 1309 observations. The dataset is ordered by
the variable X.

set.seed(678)

path <- 'https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/titanic_data.csv'

titanic <-read.csv(path)

head(titanic)

Output:



## X pclass

survived name sex
## 1 1 1 1 Allen, Miss. Elisabeth
Walton female

## 2 2 1 1 Allison, Master. Hudson
Trevor male

## 3 3 1 0] Allison, Miss. Helen
Loraine female

## 4 4 1 0] Allison, Mr. Hudson Joshua
Creighton male

## 5 5 1 ® Allison, Mrs. Hudson J C (Bessie Waldo
Daniels) female

## 6 6 1 1 Anderson, Mr.
Harry male

#it age sibsp parch ticket fare cabin embarked

## 1 29.0000 0] ® 24160 211.3375 B5 S

## 2 0.9167 1 2 113781 151.5500 C22 C26 S

## 3 2.0000 1 2 113781 151.5500 C22 C26 S

## 4 30.0000 1 2 113781 151.5500 C22 C26 S

## 5 25.0000 1 2 113781 151.5500 C22 C26 S

## 6 48.0000 0] ® 19952 26.5500 E12 S

#it home.dest

## 1 St Louis, MO

## 2 Montreal, PQ / Chesterville, ON

## 3 Montreal, PQ / Chesterville, ON

## 4 Montreal, PQ / Chesterville, ON

## 5 Montreal, PQ / Chesterville, ON

## 6 New York, NY

tail(titanic)

Output:

i X pclass

survived name sex age sibsp

## 1304 1304 3 0] Yousseff, Mr.

Gerious male NA 0

## 1305 1305 3 0] Zabour, Miss. Hileni female
14.5 1

## 1306 1306 3 0] Zabour, Miss. Thamine

female NA 1

## 1307 1307 3 0 Zakarian, Mr. Mapriededer male
26.5 0

## 1308 1308 3 0] Zakarian, Mr. Ortin male

27.0 0



## 1309 1309 3 0] Zimmerman, Mr. Leo male
29.0 0]

#i parch ticket fare cabin embarked home.dest
## 1304 (0] 2627 14.4583 C
## 1305 2665 14.4542

0
## 1306 0 2665 14.4542
## 1307 0] 2656 7.2250
## 1308 0 2670 7.2250
## 1309 ®@ 315082 7.8750

N eoNeNeNe

From the head and tail output, you can notice the data is not shuffled.
This is a big issue! When you will split your data between a train set
and test set, you will select only the passenger from class 1 and 2 (No
passenger from class 3 are in the top 80 percent of the observations),
which means the algorithm will never see the features of passenger of
class 3. This mistake will lead to poor prediction.

To overcome this issue, you can use the function sample().

shuffle_index <- sample(l:nrow(titanic))
head(shuffle_index)

Code Explanation

e sample(1:nrow(titanic)): Generate a random list of index from 1 to
1309 (i.e. the maximum number of rows).

Output:

## [1] 288 874 1078 633 887 992

You will use this index to shuffle the titanic dataset.

titanic <- titanic[shuffle_index, ]

head(titanic)

Output:

#it X pclass survived
## 288 288 1 0]
H#Hit 874 874 3 0]

## 1078 1078 3 1



## 633 633 3
## 887 887
H# 992 992
#i name
age

H#H# 288 Sutton, Mr.

Frederick male 61

## 874 Humblen, Mr. Adolf Mathias Nicolai

Olsen male 42

## 1078 O'Driscoll, Miss.

Bridget female NA

## 633 Andersson, Mrs. Anders Johan (Alfrida Konstantia

Brogren) female 39

## 887 Jermyn, Miss.

Annie female NA

H# 992 Mamee, Mr.

Hanna male NA

## sibsp parch ticket fare cabin

embarked home.dest## 288 0] 0 36963

32.3208 D50 S Haddenfield, NJ

## 874 0] © 348121 7.6500 F

G63 S

H#

1078 0] © 14311 7.7500 Q

## 633 1 5 347082 31.2750 S Sweden
Winnipeg, MN

H#

887 0] © 14313 7.7500 Q

## 992 0] 0] 2677 7.2292 C

w w
PR o

Step 2) Clean the dataset

The structure of the data shows some variables have NA's. Data clean
up to be done as follows

e Drop variables home.dest,cabin, name, X and ticket
e Create factor variables for pclass and survived
e Drop the NA

library(dplyr)
# Drop variables
clean_titanic <- titanic % > %



select(-c(home.dest, cabin, name, X, ticket)) % > %
#Convert to factor level

mutate(pclass = factor(pclass, levels = c(1, 2, 3),
labels = c('Upper', 'Middle', 'Lower')),

survived = factor(survived, levels = c(0, 1), labels =
c('No', 'Yes'))) % > %
na.omit()
glimpse(clean_titanic)

Code Explanation

¢ select(-c(home.dest, cabin, name, X, ticket)): Drop unnecessary
variables

e pclass = factor(pclass, levels = ¢(1,2,3), labels= c('Upper’, 'Middle',
'Lower')): Add label to the variable pclass. 1 becomes Upper, 2
becomes MIddle and 3 becomes lower

e factor(survived, levels = ¢(0,1), labels = ¢('No', 'Yes')): Add label to
the variable survived. 1 Becomes No and 2 becomes Yes

e na.omit(): Remove the NA observations

Output:

## Observations: 1,045

## Variables: 8

## $ pclass <fctr> Upper, Lower, Lower, Upper, Middle, Upper,
Middle, U...

## $ survived <fctr> No, No, No, Yes, No, Yes, Yes, No, No, No,
No, No, Y...

## $ sex <fctr> male, male, female, female, male, male,
female, male...

## $ age <dbl> 61.0, 42.0, 39.0, 49.0, 29.0, 37.0, 20.0,
54.0, 2.0,

## $ sibsp <int> o0, 0, 1, 0, 0, 1, 0, 0, 4, 0, 0, 1, 1, 0, O,
0, 1, 1,...

## $ parch <int> 0, 0, 5, 0, 6, 1, 0, 1, 1, 0, 0, 1, 1, 0, 2,
0, 4, 0,...

## $ fare <dbl> 32.3208, 7.6500, 31.2750, 25.9292, 10.5000,
52.5542,

## $ embarked <fctr> S, S, S, S, S, S, S, S, S, C, S, S, S, Q,
C, S, S, C...



Step 3) Create train/test set

Before you train your model, you need to perform two steps:

e Create a train and test set: You train the model on the train set
and test the prediction on the test set (i.e. unseen data)
e Install rpart.plot from the console

The common practice is to split the data 80/20, 80 percent of the data
serves to train the model, and 20 percent to make predictions. You
need to create two separate data frames. You don't want to touch the
test set until you finish building your model. You can create a function
name create_train_ test() that takes three arguments.

create_train_test(df, size = 0.8, train = TRUE)

arguments:

-df: Dataset used to train the model.

-size: Size of the split. By default, 0.8. Numerical value
-train: If set to "TRUE', the function creates the train set,
otherwise the test set. Default value sets to "TRUE . Boolean
value.You need to add a Boolean parameter because R does not
allow to return two data frames simultaneously.

create_train_test & 1lt;- function(data, size = 0.8, train =
TRUE) {
n_row = nrow(data)
total_row = size * n_row
train_sample & 1lt; - 1: total_row
if (train == TRUE) {
return (data[train_sample, ])
} else {
return (data[-train_sample, ])
3
}

Code Explanation

e function(data, size=0.8, train = TRUE): Add the arguments in the
function
e n_row = nrow(data): Count number of rows in the dataset



e total row = size*n_row: Return the nth row to construct the train
set

e train_sample <- 1:total_row: Select the first row to the nth rows

e if (train ==TRUE){ } else { }: If condition sets to true, return the
train set, else the test set.

You can test your function and check the dimension.

data_train <- create_train_test(clean_titanic, 0.8, train =
TRUE)

data_test <- create_train_test(clean_titanic, 0.8, train =

FALSE)
dim(data_train)

Output:

## [1] 836 8

dim(data_test)

Output:

## [1] 209 8
The train dataset has 1046 rows while the test dataset has 262 rows.

You use the function prop.table() combined with table() to verify if the
randomization process is correct.

prop.table(table(data_train$survived))

Output:

#it

#it No Yes
## 0.5944976 0.4055024

prop.table(table(data_test$survived))

Output:

##



Hit No Yes
## 0.5789474 0.4210526

In both dataset, the amount of survivors is the same, about 40 percent.

Install rpart.plot

rpart.plot is not available from conda libraries. You can install it from
the console:

install.packages("rpart.plot")

Step 4) Build the model

You are ready to build the model. The syntax for Rpart() function is:

rpart(formula, data=, method='")
arguments:

- formula: The function to predict

- data: Specifies the data frame- method:
- "class" for a classification tree

- "anova" for a regression tree

You use the class method because you predict a class.

library(rpart)

library(rpart.plot)

fit <- rpart(survived~., data = data_train, method = 'class')
rpart.plot(fit, extra = 106

Code Explanation

e rpart(): Function to fit the model. The arguments are:
o survived ~.: Formula of the Decision Trees
o data = data_train: Dataset
o method = 'class': Fit a binary model
o rpart.plot(fit, extra= 106): Plot the tree. The extra features are set
to 101 to display the probability of the 2nd class (useful for binary



responses). You can refer to the vignette for more information
about the other choices.

Output:

Died o
0.41
100%
I e = no I
{ves |-sex = male-{ no Shiaed

0.75
37%

pclass = Lower

Died
0.46
15%

fare >= 23

Survivded
0.52
12%

fare <186

Survivded Survivded
0.73 0.94
3% _22%

Dlled Survivded Died
0.19 0.74 0.11
61% 2% 2%

You start at the root node (depth o0 over 3, the top of the graph):

1. At the top, it is the overall probability of survival. It shows the
proportion of passenger that survived the crash. 41 percent of
passenger survived.

2. This node asks whether the gender of the passenger is male. If
yes, then you go down to the root's left child node (depth 2). 63
percent are males with a survival probability of 21 percent.

3. In the second node, you ask if the male passenger is above 3.5
years old. If yes, then the chance of survival is 19 percent.

4. You keep on going like that to understand what features impact
the likelihood of survival.

Note that, one of the many qualities of Decision Trees is that they
require very little data preparation. In particular, they don't require



feature scaling or centering.

By default, rpart() function uses the Gini impurity measure to split
the note. The higher the Gini coefficient, the more different instances
within the node.

Step 5) Make a prediction

You can predict your test dataset. To make a prediction, you can use
the predict() function. The basic syntax of predict for decision trees is:

predict(fitted_model, df, type = 'class')
arguments:
- fitted_model: This is the object stored after model
estimation.
- df: Data frame used to make the prediction
- type: Type of prediction
- 'class': for classification
- 'prob': to compute the probability of each
class
- 'vector': Predict the mean response at the node level

You want to predict which passengers are more likely to survive after
the collision from the test set. It means, you will know among those
209 passengers, which one will survive or not.

predict_unseen <-predict(fit, data_test, type = 'class')
Code Explanation

o predict(fit, data_ test, type = 'class'): Predict the class (0/1) of the
test set

Testing the passenger who didn't make it and those who did.

table_mat <- table(data_test$survived, predict_unseen)
table_mat

Code Explanation



e table(data_test$survived, predict_unseen): Create a table to
count how many passengers are classified as survivors and passed
away compare to the correct classification

Output:
## predict_unseen
H# No Yes

## No 106 15
H## Yes 30 58

The model correctly predicted 106 dead passengers but classified 15
survivors as dead. By analogy, the model misclassified 30 passengers
as survivors while they turned out to be dead.

Step 6) Measure performance

You can compute an accuracy measure for classification task with the
confusion matrix:

The confusion matrix is a better choice to evaluate the classification
performance. The general idea is to count the number of times True
instances are classified are False.

Predicted

Confusion Matrix
FALSE _ TRUE

FALSE True Negative (TN) | False Positive (FP)
Actual - - Precision

TRUE False Negative (FN) True Positive (TP)

i |
Recal

Each row in a confusion matrix represents an actual target, while each



column represents a predicted target. The first row of this matrix
considers dead passengers (the False class): 106 were correctly
classified as dead (True negative), while the remaining one was
wrongly classified as a survivor (False positive). The second row
considers the survivors, the positive class were 58 (True positive),
while the True negative was 30.

You can compute the accuracy test from the confusion matrix:

TP AN
P +:=EN-4FP -FN

accuracy =

It is the proportion of true positive and true negative over the sum of
the matrix. With R, you can code as follow:

accuracy_Test <- sum(diag(table_mat)) / sum(table_mat)

Code Explanation

e sum(diag(table_mat)): Sum of the diagonal
e sum(table _mat): Sum of the matrix.

You can print the accuracy of the test set:

print(paste('Accuracy for test', accuracy_Test))

Output:

## [1] "Accuracy for test 0.784688995215311"

You have a score of 78 percent for the test set. You can replicate the
same exercise with the training dataset.

Step 7) Tune the hyper-parameters

Decision tree has various parameters that control aspects of the fit. In
rpart library, you can control the parameters using the rpart.control()



function. In the following code, you introduce the parameters you will
tune. You can refer to the vignette for other parameters.

rpart.control(minsplit = 20, minbucket = round(minsplit/3),
maxdepth = 30)

Arguments:

-minsplit: Set the minimum number of observations in the node
before the algorithm perform a split

-minbucket: Set the minimum number of observations in the final
note i.e. the leaf

-maxdepth: Set the maximum depth of any node of the final tree.
The root node is treated a depth 0

We will proceed as follow:

e Construct function to return accuracy

e Tune the maximum depth

e Tune the minimum number of sample a node must have before it
can split

¢ Tune the minimum number of sample a leaf node must have

You can write a function to display the accuracy. You simply wrap the
code you used before:

1. predict: predict_unseen <- predict(fit, data_ test, type = 'class')

2. Produce table: table _mat <- table(data_test$survived,
predict_unseen)

3. Compute accuracy: accuracy_Test <-
sum(diag(table_mat))/sum(table_mat)

accuracy_tune <- function(fit) {
predict_unseen <- predict(fit, data_test, type = 'class')
table_mat <- table(data_test$survived, predict_unseen)
accuracy_Test <- sum(diag(table_mat)) / sum(table_mat)
accuracy_Test

}

You can try to tune the parameters and see if you can improve the
model over the default value. As a reminder, you need to get an
accuracy higher than 0.78



control <- rpart.control(minsplit = 4,
minbucket = round(5 / 3),
maxdepth = 3,
cp = 0)
tune_fit <- rpart(survived~., data = data_train, method =
'class', control = control)
accuracy_tune(tune_fit)

Output:

## [1] 0.7990431

With the following parameter:

minsplit = 4
minbucket= round(5/3)
maxdepth = 3cp=0

You get a higher performance than the previous model.
Congratulation!

Summary

We can summarize the functions to train a decision trees algorithm.

Library Objective function class parameters details
rpart glgaslsr;fication rpart() class formula, df,
P trees P methOd

roart Train regression rpart() anova formula, df,
P tree P method
rpart Plot the trees | rpart.plot() fitted model

fitted model,



base

base

base

rpart

rpart

predict

predict

predict

Control
parameters

Train model
with control
parameter

predict()

predict()

predict()

rpart.control()

rpart()

class |type

rob

vector

fitted model,
type

fitted model,
type

minsplit

minbucket

maxdepth

formula, df,
method,
control

Set the minimum number of
observations in the node
before the algorithm perform
a split

Set the minimum number of
observations in the final note
i.e. the leaf

Set the maximum depth of
any node of the final tree.
The root node is treated a
depth o

Note : Train the model on a training data and test the performance on
an unseen dataset, i.e. test set.



Chapter 29: R Random Forest
Tutorial with Example

What is Random Forest in R?

Random forests are based on a simple idea: 'the wisdom of the crowd'.
Aggregate of the results of multiple predictors gives a better prediction
than the best individual predictor. A group of predictors is called an
ensemble. Thus, this technique is called Ensemble Learning.

In earlier tutorial, you learned how to use Decision trees to make a
binary prediction. To improve our technique, we can train a group of
Decision Tree classifiers, each on a different random subset of the
train set. To make a prediction, we just obtain the predictions of all
individuals trees, then predict the class that gets the most votes. This
technique is called Random Forest.

We will proceed as follow to train the Random Forest:

Step 1) Import the data

To make sure you have the same dataset as in the tutorial for decision
trees, the train test and test set are stored on the internet. You can
import them without make any change.

library(dplyr)

data_train <-
read.csv("https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/train.csv")

glimpse(data_train)

data_test <- read.csv("https://raw.githubusercontent.com/guru99-
edu/R-Programming/master/test.csv")

glimpse(data_test)



Step 2) Train the model

One way to evaluate the performance of a model is to train it on a
number of different smaller datasets and evaluate them over the other
smaller testing set. This is called the F-fold cross-validation
feature. R has a function to randomly split number of datasets of
almost the same size. For example, if k=9, the model is evaluated over
the nine folder and tested on the remaining test set. This process is
repeated until all the subsets have been evaluated. This technique is
widely used for model selection, especially when the model has
parameters to tune.

Now that we have a way to evaluate our model, we need to figure out
how to choose the parameters that generalized best the data.

Random forest chooses a random subset of features and builds many
Decision Trees. The model averages out all the predictions of the
Decisions trees.

Random forest has some parameters that can be changed to improve
the generalization of the prediction. You will use the function
RandomPForest() to train the model.

Syntax for Randon Forest is

RandomForest(formula, ntree=n, mtry=FALSE, maxnodes = NULL)
Arguments:

- Formula: Formula of the fitted model

- ntree: number of trees in the forest

- mtry: Number of candidates draw to feed the algorithm. By
default, it is the square of the number of columns.

- maxnodes: Set the maximum amount of terminal nodes in the
forest

- importance=TRUE: Whether independent variables importance 1in
the random forest be assessed

Note: Random forest can be trained on more parameters. You can
refer to the vignette to see the different parameters.



Tuning a model is very tedious work. There are lot of combination
possible between the parameters. You don't necessarily have the time
to try all of them. A good alternative is to let the machine find the best
combination for you. There are two methods available:

e Random Search
e Grid Search

We will define both methods but during the tutorial, we will train the
model using grid search

Grid Search definition

The grid search method is simple, the model will be evaluated over all
the combination you pass in the function, using cross-validation.

For instance, you want to try the model with 10, 20, 30 number of
trees and each tree will be tested over a number of mtry equals to 1, 2,
3, 4, 5. Then the machine will test 15 different models:

.mtry ntrees

1 1 10
2 2 10
3 3 10
4 4 10
5 5 10
6 1 20
7 2 20
8 3 20
9 4 20
10 5 20
11 1 30
12 2 30
13 3 30
14 4 30
15 5 30

The algorithm will evaluate:

RandomForest(formula, ntree=10, mtry=1)



RandomForest(formula, ntree=10, mtry=2)
RandomForest(formula, ntree=10, mtry=3)
RandomForest(formula, ntree=20, mtry=2)

Each time, the random forest experiments with a cross-validation. One
shortcoming of the grid search is the number of experimentations. It
can become very easily explosive when the number of combination is
high. To overcome this issue, you can use the random search

Random Search definition

The big difference between random search and grid search is, random
search will not evaluate all the combination of hyperparameter in the
searching space. Instead, it will randomly choose combination at every
iteration. The advantage is it lower the computational cost.

Set the control parameter

You will proceed as follow to construct and evaluate the model:

Evaluate the model with the default setting
Find the best number of mtry

Find the best number of maxnodes

Find the best number of ntrees

Evaluate the model on the test dataset

Before you begin with the parameters exploration, you need to install
two libraries.

e caret: R machine learning library. If you have install R with r-
essential. It is already in the library
o Anaconda: conda install -c r r-caret
e e1071: R machine learning library.
o Anaconda: conda install -c r r-e1071



You can import them along with RandomForest

library(randomForest)

library(caret)

library(e1071)

Default setting

K-fold cross validation is controlled by the trainControl() function
trainControl(method = "cv", number = n, search ="grid")
arguments

- method "cv": The method used to resample the dataset.

- number n: Number of folders to create

- search "grid": Use the search grid method. For randomized
method, use '"grid"

Note: You can refer to the vignette to see the other arguments
of the function.

You can try to run the model with the default parameters and see the
accuracy Sscore.

Note: You will use the same controls during all the tutorial.

# Define the control

trControl <- trainControl(method = "cv",
number = 10,
search = "grid")

You will use caret library to evaluate your model. The library has one
function called train() to evaluate almost all machine learning
algorithm. Say differently, you can use this function to train other
algorithms.

The basic syntax is:

train(formula, df, method = "rf", metric= "Accuracy", trControl
= trainControl(), tuneGrid = NULL)
argument

- “formula : Define the formula of the algorithm
- "method’: Define which model to train. Note, at the end of the



tutorial, there is a list of all the models that can be trained
- "metric’ = "Accuracy": Define how to select the optimal model
- “trControl = trainControl() : Define the control parameters

- “tuneGrid = NULL : Return a data frame with all the possible
combination

Let's try the build the model with the default values.

set.seed(1234)
# Run the model
rf_default <- train(survived-~.,
data = data_train,
method = "rf",
metric = "Accuracy",
trControl = trControl)
# Print the results
print(rf_default)

Code Explanation

e trainControl(method="cv", number=10, search="grid"): Evaluate
the model with a grid search of 10 folder

e train(...): Train a random forest model. Best model is chosen with
the accuracy measure.

Output:

## Random Forest

H#

## 836 samples

## 7 predictor

## 2 classes: 'No', 'Yes'

HH

## NO pre-processing

## Resampling: Cross-Validated (10 fold)

## Summary of sample sizes: 753, 752, 753, 752, 752, 752,
## Resampling results across tuning parameters:
HH#

Hit mtry Accuracy Kappa

#t 2 0.7919248 0.5536486

HH 6 0.7811245 0.5391611

## 10 0.7572002 0.4939620

HH#



## Accuracy was used to select the optimal model using the
largest value.
## The final value used for the model was mtry = 2.

The algorithm uses 500 trees and tested three different values of mtry:
2,6, 10.

The final value used for the model was mtry = 2 with an accuracy of
0.78. Let's try to get a higher score.

Step 2) Search best mtry

You can test the model with values of mtry from 1 to 10

set.seed(1234)
tuneGrid <- expand.grid(.mtry = c(1: 10))
rf_mtry <- train(survived-~.,
data = data_train,
method = "rf",
metric = "Accuracy",
tuneGrid = tuneGrid,
trControl = trControl,
importance = TRUE,
nodesize = 14,
ntree = 300)
print(rf_mtry)

Code Explanation

e tuneGrid <- expand.grid(.mtry=c(3:10)): Construct a vector with
value from 3:10

The final value used for the model was mtry = 4.

Output:

## Random Forest

H#

## 836 samples

## 7 predictor

## 2 classes: 'No', 'Yes'
H#



## No pre-processing

## Resampling: Cross-Validated (10 fold)

## Summary of sample sizes: 753, 752, 753, 752, 752, 752,
## Resampling results across tuning parameters:

Hit

## mtry Accuracy Kappa

#t 1 0.7572576 0.4647368
## 2 0.7979346 0.5662364
## 3 0.8075158 0.5884815
#it 4 0.8110729 0.5970664
## 5 0.8074727 0.5900030
## 6 0.8099111 0.5949342
## 7 0.8050918 0.5866415
##H 8 0.8050918 0.5855399
## 9 0.8050631 0.5855035
## 10 0.7978916 0.5707336
#it

## Accuracy was used to select the optimal model using the
largest value.
## The final value used for the model was mtry = 4.

The best value of mtry is stored in:

rf_mtry$bestTune$mtry

You can store it and use it when you need to tune the other
parameters.

max(rf_mtry$results$Accuracy)

Output:
## [1] 0.8110729

best_mtry <- rf_mtry$bestTune$mtry
best_mtry

Output:

## [1] 4

Step 3) Search the best maxnodes



You need to create a loop to evaluate the different values of maxnodes.
In the following code, you will:

Create a list

Create a variable with the best value of the parameter mtry;
Compulsory

Create the loop

Store the current value of maxnode

Summarize the results

store_maxnode <- list()
tuneGrid <- expand.grid(.mtry = best_mtry)
for (maxnodes in c(5: 15)) {

}

set.seed(1234)
rf_maxnode <- train(survived-~.,
data = data_train,
method = "rf",
metric = "Accuracy",
tuneGrid = tuneGrid,
trControl = trControl,
importance = TRUE,
nodesize = 14,
maxnodes = maxnodes,
ntree = 300)
current_iteration <- toString(maxnodes)
store_maxnode[[current_iteration]] <- rf_maxnode

results_mtry <- resamples(store_maxnode)
summary(results_mtry)

Code explanation:

store_maxnode <- list(): The results of the model will be stored in
this list

expand.grid(.mtry=best_mtry): Use the best value of mtry

for (maxnodes in ¢(15:25)) { ... }: Compute the model with values
of maxnodes starting from 15 to 25.

maxnodes=maxnodes: For each iteration, maxnodes is equal to
the current value of maxnodes. i.e 15, 16, 17, ...

key <- toString(maxnodes): Store as a string variable the value of
maxnode.



e store_maxnode[[key]] <- rf_maxnode: Save the result of the
model in the list.
e resamples(store_maxnode): Arrange the results of the model

e summary(results_mtry): Print the summary of all the
combination.

Output:

#t
#it
#
#i
it
#t
#it
it
#t
Qu.
#
0.8433735 0

Call:

Models:

Accuracy
Min.
Max.

## 6 0.6904762 0.

0.8313253 0]

#H# 7 0.6904762
0.8333333 0]

## 8 0.6904762
0.8433735 0]

## 9 0.7261905
0.8333333 0]

## 10 0.6904762
0.8433735 0]

## 11 0.7023810
0.8433735 0]

## 12 0.7380952
0.8452381 (C]

## 13 0.7142857
0.8452381 0]

## 14 0.7380952
0.8452381 0]

## 15 0.7142857
0.8554217 C]

HH

## Kappa
HH#

Qu.

Min.
Max .

NA's
5 0.6785714 0.7529762

0.

0.

NA's

summary.resamples(object

1st Qu.

7648810
7619048

7627295

. 7747418

. 7837780

. 7791523

. 7910929

. 8005952

. 7941050

. 8000215

1st Qu.

= results_mtry)

Median

. 7903758

. 7784710

. 7738095

. 7844234

. 8083764

. 7904475

. 8024240

. 8144005

.8192771

. 8203528

. 8203528

Median

5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
Number of resamples: 10

Mean

7799771

. 7811962

. 7788009

. 7847820

. 7955250

. 7895869

. 7943775

.8051205

.8075158

.8098967

.8075301

Mean

3rd

.8168388

.8125000

.8102410

.8184524

.8258749

.8214286

.8184524

.8288511

.8403614

.8403614

.8378873

3rd



## 5 0.3297872 0.4640436 0.5459706 0.5270773 0.6068751
0.6717371 0]
## 6 0.3576471 0.4981484 0.5248805 0.5366310 0.6031287
0.6480921 0
## 7 0.3576471 0.4927448 0.5192771 0.5297159 0.5996437
0.6508314 0
## 8 0.3576471 0.4848320 0.5408159 0.5427127 0.6200253
0.6717371 0
## 9 0.4236277 0.5074421 0.5859472 0.5601687 0.6228626
0.6480921 0
## 10 0.3576471 0.5255698 0.5527057 0.5497490 0.6204819
0.6717371 0]
## 11 0.3794326 0.5235007 0.5783191 0.5600467 0.6126720
0.6717371 0
## 12 0.4460432 0.5480930 0.5999072 0.5808134 0.6296780
0.6717371 0
## 13 0.4014252 0.5725752 0.6087279 0.5875305 0.6576219
0.6678832 0
## 14 0.4460432 0.5585005 0.6117973 0.5911995 0.6590982
0.6717371 0]
## 15 0.4014252 0.5689401 0.6117973 0.5867010 0.6507194

0.6955990 0

The last value of maxnode has the highest accuracy. You can try with

higher values to see if you can get a higher score.

store_maxnode <- list()
tuneGrid <- expand.grid(.mtry = best_mtry)
for (maxnodes in c(20: 30)) {

set.seed(1234)

rf_maxnode <- train(survived-~.,

data = data_train,

method = "rf",

metric = "Accuracy",

tuneGrid = tuneGrid,

trControl = trControl,

importance = TRUE,

nodesize = 14,

maxnodes = maxnodes,

ntree = 300)
key <- toString(maxnodes)
store_maxnode[[key]] <- rf_maxnode



results_node <- resamples(store_maxnode)

summary(results_node)

Output:

HH#
## Call:

## summary.resamples(object

##

## Models: 20, 21, 22, 23, 24, 25, 26, 27,
## Number of resamples: 10

HH#

## Accuracy

##t Min. 1st Qu.
Qu. Max. NA's

## 20 0.7142857 0.7821644
0.8571429 0]
## 21 0.7142857 0.8000215
0.8571429 0]
## 22 0.7023810 0.7941050
0.8690476 0
## 23 0.7023810 0.7941050
0.8571429 0
## 24 0.7142857 0.7946429
0.8690476 0
## 25 0.7142857 0.7916667
0.8690476 0
## 26 0.7142857 0.7941050
0.8571429 0
## 27 0.7023810 0.8060456
0.8690476 0
## 28 0.7261905 0.7941050
0.8690476 0
## 29 0.7142857 0.7910929
0.8571429 0]
## 30 0.6785714 0.7910929
0.8690476 0

Hit

## Kappa

Hi# Min.  1st Qu.
Qu. Max. NA's

## 20 0.3956835 0.5316120
0.6955990 0
## 21 0.3956835 0.5699332
0.6919315 0

= results_node)

Median

. 8144005

. 8144005

.8263769

.8263769

. 8313253

. 8313253

. 8203528

. 8313253

. 8203528

. 8313253

.8263769

Median

.5961830

. 5960343

28, 29, 30

Mean 3rd
.8075301 0.8447719
.8075014 0.8403614
.8099254 0.8328313
.8111302 0.8447719
.8135112 0.8417599
.8099398 0.8408635
.8123207 0.8528758
.8135112 0.8333333
.8111015 0.8328313
.8087063 0.8333333
.8063253 0.8403614

Mean 3rd
.5854366 0.6661120
.5853247 0.6590982



## 22 0.3735084 0.5560661 0.6221836 0.5914492 0.6422128
0.7189781 0
## 23 0.3735084 0.5594228 0.6228827 0.5939786 0.6657372
0.6955990 0
## 24 0.3956835 0.5600352 0.6337821 0.5992188 0.6604703
0.7189781 0
## 25 0.3956835 0.5530760 0.6354875 0.5912239 0.6554912
0.7189781 0
## 26 0.,3956835 0.5589331 0.6136074 0.5969142 0.6822128
0.6955990 0
## 27 0.,3735084 0.5852459 0.6368425 0.5998148 0.6426088
0.7189781 0
## 28 0.4290780 0.5589331 0.6154905 0.5946859 0.6356141
0.7189781 0
## 29 0.4070588 0.5534173 0.6337821 0.5901173 0.6423101
0.6919315 0
## 30 0.3297872 0.5534173 0.6202632 0.5843432 0.6590982

0.7189781 0

The highest accuracy score is obtained with a value of maxnode equals
to 22.

Step 4) Search the best ntrees

Now that you have the best value of mtry and maxnode, you can tune
the number of trees. The method is exactly the same as maxnode.

store_maxtrees <- 1list()
for (ntree in c(250, 300, 350, 400, 450, 500, 550, 600, 800,
1000, 2000)) {
set.seed(5678)
rf_maxtrees <- train(survived-~.,
data = data_train,
method = "rf",
metric =

"Accuracy",
tuneGrid = tuneGrid,
trControl = trControl,
importance = TRUE,
nodesize = 14,
maxnodes = 24,
ntree = ntree)

key <- toString(ntree)



store_maxtrees[[key]] <- rf_maxtrees

}

results_tree <- resamples(store_maxtrees)
summary(results_tree)

Output:

##
## Call:

## summary.resamples(object

HH#
## Models
2000

. 250, 300, 350, 400, 450, 500, 550, 600, 800, 1000,

## Number of resamples: 10

##

## Accuracy

#it
Qu.
## 250 0O
0.8674699
## 300 O
0.8452381

## 350 0.

0.8452381

## 400 0.

0.8452381

## 450 O,

0.8452381

## 500 0.

0.8571429

## 550 0.

0.8571429

## 600 O.

0.8674699

## 800 0.

0.8674699

## 1000 O.

0.8452381

## 2000 0.

0.8452381
H#
## Kappa
H#

Qu.

Max .

Max.

Min.

. 7380952
0
. 7500000
0
7500000
0
7500000
0
7500000
0
7619048
0
7619048
0
7619048
0
7619048
0
7619048
0
7619048
0

Min.

NA's

NA's
## 250 0,4061697 0.

1st Qu.

. 7976190

. 7886905

. 7886905

. 7886905

. 7886905

. 7886905

. 7886905

. 7886905

. 7976190

. 7976190

. 7886905

1st Qu.

5667400

results_tree)

Median

. 8083764

. 8024240

. 8024240

. 8083764

. 8024240

. 8024240

. 8083764

. 8083764

. 8083764

.8121510

8121510

Median

. 5836013

Mean

.8087010

.8027199

.8027056

.8051009

.8039104

.8062914

.8099062

.8099205

.8110820

.8086723

.8086723

Mean

.5856103

3rd

.8292683

.8203397

.8277623

.8292683

.8292683

.8292683

.8323171

.8323171

.8292683

.8303571

.8333333

3rd

.6335363



0.7196807 0
## 300 0.4302326 0.5449376 0.5780349 0.5723307 0.6130767
0.6710843 0
## 350 0.4302326 0.5449376 0.5780349 0.5723185 0.6291592
0.6710843 0
## 400 0,4302326 0.5482030 0.5836013 0.5774782 0.6335363
0.6710843 0
## 450 0.4302326 0.5449376 0.5780349 0.5750587 0.6335363
0.6710843 0
## 500 0.4601542 0.5449376 0.5780349 0.5804340 0.6335363
0.6949153 0
## 550 0.4601542 0.5482030 0.5857118 0.5884507 0.6396872
0.6949153 0
## 600 0.4601542 0.5482030 0.5857118 0.5884374 0.6396872
0.7196807 0
## 800 0.4601542 0.5667400 0.5836013 0.5910088 0.6335363
0.7196807 0
## 1000 0.4601542 0.5667400 0.5961590 0.5857446 0.6343666
0.6678832 0
## 2000 0,.4601542 0.5482030 0.5961590 0.5862151 0.6440678
0.6656337 0

You have your final model. You can train the random forest with the
following parameters:

e ntree =800: 800 trees will be trained

e mtry=4: 4 features is chosen for each iteration

e maxnodes = 24: Maximum 24 nodes in the terminal nodes
(leaves)

fit_rf <- train(survived-~.,
data_train,
method = "rf",
metric = "Accuracy",
tuneGrid = tuneGrid,
trControl = trControl,
importance = TRUE,
nodesize = 14,
ntree = 800,
maxnodes = 24)

Step 5) Evaluate the model



The library caret has a function to make prediction.
predict(model, newdata= df)

argument

- "model”: Define the model evaluated before.

- ‘newdata : Define the dataset to make prediction

prediction <-predict(fit_rf, data_test)

You can use the prediction to compute the confusion matrix and see
the accuracy score

confusionMatrix(prediction, data_test$survived)

Output:

## Confusion Matrix and Statistics

Hit

## Reference

## Prediction No Yes

Hit No 110 32

Hit Yes 11 56

Hit

#Hi# Accuracy : 0.7943
#H# 95% CI : (0.733, 0.8469)
Hit No Information Rate : 0.5789
#i P-Value [Acc > NIR] : 3.959e-11
Hit

H#Hit Kappa 0.5638
## Mcnemar's Test P-Value 0.002289
Hit

#it Sensitivity 0.9091
## Specificity 0.6364
H#H# Pos Pred Value 0.7746
#i Neg Pred Value 0.8358
#H# Prevalence 0.5789
## Detection Rate 0.5263
#H# Detection Prevalence 0.6794
#it Balanced Accuracy : 0.7727
Ht

## '"Positive' Class No

Hit

You have an accuracy of 0.7943 percent, which is higher than the



default value

Step 6) Visualize Result

Lastly, you can look at the feature importance with the function
varImp(). It seems that the most important features are the sex and
age. That is not surprising because the important features are likely to
appear closer to the root of the tree, while less important features will
often appear closed to the leaves.

varImpPlot(fit_rf)

Output:

varImp(fit_rf)
## rf variable importance

Hit

##t Importance
## sexmale 100.000
## age 28.014
## pclassMiddle 27.016
## fare 21.557
## pclassUpper 16.324
## sibsp 11.246
## parch 5.522
## embarkedC 4.908
## embarkedQ 1.420
## embarkedS 0.000

Summary

We can summarize how to train and evaluate a random forest with the
table below:

Library Objective function parameter

Create a formula, ntree=n, mtry=FALSE,
randomForest RandomPForest() maxnodes = NULL

Random forest
Create K folder method = "cv", number = n, search



="grid"

formula, df, method = "rf", metric=
"Accuracy", trControl = trainControl(),
tuneGrid = NULL

model, newdata= df

confusionMatrix() model, y test

caret cross validation | trainControl()
caret Train a Random train()
Forest
Predict out of .
caret predict
sample
Confusion
caret Matrix and
Statistics
variable
caret . cvarImp()
1mportance

Appendix

List of model used in caret

names>(getModelInfo())

Output:

##  [1]
Iladall
"adaboost"
"avNNet"
llbagll
"bagFDA"
"bartMachine"
"blackboost"
"bridge"
"bstSm"
"C5.0Cost"
"cforest"
"ctree"
llddall

Ildnnll
"dwdRadial"
"enet"
Ilfdall
"foba"
"FS.HGD"
"gamLoess"

"AdaBag"
"amdai"
Ilawnbll
"bagEarth"
"bagFDAGCV"
"bayesglm"
"blasso"
Ilbrnnll
"bstTree"
"C5.0Rules"
"chaid"
"ctree2"
"deepboost"
"dwdLinear"
"earth"
"evtree"
"FH.GBML"
"FRBCS.CHI"
Ilgamll
"gamSpline"

model

"AdaBoost.M1"
"ANFIS"

"awtan"
"bagEarthGCV"

n bamll

"binda"
"blassoAveraged"
"BstLm"

||C5 . 0"
"C5.0Tree"
"CSimca"
"cubist"
"DENFIS"
"dwdPoly"

Ilelmll
"extraTrees"
"FIR.DM"
"FRBCS.W"
"gamboost"
"gaussprLinear"



"gaussprPoly" "gaussprRadial"
"gbm" "gcvEarth"
"GFS.GCCL" "GFS.LT.RS"
llglm.nbll Ilglmll
"glmnet_h3o0" "glmnet"
"gplS" Ilhdall

"hdrda" "HYFIS"

||J48|| "JRip"

llkknnll Ilknnll
"krlsRadial" "lars"
"laSSO" Illdall
"leapBackward" "leapForward"
llLindall Hlmll

[100]

"LMT" "loclda"
[1603]

"LogitBoost" "logreg"
[106]

"lssvmPoly" "lssvmRadial"
[109]

"M5" "M5Rules"
[112]

Ilmdall "Mlda"

[115]

"mlpKerasDecay" "mlpKerasDecayCost"
[118] "mlpKerasDropoutCost"

"mlpML" "mlpSGD"
"mlpwWeightDecay" "mlpweightDecayML"
[124]

"msaenet" "multinom"
[127]

"mxnetAdam" "naive_bayes"
[130]

"nbDiscrete" "nbSearch"
[133]

llnnetll "nnlS"

[136]

llnullll IloneRll

[139]

"ORFlog" "ORFpls"
[142]

"ORFsvm" "ownn"

[145]

llpar—RFll IIPARTII

[148]

"gbm_h30"
"GFS.FR.MOGUL"
"GFS.THRIFT"
"glmboost"
"glmStepAIC"
||hdda||

||icr||
"kernelpls"
"krlsPoly"
"lars2"
||lda2||
"leapSeq"
"lmStepAIC"

"logicBag"
"lssvmLinear"
"Ivg"

"manb"

||mlp||

"mlpKerasDropout"

## [121]
"monmlp"

"mxnet"

"hb"
"neuralnet"
"nodeHarvest"
"ordinalNet"
"ORFridge"
"pam"

"partDSA"



"pcaNNet"
[151]
llpdazll

[154]

llplrll

[157]

n polrll

[160]
"protoclass"
[163]
"QdaCov"
[166]
"randomGLM"
[169]
"rbfDDA"
[172]
"regLogistic"
[175]
"rFerns"
[178]

n rldgell
[181]

n rmdall

[184]
"rotationForestCp"
[187]
"rpart2"
[190]
"rglasso"
[193]
"RRFglobal"
[196]
"rvmLinear"
[199]

"SBC"

[202]
"simpls"
[205]
"Smda"

[208]
"spikeslab"
[211]
"stepQDA"
[214]
"svmExpoString"

"per
"penalized"
"pls"

"ppr*
"pythonkKnnReg"
nqren
"ranger"
"Rborist"
"relaxo"
"RFlda"
"rlda"
"rocc"
"rpart"
"rpartCost"
"rgnc"
"rrlda"
"rvmPoly"
"sda"
"SLAVE"
"snn"
"spls"
"superpc"

"svmLinear"

"pda"
"PenalizedLDA"
"plsRglm"

"PRIM"

nqda"

"grnn"

"rbf"

"rda"

e

"rfRules"

"rlm"
"rotationForest"
"rpart1SE"
"rpartScore"
"RRF"

"RSimca"
"rvmRadial"
"sdwd"

"slda"
"sparselLDA"
"stepLDA"
"svmBoundrangeString"

"svmLinear?2"



[217]
"svmLinear3"
[220]

"svmPoly"

[223]
"svmRadialSigma"
[226]

n tanll

[229]
"vbmpRadial"
[232]
"vglmCumulative"
[235]

lIWS rfll

[238] "xyf"

"svmLinearWeights"
"svmRadial"
"svmRadialwWeights"
"tanSearch"
"vglmAdjCat"
"widekernelpls"

"xgbLinear"

"svmLinearWeights2"
"svmRadialCost"
"svmSpectrumString"
"treebag"
"vglmContRatio"
"M "

"xgbTree"



Chapter 30: Generalized
Linear Model (GLM) in R with
Example

What is Logistic regression?

Logistic regression is used to predict a class, i.e., a probability. Logistic
regression can predict a binary outcome accurately.

Imagine you want to predict whether a loan is denied/accepted based
on many attributes. The logistic regression is of the form 0/1.y=oifa
loan is rejected, y = 1 if accepted.

A logistic regression model differs from linear regression model in two
ways.

e First of all, the logistic regression accepts only dichotomous
(binary) input as a dependent variable (i.e., a vector of 0 and 1).

¢ Secondly, the outcome is measured by the following probabilistic
link function called sigmoid due to its S-shaped.:

B 1+ exp(—t)

The output of the function is always between 0 and 1. Check Image
below
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The sigmoid function returns values from o to 1. For the classification
task, we need a discrete output of 0 or 1.

To convert a continuous flow into discrete value, we can set a decision
bound at 0.5. All values above this threshold are classified as 1

&_P if p<.5
Y“ Ml if p=5

How to create Generalized Liner
Model (GLM)

Let's use the adult data set to illustrate Logistic regression. The
"adult" is a great dataset for the classification task. The objective is to
predict whether the annual income in dollar of an individual will
exceed 50.000. The dataset contains 46,033 observations and ten
features:



e age: age of the individual. Numeric

¢ education: Educational level of the individual. Factor.

e marital.status: Marital status of the individual. Factor i.e. Never-
married, Married-civ-spouse, ...

e gender: Gender of the individual. Factor, i.e. Male or Female

e income: Target variable. Income above or below 50K. Factor i.e.
>50K, <=50K

amongst others

library(dplyr)

data_adult <-read.csv("https://raw.githubusercontent.com/guru99-
edu/R-Programming/master/adult.csv")

glimpse(data_adult)

Output:

Observations: 48,842
Variables: 10

$ X <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, ...

$ age <int> 25, 38, 28, 44, 18, 34, 29, 63, 24, 55,
65, 36, 26...

$ workclass <fctr> Private, Private, Local-gov, Private,
?, Private, ...

$ education <fctr> 11th, HS-grad, Assoc-acdm, Some-

college, Some-col...

$ educational.num <int> 7, 9, 12, 10, 10, 6, 9, 15, 10, 4, 9,
13, 9, 9, 9, ...

$ marital.status <fctr> Never-married, Married-civ-spouse,
Married-civ-sp...

$ race <fctr> Black, White, White, Black, White,
wWhite, Black,
$ gender <fctr> Male, Male, Male, Male, Female, Male,

Male, Male, ...

$ hours.per.week <int> 40, 50, 40, 40, 30, 30, 40, 32, 40, 10,
40, 40, 39...

$ income <fctr> <=50K, <=50K, >50K, >50K, <=50K, <=50K,
<=50K, >5...

We will proceed as follow:



Step 1: Check continuous variables

Step 2: Check factor variables

Step 3: Feature engineering

Step 4: Summary statistic

Step 5: Train/test set

Step 6: Build the model

Step 7: Assess the performance of the model
step 8: Improve the model

Your task is to predict which individual will have a revenue higher
than 50K.

In this tutorial, each step will be detailed to perform an analysis on a
real dataset.

Step 1) Check continuous variables

In the first step, you can see the distribution of the continuous
variables.

continuous <-select_if(data_adult, is.numeric)
summary(continuous)

Code Explanation

e continuous <- select_if(data_adult, is.numeric): Use the function
select_if() from the dplyr library to select only the numerical
columns

e summary(continuous): Print the summary statistic

Output:

#i X age educational.num
hours.per .week

## Min. : 1 Min. :17.00 Min. : 1.00 Min.
1.00

## 1st Qu.:11509 1st Qu.:28.00 1st Qu.: 9.00 1st
Qu.:40.00

## Median :23017 Median :37.00 Median :10.00 Median



:40.00

## Mean 123017 Mean :38.56 Mean :10.13 Mean 140.95
## 3rd Qu.:34525 3rd Qu.:47.00 3rd Qu.:13.00 3rd

Qu.:45.00

## Max. 146033 Max. :90.00 Max. :16.00 Max. :99.00

From the above table, you can see that the data have totally different
scales and hours.per.weeks has large outliers (.i.e. look at the last
quartile and maximum value).

You can deal with it following two steps:

¢ 1: Plot the distribution of hours.per.week
e 2: Standardize the continuous variables

1. Plot the distribution

Let's look closer at the distribution of hours.per.week

# Histogram with kernel density curve

library(ggplot2)

ggplot(continuous, aes(x = hours.per.week)) +
geom_density(alpha = .2, fill = "#FF6666")

Output:
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The variable has lots of outliers and not well-defined distribution. You

can partially tackle this problem by deleting the top 0.01 percent of the
hours per week.

Basic syntax of quantile:

gquantile(variable, percentile)
arguments:

-variable: Select the variable in the data frame to compute the
percentile

-percentile: Can be a single value between 0 and 1 or multiple
value. If multiple, use this format: 'c(A,B,C, ...)
- "A°,'B,’C and "...  are all integer from 0 to 1.

We compute the top 2 percent percentile

top_one_percent <- quantile(data_adult$hours.per.week, .99)
top_one_percent

Code Explanation



e quantile(data_adult$hours.per.week, .99): Compute the value of
the 99 percent of the working time

Output:

## 99%
## 80

98 percent of the population works under 80 hours per week.

You can drop the observations above this threshold. You use the filter
from the dplyr library.

data_adult_drop <-data_adult %>%
filter(hours.per.week<top_one_percent)
dim(data_adult_drop)

Output:

## [1] 45537 10

2. Standardize the continuous variables

You can standardize each column to improve the performance because
your data do not have the same scale. You can use the function
mutate_if from the dplyr library. The basic syntax is:

mutate_if(df, condition, funs(function))

arguments:

- df " : Data frame used to compute the function

- ‘condition : Statement used. Do not use parenthesis

- funs(function): Return the function to apply. Do not use
parenthesis for the function

You can standardize the numeric columns as follow:
data_adult_rescale <- data_adult_drop % > %

mutate_if(is.numeric, funs(as.numeric(scale(.))))
head(data_adult_rescale)

Code Explanation



e mutate_if(is.numeric, funs(scale)): The condition is only numeric
column and the function is scale

Output:

#it X age workclass education
educational.num
## 1 -1.732680

-1.02325949 Private 11th -1.22106443
## 2 -1.732605 -0.03969284 Private HS-

grad -0.43998868

## 3 -1.732530 -0.79628257 Local-gov  Assoc-

acdm 0.73162494

## 4 -1.732455 0.41426100 Private Some-

college -0.04945081

## 5 -1.732379

-0.34232873 Private 10th -1.61160231

## 6 -1.732304 1.85178149 Self-emp-not-inc Prof-
school 1.90323857

it marital.status race gender hours.per.week income
## 1 Never-married Black Male -0.03995944 <=50K
## 2 Married-civ-spouse White Male 0.86863037 <=50K
## 3 Married-civ-spouse White Male -0.03995944 >50K
## 4 Married-civ-spouse Black Male -0.03995944 >50K
## 5 Never-married White Male -0.94854924 <=50K
## 6 Married-civ-spouse White Male -0.76683128 >50K

Step 2) Check factor variables

This step has two objectives:

e Check the level in each categorical column
e Define new levels

We will divide this step into three parts:

e Select the categorical columns
e Store the bar chart of each column in a list
e Print the graphs

We can select the factor columns with the code below:



# Select categorical column
factor <- data.frame(select_if(data_adult_rescale, is.factor))
ncol(factor)

Code Explanation

e data.frame(select_if(data_adult, is.factor)): We store the factor
columns in factor in a data frame type. The library ggplot2
requires a data frame object.

Output:

## [1] 6
The dataset contains 6 categorical variables

The second step is more skilled. You want to plot a bar chart for each
column in the data frame factor. It is more convenient to automatize
the process, especially in situation there are lots of columns.

library(ggplot2)
# Create graph for each column
graph <- lapply(names(factor),
function(x)
ggplot(factor, aes(get(x))) +
geom_bar() +
theme(axis.text.x = element_text(angle = 90)))

Code Explanation

e lapply(): Use the function lapply() to pass a function in all the
columns of the dataset. You store the output in a list

e function(x): The function will be processed for each x. Here x is
the columns

e ggplot(factor, aes(get(x))) + geom_bar()+ theme(axis.text.x =
element_text(angle = 90)): Create a bar char chart for each x
element. Note, to return x as a column, you need to include it
inside the get()

The last step is relatively easy. You want to print the 6 graphs.



# Print the graph
graph

Output:
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Note: Use the next button to navigate to the next graph
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Step 3) Feature engineering

Recast education

From the graph above, you can see that the variable education has 16
levels. This is substantial, and some levels have a relatively low
number of observations. If you want to improve the amount of
information you can get from this variable, you can recast it into
higher level. Namely, you create larger groups with similar level of
education. For instance, low level of education will be converted in
dropout. Higher levels of education will be changed to master.

Here is the detail:

Old level New level
Preschool dropout
10th Dropout

11th Dropout



12th Dropout

1st-4th Dropout
5th-6th Dropout
7th-8th Dropout
oth Dropout
HS-Grad HighGrad
Some-college Community
Assoc-acdm Community
Assoc-voc Community
Bachelors Bachelors
Masters Masters
Prof-school Masters
Doctorate PhD

recast_data <- data_adult_rescale % > %
select(-X) % > %
mutate(education = factor(ifelse(education ==

"Preschool" | education == "10th" | education == "11th" |
education == "12th" | education == "1st-4th" | education ==
"5th-6th" | education == "7th-8th" | education == "9th",

"dropout", ifelse(education == "HS-grad", "HighGrad",



ifelse(education == "Some-college" | education == "Assoc-acdm" |

education == "Assoc-voc", "Community",
ifelse(education == "Bachelors", "Bachelors",
ifelse(education == "Masters" | education == "Prof-

school", "Master", "PhD")))))))

Code Explanation

e We use the verb mutate from dplyr library. We change the values
of education with the statement ifelse

In the table below, you create a summary statistic to see, on average,
how many years of education (z-value) it takes to reach the Bachelor,
Master or PhD.

recast_data % > %
group_by(education) % > %
summarize(average_educ_year = mean(educational.num),
count = n()) % > %
arrange(average_educ_year)

Output:

## # A tibble: 6 x 3
## education average_educ_year count

##t <fctr> <dbl> <int>
## 1 dropout -1.76147258 5712
## 2 HighGrad -0.43998868 14803
## 3 Community 0.09561361 13407
## 4 Bachelors 1.12216282 7720
## 5 Master 1.60337381 3338
## 6 PhD 2.29377644 557

Recast Marital-status

It is also possible to create lower levels for the marital status. In the
following code you change the level as follow:

Old level New level



Never-married Not-married

Married-spouse-absent Not-married

Married-AF-spouse Married

Married-civ-spouse

Separated Separated
Divorced
Widows Widow

# Change level marry
recast_data <- recast_data % > %
mutate(marital.status = factor(ifelse(marital.status ==

"Never-married" | marital.status == "Married-spouse-absent",
"Not_married", ifelse(marital.status == "Married-AF-spouse" |
marital.status == "Married-civ-spouse'", "Married",
ifelse(marital.status == "Separated" | marital.status ==

"Divorced", "Separated", "widow")))))

You can check the number of individuals within each group.

table(recast_data$marital.status)

Output:
## ## Married Not_married Separated Widow
H# 21165 15359 7727 1286

Step 4) Summary Statistic

It is time to check some statistics about our target variables. In the
graph below, you count the percentage of individuals earning more



than 50k given their gender.

# Plot gender income
ggplot(recast_data, aes(x

gender, fill = income)) +
geom_bar (position = "fill") +

theme_classic()

Output:
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Next, check if the origin of the individual affects their earning.

# Plot origin income
ggplot(recast_data, aes(x

race, fill = income)) +
geom_bar (position = "fill") +

theme_classic() +
theme(axis.text.x

element_text(angle

Output:
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The number of hours work by gender.

# box plot gender working time

Other
White

ggplot(recast_data, aes(x = gender, y = hours.per.week)) +

geom_boxplot() +
stat_summary(fun.y = mean,

geom = "point",
size = 3,
color = "steelblue") +

theme_classic()

Output:
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The box plot confirms that the distribution of working time fits
different groups. In the box plot, both genders do not have
homogeneous observations.

You can check the density of the weekly working time by type of
education. The distributions have many distinct picks. It can probably
be explained by the type of contract in the US.

# Plot distribution working time by education

ggplot(recast_data, aes(x = hours.per.week)) +
geom_density(aes(color = education), alpha = 0.5) +
theme_classic()

Code Explanation

e ggplot(recast_data, aes( x= hours.per.week)): A density plot only
requires one variable

e geom_density(aes(color = education), alpha =0.5): The geometric
object to control the density
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To confirm your thoughts, you can perform a one-way ANOVA test:

anova <- aov(hours.per.week~education, recast_data)
summary(anova)

Output:

## Df Sum Sg Mean Sq F value Pr(>F)

## education 5 1552 310.31 321.2 <2e-16 ***

## Residuals 45531 43984 0.97

H# ---

## Signif. codes: O '"***!' 0.001 '**' .01 '*' 0.05 '.' 0.1 " '
1

The ANOVA test confirms the difference in average between groups.

Non-linearity



Before you run the model, you can see if the number of hours worked
is related to age.

library(ggplot2)
ggplot(recast_data, aes(x = age, y = hours.per.week)) +
geom_point(aes(color = income),
size = 0.5) +
stat_smooth(method = '1Im',
formula = y~poly(x, 2),
se = TRUE,
aes(color = income)) +
theme_classic()

Code Explanation

o ggplot(recast_data, aes(x = age, y = hours.per.week)): Set the
aesthetic of the graph

e geom_point(aes(color= income), size =0.5): Construct the dot
plot

e stat_smooth(): Add the trend line with the following arguments:

method="Im": Plot the fitted value if the linear regression

formula = y~poly(x,2): Fit a polynomial regression

se = TRUE: Add the standard error

aes(color= income): Break the model by income

o

O O O

Output:
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In a nutshell, you can test interaction terms in the model to pick up
the non-linearity effect between the weekly working time and other
features. It is important to detect under which condition the working
time differs.

Correlation

The next check is to visualize the correlation between the variables.
You convert the factor level type to numeric so that you can plot a heat
map containing the coefficient of correlation computed with the
Spearman method.

library(GGally)
# Convert data to numeric
corr <- data.frame(lapply(recast_data, as.integer))
# Plot the graphggcorr(corr,
method = c("pairwise", '"spearman"),
nbreaks = 6,
hjust = 0.8,



label = TRUE,
label_size = 3,
color = "grey50")

Code Explanation

e data.frame(lapply(recast_data,as.integer)): Convert data to
numeric
e ggcorr() plot the heat map with the following arguments:
o method: Method to compute the correlation
nbreaks = 6: Number of break
hjust = 0.8: Control position of the variable name in the plot
label = TRUE: Add labels in the center of the windows
label size = 3: Size labels
color = "grey50"): Color of the label

O O O O O

Output:
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Step 5) Train/test set

Any supervised machine learning task require to split the data
between a train set and a test set. You can use the "function" you
created in the other supervised learning tutorials to create a train/test
set.

set.seed(1234)
create_train_test <- function(data, size = 0.8, train = TRUE) {
n_row = nrow(data)
total row = size * n_row
train_sample <- 1: total_row
if (train == TRUE) {
return (data[train_sample, ])
} else {
return (data[-train_sample, ])
¥
¥

data_train <- create_train_test(recast_data, 0.8, train = TRUE)
data_test <- create_train_test(recast_data, 0.8, train = FALSE)
dim(data_train)

Output:

## [1] 36429 9

dim(data_test)

Output:

## [1] 9108 9

Step 6) Build the model

To see how the algorithm performs, you use the glm() package. The
Generalized Linear Model is a collection of models. The basic
syntax is:

glm(formula, data=data, family=linkfunction()
Argument:



- formula:

Equation used to fit the model- data: dataset used

- Family: - binomial: (link = "logit")
- gaussian: (link = "identity")

- Gamma: (link = "inverse")

- inverse.gaussian: (link = "1/muAn2")

- poisson: (link = "log")

- quasi: (link = "identity", variance =
"constant")

- quasibinomial: (link = "logit")

- guasipoisson: (link = "log")

You are ready to estimate the logistic model to split the income level
between a set of features.

formula <- income-~.
logit <- glm(formula, data =
summary(logit)

data_train, family = 'binomial')

Code Explanation

e formula <- income ~ .: Create the model to fit

e logit <- glm(formula, data = data_train, family = 'binomial’): Fit a
logistic model (family = 'binomial') with the data_ train data.

e summary(logit): Print the summary of the model

Output:

Hit

## Call:

## glm(formula =
data_train)

## ## Deviance Residuals:

formula, family = "binomial", data =

# Min 1Q Median 3Q Max

## -2.6456 -0.5858 -0.2609 -0.0651 3.1982

H#

## Coefficients:

#i Estimate Std. Error z value
Pr(>|z])

HH#

(Intercept) 0.07882 0.21726 0.363 0.71675
## age 0.41119 0.01857 22.146 < 2e-
16 * k% %

## workclassLocal-gov -0.64018 0.09396 -6.813 9.54e-



12 * k% *

## workclassPrivate -0.53542 0.07886 -6.789 1.13e-
11 * k%

## workclassSelf-emp-

inc -0.07733 0.10350 -0.747 0.45499

## workclassSelf-emp-not-inc -1.09052 0.09140 -11.931 < 2e-
16 * % %

## workclassState-gov -0.80562 0.10617 -7.588 3.25e-
14 ***

## workclassWithout-

pay -1.09765 0.86787 -1.265 0.20596

## educationCommunity -0.44436 0.08267 -5.375 7.66e-
08 * k% %

## educationHighGrad -0.67613 0.11827 -5.717 1.08e-
08 * % %

## educationMaster 0.35651 0.06780 5.258 1.46e-
97 * k%

H#

educationPhD 0.46995 0.15772 2.980 0.00289
* %

## educationdropout -1.04974 0.21280 -4.933 8.10e-
07 * k%

## educational.num 0.56908 0.07063 8.057 7.84e-
16 * k% %

## marital.statusNot_married -2.50346 0.05113 -48.966 < 2e-
16 * % %

## marital.statusSeparated -2.16177 0.05425 -39.846 < 2e-
16 * % %

## marital.statusWidow -2.22707 0.12522 -17.785 < 2e-
16 * k%

## raceAsian-Pac-

Islander 0.08359 0.20344 0.411 0.68117

HH#

raceBlack 0.07188 0.19330 0.372 0.71001
H#

raceOther 0.01370 0.27695 0.049 0.96054
H#

racewWwhite 0.34830 0.18441 1.889 0.05894
H#

genderMale 0.08596 0.04289 2.004 0.04506
*

## hours.per.week 0.41942 0.01748 23.998 < 2e-
16 * % %

## ---## Signif. codes: 0O '***' 0.001 '**' 0.01 '*' 0.05 '.'



0.1 "' "1

## ## (Dispersion parameter for binomial family taken to be 1)
#it H#H# Null deviance: 40601 on 36428 degrees of freedom
## Residual deviance: 27041 on 36406 degrees of freedom

## AIC: 27087

Hit

## Number of Fisher Scoring iterations: 6

The summary of our model reveals interesting information. The
performance of a logistic regression is evaluated with specific key
metrics.

e AIC (Akaike Information Criteria): This is the equivalent of R2 in
logistic regression. It measures the fit when a penalty is applied to
the number of parameters. Smaller AIC values indicate the model
is closer to the truth.

e Null deviance: Fits the model only with the intercept. The degree
of freedom is n-1. We can interpret it as a Chi-square value (fitted
value different from the actual value hypothesis testing).

e Residual Deviance: Model with all the variables. It is also
interpreted as a Chi-square hypothesis testing.

e Number of Fisher Scoring iterations: Number of iterations before
converging.

The output of the glm() function is stored in a list. The code below
shows all the items available in the logit variable we constructed to
evaluate the logistic regression.

# The list is very long, print only the first three elements

lapply(logit, class)[1:3]

Output:

## $coefficients

## [1] "numeric"

Hit

## $residuals

## [1] "numeric"

Hit

## $fitted.values



## [1] "numeric"

Each value can be extracted with the $ sign follow by the name of the
metrics. For instance, you stored the model as logit. To extract the AIC
criteria, you use:

logit$aic

Output:

## [1] 27086.65

Step 7) Assess the performance of the
model

Confusion Matrix

The confusion matrix is a better choice to evaluate the classification
performance compared with the different metrics you saw before. The
general idea is to count the number of times True instances are
classified are False.

Predicted
FALSE TRUE

Confusion Matrix

FALSE True Negative (TN) | False Positive (FP)

Actual Precision

TRUE False Negative (FN) True Positive (TP)

l

Recal

To compute the confusion matrix, you first need to have a set of
predictions so that they can be compared to the actual targets.

predict <- predict(logit, data_test, type = 'response')
# confusion matrix



table_mat <- table(data_test$income, predict > 0.5)
table_mat

Code Explanation

e predict(logit,data_test, type = 'response'): Compute the
prediction on the test set. Set type = 'response’ to compute the
response probability.

e table(data_test$income, predict > 0.5): Compute the confusion
matrix. predict > 0.5 means it returns 1 if the predicted
probabilities are above 0.5, else 0.

Output:

##

## FALSE TRUE
H## <=50K 6310 495
## >50K 1074 1229

Each row in a confusion matrix represents an actual target, while each
column represents a predicted target. The first row of this matrix
considers the income lower than 50k (the False class): 6241 were
correctly classified as individuals with income lower than 50k (True
negative), while the remaining one was wrongly classified as above
50k (False positive). The second row considers the income above
50K, the positive class were 1229 (True positive), while the True
negative was 1074.

You can calculate the model accuracy by summing the true positive +
true negative over the total observation

| TP + TN
Aeeuracy = TPy TN+ FP + FN

accuracy_Test <- sum(diag(table_mat)) / sum(table_mat)
accuracy_Test

Code Explanation



e sum(diag(table_mat)): Sum of the diagonal
e sum(table _mat): Sum of the matrix.

Output:

## [1] 0.8277339

The model appears to suffer from one problem, it overestimates the
number of false negatives. This is called the accuracy test paradox.
We stated that the accuracy is the ratio of correct predictions to the
total number of cases. We can have relatively high accuracy but a
useless model. It happens when there is a dominant class. If you look
back at the confusion matrix, you can see most of the cases are
classified as true negative. Imagine now, the model classified all the
classes as negative (i.e. lower than 50k). You would have an accuracy
of 75 percent (6718/6718+2257). Your model performs better but
struggles to distinguish the true positive with the true negative.

In such situation, it is preferable to have a more concise metric. We
can look at:

e Precision=TP/(TP+FP)
e Recall=TP/(TP+FN)

Precision vs Recall

Precision looks at the accuracy of the positive prediction. Recall is
the ratio of positive instances that are correctly detected by the
classifier;

You can construct two functions to compute these two metrics

1. Construct precision

precision <- function(matrix) {
# True positive
tp <- matrix[2, 2]
# false positive



fp <- matrix[1, 2]
return (tp /7 (tp + fp))
}

Code Explanation

e mat[1,1]: Return the first cell of the first column of the data frame,
i.e. the true positive

e mat[1,2]; Return the first cell of the second column of the data
frame, i.e. the false positive

recall <- function(matrix) {

# true positive
tp <- matrix[2, 2]# false positive
fn <- matrix[2, 1]
return (tp /7 (tp + fn))

¥

Code Explanation

e mat[1,1]: Return the first cell of the first column of the data frame,
i.e. the true positive

e mat[2,1]; Return the second cell of the first column of the data
frame, i.e. the false negative

You can test your functions

prec <- precision(table_mat)

prec
rec <- recall(table_mat)
rec

Output:

## [1] 0.712877
## [2] 0.5336518

When the model says it is an individual above 50Kk, it is correct in only
54 percent of the case, and can claim individuals above 50k in 72
percent of the case.



You can create the 1 score based on the precision and recall. The 1
is a harmonic mean of these two metrics, meaning it gives more weight
to the lower values.

o precision * recall
1 — kS

precision + recall

fli<- 2 * ((prec * rec) / (prec + rec))
f1

Output:

## [1] 0.6103799

Precision vs Recall tradeoff

It is impossible to have both a high precision and high recall.

If we increase the precision, the correct individual will be better
predicted, but we would miss lots of them (lower recall). In some
situation, we prefer higher precision than recall. There is a concave
relationship between precision and recall.

e Imagine, you need to predict if a patient has a disease. You want
to be as precise as possible.

e If you need to detect potential fraudulent people in the street
through facial recognition, it would be better to catch many
people labeled as fraudulent even though the precision is low. The
police will be able to release the non-fraudulent individual.

The ROC curve

The Receiver Operating Characteristic curve is another common
tool used with binary classification. It is very similar to the
precision/recall curve, but instead of plotting precision versus recall,



the ROC curve shows the true positive rate (i.e., recall) against the
false positive rate. The false positive rate is the ratio of negative
instances that are incorrectly classified as positive. It is equal to one
minus the true negative rate. The true negative rate is also called
specificity. Hence the ROC curve plots sensitivity (recall) versus 1-
specificity

To plot the ROC curve, we need to install a library called RORC. We
can find in the conda library. You can type the code:

conda install -c r r-rocr --yes

We can plot the ROC with the prediction() and performance()
functions.

library(ROCR)

ROCRpred <- prediction(predict, data_test$income)
ROCRperf <- performance(ROCRpred, 'tpr', 'fpr')

plot (ROCRperf, colorize = TRUE, text.adj c(-0.2, 1.7))

Code Explanation

e prediction(predict, data_test$income): The ROCR library needs
to create a prediction object to transform the input data

e performance(ROCRpred, 'tpr','fpr'): Return the two combinations
to produce in the graph. Here, tpr and fpr are constructed. Tot

"nn "

plot precision and recall together, use "prec", "rec".

Output:
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Step 8) Improve the model

You can try to add non-linearity to the model with the interaction
between

e age and hours.per.week
e gender and hours.per.week.

You need to use the score test to compare both model

formula_2 <- income~age: hours.per.week + gender: hours.per.week
+ .

logit_2 <- glm(formula_2, data = data_train, family =
"binomial')

predict_2 <- predict(logit_2, data_test, type = 'response')
table_mat_2 <- table(data_test$income, predict_2 > 0.5)
precision_2 <- precision(table_mat_2)

recall_2 <- recall(table_mat_2)

fi1.2 <- 2 * ((precision_2 * recall 2) / (precision_2 +
recall_2))

f1_2



Output:

## [1] 0.6109181

The score is slightly higher than the previous one. You can keep
working on the data a try to beat the score.

Summary

We can summarize the function to train a logistic regression in the
table below:

Package Objective

glm

glm

base

base

base

ROCR

ROCR

Create train/test dataset

function

argument

create_train_set() data, size, train

Train a Generalized Linear Model glm()

Summarize the model

Make prediction

Create a confusion matrix

Create accuracy score

Create ROC : Step 1 Create
prediction

Create ROC : Step 2 Create
performance

summary()

predict()

table()

formula, data, family*

fitted model

fitted model, dataset, type =
'response’

y, predict()

sum(diag(table())/sum(table()

prediction()

performance()

predict(), y

prediction(), 'tpr', 'fpr’



ROCR Create ROC : Step 3 Plot graph |plot() performance()

The other GLM type of models are:

- binomial: (link = "logit")

- gaussian: (link = "identity")

- Gamma: (link = "inverse"

- inverse.gaussian: (link = "1/mu”2")

- poisson: (link = "log")

- quasi: (link = "identity", variance = "constant")
- quasibinomial: (link = "logit")

- quasipoisson: (link = "log™)



Chapter 31: K-means
Clustering in R with Example

What is Cluster analysis?

Cluster analysis is part of the unsupervised learning. A cluster is a
group of data that share similar features. We can say, clustering
analysis is more about discovery than a prediction. The machine
searches for similarity in the data. For instance, you can use cluster
analysis for the following application:

e Customer segmentation: Looks for similarity between groups of
customers

e Stock Market clustering: Group stock based on performances

¢ Reduce dimensionality of a dataset by grouping observations with
similar values

Clustering analysis is not too difficult to implement and is meaningful
as well as actionable for business.

The most striking difference between supervised and unsupervised
learning lies in the results. Unsupervised learning creates a new
variable, the label, while supervised learning predicts an outcome. The
machine helps the practitioner in the quest to label the data based on
close relatedness. It is up to the analyst to make use of the groups and
give a name to them.

Let's make an example to understand the concept of clustering. For
simplicity, we work in two dimensions. You have data on the total
spend of customers and their ages. To improve advertising, the
marketing team wants to send more targeted emails to their
customers.



In the following graph, you plot the total spend and the age of the
customers.

library(ggplot2)
df <- data.frame(age = c(18, 21, 22, 24, 26, 26, 27, 30, 31, 35,
39, 40, 41, 42, 44, 46, 47, 48, 49, 54),

spend = c(10, 11, 22, 15, 12, 13, 14, 33, 39, 37, 44, 27,
29, 20, 28, 21, 30, 31, 23, 24)
)
ggplot(df, aes(x = age, y = spend)) +

geom_point()
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A pattern is visible at this point

1. At the bottom-left, you can see young people with a lower
purchasing power

2. Upper-middle reflects people with a job that they can afford
spend more

3. Finally, older people with a lower budget.
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In the figure above, you cluster the observations by hand and define
each of the three groups. This example is somewhat straightforward
and highly visual. If new observations are appended to the data set,
you can label them within the circles. You define the circle based on
our judgment. Instead, you can use Machine Learning to group the
data objectively.

In this tutorial, you will learn how to use the k-means algorithm.

K-means algorithm

K-mean is, without doubt, the most popular clustering method.
Researchers released the algorithm decades ago, and lots of
improvements have been done to k-means.

The algorithm tries to find groups by minimizing the distance between
the observations, called local optimal solutions. The distances are
measured based on the coordinates of the observations. For instance,



in a two-dimensional space, the coordinates are simple and .

RPandomly choose k groups in the feature plan

Group observations by minimising the distance o
with the centroid. Tt results in k groups with n

observations

Repeat until no

observations change gr
g Shift initial center o the mean of the
- > coordinates of the n observations
o=
t within group k
N
~‘§
b &

\\ Group observation by minimising the distance.
Tt results in kK groups with n observations

The algorithm works as follow:

e Step 1: Choose groups in the feature plan randomly

e Step 2: Minimize the distance between the cluster center and the
different observations (centroid). It results in groups with
observations

e Step 3: Shift the initial centroid to the mean of the coordinates
within a group.

e Step 4: Minimize the distance according to the new centroids.
New boundaries are created. Thus, observations will move from
one group to another

e Repeat until no observation changes groups

K-means usually takes the Euclidean distance between the feature and
feature :



distance(x,y) = Z(_ x; —¥:)?

Different measures are available such as the Manhattan distance or
Minlowski distance. Note that, K-mean returns different groups each
time you run the algorithm. Recall that the first initial guesses are
random and compute the distances until the algorithm reaches a
homogeneity within groups. That is, k-mean is very sensitive to the
first choice, and unless the number of observations and groups are
small, it is almost impossible to get the same clustering.

Select the number of clusters

Another difficulty found with k-mean is the choice of the number of
clusters. You can set a high value of , i.e. a large number of groups, to
improve stability but you might end up with overfit of data.
Overfitting means the performance of the model decreases
substantially for new coming data. The machine learnt the little details
of the data set and struggle to generalize the overall pattern.

The number of clusters depends on the nature of the data set, the
industry, business and so on. However, there is a rule of thumb to
select the appropriate number of clusters:

cluster = ,/2/n

with equals to the number of observation in the dataset.

Generally speaking, it is interesting to spend times to search for the
best value of to fit with the business need.

We will use the Prices of Personal Computers dataset to perform our
clustering analysis. This dataset contains 6259 observations and 10
features. The dataset observes the price from 1993 to 1995 of 486
personal computers in the US. The variables are price, speed, ram,
screen, cd among other.



You will proceed as follow:

e Import data
e Train the model
e Evaluate the model

Import data

K means is not suitable for factor variables because it is based on the
distance and discrete values do not return meaningful values. You can
delete the three categorical variables in our dataset. Besides, there are
no missing values in this dataset.

library(dplyr)

PATH <-"https://raw.githubusercontent.com/guru99-edu/R-
Programming/master/computers.csv"

df <- read.csv(PATH) %>%

select(-c(X, cd, multi, premium))

glimpse(df)

Output

## Observations: 6, 259

## Variables: 7

## $ price < int > 1499, 1795, 1595, 1849, 3295, 3695, 1720,
1995, 2225, 2...

##$ speed < int > 25, 33, 25, 25, 33, 66, 25, 50, 50, 50, 33,
66, 50, 25,

##$ hd < int > 80, 85, 170, 170, 340, 340, 170, 85, 210, 210,
170, 210...

##$ ram < int > 4, 2, 4, 8, 16, 16, 4, 2, 8, 4, 8, 8, 4, 8, 8,
4, 2, 4,

##$ screen < int > 14, 14, 15, 14, 14, 14, 14, 14, 14, 15, 15,
14, 14, 14,

##$ ads < int > 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94,
94, 94,

## $ trend <int>1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1...

From the summary statistics, you can see the data has large values. A
good practice with k mean and distance calculation is to rescale the



data so that the mean is equal to one and the standard deviation is
equal to zero.

summary (df)
Output:

i price

## Min. 949
2.000

## 1st Qu.:1794
4,000 °

## Median :2144
8.000

## Mean 12220
8.287

## 3rd Qu.:2595
8.000

## Max. 15399
H#i#t screen

## Min. :14.00
## 1st Qu.:14.00
## Median :14.00
## Mean :14.61
## 3rd Qu.:15.00
## Max. :17.00

You rescale the variables with the scale() function of the dplyr library.

speed
Min. . 25,
1st Qu.: 33.
Median 50.
Mean 52.
3rd Qu.: 66.
Max . :100.

ads
Min. 39.
1st Qu.:162.
Median :246.
Mean 1221,
3rd Qu.:275.
Max . :339.

00

00

00

01

00

00

[N oM NoNNO]

hd

Min. :
1st Qu.:
Median
Mean
3rd Qu.:
Max . 12

trend
Min.
1st Qu.:1
Median :1
Mean 11
3rd Qu.:2
Max. '3

80.
214.
340.
416.
528.
100.
1.00
0.00
6.00
5.93

1.50
5.00

Min.
1st Qu.:
Median
Mean
3rd Qu.:

Max .

The transformation reduces the impact of outliers and allows to

compare a sole observation against the mean. If a standardized value

(or z-score) is high, you can be confident that this observation is
indeed above the mean (a large z-score implies that this point is far
away from the mean in term of standard deviation. A z-score of two
indicates the value is 2 standard deviations away from the mean. Note,

the z-score follows a Gaussian distribution and is symmetrical around

the mean.

rescale_df <- df % > %

mutate(price_scal = scale(price),
hd_scal = scale(hd),
ram_scal = scale(ram),
screen_scal = scale(screen),

ram

1 32.

0



ads_scal = scale(ads),
trend_scal = scale(trend)) % > %
select(-c(price, speed, hd, ram, screen, ads, trend))

R base has a function to run the k mean algorithm. The basic function
of k mean is:

kmeans(df, k)

arguments:

-df: dataset used to run the algorithm
-k: Number of clusters

Train the model

In figure three, you detailed how the algorithm works. You can see
each step graphically with the great package build by Yi Hui (also
creator of Knit for Rmarkdown). The package animation is not
available in the conda library. You can use the other way to install the
package with install.packages("animation"). You can check if the
package is installed in our Anaconda folder.

install.packages("animation")

After you load the library, you add .ani after kmeans and R will plot all
the steps. For illustration purpose, you only run the algorithm with the
rescaled variables hd and ram with three clusters.

set.seed(2345)
library(animation)
kmeans.ani(rescale_df[2:3], 3)

Code Explanation

e kmeans.ani(rescale_df[2:3], 3): Select the columns 2 and 3 of
rescale_df data set and run the algorithm with k sets to 3. Plot the
animation.
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You can interpret the animation as follow:

¢ Step 1: R randomly chooses three points

e Step 2: Compute the Euclidean distance and draw the clusters.
You have one cluster in green at the bottom left, one large cluster
colored in black at the right and a red one between them.

e Step 3: Compute the centroid, i.e. the mean of the clusters

e Repeat until no data changes cluster

The algorithm converged after seven iterations. You can run the k-
mean algorithm in our dataset with five clusters and call it pc_ cluster.

pc_cluster <-kmeans(rescale_df, 5)

The list pc_ cluster contains seven interesting elements:
pc_cluster$cluster: Indicates the cluster of each observation
pc_cluster$centers: The cluster centres

pc_cluster$totss: The total sum of squares
pc_cluster$withinss: Within sum of square. The number of
components return is equal to "k’

e pc_cluster$tot.withinss: Sum of withinss



e pc_clusterbetweenss: Total sum of square minus Within sum of
square
e pc_cluster$size: Number of observation within each cluster

You will use the sum of the within sum of square (i.e. tot.withinss) to
compute the optimal number of clusters k. Finding k is indeed a
substantial task.

Optimal k

One technique to choose the best k is called the elbow method. This
method uses within-group homogeneity or within-group heterogeneity
to evaluate the variability. In other words, you are interested in the
percentage of the variance explained by each cluster. You can expect
the variability to increase with the number of clusters, alternatively,
heterogeneity decreases. Our challenge is to find the k that is beyond
the diminishing returns. Adding a new cluster does not improve the
variability in the data because very few information is left to explain.

In this tutorial, we find this point using the heterogeneity measure.
The Total within clusters sum of squares is the tot.withinss in the list
return by kmean().

You can construct the elbow graph and find the optimal k as follow:

e Step 1: Construct a function to compute the total within clusters
sum of squares

¢ Step 2: Run the algorithm times

e Step 3: Create a data frame with the results of the algorithm

e Step 4: Plot the results

Step 1) Construct a function to compute the total within clusters sum
of squares

You create the function that runs the k-mean algorithm and store the
total within clusters sum of squares



kmean_withinss <- function(k) {
cluster <- kmeans(rescale_df, k)
return (cluster$tot.withinss)

}
Code Explanation

e function(k): Set the number of arguments in the function

e kmeans(rescale_df, k): Run the algorithm k times

e return(cluster$tot.withinss): Store the total within clusters sum of
squares

You can test the function with equals 2.
Output:

## Try with 2 cluster

kmean_withinss(2)

Output:

## [1] 27087.07

Step 2) Run the algorithm n times

You will use the sapply() function to run the algorithm over a range of
k. This technique is faster than creating a loop and store the value.

# Set maximum cluster

max_k <-20

# Run algorithm over a range of k

wss <- sapply(2:max_k, kmean_withinss)

Code Explanation

e max_k <-20: Set a maximum number of to 20
e sapply(2:max_k, kmean_withinss): Run the function
kmean_ withinss() over a range 2:max_K, i.e. 2 to 20.

Step 3) Create a data frame with the results of the algorithm



Post creation and testing our function, you can run the k-mean
algorithm over a range from 2 to 20, store the tot.withinss values.

# Create a data frame to plot the graph
elbow <-data.frame(2:max_k, wss)

Code Explanation

e data.frame(2:max_Kk, wss): Create a data frame with the output of
the algorithm store in wss

Step 4) Plot the results

You plot the graph to visualize where is the elbow point

# Plot the graph with gglop

ggplot(elbow, aes(x = X2.max_k, y = wss)) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(1, 20, by = 1))
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From the graph, you can see the optimal k is seven, where the curve is
starting to have a diminishing return.

Once you have our optimal k, you re-run the algorithm with k equals
to 7 and evaluate the clusters.

Examining the cluster
pc_cluster_2 <-kmeans(rescale_df, 7)

As mention before, you can access the remaining interesting
information in the list returned by kmean().

pc_cluster_2%$cluster
pc_cluster_2%centers
pc_cluster_2$size

The evaluation part is subjective and relies on the use of the algorithm.
Our goal here is to gather computer with similar features. A computer
guy can do the job by hand and group computer based on his
expertise. However, the process will take lots of time and will be error
prone. K-mean algorithm can prepare the field for him/her by
suggesting clusters.

As a prior evaluation, you can examine the size of the clusters.

pc_cluster_2$size

Output:

## [1] 608 1596 1231 580 1003 699 542

The first cluster is composed of 608 observations, while the smallest
cluster, number 4, has only 580 computers. It might be good to have
homogeneity between clusters, if not, a thinner data preparation might
be required.

You get a deeper look at the data with the center component. The rows



refer to the numeration of the cluster and the columns the variables
used by the algorithm. The values are the average score by each cluster
for the interested column. Standardization makes the interpretation
easier. Positive values indicate the z-score for a given cluster is above
the overall mean. For instance, cluster 2 has the highest price average
among all the clusters.

center <-pc_cluster_2$centers
center

Output:

#i price_scal hd_scal ram_scal screen_scal ads_scal
trend_scal

## 1 -0.6372457 -0.7097995 -0.691520682 -0.4401632 0.6780366
-0.3379751

#H# 2 -0.1323863 0.6299541 0.004786730 2.6419582

-0.8894946 1.2673184

## 3 0.8745816 0.2574164 0.513105797 -0.2003237 0.6734261
-0.3300536

## 4 1.0912296 -0.2401936 0.006526723 2.6419582 0.4704301
-0.4132057

## 5 -0.8155183 0.2814882 -0.307621003 -0.3205176

-0.9052979 1.2177279

## 6 0.8830191 2.1019454 2.168706085 0.4492922

-0.9035248 1.2069855

## 7 0.2215678 -0.7132577 -0.318050275 -0.3878782 -1.3206229
-1.5490909

You can create a heat map with ggplot to help us highlight the
difference between categories.

The default colors of ggplot need to be changed with the RColorBrewer
library. You can use the conda library and the code to launch in the
terminal:

conda install -c r r-rcolorbrewer
To create a heat map, you proceed in three steps:

e Build a data frame with the values of the center and create a



variable with the number of the cluster

e Reshape the data with the gather() function of the tidyr library.
You want to transform data from wide to long.

e Create the palette of colors with colorRampPalette() function

Step 1) Build a data frame

Let's create the reshape dataset
library(tidyr)
# create dataset with the cluster number

cluster <- c(1: 7)
center_df <- data.frame(cluster, center)

# Reshape the data
center_reshape <- gather(center_df, features, values,

price_scal: trend_scal)
head(center_reshape)

Output:

##  cluster features values
## 1 1 price_scal -0.6372457
#it 2 2 price_scal -0.1323863
## 3 3 price_scal 0.8745816
## 4 4 price_scal 1.0912296
## 5 5 price_scal -0.8155183
## 6 6 price_scal 0.8830191
Step 2) Reshape the data

The code below create the palette of colors you will use to plot the heat
map.

library(RColorBrewer)

# Create the palette

hm.palette <-colorRampPalette(rev(brewer.pal(10,
'RAY1Gn')), space="Lab")



Step 3) Visualize

You can plot the graph and see what the clusters look like.

# Plot the heat map
ggplot(data = center_reshape, aes(x = features, y = cluster,
fill = values)) +
scale_y_continuous(breaks = seq(1, 7, by = 1)) +
geom_tile() +
coord_equal() +
scale_fill gradientn(colours = hm.palette(90)) +
theme_classic()

values

cluster
=

ads scal hd_scaprimlscahmls@ree F‘l_shdndl_sn::al
features

Summary

We can summarize the k-mean algorithm in the table below

Package Objective function argument

| I | I



base Train k-mean kmeans() df, k
Access cluster kmeans()$cluster
Cluster centers kmeans()$centers

Size cluster

kmeans()$size




Chapter 32: R Vs Python:
What’s the Difference?

R and Python are both open-source programming languages with a
large community. New libraries or tools are added continuously to
their respective catalog. R is mainly used for statistical analysis while
Python provides a more general approach to data science.

R and Python are state of the art in terms of programming language
oriented towards data science. Learning both of them is, of course, the
ideal solution. R and Python requires a time-investment, and such
luxury is not available for everyone. Python is a general-purpose
language with a readable syntax. R, however, is built by statisticians
and encompasses their specific language.

R

Academics and statisticians have developed R over two decades. R has
now one of the richest ecosystems to perform data analysis. There are
around 12000 packages available in CRAN (open-source repository).
It is possible to find a library for whatever the analysis you want to
perform. The rich variety of library makes R the first choice for
statistical analysis, especially for specialized analytical work.

The cutting-edge difference between R and the other statistical
products is the output. R has fantastic tools to communicate the
results. Rstudio comes with the library knitr. Xie Yihui wrote this
package. He made reporting trivial and elegant. Communicating the
findings with a presentation or a document is easy.

Python



Python can pretty much do the same tasks as R: data wrangling,
engineering, feature selection web scrapping, app and so on. Python is
a tool to deploy and implement machine learning at a large-scale.
Python codes are easier to maintain and more robust than R. Years
ago; Python didn't have many data analysis and machine learning
libraries. Recently, Python is catching up and provides cutting-edge
API for machine learning or Artificial Intelligence. Most of the data
science job can be done with five Python libraries: Numpy, Pandas,
Scipy, Scikit-learn and Seaborn.

Python, on the other hand, makes replicability and accessibility easier
than R. In fact, if you need to use the results of your analysis in an
application or website, Python is the best choice.

Popularity index

The IEEE Spectrum ranking is a metrics that quantify the popularity
of a programming language. The left column shows the ranking in
2017 and the right column in 2016. In 2017, Python made it at the first

place compared to a third rank a year before. R is in 6 place.
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Job Opportunity

The picture below shows the number of jobs related to data science by
programming languages. SQL is far ahead, followed by Python and

Java. R ranks 5.



If we focus on the long-term trend between Python (in yellow) and R
(blue), we can see that Python is more often quoted in job description
than R.

Analysis done by R and Python

However, if we look at the data analysis jobs, R is by far, the best tool.
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Percentage of people switching

There are two keys points in the picture below.

e Python users are more loyal than R users
e The percentage of R users switching to Python is twice as large as
Python to R.
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Difference between R and Python
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Objective

Primary Users
Flexibility

Learning curve
Popularity of

Programming Language.

Percentage change
Average Salary
Integration

Task

Database size
IDE

Important Packages and
library

Disadvantages

Advantages

Data analysis and
statistics

Scholar and R&D

Easy to use available
library

Difficult at the beginning
4.23% in 2018

$99.000
Run locally

Easy to get primary
results

Handle huge size
Rstudio

tydiverse, ggplot2, caret,
Z00

Slow High Learning curve

Dependencies between
library

e Graphs are made to
talk. R makes it
beautiful

e Large catalog for
data analysis

e GitHub interface

e RMarkdown

e Shiny

R or Python Usage

Deployment and production

Programmers and developers

Easy to construct new models from
scratch. I.e., matrix computation and
optimization

Linear and smooth

21.69% in 2018
$100.000
Well-integrated with app

Good to deploy algorithm

Handle huge size
Spyder, Ipthon Notebook

pandas, scipy, scikit-learn, TensorFlow,
caret

Not as many libraries as R

Jupyter notebook: Notebooks
help to share data with
colleagues

Mathematical computation
Deployment

Code Readability

Speed

Function in Python

Python has been developed by Guido van Rossum, a computer guy,
circa 1991. Python has influential libraries for math, statistic and
Artificial Intelligence. You can think Python as a pure player in
Machine Learning. However, Python is not entirely mature (yet) for
econometrics and communication. Python is the best tool for Machine
Learning integration and deployment but not for business analytics.



The good news is R is developed by academics and scientist. It is
designed to answer statistical problems, machine learning, and data
science. R is the right tool for data science because of its powerful
communication libraries. Besides, R is equipped with many packages
to perform time series analysis, panel data and data mining. On the
top of that, there are not better tools compared to R.

In our opinion, if you are a beginner in data science with
necessary statistical foundation, you need to ask yourself
following two questions:

e Do I want to learn how the algorithm work?
e Do I want to deploy the model?

If your answer to both questions is yes, you'd probably begin to learn
Python first. On the one hand, Python includes great libraries to
manipulate matrix or to code the algorithms. As a beginner, it might
be easier to learn how to build a model from scratch and then switch to
the functions from the machine learning libraries. On the other hand,
you already know the algorithm or want to go into the data analysis
right away, then both R and Python are okay to begin with. One
advantage for R if you're going to focus on statistical methods.

Secondly, if you want to do more than statistics, let's say deployment
and reproducibility, Python is a better choice. R is more suitable for
your work if you need to write a report and create a dashboard.

In a nutshell, the statistical gap between R and Python are getting
closer. Most of the job can be done by both languages. You'd better
choose the one that suits your needs but also the tool your colleagues
are using. It is better when all of you speak the same language. After
you know your first programming language, learning the second one is
simpler.

Conclusion

In the end, the choice between R or Python depends on:



e The objectives of your mission: Statistical analysis or deployment
¢ The amount of time you can invest
¢ Your company/industry most-used tool



Chapter 33: SAS vs R: What's
the Difference?

What is SAS?

SAS stands for Statistical Analysis Software which is used for Data
Analytics. It helps you to use qualitative techniques and processes
which allows you to enhance employee productivity and business
profits. SAS is pronounced as SaaS.

In SAS, data is extracted & categorized which helps you to identify and
analyze data patterns. It is a software suite which allows you to
perform advanced analysis, Business Intelligence, Predictive Analysis,
data management to operate effectively in the competitive & changing
business conditions. Moreover, SAS is platform independent which
means you can run SAS on any operating system either Linux or
Windows.

What is mean by R?

R is a programming language is widely used by data scientists and
major corporations like Google, Airbnb, Facebook etc. for data
analysis.

R language offers a wide range of functions for every data
manipulation, statistical model, or chart which is needed by the data
analyst. R offers inbuilt mechanisms for organizing data, running
calculations on the given information and creating graphical
representations of that data sets.
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Why use SAS?

e Access raw data files and data in external database

e Analyze data using statics, descriptive, multivariate techniques,
forecasting, modeling, and linear programming

e Helps you to manage data entry, formatting, conversion, editing &
retrieval

e Advanced analytics feature allows you to make changes and
improvements in business practices

e Helps businesses to know about their historical data

Why use R?

¢ R offers a useful programming constructs for data analytics like
conditionals, loops, input and output facilities, user-defined
recursive functions, etc.

e R has arich and expanding ecosystem and plenty of
documentation available over the internet

e You can run this tool on a variety of platforms including
Windows, Unix, and MacOS



e Good graphics capabilities Supported by an extensive user
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History of SAS

SAS was developed by Jim Goodnight and John Shall in 1970 at
N.C. University

Initially, it was developed for Agricultural Research.

Later, it expanded to a gamut of tools to include Predictive
Analytics, Data Management, BI among others.

Today 98 of world's top companies in fortune 400 uses SAS data
analytical tool for Data analysis.



History of R

1993- R is a programming language developed by Ross Thaka and
Robert Gentleman

1995: R first distributed as an open-source tool under GPL2
license

1997: R core group and CRAN founded

1999: The R website, r-project.org, launched

2000: R 1.0.0 released

2004: R 2.0.0 released

2009: First edition of the R Journal

2013: R 3.0.0 released

2016: New R logo adopted

SAS Vs. R

Vs

Parameters SAS R
Availability / | SAS is commercial software, so it R is open source software, So, anyone
Cost needs a financial investment. can use it.

AS is th i Istol . . .
Ease of SAS s the easiest tools to learn. So, R programmers need to write tedious

people with limited knowledge of SQL

Learning can learn it easily. and lengthy codes.

R is an open source tool which allows
. SAS offers a powerful package which | users to submit their own
Statistical S . . .
. offers all types of statistical analysis | packages/libraries. The latest
Abilities ; . .
and techniques. technologies are often released in R

first.

File Sharing ||with another user who does not use

You can't share SAS generated files . .\ .
Since anyone uses T, it is much easier to

SAS. share files with another user.



Updates

Market Share

Graphical
Capabilities

Customer

Support

Support for
Deep
learning

Job Scenario

Salary Range

Best features

Famous
companies
using
TIOBE
Rating

4. R1s an open source tool, so it is

SAS relatively less frequently update ‘
continuously updated.

Currently, SAS is facing stiff R has seen exponential growth in the
competition from R, and other Data |last past five years with its increasing

analytical tool as a result market share popularity. That is why its market

of SAS is gradually declining. share is increasing rapidly.

SAS has good graphical support.

However, it does not offer any Graphical support of R tool is poor.
customization.

SAS provides dedicated customer R has the biggest online communities
support. but no customer service support.

Deep Learning in SAS is still in its
early stages, and there's a lot to work
for before it matures.

SAS analytic tool is still the market

leader as far as corporate jobs are Jobs on R have been reported to
concerned. Many big companies still |increase over the last few years.
work on SAS.

R offers advanced deep learning
integrations.

The average salary for "R"

The average salary for any SAS programmer” ranges from

{)ﬁg%‘asm;n er is $81,560 per year in approximately $127,937 per year for
e Data Scientist to $147,189 per year.
: Xq&;l}'{lie;t;les e Data apalysis '
e Nested rules . Graph}cs and da’ga Flexible
e Maintainable St.atlstl(%al analygs
e Functions e Highly interactive

Airbnb, StacShare, Asana, Hubspot | Instacart, Adroll, Opbandit, Custora

22 16

Feature of R

Offers

R helps you to connect to many databases and data types
A large number of algorithms and packages for statistics flexible

effective data handling and storage facility

Collect and analyze social media data
Train machines to make predictions



Scrape data from websites

A comprehensive and integrated collection of intermediate tools
for data analysis

Interface with other languages and scripting capabilities
Flexible, extensible and comprehensive for productivity

Ideal platform for data visualization

Features of SAS

Operations Research and project Management
Report formation with standard graphics

Data updating and modification

Powerful Data handling language

Read and write almost any data format

Best data cleansing functions

Allows you to Interact with multiple host systems

The Final Verdict

After comparing some main differences between both these tools, we
can say that both have their own set of users. There are many
companies, who prefer SAS because of data security issues, which
show despite a drop in a recent year, there is still a huge demand for
SAS certified professionals.

On the other hand, R is an ideal tool for those professionals who want
to do deep cost-effective Data analytics job. Numbers of startup
companies are increasing all over the world. Therefore, the demand
for R certified developers are also increasing. Currently, both have the
equal potential for growth in the market, and both are equally popular
tools.
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