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Learn R

Learning a computer language like R can be either frustrating, fun or boring. Having fun re-
quires challenges that wake up the learner’s curiosity but also provide an emotional reward for
overcoming them. The book is designed so that it includes smaller and bigger challenges, in
what I call playgrounds, in the hope that all readers will enjoy their path to R fluency. Fluency
in the use of a language is a skill that is acquired through practice and exploration. For students
and professionals in the biological sciences, humanities and many applied fields, recognizing the
parallels between R and natural languages should help them feel at home with R. The approach
I use is similar to that of a travel guide, encouraging exploration and describing the available al-
ternatives and how to reach them. The intention is to guide the reader through the R landscape
of 2024 and beyond.

What is new in the second edition?

o Text expanded by more than 25% to include additional R features and gentler and more de-
tailed explanations

e Contains 24 new diagrams and flowcharts, seven new tables, and revised text and code ex-
amples for clarity

e All three indexes were expanded, and answers to 28 frequently asked questions added

What will you find in this book?

Programming concepts explained as they apply to current R

Emphasis on the role of abstractions in programming

Few prescriptive rules—mostly the author’s preferences together with alternatives
Presentation of the R language emphasizing the “R way of doing things”

Tutoring for “programming in the small” using scripts for data analysis

Explanation of the differences between R proper and extensions for data wrangling

The grammar of graphics is described as a language for the construction of data visualisations
Examples of data exchange between R and the foreign world using common file formats
Coaching to become an independent R user, capable of writing original scripts and solving
future challenges

Pedro J. Aphalo is a PhD graduate from the University of Edinburgh, currently a senior lecturer
at the University of Helsinki. He is a plant biologist and agriculture scientist with a passion for
data, electronics, computers, and photography, in addition to plants. He has been a user of R for
28 years, who first organized an R course for MSc students 21 years ago and is the author of 14
R packages currently in CRAN.
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Preface

Suppose that you want to teach the ‘cat’ concept to a very young child.
Do you explain that a cat is a relatively small, primarily carnivorous
mammal with retractible claws, a distinctive sonic output, etc.? I'll bet
not. You probably show the kid a lot of different cats, saying ‘kitty’
each time, until it gets the idea. To put it more generally, generalisa-
tions are best made by abstraction from experience.

R. P. Boas
Can we make mathematics intelligible?, 1981

Why did I choose “Learn R: As a Language” as the title? This book is based on
exploration and practice that aims at teaching how to express various operations
on data using the R language. It focuses on the language, rather than on specific
types of data analysis, exposes the reader to current usage, and does not spare
the quirks of the language. When we use our native language in everyday life, we
do not think about grammar rules or sentence structure, except for the trickier or
unfamiliar situations. My aim is for this book to help readers learn to use R in this
same way, i.e., to become fluent in R. The book is structured around the elements
of natural languages like English with chapter titles that highlight the parallels
between them and the R language.

Learn R: As a Language is different from other books about R in that it em-
phasises the learning of the language itself, rather than how to use it to address
specific data analysis tasks. My aim has been to enable readers to use R to im-
plement original solutions to the data analysis and data visualisation tasks they
encounter. The use of quantitative methods and data analysis has become more
frequent in fields with limited long-term tradition in their use, like humanities, or,
the complexity of the methods used has dramatically increased, like in Biology.
Such trends can be expected to continue in the future.

Currently, many students of biological and environmental sciences learn to use
R in courses about statistics or data analysis. However, this is frequently not in
enough depth to effectively use R in scripts for automating data analyses or to
ensure their reproducibility. There are also many researchers in various fields who
are already familiar with statistical principles and willing to switch from other
software to R. Learn R: As a Language is written with these readers in mind to
serve both as a textbook and as a reference.

XV



xXvi Preface

A language is a system of communication. Basic concepts and operations are
based on abstractions that are shared across programming languages and relevant
to programs of all sizes and complexities; these abstractions are explained in the
book together with their implementation in the R language. Other abstractions and
programming concepts, outside the scope of this book, are relevant to large and
complex pieces of software meant to be widely distributed. In other words, Learn R:
As a Language aims at teaching and supporting programming in the small: the use
of R to automate the drudgery of data manipulation, including the different steps
spanning from data input and exploration to the production of publication-ready
illustrations and reproducible data-based reports.

Using a language actively is the most efficient way of learning it. By using it,
I mean actually reading, writing, and running scripts or programs. Learn R: As a
Language supports learning the R language in a way comparable to how children
learn to speak: they work out what the rules are, simply by listening to people speak
and trying to utter what they want to tell their parents. Of course, small children
also receive guidance through feedback, but they are not taught a prescriptive
set of rules like when learning a second language at school. Instead of listening,
readers will read and run code, and instead of speaking, readers will write and try
to run R-language code on a computer. I do provide explanations and guidance, as
understanding how R works greatly helps with its use. However, the approach I
encourage in this book is for readers to play with the numerous examples and to
create variations upon them, to find out by themselves the patterns behind the R
language. Instead of parents being the sounding board for the first utterances of
readers new to R, the computer will play this role. Although working through the
examples in Learn R: As a Language in a group of peers or in class is beneficial,
the book is designed to be useful also in the absence of such support.

Changes in the second edition:

I edited the text from the first edition to correct all errors and outdated examples
or explanations known to me. This revised second edition reflects changes in R and
the contributed packages used in the book. Very little of the code from the first
edition had stopped working but deprecations meant that a few examples triggered
messages or warnings, and will eventually fail. Recent (> 4.0.0) versions of R have
significant enhancements, including the new pipe operator described and used in
this second edition. Packages have also evolved, acquiring new features like a new
approach to flipping plots in ‘ggplot2’.

I have aimed at making the book more accessible to readers with no previous
experience in computer programming. Feedback from readers and reviewers high-
lighted a few gaps in the content and some difficult-to-follow explanations. I re-
vised the text, in some cases changing the sequence of presentation. I added dia-
grams to illustrate the structure of different types of objects and flowcharts to de-
scribe how program constructs work. I added tables listing groups of related func-
tions. New sections cover character string operations, and details of data wrangling
in R. Some of the most frequently asked questions about R are answered in the text
and separately indexed. All exercises or “playgrounds” are numbered to facilitate
their use as class work and the sharing of model answers. As the first edition has
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been frequently found useful as a reference, I expanded the already thorough in-
dexing and added more cross-references connecting related sections across the
whole book.

An additional change is in my view about packages ‘dplyr’ and ‘tidyr’, part of the
‘tidyverse’. T have come to think that the rate of development of these two packages
can make them difficult for users for whom data analysis is just one aspect of their
occupation. As these packages are widely used, I emphasise more than in the first
edition the differences between functions and classes from packages ‘dplyr’ and
‘tidyr’ and equivalent ones from base R. I added a section on working with dates
and times using the ‘lubridate’ package. I updated and reorganised the chapter
describing package ‘ggplot2’ and some of its extensions.

In numbers, the page count has increased by 27%, the number of figures from
eight to twenty-six plus nine in-text diagrams, and tables from none to seven. As for
the design, text boxes have been replaced by call-outs marked with marginal bars.
In addition, starting from version 2.0.0, the ‘learnrbook’ package supports the first
and second editions of the book. It contains data, scripts, and all the code examples
from both editions. It also helps with the installation of all the packages used
in the book. The website at https://www.Tearnr-book.info/ provides updated
open-access content.
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Using the Book to Learn R

The important part of becoming a programmer is learning to think like
a programmer. You don’t need to know the details of a programming
language by heart, you can just look that stuff up.

The treasure is in the structure, not the nails.

P. Burns
Tao Te Programming, 2012

1.1 Aims of This Chapter

In this chapter, I describe how I imagine the book can be used most effectively
to learn the R language. Learning R and remembering what one has previously
learnt and forgotten makes it also necessary to use this book and other sources as
references. Learning to use R effectively also involves learning how to search for
information and how to ask questions from other users, for example through on-
line forums. Thus, I also give advice on how to find answers to R-related questions
and how to use the available documentation.

1.2 Approach and Structure

Depending on previous experience, reading Learn R: As a Language will be about
exploring a new world or revisiting a familiar one. In both cases this book aims to
be a travel guide, neither a traveller’s account nor a cookbook of R recipes. It can
be used as a course book, supplementary reading or for self-instruction, and also
as a reference. My hope is that as a guide to the use of R, this book will remain
useful to readers as they gain experience and develop skills.

I encourage readers to approach R like a child approaches his or her mother tongue
when learning to speak: do not struggle, just play, and fool around with R! If the

DOI:10.1201/9781003404187-1 1


https://doi.org/10.1201/9781003404187-1

2 Using the Book to Learn R

going gets difficult and frustrating, take a break! If you get a new insight, take a
break to enjoy the victory!

In R, like in most “rich” languages, there are multiple ways of coding the same
operations. I have included code examples that aim to strike a balance between
execution speed and readability. One could write equivalent R books using sub-
stantially different code examples. Keep this in mind when reading the book and
using R. Keep also in mind that it is impossible to remember everything about R,
and as a user you will frequently need to consult the documentation, even while
doing the exercises in this book. The R language, in a broad sense, is vast because it
can be expanded with independently developed packages. Learning to use R mainly
consists of learning the basics plus developing the skill of finding your way in R,
its documentation and on-line question-and-answer forums.

Readers should not aim to remember all the details presented in the book. This
is impossible for most of us. Later use of this and other books, and documenta-
tion effectively as references, depends on a good grasp of a broad picture of how
R works and on learning how to navigate the documentation; i.e., it is more import-
ant to remember abstractions and in what situations they are used, and function
names, than the details of how to use them. Developing a sense of when one needs
to be careful not to fall into a “language trap” is also important.

The book can be used both as a textbook for learning R and as a reference.
It starts with simple concepts and language elements progressing towards more
complex language structures and uses. Along the way readers will find, in each
chapter, descriptions and examples of the common (usual) cases and the excep-
tions. Some books hide the exceptions and counterintuitive features from learners
to make the learning easier; I instead have included these but marked them using
icons and marginal bars. There are two reasons for choosing this approach. First,
the boundary between boringly easy and frustratingly challenging is different for
each of us, and varies depending on the subject dealt with. So, I hope the marks
will help readers predict what to expect, how much effort to put into each section,
and even what to read and what to skip. Second, if I had hidden the tricky bits of
the R language, I would have made later use of R by the readers more difficult. It
would have also made the book less useful as a reference.

The book contains many code examples as well as exercises. I expect readers
will run code examples and try as many variations of them as needed to develop
an understanding of the “rules” of the R language, e.g., how the function or feature
exemplified works. This is what long-time users of R do when facing an unfamiliar
feature or a gap in their understanding.

Readers who are new to R should read at least chapters 2 to 6 sequentially.
Possibly, skipping parts of the text and exercises marked as advanced. However, I
expect to be most useful to these readers not to completely skip the description
of unusual features and special cases but rather to skim enough from them so as
to get an idea of what special situations they may face as R users. Exercises should
not be skipped, as they are a key component of the didactic approach used.

Readers already familiar with R will be able to read the chapters in the book in
any order, as the need arises. Marginal bars and icons, and the back and forward
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cross-references among sections, make possible for readers to find a good path
within the book both when learning R and when using the book as a reference.

I expect Learn R: As a Language to remain useful as a reference to those readers
who use it to learn R. It will also be useful as a reference to readers already familiar
with R. To support the use of the book as a reference, I have been thorough with
indexing, including many carefully chosen terms, their synonyms, and the names
of all R objects and constructs discussed, collecting them in three alphabetical
indexes: General index, Index of R names by category, and Alphabetic index of R
names starting at pages 429, 446 and 438, respectively. I have also included back
and forward cross-references linking related sections throughout the whole book.

1.3 Typographic and Naming Conventions
1.3.1 Call-outs

Marginal bars and icons are used in the book to inform about what content is
advanced or included with a specific aim. The following icons and colours are used.

Signals in-depth explanations of specific R features or general programming
concepts. Several of these explanations make reference to programming concepts
or features of the R language that are explained later in the book. Readers new to
R and computer programming can safely skip these call-outs on the first reading
of the book. To become proficient in the use of R these readers are expected to
return at a later time without hurry, preferably with a cup of coffee or tea to these
call-outs. Readers with more experience, like those possibly reading individual
chapters or using the book as a reference, will find these in-depth explanations
useful.

Signals important bits of information that must be remembered when using
R—i.e., explanations of some unusual, but important, feature of the language or
concepts that in my experience are easily missed by those new to R.

ﬂ Frequently asked question

Signals my answer to a question that I expect to be useful to readers based on the
popularity of similar or related questions posted in online forums. When reading
through the book, they highlight things that are worth special attention. When
using the book as a reference, they help find solutions to frequently encountered
difficulties. Index on page 446.

1.1 Signals a playground containing open-ended exercises—ideas and pieces
of R code to play with at the R console. I expect readers to run these examples
both as is and after creating variations by editing the code, studying the output,
or diagnosis messages, returned by R in each case. Numbered by chapter for easy
reference.

I 1.2 Signals an advanced playground that requires more time to play with be-
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fore grasping concepts than regular playgrounds. Numbered by chapter together
with other playgrounds.

1.3.2 Code conventions and syntax highlighting

Small sections of program code interspersed within the main text, receive the name
of code chunks. In this book R code chunks are typeset in a typewriter font, using
colour to highlight the different elements of the syntax, such as variables, func-
tions, constant values, etc. The command line prompts (> and +) are not displayed
in the chunks. R code elements embedded in the text are similarly typeset but
always black. For example, in the code chunk below, mean() and print() are func-
tions; 1, 5, and 3 are constant numeric values, and z is the name of a variable where
the result of the computation done in the first line of code is stored. The line start-
ing with ## shows what is printed or shown when executing the second statement:
[1] 1.In the book, ## is used as a marker to signal output from R, it is not part of
the output. As # is the marker for comments in the R language, prepending # to the
output makes it possible to copy and paste into the R console the whole contents
of the code chunks as they appear in the book.

z <- mean(1, 5, 3)
print(z)
## [1] 1

When explaining general concepts I use short abstract names, while for real-life
examples I use descriptive names. Although not required, for clarity, I use abstract
names that hint at the structure of objects stored, such as matl for a matrix, vct4
for a vector and df3 for a data frame. This convention resembles that followed by
the base R documentation.

Code in playgrounds either works in isolation, or when it depends on objects
created in the examples in the main text, this is mentioned within the playground.
In playgrounds I use names in capital letters so that they are distinct. The code
outside playgrounds does reuse objects created earlier in the same section, and
occasionally in earlier sections of the same chapter.

1.3.3 Diagrams

To describe data objects, I use diagrams similar to Joseph N. Hall’s PEGS (Perl
Graphical Structures) (Hall and Schwartz 1997). I use colour fill to highlight the
type of the stored objects. I use the “signal” sign for the names of whole objects
and of their component members, the former with a thicker border. Below is an
example from chapter 3.

First index element at index 9

2 3 4 5 6 7 8 \9 10 — positional indices
<name> ) - — Members or <values>
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To describe code structure, I use diagrams based on boxes and arrows, while to
describe the flow of code execution I use traditional flow charts.

In the different diagrams, I use the notation <value>, <statement>, <name>, etc.,
as generic placeholders indicating any valid value, any valid R statement, any valid
R name, etc.

1.4 Finding Answers to Problems
1.4.1 What are the options?

First of all, do not panic! Every programmer, even those with decades of experience,
gets stuck with problems from time to time and can run out of ideas for a while.
This is normal and happens to all of us.

It is important to learn how to find answers as part of the routine of using R. We
should start by reading the documentation of the function or object that we are
trying to use, which in many cases also includes examples. R’s help pages tell how
to use individual functions or objects. In contrast, R’s manual An Introduction to R,
and other books describe what functions or overall approaches to use for different
tasks.

Reading the documentation and books not always helps. Sometimes one can
become blind to the obvious, by being too familiar with a piece of code, as it also
happens when writing in a natural language like English. A second useful step is,
thus, looking at the code with “different eyes”, those of a friend or workmate, or
your own eyes a day or a week later.

One can also seek help in specialised online forums or from peers or “local
experts”. If searching in forums for existing questions and answers fails to yield a
useful answer, one can write a new question in a forum.

When searching for answers, asking for an advice, or reading books, one can be
confronted with different ways of approaching the same tasks. Do not allow this to
overwhelm you; in most cases, it will not matter which approach you use as many
computations can be done in R, as in any computer language, in several different
ways, still obtaining the same result. Use the alternative that you find easier to
understand.

1.4.2 R’s built-in help

Every object available in base R or exported by an R extension package (functions,
methods, classes, and data) is documented in R’s help system. Sometimes a single
help page documents several R objects. Not only help pages are always available,
but they are structured consistently with a title, short description, and frequently
also a detailed description. In the case of functions, parameter names, their pur-
pose, and expected arguments are always described, as well as the returned value.
Usually at the bottom of help pages, several examples of the use of the objects or
functions are given. How to access R help is described in section 2.3 on page 12.
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In addition to help pages, R’s distribution includes useful manuals as PDF
or HTML files. These manuals are also available at https://rstudio.github.io/
r-manuals/ restyled for easier reading in web browsers. In addition to help pages,
many packages, contain vignettes such as user guides or articles describing the al-
gorithms used and/or containing use case examples. In the case of some packages,
aweb site with documentation in HTML format is also available. Package document-
ation can be also found in repositories like the Comprehensive R Archive Network,
better known as CRAN. From CRAN it is possible to download R and many exten-
sions to it. The DESCRIPTION file of each R package provides contact information
for the maintainer, links to web sites, and instructions on how to report bugs. Sim-
ilar information plus a short description are frequently also available in a README
file.

Error messages tend to be terse in R, and may require some lateral thinking
and/or “experimentation” to understand the real cause behind problems. Learning
to interpret error messages is necessary to become a proficient user of R, so forcing
errors and warnings with purposely written “bad” code is a useful exercise.

1.4.3 Online forums
Netiquette

When posting requests for help, one needs to abide by what is usually described as
“netiquette”, which in many respects also applies to asking in person or by e-mail
for help from a peer or local expert. Preference among sources of information
depends on what one finds easier to use. Consideration towards others’ time is
necessary but has to be balanced against wasting too much of one’s own time.

In most internet forums, a certain behaviour is expected from those asking and
answering questions. Some types of misbehaviour, such as the use of offensive or
inappropriate language, will usually result in the user losing writing rights in a
forum. Occasional minor misbehaviour usually results in the original question not
being answered and, instead, the problem highlighted in a comment. In general,
following the steps listed below will greatly increase your chances of getting a
detailed and useful answer.

e Do your homework: first search for existing answers to your question, both
online and in the documentation. (Do mention that you attempted this without
success when you post your question.)

e Provide a clear explanation of the problem, and all the relevant information. The
version of R, operating system, and any packages loaded and their versions can
be important.

e If at all possible, provide a simplified and short, but self-contained, code ex-
ample that reproduces the problem (sometimes called a reprex).

e Be polite.

e Contribute to the forum by answering other users’ questions when you know
the answer.
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Carefully preparing a reproducible example (“reprex”) is crucial. A reprexis a
self-contained and as simple as possible piece of computer code that triggers (and
so demonstrates) a problem. If possible, when data are needed, a data set included
in base R or artificial data generated within the reprex code should be used. If the
problem can only be reproduced with one’s own data, then one needs to provide
a minimal subset of it that still triggers the problem.

While preparing a reprex one has to simplify the code, and sometimes this step
makes clear the nature of the problem. Always, before posting a reprex online,
check it with the latest versions of R and any package being used. If sharing data,
be careful about confidential information and either remove or mangle it.

I must say that about two out of three times I prepare a reprex, it allows me to
find the root of the problem and a solution or a work-around on my own. Preparing
a reprex takes some effort but it is worthwhile even if it ends up not being posted
online.

R package ‘reprex’ and its RStudio add-in simplify the creation of reproducible
code examples, by creating and copying to the clipboard a reprex encoded in Mark-
down and ready to be pasted into a question at StackOverflow or an issue at GitHub.
See https://reprex.tidyverse.org/ for details.

StackOverflow

Nowadays, StackOverflow (http://stackoverflow.com/) is the best question-and-
answer (Q&A) support site for R. Within the StackOverflow site there is an R col-
lective. In most cases, searching for existing questions and their answers will be
all that you need to do. If asking a question, make sure that it is really a new ques-
tion. If there is some question that looks similar, make clear how your question is
different.

StackOverflow has a user-rights system based on reputation, and questions and
answers can be up- and down-voted. Questions with the most up-votes are listed
at the top of searches, and the most-voted answers to each question are also dis-
played first. Those who ask a question are expected to accept correct answers
to help future readers. If the questions or answers one writes are up-voted or if
answers are accepted one gains reputation (expressed as a number). As one accu-
mulates reputation, one gets badges and additional rights, such as editing other
users’ questions and answers or later on, even deleting wrong answers or off-topic
questions from the system. This sounds complicated, but works extremely well at
ensuring that the base of questions and answers is relevant and correct, without
relying heavily on nominated moderators. When using StackOverflow, do contrib-
ute by accepting correct answers, up-voting questions and answers that you find
useful, down-voting those you consider poor, and flagging or correcting errors you
may discover.

Being careful in the preparation of a reproducible example is important in two
situations: 1) when asking a question at StackOverflow or other online forums and
2) when reporting a bug to the maintainer of any piece of software. For the question
to be reliably answered or the problem to be fixed, the person answering a question,
needs to be able to reproduce the problem, and after modifying the code, needs
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to be able to test if the problem has been solved or not. However, even if you are
facing a problem caused by your misunderstanding of how R works, the simpler
the example, the more likely that someone will quickly realise what your intention
was when writing the code that produces a result different from what you expected.
Even when it is not possible to create a reprex, one needs to ask clearly only one
thing per question.

The code of conduct (https://stackoverflow.com/conduct) and help that ex-
plains expected behaviour (https://stackoverflow.com/help) are available at the
site and worthwhile reading before using the site actively for the first time.

Contacting the author

The best way to get in contact with me about this book is by raising an issue at
https://github.com/aphalo/learnr-book-crc/issues. Issues can be used both
to ask for support questions related to the book, report mistakes and suggest
changes to the text, diagrams and/or example code. Edits to the manuscript of
this book can be submitted as a pull request.

Issues are raised by filling-in an online form, on a web page that also contains
brief instructions. Git issues are a very efficient way of keeping track of corrections
that need to be done. As support questions usually reveal unclear explanations or
other problems, raising issues to ask them facilitates the tasks of improving and
keeping the book up-to-date.

1.5 Further Reading

To understand what programming as an activity is, you can read Tao Te Program-
ming (Burns 2012). It will make easier the learning of programming in R, both
practically and emotionally. In Burns’s words “This is a book about what goes on
in the minds of programmers”.
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R: The Language and the Program

In a world of ... relentless pressure for more of everything, one can
lose sight of the basic principles—simplicity, clarity, generality—that
form the bedrock of good software.

Brian W. Kernighan and Rob Pike
The Practice of Programming, 1999

2.1 Aims of This Chapter

I share some facts about the history and design of the R language so that you
can gain a good vantage point from which to grasp the logic behind R’s features,
making it easier to understand and remember them. You will learn the distinction
between the R program itself and the front-end programes, like RStudio, frequently
used together with R.

You will also learn how to interact with R when sitting at a computer. You will
learn the difference between typing commands interactively and reading each par-
tial result from R on the screen as you enter them, versus using R scripts containing
multiple commands stored in a file to execute or run a “job” that saves results to
another file for later inspection.

I describe the steps taken in a typical scientific or technical study, including the
data analysis workflow and the roles that R can play in it. I share my views on the
advantages and disadvantages of textual command languages such as R compared
to menu-driven user interfaces, frequently used in other statistics software. I dis-
cuss the role of textual languages and literate programming in the very important
question of the reproducibility of data analyses and mention how I have used them
while writing and typesetting this book.
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2.2 Whatis R?
2.2.1 R as alanguage

R is a computer language designed for data analysis and data visualisation, how-
ever, in contrast to some other scripting languages, it is, from the point of view
of computer programming, a complete language—it is not missing any import-
ant feature. In other words, no fundamental operations or data types are lacking
(Chambers 2016). I attribute much of its success to the fact that its design achieves
a very good balance between simplicity, clarity, and generality. R excels at gener-
ality, thanks to its extensibility at the cost of only a moderate loss of simplicity,
while clarity is ensured by enforced documentation of extensions and support for
both object-oriented and functional approaches to programming. The same three
principles can be also easily followed by user code written in R.

In the case of languages like C++, C, Pascal, and FORTRAN, multiple software im-
plementations exist (different compilers and interpreters, i.e., pieces of software
that translate programs encoded in these languages into machine code instruc-
tions for computer processors to run). So in addition to different flavours of each
language stemming from different definitions, e.g., versions of international stand-
ards, different implementations of the same standard may have, usually small, un-
intentional and intentional differences.

Most people think of R as a computer program, similar to SAS or SPSS. R is
indeed a computer program—a piece of software—but it is also a computer lan-
guage, implemented in the R program. At the moment, this difference is not as
important as for other languages because the R program is the only widely used
implementation of the R language.

R started as a partial implementation of the then relatively new S language
(Becker and Chambers 1984; Becker et al. 1988). When designed, S, developed at
Bell Labs in the U.S.A., provided a novel way of carrying out data analyses. S evolved
into S-Plus (Becker et al. 1988). S-Plus was available as a commercial program, most
recently from TIBCO, U.S. R started as a poor man’s home-brewed implementation
of S, for use in teaching, developed by Robert Gentleman and Ross Ihaka at the Uni-
versity of Auckland, in New Zealand (Thaka and Gentleman 1996). Initially, R, the
program, implemented a subset of the S language. The R program evolved until
only relatively few differences between S and R remained. These remaining dif-
ferences are intentional—thought of as significant improvements. In more recent
times, R overtook S-Plus in popularity. The R language is not standardised, and no
formal definition of its grammar exists. Consequently, the R language is defined
by the behaviour of its implementation in the R program.

What makes R different from SPSS, SAS, etc., is that S was designed from the start
as a computer programming language. This may look unimportant for someone
not actually needing or willing to write software for data analysis. However, in
reality, it makes a huge difference because R is easily extensible, both using the R
language for implementation and by calling from R functions and routines written
in other computer programming languages such as C, C++, FORTRAN, Python, or
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Java. This flexibility means that new functionality can be easily added, and easily
shared with a consistent R-based user interface. In other words, instead of having
to switch between different pieces of software to do different types of analyses or
plots, one can usually find a package that will make new tools seamlessly available
within R.

The name “base R” is used to distinguish R itself, as in the R executable included
in the R distribution and its default packages, from R in a broader sense, which in-
cludes contributed packages. A few packages are included in the R distribution,
but most R packages are independently developed extensions and separately dis-
tributed. The number of freely available open-source R packages available is huge,
in the order of 20 000.

The most important advantage of using a language like R is that instructions
to the computer are given as text. This makes it easy to repeat or reproduce a
data analysis. Textual instructions serve to communicate to other people what
has been done in a way that is unambiguous. Sharing the instructions themselves
avoids a translation from a set of instructions to the computer into text readable
to humans—for example, the materials and methods section of a paper.

Readers with programming experience will notice that some features of R
differ from those in other programming languages. R does not have the strict type
checks of Pascal or C++. It has operators that can take vectors and matrices as
operands. Reliable and fast R code tends to rely on different idioms than well-
written Pascal or C++ code.

2.2.2 R as a computer program

The R program itself is open-source, i.e., its source code is available for anybody
to inspect, modify, and use. A very small fraction of users will directly contribute
improvements to the R program itself. However, those contributions and bug re-
ports are important in making R extremely reliable. The executable R program we
actually use can be built for different operating systems and computer hardware.
The members of the R developing team aim to keep the results obtained from cal-
culations done on all the different builds and computer architectures as consistent
as possible. The idea is to ensure that computations return consistent results not
only across updates to R but also across different operating systems, like Linux,
Unix (including OS X) and MS-Windows, or computer hardware, like that based on
ARM and x86 processors.

The R program does not have a full-fledged graphical user interface (GUI), or
menus from which to start different types of analyses. Instead, the user types the
commands at the R console and the result is displayed starting on the next line
(Figure 2.1). The same textual commands can also be saved into a text file, line by
line, and such a file, called a “script” can substitute for the direct typing of the same
sequence of commands at the console (writing and use of R scripts are explained
in chapter 5 on page 125). When we work at the console, typing-in commands one
by one, we use R interactively. When we run a script, we may say that we run a
“batch job”. The two approaches described above are available in the R program
itself.
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Figure 2.1

The R console. This is where the user can type textual commands line by line. Here
a user has typed print("Hell0") and entered it by ending the line of text by press-
ing the “enter” key. The result of running the command is displayed below the
command. The character at the head of the input line, a “>” in this case, is called
the command prompt, signalling where a command can be typed in. Commands
entered by the user are displayed in red, while results returned by R are displayed
inblue. “[1]” can be ignored here, its meaning is explained on page 28. The console
as displayed in R GUI under MS-Windows is shown.

As R is essentially a command-line application, it can be used on what
nowadays are frugal computing resources, equivalent to a personal computer of
three decades ago. R can run even on the Raspberry Pi, a micro-controller board
with the processing power of a modest smartphone (see https://r4pi.org/). At
the other end of the spectrum, on really powerful servers, R can be used for the
analysis of big data sets with millions of observations. How powerful a computer is
needed for a given data analysis task depends on the size of the data sets, on how
patient one is, on the ability to select efficient algorithms and on writing “good”
code.

2.3 Using R
2.3.1 Editors and IDEs

Integrated Development Environments (IDEs) are normally used when developing
computer programs. IDEs provide a centralised user interface from within which
the different tools used to create and test a computer program can be accessed
and used in coordination. Most IDEs include a dedicated editor capable of syntax
highlighting (automatically colouring “code words” based on their role in the pro-
gramming language), and even able to report some mistakes in advance of running
the code. One could describe such an editor as the equivalent of a word processor
with spelling and grammar checking that can alert about spelling and syntax er-
rors for a computer language like R instead of a natural language like English. IDEs
frequently add other features that help navigation of the programme source code
and give easy access to documentation.

Nowadays, it is very common to use an IDE as a front-end or middleman between
the user and the R program. Computations are still done in the R program, which
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e —
@ Rstudio = O X
| Ele Edit Code View Plots Session Build Debug Profile Tools Help
o~ om| = - [ = Addins ~ R Project: (None) = |
© | myfirstscriptr « @ | my-scriptR Environment  History ~ Connections —
SourceonSave | A - 2 [ | [# Import Dataset + | & List =
1 print("hello") 7} Global Environment ~
2 a <-¢(1,7,8,10,25) Values
Z pRint(nean(2)) a num [1:5] 17 8 10 25
11| (Top Level) + RSCipt s | Files Plots Packages Help Viewer -
Console Di/aphalo/Documents/Own_manuscripts/Books/using-r/scripts/ = ©liNenFolder | O Delete [ Rename | {F More ~
> source('D:/aphalo/Documents/Own_manuscripts/Books/using-r/scripts/my-scr D: © aphalo > Documents > Own_manuscripts > Books ) using-r > scripts
ipt.R', echo=TRUE) Name. Size ¥ Modified
-RY,
t.
> print("hello™) 97 Rhistory 08 Apr 10,2017, 7:31 PM
97 my-scriptR 538 Apr 10, 2017, 7:05 PM
"hello" ©7 my-scriptR P

> a <- c(1,7,8,10,25)
> print(mean(a))

[1] 10.2

>

Figure 2.2

The RStudio interface after running the script that is visible in tab my-script.R
of the editor pane (top left). Here I used the “Source” button to run the script and
R printed the results to the R console in the lower left pane. The lower right pane
shows a list of files, including the script open in the editor. The upper right pane
displays a list of the objects currently visible in the user workspace, object a, which
was created by the code in the second line of the R script.

is not built-in in the IDEs. Of the available IDEs for R, RStudio is currently the most
popular by a wide margin. Recent versions of RStudio support Python in addition
to R.

Readers with programming experience may be already familiar with Mi-
crosoft’s free Visual Studio Code or the open-source Eclipse IDEs for which plugins
supporting R are available.

The main window of IDEs is in most cases divided into windows or panes, pos-
sibly with tabs. In RStudio one has access to the R console, a text editor, a file-
system browser, a pane for graphical output, and access to several additional tools
such as for installing and updating extension packages. Although RStudio supports
very well the development of large scripts and packages, it is currently, in my opin-
ion, also the best possible way of using R at the console as it has the R help sys-
tem very well integrated both in the editor and R console. Figure 2.2 shows the
main window displayed by RStudio after running the same script as shown at the
R console (Figure 2.5) and at the operating system command prompt (Figure 2.6).
By comparing these three figures, it is clear that RStudio is really only a software
layer between the user and an unmodified R executable. In RStudio, the script was
sourced by pressing the “Source” button at the top of the editor panel. RStudio, in
response to this, generated the code needed to source the file and “entered” it at
the console (2.2, lower left screen panel, text in purple), the same console where
we can directly type this same R command if we wish.
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When a script is run, if an error is triggered, RStudio automatically finds the
location of the error, a feature you will find useful when running code from exer-
cises in this book. Other features are beyond what one needs for simple everyday
data analysis and are aimed at package development and report generation. Tools
for debugging, code profiling, benchmarking of code and unit tests, make it pos-
sible to analyse and improve performance as well as help with quality assurance
and certification of R packages and exceed what you will need for this book’s ex-
ercises and simple data analysis. RStudio also integrates support for file version
control, which is not only useful for package development but also for keeping
track of the progress or concurrent work with collaborators in the analysis of
data.

The “desktop” version of RStudio that one installs and uses locally, runs on
most modern operating systems, such as Linux, Unix, OS X, and MS-Windows. There
is also a server version that runs on Linux, as well as a cloud service (https://
posit.cloud/) providing shared access to such a server. The RStudio server is
used remotely through a web browser. The user interface is almost the same in
all cases. Desktop and server versions are both distributed as unsupported free
software and as supported commercial software.

RStudio and other IDEs support saving of their state and some settings per
working folder under the name of project, so that work on a data analysis can be
interrupted and later continued, even on a different computer. As mentioned in
section 2.3.2 on page 14, when working with R we keep related files in a folder.

In this book, I provide only a minimum of guidance on the use of RStudio, and
no guidance for other IDEs. To learn more about RStudio, please, read the doc-
umentation available through RStudio’s help menu and keep at hand a printed
copy of the RStudio cheat sheet while learning how to use it. This and other use-
ful R-related cheatsheets can be downloaded at https://posit.co/resources/
cheatsheets/. Additional instructions on the use of RStudio, including a video,
are available through the Resources menu entry of the book’s website at https:
//www.learnr-book.info/.

2.3.2 R sessions and workspaces

We use session to describe the interactive execution from start to finish of one run-
ning instance of the R program. We use workspace to name the imaginary space
were all objects currently available in an R session are stored. In R, the whole
workspace can be stored in a single file on disk at the end or during a session
and restored later into another session, possibly on a different computer. Usually,
when working with R, we dedicate a folder in disk storage to store all files from a
given data analysis project. We normally keep in this folder files with data to read
in, scripts, a file storing the whole contents of the workspace, named by default
.Rdata and a text file with the history of commands entered interactively, named
by default .Rhistory. The user’s files within this folder can be located in nested
folders. There are no strict rules on how the files should be organised or on their
number. The recommended practice is to avoid crowded folders and folders con-
taining unrelated files. It is a good idea to keep in a given folder and workspace
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the work in progress for a single data analysis project or experiment, so that the
workspace can be saved and restored easily between sessions and work continued
from where one left it independently of work done in other workspaces. The folder
where files are currently read and saved is in R documentation called the current
working directory. When opening an .Rdata file the current working directory is
automatically set to the location where the .RrRdata file was read from.

RStudio projects are implemented as a folder with a name ending in .Rprj, loc-
ated under the same folder where scripts, data, .Rdata, and .Rhistory are stored.
This folder is managed by RStudio and should be not modified or deleted by the
user. Only in the very rare case of its corruption, it should be deleted, and the RStu-
dio project created again from scratch. Files .Rdata and .Rhistory should not be
deleted by the user, except to reset the R workspace. However, this is unnecessary
as it can be also easily achieved from within R.

2.3.3 Using R interactively

Decades ago, users communicated with computers through a physical terminal
(keyboard plus text-only screen) that was frequently called a console. A text-only
interface to a computer program, in most cases a window or a pane within a graph-
ical user interface, is still called a console. In our case, the R console (Figure 2.1).
This is the native user interface of R.

Typing commands at the R console is useful when one is playing around, rather
aimlessly exploring things, or trying to understand how an R function or operator
we are not familiar with works. Once we want to keep track of what we are doing,
there are better ways of using R, which allow us to keep a record of how an analysis
has been carried out. The different ways of using R are not exclusive of each other,
so most users will use the R console to test individual commands and plot data
during the first stages of exploration. As soon as we decide how we want to plot
or analyse the data, it is best to start using scripts. This is not enforced in any
way by R, but scripts are what really brings to light the most important advantages
of using a programming language for data analysis. In Figure 2.1, we can see how
the R console looks. The text in red has been typed in by the user, except for the
prompt >, and the text in blue is what R has displayed in response. It is essentially a
dialogue between user and R. The console can look different when displayed within
an IDE like RStudio, but the only difference is in the appearance of the text rather
than in the text itself (cf. Figures 2.1 and 2.3).

The two previous figures showed the result of entering a single command. Fig-
ure 2.4 shows how the console looks after the user has entered several commands,
each as a separate line of text.

The examples in this book require only the console window for user input. Menu-
driven programs are not necessarily bad, they are just unsuitable when there is a
need to set very many options and choose from many different actions. They are
also difficult to maintain when extensibility is desired, and when independently
developed modules of very different characteristics need to be integrated. Textual
languages also have the advantage, to be addressed in later chapters, that com-
mand sequences can be stored in human- and computer-readable text files. Such
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Console D:/aphalo/Documents/Own_manuscripts/Books/using-r/ =
> print("Hello")

[1] "Hello"

>

Figure 2.3

The R console embedded in RStudio. The same commands have been typed in as
in Figure 2.1. Commands entered by the user are displayed in purple, while results
returned by R are displayed in black.

R R Console EI@

> print ("hello™)

[1] "hello™

> mean(c(1l,5,6,2,3,4))

[1] 3.5

>a<-c(1,7,8,10,25)

> mean(a)

[1] 10.2

> sd(a)

[1] B.%52748¢

> b <- factor(c("trea". "trea". "trea". "ctrl". "ctrl™))

Figure 2.4
The R console after several commands have been entered. Commands entered by
the user are displayed in red, while results returned by R are displayed in blue.

files constitute a record of all the steps used, and in most cases, make it trivial to
manually reproduce the same steps at a later time. Scripts are a very simple and
handy way of communicating to other users how a given data analysis has been
done or can be done.

In the console one types commands at the > prompt. When one ends a line by
pressing the return or enter key, if the line can be interpreted as an R command, the
result will be printed at the console, followed by a new > prompt. If the command
is incomplete, a + continuation prompt will be shown, and you will be able to type
in the rest of the command. For example, if the whole calculation that you would
like to dois 1 + 2 + 3, if you enter in the console 1 + 2 +in one line, you will get a
continuation prompt where you will be able to type 3. However, if you type 1 + 2,
the result will be calculated, and printed.

For example, one can search for a help page at the R console. Below are the
first code example and the first playground in the book. This first example is for
illustration only, and you can return to them later as only on page 20 I discuss how
to install or get access to the R program.

help("sum™)
?sum

2.1 Look at help for some other functions like mean(), var(), plot() and, why
not, help() itself!
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@R RGui (64-bit) — m} x
File Edit View Misc Packages Windows Help

|
@ R Console EI@

> source ("my-script.R")
[1] "hello™

[1] 10.2

> |

@ D:\aphalo\Documents\Own_manuscripts\Books\using-r\scripts\my-script.R - R Editor EI@
print ("hello™)

a <- c(1,7,8,10,25)

print (mean(a))

Figure 2.5
Screen capture of the R console and editor just after running a script. The upper
pane shows the R console, and the lower pane, the script file in an editor.

| help(help)

B When trying to access help related to R extension packages through R’s built
in help, make sure the package is loaded into the current R session, as described
on page 180, before calling help().

When using RStudio, there are easier ways of navigating to a help page than call-
ing function help() by typing its name, for example, with the cursor on the name
of a function in the editor or console, pressing the F1 key opens the correspond-
ing help page in the help pane. Letting the cursor hover for a few seconds over the
name of a function at the R console will open “bubble help” for it. If the function is
defined in a script or another file that is open in the editor pane, one can directly
navigate from the line where the function is called to where it is defined. In RStudio
one can also search for help through the graphical interface. The R manuals can
also be accessed most easily through the Help menu in RStudio or RGUI.

2.3.4 Using R in a “batch job”

To run a script, we need first to prepare a script in a text editor. Figure 2.5 shows
the console immediately after running the script file shown in the text editor. As
before, red text, the command source("my-script.rR"), was typed by the user, and
the blue text in the console is what was displayed by R as a result of this action.
The title bar of the console, shows “R-console”, while the title bar of the editor
shows the path to the script file that is open and ready to be edited followed by
“R-editor”.
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phal ents 1 ks\using-r\scripts>Rscript my-script.R
libraries at
sers

ks\using-r\scripts>

Figure 2.6

Screen capture of the MS-Windows command console just after running the same
script. Here we use Rscript to run the script; the exact syntax will depend on the
operating system in use. In this case, R prints the results at the operating system
console or shell, rather than in its own R console.

When working at the command prompt, most results are printed by default.
However, within scripts one needs to use function print() explicitly when a result
is to be displayed.

A true “batch job” is not run at the R console but at the operating system com-
mand prompt, or shell. The shell is the console of the operating system—Linux,
Unix, OS X, or MS-Windows. Figure 2.6 shows how running a script at the Windows
command prompt looks. A script can be run at the operating system prompt to
do time-consuming calculations with the output saved to a file. One may use this
approach on a server, say, to leave a large data analysis job running overnight or
even for several days.

Within RStudio desktop it is possible to access the operating system shell
through the tab named “Terminal” and through the menu. It is also possible to
run jobs in the background in the tab “Background jobs”, i.e., while simultaneously
using the R console. This is made possible by concurrently running two or more
instances of the R program.

2.4 Reproducible Data Analysis with R

Statistical concepts and procedures are not only important after data are collected
but also crucial at the design stage of any data-based study. Rather frequently, we
deal with pre-existing data already at the planning stage of an experiment or survey.
Statistics provides the foundation for the design of experiments and surveys, data
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analysis, and data visualisation. This is similar to the role played by grammar and
vocabulary in communication in a natural language like English. Statistics makes
possible decision-making based on partial evidence (or samples), but it is also a
means of communication. Data visualisation also plays a key role in the written
and oral communication of study conclusions. R is useful throughout all stages
of the research process, from the design of studies to the communication of the
results.

During recent years, the lack of reproducibility in scientific research, frequently
described as a reproducibility crisis, has been broadly discussed and analysed
(Gandrud 2015). One of the problems faced when attempting to reproduce sci-
entific and technical studies is reproducing the data analysis. More generally, un-
der any situation where accountability is important, from scientific research to
decision making in commercial enterprises, industrial quality control and safety,
and environmental impact assessments, being able to reproduce a data analysis
reaching the same conclusions from the same data is crucial. Thus, an unambigu-
ous description of the steps taken for an analysis is a requirement. Currently, most
approaches to reproducible data analysis are based on automating report gener-
ation and including, as part of the report, all the computer commands that were
used.

A reliable record of what commands have been run on which data is especially
difficult to keep when issuing commands through menus and dialogue boxes in
a graphical user interface or by interactively typing commands as text at a con-
sole. Even working interactively at the R console using copy and paste to include
commands and results in a report typed in a word processor is error prone, and
laborious. The use and archiving of R scripts alleviate this difficulty.

However, a further requirement to achieve reproducibility is the consistency
between the saved and reported output and the R commands reported as having
been used to produce them, saved separately when using scripts. This creates an
error-prone step between data analysis and reporting. To solve this problem an ap-
proach to data analysis derived from what is called literate programming (Knuth
1984) was developed: running an especially formatted script that produces a docu-
ment that includes the R code used for the analysis; the results of running this code
and any explanatory text needed to describe the methodology used and interpret
the results of the analysis.

Although a system capable of producing such reports with R, called ‘Sweave’
(Leisch 2002), has been available for a couple of decades, it was rather limited
and not supported by an IDE, making its use rather tedious. Package ‘knitr’ (Xie
2013) further developed the approach and together with its integration into RStu-
dio made the use of this type of report much easier. Less sophisticated reports,
called R notebooks, formatted as HTML files can be created directly from ordinary
R scripts containing no special formatting. Notebooks are HTML files that show as
text the code used interspersed with the results, and can contain embedded the
actual source script used to generate them.

Package ‘knitr’ supports the writing of reports with the textual explanations en-
coded using either Markdown or KIEX as markup for text-formatting instructions.
While Markdown (https://daringfireball.net/projects/markdown/)is an easy-
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to-learn and use text markup approach, KIgX (Lamport 1994) is based on TgX (Knuth
1987), the most powerful typesetting engine freely available. There are different
flavours of Markdown, including R markdown (see https://rmarkdown.rstudio.
com/) with special support for R code. Quarto (see https://quarto.org/) was
recently released as an enhancement of R markdown (see https://rmarkdown.
rstudio.com/), improving typesetting and styling, and providing a single system
capable of generating a broad selection of outputs. When used together with R,
Quarto relies on package ‘knitr’ for the key step in the conversion, so in a strict
sense Quarto does not replace it.

Because of the availability of these approaches to the generation of reports, the
R language is extremely useful when reproducibility is important. Both ‘knitr’ and
Quarto are powerful and flexible enough to write whole books, such as this very
book you are now reading, produced with R, ‘knitr’ and EIgX. All pages in the book
were typeset directly, with plots and other R output generated on-the-fly by R and
inserted automatically. All diagrams were generated by KIgX during the typesetting
step. The only exceptions are the figures in this chapter that have been manually
captured from the computer screen. Why am I using this approach? First, because I
want to make sure that every bit of code, as you will see printed, runs without error.
In addition, I want to make sure that the output displayed below every line or chunk
of R language code is exactly what R returns. Furthermore, it saves a lot of work
for me as an author, as I can just update R and all the packages used to their latest
version, and build the book again, after any changes needed to keep it up to date
and free of errors. By using these tools and markup in plain text files, the indices,
cross-references, citations, and list of references are all generated automatically.

Although the use of these tools is very important, they are outside the scope
of this book and well described in other books dedicated to them (Gandrud 2015;
Xie 2013). When using R in this way, a good command of R as a language for com-
munication with both humans and computers is very useful.

2.5 Getting Ready to Use R

As the book is designed with the expectation that readers will run code examples
as they read the text, you have to ensure access to the R before reading the next
chapter. It is likely that your school, employer or teacher has already enabled ac-
cess to R. If not, or if you are reading the book on your own, you should install R
or secure access to an online service. Using RStudio or another IDE can facilitate
the use of R, but all the code in the remaining chapters makes only use of R and
packages available through CRAN.

I have written an R package, named ‘learnrbook’, containing original data and
computer-readable listings for all code examples and exercises in the book. It also
contains code and data that makes it easier to install the packages used in later
chapters. Its name is ‘learnrbook’ and is available through CRAN. It is not neces-
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sary for you to install this or any other packages until section 6.4.2 on page 180,
where I explain how to install and use R packages.

ﬂ Are there any resources to support the Learn R: As a Language book?
Please, visit https://www.learnr-book.info/ to find additional material related
to this book, including additional free chapters. Up-to-date instructions for soft-
ware installation are provided online at this and other sites, as these instructions
are likely to change after the publication of the book.

m How to install the R program in my computer?
Installation of R varies depending on the operating system and computer hard-
ware, and is in general similar to that of other software under a given operat-
ing system distribution. For most types of computer hardware, the current ver-
sion of R is available through the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/. Especially in the case of Linux distributions, R
can frequently be installed as a component of the operating system distribution.
There are some exceptions, such as the R4Pi distribution of R for the Raspberry
Pi, which is maintained independently (https://r4pi.org/).

Installers for Linux, Windows and MacOS are available through CRAN (https://
cran.r-project.org/) together with brief but up-to-date installation instructions.

m How to install the RStudio IDE in my computer?

RStudio installers are available at Posit’s web site (https://posit.co/products/
open-source/rstudio/) of which the free version is suitable for running the code
examples and exercises in the book. In many cases, the IT staff at your employer or
school will install them, or they may be already included in the default computer
setup.

m How to get access to RStudio as a cloud service?

An alternative, that is very well suited for courses or learning as part of a group
is the RStudio cloud service, recently renamed Posit cloud (https://posit.co/
products/cloud/cloud/). For individual use, a free account is in many cases
enough, and for groups that qualify for the discounted price, a low-cost teacher’s
account works very well.

2.6 Further Reading

Suggestions for further reading are dependent on how you plan to use R. If you
envision yourself running batch jobs under Linux or Unix, you would profit from
learning to write shell scripts. Because bash is widely used nowadays, Learning
the bash Shell Newham and Rosenblatt 2005) can be recommended. If you aim at
writing R code that is going to be reused, and have some familiarity with C, C++ or
Java, reading The Practice of Programming (Kernighan and Pike 1999) will provide
a mostly language-independent view of programming as an activity and help you
master the all-important tricks of the trade. The history of R, and its relation or
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S, is best told by those who were involved at the early stages of its development,
Chambers (2016, chapter 2), and Ihaka (1998).



3

Base R: “Words” and “Sentences”

The desire to economise time and mental effort in arithmetical com-
putations, and to eliminate human liability to error, is probably as old
as the science of arithmetic itself.

Howard Aiken
Proposed automatic calculating machine, 1937; reprinted 1964

3.1 Aims of This Chapter

In my experience, for those who are not familiar with computer programming lan-
guages, the best first step in learning the R language is to use it interactively by
typing textual commands at the R console. This teaches not only the syntax and
grammar rules, but also gives a glimpse at the advantages and flexibility of this
approach to data analysis. In this chapter, I focus on the different simple values
or items that can be stored and manipulated in R, as well as the role of computer
program statements, the equivalent of “sentences” in natural languages.

In the first part of the chapter, you will use R to do everyday calculations that
should be so easy and familiar that you will not need to think about the operations
themselves. This easy start will give you a chance to focus on learning how to issue
textual commands at the command prompt.

Later in the chapter, you will gradually need to focus more on the R language
and its grammar and less on how commands are entered. By the end of the chapter,
you will be familiar with most of the kinds of simple “words” used in the R language
and you will be able to read and write simple R statements.

Throughout the chapter, I will occasionally show the equivalent of the R code
in mathematical notation. If you are not familiar with the mathematical notation,
you can safely ignore the mathematics, as long as you understand the diagrams
and the R code.
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3.2 Natural and Computer Languages

Computer languages have strict rules, and the interpreters and compilers that
translate these languages into machine code are unforgiving about errors. They
will issue error messages, but in contrast to human readers or listeners, will not
guess your intentions and continue. However, computer languages have a much
smaller set of words than natural languages, such as English. If you are new to
computer programming, understanding the parallels between computer and nat-
ural languages may be useful.

One can think of constant values and variables (values stored under a name)
as nouns and of operators and functions as verbs. A complete command, or state-
ment, is the equivalent of a natural language sentence: “a comprehensible utter-
ance”. The simple statement a + 1 has three components: a, a variable, +, an op-
erator and 1 a constant. The statement sqrt(4) has two components, a function
sqrt() and a numerical constant 4. We say that “to compute /4 we call sqrt()
with 4 as its argument”.

Although all values manipulated in a digital computer are stored as bits in
memory, multiple interpretations are possible. Numbers, letters, logical values,
etc., can be encoded into bits and decoded as long as their type or mode is known.
The concept of class is not directly related to how values are encoded when stored
in computer memory, but instead how they are interpretated as part of a computer
program. We can have, for example, RGB colour values, stored as three numbers
such as 0, 0, 255, as hexadecimal numbers stored as characters #0000FF, or even
use fancy names stored as character strings like "blue". We could create a class for
colours using any of these representations, based on two different modes: numeric
and character.

3.3 Numeric Values and Arithmetic

When working in R with arithmetic expressions, the normal mathematical preced-
ence rules are followed and parentheses can be used to alter this order. Parenthe-
ses can be nested, but in contrast to the usual practice in mathematics, the same
parenthesis symbol is used at all nesting levels.

Both in mathematics and programming languages operator precedence rules
determine which subexpressions are evaluated first and which later. Contrary to
primitive electronic calculators, R evaluates numeric expressions containing op-
erators according to the rules of mathematics. In the expression 1 + 2 X 3, the
product 2 X 3 has precedence over the addition, and is evaluated first, yielding as
the result of the whole expression, 7. Similar rules apply to other operators, even
those taking as operands non-numeric values.
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The equivalent of the math expression

3+ e?
COS TT

is, in R, written as follows:

(3 + exp(2)) / cos(pi)
## [1] -10.38906

Where constant pi (1t = 3.1415...) and function cos() (cosine) are defined in
base R. Many trigonometric and mathematical functions are available in addition
to operators like +, —, *, /, and A.

In R, angles are expressed in radians, thus cos(rt) = 1 and sin(rr) = 0, ac-
cording to trigonometry. Degrees can be converted into radians taking into ac-
count that the circle corresponds to 2 X ™ when expressed in radians and to 360°
when expressed in degrees. Thus the cosine of an angle of 45° can be computed
as follows.
sin(45/180 * pi)

## [1] 0.7071068

One thing to remember when translating fractions into R code is that in arith-
metic expressions the bar of the fraction generates a grouping that alters the nor-
mal precedence of operations. In contrast, in R expressions this grouping must be
explicitly signalled with additional parentheses.

If you are in doubt about how precedence rules work, you can add parentheses
to make sure the order of computations is the one you intend. Redundant paren-
theses have no effect.
1+2=*3
## [1] 7
1+ (2 *3)

## [1] 7
1+2) =3
## [1] 9

The number of opening (left side) and closing (right side) parentheses must be
balanced, and they must be located so that each enclosed term is a valid mathem-
atical expression, i.e., code that can be evaluated to return a value, a value that
can be inserted in place of the expression enclosed in parenthesis before evalu-
ating the remaining of the expression. For example, (1 + 2) »* 3 after evaluating
(1 + 2) becomes 3 * 3yielding 9. In contrast, (1 +) 2 * 3isasyntaxerroras1 +
is incomplete and does not yield a number.

3.1 In playgrounds the output from running the code in R is not shown, as
these are exercises for you to enter at the R console and run. In general, you should
not skip them as in most cases playgrounds aim to teach or demonstrate concepts
or features that I have not included in full-detail in the main text. You are strongly
encouraged to play, in other words, to create new variations of the examples and
execute them to explore how R works.
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NN
+ % +
=N

0
2 +1
10A2 +
sqrt(9)

/5
0 /5
1

pi

sin(pi)
T1og(100)
10g10(100)
Tog2(8)
exp (1)

Variables are used to store values. After we assign a value to a variable, we
can use in our code the name of the variable in place of the stored value. The
“usual” assignment operator is <-. In R, all names, including variable names, are
case sensitive. Variables a and A are two different variables. Variable names can
be long in R, although it is not a good idea to use very long names. Here I am
using very short names, something that is usually also a very bad idea. However,
in the examples in this chapter, where the stored values have no connection to
the real world, simple names emphasise their abstract nature. In the chunk below,
vctl and vct2 are arbitrarily chosen variable names; I should have used names like
height.cmor outside.temperature.cif they had been useful to convey information.

In the book, I use variable names that help recognise the kind of object stored,
as this is most relevant when learning R. Here I use vctl because in R, as we will
see on page 28, numeric objects are always vectors, even when of length one.

vetl <- 1

vctl + 1

## [1] 2

vctl

## [1] 1

vct2 <- 10

vct2 <- vctl + vct2
vct2

## [1] 11

Entering the name of a variable at the R console implicitly calls function print()
displaying the stored value on the console. The same applies to any other state-
ment entered at the R console: print() is implicitly called with the result of execut-
ing the statement as its argument.
vctl
# [1] 1
print(vctl)

## [1] 1
vctl + 1
## [1] 2
print(vctl + 1)
## [1] 2
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3.2 There are some syntactically legal assignment statements that are not
very frequently used, but you should be aware that they are valid, as they will
not trigger error messages and may surprise you. The most important thing is
to write code consistently. The “backwards” assignment operator -> and resulting
codelike 1 -> vctl are valid but less frequently used. The use of the equals sign (=)
for assignment in place of <- although valid is discouraged. Chaining assignments
as in the first statement below can be used to signal to the human reader that vcti,
vct2 and vct3 are being assigned the same value.

VCT1l <- VCT2 <- VCT3 <= 0
VCT1

VCT?2

VCT3

1 —> VCT1l

vCcTl

VCT1l = 3

VCT1l

remove (VCT1l, VCT2, VCT3)

In R, all numbers belong to mode numeric (we will discuss the concepts of
mode and class in section 3.8 on page 59). We can query if the mode of an object is
numeric with function is.numeric(). The returned values are either TRUE or FALSE.
These are logical values that will be discussed in section 3.5 on page 49.
mode (1)

## [1] "numeric"

vctl <- 1
is.numeric(vctl)

## [1] TRUE

Because numbers can be stored in computer memory in different formats, most
computing languages, including R, implement multiple types of numerical values.
In most cases, R’s numeric values can be used everywhere that a number is expec-
ted. However, in some cases, explicitly using class integer to indicate that we will
store or operate on whole numbers, can be advantageous, e.g., integer constants
are identified by a trailing capital “L”, as in 32L.
is.numeric(1L)

## [1] TRUE
is.integer(1L)
## [1] TRUE
is.double(1L)
## [1] FALSE

Real numbers are a mathematical abstraction, and do not have an exact equi-
valent in computers. Instead of Real numbers, computers store and operate on
numbers that are restricted to a broad but finite range of values and have a finite
resolution. They are called, floats (or floating-point numbers); in R they go by the
name of double and can be created with the constructor double().
is.numeric(1)

## [1] TRUE
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is.integer (1)
## [1] FALSE
is.double(1)
## [1] TRUE

Vectors are one-dimensional in structure, of varying length and used to store
similar values, e.g., numbers. They are different from the vectors, commonly used
in Physics when describing directional forces, which are symbolised with an ar-
row as an “accent”, such as F. In R numeric values and other atomic values are
always vector s that can contain zero, one or more elements. The diagram below
exemplifies a vector containing ten elements, also called members. These elements
can be extracted using integer numbers as positional indices, and manipulated as
described in more detail in section 3.10 on page 64.

First index element at index 9

2 3 4 5 6 7 8 \9 10 — integer positional indices
<name> ! - — Elements or <values>

Vectors, in mathematical notation, are similarly represented using positional
indexes as subscripts,

al...’l’l = al,az,"'ai,"',an, (31)

where a;_, is the whole vector and a; its first member. The length of a; ,, isn
as it contains n members. In the diagram above n = 10.

As you have seen above, the results of calculations were printed preceded with
[1]. This is the index or position in the vector of the first number (or other value)
displayed at the head of the current line. As in R single values are vectors of length
one, when they are printed, they are also preceded with [1].

One can use function c() “concatenate” to create a vector from other vectors,
including vectors of length 1, or even vectors of length 0, such as the numeric
constants in the statements below. The first example shows an anonymous vector
created, printed, and then automatically discarded.

c(3, 1, 2)
## [1] 31 2

To be able to reuse the vector, we assign it to a variable, giving a name to it. The
length of a vector can be queried with function Tength (). Below, R code is followed
by diagrams depicting the structure of the vectors created.
vctd <- c(3, 1, 2)

Tength(vct4)
## [1] 3
vct4

## [1] 31 2

1 2 3 — integer positional indices

vct4 > 3 1 2 |— numeric values
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vct5 <- c(4, 5, 0)
vct5
## [1] 4 50

1 2 3 — integer positional indices

vct5 > 4 5 0 — numeric values

vctb <- c(vctd, vctb)
vct6

## [1]1 312450

1 2 3 4 5 6 — integer positional indices

vcto > 3 1 2 4 5 0 — numeric values

vct7 <- c(vcth, vct4)
vct7

## [1] 450312

1 2 3 4 5 6 — integer positional indices

vct7 > 4 5 0 3 1 2 |— numeric values

One or more member values of a vector can be extracted using the positional in-
dexes and the extraction operator [ ]. The returned value is a new vector. Member
extraction is discussed in detail in section 3.10 on page 64.
vct7[3]

## [1] 0
vct7[c(6, 2)]
## [1] 2 5

m How to create an empty vector?

numeric()
## numeric(0)

Next, I show concatenation of two vectors of the same class, the second of them
of length zero.

c(vct7, numeric())
## [1] 4 503 12

Function c() accepts as arguments two or more vectors and concatenates them,
one after another. Quite frequently we may need to insert one vector in the middle
of another. For this operation, c() is not useful by itself. One could use indexing
combined with c(), but this is not needed as R provides a function capable of
directly doing this operation. Although it can be used to “insert” values, it is named
append (), and by default, it indeed appends one vector at the end of another.
append(vct4, vct5)

## [1]1 312450

The output above is the same as for c(a, b), however, append() accepts as an
argument an index position after which to “append” its second argument. This
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results in an insert operation when the index points at any position different from
the end of the vector.

append(vct4, values = vct5, after = 2)
## [1] 314502

3.3 One can create sequences using function seq() or the operator :, or repeat
values using function rep(). In this case, I leave it to the reader to work out the
rules by running these and his/her own examples, with the help of the document-
ation, available through help(seq) and help(rep).

-1:5

5:-1

seq(from = -1, to = 1, by = 0.1)

rep(-5, times = 4)

rep(l:2, Tength.out = 4)

m How to create a vector of zeros?

numeric(length = 10)
## [1] 0000000000

or
rep(0, times = 10)
# [11 0000000000

Next, something that makes R different from most other programming lan-
guages: vectorised arithmetic. Operators and functions that are vectorised accept,
as arguments, vectors of arbitrary length, in which case the result returned is equi-
valent to having applied the same function or operator individually to each element
of the vector.
10g10(100)

## [1] 2
Tog10(c (10, 5, 100, 200))
## [1] 1.00000 0.69897 2.00000 2.30103

Function sum() accepts vectors of different lengths as input but is not vector-
ised, as it always returns a vector of length one as result.
sum(100)
## [1] 100
sum(c(10, 5, 100, 200))
## [1] 315

A vectorised sum, also called a parallel sum of vectors, to differentiate it from
obtaining the sum of the members of a vector, as computed above with function
sum(), is the usual way in which operators like + and other arithmetic operators
and functions work in R.

c(3, 1, 2) + c(1, 2, 31)
## [1] 4 3 33

Vectorised functions and operators that operate on more than one vector sim-
ultaneously, in many cases accept vectors of mismatched length as arguments or
operands. When two or more vectors are of different length, these functions and
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operators recycle the shorter vector(s) to match the length of the longest one. The
two statements below are equivalent; in the first statement, the short vector 1 is
first recycled into c(1, 1, 1). The operation, addition in this example, is applied
to the numbers stored at the same position in the two vectors, returning a new
vector.

c(3, 1, 2) +1

## [1] 4 2 3

c(3, 1, 2) + c(, 1, 1

## [1] 4 2 3

In the second code statement (line) below, vct4 is of length 3, but the numeric
constant 2 is a vector of length 1, this short constant vector is extended, by recyc-
ling (replicating) its value, into a longer vector of ones—i.e., a vector of the same
length as the longest vector in the statement, a.
vctd <- ¢(3, 1, 2)

(vctd + 1) * 2
## [1] 8 4 6
vctd * 0:1

## warning in vct4 * 0:1: Tonger object Tength is not a multiple of shorter
object length

## [1]1 010

vct4 - vct4

## [1] 00 0O

Make sure you understand what calculations are taking place in the chunk
above, and also the one below. Vectorisation and vector recycling are key features
of the R language.
vct8 <- rep(1l, 6)
vct8
## [1]
vct8 +
## [1]
vct8 +
## [1]
vct8 +

1111

2323

4234

R NRNR R
AW WWN R

## warning in vct8 + 1:4: Tonger object Tength is not a multiple of shorter
object length
## [1] 234523

3.4 Create further variants of the statements in the code chunk above to work
out when warnings or errors are issued. Does the length of the operands matter?

Most functions defined in base R apply recycling to vectors passed as ar-
guments to at least some of their parameters. When recycling is supported, the
conditions triggering warnings or errors are consistent with those you discovered
in the playground above. However, if and how recycling is applied depends on
how functions have been defined. Thus, there is variation, especially, but not only,
in the case of functions and operators defined in contributed extension packages.
For example, package ‘tibble’ and some other packages in the ‘tidyverse’ support
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recycling but some boundary cases that trigger a warning in base R functions, trig-
ger an error in functions defined in these packages. See section 8.4.2 on page 247
about package ‘tibble’.

As mentioned above, a vector can contain zero or more member values. Vec-
tors of length zero may seem at first sight quite useless, but in practice they are
very useful. They allow the handling of “no input” or “nothing to do” cases as
normal cases, which in the absence of vectors of length zero would require to be
treated as special cases. Constructors for R classes like numeric() return vectors
of a length given by their first argument, which defaults to zero.

vct9 <- numeric(length = 0)
vct9

## numeric(0)
Tength(vct8)
## [1] 6

numeric()
## numeric(0)

Vectors of length zero, behave in most cases, as expected—e.g., they can be
concatenated as shown here.
length(c(vct4, vct9, vct5))
## [1] 6
length(c(vct4, vct5))
## [1] 6

Many functions, such as R’s maths functions and operators, will accept numeric
vectors of length zero as valid input, returning also a vector of length zero, issuing
neither a warning nor an error message. In other words, these are valid operations
in R.
log(numeric(0))

## numeric(0)
5 + numeric(0)
## numeric(0)

Even when of length zero, vectors do have to belong to a class acceptable for the
operation: 5 + character(0) is an error (character values are described in section
3.4 on page 41).

Passing as an argument to parameter lTength a value larger than zero creates a
longer vector filled with zeros in the case of numeric().
numeric(length = 5)

## [1] 0 0 0 0 O

The length of a vector can be explicitly increased, with missing values filled
automatically with NA, the marker for not available.

vctl0 <- 1:5
length(vct10) <- 10
vctl0

## [1] 1 2 3 4 5 NA NA NA NA NA

If the length is decreased, the values in the tail of the vector are discarded.
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vctll <- 1:10
vctll

## [1] 1 2 3 4 5 6 7 8 910

length(vctll) <- 5
vctll

## [1] 1 23 45

There are some special values available for numbers. NA meaning “not available
is used for missing values. (NA) values play a very important role in the analysis
of data, as frequently some observations are missing from an otherwise complete
data set due to “accidents” during the course of an experiment or survey. It is
important to understand how to interpret NA values: They are placeholders for
something that is unavailable, in other words, whose value is unknown. NA values
propagate when used, so that numerical computations yield NA when one or more
input of the values is unknown.
vctl2 <- c(NA, 5)
vctl2
## [1] NA 5
vctl2 + 1
## [1] NA 6

Calculations can also yield the following values NaN “not a number”, Inf and
-Inf for oo and —oo. As you will see below, calculations yielding these values do
not trigger errors or warnings, as they are arithmetically valid. znf and -Inf are
also valid numerical values for input and constants.
vctl2 + Inf
## [1] NA Inf
Inf / vctl2
## [1] NA Inf
-1/0
## [1] -Inf
1/0
## [1] Inf
Inf / Inf
## [1] NaN
Inf + 4
## [1] Inf
-Inf * -1
## [1] Inf

3.5 When to use vectors of length zero, and when NAs? Make sure you un-
derstand the logic behind the different behaviour of functions and operators with
respect to NA and numeric() or its equivalent numeric(0). What do they represent?
Why NA s are not ignored, while vectors of length zero are?
123 + numeric()
123 + NA

Model answer: NA values are used to signal a value that “was lost” or “was ex-
pected” but is unavailable because of some accident. A vector of length zero, rep-
resents no values, but within the normal expectations. In particular, if vectors are
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expected to have a certain length, or if index positions along a vector are mean-
ingful, then using NA is a must.

Any operation, even tests of equality, involving one or more NA’S return an NA.
In other words, when one input to a calculation is unknown, the result of the cal-
culation is unknown. This means that a special function is needed for testing for
the presence of NA values.
is.na(c(NA, 1))
## [1] TRUE FALSE

In the example above, we can also see that is.na() is vectorised, and that it
applies the test to each of the elements of the vector individually, returning the
result as TRUE Or FALSE.

One needs to be aware of the consequences of numbers in computers being
almost always stored with finite precision and/or range: the expectations derived
from the mathematical definition of Real numbers are not always fulfilled. See the
box on page 35 for an in-depth explanation.

1 - 1e-20
## [1] 1

When using integer values these problems do not exist, as integer arithmetic
is not affected by loss of precision in calculations restricted to integers. Because of
the way integers are stored in the memory of computers, within the representable
range, they are stored exactly. One can think of computer integers as a subset of
whole numbers restricted to a certain range of values.
1L + 3L
## [1] 4
1L * 3L
## [1] 3

Using the “usual” division operator yields a floating-point double result, while
the integer division operator %/% yields an integer result, and the modulo operator
%% returns the remainder from the integer division.
1L / 3L
## [1] 0.3333333
1L %/% 3L
## [1]1 0
1L %% 3L
## [1] 1

If an operation would create an integer value that falls outside the range rep-
resentable in R, the value returned is NA (not available).
1000000L * 1000000L

## warning in 1000000L * 1000000L: NAs produced by integer overflow
## [1] NA

Both doubles and integers are considered numeric. In most situations, conver-
sion is automatic and we do not need to worry about the differences between these
two types of numeric values. The functions in the next chunk return TRUE or FALSE,
i.e., Togical values (see section 3.5 on page 49).
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is.numeric(1L)

## [1] TRUE
is.integer(1L)

## [1] TRUE
is.double(1L)

## [1] FALSE
is.double (1L / 3L)
## [1] TRUE
is.numeric(lL / 3L)
## [1] TRUE

3.6 Study the variations of the previous example shown below, and explain
why the two statements return different values. Hint: 1 is a double constant. You
can use is.integer() and is.double() in your explorations.

1 * 1000000L * 1000000L
1000000L * 1000000L * 1

The usual way to store numerical values in computers is to reserve a fixed
amount of space in memory for each value, which imposes limits on which num-
bers can be represented or not, and the maximum precision that can be achieved.
The difference between integer and double is explained on page 27. Integers, or
“whole numbers”, like R integer values are stored always with the same resolution
such that the smallest difference between two integer values is 1. The amount of
memory available to store an individual value creates a limit for the size of the
largest and smallest values that can be represented. Thus integers in R behave
like Integers or whole numbers as defined in mathematics, but constrained to a
restricted finite range of values. In the computing language C, different types of
integer numbers are available short and T1ong, these differ in the size of the space
reserved for them in memory. R integer type is equivalent to Tong in C, thus the
use of L for integer constant values like 5L.

Floating point numbers like R double values are stored in two parts: an integer
significand and an integer exponent, each part using a fixed amount of space in
memory. The relative resolution is constrained by the number of digits that can
be stored in the significand while the absolute size of the largest and smallest
numbers that can be represented is limited by the largest and smallest values
that fit in the memory reserved for the exponent. In many computing languages,
different types of floating point numbers are available, these differ in the size
of the space reserved for them in memory. The properties of Real numbers as
defined in mathematics differ from floating point numbers in assuming unlimited
resolution and an unlimited range of representable values.

In R, numbers that are not integers are stored as double-precision floats. Preci-
sion of numerical values in computers is usually symbolised by “epsilon” (¢€), com-
monly abbreviated eps, defined as the largest value of € for which 1 + € = 1. The
finite resolution of floats can lead to unexpected results when testing for equality
or inequality. Test for equality is done with operator ==. The use of this and other
comparison operators is explained in section 3.6 on page 52.
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1e20 == 1 + 1le20
## [1] TRUE

1 =1+ 1le-20
## [1] TRUE

0 == 1le-20

## [1] FALSE

Another way of revealing the limited precision is during conversion to
character.
format(5.123, digits = 16)
## [1] "5.123"
format(5.123, digits = 22)
## [1] "5.123000000000000220268"

The accumulation of successive small losses of precision from multiple opera-
tions on R double values can be a problem. Thus when computations involve both
very large and very small numbers, the returned value can depend on the order of
the operations. In practice ordinary users rarely need to be concerned about losses
in precision except when testing for equality and inequality. On the other hand,
finite resolution of double numerical values can explain why sometimes returned
values for equivalent computations differ, and why some computation algorithms
may be preferable, and others even fail, in specific cases.

As the R program can be used on different types of computer hardware, the
actual machine limits for storing numbers in memory may vary depending on the
type of processor and even the compiler used to build the R program executable.
However, it is possible to obtain these values at run time, i.e., while the R is being
used, from the variable .machine, which is part of the R language. Please see the
help page for .machine for a detailed and up-to-date description of the available
constants. Beware that when you run the examples below, the values returned by R
in your own computer can differ from those returned in the computer I have used
to typeset the book as you are reading it here.

.Machine$double.eps

## [1] 2.220446e-16
.Machine$double.neg.eps
## [1] 1.110223e-16
.Machine$double.max

## [1] 1024
.Machine$double.min

## [1] -1022
.Machine$double.base
## [1] 2

The last two values refer to the exponents of a base number or radix, 2, rather
than the maximum and minimum size of numbers that can be handled as ob-
jects of class double. The maximum size of normalised double values, given by
.Machine$double.xmax, is much larger than the maximum value of integer values,
given by .machine$integer.max.
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.Machine$doubTe.xmax
## [1] 1.797693e+308
.Machine$integer.max
## [1] 2147483647

As integer values are stored in machine memory without loss of precision,
epsilon is not defined for integer values. In R not all out-of-range numeric values
behave in the same way: while off-range double values are stored as -Inf or Inf and
enter arithmetic as infinite values according to the mathematical rules, off-range
integer values become NA with a warning.
1e1026
## [1] Inf
le-1026
## [1] 0

2147483699L
## [1] 2147483699

In those statements in the chunk below where at least one operand is double
the integer operands are promoted to double before computation. A similar pro-
motion does not take place when operations are among integer values, resulting
in overflow, meaning numbers that are too big to be represented as integer values.
2147483600L + 99L

## warning in 2147483600L + 99L: NAs produced by integer overflow
## [1] NA

2147483600L + 99

## [1] 2147483699

2147483600L * 2147483600L

## warning in 2147483600L * 2147483600L: NAs produced by integer overflow
## [1] NA

2147483600L * 2147483600

## [1] 4.611686e+18

The exponentiation operator A forces the promotion of its arguments to doubTe,
resulting in no overflow. In contrast, as seen above, the multiplication operator *
operates on integer values resulting in overflow.
2147483600L * 2147483600L

## warning in 2147483600L * 2147483600L: NAs produced by integer overflow
## [1] NA

2147483600LA2L

## [1] 4.611686e+18

Both for display or as part of computations, we may want to decrease the num-
ber of significant digits or the number of digits after the decimal marker. Be aware
that in the examples below, even if printing is being done by default, these func-
tions return numeric values that are different from their input and can be stored
and used in computations. Function round() is used to round numbers to a cer-
tain number of decimal places after or before the decimal marker, with a positive
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or negative value for digits, respectively. In contrast, function signif() rounds to
the requested number of significant digits, i.e., ignoring the position of the decimal
marker.

round(0.0124567, digits = 3)

## [1] 0.012

signif(0.0124567, digits = 3)

## [1] 0.0125

round(1789.1234, digits = -1)

## [1] 1790
round(1789.1234, digits
## [1] 1789.123
signif(1789.1234, digits = 3)
## [1] 1790

3)

vctl3 <- 0.12345
vctld <- round(vctl3, digits = 2)
vctl3 == vctl4d

## [1] FALSE
vctl3 - vctl4
## [1] 0.00345
vctld

## [1] 0.12

Functions are described in detail in section 6.2 on page 169. Here I describe
them briefly in relation to their use. Functions are objects containing R code that
can be used to perform an operation on values passed as arguments to its paramet-
ers. They return the result of the operation as a single R object, or less frequently,
as a side effect. Functions have a name like any other R object. If the name of a
function is followed by parentheses () and included in a code statement, it be-
comes a function call or a “request” for the code stored in the function object to
be run. Many functions, accept R objects and/or constant values as arguments to
their formal parameters. Formal parameters are placeholder names in the code
stored in the function object, or the definition of the function. In a function call,
the code in its definition is evaluated (or run) with formal parameter names taking
the values passed as arguments to them.

In a function definition, formal parameters can be assigned default values,
which are used if no explicit argument is passed in the call. Arguments can be
passed to formal parameters by name or by position. In most cases, passing ar-
guments by name makes the code easier to understand and more robust against
coding mistakes. In the examples presented in the book, I most frequently pass
arguments by name, except for the first parameter.

Being digits, the second parameter, its argument can also be passed by posi-
tion.
round(0.0124567, digits = 3)

## [1] 0.012
round(0.0124567, 3)
## [1] 0.012
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When passing arguments by name, in most cases unambiguous partial match-
ing is acceptable, but can make code difficult to read.
round(0.0124567, di = 3)
## [1] 0.012

Functions trunc() and ceiling() return the non-fractional part of a numeric
value as a new numeric value. They differ in how they handle negative values, and
neither of them rounds the returned value to the nearest whole number. Hint: you
can use help(trunc) or trunc? at the R console, or the help tab of RStudio to find
out the answer.

3.7 What does value truncation mean? Function trunc() truncates a numeric
value, but it does not return an integer.

e Explore how trunc() and ceiling() differ. Test them both with positive and
negative values.

o Advanced Use function abs () and operators + and - to reproduce the output
of trunc() and ceiling() for the different inputs.

e Can trunc() and ceiling() be considered type conversion functions in R?

R supports complex numbers and arithmetic operations with class complex.
As complex numbers rarely appear in user-written scripts, I give only one example
of their use. Complex numbers, as defined in mathematics, have two parts, a real
component and an imaginary one. Complex numbers can be used, for example, to
describe the result of /—1 = 1i.
cmpl <- complex(real = c(-1, 1), imaginary = c(0, 0))
cmpl
## [1] -1+01 1+0i
cmp2 <- sqrt(cmpl)
cmp2
## [1] O0+1i 1+01
cmp2A2
## [1] -1+01 1401

Instants in time and periods of time in computers are usually encoded as
classes derived from integer, and thus considered in R as atomic classes and the
objects vectors. Some of these encodings are standardised and supported by R
classes posix1t and posixct. The computations based on times and dates are dif-
ficult because the relationship between local time at a given location and Universal
Time Coordinates (UTC) has changed with time, as well as with changes in national
borders. Packages ‘lubridate’ and ‘anytime’ support operations among time-related
data and conversions between character strings and time and date classes, mak-
ing them easier and less error prone than when using base R functions. Thus I
describe classes and operations related to dates and times in section 8.8 on page
267.

It is good to remove from the workspace objects that are no longer needed. We
use function remove () to delete objects stored in the current workspace.
Arguments passed to remove() can be bare object names as shown here.
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an.object <- 1:4
remove(an.object)

Function remove() also accepts the names of the objects to remove as a
character vector passed to its parameter Tist. In spite of its name, the argument
must be a vector rather than a 1ist (see section 3.4 on character and section 4.3
on Tist on pages 41 and 86).
an.object <- 5:2
remove(list = "an.object™)

Function objects () returns a character vector containing the names of all ob-
jects visible in the current environment, or by passing an argument to parameter
pattern, only the objects with names matching it.

an.object <- 1:4
another.object <- 2

objects(pattern = "*.object")

## [1] "an.object" "another.object"
remove(an.object)

objects(pattern = "*.object")

## [1] "another.object"

In RStudio, all objects are listed in the Environment tab and the search box of
this tab can be used to find a given object.

Function remove() accepts both bare names of objects as in the
chunk above and character strings corresponding to object names like in
remove ("any.object"). However, While objects() accept patterns to be matched
to object names, remove () does not. Because of this, these two functions have to
be used together for removing all objects with names that match a pattern. The
pattern can be given as a regular expression (see section 3.4 on page 46).

Both functions are available under short names matching those used in Linux
and Unix for managing files: 1s() is a synonym of objects() and rm() of remove().
Using a simple search pattern we obtain the names of all objects with names
"vctl", "vct2", and so on. When using a pattern to remove objects, it is good to
first use objects() on its own to get a list of the objects that would be deleted by
calling remove () when passing the names returned by objects () as the argument
for parameter Tist.
objects(pattern = "Avec.*")
## character(0)

The code below removes all objects with names "vct1", "vct2", and so on. We
do this at the end of the section before reusing the same names in the code ex-
amples of the next section.
remove(list = objects(pattern = "Avct[[:digit:]]?"))

Similar code chunks are included at the end of each section throughout the
book to ensure that code examples are self-contained by section. The chunk about
is shown above as an example, but kept hidden in later sections.
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3.4 Character Values

In spite of the name character, values of this mode, are vectors of character
strings”. Character constants are written by enclosing characters strings in quota-
tion marks, i.e., "this is a character string". There are three types of quotation
marks in the ASCII character set, double quotes ", single quotes ', and back ticks
*. The first two types of quotes can be used as delimiters of character constants.

vctl <- "A"
vctl

## [1] "A"
vct2 <- 'A’
vct2

## [1] "A"
vctl == vct2
## [1] TRUE
MAT o= TAY
## [1] TRUE

In many computer languages, vectors of characters are distinct from vectors
of character strings. In these languages, character vectors store at each index po-
sition a single character, while vectors of character strings store at each index
position strings of characters of various lengths, such as words or sentences. If
you are familiar with C or C++, you need to keep in mind that C’s char and R’s
character are not equivalent and that in R. In contrast to these other languages,
in R there is no predefined class for vectors of individual characters and character
constants enclosed in double or single quotes are not different.

Concatenating character vectors of length one does not yield a longer character
string, it yields instead a longer vector of character strings.

vct3 <- 'ABC'

vct4 <- "bcdefg"

vct5s <- c("123", "xyz")

c(vct3, vct4, vct5)

## [1] "ABC" "bcdefg" "123" "xyz"

Having two different delimiters available makes it possible to choose the type
of quotation marks used as delimiters so that other quotation marks can be easily
included in a string.

"He said 'hello' when he came in"

## [1] "He said 'hello' when he came in"
'He said "hello" when he came in'

## [1] "He said \"hello\" when he came in"

The outer quotes are not part of the string, they are “delimiters” used to mark
the boundaries. As you can see when b is printed special characters can be repres-
ented using “escape codes”. There are several of them, and here we will show just
four, new line (\n) and tab (\t), \" the escape code for a quotation mark within a
string and \\ the escape code for a single backslash \. I also show the different
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behaviour of print() and cat(), with cat() interpreting the escape sequences and
print() displaying them as entered.

vcte <— "abc\ndef\tx\"yz\"\\\tm"
print(vct6)

## [1] "abc\ndef\tx\"yz\"\\\tm"
cat(vctb)

## abc
## def x"yz"\ m

The escape codes are expanded only in some contexts, such as when using cat ()
to display text output.

m How to find the length of a character string?
While function length() returns the number of member character strings in a
vector, function nchar() returns the number of characters in each string in the
vector (see below for examples).

In the example below, function nchar() returns the number of characters in
each member string.

nchar(x = "abracadabra")
## [1] 11
nchar(x = c("abracadabra", "workaholic", ""))

## [1] 11 10 O

To convert a character string into upper case or lower case we use functions
toupper () and tolower(), respectively.
toupper(x = "aBcD")
## [1] "ABCD"
tolower(x = "aBcD")
## [1] "abcd"

Function strtrim() trims a string to a maximum number of characters or width.

strtrim(x = "abracadabra", width = 6)
## [1] "abraca"
strtrim(x = "abra", width = 6)

## [1] "abra"

strtrim(x = c("abracadabra", "workaholic"), 6)

## [1] "abraca" "workah"

strtrim(x = c("abracadabra", "workaholic"), c(6, 3))

## [1] "abraca" "wor"

ﬂ How to wrap long character strings?
Use R function strwrap() (see below for examples).

Function strwrap () edits a string to a maximum number of characters or width,
by splitting it into a vector of shorter character strings. It can additionally insert a
character string at the start or end of each of these new shorter strings.

strwrap(x = "This 1is a Tlong sentence used to show how T1ine wrap-
ping works.", width = 20)
## [1] "This is a Tong" ‘"sentence used to" "show how Tine" "wrapping works."



Character Values 43

3.8 Function cat() prints a character vector respecting the embedded spe-
cial characters such as new line (encoded as \n) in character strings) and without
issuing any additional new lines. Study the code below and the output it generates,
consult the documentation of the two functions, and modify the example code un-
til you are confident that you understand in detail how these two functions work.

wrapped_sentence <-
strwrap(x = "This is a very long sentence used to show how Tine wrapping works.",
width = 10,
prefix = "\n")
print(wrapped_sentence)
cat(wrapped_sentence, "\n")

m How to create a single character string from multiple shorter strings?
While function c() is used to concatenate character vectors into longer vectors,
function paste() is used to concatenate character strings into a single longer
string (see below for examples).

Pasting together character strings has many uses, e.g., assembling informative
messages to be printed, programmatically creating file names or file paths, etc.
If we pass numbers, they are converted to character before pasting. The default
separator is a space character, but this can be changed by passing a character
string as an argument for parameter sep.

paste("n =", 3)
## [1] "n = 3"
paste("n", 3, sep =" =")

## [1] "n = 3"

Pasting constants, as shown above, is of little practical use. In contrast, combin-
ing values stored in different variables is a very frequent operation when working
with data. A simple use example follows. Assuming vector friends contains the
names of friends and vector fruits the fruits they like to eat we can paste these
values together into short sentences.

friends <- c("John ", "vyan ", "Juana ", "Mary ")

fruits <- c("apples", "lichees", "oranges", "strawberries")

paste(friends, "eats ", fruits, ".", sep = "")

## [1] "John eats apples.” "vYan eats lichees."

## [3] "Juana eats oranges." "Mary eats strawberries."

3.9 Why was necessary to pass sep = "" in the call to paste() in the example
above? First try to predict what will happen and then remove , sep = "" from the

statement above and run it to learn the answer. Try your own variations of the
code until you understand the role of the separator string.

We can pass an additional argument to tell that the vector resulting from the
paste operation is to be collapsed into a single character string. The argument
passed to collapse is used as the separator. I use here cat() so that the newline
character is obeyed in the display of the single character string.
cat(paste(friends, "eats ", fruits, collapse = ".\n", sep = ""))

## John eats apples.

## Yan eats lichees.
## Juana eats oranges.
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## Mary eats strawberries

E When the vectors are of different length, as in the last example above, the
shorter one is recycled as many times as needed, which is not always what we
want. To void the recycling, we need to first collapse the members of the long
vector fruits into a vector of length one. We can achieve this by nesting two calls
to paste(), and passing an argument to collapse in the inner function call.

collapsed_fruits <- paste(fruits, collapse = ", ")
paste("My friends eat", collapsed_fruits, "and other fruits.")

## [1] "My friends eat apples, lichees, oranges, strawberries and other fruits."

The nesting of function calls is explained in section 5.5 on page 134. However,
as the two statements above would in most cases be written as nested function
calls, I add this example for reference.
paste("My friends eat", paste(fruits, collapse =", "), "and other fruits.")
## [1] "My friends eat apples, lichees, oranges, strawberries and other fruits."

Function strrep() repeats and pastes character strings into a new longer
character string, while function rep () repeats character strings without pasting
them together, returning a longer vector with each repeat of the string as a separate
member
rep(x = "ABC", times = 3)

## [1] "ABC" "ABC" "ABC"
strrep(x = "ABC", times
## [1] "ABCABCABC"
strrep(x = "ABC", times = c(2, 4))

## [1] "ABCABC" " ABCABCABCABC"
strrep(x = c("ABC", "X"), times = 2)

## [1] "ABCABC" "XX"

strrep(x = c("ABC", "X"), times = c(2, 5))
## [1] "ABCABC" "XXXXX"

3)

m How to trim leading and/or trailing whitespace in character strings?
Use function trimws () (see below for examples).

Trimming leading and trailing whitespace is a frequent operation. R function
trimws () implements this operation as shown below.

trimws(x = " two words ")
## [1] "two words"
trimws(x = c(" eight words and a newline at the end\n", " two words "))

## [1] "eight words and a newline at the end"
## [2] "two words"

3.10 Function trimws() has additional parameters that make it possible to
select which end of the string is trimmed and which characters are considered
whitespace. Use help(trimws) to access the help and study this documentation.
Modify the example above so that only trailing whitespace is removed, and so
that the newline character \n is not considered whitespace, and thus not trimmed
away.
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Within character strings, substrings can be extracted and replaced by position
using substring() or substr().
For extraction, we can pass to x a constant as shown below or a variable.

substr(x = "abracadabra", start = 5, stop = 9)
## [1] "cadab"
substr(x = c("abracadabra", "workaholic"), start = 5, stop = 11)

## [1] "cadabra" "aholic"

Replacement is done in place, by having function substr() on the left-hand
side (lhs) of the assignment operator <-. Thus, the argument passed to parameter
x of substr() must in this case be a variable rather than a constant. This is a
substitution character by character, not insertion, so the number of characters in
the string passed as the argument to x remains unchanged, i.e., the value returned
by nchar() does not change.

vct7 <- c("abracadabra", "workaholic")
substr(x = vct7, start = 5, stop = 9) <- "xxx"
vct7

## [1] "abraxxxabra" "workxxxlic"

If we pass values to both start and stop then only part of the value on the rhs
of the assignment operator <- may be used.

vct8 <- c("abracadabra", "workaholic'")
substr(x = vct8, start = 5, stop = 6) <- "xxx"
vct8

## [1] "abraxxdabra" "workxxolic"

3.11 Frequently, a very effective way of learning how a function behaves, is to
experiment. In the example below, we set start and stop delimiting more charac-
ters than those in "xxx". In this case, is "xxx" extended, or start or stop ignored?
Run this “toy example” to find out the answer.

VCT1l <- c("abracadabra", "workaholic")

substr(x = vCcTl, start = 5, stop = 11) <- "xxx"
VCT1

remove (VCT1)

As in R each character value is a string comprised of zero to many characters, in
addition to comparisons based on whole strings or values, partial matches among
them are of interest.

To substitute part of a character string by matching a pattern, we can use
functions sub() or gsub(). The first example uses three character constants, but
values stored in variables can also be passed as arguments.
sub(pattern = "ab", replacement = "AB", x = "about")

## [1] "ABout"

The difference between sub() (substitution) and gsub () (global substitution) is
that the first replaces only the first match found while the second replaces all
matches.

sub(pattern = "ab", replacement = "x", x = "abracadabra")
## [1] "xracadabra"
gsub(pattern = "ab", replacement = "x", x = "abracadabra")

## [1] "xracadxra"
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3.12 Functions sub() or gsub() accept character vectors as the argument for
parameter x. Run the two statements below and study how the values returned
differ.

sub(pattern = "ab", replacement = "x", x = c("abra", "cadabra"))

gsub(pattern = "ab", replacement = "x", x = c("abra", "cadabra"))

Function grep () returns indices to the values in a vector matching a pattern, or
alternatively, the matching values themselves.

grep(pattern = "Cc", x = c("R", "C++", "C", "Perl", "Pascal"))

## [1] 2 3

grep(pattern = "c", x = c("R", "C++", "C", "Perl", "Pascal"), value = TRUE)

## [1] "c++" "c"

grep(pattern = "Cc", x = c("R", "C++", "C", "Perl1", "Pascal"), ignore.case = TRUE)
## [1] 2 3 5

Function grep1() is a variation of grep () that returns a vector of logical values
instead of numeric indices to the matching values in x.

grepl (pattern = "Cc", x = c("R", "C++", "C", "Perl", "Pascal"))
## [1] FALSE TRUE TRUE FALSE FALSE
grepl (pattern = "Cc", x = c("R", "C++", "C", "Perl", "Pascal"), ignore.case = TRUE)

## [1] FALSE TRUE TRUE FALSE TRUE

In the examples above, the arguments for pattern strings matched exactly their
targets. In R and other languages, regular expressions are used to concisely describe
more elaborate and conditional patterns. Regular expressions themselves are en-
coded as character strings, where some characters and character sequences have
special meaning. This means that when a pattern should be interpreted literally
rather than specially, fixed = TRUE should be passed in the call. This, in addition,
ensures faster computation. In the examples above, the patterns used contained no
characters with special meaning, thus, the returned value is not affect by passing
fixed = TRUE as done here.
sub(pattern = "ab", replacement = "AB", x = "about", fixed = TRUE)

## [1] "ABout"

Regular expressions are used in Unix and Linux shell scripts and programs,
and are part of Perl, C++ and other languages in addition to R. This means that
variations exist on the same idea, with R supporting two variations of the syntax.
A description of R regular expressions can be accessed with help(regex). We here
describe R’s default syntax.

Regular expressions are concise, terse, and extremely powerful. They are a lan-
guage in themselves. However, the effort needed to learn their use more than pays
back. I will show examples of the use, rather than systematically describe them. I
will use gsub() for these examples, but several other R functions including grep ()
and grep1() accept regular expressions as patterns.

In a regular expression, | separates alternative matching patterns.

gsub(pattern = "ab|t", replacement = "123", x = "about")
## [1] "1230ul23"
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Within a regular expression, we can group characters within [ ] as alternative,
e.g., [0123456789], or [0-9] matches any digit.

gsub(pattern = "a[0123456789]",
replacement = "ab",
x = c("alout", "a9out", "a3out"))

## [1] "about" "about" "about"

Character A indicates that the match must be at the “head” of the string, and $
that the match should be at its “tail”.
gsub(pattern = "Aa[0123456789]",

replacement = "ab",
x = c("alout", "a9out", " a3out"))
## [1] "about"™ "about" " a3out"

The replacement can be an empty string.
gsub(pattern = "out$",

replacement = s
x = c("about", "a9out", "a3outx"))

## [1] "ab" "a9" "a3outx"

A dot (.) matches any character. In this example, we replace the last character
with "".

gsub(pattern = ".$",
replacement = "",
x = c("about", "a9out", "a3outx"))

## [1] "abou" "a9ou" "a3out"

3.13 How would you modify the last code example above to edit
c("about", "axout", "a3outx") into c("about", "axout", "a3out")? Think of
different ways of doing this using regular expressions.

The number of matching characters can be indicated with + (match 1 or more
times), ? (match O or 1 times), * (match O or more times) or even numerically.
Matching is in most cases “greedy”.
gsub(pattern = "A.[0-9][a-z]*$",

replacement = "gone",
x = c("about", "a9out", "a3outx"))

## [1] "about™ "gone"™ "gone"

Several named classes of characters are predefined, for example [:Tower:] for
lower case alphabetic characters according to the current locale (see page 49). In
the regular expression in the example below, [:1ower:] replaces only a-z, thus we
need to keep the outer square brackets. While a-z includes only the unaccented
letters, [:Tower:] does include additional characters such as &, 0, or é if they are
in use in the current locale. In the case of [:digit:] and 0-9, they are equivalent.
gsub(pattern = "A.([[:digit:11)[[:Tower:]]*$",

replacement = "gone with \\1",
x = c("about", "a9out", "a3outx"))
## [1] "about" "gone with 9" "gone with 3"

With parentheses we can isolate part of the matched string and reuse it in the
replacement with a numeric back-reference. Up to a maximum of nine pairs of
parentheses can be used.
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gsub(pattern = "A.([0-9]) [a-z]*$",
replacement = "gone with \\1",
x = c("about", "a9out", "a3outx"))

## [1] "about" "gone with 9" "gone with 3"

3.14 Run the two statements below, study the returned values by creating
variations of the patterns and explain why the returned values differ.
gsub(pattern = "A_+$",

replacement = "",
x = c("about", "a9out", "a3outx"))

gsub(pattern = "A.?7§",

replacement = ,
x = c("about", "a9out", "a3outx"))

Splitting of character strings based on pattern matching is a frequently used
operation, e..g., treatment labels containing information about two different treat-
ment factors need to be split into their components before data analysis. Function
strsplit() has an interface consistent with grep(). In the examples we will split
strings containing date and time of day information in different ways.
strsplit(x = "2023-07-29 10:30", split =" ")

## [[1]1]
## [1] "2023-07-29" "10:30"

Using a simple regular expression we can extract individual strings representing
the numbers.

strsplit(x = "2023-07-29 10:30", split = " |-]|:")
## [[1]]
## [1] "2023" "07" nogn "10" n30"

The argument to spl1it is by default interpreted as a regular expression, but as
discussed above we can pass fixed = TRUE to prevent this.

B One needs to be aware that the part of the string matched by the regular ex-
pression is not included in the returned vectors. If the regular expression matches
more than what we consider a separator, the returned values may be surprising.
strsplit(x = "2023-07-29", split = "-[0-9]+$")

## [[1]1]

## [1] "2023-07"

E When the argument passed to x is a vector with multiple member strings, the
returned value is a list of character vectors. This list contains as many character
vectors as members had the vector passed as argument to x, each vector the result
of splitting one character string in the input. (Lists are described in section 4.3 on
page 86.)

strsplit(x = c("2023-07-29 10:30", "2023-07-29 19:17"), split =" ")
# [[1]1]

## [1] "2023-07-29" "10:30"

##

## [[2]]

## [1] "2023-07-29" "19:17"
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The ASCII character set is the oldest and simplest in use. In contains only 128
characters including non-printable characters. These characters support the Eng-
lish language. Several different extended versions with 256 characters provided
support for other languages, mostly by adding accented letters and some sym-
bols. The 128 ASCII characters were for a long time the only consistently available
across computers set up for different languages and countries (or locales). Re-
cently the use of much larger character sets like UTF8 has become common. Since
R version 4.2.0 support for UTFS is available under Windows 10. This makes it pos-
sible the processing of text data for many more languages than in the past. Even
though now it is possible to use non-ASCII characters as part of object names, it
is anyway safer to use only ASCII characters as this support is recent.

The extended character sets include additional characters, that are distinct but
may produce glyphs that look very similar to those in the ASCII set. One case
are em-dash (—), en-dash (-), minus sign (—) and regular dash (-), which are all
different characters, with only the last one recognised by R as the minus operator.
For those copying and pasting text from a word-processor into R or RStudio, a
frequent difficulty is that even if one types in an ASCII quote character ("), the
opening and closing quotes in many languages are automatically replaced with
non-ASCII ones (“and”), which R does not accept as character string delimiters.
The best solution is to use a plain text editor instead of a word processor when
writing scripts or editing text files containing data to be read as code statements
or numerical data.

A locale definition determines not only the language, and character set, but
also date, time, and currency formats.

3.5 Logical Values and Boolean Algebra

What in Mathematics are usually called Boolean values, are called Togical values in
R. They can have only two values TRUE and FALSE, in addition to NA (not available).
Logical values TRUE and FALSE should not be confused with text strings, they are
names for the two conditions that can be stored. Logical values are always vectors
as all other atomic types in R (by atomic we mean that each value is not composed
of “parts”).

Logical values are rarely used to store data from experiments or surveys. They
are used mostly to keep track of binary conditions, like results from comparisons
in a script and to operate on them. Most frequent uses of logical values do not
involve their storage in user-created variables. Most comparisons or tests return a
logical value and Boolean algebra makes it possible to combine the results from
multiple tests or conditions into a single combined outcome or binary decision,
i.e., TRUE or False, Yes or No. (See section 3.6 on page 52 for examples.)

In mathematics, Boolean algebra provides the rules of the logic used to com-
bine multiple logical values. Boolean operators like AND and OR take as operands
logical values and return a logical value as a result. In R there are two “families”
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of Boolean operators, vectorised and not vectorised. Vectorised operators accept
logical vectors of any length as operands, while non-vectorised ones accept only lo-
gical vectors of length one as operands. In the chunk below we use non-vectorised
operators with two Togical vectors of length one, a and b, as operands.

vctl <- TRUE
mode (vctl)

## [1] "Togical"
vctl

## [1] TRUE
ITRUE

## [1] FALSE
TRUE && FALSE
## [1] FALSE
TRUE || FALSE
## [1] TRUE

xor (TRUE, FALSE)
## [1] TRUE

The availability of two kinds of logical operators can be troublesome for those
new to R. Pairs of “equivalent” logical operators behave differently, use similar
syntax and use similar symbols! The vectorised operators have single-character
names, & and | (like the vectorised arithmetic operators, such as +), while the non-
vectorised ones have double-character names, && and | |. There is only one version
of the negation operator ! that is vectorised. In recent versions of R, an error is
triggered when a non-vectorised operator is used with a vector with length > 1,
which helps prevent mistakes. In some situations, vectorised logical operators
can replace non-vectorised ones, but it is important to use the ones that match
the intention of the code, as this enables relevant checks for mistakes. Once the
distinction is learnt, using the most appropriate operators also contributes to make
code easier to read.
c(TRUE, FALSE) & c(TRUE, TRUE)

## [1] TRUE FALSE
c(TRUE, FALSE) | c(TRUE,TRUE)
## [1] TRUE TRUE

Functions any () and a11() take zero or more logical vectors as their arguments,
and return a single logical value “summarising” the logical values in the vectors.
Function a11() returns TRUE only if all values in the vectors passed as arguments
are TRUE, and any () returns TRUE unless all values in the vectors are FALSE.

vct2 <- c(TRUE, FALSE, FALSE)

any (vct2)

## [1] TRUE

all(vct2)

## [1] FALSE

any (c(TRUE, FALSE) & c(TRUE,TRUE))
## [1] TRUE

all(c(TRUE, FALSE) & c(TRUE,TRUE))
## [1] FALSE

any (c(TRUE, FALSE) | c(TRUE,TRUE))
## [1] TRUE

all(c(TRUE, FALSE) | c(TRUE,TRUE))
## [1] TRUE
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Another important thing to know about logical operators is that they “short-
cut” evaluation. If the result is known from the first part of the statement, the rest
of the statement is not evaluated. Try to understand what happens when you enter
the following commands. Short-cut evaluation is useful, as the first condition can
be used as a guard protecting a later condition from being evaluated when it would
trigger an error.

TRUE || NA

## [1] TRUE

FALSE || NA

## [1] NA

TRUE && NA

## [1] NA

FALSE && NA

## [1] FALSE

TRUE && FALSE && NA
## [1] FALSE

TRUE && TRUE && NA
## [1] NA

3.15 Investigate how swapping the order of the operands in the code chunk
above affects the values returned, e.g.., the first statement becomes NA || TRUE.

When using the vectorised operators on vectors of length greater than one,
‘short-cut’ evaluation still applies for the result obtained at each index position.
c(TRUE, FALSE) & c(TRUE,TRUE) & NA

## [1] NA FALSE
c(TRUE, FALSE) & c(TRUE,TRUE) & c(NA, NA)
## [1] NA FALSE

c(TRUE, FALSE) | c(TRUE,TRUE) | c(NA, NA)
## [1] TRUE TRUE

3.16 Based on the description of “recycling” presented on page 31 for numeric
operators, explore how “recycling” works with vectorised logical operators. Create
logical vectors of different lengths (including length one) and play by writing sev-
eral code statements with operations on them. To get you started, one example
is given below. Execute this example, and then create and run your own, making
sure that you understand why the values returned are what they are. Sometimes,
you will need to devise several examples or test cases to tease out of R an under-
standing of how a certain feature of the language works, so do not give up early,
and make use of your imagination!

c(TRUE, FALSE, TRUE, NA) & FALSE
c(TRUE, FALSE, TRUE, NA) | c(TRUE, FALSE)

m How to test if a vector contains no values other than NA (or NaN) values?
A call to is.na() returns a logical vector that we can pass to al1(). We can save
the intermediate vector temp and pass it as argument to is.na(), or alternatively
nest the function calls. The name tmp, for temporary, is frequently used for vari-
ables whose value is retrieved only once.
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vct2 <- rep(NA, 5)
tmp <- ds.na(vct2)
all(tmp)

## [1] TRUE

all(is.na(vct2))
## [1] TRUE

m How to test if a vector contains one or more NA (or NaN) values?
See previous question. We only need to replace al1() by any() to obtain the an-
Swer.

vct2 <- rep(NA, 5)
any(is.na(vct2))

## [1] TRUE

3.6 Comparison Operators and Operations

Comparison operators return vectors of logical values (see section 3.5 on page
49), with values TRUE or FALSE depending on the outcome.

Equality (==) and inequality (!=) operators are defined not only for numeric val-
ues but also for character and most other atomic and many other values. Be aware
that operator = is an infrequently used synonym of the assignment operator <-
rather than a comparison operator!

"abc" == "ab"
## [1] FALSE
"ABC" == "abc"
## [1] FALSE
"abc" != "ab"
## [1] TRUE
"ABC" != "abc
## [1] TRUE

In the case of numeric values additional comparisons are meaningful and addi-
tional operators are defined.

1.2 > 1.0
## [1] TRUE
1.2 >= 1.0
## [1] TRUE
1.2 ==1.0
## [1] FALSE
1.2 1=1.0
## [1] TRUE
1.2 <= 1.0
## [1] FALSE
1.2 < 1.0
## [1] FALSE
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These operators can be used on vectors of any length, returning as a result a
logical vector as long as the longest operand. In other words, they behave in the
same way as the arithmetic operators described on page 30: their arguments are
recycled when needed. Hint: if you do not know what value is stored in numeric
vector a, use print(a) after the first code statement below to see its contents.

vct3 <- 1:10
vct3 > 5

## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
vct3 < 5

## [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
vct3 ==

## [1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
all(vct3 > 5)

## [1] FALSE

any(vct3 > 5)

## [1] TRUE

vctd <- vct3 > 5
vct4

## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
any (vct4)

## [1] TRUE

all(vct4d)

## [1] FALSE

Individual comparisons can be useful, but their full role in data analysis and
programming is realised when we combine multiple tests using the operations of
the Boolean algebra described in section 3.5 on page 49.

For example, to test if members of a numeric vector are within a range, in our
example, —1 to +1, we can combine the results from two comparisons using the
vectorised logical AND operator &, and use parentheses to override the default
order of precedence of the operations.

vcts <- -2:3
vcts >= -1 & vct5 <=1

## [1] FALSE TRUE TRUE TRUE FALSE FALSE

If we want to find those values outside this same range, we can negate the test.
I'(vct5 >= -1 & vcth <= 1)
## [1] TRUE FALSE FALSE FALSE TRUE TRUE

Or, we can combine another two comparisons using the vectorised logical OR
operator |.
vcts < -1 | vct5 > 1
## [1] TRUE FALSE FALSE FALSE TRUE TRUE

In some cases, an additional advantage is that Togical values require less space
in memory for their storage than numeric values.

3.17 Use the statement below as a starting point in exploring how precedence
works when logical and arithmetic operators are part of the same statement. Play
with the example by adding parentheses at different positions and based on the
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returned values, work out the default order of operator precedence used for the
evaluation of the example given below.

vcte <- 1:10
vcte > 3 | vctb + 2 < 3

It is important to be aware of the consequences of “short-cut evaluation” (de-
scribed on page 51). The behaviour of many of base-R’s functions when NAs are
present in their input arguments can be modified. If TRUE is passed as an argument
to parameter na.rm, NA values are removed from the input before the function is
applied.
vct7 <- c(1:10, NA)
all(vct7 < 20)

## [1] NA

any(vct7 > 20)

## [1] NA

all(vct?7 < 20, na.rm=TRUE)
## [1] TRUE

any(vct7 > 20, na.rm=TRUE)
## [1] FALSE

In many situations, when writing programs one should avoid testing for equal-
ity of floating point numbers (‘floats’). This is because of how numbers are stored
in computers (see the box on page 35 for an in-depth explanation). Here I show
how to gracefully handle rounding errors when using comparison operators. As
rounding errors may accumulate, in practice .machine$double.eps is frequently
too small a value to safely use in tests for “zero.”. Whenever possible according
to the logic of the calculations, it is best to test for inequalities, for example using
x <= 1.0 instead of x == 1.0. If this is not possible, then equality tests should
be done by replacing tests like x == 1.0 with abs(x - 1.0) < k, where k is
a number larger than eps. Function abs () returns the absolute value, in simpler
words, makes all values positive or zero, by changing the sign of negative values,
or in mathematical notation |x| = | — x].
sin(pi) ==
## [1] FALSE
sin(2 * pi) == 0
## [1] FALSE
abs(sin(pi)) < 1le-15
## [1] TRUE
abs(sin(2 * pi)) < 1le-15
## [1] TRUE
sin(pi)

## [1] 1.224606e-16
sin(2 * pi)
## [1] -2.449213e-16
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Figure 3.1

Boolean algebra. Venn diagrams for algebra of sets operations: union, U, union();
intersection, N, intersect(); difference (asymmetrical), —, setdiff(); equality test
setequal(); membership, is.element () and operator %in%

3.7 Sets and Set Operations

The R language supports set operations on vectors. They can be useful in many dif-
ferent contexts when manipulating and comparing vectors of values. In Bioinform-
atics, it is usual, for example, to make use of character vectors of gene tags. Algebra
sets is implemented with functions union(), intersect(), setdiff(), setequal()
is.element() and operator %in% (Figure 3.1). The first three operations return a
vector of the same mode as their inputs, and the last three a 1ogical vector. The
action of the first three operations is most easily illustrated with Venn diagrams,
where the returned value (or result of the operation) is depicted in darker grey.

Set operations applied to vectors with values representing a mundane example,
grocery shopping, demonstrate them.

fruits <- c("apple"”, "pear", "orange", "lemon", "tangerine")
bakery <- c("bread", "buns", "cake", "cookies")

dairy <- c("milk", "butter", "cheese")

shopping <- c("bread", "butter", "apple", "cheese", "orange")

intersect (fruits, shopping)
## [1] "apple"™ "orange"
intersect(bakery, shopping)
## [1] "bread"
intersect(dairy, shopping)
## [1] "butter" "cheese"
"Temon" %in% dairy

## [1] FALSE

"lemon" %in% fruits

## [1] TRUE
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dairy %in% shopping
## [1] FALSE TRUE TRUE
union(bakery, dairy)

## [1] "bread" "buns" "cake" "cookies" "milk" "butter" "cheese"
setdiff(union(bakery, dairy), shopping)
## [1] "buns" "cake" "cookies" "milk"

Sets describe membership as a binary property, thus when vectors are inter-
preted as sets, duplicate members are redundant. Duplicate members although
accepted as input are always simplified in the returned values.
union(c("a", "a", "b"), c("b", "a", "b"))

## [1] "a" "b"

setequal (c("a", "a", "b"), c("b", "a", "b"))
## [1] TRUE

all.equal(c("a", "a", "b"), c("b"™, "a", "b™))
## [1] "1 string mismatch"

identical (c("a", "a", "b"), c("b", "a", "b"))
## [1] FALSE

We construct and save a character vector to use in the next examples.
vctl <- c("a", "b", "c", "b")

To testif a given value belongs to a set, we use operator %in% or its function equi-
valent is.element(). In the algebra of sets notation, this is written a € A, where
A is a set and a a member. The second statement shows that the %in% operator is
vectorised on its left-hand-side (lhs) operand, returning a logical vector.
is.element("a", vctl)

## [1] TRUE

"a" %in% vctl

## [1] TRUE

c("a", "a", "z") %in% vctl
## [1] TRUE TRUE FALSE

Keep in mind that inclusion, implemented in operator %1in%, is an asymmet-
rical (not reflective) operation among a vector and a set. The right-hand-side (rhs)
argument is interpreted as a set, while the left-hand-side (lhs) argument is inter-
preted as a vector of values to test for membership in the set. In other words, any
duplicate member in the lhs operand is retained and tested while the rhs operand
is interpreted as a set of unique values. The returned logical vector has the same
length as the lhs operand.
vctl %in% "a"

## [1] TRUE FALSE FALSE FALSE

The negation of inclusion is a € A, and coded in R by applying the negation
operator ! to the result of the test done with %in% or function is.element().

lis.element("a", vctl)

## [1] FALSE

1"a" %in% vctl

## [1] FALSE ]
Ic("a™, "a", "z") %in% vctl
## [1] FALSE FALSE TRUE
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Although inclusion is a set operation, it is also very useful for the simplification
of if () .. else statements by replacing multiple tests for alternative constant
values of the same mode chained by multiple | operators. A useful property of %in%
and is.element() is that they never return NaA.

Operator %in% is equivalent to function match (), although the additional para-
meters of match() provide additional flexibility.

In some cases, such as when accepting partial character strings as input, the
aim is not an exact match, but a partial match to target character strings. In this
case, either charmatch() or pmatch() is the correct tool to use depending on the
desired handling of partial, ambiguous and exact matches. Use help() to find the
details if you need to use one of them.

3.18 Use operator %in% to write more concisely the following comparisons.
Hint: see section 3.5 on page 49 for the difference between | and || operators.
vct2 <- c("a", "a", "z")
vct2 == "a" | vct2 == "b" | vct2 = "c" | xvct2 = "d"

Convert the Togical vectors of length 3 into a vector of length one. Hint: see
help for functions a11() and any().

With unique() we convert a vector of possibly repeated values into a set of
unique values. In the algebra of sets, a certain object belongs or not to a set. Con-
sequently, in a set, multiple copies of the same object or value are meaningless.

unique(vctl)
## [1] "a" "b" "c"

Function unique() is frequently useful, for example when we want determine
the number of distinct values in a vector.

Tength(unique(vctl))
## [1] 3

3.19 Do the values returned by these two statements differ?
c("a", "a", "z") %in% vctl

c("a", "a", "z") %in% unique(vctl)

Function duplicated() is the counterpart of unique (), returning a logical vec-
tor, indicating which values in a vector are duplicates of values already present at
positions with a lower index.
duplicated(vctl)

## [1] FALSE FALSE FALSE TRUE
anybuplicated(vctl)
## [1] 4

The R language includes many functions that simplify tasks related to data

analysis. Some are well known like unique(), but others may need to be searched
for in the documentation.

3.20 What do you expect to be the difference between the values returned by
the three statements in the code chunk below? Before running them, write down
your expectations about the value each one will return. Only then run the code.
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Independently of whether your predictions were correct or not, write down an
explanation of what each statement’s operation is.

union(c("a", "a", "z"), vctl)
c(c("a", "a", "z"), vctl)
c("a", "a", "z", vctl)

Are set union and concatenation of vectors equivalent operations? why or why
not?

All set algebra examples above use character vectors and character constants.
This is just the most frequent use case. Sets operations are valid on vectors of any
atomic class, including integer, and computed values can be part of statements.
In the second and third statements in the next chunk, we need to use additional
parentheses to alter the default order of precedence between arithmetic and set
operators.

9 %in% 2:4

## [1] FALSE

9 %in% ((2:4) * (2:4))

## [1] TRUE

c(1l, 16) %in% ((2:4) * (2:4))
## [1] FALSE TRUE

Empty sets are an important component of the algebra of sets, in R they are
represented as vectors of zero length. These vectors do belong to a class such as
numeric or character and must be compatible with other operands in an expres-
sion.
c("ab", "xy") %in% character()

## [1] FALSE FALSE

character() %in% c("a", "b", "c")
## logical(0)

union("ab", character())

## [1] "ab"

Although set operators are defined for numeric vectors, rounding errors in
‘floats’ can result in unexpected results (see section 3.3 on page 35).
c(cos(pi), sin(pi)) %in% c(0, -1)
## [1] TRUE FALSE
c(cos(pi), sin(pi))
## [1] -1.000000e+00 1.224606e-16

3.21 In the algebra of sets notation A S B, where A and B are sets, indicates
that A is a subset or equal to B. For a true subset, the notation is A C B. The oper-
ators with the reverse direction are 2 and D. Implement these four operations in
four R statements, and test them on sets (represented by R vectors) with different
“overlap” among set members.
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3.8 The Mode and Class of Objects

Classes are abstractions, they determine the “meaning” and behaviour of objects
belonging to them. New classes can be defined in user code as well as new methods,
i.e., functions or operators tailored to fit them. The class is like a “tag” that tells
how the value in an object should be interpreted and operated upon.

Variables (names given to objects) have a class that depends on the object stored
in them. In contrast to some other languages in R assignment to a variable already
in use to store an object belonging to a different class is allowed. There is a re-
striction that all elements in a vector, array or matrix, must be of the same mode
(these are called atomic, as they contain homogeneous members). Lists and data
frames can be heterogenous (to be described in chapter 4). In practice, this means
that we can assign an object, such as a vector, with a different class to a name
already in use, but we cannot use indexing to assign an object of a different mode
to individual members of a vector, matrix or array.

Function class() is used to query the class of an object, and function
inherits() is used to test if an object belongs to a specific class or not (includ-
ing “parent” classes, to be later described).

vctl <- 1:5
class(vctl)

## [1] "dinteger"
inherits(vctl, "character")
## [1] FALSE

inherits(vctl, "numeric")
## [1] FALSE

Functions with names starting with is. are tests returning a logical value, TRUE,
FALSE O NA.
is.numeric(vctl)
## [1] TRUE
is.double(vctl)

## [1] FALSE
is.integer(vctl)
## [1] TRUE
is.logical (vctl)
## [1] FALSE
is.character(vctl)
## [1] FALSE

Functions starting with is. have to be individually defined and are available
only for some classes. Function inherits() takes as its second argument a charac-
ter vector containing strings to be tested against the class attribute of the object
passed as its first argument.

inherits(vctl, c("numeric", "character", "logical"), which = TRUE)
## [11 00 0
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E The mode of an object is a fundamental property, and limited to those modes
defined as part of the R language. In particular, different R objects of a given mode,
such as numeric, can belong to different classes. Classes and the dispatch of meth-
ods are discussed in section 6.3 on page 176, together with object-oriented pro-
gramming.

mode(c(1, 2, 3))

## [1] "numeric"

typeof(c(1l, 2, 3))

## [1] "double"

class(c(1l, 2, 3))

## [1] "numeric"

mode(c(1L, 2L, 3L))

## [1] "numeric"

typeof(c(1lL, 2L, 3L))

## [1] "integer"

class(c(1L, 2L, 3L))

## [1] "integer"

mode (factor(c("a", "b", "c")))
## [1] "numeric"

typeof (factor(c("a", "b", "c")))
## [1] "integer"
class(factor(c("a", "b", "c'")))
## [1] "factor"

mode(c("a", "b", "c"))
## [1] "character"
typeof (c("a", "b", "c"))
## [1] "character"
class(c("a", "b", "c"))
## [1] "character"

mode (c (TRUE, FALSE))
## [1] "logical"
typeof (c(TRUE, FALSE))
## [1] "logical"
class(c(TRUE, FALSE))
## [1] "logical"

3.9 Type Conversions

By type conversion we mean converting a value from one class into a value ex-
pressed in a different class. usually the meaning can be retained, at least in part.
We can, for example, convert character strings into numeric values, but this con-
version is possible only for character strings conformed by digits, like "100". Most
conversions, such as the conversion of character value "100" into numeric value
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100 are obvious. Type conversions involving logical values are less intuitive. By con-
vention, functions used to convert objects from one mode or class to a different
one have names starting with as.'.

as.character(102)

## [1] "102"

as.character (TRUE)

## [1] "TRUE"

as.character(3.0e10)

## [1] "3e+10"

as.numeric("203")

## [1] 203

as.logical ("TRUE")

## [1] TRUE

as.logical (100)

## [1] TRUE

as.logical (0)

## [1] FALSE

as.logical (-1)

## [1] TRUE

Some conversions takes place automatically in expressions involving both
numeric and logical values.
TRUE + 10
## [1] 11
1110
## [1] TRUE
FALSE | -2:2
## [1] TRUE TRUE FALSE TRUE TRUE

3.22 There is flexibility in the conversion from character strings into numeric
and logical values. Use the examples below plus your own variations to get an
idea of what strings are acceptable and correctly converted and which are not. Do
also pay attention at the conversion between numeric and logical values.

as.numeric("5E+5")
as.numeric("50e+4")
as.numeric(".12")
as.numeric("0.12")
as.numeric("A")
as.logical ("TRUE")
as.logical ("FALSE")
as.logical ("T")
as.logical ("t")
as.logical ("true")
as.logical ("NA™)

3.23 Conversion of fractional numbers into whole numbers can be achieved
in different ways, by truncation of the fractional part or rounding it up or down.
If we consider both negative and positive numbers, how each of them is handled
creates additional possibilities. All these approaches, as defined in mathematics,

IExcept for some packages in the ‘tidyverse’ that use names starting with as_ instead of as..
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are available through different R functions. These functions, are not conversion
functions as they return a numeric value of class double. See page 37. In contrast,
as.integer() is a conversion function for type double into type integer, both with
mode numeric.

Compare the values returned by trunc() and as.integer() when applied to a
floating point number, such as 12.34. Check for the equality of values, and for the
class and type of the returned objects.

Using conversions, the difference between the length of a character vector
and the number of characters composing each member “string” within a vector
becomes clear.
vetl <- c('1", 2", "3")
length(vctl)

## [1] 3

vct2 <- "123.1"
length(vct2)

## [1] 1

as.numeric(vctl)
## [1]1 1 2 3
as.numeric(vct2)
## [1] 123.1
as.integer(vctl)
## [1]1 1 2 3
as.integer(vct2)
## [1] 123

Other functions relevant to the “conversion” of numbers and other values are
format(), and sprintf(). This is sometimes informally called “pretty printing”.
These two functions return character strings, instead of numeric or other val-
ues, and are useful for printed output. One could think of these functions as
advanced conversion functions returning formatted, and possibly combined and
annotated, character strings. However, they are usually not considered normal con-
version functions, as they are very rarely used in a way that preserves the original
precision of the input values. We show here the use of format() and sprintf()
with numeric values, but they can also be used with values of other classes like
character, logical, etc.

When using format(), the format used to display numbers is set by passing
arguments to several different parameters. As print() calls format() to convert
numeric values into character strings, it accepts the same options.

vct2 = c(123.4567890, 1.0)
format (vct2)

## [1] "123.4568" " 1.0000"
format(123.4567890)

## [1] "123.4568"
format(1.0)

## [1] "1"
format(vct2, digits = 3, nsmall = 1)
## [1] "123.5" " 1.0"

format(vct2, digits 3, scientific = TRUE)
## [1] "1.23e+02" "1.00e+00"
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Function sprintf() is similar to C’s function of the same name. The user in-
terface is rather unusual, but very powerful, once one learns the syntax. All the
formatting is specified using a character string as template. In this template, place-
holders for data and the formatting instructions are embedded using special codes.
These codes start with a percent character. We show in the example below the use
of some of these: f is used for numeric values to be formatted according to a “fixed
point”, while g is used when we set the number of significant digits and e for ex-
ponential or scientific notation.

x = ¢(123.4567890, 1.0)
sprintf("The numbers are: %4.2f and %.0f", x[1], x[2])

## [1] "The numbers are: 123.46 and 1"

sprintf("The numbers are: %.4g and %.2g", x[1], x[2])
## [1] "The numbers are: 123.5 and 1"

sprintf("The numbers are: %4.2e and %.0e", x[1], x[2])
## [1] "The numbers are: 1.23e+02 and 1e+00"

In the template "The numbers are: %4.2f and %.0f", there are two placehold-
ers for numeric values, %4.2f and %.0f; so, in addition to the template, we pass two
values extracted from the first two positions of vector x. These could have been
two different vectors of length one, or even numeric constants. The template itself
does not need to be a character constant as in these examples, as a variable can
be also passed as argument.

3.24 Function format() may be easier to use, in some cases, but sprintf() is
more flexible and powerful. Those with experience in the use of the C language will
already know about sprintf () and its use of templates for formatting output. Even
if you are familiar with C, look up the help pages for both functions, and practice,
by trying to create the same formatted output by means of the two functions. Do
also play with these functions with other types of data like integer and character.

I have described above NA as a single value ignoring modes, but in reality NA
values come in various flavours: NA_real_, NA_character_, etc. and NA defaults to
an NA of class Togical. NA is normally converted on the fly to other modes when
needed, so in general NA is all we need to use. The examples below use the extrac-
tion operator to demonstrate automatic conversion on assignment. This operator
is described in section 3.10 below.
vct3 <- c(1, NA)
is.numeric(vct3[2])

## [1] TRUE
is.numeric(NA)
## [1] FALSE

vctd <- c("abc", NA)
is.character(vct4[2])
## [1] TRUE
class(NA_character_)
## [1] "character"
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is.character (NA)
## [1] FALSE
class(NA)

## [1] "logical"

vct5 <- NA
c(vct5, 2:3)
## [1] NA 2 3

However, even the statement below works transparently.
vct3[3] <- vct4[2]

3.10 Vector Manipulation

If you have read earlier sections of this chapter, you already know how to create a
vector. If not, see pages 28-33 before continuing.

In this section, we are going to see how to extract or retrieve, replace, and move
elements such as a, from a vector a;-1 .. Elements are extracted using an index
enclosed in single square brackets. The index indicates the position in the vec-
tor, starting from one, following the usual mathematical tradition. While in maths
notation a; represents the first, or leftmost, member of vector a;=1._,, in R the
equivalent notation is a[1] for the member and a for the vector.

We extract the first 10 elements of the vector letters, by passing an integer
vector as argument to operator [ ].

vctl <- Tetters[1:10]
vctl

## [1] nan nbn ncu udu ueu u_Fu ugu uhu u_in njn

1 3 4 5 6 7 8 9 10 — integer positional indices

vetl > - |9 | e | P g™ | *n” | “i" | 7 |— character values

vctl[2]

vctl[2]
## [1] "b"

Four constant vectors are available in base R: Tetters, LETTERS, month.name
and month.abb, of which I used letters in the example above. These vectors are
always for English, irrespective of the locale.
month.name

## [1] "January" "February" "March" "April" "May" "June"

## [7] "July" "August" "September" "October" "November" "December"
month.name[6]

## [1] "June"
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In R, indexes always start from one, while in some other programming lan-
guages such as C and C++, indexes start from zero. It is important to be aware
of this difference, as many computation algorithms are valid only under a given
indexing convention.

E How to access the last value in a vector?

month.name[length(month.name)]
## [1] "December"

Itis possible to extract a subset of the elements of a vector in a single operation,
using a vector of indexes. The positions of the extracted elements in the result
(“returned value”) are determined by the ordering of the members of the vector of
indexes—easier to demonstrate than to explain.
vctl[c(3, 2)]

## [1] "c" "b"
vctl[10:1]
## [1] "3" "4 "h™ "g" "f" "e" "d" "c" "b" "a"

3.25 The length of the indexing vector is not restricted by the length of the
indexed vector. However, only numerical indexes that match positions present in
the indexed vector can extract values. Those values in the indexing vector pointing
to positions that are not present in the indexed vector, result in NA values. This is
easier to learn by playing with R, than from explanations. Play with R, using the
following examples as a starting point.

length(vctl)
vctl[c(3, 3, 3, 3)]
vctl[c(10:1, 1:10)]
vctl[c(1l, 11)]
vctl[11]

Have you tried some of your own examples? If not yet, do play with additional
variations of your own before continuing.

Negative indexes have a special meaning; they indicate the positions at which
values should be excluded. Be aware that it is illegal to mix positive and negative
values in the same indexing operation.
vctl[-2]

## [1] "a" "c" "d" "e"™ "f" "g" "h"™ "i" "j"
vctl[-c(3,2)]

## [1] "a"™ "d" "e™ "f" "g" "h"™ "i" "j"
vctl[-3:-2]

## [1] "a"™ "d" "e™ "f" "g" "h"™ "i" "j"

3.26 Results from indexing with special values and zero may be surprising.
Try to build a rule from the examples below, a rule that will help you remember
what to expect next time you are confronted with similar statements using special
values as “subscripts” instead of integers larger or equal to one—this is likely
to happen sooner or later as these special values can be returned by different R
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expressions depending on the value of operands or function arguments, some of
them described earlier in this chapter.

vctl[ ]

vctl[O0]
vctl[numeric(0)]
vctl[NA]
vctl[c(1l, NA)]
vctl[NULL]
vctl[c(1l, NULL)]

Another way of indexing, which is very handy, but not available in most other
programming languages, is indexing with a vector of Togical values. The logical
vector used for indexing is usually of the same length as the vector from which
elements are going to be selected. However, this is not a requirement, because if
the Togical vector of indexes is shorter than the indexed vector, it is “recycled” as
discussed on page 31 in relation to other operators.
vCt1[TRUE]

## [1] "a"™ "b"™ "c" "d" "e"™ "f" "g" "h" "i" "j"
vctl[FALSE]

## character(0)

vct1[c(TRUE, FALSE)]

## [1] "a" "c" "e" "g" "i"

vctl[c(FALSE, TRUE)]

## [1] "b™ "d" "f" "h"™ "j"

vctl > "c"

## [1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
vctl[vctl > "c"]

## [1] "d" "e™ "f" "g" "h" "i" "j"

Indexing with logical vectors is very frequently used in R because comparison
operators are vectorised. Comparison operators, when applied to a vector, return
a logical vector, a vector that can be used to extract the elements for which the
result of the comparison test was TRUE.

3.27 The examples in this text box demonstrate additional uses of logical
vectors: 1) the logical vector returned by a vectorised comparison can be stored in
a variable, and the variable used as a “selector” for extracting a subset of values
from the same vector, or from a different vector.

vctl <- letters[1:10]
vct2 <- 1:10

selector <- vctl > "c"
selector
vctl[selector]
vct2[selector]

Positional indexes can be obtained from a logical vector by means of function
which() as it returns a numeric vector with the positions of the TRUE values in the
logical vector.

indexes <- which(vctl > "c")
indexes
vctl[indexes]
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Make sure to understand the examples above. These constructs are very widely
used in R because they allow for concise code that is easy to understand once one
is familiar with the indexing rules.

Above, integer or logical vectors were used as indices for extraction of
anonymous elements, or members, from character vectors. In R, elements can
be assigned names, and these names used in place of numeric indices to access
them. One situation where this is very useful is the mapping of values between two
representations. Let’s assume we have a long vector encoding treatments using
single letter codes and that we want to replace these codes with self-explanatory
names.
treat <- c("W", "c", "H", "w", "cC", "H", "H", "w", "w")

We can create a named vector to map the single letter codes onto full words.
Above, we used function c() to concatenate several character strings, without
assigning any names to them, thus they have to be extracted from the vector using
numeric values, indexing by position. Below, we assign a name to each string. Using
operator = we assign the name on the left-hand side (lhs) to the member of the
vector on the right-hand-side (rhs).

treat.map <- c¢(H = "hot", C = "cold", w = "warm")
treat.map
## H C ]

## "hot" "cold" "warm"
names (treat.map)
## [1] "R" "C" "w"

@ @ @— character member names
1 2

3 integer positional indices

treat.map D{“hot”|“cold”|“warm” |— character values

As treat.map is a named vector, we can use the element names, in addition to
numeric values, as indices for element extraction.
treat.map["H"]

## H
## "hot"

The indexing vector can be of a different length than the indexed vector, and
the returned value is a new vector of the same length as the indexing vector.
treat.new <- treat.map[treat]

treat.new
## H C H W C H H ] ]
#  "hot" "cold” "hot" "warm" "cold"” "hot" "hot" "warm" "warm"

where treat.newis a named vector, from which we will frequently want to remove
the members’ names.

treat.new <- unname(treat.new)
treat.new

## [1] "hot" "cold" "hot" "warm" "cold" "hot" "hot" “warm" "warm"
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It is more common to use named members with lists than with vectors, but in
R, in both cases it is possible to use both numeric positional indices and names.

Indexing can be used on either side of an assignment expression. In the code
chunk below, we use the extraction operator on the left-hand side of the assign-
ments to replace values only at selected positions in the vector. This may look
rather esoteric at first sight, but it is just a simple extension of the logic of in-
dexing described above. It works, because the low precedence of the <- operator
results in both the left- and the right-hand side being fully evaluated before the
assignment takes place. To make the changes to the vectors easier to compare,
identical vectors are used in each of the examples below.

vct2 <- 1:10

vct2

## [1] 1 2 3 4 5 6 7 8 910
vct2[1] <- 99

vct2

## [1]1 99 2 3 4 5 6 7 8 910

vct2 <- 1:10

vct2[c(2,4)] <- -99

vct2

## [1] 1 -99 3 -99 5 6 7 8 9 10
vct2 <- 1:10

vct2[c(2,4)] <- c(-99, 99)

vct2

## [1] 1 -99 3 99 5 6 7 8 9 10
vct2 <- 1:10

VCt2[TRUE] <- 1

vct2

## [1] 1111111111

vct2 <- 1:10

vct2 <- 1

vct2

## [1] 1

Indexing can be used simultaneously on both sides of the assignment operator,
for example, to swap two elements.

vct3 <- letters[1:10]

vct3[1:2] <- vct3[2:1]

vct3

g [1] "b" "a" " "d" Ue" " ngh "hU Mt vj

3.28 Do play with subscripts to your heart’s content, really grasping how they
work and how they can be used, will be very useful in anything you do in the future
with R. Even the contrived example below follows the same simple rules, just study
it bit by bit. Hint: the second statement in the chunk below, modifies vcT1, so, when
studying variations of this example, you will need to recreate vcTl by executing
the first statement each time you run a variation of the second statement.

VCT1l <- letters[1:10]
VCT1[5:1] <- VCT1[c(TRUE,FALSE)]
VCTl
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In R, indexing with positional indexes can be done with integer or numeric
values. Numeric values can be floats, but for indexing, only integer values are mean-
ingful. Consequently, double values are converted into integer values when used
as indexes. The conversion is done invisibly, but it does slow down computations
slightly. When working on big data sets, explicitly using integer values can im-
prove performance.

vct4 <- LETTERS[1:10]
vct4

## [1] "A" "B" "c" "p" "E" "F" "G" "H" "I" "J"
vct4[1]

## [1] "A"

vct4[1.1]

## [1] "A"
vct4[1.9999]

## [1] "A"

vct4[2]

## [1] "B"

From this experiment, we can learn that if positive indexes are not whole num-
bers, they are truncated to the next smaller integer.

vct4d <- LETTERS[1:10]
vct4

## [1] "A" "B" "c" "p" "E" "F" "G" "H" "I" "2"
vcta[-1]

## [1] "B" "c" "DpD" "E" "F" "G" "HW" "I" "J"
vct4[-1.1]

## [1] "B" "c" "p" "E" "F" "G" "H" "I" "J"
vct4[-1.9999]

## [1] "B" "c" "p" "E" "F" "G" "HW" "I" "J"
vct4[-2]

## [1] "A" "c" "pD" "E" "F" "G" "H" "I" "J"

From this experiment, we can learn that if negative indexes are not whole num-
bers, they are truncated to the next larger (less negative) integer. In conclusion,
double index values behave as if they where sanitised using function trunc().

This example also shows how one can tease out of R its rules through experi-
mentation.

A frequent operation on vectors is sorting them into an increasing or decreasing
order. The most direct approach is to use sort().
vct5 <- c(10, 4, 22, 1, 4)
sort(vct5)

## [1] 1 4 4 10 22
sort(vct5, decreasing = TRUE)
## [1] 22 10 4 4 1

An indirect way of sorting a vector, possibly based on a different vector, is to
generate with order() a vector of numerical indexes that can be used to achieve
the ordering.
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order (vct5)

## [1] 4 251 3

vct5[order(vct5)]

## [1] 1 4 4 10 22

vcte <- c("ab", "aa", "c", "zy", "e")
vct6[order (vct5)]

## [1] "zy" "aa" "e" M"ab" "c"

A problem linked to sorting that we may face is counting how many copies
of each value are present in a vector. We need to use two functions sort() and
rle() . The second of these functions computes run length as used in run length
encoding for which rle is an abbreviation. A runis a series of consecutive identical
values. As the objective is to count the number of copies of each value present, we
need first to sort the vector.
vct7 <- letters[c(1, 5, 10, 3, 1, 4, 21, 1, 10)]

vct7

## [1] "a" "e"™ "j" "c" "a" "d" "u" "a" "j"
sort(vct?7)

## [1] "a™ "a" "a" "c" "d" "e" "j" "j" "u"
rle(sort(vct?7))

## Run Length Encoding
## lengths: int [1:6] 311121
## values : chr [1:6] "a" "c" "d" "e" "j" "u"

The second and third statements are only to demonstrate the effect of each
step. The last statement uses nested function calls to compute the number of
copies of each value in the vector.

3.11 Matrices and Multidimensional Arrays

Matrices have two dimensions, rows and columns, and like vectors all their mem-
bers share the same mode, and are atomic, i.e., they are homogeneous (Figure 3.2).
Most commonly, matrices are used to store numeric, integer or logical values.
The number of rows and columns can differ, so matrices can be either square or
rectangular in shape, but never ragged.

In R, the first index always denotes rows and the second index always denotes
columns. The diagram below depicts a matrix, A, with m rows and n columns and
size equal to m X n “cells”, with individual values denoted by a; ;. Here we use a
simpler representation than that used for vectors on page 28 above, but the same
concepts apply.

In R documentation, the individual dimensions of matrices and arrays are
frequently called margins, numbered in the same order as the indices are given.
Thus, in a matrix the first margin corresponds to rows and the second one to
columns.
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Figure 3.2
Diagram of an R matrix showing indexing of members.

In mathematical notation the same generic matrix is represented as

(a1 a1 o oar; v Ain |
a2,1 a2’2 aZ’J aZ,‘VL
Aan — . H - H H
aip iz v Ay ot Ain
_ale anLZ o aij o awun_

where A represents the whole matrix, m X n its dimensions, and a;,; its elements,
with i indexing rows and j indexing columns. The lengths of the two dimensions
of the matrix are given by m and n, for rows and columns.

Vectors have a single dimension, and, as described on page 28, we can query
this dimension, their length, with function 1ength (). Matrices have two dimensions,
which can be queried individually with nco1() and nrow(), and jointly with dim().
As expected, is.matrix() can be used to query the class.

We can create a matrix using the matrix() or as.matrix() constructors. The
first argument of matrix () must be a vector. Function as.matrix() is a conversion
constructor, with specialisations accepting as argument objects belonging to a few
other classes. The shape of the matrix is controlled by passing an argument to
either ncol or nrow.
matrix(1l:15, ncol = 3)

#i [,11 [,21 [,3]
## [1,] 1 6 11
## [2,] 2 7 12
# [3,] 3 8 13
## [4,] 4 9 14
## [5,] 5 10 15
matrix(1:15, nrow = 3)
## [,11 [,2] [,3] [,4]1 [,5]

## [1,] 1 4 7 10 13
## [2,] 2 5 8 11 14
## [3,] 3 6 9 12 15
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When a matrix is printed at the R console, the row and column indexes are
indicated on the left and top margins, in the same way as they would be used to
extract whole rows and columns.

Matrices are most useful for the storage of numeric values as matrix algebra
plays an important role in statistical computations. This notwithstanding, it is pos-
sible to create matrices (and arrays) from atomic vectors of other classes such as
Togical or character. The only difference is the scarcity of meaningful operations
other than retrieval of members using two indices.
matrix(letters[1:15], nrow = 3)

## [,11 [,21 [,31 [,4] [,5]
## [1,1 "a" "d" "g" "j" "m"
## [2,]1 "b" "e" "h"™ "k" "n"
## [3,]1 "c" "FTOMi™ "I Mo

When a vector is converted to a matrix, R’s default is to allocate the values in
the vector to the matrix starting from the leftmost column, and within the column,
down from the top. Once the first column is filled, the process continues from the
top of the next column, as can be seen above. This order can be changed as you
will discover in the playground below.

3.29 Check in the help page for the matrix constructor how to use the byrow
parameter to alter the default order in which the elements of the vector are alloc-
ated to columns and rows of the new matrix.

help(matrix)

While you are looking at the help page, also consider the default number of
columns and rows.
matrix(1:15)

And to start getting a sense of how to interpret error and warning messages, run
the code below and make sure you understand which problem is being reported.
Before executing the statement, analyse it and predict what the returned value will
be. Afterwards, compare your prediction with the value actually returned.
matrix(1:15, ncol = 2)

Subscripting of matrices and arrays is consistent with that used for vectors; we
only need to supply an indexing vector, or leave a blank space, for each dimension.
A matrix has two dimensions, so to access an element or group of elements, we
use two indices. The first index value selects rows, and the second one, columns.
matl <- matrix(1:20, ncol = 4)

matl

## [,11 [,2] [,3] [,4]
## [1,] 1 6 11 16
## [2,] 2 7 12 17
## [3,] 3 8 13 18
## [4,] 4 9 14 19
## [5,] 5 10 15 20
matl[1l, 2]

## [1] 6

matl[2, 1]

## [1] 2
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Remind yourself of how indexing of vectors works in R (see section 3.10 on
page 64). We will now apply the same rules in two dimensions to extract and re-
place values. The first or leftmost indexing vector corresponds to rows and the
second one to columns, so R uses a rows-first convention for indexing. Missing in-
dexing vectors are interpreted as meaning extract all rows and extract all columns,
respectively.

matl[1l, ]
## [1] 1 6 11 16
matl[ , 1]

## [1] 1 2 3 45
matl[2:3, c(1,3)]
## [,11 [,2]
## [1,] 2 12
# [2,] 3 13
matl[3, 4] <- 99

matl

## [,11 [,2] [,3] [,4]
## [1,] 1 6 11 16
## [2,] 2 7 12 17
## [3,] 3 8 13 99
## [4,] 4 9 14 19
## [5,] 5 10 15 20
matl[4:3, 2:1] <- matl[3:4, 1:2]
matl

## [,11 [,2] [,3] [,4]
# [1,] 1 6 11 16
## [2,] 2 7 12 17
## [3,] 9 4 13 99
## [4,] 8 3 14 19
## [5,] 5 10 15 20

E Vectors are simpler than matrices, and by default when possible the “slice”
extracted from a matrix is simplified into a vector by dropping one dimension. By
passing drop = FALSE, we can prevent this.

is.matrix(matl[1l, ])

## [1] FALSE

is.matrix(matl[1:2, 1:2])

## [1] TRUE

is.vector(matl[1l, 1)

## [1] TRUE
is.vector(matl[1l:2, 1:2])
## [1] FALSE

is.matrix(matl[1l, , drop = FALSE])

## [1] TRUE

is.matrix(matl[1:2, 1:2, drop = FALSE])
## [1] TRUE

Matrices, like vectors, can be assigned names that function as “nicknames”
for indices for assignment and extraction. Matrices can have row names and/or
column names.
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colnames (matl)

16
17
99
19

## NULL

rownames (matl)

## NULL
colnames(matl) <- c("a",
matl

## a b c d

# [1,] 1 6 11 16

## [2,] 2 7 12 17

## [3,]1] 9 4 13 99

## [4,1] 8 3 14 19

## [5,]1 5 10 15 20
rownames (matl) <- c("A",
matl

## a b c d

# A1 6 11 16

## B 2 7 12 17

## C9 4 13 99

## D 8 3 14 19

## E 5 10 15 20
matl[c("E",

## b a

## E 10 5

## A 61

## D 3 8
colnames(matl) <- NULL
matl

# [,1]1 [,2] [,3] [,4]
## A 1 6 11

## B 2 7 12

## C 9 4 13

## D 8 3 14

## E 5 10 15

20

Ilbll’

ER

"A", "D"), c("b",

Ildll)

"p", "E")
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E Matrices can be indexed as vectors, without triggering an error or warning.

matl <- matrix(1:20,

matl

#i#

## [1,]
## [2,]
## [3,]
## [4,]
## [5,]

ncol = 4)

(,11 [,21 [,3] [,
1

1

ulTh WN

dim(matl)
## [1] 5 4

matl1[10]

## [1] 10

matl[5,

2]

## [1] 10

6
7
8
9
10

1

12
13
14
15

4]
16
17
18
19
20

The next code example demonstrates that indexing as a vector with a single
index, always works column-wise even if matrix B was created by assigning vector
elements by row.
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mat2 <- matrix(1:20, ncol = 4, byrow = TRUE)
mat?2

## (11 [,2] [,3] [,4]
## [1,] 12 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
## [4,] 13 14 15 16
## [5,] 17 18 19 20

dim(mat2)
## [1]1 5 4
mat2[10]
## [1] 18
mat2[5, 2]
## [1] 18

E In R, a matrix can have a single row, a single column, a single element, or
no elements. However, in all cases, a matrix will have as dimensions attribute an
integer vector of length two.

vctl <- 1:6
dim(vctl)
## NULL

one.col.matrix <- matrix(1:6, ncol
dim(one.col.matrix)

## [1] 6 1

D

two.col.matrix <- matrix(1:6, ncol
dim(two.col.matrix)

## [1] 3 2

2)

one.elem.matrix <- matrix(l, ncol = 1)
dim(one.elem.matrix)

## [1] 1 1

no.elem.matrix <- matrix(numeric(), ncol = 0)
dim(no.elem.matrix)

## [1]1 00

Arrays are similar to matrices, but can have one or more dimensions (Figure 3.3).
The dimensions of an array can be queried with dim(), similarly as with matrices.
Whether an R object is an array can be found out with is.array(). The diagram
below depicts an array, A with three dimensions giving a size equal to Il X m X n,
and individual values denoted by a; j k.

When calling the constructor array(), dimensions are specified with the argu-
ment passed to parameter dim.
aryl <- array(1:27, dim = c(3, 3, 3))

aryl

## , , 1

#i#

## [,11 [,21 [,3]
## [1,] 1 4 7

## [2,] 2 5 8
## [3,] 3 6 9
##
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Figure 3.3
Diagram of an R array with three dimensions showing indexing of members.

##
##
##

## [1,]
## [2,]
## [3,]

##
##
#it
##

## [1,]
## [2,]
## [3,]

aryl[2, 2, 2]

Marginl:i=1toi=1
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a4

ai24 | a1,3,4 | Alm4

a3 | ai,2,3

ai,3,3 o Al,m,3

a2

a2 | aiz.2

R,m,4

aim,2

a1

a2, | ai3,1

P,m,3

aim, p.m.4

R,m,2

az,1,1

azp2,1 | 42,3,1

B,m,3

az,m,1

B,m,2

as,1

asp21 | a433,1

l,m,4

as m,1

a1

apz,1 | a3,

alm,1

Margin2: j=1toj=m

(,11 [,2] [,3]
10 13 16
1 14 17
12 15 18

(.11 [,2]1 [,3]
19 22 25
20 23 26
21 24 27

## [1] 14

In the chunk above, the length of the supplied vector is the product of the
dimensions, 27 = 3 X 3 X 3 = 33. Arrays are printed in slices, where slices across
3rd and higher dimensions are shown separately, with their corresponding indexes
above each slice and the first two dimensions on the margins of the individual
slices, similarly to how matrices are displayed.

3.30 How do you use indexes to extract the second element of the original
vector, in each of the following matrices and arrays?

VCT?2
MAT1
MAT?2
MAT3
MAT4

<—

1:10

matrix(VCT2, ncol
matrix(VCT2, ncol
matrix(VCT2, nrow
matrix(vVCT2, nrow

2)
2, byrow
2)
2, byrow

TRUE)

TRUE)



Matrices and Multidimensional Arrays 77

ARY1l <- array(vCT2, dim = c(5, 2))
ARY2 <- array(VvCT2, dim c(5, 2), dimnames = Tlist(NULL, c("cl", "c2")))
ARY3 <- array(vCT2, dim = c(2, 5))

Be aware that vectors and one-dimensional arrays are not the same thing, while
two-dimensional arrays are matrices.

1. Use the different constructors and query functions to explore this, and
its consequences.

2. Convert a matrix into a vector using as.vector() and compare the re-
turned values to those in the matrix. Are values extracted by columns or
by rows first?

Operators and functions for matrix algebra are available in R as matrices are
used in statistical algorithms. I describe below only some of these matrix-specific
functions and operators. I also give examples of the use of some of the usual arith-
metic operators together with objects of class matrix.

Recycling applies to the usual arithmetic operators when applied to matrices.
This is similar to their behaviour when all operands are vectors (see page 31).
mat3 <- matrix(1:20, ncol = 4)

mat3 + 2

## [,11 [,2]1 [,3] [,4]
## [1,] 3 8 13 18
## [2,] 4 9 14 19
## [3,] 5 10 15 20
## [4,] 6 11 16 21
## [5,] 7 12 17 22
mat3 * 0:1

## [,11 [,2]1 [,3] [,4]
## [1,] 0 6 0 16
## [2,] 2 0 12 0
## [3,] 0 8 0 18
# [4,] 4 0 14 0
## [5,] 0 10 0 20
mat3 * 1:0

## [,1] [,2] [,31 [,4]
## [1,] 1 0 11 0
## [2,] 0 7 0 17
## [3,] 3 0 13 0
## [4,] 0 9 0 19
## [5,] 5 0 15 0

3.31 When a matrix and a vector are operands in an arithmetic operation,
how the positions of the vector are mapped to positions in the matrix affects the
result of the operation. Run the code below to find out. What is the logic behind?
matrix(rep(l, 6)) * 1:6

Function t () transposes a matrix, by swapping columns and rows.
mat3
## [,11 [,21 [,31 [,4]
## [1,] 1 6 11 16
## [2,] 2 7 12 17
## [3,] 3 8 13 18
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## [4,] 4 9 14 19
## [5,] 5 10 15 20

t(mat3)

#it (,11 [,2]1 [,3] [,41 [,5]
## [1,] 1 2 3 4 5
## [2,] 6 7 8 9 10
## [3,] 11 12 13 14 15
## [4,] 16 17 18 19 20

In the examples above with the usual multiplication operator *, the operation
described is not a matrix product, but instead, the products between individual
elements of the matrix and vectors. Operators and functions implementing the op-
erations of matrix algebra are distinct. Matrix algebra gives the rules for operations
where both operands are matrices. For example, matrix multiplication is indicated
by the operator %*%.
mat4 <- matrix(1:16, ncol = 4)

mat4 * mat4
## [,11 [,2] [,3]1 [,4]
## [1,] 1 25 81 169

## [2,] 4 36 100 196
## [3,] 9 49 121 225
## [4,] 16 64 144 256
mat4 %*% mat4

## [,11 [,2]1 [,3] [,4]
## [1,] 90 202 314 426
## [2,] 100 228 356 484
## [3,] 110 254 398 542
## [4,] 120 280 440 600

Function diag() makes it possible to easily create a diagonal matrix.
mat5 <- diag(4)

mat5

## [,11 [,2] [,3]1 [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
mat4 %*% mats

## [,11 [,2]1 [,3] [,4]
## [1,] 1 5 9 13

## [2,] 2 6 10 14
# [3,] 3 7 11 15
## [4,] 4 8 12 16

The inverse of a matrix can be found by means of function solve().
mat6 <- matrix(c(3, 2, 0, 1, 3, 2, 7, 2, 4), ncol = 3)
solve(mat6)

## [,1] [,2] [,3]
## [1,] 0.18181818 0.2272727 -0.4318182
## [2,] -0.18181818 0.2727273 0.1818182
## [3,] 0.09090909 -0.1363636 0.1590909

Additional operators and functions for matrix algebra like cross-product
(crossprod()) and Cholesky root (cho1()) are available in base R. Packages, includ-
ing ‘matrixStats’, provide additional functions and operators for matrices.
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3.12 Factors

In data analysis and Statistics, the distinction between values measured on con-
tinuous vs. discrete scales is crucial. In a continuous scale, any values are in theory
possible. In a discrete scale, the observations are values from a few categories.

In contrast to other statistical software in which a variable is set as continuous
or discrete when defining a model to be fitted or when setting up a test, in R this
distinction is based on whether the explanatory variable is numeric (continuous)
or a factor (discrete). This approach makes sense because in most cases consider-
ing an explanatory variable as categorical or not, depends on the quantity stored
and/or the design of the experiment or survey. In other words, being categorical is
a property of the data. The order of the levels in an unordered factor does not af-
fect simple calculations or the values plotted, but as we will see in chapters 7 and 9,
it can affect the contrasts used by some tests of significance, and the arrangement
or positions of the levels along axes and keys in plots.

In an R factor, values indicate discrete unordered categories, most frequently
the treatments in an experiment, or categories in a survey. Factor can be created
either from numerical or character vectors. The different possible values are called
levels. Factors created with factor() are always unordered or categorical. R also
supports ordered factors, created with function ordered () with identical user inter-
face. The distinction, however, only affects how they are interpreted in statistical
tests as discussed in chapter 7.

When using factor() or ordered() we create a factor from a vector, but this
vector can be created on-the-fly and anonymous as shown in this example. When
the vector is numeric and no labels are supplied, level labels are character strings
matching the numbers. The default ordering of the levels is alphanumerical.
factor(x = c(1, 2, 2, 1, 2, 1, 1))

## [1] 1221211
## Levels: 1 2

ordered(x = c(1, 2, 2, 1, 2, 1, 1))
## [1]1 1221211
## Levels: 1 < 2

factor(x = c(1, 2, 2, 1, 2, 1, 1), ordered = TRUE)
## [1] 1221211
## Levels: 1 < 2

When the pattern of levels is regular, it is possible to use function g1(), gen-
erate levels, to construct a factor. Nowadays, it is usual to read data into R from
files in which the treatment codes are already available as character strings or
numeric values, however, when we need to create a factor within R, g1() can save
some typing. In this case, instead of passing a vector as argument, we pass a recipe
to create it: n is the number of levels, k the number of contiguous repeats (called
“replicates” in R documentation), and Tength the length of the factor to be created.
gl(n = 2, k =5, labels = c("A", "B"))

## [1] AAAAABBIBIBEB
## Levels: A B
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gl(n = 2, k =1, Tength = 10, Tabels = c("A", "B"))
## [1] ABABABABATB
## Levels: A B

It is always preferable to use meaningful labels for levels, even if R does not
require it. Here the vector is stored in a variable named my.vector. In a real data
analysis situation, in most cases, the vector would have been read from a file on
disk and would be longer.

vctl <- c("treated", "treated", "control", "control", "control", "treated")
factor(vctl)

## [1] treated treated control control control treated
## Levels: control treated

The ordering of levels is established at the time a factor is created and by de-
fault it is alphabetical. This default ordering of levels is frequently not the one
needed. We can pass an argument to parameter Tevels of function factor() to set
a different ordering of the levels.
factor(x = vctl, levels = c("treated", "control"))
## [1] treated treated control control control treated
## Levels: treated control

The labels (“names”) of the levels can be set when calling factor (). Two vectors
are passed as arguments to parameters Tevels and Tabels with levels and matching
labels in the same position. The argument passed to Tevels determines the order
of the levels based on their old names or values, and the argument passed to Tabels
gives new names to the levels.
factor(x = c("a", "a", "b", "b", "b", "a"), Tlevels = c("a", "b"), Ta-
bels = c("treated", "control"))
## [1] treated treated control control control treated
## Levels: treated control

The argument passed to labels can be a named vector that maps new labels
onto the values stored in the vector passed as the argument to x (see named vectors
and mapping on page 67).
factor(x = c("a", "a", "b", "b", "b", "a"), labels = c(a = "treated", b = "con-
trol™))
## [1] treated treated control control control treated
## Levels: treated control

In the examples above, we passed a numeric vector or a character vector as an
argument for parameter x of function factor(). It is also possible to pass a factor
as an argument to parameter x. This makes it possible to modify the ordering of
levels or replace the labels in a factor.

fctl <- factor(x = vctl)

fctl

## [1] treated treated control control control treated

## Levels: control treated

factor(x = fctl, levels = c("treated", "control"))

## [1] treated treated control control control treated

## Levels: treated control

factor(x = fctl, labels = c(control = "cooled", treated = "heated"))

## [1] heated heated cooled cooled cooled heated
## Levels: cooled heated
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factor(x = fctl,
levels = c("treated", "control"),
labels = c("heated", "cooled"))

## [1] heated heated cooled cooled cooled heated
## Levels: heated cooled
Merging factor levels. We use factor () as shown below, setting the same label
for the levels we want to merge.
fct2 <- g1(4, 3, labels = c("A", "F", "B", "Z"))
fct2

## [1] AAAFFFBBBZZZ
## Levels: A F B Z

factor(fct2,
Tevels = c("A", "B", "F", "z"),
labels = c("A", "B", "cC"., "c"))

## [1] AAACCCBBBCCC
## Levels: A B C

3.32 Edit the code in the chunk above to use only a named vector for Tabels
instead of separate vectors passed to Tevels and Tabels.

We can use indexing on factors in the same way as with vectors. In the next
example, we use a test returning a logical vector to extract all “controls”. We use
function Tevels () to look at the levels of the factors, as with vectors, Tengtgh() to
query the number of values stored.
fctl

## [1] treated treated control control control treated
## Levels: control treated

levels(fctl)

## [1] "control" "treated"

length(fctl)

## [1] 6

fctl.control <- fctl[fctl == "control"]

fctl.control

## [1] control control control
## Levels: control treated

levels(fctl.control)

## [1] "control" "treated"
length(fctl.control)

## [1] 3

m How to drop unused levels in a factor?
It can be seen above that subsetting does not drop unused factor levels. Con-
structor function factor () can be used to explicitly drop the unused factor levels.

fctl.control <- factor(fctl.control)
levels(fctl.control)

## [1] "control"

m How to convert a factor into a vector with matching values?
This operation is not obvious, specially when the factor was created from a numeric
vector.
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vct3 <- rep(3:5, 4)
vct3
## [1] 345345345345

fct3 <- factor(vct3)
fct3

## [1]1 345345345345
## Levels: 3 4 5

as.numeric(fct3)

## [11 123123123123
as.numeric(as.character(fct3))
## [1] 345345345345

Why is a double conversion needed? Internally, factor values are stored as
running integers starting from one, each distinct integer value corresponding to a
level. These underlying integer values are returned by as.numeric() when applied
to a factor. The labels of the factor levels are always stored as character strings,
even when these characters are digits. In contrast to as.numeric(), as.character()
returns the character labels of the levels for each of the values stored in the factor.
If these character strings represent numbers, they can be converted, in a second
step, using as.numeric() into the original numeric values. Use of class and mode
is described on section 3.8 on page 59, and str() on page 91.
class(fct3)

## [1] "factor"

mode (fct3)

## [1] "numeric"

str(fct3)

## Factor w/ 3 Tevels "3","4" /"5": 1 231231231...

3.33 Create a factor with levels labelled with words. Create another factor
with the levels labelled with the same words, but ordered differently. After this
convert both factors to numeric vectors using as.numeric(). Explain why the two
numeric vectors differ or not from each other.

Safely reordering and renaming factor levels. The simplest approach is to
use factor() and its Tevels parameter as shown on page 80. In these more ad-
vanced examples, we use Tevels() to retrieve the names of the levels from the
factor itself to protect from possible bugs due to typing mistakes, or for changes
in the naming conventions used.

Reverse previous order using rev().

fct4 <- factor(c("treated", "treated", "control", "control", "con-
trol", "treated"))
levels(fct4)

## [1] "control" "treated"

fct4 <- factor(fct4, levels = rev(levels(fct4)))
levels(fct4)

## [1] "treated" "control"
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Sort in decreasing order, i.e., opposite to default.

fct5 <- factor(fct4,
Tevels = sort(levels(fct4), decreasing = TRUE))
levels(fct5)

## [1] "treated" "control"

Alter ordering using subscripting; especially useful with three or more levels.

fct6 <- factor(fct4, Tevels = levels(fctd)[c(2, 1)])
levels (fctb6)

## [1] "control" "treated"

Reordering the levels of a factor based on summary quantities from data stored
in a numeric vector is very useful, especially when plotting. Function reorder () can
be used in this case. It defaults to using mean() for summaries, but other suitable
summary functions, such as median() can be supplied in its place.
fct7 <- g1(2, 5, labels = c("A", "B"))

vct4 <- c(5.6, 7.3, 3.1, 8.7, 6.9, 2.4, 4.5, 2.1, 1.4, 2.0)
fct7

## [1] AAAAABBBBSB
## Levels: A B

fct7ord <- reorder(fct7, vct4)
levels(fct7ord)

## [1] "B" "A"
fct7rev <- reorder(fct7, -vct4)
levels(fct7rev)

## [1] "A" "B"

In the last statement, using the unary negation operator, which is vectorised,
allows us to easily reverse the ordering of the levels, while still using the default
function, mean(), to summarise the data.

3.34 Reordering factor values. It is possible to arrange the values stored
in a factor either alphabetically according to the labels of the levels or according
to the order of the levels. (The use of rep() is explained on page 30.)

FCT1l <- g1(4, 3, labels = c("A", "F", "B", "Z"))
FCT1
as.integer (FCT1l)

FCT2 <- factor(rep(c("A", "F", "B", "Zz"), times = rep(3, times = 4)))

FCT2
as.integer (FCT2)
levels(FCT2) [as.integer (FCT2)]

We see above that the integer values by which levels in a factor are stored,
are equivalent to indices or “subscripts” referencing the vector of labels. Function
sort() operates on the values’ underlying integers and sorts according to the order
of the levels while order () operates on the values’ labels and returns a vector of
indices that arrange the values alphabetically.
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sort(FCT2)
FCT2[order (FCT2)]
FCT2[order(as.integer (FCT2))]

Run the examples in the chunk above and work out why the results differ.

Factors encode levels as integer values in a vector. In many cases, statistical
computations, require the same information to be encoded as binary values using
multiple dummy variables. Factors are much friendlier for the user to manage.
They are converted into the equivalent dummy variables when a model formula is
translated into a model matrix. This is handled transparently by most functions
implementing fitting of statistical models to data (see sections 7.8 and 7.13 on
pages 199 and 226).

3.13 Further Reading

For further reading on the aspects of R discussed in the current chapter, I suggest
the book The Art of R Programming: A Tour of Statistical Software Design (Matloff
2011).
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Base R: “Collective Nouns”

The information that is available to the computer consists of a selected
set of data about the real world, namely, that set which is considered
relevant to the problem at hand, that set from which it is believed that
the desired results can be derived. The data represent an abstraction
of reality...

Niklaus Wirth
Algorithms + Data Structures = Programs, 1976

4.1 Aims of This Chapter

Data set organisation and storage is one of the keys to efficient data analysis.
How to keep together all the information that belongs together, say all measure-
ments from an experiment and corresponding metadata such as treatments ap-
plied and/or dates. The title “collective nouns” is based on the idea that a data set
is a collection of data objects.

In this chapter, you will familiarise with how data sets are usually managed in
R. I use both abstract examples to emphasise the general properties of data sets
and the R classes available for their storage and a few more specific examples to
exemplify their use in a more concrete way. While in chapter 3 the focus was on
atomic data types and objects, like vectors, useful for the storage of collections
of values of a given type, like numbers, in the present chapter the focus is on the
storage within a single object of heterogeneous data, such as a combination of
factors, and character and numeric vectors. Broadly speaking, heterogeneous data
containers.

To describe the structure of R objects I use diagrams similar to those in the
previous chapter.
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4.2 Data from Surveys and Experiments

The data we plot, summarise, and analyse in R, in most cases, originate from meas-
urements done as part of experiments or surveys. Data collected mechanically
from user interactions with websites or by crawling through internet content ori-
ginate from a statistical perspective from surveys. The value of any data comes
from knowing their origin, say treatments applied to plants, or the country from
where website users connect; sometimes several properties are of interest to de-
scribe the origin of the data and in other cases observations consist in the meas-
urement of multiple properties on each subject under study. Consequently, all
software designed for data analysis implements ways of dealing with data sets as
a whole both during storage and when passing them as arguments to functions. A
data set is a usually heterogeneous collection of data with related information.

In R, lists are the most flexible type of objects useful for storing whole data
sets. In most cases, we do not need this much flexibility, so rectangular collections
of observations are most frequently stored in a variation upon lists called data
frames. These objects can have as their members the vectors and factors described
in chapter 3.

Any R object can have attributes, allowing objects to carry along additional bits
of information. Some like comments are part of R and aimed at storage of ancillary
information or metadata by users. Other attributes are used internally by R and
finally users can store arbitrary ancillary data using attributes created ad hoc.

4.3 Lists

In R, Tist objects are in several respects similar the vectors described in chapter
3 but differently to vectors, the members they contain can be heterogeneous, i.e.,
different members of the same list can belong to different classes. In addition,
while the member elements of a vector must be atomic values like numbers or
character strings, any R object can be a list member including other lists.

In R, the members of a list can be considered as following a sequence, and
accessible through numerical indexes, the same as the members of vectors. Mem-
bers of a list as well as members of a vector can be named, and retrieved (indexed)
through their names. In practice, named lists are more frequently used than named
vectors. R lists are created, or constructed, with function 1ist() similarly as vec-
tors are constructed with function c().

R lists can have as members not only objects storing data on observations
and categories, but also function definitions, model formulas, unevaluated expres-
sions, matrices, arrays, and objects of user-defined classes.

List and list-like objects are widely used in R because they make it possible
to keep, for example, the data, instructions for operations, and results from oper-
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ations together in a single R object that can be saved, copied, etc. as a unit. This
avoids the proliferation of multiple disconnected objects with their interrelations
being encoded only by their names, or even worse in separate notes or even in
a person’s memory—all approaches that are error-prone. Model fit functions de-
scribed in chapter 7 are good examples of this approach. Objects used to store
the instructions to build plots with multiple layers as described in chapter 9 are
also good examples.

Our first list has as its members three different vectors, each one belonging to
a different class: numeric, character and logical. The three vectors also differ in
their length: 6, 1, and 2, respectively.
Tstl <- Tist(x = 1:3, y = "ab", z = c(TRUE, FALSE))

str(lstl)

## List of 3

## $ x: int [1:3] 1 2 3

## $ y: chr "ab"

## $ z: logi [1:2] TRUE FALSE
names (1stl)

## [1] "x" "y" "z"

@ @ 67 character member names

——— dinteger positional indices
Tstl >— — heterogeneous class, varying length
1 “ab” TRUE
2 FALSE
3

It is best to use informative names for accessing 1ist members, as their mem-
bers are heterogenous, usually containing loosely related/connected data. Names
make code easier to understand and mistakes more visible. Using names also
makes code more robust to future changes in the position of list members in lists
created upstream of our own R code. Below, we use both positional indices and
names to highlight the similarities between lists and vectors.

Lists can behave as vectors with heterogeneous elements as members, as we
will describe next. Lists can also be nested, so tree-like structures are also possible
(see section 4.3.2 on page 91).

E How to create an empty list?

In the same way as numeric() by default creates a numeric vector of length zero,
Tist() by default creates a 1ist object with no members.

Tist()

## Tist()

4.3.1 Member extraction, deletion and insertion

In section 3.10 on page 64, we saw that the extraction operator [ ] applied to a
vector, returns a vector, longer or shorter, possibly of length one, or even length
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zero. Similarly, applying operator [ ] to a list returns a list, possibly of different
length: Tst1["x"] or 1st[1] return a list containing only one member, the numeric
vector stored at the first position of 1st1. In the last statement in the chunk below,
T1stl[c(1l, 3)] returns a list of length two as expected.

Tst1["x"]

## $x

## [1] 12 3

Tstl[1]

## $x

## [1] 12 3

Tstl[c(1, 3)]

## $x

## [1] 1 2 3

#it

## $z

## [1] TRUE FALSE

As with vectors negative positional indices remove members instead of extract-
ing them. See page 90 for a safer approach to the deletion of list members.
Tstl[-1]

## Sy

## [1] "ab"

##

## $z

## [1] TRUE FALSE

Tstl[c(-1, -3)]
## Sy
## [1] "ab"

Using operator [[ ]] (double square brackets) for indexing a list extracts the ele-
ment stored in the list, in its original mode. In the example below, 1st1[["x"]] and
1st1[[1]] return a numeric vector. We might say that extraction operator [[ 1]
reaches “deeper” into the list than operator [ ]. Operator $, used in the second
statement below, provides a shorthand notation, equivalent to calling [[ ]] with
a single constant character value as argument.

Tst1$x

## [1] 12 3
Tstl[["x"]]
## [1] 12 3
Tst1[[1]]

## [1] 1 2 3

We mentioned above that indexing by name can be done either with double
square brackets, [[ 11, or with $. Operators [ ] and [[ ]] work like normal R func-
tions, accepting as arguments passed to them both constant values and variables
for indexing. In contrast, $ mainly intended for use when typing at the console, ac-
cepts only bare member names on its rhs. With [[ 1], the name of the variable or
column is given as a character string, enclosed in quotation marks, or as a variable
with mode character. A number as a positional index is also accepted.
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Istla <- Tlist(abcd = 123, xyzw = 789)
Tstla[[1]]

## [1] 123

Tstla[["abcd"]]

## [1] 123

vctl <- "abcd"

Tstla[[vctl]]

## [1] 123

When using $, the name is entered as a constant, without quotation marks, and
cannot be a variable or a number.
Tstla$abcd
## [1] 123
Tstla$ab
## [1] 123
Tstla$a
## [1] 123

Both in the case of lists and data frames (see section 4.4 on page 94), when
using double square brackets, by default an exact match is required between the
name in the object and the name used for indexing. In contrast, with $, an unam-
biguous partial match is silently accepted. For interactive use, partial matching
decreases the extent of the text typed at the console. However, in scripts, and es-
pecially R code in packages, it is best to avoid the use of $ as partial matching to a
wrong variable present at a later time, e.g., when someone else revises the script,
misdirected partial matching can lead to difficult-to-diagnose errors.

In addition, as $ is implemented by first attempting a match to the name and
then calling [[ 11, using $ for indexing can result in slightly slower performance
compared to using [[ ]1].Itis possible to set R option warnPartialmatchbollar so
that partial matching triggers a warning when using $ to extract a member, which
can be very useful when debugging.

is.vector(1st1[1])
## [1] TRUE
is.list(Ist1[1])

## [1] TRUE
is.vector(1st1[[1]])
## [1] TRUE
is.1ist(1st1[[1]])
## [1] FALSE

The two extraction operators can be used together as shown below, with
1st1[[1]] extracting the vector from 1st1 and [3] extracting the member at posi-
tion 3 of the vector.

Tst1[[1]11[3]
## [1] 3

Extraction operators can be used on the lhs as well as on the rhs of an assign-
ment, and lists can be empty, i.e., be of length zero. The example below makes use
of this to build a list step by step.
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Tst2 <- Tist(Q)

Tst2[["x"]] <- 1:3
1st2[["y"]1] <~ "ab"
1st2[["z"]] <- c(TRUE, FALSE)

4.1 Compare 1st2 to 1stl, used for the examples above. Then run the code
below and compare them again. Try to understand why 1st2 has changed as it did.
Pay also attention to possible changes to the members’ names.

Tst2[["y"1] <- Tst2[["x"]1]

Lists, as usually defined in languages like C, are based on pointers to memory
locations, with pointers stored at each node. These pointers chain or link the differ-
ent member nodes (this allows, for example, sorting of lists in place by modifying
the pointers). In such implementations, indexing by position is not possible, or
at least requires “walking” down the list, node by node. R does not implement
pointers to “addresses”, or locations, in memory. In R, 1ist members can be ac-
cessed through positional indexes or member names, similarly to vector members.
Of course, as with vectors, insertions and deletions in the middle of a list, shift
the position of members, and change which member is pointed at by indexes for
positions past the modified location. The names, in contrast, remain valid.

Tlist(a =1, b =2, c = 3)[-2]
## $a

## [1] 1

#i#

## $c
## [1] 3

Three frequent operations on lists are concatenation, insertions, and deletions.
The same functions as with vectors are used: c(), to concatenate, and append(), to
append and insert. Lists can be combined only with other lists, otherwise, these
operations work as with vectors (see pages 28-30).

Tst3 <- append(1stl, Tist(yy = 1:10, zz = letters[5:1]), after = 2)
Tst3

## $x

## [1] 1 2 3

##

## Sy

## [1] "ab"

##

## Syy

## [1] 1 2 3 4 5 6 7 8 910
##

## $zz

## [1] "e" "d" "c" "b" "a"

##

## $z

## [1] TRUE FALSE

To delete a member from a list, we assign NULL to it.

Tstl$y <— NULL
Tstl

## $x

## [1] 1 2 3
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##
## $z
## [1] TRUE FALSE

To investigate the members contained in a list, function str () (structure), used
above, is convenient, especially when lists have many members. Structure formats
lists more compactly than print() applied directly to a list.

print(lstl)

## $x

## [1] 1 2 3

##

## $z

## [1] TRUE FALSE
str(1stl)

## List of 2

## $ x: int [1:3]1 12 3
## $ z: logi [1:2] TRUE FALSE

4.3.2 Nested lists

Lists can be nested, i.e., lists of lists can be constructed to an arbitrary depth. In the
example below, 1st4 and 1st5 are members of 1st6, i.e., 1st4 and 1st5 are nested
within 1st6.

Tst4 <- Tist("a", "aa", 10)

Tst5 <- Tist("b", TRUE)
1st6 <— Tist(A = 1st4, B = 1st5)

str(1st6)

## List of 2

## $ A:List of 3

## ..$ : chr "a"
## ..%$ : chr "aa"
## ..%$ : num 10

## $ B:List of 2

## ..$ : chr "b"
## ..$ : logi TRUE

A nested list can alternatively be constructed within a single statement in which
several member lists are created. Here we combine the first three statements in the
earlier chunk into a single one.

Tst7 <- Tist(A = Tist("a", "aa", 10), B = Tist("b", TRUE))

str(1st7)

## List of 2

## $ A:List of 3

## ..$ : chr "a"
## ..$ : chr "aa"
## ..$ : num 10

## $ B:List of 2

## ..$ : chr "b"
## ..$ : logi TRUE

A list can contain a combination of 1ist and vector members.

Tst8 <- 1list(A = Tist("a", "aa", 10),
B = Tist("b", TRUE),
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c =c(, 3, 9,
D = 4321)

str(1st8)

## List of 4

## $ A:List of 3

## ..$ : chr "a"

## ..%$ : chr "aa"

## ..$ : num 10

## $ B:List of 2

## ..$ : chr "b"

## ..$ : logi TRUE

## $ C: num [1:3] 1 3 9
## $ D: num 4321

The logic behind the extraction of members of nested lists using indexing
is the same as for simple lists, but applied recursively—e.g., 1st7[[2]] extracts
the second member of the outermost list, which is another list. As, this is a list,
its members can be extracted using again the extraction operator: 1st7[[2]]1[[1]].
It is important to remember that these concatenated extraction operations are
written so that the leftmost operator is applied to the outermost list.

The example above uses the [[ ]] operator, but the left-to-right precedence
also applies to concatenated calls to [ ] and to calls combining both operators.

4.2 What do you expect each of the statements below to return? Before run-
ning the code, predict what value and of which mode each statement will return.
You may use implicit or explicit calls to print(), or calls to str() to visualise the
structure of the different objects.

LST9 <- Tist(A = Tist("a", "aa", "aaa"), B = Tist("b", "bb"))

LSTI9[2:1]
LSTI[1]
LSTO[[1]][2]
LSTO[[1]1[[2]1]
LSTI[2]
LSTO[2][[1]]

When dealing with deep lists, it is sometimes useful to limit the number of
levels of nesting returned by str() by passing a numeric argument to parameter
max.levels
str(1st8, max.level = 1)

## List of 4
## $ A:List of 3
## $ B:List of 2
## $ C: num [1:3] 1 3 9
## $ D: num 4321

Sometimes we need to flatten a list, or a nested structure of lists within lists.
Function unlist() is what should be normally used in such cases.

The list 1st10 is a nested system of lists, but all the “terminal” members are
character strings. In other words, terminal nodes are all of the same mode, allowing
the list to be “flattened” into a character vector.
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Tstl0 <- Tist(A = Tist("a", "aa", "aaa"), B = Tist("b", "bb"))
vctl <- unlist(1st10)

vctl

## Al A2 A3 Bl B2
## "a" "aa" "aaa" "b"  "bb"
is.Tist(1st10)

## [1] TRUE

is.Tist(vctl)

## [1] FALSE

mode (1st10)

## [1] "list"

mode(vctl)

## [1] "character"

names (1st10)

## [1] "A" "B"

names (vctl)

## [1] "A1l" "A2" "A3" "B1" "B2"

The returned value is a vector with named member elements. We use function
str() to figure out how this vector relates to the original list. The names, always
of mode character, are based on the names of list elements when available, while
characters depicting positions as numbers are used for anonymous nodes. We can
access the members of the vector either through numeric indexes or names.
str(vctl)

## Named chr [1:5] "a" "aa" "aaa" "b" "bb"
## - attr(*, "names")= chr [1:5] "A1l" "A2" "A3" "B1" ...

vctl[2]
## A2
## "aa"
vctl["A2"]
## A2
## "aa"

4.3 Function unTlist() has two additional parameters, with default argument
values, which we did not modify in the example above. These parameters are
recursive and use.names, both of them expecting a Togical value as an argument.
Modify the statement c.vec <- unlist(c.1list), by passing FALSE as an argument
to these two parameters, in turn, and in each case, study the value returned and
how it differs with respect to the one obtained above.

Function unname() can be used to remove names safely—i.e., without risk of
altering the mode or class of the object.

unname (vctl)

## [1] "a" "aa" "aaa" "b" "bb"
unname (1st10)

# [[1]]

## [[1]1]10[1]]

## [1] "a"

##

## [[1]11[[2]]

## [1] "aa"

##
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## [[111[[3]]

## [1] "aaa"

##

##

## [[2]]

# [[2]11[[1]1]

## [1] "b"

##

# [[2]110[2]1]

## [1] "bb"
—

4.4 Data Frames

Data frames are a special type of list, in which all members have the same length,
giving origin to a matrix-like object, in which columns can belong to different
classes. Most commonly the member “columns” are vectors or factors, but they
can also be matrices with the same number of rows as the enclosing data frame,
or lists with the same number of members as rows in the enclosing data frame.

Data frames are central to most data manipulation and analysis procedures
in R. They are commonly used to store observations, with numeric columns hold-
ing data for continuous variables and factor columns data for categorical vari-
ables. Binary variables can be stored in logical columns. Text data can be stored
in character columns. Date and time can be stored in columns of specific classes,
such as posixct. In the diagram below, column treatment is a factor with two levels
encoding two conditions, hot and cold. Columns height and weight are numeric
vectors containing measurements.

c
v
£ = =
& =) = character column names
pust v I
- = B
1 2 3 integer positional indices
dfl ) EE— S N /icterOgeneous class, same length
hot 10.2 2.2
cold 8.3 3.3

hot 12.0 2.5

Data frames are created with constructor function data.frame() with a syntax
similar to that used for lists.
dfl <- data.frame(treatment = factor(rep(c("hot"™, "cold"), 3)),
height = c(10.2, 8.3, 12.0, 9.0, 11.2, 8.7),
weight = c(2.2, 3.3, 2.5, 2.8, 2.4, 3.0))
dfl

#i# treatment height weight
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## 1 hot 10.2 2.2
## 2 cold 8.3 3.3
## 3 hot 12.0 2.5
## 4 cold 9.0 2.8
## 5 hot 11.2 2.4
## 6 cold 8.7 3.0
colnames (df1l)

## [1] "treatment" "height" "weight"
rownames (df1)

o [ D0 TR0 Omm mAD Ogm oET
str(dfl)

## 'data.frame': 6 obs. of 3 variables:

## $ treatment: Factor w/ 2 Tlevels "cold","hot": 212121
## $ height : num 10.2 8.3 12 9 11.2 8.7

## $ weight :num 2.2 3.3 2.52.82.43

class(dfl)

## [1] "data.frame"
mode (df1)

## [1] "list"
is.data. frame(dfl)
## [1] TRUE
is.Tist(dfl)

## [1] TRUE

We can see above that when printed each row of a data.frame is preceded
by a row name. Row names are character strings, just like column names. The
data.frame() constructor adds by default row names representing running num-
bers. Default row names are rarely of much use, except to track insertions and
deletions of rows during debugging.

4.4 As the expectation is that all member variables (or “columns”) have equal
length, if vectors of different lengths are supplied as arguments, the shorter
vector(s) is/are recycled, possibly several times, until the required full length is
reached, as shown below for treatment.

df2 <- data.frame(treatment = factor(c("hot", "cold")),
height = c¢(10.2, 8.3, 12.0, 9.0, 11.2, 8.7),
weight = c(2.2, 3.3, 2.5, 2.8, 2.4, 3.0))

Are df1l crated above and df2 created here equal?

With function class() we can query the class of an R object (see section 3.8 on
page 59). As we saw in the previous chunk, 1ist and data. frame objects belong to
two different classes. However, their mode is the same. Consequently, data frames
inherit the methods and characteristics of lists, as long as they have not been
hidden by new ones defined for data frames (for an explanation of methods, see
section 6.3 on page 176).

Extraction of individual member variables or “columns” can be done like in a
list with operators [[ 1] and $ (see call-out in 88).
dfl$height
## [1] 10.2 8.3 12.0 9.0 11.2 8.7
df1[["height"]]

## [1] 10.2 8.3 12.0 9.0 11.2 8.7
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dfi[[2]]

## [1] 10.2 8.3 12.0 9.0 11.2 8.7
class(df1l[["height"]])

## [1] "numeric"

In the same way as with lists, we can add member variables to data frames.
Recycling takes place if needed.
df1$x2 <- 6:1
df1[["x3"]] <= "b"
str(dfl)

## 'data.frame': 6 obs. of 5 variables:
## $ treatment: Factor w/ 2 levels "cold","hot": 212121

## $ height : num 10.2 8.3 12 9 11.2 8.7
## $ weight *num 2.2 3.3 2.52.82.43
## 3 x2 :int 654321

## $ x3 : chr "b"™ "b"™ "b"™ "b" ..

4.5 We have added two columns to the data frame, and in the case of column
x3 recycling took place. This is where lists and data frames differ substantially
in their behaviour. In a data frame, although class and mode can be different for
different member variables (columns), they are required to be vectors or factors
of the same length (or a matrix with the same number of rows, or a list with the
same number of members). In the case of lists, there is no such requirement, and
recycling never takes place when adding a member. Compare the values returned
below for LsT1, to those in the example above for dfi.

LST1 <- Tist(x = 1:6, y = "a", z = c(TRUE, FALSE))

str(LsTl)

## List of 3

## $ x: int [1:6] 1 23 456
## $ y: chr "a"

## $ z: logi [1:2] TRUE FALSE
LST1$x2 <- 6:1

LST1$x3 <- "b"

str(LsTl)

## List of 5

## $ x : int [1:6] 1 23 456
## $y : chr "a"

## $ z : logi [1:2] TRUE FALSE
## $ x2: int [1:6] 6 54321
## $ x3: chr "b"

m How to create an empty data frame?

In the same way as numeric() creates a numeric vector of length zero, data.frame()
by default creates a data.frame with zero rows and no columns.

data. frame()

## data frame with O columns and O rows

ﬂ How to make a list of data frames?
We create a list of data frames in the same way as we create a nested list of lists,
or in fact of a list of any other R objects. See section 4.3.2 on page 91.
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Tist(df1l, df2)
## [[1]1]
##  treatment height weight x2 x3

## 1 hot 10.2 2.2 6 b
## 2 cold 8.3 3.3 5 b
## 3 hot 12.0 2.5 4 b
## 4 cold 9.0 2.8 3 b
## 5 hot 11.2 2.4 2 b
## 6 cold 8.7 3.0 1 b
##

## [[2]]

## treatment height weight

## 1 hot 10.2 2.2

## 2 cold 8.3 3.3

## 3 hot 12.0 2.5

## 4 cold 9.0 2.8

## 5 hot 11.2 2.4

## 6 cold 8.7 3.0

m How to add a new column to a data frame (to the front and end)?

In the same way as we can assign a new member to a list using the extraction
operator [[ 1], we can add a new column to a data frame (see page 89). In this
case, if the column name does not already exist, the assigned vector or factor
is appended as the last column (no recycling applied to short vectors or factors
unless of length one).

DF1 <- data.frame(A = 1:5, B = factor(5:1))
DFLIL["C"]] <- 11:15

DF1

## A B C
## 1 15 11
## 2 2 4 12
## 3 3 3 13
## 4 4 2 14
## 55 1 15

To add a column at the front, we can use function cbind () (column bind).
DF2 <- data.frame(A = 1:5, B = factor(5:1))
cbind(Cc = 11:15, DF2)
## CAB
# 1 11
# 2 12
## 3 13
# 4 14
## 5 15

Being two-dimensional and rectangular in shape, data frames, in relation to
indexing and dimensions, behave similarly to a matrix. They have two margins,
rows, and columns, and, thus, two indices are used to indicate the location of a
member “cell”. We provide some examples here, but please consult section 3.10
on page 64 and section 3.11 on page 70 for additional details.

Matrix-like notation allows simultaneous extraction from multiple columns,
which is not possible with lists. The value returned is in most cases a “smaller”
data frame as in this example.

v WN R >
N Wb U

1
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dfi[2:3, 1:2]

##  treatment height
## 2 cold 8.3
## 3 hot 12.0
dfi[ , 1]

## [1] hot cold hot cold hot cold
## Levels: cold hot

dfl[ , "treatment"]

## [1] hot cold hot cold hot cold
## Levels: cold hot

dfi[1, ]
##  treatment height weight x2 x3
## 1 hot 10.2 2.2 6 b

df1[1:2, c(FALSE, FALSE, TRUE, TRUE, FALSE)]
##  weight x2
## 1 2.2 6
## 2 3.3 5

dfl[dfl$treatment == "hot" , ]

##  treatment height weight x2 x3
## 1 hot 10.2 2.2 6 b
## 3 hot 12.0 2.5 4 b
## 5 hot 11.2 2.4 2 b

dfl[dfl$height > 8, "height"]
## [1] 10.2 8.3 12.0 9.0 11.2 8.7

Base R: “Collective Nouns”

As explained earlier for vectors (see section 3.10 on page 64), indexing can
be present both on the right- and left-hand sides of an assignment, allowing the
replacement of both individual values and rectangular regions.

The next few examples do assignments to “cells” of dfi, either to one whole
column, or individual values. The last statement in the chunk below copies a num-
ber from one location to another by using indexing of the same data frame both

on the right side and left side of the assignment.

df1[1, 2] <- 99

dfl

##  treatment height weight x2 x3
## 1 hot 99.0 2.2 6 b
## 2 cold 8.3 3.3 5 b
## 3 hot 12.0 2.5 4 b
## 4 cold 9.0 2.8 3 b
## 5 hot 11.2 2.4 2 b
## © cold 8.7 3.0 1 b
dfi[ , 2] <- -99

dfl

##  treatment height weight x2 x3
## 1 hot -99 2.2 6 b
## 2 cold -99 3.3 5 b
## 3 hot -99 2.5 4 b
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## 4 cold -99 2.8 3 b
## 5 hot -99 2.4 2 b
## 6 cold -99 3.0 1 b
dfl[["height"]] <- c(10, 12

dfl

##  treatment height weight x2 x3
## 1 hot 10 2.2 6 b
## 2 cold 12 3.3 5 b
## 3 hot 10 2.5 4 b
## 4 cold 12 2.8 3 b
## 5 hot 10 2.4 2 b
## 6 cold 12 3.0 1 b
dfi[1, 2] <- dfi[6, 3]

dfl

##  treatment height weight x2 x3
## 1 hot 3 2.2 6 b
## 2 cold 12 3.3 5 b
## 3 hot 10 2.5 4 b
## 4 cold 12 2.8 3 b
## 5 hot 10 2.4 2 b
## 6 cold 12 3.0 1 b
df1[3:6, 2] <- dfl[6, 3]

dfl

##  treatment height weight x2 x3
## 1 hot 3 2.2 6 b
## 2 cold 12 3.3 5 b
## 3 hot 3 2.5 4 b
## 4 cold 3 2.8 3 b
## 5 hot 3 2.4 2 b
## 6 cold 3 3.0 1 b

Similarly as with matrices, if we extract a single column from a data frame
using matrix-like indexing, it is by default simplified into a vector or factor, i.e.,
the column-dimension is dropped. By passing drop = FALSE, we can prevent this.
Contrary to matrices, rows are not simplified in the case of data frames.
is.data. frame(df1[1, 1)

## [1] TRUE

is.data. frame(dfl[ , 2])

## [1] FALSE
is.data.frame(dfl[ , "treatment"])
## [1] FALSE
is.data.frame(df1[1:2, 2:3])
## [1] TRUE

is.vector(dfl[1, 1)

## [1] FALSE

is.vector(dfl[ , 2])

## [1] TRUE

is.factor(dfl[ , "treatment"])
## [1] TRUE

is.vector(dfl[1:2, 2:3])

## [1] FALSE
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is.data.frame(dfl[ , 1, drop = FALSE])

## [1] TRUE

is.data.frame(dfl[ , "treatment", drop = FALSE])
## [1] TRUE

In contrast to matrices and data frames, the extraction operator [ ] of
tibbles—defined in package ‘tibble’—never simplifies returned one-column tibbles
into vectors (see section 8.4.2 on page 247 for details on the differences between
data frames and tibbles).

Usually data frames are created from lists or by passing individual vectors and
factors to the constructors. It is also possible to construct data frames starting
from matrices, other data frames and named vectors, in which case, the identity
function 1() can be used to protect them from interpretation by the data.frame()
constructor. In these cases, additional nuances become important. The details are
well described in help(data.frame).

With a named numeric vector, and a factor as arguments, the names are moved
from the vector to the rows of the data frame!
vctl <- c(one = 1, two = 2, three = 3, four = 4)
fctl <- as.factor(c(1l, 2, 3, 2))

dfl <- data.frame(fctl, vctl)
dfl

## fctl vctl
## one 1 1
## two 2 2
## three 3 3
## four 2 4
dfl$vctl

## [1] 1 2 3 4

If the vector is protected with R’s identity function 1 () the names are not moved
as can be seen by extracting the column vctl from data frame df2.
df2 <- data.frame(fctl, I(vctl))
df2

## fctl vctl

## one 1 1

## two 2 2

## three 3 3

## four 2 4
df2$vctl

## one two three four
## 1 2 3 4

With a matrix instead of a vector, the matrix is split into separate columns in
the data frame. If the matrix has no column names, new ones are created.

matl <- matrix(1:12, ncol = 3)
df4 <- data.frame(fctl, matl)
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df4

## fctl X1 x2 X3
## 1 1 1 5 9

## 2 2 2 610
## 3 3 3 711
## 4 2 4 8 12

If the matrix is protected with function 1(), it is not split, and the whole matrix
becomes a column in the data frame.

df5 <- data.frame(fctl, I(matl))
df5

## fctl matl.1 matl.2 matl.3
## 1 1 1 9
## 2 2 10
## 3 3 11
## 4 2 12
df5%matl

## [,11 [,2] [,3]

## [1,] 1 5 9

## [2,] 2 6 10
## [3,] 3 7 11
## [4,] 4 8 12

A w N
o N O U

E With a list, whose member are vectors, each member of the list becomes a
column in the data frame. In the case of too short members, recycling is applied.

1stl <- Tist(a = 4:1, b = letters[4:1], c = "n", d = "2")
df6<- data.frame(fctl, 1stl)

dfe6

## fctl abcd
## 1 14dnz
## 2 23 cnz
## 3 32bnz
## 4 21anz

If the list is protected with 1 (), the list is added in whole as a variable or column
in the data frame. In this case, the length of the list must match the number of
rows in the data frame, while the length and class of the individual members of
the list can vary. The names of the list members are used to set the rownames of
the data frame. This is similar to the default behaviour of tibbles, while R data
frames require explicit use of 1() for lists not to be split (see chapter 8 on page
243 for details about package ‘tibble’).

df7<- data.frame(fctl, T(Istl))
df7

## fctl
## a 14,
## b 2d,
## c 3
## d 2

N S o0 R
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df7$1stl

## $a

## [1] 4 3 2 1
##

## $b

## [1] "d" "c" "b" "a"
##

## $c

## [1] "n"

##

## $d

## [1] "z"

4.6 What do we gain using 1()? Check the documentation carefully and
think of uses where the flexibility gained by the option to protect or not the ar-
guments passed to the data.frame() constructor can be useful. In addition, write
R statements to extract individual members of embedded matrices or lists using
indexing. Finally, test if the behaviour of 1() is the same when assigning new mem-
ber variables (or “columns”) to an existing data frame.

4.4.1 Sub-setting data frames

When the names of data frames are long, complex conditions become awkward to
write using indexing—i.e., subscripts. In such cases, subset() is handy because it
evaluates the condition with the data frame as the “environment”, i.e., the names
of the columns are recognised if entered directly when writing the condition. Func-
tion subset () “filters” rows, usually corresponding to observations or experimental
units. The condition is computed for each row, and if it returns TRUE, the row is
included in the returned data frame, and excluded if FALSE.

We create a data frame with six rows and three columns. For column y, we rely
on R automatically extending "a" by repeating it six times, while for column z, we
rely on R automatically extending c(TRUE, FALSE) by repeating it three times.
df8 <- data.frame(x = 1:6, y = "a", z = c(TRUE, FALSE))
subset(df8, x > 3)

## Xy z
## 4 4 a FALSE
## 5 5 a TRUE
## 6 6 a FALSE

4.7 What is the behaviour of subset() when the condition is NA? Find the
answer by writing code to test this, for a case where tests for different rows return
NA, TRUE and FALSE.

When calling functions that return a vector, data frame, or other structure, the
extraction operators [ 1, [[ 1], or $ can be appended to the rightmost parenthesis
of the function call, in the same way as to the name of a variable holding the same
data.
subset(df8, x > 3)[ , -3]

## Xy
## 4 4 a
## 5 5 a
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## 6 6 a

subset(df8, x > 3)[ , "x", drop = FALSE]
## X

## 4 4

## 5 5

## 6 6

subset(df8, x > 3)[ , "x"]
## [1] 456

4.8 When do extraction operators applied to data frames return a vector or
factor, and when do they return a data frame? Please, experiment with your own
code examples to work out the answer.

In the case of subset (), we can select columns directly as shown below, while
for most other functions, extraction using operators [ 1, [[ 11, or $ is needed.
subset(df8, x > 3, select = 2)

## y
## 4
## 5
## 6

Lo o

subset (df8, x > 3, select
## X
## 4 4
## 5 5
## 6 6

x)

subset(df8, x > 3, select = "x")
#i# X
## 4 4
## 5 5
## 6 6

None of the examples in the last four code chunks alters the original data frame
df8. We can store the returned value using a new name if we want to preserve
df8 unchanged, or we can assign the result to df8, deleting in the process, the
previously stored value.

In the examples above, the names in the expression passed as the second ar-
gument to subset() were searched within df8 and found. However, if not found in
the data frame, objects with matching names are searched for in the global envir-
onment (outside the data frame, and visible in the user’s workspace or enclosing
environment). With no variable A present in data frame df8, vector A from the en-
vironment is silently used in the chunk below resulting in a returned data frame
with no rows as A > 3 returns FALSE.

A<-1

subset (df8, A > 3)

## [1] x vy z

## <0 rows> (or O-Tength row.names)

This also applies to the expression passed as argument to parameter select,
here shown as a way of selecting columns based on names stored in a character
vector.



104 Base R: “Collective Nouns”

columns <- c("x", "z")

subset (df8, select = columns)
## X z

## 1 1 TRUE

## 2 2 FALSE

## 3 3 TRUE

## 4 4 FALSE

## 5 5 TRUE

## 6 6 FALSE

The use of subset () is convenient, but more prone to bugs compared to directly
using the extraction operator [ ]. This same “cost” to achieving convenience ap-
plies to functions like attach() and with() described below. The longer time that
a script is expected to be used, adapted, and reused, the more careful we should
be when using any of these functions. An alternative way of avoiding excessive
verbosity is to keep the names of data frames short.

A frequently used way of deleting a column by name from a data frame is to
assign NULL to it—i.e., in the same way as members are usually deleted from Tists.
This approach modifies df9 in place, rather than returning a modified copy of df9.

df9 <- df8
head (df9)

## Xy z
## 1 1 a TRUE
## 2 2 a FALSE
## 3 3 a TRUE
## 4 4 a FALSE
## 5 5 a TRUE
## 6 6 a FALSE
dfo[["y"]] <- NULL
head (df9)

## X z
## 1 1 TRUE
## 2 2 FALSE
## 3 3 TRUE
## 4 4 FALSE
## 5 5 TRUE
## 6 6 FALSE

Alternatively, negative indexing can be used to remove columns from a copy
of a data frame. In this example, a single column is removed. As base R does not
support negative indexing by name with the extraction operator, the numerical
index of the column to delete needs to be obtained first. (See the examples above
using subset() with bare names to delete columns.)

df8[ , -which(colnames(df8) == "y")]
## X z
## 1 1 TRUE
## 2 2 FALSE
## 3 3 TRUE
## 4 4 FALSE
## 5 5 TRUE
## 6 6 FALSE
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Instead of using the equality test, we can use the operator %in% or function
grepl() to create a Togical vector useful for deleting or selecting multiple columns
in a single statement.

4.9 In the previous code chunk, we deleted the last column of the data frame
df8, but using the extraction operator, we modified only the returned copy of df8,
leaving df8 unchanged. Thus we reuse it here for a surprising trick. You should
first untangle how it changes the positions of columns and rows, and afterwards
think how and why indexing with the extraction operator [ ] on both sides of the
assignment operator <- can be useful when working with data.

df8[1:6, c(1,3)] <- df8[6:1, c(3,1)]
df8

Although in this last example we used numeric indexes to make it more in-
teresting, in practice, especially in scripts or other code that will be reused, do use
column or member names instead of positional indexes whenever possible. This
makes code much more reliable, as changes elsewhere in the script could alter the
order of columns and invalidate numerical indexes. In addition, using meaningful
names makes programmers’ intentions easier to understand.

4.4.2 Summarising and splitting data frames

Function summary() can be used to obtain a summary from objects of most R
classes, including data frames. It is also possible to use sapply(), Tapply() or
vapply() to apply any suitable function to data by columns (see section 5.8 on
page 154 for a description of these functions and their use).

summary (df8)

## X y z

## Min. :1.00 Length:6 Mode :logical
## 1st Qu.:2.25 Class :character FALSE:3

## Median :3.50 Mode :character TRUE :3

## Mean :3.50

## 3rd Qu.:4.75

## Max. :6.00

R function sp1it() makes it possible to split a data frame into a list of data
frames, based on the levels of a factor, even if the rows are not ordered according
to factor levels.

We create a data frame with six rows and three columns. In the case of column
z, we rely on R to automatically extend c("a", "b") by repeating it three times so
as to fill the six rows.
df10 <- data.frame(xl = 1:6, x2 = c(1, 5, 4, 2, 6, 3), z = c("a", "b"™))

split(df10, df10%$z)

## $a

#i# x1l x2 z
# 1 1 1 a
## 3 3 4 a
## 5 5 6 a
##

## $b
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#i# x1l x2 z
## 2 2 5b
## 4 4 2 b
## 6 6 3 b

The same operation can be specified using a one-sided formula ~z to indicate
the grouping.
split(df10, ~ z)
## $a
## X
# 1
## 3
## 5
##
## $b
## X
## 2
#H 4
## 6 6 3

o RN
DO N

z
b
b
b
Function unsp1it() can be used to reverse splitting done by sp1it().

split () is sometimes used in combination with apply functions (see section
5.8 on page 154) to compute group or treatment summaries. However, in most
cases it is simpler to use aggregate() for computing such summaries.

Related to splitting a data frame is the calculation of summaries based on a sub-
set of cases, or more commonly summaries for all observations but after grouping
them based on the values in a column or the levels of a factor.

m How to summarise one variable from a data frame by group?
To summarise a single variable by group, we can use aggregate().
aggregate(x = iris$pretal.Length,

by = Tist(iris$Species), FUN = mean)
## Group.1 X
## 1 setosa 1.462

## 2 versicolor 4.260
## 3 virginica 5.552

m How to summarise numeric variables from a data frame by group?
To summarise variables, we can use aggregate() (see section 8.7.2 on page 262
for an alternative approach using package ‘dplyr’).

aggregate(x = iris[ , sapply(iris, is.numeric)],
by = Tist(iris$Species), FUN = mean)

## Group.l Sepal.Length Sepal.width petal.Length pPetal.width
## 1 setosa 5.006 3.428 1.462 0.246
## 2 versicolor 5.936 2.770 4.260 1.326
## 3 virginica 6.588 2.974 5.552 2.026

For these data, as the only non-numeric variable is species, we could have also
used formula notation as shown below.

There is also a formula-based aggregate() method (or “variant”) available
(R formulas are described in depth in section 7.13 on page 226). In aggregate(),
the left-hand side (lhs) of the formula indicates the variable to summarise and its
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right-hand side (rhs) the factor used to split or group the data before summarising
them.

aggregate(xl ~ z, FUN = mean, data = df10)

## z x1

## 1 a 3
## 2 b 4

We can summarise more than one column at a time.
aggregate(cbind(x1, x2) ~ z, FUN = mean, data = df10)
## z x1 X2

## 1 a 3 3.666667
## 2 b 4 3.333333

If all the columns not used for grouping are valid input to the function passed
as the argument to FuN the formula can be simplified using a point (.) with meaning
“all columns except those on the rhs of the formula”.

aggregate(. ~ z, FUN = mean, data = df10)
## z x1 X2
## 1 a 3 3.666667
## 2 b 4 3.333333
Function aggregate () can be also used to aggregate time series data based on
time intervals (see help(aggregate)).

4.4.3 Re-arranging columns and rows

As with members of vectors and lists, to change the position of columns or rows
in a data frame we use the extraction operator and indexing by name or position.
In a matrix-like object, such as a data frame, the first index corresponds to rows
and the second to columns.

The most direct way of changing the order of columns and/or rows in data
frames (as for matrices and arrays) is to use subscripting. Once we know the ori-
ginal position and target position we can use column names or positions as indexes
on the right-hand side, listing all columns to be retained, even those remaining at
their original position.
dfll <- data.frame(A = 1:10, B = 3, C = c("A", "B"))
head (df11, 2)

## A B C

## 113 A

## 2 2 3 B

dfll <- df11[ , c("B", "A", "C")]
head (df1l, 2)

#it B AC
## 13 1A
## 2 3 2 B

When using the extraction operator [ ] on both the left- and right-hand-sides,
with a numeric vector as an argument to swap two columns, the vectors or factors
are swapped, while the names of the columns are not! To retain the correspond-
ence between column naming and column contents after swapping or rearranging
the columns using numeric indices, we need to separately move the names of the
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columns. This may seem counter-intuitive, unless we think in terms of positions
being named rather than the contents of the columns being linked to the names.
dfll <- data.frame(A = 1:10, B = 3, Cc = c("A", "B"))

head(df1l, 2)

## A B C

## 113 A

## 2 2 3 B

df1l[ , 1:2] <- df11l[ , 2:1]
head(df1l, 2)

#* A BC
## 1 3 1A
## 2 3 2B

colnames (df11) [1:2] <- colnames (df1l1)[2:1]
head(df11, 2)

## B AC
# 13 1A
## 23 2B

Taking into account that order() returns the indexes needed to sort a vector
(see page 69), we can use order () to generate the indexes needed to sort the rows of
a data frame. In this case, the argument to order () is usually a column of the data
frame being arranged. However, any vector of suitable length, including the result
of applying a function to one or more columns, can be passed as an argument to
order (). Function order () is not useful for sorting columns of data frames based
on data from the columns as it requires a vector across columns as input, which is
possible only when all columns are of the same class. (In the case of matrix and
array this approach can be applied to any of their dimensions as all their elements
homogenously belong to one class.)

m How to order columns or rows in a data frame?

We use column names or numeric indexes with the extraction operator [ ] only on
the rhs of the assignment. For example, to arrange the columns of data set irisin
decreasing alphabetical order, we use sort() as shown, or order() (see page 69).

sorted_cols_iris <- iris[ , sort(colnames(iris), decreasing = TRUE)]
head(sorted_cols_iris, 5)

## Species Sepal.width Sepal.Length Petal.width Petal.Length
## 1 setosa 3.5 5.1 0.2 1.4
## 2 setosa 3.0 4.9 0.2 1.4
## 3 setosa 3.2 4.7 0.2 1.3
## 4 setosa 3.1 4.6 0.2 1.5
## 5 setosa 3.6 5.0 0.2 1.4

Similarly, we can use values in a column as argument to order() to obtain the
numeric indices to sort rows.

sorted_rows_iris <- iris[order(iris$pretal.Length), ]
head(sorted_rows_iris, 5)

## Sepal.Length Sepal.width Petal.Length Petal.width Species

## 23 4.6 3.6 1.0 0.2 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
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4.10 Create a new data frame containing three numeric columns with three
different haphazard sequences of values and a factor with two levels. Call these
columns A, B, ¢ and F. 1) Sort the rows of the data frame so that the values in A
are in decreasing order. 2) Sort the rows of the data frame according to increasing
values of the sum of A and B without adding a new column to the data frame or
storing the vector of sums in a variable. In other words, do the sorting based on
sums calculated on-the-fly. 1) Sort the rows by level of factor F, and 2) by level of
factor F and by values in B within each factor level. Hint: revisit the exercise on
page 83 were the use of order() on factors is described.

4.4.4 Re-encoding or adding variables

It is common that some variables need to be added to an existing data frame based
on existing variables, either as a computed value or based on mapping, for example,
treatments to sample codes already in a data frame. In the second case, named
vectors can be used to replace values in a variable or to add a variable to a data
frame.

Mapping is possible because the length of the value returned by the extraction
operator [ ] is given by the length of the indexing vector (see section 3.10 on page
64). Although we show toy-like examples, this approach is most useful with data
frames containing many rows.

If the existing variable is a character vector or factor, we need to create a named
vector with the new values as data and the existing values as names.

df12 <-
data.frame(genotype = rep(c("wT", "mutantl", "mutant2"), 2),
value = c¢(1.5, 3.2, 4.5, 8.2, 7.4, 6.2))
mutant <- c(WT = FALSE, mutantl = TRUE, mutant2 = TRUE)
dfl2$mutant <- mutant[dfl2$genotype]
df12

##  genotype value mutant

## 1 WT 1.5 FALSE
## 2 mutantl 3.2 TRUE
## 3 mutant2 4.5 TRUE
## 4 WT 8.2 FALSE
## 5 mutantl 7.4 TRUE
## 6 mutant2 6.2 TRUE

If the existing variable is an integer vector, we can use a vector without names,
being careful that the positions in the mapping vector match the values of the
existing variable

df13 <- data.frame(individual = rep(1:3, 2),

value = c(1.5, 3.2, 4.5, 8.2, 7.4, 6.2))
genotype <- c("wT", "mutantl", "mutant2")
df13$genotype <- genotypel[dfl3$individual]

df13

## dindividual value genotype
## 1 1 1.5 WT
## 2 2 3.2 mutantl
## 3 3 4.5 mutant2
## 4 1 8.2 wT
## 5 2 7.4 mutantl
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## 6 3 6.2 mutant2

4.11 Add a variable named genotype to the data frame below so that for indi-
vidual 4 its value is "wt", for individual 1 its value is "mutantl"”, and for individual
2 its value is "mutant2".

DF1 <- data.frame(individual = rep(c(2, 4, 1), 2),
value = ¢(1.5, 3.2, 4.5, 8.2, 7.4, 6.2))

4.4.5 Operating within data frames

In the case of computing new values from existing variables, named vectors are
of limited use. Instead, variables in a data frame can be added or modified with
R functions transform(), with() and within(). These functions can be thought as
convenience functions as the same computations can be done using the extraction
operators to access individual variables, in the lhs, rhs, or both lhs and rhs (see
section 3.10 on page 64).

In the case of with(), only one, possibly compound code statement is affected
and this statement is passed as an argument. As before, we need to fully specify
the left-hand side of the assignment. The value returned is the one returned by
the statement passed as an argument, in the case of compound statements, the
value returned by the last contained simple code statement to be executed. Con-
sequently, if the intent is to modify the container, assignment to an individual
member variable (column in this case) is required.

In this example, column A of df14 takes precedence, and the returned value is
the expected one.

df14 <- data.frame(A = 1:10, B = 3)
df14$C <- with(dfl4, (A + B) / A)
head(df14, 3)
## AB C
## 11 3 4.0
## 2 23 2.5
## 3 3 3 2.0

In the case of within(), assignments in the argument to its second parameter
affect the object returned, which is a copy of the container (in this case, a whole
data frame), which still needs to be saved through assignment. Here the intention
is to modify it, so we assign it back to the same name, but it could have been
assigned to a different name so as not to overwrite the original data frame.

df14$C <- NULL
df15 <- within(dfl4, Cc <- (A + B) / A)
head (df15, 3)
## AB C
## 11 3 4.0
## 2 23 2.5
## 3 3 3 2.0
In the example above, using within() instead of with() makes little difference
to the amount of typing or clarity of the code, but with multiple member variables
being operated upon, as shown below, using within () results in more concise and
easier to understand code.
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df1l6 <- within(df14,
{c<- (A+B) /A
D <- A *B
E<- A/ B+ 1}
)
head (df16, 3)

## A B E D C
## 1 1 3 1.333333 3 4.0
## 2 2 3 1.666667 6 2.5
## 3 3 3 2.000000 9 2.0

Repeatedly pre-pending the name of a container, such as a list or data frame,
to the name of each member variable being accessed can make R code verbose and
difficult to understand. Functions attach() and its matching detach () allow us to
change where R first looks for the names of objects mentioned in a code statement.
When using a long name for a data frame, entering a simple calculation can easily
result in a difficult-to-read statement. Here even with a very short name for the
data frame, the verbosity compared to the last chunk above is clear.

df14$c <- (df14$A + df14$B) / dfl4$A
df14$D <- df14$A *» df14$B

df14$D <- df14$A / df14$B + 1
head(df14, 3)

# AB C D
## 1 1 3 4.0 1.333333
## 2 2 3 2.5 1.666667
## 3 3 3 2.0 2.000000

Using attach () we can alter where R looks up names and consequently simplify
the statement. With detach() we can restore the original state. It is important to
remember that here we can only simplify the right-hand side of the assignment,
while the “destination” of the result of the computation still needs to be fully spe-
cified on the left-hand side of the assignment operator. We include below only one
statement between attach() and detach() but multiple statements are allowed.
Furthermore, if variables with the same name as the columns exist in the search
path, these will take precedence, something that can result in bugs or crashes, or
as seen below, a message warns that variable A from the global environment will
be used instead of column A of the attached df17. The returned value is, of course,
not the desired one.

dfl1l7 <- data.frame(A = 1:10, B = 3)
A

## [1] 1

attach(df17)

## The following object is masked _by_ .GlobalEnv:
##
## A

A

## [1] 1
detach(df17)
A

## [1] 1
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attach(df17)

## The following object is masked _by_ .GlobalEnv:
##
## A

df17$c <- (A + B) / A
detach(df17)
head(df17, 2)
# ABC
## 1 1 3 4
## 2 2 3 4

Use of attach() and detach(), which work as a pair of ON and OFF switches,
can result in an undesired after-effect on name lookup if the script terminates
after attach() is executed but before detach() is called, as the attached object
is not detached. In contrast, with() and within(), being self-contained, guaran-
tee that cleanup takes place. Consequently, the usual recommendation is to give
preference to the use of with() and within() over attach() and detach().

4.5 Reshaping and Editing Data Frames

As mentioned above, in most cases, in R data rows represent measurement events
or observations possibly on multiple response variables and factors describing
groupings, i.e., a “long” shape. However, when measurements are repeated in time,
columns rather frequently represent observations of the same response variable
at different times, i.e., a “wide” shape. Other cases exist where reshaping is needed.
Function reshape() can convert wide data frames into long data frames and vice
versa. See section 8.6 on page 256 on package ‘tidyr’ for an alternative approach
to reshaping data with a friendlier user interface.

We start by creating a data frame of hypothetical data measured on two occa-
sions. With these data, for example, if we wish to compute the growth of each sub-
ject by computing the difference in weight and height between the two time points,
one approach is to reshape the data frame into a wider shape and subsequently
subtract the columns.

dfl <- data.frame(id = rep(1:4, rep(2,4)),
Time = factor(rep(c("Before","After"), 4)),
weight = rnorm(n = 4, mean = c(20.1, 30.8)),
Height = rnorm(n = 4, mean = c(9.5, 14.2)))

dfl

## id Time Wweight Height
## 1 1 Before 21.05859 10.57587
## 2 1 After 29.57182 14.15418
## 3 2 Before 21.52375 10.12694
## 4 2 After 30.15447 14.91599
## 5 3 Before 21.05859 10.57587
## 6 3 After 29.57182 14.15418
## 7 4 Before 21.52375 10.12694
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## 8 4 After 30.15447 14.91599
# make it wider

df2 <- reshape(dfl, timevar = "Time", idvar = "id", direction = "wide")
df2
## 1id weight.Before Height.Before weight.After Height.After
## 1 1 21.05859 10.57587 29.57182 14.15418
## 3 2 21.52375 10.12694 30.15447 14.91599
## 5 3 21.05859 10.57587 29.57182 14.15418
## 7 4 21.52375 10.12694 30.15447 14.91599
# possible further calculation
within(df2,
{

Height.growth <- Height.After - Height.Before
weight.growth <- weight.After - weight.Before

D)
## id weight.Before Height.Before weight.After Height.After weight.growth
## 1 1 21.05859 10.57587 29.57182 14.15418 8.513234
## 3 2 21.52375 10.12694 30.15447 14.91599 8.630720
## 5 3 21.05859 10.57587 29.57182 14.15418 8.513234
## 7 4 21.52375 10.12694 30.15447 14.91599 8.630720
##  Height.growth
## 1 3.578307
## 3 4.789053
## 5 3.578307
## 7 4.789053

Alternatively, we may want to convert dfl into a longer shape, with a single
column with measurements, and a new column indicating whether the measured
variable was height or weight. For this operation to succeed, we need to add a
column with a unique value for each row in df1, and one easy way is to copy row
names into a column. The names of the parameters of function reshape () are mean-
ingful only when dealing with time series. Thus, reading the code below becomes
rather difficult. It is also to be noted that the user is responsible of passing the
values to times in the correct order.

df1$ID <- rownames(dfl) # unique ID for each row
# make it longer

reshape (df1,

idvar = "ID",

timevar = "Quantity",

times = c("weight", "Height"),

v.names = "value",

direction = "long",

varying = c("weight", "Height"))
## id Time ID Quantity value
## 1l.weight 1 Before 1 weight 21.05859
## 2.weight 1 After 2 weight 29.57182
## 3.weight 2 Before 3 weight 21.52375
## 4.weight 2 After 4 weight 30.15447
## 5.weight 3 Before 5 Wweight 21.05859
## 6.weight 3 After 6 weight 29.57182
## 7.weight 4 Before 7 weight 21.52375
## 8.weight 4 After 8 Wweight 30.15447
## 1.Height 1 Before 1 Height 10.57587
## 2.Height 1 After 2 Height 14.15418
## 3.Height 2 Before 3 Height 10.12694
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## 4.Height 2 After
## 5.Height 3 Before
## 6.Height 3 After
## 7.Height 4 Before
## 8.Height 4 After

Height 14.91599
Height 10.57587
Height 14.15418
Height 10.12694
Height 14.91599

0N U A

To edit a data frame programmatically, one can use the approaches already
discussed, using the extraction operators [ ] or [[ 1] on the lhs of <- to replace
member elements. This in combination with functions like gsub () makes it possible
to “edit” the contents of data frames.

Methods view(), edit() and fix() can be used interactively to display and edit
R objects. When using R from within IDEs like RStudio, calling these functions with
a data frame as argument opens in most cases the IDE’s own worksheet-like data
editors, and for other types of objects a text editor pane. Output is not included
for this chunk, as the use of these functions requires user interaction. Please, run
these examples in R and in an IDE like RStudio.

View(cars)
edit(cars)

These functions can be used at the R console also when R is used on its own,
but the editors activated are different ones. In any case, the use of scripts has
made the interactive use of R at the console less frequent and the need to edit R
objects previously saved in the user’s current workspace nearly disappear. view(),
edit() and fix() are unusual in that their definitions are dependent on system
variables that at least when using R on its own, can be modified by the user.

4.6 Attributes of R Objects

R objects can have attributes. Attributes are named slots normally used to store
ancillary data such as object properties functioning as additional fields where to
store additional information in any R object. There are no restrictions on the class
of what is assigned to an attribute. They can be used to store metadata accompa-
nying the data stored in an object, which is important for reproducible research
and data sharing. They can be set and read by user code and they are also used
internally by R among other things to store the class an object belongs to, column
and row names in data frames and matrices and the labels of levels in factors. Al-
though most R objects have attributes, they are rarely displayed explicitly when
an object is printed, while the structure of objects as displayed by function str()
includes them.

Although we rarely need to set or extract values stored in attributes explicitly,
many of the features of R that we take for granted are implemented using attrib-
utes: columns names in data frames are stored in an attribute. Matrices are vectors
with additional attributes.

dfl <- data.frame(x = 1:6, y = c("a", "b"), z = c(TRUE, FALSE, NA))
dfl
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## Xy z

# 1 1 a TRUE

## 2 2 b FALSE

## 3 3 a NA

## 4 4 b TRUE

## 5 5 a FALSE

## 6 6 b NA
attributes(dfl)

## $names

##[1] "x" "yt ozt
##

## $class

## [1] "data.frame"
##

## $row.names
## [1] 1 2 3456

str(dfl)

## 'data.frame': 6 obs. of 3 variables:
## $ x: int 123456

# $y: chr "a" "b" "a" "b" ...

## $ z: Togi TRUE FALSE NA TRUE FALSE NA

Attribute "comment" is meant to be set by users to store a character string—e.g.,
to store metadata as text together with data. As comments are frequently used, R
has functions for accessing and setting comments.
comment (df1)
## NULL

comment (dfl) <- "this is stored as a comment"
comment (df1)

## [1] "this is stored as a comment"

Functions like names (), dim() or Tevels() return values retrieved from attrib-
utes stored in R objects, whereas names () <-, dim()<- or levels()<- set (or unset
with NuLL) the value of the respective attributes. Dedicated query and set functions
do not exist for all attributes. Functions attr(), attr()<- and attributes() can be
used with any attribute. With attr () we query, and with attr()<- we set individual
attributes by name. With attributes() we retrieve all attributes of an object as a
named Tist. In addition, method str() displays the structure of an R object with
all its components, including their attributes.

Continuing with the previous example, we can retrieve and set the value stored
in the "comment" attribute using these functions. In the second statement, we delete
the value stored in the attribute by assigning NULL to it.
attr(dfl, "comment")

## [1] "this is stored as a comment"

attr(dfl, "comment") <- NULL
attr(dfl, "comment")

## NULL
comment (df1)
## NULL

The "names" attribute of dfl was set by the data.frame() constructor when
it was created above. In the next example, in the first statement we retrieve the
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names and implicitly print them. In the second statement, read from right to left,
we retrieve the names, convert them to upper case, and save them back to the same
attribute.

names (df1)
## [1] "x" "y" 2"
colnames (df1)

## [1] "x" Uyt Uz
colnames (dfl) <- toupper(colnames (dfl))
colnames (df1l)

## [1] "X" YT "z
attr(dfl, "names")
## [1] "X" "Y' "z"

4.12 In general, R objects do not have by default names assigned to mem-
bers. As seen on page 67, we can give names to vector members during construc-
tion with a call to c() or we can assign names (set attribute names) with func-
tion names () <- to existing vectors. Lists behave almost the same as vectors, al-
though members of nested objects can also be named. Data frames have attributes
names and row.names, that can be accessed with functions names () or colnames(),
and function rownames (), respectively. The attributes can be set with functions
names () <- or colnames () <-, and rownames () <-. The data.frame() constructor sets
(column) names and row names by default. The matrix() constructor by default
does not set dimnames or names attributes. When names are assigned to a matrix
with names () <-, the matrix behaves like a vector, and the names are assigned to
individual members. Functions dimnames () <-, colnames () <-, and rownames () <- are
used to assign names to columns and rows. The matching functions dimnames (),
colnames () and rownames () are used to access these values.

When no names have been set, names (), colnames (), rownames (), and dimnames ()
return NULL. In contrast, 1abels(), intended to be used for printing, returns made-
up names based on positions.

Run the examples below and write similar examples for a 1ist and a data. frame.
For matrix, write an additional statement that uses dimnames ()<- to set row and
column names simultaneously.

VCT1l <- 5:10

names (VCT1)

labels (vCT1)

names (VCT1) <- Tetters[5:10]
names (VCT1)

Tabels (vCTl)

MAT1l <- matrix(1:10, ncol = 2)
dimnames (MAT1)

Tlabels (MAT1)

colnames (MAT1) <- c("a", "b")
colnames (MAT1)

dimnames (MAT1)

Tabels (MAT1)

We can add a new attribute, under our own control, as long as its name does
not clash with those of existing attributes.
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attr(dfl, "my.attribute") <- "this is stored in my attribute"
attributes(dfl)

## $names

## [1] "x" "y" "z"
##

## $class

## [1] "data.frame"
##

## $row.names

## [1] 1 23 456

##

## $my.attribute

## [1] "this 1is stored in my attribute"

E The attributes used internally by R can be directly modified by user code. In
most cases, this is unnecessary as R provides pairs of functions to query and set
the relevant attributes. This is true for the attributes dim, names and Tevels. In the
example below, we read the attributes from a matrix.

matl <- matrix(1:10, ncol = 2)

attributes(matl)

## $dim

## [1] 5 2

dim(matl)

## [1] 5 2

dimnames (matl)

## NULL

labels(matl)

## [[1]1]

## [1] "1™ "2 "3" 4" 5"
##

## [[2]]

## [1] "1" "2"
matl

## [,11 [,2]
# [1,] 1 6
## [2,] 7
## [3,] 8
## [4,] 9
## [5,] 10

Ul b WN

attr(matl, "dim")

## [1] 5 2

attr(matl, "dim") <- c(2, 5)
matl

## (,11 [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 10

attr(matl, "dim") <- NULL
is.vector(matl )

## [1] TRUE
matl
# [11 1 2 3 4 5 6 7 8 910



118 Base R: “Collective Nouns”

In this case we can also use dim().

dim(matl) <- NULL
is.vector(matl )

## [1] TRUE

There is no restriction to the creation, setting, resetting, and reading of attrib-
utes, but not all functions and operators that can be used to modify objects will
preserve non-standard attributes. This can be a problem when using some R pack-
ages, such as the ‘tidyverse’. So, using private attributes is a double-edged sword
that usually is worthwhile considering only when designing a new class together
with the corresponding methods for it. The values returned by model fitting func-
tions like Tm() are good examples of the extensive use of class-specific attributes
(see section 7.9 on page 200).

|
4.7 Saving and Loading Data
4.7.1 Data sets in R and packages

To be able to present more meaningful examples, we need some real data. Here we
use cars, one of the many data sets included in base R. Function data() is used to
load data objects that are included in R or contained in packages (whether a call
to data() is needed or not depends on how the package where the data objects
are defined was configured). It is also possible to import data saved in files with
foreign formats, defined by other software or commonly used for data exchange.
Package ‘foreign’, included in the R distribution, as well as contributed packages
make available functions capable of reading and decoding various foreign formats.
How to read or import ‘foreign’ data is discussed in the R documentation, in the
manual R Data Import/Export, and in this book, in chapter 10 on page 383. 1t is also
good to keep in mind that in R, URLs (Uniform Resource Locators) are accepted as
arguments to the file or path parameter of many functions (see section 10.12 on
page 410).

In the next example, we load data available in R package ‘datasets’ as R ob-
jects by calling function data(). The loaded R object cars is a data frame. (Package
‘datasets’ is part of the R distribution and is always available).
data(cars)

4.7.2 .rda files

By default, at the end of a session, the current workspace containing the results
of one’s work is saved into a file called .rpata. In addition to saving the whole
workspace, it is possible to save one or more R objects present in the workspace
to disk using the same file format (with file name tag . rda or .rda). One or more ob-
jects, belonging to any mode or class can be saved into a single file using function
save(). Reading the file restores all the saved objects into the current workspace
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with their original names. These files are portable across most R versions—i.e., old
formats can be read and written by newer versions of R, although the newer, de-
fault format may be not readable with earlier R versions. Whether compression is
used, and whether the “binary” data are encoded into ASCII characters, allowing
maximum portability at the expense of increased size can be controlled by passing
suitable arguments to save().

We create a data frame object and then save it to a file. The file name used can
be any valid one in the operating system, however to ensure compatibility with
multiple operating systems, it is good to use only ASCII characters. Although not
enforced, using the name tag .rda or .Rda is recommended.
dfl <- data.frame(x = 1:5, y = 5:1)

dfl

## Xy
## 1 1 5
## 2 2 4
## 3 3 3
## 4 4 2
## 55 1

save(dfl, file = "dfl.rda")

We delete the data frame object and confirm that it is no longer present in the
workspace (see page 39 for details about remove () and objects()).

remove (df1)
objects(pattern = "df1")

## character(0)

We read the file we earlier saved to restore the object.

load(file = "dfl.rda")
objects(pattern = "df1l")

## [1] "df1"
dfl

## Xy

## 1 1 5

## 2 2 4

## 3 3 3

## 4 4 2

## 55 1

The default format used is binary and compressed, which results in smaller
files.

4.13 In the example above, only one object was saved, but one can simply give
the bare names of additional objects as arguments separated by commas ahead
of file. Just try saving more than one data frame to the same file. Then the data
frames plus a few vectors. After creating each file, clear the workspace and then
restore from the file the objects you saved.

Sometimes it is easier to supply the names of the objects to be saved as a vector
of character strings passed as an argument to parameter 11ist (in spite of the name
the argument passed must be a vector, not a Tist). One use case is saving a group
of objects based on their names. In this case, one can use objects () (also available
as 1s()) to obtain a vector of character strings with the names of objects matching
a simple pattern or a complex regular expression (see section 3.4 on page 46).
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The example below uses this approach in two steps, first saving in variable dfs a
character vector with the names of the objects matching a pattern, and then using
this saved vector as an argument to parameter 1ist in the call to save().
dfs <- objects(pattern = "*.df")
save(list = dfs, file = "my-dfs.rda")

The two statements above can be combined into a single statement by nesting
the function calls.
save(list = objects(pattern = "*.df"), file = "my-dfs.rda")

4.14 Practice using different patterns with objects (). You do not need to save
the objects to a file. Just have a look at the list of object names returned.

As a coda, I show how to clean up by deleting the two files we created. Function
file.remove () canbe used to delete files stored in the operating system file system,
usually on a hard disk drive or a solid state drive, as long as the user has enough
rights. No confirmation is requested, so care not to delete valuable files is required.
Function unlink(), is not an exact equivalent, as it can also delete folders and
supports recursion through nested folders. The name unlink is borrowed from
that of the equivalent function in Unix and Linux.
file.remove(c("my-dfs.rda", "dfl.rda"))

## [1] TRUE TRUE

4.7.3 .rds files

The RDS format can be used to save individual objects instead of multiple ob-
jects (usually using file name tag .rds). They are read and saved with functions
readrDS () and saveRDS (), respectively. The value returned by a call to readrbs () is
the object read from the file on disk. When RDS files are read, different from when
RDA files are loaded, assigning the object read to a name is frequently the first
step. This name can be any valid R name. Of course, it is also possible to use the
object returned by readrbs () as an argument to a function by nesting the function
calls.

saveRDS (dfl, "dfl.rds")

If we read the file at the R console, by default the read R object will be printed
at the console.
readRDS ("df1l.rds")

## Xy
## 1 1 5
## 2 2 4
## 3 3 3
## 4 4 2
## 5 5 1

If we assign the read object to a different name, it is possible to check if the
object read is identical to the one saved.

df2 <- readrDS("dfl.rds")
identical (dfl, df2)

## [1] TRUE
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As above, we clean up by deleting the file.
file.remove("dfl.rds")
## [1] TRUE

4.7.4 dput()

In general, the use of . rda and .rds files is preferred. Function dput () is sometimes
used to share data as part of a code chunk at StackOverflow, mostly as a convenient
way of converting a data frame or list into plain text that can be pasted into the
code chunk listing to reconstruct the object. If no argument is passed to parameter
file, the result of deparsing an object is printed at the R console.
dput (dfl)
## structure(list(x = 1:5, y = 5:1), class = "data.frame", row.names = c(NA,
## -5L))

There exists a companion function dget() to recreate the object.

Output to, and input from, text-based file formats as well as to and from
various binary formats foreign to R is described in chapter 10 on page 383.

4.8 Plotting

In most cases, the most effective way of obtaining an overview of a data set is by
plotting it using multiple approaches. The base-R generic method plot() can be
used to plot different data. It is a generic method that has specialisations suitable
for different kinds of objects (see section 6.3 on page 176 for a brief introduction
to objects, classes and methods). In this section, I very briefly demonstrate the
use of the most common base-R graphics functions. They are well described in the
book R Graphics Murrell 2019). I describe in detail the use of the layered grammar
of graphics and plotting with package ‘ggplot2’ in chapter 9 on page 271.

4.8.1 Plotting data

It is possible to pass two vectors (here columns from a data frame) directly as
arguments to the x and y parameters of function plot(). (The plot is shown farther
down, as the three approaches create identical plots.)

plot(x = cars$speed, y = cars$dist)

It is also possible to use with() or attach() as described in section 4.4.5 on
page 110.
with(cars, plot(x = speed, y = dist))

However, it is better to use a formula to specify the variables to be plotted on the
x and 7y axes, passing as an argument to parameter data a data frame containing
these variables as columns. The formula dist ~ speed, is read as dist explained
by speed—i.e., dist is mapped to the y-axis as the dependent variable and speed to
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the x-axis as the independent variable. The names used in the formula, are those
of columns in the data.frame. As described in section 7.8 on page 199, the same
syntax is used to describe models to be fitted to observations.

plot(dist ~ speed, data = cars)
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Within R there exist different specialisations, or “flavours”, of method plot()
that become active depending on the class of the variables passed as arguments:
passing two numerical variables results in a scatter plot as seen above. In con-
trast, passing one factor and one numeric variable to plot() results in a box-and-
whiskers plot being produced. Use help("chickwts™) to learn more about this data
set, also included in R.
plot(weight ~ feed, data = chickwts)
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4.8.2 Graphical output

Graphical output, such as produced by plot(), is rendered by graphical output
devices. When R is used interactively, a software device is opened automatically
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to output the graphical output to a physical device, usually the computer screen.
The name of the R software device used may depend on the operating system (e.g.,
MS-Windows or Linux), or on the IDE (e.g., RStudio).

In R, software graphical devices not necessarily generate output on a physical
device like a printer, as several of these devices translate the plotting commands
into a file format and save it to disk. Graphical devices in R differ in the kind of
output they produce: raster or bitmap files (e.g., TIFF, PNG, and JPEG formats),
vector graphics files (e.g., SVG, EPS, and PDF), or output to a physical device like
the screen of a computer. Additional devices are available through contributed R
packages.

RStudio makes it possible to export plots into graphic files through a menu-
based interface in the Plots viewer tab. This interface uses some of the some
graphic devices that are available at the console and through scripts. For repro-
ducibility, it is preferable to include the R commands used to export plots in the
scripts used for data analysis.

Devices follow the paradigm of ON and OFF switches, opening and closing a
destination for print(), plot() and related functions. Some devices producing a
file as output, save their output one plot at a time to single-page graphic files, while
others write the file only when the device is closed, possibly as a multi-page file.

When opening a device the user supplies additional information. For the PDF
and SVG devices that produce output in a vector-graphics format, width and height
of the output are specified in inches. A default file name is used unless we pass a
character string as an argument to parameter file.
pdf(file = "output/my-file.pdf", width = 6, height = 5, onefile = TRUE)

plot(dist ~ speed, data = cars)
plot(weight ~ feed, data = chickwts)

dev.off()
## cairo_pdf
#i# 2

Raster devices return bitmaps and width and height are specified in most cases
in pixels.
png(file = "output/my-file.png", width = 600, height = 500)
plot(weight ~ feed, data = chickwts)

dev.off()
## cairo_pdf
#i# 2

The approach of direct output to a software device is used in base R by pTot()
and its companions text(), Tines(), and points(). plot() outputs a graph, and
the other three functions can add elements to it. The addition of plot components,
as shown below, is done directly to the output device, i.e., when output is to the
computer screen the partial plot is visible at each step.
png(file = "output/my-file.png", width = 600, height = 500)
plot(dist ~ speed, data = cars)
text(x = 10, y = 110, Tabels = "some texts to be added")
dev.off()

## cairo_pdf
## 2
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This is not the only approach available in R for building complex plots. As we
will see in chapter 9 on page 271, an alternative approach is to build a plot object as
a list of member components, that can be saved as any other R object. This object
functions as a “recipe” that is later rendered as a whole on a graphical device by
calling print() to display it.

4.9 Further Reading

For further reading on the aspects of R discussed in the current chapter, I sug-
gest the book The Art of R Programming: A Tour of Statistical Software Design
(Matloff 2011), with emphasis on the R language and programming. The new, open-
source, book Deep R Programming (Gagolewski 2023) provides a free alternative.
This book also covers base R plotting giving more advanced examples than Learn
R: As a Language. An in-depth description of plotting and graphic devices in R is
available in the book R Graphics (Murrell 2019).
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An R script is simply a text file containing (almost) the same com-
mands that you would enter on the command line of R.

Jim Lemon
Kickstarting R

5.1 Aims of This Chapter

For those who have mainly used graphical user interfaces, understanding why and
when scripts can help in communicating a certain data analysis protocol can be rev-
elatory. As soon as a data analysis stops being trivial, describing the steps followed
through a system of menus and dialogue boxes becomes extremely tedious.

Moreover, graphical user interfaces tend to be difficult to extend or improve
in a way that keeps step-by-step instructions valid across program versions and
operating systems.

Many times, exactly the same sequence of commands needs to be applied to
different data sets, and scripts make both implementation and validation of such
a requirement easy.

In this chapter, I will walk you through the use of R scripts, starting from an
extremely simple script.

5.2 Writing Scripts

In R language, the closest match to a natural language essay is a script. A script
is built from multiple interconnected code statements needed to complete a given
task. Simple statements, equivalent to sentences, can be combined into compound
statements, equivalent to natural language paragraphs. Frequently, we combine
simple sequences of statements into a sequence of actions necessary to complete
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a task. The sequence is not necessarily linear, as branching and repetition are also
available.

Scripts can vary from simple scripts containing only a few code statements, to
complex scripts containing hundreds of code statements. In the rest of the present
section I discuss how to write readable and reliable scripts and how to use them.

5.2.1 What s a script?

A script is a text file that contains (almost) the same commands that you would
type at the R console prompt. A true script is not, for example, an MS-Word file
where you have pasted or typed some R commands.

When typing commands/statements at the R console, we “feed” one line of text
at a time. When we end the line by typing the enter key, the line of text is interpreted
and evaluated. We then type the next line of text, which gets in turn interpreted
and evaluated, and so on. In a script we write nearly the same text in an editor
and save multiple lines containing commands into a text file. Interpretation takes
place only later, when we source the file as a whole into R.

A script file has the following characteristics.

e The script is a plain text file, i.e., a file containing bytes that represent alphanu-
meric characters in a standardised character set like UTF8 or ASCII.

e The text in the file contains valid R statements (including comments) and nothing
else.

e Comments start at a # and end at the end of the line.

e The R statements are in the file in the order that they must be executed, and
respecting the line continuation rules of R.

e R scripts customarily have file names ending in . r or .R.

The statements in the text file, are read, interpreted, and evaluated sequentially,
from the start to the end of the file, as represented in the diagram (Figure 5.1).

As we will see later in the chapter, code statements can be combined into lar-
ger statements and evaluated conditionally and/or repeatedly, which allows us to
control the realised sequence of evaluated statements.

In addition to being valid, it is important that scripts are also understandable
to humans. Consequently, a clear writing style and consistent adherence to it are
important.

It is good practice to write scripts so that they are self-contained. To make a
script self-contained, one must include code to load the packages used, load or
import data from files, perform the data analysis, and display and/or save the res-
ults of the analysis. Such scripts can be used to apply the same analysis algorithm
to other data by reading data from a different file and/or to reproduce the same
analysis at a later time using the same data. Such scripts document all steps used
for the analysis.
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Figure 5.1
Diagram of script showing sequentially evaluated code statements; - represent
additional statements in the script.

5.2.2 How do we use a script?

A script can be “sourced” using function source(). If a text file called
my.first.script.r contains the text

# this is my first R script
print(3 + 4)
it can be sourced by typing at R console

source("my.first.script.r™)
## [1] 7

Execution of the statements in the file makes R display [1] 7 at the console,
below the command we typed in. The commands themselves are not shown (by de-
fault the sourced file is not echoed to the console) and the results of computations
are not printed unless one includes explicit print() commands in the script.

Scripts can be run both by sourcing them into an open R session, or at the
operating system command prompt (see section 2.3 on page 12). In RStudio, the
script in the currently active editor tab can be sourced using the “source” button.
The drop-down menu of this button has three entries: “Source” , quietly to the R
console; “Source with echo” showing the code as it is run; and “Source as local job”,
using a new instance of R in the background. In the last case, the R console remains
free for other uses while the script is running.

When a script is sourced, the output can be saved to a text file instead of being
shown in the console. It is also easy to call R with the R script file as an argument
directly at the operating system shell or command-interpreter prompt—and obvi-
ously also from shell scripts. The next two chunks show commands entered at the
OS shell command prompt rather than at the R command prompt.
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RScript my.first.script.r

You can open an operating system’s shell from the Tools menu in RStudio, to
run this command. The output will be printed to the shell console. If you would
like to save the output to a file, use output redirection using the operating system’s
syntax.

RScript my.first.script.r > my.output.txt

While developing or debugging a script, one usually wants to run (or execute)
one or a few statements at a time. This can be done in RStudio using the “run”
button after either positioning the cursor in the line to be executed, or selecting
the text to be run (the selected text can be part of a line, a whole line, or a group of
lines, as long as it is syntactically valid). The key-shortcut Ctrl-Enter is equivalent
to pressing the “run” button.

5.2.3 How to write a script

As with any type of writing, different approaches may be preferred by different
R users. In general, the approach used, or mix of approaches, will also depend
on how confident one is that the statements will work as expected—one already
knows the best approach vs. one is exploring different alternatives.

Three approaches are listed below. They all can result in equally good code,
but as work in progress, they differ. In the first approach, the script as a whole is
likely to contain some bugs until being thoroughly tested. In the middle approach,
only the most recently added statements are likely to contain bugs. In the last
one, the script contains at all times only valid R code, even if incomplete. This
third approach also has the advantage that code remains in the R console History
and can be retrieved with a delay, e.g., after comparison against an alternative
statement.

If one is very familiar with similar problems, one can create a new text file and
write the whole script in the editor, testing it only afterwards. Use of this ap-
proach is uncommon.

If one is moderately familiar with the problem, one can write a script as above,
but testing it, step by step, while writing it, i.e., running parts of the script before
continuing with the writing. This is the approach I use most frequently.

If one is mostly playing around, one can type statements at the console prompt
to try them. As every statement ran at the console is saved to the “History”, these
previously entered statement(s) can be copied and pasted into the script. In this
way one can build a script from statements already known to work correctly.

5.1 By now you should be familiar enough with R to be able to write your own
script.

1. Create a new R script (in RStudio, from the File menu, leftmost “+” icon,
or by typing “Ctrl + Shift + N”).
2. Save the file as my.second.script.r.
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3. Use the editor pane in RStudio to type some R commands and comments.
4. Run individual commands.
5. Source the whole file.

5.2.4 The need to be understandable to people

It is not enough for program code to be understood by a computer and that it
returns the correct answer. Both large programs and small scripts have to be read-
able to humans, and the intention of the code understandable. In most cases, R
code will be maintained, reused, and modified over time. In many cases, this code
also serves to document a given computation and to make it possible to reproduce
it.

When one writes a script, it is either because one wants to document what has
been done or because one plans to use it again in the future. In the first case, other
persons will read it, and in the second case, one rarely remembers all the details.
Thus, spending time and effort on the writing style, paying special attention to the
following recommendations, is important.

e Avoid the unusual. People using a certain programming language tend to use
some implicit or explicit rules of style—style includes indentation of statements,
capitalisation of variable and function names. As a minimum try to be consistent
with yourself.

e Use meaningful names for variables, and any other object. What is meaningful
depends on the context. Depending on common use, a single letter may be more
meaningful than a long word. However self-explanatory names are usually better:
e.g., using n.rows and n.cols is much clearer than using nl1 and n2 when dealing
with a matrix of data. Probably number.of.rows and number.of.columns would
make the script verbose, and take longer to type without gaining anything in
return. Sometimes, short textual explanations in comments (ignored by R) are
needed to achieve readability for humans.

e How to make the words visible in names: traditionally in R one would use dots to
separate the words and use only lower case. Some years ago, it became possible
to use underscores. The use of underscores is common nowadays because it
is “safer”, as in some situations a dot may have a special meaning. Names like
NumCols, using “camel case”, are only infrequently used in R programming but
are frequently used in other languages like Pascal.

The Tidyverse style guide for writing R code (https://style.tidyverse.org/)
provides more detailed “rules”. However, more important than strictly following a
published guideline is to be consistent in the style one, a team of programmers or
data analysts, or even members of an organisation use. In the current book, I have
not followed this guide in all respects, instead following in some cases the style
used in R documentation. However, I have attempted to be consistent.

5.2 Here is an example of bad style in a script. Edit the code in the chunk
below so that it becomes easier to read.
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C —> variable
print(
"area: ", variable

)

The points discussed above already help a lot. However, one can go further in
achieving the goal of human readability by interspersing explanations and code
“chunks” and using all the facilities of typesetting, even of formatted maths for-
mulas and equations, within the listing of the script. Furthermore, by including the
results of the calculations and the code itself in a typeset report built automatically
one ensures that they match each other. This greatly contributes to data analysis
reproducibility, which is becoming a widespread requirement both in academia
and in industry.

This approach is called literate programming and was first proposed by Knuth
(1984) through his WEB system. In the case of R programming, the first support
of literate programming was in ‘Sweave’, which has been superseded by ‘knitr’
(Xie 2013). This package supports the use of Markdown or KIgX (Lamport 1994) as
the markup language for the textual contents and also formats and applies syn-
tax highlighting to code. R markdown is an extension to Markdown that makes it
easier to include R code in documents (see http://rmarkdown.rstudio.com/). It
is the basis of R packages that support typesetting large and complex documents
(‘bookdown’), web sites (‘blogdown’), package vignettes (‘pkgdown’), and slides for
presentations (Xie 2016; Xie et al. 2018). Quarto, which provides an enhanced ver-
sion of R markdown, is implemented in R package ‘quarto’ together with the Quarto
program as a separate executable. The use of ‘knitr’ and ‘quarto’ is very well integ-
rated into the RStudio IDE. The generation of typeset reports is outside the scope
of the book, but it is an important skill to learn. It is well described in the books
and web sites cited.

5.2.5 Debugging scripts

The use of the word bug to describe a problem in computer hardware and software
started in 1946 when a real bug, more precisely a moth, got between the contacts
of a relay in an electromechanical computer causing it to malfunction and Grace
Hooper described the first computer bug. The use of the term bug in engineering
predates the use in computer science, and consequently, the use of the word bug
in computing caught on easily.

A suitable quotation from a letter written by Thomas Alva Edison in 1878 (as
given by Hughes 2004):

It has been just so in all of my inventions. The first step is an intuition,
and comes with a burst, then difficulties arise-this thing gives out and [it is]
then that “Bugs”—as such little faults and difficulties are called—show them-
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selves and months of intense watching, study and labour are requisite before
commercial success or failure is certainly reached.

The quoted paragraph above makes clear that only very exceptionally does any
new design fully succeed. The same applies to R scripts as well as any other non-
trivial piece of computer code. From this it logically follows that testing and de-
bugging are fundamental steps in the development of R scripts and packages. De-
bugging, as an activity, is outside the scope of this book. However, clear program-
ming style and good documentation are indispensable for efficient testing and
reuse.

Even for scripts used for analysing a single data set, we need to be confident
that the algorithms and their implementation are valid, and able to return correct
results. This is true both for scientific reports, expert reports, and any data analysis
related to assessment of compliance with legislation or regulations. Of course, even
in cases when we are not required to demonstrate validity, say for decision making
purely internal to a private organisation, we will still want to avoid costly mistakes.

The first step in producing reliable computer code is to accept that any code
that we write needs to be tested and, if possible, validated. Another important
step is to make sure that input is validated within the script and a suitable error
produced for bad input (including valid input values falling outside the range that
can be reliably handled by the script).

If during testing, or during normal use, a wrong value or no value is returned by
a calculation (e.g., the script crashes or triggers a fatal error), debugging consists
in finding the cause of the problem. The cause can be either a mistake in the im-
plementation of an algorithm or in the algorithm itself. However, many apparent
bugs are caused by bad, or missing, code for handling of special cases, such as
invalid input values, rounding errors, and division by zero, making a function or
script crash instead of elegantly issuing a helpful message.

Diagnosing the source of bugs is, in most cases, like detective work. One uses
hunches based on common sense and experience to try to locate the lines of code
causing the problem. One follows different leads until the case is solved. In most
cases, at the very bottom, we rely on some sort of divide-and-conquer strategy.
For example, we may check the value returned by intermediate calculations until
we locate the earliest code statement producing a wrong value. Another common
case is when some input values trigger a bug. In such cases, it is frequently best to
start by testing if different “cases” of input lead to errors/crashes or not. Boundary
input values are usually the telltale ones: for numbers, zero, negative and positive
values, very large values, very small values, missing values (NA), vectors of length
zero (numeric()), etc.

Error messages When debugging, keep in mind that in some cases a single
bug can lead to a whole cascade of error messages. Do also keep in mind that typ-
ing mistakes, originating when code is entered through the keyboard, can wreak
havock in a script: usually there is little correspondence between the number of
error messages and the seriousness of the bug triggering them. When several er-
rors are triggered, start by reading the error message printed first, as later errors
can be an indirect consequence of earlier ones.
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There are special tools, called debuggers, available, and they help enormously.
Debuggers allow one to step through the code, executing one statement at a time,
allowing inspection of the objects present in the R environment. It is even possible
to execute additional statements at the R console, e.g., to modify the value of a
variable, while execution is paused. An R debugger is available within RStudio and
also through the R console.

When writing your first scripts, you will manage perfectly well, and learn more
by running the script one line at a time, and when needed temporarily inserting
print() statements to “look” at how the value of variables changes at each step. A
debugger allows a lot more control, as one can “step in” and “step out” of function
definitions, and set and unset break points where execution will stop. However,
using a debugger is not as simple as using print().

If you get stuck trying to find the cause of a bug, do extend your search both to
the most trivial of possible causes, and later on to the least likely ones (such as a
bug in a package installed from CRAN or R itself). Of course, when suspecting a bug
in code you have not written, it is wise to very carefully read the documentation, as
the “bug” may be just a misunderstanding of what a certain piece of code is expec-
ted to do. Also keep in mind that as discussed on page 6, you will be able to find
online already-answered questions to many of your likely problems and doubts.
For example, searching with Google for the text of an error message is usually well
rewarded. Most important to remember is that bugs do pop up frequently in newly
written code, and occasionally in old code. No coding is immune to them, thus, the
code you write, packages you use or R itself can contain bugs.

5.3 Compound Statements

Individual statements can be grouped into compound statements by enclosing them
in curly braces (Figure 5.2). Conceptually, is like putting these statements into a
box that allows us to operate with them as an anonymous whole.

print("...")
## [1] "..."
{
print("A™)
print("B")
h
## [1] "A"
## [1] "B"
print("...")
## [1] "..."

The grouping of the two middle statements above is of no consequence, as it
does not alter sequential evaluation. In the example above, only side effects are
of interest. In the example below, the value returned by a compound statement
is that returned by the last statement evaluated within it. Individual statements
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Y
Y

<statement A>

!

<statement B>

Figure 5.2

Diagram of a compound code statement is a grouping of statements that in some
contexts behaves as a single statement. In the diagram, statements A and B have
been grouped into a compound statement.

can be separated by an end-of-line as above, or by a semicolon (;) as below: two
statements, each of them implementing an arithmetic operation.

{1+ 2; 3 + 4}

## [1] 7

The example above demonstrates that only the value returned by the compound
statement as a whole is displayed automatically at the R console, i.e., the implicit
call to print() is applied to the compound statement. Thus, even though both
statements were evaluated, we only see the result returned by the second one.

5.3 Nesting is also possible. Before running the compound statement below
try to predict the value it will return, and then run the code and compare your
prediction to the value returned.

{1 +2; {a<- 3+ 4; a+ 1}}

Grouping is of little use by itself. It becomes useful together with control-of-
execution constructs, when defining functions, and in similar cases where we need
to treat a group of code statements as if they were a single statement. We will see
several examples of the use of compound statements in the current chapter and
in chapter 6 on page 169.

5.4 Function Calls

We will describe functions in detail and how to create new ones in chapter 6.
We have already been using functions since chapter 3. Functions are structurally
R statements, in most cases, compound statements, using formal parameters as
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placeholders. When one calls a function, one passes arguments for the different
parameters (or placeholder names) and the (compound) statement conforming the
body of the function is evaluated after “replacing” the placeholders by the values
passed as arguments.

In the first example, we use two statements. In the first statement, log(100)
is computed by calling function Tog10() with 100 as argument and the returned
value is assigned to variable a. In the second statement, the value 2 is displayed as
a side effect of calling print() with variable a as argument.

a <- 1og10(100)
print(a)
## [1] 2

The two statements in example above can be rewritten as a single statement
using a nested function call.
print(1og10(100))
## [1] 2

The difference is that we avoid the explicit creation of a variable. Whether this
is an advantage or not depends on whether we use variable a in later statements
or not.

Statements with more levels of nesting than shown above become very difficult
to read, so alternative notations can help.

5.5 Data Pipes

Pipes have been at the core of shell scripting in Unix since early stages of its design
(Kernigham and Plauger 1981) as well as in Linux distributions. Within an OS, pipes
are chains of small programs or “tools” that carry out a single well-defined task
(e.g., ed, sub, gsub, grep, and more). Data such as text is described as flowing from
a source into a sink through a series of steps at which a specific transformations
take place. In Unix and Linux shells like sh or bash, sinks and sources are files, but
in Unix and Linux files are an abstraction that includes all devices and connections
for input or output, including physical ones such as terminals and printers.

stdin | grep("abc") | more

How can pipes exist within a single R script? When chaining functions into a
pipe, data is passed between them through temporary R objects stored in memory,
which are created and destroyed automatically. Conceptually, there is little differ-
ence between Unix shell pipes and pipes in R scripts, but the implementations are
different.

What do pipes achieve in R scripts? They relieve us from the responsibility of
creating and deleting the temporary objects. By chaining the statements they en-
force their sequential execution. Pipes usually improve the readability of scripts
by allowing more concise code.

Since 2021, starting from version 4.1.0, R has had a native pipe operator (|>)
as part of the language. Subsequently, the placeholder (_) was implemented in
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version 4.2.0 and its functionality expanded in version 4.3.0. Another two imple-
mentations of pipes, that have been available as R extensions for some years in
packages ‘magrittr’ and ‘wrapr’, are described in chapter 8 on page 243.

I describe R’s pipe syntax based on R 4.3.0. I start by showing the same op-
erations coded using nested function calls, using explicit saving of intermediate
values in temporary objects, and using the pipe operator.

Nested function calls are concise, but difficult to read when the depth of nesting
increases.
sum(sqrt(1:10))

## [1] 22.46828

Saving intermediate results explicitly results in clear but verbose code.

data.in <- 1:10
data.tmp <- sqgrt(data.in)
sum(data.tmp)

## [1] 22.46828
rm(data.tmp)

A pipe using operator |> makes the data flow clear and keeps the code concise.
1:10 |> sqrt() [> sum()
## [1] 22.46828

We can assign the result of the computation to a variable, most elegantly using
the —-> operator on the rhs of the pipe.

1:10 |> sqrt() |> sum() —> my_rhs.var
my_rhs.var

## [1] 22.46828

We can also use the <- operator on the lhs of the pipe, i.e., for assignments a
pipe behaves as a compound statement.

my_Tlhs.var <- 1:10 |> sqrt() [|> sum()
my_Tlhs.var

## [1] 22.46828

Formally, the |> operator from base R takes two operands, just like operator
+ does. The value returned by the lhs (left-hand side) operand, which can be any
R expression, is passed as argument to the function-call operand on rhs (right-
hand side). The called function must accept at least one argument. This default
syntax that implicitly passes the argument by position to the first parameter of the
function would limit which functions could be used in a pipe construct. However,
it is also possible to pass the piped argument explicitly by name to any parameter
of the function on the rhs using an underscore (_) as a placeholder.
1:10 |> sqrt(x = _) [> sum(x = _)
## [1] 22.46828

The placeholder can be also used with extraction operators.
1:10 |> sqrt(x = _) |> _[2:8] |> sum(x = _)
## [1] 15.306

Base R functions like subset () have formal parameters in an order that is suit-
able for implicitly passing the piped value as an argument to their first parameter,
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while others like assign() do not. For example, when calling function assign() to
save a value using a name available as a character string, we would like to pass
the piped value as an argument to parameter value which is not the first. In such
cases, we can use _ as a placeholder and pass it by name.
obj.name <- "data.out"
1:10 |> sqrt() |> sum() |> assign(x = obj.name, value = _)

Alternatively, we can define a wrapper function, with the desired order for the
formal parameters. This approach can be worthwhile when the same function is
called repeatedly within a script.

value_assign <- function(value, x, ...) {
assign(x = x, value = value, ...)

}

obj.name <- "data.out"

1:10 [> sqrt() |> sum() |> value_assign(obj.name)

In general, whenever we use temporary variables to store values that are passed
as arguments only once, we can nest or chain the statements making the saving
of intermediate results into a temporary variable implicit instead of explicit. Ex-
amples of some useful idioms follow.

Addition of computed variables to a data frame using within() (see section
4.4.5 on page 110) and selecting rows with subset () (see section 4.4.1 on page 102)
are combined in our first simple example. For clarity, we use the _ placeholder to
indicate the value returned by the preceding function in the pipe.
data.frame(x = 1:10, y = rnorm(10)) |>

within(data = _,
{
x4 <— xA4
is.large <- xA4 > 1000
B oI>
subset(x = _, is.large)
##t X y is.large x4
## 6 6 0.24821983 TRUE 1296
## 7 7 -1.32684062 TRUE 2401
## 8 8 -0.05789719 TRUE 4096
## 9 9 0.29258553 TRUE 6561
## 10 10 -0.63177298 TRUE 10000

5.4 Without using the _ placeholder, but using a more compact layout, the
code above becomes that shown below. Compare it to that above to work out how
I simplified the code.
data.frame(x = 1:10, y = rnorm(10)) |>

within({x4 <- xA4; is.large <- xA4 > 1000}) |>

subset(is.large)

Subset can be also used to select variables or columns from data frames and
matrices.
data.frame(x = 1:10, y = rnorm(10)) |>
within(data = _,
{
x4 <— xA4
is.large <- xA4 > 1000
D 1>
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subset(x = _, is.large, select = -x)
#it y is.large x4
## 6 0.37246559 TRUE 1296
## 7  0.94549288 TRUE 2401
## 8 1.06913611 TRUE 4096
## 9 -0.06230746 TRUE 6561
## 10 -0.47022979 TRUE 10000
data.frame(x = 1:10, y = rnorm(10)) |>
within(data = _,
{
X4 <— xA4
is.large <- xA4 > 1000
D 1>
subset(x = _, select = c(y, x4))
## y x4

##
#i#
#it

1 -0.92142448 1

2 0.62913424 16

3 0.42764317 81
## 4  0.04825671 256
## 5 0.56229201 625
## 6 -3.73168145 1296
## 7  0.16993802 2401
## 8 -0.40038974 4096
## 9 -0.80676551 6561
## 10 0.13977301 10000

data.frame(group = factor(rep(c("T1", "T2", "Ctl"), each = 4)),
y = rnorm(12)) |>

subset(x = _, group %in% c("T1", "T2")) |>
aggregate(data = _, y ~ group, mean)
## group y

## 1 T1 -0.2764033
## 2 T2 0.3205809

The extraction operators are accepted on the rhs of a pipe only starting from
R 4.3.0. With these versions _[["y"]], as shown below, as well as its equivalent
_$y can be used. Function getelement () used as getElement("y"), being a normal
function, can be used in situations where operators are not accepted, like on the
rhs of |> in older versions of R.

data.frame(group = factor(rep(c("T1", "T2", "Ctl1"), each = 4)),
y = rnorm(12)) |>

subset(x = _, group %in% c("T1", "T2")) [>
aggregate(data = _, y ~ group, mean) |>
—_[r"y"11

## [1] -0.2216849 -0.7040829

Additional functions designed to be used in pipes are available through pack-
ages as described in chapter 8.

5.5 In the last three examples, in which function calls is the explicit use of the
placeholder needed, and in which ones is it optional? Hint: edit the code, removing
the parameter name, =, and _, and test whether the edited code works and returns
the same value as before.
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<statement A>
TRUE

FALSE

<statement B>

A

Figure 5.3
Flowchart for if construct.

5.6 Conditional Evaluation

By default, R statements in a script are evaluated (or executed) in the sequence they
appear in the script listing or text. We give the name control of execution constructs
to those special statements that allow us to alter this default sequence, by either
skipping or repeatedly evaluating individual statements. The statements whose
evaluation is controlled can be either simple or compound. Some of the control of
execution flow statements, function like ON-OFF switches for program statements.
Others allow statements to be executed repeatedly while or until a condition is
met, or until all members of a list or a vector are processed.

These control of execution constructs can be also used at the R console, but
it is usually awkward to do so as they can extend over several lines of text. In
simple scripts, the flow of execution can be fixed and linear from the first to the
last statement in the script. However, control of execution constructs are a crucial
part of most useful scripts. As we will see next, a compound statement can include
multiple simple or nested compound statements. R has two types of if statements,
non-vectorised and vectorised.

5.6.1 Non-vectorised if, else and switch

The if construct “decides”, depending on a Togical value, whether the next code
statement is executed (if TRUE) or skipped (if FALSE) (Figure 5.3). The flow chart
shows how 1if works: <statement A> is either evaluated or skipped depending on
the value of <condition>, while <statement B> is always evaluated.

The usefulness of if statements stems from the possibility of computing the
Togical value used as <condition> with comparison operators (see section 3.6 on
page 52) and logical operators (see section 3.5 on page 49).
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We start with toy examples demonstrating how if statements work. Later we
will see examples closer to real use cases. Here 1if controls the evaluation or not
of the simple statement print("Hello!").

We use the name flag for a Togical variable set manually, preferably near the
top of the script. Real flags were used in railways to indicate to trains whether to
stop or continue at stations and which route to follow at junctions. Use of Togical
flags in scripts is most useful when switching between two behaviours that depend
on multiple separate statements.
flag <- TRUE
if (flag) print("Hello!")

## [1] "Hello!"

5.6 Play with the code above by changing the value assigned to variable flag,
FALSE, NA, and logical(0).

In the example above we use variable flag as the condition.

Nothing in the R language prevents this condition from being a Togical con-
stant. Explain why if (FALSE) in the syntactically correct statement below is of
no practical use.
if (FALSE) print("Hello!")

Conditional execution is much more useful than what could be expected from
the previous examples, because the statement whose execution is being controlled
can be a compound statement of almost any length or complexity. A very simple
example follows, with a compound statement containing two statements, each one,
a call to function print() with a different argument.
printing <- TRUE
if (printing) {

print("A")

print("B")
h
## [1] "A"
## [1] "B"

The condition passed as an argument to if, enclosed in parentheses, can be
anything yielding a logical vector of length one. As this condition is not vector-
ised, a longer vector will trigger an R warning or error depending on R’s version.

The if .. else .. construct “decides”, depending on a logical value, which of
two code statements is executed (Figure 5.4). The flow chart shows how it works:
either <statement A> or <statement B> is evaluated and the other skipped depend-
ing on the value of <condition>, while <statement c> is always evaluated.

a <- 10

if (a < 0) print("'a' is negative") else print(
## [1] "'a' is not negative"

print("This is always printed")

## [1] "This is always printed"

"o

a' 1is not negative")

As can be seen above, the statement immediately following if is executed if
the condition returns TRUE and that following else is executed if the condition
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<statement A> if (<cond.>) else <statement B>

<statement C>

.
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A

Figure 5.4
Flowchart for if ..else construct.

returns FALSE. Statements after the conditionally executed if and else statements
are always executed, independently of the value returned by the condition.

5.7 Play with the code in the chunk above by assigning different numeric
vectors to a.

Do you still remember the rules about continuation lines?

a<-1
if (a < 0) print("'a' is negative") else print("'a' is not negative")
## [1] "'a' is not negative"

Why does the statement below (not evaluated here) trigger an error while the
one above does not?

if (a < 0) print("'a' is negative")
else print("'a' is not negative")

How do the continuation line rules apply when we add curly braces as shown
below.

a<-1
if (a < 0) {
print ("'
} else {
print("'a' is not negative")

3

## [1] "'a' is not negative"

a' is negative")

In the example above, we enclosed a single statement between each pair of
curly braces, but as these braces create compound statements, multiple state-
ments could have been enclosed between each pair.
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5.8 Play with the use of conditional execution, with both simple and com-
pound statements, and also think how to combine if and else to select among
more than two options.

In R, the value returned by any compound statement is the value returned by
the last simple statement executed within the compound one. This means that we
can assign the value returned by an if and else statement to a variable. This style
is less frequently used, but occasionally can result in easier-to-understand scripts.
a<-1
my.message <-—

if (@ < 0) "'a' is negative" else "'a' is not negative"
print(my.message)
## [1] "'a' is not negative"

If the condition statement returns a value of a class other than Togical, R will
attempt to convert it into a logical. This is sometimes used instead of a comparison
to zero, as the conversion from integer yields TRUE for all integers except zero.
The code below illustrates a rather frequently used idiom for checking if there is
something available to display.

message <- "abc
if (length(message)) print(message)
## [1] "abc"

5.9 Study the conversion rules between numeric and Togical values, run each
of the statements below, and explain the output based on how type conversions are
interpreted, remembering the difference between floating-point numbers as imple-
mented in computers and real numbers as defined in mathematics (see page 27).

if (0) print("hello")
if (-1) print("hello")
if (0.01) print("hello")
if (1e-300) print("hello")
if (1le-323) print("hello")
if (1e-324) print("hello")
if (1e-500) print("hello")
if (as.logical("true™)) print("hello")
if (as.logical(as.numeric("1"))) print("hello")
if (as.logical("1")) print("hello")
if ("1") print("hello")
Hint: if you need to refresh your understanding of the type conversion rules,
see section 3.9 on page 60.

In addition to if and if..else, there is in R a switch() statement (Figure 5.5). It
can be used to select among several cases, or alternative statements, based on an
expression that returns a numeric or a character value of length one when evaluated.

A switch() statement returns a value, just like if does. The value passed as
argument to switch() functions as an index selecting one of the statements. The
value returned by the switch() statement is the value returned by the selected case
statement.

In the first example below, we use a character variable as the condition, named
cases, and a final unlabelled case as default in case of no match. In real use, a
computed value or user input would be used in place of my.object. As with the
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switch(<value>)

» <statement A>
<value 1>
» <statement B>
<value 2>
» <statement C>
<value 3>
» <statement D>
<default>
4

<statement E>

Figure 5.5
Flowchart for a switch construct with four cases.

Togical argument to if, the character string value passed as argument must be a
vector of length one.

my.object <- "two"
b <- switch(my.object,

one =1,
two =1/ 2,
four =1/ 4,
0

)

b

## [1] 0.5

Multiple condition values can share the same statement.

my.object <- "two"
b <- switch(my.object,

one =, uno = 1,
two =, dos =1/ 2,
four =, cuatro =1 / 4,

0
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)
b

## [1] 0.5

5.10 Do play with the use of the switch statement. Look at the documentation
for switch() using help(switch) and study the examples at the end of the help
page. Explore what happens if you set my.object <- "ten", my.object <- "three",
my.object <- NA_character_ or my.object <- character(). Then remove the , 0
as default value, and repeat.

When the expression used as a condition returns a value that is not a character,
it will be interpreted as an integer index. In this case, no names are used for the
cases and the last case is always interpreted as the default.

my .number <- 2
b <- switch(my.number,

' 2,
/ 41

oOR R R

)
b

## [1] 0.5

5.11 Continue playing with the use of the switch statement. Explore
what happens if you set my.number <- 10, my.number <- 3, my.number <- NA, Or
my.object <- numeric(). Afterwards, remove the , 0 as default value, and repeat.

The statements for the cases in a switch() statement can be compound state-
ments as in the case of if, and they can even be used for a side effect. The code
example above can edited to print a message when the default value is returned.
my.object <- "ten"

b <- switch(my.object,

one = 1,

two =1/ 2,

three = 1 / 4,

{print("No match! Using default"); 0}
)

## [1] "No match! Using default"
b
## [1] O

The switch() statement can substitute for chained if .. else statements
when all the conditions can be described by constant values or distinct values
returned by the same test. The advantage is more concise and readable code. The
equivalent of the first switch() example above when written using if .. else be-
comes longer. Given how terse code using switch() is, those not yet familiar with
its use may find the more verbose style used below easier to understand. On the
other hand, with numerous cases, a switch() statement is easier to read and un-
derstand.



144 Base R: “Paragraphs” and “Essays”

my.object <- "two

if (my.object == "one") {
b <-1

} else if (my.object == "two") {
b<-1/2

} else if (my.object == "four") {
b<-1/ 4

} else {
b <-0

}

b

## [1] 0.5

5.12 Consider another alternative approach, the use of a named vector to
map values. In most of the examples above, the code for the cases is a constant
value or an operation among constant values. Implement one of these examples
using a named vector instead of a switch() statement.

5.6.2 Vectorised ifelse()

Vectorised ifelse is a peculiarity of the R language, but very useful for writing con-
cise code that may execute faster than logically equivalent but not vectorised code.
Vectorised conditional execution is coded by means of function ifelse() (written
as a single word). This function takes three arguments: a logical vector usually
the result of a test (parameter test), an expression to use for TRUE cases (para-
meter yes), and an expression to use for FALSE cases (parameter no). At each index
position along the vectors, the value included in the returned vector is taken from
yes if the corresponding member of the test logical vector is TRUE and from no
if the corresponding member of test is FALSE. All three arguments can be any R
statement returning the required vectors.

The flow chart for ifelse() is similar to that for if .. else shown on page 138
but applied in parallel to the individual members of vectors; e.g., the condition
expression is evaluated at index position 1 controls which value will be present in
the returned vector at index position 1, and so on.

It is customary to pass arguments to ifelse by position. We give a first example
with named arguments to clarify the use of the function.

my.test <- c(TRUE, FALSE, TRUE, TRUE)
ifelse(test = my.test, yes = 1, no = -1)
# [1] 1 -1 1 1

In practice, the most common idiom is to have as an argument passed to test,
the result of a comparison calculated on the fly. As an example, the absolute values
of the members of a vector are computed using ifelse() instead of with R function
abs ().

nums <- -3:43
ifelse(nums < 0, -nums, nums)

## [1] 3210123

In the case of ifelse(), the length of the returned value is determined by the
length of the logical vector passed as an argument to its first formal parameter
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(named test)! A frequent mistake is to use a condition that returns a Togical vector
of length one, expecting that it will be recycled because arguments passed to the
other formal parameters (named yes and no) are longer. However, no recycling will
take place, resulting in a returned value of length one, with the remaining elements
of the vectors passed to yes and no being discarded. Do try this by yourself, using
logical vectors of different lengths. You can start with the examples below, making
sure you understand why the returned values are what they are.

ifelse(TRUE, 1:5, -5:-1)

# [1] 1

ifelse(FALSE, 1:5, -5:-1)

## [1] -5

ifelse(c(TRUE, FALSE), 1:5, -5:-1)

## [1] 1 -4

ifelse(c(FALSE, TRUE), 1:5, -5:-1)

## [1] -5 2

ifelse(c(FALSE, TRUE), 1:5, 0)

## [1] 0 2

5.13 Some additional examples to play with, containing a few surprises. Study
the examples below until you understand why returned values are what they are.
In addition, create your own examples to test other possible cases. In other words,
play with the code until you fully understand how ifelse() statements work.
a <- 1:10
ifelse(a > 5, 1, -1)
ifelse(a > 5, a+ 1, a - 1)
ifelse(any(a > 5), a + 1, a - 1)
ifelse(logical(0), a + 1, a - 1)
ifelse(NA, a + 1, a - 1)

Hint: if you need to refresh your understanding of Togical values and Boolean
algebra see section 3.5 on page 49.

5.14 Using ifelse(), write a single statement to combine numbers from
the two vectors a and b into a result vector d, based on whether the corresponding
value in vector c is the character "a" or "b". Then print vector d to make the result
visible.

a <- -10:-1
b <- +1:10
c <- c(rep("a", 5), rep("b", 5))

If you do not understand how the three vectors are built, or you cannot guess
the values they contain by reading the code, print them, and play with the argu-
ments, until you understand what each parameter does. Also use help(rep) and/or
help(ifelse) to access the documentation.

5.15 Continuing from the playground above, test the behaviour of ifelse()
with NA, NuLL and Togical() passed as arguments to test. Also test the behaviour
when only some members of a logical vector are not available (NA).
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<statement A>

continue

<statement B>

Figure 5.6
Flowchart for a for iteration loop.

5.7 Iteration

We give the name iteration to the process of repetitive execution of a program
statement—e.g., computed by iteration. We use the same word, iteration, to name
each one of these repetitions of the execution of a statement—e.g., the second
iteration.

Iteration constructs make it possible to “decide” at run time the number of
iterations, i.e., when execution breaks out of the loop and continues at the next
statement in the script. Iteration can be used to apply the same computations to
the different members of a vector or list (this section), but also to apply different
functions to members of a vector, matrix, list, or data frame (section 5.10 on page
160).

In R, three types of iteration loops are available: for, while and repeat con-
structs. They differ in the origin of the values they iterate over, and in the type
of test used to terminate iteration. When the same algorithm can be implemented
with more than one of these constructs, using the least flexible of them usually
results in easier to understand code.

In R, explicit loops as described in this section can in some cases be replaced by
calls to apply functions (see section 5.8 on page 154) or with vectorised functions
and operators (see page 30). The choice among these approaches affects readability
and performance (see section 5.11 on page 162).

5.7.1 for loops

The most frequently used type of loop is a for loop. These loops work in R by
“walking through” a list or vector of values to act upon (Figure 5.6). Within a loop,



Iteration 147

member values are available, sequentially, one at a time, through a variable that
functions as a placeholder. The implicit test for the end of the vector or list takes
place at the top of the construct before the loop statement is evaluated. The flow
chart has the shape of a loop as the execution can be directed to an earlier position
in the sequence of statements, allowing the same section of code to be evaluated
multiple times, each time with a new value assigned to the placeholder variable.

In the diagram above, the argument to for () is shown as <1ist> but it can also
be a vector of any mode. Objects of most classes derived from 1ist or from an
atomic vector can also fulfil the same role. The extraction operation with a numeric
index must be supported by objects of the class passed as argument.

Similarly to i f constructs, only one statement is controlled by for, however this
statement can be a compound statement enclosed in braces { } (see pages 132
and 138).

b <-0
for (a in 1:5) b <- b + a
b

## [1] 15

Here the statement b <- b + ais executed five times, with the placeholder vari-
able a sequentially taking each of the values, 1, 2, 3, 4, and 5, the members of
the anonymous vector 1:5. The name used as a placeholder has to fulfil the same
requirements as an ordinary R variable name. The list or vector following in can
contain any valid R objects, as long as the code statements in the loop body can
handle them.

In a for loop construct, even when it is a variable, the vector or list passed
as argument cannot be modified by the code statement within the for loop.
A loop can be “unrolled” into a linear sequence of statements. Let’s work
through the for loop above.
b <-0

o))
A
|
(9]

b
## [1] 15

The operation implemented in this example is a very frequent one, the sum of
a vector, so base R provides a function optimised for efficiently computing it.
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sum(1:5)
## [1] 15

It is important to note that a list or vector of length zero is a valid argument
to for, that triggers no error, but skips the statements in the loop body.
b <-0
for (a in numeric()) b <- b + a
print(b)
# [1] 0

By printing at each iteration variable b, the partial results at each iteration can
be observed. Brackets are needed to form a compound statement from the two
simple statements so that print(b) is also executed at each iteration.

a <- c(1, 4, 3, 6, 8)
for(x in a) {
b <— x*2
print(b)
ks
## [1] 2
## [1] 8
## [1] 6
## [1] 12
## [1] 16

The iteration constructs for, while, and repeat always silently return NuLL,
which is a different behaviour than that of if.

b <- for(x in a) x*2
X

## [1] 8

b

## NULL

Thus as shown in earlier examples of for loops, computed values need to be
assigned to one or more variables within the loop so that they are not lost.

While in the examples above the code directly walked through the values in
the vector, an alternative approach is to walk through a sequence of indices using
the extraction operator [ ] to access the values in vectors or lists. This approach
makes it possible to concurrently walk through more than one list or vector. In the
example below, one member of vector a and of b are accessed in each iteration, a
providing the input and b used to store the corresponding computed value.

b <- numeric()

for(i in seq(along.with = a)) {
b[i] <- a[i]A2

ks

b

## [1] 1 16 9 36 64

5.16 Adding calls to print() makes visible the values taken by variables 1, a,
and b at each iteration. Try to understand where these values come from at each
iteration, by playing with the code and modifying it.
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b <- numeric()
for(i 1in seq(along.with = a)) {
b[i] <- a[i]A2
print(i)
print(a)
print(b)
}
b

The same approach of adding calls to print() can be used for debugging any
code that does not return the expected results.

Above I used seq(along.with = a) to build a numeric vector containing a se-
quence of the same length as vector a. Using this idiom ensures that a vector, in this
example a, with length zero will be handled correctly, with numeric(0) assigned to
b.

5.17 Run the examples below and explain why the two approaches are equi-
valent only when the length of A is one or more. Find the answer by assigning to
A, vectors of different lengths, including zero (using A <- numeric(0)).
A <- =5:5
B <- numeric(length(A))
for(i 1in seq(along.with = A)) {
B[i] <- A[i]A2
3
B

C <- numeric(length(A))

for(i in 1l:length(A)) {
C[i] <- A[1]A2

}

C

Using seq(along.with = a), its equivalent seq_along(a), as above creates a
sequence of integers in i, that indexes all members of a in the “walk-through”.
There is no requirement in the R for this, and including only some of the valid
indexes, or including them in arbitrary order is possible if needed, however, this
is rarely the case. On exit from the loop, the iterator i remains accessible and
contains its value at the last iteration.

Vectorisation usually results in the simplest and fastest code, as shown below
(see section 5.11 on 162). However, not all for loops can be replaced by vectorised
statements.

b <- aA2
b
## [1] 1 16 9 36 64

for loops as described above, in the absence of errors, have statically pre-
dictable behaviour. The compound statement in the loop will be executed once
for each member of the vector or list. Special cases may require the alteration of
the normal flow of execution in the loop. Two cases are easy to deal with, one is
stopping iteration early with a call to break(), and another is jumping ahead to
the next iteration with a call to next (). The example below shows the use of these
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<statement A>

while (<cond.>)

<statement B>

Figure 5.7
Flowchart for a while iteration loop.

two functions: we ignore negative values contained in a, and exit or break out of
the loop when the accumulated sum b exceeds 100.
b <-0
a <- -10:100
idxs <- seq_along(a)
for(i 1in idxs) {
if (a[i] < 0) next()
b <- b + ali]
if (b > 100) break()

3
b

## [1] 105
;
## [1] 25
afil
## [1] 14

Hint: if you find the code in the example above difficult to understand, insert
print() statements and run it again inspecting how the values of a, b, idxs and i
behave within the loop.

In for loops, the use of break() and next () should be reserved for exceptional
conditions. When the for construct is not flexible enough for the computations
being implemented, using a while or a repeat loop is preferable.

5.7.2 while loops

while loops are more flexible than for loops (Figure 5.7). Instead of walking
through a list or vector, iteration is controlled by a logical condition of length
one, just like in if. Differently to in an if construct, the controlled statement is
executed repeatedly as long as the condition remains TRUE.
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a <- 2

while (a < 50) {
print(a)
a <— aA2

h

## [1] 2

## [1] 4

## [1] 16

print(a)

## [1] 256

To ensure that awhile loop is exited instead of circling for ever, the condition,
a < 50 in the example above, must depend on a value that is modified by the
controlled statement, like a in this case.

5.18 Make sure that you understand why the final value of a is larger than 50.

The statements above can be simplified, by nesting the assignment inside a
call to print.
a <- 2
print(a)
while (a < 50) print(a <- aA2)

In R, statements like ¢ <- 1:5 return invisibly (with no implicit call to print())
the value assigned. This makes possible chained assignments to several variables
within a single statement like in the example below, as well as using an assignment
statement as an argument to a function or operator.
a<-b < c<- 1:5
a

5.19 Explain why a second print(a) has been added before while(). Hint:
experiment if necessary.

As with for loops, we can use an index variable in a while loop to walk through
vectors and lists. The difference is that we have to update the index values explicitly
in our own code. The code example based on a for loop given on page 148 can be
rewritten as a while loop.

a <- c(1, 4, 3, 6, 8)

b <- numeric()

i<-1

while(i <= length(a)) {
b[i] <- a[i]A2
print(b)
i<-1i+1

}

## [1] 1

## [1] 1 16

## [1] 116 9

## [1] 1 16 9 36

## [1] 1 16 9 36 64
b

## [1] 1 16 9 36 64
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I continue

<statement A>

\ 4

repeat

lbr‘eak()

<statement B>

Figure 5.8
Flowchart for a repeat iteration loop.

while loops as described above will terminate when the condition tested is
FALSE. In cases that require stopping iteration based on an additional test condi-
tion within the compound statement, we can call break () in the body of an if or
else statement within the while statement. As in the case of for loops, it is good
to use break () only for exceptional conditions.

5.7.3 repeat loops

The repeat construct is the most flexible as iteration only stops with a call to
break (). One or more calls to break() can be located anywhere within the com-
pound statement that forms the body of the loop (Figure 5.8).
a <- 2
repeat{
print(a)
if (a > 50) break()
a <— aA2
}
## [1] 2
# [1] 4
## [1] 16
## [1] 256

5.20 Try to explain why the example above returns the values it does. Use the
approach of adding print() statements, as described on page 148.

When repeat loop constructs contain more than one call to break (), each within
a different if or else statement, indentation and/or comments can be used to
highlight in the listing this infrequent use case .
| 5.21 Explain why a repeat construct is equivalent to a while construct with
the test condition set equal to lTogical constant TRUE.
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5.7.4 Nesting of loops

All the execution-flow control statements seen above can be nested, as syntactically
they are themselves statements. I show an example with two for loops used to walk
through rows and columns of a matrix constructed as follows.

A <- matrix(1:50, nrow = 10)

A

## [,11 [,2] [,3] [,4] [,5]
##  [1,] 1 11 21 31 41

## [2,] 2 12 22 32 42
## [3,] 3 13 23 33 43
## [4,] 4 14 24 34 44
## [5,] 5 15 25 35 45
## [6,] 6 16 26 36 46
##  [7,] 7 17 27 37 47
## [8,] 8 18 28 38 48
## [9,] 9 19 29 39 49

## [10,] 10 20 30 40 50

The nested loops below compute the sum for each row of the matrix. In the
example below, the value of i changes for each iteration of the outer loop. The
value of j changes for each iteration of the inner loop, and the inner loop is run in
full for each iteration of the outer loop. The inner loop index j changes fastest.

row.sum <- numeric()
for (i in 1l:nrow(A)) {
row.sum[i] <- 0
for (j in 1l:ncol(A))
row.sum[i] <- row.sum[i] + A[i, j]
h

print(row.sum)
## [1] 105 110 115 120 125 130 135 140 145 150

The nested loops above work correctly with any two-dimensional matrix with
at least one column and one row, but crash with an empty matrix (matrix() or
matrix(numeric())). Thus it is good practice to enclose the for loop in an if
statement as protection. For the example above, a suitable logical condition is
lis.nul1(dim(A)) && 'any(dim(A) ==

5.22 1) Modify the code in last chunk above so that it sums the values only
in the first three columns of A, and 2) modify the same code so that it sums the
values only in the last three rows of A.

Does the code you wrote work as expected when the number of rows in A is
different from 10? and, also if the number of columns in A is different from 57
What would happen if A had fewer than three columns? Try to think first what to
expect based on the code you wrote. Then create matrices of different sizes and
test your code. After that, if necessary, try to improve the code, so that wrong
results are never returned.
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5.8 Apply Functions

Apply functions’ role is similar to that of the iteration loops discussed above. One
could say that apply functions “walk along” a vector, list or a dimension of a matrix
or an array, calling a function with each member of the collection as argument.
Notation is more concise than in for constructs. However, apply functions can be
used only when the operations to be applied are independent—i.e., the results from
one iteration are not used in another iteration.

Conceptually, for, while and repeat loops are interpreted as controlling a
sequential evaluation of program statements. In contrast, R’s apply functions are,
conceptually, thought as evaluating a function in parallel for each of the different
members of their input. So, while in loops the results of earlier iterations through
a loop can be stored in variables and used in subsequent iterations, this is not
possible in the case of apply functions.

The different apply functions in base R differ in the class of the values they
accept for their x parameter, the class of the object they return and/or the class
of the value returned by the applied function. Tapply (), vapply() and sapply()
expect a vector or Tist as an argument passed through x. Tapply() returns a Tist
or an array; and vapply () always simplifies its returned value into a vector, while
sapply () does the simplification according to the argument passed to its simp1ify
parameter. All these apply functions can be used to apply an R function that re-
turns a value of the same or a different class as its argument. In the case of apply ()
and Tapply () not even the length of the values returned for each member of the col-
lection passed as an argument, needs to be consistent. Function apply () is used to
apply a function to the elements along one dimension of an object that has two or
more dimensions returning an array or a list or a vector depending on the size, and
consistency in length and class among the values returned by the applied function.

5.8.1 Applying functions to vectors, lists and data frames

I exemplify the use of Tapply(), sapply() and vapply(). Below, they are used to
apply function Tog () to each member of a numeric vector. This is a function defined
in R itself, but user-defined functions and functions imported from packages can
be applied identically. How to define packages and define new functions are the
subject of chapter 6 (on page 169).

The individual member objects in the list or vector passed as argument to
parameter x of apply functions are passed as a positional argument to the first
formal parameter of the applied function, i.e., only some R functions can be passed
as an argument to FUN.
set.seed(123456)
vctl <- runif(6)
str(vctl)

## num [1:6] 0.798 0.754 0.391 0.342 0.361 ...
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z <- lapply(X = vctl, FUN = log)

str(z)

## List of 6

## $ : num -0.226
## $ : num -0.283
## $ : num -0.938
## $ : num -1.07

## $ : num -1.02

## $ : num -1.62

The code above calls Tog() once with each of the six members of vct1 as its first
argument and collects the returned values into a 1ist, hence the 1 in 1apply().
z <- sapply(X = vctl, FUN = log)
str(z)
## num [1:6] -0.226 -0.283 -0.938 -1.074 -1.018 ...

The code above calls Tog() as in the previous example but collects the returned
values into a vector, i.e., by default it simplifies the list into a vector or matrix
when possible, hence the s in sapply (). Simplification can be skipped, in this case
returning a list as Tapply () above (returned value not shown).

z <- sapply(X = vctl, FUN = log, simplify = FALSE)
str(z)

vapply () always returns a vector (no example shown), hence the v in its name.
The computed results are the same using Tapply(), sapply() or vapply(), but the
class and structure of the objects returned can differ, as well as how numbers are
printed.

Function 1og() has a second parameter named base that can be passed and ar-
gument to override the default base (e) used to compute natural logarithms. Addi-
tional arguments like this can be passed by name, using the name of the parameter
in the function passed as argument to FuN, in this case, base.

z <- sapply(X = vctl, FUN = log, base = 10)
str(z)
## num [1:6] -0.0981 -0.1229 -0.4075 -0.4665 -0.4421 ...

Anonymous functions can be defined (see section 6.2 on page 169) and dir-
ectly passed as an argument to FuN without the need of separately assigning them
to a name.

z <- sapply(X = vctl, FUN = function(x) {loglO(x + 1)3})
str(z)
## num [1:6] 0.255 0.244 0.143 0.128 0.134 ...

As explained in section 4.4 on page 94, class data.frame is derived from class
1ist. The columns in a data frame are equivalent to members of a list, and func-
tions can thus be applied to columns. The data frame cars from package ‘datasets’
contains data for speed and for stopping distance for cars stored in two columns
or member variables, named speed and dist. The members of the returned numeric
vector, containing the computed means, are named accordingly.
sapply(X = cars, FUN = mean)

## speed dist
## 15.40 42.98
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Here is a possible way of obtaining means and standard deviations of member
vectors. The argument passed to FUN.VALUE provides a template for the type of the
returned value and its organisation into rows and columns. Notice that the rows
in the output are now named according to the names in FUN.VALUE.

A function that returns a numeric vector of length 2 containing mean and stand-
ard deviation can be defined by calling existing functions (see section 6.2 on page
169).

mean_and_sd <-
function(x, na.rm = FALSE) {
c(mean = mean(x, na.rm = na.rm), sd = sd(x, na.rm = na.rm))

3

and vapply () used to apply it to each member vector of the list. The argument
passed to FUN.VALUE serves as a template indicating the values returned by func-
tion mean_and_sd().

values <- vapply(X = cars,
FUN = mean_and_sd,
FUN.VALUE = c(mean = 0, sd = 0),
na.rm = TRUE)

class(values)

## [1] "matrix" "array"
values

## speed dist
## mean 15.400000 42.98000
## sd 5.287644 25.76938

5.23 Apply function mean_and_sd () defined above to the data frame cars from
‘datasets’. The aim is to obtain the mean and standard deviation for each numeric
column.

5.24 Obtain the summary of dataset airquality with function summary(),
but in addition, write code with an apply function to count the number of non-
missing values in each column. Hint: using sum() on a logical vector returns the
count of TRUE values as TRUE, and FALSE are transparently converted into numeric
1 and O, respectively, when logical values are used in arithmetic expressions.

In the examples above, the apply functions were used to “reduce” the data by
applying summary functions. In the next code chunk, Tapply () is used to construct
the 1ist of five vectors 1s1 using a vector of five numbers as argument passed to
parameter X. As above, additional named arguments are relayed to each call of
rnorm().
set.seed(123456)

Ts1l <- Tapply(X = c¢(vl = 2, v2 =5, v3 =3, v4d =1, v5 = 4),
FUN = rnorm, mean = 10, sd = 1)

str(1sl)

## List of 5

## $ vl: num [1:2] 10.83 9.72

## $ v2: num [1:5] 9.64 10.09 12.25 10.83 11.31
## $ v3: num [1:3] 12.5 11.17 9.57

## $ v4: num 9

## $ v5: num [1:4] 8.89 9.94 11.17 11.05
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In addition to functions returning pseudo-random draws from different probab-
ility distributions, constructors for objects of various classes can be used similarly.

5.8.2 Applying functions to matrices and arrays

Matrices and arrays have two or more dimensions, and contrary to data frames,
they are not a special kind of one-dimensional lists. In R, the dimensions of a
matrix, rows and columns, over which a function is applied are called margins
(see section 3.11, and Figure 3.2 on page 71). The argument passed to parameter
MARGIN determines over which margin the function will be applied. Arrays can have
many dimensions (see Figure 3.3 on page 76), and consequently more margins. In
the case of arrays with more than two dimensions, it is possible and can be useful
to apply functions over multiple margins at once.

The individual slices of the matrix or array passed as argument to parameter
x of apply functions are passed as a positional argument to the first formal para-
meter of the applied function, i.e., only some R functions can be passed as argu-
ment to FUN.

Matrix matl constructed here will be used in examples. Adding names helps with
understanding both here and when using matrices in real data analysis situations.

matl <- matrix(rnorm(6, mean = 10, sd = 1), ncol = 2)
matl <- round(matl, digits = 1)
dimnames (matl) <-
Tist(paste("row", l:nrow(matl)), paste("col", 1l:ncol(matl)))
matl

## col 1 col 2
## row 1 10.1 11.7
## row 2 9.3 10.6
## row 3 10.9 9.2
Column (or row) means of matrices can be easily computed with apply (). How-
ever, in contrast to when using other apply functions, an argument must be passed
to parameter MARGIN.
apply(matl, MARGIN = 2, FUN = mean)

## col 1 col 2
## 10.1 10.5

5.25 Edit the example above so that it computes row means instead of column
means.

5.26 As described above, we can pass arguments by name to the applied
function. Can you guess why parameter names of apply functions are fully in
uppercase, something very unusual for R coding style?

If the function applied returns a value of the same length as its input, then the
dimensions of the value returned by apply() are the same as those of its input.
Using the identity function 1() that returns its argument unchanged, facilitates
the comparison of output against input.

z <- apply(X = matl, MARGIN = 2, FUN = I)
dim(z)
## [1] 3 2
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z
## col 1 col 2
## row 1 10.1 11.7
## row 2 9.3 10.6
## row 3 10.9 9.2
Passing MARGIN = 1 as below instead of MARGIN = 2 as above, rows and columns
are transposed in the returned value!.

z <- apply(X = matl, MARGIN = 1, FUN = I)

dim(z)

## [1] 2 3

z

#i# row 1 row 2 row 3

## col 1 10.1 9.3 10.9
## col 2 11.7 10.6 9.2

The next, more realistic example, applies function summary() that returns a
value usually shorter than its input, but longer than one. Both for column sum-
maries (MARGIN = 2) and row summaries (MARGIN = 1), a matrix is returned. Each
columns, a numeric vector in this example, contains the vector returned by a call to
summary (). Column and row names from matl are preserved, as well as the names
in the value returned by summary ().

z <- apply(X = matl, MARGIN = 2, FUN = summary)
z

## col 1 col 2
## Min. 9.3 9.20
## 1st Qu. 9.7 9.90
## Median 10.1 10.60
## Mean 10.1 10.50
## 3rd Qu. 10.5 11.15
## Max. 10.9 11.70

z <- apply(X = matl, MARGIN = 1, FUN = summary)
z

## row 1l row 2 row 3
## Min. 10.1 9.300 9.200
## 1st Qu. 10.5 9.625 9.625
## Median 10.9 9.950 10.050
## Mean 10.9 9.950 10.050
## 3rd Qu. 11.3 10.275 10.475
## Max. 11.7 10.600 10.900

Binary operators in R are functions with two formal parameters which can be
called using infix notation in expressions—i.e., a + b. By back-quoting their names
they can be called using the same syntax as for ordinary functions, and consequently
also passed to the FuN parameter of apply functions. A toy example, equivalent to
the vectorised operation vctl + 5 follows. By enclosing operator + in back ticks (*)
and passing by name a constant to its second formal parameter (e2 = 5) operator +
behaves like an ordinary function. See section 6.2.3 on page 175).

set.seed(123456)

vctl <- runif(10)

z <- sapply(X = vctl, FUN = "+, e2 = 5)
str(z)

## num [1:10] 5.8 5.75 5.39 5.34 5.36 ...
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Table 5.1

R functions that can substitute for iteration loops. They accept vectors as argu-
ments for their first parameter, except for rowsums (), colsums(), rowMeans (), and
colmeans () which accept matrix objects. Only functions that return a value with
the same dimensions as the argument passed as input are vectorised in the sense
used in this book.

Function Computation Returned class, length
sum() SXi numeric, 1
rowsums () 25:1 X numeric, 1
colsums () >ty Xj numeric, L
mean () X numeric, 1
rowMeans () Z§'=1 xi/l numeric, n
colMeans () > Xj/n numeric, [
prod() ITis; x; numeric, 1

1 J n . _
cumsum() Qi1 Xiy ot 2imy Xy 2im1 X numeric, Nour = Nin

1 J n . _
cumprod () [Ti=1 x4, [Ti2q x4, Tli=1 X numeric, Nout = Min
cummax () cumulative maximum numeric, Nout = MNin
cummin() cumulative minimum numeric, Nout = Min
runmed () running median numeric, Nout = Nin
diffQ X2 — X1, Xi — Xi—1," Xn — Xn—1 humeric, Moyt = Nin — 1
diffinv() inverse of diff numeric, Nout = Nin + 1
factorial () x! numeric, Nout = MNin
rle() run-length encoding rle, Nout < Min

inverse.rle() run-length decoding vector, Nout > MNin

5.9 Functions that Replace Loops

R provides several functions that can be used to avoid writing iterative loops.
The most frequently used are taken for granted: mean(), var() (variance), sd()
(standard deviation), max (), and min (). Replacing code implementing an iterative al-
gorithm by a single function call simplifies the script’s code and can make it easier
to understand. These functions are written in C and compiled, so even when it-
erative algorithms are used, they are fast (see section 5.11 on page 162). Table
5.1 lists several functions from base R that implement iterative algorithms. All
these functions take a vector of arbitrary length as their first argument, except for
inverse.rle().

5.27 Build a numeric vector suchasx <- c(1, 9, 6, 4, 3) and passitas argu-
ment to the functions in Table 5.1. Do the corresponding computations manually
for the functions your find most relevant, trying to understand what values they
calculate.



160 Base R: “Paragraphs” and “Essays”

5.10 The Multiple Faces of Loops

In this advanced section, I describe some uses of R loops that help with writing
concise scrips. As these make heavy use of functions, if you are reading the book
sequentially, you should skip this section and return to it after reading chapters 6
and 7.

In the same way as we can assign names to numeric, character and other types
of objects, we can assign names to functions and expressions. We can also cre-
ate lists of functions and/or expressions. The R language has a very consistent
grammar, with all lists and vectors behaving in the same way. The implication of
this is that we can assign different functions or expressions to a given name and,
consequently, it is possible to write loops over lists of functions or expressions.

The next example, uses a character vector of function names together with func-
tion do.cal1() in the body of a for loop, to construct a numeric vector with mem-
bers, named according to the function names, storing the computed values. Func-
tion do.cal1() accepts both character strings and function names as argument to
its first parameter, and calls the corresponding function with arguments supplied
as alist.

vctl <- rnorm(10)
results <- numeric()
fun.names <- c("mean"”, "max", "min')
for (f.name 1in fun.names) {
results[[f.name]] <- do.call(f.name, Tist(vctl))
ks

results
## mean max min
## 0.5453427 2.5026454 -1.1139499

When traversing a list of functions in a loop, the original names of the functions
are not available as what is stored in the list are the definitions of the functions
rather than their names. In this case, the function definitions are assigned to the
placeholder variable (f in the chunk below) and the functions be called directly
with (f()). The result is a numeric vector with anonymous members.

results <- numeric()
funs <- Tist(mean, max, min)
for (f in funs) {

results <- c(results, f(x))

}

results
## [1] 8 8 8

A named list of functions makes it possible to gain full control of the naming
of the results. It is possible to construct a numeric vector with named members
with names matching the names given to the list members, which can be different
to the names of the functions.

results <- numeric()
funs <- Tist(average = mean, maximum = max, minimum = min)
for (f in names(funs)) {

results[[f]] <- funs[[f]](x)
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}

results

## average maximum minimum
## 8 8 8

Next is an example using model formulas. In the this example, a loop is used
to fit three models, obtaining a list of fitted models. It is not possible to pass to
anova() this list of fitted models, as it expects each fitted model as a separate
nameless argument to its .. parameter. It is possible to get around this problem
using function do.cal1() to call anova(). Function do.cal1() passes the members
of the list passed as its second argument as individual arguments to the function
being called, using their names if present. anova() expects nameless arguments,
so the names present in results have to be removed with a call to unname().

my.data <- data.frame(x = 1:10, y = 1:10 + rnorm(10, 1, 0.1))
results <- Tist(Q)
models <- Tist(linear =y ~ x, linear.orig=y ~ x — 1, quadratic =y ~ x + I(xA2))
for (m in names(models)) {
results[[m]] <- Tm(models[[m]], data = my.data)

I

str(results, max.level = 1)

## List of 3

## $ linear :List of 12

#i# ..— attr(*, "class")= chr "Tm"
## $ linear.orig:List of 12

## ..— attr(*, "class")= chr "Im"
## $ quadratic :List of 12

## ..— attr(*, "class")= chr "Im"

do.call(anova, unname(results))
## Analysis of variance Table

##

## Model 1: y ~ x

## Model 2: y ~x - 1

## Model 3: y ~ x + I(xA2)

## Res.Df RSS Df sum of Sq F Pr(>F)

## 1 8 0.05525

## 2 9 2.31266 -1 -2.2574 306.19 4.901e-07 ***

## 3 7 0.05161 2 2.2611 153.34 1.660e-06 ***

## ——

## Signif. codes: O '***' 0.001 '#*' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If the only aim is to pass results to anova() a 1ist of nameless members can
be constructed using positional indexing.
results <- Tist(Q)
models <— Tist(y ~ x, y ~x - 1, y ~ x + I(xA2))
for (i in seq(along.with = models)) {
results[[i]] <- Tm(models[[i]], data = my.data)

b

str(results, max.level = 1)

## List of 3

## $ :List of 12

## ..— attr(*, "class")= chr "Im"
## $ :List of 12

#i# ..— attr(*, "class")= chr "Tm"

## $ :List of 12
## ..— attr(*, "class")= chr "Im"
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do.call(anova, results)

## Analysis of variance Table
##

## Model 1: y ~ x

## Model 2: y ~x -1

## Model 3: y ~ x + I(xA2)

## Res.Df RSS Df sum of Sq F Pr(>F)

## 1 8 0.05525

## 2 9 2.31266 -1 -2.2574 306.19 4.901e-07 ***

## 3 7 0.05161 2 2.2611 153.34 1.660e-06 ***

v p—

## Signif. codes: 0 '*¥%x' 0.001 '#%' 0.01 '«' 0.05 '.'" 0.1 ' "1
I

5.11 Iteration When Performance Is Important

When working with large data sets, or many smaller data sets, one frequently needs
to take performance into account. In R, explicit for, while and repeat are frequently
considered to be slow. Vectorised operations are in general comparatively faster.
As vectorisation (see page 30) usually also makes code simpler, it is good to use vec-
torisation whenever possible. Depending on the case, loops can be replaced using
vectorised arithmetic operators, apply functions (see section 5.8 on page 154) and
functions implementing frequently used operations (see section 5.9 on page 159).
Improved performance needs to be balanced against the effort invested in writing
faster code, as in most cases our own time is more valuable than computer run-
ning time. However, using vectorised operators and optimised functions becomes
nearly effortless once one is familiar with them.

To demonstrate the magnitude of the differences in performance that can be
expected, I used as a first case the computation of the differences between suc-
cessive numbers in a vector, applied to vectors of lengths ranging from 10 to 100
million numbers (Figure 5.9). In relative terms, the difference in computation time
was huge between loops and vectorisation for vectors of up to 1 000 numbers (near
%X 500), but the total times were very short (5X 1072 s vs. 10 X 10~ s). For these vec-
tors, pre-allocation of a vector to collect the results made almost no difference and
vectorisation with the extraction operator [ ] together with the minus arithmetic
operator - was the fastest. There seems to be a significant overhead for explicit
loops, as the running time was nearly independent of the length of these short
vectors.

For vectors of 10 000 or more numbers there was only a very small advantage in
using function diff() over using vectorised arithmetic and extraction operators.
For while and for loops pre-allocation of the vector to collect results made an
important difference (X2 to X3), larger in the case of for. However, vectorised
operators and function diff() remained nearly X 10 faster than the fastest explicit
loop. For the longer vectors the time increased almost linearly with their length,
with similar slopes for the different approaches. Because of the computation used
for this example, apply() functions could not be used.
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Benchmark results for different approaches to computing running differences in
numeric (double) vectors of different lengths. The data in this figure were obtained
in a computer with a 12-years old Xenon E3-1235 CPU with four cores, 32 GB of
RAM, Windows 10 and R 4.3.1.

E The chunks below show the code for the six approaches compared in Figure
5.9, where a is a numeric vector varying length constructed with function rnorm().

b <- numeric()

i<-1

while (i < Tength(a)) {
b[i1] <- a[i+1] - a[i]
i<—i+1

}

b <- numeric(length(a)-1)

i<-1

while (i < length(a)) {
b[i] <- a[i+1] - a[i]
i<-1+1

}

b <- numeric()

for(i in seq(along.with = b)) {
b[i] <- a[i+1] - a[i]

3
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b <- numeric(length(a)-1)

for(i in seq(along.with = b)) {
b[i] <- a[i+1] - a[i]

I

b <- a[2:1ength(a)] - a[l:1ength(a)-1]

b <- diff(a)

In nested iteration loops, it is most important to vectorise, or otherwise enhance
the performance of the innermost loop, as it is the one executed most frequently.
The code for nested loops (used as an example in section 5.7.4 on page 153) can
be edited to remove the explicit use of for loops. I assessed the performance of
different approaches by collecting timings for square matrix objects with dimen-
sions (rows X columns) ranging from 10 X 10, size = 107, to 10000 X 10 000, size
= 108 (Figure 5.10).

In this second case, pre-allocation of memory to b did not enhance perform-
ance in good agreement with the benchmarks for the first example as when largest
its length was 10 000. The two nested loops always took the longest to run irre-
spective of the size of matrix A. A single loop over rows using a call to sum() for
each row, improved performance compared to nested loops, most clearly for large
matrices. This approach was out-performed by apply() only for small matrices,
from which we can infer that apply () has a much smaller overhead than an expli-
cit for loop. rowsums() was between X5 and X20 faster than the second fastest
approach depending on the size of the matrix.

The chunks below show the code for the six approaches compared in Figure
5.10, where A was a numeric matrix constructed with function rnorm().
The inner for loop can be replaced by function sum() which returns the sum of
a vector. Within the loop, A[i, ] extracts whole rows, one at a time.

row.sum <- numeric()
for (i in 1l:nrow(A)) {
row.sum[i] <- 0
for (j in 1l:ncol(A))
row.sum[i] <- row.sum[i] + A[i, j]
}

print(row.sum)

row.sum <— numeric(nrow(A))
for (i in 1l:nrow(A)) {
row.sum[i] <- sum(A[i, 1)

}

The outer loop can be replaced by a call to apply() (see section 5.8 on page
154).
row.sum <- apply(A, MARGIN = 1, sum)

Calculating row sums is a frequent operation, thus, R provides a built-in func-
tion for this.

rowsums (A)
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Benchmark results for different approaches to computing row sums of square nu-
meric (double) matrices of different sizes. The data in this figure were obtained in
a computer with a 12-years-old Xenon E3-1235 CPU with four cores, 32 GB of RAM,
Windows 10, and R 4.3.1.

The simplest way of measuring the execution time of an R expression is to
use function system. time (). Package ‘microbenchmark’, used for the benchmarks
shown in Figures 5.9 and 5.10, provides finer time resolution.

As in these examples the computations in the body of the loop are very simple,
the overhead of the iterative loops strongly affects the total computation time in
these benchmarks. When the computations at each iteration are time consuming,
the overhead of using explicit iteration loops gets diluted. Thus, removing the
explicit use of iteration is most helpful, when it is easier to implement vectorised
arithmetic or find optimised functions.

The timings in Figures 5.9 and 5.10 are only valid for the specific computer
configuration, operating system and R version that I used. They provide only an
approximate guide to what can be expected in different conditions. The scripts
used are included in package ‘learnrbook’ in case readers wish to run them on
their computers. As replication is used, the total run time for the scriptis relatively
long.
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You may be wondering: how do the faster approaches manage to avoid the
overhead of iteration? Of course, they do not really avoid iteration, but the loops in
functions written in C, C++, or FORTRAN are compiled into machine code as part of
R itself or when packages binaries are created. In simpler words, the time required
to convert and optimise the code written in these languages into machine code is
spent during compilation, usually before we download and install R or packages.
Instead, a loop coded in R is interpreted into machine code each time we source
our script, and in some cases for each iteration in a loop. The R interpreter does
some compilation into virtual machine code, as a preliminary stage which helps
improve performance.

The examples in this section use numbers and arithmetic operations, but vec-
torisation and apply functions can be also used with vectors of other modes, such
as vectors of character strings or logical values.

With modern computer processors, or CPUs, splitting the tasks across multiple
cores for concurrent execution can enhance performance. To some extent this hap-
pens invisibly due to optimisations in the translation into machine code. Explicit
approaches are available in package ‘parallel’ included in the R distribution and
contributed packages such as ‘future’. Parallelisation is also possible across inter-
connected computers. However, how to enhance performance based on parallel or
distributed execution is beyond the scope of this book.

5.12 Object Names as Character Strings

In all assignment examples before this section, we have used object names in-
cluded as literal character strings in the code expressions. In other words, the
names are “decided” as part of the code, rather than at run time. In scripts or
packages, the object name to be assigned may need to be decided at run time
and, consequently, be available only as a character string stored in a variable. In
this case, function assign() must be used instead of the operators <- or ->. The
statements below demonstrate its use.
First using a character constant.

n_n

assign("a", 9.99)
a
## [1] 9.99

Next using a character value stored in a variable.

name.of.var <- "b"
assign(name.of.var, 9.99)
b

## [1] 9.99

The two toy examples above do not demonstrate why one may want to use
assign(). Common situations where we may want to use character strings to store
(future or existing) object names are 1) when we allow users to provide names for
objects either interactively or as character data, 2) when in a loop we transverse
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a vector or list of object names, or 3) we construct at runtime object names from
multiple character strings based on data or settings. A common case is when we
import data from a text file and we want to name the object according to the name
of the file on disk, or a character string read from the header at the top of the file.
Another case is when character values are the result of a computation.
for (i in 1:5) {
assign(paste("square_of_", i, sep = ""), iA2)

}

1s(pattern = "square_of_*")
## [1] "square_of 1" "square_of 2" "square_of_3" "square_of_4" "square_of_5"

The complementary operation of assigning a name to an object is to get an
object when we have available its name as a character string. The corresponding
function is get ().

get("a")
## [1] 9.99
get("b")
## [1] 9.99

If we have available a character vector containing object names and we want to
create a list containing these objects we can use function mget(). In the example
below we use function 1s () to obtain a character vector of object names matching
a specific pattern and then collect all these objects into a list.
obj_names <- 1s(pattern = "square_of_*")
obj_1st <- mget(obj_names)
str(obj_1st)

## List of 5

## $ square_of_1: num 1
## $ square_of_2: num 4
## $ square_of_3: num 9
## $ square_of_4: num 16
## $ square_of_5: num 25

5.28 Think of possible uses of functions assign(), get() and mget() in
scripts you use or could use to analyse your own data (or from other sources).
Write a script to implement this, and iteratively test and revise this script until the
result produced by the script matches your expectations.

5.13 Clean-Up

Sometimes we need to make sure that clean-up code is executed even if the ex-
ecution of a script or function is aborted by the user or as a result of an error
condition. A typical example is a script that temporarily sets a disk folder as the
working directory or uses a file as temporary storage. Function on.exit() can be
used to record that a user supplied expression needs to be executed when the cur-
rent function, or a script, exits. Function on.exit() can also make code easier to
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read as it keeps creation and clean-up next to each other in the body of a function
or in the listing of a script.

file.create("temp.file")

## [1] TRUE

on.exit(file.remove("temp.file™))

Function 1ibrary () attaches the namespace of the loaded packages and in some
special cases one may want to detach them at the end of a script. We can use
detach() similarly as with attached data.frame objects (see page 111). As an ex-
ample, we detach the packages used in section 5.11. It is important to remember
that the order in which they can be detached is determined by their interdepend-
encies.

detach(package:patchwork)
detach(package:ggplot2)
detach(package:scales)

5.14 Further Reading

For further readings on the aspects of R discussed in the current chapter, I suggest
the books The Art of R Programming: A Tour of Statistical Software Design (Matloff
2011) and Advanced R (Wickham 2019).
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Base R: Adding New “Words”

Computer Science is a science of abstraction—creating the right model
for a problem and devising the appropriate mechanizable techniques
to solve it.

Alfred V. Aho and Jeffrey D. Ullman
Foundations of Computer Science, 1992

6.1 Aims of This Chapter

In earlier chapters we have only used base R features. In this chapter you will learn
how to expand the range of features available. I start by discussing how to define
and use new functions, operators, and classes. What are their semantics and how
they contribute to conciseness and reliability of computer scripts and programs.
Later I focus on using existing packages to share extensions to R and touch briefly
on how they work. I do not consider the important, but more advanced question
of packaging functions and classes into new R packages. Instead I discuss how
packages are installed and used.

6.2 Defining Functions and Operators

Abstraction can be defined as separating the fundamental properties from the ac-
cidental ones. Say obtaining the mean from a given vector of numbers is an actual
operation. There can be many such operations on different numeric vectors, each
one a specific case. When we describe an algorithm for computing the mean from
any numeric vector, we formulate an abstraction of mean. In the same way, each
time we separate operations from specific data we create a new abstraction. In this
sense, functions are abstractions of operations or actions; they are like “verbs”
describing actions separately from actors.
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The main role of functions is that of providing an abstraction allowing us to
avoid repeating blocks of code (groups of statements) applying the same opera-
tions on different data. The reasons to avoid repetition of similar blocks of code
statements are that 1) if the algorithm or implementation needs to be revised—
e.g., to fix a bug or error—it is best to make edits in a single place; 2) sooner or
later pieces of repeated code can become different leading to inconsistencies and
hard-to-track bugs; 3) abstraction and division of a problem into smaller chunks,
greatly helps with keeping the code understandable to humans; 4) textual repe-
tition makes the script file longer, and this makes debugging, commenting, etc.,
more tedious, and error prone; 5) with well-defined input and output, functions
facilitate testing.

How does one, in practice, avoid repeating bits of code? One writes a func-
tion containing the statements that would need to be repeated, and later one calls
(“uses”) the function in their place. We have been calling R functions or operators
in almost every example in this book; what we will next tackle is how to define new
functions of our own.

The diagram in section 5.3 on page 132 describes a compound statement. A
function is a code statement, simple or compound, that is partly isolated from
the enclosing environment. The function abstraction relies on formal parameters
working as placeholders for arguments within the function body. When the func-
tion is called (or “used”) values are passed as arguments to the parameters, and
used when executing the code within the function.

New functions and operators are defined using function function(), and saved
like any other object in R by assignment to a variable name. In the example below,
x and y are both formal parameters, or names used within the function for objects
that will be supplied as arguments when the function is called.

Function fun1() has two formal parameters, x and y.
funl <- function(x, y){x * y}

When we call fun1() with 4 and 3 as arguments, the computation that takes
place is 4 * 3 and the value returned is 12. In this example, the returned value or
result is printed, but it could have been assigned to a variable or used in further
computations within the calling statement.
funl(x = 4, y = 3)

## [1] 12

6.1 What is the computation that takes places in these function calls?

funl(x = 10, y = 50)
funl(x 10, vy 50) * 3

Even though the statements within the function body do have access to the
environment in which the function is called, it is safest to pass all input through
the function parameters, and return all values to the caller. This ensures that the
users of the function can treat it as a black box with no side effects.

In R, statements within the function usually do not affect directly any variable
defined outside the function, the result from the computation is returned as a
value. The diagram in Figure 6.1 describes a function that has no side effects, as
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{arguments - parameters}

<statement A>

Y

<statement B>

Y

{remrned value — Caller}

Figure 6.1

Diagram of function with no side effects, seen as a compound code statement
receiving its input as arguments passed to its formal parameters and returning an
object or value to the statement from where it was called or run. The body of the
function is represented by the filled box.

{arguments - parameters}

<statement A>

Y

<statement B>

Y

side effect

Y

[returned value — caller}

Figure 6.2

Diagram of function as a compound code statement receiving its input as argu-
ments passed to its formal parameters and returning an object or value to the
statement from where it was called or run. The body of the function is represen-
ted by the box filled in blue, while the side effect of the code in the function directly
outside is represented by the box filled in yellow.

it does not affect its environment, it only returns a value to the caller. A value on
which the caller has full control. The statement that calls the function “decides”
what to do with the value received from the function.

When a function has a side effect, the caller is no longer in full control (Figure
6.2). Side effects can be actions that do not alter any object in the calling code,
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like when a call to print() displays text or numbers. Side effects can also be an
assignment that modifies an object in the caller’s environment, such as assigning
a new value to a variable in the caller’s environment, i.e., “outside the function”.

A function can return only one object, so when multiple results are produced
they need to be collected into a single object. In many cases, lists are used to collect
all the values to be returned into one R object. For example, model fit functions like
Tm(Q), discussed in section 7.9 on page 200, return lists with multiple heterogeneous
members, plus ancillary information stored in several attributes. In the case of Tm()
the returned object’s class is Tm, and its mode is Tist.

6.2 When function return() is called within a function, the flow of execu-
tion within the function stops and the argument passed to return() is the value
returned by the function call. In contrast, if function return() is not explicitly
called, the value returned by the function call is that returned by the last state-
ment executed within the body of the function. Run these examples, and your own
variations.
FN1 <- function(x) print("prn")
FN1("arg")
FN2 <- function(x) {print("prn")

return(x)}
FN2("arg")
FN3 <- function(x){return(x)

print("prn")}
FN3("arg")
FN4 <- function(x) {return()

print("prn")}
FN4("arg")
FN5 <- function(x) {return(print(x))

print("prn'")}
FN5("arg")

In base R, arguments to functions are passed by copy. This is something import-
ant to remember. If code in a function’s body modifies the value of a parameter
(the placeholder for an argument), its value outside the function is not affected,
e.g., if the argument passed was a variable.
fn2 <- function(x) {x <- 99}
a<-1
fn2(a)

a

## [1] 1

In some other computer languages, arguments can be passed by reference,
meaning that assignments to a formal parameter within the body of the function
are back-referenced to the argument and modify it. It is possible to imitate such
behaviour in R using some language trickery and consequently, occasionally func-
tions in R use this approach.

Functions have their own scope. Any new variables created by normal assign-
ment within the body of a function are visible only within the body of the function
and are destroyed when the function returns from the call. In normal use, functions
in R do not affect their environment through side effects.
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Functions can be called without giving them a name. This is common when
the function is simple and called only once. Anonymous functions are frequently
used together with apply functions, as a definition passed directly as an argument
to parameter FUN (see section 5.8 on page 154).

(function(x, y){x * yDx =4, y = 3)
## [1] 12

A new terse notation for defining functions was introduced in R 4.1.0, with \ O
as a synonym of function(). This is intended to make code concise, and especially
useful for anonymous or lambda functions. However, I think this notation should
be used sparingly, and possibly only at the R console. I have not used \ () in code
examples in the book, except for the one below.

A, X *yHDx =4, y=23)
## [1] 12

6.2.1 Scope of names

Scoping in R is implemented using environments and name spaces. We can think of
environments as having a boundary with asymmetric visibility. The code within a
function runs in its own environment, in isolation from the calling environment in
relation to assignments, but the values stored in objects in the calling environment
can be retrieved. This protects from unintentional side effects by making difficult
to overwrite object definitions in the calling environment. It is possible to override
this protection with operator <<- or with function assign(). When used, assign-
ment as side effects, can make the code much more difficult to read and debug, so
its best to avoid them.

Parameters and local variables are not read-only, they behave like normal
variables within the body of the function. However, assignments made using the
operator <-, only affect a local copy that is destroyed when the function returns.

The visibility of names is determined by the scoping rules of a language. The
clearest, but not the only situation when scoping rules matter, is when objects with
the same name coexist. In such a situation, one will be accessible by its unqualified
name and the other hidden but possibly accessible by qualifying the name with the
namespace where it is defined.

As the R language has few reserved words for which no redefinition is allowed,
we should take care not to accidentally reuse names that are part of the language.
For example, pi is a constant defined in R with the value of the mathematical con-
stant 1. If we use the same name for one of our variables, the original definition
is hidden and can no longer be normally accessed.

pi
## [1] 3.141593

pi <- "apple pie"
pi .
## [1] "apple pie"
rm(pi)

pi

## [1] 3.141593
exists("pi'")

## [1] TRUE
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In the example above, the two variables are not defined in the same scope. In the
example below, we assign a new value to a variable we have earlier created within
the same scope, and consequently the second assignment overwrites, rather than
hides, the existing definition.
my.pie <- "raspberry pie"
my.pie
## [1] "raspberry pie"
my.pie <- "apple pie"

my.pie
## [1] "apple pie"
rm(my.pie)

exists("my.pie™)
## [1] FALSE

Name spaces play an important role in avoiding name clashes when contributed
packages are attached (see section 6.4.4 on page 184).

Environments can be explicitly created with function environment (). However,
environment () is rarely used in scripts while it can be useful within packages.

6.2.2 Ordinary functions

After the toy examples above, we will define a small but useful function: a function
for calculating the standard error of the mean from a numeric vector. The standard
error is given by S; = +/S2/n. We can translate this into the definition of an R
function called sgm.

SEM <- function(x){sqrt(var(x) / length(x))}

As a test, we call sem() with both a and a.na as argument.
a <- c(1, 2, 3, -5)
a.na <- c(a, NA)
SEM(x = a)
## [1] 1.796988
SEM(X = a.na)
## [1] NA

Our function sem(a) never returns a wrong answer because NA values in its input
always result in NA being returned. The downside is that unlike R’s functions such
as var(), sem() does not support omitting NA values.

Adding na.rm as a second parameter and passing the argument it receives to the
call to var () within the body of sem() is not enough. To avoid returning wrong val-
ues, NA values should be also removed before counting the number of observations
with Tength(). A good alternative is to define the function as follows.

sem <- function(x, na.rm = FALSE) {
if (na.rm) {
X <— na.omit(x)
h
sqrt(var(x)/length(x))
ks

sem(x = a)
## [1] 1.796988
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sem(x = a.na)

## [1] NA

sem(x = a.na, na.rm = TRUE)
## [1] 1.796988

R does not provide a function for standard error, so the function above is gener-
ally useful. Its user interface is consistent with that of functionally similar existing
functions. We have added a new word to the R vocabulary available to us.

In the definition of sem() we set a default argument for parameter na.omit which
is used unless the user explicitly passes an argument to this parameter.

6.3 Define your own function to calculate the mean in a similar way as Sem()
was defined above. Hint: function sum() could be of help.

Within an expression, a function name followed by parentheses is interpreted
as a call to the function, while the bare name of a function, returns its definition
(similarly to any other R object). If the name is entered as a statement at the R
console, its value is printed.

We first print (implicitly) the definition of our function from earlier in this sec-
tion.
sem

## function(x, na.rm = FALSE) {
## if (na.rm) {

## X <— na.omit(x)

## 3}

## sqrt(var(x)/length(x))
## }

## <bytecode: 0x0000013b948be308>

Next, we print the definition of R’s standard deviation function sd().
sd

## function (x, na.rm = FALSE)

## sqrt(var(if (is.vector(x) || is.factor(x)) x else as.double(x),
#it na.rm = na.rm))

## <bytecode: 0x0000013b8flafeb0>

## <environment: namespace:stats>

As can be seen at the end of the printouts, these functions written in the R
language have been byte-compiled so that they execute faster. We can also see
that the definition of sd() resides in namespace:stats because it has been attached
from package ‘stats’.

Functions that are part of the R language, but that are not coded using the R
language, are called primitives and their full definition cannot be accessed through
their name (c.f., sem() defined above and sd, with 1ist() below).

Tist
## function (...) .Primitive("Tist")

6.2.3 Operators

Operators are functions that use a different syntax for being called. If their name
is enclosed in back ticks they can be called as ordinary functions. Binary operators
like + have two formal parameters, and unary operators like unary - have only one
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formal parameter. The parameters of many binary R operators are named el and
e2. This is just a convention, not enforced by the R language.

1/2

## [1] 0.5

/@, 2)

## [1] 0.5

/T (el =1, e2 = 2)

## [1] 0.5

An important consequence of the possibility of calling operators using ordin-
ary syntax is that operators can be used as arguments to apply functions in the
same way as ordinary functions. When passing operator names as arguments to
apply functions, we only need to enclose them in back ticks (see section 5.8 on
page 154).

The name by itself and enclosed in back ticks allows us to access the definition
of an operator.

"
## function (el, e2) .Primitive("/")

Defining a new operator. We will define a binary operator (taking two argu-
ments) that subtracts from the numbers in a vector the mean of another vector.
First, we need a suitable name, but we have less freedom as names of user-defined
operators must be enclosed in percent signs. We will use ¥-mean% and as with any
special name, we need to enclose it in quotation marks for the assignment.

"%-mean%" <- function(el, e2) {
el - mean(e2)

}
We can then use our new operator in a example.

10:15 %-mean% 1:20
## [1] -0.5 0.5 1.5 2.5 3.5 4.5

To print the definition, we enclose the name of our new operator in back ticks—
i.e., we back quote the special name.
“%-mean%’
## function(el, e2) {

## el - mean(e2)
## 1}

6.3 Objects, Classes and Methods

New classes are normally defined within packages rather than in user scripts. To be
really useful implementing a new class involves not only defining a class but also
a set of specialised functions or methods that implement operations on objects
belonging to the new class. Nevertheless, an understanding of how classes work
is important even if only very occasionally a user will define a new method for an
existing class within a script.
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Classes are abstractions, but abstractions describing the shared properties of
“types” or groups of similar objects. In this sense, classes are abstractions of “act-
ors”, they are like “nouns” in natural language. What we obtain with classes is the
possibility of defining multiple versions of functions (or methods) sharing the same
name but tailored to operate on objects belonging to different classes. We have
already been using methods with multiple specialisations throughout the book, for
example, plot() and summary ().

We start with a quotation from S Poetry (Burns 1998, page 13).

The idea of object-oriented programming is simple, but carries a lot of
weight. Here’s the whole thing: if you told a group of people “dress for work,”
then you would expect each to put on clothes appropriate for that individual’s
job. Likewise it is possible for S[R] objects to get dressed appropriately depend-
ing on what class of object they are.

We say that specific methods are dispatched based on the class of the argument
passed. This, together with the loose type checks of R, allows writing code that
functions as expected on different types of objects, e.g., character and numeric
vectors.

R has good support for the object-oriented programming paradigm, but as a
system that has evolved over the years, currently R supports multiple approaches.
The still most popular approach is called S3, and a more recent and powerful ap-
proach, with slower performance, is called S4. The general idea is that a name like
“plot” can be used as a generic name and that the specific version of plot() called
depends on the arguments of the call. Using computing terms we could say that
the generic of plot() dispatches the original call to different specific versions of
plot() based on the class of the arguments passed. S3 generic functions dispatch,
by default, based only on the argument passed to a single parameter, the first
one. S4 generic functions can dispatch the call based on the arguments passed
to more than one parameter and the structure of the objects of a given class is
known to the interpreter. In S3 functions, the specialisations of a generic are re-
cognised/identified only by their name. And the class of an object by a character
string stored as an attribute to the object (see section 4.6 on page 114 about at-
tributes).

We first explore one of the methods already available in R. The definition of
mean shows that it is the generic for a method.
mean

## function (x, ...)
## UseMethod("mean")
## <bytecode: 0x0000013b8b690df8>
## <environment: namespace:base>

We can find out which specialisations of a method are available in the current
search path using methods ().

methods (mean)

## [1] mean.Date mean.default mean.difftime mean.POSIXct
## [5] mean.POSIX1t mean.quosure#* mean.vctrs_vctr* mean.yearmon#*
## [9] mean.yearqgtr* mean.zoo*

## see '?methods' for accessing help and source code
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We can also use methods () to query all methods, including operators, defined
for objects of a given class.
methods(class = "1list")

## [1] all.equal as.data.frame coerce na.contiguous 0ps
## [6] relist sew type.convert within
## see '?methods' for accessing help and source code

S3 class information is stored as a character vector in an attribute named
"class". The most basic approach to the construction (= creation) of an object of
anew S3 class, is to add the new class name to the class attribute of the object. As
the implied class hierarchy is given by the order of the members of the character
vector, the name of the new class must be added at the head of the vector. Even
though this step can be done as shown here, in practice this step would normally
take place within a constructor function and the new class, if defined within a
package, would need to be registered. We show here this bare-bones example only
to demonstrate how S3 classes are implemented in R.

a <- 123
class(a)
## [1] "numeric"

class(a) <- c("myclass", class(a))
class(a)

## [1] "myclass" "numeric"

Now we create a print method specific to "myclass" objects. Internally we are
using function sprintf() and for the format template to work we need to pass a
numeric value as an argument—i.e., obviously sprintf() does not “know” how to
handle objects of the class we have just created!
print.myclass <- function(x) {

sprintf("[myclass] %.0f", as.numeric(x))
}

Once a specialised method exists for a class, it will be used for objects of this
class.
print(a)

## [1] "[myclass] 123"
print(as.numeric(a))
## [1] 123

Adding the name "derivclass" to the head of the class character vector,
makes object b a member of both classes, "myclass" and "derivclass", where
"derivclass" is derived from "myclass". As "derivclass" is at position 1, it is for
this object its most derived class.

b <- 456
class(b) <- c("derivclass", class(a))

A specialised print () method is not available for "derivclass", the method for
"myclass", the next class name along the vector, is called.
print(b)

## [1] "[myclass] 456"
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print(as.numeric(b))
## [1] 456

The S3 class system is “lightweight” in that it adds very little additional com-
putation load, but it is rather “fragile” in that most of the responsibility for consist-
ency and correctness of the design—e.g., not messing up dispatch by redefining
functions or loading a package exporting functions with the same name, etc., is
not checked by the R interpreter.

6.4 Packages

6.4.1 Sharing of R-language extensions

The most elegant way of adding new features or capabilities to R is through pack-
ages. A package can contain any, several or all of R function and operator defini-
tions, data objects, classes, and their methods, plus the corresponding document-
ation. Some packages available through CRAN contain only one or two R objects
while others contain hundreds of them. After loading and attaching a package, the
objects that the package exports can be used as if they were part R itself.

Packages are, without doubt, the best mechanism for sharing extensions to R.
However, in most situations, packages are also very useful for managing code that
will be reused by a single person over time. R packages have strict rules about their
contents, file structure, and documentation, which makes it possible among other
things for the package documentation to be merged into R’s help system when a
package is loaded. With a few exceptions, packages can be written so that they will
work on any computer where R runs.

In a “source package”, the code written in R, and possibly in other program-
ming languages, is contained in text files that are compressed together into a single
archive file. In a “binary package” the source code is already processed into a
form suitable for faster installation. Binary package files are specific to each ma-
jor version of R, operating system, and computer architecture. In addition to being
slower, package installation from sources can requires additional software, such
as compilers. A compiler translates the text representation of a computer program
written in C, C++, FORTRAN, etc., into machine code, i.e., instructions for the com-
puter hardware. R code is compiled into instructions for a virtual machine, part
of R, that does the final translation into machine code at runtime.

For distribution, a single compressed archive file is used for aech package. Pack-
ages can be shared as source- or binary-code files, sent for example through e-mail.
However, the largest public repository of R packages is called CRAN (https://cran.
r-project.org/), an acronym for Comprehensive R Archive Network. Packages
available through CRAN are guaranteed to work, in the sense of not failing any
tests built into the packages and not crashing or aborting prematurely. They are
tested daily, as they may depend on other packages whose code will change when
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updated. The number of packages available through CRAN at the time of printing
(2024-02-17) was 2.04 x 10%.

A Kkey repository for bioinformatics with R is Bioconductor (https://www.
bioconductor.org/), containing packages that pass strict quality tests, adding
an additional 3 400 packages. rOpenScience has established guidelines and a sys-
tem for code peer review for R packages. These peer-reviewed packages are avail-
able through CRAN or other repositories and listed at the rOpenScience website
(https://ropensci.org/). Occasionally, one may have, or want, to install pack-
ages or updates that are not yet in CRAN, either from the R Universe (https:
//r—-universe.dev/) repositories, or from Git repositories (e.g., from GitHub).

A good way of learning how the extensions provided by a package work, is to
experiment with them. When using a function we are not yet familiar with, looking
at its help to check all its features expands our “toolbox”. While documentation of
exported objects is enforced, many packages include, in addition, comprehensive
user guides or articles as vignettes. It is not unusual to decide which package to
use from a set of alternatives based its documentation. In the case of packages
adding extensive new functionality, they may be documented in depth in a book.
Well-known examples are Mixed-Effects Models in S and S-Plus (Pinheiro and Bates
2000) and ggplot2: Elegant Graphics for Data Analysis (Wickham and Sievert 2016).

6.4.2 Download, installation and use

In R speak, “library” is the location where packages are installed. Packages are sets
of functions, and data, specific for some particular purpose, that can be loaded
into an R session to make them available so that they can be used in the same
way as built-in R functions and data. Function Tibrary() is used to load and at-
tach packages that are already installed in the local R library. In contrast, function
install.packages () is used to install packages.

The instructions below assume that the user has access to repositories on
the internet and enough user rights to install packages. This is rarely the case in
organisations using strict security protocols. In such cases, the organisation may
keep a mirror of CRAN in the intranet. The local/user’s private R library can be
kept in a folder where the user has writing and reading rights.

m How to install or update a package from CRAN?

CRAN is the default repository for R packages. If you use RStudio or another IDE
as a front end on any operating system or RGUI under MS-Windows, installation
and updates can be done through a menu or GUI button. These menus use calls
to install.packages() and update.packages() behind the scenes.

Alternatively, at the R command line, or in a script, install.packages() can
be called with the name of the package as an argument. For example, to install
package ‘learnrbook’ one can use
install.packages ("Tearnrbook")

and to update already installed packages
update.packages ()
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m How to install or update a package from GitHub?

Package ‘remotes’ makes it possible to install packages directly from GitHub, Bit-
bucket and other repositories based on Git. The code in the next chunk (not run
here) can be used to install the latest, possibly, still under development, version
of package ‘learnrbook’.

remotes::install_github("aphalo/learnrbook-pkg")

Function pkg_instal1() from ‘pak’ can install packages, both from CRAN and
Bioconductor repositories, and from Git repositories. The same function can be
used to update specific already installed packages and dependencies.

pak: :pkg_install("learnrbook")
pak: :pkg_install("aphalo/Tearnrbook-pkg")

R packages can be installed either from sources, or from already built “binar-
ies”. Installing from sources, depending on the package, may require additional
software to be available. This is because some R packages contain source code in
other languages such as C, C++ or FORTRAN that needs to be compiled into ma-
chine code during installation. Under MS-Windows, the needed shell, commands,
and compilers are not available as part of the operating system. Installing them
is not difficult as they are available prepackaged in an installer under the name
RTools (available from CRAN). MiKTgX) is usually needed to build the PDF of the
package’s manual.

Under MS-Windows, it is easier to install packages from binary .z1ip files than
from .tar.gz source files. For OS X (Apple Mac) the situation is similar, with
binaries available both for Intel and ARM (M1, M2 series) processors. Most, but not
all, Linux distributions include in the default setup the tools needed for installation
of R packages. Under Linux it is rather common to install packages from sources,
although package binaries have recently become more easily available.

If the tools are available, packages can be easily installed from sources from
within RStudio. However, binaries are for most packages also readily available. In
CRAN, the binary for a new version of a package becomes available with a delay of
one or two days compared to the source. For packages that need compilation, the
installation from sources takes more time than installation from binaries.

6.4 Use help to look up the help page for install.packages(), and explore
how to control whether the package is installed from a source or a binary file.
Also explore, how to install a package from a file in a local disk instead of from a
repository like CRAN.

Frequently the README file of a package includes instructions on how to in-
stall it from CRAN or another online repository. Exceptionally, packages may re-
quire additionally the installation of software outside R before their installation
and/or use. When present, these rather exceptional requirements are always listed
in the DESCRIPTION under systemRrequirements: and explained in more detail in
the README file. In CRAN, each package has a home web page that can be easily
found if one knows the name of the package, e.g., https://CRAN.R-project.org/
package=1earnrbook. Nowadays, itis common for the help for a package being also
available as a web site, e.g., https://docs.r4photobiology.info/learnrbook/.
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m How to change the repository used to install packages?
Function setRepositories() can be used to enable other repositories in addi-
tion or instead of CRAN during an R session. In recent versions of R, the de-
fault list of repositories is taken from R option "repos" if defined. Consult
help("setRepositories™) for the details.

Alternatively, one can use function pkg_instal1() from package ‘pak’ as this
function attempts to automatically set the correct repository based on the name
of the package.

m How to use an installed package?

To use the functions and other objects defined in a package, the package must
first be loaded, and for the names of these objects to be visible in the user’s work-
space, the package needs to be attached. Function 1ibrary() loads and attaches
one package at a time. For example, to load and attach package ‘learnrbook’ we
use.

Tibrary("Tearnrbook")

m How to find the currently installed version of a package?

Function packageversion returns the version as an object of class
"package_version" that can not only be printed, but also meaningfully com-
pared, e.g., to test for a minimum version requirement.

packageversion(pkg="1learnrbook")
## [1] '1.0.2.1"

As packages are contributed by independent authors, they should be cited in
addition to citing R itself when they are used to obtain results or plots included
in publications. R function citation() when called with the name of a package
as its argument provides the reference that should be cited for the package, and
without an explicit argument, the reference to cite for the version of R in use as
shown below.

citation()

## To cite R in publications use:

##

## R Core Team (2024). _R: A Language and Environment for Statistical
##  Computing_. R Foundation for Statistical Computing, Vienna, Austria.
## <https://www.R-project.org/>.

##

## A BibTex entry for LaTeX users is

##

## @vanuald{,

#it title = {R: A Language and Environment for Statistical Computing},
## author = {{R Core Team}},

#i# organization = {R Foundation for Statistical Computing},
## address = {vienna, Austria},

## year = {2024},

## url = {https://www.R-project.org/},

## }

#i#

## We have invested a lot of time and effort in creating R, please cite it
## when using it for data analysis. See also 'citation("pkgname")' for
## citing R packages.
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6.5 Look at the help page for function citation() for a discussion of why it
is important that users cite R and packages when using them.

Conflicts among packages can easily arise, for example, when they use the
same names for objects or functions. These are reported when the packages are
attached (see section 6.4.4 on page 184 for a workaround). In addition, many pack-
ages use functions defined in packages in the R distribution itself or other in-
dependently developed packages by importing them. Updates to depended-upon
packages can “break” (make non-functional) the dependent packages or parts of
them. The rigourous testing by CRAN detects such problems in most cases when
package revisions are submitted, forcing package maintainers to fix problems be-
fore distribution through CRAN is possible. However, if you use other repositories,
I recommend that you make sure that revised (especially if under development)
versions do work with your own code, before their use in “production” (important)
data analyses.

6.4.3 Finding suitable packages

Due to the large number of contributed R packages, it can sometimes be difficult to
find a suitable package for a task at hand. It is good to first check if the necessary
capability is already built into base R. Base R plus the recommended packages (in-
stalled when R is installed) cover a lot of ground. Analysing data using almost any
of the more common statistical methods does not require the use of contributed
packages. Sometimes, contributed packages duplicate or extend the functionality
in base R. When one considers the use of novel or specialised types of data ana-
lysis, the use of contributed packages can be unavoidable. Even in such cases, it
is not unusual to have alternatives to choose from within the available contrib-
uted packages. Sometimes groups or suites of packages are designed to work well
together.

The CRAN repository has a very broad scope and includes a section called
“views”. R views are web pages providing annotated lists of packages frequently
used within a given field of research, engineering, or specific applications. These
views are maintained by different expert editors. The R views can be found at
https://cran.r-project.org/web/views/.

The Bioconductor repository specialises in bioinformatics with R. It also has
a section with “views” and within it, descriptions of different data analysis work-
flows. The workflows are especially good as they reveal which sets of packages
work well together. These views can be found at https://www.bioconductor.org/
packages/release/BiocVviews.html.

rOpenSci (Ram et al. 2019) fosters a culture that values open and reprodu-
cible research using shared data and reusable software. One aspect of this is
making possible peer-review of R packages. rOpenSci does not keep a separate
package repository for the peer-reviewed packages, they keep an index at https:
//ropensci.org/packages/. The packages included have become more diverse,
but initially the main focus was on facilitating access to open data sources.
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The CRAN repository keeps an archive of earlier versions of packages, on an
individual package basis. This is also important for long-term reproducibility.

6.4.4 How packages work

R packages define all objects within a namespace with the same name as the pack-
age itself. Loading and attaching a package with Tibrary () makes visible only the
exported objects. Attaching a package adds these objects to the search path so that
they can be accessed without prepending the name of the namespace. Most pack-
ages do not export all the functions and objects defined in their code; some are
kept internal, in most cases, to avoid making a commitment about their availability
in future versions, which could constrain further development.

Package namespaces can be detached and also unloaded with function
detach() using a slightly different notation for the argument from that which we
described for data frames in section 4.4.5 on page 110. This is very seldom needed,
but one case I have come across is a package that redefines a generic function of a
method of a package it imports, thus preventing the normal use of a third package
that depends on the original definition of the generic.

When we reuse a name defined in a package, its definition in the package does
not get overwritten, but instead, only hidden. These hidden objects remain access-
ible using the name qualified by prepending the name of the package followed by
two colons, e.g., base:mean().

If two packages define objects with the same name, then which one is visible
depends on the order in which the packages were attached with Tibrary(). To
avoid confusion in such cases, in scripts it is best to use the qualified names for
calling objects defined with the same name in two packages. Using the qualified
name for an object from an already attached package, is inconsequential for its
interpretation by R, but can enhance the readability of the code.

If one uses a qualified name for an object but does not attach the package
with a call to Tibrary(), the package is only loaded. In other words, the names of
the exported objects are not added to the search pass, but the code defining them
is retrieved and available using qualified names.

Some functions that are part of R are collected into packages grouped by cat-
egory: ‘base’, ‘stats’, ‘datasets’, etc., and can be called when needed using qualified
names. We can find out the search order by calling search(), with the search start-
ing at the ".Globalenv" for statements evaluated at the R command line.

6.6 Namespaces isolate the names defined within them from those in other
namespaces. This helps prevent name clashes, and makes it possible to access
objects even when they are “hidden” by a different object with the same name.

class(cars)
head(cars, 3)
getAnywhere("cars")$where



Further Reading 185

cars <- 1:10

class(cars)

head(cars, 3)

rm(cars)

head(cars, 3)
getAnywhere("cars")$where

In the playground above, I used a data frame object, but the same mechan-
isms apply to all R objects including functions. The situation when one of the
definitions is a function and the other is not, is slightly different in that a call
using parenthesis notation will distinguish between a function and an object of
the same name that is not a function. Relying on this distinction is anyway very
confusing and, thus, a bad idea.
mean

## function (x, ...)
## UseMethod("mean")
## <bytecode: 0x0000013b8b690df8>
## <environment: namespace:base>

mean <- mean(1:5)
mean

## [1] 3
mean (8:9)
## [1] 8.5

getAnywhere("mean")$where
## [1] ".GlobalEnv" "package:base" "namespace:base"

rm(mean)
getAnywhere("mean") $where

## [1] "package:base" "namespace:base"

In this last example, rm(mean) removed the variable we had assigned a value to.
Package namespaces protect the objects defined in the package from deletion or
overwriting. This is different to defining a new object with the same name, which
is allowed. The two statements below trigger errors and are not evaluated when
typesetting the book.
datasets::cars <- "my car is green"
rm(datasets::cars)

The value returned by getanywhere() has additional information than that in
its member where. Do have a look at its help page with help(getAanywhere) for the
details.

6.5 Further Reading

Several books describe in detail the different class systems available and how to
use them in R. For an in-depth treatment of the subject please consult the books
Advanced R (Wickham 2019) and Extending R (Chambers 2016).
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The development of R packages is accessibly explained in the book R Packages
(Wickham and Bryan 2023), using a practical approach and tools developed by the
author and his collaborators. The book Extending R (Chambers 2016) has its focus
on R itself, how it works, and how to develop extensions both with simple and

challenging goals.
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Base R: *Verbs” and “Nouns” for Statistics

The purpose of computing is insight, not numbers.

Richard W. Hamming
Numerical Methods for Scientists and Engineers, 1987

7.1 Aims of This Chapter

This chapter aims to give the reader an introduction to the approach used in base
R for the computation of statistical summaries, the fitting of models to observa-
tions and tests of hypothesis. This chapter does not explain data analysis methods,
statistical principles or experimental designs. There are many good books on the
use of R for different kinds of statistical analyses (see further reading on page 241)
but most of them tend to focus on specific statistical methods rather than on the
commonalities among them. Although base R’s model fitting functions target spe-
cific statistical procedures, they use a common approach to model specification
and for returning the computed estimates and test outcomes. This approach, also
followed by many contributed extension packages, can be considered as part of
the philosophy behind the R language. In this chapter, you will become familiar
with the approaches used in R for calculating statistical summaries, generating
(pseudo-)random numbers, sampling, fitting models, and carrying out tests of sig-
nificance. We will use linear correlation, t-test, linear models, generalised linear
models, non-linear models, and some simple multivariate methods as examples.
The focus is on how to specify statistical models, contrasts and observations, how
to access different components of the objects returned by the corresponding fit
and summary functions, and how to use these extracted components in further
computations or for customised printing and formatting.
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Table 7.1
Frequently used simple statistical summaries and the corresponding R functions.
Function Symbol Formulation Name
mean () X >x/n mean
var() s° S(xi—X)?/(n—1) sample variance
sd() s V82 sample standard deviation
median() Mor X median
mad () MAD median |x; — x| median absolute deviation
mode () MOD mode
max () X max maximum
min() X min minimum
range()  Xmin, Xmax range

7.2 Statistical Summaries

Being the main focus of the R language in data analysis and statistics, R provides
functions both for simple and complex calculations, going from means and vari-
ances to fitting very complex models. Table 7.1 lists some frequently used func-
tions. All these methods accept numeric vectors and/or matrices as arguments.
In addition, function quantile() can be used to simultaneously compute multiple
arbitrary quantiles for a vector of observations, and method summary () produces
a summary that depends on the class of the argument passed to it. (See section
6.2.2 on page 174 for how to define your own functions.)

By default, if the argument contains NAs these functions return NA. The logic
behind this is that if one value exists but is unknown, the true result of the com-
putation is unknown (see page 33 for details on the role of NA in R). However, an
additional parameter called na.rm allows us to override this default behaviour by
requesting any NA in the input to be removed (or discarded) before calculating the
summary,

X <— c(1:20, NA)

mean (x)

## [1] NA

mean(x, na.rm = TRUE)
## [1] 10.5

Function mean() can be used to compute the mean from all values, as in the
example above, as well as trimmed means, i.e., means computed after discarding
extreme values. The argument passed to parameter trim decides the fraction of
the observations to discard at each extreme of the vector of values after ordering
them from smallest to largest.

X <- c¢(1:20, 100)
mean (x)
## [1] 14.7619

mean(x, trim = 0.05)
## [1] 11
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Table 7.2

Standard probability distributions in R. Partial list of base R functions related to
probability distributions. The full list can be obtained by executing the command
help(Distributions).

Distribution Symbol Density P-value Quantiles Draws
Normal N dnorm() pnorm() gnorm() rnorm()
Student’s t dtQ pt() qtQ rt()

F F dfQ pfQ) af O rfQ
binomial B dbinom() pbinom() gbinom() rbinom()
multinomial M dmultinom() pmultinom() gmultinom() rmultinom()
Poisson dpois() ppois() qpois() rpois()
X-squared X2 dchisq() pchisq() gchisq() rchisq()
lognormal dlnorm() plnorm() glnorm() rlnorm()
uniform dunif(Q) punif() qunif() runif()

7.1 In contrast to the use of other functions, I do not provide examples of the
use of all the functions listed in Table 7.1. Construct numeric vectors with artificial
data or use real data to play with the remaining functions. Study the help pages
to learn about the different parameters and their uses.

Other more advanced functions are also available in R, such as boxplot.stats()
that computes the values needed to draw boxplots (see section 9.6.6 on page 328).

In many cases, you will want to compute statistical summaries by group or
treatment in addition or instead of for a whole data set or vector. See section 4.4.2
on page 105 for details on how to compute summaries of data stored in data frames
using base R functions, and section 8.7 on page 259 for alternative functions from
contributed packages.

7.3 Standard Probability Distributions

Density functions, probability distribution functions, quantile functions, and func-
tions for pseudo-random draws are available in R for several different stand-
ard (theoretical) probability distributions. Entering help(pistributions) at the R
prompt will open a help page describing all the distributions available in base R. For
each distribution, the different functions contain the same “root” in their names:
norm for the normal distribution, unif for the uniform distribution, and so on. The
“head” of the name indicates the type of values returned: “d” for density, “q” for
quantile, “r” (pseudo-)random draws, and “p” for probability (Table 7.2).
Theoretical distributions are defined by mathematical functions that accept
parameters that control the exact shape and location. In the case of the Normal
distribution, these parameters are the mean (mean) controlling the location center
and (standard deviation) (sd) controlling the spread away from the center of the
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distribution. The four different functions differ in which values are calculated (the
unknowns) and which values are supplied as arguments (the known inputs).

In what follows, I use the Normal distribution as an example, but with differ-
ences in their parameters, the functions for other theoretical distributions follow
a similar naming pattern.

7.3.1 Density from parameters
To obtain a single point from the distribution curve we pass a vector of length one
as an argument for x.
dnorm(x = 1.5, mean = 1, sd = 0.5)
## [1] 0.4839414
To obtain multiple values we can pass a longer vector as an argument.

dnorm(x = seq(from = -1, to = 1, Tlength.out = 5), mean = 1, sd = 0.5)
## [1] 0.0002676605 0.0088636968 0.1079819330 0.4839414490 0.7978845608

With 50 equally spaced values for x we can plot a line (type = "1") that shows
that the 50 generated data points give the illusion of a continuous curve. We also
add a point showing the value for x = 1.5 calculated above.
vctl <- seq(from = -1, to = 3, Tength.out = 50)

dfl <- data.frame(x

y
plot(y~x, data = dfl, type = "1", xlab = "z", ylab = "f(2)")
points(x = 2, y = dnorm(x = 2, mean = 1, sd = 1))

vctl,
dnorm(x = vctl, mean = 1, sd = 1))

0.25 0.35
| |

f(z)

0.15
|

0.05
|

7.3.2 Probabilities from parameters and quantiles

With a known quantile value, it is possible to look up the corresponding P-value
from the Normal distribution, i.e., the area under the curve, either to the right
or to the left of a given value of g (by default, integrating the lower or left tail).
When working with observations, the quantile, mean and standard deviation are
in most cases computed from the same observations under the null hypothesis. In
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the example below, we use invented values for all parameters ¢, the quantile, mean,
and sd, the standard deviation.

pnorm(g = 2, mean = 1, sd = 1)
## [1] 0.8413447
pnorm(qg = 2, mean = 1, sd = 1, lower.tail = FALSE)

## [1] 0.1586553
pnorm(g = 2, mean
## [1] 0.4012937
pnorm(g = c(2, 4), mean = 1, sd = 1, Tower.tail = FALSE)
## [1] 0.158655254 0.001349898

1, sd

4, lower.tail = FALSE)

In tests of significance, empirical z-values and t-values are computed by sub-
tracting from the observed mean for one group or raw quantile, the “expected”
mean (a hypothesised theoretical value, the mean of a control condition used as
a reference, or the mean computed over all treatments under the assumption of
no effect of treatments) and then dividing this difference by the standard devi-
ation. Consequently, the p-values corresponding to these empirical z-values and
t-values need to be looked up using mean = 0 and sd = 1 when calling pnorm() or
pt() respectively. These frequently used values are the defaults.

7.3.3 Quantiles from parameters and probabilities

The reverse computation from that in the previous section is to obtain the quantile
corresponding to a known P-value or area under one of the tails of the distribution
curve. These quantiles are equivalent to the values in the tables of precalculated
quantiles used in earlier times to assess significance with statistical tests.

gnorm(p = 0.01, mean = 0, sd = 1)

## [1] -2.326348

gnorm(p = 0.05, mean = 0, sd = 1)
## [1] -1.644854
gnorm(p = 0.05, mean = 0, sd = 1, Tower.tail = FALSE)

## [1] 1.644854

Quantile functions like gnorm() and probability functions like pnorm() always
do computations based on a single tail of the distribution, even though it is pos-
sible to specify which tail we are interested in. If we are interested in obtaining
simultaneous quantiles for both tails, we need to do this manually. If we are aim-
ing at quantiles for P = 0.05, we need to find the quantile for each tail based on
P/2 =0.025.

gnorm(p = 0.025, mean = 0, sd = 1)
## [1] -1.959964
gnorm(p = 0.025, mean = 0, sd = 1, Tower.tail = FALSE)

## [1] 1.959964

When calculating a P-value from a quantile computed from observations in a
test of significance, we need to first decide whether a two-sided or single-sided
test is relevant, and in the case of a single sided test, which tail is of interest. In
a two-sided test we need to multiply the returned P-value by 2. This works in the
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case of a symmetric distribution like the Normal, because the quantiles in the two
tails differ only in sign. However, this is not the case for asymmetric distributions.
pnorm(q = 4, mean = 0, sd = 1) * 2

## [1] 1.999937

7.3.4 “Random” draws from a distribution

True random sequences can only be generated by physical processes. All “pseudo-
random” sequences of numbers generated by computation are really deterministic
although they share many properties with true random sequences (e.g., in relation
to autocorrelation).

It is possible to compute not only pseudo-random draws from a uniform dis-
tribution but also from the Normal, ¢, F, and other distributions. In each case, the
probability with which different values are “drawn” approximates the probabilities
set by the corresponding theoretical distribution. Parameter n indicates the num-
ber of values to be drawn, or its equivalent, the length of the vector returned (see
section 9.6.4 on page 324 for example plots).
rnorm(5)

## [1] -0.8248801 0.1201213 -0.4787266 -0.7134216 1.1264443
rnorm(n = 10, mean 10, sd = 2)

## [1] 12.394190 9.697729 9.212345 11.624844 12.194317 10.257707 10.082981
## [8] 10.268540 10.792963 7.772915

7.2 Edit the examples in sections 7.3.2, 7.3.3, and 7.3.4 to do computations
based on different distributions, such as Student’s t, F or uniform.

Itis impossible to generate truly random sequences of numbers by means of a
deterministic process such as a mathematical computation. “Random numbers” as
generated by R and other computer programs are pseudo-random numbers, long
deterministic series of numbers that resemble random draws. Random number
generation uses a seed value that determines where in the series the first value is
fetched. The usual way of automatically setting the value of the seed is to take the
milliseconds or a similar rapidly changing set of digits from the real-time clock of
the computer. However, in cases when we wish to repeat a calculation using the
same series of pseudo-random values, we can use set.seed() with an arbitrary
integer as an argument to reset the generator to the same point in the underlying
(deterministic) sequence.

7.3 Execute the statement rnorm(3) by itself several times, paying attention
to the values obtained. Repeat the exercise, but now executing set.seed(98765)
immediately before each call to rnorm(3), again paying attention to the values
obtained. Next execute set.seed(98765), followed by c(rnorm(3), rnorm(3)), and
then execute set.seed(98765), followed by rnorm(6) and compare the output. Re-
peat the exercise using a different argument in the call to set.seed(). analyse
the results and explain how setseed() affects the generation of pseudo-random
numbers in R.
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7.4 Observed Probability Distributions

It is common to estimate the value of the parameters for a standard distribution
like Student’s t or Normal distributions from observational data, assuming a priori
the suitability of the distribution. If we compute the mean and standard deviation
of alarge sample, these two parameters define a specific Normal distribution curve.
If we add the estimate of the degrees of freedom, v = n — 1, the three paramet-
ers define a specific t-distribution curve. Thus it is possible to use the functions
described in section 7.3 on page 7.3, in statistical inference.

Package ‘mixtools’ provides tools for fitting and analysing mixture models
such as the mix of two or more univariate Normal distributions. An example of its
use could be to estimate mean and standard deviations for males and females in
a dataset where the gender was not recorded at the time of observation.

It is also possible to describe the observed shape of the distribution, or em-
pirical distribution, for a data set without relying on a standard distribution. The
fitted empirical distribution can later be used to compute probabilities, quantiles,
and random draws as from standard distributions. This also allows statistical in-
ference, using methods such as the bootstrap or some additive models.

Function density() computes kernel density estimates, using different meth-
ods. A curve is used to describe the shape, and the bandwidth determines how
flexible this curve is. The curve is a smoother that adapts to the observed shape
of the distribution of observations. The object returned is a complex list that can
be used to plot the estimated curve.

The code below estimates the empirical distribution for the waiting time in
minutes between eruptions of the Old Faithful geyser at Yellowstone, a dataset
from R.

d <- density(faithful$waiting, bw = "sj")

Using str() we can explore the structure of the object returned by function
density().

str(d)

## List of 8

## $ x : num [1:512] 35.5 35.6 35.8 35.9 36 ...

## Sy : num [1:512] 8.36e-06 9.89e-06 1.17e-05 1.38e-05 1.62e-05 ..
## $ bw : num 2.5

## $n : int 272

## $ old.coords: logi FALSE

## $ call : language density.default(x = faithful$waiting, bw = "sj")
## $ data.name : chr "faithful$waiting"

## $ has.na : logi FALSE

## - attr(*, "class")= chr "density"

The object saved as d is a 1ist with seven members. The two numeric vectors, x
and y describe the estimated probability distribution and produce the curve in the
plot below. The numerical bandwidth estimated using method "sj" is in bw, and the
length of vector faithful$waiting, the data used, is in n. Member call is the com-
mand used to call the function, the remaining two members have self-explanatory
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names. The returned object belongs to class density. The overall pattern is sim-
ilar, but simpler than for the model fitting functions that we will see later in the
chapter. The class name of the object is the same as the name of the function that
created it, call provides a trace of how the object was created. Other members, fa-
cilitate computation of derived quantities and plotting. Being a list, the individual
members can be extracted by name.
d$n
## [1] 272

As aplot() method is available for class density we can easily produce a plot of
the estimated empirical density distribution. In this case, the fitted bimodal curve,
with two maxima, is very different to the Normal.
plot(d)

density(x = faithful$waiting, bw = "sj")

0.02 0.03 0.04
|

Density

0.00 0.01

VI I I I I I Ii
40 50 60 70 80 90 100

N =272 Bandwidth = 2.504

Observed probability distributions, especially empirical ones, nowadays play
a central role in data visualisation including 1D and 2D empirical density plots
based on the use of functions like density(), as well as traditional histograms (see
section 9.6.5 on page 326 for examples of more elaborate and elegant plots).

7.5 “Random” Sampling

In addition to drawing values from a theoretical distribution, we can draw values
from an existing set or collection of values. We call this operation (pseudo-)random
sampling. The draws can be done either with replacement or without replacement.
In the second case, all draws are taken from the whole set of values, making it
possible for a given value to be drawn more than once. In the default case of not
using replacement, subsequent draws are taken from the values remaining after
removing the values chosen in earlier draws.

sample(x = LETTERS)
s [1] "Z" UN" YT OUR™ M OTE™ MW MU UHMOUGY UM MQM ST UTT ML MEM UXT M K
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## [20] "v" "p" "A" "B" "C" "I" "Q"

sample(x = LETTERS, size = 12)

#4# [1] "m" "s™ "L"™ "R" "B" "D" "Q" "w" "v" "N" "3" "pP"
sample(x = LETTERS, size = 12, replace = TRUE)

## [1] "™ "E" "v" "N" "A™ "Q" "L" "cC" "T" "L" "H" "u"

In practice, pseudo-random sampling is useful when we need to select subsets
of observations. One such case is assigning treatments to experimental units in
an experiment or selecting persons to interview in a survey. Another use is in
bootstrapping to estimate variation in parameter estimates using empirical distri-
butions.

m How to sample random rows from a data frame?

As described in section 4.4 on page 94, data frames are commonly used to store
one observation per row. To sample a subset of rows, we need to generate a ran-
dom set of indices to use with the extraction operator ([ ]). Here we sample four
rows from data frame cars included in R. These data consist of stopping distances
for cars moving at different speeds as described in the documentation available
by entering help(cars)).

cars[sample(x = l:nrow(cars), size = 4), ]

#it speed dist

## 33 18 56

## 31 17 50

## 50 25 85
## 36 19 36

7.4 Consult the documentation of sample () and explain why the code below
is equivalent to that in the example immediately above.

cars[sample(x = nrow(cars), size = 4), ]

7.6 Correlation

Both parametric (Pearson’s) and non-parametric robust (Spearman’s and Kendall’s)
methods for the estimation of the (linear) correlation between pairs of variables
are available in base R. The different methods are selected by passing arguments
to a single function. While Pearson’s method is based on the actual values of the
observations, non-parametric methods are based on the ordering or rank of the
observations, and consequently less affected by observations with extreme values.

7.6.1 Pearson’s r

Function cor() can be called with two vectors of the same length as arguments.
In the case of the parametric Pearson method, we do not need to provide further
arguments as this method is the default one. We use data set cars.
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cor(x = cars$speed, y = cars$dist)
## [1] 0.8068949

It is also possible to pass a data frame (or a matrix) as the only argument. When
the data frame (or matrix) contains only two columns, the returned correlation
estimate is equivalent to that of passing the two columns individually as vectors.
The object returned is a 2 X 2 matrix instead of a vector of length one.
cor(cars)

## speed dist
## speed 1.0000000 0.8068949
## dist 0.8068949 1.0000000

When the data frame or matrix contains more than two numeric vectors, the
returned value is a matrix of estimates of pairwise correlations between columns.
We here use rnorm() described above to create a long vector of pseudo-random
values drawn from the Normal distribution and matrix() to convert it into a matrix
with three columns (see page 70 for details about R matrices).

matl <- matrix(rnorm(54), ncol = 3,
dimnames = Tist(rows = 1:18, cols = c("A", "B", "C")))
cor(matl)
## A B C
## A 1.00000000 0.1899797 0.07591003
## B 0.18997966 1.0000000 0.36800323
## C 0.07591003 0.3680032 1.00000000

7.5 Modify the code in the chunk immediately above constructing a matrix
with six columns and then computing the correlations.

While cor() returns an estimate of 7, the correlation coefficient, cor.test()
computes, in addition, the t-value, P-value, and confidence interval for the estim-
ate.
cor.test(x = cars$speed, y = cars$dist)

##

## Pearson's product-moment correlation
##

## data: cars$speed and cars$dist

## t = 9.464, df = 48, p-value = 1.49e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:

## 0.6816422 0.8862036

## sample estimates:

## cor

## 0.8068949

Above we passed two numeric vectors as arguments, one to parameter x and
one to parameter y. Alternatively, we can pass a data frame as an argument to data,
and a model formula to formula. The argument passed to formula determines which
variables from data are used, and in which role. Briefly, the variable(s) to the left
of the tilde ( ) are response variables, and those to the right are independent, or
explanatory, variables. In the case of correlation, no assumption is made on cause
and effect, and both variables appear to the right of the tilde. The code below is
equivalent to that above. See section 7.13 on page 226 for details on the use of
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model formulas and section 7.8 on page 199 for examples of their use in model
fitting.
cor.test(formula = ~ speed + dist, data = cars)

7.6 Functions cor() and cor.test() return R objects, that when using R in-
teractively get automatically “printed” on the screen. One should be aware that
print() methods do not necessarily display all the information contained in an
R object. This is almost always the case for complex objects like those returned
by R functions implementing statistical tests. As with any R object, we can save
the result of an analysis into a variable. As described in section 4.3 on page 86
for lists, we can peek into the structure of an object with method str(). We can
use class() and attributes() to extract further information. Run the code in the
chunk below to discover what is actually returned by cor ().

MAT1 <- cor(cars)
class (MAT1)
attributes (MAT1)
str(MAT1)

Methods class(), attributes() and str() are very powerful tools that can be
used when we are in doubt about the data contained in an object and/or how it is
structured. Knowing the structure allows us to retrieve the data members directly
from the object when predefined extractor methods are not available.

7.6.2 Kendall’s T and Spearman’s p

We use the same functions as for Pearson’s v but explicitly request the use of one
of these methods by passing an argument.
cor(x = cars$speed, y = cars$dist, method
## [1] 0.6689901

cor(x = cars$speed, y = cars$dist, method = "spearman")
## [1] 0.8303568

"kendall")

Function cor.test(), described above, also allows the choice of method with
the same syntax as shown for cor().

7.7 Repeat the exercise in the playground immediately above, but now using
non-parametric methods. How does the information stored in the returned matrix
differ depending on the method, and how can we extract from the returned object
information about the method used for the calculation of the correlation?

7.7 t-test

The t-test is based on Student’s t-distribution. It can be applied to any parameter
estimate for which its standard deviation is available, and the t-distribution is a
plausible assumption. It is most frequently used to compare an estimate of the
mean against a constant value, or the estimate of a difference between two means
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and a target difference, usually no difference. In R these can be computed manually
using functions mean(), sd(), and pt() or with t.test().

Although rarely presented in such a way, the t-test can be thought of as a spe-
cial case of a linear model fit. Consistently with functions used to fit models to
observations, we can use a formula to describe a t-test. A formula such as y~x is
read as y is explained by x. We use lhs (left-hand-side) and rhs (right-hand-side)
to signify all terms to the left and right of the tilde (~), respectively (<1Ths>~<rhs>).
(See section 7.13 on page 226 for a detailed discussion of model formulas, and
section 7.8 on page 199 for examples of their use in model fitting.)
dfl <- data.frame(some.size = c(rnorm(10, mean = 2.5), rnorm(10, mean = 2.0)),

group = factor(rep(c("A", "B"), each = 10)))

The formula some.size~1 is read as “the mean of variable some.size is ex-
plained by a constant value”. The value estimated from observations, X, is com-
pared against the value of u set as the null hypothesis, where u is the unknown
mean of the sampled population. By default, t.test() applies a two-sided test
(alternative = "two.sided") against mu = 0, but here we use mu = 2 instead.
t.test(some.size ~ 1, mu = 2, data = dfl)

#it

## O0One Sample t-test

#it

## data: some.size

## t = 1.078, df = 19, p-value = 0.2945
## alternative hypothesis: true mean is not equal to 2
## 95 percent confidence interval:

## 1.741200 2.808479

## sample estimates:

## mean of x

##  2.27484

The same test can be calculated step by step. In this case, this approach is not
needed, but it is useful when we have a parameter estimate (not just mean) and
its standard error available, as in model fits (see the advanced playground on page
206 for an example).

sem = sqrt(var(dfl$some.size) / nrow(dfl))
t.value = (mean(dfl$some.size) - 2) / sem
p.value <- pt(t.value, df = nrow(dfl) - 1, Tower.tail = FALSE) * 2
signif(c(t = t.value, df = nrow(dfl) - 1, P = p.value), 4)
## t df P
## 1.0780 19.0000 0.2945

The same function, with a different formula, tests for the difference between
the means of two groups or treatments, H, . us — pg = 0. We read the for-
mula some.size~group as “differences in some.size are explained by factor group”.
The difference between the means for the two groups is estimated and compared
against the hypothesis. (In this case, the value of the argument passed to mu, zero
by default, describes this difference.) By default, variances in the two groups are
not to assumed equal,
t.test(some.size ~ group, data = dfl)
##

## Wwelch Two Sample t-test
##
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Table 7.3
R functions implementing frequently used statistical tests. Student’s t-test and
correlation tests are described on pages 197 and 195, respectively.

Statistical test Function name
Student’s t-test (1 and 2 samples) t.test()
Wilcoxon rank sum and signed rank tests wilcox.test
Kolmogorov-Smirnov tests ks.test(Q)
Correlation tests (Pearson, Kendall, Spearman) cor.test()
F-test to compare two variances var.test()
Fisher’s exact test for count data fisher.test()
Pearson’s Chi-squared (x?) test for count data chisq.test()
Exact Binomial Test binom.test()
Test of equal or given proportions prop.test()

## data: some.size by group

## t = 1.5864, df = 17.666, p-value = 0.1304

## alternative hypothesis: true difference in means between group A and group B ...
## 95 percent confidence interval:

## -0.2538836 1.8108119

## sample estimates:

## mean in group A mean in group B

## 2.664072 1.885608

but with var.equal = TRUE, the variances in the populations from which observa-
tions in groups A and B were sampled are assumed equal, and pooled into a single
estimate.

t.test(some.size ~ group, var.equal = TRUE, data = dfl)
##

## Two Sample t-test

##

## data: some.size by group

## t = 1.5864, df = 18, p-value = 0.1301

## alternative hypothesis: true difference in means between group A and group B ...
## 95 percent confidence interval:

## -0.2524857 1.8094140

## sample estimates:

## mean in group A mean in group B

## 2.664072 1.885608

The t-test serves as an example of how statistical tests are usually carried out
in R. Table 7.3 lists R functions for frequently used statistical tests.

7.8 Model Fitting in R

The general approach to model fitting in R is to separate the actual fitting of a
model from the inspection of the fitted model. A model fitting function minimally
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model specification

4

Y

fitting function
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Figure 7.1
Model fitting in R is done in steps, and can be represented schematically as a flow
of information.

requires a description of the model to fit, as a model formula and a data frame or
vectors with the data or observations to which to fit the model. These functions in
R return a model-fit object. This object contains the data, the model formula, the
call, and the result of fitting the model. Several methods are available for querying
it. The diagram in Figure 7.1 summarises the approach used in R for data analysis
based on fitted models.

Models are described using model formulas such as y~x which we read as y
is explained by x. We use [hs (left-hand-side) and rhs (right-hand-side) to signify
all terms to the left and right of the tilde (~), respectively (<1hs>~<rhs>). Model
formulas are used in different contexts: fitting of models, plotting, and tests like
t-test. The syntax of model formulas is consistent throughout base R and numer-
ous independently developed packages. However, their use is not universal, and
several packages extend the basic syntax to allow the description of specific types
of models. As most things in R, model formulas are objects and can be stored in
variables. See section 7.13 on page 226 for a detailed discussion of model formulas.

Although there is some variation, especially for fitted model classes defined
in extension packages, in most cases, the query functions bulked together in the
rightmost box in the diagram in Figure 7.1 include summary (), anova() and plot(),
with other methods such as coef(), residuals(), fitted(), predict(), AIc(), and
BIC() usually also available. Additional methods may be available. However, as
model fit objects are 1ist-like, these and other values can be extracted and/or
computed programmatically when needed. The examples in this chapter can be
adapted to the fitting of types of models not described in this book.

Fitted model objects in R are self contained and include a copy of the data
to which the model was fit, as well as residuals and possibly even intermediate
results of computations. Although this can make the size of these objects large, it
allows querying and even updating them in the absence of the data in the current
R workspace.

7.9 Fitting Linear Models

Regression, analysis of variance (ANOVA) and analysis of covariance (ANCOVA)
are all linear models, differing only on the type of explanatory variables included
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model - formula plot(
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observations — data > Tm(Q)
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1m object

summary ()

anova()

Figure 7.2

Linear model fitting in R is done in steps. The generic diagram from Figure 7.1
redrawn to show a linear model fit. Non-filled boxes are shared with the fitting of
other types of models, and filled ones are specific to Tm(). Only the three most
frequently used query methods are shown, while both response and explanatory
variables are under observations. Dashed boxes and arrows are optional as defaults
are provided.

in the statistical model fitted. If in the fitted model all explanatory variables are
continuous, i.e., numeric, vectors, the model is a regression model. If all explanat-
ory variables are discrete, i.e., factors, the model is ANOVA. Finally, if the model
contains but numeric variables and factors it is named ANCOVA. As in all cases
the fitting approach is the same, based on ordinary least squares (OLS), in R, they
are all implemented in function 1m().

There is another meaning of ANOVA, referring only to the tests of significance
rather than to an approach to model fitting. Consequently, rather confusingly, res-
ults for tests of significance can both in the case of regression, ANOVA and AN-
COVA, be presented in an ANOVA table. In this second, stricter meaning, ANOVA
means a test of significance based on the ratios between pairs of variances.

If you do not clearly remember the difference between numeric vectors and
factors, or how they can be created, please, revisit chapter 3 on page 23.

Figure 7.2 shows the steps needed to fit a linear model and extract the estim-
ates and test results. The observations are stored in a data frame, one case or event
per row, with values for both response and explanatory variables in variables or
columns. The model formula is used to indicate which variables in the data frame
are to be used and in which role: either response or explanatory, and when explan-
atory how they contribute to the estimated response. The object containing the
results from the fit is queried to assess validity and make conclusions or predic-
tions.

Weights are multiplicative factors used to alter the weight given to individual
residuals when fitting a model to observations that are not equally informative.
A frequent case is fitting a model to observations that are means of drastically
different numbers of individual measurements. Some model fit functions compute
the weights, but in most cases they are supplied as an argument to parameter
weights. By default, weights have a value of 1 and thus do not affect the resulting
model fit, when supplied or computed, the weights are saved to the model fit
object.
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7.9.1 Regression

The cars data set, containing two numeric variables, is used in the examples. A
simple linear model v = & - 1 + B - x where 7y corresponds to stopping distance
(dist) and x to initial speed (speed) is formulated in R as dist ~ 1 + speed. The
fitted model object is assigned to variable fm1 (a mnemonic for fitted-model one).

fml <- Tm(dist ~ 1 + speed, data=cars)
class(fml)
## [1] "Tm"

The next step is diagnosis of the fit. Are assumptions of the linear model proced-
ure used reasonably close to being fulfilled? In R it is most common to use plots to
this end. We show here only one of the plots normally produced. This quantile vs.
quantile plot is used to assess how much the distribution of the residuals deviates
from the assumed Normal distribution.
plot(fml, which = 2)
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In the case of a regression, calling summary() with the fitted model object as
argument is most useful as it provides a table of coefficient estimates and their
errors. Remember that as is the case for most R functions, the value returned by
summary () is printed when we call this method at the R prompt.

summary (fml)

##

## call:

## Im(formula = dist ~ 1 + speed, data = cars)

##

## Residuals:

## Min 1Q Median 3Q Max

## -29.069 -9.525 -2.272 9.215 43.201

##

## Coefficients:

## Estimate Sstd. Error t value Pr(>|t])

## (Intercept) -17.5791 6.7584 -2.601 0.0123 =
## speed 3.9324 0.4155 9.464 1.49e-12 ***
## ——

## Signif. codes: O '***' 0.001 '%*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

The summary is organised in sections. “Call:” shows dist ~ 1 + speed or the
specification of the model fitted, plus the data used. “Residuals:” displays the ex-
tremes, quartiles and median of the residuals, or deviations between observations
and the fitted line. “Coefficients:” contains estimates of the model parameters and
their variation plus corresponding t-tests. In the last three lines, there is inform-
ation on overall standard error and its degrees of freedom and overall coefficient
of determination (R?) and F-statistic.

Replacing « and fin v = « -1 + B - x by the estimates for the intercept,
a = —17.6, and slope, b = 3.93, we obtain an estimate for the regression line
v = —17.6 + 3.93x. However, given the nature of the problem, we know based on
first principles that the stopping distance must be zero when speed is zero. This
suggests that we should not estimate the value of « but instead set &« = 0, or in
other words, fit the model y = 8 - x.

In R models, the intercept is included by default, so the model fitted above can
be formulated as dist ~ speed—i.e., the missing + 1 does not change the model.
To exclude the intercept, we need to specify the model as dist ~ speed - 1 (orits
equivalent dist ~ speed + 0), for a straight line passing through the origin (x = 0,
v = 0). In the summary for this model there is an estimate for the slope but not
for the intercept.
fm2 <- Tm(dist ~ speed - 1, data = cars)
summary (fm2)

##

## call:

## Im(formula = dist ~ speed - 1, data = cars)

##

## Residuals:

## Min 1Q Median 3Q Max

## -26.183 -12.637 -5.455 4.590 50.181

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## speed 2.9091 0.1414 20.58 <2e-16 ***

## ——

## Signif. codes: O '***' 0.001 '%*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 16.26 on 49 degrees of freedom
## Multiple R-squared: 0.8963, Adjusted R-squared: 0.8942
## F-statistic: 423.5 on 1 and 49 DF, p-value: < 2.2e-16

The equation for fm2 is y = 2.91x. From the residuals, it can be seen that it

is inadequate, as the straight line does not follow the curvature of the cloud of
observations.

7.8 You will now fit a second-degree polynomial, a different linear model: y =
-1+ B+ x+ B> x?. The function used is the same as for linear regression, 1m().
We only need to alter the formulation of the model. The identity function 1() is
used to protect its argument from being interpreted as part of the model formula.
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Instead, its argument is evaluated beforehand and the result is used as the, in this
case second, explanatory variable.

fm3 <- Tm(dist ~ speed + I(speedA2), data = cars)

plot(fm3, which = 3)

summary (fm3)

The “same” fit using an orthogonal polynomial can be specified using func-
tion poly (). Polynomials of different degrees can be obtained by supplying as the
second argument to poly() the corresponding positive integer value. In this case,
the different terms of the polynomial are bulked together in the summary.
fm3a <- Tm(dist ~ poly(speed, 2), data = cars)
summary (fm3a)

It is possible to compare two model fits using anova(), testing whether one of
the models describes the data better than the other. It is important in this case to
take into consideration the nature of the difference between the model formulas,
most importantly if they can be interpreted as nested—i.e., interpreted as a base
model vs. the same model with additional terms.
anova(fm2, fml)

Three or more models can also be compared in a single call to anova (). However,
care is needed, as the order of the arguments matters.
anova(fm2, fm3, fm3a)
anova(fm2, fm3a, fm3)

Different criteria can be used to choose the “best” model: significance based
on p-values or information criteria (AIC, BIC). AIC (Akaike’s “An Information Cri-
terion”) and BIC (“Bayesian Information Criterion” = SBC, “Schwarz’s Bayesian cri-
terion”) that penalise the resulting “goodness” based on the number of parameters
in the fitted model. In the case of AIC and BIC, a smaller value is better, and values
returned can be either positive or negative, in which case more negative is better.
Estimates for both BIC and AIC are returned by anova(), and on their own by BIc()
and A1c()

BIC(fm2, fml, fm3, fm3a)
AIC(fm2, fml, fm3, fm3a)

Once you have run the code in the chunks above, you will be able see that
these three criteria do not necessarily agree on which is the “best” model. Find in
the output P-value, BIC and AIC estimates, for the different models and conclude
which model is favoured by each of the three criteria. In addition, you will notice
that the two different formulations of the quadratic polynomial are equivalent.

Additional query methods give easy access to different aspects of fitted models:
veov () returns the variance-covariance matrix, coef() and its alias coefficients()
return the estimates for the fitted model coefficients, fitted() and its alias
fitted.values() extract the fitted values, and resid() and its alias residuals()
the corresponding residuals (or deviations) (Figure 7.3). Less frequently used ac-
cessors are getcall(), effects(), terms(), model.frame(), and model.matrix().

7.9 Familiarise yourself with these extraction and summary methods by read-
ing their documentation and use them to explore fml fitted above or model fits to
other data of your interest.
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Figure 7.3
Diagram including additional methods used to query fitted model objects using
linear models as an example. For other details see the legend of Figure 7.2.

Itis usual to only look at the values returned by anova () and summary () as impli-
citly displayed by print(). However, both anova() and summary() return complex
objects, derived from 1ist, containing some members not displayed by print().
Access to members of these objects can be necessary to use them in further calcu-
lations or to print them in a format different to the default.

The class and structure of the objects returned by summary() depends on
the class of the model fit object, i.e., summary() is a generic method with multiple
specialisations.
class (summary (fml))

## [1] "summary.lm"

One case where we need to extract individual members is when adding annota-
tions to plots. Another case is when writing reports to include programmatically
the computed values within the text. str() can be used to display the structure.
Calling str() with no.1ist = TRUE, give.attr = FALSE and vec.len = 2 as argu-
ments restricts the output to an overview of the structure of fml.
str(summary(fml), no.list = TRUE, give.attr = FALSE, vec.len = 2)

## $ call : language Tm(formula = dist ~ 1 + speed, data = cars)
## $ terms :Classes 'terms', 'formula' Tanguage dist ~ 1 + speed
## $ residuals : Named num [1:50] 3.85 11.85 ...

## $ coefficients : num [1:2, 1:4] -17.58 3.93 ...

## $ aliased : Named logi [1:2] FALSE FALSE

## $ sigma : num 15.4

## $ df :int [1:3] 2 48 2

## $ r.squared : num 0.651

## $ adj.r.squared: num 0.644

## §$ fstatistic : Named num [1:3] 89.6 1 ...

## $ cov.unscaled : num [1:2, 1:2] 0.1931 -0.0112 ...

Extraction of members follows the usual R rules using $, [ 1, or [[ 1].

summary (fml) $adj.r.squared
## [1] 0.6438102
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Estimates of coefficients are accompanied by estimates of their standard er-
rors, t-values and P-values, while in the model object fml1 these are not included.

coef (fml)

## (Intercept) speed
## -17.579095 3.932409

str(fml$coefficients)

## Named num [1:2] -17.58 3.93
## - attr(*, "names")= chr [1:2] "(Intercept)" "speed"
print (summary (fml) $coefficients)

## Estimate Std. Error t value Pr(>|t])
## (Intercept) -17.579095 6.7584402 -2.601058 1.231882e-02
## speed 3.932409 0.4155128 9.463990 1.489836e-12

str(summary (fml) $coefficients)

## num [1:2, 1:4] -17.579 3.932 6.758 0.416 -2.601 ...
## - attr(¥, "dimnames")=List of 2

## ..$ : chr [1:2] "(Intercept)" "speed"

## ..$ : chr [1:4] "Estimate" "std. Error" "t value" "Pr(>|t])"

E The class of the object returned by method anova() does not depend on the

class of the model fit object, while its structure does depend.

anova(fml)

## Analysis of Vvariance Table

#i#

## Response: dist

## Df Sum Sq Mean Sq F value Pr(>F)

## speed 1 21186 21185.5 89.567 1.49e-12 ##**
## Residuals 48 11354 236.5

## ———

## Signif. codes: 0 '***' 0.001 '%*' 0.01 '*' 0.05 '.' 0.1 '
class (anova(fml))

## [1] "anova" "data.frame"

str(anova(fml))

## Classes 'anova' and 'data.frame': 2 obs. of 5 variables:
## $ Df :int 1 48

## $ Sum Sq : num 21185 11354

## $ Mean Sq: num 21185 237

## $ F value: num 89.6 NA

## $ Pr(>F) : num 1.49e-12 NA

## - attr(*, "heading")= chr [1:2] "Analysis of variance Table\n

"1

Response: dist"

E As an example of the use of values extracted from the summary.1m object, I
show how to test if the slope from a linear regression fit deviates significantly from
a constant value different from the usual zero, which tests for the presence of an
“effect” of the explanatory variable. When testing for deviations from a calibration
by comparing two instruments or an instrument and a reference, a null hypothesis
of one for the slope tests for deviations from the true readings. In some cases,
when comparing the effectiveness of interventions we may be interested to test if
a new approach surpasses that in current use by at least a specific margin. There
exist practical situations where testing if a response exceeds a threshold is of

interest.
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A t-value can be computed for the slope as for the mean. When using anova()
and summary () the null hypothesis is no effect or no response, i.e., slope = 0. The
equivalent test with a null hypothesis of slope = 1 is easy to implement if we
consider how we calculate a t-value (see section 7.7 on page 197). To compute the
t-value we need an estimate for the slope and an estimate of its standard error. To
look up the P-value, we need the degrees of freedom. All these values are available
as members of the summary object of a fitted model.
est.slope.value <- summary(fml)$coefficients["speed", "Estimate"]
est.slope.se <- summary(fml)$coefficients["speed", "std. Error"]
degrees.of.freedom <- summary(fml)$df[2]

The estimate of the t-value, or quantile, is computed based on the difference
between the estimate for the slope and a null hypothesis used as reference, and
the standard error of the estimated slope. A probability is obtained based on the
computed t-value, or quantile, and the t distribution with matching degrees of
freedom with a call to pt() (see section 7.3 on page 189.) For a two-tail test we
multiply by two the one-tail P estimate.

hyp.null <- 1
t.value <- (est.slope.value - hyp.null) / est.slope.se
p.value <- 2 * pt(q = t.value, df = degrees.of.freedom, lower.tail = FALSE)

cat("slope =", signif(est.slope.value, 3),
"with s.e. =", signif(est.slope.se, 3),
"\nt.value =", signif(t.value, 3),

"and pP-value =", signif(p.value, 3))

## slope = 3.93 with s.e. = 0.416
## t.value = 7.06 and P-value = 6.01le-09

This example is for a linear model fitted with function Tm() but the same ap-
proach can be applied to other model fit procedures for which parameter estimates
and their corresponding standard error estimates can be extracted or computed.

7.10 Check that the computations above after replacing hyp.null <- 1 by
hyp.null <- 0 agree with the output of printing summary ().

Modify the example above so as to test whether the intercept is significantly
larger than 5 feet, doing a one-sided test.

Method predict() uses the fitted model together with new data for the inde-
pendent variables to compute predictions. As predict() accepts new data as input,
it allows interpolation and extrapolation to values of the independent variables
not present in the original data. In the case of fits of linear and some other models,
method predict() returns, in addition to the prediction, estimates of the confid-
ence and/or prediction intervals. The new data must be stored in a data frame with
columns using the same names for the explanatory variables as in the data used
for the fit, a response variable is not needed and additional columns are ignored.
(The explanatory variables in the new data can be either continuous or factors, but
they must match in this respect those in the original data.)

7.11 Predict using both fm1 and fm2 the distance required to stop cars moving
at 0, 5, 10, 20, 30, and 40 mph. Study the help page for the predict() method
for linear models (using help(predict.1m)). Explore the difference between
"prediction" and "confidence" bands: why are they so different?
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E The objects returned by model fitting functions contain the full information,
including the data to which the model was fit to. Their structure resembles a nes-
ted list. In most cases, the class of the objects returned by model fit functions
agrees in name with the name of the function ("1m" in this example) but is not
derived from "T1ist". The query functions, either extract parts of the object or do
additional calculations and formatting based on them. Different specialisations
of these methods are called depending on the class of the model fit object. (See
section 6.3 on page 176.)

class(fml)

## [1] "Im"

names (fml)

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "xTevels" "call" "terms" "model"

The structure of model fit objects is of interest only when the query or accessor
functions do not provide the needed information and components have to be ex-
tracted using operator [[ ]]. Exploring these objects is also a way of learning how
model fitting works in R. As with any other objects, str() shows the structure.
str(fml, no.list = TRUE, give.attr = FALSE, vec.len = 2)

## $ coefficients : Named num [1:2] -17.58 3.93

## $ residuals : Named num [1:50] 3.85 11.85 ..

## § effects : Named num [1:50] -304 146 ..

## $ rank :int 2

## $ fitted.values: Named num [1:50] -1.85 -1.85 ...

## $ assign :int [1:2] 0 1

## $ qr :List of 5

## ..$ qgr : num [1:50, 1:2] -7.071 0.141 ...

## ..$ qraux: num [1:2] 1.14 1.27

## ..$ pivot: int [1:2] 1 2

## ..$ tol : num le-07

## ..$ rank : int 2

## $ df.residual : int 48

## $ xlevels : Named Tist(Q)

## $ call : language Im(formula = dist ~ 1 + speed, data = cars)
## $ terms :Classes 'terms', 'formula' Tanguage dist ~ 1 + speed
## $ model :'data.frame': 50 obs. of 2 variables:

## ..$ dist : num [1:50] 2 10 4 22 16 ...

## ..$ speed: num [1:50] 4 477 8 ...

Member call contains the function call and arguments used to create object
fml.

str(fml$call)
## Tlanguage Im(formula = dist ~ 1 + speed, data = cars)

7.9.2 Analysis of variance, ANOVA

In ANOVA, the explanatory variable is categorical, and in R, must be a factor or
ordered factor (see section 3.12 on page 79). As a linear model, the fitting approach
is the same as for linear and polynomial regression (Figure 7.2). The InsectsSprays
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data set used in the next example gives insect counts in plots sprayed with different
insecticides. In these data, spray is a factor with six levels.

What determines that this is an ANOVA is that spray, the explanatory variable,
is a factor.

data(InsectSprays)
is.numeric(InsectSprays$spray)

## [1] FALSE
is.factor(InsectSprays$spray)
## [1] TRUE
Tevels(InsectSprays$spray)

## [1] "A" "B" "c" "p" "E" "F"

By using a factor instead of a numeric vector, a different model matrix is built
from an equivalent formula.
fm4 <- Tm(count ~ spray, data = InsectSprays)

Diagnostic plots are obtained in the same way as for linear regression. We show
only the quantile-quantile plot for simplicity, but during data analysis it is very
important to check all the diagnostics plots. As many of the residuals deviate from
the one-to-one line we have to conclude the residuals do not follow the Normal
distribution, and a different approach to model fitting should be used (see section
7.10 on page 217).
plot(fm4, which = 2)
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In ANOVA, most frequently the interest is in testing hypotheses with function
anova(), which implements the F-test for the main effects of factors and their
interactions. In this example, with a single explanatory variable, there is only one
effect of interest, that of sprays.

anova(fm4)

## Analysis of variance Table

##

## Response: count

## Df Sum Sq Mean Sq F value Pr(>F)

## spray 5 2668.8 533.77 34.702 < 2.2e-16 ***
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## Residuals 66 1015.2 15.38
#H# ———
## Signif. codes: 0 '#*%' 0.001 '+%' 0.01 '%' 0.05 '.' 0.1 " ' 1

Function summary () can be used to extract parameter estimates informing of
the size of the effects, but meaningfully only by using contrasts different to the
default ones. Function aov() is a wrapper on Tm() that returns an object that by
default displays the output of anova() also with summary(), but even in this case
it can be preferable to change the default contrasts (see help(aov)).

The contrasts used affect the estimates returned by coef() and summary() ap-
plied to an ANOVA model fit. The default used in R, contr.treatment(), is dif-
ferent to that used in S, contr.helmert. With contr.treatment the first level of
the factor (assumed to be a control) is used as a reference for the estimation of
coefficients for the remaining factor levels and testing of their significance. With
contr.helmert the contrasts are of the second level with the first, the third with
the average of the first two, and so on. These contrasts depend on the order of
factor levels. Instead, contr.sum uses as reference the mean of all levels, i.e., us-
ing as a condition that the coefficient estimates add up to zero. Obviously what
type of contrast is used changes what the coefficient estimates describe, and, con-
sequently, how the p-values should be interpreted.

The approach used by default for model fits and ANOVA calculations varies
among programs. There exist different so-called “types” of sums of squares, usu-
ally called I, II, and III. In orthogonal designs, the choice is of no consequence, but
differences can be important for unbalanced designs, even leading to different
conclusions. R’s default, type I, is usually considered to suffer milder problems
than type III, the default used by SPSS and SAS. In any case, for unbalanced data it
is preferable to use the approach implemented in package ‘nime’.

The most straightforward way of setting a different default for contrasts for
a whole series of model fits is by setting R option contrasts, which we here only
print.
options("contrasts")

## $contrasts
## unordered ordered
## "contr.treatment" "contr.poly"

The option is set to a named character vector of length two, with the first value,
named unordered giving the name of the function used when the explanatory vari-
able is an unordered factor (created with factor()) and the second value, named
ordered, giving the name of the function used when the explanatory variable is an
ordered factor (created with ordered()).

It is also possible to select the contrast to be used in the call to aov() or Tm().

fm4trea <- Tm(count ~ spray, data = InsectSprays,
contrasts = Tist(spray = contr.treatment))

fm4sum <- Tm(count ~ spray, data = InsectSprays,
contrasts = Tist(spray = contr.sum))

In fm4treawe used contr.treatment (), thus contrasts for individual treatments
are done against sprayl taking it as the control or reference, as can be inferred
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from the generated contrasts matrix. For this reason, there is no row for sprayl
in the summary table. Each of the rows spray2 to Spray6 is a test comparing these
treatments individually against spray1.

contr.treatment (length(levels(InsectSprays$spray)))

## 23456
# 100000
# 210000
# 3 01000
## 400100
# 500010
# 6 00001
summary (fm4trea)
##

## call:

## Im(formula = count ~ spray, data = InsectSprays, contrasts = Tist(spray = ...
##
## Residuals:

## Min 1Q Median 3Q Max

## -8.333 -1.958 -0.500 1.667 9.333

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 14.5000 1.1322 12.807 < 2e-16 ***
## sprayB 0.8333 1.6011 0.520 0.604

## sprayC -12.4167 1.6011 -7.755 7.27e-11 #*%*
## sprayD -9.5833 1.6011 -5.985 9.82e-08 ##**
## sprayE -11.0000 1.6011 -6.870 2.75e-09 ##**
## sprayF 2.1667 1.6011 1.353 0.181

#H# ———

## Signif. codes: 0 '***' 0.001 '%*' 0.01 '*' 0.05 '.' 0.1 " ' 1
#i#

## Residual standard error: 3.922 on 66 degrees of freedom
## Multiple R-squared: 0.7244, Adjusted R-squared: 0.7036
## F-statistic: 34.7 on 5 and 66 DF, p-value: < 2.2e-16

In fm4sum we used contr.sum() with the sum constrained to be zero, thus estim-
ates for the last treatment level are determined by the sum of the previous ones,
and not tested for significance.

contr.sum(length(levels(InsectSprays$spray)))
# [,11 [,2]1 [,31 [,4]1 [,5]

## 0

#i#
#i#
#i#
#i#
##
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P OOORr O
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summary (fm4sum)

##

## call:

## Im(formula = count ~ spray, data = InsectSprays, contrasts = Tist(spray = ...
##

## Residuals:

#i# Min 1Q Median 3Q Max

## -8.333 -1.958 -0.500 1.667 9.333

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 9.5000 0.4622 20.554 < 2e-16 #%**
## sprayl 5.0000 1.0335 4.838 8.22e-06 *
## spray2 5.8333 1.0335 5.644 3.78e-07

## spray3 -7.4167 1.0335 -7.176 7.87e-10

## spray4 -4.5833 1.0335 -4.435 3.57e-05 *
## spray5 -6.0000 1.0335 -5.805 2.00e-07 #**=*
## ———

## Signif. codes: 0 'x**' 0.001 '#*' 0.01 '+' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 3.922 on 66 degrees of freedom
## Multiple R-squared: 0.7244, Adjusted R-squared: 0.7036
## F-statistic: 34.7 on 5 and 66 DF, p-value: < 2.2e-16

7.12 Explore how taking the last level as reference in contr.sAs() instead
of the first one as in contr.treatment() affects the estimates. Reorder the levels
of factor spray so that the test using contr.sAs() becomes equivalent to that ob-
tained above with contr.treatment(). Consider why contr.poly() is the default
for ordered factors and when contr.helmert() could be most useful.

Contrasts, on the other hand, do not affect the table returned by anova() as
this table does not deal with the effects of individual factor levels. The overall es-
timates shown at the bottom of the summary table remain unchanged. In other
words, when using different contrasts what changes is how the total variation ex-
plained by the fitted model is partitioned into components to be tested for specific
contributions to the overall model fit.

Post-hoc tests based on specific contrasts and multiple comparisons tests
are most frequently applied after an ANOVA to test for differences among pairs
of treatments or specific combinations of treatments. R function Tukey.test()
implements Tukey’s HSD (honestly significant difference) test for pairwise tests.
Function pairwise.t.test() supports different correction methods for the P-
values from simultaneous t-tests. Function p.adjust() applies adjustments to P-
values and can be used when the test procedure does not apply them. The most
comprehensive implementation of multiple comparisons is available in package
‘multcomp’. Function g1ht () (general linear hypothesis testing) from this package
supports different contrasts and adjustment methods.

Contrasts and their interpretation are discussed in detail by Venables and
Ripley (2002) and Crawley (2012).
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Figure 7.4
Diagram showing the steps for updating a fitted model (in filled boxes) together
with the previous steps in unfilled boxes. Please, see Figure 7.2 for other details.

7.9.3 Analysis of covariance, ANCOVA

When a linear model includes both explanatory factors and continuous explanatory
variables, we may call it analysis of covariance (ANCOVA). The formula syntax is the
same for all linear models and, as mentioned in previous sections, what determines
the type of analysis is the nature of the explanatory variable(s). As the formulation
remains the same, no specific example is given. The main difficulty of ANCOVA is
in the selection of the covariate and the interpretation of the results of the analysis,
especially, when the covariate is not independent of the treatment described by the
factor (e.g. Smith 1957).

7.9.4 Model update and selection

Model fit objects can be updated, i.e., modified, because they contain not only the
results of the fit but also the data to which the model was fit (see page 208). Given
that the call is also stored, all the information needed to recalculate the same fit is
available. Method update () makes it possible to recalculate the fit with changes to
the call, without passing again all the arguments to a new call to 1m() (Figure 7.4).
We can modify different arguments, including selecting part of the data by passing
a new argument to formal parameter subset.

Method update () retrieves the call from the model fit object using getcall(),
modifies it and, by default, evaluates it. The default update() method works as
long as the model-fit object contains a member named cal1l or if a specialisation
of getcall() is available. Thus, method update() can be used with models fitted
with other functions in addition to 1m().

For the next example, we recreate the model fit object fm4 from page 209.
fm4 <- Tm(count ~ spray, data = InsectSprays)

anova(fm4)

## Analysis of variance Table

#i#t

## Response: count

## Df Sum Sq Mean Sq F value Pr(>F)

## spray 5 2668.8 533.77 34.702 < 2.2e-16 *%**

## Residuals 66 1015.2 15.38

## ———

## Signif. codes: 0 '***' 0.001 '**' 0.01 '+«' 0.05 '.' 0.1 " ' 1

fm4a <- update(fm4, formula = ToglO(count + 1) ~ spray)
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anova(fm4a)

## Analysis of variance Table

##

## Response: loglO(count + 1)

## Df Sum Sq Mean Sq F value Pr(>F)

## spray 5 7.2649 1.45297 46.007 < 2.2e-16 ¥*¥**

## Residuals 66 2.0844 0.03158

## ——

## Signif. codes: 0O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

7.13 Print fm4$call and fm4a$call. These two calls differ in the argument to
formula. What other members have been updated in fm4a compared to fm4?

In the chunk above we replaced the argument passed to formula. This is a fre-
quent use, but, for example, to fit the same model to a subset of the data, we can
pass a suitable argument to parameter subset.
fm4b <- update(fm4, subset = lspray %in% c("A", "B"))

anova (fm4b)

## Analysis of variance Table

##

## Response: count

## Df Sum Sg Mean Sg F value Pr(>F)

## spray 3 1608.4 536.14 41.422 7.119e-13 #**

## Residuals 44 569.5 12.94

## ——

## Signif. codes: 0 '**%' 0.001 '#%' 0.01 '+' 0.05 '.'" 0.1 ' "1

7.14 When having many treatments with long names, which is not the case
here, instead of listing the factor levels for which to subset the data, it can be
convenient to use regular expressions for pattern matching (see section 3.4 on
page 46). Run the code below, and investigate why anova(fm4b) and anova(fm4c)
produce the same ANOVA table printout, but the fit model objects are not identical.
You can use str() to explore if any members differ between the two objects.

fm4c <- update(fm4, subset = lgrepl("[AB]", spray))
anova(fm4c)
identical (fm4b, fm4c)

Method update () plays an additional role when the fitting is done by numer-
ical approximation, as the previously computed estimates are used as the starting
values for the numerical calculations required for fitting the updated model (see
section 7.11 on page 220 as an example). This can drastically decrease computa-
tion time, or even easy the task of finding suitable starting values for parameter
estimates by fitting increasingly more complex nested models.

Method update() used together with Azc() (or anova()) gives us the tools to
compare nested models, and select one out of a group as shown above. When com-
paring several models doing the comparisons manually is tedious, and in scripts,
in many cases difficult to write code that is flexible (or abstract) enough. Method
step () automates stepwise selection of nested models such as the selection among
polynomials of different degrees or which variables to retain in multiple regres-
sion. After fitting a model, method step() is used to update this model using an
automatic stopping criterion (Figure 7.5).
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Figure 7.5

Diagram showing the steps used for stepwise model selection among nested mod-
els (in filled boxes) together with the previous steps in unfilled boxes. The range
of models to select from can be set by the user. See Figure 7.2 for other details.

Stepwise model selection—either in the forward direction from simpler to more
complex models, in the backward direction from more complex to simpler models
or in both directions—is implemented in base R’s method step() using Akaike’s
information criterion (AIC) as the selection criterion. Use of method step() from
R is possible, for example, with Tm() and g1m fits. AIC is described on page 204.

For the next example, we use fm3 from page 204, a linear model for a polynomial
regression. If, as shown here, no models are passed through formal parameter
scope, the previously fit model will be simplified, if possible. Method step() by
default prints to the console a trace of the models tried and the corresponding
AIC estimates.
fm3 <- Tm(dist ~ speed + I(speedA2), data = cars)
fm3a <- step(fm3)

## Start: AIC=274.88
## dist ~ speed + I(speedA2)

##
## Df Sum of Sq RSS AIC
## — speed 1 46.42 10871 273.09
## <none> 10825 274.88
## - I(speedA2) 1 528.81 11354 275.26
##

## Step: AIC=273.09
## dist ~ I(speedA2)

##

## Df Sum of Sq RSS AIC
## <none> 10871 273.09
## — I(speedA2) 1 21668 32539 325.91

Method summary() reveals the differences between the original and updated
models.

summary (fm3)

##

## call:

## Im(formula = dist ~ speed + I(speedA2), data = cars)
##

## Residuals:

## Min 1Q Median 3Q Max

## -28.720 -9.184 -3.188 4.628 45.152

##

## Coefficients:
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## Estimate Sstd. Error t value Pr(>|t])
## (Intercept) 2.47014 14.81716 0.167 0.868
## speed 0.91329 2.03422 0.449 0.656
## I(speedA2) 0.09996 0.06597 1,515 0.136
##

## Residual standard error: 15.18 on 47 degrees of freedom
## Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532
## F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12
summary (fm3a)

##

## call:

## Im(formula = dist ~ I(speedA2), data = cars)

#if

## Residuals:

## Min 1Q Median 3Q Max

## -28.448 -9.211 -3.594 5.076 45.862

#i#

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 8.86005 4.08633 2.168 0.0351 *

## I(speedA2) 0.12897 0.01319 9.781 5.2e-13 ***

## ——

## Signif. codes: 0 '***' 0.001 '%*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#it

## Residual standard error: 15.05 on 48 degrees of freedom
## Multiple R-squared: 0.6659, Adjusted R-squared: 0.6589
## F-statistic: 95.67 on 1 and 48 DF, p-value: 5.2e-13

If we pass a model with additional terms through parameter scope this model
will be taken as the most complex model to be assessed. If, instead of one model,
we pass two nested models in a list and name them lower and upper, they will
delimit the scope of the stepwise search. In the next example, we see that first a
backward search is done and term speed is removed because it removal decreases
(= improves) AIC. Subsequently, a forward search is done unsuccessfully, as AIC
increases.

fm3b <-
step(fm3,
scope = dist ~ speed + I(speedA2) + I(speedA3) + I(speedArd))
## Start: AIC=274.88
## dist ~ speed + I(speedA2)

##

## Df sum of Sq RSS AIC
## - speed 1 46.42 10871 273.09
## <none> 10825 274.88

## — I(speedA2) 1 528.81 11354 275.26
## + I(speedrd) 1 233.62 10591 275.79
## + I(speedA3) 1 190.35 10634 275.99
#it

## Step: AIC=273.09

## dist ~ I(speedA2)

##

#i# Df sum of Sq RSS AIC
## <none> 10871 273.09
## + speed 1 46.4 10825 274.88
## + I(speedA3) 1 5.6 10866 275.07
## + I(speedrd) 1 0.0 10871 275.09
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## - I(speedA2) 1 21667.8 32539 325.91

summary (fm3b)

##

## call:

## Im(formula = dist ~ I(speedA2), data = cars)

##

## Residuals:

## Min 1Q Median 3Q Max

## -28.448 -9.211 -3.594 5.076 45.862

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.86005 4.08633 2.168 0.0351 =

## I(speedA2) 0.12897 0.01319 9.781 5.2e-13 #***

## ———

## Signif. codes: O '***' 0.001 '%*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 15.05 on 48 degrees of freedom
## Multiple R-squared: 0.6659, Adjusted R-squared: 0.6589
## F-statistic: 95.67 on 1 and 48 DF, p-value: 5.2e-13

7.15 Explain why the stepwise model selection in the code below differs from
those in the two previous examples. Consult help(step) is necessary.

fm3c <-
step(fm3,
scope = Tist(lower = dist ~ speed,
upper = dist ~ speed + I(speedA2) + I(speedA3) + I(speedArd)))
summary (fm3c)

Functions update () and step() are convenience functions as they provide direct
and/or simpler access to operations available through other functions or combined
use of multiple functions.

7.10 Generalised Linear Models

Linear models make the assumption of normally distributed residuals. Generalised
linear models, fitted with function g1m(), are more flexible, and allow the assumed
distribution to be selected as well as the link function (defaults are as in 1m(Q)).
Figure 7.6 shows that the steps used to fit a model with g1m() are the same as with
Tm() except that we can select the probability distribution assumed to describe
the variation among observations. Frequently used probability distributions are
binomial and Poisson (see help(family) for the variations and additional ones).
For count data, GLMs are preferred over LMs. In the example below, we fit the
same model as above, but assuming a quasi-Poisson distribution instead of the
Normal. An argument passed to family selects the assumed error distribution.
The Insectsprays data set used in the next example, gives insect counts in plots
sprayed with different insecticides. In these data, spray is a factor with six levels.
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Figure 7.6

Generalised linear model fitting in R is done in steps similar to those used for
linear models. Generic diagram from Figure 7.1 redrawn to show a generalised lin-
ear model fit. Non-filled boxes are shared with fitting of other types of models,
and filled ones are specific to gim(). Only the three most frequently used query
methods are shown, while both response and explanatory variables are under ob-
servations. Dashed boxes and arrows are optional as defaults are provided.

fml0 <- glm(count ~ spray, data = InsectSprays, family = quasipoisson)

Method plot() as for linear-model fits, produces diagnosis plots. We show, as
before, the quantile-quantile plot of residuals. The Normal distribution assumed
above in the linear model fit was not a good approximation (section 7.9.2 on page
208), as count data are known to follow a different distribution. This is clear by
comparing the quantile-quantile plot for fm4 (page 208) and the plot below for the
model fit under the assumption of a Quasi-Poisson distribution.
plot(fm10, which = 2)

© Q-Q Residuals
N
276 390
T 2 A 230
3
—
) ]
[&] ~
[
®
> o ]
[ -
[a)
T v |
o o
o
o

Theoretical Quantiles
glm(count ~ spray)

The printout from the anova() method for GLM fits has some differences to that
for LM fits. In R versions previous to 4.4.0, no test statistics or P-values were com-
puted unless requested by passing an argument to parameter test. In later versions
of R, either a chi-squared test or an F-test are computed by default depending on
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whether the dispersion is fixed or free. We here use "F" as an argument to request
an F-test.

anova(fml0, test = "F")

## Analysis of Deviance Table

#i#

## Model: quasipoisson, link: Tog

#i#

## Response: count

#if

## Terms added sequentially (first to Tast)

#i#

#i#

## Df Deviance Resid. Df Resid. Dev F Pr(>F)

## NULL 71 409.04

## spray 5 310.71 66 98.33 41.216 < 2.2e-16 #*#**
## ——

## Signif. codes: O '%%%' 0.001 '%*' 0.01 '+*' 0.05 '.'" 0.1 " " 1

We can extract different components similarly as described for linear models
(see section 7.9 on page 200).
class (fm10)
## [1] "gTm"™ "Tm"
summary (fm10)

##

## call:

## gIim(formula = count ~ spray, family = quasipoisson, data = InsectSprays)
##

## Coefficients:

## Estimate std. Error t value Pr(>|t]|)

## (Intercept) 2.67415 0.09309 28.728 < 2e-16 #***

## sprayB 0.05588 0.12984  0.430 0.668

## spraycC -1.94018 0.26263 -7.388 3.30e-10 ***

## sprayD -1.08152 0.18499 -5.847 1.70e-07 ***

## sprayE -1.42139 0.21110 -6.733 4.82e-09 ***

## sprayF 0.13926 0.12729 1.094 0.278

## ——

## Signif. codes: O '***' 0.001 '%*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#i#

## (Dispersion parameter for quasipoisson family taken to be 1.507713)
##

## Null deviance: 409.041 on 71 degrees of freedom
## Residual deviance: 98.329 on 66 degrees of freedom
## AIC: NA

##

## Number of Fisher Scoring iterations: 5
head(residuals(fm10))

## 1 2 3 4 5 6
## -1.2524891 -2.1919537 1.3650439 -0.1320721 -0.1320721 -0.6768988
head(fitted(fm10))

## 1 2 3 4 5 6
## 14.5 14.5 14.5 14.5 14.5 14.5

E If we use str() or names() we can see that there are some differences with
respect to linear model fits. The returned object is of a different class and contains
some members not present in linear models. Two of these have to do with the
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iterative approximation method used, iter contains the number of iterations used
and converged the success or not in finding a solution.

class (fm10)

## [1] "gIm" "Inm"

names (fm10)

## [1] "coefficients" "residuals" "fitted.values"
## [4] "effects" "R" "rank"

## [7] "qr" "family" "Tinear.predictors"
## [10] "deviance" "aic" "null.deviance"
## [13] "iter" "weights" "prior.weights"
## [16] "df.residual" "df.null" "y"

## [19] "converged" "boundary" "model1"

## [22] "call" "formula" "terms"

## [25] "data" "offset" "control"

## [28] "method" "contrasts" "xlevels"
fml0$converged

## [1] TRUE

fm10$iter

## [1] 5

Methods update() and step(), described for Tm() in section 7.9.4 on page 213,
can be also used with models fitted with g1m().

7.11 Non-Linear Regression

By non-linear it is meant non-linear in the parameters whose values are being es-
timated through fitting the model to observations. This is different from the shape
of the function when plotted—i.e., polynomials of any degree are linear models. In
contrast, the Michaelis-Menten equation used in chemistry and the Gompertz equa-
tion used to describe growth are models that are non-linear in their parameters.

While analytical algorithms exist for finding estimates for the parameters of
linear models, in the case of non-linear models, the estimates are obtained by ap-
proximation. For analytical solutions, estimates can always be obtained (except
in pathological cases affected by the limitations of floating point numbers de-
scribed on page 27). For approximations obtained through iteration, cases when
the algorithm fails to converge onto an answer are relatively common. Iterative
algorithms attempt to improve an initial guess for the values of the parameters
to be estimated, a guess frequently supplied by the user. In each iteration, the es-
timate obtained in the previous iteration is used as the starting value, and this
process is repeated one time after another. The expectation is that after a finite
number of iterations the algorithm will converge into a solution that “cannot” be
improved further. In real life, we stop iteration when the improvement in the fit is
smaller than a certain threshold, or when no convergence has been achieved after
a certain maximum number of iterations. In the first case, we usually obtain good
estimates; in the second case, we do not obtain usable estimates and need to look
for different ways of obtaining them.
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Non-linear model fitting in R is done in steps. Generic diagram from Figure 7.1
redrawn to show a non-linear model fit. Non-filled boxes are shared with fitting of
other types of models, and filled ones are specific to n1s(). Only the three most
frequently used query methods are shown, while both response and explanatory
variables are under observations. Dashed boxes and arrows are optional as defaults
are provided.

When convergence fails, the first thing to do is to try different starting values
and if this also fails, switch to a different computational algorithm. These steps
usually help, but not always. Good starting values are in many cases crucial and in
some cases “guesses” can be obtained using either graphical or analytical approx-
imations.

Function n1s() is R’s workhorse for fitting non-linear models. The steps for
its use are similar to those for LM and GLM (Figure 7.7). One difference is that
starting values are needed, and another difference is in how the model to be fitted
is specified: the user provides the names of the parameters and a model equation
that includes in the rhs a call to an R function.

In cases when algorithms exist for “guessing” suitable starting values, R
provides a mechanism for packaging the R function to be fitted together
with the R function generating the starting values. These functions go by the
name of self-starting functions and relieve the user from the burden of guess-
ing and supplying suitable starting values. The self-starting functions available
in R are ssasymp(), SSasympoff(), SSasymporig(), SShiexp(), ssfol(), ssfpl1(),
ssgompertz(), SSlogis(), ssmicmen(), and Ssweibul1(). Function selfstart() can
be used to define new ones. All these functions can be used when fitting models
with n1s or nime. The respective help pages give the details.

In calls to n1s(), the rhs of the model formula is a function call. The names
of its arguments if not present in data are assumed to be parameters to be fitted.
Below, a named function

As example the Michaelis-Menten equation describing reaction kinetics in bio-
chemistry and chemistry is fitted to the puromycin data set. The mathematical for-
mulation is given by

d[P] _ Vmaxl[S]
dt Ky +I[S]

- (7.1)
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and is implemented in R under the name ssmicmen() as a self-starting function.
data(Puromycin)

names (Puromycin)

## [1] "conc" "rate" 'state"

fm21 <- nls(rate ~ Ssmicmen(conc, vm, K), data = Puromycin,
subset = state == "treated")

As for other fitted models we use query methods (see section 7.9 on page 200).
class(fm21)
## [1] "nls"
summary (fm21)
##
## Formula: rate ~ SSmicmen(conc, vm, K)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t])
## vm 2.127e+02 6.947e+00 30.615 3.24e-11 #*%**
## K 6.412e-02 8.281e-03 7.743 1.57e-05 ***

## ———

## Signif. codes: 0 'x**' 0.001 '**' 0.01 '+*' 0.05 '." 0.1 ' "1
##

## Residual standard error: 10.93 on 10 degrees of freedom

##

## Number of iterations to convergence: 0
## Achieved convergence tolerance: 1.929e-06

residuals(fm21)

## [1] 25.4339971 -3.5660029 -5.8109605 4.1890395 -11.3616075 4.6383925
## [7] -5.6846886 -12.6846886 0.1670798 10.1670798 6.0311723 -0.9688277
## attr(,"Tabel™)

## [1] "Residuals"

fitted(fm21)

## [1] 50.5660 50.5660 102.8110 102.8110 134.3616 134.3616 164.6847 164.6847
## [9] 190.8329 190.8329 200.9688 200.9688

## attr(,"label™)

## [1] "Fitted values"

E Methods str() and names() can reveal differences with respect to linear and
generalised linear models. The fitted model object is of class n1s contains addi-
tional members but lacks others. Two members are related to the iterative ap-
proximation method used, control containing nested members holding iteration
settings, and convinfo (convergence information) with nested members with in-
formation on the outcome of the iterative algorithm.

class (fm21)

## [1] "nls"

names (fm21)

## [1] "m" "convinfo" "data" "call" "dataClasses"
## [6] "control"
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fm21$convinfo

## $isConv

## [1] TRUE

#i#

## $finIter

## [1] O

##

## $finTol

## [1] 1.928554e-06
##

## $stopCode

## [1] O

##

## $stopMessage

## [1] "converged"

Method update (), described for Tm() in section 7.9.4 on page 213, can be also
used with models fitted with n1s(). The use of previous estimates as guesses for
updates is an important feature.

7.12 Splines and Local Regression

The name “spline” derives from the tool used by draftsmen to draw smooth curves.
Originally, a spline of soft wood was used as a flexible guide to draw arbitrary
curves. Later the wood splines were replaced by a rod of flexible metal, such as
lead, encased in plastic or similar material but the original name persisted. In math-
ematics, splines are functions that describe smooth and flexible curves.

Most of the model fits given above as examples produce estimates for para-
meters that are interpretable in the real world, directly in the case of mechanistic
models like the estimate of reaction constants or at least indicating broadly a re-
lationship between two variables as in the case of linear regression. In the case
of polynomials with degree higher than 2, parameter estimates no longer directly
describe features of the data.

Splines take this a step farther and parameter estimates have no practical in-
terest. The interest resides in the overall shape and position of the predicted curve.
Splines consist of knots (or connection points) joined by straight or curved fitted
lines, i.e., they are functions that are piecewise. The simplest splines, are piece-wise
linear, given by chained straight line segments connecting knots.

In more complex splines, the segments are polynomials, frequently cubic poly-
nomials, that fulfil certain constraints at the knots. For example, that the slope or
first derivative is the same for the two connected curve “pieces” at the knot where
they are connected. This constraint ensures that the curve is smooth. In some
cases, similar constraints are imposed on higher order derivatives, for example, to
the second derivative to ensure that the curve of the first derivative is also smooth
at the knots.

Splines are used in free-hand drawing with computers to draw arbitrary smooth
curves. They are also be used for interpolation, in which case observations, as-



224 Base R: “Verbs” and “Nouns” for Statistics

” fitted
obs. = x
\ /
smooth.spline() > smooth.spline obj. > predict()
/
obs. -y T
residuals()
Figure 7.8

Fitting of smooth splines in R. Generic diagram from Figure 7.1 redrawn to show
the fitting of splines. Non-filled boxes are shared with fitting of other types of
models, and filled ones are specific to smooth.spline(). Only the three most fre-
quently used query methods are shown, while response and explanatory variables
are passed separately to x and y.

sumed to be error-free, become the knots of a spline used to approximate inter-
mediate values. Finally, splines can be used as models to be fit to observations
subject to random variation. In this case splines fulfil the role of smoothers, as a
curve that broadly describes a relationship among variables.

Splines are frequently used as smooth curves in plots as described in sec-
tion 9.6.3 on page 320. Function spline() is used for interpolation and function
smooth.spline() for smoothing by fitting a cubic spline (a spline where the knots
are connected by third degree polynomials). Function smooth.spline() has a differ-
ent user interface than that we used for model fit functions described above, as it
only accepts numeric vectors as arguments to parameters x and y (Figure 7.8). Ad-
ditional parameters make it possible to override the defaults for number of knots
and adjust the stiffness or tendency towards a straight line. The plot() method
for splines, differently to the methods for other fit functions, produces a plot of
the prediction. As no model formula is used, only one curve at a time is fitted and
no statistical tests involving groups are possible. The most commonly used query
functions are thus not the same as for linear and non-linear models.

fsl <- smooth.spline(x = cars$speed, y = cars$dist)
print(fsl)

## call:

## smooth.spline(x = cars$speed, y = cars$dist)

##

## Smoothing Parameter spar= 0.7801305 Tambda= 0.1112206 (11 iterations)
## Equivalent Degrees of Freedom (Df): 2.635278

## Penalized Criterion (RSS): 4187.776

## GCV: 244.1044

plot(fsl, type = "1")

points(x = cars$speed, y = cars$dist)
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Figure 7.9

Loess model fitting in R is done in steps. Generic diagram from Figure 7.1 redrawn
to show local polynomial regression model fitting. Non-filled boxes are shared with
fitting of other types of models, and filled ones are specific to Toess (). Only the
three most frequently used query methods are shown, while both response and ex-
planatory variables are under observations. Dashed boxes and arrows are optional
as defaults are provided.
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Function loess implements local polynomial regression. It fits a polynomial
curve or surface (i.e., more than one explanatory variable can be included in the
model formula) using local-weighted fitting. Its user interface is rather similar to
that of g1m() with formula, family and data formal parameters (Figure 7.9). Addi-
tional parameters control “stiffness” or the extent of the local data used for fitting
(how much weight is given to observations as a function of their distance). The
type of fit local or not used for individual explanatory variables can be controlled
through parameter parametric.

floc <- loess(dist ~ speed, data = cars)
class(floc)

## [1] "Toess"

summary (floc)

## call:

## loess(formula = dist ~ speed, data = cars)
##
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## Number of Observations: 50

## Equivalent Number of Parameters: 4.78
## Residual standard Error: 15.29

## Trace of smoother matrix: 5.24 (exact)

##

## Control settings:

## span : 0.75

##  degree 3 2

##  family : gaussian

## surface : interpolate cell = 0.2

## normalize: TRUE
## parametric: FALSE
## drop.square: FALSE

Function anova() can be used to compare two or more loess fits, but not on
a single one.

Several modern approaches to data analysis, which do provide estimates of
effects’ significance and sizes, are based on the use of splines to describe the re-
sponses and even variance. Among them are additive models such as GAM and re-
lated methods (see Wood 2017) and functional data analysis (FDA) (Ramsay 2009).
These methods are implemented in specialised extension packages and fall out-
side the scope of this book.

7.13 Model Formulas

Model formulas, such as y ~x are widely used in R, both in model fitting as exempli-
fied in previous sections of this chapter and in plotting when using base R pTot()
methods.

R is consistent and flexible in how it treats various objects, to an extent that can
be surprising to those familiar with other computer languages. Model formulas
are objects of class formula and mode call and can be manipulated and stored
similarly to objects of other R classes.
class(y ~ x)

## [1] "formula"
mode(y ~ x)
## [1] "call™

Like any other R object formulas can be assigned to variables and be members
of lists and vectors. Consequently, the first linear model fit example from page 202
can be rewritten as follows.

my.formula <- dist ~ 1 + speed
fml <- Tm(my.formula, data=cars)

In some situations, e.g., calculation of correlations, models lacking a lhs term (a
term on the left-hand side of ~) are used. At least one term must be present in the
rhs of model formulas, as an expression ending in ~ is syntactically incomplete.



Model Formulas 227

class(~ x + vy)

## [1] "formula"
mode(~ X + y)

## [1] "call™
is.empty.model (~ x + y)
## [1] FALSE

Some details of R formulas can be important in advanced scripts. Two kinds
of “emptiness” are possible for formulas. As with other classes, empty objects or
vectors of length zero are valid and can be created with the class constructor. In
the case of formulas, there is an additional kind of emptiness, a formula describing
a model with no explanatory terms on its rhs.

An “empty” object of class formula can be created by a call to formula() with
no arguments, similarly as a numeric vector of length zero is created by the call
numeric(). The last, commented out, statement in the code below triggers an error
as the argument passed to is.empty.model() is of length zero. (This behaviour
is not consistent with numeric vectors of length zero; see for example the value
returned by is.finite(numeric()).)
class(formula())

## [1] "formula"
mode (formula())
## [1] "Tist"
length(formula())
## [1] 0

A model formula describing a model with no explanatory terms on the rhs, is
considered empty even if it is a valid object of class formula and, thus, not missing.
While y ~ 1 describes a model with only an intercept (estimating a = x),y ~ 0 or
its equivalent y ~ -1, describes an empty model that cannot be fitted to data.
class(y ~ 0)

## [1] "formula"
mode(y ~ 0)

## [1] "call"
is.empty.model (y ~ 0)
## [1] TRUE
is.empty.model (y ~ 1)
## [1] FALSE
is.empty.model (y ~ x)
## [1] FALSE

The value returned by Tength() on a single formula is not always 1, the number
of formulas in the vector of formulas, but instead the number of components in
the formula. For longer vectors, it does return the number of member formulae.
Because of this, it is better to store model formulas in objects of class 1ist than
in vectors, as Tength() consistently returns the expected value on lists.
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Tength(formula())
## [1] O
length(y ~ 0)
## [1]1 3
length(y ~ 1)
## [1] 3
length(y ~ x)
## [1] 3
length(c(y ~ 1, y ~ x))
# [1] 2
length(list(y ~ 1))
# [1] 1
length(list(y ~ 1, y ~ X))
## [1] 2
As described above, Tength() applied to a single formula and to a list of for-
mulas behaves differently. To call Tength() on each member of a list of formulas,
we can use sapply() (see section 5.8 on page 154). As function is.empty.model ()
is not vectorised, we also have to use sapply() with a list of formulas.
sapply(list(y ~ 0, y ~ 1, y ~ x), length)
## [1] 3 3 3
sapply(list(y ~ 0, y ~ 1, y ~ x), is.empty.model)
## [1] TRUE FALSE FALSE

In the examples in previous sections, we fitted simple models. More complex
ones can be easily formulated using the same syntax. First of all, one can avoid
using of operator * by explicitly defining all individual main effects and interac-
tions using operators + and : . The syntax implemented in base R allows grouping
by means of parentheses, so it is also possible to exclude some interactions by
combining the use of * and parentheses.

The same symbols as for arithmetic operators are used for model formulas.
Within a formula, symbols are interpreted according to formula syntax. When we
mean an arithmetic operation that could be interpreted as being part of the model
formula we need to “protect” it by means of the identity function 1(). The next
two examples define formulas for models with only one explanatory variable. With
formulas like these, the explanatory variable will be computed on the fly when
fitting the model to data. In the first case below, we need to explicitly protect
the addition of the two variables into their sum, because otherwise they would
be interpreted as two separate explanatory variables in the model. In the second
case, Tog() cannot be interpreted as part of the model formula, and consequently
does not require additional protection, neither does the expression passed as its
argument.

y ~ I(x1 + x2)
y ~ Tog(x1l + x2)

R formula syntax allows alternative ways for specifying interaction terms. They
allow “abbreviated” ways of entering formulas, which for complex experimental
designs saves typing and can improve clarity. As seen above, operator * saves us
from having to explicitly indicate all the interaction terms in a full factorial model.
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y ~x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3

Can be replaced by a concise equivalent.
y ~ x1 * x2 * x3

When the model to be specified does not include all possible interaction terms,
we can combine the concise notation with parentheses. Below, equivalent formulas
are shown using concise and verbose notation.

y ~ x1 + (x2 * x3)
y ~x1 + x2 + x3 + x2:x3

y ~ x1 * (x2 + x3)
y ~x1 + x2 + x3 + x1:x2 + x1:x3
The A operator provides a concise notation to limit the order of the interaction
terms included in a formula.
y ~ (X1 + x2 + x3)A2
y ~x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3
Operator %in% can also be used as a shortcut for including only some of all the
possible interaction terms in a formula.
y ~ x1 + x2 + x1 %in% x2

7.16 Whether the two model formulas above are equivalent or not, can be
investigated using function terms ().

terms(y ~ x1 + (x2 * x3))
terms(y ~ x1 * (x2 + x3))
terms(y ~ (x1 + x2 + x3)A2)
terms(y ~ x1 + x2 + x1 %in% x2)

7.17 For operator A to behave as expected, its first operand should be a
formula with no interactions! Compare the result of expanding these two formulas
with terms ().

y ~ (x1 + x2 + x3)A2
y ~ (X1 * x2 * x3)A2

7.18 Run the code examples below using the npk data set from R. They
demonstrate the use of different model formulas in ANOVA. Use these examples
plus your own variations on the same theme to build your understanding of the
syntax of model formulas. Based on the terms displayed in the ANOVA tables,
first work out what models are being fitted in each case. In a second step, write
the mathematical formulation of each of the models. Finally, think how model
choice may affect the conclusions from an analysis of variance.

data(npk)

anova(lm(yield N * P * K, data = npk))

anova(Im(yield (N + P + K)A2, data = npk))

anova(lm(yield ~ N + P + K + P %in% N + K %in% N, data npk))
anova(lm(yield ~ N + P + K + N %in% P + K %in% P, data = npk))

14

14

Nesting of factors in experiments using hierarchical designs such as split-plots
or repeated measures, results in the need to compute additional error terms, dif-
fering in their degrees of freedom. In a nested design with fixed effects, effects are
tested based on different error terms depending on the design of an experiment,
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i.e., depending on the randomisation of the assignment of treatments to experi-
mental units. In base-R model-formulas, nesting is described by explicit definition
of error terms by means of Error () within the formula.

The syntax described above does not support complex statistical models as
implemented in extension packages. For example, Nowadays, fitting linear mixed-
effects (LME) models is the preferred approach for the analysis of data from exper-
iments and surveys based on hierarchical designs. These methods are implemen-
ted in packages ‘nlme’ (Pinheiro and Bates 2000) and ‘Ime4’ (Bates et al. 2015) that
define extensions to the model formula syntax. The extensions make it possible to
describe nesting and distinguish fixed and random effects. Packages implementing
fitting of additive models have needed other extensions to the formula syntax. Ad-
ditive model methods are described by Wood (2017) and Zuur (2012). Although the
overall approach and syntax are followed in most contributed packages, different
packages have extended the formula syntax in different ways. These extensions
fall outside the scope of this book.

R will accept any syntactically correct model formula, even when the results
of the fit are not interpretable. It is the responsibility of the user to ensure that
models are meaningful. The most common, and dangerous, mistake is specifying
for factorial experiments, models that are missing lower-order terms.

Fitting models like those below to data from an experiment based on a three-
way factorial design should be avoided. In both cases, simpler terms are missing,
while higher-order interaction(s) that include the missing term are included in the
model. Such models are not interpretable, as the variation from the missing term(s)
ends being “disguised” within the remaining terms, distorting their apparent sig-
nificance and parameter estimates.

y ~A+ B + A:B + A:C + B:C
y~A+B+ C+ A:B + A:C + A:B:C

In contrast to those above, the models below are interpretable, even if not “full”
models (not including all possible interactions).
y~A+B+C+ A:B + A:C + B:C

y ~ (A + B + QA2
y ~A+ B + C + B:C
y ~A+ B * C

Manipulation of model formulas. Because this is a book about the R language,
it is pertinent to describe how formulas can be manipulated. Formulas, as any
other R objects, can be saved in variables including lists. Why is this useful? For
example, if we want to fit several different models to the same data, we can write
a for loop that walks through a list of model formulas (see section 5.10 on page
160). Obviously, user-defined functions can accept formulas as arguments as Tm()
and other model-fitting functions do. In addition, it is relatively simple for user
code to programmatically create and edit R formulas, in the same way as functions
update() and step() do under the hood.

A conversion constructor is available under the name as.formula(). It is useful
when formulas are input interactively by the user or read from text files. With
as.formula() we can convert a character string into a formula.
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as.formula("y ~ x")
## 'y ~ X

As there are many functions for the manipulation of character strings available
in base R and through extension packages, it is easiest to build model formulas
as strings. We can use functions like paste() to assemble a formula as text, and
then use as.formula() to convert it to an object of class formula, usable for fitting
a model.
paste("y", "x", sep = "~") |> as.formula()
##y ~ X

For the reverse operation of converting a formula into a string, we have avail-
able methods as.character() and format(). The first of these methods returns a
character vector containing the components of the formula as individual strings,
while format() returns a single character string with the formula formatted for

printing.
as.character(y ~ x)
## [1] "~" "y" X"

format(y ~ x)
## [1] "y ~ x"

This conversion makes it possible to edit a formula as a character string.

format(y ~ x) |> gsub("x", "x + z", x = _) [|> as.formula()
#Hy ~X + 2

It is also possible to edit formula objects with method update(). In the replace-
ment formula, a dot can replace either the left-hand side (lhs) or the right-hand
side (rhs) of the existing formula. We can also remove terms as can be seen below.
In some cases, the dot corresponding to the lhs can be omitted, but including it
makes the syntax clearer.

my.formula <- y ~ x1 + x2
update(my.formula, . ~ . + x3)

## y ~ x1 + x2 + x3
update(my.formula, . ~ . - x1)
## y ~ x2

update(my.formula, . ~ x3)

## y ~ x3

update(my.formula, z ~ .)

## z ~ x1 + x2
update(my.formula, . + z ~ .)
## y + z ~ x1 + x2

As R provides high-level functions for model selection editing model formulas
is not very frequently needed for model fitting.
A model matrix of dummy coefficients is used in the actual computations. This

matrix can be derived from a model formula, a contrast name, and the data for the
explanatory variables using function model.matrix().



232 Base R: “Verbs” and “Nouns” for Statistics

7.14 Time Series

Longitudinal data consist of repeated measurements, usually done over time, on
the same experimental units. Longitudinal data, when replicated on several exper-
imental units at each time point, are called repeated measurements, while when
not replicated, they are called time series. Base R provides special support for the
analysis of time series data, while repeated measurements can be analysed with
nested linear models, mixed-effects models, and additive models.

Time series data are data collected in such a way that there is only one observa-
tion, possibly of multiple variables, available at each point in time. This brief sec-
tion introduces only the most basic aspects of time-series analysis. In most cases,
time steps are of uniform duration and occur regularly, which simplifies data hand-
ling and storage. R not only provides methods for the analysis and manipulation
of time-series, but also a specialised class for their storage, "ts". Regular time
steps allow more compact storage—e.g., a ts object does not need to store time
values for each observation but instead a combination of two of start time, step
size and end time. When analysing time-series data, it is frequently necessary to
convert time data between one of the special R classes and character strings, and
to operate on dates and times (see section 8.8 on page 267).

By now, you surely guessed that to create an object of class "ts" one needs to
use a constructor called ts() or a conversion constructor called as.ts() and that
you can look up the arguments they accept by consulting help using help(ts).
my.ts <- ts(1:10, start = 2019, deltat = 1/12)

The print () method for ts objects is special, and adjusts the printout according
to the time step or deltat of the series.
print(my.ts)

#i# Jan Feb Mar Apr May Jun Jul Aug Sep Oct
## 2019 1 2 3 4 5 6 7 8 9 10

The structure of the ts object is simple. Its mode is numeric but its class is
ts. It is similar to a numeric vector with the addition of one attribute named tsp
describing the time steps, as a numeric vector of length 3, giving start and end
time and the size of the steps.
mode (my. ts)

## [1] "numeric"

class(my.ts)

## [1] "ts"

is.ts(my.ts)

## [1] TRUE

str(my.ts)

## Time-Series [1:10] from 2019 to 2020: 1 23 4567 8 9 10
attributes(my.ts)

## $tsp

## [1] 2019.00 2019.75 12.00
##

## $class

## [1] "ts"
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Data set nottem, included in R, contains meteorological data for Nottingham.
The annual cycle of mean air temperatures (in degrees Fahrenheit) as well as vari-
ation among years are clear when data are plotted.

Reexpression of the temperatures in the time-series from degrees Fahrenheit
into degrees Celsius can be achieved as in numeric vectors using vectorised arith-
metic and recycling.
nottem.celcius <- (nottem - 32) * 5 / 9

is.ts(nottem.celcius)
## [1] TRUE

plot(nottem.celcius)
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7.19 Explore the structure of the nottem.celcius object (or the nottem object),
and consider how and why it differs or not from that of the object my.ts that
we created above. Similarly explore time series ausres, another of the data sets
included in R.

str(nottem.celcius)

attributes(nottem.celcius)

Many time series of observations display cyclic variation at different fre-
quencies. Outdoors, air temperature varies cyclically between day and night and
throughout the year. Superimposed on these regular cycles there can be faster ran-
dom variation and long-term trends. One approach to the analysis of time series
data is to estimate the separate contribution of these components.

An efficient approach to time series decomposition, based on LOESS (see section
7.12 on 223), is STL (Seasonal and Trend decomposition using Loess). A seasonal
window of 7 months, the minimum accepted, allows the extraction of the annual
cycles and a long-term trend leaving as a remainder some unexplained variation.
In the plot, is important to be aware that the scale limits in the different panels are
different, and re-set for each plot.

nottem.stl <- stl(nottem.celcius, s.window = 7)
plot(nottem.st1)
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It is interesting to explore the class and structure of the object returned by
st1(), as we may want to extract components. We can see that the structure of
this object is rather similar to model-fit objects of classes Tm and g1m.
class(nottem.st1)

# [1] "st1"
str(nottem.stl, no.list = TRUE, give.attr = FALSE, vec.len = 2)

## $ time.series: Time-Series [1:240, 1:3] from 1920 to 1940: -4.4 -5.08 ...
## $ weights tnum [1:240] 1 1111 ..

## $ call : language st1(x = nottem.celcius, s.window = 7)

## $ win : Named num [1:3] 7 23 13

## $ deg : Named int [1:3] 01 1

## $ jump : Named num [1:3] 1 3 2

## $ inner :int 2

## $ outer :int O

As with other fit methods, method summary () is available. However, this method
for class st1 returns unchanged the st1 object received as an argument and dis-
plays a summary. In other words, it behaves similarly to print() methods with
respect to the returned object, but produces a different printout than print() as
its side effect.
summary (nottem.stT1)

## call:

## stl(x = nottem.celcius, s.window = 7)

#i#

## Time.series components:

## seasonal trend remainder

## Min. :-6.693714 Min. : 8.548340 Min. :-2.5950749

## 1st Qu.:-4.413237 1st Qu.: 9.201837 1st Qu.:-0.6907277
## Median :-0.650109 Median : 9.456694 Median : 0.0593786

## Mean : 0.001867 Mean : 9.462835 Mean 0.0017326
## 3rd Qu.: 4.595458 3rd Qu.: 9.779625 3rd Qu.: 0.6445627
## Max. : 8.215818 Max. :10.424848  Max. 1 2.6914745

## IQR:
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## STL.seasonal STL.trend STL.remainder data
## 9.0087 0.5778 1.3353 8.5833
##t % 105.0 6.7 15.6 100.0
##

## Weights: all == 1

#i#

## O0Other components: List of 5

## $ win : Named num [1:3] 7 23 13
## $ deg : Named int [1:3] 0 1 1
## $ jump : Named num [1:3] 1 3 2
## $ inner: int 2

## $ outer: int O

7.20 Consult help(st1) and help(plot.st1) and create different plots and
decompositions by passing different arguments to the formal parameters of these
methods.

Method print () shows the different components. Extract the seasonal compon-
ent and plot is on its own against time.

In the Nottingham temperature time series, the period of the variation is clearly
annual, but for many other time series an interesting feature to characterise is
autocorrelation and its periodicity. Function acf() computes and plots the auto-
correlation function (ACF) vs. the lag. The time series has monthly data, while the
scale for lag in the plot below is in years. The autocorrelation is one at zero lag,
and slightly less with a lag of one year, while its is negative between winter and
summer temperatures.
acf(nottem)
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More advanced time-series analysis and forecasting methods are implemented
in contributed packages and fall outside the scope of this book. The textbook Fore-
casting: Principles and Practice (Hyndman and Athanasopoulos 2021) is compre-
hensive, starting with an introduction to time series and continuing all the way to
the description of modern forecasting methods, using R throughout.
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7.15 Multivariate Statistics

All the methods presented above are univariate, as even if in some cases we con-
sidered multiple explanatory variables on the rhs of model formulas, the lhs con-
tained at most one response variable. There are many different multivariate meth-
ods available, and a few of them are implemented in base R functions. The current
section does not describe these methods in depth, it only provides a few simple
examples for some of the frequently used ones.

7.15.1 Multivariate analysis of variance

Multivariate methods take into account several response variables simultaneously,
as part of a single analysis. In practice, it is usual to use contributed packages
for multivariate data analysis in R, except for simple cases. We will look first at
multivariate ANOVA or MANOVA. In the same way as aov () is a wrapper that uses
internally Tm(), manova() is a wrapper that uses internally aov ().

Multivariate model formulas in base R require the use of column binding
(cbind()) on the left-hand side (lhs) of the model formula. The well-known iris
data set, containing size measurements for flowers of three species of Iris, is used
in the examples below.

mmf2 <- manova(cbind(Petal.Length, Petal.width) ~ Species, data = 1iris)
anova (mmf2)

## Analysis of variance Table

##

## Df Pillai approx F num Df den Df Pr(>F)

## (Intercept) 1 0.98786 5939.2 2 146 < 2.2e-16 ***
## Species 2 1.04645 80.7 4 294 < 2.2e-16

## Residuals 147

## ——

## Signif. codes: O '***' 0.001 '%*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary (mmf2)

#i#t Df Pillai approx F num Df den Df Pr(>F)

## Species 2 1.0465 80.661 4 294 < 2.2e-16 ##**

## Residuals 147

## ——

## Signif. codes: O '***' 0.001 '%*' 0.01 '*' 0.05 '.' 0.1 ' ' 1

7.21 Modify the example above to use aov() instead of manova() and save
the result to a variable named mmf3. Use class (), attributes(), names (), str() and
extraction of members to explore objects mmf1, mmf2 and mmf3. Are they different?

7.15.2 Principal components analysis

Principal components analysis (PCA) is used to simplify a data set by combining
variables with similar and “mirror” behaviour into principal components. At a later
stage, we frequently try to interpret these components in relation to known and/or
assumed independent variables. Base R’s function prcomp () computes the principal
components and accepts additional arguments for centring and scaling.
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pc <- prcomp(iris[c("Sepal.Length", "Sepal.width",
"petal.Length", "Petal.width")],
center = TRUE,
scale = TRUE)

By printing the returned object, we can see the loadings of each variable in the
principal components pPCl to PC4.

class(pc)

## [1] "prcomp"

pc

## Standard deviations (1, .., p=4):

## [1] 1.7083611 0.9560494 0.3830886 0.1439265

#it

## Rotation (n x k) = (4 x 4):

## PCl PC2 PC3 PC4

## Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
## Sepal.width -0.2693474 -0.92329566 -0.2443818 -0.1235096
## Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
## pPetal.width 0.5648565 -0.06694199 -0.6342727 0.5235971

In the summary, the rows “Proportion of Variance” and “Cumulative Propor-
tion” are most informative of the contribution of each principal component (PC)
to explaining the variation among observations.

summary (pc)

## Importance of components:

#i# PC1 PC2 PC3 PC4
## Standard deviation 1.7084 0.9560 0.38309 0.14393

## Proportion of variance 0.7296 0.2285 0.03669 0.00518
## Cumulative Proportion 0.7296 0.9581 0.99482 1.00000

Method plot () generates a bar plot of variances corresponding to the different
components.

plot(pc)
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Method biplot() produces a plot with one principal component (PC) on each
axis, plus arrows for the loadings.
biplot(pc)
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Visually more elaborate plots of the principal components and their loadings
can be obtained using package ‘ggplot’ described in chapter 9 on page 271. Package
‘ggfortify’ extends ‘ggplot’ so as to make it easy to plot principal components and
their loadings.

7.22 For growth and morphological data, a log-transformation can be suitable
given that variance is frequently proportional to the magnitude of the values meas-
ured. We leave it as an exercise to repeat the above analysis using transformed
values for the dimensions of petals and sepals. How much does the use of trans-
formations change the outcome of the analysis?

7.23 As for other fitted models, the object returned by function prcomp () is
list-like with multiple components and belongs to a class of the same name as the
function, not derived from class "Tist".

class(pc)
str(pc, max.level = 1)

7.15.3 Multidimensional scaling

The aim of multidimensional scaling (MDS) is to visualise in 2D space the similarity
between pairs of observations. The values for the observed variable(s) are used to
compute a measure of distance among pairs of observations. The nature of the
data will influence what distance metric is most informative. For MDS we start
with a matrix of distances among observations. We will use, for the next examples,
distances in kilometres between geographic locations in Europe from the data set
eurodist.
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loc <- cmdscale(eurodist)
We can see that the returned object loc is a matrix, with names for one of the
dimensions.

class(loc)
## [1] "matrix" "array"

dim(Toc)

## [1] 21 2

head(loc, 8)

## [52] [:2]
## Athens 2290.274680 1798.8029
## Barcelona -825.382790 546.8115
## Brussels 59.183341 -367.0814
## calais -82.845973 -429.9147
## Cherbourg -352.499435 -290.9084
## Cologne 293.689633 -405.3119
## Copenhagen 681.931545 -1108.6448
## Geneva -9.423364 240.4060

To make the code easier to read, two vectors are first extracted from the matrix
and named x and y. We force aspect to equality so that distances on both axes are
comparable.

x <- loc[, 1]
y <- =loc[, 2]
plot(x, y, type = "n", asp = 1,
main = "cmdscale(eurodist)")
text(x, y, rownames(loc), cex = 0.6)

cmdscale(eurodist)
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7.24 Find data on the mean annual temperature, mean annual rainfall and
mean number of sunny days at each of the locations in the eurodist data set. Next,
compute suitable distance metrics, for example, using function dist. Finally, use
MDS to visualise how similar the locations are with respect to each of the three
variables. Devise a measure of distance that takes into account the three climate
variables and use MDS to find how distant the different locations are.

7.15.4 Cluster analysis

In cluster analysis, the aim is to group observations into discrete groups with max-
imal internal homogeneity and maximum group-to-group differences. In the next
example, we use function hclust() from the base-R package ‘stats’. We use, as
above, the eurodist data which directly provides distances. In other cases, a mat-
rix of distances between pairs of observations needs to be first calculated with
function dist which supports several methods.

hc <- hclust(eurodist)
print(hc)

#i#

## call:

## hclust(d = eurodist)

#i#

## Cluster method : complete
## Number of objects: 21

plot(hc)
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We can use cutree() to limit the number of clusters by directly passing as an
argument the desired number of clusters or the height at which to cut the tree.
cutree(hc, k = 5)

#i Athens Barcelona Brussels calais Cherbourg
#i#t 1 2 3 3 3
##t cologne Copenhagen Geneva Gibraltar Hamburg
## 3 4 2 5 4
## Hook of Holland Lisbon Lyons Madrid Marseilles
## 3 5 2 5 2
## MiTan Munich Paris Rome Stockholm
#i#t 2 3 3 1 4
## vienna

#it 3

The object returned by hclust () contains details of the result of the clustering,
which allows further manipulation and plotting.

str(hc)

## List of 7

## $ merge : int [1:20, 1:2] -8 -3 -6 -4 -16 -17 -5 -7 -2 -12 ..

## $ height : num [1:20] 158 172 269 280 328 428 460 460 521 668 ...
## $ order :int [1:21] 1 19 9 12 14 20 7 10 16 8 ...

## $ labels : chr [1:21] "Athens" "Barcelona" "Brussels" "calais" ...
## $ method : chr "complete"

## $ call : Tanguage hclust(d = eurodist)

## $ dist.method: NULL

## - attr(*, "class")= chr "hclust"

]

7.16 Further Reading

R and its extension packages provide implementations of most known statistical
methods. For some methods, alternative implementations exist in different pack-
ages. The present chapter only attempts to show how some of the most frequently
used implementations are used, as this knowledge is frequently taken for granted
in specialised books, several of which Ilist here. Two recent text books on statistics,
following a modern approach, and using R for examples, are OpenlIntro Statistics
(Diez et al. 2019) and Modern Statistics for Modern Biology (Holmes and Huber
2019). They differ in the subjects emphasised, with the second one focusing more
on genetic and molecular biology. Three examples of books introducing statistical
computations in R are Introductory Statistics with R (Dalgaard 2008), A Handbook
of Statistical Analyses Using R (Everitt and Hothorn 2010) and A Beginner’s Guide
to R (Zuur et al. 2009). The book Biometry for Forestry and Environmental Data
with Examples in R (Mehtatalo and Lappi 2020) presents both the statistical theory
and code examples. The comprehensive The R Book (Crawley 2012) and the classic
reference Modern Applied Statistics with S (Venables and Ripley 2002) both present
statistical theory in parallel with the R code examples. More specific books are also
available from which a few suggestions for further reading are An Introduction to
Applied Multivariate Analysis with R (Everitt and Hothorn 2011), Linear Models with
R (Faraway 2004), Extending the Linear Model with R: Generalized Linear, Mixed Ef-
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fects and Nonparametric Regression Models (Faraway 2006), Forecasting: Principles
and Practice (Hyndman and Athanasopoulos 2021), An Introduction to Statistical
Learning: with Applications in R (James et al. 2013), Mixed-Effects Models in S and
S-Plus (Pinheiro and Bates 2000) and Generalized Additive Models (Wood 2017).



8

R Extensions: Data Wrangling

Essentially everything in S[R], for instance, a call to a function, is an
SIR] object. One viewpoint is that S[R] has self-knowledge. This self-
awareness makes a lot of things possible in S[R] that are not in other
languages.

Patrick J. Burns
S Poetry, 1998

8.1 Aims of This Chapter

Base R and the recommended extension packages (installed by default) include
many functions for manipulating data. The R distribution supplies a complete
set of functions and operators that allow all the usual data manipulation opera-
tions. These functions have stable and well-described behaviour, so in my view,
they should be preferred unless some of their limitations justify the use of altern-
atives defined in contributed packages. In the present chapter, I describe the new
syntax introduced by the most popular contributed R extension packages aiming at
changing (usually improving one aspect at the expense of another) in various ways
how we can manipulate data in R. These independently developed packages extend
the R language not only by adding new “words” to it but by supporting new ways of
meaningfully connecting “words”—i.e., providing new “grammars” for data manip-
ulation. While at the current stage of development of base R not breaking existing
code has been the priority, several of the still “young” packages in the ‘tidyverse’
have prioritised experimentation with enhanced features over backwards compat-
ibility. The development of ‘tidyverse’ packages seems to have initially emphasised
users’ convenience more than encouraging safe/error-free user code. The design
of package ‘data.table’ has prioritised performance at the expense of easy of use.
I do not describe in depth these new approaches but instead only briefly compare
them to base R highlighting the most important differences.
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8.2 Introduction

By reading previous chapters, you have already become familiar with base R classes,
methods, functions, and operators for storing and manipulating data. Most of
these had been originally designed to perform optimally on rather small data sets
(see Matloff 2011). The performance of these functions has improved significantly
over the years and random-access memory in computers has become cheaper, mak-
ing constraints imposed by the original design of R less limiting. On the other hand,
the size of data sets has also increased.

Some contributed packages have aimed at improving performance by relying
on different compromises between usability, speed, and reliability than used for
base R. Package ‘data.table’ is the best example of an alternative implementation of
data storage and manipulation that maximises the speed of processing for large
data sets using a new semantics and requiring a new syntax. We could say that
package ‘data.table’ is based on a theoretical abstraction, or “grammar of data”,
that is different from that in the R language. The compromise in this case has
been the use of a less intuitive syntax, and by defaulting to passing arguments by
reference instead of by copy, increasing the “responsibility” of the programmer or
data analyst with respect to not overwriting or corrupting data. This focus on per-
formance has made obvious the performance bottlenecks present in base R, which
have been subsequently alleviated while maintaining backwards compatibility for
users’ code.

Another recent development is the ‘tidyverse’, which is a formidable effort to
redefine how data analysis operations are expressed in R code and scripts. In many
ways, it is also a new abstraction, or “grammar of data”. With respect to its imple-
mentation, it can also be seen as a new language built on-top of the R language. It
is still young and evolving, and the developers from Posit still remain relentless
about fixing what they consider earlier misguided decisions in the design of the
packages comprising the ‘tidyverse’. This is a wise decision for the future, but can
be annoying to occasional users who may not be aware of the changes that have
taken place between uses. As a user I highly value long-term stability and back-
wards compatibility of software. Older systems like base R provide this, but their
long development history shows up as occasional inconsistencies and quirks. The
‘tidyverse’ as a paradigm is nowadays popular among data analysts while among
users for whom data analysis is not the main focus, it is more common to make
use of only individual packages as the need arises, e.g., using the new grammar
only for some stages of the data analysis workflow.

When a computation included a chain of sequential operations, until R 4.1.0, us-
ing base R by itself we could either store the returned value in a temporary variable
at each step in the computation, or nest multiple function calls. The first approach
is verbose, but allows readable scripts, especially if the names used for temporary
variables are wisely chosen. The second approach becomes very difficult to read
as soon as there is more than one nesting level. Attempts to find an alternative
syntax have borrowed the concept of data pipes from Unix shells (Kernigham and
Plauger 1981). Interestingly, that it has been possible to write packages that define



Introduction 245

the operators needed to “add” this new syntax to R is a testimony to its flexibility
and extensibility. Two packages, ‘magrittr’ and ‘wrapr’, define operators for pipe-
based syntax. In year 2021, a pipe operator was added to the R language itself and
more recently its features enhanced.

In much of my work I emphasise reproducibility and reliability, preferring base
R over extension packages, except for plotting, whenever practical. For run once
and delete or quick-and-dirty data analyses, I tend to use the tidyverse. However,
with modern computers and some understanding of what are the performance
bottlenecks in R code, I have rarely found it worthwhile the effort needed for im-
proved performance by using extension packages. The benefit to effort balance
will be different for those readers who analyse huge data sets.

The definition of the tidyverse is rather vague, as package ‘tidyverse’ loads and
attaches a set of packages of which most but not all follow a consistent design and
support this new grammar. The packages that are attached by package ‘tidyverse’
has changed over time. Package ‘tidyverse’, however, defines a function that lists
them.
tidyverse: :tidyverse_packages()

## [1] "broom" "conflicted" "cTi" "dbplyr"
## [5] "dplyr" "dtplyr" "forcats" "ggplot2"
## [9] "googledrive" "googlesheets4" '"haven" "hms"

## [13] "httr" "jsonlite" "Tubridate" "magrittr"
## [17] "modelr" "pillar" "purrr" "ragg"

## [21] "readr" "readx1" "reprex" "rlang"

## [25] "rstudioapi” "rvest" "stringr" "tibble"
## [29] "tidyr" "xml12" "tidyverse"

In this chapter, you will become familiar with packages ‘tibble’, ‘dplyr’, ‘tidyr’,
and ‘lubridate’. Package ‘ggplot2’ will be described in chapter 9 as it implements
the grammar of graphics and has little in common with other members of the
‘tidyverse’. As many of the functions in the tidyverse can be substituted by exist-
ing base R functions, recognising similarities and differences between them has
become important since both approaches are now in common use, and frequently
even coexist within R scripts.

In any design, there is a tension between opposing goals. In software for data
analysis, a key pair of opposed goals are usability, including concise but express-
ive code, and avoidance of ambiguity. Base R function subset() has an unusual
syntax, as it evaluates the expression passed as the second argument within the
namespace of the data frame passed as its first argument (see section 4.4.5 on
page 110). This saves typing, enhancing usability, at the expense of increasing
the risk of bugs, as by reading the call to subset, it is not obvious which names
are resolved in the environment of the call to subset() and which ones within its
first argument—i.e., as column names in the data frame. In addition, changes else-
where in a script can change how a call to subset is interpreted. In reality, subset
is a wrapper function built on top of the extraction operator [ ] (see section 3.10
on page 64). It is a convenience function, mostly intended to be used at the con-
sole, rather than in scripts or package code. To extract columns or rows from a
data frame, it is always safer to use the [ , ] or [[ 1] operators at the expense
of some verbosity.
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Package ‘dplyr’, and much of the ‘tidyverse’, relies on a similar approach as
subset to enhance convenience at the expense of ambiguity. Package ‘dplyr’ has
undergone quite drastic changes during its development history with respect to
how to handle the dilemma caused by “guessing” of the environment where names
should be looked up. There is no easy answer; a simplified syntax leads to ambi-
guity, and a fully specified syntax is verbose. Recent versions of the package in-
troduced a terse syntax to achieve a concise way of specifying where to look up
names. I do appreciate the advantages of the grammar of data that is implemented
in the ‘tidyverse’. However, the actual implementation, can result in ambiguities
and subtleties that are even more difficult to deal by inexperienced or occasional
users than those caused by inconsistencies in base R. My opinion is that for code
that needs to be highly reliable and produce reproducible results in the future, we
should for the time being prefer base R constructs. For code that is to be used
once, or for which reproducibility can depend on the use of a specific (old or soon
to become old) version of packages like ‘dplyr’, or which is not a burden to thor-
oughly test and update regularly, the conciseness and power of the new syntax
can be an advantage.

Package ‘poorman’ re-implements many of the functions in ‘dplyr’ and a few
from ‘tidyr’ using pure R code instead of compiled C++ code and with no depend-
encies on other extension packages. This light-weight approach can be useful when
R’s data frames rather than tibbles are preferred or when the possible enhanced
performance with large data sets is not needed.

8.3 Packages Used in This Chapter

install.packages (learnrbook: :pkgs_ch_data)

To run the examples included in this chapter, you need first to load and attach
some packages from the library (see section 6.4 on page 179 for details on the use
of packages).

Tibrary(learnrbook)
Tibrary(tibble)
Tibrary(magrittr)
Tibrary(wrapr)
Tibrary(stringr)
Tibrary(dplyr)
Tibrary(tidyr)
Tibrary(lubridate)
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8.4 Replacements for data. frame
8.4.1 Package ‘data.table’

The function call semantics of the R language is that arguments are passed to func-
tions by copy (see section 6.2 on page 169). Functions and methods from package
‘data.table’ pass arguments by reference, avoiding making copies. In base R, if the
arguments are modified within the code of a function, these changes are local to
the function. However, any assignments within the functions and methods defined
in package ‘data.table’ modify the variables passed as their arguments.

If implemented naively, the copy semantics used in base R would impose a huge
toll on performance. However, R in most situations only makes a copy in memory
if and when the value changes. Consequently, for modern versions of R, which are
good at avoiding unnecessary copying of objects, the normal R semantics has only
a moderate negative impact on performance. However, this impact can still be a
problem as modification is detected at the object level, and consequently, R can
make copies of large objects such as a whole data frame when only values in a
single column or even just an attribute have changed.

Passing arguments by reference, as in ‘data.table’, simplifies the needed tests
for delayed copying and by avoiding the need to copy arguments, achieves the
best possible performance. This is a specialised package but extremely useful
when dealing with very large data sets. Writing user code, such as scripts, with
‘data.table’ requires a good understanding of the pass-by-reference semantics. Ob-
viously, package ‘data.table’ makes no attempt at backwards compatibility with
base-R data.frame.

In contrast to the design of package ‘data.table’, the focus of the ‘tidyverse’ is
not only performance. The design of this grammar has also considered usability.
Design compromises have been resolved differently than in base R or ‘data.table’
and in some cases code written using base R can significantly outperform the
‘tidyverse’ and vice versa. There exist packages that implement a translation layer
from the syntax of the ‘tidyverse’ into that of ‘data.table’ or relational database
queries.

8.4.2 Package ‘tibble’

Package ‘tibble’ aimed at enhanced performance, like ‘data.table’, but not at the
expense of usability. The tibble() constructor supports semantics that allow more
concise code compared to the data.frame() constructor. The print() method for
tibbles displays them concisely and provides additional information. With small
data sets, differences in performance are in most cases irrelevant. Early on, package
tibble() was consistently faster than base R data frames, but the performance of
R has improved over the years. Nowadays, there is no clear winner. The decision
to use package tibble() depends mostly on whether one uses the other packages
from the ‘tidyverse’, mainly ‘dplyr’ and ‘tidyr’, or not.

The authors of package ‘tibble’ describe their tb1 class as nearly backwards com-
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patible with data.frame and make it a derived class. This backwards compatibility
is only partial so in some situations data frames and tibbles are not equivalent.

The class and methods that package ‘tibble’ defines lift some of the restrictions
imposed by the design of base R data frames at the cost of creating some incom-
patibilities due to changed (improved) syntax for member extraction. Tibbles sim-
plify the creation of “columns” of class 1ist and remove support for columns of
class matrix. Handling of attributes is also different, with no row names added by
default. There are also differences in default behaviour of both constructors and
methods.

Although, objects of class tb1 can be passed as arguments to functions that expect
data frames as input, these functions are not guaranteed to work correctly with
tibbles as a result of the differences in behaviour of some methods and operators.

It is easy to write code that will work correctly both with data frames and
tibbles by avoiding constructs that behave differently. However, code that is syn-
tactically correct according to the R language may fail to work as expected if a
tibble is used in place of a data frame. Only functions tested to work correctly
with both tibbles and data frames can be relied upon as compatible.

That it has been possible to define tibbles as objects of a class derived from
data.frame reveals one of the drawbacks of the simple implementation of S3 ob-
ject classes in R. Allowing this is problematic because the promise of compatibil-
ity implicit in a derived class is not always fulfilled. An independently developed
method designed for data frames will not necessarily work correctly with tibbles,
but in the absence of a specialised method for tibbles it will be used (dispatched)
when the generic method is called with a tibble as argument.

One should be aware that although the constructor tibble() and conversion
function as_tibble(), as well as the test is_tibble() use the name tibble, the
class attribute is named tb1. This is inconsistent with base R conventions, as it is
the use of an underscore instead of a dot in the name of these methods.
my.tb <- tibble(numbers = 1:3)
is_tibble(my.tb)

## [1] TRUE

inherits(my.tb, "tibble")

## [1] FALSE

class(my.tb)

## [1] "tb1_df" "th1" "data.frame"

Furthermore, to support tibbles based on different underlying data sources
such as data.table objects or databases, a further derived class is needed. In our
example, as our tibble has an underlying data.frame class, the most derived class
of my.tb is tb1_df.

Function show_classes (), defined below, concisely reports the class of the ob-
ject passed as an argument and of its members (apply functions are described in
section 5.8 on page 154).

show_cTlasses <- function(x) {
cat(
paste(paste(class(x)[1],
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"containing:"),
paste(names (x),
sapply(x, class), collapse =", ", sep = ": "),
sep = "\n")
)

The tibble() constructor by default does not convert character data into
factors, while the data.frame() constructor did before R version 4.0.0. The default
can be overridden through an argument passed to these constructors, and in the
case of data.frame() also by setting an R option. This new behaviour extends to
function read.table() and its wrappers (see section 10.6 on page 388).
my.df <- data.frame(codes = c("A", "B", "C"), numbers = -1:1, integers = 1L:3L)
is.data. frame(my.df)

## [1] TRUE
is_tibble(my.df)

## [1] FALSE
show_classes (my.df)

## data.frame containing:
## codes: character, numbers: integer, integers: integer

Tibbles are, or pretend to be (see above), data frames—or more formally class
tibble is derived from class data.frame. However, data frames are not tibbles.
my.tb <- tibble(codes = c("A", "B", "C"), numbers = -1:1, integers = 1L:3L)
is.data. frame(my. tb)

## [1] TRUE

is_tibble(my.tb)

## [1] TRUE

show_classes(my.tb)

## tbl_df containing:

## codes: character, numbers: integer, integers: integer

The print() method for tibbles differs from that for data frames in that it out-
puts a header with the text “A tibble:” followed by the dimensions (mumber of
rows X number of columns), adds under each column name an abbreviation of its
class and instead of printing all rows and columns, a limited number of them are
displayed. In addition, individual values are formatted more compactly and using
colour to highlight, for example, negative numbers in red.
print(my.df)

##  codes numbers integers

## 1 A =il 1
## 2 B 0 2
## 3 C 1 3

print(my.tb)
## # A tibble: 3 x 3
##  codes numbers integers

## <chr> <int> <int>
## 1 A -1 1
## 2 B 0 2
## 3 C 1 3
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The default number of rows printed depends on R option tibble.print_max
that can be set with a call to options (). This option plays for tibbles a similar role
as option max.print plays for base R print() methods.
options(tibble.print_max = 3, tibble.print_min = 3)

8.1 Print methods for tibbles and data frames differ in their behaviour when
not all columns fit in a printed line. 1) Construct a data frame and an equivalent
tibble with at least 50 rows and then test how the output looks when they are
printed. 2) Construct a data frame and an equivalent tibble with more columns
than will fit in the width of the R console and then test how the output looks when
they are printed.

Data frames can be converted into tibbles with as_tibble().

my_conv.tb <- as_tibble(my.df)
is.data. frame(my_conv.tb)

## [1] TRUE
is_tibble(my_conv.tb)

## [1] TRUE
show_classes(my_conv.tb)

## tbl_df containing:
## codes: character, numbers: integer, integers: integer

Tibbles can be converted into “real” data.frames with as.data.frame().

my_conv.df <- as.data.frame(my.tb)
is.data. frame(my_conv.df)

## [1] TRUE
is_tibble(my_conv.df)

## [1] FALSE
show_classes (my_conv.df)

## data.frame containing:
## codes: character, numbers: integer, integers: integer

When dealing with tibbles, column- and row binding should be done with
functions bind_rows () and bind_cols() from ‘dplyr’, not with functions rbind ()
and cbind() from R. See explanation below.

Not all conversion functions work consistently when converting from a de-
rived class into its parent. The reason for this is disagreement between authors
on what the correct behaviour is based on logic and theory. You are not likely to
be hit by this problem frequently, but it can be difficult to diagnose.

We have already seen that calling as.data.frame() on a tibble strips the derived
class attributes, returning a data frame. We will look at the whole character vector
stored in the "class" attribute to demonstrate the difference. We also test the
two objects for equality, in two different ways. Using the operator == tests for
equivalent objects. Objects that contain the same data. Using identical() tests
that objects are exactly the same, including attributes such as "class", which we
retrieve using class().
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class(my.tb)

## [1] "tb1_df" "tb1" "data.frame"
class(my_conv.df)

## [1] "data.frame"

my.tbh == my_conv.df

#i# codes numbers integers
## [1,] TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE
## [3,]1 TRUE TRUE TRUE

identical (my.tb, my_conv.df)
## [1] FALSE

Now we derive from a tibble, and then attempt a conversion back into a tibble.

my.xtb <- my.tb

class(my.xtb) <- c("xtb", class(my.xtb))

class(my.xtb)

## [1] "xtb" "tb1_df" "th1" "data.frame"

my_conv_x.th <- as_tibble(my.xtb)
class(my_conv_x.tbh)

## [1] "tb1_df" "tb1" "data.frame"
my.xtb == my_conv_x.tb

#i# codes numbers integers

## [1,] TRUE TRUE TRUE

## [2,] TRUE TRUE TRUE

## [3,] TRUE TRUE TRUE

identical (my.xtb, my_conv_x.tb)
## [1] FALSE

The two viewpoints on conversion functions are as follows. If the argument
passed to a conversion function is an object of a derived class, 1) it should be
returned after stripping the derived class, or 2) it should be returned as is, without
stripping the derived class. Base R follows, as far as I have been able to work out,
approach 1). Some packages in the ‘tidyverse’ sometimes follow, or have followed
in the past, approach 2). If in doubt about the behaviour of some function, then
you will need to do a test similar to the one used above.

As tibbles have been defined as a class derived from data.frame, if methods
have not been explicitly defined for tibbles, the methods defined for data frames
are called, and these are likely to return a data frame rather than a tibble. Even a
frequent operation like column binding is affected, at least at the time of writing.

class(my.df)

## [1] "data.frame"

class(my.tb)

## [1] "tb1_df" "tbh1" "data.frame"

class(cbind(my.df, my.tb))
## [1] "data.frame"
class(cbind(my.tb, my.df))
## [1] "data.frame"



252 R Extensions: Data Wrangling

class(cbind(my.df, added = -3:-1))
## [1] "data.frame"
class(cbind(my.tb, added = -3:-1))

## [1] "data.frame"
identical (cbind(my.tb, added = -3:-1), cbind(my.df, added = -3:-1))
## [1] TRUE

There are additional important differences between the constructors tibble()
and data.frame(). One of them is that in a call to tibble(), member variables
(“columns”) being defined can be used in the definition of subsequent member
variables.
tibble(a = 1:5, b = 5:1, c = a + b, d = Tetters[a + 1])

## # A tibble: 5 x 4

## a b cd
## <int> <int> <int> <chr>
## 1 1 5 6 b
## 2 2 4 6 C
## 3 3 3 6 d

## # 1 2 more rows

8.2 Whatis the behaviour if you replace tibble() by data.frame() in the state-
ment above?

E While objects passed directly as arguments to the data.frame() constructor
to be included as “columns” can be factors, vectors or matrices (with the same
number of rows as the data frame), arguments passed to the tibble() constructor
can be factors, vectors or lists (with the same number of members as rows in the
tibble). As we saw in section 4.4 on page 94, base R’s data frames can contain
columns of classes 1ist and matrix. The difference is in the need to use 1(), the
identity function, to protect these variables during construction and assignment
to true data.frame objects as otherwise list members and matrix columns will be
assigned to multiple individual columns in the data frame.

tibble(a = 1:5, b = 5:1, c = Tist("a", 2, 3, 4, 5))

## # A tibble: 5 x 3

## a b c

## <int> <int> <list>

## 1 1 5 <chr [1]>
## 2 2 4 <db1 [1]>
## 3 3 3 <dbl [1]>

## # i 2 more rows

A list of lists or a list of vectors can be directly passed to the constructor.
tibble(a = 1:5, b = 5:1, c = Tist("a", 1:2, 0:3, letters[1l:3], letters[3:1]))
## # A tibble: 5 x 3

## a b c

## <int> <int> <list>

## 1 1 5 <chr [1]>
## 2 2 4 <int [2]>
## 3 3 3 <int [4]>
## # i 2 more rows
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8.5 Data Pipes

The first obvious difference between scripts using ‘tidyverse’ packages is the fre-
quent use of pipes. This is, however, mostly a question of preferences, as pipes
can be as well used with base R functions. In addition, since version 4.0.0, R has
a native pipe operator |>, described in section 5.5 on page 134. Here I describe
other earlier implementations of pipes, and the differences among these and R’s
pipe operator.

8.5.1 ‘magrittr’

A set of operators for constructing pipes of R functions is implemented in package
‘magrittr’. It preceded the native R pipe by several years. The pipe operator defined
in package ‘magrittr’, %>%, is imported and re-exported by package ‘dplyr’, which in
turn defines functions that work well in data pipes.

Operator %>% plays a similar role as R’s |>.
data.in <- 1:10

data.in %% sqrt() %>% sum() —> data0.out

The value passed can be made explicit using a dot as placeholder passed as an
argument by name and by position to the function on the rhs of the %>% operator.
Thus . in ‘magrittr’ plays a similar but not identical role as _ in base R pipes.

data.in %% sqrt(x = .) %>% sum(.) —> datal.out
all.equal (data0.out, datal.out)

## [1] TRUE

R’s native pipe operator requires, consistently with R in all other situations,
that functions that are to be evaluated use the parenthesis syntax, while ‘magrittr’
allows the parentheses to be missing when the piped argument is the only one
passed to the function call on rhs.

data.in %% sqrt %>% sum -> data5.out
all.equal (data0.out, data5.out)

## [1] TRUE

Package ‘magrittr’ provides additional pipe operators, such as “tee” (¥T>%) to cre-
ate a branch in the pipe, and %<>% to apply the pipe by reference. These operators
are much less frequently used than %>%.

8.5.2 ‘wrapr’

The %.>%, or “dot-pipe”, operator from package ‘wrapr’, allows expressions both
on the rhs and lhs, and enforces the use of the dot (.), as placeholder for the piped
object. Given the popularity of ‘dplyr’ the pipe operator from ‘magrittr’ has been
the most used.

Rewritten using the dot-pipe operator, the pipe in the previous chunk becomes

data.in %.>% sqrt(.) %.>% sum(.) -> data2.out
all.equal (data0.out, data2.out)
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## [1] TRUE

However, as operator %>% from ‘magrittr’ recognises the . placeholder without
enforcing its use, the code below where %.>% is replaced by %>% returns the same
value as that above.

data.in %% sqrt(.) %>% sum(.) —> data3.out
all.equal (data0.out, data3.out)

## [1] TRUE

To use operator |> from R, we need to edit the code using (_) as placeholder
and passing it as an argument to parameters by name in the function calls on the
rhs.

data.in |> sgrt(x = _) |> sum(x = _) -> data4.out
all.equal (data0.out, data4.out)
## [1] TRUE

We can, in this case, simply use no placeholder, and pass the arguments by
position to the first parameter of the functions.

data.in |> sgrt() |> sum() -> data4.out
all.equal (data0.out, data4.out)

## [1] TRUE

The dot-pipe operator %.>% from ‘wrapr’ allows us to use the placeholder . in
expressions on the rhs of operators in addition to in function calls.
data.in %.>% (.A2) -> dataZ.out

In contrast, operator %>% does not support expressions, only function call syntax
on the rhs, forcing calling of operators with parenthesis syntax

data.in %% A (el = ., e2 = 2) -> data9.out
all.equal (data7.out, data9.out)
## [1] TRUE

In conclusion, R syntax for expressions is preserved when using the dot-pipe
operator from ‘wrapr’, with the only caveat that because of the higher precedence
of the %.>% operator, we need to “protect” bare expressions containing other op-
erators by enclosing them in parentheses. In the examples above, we showed a
simple expression so that it could be easily converted into a function call. The
%.>% operator supports also more complex expressions, even with multiple uses
of the placeholder.
data.in %.>% (.A2 + sqrt(. + 1))

## [1] 2.414214 5.732051 11.000000 18.236068 27.449490 38.645751
## [7] 51.828427 67.000000 84.162278 103.316625

8.5.3 Comparing pipes

Under-the-hood, the implementations of operators |>, %>% and %.>% are different,
with |> expected to have the best performance, followed by %.>% and %>% being
slowest. As implementations evolve, performance may vary among versions. How-
ever, |> being part of R is likely to remain the fastest.

Being part of the R language, |> will remain available and most likely also back-
wards compatible, while packages could be abandoned or redesigned by their main-
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tainers. For this reason, it is preferable to use the |> in scripts or code expected to
be reused, unless compatibility with R versions earlier than 4.2.0 is needed. Else-
where in the book I have used R’s pipe operator |>.

Pipes can be used with any R function, but how elegant can be their use depends
on the order of formal parameters. This is especially the case when passing argu-
ments implicitly to the first parameter of the function on the rhs. Several of the
functions and methods defined in ‘tidyr’, ‘dplyr’, and a few other packages from
the ‘tidyverse’ fit this need.

Writing a series of statements and saving intermediate results in temporary
variables makes debugging easiest. Debugging pipes is not as easy, as this usually
requires splitting them, with one approach being the insertion of calls to print().
This is possible, because print() returns its input invisibly in addition to display-
ing it.
data.in |> print() [> sqrt() |> print() |> sum() |> print() -> datalO.out

## [1] 1 2 3 4 5 6 7 8 910

## [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427
## [9] 3.000000 3.162278

## [1] 22.46828

datalO.out
## [1] 22.46828

Debugging nested function calls is difficult. So, in general, it is preferable to use
pipes instead of deeply nested function calls. However, it is best to avoid very long
pipes. Normally, while writing scripts or analysing data it is important to check the
correctness of intermediate results, so saving them to variables can save time and
effort.

The design of R’s native pipes has benefited from the experience gathered
by earlier implementations and being now part of the language, we can expect
it to become the reference one once its implementation is stable. The designers
of the three implementations have to some extent disagreed in their design de-
cisions. Consequently, some differences are more than aesthetic. R pipes are sim-
pler, easier to use and expected to be fastest. Those from ‘magrittr’ are the most
feature rich, but not as safe to use, and purportedly given a more complex imple-
mentation, the slowest. Package ‘wrapr’ is an attempt to enhance pipes compared
to ‘magrittr’ focusing in syntactic simplicity and performance. R’s |> operator has
been enhanced since its addition in R only two years ago. These enhancements
have all been backwards compatible.

The syntax of operators |> and %>%is notidentical. With R’s |>, (as of R 4.3.0) the
placeholder _ can be only passed to parameters by name, while with operator %>%
from ‘magrittr’ the placeholder . can be used to pass arguments both by name
and by position. With operator %.>% the use of the placeholder . is mandatory,
and it can be passed by name or by position to the function call on the rhs. Other
differences are deeper like those related to the use of the extraction operator in
the rhs or support or not for expressions that are not explicit function calls.

In the case of R, the |> pipe is conceptually a substitution with no alteration
of the syntax or evaluation order. This avoids surprising the user and simplifies
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implementation. In other words, R pipes are an alternative way of writing nested
function calls. Quoting R documentation:

Currently, pipe operations are implemented as syntax transformations. So
an expression written as x |> f(y) is parsed as f(x, y). It is worth emphas-
ising that while the code in a pipeline is written sequentially, regular R se-
mantics for evaluation apply and so piped expressions will be evaluated only
when first used in the rhs expression.

While frequently the different pipe operators can substitute for each other
by adjusting the syntax, in some cases the differences among them in the order
and timing of evaluation of the terms needs to be taken into account.

In some situations, operator %>% from package ‘magrittr’ can behave unexpec-
tedly. One example is the use of assign() in a pipe. With R’s operator |> assign-
ment takes place as expected.

data.in |> assign(x = "data6.out", value = _)
all.equal (data.in, data6.out)
## [1] TRUE
Named arguments are also supported with the dot-pipe operator from ‘wrapr’.
data.in %.>% assign(x = "data7.out", value = .)
all.equal(data.in, data7.out)
## [1] TRUE

However, the pipe operator (%>%) from package ‘magrittr’ silently and unexpec-
tedly fails to assign the value to the name.
data.in %% assign(x = "data8.out", value = .)
if (exists("data8.out")) {
all.equal(data.in, data8.out)
} else {
print("'data8.out' not found!")
}
## [1] "'data8.out' not found!"

Although there are usually alternatives to get the computations done correctly,
unexpected silent behaviour can be confusing.

8.6 Reshaping with ‘tidyr’

Data stored in table-like formats can be arranged in different ways, wide and long
(Figure 8.1). In base R, most model fitting functions, and the plot() method using
(model) formulas, expect data to be arranged in “long form” so that each row in a
data frame corresponds to a single observation (or measurement) event on a sub-
ject. Each column corresponds to a different measured feature, or ancillary inform-
ation like the time of measurement, or a factor describing a classification of sub-
jects according to treatments or features of the experimental design (e.g., blocks).
Covariates measured on the same subject at an earlier point in time may also be
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Subject Date Height
A January 5
Subject Height Height Height B January 4
January February March C January 6
A February 7
ﬁ i ; g B February 7
c 6 7 8 C February 7
A March 9
B March 9
C March 8

Figure 8.1
Wide (left) and long (right) data formats.

stored in a column. Data arranged in long form has been nicknamed as “tidy” and
this is reflected in the name given to the ‘tidyverse’ suite of packages. However,
this longitudinal arrangement of data has been the preferred format since the in-
ception of S and R. Data in which columns correspond to measurement events are
described as being in a wide form.

It is rather frequently used when observations in each subject are repeated in
time. In this case, there is one row per subject and one column for each combina-
tion of response variable and time of measurement. Real-world data at the time of
acquisition are rather frequently stored in the wide format, or even in ad-hoc non-
rectangular formats, so in many cases the first task in data analysis is to reshape
the data. Package ‘tidyr’ provides functions for reshaping data from wide to long
form and vice versa.

Package ‘tidyr’ replaced package ‘reshape?2’, which in turn replaced package
‘reshape’, while additionally the functions implemented in ‘tidyr’ have been re-
cently replaced by new ones with different syntax and name. If a data analyst uses
these functions every day, the cost involved is frequently tolerable or even desir-
able given the improvements. However, for R users in applied fields, to whom this
book is targeted, in the long run using function reshape () from base R can be bet-
ter, even when its syntax is not as straightforward (see section 4.5 on page 112).
This does not detract from the advantages of using a clear workflow as emphas-
ised by the proponents of the tidyverse. Here I only want to emphasise that using
some of the packages from the ‘tidyverse’ as with any software with an evolving
user interface can have in some cases a cost that needs to be taken into consider-
ation.

Iuse in examples below the iris data setincluded in base R. Some operations on
R data.frame objects with functions and operators from the ‘tidyverse’ packages
will return data.frame objects while others will return tibbles—i.e., "tb" objects.
Consequently, it is safer to first convert into tibbles the data frames we will work
with.
iris.tb <- as_tibble(iris)

Function pivot_longer() from ‘tidyr’ converts data from wide form into long

form (or "tidy”). We use it here to obtain a long-form tibble. By comparing iris.tb
with Tong_iris.tb we can appreciate how pivot_longer () reshaped its input.
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Tong_iris.th <-
pivot_longer(iris.tb,

cols = -Species,
names_to = "part",
values_to = "dimension")

Tong_iris.tb
## # A tibble: 600 x 3

## Species part dimension
#i# <fct> <chr> <db1>
## 1 setosa Sepal.Length 5.1
## 2 setosa Sepal.width 3.5
## 3 setosa Petal.Length 1.4

## # 1 597 more rows

ﬂ Differently to base R, in most functions from the ‘tidyverse’ packages we can
use bare column names preceded by a minus sign to signify “all other columns”.

Function pivot_wider() does not directly implement the exact inverse opera-
tion of pivot_longer (). With multiple rows with shared codes, i.e., replication, in
our case within each species and flower part, the returned tibble has columns that
are lists of vectors. We need to expand these columns with function unnest() in a
second step.

wide_iris.tb <-
pivot_wider(long_iris.tb,

names_from = "part",

values_from = "dimension",

values_fn = 1ist) |[>
unnest(cols = -Species)

wide_iris.tb
## # A tibble: 150 x 5
## Species Sepal.Length Sepal.width Petal.Length Petal.width

## <fct> <db1> <db1> <db1> <db1>
## 1 setosa 5.1 3.5 1.4 0.2
## 2 setosa 4.9 3 1.4 0.2
## 3 setosa 4.7 3.2 1.3 0.2

## # 1 147 more rows

8.3 Iswide_iris.tb equal to iris.tb, the tibble we converted into long shape
and back into wide shape? Run the comparisons below, and print the tibbles to
find out.
identical (iris.tb, wide_iris.tb)
all.equal(iris.tb, wide_iris.tb)
all.equal (iris.tb, wide_iris.tb[ , colnames(iris.tb)])

What has changed? Would it matter if our code used indexing with a numeric
vector to extract columns? or if it used column names as character strings?

B Starting from version 1.0.0 of ‘tidyr’, functions gather() and spread() are
deprecated and replaced by functions pivot_longer() and pivot_wider(). These
new functions, described above, use a different syntax than the old ones.

8.4 Functions pivot_longer() and pivot_wider() from package ‘poorman’
attempt to replicate the behaviour of the same name functions from package ‘tidyr’.
In some edge cases, the behaviour differs. Test if the two code chunks above return
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identical or equal values when poorman: : is prepended to the names of these two
functions. First, ensure that package ‘poorman’ is installed, then run the code
below.

poor_long_iris.tb <-
poorman: :pivot_Tlonger(

iris,

cols = -Species,
names_to = "part",
values_to = "dimension")

identical (long_iris.tb, poor_long_iris.tbh)
all.equal(long_iris.tb, poor_long_iris.tb)
class(long_iris.tb)
class(poor_long_iris.th)

What is the difference between the values returned by the two functions? Could
switching from package ‘tidyr’ to package ‘poorman’ affect code downstream of
pivoting?

8.7 Data Manipulation with ‘dplyr’

The first advantage a user of the ‘dplyr’ functions and methods sees is the com-
pleteness of the set of operations supported and the symmetry and consistency
among the different functions. A second advantage is that almost all the func-
tions are defined not only for objects of class tibble, but also for objects of class
data.table (package ‘dtplyr’) and for SQL databases (package ‘dbplyr’), with con-
sistent syntax (see also section 10.13 on page 412). As discussed above, using a
code base that is not yet fully stable has a cost that needs to be balanced against
the gain obtained from its use.

8.7.1 Row-wise manipulations

Assuming that the data are stored in long form, row-wise operations are opera-
tions combining values from the same observation event—i.e., calculations within
a single row of a data frame or tibble (see section 4.4.5 on page 110 for the base R
approach). Using functions mutate () and transmute () we can obtain derived quant-
ities by combining different variables, or variables and constants, or applying a
mathematical transformation. We add new variables (columns) retaining existing
ones using mutate() or we assemble a new tibble containing only the columns we
explicitly specify using transmute().

Different from usual R syntax, with tibble(), mutate() and transmute() we
can use values passed as arguments, in the statements computing the values
passed as later arguments. In many cases, this allows more concise and easier
to understand code.
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tibble(a = 1:5, b = 2 * a)

## # A tibble: 5 x 2

#i# a b

##  <int> <dbl>

#H1 1 2

## 2 2 4

## 3 3 6

## # 1 2 more rows

Continuing with the example from the previous section, a likely next step
would be to split the values in variable part into plant_part and part_dim. We
use mutate() from ‘dplyr’ and str_extract() from ‘stringr’ (a package included in
the ‘tidyverse’, aimed at the manipulation of character strings). We use regular ex-
pressions (see section 3.4 on page 46) as arguments passed to pattern. We do not
show it here, but mutate() can be used with variables of any mode, and calculations
can involve values from several columns. It is even possible to operate on values
applying a lag or, in other words, using rows displaced relative to the current one.
Tong_iris.th [>

mutate(plant_part =

part_dimension =
Tong_iris.tb

str_extract(part, "A[:alpha:]*"),
str_extract(part, "[:alpha:]*$")) —> long_iris.tb

## # A tibble: 600 x 5

## Species part dimension plant_part part_dimension
##t <fct> <chr> <db1> <chr> <chr>

## 1 setosa Sepal.Length 5.1 Sepal Length

## 2 setosa Sepal.width 3.5 Sepal width

## 3 setosa Petal.Length 1.4 petal Length

## # 1 597 more rows

In the next few chunks, returned values are displayed, while in normal use they
would assigned to variables or passed to the next function in a pipe using |>. Func-
tion arrange() is used to sort rows—it makes sorting a data frame or tibble simpler
than when using sort () or order(). Below, Tong_iris.tb rows are sorted based on
the values in three of its columns.
arrange(long_iris.tb, Species, plant_part, part_dimension)

## # A tibble: 600 x 5

## Species part dimension plant_part part_dimension
#i# <fct> <chr> <db1> <chr> <chr>

## 1 setosa Petal.Length 1.4 petal Length

## 2 setosa Petal.Length 1.4 petal Length

## 3 setosa Petal.Length 1.3 Petal Length

## # i1 597 more rows

Function filter () can be used to extract a subset of rows—similar to subset()
but with a syntax consistent with that of other functions in the ‘tidyverse’. In this
case, 300 out of the original 600 rows are retained.

filter(long_iris.tb, plant_part == "Petal")

## # A tibble: 300 x 5

#i# Species part dimension plant_part part_dimension
##  <fct> <chr> <db1> <chr> <chr>

## 1 setosa Petal.Length 1.4 petal Length

## 2 setosa Petal.width 0.2 Petal width

## 3 setosa Petal.Length 1.4 petal Length

## # 1 297 more rows
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Function sTlice() can be used to extract a subset of rows based on their
positions—an operation that in base R would use positional (numeric) indexes with
the [ , ] operator: Tong_iris.tb[1:5, ].
slice(long_iris.tb, 1:5)

## # A tibble: 5 x 5

## Species part dimension plant_part part_dimension
#i# <fct> <chr> <db1> <chr> <chr>
## 1 setosa Sepal.Length 5.1 Sepal Length
## 2 setosa Sepal.width 3.5 Sepal width
## 3 setosa Petal.Length 1.4 petal Length

## # 1 2 more rows

Function select() can be used to extract a subset of columns—this would be
done with positional (numeric) indexes with [ , ], passing them to the second
argument as numeric indexes or column names in a vector. It is also possible to use
function subset () from base R (see section 4.4.1 on page 102). Negative indexes in
base R can only be numeric, while select () accepts bare column names prepended
with a minus for exclusion.
select(long_iris.tb, -part)

## # A tibble: 600 x 4
##  Species dimension plant_part part_dimension

##  <fct> <db1> <chr> <chr>
## 1 setosa 5.1 Sepal Length
## 2 setosa 3.5 Sepal width
## 3 setosa 1.4 petal Length

## # i 597 more rows

In addition, select() as other functions in ‘dplyr’ accepts “selectors” returned
by functions starts_with(), ends_with(), contains(), and matches() to extract
or retain columns. For this example, we use the wide-shaped iris.tb instead of
Tong_iris.tb.
select(iris.tb, -starts_with("sepal"))

## # A tibble: 150 x 3
##t Petal.Length pPetal.width Species

## <db1> <db1> <fct>

## 1 1.4 0.2 setosa
## 2 1.4 0.2 setosa
## 3 1.3 0.2 setosa

## # 1 147 more rows

select(iris.tb, Species, matches("pal"))

## # A tibble: 150 x 3
## Species Sepal.Length Sepal.width

## <fct> <db1> <db1>
## 1 setosa 5.1 3.5
## 2 setosa 4.9 3

## 3 setosa 4.7 3.2

## # 1 147 more rows

Function rename() can be used to rename columns, whereas base R requires
the use of both names() and names()<- and ad hoc code to match new and old
names. As shown below, the syntax for each column name to be changed is
<new name> = <old name>. The two names can be given either as bare names as
below or as character strings.
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Tong_iris.tbh [>

select(-part) |[>

rename(part = plant_part, size = dimension, dimension = part_dimension)
## # A tibble: 600 x 4

#i# Species size part dimension

##  <fct> <db1> <chr> <chr>

## 1 setosa 5.1 sepal Length
## 2 setosa 3.5 Sepal width
## 3 setosa 1.4 petal Length
## # 1 597 more rows

Several of the functions described in this section were needed because oper-
ator %>%) from package ‘magrittr’ did not support the use of the extraction oper-
ators in the rhs using operator syntax. Operator |> starting from R version 4.3.0
does not have this limitation (see section 5.5 on page 134), however, the functions
from ‘dplyr’ remain useful as they allow more concise and clear coding of complex
conditions.

8.7.2 Group-wise manipulations

Another important operation is to summarise quantities by groups of rows. Con-
trary to base R, the grammar of data manipulation as implemented in ‘dplyr’, makes
it possible to split this operation into two steps: the setting of the grouping, and
the calculation of summaries. This simplifies the code, making it more easily un-
derstandable when using pipes compared to the approach of base R aggregate()
(see section 4.4.2 on page 105).

In early 2023, package ‘dplyr’ version 1.1.0 added support for per-operation
grouping by adding to functions a new parameter (by or .by). This is still con-
sidered an experimental feature that may change. Anyway, it is important to keep
in mind that this new approach to grouping is not persistent like that described
above. Depending on the circumstances, persistence can simplify the code but also
create bugs when not taken into account.

When using persistent grouping, the first step is to use group_by() to “tag” a
tibble with the grouping. We create a tibble and then convert it into a grouped tibble.
Once we have a grouped tibble, function summarise () will recognise the grouping
and use it when the summary values are calculated.

tibble(numbers = 1:9, Letters = rep(letters[1:3], 3)) |>
group_by(Letters) |[>
summarise(mean_num = mean(numbers),
median_num = median(numbers),

n=nQ) |>
ungroup ()
## # A tibble: 3 x 4
## Letters mean_num median_num n
## <chr> <db1> <int> <int>
## 1 a 4 4 3
## 2 b 5 5 3
## 3 C 6 6 3
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In the non-persistent grouping approach, we specify the grouping in the call to
summarise() (this new feature is labelled as experimental in ‘dplyr’ version 1.1.3,
and may change in future versions).

tibble(numbers = 1:9, Letters = rep(letters[1:3], 3)) |>
summarise(.by = Letters,
mean_num = mean(numbers),
median_num = median(numbers),

n=nQ))
## # A tibble: 3 x 4
## Letters mean_num median_num n
## <chr> <db1> <int> <int>
## 1 a 4 4 3
## 2 b 5 5 3
## 3 C 6 6 3

B How is grouping implemented for data frames and tibbles? Best way to find
out is to explore how a grouped tibble differs from one that is not grouped.
Tibble my. tb is not grouped.

my.tb <- tibble(numbers = 1:9, Letters = rep(letters[1:3], 3))
is.grouped_df (my.tb)

## [1] FALSE

class(my.tb)

## [1] "tbl1_df" "tb1" "data.frame"
names (attributes(my.tb))
## [1] "class" "row.names" "names"

Tibble my_gr.tb is grouped by variable, or column, Letters. In this case, as our
tibble belongs to class tibble_df, grouping adds grouped_df as the most derived
class.

my_gr.tb <- group_by(.data = my.tb, Letters)

is.grouped_df (my_gr.tb)

## [1] TRUE

class(my_gr.tb)

## [1] "grouped_df" "tbl_df" "th1" "data.frame"

Grouping also adds several attributes with the grouping information in a
format suitable for fast selection of group members.
names (attributes (my_gr.tb))

## [1] "class" "row.names names" "groups"
setdiff(attributes(my_gr.tb), attributes(my.tb))

## S$class

## [1] "grouped_df" "tbl_df" "tb1" "data.frame"
#i#

## $groups

## # A tibble: 3 x 2

## Letters .rows

## <chr> <Tist<int>>

## 1 a [3]

## 2 b [3]

## 3 C [3]

A call to ungroup () removes the grouping, thereby restoring the original tibble.
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my_ugr.tb <- ungroup(my_gr.tb)
class(my_ugr.tb)

## [1] "tbl1_df" "tb1" "data.frame"
names (attributes(my_ugr.tb))
## [1] "class" "row.names" "names"

all(my.tb == my_gr.tb)

## [1] TRUE

all(my.tb == my_ugr.tb)

## [1] TRUE

identical (my.tb, my_gr.tb)
## [1] FALSE

identical (my.tb, my_ugr.tb)
## [1] TRUE

The tests above show that members are in all cases the same as operator ==
tests for equality at each position in the tibble but not the attributes, while attrib-
utes, including class, differ between normal tibbles and grouped ones and so they
are not identical objects.

If we replace tibble by data.frame in the first statement, and rerun the chunk,
the result of the last statement in the chunk is FALSE instead of TRUE. At the time
of writing starting with a data.frame object, applying grouping with group_by ()
followed by ungrouping with ungroup () has the side effect of converting the data
frame into a tibble. This is something to be very much aware of, as there are differ-
ences in how the extraction operator [ , ] behaves in the two cases. The safe way
to write code making use of functions from ‘dplyr’ and ‘tidyr’ is to always make
sure that subsequent code works correctly with tibbles in addition to with data
frames.

8.7.3 Joins

Joins allow us to combine two data sources which share some variables. Vari-
ables in common are used to match the corresponding rows before “joining” vari-
ables (i.e., columns) from both sources together. There are several join functions
in ‘dplyr’. They differ mainly in how they handle rows that do not have a match
between data sources.

We create here some artificial data to demonstrate the use of these functions.
We will create two small tibbles, with one column in common and one mismatched
row in each.
first.tb <- tibble(idx = c(1:4, 5), valuesl = "a")
second.tb <- tibble(idx = c(1:4, 6), values2 = "b")

Below, we apply the functions exported by ‘dplyr’: full_join(), Teft_join(),
right_join() and inner_join(). These functions always retain all columns, and in
case of multiple matches, they keep a row for each matching combination of rows.
We repeat each of these examples with the arguments passed to x and y swapped
to show the differences in the behaviour of these functions.

A full join retains all unmatched rows filling missing values with NA. By default,
the match is done on columns with the same name in x and y, but this can be
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changed by passing an argument to parameter by. Using by one can base the match
on columns that have different names in x and y, or prevent matching of columns
with the same name in x and y (example at end of the section).

full_join(x = first.tb, y = second.tb)

## Joining with “by = join_by(idx)"
## # A tibble: 6 x 3

## idx valuesl values2

## <db1> <chr> <chr>

## 1 1a b

## 2 2 a b

## 3 3 a b

## 4 4 a b

## 5 5a <NA>

## 6 6 <NA> b

full_join(x = second.tb, y = first.thb)

## Joining with “by = join_by(idx)"
## # A tibble: 6 x 3

## idx values2 valuesl
## <db1> <chr> <chr>
## 1 1b a

## 2 2b a

## 3 3b a

## 4 4 b a

## 5 6 b <NA>

## 6 5 <NA> a

Left and right joins retain rows not matched from only one of the two data
sources, x and y, respectively.
left_join(x = first.tb, y = second.tb)

## Joining with “by = join_by(idx)"
## # A tibble: 5 x 3

## idx valuesl values2
## <db1> <chr> <chr>
## 1 1a b

## 2 2 a b

## 3 3 a b

## 4 4 a b

## 5 5 a <NA>

left_join(x = second.tb, y = first.tb)

## Joining with “by = join_by(idx)"
## # A tibble: 5 x 3

## idx values2 valuesl
## <db1> <chr> <chr>
## 1 1b a

## 2 2 b a

## 3 3b a

## 4 4 b a

## 5 6 b <NA>

right_join(x = first.tb, y = second.tb)

## Joining with “by = join_by(idx)"
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## # A tibble: 5 x 3

## idx valuesl values2
## <db1> <chr> <chr>
## 1 1a b

## 2 2 a b

## 3 3 a b

## 4 4 a b

## 5 6 <NA> b

right_join(x = second.tb, y = first.tb)

## Joining with “by = join_by(idx)"
## # A tibble: 5 x 3

## idx values2 valuesl
## <db1> <chr> <chr>
## 1 1b a

## 2 2 b a

## 3 3b a

## 4 4 b a

## 5 5 <NA> a

An inner join discards rows in x that do not match rows in y and vice versa.
inner_join(x = first.tb, y = second.tb)

## Joining with “by = join_by(idx)"
## # A tibble: 4 x 3

## idx valuesl values?
## <db1> <chr> <chr>
## 1 1a b

## 2 2 a b

## 3 3 a b

## 4 4 a b

inner_join(x = second.tb, y = first.tb)

## Joining with “by = join_by(idx)"
## # A tibble: 4 x 3

## idx values2 valuesl
## <db1> <chr> <chr>
## 1 1b a

## 2 2 b a

## 3 3 b a

## 4 4 b a

Next we apply the filtering join functions exported by ‘dplyr’: semi_join() and
anti_join(). These functions only return a tibble that contains only the columns
from x, retaining rows based on their match to rows in y.

A semi join retains rows from x that have a match in y.
semi_join(x = first.tb, y = second.tb)

## Joining with “by = join_by(idx)"
## # A tibble: 4 x 2

## idx valuesl
## <db1> <chr>
## 1 1a

## 2 2 a

## 3 3 a

## 4 4 a
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semi_join(x = second.tb, y = first.tb)

## Joining with ‘by = join_by(idx) "
## # A tibble: 4 x 2

## idx values2
## <db1> <chr>
## 1 1b

## 2 2 b

## 3 3b

## 4 4 b

A anti-join retains rows from x that do not have a match in y.
anti_join(x = first.tb, y = second.tb)

## Joining with “by = join_by(idx)"
## # A tibble: 1 x 2

## idx valuesl
## <db1> <chr>
## 1 5 a

anti_join(x = second.tb, y = first.tb)

## Joining with “by = join_by(idx)"
## # A tibble: 1 x 2

## idx values2
## <db1> <chr>
## 1 6 b

We here rename column idx in first.tb to demonstrate the use of by to specify
which columns should be searched for matches.
first2.tb <- rename(first.tb, idx2 = idx)

full_join(x = first2.tb, y = second.tb, by = c("idx2" = "idx"))
## # A tibble: 6 x 3

## idx2 valuesl values?2
## <db1> <chr> <chr>
## 1 1a b

## 2 2 a b

## 3 3 a b

## 4 4 a b

## 5 5a <NA>

## 6 6 <NA> b

I ——

8.8 Times and Dates with ‘lubridate’

In R and many other computing languages, time values are stored as integer values
subject to special interpretation. In R, times are most frequently stored as objects
of class posixct or posixlt. Package ‘lubridate’ makes working with dates and
times in R much easier.

When dealing with time values, first of all, it is necessary to distinguish uni-
versal time coordinates (UTC) and local time coordinates. An instant in time is an
absolute value and can be unambiguously described using UTC. Local times are
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different representations of a given instant in time, using local time coordinates
such as CET (central European Time). The relationship between UTC and local times
depends on country legislation, national borders, and in some cases, time zones
within countries. In addition, many countries make use a seasonal shift in the local
time coordinates, the so called “summer time”. The dates on which these seasonal
shifts are implemented depends on the country or region, and these dates have
varied over time. Shifts in local time create gaps and overlaps: some local time val-
ues correspond to two different time instants, and the skipped ones do not exist
and when encountered should be handled as errors.

Different systems are in use to describe time zones and the corresponding
time coordinates. One commonly used is based on three or four letter codes,
e.g., EET for Eastern European Time. Another commonly used one is based on
the names of continents and cities, e.g., Europe/Helsinki. A third one in common
use is simply expressed as an offset in hours, e.g., UTC+3. Most time zones have
time shifts of whole hours and few to half hours. To some extent, what names
are recognised depends on the operating system under which R is running. See
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones for a list.

Periodical adjustments introduced by leap years, and even leap seconds need
to be taken into account when computing time durations between instants in time,
even when using UTC. When carrying out arithmetic operations on dates and times,
all these “irregularities” have to be accounted for. The functions and operators
from package ‘lubridate’ implement the necessary corrections for current and his-
torical times.

Times and dates written as text are formatted rather inconsistently depend-
ing on the customs of different cultures and languages. Package ‘lubridate’ also
provides functions implementing conversions between character strings and times
or dates and back. These character to time conversions are based on patterns, and
are, in general, reliable if the correct pattern is used. Package ‘anytime’ defines func-
tions that can decode a broad range of formats, but relying on them can be risky,
as not all possible formats are correctly decoded.

Objects of class posIx1t, the class used in R to store dates and times in a partly
formatted form, do not necessarily contain time zone information. In many cases,
when used in computations posix1t values are interpreted based on the locale
settings under which R is running, e.g., the time zone settings of the computer.
Objects of class pate do not keep track of the time zone, so do not represent
instants in time traceable to UTC.

Whenever possible, it is best to store time data and also dates encoded using
UTC as posixct objects. This eliminates uncertainties that can cause otherwise
major difficulties in computations.

PosIxct objects are of mode numeric, and thus vectors; because of this, they
can be stored as columns in data frames and tibbles. Some statistical functions
and even some model fitting functions accept them as input.

Current date can be easily queried, and the returned value is fetched from the
computer’s clock.
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this.day <- today()
class(this.day)

## [1] "pate"
as.POSIXct(this.day, tz = "")
## [1] "2024-02-17 02:00:00 EET"

Similarly, the current instant in time can be retrieved. Resolution is in the order
of milliseconds.
this.instant <- now()
class(this.instant)
## [1] "POSIXct" "POSIXt"
this.instant
## [1] "2024-02-17 22:35:30 EET"

Conversion from character strings to posixct is straightforward as long as all
character strings to be converted have the same or very similarly formatted. A
family of functions from ‘lubridate’ with names like dmy_hms () can convert char-
acter strings into PosIXct objects. These functions are vectorised and can convert
a whole character vector in a single operation into a Posixct vector of the same
length.
dmy_h("04/10/23 15", tz = "EET")

## [1] "2023-10-04 15:00:00 EEST"
dmy_h("04/10/23 3pm", tz = "EET")
## [1] "2023-10-04 15:00:00 EEST"
dmy_h("04/10/23 15 EET")

## [1] "2023-10-04 15:00:00 uTC"

ﬂ Conversion functions with no time components return pate objects if no

argument is passed to tz, while tz = "", as used below, signifies the local time
zone.

class(ymd("2023-10-04"))

## [1] "Date"

class(ymd("2023-10-04", tz = ""))

## [1] "POSIXct" "POSIXt"

class(today(tzone = ""))

## [1] "Dpate"

Conversions from bpate into PosIXxct can give very unexpected results! If you
run the statement below, the returned value will be the time difference between
the time setting in your computer and UTC!
as.POSIXct(ymd("2023-10-04"), tzone = "") - ymd("2023-10-04", tz = "")

## Time difference of 3 hours

The computations assume that the value in the pate is expressed in UTC, corres-
ponding to 00:00:00 UTC. The time zone difference in UTC at midnight between
time zones is not taken into account. Forcing the time zone after conversion in
posixct fixes the problem. Quirks like these make it imperative to do extensive
checks when doing conversions involving times and or dates.
force_tz(as.PoSIxXct(ymd("2023-10-04")), tzone = "") - ymd("2023-10-04", tz="")
## Time difference of 0 secs
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A difference between to instants in time returns a duration.
ymd_hms (""'2010-05-25 12:05:00") - ymd_hms("1810-05-25 12:00:00")
## Time difference of 73049 days

Functions with names in plural, like years() ... seconds() are constructors of
durations, and can be added and subtracted from times.
ymd_hms (""1810-05-25 12:00:00") + years(200) + minutes(5)
## [1] "2010-05-25 12:05:00 utcC"
ymd_hms ("'2010-05-25 12:05:00") - ymd_hms('"1810-05-25 12:00:00")
## Time difference of 73049 days
ymd ("2023-01-01") + seconds(123)
## [1] "2023-01-01 00:02:03 uTtcC"

Functions with names in singular, like year() ... second() are used to extract
and set the implicit components of an instant in time.
my.time <- now()
my.time
## [1] "2024-02-17 22:35:30 EET"
year (my.time)

## [1] 2024

hour (my.time)

## [1] 22
second(my.time)

## [1] 30.9487
second(my.time) <- 0

Special versions of methods round() and trunc() are available for times.
trunc(my.time, "days")
## [1] "2024-02-17 EET"
round(my.time, "hours")
## [1] "2024-02-17 23:00:00 EET"

8.5 Working with time data, frequently involves checking that the results of
computations are according to our expectations. Sometimes the documentation
is not enough and we need to explore with code examples how functions work.
For example, take one date in February 2020 and one date in March 2020, and
compute the duration between them. Then repeat the computation for year 2022
using the same dates. Which of these years was a leap year?

in the next chapter, I describe data visualisation with package ‘ggplot2’, fre-
quently also considered part of the ‘tidyverse’.

8.9 Further Reading

An in-depth discussion of the ‘tidyverse’ is outside the scope of this book. Several
books describe in detail the use of these packages. As several of them are under
active development, recent editions of books such as R for Data Science (Wickham
et al. 2023) and R Programming for Data Science (Peng 2022) are the most useful.
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R Extensions: Grammar of Graphics

The commonality between science and art is in trying to see
profoundly—to develop strategies of seeing and showing.

Edward Tufte’s answer to Charlotte Thralls
An Interview with Edward R. Tufte, 2004

9.1 Aims of This Chapter

Three main data plotting systems are available to R users: base R, package ‘lattice’
(Sarkar 2008), and package ‘ggplot2’ (Wickham and Sievert 2016); the last one be-
ing the most recent and currently most popular system available in R for plotting
data. Even two different sets of graphics primitives (i.e., those used to produce the
simplest graphical elements such as lines and symbols) are available in R, those in
base R and a newer one in the ‘grid’ package (Murrell 2019).

In this chapter, you will learn the concepts of the layered grammar of graph-
ics, on which package ‘ggplot2’ is based. You will also learn how to build several
types of data plots with package ‘ggplot2’. As a consequence of the popularity and
flexibility of ‘ggplot2’, many contributed packages extending its functionality have
been developed and deposited in public repositories. However, I will focus mainly
on package ‘ggplot2’ only briefly describing a few of these extensions.

9.2 Packages Used in This Chapter

If the packages used in this chapter are not yet installed in your computer, you can
install them as shown below, as long as package ‘learnrbook’ is already installed.
install.packages (learnrbook: :pkgs_ch_ggplot)
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To run the examples included in this chapter, you need first to load some pack-
ages from the library (see section 6.4 on page 179 for details on the use of pack-
ages).

Tibrary(learnrbook)
Tibrary(scales)
Tibrary(ggplot2)
Tibrary(ggrepel)
Tibrary(gginnards)
Tibrary(broom)
Tibrary(ggpmisc)
Tibrary(ggbeeswarm)
Tibrary(lubridate)
Tibrary(tibble)
Tibrary(dplyr)
Tibrary(patchwork)

9.3 The Components of a Plot

I start by briefly presenting concepts central to data visualisation, following the
Data Visualization Handbook (Koponen and Hildén 2019). Plots are a medium used
to convey information, like text. It is worthwhile keeping this in mind. As with text,
the design of plots needs to consider what needs to be highlighted to convey the
take home message. The style of the plot should match the expectations and the
plot-reading abilities of the expected audience. One needs to be careful to avoid
ambiguities and most importantly of all not to miss-inform. Data visualisations
like text need to be planned, revised, commented upon, and revised again until
the best way of expressing our message is found. The flexibility of the grammar of
graphics supports very well this approach to designing and producing high quality
data visualisations for different audiences.

Of course, when exploring data, fancy details of graphical design are irrelevant,
but flexibility remains important as it makes it possible to look at data from many
differing angles, highlighting different aspects of them. In the same way as boiler-
plate text and text templates have specific but limited uses, all-in-one functions
for producing plots do not support well the design of original data visualisations.
They tend to get the job done, but lack the flexibility needed to do the best job of
communicating information. Being this a book about languages, the focus of this
chapter is in the layered grammar of graphics.

The plots described in this chapter are classified as statistical graphics within
the broader field of data visualisation. Plots such as scatter plots include points
(geometric objects) that by their position, shape, colour, or some other property
directly convey information. The location of these points in the plot “canvas” or
“plotting area”, given by the values of their x and y coordinates describes proper-
ties of the data and any deviation in the mapping of observations to coordinates is
misleading, because deviations from the expected mapping conveys wrong/false
information to the audience.
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A data label is connected to an observation but its position can be displaced
as long as its link to the corresponding observation can be inferred, e.g., by the
direction of an arrow or even simple proximity. Data labels provide ancillary in-
formation, such as the name of a gene or place.

Annotations, are additions to a plot that have no connection to individual ob-
servations, but rather with all observations taken together, e.g., a text like n = 200
indicating the number of observations, usually included in a corner or margin of
a plot free of observations.

Axis and tick labels, legends and keys make it possible for the reader to retrieve
the original values represented in the plot as graphical elements. Other features of
visualisations even when not carrying additional information affect the easy with
which a plot can be read and accessibility to readers with visual constraints such
as colour blindness. These features include the size of text and symbols, thickness
of lines, choice of font face, choice of colour palette, etc.

Because of the different lengths of time available for the audience to interact
with visualisations, in general, plots designed to be included in books and journals
are unsuitable for oral presentations, and vice versa. It is important to keep in mind
the role played by plots in informing the audience, and what information can be
expected to be of interest to different audiences and under different situations.
The grammar of graphics and its extensions provide enough flexibility to tailor
the design of plots to different uses and also to easily create variations of a given
plot.

9.4 The Grammar of Graphics

What separates ‘ggplot2’ from base R and trellis/lattice plotting functions is the
use of a layered grammar of graphics (the reason behind ‘gg’ in the name of pack-
age ‘ggplot2’). What is meant by grammar in this case is that plots are assembled
piece by piece using different “nouns” and “verbs” (Cleveland 1985; Wickham
2010). Instead of using a single function with many arguments, plots are assembled
by combining different elements with operators + and %+%. Furthermore, the con-
struction is mostly semantics-based and to a large extent, how plots look when
printed, displayed, or exported to a bitmap or vector-graphics file is controlled by
themes.

Plotting can be thought as translating or mapping the observations or data into
a graphical language. Properties of graphical (or geometrical) objects are used to
represent different aspects of the data. An observation can consist of multiple re-
corded values. Say an observation of air temperature may be defined by a position
in 3-dimensional space and a point in time, in addition to the temperature itself.
An observation for the size and shape of a plant can consist of height, stem dia-
meter, number of leaves, size of individual leaves, length of roots, fresh mass, dry
mass, etc. For example, an effective way of studying and/or communicating the
relationship between height and stem diameter in plants, is to plot observations
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as points using cartesian coordinates, mapping stem diameter to the x axis and
the height to the y axis.

The grammar of graphics makes it possible to design plots by combining vari-
ous elements in ways that are nearly orthogonal. In other words, the majority of the
possible combinations of “words” yield valid plots as long the rules of the grammar
are respected. This flexibility makes ‘ggplot2’ extremely powerful as types of plots
not considered when the ‘ggplot2’ package was designed can be easily created.

When a ggplot is built, the whole plot and its components are created as R
objects that can be saved in the workspace or written to a file as R objects. These
objects encode a recipe for constructing the plot, not its final graphical repres-
entation. The graphical representation is generated when the object is printed,
explicitly or not. Thus, the same "gg" plot object can be rendered into different
bitmap and vector graphic formats for display and/or printing.

The transformation of a set of data or observations into a rendered graphic
with package ‘ggplot2’ can be represented as a flow of information, but also as a
sequence of actions. However, what avoids that the flexibility from becoming a bur-
den on users is that in most cases adequate defaults are used when the user does
not provide explicit “instructions”. The recipe to build a plot needs to specify a) the
data to use, b) which variable to map to which graphical property (or aesthetic), ¢)
which layers to add and which geometric representation to use, d) the scales that
establish the link between data values and aesthetic values, e) a coordinate system
(affecting only aesthetics x, v and possibly z), f) a theme to use. The result from
constructing a plot object using the grammar of graphics is an R object containing
a “recipe for a plot”, including the data, which behaves similarly to other R objects.

9.4.1 The words of the grammar

Before building a plot step by step, I introduce the different components of a ggplot
recipe, or the words of the grammar of graphics.

Data

The data to be plotted must be available as a data.frame or tibble, with data
stored so that each row represents a single observation event, and the columns
are different values observed in that single event. In other words, in long form
(so-called “tidy data”) as described in chapter 8. The variables to be plotted can be
numeric, factor, character, and time or date stored as posIxct. (Some extensions
to ‘ggplot2’ add support for other types of data such as time series).

Mapping

When constructing a plot, data variables have to be mapped to aesthetics (or
graphic properties). Most plots will have an x dimension, which is one of the aes-
thetics, and a variable containing numbers (or categories) mapped to it. The posi-
tion on a 2D plot of, say, a point, will be determined by x and 7y aesthetics, while
in a 3D plot, three aesthetics need to be mapped X, y, and z. Many aesthetics are
not related to coordinates, they are properties, like colour, size, shape, line type,
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or even rotation angle, which add an additional dimension on which to represent
the values of variables and/or constants.

Statistics

Statistics are “words” that represent calculation of summaries or some other oper-
ation on the values in the data. When statistics are used for a computation, the re-
turned value is passed to a geometry, and consequently adding a statistics also adds
alayer to the plot. For example, stat_smooth () fits a smoother, and stat_summary ()
applies a summary function such as mean((). Most statistics are applied by group
when data have been grouped by mapping additional aesthetics such as colour to
a factor.

Geometries

Geometries are “words” that describe the graphics representation of the data: for
example, geom_point (), plots a point or symbol for each observation or summary
value, while geom_11ine (), draws line segments between observations. Some geomet-
ries rely by default on statistics, but most “geoms” default to the identity statistics.
Each time a geometry is used to add a graphical representation of data to a plot,
one says that a new layer has been added. The grammar of graphics allows plots
to contain multiple layers. The name layer reflects the fact that each new layer
added is plotted on top of the layers already present in the plot, or rather when a
plotis printed the layers will be generated in the order they were added to the plot
object. For example, one layer in a plot can display the observations, another layer
a regression line fitted to them, and a third one may contain annotations such as
an equation or a text label.

Positions

Positions are “words” that determine the displacement or not of graphical plot ele-
ments relative to their original x and y coordinates. They are one of the arguments
accepted by geometries. Position position_identity() introduces no displacement,
and for example, position_stack() makes it possible to create stacked bar plots
and stacked area plots. Positions will be discussed together with geometries as
they are always subordinate to them.

Scales

Scales give the “translation” or mapping between data values and the aesthetic
values to be actually plotted. Mapping a variable to the “colour” aesthetic (also
recognised when spelled as “color”) only tells that different values stored in
the mapped variable will be represented by different colours. A scale, such as
scale_colour_continuous (), will determine which colour in the plot corresponds
to which value in the variable. Scales can also define transformations on the data,
which are used when mapping data values to aesthetic values. All continuous scales
support transformations—e.g., in the case of x and 7y aesthetics, positions on the
plotting region or graphic viewport will be affected by the transformation, while
the original values are used for tick labels along the axes or in keys for shapes, col-
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ours, etc. Scales are used for all aesthetics, including continuous variables, such
as numbers, and categorical ones such as factors. The grammar of graphics allows
only one scale per aesthetic and plot. This restriction is imposed by design to avoid
ambiguity (e.g., it ensures that the red colour will have the same “meaning” in all
plot layers where the colour aesthetic is mapped to data). Scales have limits that
are set automatically unless supplied explicitly.

Coordinate systems

The most frequently used coordinate system when plotting data, the cartesian sys-
tem, is the default for most geometries. In the cartesian system, x and 7 are repres-
ented as distances on two orthogonal (at 90°) axes. Additional coordinate systems
are available in ‘ggplot2’ and through extensions. For example, in the polar system
of coordinates, the x values are mapped to angles around a central point and y
values to the radius. Setting limits to a coordinate system changes the region of
the plotting space visible in the plot, but does not discard observations. In other
words, when using statistics, observations located outside the coordinate limits,
i.e., not visible in the rendered plot, will still be included in computations when
excluded by coordinate limits but will be ignored when excluded by scale limits.

Themes

How the plots look when displayed or printed can be altered by means of themes.
A plot can be saved without adding a theme and then printed or displayed using
different themes. Also, individual theme elements can be changed, and whole new
themes defined. This adds a lot of flexibility and helps in the separation of the data
representation aspects from those related to the graphical design.

Operators

The elements described above are assembled into a ggplot object using operator +
and exceptionally using %+%. The choice of these operators makes sense, as ggplot
objects are built by sequentially adding members or elements to them.

The functions corresponding to the different elements of the grammar of
graphics have distinctive names with the first few letters hinting at their roles:
aesthetics mappings (aes), geometric elements (geom_...), statistics (stat_..), scales
(scale_..), coordinate systems (coord_..), and themes (theme_..).

9.4.2 The workings of the grammar

A "gg" plot object is an R object of mode "1ist" containing the recipe and data to
construct a plot. It is self contained in the sense that the only requirement for ren-
dering it into a graphical representation is the availability of package ‘ggplot2’. A
"gg" object contains the data in one or more data frames and instructions encoded
as functions and parameters, but not yet a rendering of the plot into graphical
objects. Both data transformations and rendering of the plot into drawing instruc-
tions (encoded as graphical objects or grobs) take place at the time of printing or
exporting the plot, e.g., when saving a bitmap to a file.
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Figure 9.1
Abstract diagram of data transformations in a ggplot layer showing the stages at
which mappings between variables and graphic aesthetics take place.

To understand ggplots, one should first think in terms of the graphical organ-
isation of the plot: there is always a background layer onto which other layers com-
posed by different graphical objects are laid. Each layer contains related graphical
objects originating from the same data. The last layer added is the topmost and
the first one added the lowermost. Graphical objects in upper layers occlude those
in the layers below them if their locations overlap. Although frequently layers in a
ggplot share the same data and the same mappings to aesthetics, this is not a re-
quirement. It is possible to build ggplots with independent layers, although always
with shared scales and plotting area.

A second perspective on ggplots is that of the process of converting the data
into a graphical representation that can be printed on paper or viewed on a com-
puter screen. The transformations applied to the data to achieve this can be
thought as a data flow process divided into stages. The diagram in Figure 9.1
represents a single self-contained layer in a plot. The data supplied by the user
is transformed in stages into instructions to draw a graphical representation. In
‘ggplot2’ and its documentation, graphical features are called aesthetics, with the
correspondence between values in the data and values of the aesthetic controlled
by scales. The values in the data are summarised by statistics. However, when no
summaries are needed, layers make use of stat_indentity(), which copies its in-
put to its output unchanged. Geometries provide the “recipe” used to generate
graphical objects from the mapped data.

Function aes () is used to define mappings to aesthetics. The default for aes()
is for the mapping to take place at the start (leftmost circle in the diagram above),
mapping names in the user data to aesthetics such as x, y, colour, and shape. The
statistic can alter the mapped data, but in most cases not which aesthetics they
are mapped to. Statistics can add default mappings for additional aesthetics. In
addition, the default mappings of the data returned by the statistic can be modified
by user code at this later stage, after stat. Default mappings can be modified again
at the after scale stage.

Statistics always return a mapping to the same aesthetics that they require as
input. However, the values mapped to these aesthetics at the after stat stage are
in most cases different from those at start. Many statistics return additional vari-
ables, which are not mapped by default to any aesthetic. These variables facilitate
variations on how results from a given type of data summary are added to plots,
including the use of a geometry different from the default set by the statistic. In
this case, the user has to override default mappings at the after stat stage. The
additional variables returned by statistics are listed in their documentation. (See
section 9.4.5 on page 288 for details.)
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As mentioned above, all ggplot layers include a statistic and a geometry. From
the perspective of the construction of a plot using the grammar, both stats and
geoms are layer constructor functions. While stats take a geom as one of their ar-
guments, geoms take a stat as one of their arguments. Thus, in both cases, a stat
and a geom are added as a layer, and their role and position in the data flow remain
the same, i.e., the diagram in Figure 9.1 applies independently of how the layers
are added to the plot. The default statistic of many geometries is stat_identity()
making their behaviour when added to a plot as if the layer they create contained
no statistics.

There are some statistics in ‘ggplot2’ that have companion geometries that can
be used (almost) interchangeably. This tends to lead into confusion, and in this
book, only geometries that have as default stat_identity() are described as geo-
metries in section 9.5. In the case of those that by default use other statistics, like
geom_smooth () only the companion statistic, stat_smooth() for this example, are
described in section 9.6.

A ggplot can have a single layer or many layers, but when ggplots have more
than one layer, the data flow, computations, and generation of graphical objects
takes place independently for each layer. As mentioned above, most ggplots do
not have fully independent layers, but the layers share the same data and aesthetic
mappings at the start. Ahead of this point computations in layers are always inde-
pendent of those in other layers, except that for a given aesthetic only one scale is
allowed per plot.

make it possible

9.4.3 Plot construction

As the use of the grammar is easier to demonstrate by example than to explain
with words, I will show how to build plots of increasing complexity, starting from
the simplest possible. All elements of a plot have defaults, although in some cases
these defaults result in empty plots. Defaults make it possible to create a plot very
succinctly. When building a plot step by step, the different viewpoints described in
the previous section are relevant: the static structure of the plot’s R object, the final
graphic output, and the transformations that the data undergo “in transit” from
the recipe stored in an object to the graphic output. In this section, I emphasise
the syntax of the grammar and how it translates into a plot.

Function ggplot() by default constructs an empty plot. This is similar to how
character(), numeric(), etc. construct empty vectors. This empty skeleton of a
plot when printed is displayed as an grey rectangle.

ggplot()
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A data frame passed as an argument to data without adding a mapping res-
ults in the same empty grey rectangle (not shown). Data frame mtcars is a data
set included in R (to read a description, type help("mtcars") at the R command
prompt).
ggplot(data = mtcars)

Once the data are available, a graphical or geometric representation needs to
be selected. The geometry used, such as geom_point() and geom_1ine(), drawing
separate points for the observations or connecting them with lines, respectively,
defines the type of plot. A mapping defines which property of the geometric ele-
ments will be used to represent the values from a variable in the user’s data. Most
geometries require mappings to both x and y aesthetics, as they establish the po-
sition of the geometrical shapes like points or lines in the plotting area. Additional
aesthetics like colour make use of default scales and palettes. These defaults can
be overridden with scale functions added to the plot (see section 9.10).

Mapping at the start stage, disp to x and mpg to y aesthetics, makes the ranges
of the values available. They are used to find default limits for the x and 1y scales
as reflected in the plot axes. The plotting area x and y now match the ranges of
the mapped variables, expanded by a small margin. The axis labels also reflect
the names of the mapped variables, however, there are no graphical element yet
displayed for the individual observations.
ggplot(data = mtcars,

mapping = aes(x = disp, y = mpg))
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Observations are made visible by the addition of a suitable geometry or geom
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to the plot recipe. Below, adding geom_point() makes the observations visible as
points or symbols.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point()
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In the examples above, the plots were printed automatically, which is the
default at the R console. However, as with other R objects, ggplots can be assigned
to a variable.
pl <- ggplot(data = mtcars,

mapping = aes(x = disp, y = mpg)) +
geom_point()
and printed at a later time, and saved to and read from files on disk.
print(pl)

Layers and other elements can be also added to a saved ggplot as the saved
objects are not the graphical representation of the plots themselves but instead a
recipe plus data needed to build them.

9.1 As for any R object str() displays the structure of "gg" objects. In ad-
dition, package ‘ggplot2’ provides a summary () method for "gg" plot objects.

As you make progress through the chapter, use these methods to explore the
"gg" plot objects you construct, paying attention to layers, and global vs. layer-
specific data and mappings. You will learn how the plot components are stored as
members of "gg" plot objects.

Although aesthetics are usually mapped to variables in the data, constant aes-
thetic values can be passed as arguments to layer functions, consistently con-
trolling a property of all elements in a layer. While variables in data can be both
mapped using aes() as whole-plot defaults, as shown above, or within individual
layers, constant values for aesthetics have to be set, as shown here, as named ar-
guments passed directly to layer functions, instead of to a call to aes().

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point(colour = "blue", shape = "square")
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Mapping an aesthetic to a constant value within a call to aes () adds a column
containing this value to the data frame received as input by the stat (). This value
is not interpreted as an aesthetic value but instead as a data value. The plot above,
but using a call to aes().

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +

geom_point(mapping = aes(colour = "blue", shape = "square"))
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The plot contains red circles instead of blue squares!

In principle, one could correct this plot by adding suitable scales but this would
be still wasteful by unnecessarily storing many copies of the constant "blue" in
the "gg" plot object.

While a geometry directly constructs during rendering a graphical representa-
tion of the observations or summaries in the data it receives as input, a statistics
or stat “sits” in-between the data and a geom, applying some computation, usually
but not always, to produce a statistical summary of the data. Here stat_smooth()
fits a linear regression (see section 7.9.1 on page 202) and passes the resulting
predicted values to geom_1ine(). Passing method = "1m" selects 1m() as the model
fitting function. Passing formula = y  x sets the model to be fitted. This plot has
two layers, one from geometries geom_point () and one from geom_1ine().

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point() +
stat_smooth(geom = "1ine", method = "Tm", formula =y ~ x)
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The plots above relied on defaults for scales, coordinates and themes. In the
examples below, the defaults are overridden by arguments that produce differently
rendered plots. Adding scale_y_log10() applies a logarithmic transformation to
the values mapped to y. This works like plotting using graph paper with rulings
spaced according to alogarithmic scale. Tick marks continue to be expressed in the
original units, but statistics are applied to the transformed data. In other words,
the transformation specified in the scale affects the values in advance of the start
stage, before they are mapped to aesthetics and passed to statistics. Thus, in this
example, the linear regression is fitted to 1og10() transformed 7y values and the
original x values.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point() +
stat_smooth(geom = "1ine", method = "1m", formula =y ~ x) +
scale_y_logl0()
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The range limits of a scale can be set manually, instead of automatically as
by default. These limits create a virtual window into the data: out-of-bounds (oob)
observations, those outside the scale limits remain hidden and are not mapped to
aesthetics—i.e., these observations are not included in the graphical representation
or used in calculations. Crucially, when using statistics the computations are only
applied to observations that fall within the limits of all scales in use. These limits
indirectly affect the plotting area when the plotting area is automatically set based
on the range of the (within limits) data—even the mapping to values of a different
aesthetics may change when a subset of the data is selected by manually setting
the limits of a scale.
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In contrast to scale limits, coordinates function as a zoomed view into the plot-
ting area, and do not affect which observations are visible to statistics. The co-
ordinate system, as expected, is also determined by this grammar element—below,
adding cartesian coordinates, which are the default, but setting y limits overrides
the default ones.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point() +
stat_smooth(geom = "1ine", method = "1m", formula =y ~ x) +
coord_cartesian(ylim = c(15, 25))
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The next example uses a coordinate system transformation. When the trans-
formation is applied to the coordinate system, it affects only the plotting—it sits
between the geom and the rendering of the plot. The transformation is applied to
the values that were returned by statistics. The straight line fitted is plotted on the
transformed coordinates as a curve, because the model was fitted to the untrans-
formed data obtaining untransformed predicted values. The coordinate transform-
ation is applied to these predicted values and plotted. (Other coordinate systems

are described in sections 9.5.6 and 9.12 on pages 306 and 362, respectively.)

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point() +
stat_smooth(geom = "1ine", method = "Tm", formula =y ~ x) +
coord_trans(y = "logl0")
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Themes affect the rendering of plots at the time of printing—they can be
thought of as style sheets defining the graphic design. A complete theme can over-
ride the default gray theme. The plot is the same, the observations are represented
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in the same way, the limits of the axes are the same and all text is the same. On the
other hand, how these elements are rendered by different themes can be drastically
different.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point() +
theme_classic()
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Both the base font size and the base font family can be changed. The base font
size controls the size of all text elements, as other sizes are defined relative to
the base size. How the plot looks changes when using the same theme as in the
previous example, but with a different base point size and font family for text
elements. (The use of themes is discussed in section 9.13 on page 364.)

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point() +
theme_classic(base_size = 20, base_family = "serif")

35
304 *°

50 25 1 o

& 204 .

154

]0- T T T T 20
100 200 300 400
disp

How to set axis labels, tick positions, and tick labels will be discussed in depth in
section 9.10 on page 341. Function labs () is a convenience function used to set the
title and subtitle of a plot and to replace the default name of scales, here displayed
as axis labels. The default name of scales is the name of the mapped variable. In the
call to 1abs (), the names of aesthetics are used as if they were formal parameters
with character strings or R expressions as arguments. Below x and y are the names
of the two aesthetics to which two variables in data were mapped, disp and mpg,
respectively. Formal parameters title and subtitle add these plot elements. (The
escaped character \n stands for new line, see section 3.4 on page 41.)
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ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point() +
Tabs(x = "Engine displacement (cubic inches)",
y = "Fuel use efficiency\n(miles per gallon)",
title = "Motor Trend Car Road Tests",
subtitle = "Source: 1974 Motor Trend US magazine")

Motor Trend Car Road Tests

Source: 1974 Motor Trend US magazine
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As elsewhere in R, when a value is expected, either a value stored in a variable or
amore complex statement returning a suitable value can be passed as an argument
to be mapped to an aesthetic. In other words, the values to be plotted do not need
to be stored as variables (or columns) in the data frame passed as an argument to
parameter data, they can also be computed from these variables. Below, miles-per-
gallon, mpg are plotted against the engine displacement per cylinder by dividing
disp by cy1 within the call to aes().

ggplot(data = mtcars,
mapping = aes(x = disp / cyl, y = mpg)) +
geom_point()
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Each of the elements of the grammar exemplified above is implemented in mul-
tiple functions, and in addition these functions accept arguments that can be used
to modify their behaviour. Multiple data objects as well as multiple mappings can
coexist within a single "gg" plot object. Packages and user code can define new
geometries, statistics, scales, coordinates, and even implement new aesthetics. In-
dividual elements in a theme can be modified and new complete themes created,
re-used and shared. I describe below how to use the grammar of graphics to con-
struct different types of data visualisations, both simple and complex. Because the
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different elements interact, I introduce some of them first briefly in sections other
than where I describe them in depth.

9.4.4 Plots as R objects

"gg" plot objects and their components behave as other R objects. Operators and
methods for the "gg" class are available. As above, a "gg" plot object saved as p1
is used below.
pl <- ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point()

In the previous section, operator + was used to assemble the plots from “an-
onymous” R objects. Saved or “named” objects can also be combined with +.
pl + stat_smooth(geom = "1ine", method = "1m", formula =y ~ x)

35-

100 200 300 400
disp

Above, plot elements were added one by one, with operator +. Multiple com-
ponents can be also added in a single operation. Like individual components, sets
of components stored in a list can be saved in a variable and added to multiple
plots. This ensures consistency and makes coordinated alterations to a set of plots
easier. Throughout this chapter, I use this approach to achieve conciseness and to
highlight what is different and what is not among plots in related examples.
p.1s <- Tist(

stat_smooth(geom = "1ine", method = "Im", formula =y ~ x),
scale_y_logl0())

pl + p.ls
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9.2 Reproduce the examples in the previous section, using p1 defined above
as a basis instead of building each plot from scratch.

The separation of plot construction and rendering is possible because "gg"
objects are self-contained. A copy of the data object passed as an argument to
data is saved within the plot object, similarly as in model-fit objects. In the ex-
ample above, p1 by itself could be saved to a file on disk and loaded into a clean
R session, even on another computer, and rendered as long as package ‘ggplot2’
and its dependencies are available. Another consequence of storing a copy of the
data in the plot object, is that later changes to the data object used to create a "gg"
object are not reflected in newly rendered plots from this object: the "gg" object
needs to be created anew.

The recipe for a plot is stored in a "gg" plot object. Objects of class "gg" are
of mode "Tist". In R, lists can contain heterogeneous members and "gg" objects
contain data, function definitions, and unevaluated expressions. In other words,
the data plus instructions to transform the data, to map them into graphic objects,
and various aspects of the rendering from scale limits to type faces to use. (R lists
are described in section 4.3 on page 86.)

Top level members of the "gg" plot object p1, a simple plot, are displayed below
with method summary (), which shows the components without making explicit the
structure of the object.
summary (pl)

## data: mpg, cyl, disp, hp, drat, wt, gsec, vs, am, gear, carb [32x11]
## mapping: X = ~disp, y = ~mpg
## faceting: <ggproto object: Class FacetNull, Facet, gg>

## compute_layout: function

#i#t draw_back: function

## draw_front: function

## draw_Tlabels: function

#i#t draw_panels: function

## finish_data: function

#i#t init_scales: function

#i# map_data: function

## params: 1ist

## setup_data: function

## setup_params: function

#i# shrink: TRUE

#i#t train_scales: function

#i# vars: function

#i#t super: <ggproto object: Class FacetNull, Facet, gg>
## —-———————

## geom_point: na.rm = FALSE
## stat_identity: na.rm = FALSE
## position_identity

Method str() shows the structure of objects and can be also used to advantage
with ggplots (long output not shown). Alternatively, names () extracts the names
of the top-level members of p1.
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names (p1l)
## [1] "data" "Tayers" "scales" "guides" "mapping"
## [6] "theme" "coordinates" "facet" "plot_env" "Tayout"

## [11] "Tabels"

9.3 Explore in more detail the different members of object p1. For example,
the code statement below extracts member "layers" from object p1 and display
its structure.

str(pl$layers, max.level = 1)

How many layers are present in this case?

9.4.5 Scales and mappings

In ‘ggplot2’, a mapping describes which variable in data is mapped to which
aesthetic, or graphic feature of a plot, such as x, y, colour, fill, shape, and
linewidth. In ‘ggplot2’, a scale describes the correspondence between values in
the mapped variable and values of the graphic feature. Below, the numeric vari-
able cy1 is mapped to the colour aesthetic. As the variable is numeric, a continu-
ous colour scale is used. Out of the multiple continuous colour scales available,
scale_colour_continuous () is the default.
p2 <-

ggplot(data = mtcars,

mapping = aes(x = disp, y = mpg, colour = cyl)) +
geom_point()

p2
35-
]
]
. L
30 cyl
) o 8
25- . 7
o L] L]
[ ]
E 2- o’ — 6
° ° o 5
e oo °
15- e te . 4
10 L ' ' ' ' e
100 200 300 400

disp
Without changing the mapping, a different-looking plot can be created by chan-
ging the scale used. Below, in addition, a palette is selected with option = "magma"
and the range of colours used from this palette adjusted with end = 0.85.

p2 + scale_colour_viridis_c(option = "magma", end = 0.85)
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Changing the scale used for the colour aesthetic, conceptually does not modify
the plot, except for the colours used. There is a separation between the semantic
structure of the plot and its graphic design. Still, how the audience interacts and
perceives the plot depends on both of these concerns.

Some scales, like those for colour, exist in multiple “flavours”, suitable for nu-
meric variables (continuous) or for factors (discrete) values. If cy1 is converted into
a factor, a discrete colour scale is used instead of a continuous one. Out of the
different discrete scales, scale_colour_discrete() is used by default.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_point()
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If cyl is converted into an ordered factor, an ordinal colour scale is used, by
default scale_colour_ordinal() (plot not shown).
ggplot(data = mtcars,

mapping = aes(x = disp, y = mpg, colour = ordered(cyl))) +
geom_point()

The scales for other aesthetics work in a similar way as those for colour. Scales
are described in detail in section 9.10 on page 344.

In the examples above for simple plots, based on data contained in a single
data frame, mappings were established by passing the value returned by the call
to aes() as the argument to parameter mapping of ggplot().

Arguments passed to data and/or mapping parameters of ggplot() work as de-
faults for all layers in a plot. If arguments are passed to the identically named
parameters of a layer function—statistic or geometry—, they are applied to the
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layer, overriding whole-plot defaults, if they exist. Consequently, the code below
creates a plot, p3, identical to p2 above.
p3 <-

ggplot() +

geom_point(data = mtcars,

mapping = aes(x = disp, y = mpg, colour = cyl))
p3
These examples demonstrate two different approaches that are equally con-

venient for simple plots with a single layer. However, if a plot has multiple layers
based on the same data, the approach used for p2 makes this clear and is concise.
If each layer uses different data and/or different mappings, the second approach
is necessary.

In some cases, when flexibility is needed while constructing complex plots
with multiple layers other idioms can be preferable, e.g., when assembling a plot
from “pieces” stored in variables or built programmatically.

The default mapping can also be added directly with the + operator, instead of
being passed as an argument to ggplot().

ggplot(data = mtcars) +
aes(x = disp, y = mpg) +
geom_point()

It is also possible to have a default mapping for the whole plot, but no default
data.
ggplot() +
aes(x = disp, y
geom_point(data

mpg) +
mtcars)

A mapping saved in a variable (example below), as well as a mapping returned
by a function call (shown above for aes()), can be passed as an argument to para-
meter mapping
my.mapping <- aes(x = disp, y = mpg)
ggplot(data = mtcars,

mapping = my.mapping) +
geom_point()

In all these examples, the plot remains unchanged (not shown). However, the
flexibility of the grammar allows the assembly of plots from separately construc-
ted pieces and reusing these pieces by storing them in variables. These approaches
can be very useful in scrips that construct consistently formatted sets of plots, or
when the same mapping needs to be used consistently in multiple plots.

The mapping to aesthetics in the call to aes () does not have to be to a variable
from data as in examples above. A a code statement that returns a value computed
from one or more variables from data is also accepted. Computations during map-
ping helps avoid the proliferation of variables in the data frames containing obser-
vations. In this simple example, mpg in miles per gallon is converted into km per
litre during mapping.
ggplot(data = mtcars,

mapping =aes(x = disp, y = mpg * 0.43)) +
geom_point()
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Operations applied to the data before they are plotted are usually implemen-
ted in stats. Sometimes it is convenient to directly modify the whole-plot default
data before it reaches the layer’s stat function. One approach is to pass a function
to parameter data of the layer function. This argument must be the definition of a
function accepting a data frame as its first argument and returning a data frame.
When the argument to data is a function definition instead of the usual data frame,
the function is applied to the plot’s default data and the data frame returned by
the function is used as the data in the layer. In the example below, an anonymous
function defined in-line, extracts a subset of the rows. The observations in the ex-
tracted rows are highlighted in the plot by overplotting them with smaller yellow
shapes.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point(size = 4) +
geom_point(data = function(x) {subset(x = x, cyl == 4)},

colour = "yellow", size = 1.5)
35-
(o)
[o]
30- 00
o
25- o [e)
g 0.0
S O "o ()
20- ® P
$ o g °
J ([
10_ ' ' ' ' ..
100 200 300 400
disp

The argument passed above to data is a function definition, not a function call.
Thus, if a function is passed by name, no parentheses are used. No arguments can
be passed to a function, except for the default data passed by position to its first
parameter. Consequently, it is not possible to pass function subset directly. The
anonymous function above is needed to be able to pass cyl == 4 as argument.

The plot’s default data can also be operated upon using the ‘magrittr’ pipe
operator, but not the pipe operator native to R (|>) or the dot-pipe operator from
‘wrapr’ (see section 8.5 on page 253). In this approach, the dot (.) placeholder at
the head of the pipe stands for the plot’s default data object. The code statement
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below uses a pipe as argument for data to call function subset() with cyl == 4
passed as the condition. The plot, not shown, is as in the example above.
ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point(size = 4) +
geom_point(data = . %% subset(x = ., cyl == 4), colour = "yellow",
size = 1.5)

A third possible approach is to test the condition within the call to aes (). In this
approach, it is not possible to extract a subset of rows. Making some observations
invisible by reducing their size seems straightforward. However, setting size = 0
draws a very small point, still visible. Out of various possible approaches, setting
size to NA, skips the rows, and na.rm = TRUE silences the expected warning. This is
a roundabout approach to subsetting. Notice that scale_size_identity() is also
needed. The plot, not shown, when rendered does not differ from the two examples
above.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +
geom_point(size = 4) +
geom_point(colour = "yellow",
mapping = aes(size = ifelse(cyl == 4, 1.5, NA)),
na.rm = TRUE) +
scale_size_identity()

As it is usual in R, multiple approaches can be used to the same end.

Late mapping of variables to aesthetics has been possible in ‘ggplot2’ for
a long time using as notation enclosure of the name of a variable returned by a
statistic between .., but this notation has been deprecated some time ago and
replaced by stat(). In both cases, this imposed a limitation: it was impossible to
map a computed variable to the same aesthetic as input to the statistic and to
the geometry in the same layer. There were also some other quirks that prevented
passing some arguments to the geometry through the dots ... parameter of a
statistic.
Since version 3.3.0 of ‘ggplot2’, the syntax used for mapping variables to aes-
thetics is based on functions stage(), after_stat() and after_scale(). Function
after_stat() replaces both stat() and the .. notation.

The documentation of ‘ggplot2’ gives several good examples of cases when
the new mapping syntax is useful. I give here a different example, a polynomial
fitted to data using rim(). RLM is a procedure that automatically assigns before
computing the residual sums of squares, weights to the individual residuals in an
attempt to protect the estimated fit from the influence of extreme observations or
outliers. When using this and similar methods, it is of interest to plot the residuals
together with the weights. One approach is to map weights to a gradient between
two colours. The code below constructs a data frame containing artificial data that
includes an extreme value or outlier.

set.seed(4321)

X <= 0:10

Y <= (X + XA2 + XA3) + rnorm(length(X), mean = 0, sd = mean(XA3) / 4)
dfl <- data.frame(X, Y)
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df2 <- dfl
df2[6, "Y"] <-dfl[6, "Y"] * 10

In the first plot, after_stat() is used to map variable weights computed by the
statistic to the colour aesthetic. In stat_fit_residuals(), geom_point() is used by
default. This figure shows the raw residuals with no weights applied (mapped to
v by default), and the computed weights (with range 0 to 1) encoded by colours
ranging between red and blue.
ggplot(data = df2, mapping = aes(x = X, y = Y)) +

stat_fit_residuals(formula = y ~ poly(x, 3, raw = TRUE), method = "rIm",

mapping = aes(colour = after_stat(weights)),
show.legend = TRUE) +

scale_colour_gradient(low = "red", high = "blue", 1limits = c(0, 1),
guide = "colourbar")
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In the second plot, weighted residuals are mapped to the 7y aesthetic, and
weights, as above, to the colour aesthetic. A call to stage() can distinguish the
mapping ahead of the statistic (start) from that after the statistic, i.e., ahead of
the geometry. As above, the default geometry, geom_point() is used. The mapping
in this example can be read as: the variable x from the data frame df2 is mapped to
the x aesthetic at all stages. Variable vy from the data frame df2 is mapped to the y
aesthetic ahead of the computations in stat_fit_residuals(). After the computa-
tions, variables y and weights in the data frame returned by stat_fit_residuals()
are multiplied and mapped to the y ahead of geom_point().

ggplot(df2) +
stat_fit_residuals(formula = y ~ poly(x, 3, raw = TRUE),
method = "rIm",
mapping = aes(x = X,
y = stage(start =,
after_stat = y * weights),
colour = after_stat(weights)),
show.legend = TRUE) +
scale_colour_gradient(low = "red", high = "blue", 1limits = c(0, 1),
guide = "colourbar")
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When fitting models to observations with 1m(), the un-weighted residuals are
used to compute the sum of squares unless weights are passed as an argument.
In rim(), the weights are computed from the data by the function.

9.5 Geometries

Different geometries support different aesthetics (Table 9.1). While geom_point ()
supports shape, and geom_11ine () supports linetype, both support x, y, colour, and
size. In this section I describe frequently used geometries from package ‘ggplot2’
and from a few packages that extend ‘ggplot2’. The graphic output from some
code examples will not be shown, with the expectation that readers will run the
code to see the plots.

Mainly for historical reasons, geometries accept a statistic as an argument, in
the same way as statistics accept a geometry as an argument. In this section I only
describe geometries which have as a default statistic stat_identity.In section 9.6.2
(page 317), I describe other geometries together with the statistics they use by de-
fault.

9.5.1 Point

As seen in examples above, geom_point (), can be used to add a layer with observa-
tions represented by “points” or symbols. In scatter plots the variables mapped to
x and 1y aesthetics are both continuous (numeric) and in dot plots one of them is
discrete (factor or ordered) and the other continuous. The plots in the examples
above have been scatter plots.

The first examples of the use of geom_point() are for scatter plots, as disp and
mpg are numeric variables. In the examples above, a third variable, cy1, was mapped
to colour. While the colour aesthetic can be used with all geoms, other aesthetics
can be used only with some geoms, for example the shape aesthetic can be used
only with geom_point() and similar geoms, such as geom_pointrange(). The values
in the shape aesthetic are discrete, and consequently only discrete values can be
mapped to it.
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Table 9.1
‘ggplot2’ geometries described in section 9.5, packages where they are defined, and
the aesthetics supported. The default statistic is in all cases stat_identity().

Geometry

Package

Aesthetics

geom_point

‘ggplot2’

X, vy, shape, size, fill, colour, alpha

geom_point_s ‘ggpp’ X, V, size, linetype, linewidth, fill, colour, alpha

geom_pointrange ‘ggplot2’ x,y, ymin, ymax, shape, size, linetype, linewidth,
fill, colour, alpha

geom_errorbar ‘ggplot2’ x, ymin, ymax, linetype, linewidth, colour, alpha

geom_Tlinerange ‘ggplot2’ X, ymin, ymax, linetype, linewidth, colour, alpha

geom_Tine ‘ggplot2’ X, v, linetype, linewidth, colour, alpha

geom_segment ‘ggplot2’ x,y,xend, yend, linetype, linewidth, colour, alpha

geom_step ‘ggplot2’ X, vy, linetype, linewidth, colour, alpha

geom_path ‘ggplot2’ X, vy, linetype, linewidth, colour, alpha

geom_curve ‘ggplot2’ X, vy, xend or yend, linetype, linewidth, colour, al-
pha

geom_area ‘ggplot2’ X, y, (ymin = 0), linetype, linewidth, fill, colour,
alpha

geom_ribbon ‘ggplot2’ x, ymin and ymax, linetype, linewidth, fill, colour,
alpha

geom_align ‘ggplot2’ X or y, xmin or xmax, ymin or ymax, linetype,
linewidth, fill, colour, alpha

geom_rect ‘ggplot2’ xmin, xmax, ymin, ymax, linetype, linewidth, fill,
colour, alpha

geom_tile ‘ggplot2’ X, vy, width, height, linetype, linewidth, fill, colour,
alpha

geom_col ‘ggplot2’ x,y, width, linetype, linewidth, fill, colour, alpha

geom_rug ‘ggplot2’ x ory, linewidth, colour, alpha

geom_hline ‘ggplot2’ yintercept, linetype, linewidth, colour, alpha

geom_vline ‘ggplot2’ xintercept, linetype, linewidth, colour, alpha

geom_abline ‘ggplot2’ intercept, slope, linetype, linewidth, colour, al-
pha

geom_text ‘ggplot2’ X, vy, label, face, family, angle, size, colour, alpha

geom_Tabel ‘ggplot2’ X, vy, label, face, family, (angle), size, fill, colour,
alpha

geom_text_repel  ‘ggrepel’ X, Yy, label, face, family, angle, size, colour, alpha

geom_label_repel ‘ggrepel’ X, vy, label, face, family, size, fill, colour, alpha

geom_sf ‘ggplot2’ fill, colour

geom_tabTle ‘ggpp’ X, V, label, size, colour, angle

geom_plot ‘ggpp’ X, y, label, vp.width, vp.height, angle

geom_grob ‘ggpp’ X, y, vp.width, vp.height, label

geom_blank ‘ggplot2’ —
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p.base <-
ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, shape = factor(cyl))) +
geom_point()
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9.4 Try a different mapping: disp — colour, cyl — x, keeping the mapping
mpg — y unchanged. Continue by using help(mtcars) and/or names (mtcars) to see
what other variables are available, and then try the combinations that trigger your
curiosity—i.e., explore the data.

Adding scale_shape_discrete(), the scale already used by default, but passing
solid = FALSE in the call creates a version of the same plot based on open shapes,
still selected automatically.

p.base +
scale_shape_discrete(solid = FALSE)
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In contrast to “filled” shapes that obey both colour and fi11, “open” shapes
obey only colour, similarly to “solid” shapes. Function scale_shape_manual can be
used to set the shape used for each value in the mapped factor. Below, “open”
shapes are used, as they reveal partial overlaps better than solid shapes (plot not
shown).

p.base +
scale_shape_manual (values = c("circle open",
"square open",
"diamond open™"))



Geometries 297

It is also possible to use characters as shapes. The character is centred on the
position of the observation. As the numbers used as symbols are self-explanatory,
the default guide is removed by passing guide = "none" (plot not shown).
p.base +

scale_shape_manual (values = c("4", "6", "8"), guide = "none")

A variable from data can be mapped to more than one aesthetic, allowing re-
dundant aesthetics. This makes possible figures that, even if using colour, are read-
able when reproduced as black-and-white images and to viewers affected by colour
blindness.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg,
shape = factor(cyl), colour = factor(cyl))) +
geom_point()

The next examples of the use of geom_point() are for dot plots, as disp is a
numeric variable but factor(cy1) is discrete. Dot plots are prone to have overlap-
ping observations, and one way of making these points visible is to make them
partly transparent by setting a constant value smaller than one for the alpha aes-
thetic.

ggplot(data = mtcars,
mapping = aes(x = factor(cyl), y = mpg)) +
geom_point(alpha = 1/3)
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Function position_identity(), which is the default, does not alter the coordin-
ates or position of observations, as shown in all examples above. To make overlap-
ping observations visible, instead of making the points semitransparent as above,
it is possible randomly displace them along the axis mapped to the discrete vari-
able, x in this case. This is called jitter, and can be added using position_jitter()
as argument to formal parameter position of geoms. The amount of jitter is set
by numeric arguments passed to width and/or height, given as a fraction of the
distance between adjacent factor levels in the plot.

ggplot(data = mtcars,
mapping = aes(x = factor(cyl), y = mpg)) +
geom_point(position = position_jitter(width = 0.25, heigh = 0))
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The name as a character string can be also used when no arguments need to
be passed to the position function, and for some positions by passing numerical
arguments to specific parameters of geometries. However, the default width of
+0.5 tends to be rarely optimal (plot not shown).
ggplot(data = mtcars,

mapping = aes(x = factor(cyl), y = mpg), colour = factor(cyl)) +
geom_point(position = "jitter")

Bubble plots are scatter- or dot plots in which the size of points or bubbles var-
ies following values of a continuous variable mapped to the size aesthetic. There
are two approaches to this mapping, values in the mapped variable either describe
the area of the points or their radii. Although the radius is sometimes used, due to
how visual perception works, using area is perceptually closer to a linear mapping
compared to radii. Below, the weights of cars in tons are mapped to the area of the
points. Open circles are used because of overlaps.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, colour = factor(cyl), size = wt)) +
scale_size_area() +

geom_point(shape = "circle open", stroke = 1.5)
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9.5 If aradius-based scale is used instead of an area-based one the perceived
size differences are larger, i.e., the “impression” on the viewer is different. In the
plot above, replace scale_size_area() with scale_size_radius().

Display the plot, look at it carefully. Check the numerical values of some of the
weights of the cars, and assess if your perception of the plot matches the numbers
behind it.
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As a final example summarising the use of geom_point(), the scatter plot below
combines different aesthetics and their scales.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, shape
i1l = factor(cyl), size
geom_point(alpha = 0.33, colour = "black") +
scale_size_area() +
scale_shape_manual (values = c("circle filled",
"square filled",
"diamond filled"))
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9.6 Play with the code in the chunk above. Remove or change each of the
mappings and the scale, display the new plot, and compare it to the one above.
Continue playing with the code until you are sure you understand what graphical
element in the plot is added or modified by each individual argument or “word”
in the code statement.

It is common to draw error bars together with points representing means or
medians. These can be added in a single layer with geom_pointrange() with values
mapped to the x, y, ymin and ymax aesthetics, using y for the point and ymin and
ymax for the ends of the line segment. Two other geometries, geom_range() and
geom_errorbar() draw only a segment or a segment with capped ends. These three
geoms are frequently used together with stats that compute summaries by group.
However, summary values calculated before plotting can alternatively be passed
as data.

9.5.2 Rug

Rarely, rug plots are used by themselves. Instead they are usually an addition to
scatter plots. An example of the use of geom_rug() follows. They make it easier to
see the distribution of observations along the x- and/or y-axes. By default, rugs are
drawn on the left and bottom edges of the plotting area. By passing sides = "bt1r"
they are drawn on the bottom, top, left, and right margins. Any combination of the
four characters can be used to control the drawing of the rugs.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_point() +
geom_rug(sides = "btlr")
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Rug plots are useful when the local density of observations in a continuous
variable is not high as, otherwise, rugs become too cluttered and the rug “threads”
overlap. When the overlap is moderate, making the segments semitransparent by
setting the alpha aesthetic to a constant value smaller than one, can make the
variation in density easier to appreciate. When the number of observations is large,
marginal density plots are preferred.

9.5.3 Line and area

Line plots are normally created using geom_Tline(), and, occasionally using
geom_path (). These two geoms differ in the sequence they follow when connecting
values: geom_1ine() connects observations based on the ordering of x values while
geom_path () uses the order in the data. Aesthetic Tinewidth controls the thickness
of lines and Tinetype the patterns of dashes and dots.

In a line plot, observations, or the subset of observations in a group, are joined
by straight lines. Below, a different data set, orange, with data on the growth of
five orange trees (see help(0range)) is used. By mapping Tree to Tinetype the ob-
servations become grouped, and a line is plotted for each tree.

ggplot(data = Orange,
mapping = aes(x = age, y = circumference, linetype = Tree)) +
geom_1l1ine()
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Before ‘ggplot2’ 3.4.0 the size aesthetic controlled the width of lines. Aes-
thetic Tinewidth was added in ‘ggplot2’ 3.4.0 and the use of the size aesthetic for
lines deprecated.
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Geometry geom_step () plots only vertical and horizontal lines to join the obser-
vations, creating a stepped line, or “staircase”. Parameter direction, with default
"hv", controls the ordering of horizontal and vertical lines.

ggplot(data = Orange,
mapping = aes(x = age, y = circumference, linetype = Tree)) +
geom_step ()
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9.7 Using the following toy data, make three plots using geom_line(),
geom_path (), and geom_step to add a layer. How do they differ?
toy.df <- data.frame(x = c(1,3,2,4), y = c(0,1,0,1))

While geom_1ine() draws a line joining observations, geom_area() supports, in
addition, filling the area below the line according to the fil11 aesthetic. In some
cases, itis useful to stack the areas, e.g., when the values plotted represent parts of
a bigger whole. In the next, contrived, example, the areas representing the growth
of the five orange trees are stacked (visually summed) using position = "stack" in
place of the default position = "identity". The visibility of the lines for individual
trees is improved by changing their colour and width from the defaults. (Compare
the y axis of the figure below to that drawn using geom_1line() on page 300.)
pl <-

ggplot(data = Orange,
mapping = aes(x = age, y = circumference, fill = Tree)) +
geom_area(position = "stack", colour = "white", Tinewidth = 1)
pl
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geom_ribbon() draws two lines based on the x, ymin and ymax aesthetics, with
the space between the lines filled according to the fi11 aesthetic. geom_polygon()
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is similar to geom_path() but connects the first and last observations forming a
closed polygon that obeys the fi11 aesthetic.

Finally, three geometries for drawing lines across the whole plotting area:
geom_hline(), geom_vline() and geom_abline(). The first two draw horizontal and
vertical lines, respectively, while the third one draws straight lines according to
the aesthetics sT1ope and intercept determining the position. The lines drawn with
these three geoms extend to the edge of the plotting area.

geom_hline() and geom_vline() require a single parameter (or aesthetic),
yintercept and xintercept, respectively. Different from other geoms, the data for
these aesthetics can be passed as constant numeric vector containing multiple val-
ues. The reason for this is that these geoms are most frequently used to annotate
plots rather than plotting observations. Vertical lines can be used to highlight time
points, here the ages of 1, 2, and 3 years.

pl +
geom_vline(xintercept
geom_v1ine(xintercept

365 * 1:3, colour = "gray75") +
365 * 1:3, linetype = "dashed")
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9.8 Change the order of the two layers in the example above. How did the
figure change? What order is best? Would the same order be the best for a scatter
plot? And would it be necessary to add two geom_v1ine() layers?

Similarly to geom_hline() and geom_vline(), geom_abline() draws a straight
line, accepting as parameters (or as aesthetics) values for the intercept, a, and
the s1ope, b.

Disconnected straight-line segments and arrows, one for each observation or
row in the data, can be plotted with geom_segment() which accepts x, xend, y, and
yend as mapped aesthetics. geom_spoke (), which uses a polar parametrisation, uses
a different set of aesthetics, x, y for origin, and angle and radius for the segment.
Similarly, geom_curve () draws curved segments, with the curvature, control points,
and angles controlled through parameters. These three geometries support arrow
heads at the ends of segments or curves, controlled through parameter arrow (not
through an aesthetic).
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9.5.4 Column

The geometry geom_co1() can be used to create column plots, where each bar rep-
resents an observation or row in the data (frequently means or totals previously
computed from the primary observations).

In other contexts, column plots are frequently called bar plots. R users not
familiar yet with ‘ggplot2’ are frequently surprised by the default behaviour of
geom_bar() as it uses stat_count() to produce a histogram, rather than plotting
values as is (see section 9.6.4 on page 324). geom_co1() is identical to geom_bar ()
but with "identity" as the default statistic.

Using very simple artificial data helps demonstrate how variations of column
plots can be obtained. The data are for two groups, hypothetical males and females.

set.seed(654321)
my.col.data <-
data.frame(treatment = factor(rep(c("A", "B", "C"), 2)),
group = factor(rep(c("male", "female"), c(3, 3))),
measurement = rnorm(6) + c(5.5, 5, 7))

The first plot includes data for "female" subjects extracted using a nested call
to subset (). Except for x and y default mappings are used for all aesthetics.

ggplot(subset(my.col.data, group == "female"),
mapping = aes(x = treatment, y = measurement)) +
geom_col ()

measurement

A B C
treatment

The bars above, are overwhelmingly wide, passing width = 0.5 makes the bars
narrower, using only half the distance between the levels on the x axis. Setting
colour = "white" overrides the default colour of the lines bordering the bars.
Both males and females are included and group is mapped to the fi11 aesthetic.
The default argument for position in geom_col1() is position_stack(). Function
position_stack() is similar to position_stack() but divides the stacked values by
their sum, i.e., the individual stacked “slices” of the column display proportions
instead of absolute values.

p.base <-
ggplot(my.col.data,
mapping = aes(x = treatment, y = measurement, fill = group))

pl <- p.base + geom_col (width = 0.5) + ggtitle("stack (default)")
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Using position = "dodge" to override the default position = "stack" the
columns for males and females are plotted side by side.
p2 <- p.base + geom_col (position = "dodge") + ggtitle("dodge")

The two plots side by side (see section 9.14 on page 369 for details).
pl + p2

u
stack (default dodge

15- 75
5 5
% 10- group GEJ 5.0- group
% [ female ; [0 female
S 5- . male S o5- . male
€ €

0- 1 1 1 0.0- 1 1 1

A B C A B C
treatment treatment

9.9 Change the argument to position, or let the default be active, until
you understand its effect on the figure. What is the difference between positions
"identity", "dodge", "stack", and "fi11"?

9.10 Use constants as arguments for aesthetics or map variable treatment
to one or more of the aesthetics recognised by geom_col1(), such as colour, fill,
Tinetype, size, alpha and width.

9.5.5 Tiles

Tile plots and heat maps are useful when observations are available on a regular
rectangular 2D grid. The grid can, for example, represent locations in space as
well combinations of levels of two discrete classification criteria. The colour or
darkness of the tiles informs about the value of the observations. A layer with
square or rectangular tiles can be added with geom_tile().

Data from 100 random draws from the F distribution with degrees of freedom
vi = 2,v, = 20 are used in the examples.

set.seed(1234)

randomf.df <- data.frame(F.value = rf(100, dfl = 2, df2 = 20),
x = rep(letters[1:10], 10),

y = LETTERS[rep(1:10, rep(10, 10))]1)

geom_tile () requires aesthetics x and y, with no defaults, and width and height
with defaults that make all tiles of equal size filling the plotting area. Variable
F.value is mapped to fi11.

ggplot(data = randomf.df,
mapping = aes(x, y, fill = F.value)) +
geom_tile()



Geometries 305

F.value

= N W s

Below, setting colour = "gray75" and linewidth = 1 makes the tile borders
visible. Whether highlighting these lines improves or not a tile plot depends on
whether the individual tiles correspond to values of a categorical- or continuous
variable. For example, when rows of tiles correspond to genes and columns to dis-
crete treatments, visible tile borders are preferable. In contrast, in the case when
the tiles are an approximation to a continuous surface like measurements on a
regular spatial grid, it is best to suppress tile borders.

ggplot(data = randomf.df,
mapping = aes(x, y, fill = F.value)) +
geom_tile(colour = "gray75", linewidth = 1)
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9.11 Play with the arguments passed to parameters colour and size in the
example above, considering what features of the data are most clearly perceived
in each of the plots you create.

Continuous fill scales can be used to control the appearance. Below, code for
a tile plot based on a gray gradient, with missing values in red, is constructed is
shown (plot not shown).
ggplot(data = randomf.df,

mapping = aes(x, y, fill = F.value)) +
geom_tile(colour = "white") +
scale_fill_gradient(low = "grayl5", high = "gray85", na.value = "red")

In contrast to geom_tile(), geom_rect() draws rectangular tiles based on the
position of the corners, mapped to aesthetics xmin, xmax, ymin and ymax. In this
case, tiles can vary in size and do not need to be contiguous. The filled rectangles
can be used, for example, to highlight a rectangular region in a plot (see example
on page 313).
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9.5.6 Simple features (sf)

‘ggplot2’ version 3.0.0 or later supports with geom_sf(), and its companions,
geom_sf_text(), geom_sf_label(), and stat_sf(), the plotting of shape data simil-
arly to geographic information systems (GIS). This makes it possible to display data
on maps, for example, using different fill values for different regions. The special
coordinate coord_sf() can be used to select different projections for maps. The
aesthetic used is called geometry and contrary to all the other aesthetics described
above, the values to be mapped are of class sfc containing simple features data
with multiple components. Manipulation of simple features data is supported by
package ‘sf’. Normal geometries can be use together with stat_sf_coordinates()
to add other graphical elements to maps. This subject exceeds the scope of this
book, so a single and very simple example is shown below.

nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)

ggplot(nc) +
geom_sf(mapping = aes(fill = AREA), colour = "gray90")

AREA

0.20
0.15
0.10

0.05

1 1 1 1 1
84°W 82°W 80°W 78°W 76°W

9.5.7 Text

Geometries geom_text() or geom_label() are used to add textual data labels and
annotations to plots.

For geom_text () and geom_label(), the aesthetic Tabel provides the text to be
plotted and aesthetics x and y, the location of the labels. The size of the text is con-
trolled by the size aesthetics, while the font is selected by the family and fontface
aesthetics. Below, the whole-plot default mappings for colour and size aesthetics
are overridden within geom_text().

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg,
colour = factor(cyl), size = wt, label = cyl)) +
1/3) +
"darkblue", size = 3)

geom_point(alpha
geom_text(colour
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Aesthetics angle, expressed in degrees, and vjust and hjust can be used to
rotate the text and adjust its vertical and horizontal justification. The default value
of 0.5 for both hjust and vjust sets the centre of the text at the supplied x and y
coordinates. “Vertical” and “horizontal” for text justification are relative to the text,
not the plot. This is important when angle is different from zero. Values larger
than 0.5 shift the label left or down, and values smaller than 0.5, right or up with
respect to its x and y coordinates. A value of 1 or O sets the text so thatits edge is at
the supplied coordinate. Values outside the range 0 ... 1 shift the text even farther
away, however, still using units based on the length or height of the text label.
Recent versions of ‘ggplot2’ make possible justification using character constants
for alignment: "1eft", "middle", "right", "bottom", "center", and "top", and two
special alignments, "inward" and "outward", that automatically vary based on the
position in the plotting area.

Below, geom_text () or geom_label() are used together with geom_point() simil-
arly as they are used to add data labels in a plot.

my.data <-
data. frame(x 1:5,
rep(2, 5),

y
Jabel = c("ab", "bc", "cd", "de", "ef™))

ggplot(data = my.data,
mapping = aes(x, y, label = label)) +
geom_text(angle = 90, hjust = 1.5, size = 4) +
geom_point()
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In the case of geom_Tlabel() the text is enclosed in a box and obeys the fi11
aesthetic and additional parameters (described starting at page 309) allowing con-
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trol of the shape and size of the box. Before ‘ggplot2’ 3.5.0, geom_label() did not
support rotation with the angle aesthetic.

9.12 Modify the example above to use geom_label() instead of geom_text()
using, in addition, the fi11 aesthetic.

A serif font is set by passing family = "serif". The names "sans" (the default),
"serif" and "mono" are recognised by all graphics devices on all operating systems.
They do not necessarily correspond to identical fonts in different computers or for
different graphic devices, but instead to fonts that are similar. Additional fonts
are available for specific graphic devices, such as the 35 “PDF” fonts by the pdf()
device. In this case, their names can be queried with names (pdfFonts()).

ggplot(data = my.data,
mapping = aes(x, y, label = label)) +
geom_text(angle = 90, hjust = 1.5, size = 4, family = "serif") +
geom_point()

9.13 In the examples above, the character strings were all of the same length,
containing a single character. Redo the plots above with longer character strings
of various lengths mapped to the 1abel aesthetic. Do also play with justification
of these labels.

R and ‘ggplot2’ support the use of UNICODE, such as UTF8 character encod-
ings in strings. If your editor or IDE supports their use, then you can type Greek
letters and simple maths symbols directly, and they may show correctly in labels
if a suitable font is loaded and an extended encoding like UTES8 is in use by the
operating system. Even if UTFS is in use, text is not fully portable unless the same
font is available, as even if the character positions are standardised for many lan-
guages, most UNICODE fonts support at most a small number of languages. In
principle, one can use this mechanism to have labels both using other alphabets
and languages like Chinese with their numerous symbols mixed in the same figure.
Furthermore, the support for fonts and consequently character sets in R is output-
device dependent. The font encoding used by R by default depends on the default
locale settings of the operating system, which can also lead to garbage printed to
the console or wrong characters being plotted running the same code on a differ-
ent computer from the one where a script was created. Not all is lost, though, as
R can be coerced to use system fonts and Google fonts with functions provided
by packages ‘showtext’ and ‘extrafont’. Encoding-related problems, especially in
MS-Windows, are common.

Plotting (mathematical) expressions involves mapping to the label aesthetic
character strings that can be parsed as expressions, and setting parse = TRUE (see
section 9.15 on page 371). Below, the character strings are assembled using paste()
but, of course, they could have been also typed in as constant values. This use of
paste() is an example of recycling of shorter vectors, "alpha[" and "]" to match
the length of 1:5 (see section 3.10 on page 64).

my.data <-

data.frame(x = 1:5, y = rep(2, 5), label = paste("alpha[", 1:5, "]", sep =""))
my.data$1abel
## [1] "alpha[1l]" "alpha[2]" "alpha[3]" "alpha[4]" "alpha[5]"
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Text and labels do not automatically expand the plotting area past their anchor-
ing coordinates. In the example below, expand_Timits(x = 5.2) ensures that the
text is not clipped at the edge of the plotting area.
ggplot(data = my.data,

mapping = aes(x, y, label = label)) +
geom_text (hjust = -0.2, parse = TRUE, size = 6) +
geom_point() +
expand_Timits(x = 5.2)
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In the example above, the text to be parsed was mapped to the Tabel aesthetic
using character strings previously added to the data frame my.data. It is also pos-
sible, and usually preferable, to build suitable character strings with a nested func-
tion call, or a code statement, passed as an argument in the call to aes() (plot
identical to the previous one, not shown).
ggplot(data = my.data,

mapping = aes(x, y, label = paste("alphal[", x, "]1", sep = ""))) +
geom_text (hjust = -0.2, parse = TRUE, size = 6) +
geom_point()

Geometry geom_label() obeys the same aesthetics as geom_text() (except for
angle in ‘ggplot2’ < 3.5.0) and additionally 1abel.s1ize for the width of the border
line, 1abel.r for the roundness of the box corners, Tabel.padding for the space
between the text boundary and the box boundary, and fi11 for the colour used to
fill the boxes’ background.

my.data <-
data.frame(x = 1:5, y = rep(2, 5),
Tabel = c("one", "two", "three", "four", "five"))

ggplot(data = my.data,
mapping = aes(x, y, label = label)) +

geom_label (hjust = -0.2, size = 6,
label.size = 0,
label.r = unit(0, "Tines"),
Tlabel.padding = unit(0.15, "lines"),
i1l = "yellow", alpha = 0.5) +

geom_point() +

expand_Tlimits(x = 5.6)
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9.14 Starting from the example above, play with the arguments to the different
parameters and with the mappings to aesthetics to get an idea of the variations
in the design that they allow. For example, use thicker border lines and increase
the padding so that a visually well-balanced margin is retained. You may also try
mapping the fi11 and colour aesthetics to factors in the data.

If the parameter check_overlap of geom_text() is set to TRUE, text overlap
will be avoided by suppressing the text that would otherwise overlap other
text. Repulsive versions of geom_text() and geom_label(), geom_text_repel() and
geom_Tlabel_repel(), are available in package ‘ggrepel’. These geometries avoid
overlaps by automatically repositioning the text or labels. Please read the package
documentation for details of how to control the repulsion strength and direction,
and the properties of the segments linking the labels to the position of their data
coordinates. Nearly all aesthetics supported by geom_text () and geom_label() are
supported by the repulsive versions. However, given that a segment connects the
label or text to its anchor point, several properties of these segments can also be
controlled with aesthetics or arguments.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg,
colour = factor(cyl), size = wt, label = cyl)) +
scale_size() +
geom_point(alpha = 1/3) +

geom_text_repel (colour = "black", size = 3,
min.segment.length = 0.2, point.padding = 0.1)
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9.5.8 Plot insets

The support for insets in ‘ggplot2’ is confined to annotation_custom(), which was
designed to be used for static annotations expected to be the same in each panel of
a plot (the use of annotations is described in section 9.11). Package ‘ggpp’ provides
geoms that mimic geom_text() in relation to the aesthetics used, but that simil-
arly to geom_sf (), expect that the column in data mapped to the Tabel aesthetics
are lists of objects containing multiple pieces of information, rather than atomic
vectors. Three geometries are currently available: geom_table(), geom_plot () and
geom_grob ().

Given that geom_table(), geom_plot(), and geom_grob () will rarely use a map-
ping inherited from the whole plot, by default they do not inherit it. Either the
mapping should be supplied as an argument to these functions or their parameter
inherit.aes explicitly set to TRUE.

Tables can be added as plot insets with geom_table () by mapping a list of data
frames (or tibbles) to the 1abel aesthetic. Positioning, justification, and angle work
as for geom_text () and are applied to the whole table. The table(s) are constructed
as ‘grid’ grob objects and added to the gg plot object as a layer.

The code below builds a tibble containing summaries from the mtcars data
set, with the summary values formatted as character strings, adds this tibble as
the single member to a list, and stores this list as column named table.inset in
another tibble, named codetable.tb, together with the x and y coordinates for its
location as an inset.

The code uses functions from the ‘tidyverse’ (see section 8.7.2 on page 262).
Data frames and base R functions could have been used instead (see section 4.4.2
on page 105).

mtcars |>
group_by(cyl) |[>
summarize("mean wt" = format(mean(wt), digits = 3),
"mean disp" = format(mean(disp), digits = 2),
"mean mpg" = format(mean(mpg), digits = 2)) -> my.table
table.tb <- tibble(x = 500, y = 35, table.inset = Tist(my.table))

As with text labels, justification is interpreted in relation to table-text orienta-
tion, however, the default, "inward", rarely needs to be changed if one sets x and
7y coordinates to the location of the inset corner farthest from the centre of the
plot. The inset table is added at its native size, given by the size aesthetic, which
is applied to the text in it.
ggplot(data = mtcars,

mapping = aes(x = disp, y = mpg, colour = factor(cyl), size = wt)) +
scale_size() +
geom_point() +
geom_table(data = table.tb,
mapping = aes(x = x, y
colour = "black", size

y, label = table.inset),
3)
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Parsed text, using R’s plotmath syntax is supported in tables, with fallback to
plain text in case of parsing errors, on a cell-by-cell basis.

The geometry geom_table () uses functions from package ‘gridExtra’ to build
a graphical object for the table. A table theme can be passed as an argument to
geom_table().

Geometry geom_plot() works similarly to geom_table() but insets a ggplot
within another ggplot. Thus, instead of expecting a list of data frames or tibbles
to be mapped to the Tabel aesthetics, it expects a list of ggplots (objects of class
gg). Inset plots can be very useful for zooming-in on parts of a main plot where ob-
servations are crowded and for displaying summaries based on the observations
shown in the main plot. The inset plots are nested in viewports which constrain
the dimensions of the inset plot. Aesthetics vp.height and vp.width set the size
of the viewports—with defaults of 1/3 of the height and width of the plotting area
of the main plot. Themes can be applied separately to the main and inset plots.

In the first example of inset plots, the summaries shown above as numbers in
a column in the inset table, are displayed in an inset column plot. We first create
a one-row data. frame containing the plot to be inset as member of a Tist, and the
x and 1y coordinates in the main plot of the location of the inset. Unlike with a
tibble, with a data.frame we need to use 1() to protect the Tist.

mtcars |>
group_by(cy1) [>
summarize(mean.mpg = mean(mpg)) |[>

ggplot(data = _,
mapping = aes(factor(cyl), mean.mpg, fill = factor(cyl))) +
scale_fill_discrete(guide = "none") +

scale_y_continuous(name = NULL) +
geom_col () +
theme_bw(8) —> my.plot
plot.tb <- data.frame(x = 500, y

35, plot.inset = T(Tist(my.plot)))

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_point() +
geom_plot(data = plot.tb,
aes(x = x, y =y, label
vp.width = 1/2,
hjust = "inward", vjust = "inward")

plot.inset),
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In the second example, the plot inset is a zoom-in into a region of the base plot.
The code to build this plot is split into three chunks. p.main is the plot to be used
as the base for the final plot.
p.main <-

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_point()

p.inset, is the plot to be used as the inset; the call to coord_cartesian()
zooms-into p.main; the call to Tabs () removes the redundant axis labels; the call to
scale_colour_discrete() removes the redundant guide in the inset; and the calls
to theme_bw() and theme () change the theme and font size for the inset.

p.inset <- p.main +
coord_cartesian(x1im = c(270, 330), ylim = c(14, 19)) +
Tabs(x = NULL, y = NULL) +
scale_colour_discrete(guide = "none") +
theme_bw(8) + theme(aspect.ratio = 1)

As in the previous example, geom_plot() adds the inset, in this case with con-
stant values for aesthetics. The call to annotate () using geom_rect () adds the rect-
angle highlighting the zoomed-in region in the main plot.

p.main +
geom_plot(x = 480, y = 34, Tlabel = Tist(p.inset), vp.height = 1/2) +
annotate(geom = "rect", fill = NA, colour = "bTlack",

xmin = 270, xmax = 330, ymin = 14, ymax = 19,
Tinetype = "dotted")
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Geometry geom_grob() differs very little from geom_plot() but insets ‘grid’
graphical objects, called grob for short. This approach is very flexible, as grobs
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can be vector graphics as well as contain rasters (or bitmaps). In most cases, the
grobs need to be first created either using functions from package ‘grid’ to draw
them or by converting other types of objects into grobs. Geometry geom_grob ()
is as flexible as annotation_custom() with respect to the grobs but behaves as a
geometry. Below, two bitmaps are added as “labels” to the base plot.

The bitmaps are read from PNG files (contained as examples in package
‘gpmisc’.
filel.name <-

system.file("extdata", "Isoquercitin.png",

package = "ggpp", mustwork = TRUE)

Isoquercitin <- magick::image_read(filel.name)
file2.name <-

system.file("extdata", "Robinin.png",

package = '"ggpp", mustwork = TRUE)
Robinin <- magick::image_read(file2.name)

The two bitmaps are converted into grobs, added as two separate members to
a list, and the list added as a column to a data.frame named, for this example,
grob.tb. The coordinates for the position of each grob as well as the size of each
viewport are also added to this data. frame.

grob.tb <-
data.frame(x = c(0, 100), y = c(10, 20), height = 1/3, width = c(1/2),
grobs = I(list(grid::rasterGrob(image = Isoquercitin),
grid: :rasterGrob(image = Robinin))))

The two grobs are added as a single plot layer to an empty plot. Insets like these,
can be added to any base plot.

ggplot() +
geom_grob(data = grob.tb,
mapping = aes(x = x, y =y, label = grobs,
vp.height = height, vp.width = width),

hjust = "inward", vjust = "inward")
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Grid graphics provide the low-level functions that ‘ggplot2’ uses under the
hood. Package ‘grid’ supports different types of units for expressing the coordin-
ates of positions. In the ‘ggplot2’ user interface, "native" data coordinates are
used with only a few exceptions. Package ‘grid’ supports the use of physical units
like "mm" as well as relative units like "npc” normalised parent coordinates. Posi-
tions expressed as npc are numbers in the range O to 1, relative to the dimensions
of current viewport, with origin at the lower left corner. Normalised parent co-
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ordinates ("npc”) are useful when annotating plots and adding insets at positions
relative to the plotting area, as these positions remain always consistent across
different plots, or across panels when using facets with free axis limits.

Package ‘ggplot2’ interprets x and y coordinates in "native" data coordinates.
Newly, ‘ggplot2’ >= 3.5.0 interprets “mappings” of variables and constant values
enclosed in function 1 () as expressed using "npc” coordinates, skipping the usual
mapping based on scales.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_point() +
geom_label (x = 1(0.5), y = 1(0.9), Tabel = "a label", colour = "black")
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An earlier approach was provided by package ‘ggpp’ through pseudo aesthetics
npcx and npcy and geometries that support them can be used with ‘ggplot2’ <=
3.4.4.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, colour
geom_point() +
geom_label_npc(npcx = 0.5, npcy = 0.9, label = "a Tabel", colour = "black",
vjust = "center")

factor(cyl))) +

9.6 Statistics

All statistics, except stat_identity(), modify the data they receive before passing
it to a geometry. Most statistics compute a specific summary from the data, but
there are exceptions. More generally, they make it possible to integrate computa-
tions on the data into the plotting workflow. This saves effort but more importantly
helps ensure that the data and summaries within a given plot are consistent. Table
9.2 list all the statistics used in the chapter.

When a factor is mapped to an aesthetic, each level creates a group. For example,
in the first plot example in section 9.5.3 on page 300, the grouping resulted in
separate lines. The grouping is not so obvious with other aesthetics but it is not
different. Most statistics operate separately on the data for each group, returning
an independent summary for each group. Mapping a continuous variable to an
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Table 9.2
‘ggplot2’ statistics described in section 9.6, packages where they are defined, their
default geometry, and the aesthetics they use as input for computations.

Statistic Package Geometry Aesthetics
stat_function ‘ggplot2’ geom_function X
stat_summary ‘ggplot2’ geom_pointrange X,y
stat_smooth ‘ggplot2’ geom_smooth X, y, weight
stat_poly_line ‘ggpmisc’ geom_smooth X, y, weight
stat_poly_eq ‘ggpmisc’ geom_text X, y, weight
stat_fit_tb ‘ggpmisc’ geom_table X, y, weight
stat_bin ‘ggplot2’ geom_bar X,y
geom_histogram ‘ggplot2’ — X,y
stat_bin2d ‘ggplot2’ geom_tile X,y
stat_bin_hex ‘ggplot2’ geom_hex X,y
stat_density ‘ggplot2’ geom_area X,V
geom_density ‘ggplot2’ — X,y
stat_density_2d ‘ggplot2’ geom_density_2d X,y
stat_boxplot ‘ggplot2’ geom_boxplot X,y
stat_ydensity ‘ggplot2’ geom_violin X,y
geom_violin ‘ggplot2’ — X,y
geom_quasirandom ‘ggbeeswarm’ — X,y
stat_ma_line ‘ggpmisc’ geom_smooth X,y
stat_ma_eq ‘ggpmisc’ geom_text X,y
stat_centroid ‘ggpmisc’ geom_point X,V
stat_quant_Tline ‘ggpmisc’ geom_smooth X, Y
stat_quant_eq ‘ggpmisc’ geom_text X,y
stat_identity ‘ggplot2’ geom_point

aesthetics does not create groups. All aesthetics, including x and vy, follow this
pattern, thus a factor mapped to x also creates a group for each level of the factor.

9.6.1 Functions

Statistics stat_function() is the simplest to use and understand, even if unusual.
It generates y values by applying an R function to a sequence of x values. The
range of the numeric variable mapped to x determines the range of x values used.

Any R function, user defined or not, can be used as long as it is vectorised,
with the length of the returned vector equal to the length of the vector passed
as an argument to its first parameter. The argument passed to parameter n of
geom_function() determines the length of the generated vector of x values. The
data frame returned contains these are the x values and as 7y values the values
returned by the function.

The code to plot the Normal probability distribution function is very simple,
relying on the defaults n = 101 and geom = "path".
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ggplot(data = data.frame(x = c(-3,3)),
mapping = aes(x = x)) +
stat_function(fun = dnorm)
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Using a named list, additional arguments can be passed to the function when
called to generate the data (plot not shown).

ggplot(data = data.frame(x = c(-3,4)),
mapping = aes(x = x)) +
stat_function(fun = dnorm, args = Tlist(mean = 1, sd = .5))

9.15 Edit the code above so as to plot in the same figure three curves, either
for three different values for mean or for three different values for sd.

Named user-defined functions (not shown), and anonymous functions (below)
can also be used.

ggplot(data = data.frame(x = 0:1),
mapping = aes(x = x)) +
stat_function(fun = function(x, a, b){a + b * xA2},
args = list(a =1, b = 1.4))

9.16 Edit the code above to use a different function, such as eX*, adjusting
the argument(s) passed through args accordingly. Do this by means of an anonym-
ous function, and by means of an equivalent named function defined by your code.

9.6.2 Summaries

The summaries discussed in this section can be superimposed on raw data plots,
or plotted on their own. Beware, that if scale limits are manually set, the summaries
will be calculated from the subset of observations within these limits. Scale limits
can be altered when explicitly defining a scale or by means of functions x1im() and
y1im(). See section 9.12 on page 362 for an explanation of how coordinate limits
can be used to zoom into a plot without excluding of x and y values from the
data.

It is possible to summarise data on the fly when plotting. The simultaneous
calculation of measures of central tendency and of variation in stat_summary()
allows them to be added together to the same plot layer.

Data frame fake.data, constructed below, contains normally distributed artifi-
cial values in variable v in two groups, distinguished by the levels of factor group.
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fake.data <- data.frame(
y = c(rnorm(10, mean = 2, sd = 0.5),
rnorm(10, mean = 4, sd = 0.7)),
group = factor(c(rep("A", 10), rep("B", 10))))

Below, a base plot is constructed an assigned to pl.base.

pl.base <-
ggplot(data = fake.data, mapping = aes(y = y, x = group)) +
geom_point(shape = "circle open")

In stat_summary(), the R function used to compute the summaries is passed as
an argument. This function can be one returning a single value, like mean (), or one
returning a central value and the extremes of a range. With the default argument,
stat_summary () plots means and standard errors, displaying a message.
pl.base + stat_summary()

## No summary function supplied, defaulting to ‘“mean_se() "

o
5_

4_

oo o-@® O

N
1
>-00 d@®O

group

For X + s.e., the default, "mean_se" can be passed as argument to fun.data to
avoid the message seen above, and for X + s.d. "mean_sd1" should be passed as ar-
gument. These functions have to be passed to parameter fun.data, while functions
that return a single value, like "mean", to fun. The geom used has to be suitable for
the values computed by the stat.

Below is code for a similar plot, with means highlighted in red, using
geom_point().

pl.base +
stat_summary(fun = "mean", geom = "point",
colour = "red", shape = "-", size = 15)
o
5- o
. i)
o
o
>a. o
s
o %
o
1- o
A B

group
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Below, confidence intervals for P = 0.99 computed assuming normality are
added. Intervals can be also computed without assuming normality, using the em-
pirical distribution estimated from the data by bootstrap using "mean_c1_boot"
instead of "mean_c1_normal".

pl.base +
stat_summary(fun.data = "mean_cl_normal", fun.args
colour = "red", size = 0.7, Tinewidth

list(conf.int = 0.99),
1, alpha = 0.5)

o
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4_

00 ==o=lD=—0

N
1
> - 0 O==df)-=-0

group

It is possible to use user-defined functions instead of the functions exported
by package ‘ggplot2’ (based on those in package ‘Hmisc’). Additional named ar-
guments can be passed to the summary function through parameter fun.args of
stat_summary().

Means, or other summaries, computed by groups based on the factor mapped
to the x aesthetic (class in this example) can be plotted as columns by passing
"col" as an argument to parameter geom.

p2.base <-
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
stat_summary(geom = "col", fun = mean)

Error bars can be added to the column plot. Passing linewidth = 1 makes
the lines of the error bars thicker. The default geometry in stat_summary() is
geom_pointrange(), passing "linerange" as an argument for geom removes the
points at the top edge of the bars.

p2.base +
stat_summary(geom = "linerange", fun.data = "mean_cl_normal",
Tinewidth = 1, colour = "red")

30-
20-
>
3
e
10-
0_

1 1 1 1 1 1 1
2seater compact midsize minivan  pickup subcompact suv
class

Passing "errorbar" instead of "linerange" to geom results in traditional
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“capped” error bars. However, this type of error bar has been criticised as adding
unnecessary clutter to plots (Tufte 1983). Aesthetic width controls the width of the
caps at the ends of the tips bars.

When calculated values for the summaries are already available in data, equival-
ent plots can be obtained by mapping the summary values from data to the aesthet-
ics x, y, ymax, and ymin and using the geoms geom_errorbar () and geom_Tinerange ()
with their default for stat, stat_identity(), to add a plot layer.

A layer can be added to a plot directly with a geom, possibly passing a stat as
an argument to it. In this book I have usually avoided this alternative syntax, except
when not overriding stat_identity(), the usual default. The two code statements
below are equivalent.

ggplot(data = mpg, mapping = aes(x = class, y
geom_col (stat = "summary", fun = mean)

hwy)) +

ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
stat_summary(geom = "col", fun = mean)

9.6.3 Smoothers and models

For describing or highlighting relationships between pairs of continuous variables,
using a line, straight or curved, in a plot is very effective. Drawing lines that provide
a meaningful and accurate description of the relationship, requires lines based on
predictions from models fitted to the observations. Frequently fitted models make
possible to assess the reliability of the estimation. See section 7.8 on page 199 for
a description of the model fitting procedures underlying the plotting described in
the current section.

The statistic stat_smooth () fits a smooth curve to observations in the case when
the scales for x and y are continuous—the corresponding geometry geom_smooth ()
uses this statistic, and differs only in how arguments are passed to formal paramet-
ers. In the first example, stat_smooth () with the default smoother, a spline is used.
In stat_smooth(), the type of smoother, or method, is automatically chosen based
on the number of observations, and the choice informed by a message. In statistics,
the formula must be stated using the names of the x and y aesthetics, rather than
the original names of the variables mapped, i.e., in this example, not their name
in the mtcars data frame. Splines are described in section 7.12 on page 223. When
their small enough number makes it possible, observations are usually plotted as
points together with the smoother. The observations can be plotted on top of the
smoother or the smoother on top of the observations, as done here.
p3 <-

ggplot(data = mtcars, mapping = aes(x = disp, y = mpg)) +
geom_point()

p3 + stat_smooth(method = "loess", formula =y ~ x)
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100 200 300 400
disp
A model different to the default one can be used. Below, a linear regression is
fitted with 1m(). Fitting of linear models is explained in section 7.9 on page 200.
p3 + stat_smooth(method = "1m", formula =y ~ x)

These data can be grouped, here by mapping factor(cyl) to the colour aes-
thetic. With three groups, three separate linear regressions are fitted, and displayed
as three straight lines. Each one line is delimited by a confidence band for the “true”
location of the curve.
p3 + aes(colour = factor(cyl)) +

stat_smooth(method = "1m", formula =y ~ x)

35-

30-

factor(cyl
25 (cyl)

mpg

20-

15-

10-
100 200 300 400
disp

To obtain a single fitted smoother, in this case a joint linear regression line for
the three groups, the grouping in the layer was disabled by mapping a constant
value to the colour aesthetic in the call to stat_smooth (). Values passed to a layer
function as argument override the defaults set in ggplot(). The use of "black" is
arbitrary, any other color definition known to R could have been used instead.
p3 + aes(colour = factor(cyl)) +

stat_smooth(method = "1m", formula = y ~ x, colour = "black")

A different linear model, a second degree polynomial in this example, is fitted
below by passing a different argument to formula than in the example above for
linear regression.

p3 + aes(colour = factor(cyl)) +
stat_smooth(method = "1m", formula = y ~ poly(x, 2), colour = "grey20")
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35-
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E Itis possible to use other types of models, including GAM and GLM, as smooth-
ers. I give next two simple examples of the use of n1s() to fit a model non-linear
in its parameters (see section 7.11 on page 220 for details about fitting this same
model with n1s()). In both examples, the model fitted is the Michaelis-Menten
equation, describing the rate of a chemical reaction (rate) as a function of reactant
concentration (conc). puromycin is a data set included in the R distribution. Func-
tion ssmicmen(), used in the first example, is also from R, and is a self-starting
implementation of the Michaelis-Menten equation. Thanks to this, even though
the fit is done with an iterative algorithm, starting values for the parameters to
be fitted are not needed. Passing se = FALSE suppresses the attempt to compute
a confidence band as it is not supported by the predict() method for model fits
done with function n1s().

ggplot(data = Puromycin,
mapping = aes(conc, rate, colour = state)) +
geom_point() +
geom_smooth (method

nis", formula = y ~ SSmicmen(x, vm, K), se = FALSE)

200~

150 - state

rate

== treated

100 - == untreated

1
0.0 0.3 0.6 0.9
conc

In the second example, the code describing the equation is passed as an argu-
ment to formula, with starting values passed as a named list to start. The names
used for the parameters to be estimated by fitting the model can be chosen at will,
within the restrictions of the R language, but of course the names used in formula
and start must match each other. As for other models, x and y are the names of
the aesthetics to which the observations have been mapped (plot not shown).



Statistics 323

ggplot(data = Puromycin,
mapping = aes(conc, rate, colour = state)) +
geom_point() +
geom_smooth(method = "nls",
formula = y ~ (vmax * x) / (k + x),
method.args = list(start = Tist(vmax = 200, k = 0.05)),
se = FALSE)

In some cases, it is desirable to annotate plots with fitted model equations or
fitted parameters. One way of achieving this is by fitting the model and then ex-
tracting the parameters to manually construct text strings to use for text or label
annotations. However, package ‘ggpmisc’ makes it possible to automate such an-
notations in many cases. This package also provides stat_poly_line(), which is
similar to stat_smooth() but with method = "1m" consistently as its default irre-
spective of the number of observations.
my.formula <- y ~ x + I(xA2)
p3 + aes(colour = factor(cyl)) +

stat_poly_line(formula = my.formula, colour = "black") +

stat_poly_eq(formula = my.formula, mapping = use_label(c("eq", "F")),
colour = "black", label.x = "right")

35-
‘. y=35.8-0.105 x +0.000126 x?, F,9=55.5
30-
factor(cyl
25 (cyl)
a ° 4
E 20- e 06
° 8
15-
10- ' ' ' '
100 200 300 400
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Package ‘ggpmisc’ also makes it possible to annotate plots with summary tables
from a model fit. The argument passed to tb.vars substitutes the names of the
columns in the table.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg, colour = factor(cyl))) +

stat_poly_line(formula = my.formula, colour = "black") +
stat_fit_tb(method.args = Tlist(formula = my.formula),
colour = "black",
parse = TRUE,
tb.vars = c(Parameter = "term",
Estimate = "estimate",
"s.e." = "std.error",
"italic(t)" = "statistic",
"italic(P)" = "p.value"),

Tabel.y = "top", label.x = "right") +
geom_point() +
expand_Tlimits(y = 40)
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401 Parameter  Estimate s.e. t P
(Intercept) 35.8 221  16.2 <0.001
.- X —-0.105 0.0203 -5.19 <0.001
30- I6?) 0.000126 3.89e-05 323  0.003 factor(cyl)
2 o 4
1S * 6
e 8

100 200 300 400
disp

Package ‘ggpmisc’ provides additional statistics for the annotation of plots
based on fitted models supported by package ‘broom’ and its extensions. It also
supports lines and equations for quantile regression and major axis regression.
Please see the package documentation for details.

9.6.4 Frequencies and counts

When the number of observations is rather small, it is possible rely on the density
of graphical elements, such as points, to convey the density of the observations.
For example, scatter plots using well-chosen values for transparency, alpha, can
give a satisfactory impression of the density. Rug plots, described in section 9.5.2
on page 299, can also satisfactorily convey the density of observations along x
and/or y axes. Such approaches do not involve computations, while the statistics
described in this section do. Frequencies by value-range (or bins) and empirical
density functions are summaries especially useful when the number of observa-
tions is large. These summaries can be computed in one or more dimensions.

Histograms are defined by how the plotted values are calculated. Although his-
tograms are most frequently plotted as bar plots, many bar or “column” plots
are not histograms. Although rarely done in practice, a histogram could be plot-
ted using a different geometry using stat_bin(), the statistic used by default by
geom_histogram(). This statistic does binning of observations before computing fre-
quencies, and is suitable for observations on a continuous scales, usually mapped
to the x aesthetic. When a factor is mapped to x, stat_count() can be used, the de-
fault stat of geom_bar (). These two geometries are described in this section about
statistics, because they default to using statistics different from stat_identity()
and consequently summarise the data.

The code below constructs a data frame containing an artificial data set.

set.seed(54321)
my.data <-
data. frame (X rnorm(600) ,
Y c(rnorm(300, -1, 1), rnorm(300, 1, 1)),
group = factor(rep(c("A", "B"), c(300, 300))) )

A default and usually suitable number of bins is automatically selected by the
stat_bin() statistic; however, passing bins = 15 sets it manually. In a histogram
plot the variable mapped onto the y aesthetic is not from data but instead com-
puted in the statistics as the number of observations falling in each bin.
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ggplot(data = my.data, mapping = aes(x = X)) +
geom_histogram(bins = 15)

100 -
75-

50-

count

25-

0_

0
X

E A reason to add layers with geom_histogram(), instead of with stat_bin() or
stat_count() is that its name is easier to remember.
ggplot(data = my.data,

mapping = aes(x =Y, fill = group)) +

stat_bin(bins = 15, position = "dodge")

The grouping created by mapping a factor to an additional aesthetic, res-
ults in two separate histograms. The position of the two groups of bars with
respect to each other is controlled with position functions (see section 9.9 on
page 339 for details). With position = "dodge", bars are plotted side by side;
with position = "stack", the default, plotted one above the other; and with
position = "identity" overlapping. In this last case, adding alpha = 0.5 makes
occluded bars visible. The examples below use position = "dodge".

p.base <-
ggplot(data = my.data,
mapping = aes(x =Y, fill = group))

pl <- p.base + geom_histogram(bins = 15, position = "dodge")

In addition to count, density, computed as count divided by the number of
observations in the group, is returned, and mapped in p2 using after_stat().

p2 <- p.base + geom_histogram(mapping = aes(y = after_stat(density)),
bins = 15, position = "dodge")

pl + p2
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Statistic stat_bin2d (), and its matching geometry geom_bin2d (), by default com-
pute a frequency histogram in two dimensions, along the x and y aesthetics. The
count for each 2D bin is mapped to the fi11 aesthetic, with a lighter-coloured value
being equivalent to a taller bar in a 1D histogram.

p.base <-
ggplot(data = my.data,
mapping = aes(x = X, y = Y)) +
facet_wrap(facets = vars(group))

p.base + stat_bin2d(bins = 8)
A

count

30

20

[ | 10
1 1 1 1
2 0 2 2

5.0-

0 2
X

Statistic stat_bin_hex(), and its matching geometry geom_hex(), differ from
stat_bin2d() only in their use of hexagonal instead of square bins, and tiles.
p.base + stat_bin_hex(bins = 8)

A

qr’lll

As stat_bin(), stat_bin2d() and stat_bin_hex() compute density in addition
to counts and they can be plotted by mapping them to the fi11 aesthetic.

9.6.5 Density functions

Empirical density functions are the equivalent of a histogram, but are continuous
and not calculated using bins, but fitted. They can be estimated in 1 or 2 dimen-
sions (1D or 2D). As with histograms it is possible to use different geometries
with them. Examples of geom_density () used to create 1D density plots follow. A
semitransparent fill is used in addition to colour. Density plots for vy and x, i.e.,
using as mappings x = Y and x = X, are shown below side-by-side).
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p3 <-
ggplot(data = my.data,
mapping = aes(x =Y,
geom_density(alpha = 0.3)

p4 <-
ggplot(data = my.data,
mapping = aes(x = X,
geom_density(alpha = 0.3)

Plot composition, as used below,

377.
p3 + p4 # plot composition

0.4-
0.3-

0.2-

density

0.1-

colour

colour

group

= group, fill

group, fill
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group)) +

= group)) +

is described in detail in section 9.16 on page

density

group

A 2D density plot using the same data as for the 1D plots above. In the first
example, stat_density_2d() creates two 2D density “maps” shown using isolines,
with group mapped to the colour aesthetic. Isolines can be used when the empirical
distributions overlap. The 1D plots above show the projections of the 2D density

in the plot below onto the two axes.

ggplot(data = my.data,

mapping = aes(x = X, y =Y, colour = group)) +

stat_density_2d()
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Below, the 2D density for each group is plotted in a separate panel, with Tevel,
a variable computed by stat_density_2d(), mapped to the fil1 aesthetic.

ggplot(data = my.data,
mapping = aes(x = X, y = Y)) +
stat_density_2d(aes(fill = after_stat(level)), geom = "polygon") +
facet_wrap(facets = vars(group))

leve

0.05

9.6.6 Box and whiskers plots

Box and whiskers plots, or just box plots, are summaries that convey some of the
properties of a distribution. They are calculated and plotted with stat_boxplot()
or the matching geom_boxplot(). Although box plots can be plotted based on just
a few observations, they are not useful unless each box plot is based on more than
10 to 15 observations. In the next example, a sample of every sixth row from the
data frame my.data with 600 rows is used.

p.base <-
ggplot(data = my.data[c(TRUE, rep(FALSE, 5)) , 1,
mapping = aes(x = group, y = Y))

pl <- p.base + stat_boxplot()

As with other statistics, the appearance obeys both aesthetics such as
colour, and parameters specific to box plots: outlier.colour, outlier.fill,
outlier.shape, outlier.size, outlier.stroke, and outlier.alpha, which affect
outliers similarly to equivalent aesthetics. The shape and width of the “box” can
be adjusted with notch, notchwidth and varwidth. Notches in box plots play a sim-
ilar role as confidence limits play for means.
p2 <-

p.base +

stat_boxplot(notch = TRUE, width = 0.4,
outTier.colour = "red", outlier.shape =

<", outlier.size = 5)

The two plots have been composed side by side to save space (see section 9.14
on page 369 for details about composing plots).
pl + p2
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9.6.7 Violin plots

Violin plots are a more recent development than box plots, and usable with rel-
atively large numbers of observations. They could be thought of as being a sort
of hybrid between an empirical density function (see section 9.6.5 on page 326)
and a box plot (see section 9.6.6 on page 328). As is the case with box plots, they
are particularly useful when comparing distributions of related data, side by side.
They can be created with geom_violin() as shown in the examples below.
p3 <- p.base +

geom_violin(aes(fill = group), alpha = 0.16) +

geom_point(alpha = 0.33, size = 1.5, colour = "black"™, shape = 21)

As with other geometries, their appearance obeys both the usual aesthetics, such
as colour, and others specific to these types of visual representation.

Other types of displays related to violin plots are beeswarm plots and sina
plots, and can be produced with geometries defined in packages ‘ggbeeswarm’
and ‘ggforce’, respectively. A minimal example of a beeswarm plot is shown below.
See the documentation of the packages for details about the many options in their
use.

p4 <- p.base + geom_quasirandom()

p3 + p4
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Figure 9.2

Flipped layers. Top diagram, flipped aesthetics in statistic with orientation = "y";
bottom diagram, flipped aesthetics in geometry with orientation = "y". During
flipping, related aesthetics such as xmin and ymin are also swapped, but not shown
in the diagram.

9.7 Flipped Plot Layers

Although it is the norm to design plots so that the independent variable is on the
X axis, i.e., mapped to the x aesthetic, there are situations where swapping the
roles of x and y is useful. In ‘ggplot2’, this is described as flipping the orientation
of a plot or of a plot layer. In the present section, I exemplify both cases where
the flipping is automatic and where flipping requires user intervention. Some geo-
metries like geom_point () are symmetric on the x and y aesthetics, but others like
geom_Tline () operate differently on x and y. This is also the case for most statistics.

Starting from ‘ggplot2’ version 3.3.5, most geometries and statistics where it
is meaningful, support flipping using a new syntax. This new approach is differ-
ent to the flip of the coordinate system (which is expected to be deprecated in
the future), and conceptually similar to that implemented by package ‘ggstance’.
However, instead of defining new horizontal layer functions as in ‘ggstance’, in
‘ggplot2’ the orientation of many layer functions can change. This has made pack-
age ‘ggstance’ nearly redundant and the coding of flipped plots easier and more
intuitive. Although ‘ggplot2’ has offered coord_f1ip() for a long time, flipping of
plot coordinates affects the whole plot rather than individual layers.

When a factor is mapped to x or y flipping is automatic. A factor creates groups
and summaries are computed per group, i.e., per level of the factor irrespective of
the factor being mapped to the x or y aesthetic. There are also cases that require
user intervention. For example, flipping must be requested manually if both x
and y are mapped to continuous variables. This is, for example, the case with
stat_smooth() and with geom_1ine().

In statistics, passing orientation = "y" as argument results in the calculations
being applied after swapping the mappings of the x and y aesthetics. After applying
the calculations, the mappings of the x and y and related aesthetics are swapped
back (Figure 9.2).

In geometries, passing orientation = "y" also results in flipping of the aesthet-
ics (Figure 9.2). For example, in geom_1ine(), flipping changes the drawing of the
lines. Normally observations are sorted along the x axis before drawing the line
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segments connecting them. After flipping, as x and y are swapped, observations
are sorted along the y axis before drawing the connecting segments. The variables
shown on each axis remain the same, as does the position of points drawn with
geom_point(), but the line connecting them is different: in the example below, only

two segments are the same in the flipped plot and in the “normal” one.

p.base <-

ggplot(data = mtcars[1:8, ], mapping

geom_point()

= aes(x = hp, y = mpg)) +

pl <- p.base + geom_line() + ggtitle("Not flipped")
p2 <- p.base + geom_line(orientation =

pl + p2
Not flipped Flipped
225- 225-
220.0- 220.0-
€ 1S
17.5- 17.5-
15.0 - 15.0 -
100 200 250 100 150
hp
The next pair of examples demonstrates automatic

y") + ggtitle("Flipped")

behave similarly with respect to automatic flipping.

p3 <-

ggplot(data = iris, mapping = aes(x

stat_boxplot()

p4 <-

ggplot(data = iris, mapping = aes(x

stat_boxplot()
p3 + p4
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flipping using
stat_boxplot(). Factor species is mapped first to x and then to y. In both
cases, the same boxplots were computed and plotted for each level of the factor.
Statistics stat_boxplot(), stat_summary(), stat_histogram() and stat_density()
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In the case of stats that do computations on a single variable mapped to x or
y aesthetics, flipping is also automatic.
p5 <-
ggplot(data = iris,
mapping = aes(x = Sepal.Length, colour = Species)) +
stat_density(geom = "line", position = "identity")

p6 <-
ggplot(data = iris,
mapping = aes(y = Sepal.Length, colour = Species)) +
stat_density(geom = "1ine", position = "identity")

p5 + p6
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Sepal.Length density

E In the case of ordinary least squares (OLS), regressions of v on x and of x
on v in most cases yield different fitted lines, even if R? is consistent. This is due
to the assumption that x values are known, either set or measured without error,
i.e., not subject to uncertainty. Under this assumption, all unexplained variation
in the data is attributed to y. See section 7.8 on page 199 or consult a Statistics
book such as Modern Statistics for Modern Biology (Holmes and Huber 2019, pp.
168-170) for additional information.

With two continuous variables mapped, the default is to take x as independent
and y as dependent. Passing "x" (the default) or "y" as argument to parameter
orientation indicates which of x or y is the independent or explanatory variable.

p.base <-
ggplot(data = iris,
mapping = aes(x = Sepal.Length, y = Petal.Length)) +
geom_point() +
facet_wrap(~Species, scales = "free")

p.base + stat_smooth(method = "Tm", formula =y ~ x)
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Passing orientation = "y" to geom_smooth() is equivalent to swapping x and

v in the model formula. The looser the correlation, the more different are the lines
fitted before and after flipping.

p.base + stat_smooth(method = "1m", formula =y ~ x, orientation = "y")

setosa versicolor virginica
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The two variables in the example above, are both response variables, not directly
connected by cause and effect, and with measurements subject to similar errors.
None, of the two fitted models are close enough to fulfilling the assumptions.

E Flipping the orientation of plot layers with orientation = "y" is not equi-
valent to flipping the whole plot with coord_f1ip(). In the first case, which axis
is considered independent for computation changes but not the positions of the
axes in the plot, while in the second case, the position of the x and y axes in the
plot is swapped. So, when coordinates are flipped the x aesthetic is plotted on the
vertical axis and the y aesthetic on the horizontal axis, but the role of the variable
mapped to the x aesthetic remains as explanatory variable. (Use of coord_f1ip()
will likely be deprecated in the future.)

p.base +

stat_smooth(method = "1m", formula =y ~ x) +
coord_f1ip()
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In package ‘ggpmisc’ (version > 0.4.1), statistics related to model fitting have
an orientation parameter as those from package ‘ggplot2’ do, but in addition they
accept formulas where x is on the lhs and y on the rhs, such as formula = x ~ vy
providing a syntax consistent with R’s model fitting functions. With two calls to
stat_poly_1line(), the first using the default formula = y ~ x, and the second us-
ing formula = x ~ y to force the flipping of the fitted model, the plot produced

contains two fitted lines per panel, with the flipped ones highlighted as red lines
and yellow bands.

p.base +
stat_poly_line() +
stat_poly_line(formula = x ~ y, colour = "red", fill = "yellow")

setosa versicolor virginica

Petal.Length

45 50 55 60 65 7.0
Sepal.Length
In the case of the iris data used for these examples, both approaches used
above to linear regression are wrong. In this case, the correct approach is to not
assume that there is a variable that can be considered independent and another
dependent on it, but instead to use a method like major axis (MA) regression, as
below.

p.base + stat_ma_line()
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9.8 Facets

Facets are used in a special kind of plots containing multiple panels in which the
panels share some properties. These sets of coordinated panels are a useful tool for
visualising complex data. These plots became popular through the trellis graphs
in S, and the ‘lattice’ package in R. The basic idea is to have rows and/or columns of
plots with common scales, all plots showing values for the same response variable.
This is useful when there are multiple classification factors in a data set. Similar-
looking plots, but with free scales or with the same scale but a ‘floating’ intercept,
are sometimes also useful. In ‘ggplot2’, there are two possible types of facets: facets
organised in a grid and facets along a single ‘axis’ of variation but, possibly, wrapped
into two or more rows. These are produced by adding facet_grid() or facet_wrap(),
respectively. Below, geom_point () is used in the examples, but faceting can be used
with plots containing layers created with any geom or stat.

A single-panel plot, saved as p.base, will be used through this section to demon-
strate how the same plot changes when facets are added.

p.base <-
ggplot(data = mtcars,
mapping = aes(x = wt, y = mpg)) +
geom_point()
p.base
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A grid of panels has two dimensions, rows and cols. These dimensions in the
grid of plot panels can be “mapped” to factors. Until recently, a formula-based
syntax was the only available one. Although this notation has been retained, the
preferred syntax is currently to use the parameters rows and cols. The argument
passed to cols in this example is factor cy1 retrieved from data with a call to vars ().
The “headings” of the panels or are by default the names or labels of the levels of
the factor.
p.base + facet_grid(cols = vars(cyl))

4 6 8
35-
.
30-*
‘e
0725_ .
= ol .
oo
€ 20- o o .®
L .
.
15- .Q‘ .
.
10- ' ' ' ' ' ' ' ' ' ' ' |..
2 3 4 5 2 3 4 5 2 3 4 5
wt

Using facet_wrap() the same plot can be coded as follows.

p.base + facet_wrap(facets = vars(cyl), nrow = 1)

By default, all panels share the same scale limits and share the plotting space
evenly, but these defaults can be overridden.

p.base + facet_wrap(facets = vars(cyl), nrow = 1, scales = "free_y")
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Margins, added with margins = TRUE, display an additional column or row of
panels with the combined data.
p.base + facet_grid(cols = vars(cyl), margins = TRUE)
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To obtain a 2D grid both rows and cols have to be passed factors as arguments.
p.base + facet_grid(rows = vars(vs), cols = vars(am), labeller = label_both)
am: 0 am: 1
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Each faceting dimension can be mapped to more than one factor as below. As
the levels are not self-explanatory, 1abel_both is passed as argument to Tabeller
so that factor names are included in the strip labels together with the levels.
p.base + facet_grid(cols = vars(vs, am), labeller = label_both)

vs: 0 vs: 0 vs: 1 vs: 1
am: 0 am: 1 am: 0 am: 1
35- 3
L]
30- >
- L]
0325' )
Q. . .
e o L]
€ 20- -+ o8 :
L]
15- e . —
10- ' ' ' I“ ' ' ' ' ' ' ' ' ' ' ' '
2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
wt

When facetting generates many panels, wrapping them into several rows helps
keep the shape of the whole plot manageable. In this example, the number of levels
is small, and no wrapping takes place by default. In cases when more panels are
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present, wrapping into two or more continuation rows is the default. Here, we force
wrapping with nrow = 2. When using facet_wrap() there is only one dimension,
and the parameter is called facets, instead of rows or cols.

p.base + facet_wrap(facets = vars(cyl), nrow = 2)
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By default, panel headings display the names of the levels of the factor they
are based on. Changing these names is one way of changing the labels. This ap-
proach can be used to add mathematical expressions or Greek letters in the panel
headings. Below, first factor labels in the data frame passed as argument to data
are set to strings that can be parsed into plotmath expressions. Then, in the call
to facet_grid(), or to facet_wrap(), we pass as argument to Tabeller a function
definition, Tabel_parsed.
mtcars$cy112 <- factor(mtcars$cyl,

Tabels = c("alpha"™, "beta", "sqrt(x, y)"))
ggplot(data = mtcars,
mapping = aes(mpg, wt)) +
geom_point() +
facet_grid(cols = vars(cyl1l2), Tabeller = label_parsed)

The labels of the levels of the factor used in faceting can be combined with
text, or math, using a “template”. Passing as argument to labeller function
Tabel_bquote() and using a plotmath expression as argument for its parameter
cols, makes this possible. In the expression used below, . (cy1) is substituted by
the value of cyl when the plot is rendered—we use here the name of the variable
in the data, cyl. See section 9.15 for an example of the use of bquote(), the R
function based on which Tabel_bquote() is built.

p.base +
facet_grid(cols = vars(cyl),
TabelTler = Tabel_bquote(cols = .(cyl)~"cylinders"))
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9.9 Positions

Position functions are passed as arguments to the position parameter of geoms.
They displace the positions (the values mapped to x and/or y aesthetics) away
from their original position. Different position functions differ in what displace-
ment is applied. Table 9.3 lists most of the position functions available. Function
position_stack() and position_fi11() were already described on page 303, with
stacked column and area plots. Function position_dodge () was used in plots with
side-by-side columns on page 304 and position_jitter() was used in dot plot
examples on page 297.

The difference between position_stack() and position_fi11() is illustrated by
the example below.

p.base <-
ggplot(data = Orange,
mapping = aes(x = age, y = circumference, fill = Tree))

pl <- p.base + geom_area(position = "stack", colour = "white", linewidth = 1) +
ggtitle("stack™)
p2 <- p.base + geom_area(position = "fill", colour = "white", linewidth = 1) +

ggtitle("fil1")

pl + p2
stack
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Table 9.3

Position functions from packages ‘ggplot2’ and ‘ggpp’. The table is divided into
two sections. A. Positions that only return the modified x and y values. B. Identical
positions that additionally return a copy of the unmodified x and 7y values. The last
column describes the type of displacement: fixed uses constant values supplied in
the call; random, uses random values for the displacement, within a maximum
distance set by the user.

Position Package Parameters Displ.

A. Origin not kept

position_identity ‘ggplot2’ — none
position_stack ‘ggplot2’ vjust, reverse fixed
position_fill ‘ggplot2’ vjust, reverse fixed
position_dodge ‘ggplot2’ width, preserve, padding, reverse fixed
position_dodge2 ‘ggplot2’ width, preserve, padding, reverse fixed
position_jitter ‘ggplot2’ width, height, seed rand.
position_nudge ‘ggplot2’ x,y fixed
B. Origin kept

position_stack_keep ‘ggpp’ vjust, reverse fixed
position_fill_keep ‘ggpp’ vjust, reverse fixed
position_dodge_keep ‘ggpp’ width, preserve, padding, reverse fixed
position_dodge2_keep ‘ggpp’ width, preserve, padding, reverse fixed
position_jitter_keep ‘ggpp’ width, height, seed rand.
position_nudge_keep ‘ggpp’ X,y fixed

Position position_nudge() is used to consistently displace positions, and is
most frequently used with geom_text () and geom_1label () when adding data labels.
When position functions are used to add data labels, it is common to add a segment
linking the data point to the label. For this to be possible, position functions have
to keep the original position. Position functions from package ‘ggplot2’ discard
them while the position functions from packages ‘ggpp’ and ‘ggrepel’ keep them
in data under a different name. Table 9.3 is divided into sections. The only differ-
ence between the position functions in the two sections of the table is in whether
the original position is kept or not, i.e., those from package ‘ggpp’ are backwards
compatible with those from package ‘ggplot2’.

The displacement introduced by jitter and nudge differ in that jitter is random,
and nudge deterministic. In each case, the displacement can be separately adjusted
vertically and horizontally. Jitter, as shown above, is useful when we desire to make
visible overlapping points. Nudge is most frequently used with data labels to avoid
occluding points or other graphical features.

Layer function geom_point_s () from package ‘ggpp’ is used below to make the
displacement visible by drawing an arrow connecting original and displaced posi-
tions for each observation. We need to use the _keep flavour of the position func-
tions for arrows to be drawn.
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p.base <-
ggplot(data = mtcars,
mapping = aes(x = factor(cyl), y = mpg)) +
geom_point(colour = "blue")
p3 <- p.base +
geom_point_s(position = position_jitter_keep(width = 0.35, heigh = 0.6),
colour = "red") +
ggtitle("jitter™)

The amount of nudging is set by a distance expressed in data units through
parameters x and y. (Factors have mode numeric and each level is represented by
an integer, thus distance between levels of a factor is 1.)

p4 <- p.base +
geom_point_s(position = position_nudge_keep(x = 0.25, y = 1),
colour = "red") +
ggtitle("nudge™)
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9.10 Scales

In earlier sections of this chapter, most examples have used the default scales. In
this section, I describe in more detail the use of scales. There are scales available
for all the different aesthetics recognised by geoms, such as position aesthetics
(x, y, z), size, shape, linewidth, Tinetype, colour, fi11, alpha or transparency,
and angle. Scales determine how values in data are mapped to values of an aes-
thetics, and optionally, also how these values are labelled.

Depending on the characteristics of the variables in data being mapped, scales
can be continuous or discrete, for numeric or factor variables in data, respectively.
Some aesthetics, like size and colour, are inherently continuous but others like
linetype and shape are inherently discrete. In the case of inherently continuous
aesthetics, both discrete and continuous scales are available, while, obviously for
those inherently discrete only discrete scales are available.

The scales used by default have default mappings of data values to aesthetic
values (e.g., which colour value corresponds to ¢yl = 4 and which one to cyl = 8).
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For each aesthetic, such as colour, there are multiple scales to choose from when
creating a plot, both continuous and discrete (e.g., 20 different colour scales in
‘ggplot2’ 3.4.3). In addition, some scales implement multiple palettes.

As seen in previous sections, aesthetics in a plot layer, in addition to being
determined by mappings, can also be set to constant values. Aesthetics set to con-
stant values are not mapped to data and are consequently independent of scales.

The most direct mapping to data is identity, with the values in the
mapped variable directly interpreted as aesthetic values. In a colour scale,
say scale_colour_identity(), the variable in the data would be encoded with
values such as "red", "blue"—i.e., valid R colours. In a simple mapping
using scale_colour_discrete() levels of a factor, such as "treatment" and
"control" would be represented as distinct colours with the correspondence
between factor levels and individual colours set automatically. In contrast with
scale_colour_manual() the user explicitly provides the mapping between factor
levels and colours by passing arguments to the scale functions’ parameters breaks
and values.

The details of the mapping of a continuous variable to an aesthetic are con-
trolled with a continuous scale such as scale_colour_continuous(). In this case,
values in a numeric variable will be mapped into a continuous range of colours.
How the correspondence between numeric values and colours is controlled can
vary among scales. In the case of colour, some scales use complex palettes, while
others implement simple gradients between two or three colours.

In some scales, missing values, or NA, can be assigned an aesthetic value, such
as colour, while in other cases NA values are always skipped instead of plotted.
The reverse, mapping values in data to NA as aesthetic value is in some cases also
possible.

9.10.1 Axis and key labels

First I describe a feature common to all scales, their name. The default name of all
scales is the name of the variable or the expression mapped to it. In the case of the
x, y, and z aesthetics, the name given to the scale is used for the axis labels. For other
aesthetics the name of the scale becomes the “heading” or key title of the guide or
key. All scales have a name parameter to which a character string or an R expression
(see section 9.15) can be passed as an argument to override the default. In scales
that add a key or guide, passing guide = "none" to the scale function removes the
key corresponding to the scale.

Convenience functions xlab() and ylab() can be used to set the axis labels.
Convenience function Tabs() can be used to manually set axis labels, key/guide
titles, and title and other labels for the plot as a whole. For the names of scales,
labs () accepts the names of aesthetics as if they were formal parameters and using
title, subtitle, caption, tag, and alt for the labels for the plot as a whole. The
text passed to alt is not visible in the plot but is expected to be made available to
web browsers and used to enhance accessibility. (The size of title and subtitle can
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seem too big when rendering figures at a small size, see section 9.13 on page 364
on how to replace and modify the theme used.)

p.base <-
ggplot(data = Orange,
mapping = aes(x = age, y = circumference, colour = Tree)) +
geom_line() +
geom_point()

p.base +
expand_Tlimits(y = 0) +
Tabs(title = "Growth of orange trees",

subtitle = "starting from 1968-12-31",

caption = "see Draper, N. R. and Smith, H. (1998)",
tag = "A",

alt = "A data plot",

x = "Time (d)",

y = "Circumference (mm)",

colour = "Tree\nnumber")

Growth of orange trees
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see Draper, N. R. and Smith, H. (1998)

When passing names directly to scales, the plot title and subtitle can be added
with function ggtitle() by passing either character strings or R expressions as
arguments.

p.base +
expand_Tlimits(y = 0) +
scale_x_continuous (name "Time (d)") +
scale_y_continuous(name = "Circumference (mm)") +
ggtitle(label = "Growth of orange trees",
subtitle = "starting from 1968-12-31")

Growth of orange trees
Starting from 1968-12-31

EZOO' Tree
® 150~ -3
o N
< 100- /-

S 50- ~ 2
2 4
O 0- 1

400 800 1200 1600
Time (d)



344 R Extensions: Grammar of Graphics

9.17 Make an empty plot (ggplot()) and add to it as title an R expression
producing y = by + b1 x + box?. (Hint: have a look at the examples for the use of
expressions in the plotmath demo in R by typing demo(plotmath) at the R console.

9.10.2 Continuous scales

I start by listing the most frequently used arguments to the continuous scale func-
tions: name, breaks, minor_breaks, Tabels, Timits, expand, na.value, trans, guide
and position. The value of name is used for axis labels or the key title (see pre-
vious section). The arguments to breaks and minor_breaks override the default
locations of major and minor ticks and grid lines. Setting them to NULL suppresses
the ticks. By default, the tick labels are generated from the value of breaks but
an argument to labels of the same length as breaks will replace these defaults.
The values of Timits determine both the range of values in the data included and
the plotting area as described above—by default the out-of-bounds (oob) observa-
tions are replaced by NA but it is possible to instead “squish” these observations
towards the edge of the plotting area. The argument to expand determines the size
of the margins or padding added to the area delimited by 1ims when setting the
“visual” plotting area. The value passed to na.value is used as a replacement for
NA valued observations—most useful for colour and fi11 aesthetics. The trans-
formation object passed as an argument to trans determines the transformation
used—the transformation affects the rendering, but breaks and tick labels remain
expressed in the original data units. The argument to guide determines the type of
key or removes the default key. Depending on the scale in question not all these
parameters are available. A family of continuous scales, binned scales, was added
in ‘ggplot2’ 3.3.0. These scales map a continuous variable from data onto a discrete
gradient of aesthetic values, but are otherwise very similar.
The code below constructs data frame fake2.data, containing artificial data.

fake2.data <-
data.frame(y = c(rnorm(20, mean 20, sd 5,
rnorm(20, mean 40, sd 10)),
group = factor(c(rep("A", 20), rep("B", 20))),
z = rnorm(40, mean = 12, sd = 6))

Limits
Limits are relevant to all kinds of scales. Limits are set through parameter 1imits
of the different scale functions. They can also be set with convenience functions
x1im() and y1im() in the case of the x and y aesthetics, and more generally with
function Tims () which like 1abs (), takes arguments named according to the name
of the aesthetics. The 1imits argument of scales accepts vectors, factors, or a func-
tion computing them from data. In contrast, the convenience functions do not
accept functions as their arguments.

In the next example, by setting “hard” limits, some observations are excluded
from the plot, they are not seen by stats and geoms, i.e., hard limits in scales subset
observations in data at the start stage (see Figure 9.1 on page 277). More precisely,
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the off-limits observations are converted to NA values before they are passed as
data to stats, and subsequently discarded with a warning.

pl.base <-
ggplot(data = fake2.data, mapping = aes(x = z, y = y)) +
geom_point()

pl <- pl.base + scale_y_continuous(limits = c(0, 100))

To set only one limit leaving the other free, NA is used as a boundary.
p2 <-pl.base + scale_y_continuous(limits = c(50, NA))
pl + p2
## warning: Removed 37 rows containing missing values or values outside the

scale range
## (Cgeom_point() ).
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Convenience functions ylim() and x1im() can be used to set the limits to the
default x and y scales in use. Below, y1im() is used, but x1im() works identically
except for the scale it modifies (plot identical to p2 above, not shown).
pl.base + ylim(50, NA)

In general, setting hard limits should be avoided, even though a warning is
issued about NA values being omitted, as it is easy to unwillingly subset the data
being plotted. It is preferable to use function expand_1limits () as it safely expands
the dynamically computed default limits of a scale—the scale limits will grow past
the requested expanded limits when needed to accommodate all observations. The
arguments to x and y are numeric vectors of length one or two each, matching
how the limits of the x and 7y continuous scales are defined. Below, the limits are
expanded to include the origin.
pl.base + expand_limits(y = 0, x = 0)
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The expand parameter of the scales plays a different role than expand_Timits().
It adds a “margin” or padding around the plotting area. The actual plotting area
is given by the scale limits, set either dynamically or manually. Very rarely plots
are drawn so that observations are plotted on top of the axes, avoiding this is a
key role of expand. Rug plots and marginal annotations can make it necessary to
expand the plotting area more than the default of 5% on each margin.

In the example below, the upper edge of the plotting area is expanded by adding
0.02 units of padding and the expansion at the bottom set to zero.

p2.base <-
ggplot(data = fake2.data,
mapping = aes(fill = group, colour = group, x = y)) +
stat_density(alpha = 0.3, position = "identity")

pl <-
p2.base + scale_y_continuous(expand = expansion(add = c(0, 0.01)))
Using multipliers has the advantage that the expansion is proportional. A sim-
ilar effect as above is achieved using multipliers, 10% compared to the range of the
Timits at the top and none at the bottom.

p2 <-
p2.base + scale_y_continuous(expand = expansion(mult = c(0, 0.1)))

pl + p2
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9.18 Compare the rendered plot from p2.base to pl and p2 displayed above.
What has been the effect of using expansion()? Try different values as arguments
for add and mult.
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The direction of a scale can be reversed using a transformation (see section
9.10.2 on page 349). Scales scale_x_reverse() and scale_y_reverse() use by de-
fault the necessary transformation. However, inconsistently, x1im() and y1lim()
can be used to reverse the scale direction by passing the numeric values for the
limits in decreasing order.

9.19 Test what the result is when the first limit is larger than the second
one. Is it the same as when setting these same values as limits with y1im()? or by
replacing scale_y_continuous() with scale_y_reverse()?

pl.base <- scale_y_continuous(limits = c(100, 0))

Breaks and their labels

Parameter breaks is used not only to set the location of ticks along the axis in
scales for the x and y aesthetics, but also for the keys or guides for other con-
tinuous scales such as those for colour. Parameter labels is used to set the break
labels, including tick labels. The argument passed to each of these parameters can
be vector or a function. The default is to compute “good” breaks based on the lim-
its and use to nice numbers suitable for labels. Examples in this section are for
continuous scales, see section 9.10.3 on page 351 for break labels in time and date
scales.

When manually setting breaks, labels for the breaks are automatically computed
unless overridden.

p3.base <-
ggplot(data = fake2.data, mapping = aes(x = z, y = y)) +
geom_point()

p3.base + scale_y_continuous(breaks = c(20, pi * 10, 40, 60))

The default breaks are computed by function pretty_breaks() from ‘scales’.
The argument passed to its parameter n determines the target number ticks to be
generated automatically, but the actual number of ticks computed may be slightly
different depending on the range of the data.
p3 <-

p3.base + scale_y_continuous(breaks = pretty_breaks(n = 7))

We can set tick labels manually, in parallel to the setting of breaks by passing
as arguments two vectors of equal length. Below, an expression is used to include
a Greek letter in the label.
p4 <-

p3.base +

scale_y_continuous(breaks
Tlabels

c(20, pi * 10, 40, 60),
c("20", expression(10*pi), "40", "60"))
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Package ‘scales’ provides several functions for the automatic generation of tick
labels. For example, function percent() can be used to display tick labels as per-
centages when the values mapped from data are expressed as decimal fractions.
This “transformation” is applied only to the tick labels.
p5 <-

ggplot(data = fake2.data, mapping = aes(x = z, y =y / max(y))) +
geom_point() +
scale_y_continuous(labels = percent)

For currency, functions dollar() and comma() can be used to format the num-
bers in the labels as used for currency. Function scientific_format() formats
numbers using exponents of 10—useful for logarithmic-transformed scales. Addi-
tional functions, 1abel_number(scale_cut = cut_short_scale()), Tabel_log(), or
Tabel_number(scale_cut = cut_si("g") provide other options. As shown below,
some of these functions can be useful with untransformed continuous scales.
p6 <-

ggplot(data = fake2.data, mapping = aes(x = z, y =y * 1000)) +
geom_point() +
scale_y_continuous(name = "Mass",

Tabels = Tabel_number(scale_cut = cut_si("g")))
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Function Tabel_number() and the similar functions listed above, build new
functions base on the arguments passed to them, and the values they return
are function definitions. Thus, in the example above, even if the statement
passed as argument to labels is a function call, the value actually “received” by
scale_y_continuous() is an ad hoc function definition created on-the-fly. Some
packages define additional functions that work similarly to those from package
‘scales’.

Transformed scales

The default scales used by the x and y aesthetics, scale_x_continuous() and
scale_y_continuous(), accept a user-supplied transformation function as an ar-
gument to trans with default trans = "identity" (no transformation). Package
‘scales’ defines several transformations that can be used as arguments for trans.
User-defined transformations can be also implemented and used. In addition, there
are predefined convenience scale functions for 10g10, sqrt and reverse.

Consistently with maths functions in R, the names of the scales are
scale_x_10og10() and scale_y_logl0(), rather than scale_y_log() because in R,
function Tog() computes the natural logarithm.

Axis tick-labels display the original values, not transformed ones, and the argu-
ment to breaks also refers to these. Using scale_y_log10() alog,, transformation
is applied to the y values.

ggplot(data = fake2.data, mapping = aes(x = z, y = y)) +
geom_point() +
scale_y_log1l0(breaks=c(10,20,50,100))
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9.20 Using a transformation in a scale is not equivalent to applying the same
transformation on the fly when mapping a variable to the x (or y) aesthetic. How
does the plot produced by the code below differ from the plot using the trans-
formed scale, shown above?

ggplot(data = fake2.data, mapping = aes(x = z, y = logl0(y))) +
geom_point()
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For the most common transformations like Tog10(), scales with those trans-
formations as their default are available. In other cases, as mentioned above, the
transformation is set by passing an argument to parameter trans of continuous
scale functions that by default do not apply a transformation. Below, a predefined
transformation, "reciprocal” or 1/ is used (plot not shown).
ggplot(data = fake2.data, mapping = aes(x = z, y = y)) +

geom_point() +
scale_y_continuous(trans = "reciprocal")

Natural logarithms are important in growth analysis as the slope against time
gives the relative growth rate. The growth data for orange trees, from data set
orange, are plotted using a log() as transformation. Breaks are set using the ori-
ginal values.

ggplot(data = Orange,
mapping = aes(x = age, y = circumference, colour = Tree)) +
geom_line() +
geom_point() +
scale_y_continuous(trans = "log", breaks = c(20, 50, 100, 200))
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In the examples above, and in practice most frequently, transformations are
applied to position aesthetics, x and y. As the grammar of graphics is consistent,
most if not all continuous scales, also accept transformations. In some cases, ap-
plying a transformation to a size or colour scale helps convey the information
contained in the data.

Position of x and y axes

The default position of axes can be changed through parameter position, using

character constants "bottom", "top", "left" and "right".

ggplot(data = mtcars, mapping = aes(x = wt, y = mpg)) +
geom_point() +
scale_x_continuous (position
scale_y_continuous(position

"top™) +
"right")
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Secondary axes

It is also possible to add secondary axes with ticks displayed in a transformed
scale.

ggplot(data = mtcars, mapping = aes(x = wt, y = mpg)) +
geom_point() +

scale_y_continuous(sec.axis = sec_axis(~ . A-1, name = "gpm") )
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It is also possible to use different breaks and Tabels than for the main axes,
and to provide a different name to be used as a secondary axis label.
ggplot(data = mtcars, mapping = aes(x = wt, y = mpg)) +
geom_point() +
scale_y_continuous(sec.axis = sec_axis(~ . / 2.3521458,
name = expression(km / 1),
breaks = c¢(5, 7.5, 10, 12.5)))

9.10.3 Time and date scales for x and y

Time scales are similar to continuous scales for numeric values. In R and many
other computing languages, time values are stored as integer values subject to
special interpretation (see section 8.8 on page 267). Times stored as objects of
class posixct (or PosIx1t) can be mapped to continuous aesthetics such as x, vy,
colour, etc. Special scales for different aesthetics are available for time-related
data.
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Limits and breaks are preferably set using constant values of class PosIxct.
These are most easily input with the functions in packages ‘lubridate’ or ‘anytime’
that convert dates and times from character strings.

E In the next two chunks, scale limits subset a part of the observations present
in data. Passing na.rm = TRUE when calling the geom functions silences warning
messages.

ggplot(data = weather_wk_25_2019.tb,
mapping = aes(x = with_tz(time, tzone = "EET"),
y = air_temp_C)) +
geom_line(na.rm = TRUE) +
scale_x_datetime(name = NULL,
breaks = ymd_h("2019-06-11 12", tz = "EET") + days(0:1),
Timits = ymd_h("2019-06-11 00", tz = "EET") + days(c(0, 2))) +
scale_y_continuous(name = "Air temperature (C)") +
expand_Tlimits(y = 0)

20-

Air temperature (C)

2019-06—1I1 12:00:00 2019-06-1I2 12:00:00

As for numeric scales, breaks and the corresponding labels can be set differently
to defaults. For example, if all observations have been collected within a single
day, default tick labels will show hours and minutes. With several years, the labels
will show only dates. The default labels are frequently good enough. Below, both
breaks and the format of the labels are set through parameters passed in the call
to scale_x_datetime().

ggplot(data = weather_wk_25_2019.tb,
mapping = aes(x = with_tz(time, tzone = "EET"),
y = air_temp_C)) +
geom_l1ine(na.rm = TRUE) +
scale_x_datetime(name = NULL,
date_breaks = "1 hour",
Timits = ymd_h("2019-06-16 00", tz = "EET") + hours(c(6, 18)),
date_labels = "%H:%M") +
scale_y_continuous(name = "Air temperature (C)") +
expand_Tlimits(y = 0)
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9.21 The formatting strings used are those supported by strptime() and
help(strptime) lists them. Change, in the two examples above, the y-axis la-
bels used and the limits—e.g., include a single hour or a whole week of data,
check which tick labels are produced by default and then pass as an argument
to date_labels different format strings, taking into account that in addition to
the conversion specification codes, format strings can include additional text.

In date scales tick labels are created with functions Tlabel_date() or
Tabel_date_short(). In the case of time scales, tick labels are created with func-
tion Tabel_time(). As shown for continuous scales, calls to these functions can
passed as argument to the scales.

9.10.4 Discrete scales for x and y

In the case of ordered or unordered factors, the tick labels are by default the names
of the factor levels. Consequently, one roundabout way of obtaining the desired
tick labels is to set them as factor labels in the data frame. This approach is not
recommended as in many cases the text of the desired tick labels may not be a
valid R name making more complex by the need to scape these names each time
they are used. It is best to use simple mnemonic short names for factor levels and
variables, and to set suitable labels through scales.

Scales scale_x_discrete() and scale_y_discrete() can be used to reorder and
select the factor levels without altering the data. When using this approach to
subset the data, it is necessary to pass na.rm = TRUE in the call to layer func-
tions to avoid warnings. Below, arguments passed to 1imits and labels in the
call scale_x_discrete manually convert level names to uppercase (plot not shown,
identical plot shown farther down using alternative code).

ggplot(data = mpg,
mapping = aes(x = class, y = hwy)) +
stat_summary(geom = "col", fun = mean, na.rm = TRUE) +
scale_x_discrete(limits = c("compact", "subcompact", "midsize"),
labels = c("COMPACT", "SUBCOMPACT", "MIDSIZE"))

If, as above, replacement is with the same names in upper case, passing func-
tion toupper() automates the operation. In addition, the code becomes independ-

ent of the labels used in the data. This is a more general and less error-prone
approach. Any function, user defined or not, that converts the values of Timits
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into the desired values can be passed as an argument to Tabels. This example, for
completeness, sets scale names and limits, as well as the width of the columns.

ggplot(data = mpg,
mapping = aes(x = class, y = hwy)) +

stat_summary(geom = "col", fun = mean, na.rm = TRUE, width = 0.6) +
scale_x_discrete(name = "vehicle class",
Timits = c("compact", "subcompact", "midsize"),
Tabels = toupper) +
scale_y_continuous(name = "Petrol use efficiency (mpg)", limits = c(0, 30))
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The order of the columns in the plot follows the order of the levels in the factor,
thus changing this ordering in factor mpg$class works. This approach makes sense
when the new ordering needs to be computed based on values in data, but can still
be applied in the plotting code. Below, the breaks, and together with them the
columns, are ordered based on the mean() of variable hwy by means of a call to
reorder () within the call to aes().

ggplot(data = mpg,
mapping = aes(x = reorder(x = factor(class), X = hwy, FUN = mean),

y = hwy)) +
stat_summary(geom = "col", fun = mean)

9.10.5 Size and line width

The Tinewidth aesthetic was added to package ‘ggplot2’ in version 3.4.0. Pre-
viously, aesthetic size described the width of lines as well as the size of text and
points or shapes. Below, I describe the scales according to version 3.4.0 and more
recent.

For the size aesthetic, several scales are available, discrete, ordinal, con-
tinuous, and binned. They are similar to those already described above.
Geometries geom_point(), geom_text(), and geom_label() obey the size aes-
thetic as expected. Size scales can be used with continuous numeric vari-
ables, date and times, and with discrete variables. Examples of the use of
scale_size() and scale_size_area() were given in section 9.5.1 on page 294. Scale
scale_size_radius() is rarely used as it does not match human visual size percep-
tion.

A similar set of scales is available for Tinewidth as there is for size, dis-
crete, ordinal, continuous, and binned. Geometries geom_line(), geom_hline(),
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geom_vline(), geom_abline(), geom_segment(), geom_curve() and related ones,
obey the Tinewidth aesthetic. Geometry geom_pointrange() obeys both aesthetics,
as expected, size is used for the size of the point and Tinewidth for the bar seg-
ment. In geometries geom_bar (), geom_col1(), geom_area(), geom_ribbon() and all
other geometric elements bordered by lines, 1inewidth controls the width of these
lines. Like lines, these borders and segments also obey the Tinetype aesthetic.

Using linewidth makes code incompatible with versions of ‘ggplot2’ prior
to 3.4.0, while continuing to use size will trigger deprecation messages in newer
versions of ‘ggplot2’. Eventually, use of size for lines will become an error, so
when possible, it is preferable to use the new Tinewidth aesthetic.

9.10.6 Colour and fill

The colour and fi11 scales are very similar, but they affect different elements of
the plot. All visual elements in a plot obey the colour aesthetic, but only elements
that have an inner region and a boundary, obey both colour and fi11 aesthetics.
The boundary does not need to be rendered as a line when the plot is displayed,
but it must exist. This is the case for geom_area() and geom_ribbon() that in recent
versions of ‘ggplot2’ are displayed with lines only on some edges. Only a subset
of the shapes supported by geom_point() can be filled. There are separate but
equivalent sets of scales available for these two aesthetics. I will describe in more
detail the colour aesthetic and give only some examples for fi11. I will, however,
start by reviewing how colours are defined and used in R.

Colour definitions in R

Colours can be specified in R not only through character strings with the names
of previously defined colours, but also directly as strings describing the RGB (red,
green, and blue) components as hexadecimal numbers (on base 16 expressed using
0,1,2,3,4,6,7,8,9, A, B,C,D, E, and F as “digits”) such as "#FFrFrF" for white
or "#000000" for black, or "#FF0000" for the brightest available pure red.

The list of colour names known to R can be obtained be typing colors() at the R
console. Differently to package ‘ggplot2’, base R supports only color as the spelling.
Given the number of colours available, subsetting them based on their names is
frequently a good first step. Function colors() returns a character vector. Using
grep() it is possible to find the names that contain a given character substring, in
this example "dark".

Tength(colors())

## [1] 657

grep("dark",colors(), value = TRUE)

## [1] "darkblue" "darkcyan" "darkgoldenrod" "darkgoldenrodl"
## [5] "darkgoldenrod2" "darkgoldenrod3" '"darkgoldenrod4" "darkgray"

## [9] "darkgreen" "darkgrey" "darkkhaki" "darkmagenta"

## [13] "darkolivegreen" "darkolivegreenl" "darkolivegreen2" "darkolivegreen3"
## [17] "darkolivegreen4" "darkorange" "darkorangel™ "darkorange2"

## [21] "darkorange3" "darkorange4" "darkorchid" "darkorchidl"

## [25] "darkorchid2" "darkorchid3" "darkorchid4" "darkred"

## [29] "darksalmon" "darkseagreen" "darkseagreenl" "darkseagreen2"
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## [33] "darkseagreen3" "darkseagreen4" "darksTatebTue" "darkslategray"
## [37] "darkslategrayl" "darkslategray2" "darkslategray3" "darkslategray4"
## [41] "darkslategrey" "darkturquoise" "darkviolet"

The RGB values for an R color definition are returned by function col2rgb().
col2rgb("purple™)
# [,1]
## red 160

## green 32
## blue 240

col2rgb ("#FF0000")
## [,1]
## red 255
## green 0
## blue 0
Colour definitions in R can contain a transparency component described by an
alpha value, which by default is not returned.
col2rgb("purple"”, alpha = TRUE)
## [,1]
## red 160
## green 32

## blue 240
## alpha 255

With function rgb() one can define new colours. Enter help(rgb) for more de-
tails.
rgb(1, 1, 0)
## [1] "#FFFFOO"
rgb(1, 1, 0, names = "my.color")

## my.color
## "#FFFFOO"

rgb (255, 255, 0, names = "my.color", maxColorvalue = 255)
## my.color
## "#FFFFOO"

As described above, colours can be defined in the RGB colour space; however,
other colour models such as HSV (hue, saturation, value) can be also used to define
colours.
hsv(c(0,0.25,0.5,0.75,1), 0.5, 0.5)

## [1] "#804040" "#608040" "#408080" "#604080" "#804040"

Frequently, sets of HSV colours returned by function hc1(), using hue, chroma
and luminance as inputs, are better for use in scales. While the “value” and “satura-
tion” in HSV are based on physical values, the “chroma” and “luminance” values in
HCL are based on human visual perception. Colours with equal luminance will be
seen as equally bright by an “average” human. In a scale based on different hues
but equal chroma and luminance values, as used by default by package ‘ggplot2’,
all colours are perceived as equally bright. The hues need to be expressed as angles
in degrees, with values between zero and 360.
hc1(c(0,0.25,0.5,0.75,1) * 360)

## [1] "#FFC5D0" "#DAD8A7" "#99E2D8" "#DSDOFC" "#FFC5D0"
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It is also important to remember that humans can only distinguish a limited
set of colours, and even smaller colour gamuts can be reproduced by screens and
printers. Furthermore, variation from individual to individual exists in colour per-
ception, including different types of colour blindness. It is important to take this
into account when choosing the colours used in illustrations.

9.10.7 Continuous colour-related scales

Continuous colour scales scale_colour_continuous(), scale_colour_gradient(),
scale_colour_gradient2(), scale_colour_gradientn(), scale_colour_date(), and
scale_colour_datetime(), give smooth continuous gradients between two or more
colours. They are used with numeric, date and datetime data. A matching set
of fi11 scales is also available. Other scales like scale_colour_viridis_c() and
scale_colour_distiller() are based on the use of ready-made palettes of sets of
colour gradients chosen to work well together under multiple conditions or for
human vision including different types of colour blindness.

9.10.8 Discrete colour-related scales

Discrete colour scales, such as scale_colour_discrete(), scale_colour_hue(),
scale_colour_gray(), are used with categorical data stored as factors. Some
discrete scales, such as scale_colour_viridis_d() and scale_colour_brewer(),
provide multiple discrete sets of colours selectable through palettes. A
matching set of discrete fi11 scales is available. Ordinal scales, such as
scale_colour_ordinal() and scale_fi11_ordinal (), use palettes that set aesthetic
values that ramp in steps between two extreme values. They are used when ordered
factors are mapped to the aesthetics.

9.10.9 Binned scales

Before version 3.3.0 of ‘ggplot2’, only two types of scales were available, continu-
ous and discrete. A third type of scales, called binned, (implemented for all the
aesthetics where relevant) was added in version 3.3.0. They are used with continu-
ous variables, but they convert the continuous values into discrete ones, using bins
corresponding to different ranges of values, and then represent them in the plot
using a discrete set of aesthetic values from a gradient. We re-do the figure shown
on page 293 but replacing scale_colour_gradient() by scale_colour_binned().

set.seed(4321)

X <- 0:10

Y <— (X + XA2 + XA3) + rnorm(length(X), mean = 0, sd = mean(XA3) / 4)
dfl <- data.frame(X, Y)

df2 <- dfl

df2[6, "Y"] <-dfl[6, "Y"] * 10
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ggplot(data = df2) +
stat_fit_residuals(formula = y ~ poly(x, 3, raw = TRUE),

method = "rim",
mapping = aes(x = X,

y = stage(start =Y,

after_stat = y * weights),
colour = after_stat(weights)),
show.Tlegend = TRUE) +

scale_colour_binned(low = "red", high = "blue", 1limits = c(0, 1),
guide = "colourbar", n.breaks = 5)
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The advantage of binned scales is that they facilitate the fast reading of the
plot while their disadvantage is the decreased resolution of the scale. The use of a
binned instead of a continuous scale is qualitative. The number of bins can be set
by passing an argument to parameter n.breaks or alternatively, a numeric vector
passed as argument to breaks can be used to explicitly set bin boundaries. When
deciding how many bins to use, one needs to take into account the audience, how
the figure will be rendered and displayed, and the length of time available to the
viewers to peruse the plot relative to the density of information. Transformations
are also allowed in these scales as in others.

9.10.10 Identity scales

In the case of identity scales, the mapping is one to-one to the data. For example, if
we map the colour or fil11 aesthetic to a variable using scale_colour_identity()
or scale_fil11_identity(), the mapped variable must already contain valid R color
definitions. In the case of mapping alpha, the variable must contain numeric values
in the range O to 1.

We use a data frame containing a variable colours containing character strings
interpretable as the names of color definitions known to R. We then use them
directly in the plot by passing scale_colour_identity().
df3 <- data.frame(x = 1:10, Y = dnorm(10), colours = rep(c("red", "blue"), 5))

ggplot(data = df3, mapping = aes(x = X, y =Y, colour = colours)) +
geom_point() +
scale_colour_identity()
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9.22 How does the plot look, if the identity scale is deleted from the example
above? Edit and re-run the example code.

While using the identity scale, how would you need to change the code example
above, to produce a plot with green and purple points?

The colour and fi11 scales used by default by geometries defined in package
‘ggplot2’ can be changed through R options "ggplot2.continuous.colour",
"ggplot2.discrete.colour", "ggplot2.ordinal.colour",

"ggplot2.binned.colour", "ggplot2.continuous.fi11", "ggplot2.discrete.fi11"
"ggplot2.ordinal.fi11" and "ggplot2.binned.fi11"

9.11 Adding Annotations

The idea of annotations is that they add plot elements that are not directly con-
nected individual observations in data. Some like company logos, could be called
“decorations”, but others like text indicating the number of observations or even an
inset plot or table may convey information about the data set as a whole. They can
be drawn referenced to the “native” data coordinates used to plot but the position
itself does convey information. Annotations are distinct from data labels. Annota-
tions are added to a ggplot with function annotate() as plot layers (each call to
annotate() creates a new layer). To achieve the behaviour expected of annotations,
annotate() does not inherit the default data or mapping of variables to aesthetics.
Annotations frequently make use of "text" or "label" geometries with character
strings as data, possibly to be parsed as expressions. In addition, for example, the
"segment" geometry can be used to add arrows.

While layers added to a plot using geometries and statistics respect faceting,
layers added with annotate() are replicated unchanged in all panels of a faceted
plot. The reason is that annotation layers accept aesthetics only as constant values
which are the same for every panel as no grouping is possible without a mapping
to data. Alternatives, using new geometries, are provided by package ‘ggpp’.

Function annotate() takes the name of a geometry as its argument, in the ex-
ample below, "text". Function aes() is not used, as only mappings to constant
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values are accepted. These values can be vectors, thus, layers added with annotate
can add multiple graphic objects of the same type to a plot.

ggplot(data = fake2.data, mapping = aes(x = z, y = y)) +
geom_point() +

annotate(geom = "text",
label = "origin",
x=0,y=0,
colour = "blue",
size=4)
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9.23 Play with the values of the arguments to annotate() to vary the posi-
tion, size, colour, font family, font face, rotation angle, and justification of the
annotation.

It is relatively common to use inset tables, plots, bitmaps, or vector graphics as
annotations. In section 9.5.8 on page 311, geoms from package ‘ggpp’ were used
to create insets in plots. An older alternative is to use annotation_custom() to add
grobs (‘grid’ graphical object) to a ggplot. To add another or the same plot as an
inset, it first needs to be converted it into a grob. A ggplot can be converted with
function ggplotGrob(). In this example, the inset is a zoomed-in window into the
main plot. In addition to the grob, coordinates for its location are passed in native
data units.

p <- ggplot(data = fake2.data, mapping = aes(x = z, y = y)) +
geom_point()
p + expand_limits(x = 40) +
annotation_custom(ggplotGrob(p + coord_cartesian(xlim = c(4, 10), ylim = c(20, 30)) +

theme_bw(10)),
xmin = 25, xmax = 40, ymin = 30, ymax = 60)
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This approach has the limitation, shared with the use of annotate(), that if used
together with faceting, the inset is added identically to all plot panels.

In the next code example, expressions are used as annotations as well
as for tick labels. Do notice that we use recycling and vectorised arith-
metic for setting the breaks, as c(0, 0.5, 1, 1.5, 2) * pi is equivalent to
c(0, 0.5 * pi, pi, 1.5 * pi, 2 * pi. Annotations are plotted at their own po-
sition, unrelated to any observation in the data, but using the same coordinates
and units as for plotting the data.
ggplot(data = data.frame(x = c(0, 2 * pi)),

mapping = aes(x = x)) +
stat_function(fun = sin) +
scale_x_continuous(
breaks = c(0, 0.5, 1, 1.5, 2) * pi,
Tabels = c("0", expression(0.5~pi), expression(pi),
expression(1.5~pi), expression(2~pi))) +
Tabs(y = "sin(x)") +
annotate(geom = "text",
Tabel = c("+", "-"),
x = c(0.5, 1.5) * pi, y = c(0.5, -0.5),
size = 20) +

annotate(geom = "point",
colour = "red",
shape = 21,

i1l = "white",
x =c¢(0, 1, 2) * pi, y = 0,

size = 6)
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9.24 Modify the plot above to show the cosine instead of the sine function,
replacing sin with cos. This is easy, but the catch is that you will need to relocate
the annotations.

Function annotate () cannot be used with geom = "vline" or geom = "hline"
as we can use geom = "line" or geom = "segment". Instead, geom_vl1ine() and/or
geom_hline() can be used directly passing constant arguments to them. See sec-
tion 9.5.3 on page 302.
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9.12 Coordinates and Circular Plots

The grammar of graphics, as implemented in ‘ggplot2’, allows many different com-
binations of its “words”, and this is also how circular plots are created. To obtain
circular plots, we use the same geometries, statistics, and scales we have been us-
ing above, but combined with polar coordinates instead of the default cartesian
coordinates. We override the default by adding coord_polar() to the plot so that
the x and y aesthetics correspond to the angle and radial distance, respectively.
Special systems of coordinates, such as coord_sf(), used for maps, support
different projections. In contrast, coordinate functions such as coord_fl1ip(),
coord_trans(), and coord_fixed () offer variations based on the cartesian system.

9.12.1 Wind-rose plots

Some types of data are more naturally expressed as angles using polar coordinates
than on cartesian coordinates. The clearest example is wind direction, from which
the name wind-rose derives. In some cases of time series data with a strong periodic
variation, polar coordinates can be used to highlight phase shifts or changes in
frequency. A more mundane application is to plot variation in a response variable
through the day with a clock-face-like representation of time of day.

Wind rose plots are frequently histograms drawn on a polar system of coordin-
ates (see section 9.6.4 on page 324). In the examples, we plot wind direction data,
measured once per minute during 24 h (dataset viikki_d29.dat from package
‘learnrbook’).

A circular histogram of wind directions with 30-degree-wide bins can be created
using stat_bin(). The counts represent the number of minutes during 24 h when
the wind direction was within each bin, as the data set contains one observation
per minute.
p.wind <-

ggplot(data = viikki_d29.dat,
mapping = aes(x = WindDir_D1_wvT)) +
stat_bin(colour = "black", fill = "gray50", geom = "bar",
binwidth = 30, boundary = 0, na.rm = TRUE) +
coord_polar() +

scale_x_continuous (breaks c(0, 90, 180, 270),

Tlabels = c("N", "E", "S", "w"),

Timits = c(0, 360),

expand = c(0, 0),

name = "wind direction") +
scale_y_continuous(name = "Frequency (min/d)")

p.wind
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9.25 In the example above, geom_bar() was used. Edit the code to use other
geometries, e.g., geom_line() and geom_area().

A plot created using polar coordinates is not truly circular, but resembles a
plot based on cartesian coordinates rolled into a circle. The difference is crucial
in the case of some wind-rose plots. In a true circular plot, the data would have
to be projected onto a cylinder without any discontinuity. The plot we obtain us-
ing coord_polar() retains a discontinuity at the North, at the boundary between 0
and 360 degrees. Thus for a histogram computed with stat_bin(), one boundary
between bins must normally coincide with this divide. In a density plot, the dens-
ities on both sides of the North divide are fitted separately, frequently resulting
in odd looking plots.

One approach to centring the bins on the cardinal directions would be to pre-
compute the frequencies before plotting, pooling the observations for the slices
345-360 and 0-15 degrees into the same bin, and in a separate step, plotting them
using geom_co1() (not shown).

As when using other coordinates we can add facets. In this example, we create

a factor based on solar time, to plot separately the observations from before or
after local solar noon.

p.wind +
facet_wrap(~factor(ifelse(hour(solar_time) < 12, "AM", "PM")))
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9.12.2 Pie charts

Pie charts are more difficult to read than bar charts because our brain is better
at comparing lengths than angles. If used, pie charts should only be used to show
composition, or fractional components that add up to a total. In this case, used
only if the number of “pie slices” is small (rule of thumb: seven at most), however
in general, they are best avoided.

A pie chart of counts is like a bar plot in which instead of heights angles de-
scribe the number of counts. geom_bar(), which defaults to use stat_count(),
together with coord_polar() creates a pie chart. The brewer gradient scale sup-

plies the palette for the fills, while the colour of the border line is set with
colour = "black™).

ggplot(data = mpg,
mapping = aes(x = factor(l), fill = factor(class))) +
geom_bar(width = 1, colour = "black") +
coord_polar(theta = "y") +
scale_fill_brewer() +
scale_x_discrete(breaks = NULL) +
Tabs(x = NULL, fill = "vehicle class")

0

Vehicle class

[:] 2seater
|:| compact

midsize

minivan
pickup
subcompact

suv

count

9.26 Edit the code for the pie chart above to obtain a bar chart. Which one of
the two plots is easier to read?

9.13 Themes

In ‘ggplot2’, themes are the equivalent of style sheets. They determine how the dif-
ferent elements of a plot are rendered when displayed, printed, or saved to a file.
Themes do not alter what aesthetics or scales are used to plot the observations or
summaries, but instead how text labels, titles, axes, tick marks, plotting-area back-
ground, grid lines, etc., are formatted and if displayed or not. Package ‘ggplot2’
includes several predefined theme constructors (usually described as themes), and
independently developed extension packages define additional ones. These con-
structors return complete themes, which when added to a plot, replace the theme
already present. In addition to choosing among these already available complete
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themes, users can modify the ones already present in a plot by adding incomplete
themes. When used in this way, incomplete themes usually are created on the fly.
It is also possible to create new theme constructors that return complete themes,
similar to theme_gray () from ‘ggplot2’.

9.13.1 Complete themes

The theme used by default is theme_gray () with default arguments. In ‘ggplot2’,
predefined themes are defined as constructor functions, with parameters. These
parameters allow changing some “base” properties. The base_size for text ele-
ments is given in points, and affects all text elements in the returned theme object
because the size of these elements is by default defined relative to the base size.
Another parameter, base_family, allows the font family to be set. These functions
return complete themes.

Themes have no effect on layers produced by geometries as themes have
no effect on mappings, scales, or aesthetics. In the name theme_bw() black-and-
white refers to the colour of the background of the plotting area and labels. If the
colour or fill aesthetics are mapped or set to a constant in the figure, these will
be respected irrespective of the theme. One cannot convert a colour figure into a
black-and-white one by adding a theme. For colour gradients an alternative is to
use a greyscale gradient by changing the scale used to map values to aesthetics.
For discrete scales, a different aesthetic can be used, for example, use shape or
Tinetype instead of colour.

Even the default theme_gray() can be added to a plot, to replace the default
one with a newly constructed one created with arguments different to the defaults
ones. Below, a serif font at a larger size than the default is used.
ggplot(data = fake2.data,

mapping = aes(x = z, y = y)) +
geom_point() +
theme_gray(base_size = 18,

base_family = "serif")
60' [}

40 - o* L
> * v
. 4 '.....o.o. .o.

20 - .o, .
5 10 15 20

V4

9.27 Change the code in the previous chunk to use, one at a time, each of the
predefined themes from ‘ggplot2’: theme_bw(), theme_classic(), theme_minimal(),
theme_Tinedraw(), theme_1ight(), theme_dark() and theme_void().
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Predefined “themes” like theme_gray() are, in reality, not themes
but instead are constructors of theme objects. The themes they return
when called depend on the arguments passed to their parameters. In
other words, theme_gray(base_size = 15), creates a different theme than
theme_gray(base_size = 11). In this case, as sizes of different text elements are
defined relative to the base size, the size of all text elements changes in coordin-
ation. Font size changes by themes do not affect the size of text or labels in plot
layers created with geometries, as their size is controlled by the size aesthetic.

A frequent idiom is to create a plot without specifying a theme, and then adding
the theme when printing or saving it. This can save work, for example, when pro-
ducing different versions of the same plot for a publication and a talk.
p.base <-

ggplot(data = fake2.data,
mapping = aes(x = z, y = y)) +
geom_point()
print(p.base + theme_bw())
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It is also possible to change the theme used by default in the current R session
with theme_set().
old_theme <- theme_set(theme_bw(15))

Similar to other functions used to change options in R, theme_set () returns the
previous setting. By saving this value to a variable, here o1d_theme, we are able to
restore the previous default, or undo the change.
theme_set (o1d_theme)

The use of a grey background as default for plots is unusual. This graphic
design decision originates in typesetters’ goal of maintaining a uniform average
luminosity throughout the text and plots in a page. Many scientific journals require
or at least prefer a more traditional graphic design. Theme theme_bw() is the most
versatile of the traditional designs supported as it works well both for individual
plots as for plots with facets as it includes a box. Theme theme_classic() lacking
a box and grid works well for individual plots, but needs to be adjusted when used
with facets so as to obtain nice looking plots.
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9.13.2 Incomplete themes

To create a significantly different theme, and/or reuse it in multiple plots, it is
best to create a new constructor, or a modified complete theme as described in
section 9.13.3 on page 368. In other cases, it is enough to tweak individual theme
settings for a single plot. Below, overlapping x-axis tick labels are avoided by ro-
tation the axis tick labels. When rotating the labels, it is also necessary to change
their justification, as justification is relative to the orientation of the text.

ggplot(data = fake2.data,
mapping = aes(x = z + 1000, y = y)) +
geom_point() +
scale_x_continuous (breaks = scales::pretty_breaks(n = 8)) +
theme(axis.text.x = element_text(angle = 33, hjust = 1, vjust = 1))
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9.28 Play with the code in the last chunk above, modifying the values used
for angle, hjust and vjust. (Angles are expressed in degrees, and justification with
values between 0 and 1).

A less elegant approach is to use a smaller font size. Within theme (), function
re1() can be used to set size relative to the base size. In this example, we use
axis.text.x so as to change the size of tick labels only for the x axis.

ggplot(fake2.data, aes(z + 100, y)) +
geom_point() +
scale_x_continuous (breaks = scales::pretty_breaks(n = 20)) +
theme(axis.text.x = element_text(size = rel(0.6)))

Theme definitions follow a hierarchy, allowing us to modify the formatting of
groups of similar elements, as well as of individual elements. In the chunk above,

using axis.text instead of axis.text.x, would have affected the tick labels in both
x and y axes.

9.29 Modify the example above, so that the tick labels on the x-axis are blue
and those on the y-axis red, and the font size is the same for both axes, but
changed from the default. Consult the documentation for theme () to find out the
names of the elements that need to be given new values. For examples, see ggplot2:
Elegant Graphics for Data Analysis (Wickham and Sievert 2016) and R Graphics
Cookbook (Chang 2018).

Formatting of other text elements can be adjusted in a similar way, as well as
thickness of axes, length of tick marks, grid lines, etc. However, in most cases,
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these are graphic design elements that are best kept consistent throughout sets of
plots and best handled by creating a new theme.

If you both add a complete theme and want to modify some of its elements,
you should add the whole theme before modifying it with + theme(...). This may
seem obvious once one has a good grasp of the grammar of graphics, but can be
at first disconcerting.

Itis also possible to modify the default theme used for rendering all subsequent
plots.
old_theme <- theme_update(text = element_text(colour = "darkred"))

Having saved the previous default to o1d_theme it can be restored when needed.
theme_set (o1d_theme)

9.13.3 Defining a new theme

Themes can be defined both from scratch, or by modifying existing saved themes,
and saving the modified version. As discussed above, it is also possible to define
a new, parameterised theme constructor function.

Unless we plan to widely reuse the new theme, there is usually no need to define
a new function. We can simply save the modified theme to a variable and add it to
different plots as needed. As we will be adding a “ready-build” theme object rather
than a function, we do not use parentheses.

my_theme <- theme_bw(15) + theme(text = element_text(colour = "darkred"))
p.base + my_theme
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Creating a new theme constructor similar to those from package ‘ggplot2’
can be fairly simple if the changes are few. As the implementation details of theme
objects may change in future versions of ‘ggplot2’, the safest approach is to rely
only on the public interface of the package. The functions exported by package
‘ggplot2’ can be wrapped inside a new function that modifies the theme before
returning it. The interface, parameters, of the wrapped function can be included
in the new one and the arguments passed along to the wrapped function, as is or
modified. If needed, additional parameters can be handled by code in the wrapper
function. Below, a wrapper on theme_gray () is constructed retaining a compatible
interface, but adding a new base parameter, base_colour. A different default is
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used for base_family. The key detail is passing complete = TRUE to theme(), as
this tags the returned theme as being usable by itself, resulting in replacement of
any theme already in a plot when it is added.

my_theme_gray <-
function (base_size = 11,
base_family = "serif",
base_line_size = base_size/22,
base_rect_size = base_size/22,
base_colour = "darkblue") {

theme_gray(base_size = base_size,
base_family = base_family,
base_Tline_size = base_Tline_size,
base_rect_size = base_rect_size) +

theme(1line = element_line(colour = base_colour),
rect element_rect(colour base_colour),
text = element_text(colour = base_colour),
title = element_text(colour = base_colour),
axis.text = element_text(colour = base_colour),
complete = TRUE)

}

Our own theme constructor, created without too much effort, is ready to be
used. To avoid surprising users, it is good to make my_theme_grey () a synonym of
my_theme_gray () following ‘ggplot2’ practice.
my_theme_grey <- my_theme_gray

A plot created using my_theme_gray () with text colour set to dark red.

p.base + my_theme_gray(15, base_colour = "darkred")
60 - .
[ ]
(]
[ ] ° ° (]
40 - :. : °
[ ] (]
>
P
[ ] ° [ ]
L4 o ' % o
- e D) °
20 o h
L o
(]
[ ]
5 10 15 20
z
]

9.14 Composing Plots

While facets make it possible to create plots with panels that share the same map-
pings and data (see section 9.8 on page 335), plot composition makes it possible
to combine separately created "gg" plot objects into a single plot. Composition
before rendering makes it possible to automate the correct alignments, ensure
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consistency of text size and even merge duplicate guide or keys. Composite plots
can save space on the screen or page, but more importantly can bring together
data visualisations that need to be compared or read as a whole.

Package ‘patchwork’ defines a simple grammar for composing plots created
with ‘ggplot2’, that I have used earlier in the chapter to display pairs of plots
side by side. Composition with ‘patchwork’ can also include grid graphical objects.
The plot composition grammar uses operators +, | and /, although ‘patchwork’
provides additional tools for defining complex layouts of panels. While + allows
different layouts, | composes panels side by side, and / composes panels on top
of each other. The plots to be used as panels can be grouped using parentheses.
The operands must be whole plots, below, this ensured by saving each plot to a
variable. When composing anonymous plots they must be enclosed in parentheses,
to ensure that the correct operators are dispatched.

Three simple plots, p1, p2 and p3 will be used below.
pl <- ggplot(mpg, aes(displ, cty, colour = factor(cyl))) +

geom_point() +
theme(legend.position = "top")
p2 <- ggplot(mpg, aes(displ, cty, colour = factor(year))) +
geom_point() +
theme(Tegend.position = "top")
p3 <- ggplot(mpg, aes(factor(model), cty)) +
geom_point() +
theme (axis.text.x =
element_text(angle = 90, hjust = 1, vjust = 0.5))

9.30 A combined plot can be simply assembled using the operators (plot not
shown).
pl | (p2 / p3)

(pl | p2) / p3

The operators used for composition are the arithmetic ones, and even if used
for a different purpose still obey the precedence rules of mathematics. The order
of precedence can be altered, as done above, using parentheses. Run the examples
above after creating three plots. Modify the code trying different ways of organ-
ising the three panels.

A title for the whole plot and a letter as tag for each panel are added as a whole-
plot annotation.

((p1 | p2) / p3) +
plot_annotation(title = "Fuel use in city traffic:", tag_levels = 'a')
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factor(model)

Package ‘patchwork’ has in recent versions tools for the creation of complex lay-
outs, addition of insets and combining in the same layout plots and other graphic
objects such as bitmaps, photographs, and even tables.

9.31 Package ‘patchwork’ can be very useful. Study the documentation and
its examples, and try to think how it could be useful to you. Then try to compose
plots like those you could use in your work or studies.

9.15 Using plotmath Expressions

Plotmath expression are similar to R expressions, but they are targeted at the cre-
ation of mathematical annotations. In some respects, they are similar to the math
mode in KIX. They are used in graphical output like plots. The syntax sometimes
feels awkward and takes some time to be learnt, but it gets the job done.

The main limitation to producing rich text annotations in R similar to those
possible using KTEX or using HTML is at the core of the R program. There is work
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in progress and improvements can be expected in coming years. Meanwhile, the
already implemented enhancements gradually appear as enhanced features in
‘ggplot2’ and its extensions.

Package ‘ggtext’ provides rich-text (basic HTML and Markdown) support for
‘ggplot2’, both for annotations and for data visualisation. This is an alternative to
the use of R expressions.

In sections 9.6.1 and 9.5.7, simple examples of the use of R expressions
for labelling plots were given. The demo(plotmath) demo and the help page
help(plotmath) provide enough information to start using expressions in plots.
Although expressions are shown here in the context of plotting, they are also used
in other contexts in R code.

In general, it is possible to create expressions explicitly with function
expression() or by parsing a character string. In the case of ‘ggplot2’ for some
plot elements, layers created with geom_text() and geom_Tlabel (), and the strip la-
bels of facets the parsing is delayed and applied to mapped character variables
in data. In contrast, for titles, subtitles, captions, axis-labels, etc. (anything that is
defined within Tabs()), the expressions have to be entered explicitly, or saved as
such into a variable, and the variable passed as an argument.

When plotting expressions using geom_text (), the parsing of character strings
is signalled by passing parse = TRUE in the call to the layer function. In the case
of facets’ strip labels, parsing or not depends on the labeller function used. An
additional twist is the possibility of combining static character strings with values
taken from data (see section 9.8 on page 335).

The most difficult thing to remember when writing expressions is how to con-
nect the different parts. A tilde (~) adds space in between symbols. Asterisk ()
can be also used as a connector. The * is usually needed when dealing with num-
bers next to symbols. Using whitespace is allowed in some situations, but not in
others. To include within an expression text that should not be parsed, it must be
enclosed in quotation marks, which may need themselves to be quoted. For a long
list of examples, have a look at the output and code displayed by demo(pTotmath)
at the R command prompt.

Expressions are frequently used for axis labels, e.g., when the units or sym-
bols require the use of superscripts or Greek letters. In this case, they are usually
entered as expressions.

pl + Tlabs(y expression("Fuel use"~~(m~gA{-1})),
X "Engine displacement (L)",
colour = "Engine\ncylinders") +
theme(legend.position = "right")
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set.seed(54321)
my.data <-
data.frame(x = 1:5,
y = rnorm(5),
greek.label = paste("alpha[", 1:5, "]", sep = ""))

In the example below, the x-axis label is a Greek « character with i as sub-
script, and the y-axis label includes a superscript in the units. The title we use is
a character string, while the subtitle is a rather complex expression.

Each observation has as data label a subscripted alpha. When using a geometry,
instead of directly using an expression, we map to the label aesthetic character
strings to be parsed into expressions. In other words, character strings, that are
written using the syntax of expressions. We need to set parse = TRUE in the call
to the geometry so that the strings instead of being plotted as is, are parsed into
expressions before the plot is rendered.

ggplot(my.data, aes(x, y, label = greek.label)) +
geom_point() +
geom_text(angle = 45, hjust = 1.2, parse = TRUE) +
Tabs(x = expression(alphal[il),
y = expression(Speed~~(m~sA{-1})),
title = "Using expressions",
subtitle = expression(sqrt(alphal[l] + frac(beta, gamma))))
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As parsing character strings is an alternative way of creating expressions, this
approach can be also used in other situations. For example, a character string
stored in a variable can be parsed with parse() as done below for subtitle. Tick
labels are also set to expressions, taking advantage that expression() accepts mul-
tiple arguments separated by commas returning a vector of expressions.
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my_eq.char <- "alpha[i]"

ggplot(my.data, aes(x, y))
geom_point() +
labs(title = parse(text = my_eq.char)) +
scale_x_continuous (name = expression(alphalil),

+

breaks = c(1,3,5),
labels = expression(alpha[l], alpha[3], alpha[5]))
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A different approach (no example shown) would be to call parse () explicitly for
each individual label, something that might be needed if the tick labels need to be
“assembled” programmatically instead of set as constants.

Differences between parse() and expression(). Function parse() takes as
an argument a character string. This is very useful as the character string can be
created programmatically. When using expression() this is not possible, except
for substitution at execution time of the value of variables into the expression. See
the help pages for both functions.

Function expression() accepts its arguments without any delimiters. Function
parse() takes a single character string as an argument to be parsed, in which case
quotation marks within the string need to be escaped (using \" where a literal "
is desired). In both cases, a character string can be embedded using one of the
functions plain(), italic(), bold() or bolditalic() which also affect the font
used. The argument to these functions needs to be a character string delimited by
quotation marks if it is not to be parsed.

When using expression(), bare quotation marks can be embedded,
ggplot(cars, aes(speed, dist)) +

geom_point() +
xlab(expression(x[1]*" test"))

while in the case of parse() they need to be escaped,
ggplot(cars, aes(speed, dist)) +

geom_point() +
xlab(parse(text = "x[1]*\" test\""))

and in some cases will be enclosed within a format function.

ggplot(cars, aes(speed, dist)) +
geom_point() +
xlab(parse(text = "x[1]*italic(\" test\'")™))

Some additional remarks. If expression() is passed multiple arguments, it re-

turns a vector of expressions. Where ggplot() expects a single value as an argu-
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ment, as in the case of axis labels, only the first member of the vector will be
used.
ggplot(cars, aes(speed, dist)) +

geom_point() +

xlab(expression(x[1], " test"))

Depending on the location within a expression, spaces maybe ignored, or il-
legal. To juxtapose elements without adding space, use *, and to explicitly insert
whitespace, use ~. As shown above, spaces are accepted within quoted text. Con-
sequently, the following alternatives can also be used.

xlab(parse(text = "x[1]~~~~\"test\""))

xlab(parse(text = "x[1]~~~~plain(test)"))

However, unquoted whitespace is discarded.
xlab(parse(text = "x[1]*plain( test)"))

Finally, it can be surprising that trailing zeros in numeric values appearing
within an expression are dropped.

Function paste () was used above to insert values stored in a variable; functions
format(), sprintf() and strftime() allow the conversion into character strings of
other values. These functions can be used when creating plots to generate suitable
character strings for the Tabel aesthetic out of numeric, logical, date, time, and
even character values. They can be, for example, used to create labels within a call
to aes().
sprintf("log(%.3f) %.3f", 5, Tog(5))

## [1] "Tog(5.000) 1.609"
sprintf("log(%.39) = %.39", 5, log(5))
## [1] "log(5) = 1.61"

9.32 Study the chunk above. If you are familiar with C or C++ function
sprintf() will already be familiar to you, otherwise study its help page.

Play with functions format(), sprintf() and strftime(), using them to convert
and format different types of data into character strings with different numbers
of significant digits, scientific notation, decimal format, different field width, jus-
tification, etc.

It is also possible to substitute the value of variables or, in fact, the result of
evaluation, into a new expression, allowing on the fly construction of expressions.
Such expressions are frequently used as labels in plots. This is achieved through
use of quoting and substitution.

Function bquote () can be used to substitute variables or expressions enclosed
in . ( ) by their value. Be aware that the argument to bquote () needs to be written
as an expression; in this example, a tilde, ~, inserts a space between words. Fur-
thermore, if the expressions include variables, these will be searched for in the
environment rather than within data, except within calls to aes() or vars().
ggplot(cars, aes(speed, dist)) +

geom_point() +

labs(title = bquote(Time~zone: .(Sys.timezone())),
subtitle = bquote(Date: .(as.character(today())))
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Time zone : Europe/Helsinki
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In the case of substitute() a named list can be passed as argument.
ggplot(cars, aes(speed, dist)) +
geom_point() +
labs(title = substitute(Time~zone: tz, Tist(tz = Sys.timezone())),
subtitle = substitute(Date: date, Tist(date = as.character(today())))
)

Time zone : Europe/Helsinki
Date : 2024-02-17
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For example, substitution can be used to assemble an expression within a func-
tion based on the arguments passed. One case of interest is to retrieve the name
of the object passed as an argument, from within a function.

deparse_test <- function(x) {
print(deparse(substitute(x)))
h

a <- "saved 1in variable"

deparse_test("constant")
## [1] "\"constant\""
deparse_test(1 + 2)

# [1] "1 + 2"
deparse_test(a)

## [1] "a"
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9.16 Creating Complex Data Displays

The grammar of graphics allows one to build and test plots incrementally. In daily
use, when creating a completely new plot, it is best to start with a simple design
for a plot, print () this plot, checking that the output is as expected and the code
error-free. Afterwards, one can map additional aesthetics and add geometries and
statistics gradually. The final steps are then to add annotations and the text or
expressions used for titles, and axis and key labels. Another approach is to start
with an existing plot and modify it, e.g., by using the same plotting code with
different data or mapping different variables. When reusing code for a different
data set, scale Timits and names are likely to need to be edited.

9.33 Build a graphically complex data plot of your interest, step by step, tak-
ing advantage of the layered structure to test intermediate versions in an iterative
design process, first by building up the complex plot in stages as a tool in debug-
ging, and later using iteration in the processes of improving the graphic design of
the plot, its readability, and effectiveness in conveying information.

9.17 Creating Sets of Plots

Plots to be presented at a given occasion or published as part of the same work
need to be consistent in various respects: themes, scales and palettes, annotations,
titles, and captions. To guarantee this consistency, we need to build plots modu-
larly and avoid repetition by assigning names to the “modules” that need to be
used multiple times.

A simple version of this approach was used in many examples above, where a
base plot was modified by addition of different layers or scales.

9.17.1 Saving plot layers and scales in variables

When creating plots with ‘ggplot2’, objects are composed using operator + to as-
semble together the individual components. The functions that create plot layers,
scales, etc. are constructors of objects and the objects they return can be stored
in variables, and once saved, added to multiple plots at a later time.

A plot can be saved to a variable, here p.base, and, e.g., the value returned by a
call to function Tabs (), into a different variable, here, p.labels.

p.base <- ggplot(data = mtcars,
aes(x = disp, y = mpg,
colour = factor(cyl))) +
geom_point()

p.labels <- Tabs(x "Engine displacement)",
y "Gross horsepower",
colour = "Number of\ncylinders",
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shape = "Number of\ncylinders")

When composing plots with the + operator, the left-hand-side operand must
be a "gg" object. The right-hand-side operand is added to the "gg" plot object and
the result returned as a new "gg" plot object.

The final plot can be assembled from the objects saved to variables. This is
useful when creating several plots that should have consistent labels. The same
approach can be used with other components. Below, the objects are combined
with additional components to create different versions of the same plot.
p.base
p.base + p.labels + theme_bw(16)
p.base + p.labels + theme_bw(16) + ylim(0, NA)

We can also save intermediate results.

p.log <- p.base + scale_y_logl0(Timits=c(8,55))
p.log + p.labels + theme_bw(16)

9.17.2 Saving plot layers and scales in lists

If the pieces to be put together do not include a "gg" object, they can be collected
into a list and saved. When the list is added to a "gg" plot object, the members of
the list are added one by one to the plot respecting their order.

p.parts <- Tist(p.labels, theme_bw(16))
pl + p.parts

9.34 Revise the code you wrote for the “playground” exercise in section 9.16,
but this time, pre-building and saving groups of elements that you expect to be
useful unchanged when composing a different plot of the same type, or a plot of
a different type from the same data.

9.17.3 Using functions as building blocks

The “packaged” plots parts sometimes should adjust their behaviour at the time
they are added to a plot. In this case a function that accepts the necessary argu-
ments can be written, rather similarly as in the example for creating a new theme by
wrapping function theme_grey () (see section 9.13.3 on page 368). These functions
canreturn a "gg" object, a list of plot components, or a single plot component. The
simplest use is to alter some defaults in existing constructor functions returning
"gg" objects or layers. The ellipsis (. . .) allows passing named arguments to a nes-
ted function. In this case, every single argument passed by name to bw_ggplot()
will be copied as an argument to the nested call to ggplot(). Be aware that sup-
plying arguments by position, is possible only for parameters explicitly included
in the definition of the wrapper function, thus, not supported with a function like
this, with ... as its only formal parameter.

bw_ggplot <- function(...) {

ggplot(...) +
theme_bw()

}
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which could be used as follows.

bw_ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg,
colour = factor(cyl))) +
geom_point()

9.18 Generating Output Files

It is possible, when using RStudio, to directly export the displayed plot to a file
using a menu. However, if the file will have to be generated again at a later time, or
a series of plots need to be produced with consistent format, it is best to include
the commands to export the plot in the script.

In R, files are created by printing to different devices. Printing is directed to
a currently open device such a window in RStudio. Some devices produce screen
output, while others write files. Devices depend on drivers. There are both devices
that are part of R and additional ones defined in contributed packages.

Creating a file involves opening a device, printing and closing the device in
sequence. In most cases, the file remains locked until the device is close.

For example, when rendering a plot to PDF, Encapsulated Postscript, SVG or
other vector graphics formats, arguments passed to width and height are ex-
pressed in inches.
figl <- ggplot(data.frame(x = -3:3), aes(x = x)) +

stat_function(fun = dnorm)
pdf(file = "figl.pdf", width = 8, height = 6)
print(figl)
dev.off()

For Encapsulated Postscript and SVG output, we only need to substitute pdf()
with postscript() or svg(), respectively.
postscript(file = "figl.eps", width = 8, height = 6)
print(figl)
dev.off()

In the case of graphics devices for file output in BMP, JPEG, PNG, and TIFF bitmap
formats, arguments passed to width and height are expressed in pixels.
tiff(file = "figl.tiff", width = 1000, height = 800)
print(figl)
dev.off()

Some graphics devices are part of base-R and others are implemented in con-
tributed packages. In some cases, there are multiple graphic devices available for
rendering graphics in a given file format. These devices usually use different librar-
ies, or have been designed with different aims. These alternative graphic devices
can also differ in their function signature, i.e., have differences in the parameters
and their names.

Differences also exist in their limitations and supported features, so in cases
when rendering fails inexplicably, it is worthwhile to switch to an alternative graph-
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ics device to find out if the problem is in the plot or in the rendering engine. Several
of the new features added to ‘grid’ in R versions 4.1.0, 4.2.0, and 4.3.0 are currently
supported only by some of the graphics devices.

9.19 Debugging Ggplots

R package ‘gginnards’ provides methods str() (enhanced), num_layers(),
top_layer(), bottom_layer (), and mapped_vars(). It also defines geoms and stats
that instead of creating a layer, pass to a function such as print() the data frame
they receive through parameter data. These are simple functions that even if de-
pendent on ‘ggplot2’ internals are not prone to easily break with ‘ggplot2’ updates.

Package ‘ggtrace’ provides much more detailed and sophisticated approaches
to explore the internals of "gg" plot objects. Package ‘ggplot2’ itself gives access
to some object components.

Of these tools, geom_debug() is probably the most intuitive to use, both on its
own and as an argument to stats.

ggplot(data = iris, mapping = aes(x = Petal.Length, y = Species)) +
stat_summary(geom = "debug")

## No summary function supplied, defaulting to ‘“mean_se()’
## [1] "Summary of input 'data' to 'draw_panel()':"

## y group X xmin xmax PANEL flipped_aes
## 11 1 1.462 1.437440 1.486560 1 TRUE
## 2 2 2 4.260 4.193545 4.326455 1 TRUE
## 3 3 3 5.552 5.473950 5.630050 1 TRUE
virginica -
[}
Q2
& versicolor -
Q.
n

setosa -

3 4 5
Petal.Length

ggplot(data = iris, mapping = aes(x = Petal.Length)) +
stat_bin(geom = "debug")

## “stat_bin()  using ‘bins = 30°. Pick better value with ‘binwidth".
## [1] "summary of input 'data' to 'draw_panel()':"

## y count X xmin Xmax width density ncount
## 1 2 2 1.017241 0.9155172 1.118966 0.2034483 0.06553672 0.07692308
## 2 9 9 1.220690 1.1189655 1.322414 0.2034483 0.29491525 0.34615385
## 3 26 26 1.424138 1.3224138 1.525862 0.2034483 0.85197740 1.00000000
## 4 11 11 1.627586 1.5258621 1.729310 0.2034483 0.36045198 0.42307692
## 5 2 2 1.831034 1.7293103 1.932759 0.2034483 0.06553672 0.07692308
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## 6 0 0 2.034483 1.9327586 2.136207 0.2034483 0.00000000 0.00000000
## ndensity flipped_aes PANEL group ymax ymin
## 1 0.07692308 FALSE 1 =il 2 0
## 2 0.34615385 FALSE 1 -1 9 0
## 3 1.00000000 FALSE 1 -1 26 0
## 4 0.42307692 FALSE 1 —1. 11 0
## 5 0.07692308 FALSE 1 -1 2 0
## 6 0.00000000 FALSE 1 -1 0 0
20-
<
3
© 10-
0_
2 4 6

Petal.Length

9.20 Further Reading

An in-depth discussion of the many extensions to package ‘ggplot2’ is outside the
scope of this book. Several books describe in detail the use of ‘ggplot2’, being
ggplot2: Elegant Graphics for Data Analysis (Wickham and Sievert 2016) the one
written by the main author of the package. For inspiration or worked out examples,
the book R Graphics Cookbook (Chang 2018) is an excellent reference. In depth
explanations of the technical aspects of R graphics are available in the book R
Graphics (Murrell 2019).
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Base R and Extensions: Data Sharing

Most programmers have seen them, and most good programmers real-
ise they’ve written at least one. They are huge, messy, ugly programs
that should have been short, clean, beautiful programs.

John Bentley
Programming Pearls, 1986

10.1 Aims of This Chapter

In this chapter, you will learn how to exchange data between R and some other
applications. Base R and the recommended packages (installed by default) include
several functions for importing and exporting data. Contributed packages provide
both replacements for some of these functions and support for several additional
file formats. In the present chapter, I aim at describing both data input and output
covering in detail only the most common “foreign” data formats (those not native
to R). The function pairs save() and Toad(), and saverps() and readrps(), which
save and read data in R’s native formats, are described in chapter 4, sections 4.7.2
and 4.7.3 starting on page 118.

Data file formats that are foreign to R are not always well defined, making it
necessary to reverse-engineer the algorithms needed to read them. These formats,
even when clearly defined, may be updated by the developers of the foreign soft-
ware that writes the files. Consequently, developing software to read and write files
using foreign formats can easily result in long, messy, and ugly R scripts. We can
also unwillingly write code that usually works but occasionally fails with specific
files, or even worse, occasionally silently corrupts the imported data. The aim of
this chapter is to provide guidance for finding functions for reading data encoded
using foreign formats, covering both base R, including the ‘foreign’ package, and
independently contributed packages. Such functions are well tested or validated
and should be used whenever possible when importing data stored in foreign file
formats.

DOI:10.1201/9781003404187-10 383


https://doi.org/10.1201/9781003404187-10

384 Base R and Extensions: Data Sharing

10.2 Introduction

The first step in any data analysis with R is to input or read-in the data. Available
sources of data are many and data can be stored or transmitted using various
formats, both based on text or binary encodings. It is crucial that data are not
altered (corrupted) when read and that in the eventual case of an error, errors are
clearly reported. Most dangerous are silent non-catastrophic errors.

The very welcome increase of awareness of the need for open availability of data,
makes the output of data from R into well-defined data-exchange formats another
crucial step. Consequently, in many cases, an important step in data analysis is to
export the data for submission to a repository, in addition to publication of the
results of the analysis.

Faster internet access to data sources and cheaper random-access memory
(RAM) has made it possible to efficiently work with relatively large data sets in
R. That R keeps all data in memory (RAM), imposes limits to the size of data R
functions can operate on. For data sets that do not fit in computer RAM, one can
read selected lines from text files, use file formats like NetCDF that natively im-
plement selective reading, or use queries to access data stored in local or remote
databases.

Some contributed R packages support import of data saved in the same formats
already supported by base R, but using different compromises between reliability,
easy of use and performance. Functions in base R tend to prioritise reliability and
protection from data corruption while some contributed packages prioritise per-
formance. Other contributed packages make it possible to import and export data
stored in file formats not supported by base R functions. Some of these formats
are subject-area specific while others are in widespread use. Packages supporting
download and upload of data sets from specific public repositories are also avail-
able (see https://ropensci.org/packages/).

10.3 Packages Used in This Chapter

install.packages (learnrbook: :pkgs_chl0_2ed)

To run the examples included in this chapter, you need first to load some pack-
ages from the library (see section 6.4 on page 179 for details on the use of pack-
ages).

Several examples in this chapter make use of functions from the ‘tidyverse’
for data wrangling because some of the packages used to import data in “foreign”
formats are themselves part of the ‘tidyverse’.

Tibrary(learnrbook)
Tibrary(tibble)

Tibrary(purrr)
Tibrary(stringr)
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Tibrary(dplyr)
Tibrary(tidyr)
Tibrary(readr)
Tibrary(readx1)
Tibrary (x1sx)
Tibrary(readobs)
Tibrary(pdftools)
Tibrary(foreign)
Tibrary(haven)
Tibrary (xml12)
Tibrary (XmL)
Tibrary(ncdf4)
Tibrary(tidync)
Tibrary(lubridate)
Tibrary(jsonlite)

Some data sets used in this and other chapters are available in package
‘learnrbook’. In addition to the R data objects, the package includes files saved
in foreign formats used in examples of importing data. The files can be either
read from the R library, or from a copy in a local folder. In this chapter, the code
examples assume the user has copied the contents of folder "extdata" of the pack-
age to the current working folder.

The files can be copied by running the two statements below, assuming the
current folder is the one that will be used to run the code examples in this chapter.

pkg.path <- system.file("extdata", package = "learnrbook")
file.copy(pkg.path, ".", overwrite = TRUE, recursive = TRUE)
## [1] TRUE

Some examples write files to disk, and the statements below ensure that the
folder used in these examples exists, creating it if not found.
save.path = "./data"
if (!dir.exists(save.path)) {
dir.create(save.path)

}

10.4 File Names and Operations

The naming of files affects data sharing irrespective of the format used for its
encoding. The main difficulty is that different operating systems have different
rules governing the syntax used for file names and file paths. In many cases, like
when depositing data files in a public repository, we need to ensure that file names
are valid across multiple operating systems (OSs). If the script used to create the
files is itself expected to be OS agnostic, queries for file names and paths in R code
should not make assumptions on the naming rules or available OS commands. This
is especially important when developing R packages.

For maximum portability, file names should never contain white-space char-
acters and contain at most one dot. For the widest possible portability, un-
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derscores should be avoided using dashes instead. As an example, instead of
my data.2019.csv, use my-data-2019.csv.

R provides functions which help with portability, by hiding the idiosyncrasies
of the different OSs from R code. In scripts, these functions should be preferred
over direct call to OS commands (i.e., avoid calls to functions she11() or system()
with OS commands as arguments) whenever possible. As the algorithm needed
to extract a file name from a file path is OS specific, R provides functions such
as basename(), whose implementation is OS specific but from the side of R code
behave identically—these functions hide the differences among OSs from the user
of R. The chunk below can be expected to work correctly under any OS for which
R is available.
basename ("extdata/my-file.txt")

## [1] "my-file.txt"

While in Unix and Linux folder nesting in file paths is marked with a forward
slash character (/), under MS-Windows it is marked with a backslash character
(\). Backslash (\) is an escape character in R and interpreted as the start of an
embedded special character (see section 3.4 on page 41), while in R a forward
slash (/) can be used for file paths under any OS, and escaped backslash (\\) is
valid only under MS-Windows. Consequently, / should be always preferred to \\
to ensure portability, and is the approach used in this book.
basename("extdata/my-file.txt")

## [1] "my-file.txt"
basename ("extdata\\my-file.txt")
## [1] "my-file.txt"

The complementary function to basename() is dirname() and extracts from a
full file path the bare path to the containing folder.
dirname("extdata/my-file.txt")

## [1] "extdata"

Functions getwd () and setwd () can be used to get the path to the current work-
ing directory and to set a directory as current, respectively.

getwd ()

Function setwd() returns the path to the current working directory, allowing
to portably restore the working directory to the previous one. Both relative paths
(relative to the current working directory), as in the example, or absolute paths

(given in full) are accepted as an argument. In mainstream OSs “.” indicates the
current directory and “..” the directory above the current one.

oldwd <- setwd("..")
getwd ()

The returned value is always an absolute full path, so it remains valid even if
the path to the working directory changes more than once before being restored.

oldwd
setwd(oldwd)
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getwd ()

Function Tist.files() returns a list of names of files and/or directories (=
disk folders) portably across OSs. Function 1ist.dirs() returns only the names of
directories.
head(1list.files())

## [1] "abbrev.sty"

## [2] "anscombe.svg"

## [3] "Aphalo-CR-9781032518435-Learn-R-proofs-2024-01-26.pdf"

## [4] "Aphalo-CR-9781032518435-Learn-R.pdf"

## [5] "aphalo-Learn-R-2ed-crc-2023-06-14.pdf"

## [6] "aphalo-learn-R-2ed-draft-2022-02-01.pdf"

head(1list.dirs())

## [1] "." "./.git" "./.git/hooks" "./.git/info"
## [5] "./.git/logs" "./.git/logs/refs"

10.1 In these functions, the default argument for parameter path is the cur-
rent working directory, under Windows, Unix, and Linux indicated by ".". Convince
yourself that this is indeed the default by calling the functions with an explicit ar-
gument. After this, play with the functions passing as argument to path other
existing and non-existent file and directory paths.

10.2 Pass different arguments to parameter full.names of Tist.files() to
obtain either a list of file paths or bare file names. Similarly, investigate how the
returned list of files is affected by the argument passed to al1.names.

Base R provides several functions for portably working with files, and they are
listed in the help page for files and in individual help pages. Use help("files")
to access the help for this “family” of functions. The chunk below exercises some
of these functions.

if (!file.exists("xxx.txt")) {
file.create("xxx.txt")

3

## [1] TRUE

file.size("xxx.txt")

## [1] O

file.info("xxx.txt")

##t size isdir mode mtime ctime
## xxx.txt 0 FALSE 666 2024-02-17 22:36:11 2024-02-17 22:36:11
#i#t atime exe

## xxx.txt 2024-02-17 22:36:11 no

file.rename("xxx.txt", "zzz.txt")

## [1] TRUE

file.exists ("xxx.txt")
## [1] FALSE
file.exists("zzz.txt")
## [1] TRUE
file.remove("zzz.txt")
## [1] TRUE
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10.3 Function file.path() can be used to construct a file path from its com-
ponents in a way that is portable across OSs. Look at the help page and play with
the function to assemble some paths that exist in the computer you are using.

10.5 Opening and Closing File Connections

Examples in the rest of this chapter use as an argument for the file formal para-
meter literal paths or URLs, and complete the reading or writing operations within
the call to a function. Sometimes it is necessary to read or write a text file sequen-
tially, one row or record at a time. In such cases, it is most efficient to keep the
file open between reads and close the connection only when it is no longer needed.
See help(connections) for details about the various functions available and their
behaviour in different OSs. The code below opens a file connection, reads two lines,
first the top one with column headers, then in a separate call to readLines(), the
two lines or records with data, and finally closes the connection.

fl <- file("extdata/not-aligned-ASCII-UK.csv", open = "r")
readLines(fl, n = 1)
## [1] "coll,col2,col3,col4"

readLines(fl, n = 2)
## [1] "1.0,24.5,346,ABC" "23.4,45.6,78,Z Y"
close(f1)

When R is used in batch mode, the “files” stdin, stdout and stderror can be
opened, and data read from, or written to. These standard sources and sinks, so
familiar to C programmers, allow the use of R scripts as tools in data pipes coded
as shell scripts under Unix and other OSs.

10.6 Plain-Text Files

In general, text files are the most portable approach to data storage but usually
also the least efficient with respect to the size of the file. Text files are composed
of encoded characters. This makes them easy to edit with text editors and easy to
read from programs written in most programming languages. On the other hand,
how the data encoded as characters is arranged can be based on two different
approaches: positional or using a specific character as a separator.

The positional approach is more concise but almost unreadable to humans as
the values run into each other. Reading of data stored using a positional approach
requires access to a format definition and was common in FORTRAN and COBOL
at the time when punch cards were used to store data. In the case of separators,
different separators are in common use. Comma-separated values (CSV) encodings
use either a comma or semicolon to separate the fields or columns. Tab-separated
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values (TSV) use the tab, or tabulator, character as a column separator. Sometimes,
whitespace is used as a separator, most commonly when all values are to be con-
verted into numeric.

Not all text files are born equal. When reading text files, and foreign binary
files which may contain embedded text strings, there is potential for their misin-
terpretation during the import operation. One common source of problems, is that
column headers are to be read as R names. As earlier discussed, there are strict
rules, such as avoiding spaces or special characters if the names are to be used
with the normal R syntax. On import, some functions will attempt to sanitise the
names, but others not. Most such names are still accessible in R statements, but
a special syntax is needed to protect them from triggering syntax errors through
their interpretation as something different than variable or function names—in R
jargon we say that they need to be quoted.

Some of the things we need to be on the watch for are: 1) Mismatches between
the character encoding expected by the function used to read the file, and the en-
coding used for saving the file—usually because of different locales, i.e., language
and country settings. 2) Leading or trailing (invisible) spaces present in the char-
acter values or column names—which are almost invisible when data frames are
printed. 3) Wrongly guessed column classes—a typing mistake affecting a single
value in a column, e.g., the wrong kind of decimal marker, can prevent the column
from being recognised as numeric. 4) Mismatched decimal marker in csv files—the
marker depends on the locale (language and country settings).

If you encounter problems after import, such as failure of extraction of data
frame columns by name, use function names() to get the names printed to the
console as a character vector. This is useful because character vectors are always
printed with each string delimited by quotation marks making leading and trailing
spaces clearly visible. The same applies to use of levels() with factors created
with data that might have contained mistakes or whitespace.

To demonstrate some of these problems, I create a data frame with name san-
itation disabled, and in the second statement with sanitation enabled. The first
statement is equivalent to the default behaviour of functions in package ‘readr’
and the second is equivalent to the behaviour of base R functions. ‘readr’ prior-
itises the integrity of the original data while R prioritises compatibility with R’s
naming rules.

data.frame(a = 1, "a " = 2, " a" = 3, check.names = FALSE)
## aa a

## 11 2 3

data.frame(a =1, "a " =2, " a" = 3)

it a a. X.a
# 11 2 3

An even more subtle case is when characters can be easily confused by the user
reading the output, or typing in the data: zero and o (a0 vs. a0) or el and one (al
vs. al) can be difficult to distinguish in some fonts. When using encodings capable
of storing many character shapes, such as unicode, in some cases two characters
with almost identical visual shape may be encoded as different characters.
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data.frame(al = 1, al = 2, a0 = 3, a0 = 4)
#i#t al al ao a0
# 1 1 2 3 4

Reading data from a text file can result in very odd-looking values stored in R
variables because of a mismatch in encoding, e.g., when a CSV file saved with MS-
Excel is silently encoded using 16-bit unicode format, but read as an 8-bit unicode
encoded file.

The hardest part of all these problems is to diagnose their origin, as function
arguments and working environment options can in most cases be used to force
the correct decoding of text files with diverse characteristics, origins, and vintages
once one knows what is required. Function tools: : : showNonAscIIfile() from the
R ‘tools’ package, which is not exported, but available in recent and current (4.4.0)
versions of R, can be used to test files for the presence on non-ASCII characters.
This function takes as an argument the path to a file, and its companion function
tools:::showNonASCII() a character string.

10.6.1 Base R and ‘utils’

Text files containing data in columns can be divided into two broad groups. Those
with fixed-width fields and those with delimited fields. Fixed-width fields were es-
pecially common in the early days of FORTRAN and COBOL when data storage
capacity was very limited. These formats are frequently capable of encoding in-
formation using fewer characters than when delimited fields are used. The best
way of understanding the differences is with examples. Although in this section
we exemplify the use of functions by passing a file name as an argument, URLs and
open file descriptors are also accepted (see section 10.5 on page 388). The file will
be uncompressed on the fly if its name ends in .gz.

Wether columns containing character strings that cannot be converted into
numbers are converted into factors or remain as character strings in the returned
data frame depends on the value passed to parameter stringsAsFactors. The de-
fault changed in R version 4.0.0 from TRUE into FALSE. If code is to work consist-
ently in old and new versions of R stringsAsFactors = FALSE has to be passed
explicitly in calls to read.csv() (the approach used in the book).

In the first example, a file with fields solely delimited by “,” is read. This is what
is called comma-separated values (CSV) format that can be read and written with
read.csv() and write.csv(), respectively.

The contents of file not-aligned-ASCII-UK.csv are shown below.

coll,col2,col3,col4
1.0,24.5,346,ABC
23.4,45.6,78,Z2 Y

The file is read and the returned value stored in a variable named from_csv_a.df,
and printed.

from_csv_a.df <-
read.csv("extdata/not-aligned-ASCII-UK.csv", stringsAsFactors = FALSE)
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from_csv_a.df

## coll col2 col3 col4
# 1 1.0 24.5 346 ABC
## 2 23.4 45.6 78 zY

from_csv_a.df[["col14"]]
## [1] "ABC" "Z Y"
sapply(from_csv_a.df, class)

## coll col2 col3 col4
## "numeric" "numeric" "integer" "character"

10.4 Read the file not-aligned-AscIiI-uk.csv with function read.csv2() in-
stead of read.csv(). Although this may look like a waste of time, the point of
the exercise is for you to get familiar with R behaviour in case of such a mistake.
This will help you recognise similar errors when they happen accidentally, which
is quite common when files are shared.

Example file aligned-ASCII-uK.csv contains comma-separated values with ad-
ded whitespace to align the columns, to make it easier to read by humans.
The contents of file aligned-ASCII-UK.csv are shown below.

coll, col2, col3, col4
1.0, 24.5, 346, ABC
23.4, 45.6, 78, ZY

The file is read and the returned value stored in a variable named from_csv_b.df,
and printed. Although space characters are read as part of the fields, they are
ignored when conversion to numeric takes place.

from_csv_b.df <-
read.csv("extdata/aligned-ASCII-UK.csv", stringsAsFactors = FALSE)

from_csv_b.df

## coll col2 col3 col4
# 1 1.0 24.5 346 ABC
## 2 23.4 45.6 78 ZY

from_csv_b.df[["co14"]]

## [1] " ABC" " Z Y"

sapply(from_csv_b.df, class)

#it coll col2 col3 col4
#it "numeric" "numeric" "integer" "character"

By default, column names are sanitised but whitespace in character strings kept.
Passing an additional argument changes this default so that leading and trailing
whitespace are discarded. Most likely the default has been chosen so that by default
data integrity is maintained.
from_csv_c.df <-

read.csv("extdata/aligned-ASCII-UK.csv",
stringsAsFactors = FALSE, strip.white = TRUE)

from_csv_c.df

## coll col2 col3 col4
## 1 1.0 24.5 346 ABC
## 2 23.4 45.6 78 zZY

from_csv_c.df[["co14"]]
## [1] "ABC" "z Y"
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sapply(from_csv_c.df, class)

#it coll col?2 col3 col4
#i#t "numeric" "numeric" "integer" "character"

When character strings are converted into factors, leading and trailing
whitespace is retained in the labels of factor levels. Leading and trailing whitespace
are difficult to see when data frames are printed, as shown below. This example
shows what problems were frequently encountered in earlier versions of R, and
can still occur when factors are created. The recommended approach is to use the
default stringsAsFactors = FALSE and do the conversion into factors in a separate
step.
from_csv_b.df <-

read.csv("extdata/aligned-ASCII-UK.csv", stringsAsFactors = TRUE)

Using Tevels() it can be seen that the labels of the automatically created factor
levels contain leading spaces.
sapply(from_csv_b.df, class)

#i# coll col2 col3 col4
## "numeric" "numeric" "integer" "factor"
from_csv_b.df[["co14"]]

## [1] ABC zZY

## Levels: ABC zZY
levels(from_csv_b.df[["co14"]])

## [1] " ABC" " ZzZ Y"

Decimal points and exponential notation are allowed for floating point values.
In English-speaking locales, the decimal mark is a point, while in many other locales
it is a comma. The behaviour of R functions does not change when run under
different locales. When a comma is used as decimal marker, we can a semicolon
(;) is used as field marker.

This handled by using functions read.csv2() and write.csv2(). Furthermore,
parameters dec and sep allow setting the decimal marker and field separator to
arbitrary character strings.

Function read.table() does the actual work and functions like read.csv()
only differ in the default arguments for the different parameters. By default,
read.table() expects fields to be separated by whitespace (one or more spaces,
tabs, new lines, or carriage return).

The contents of file aligned-AScII.txt are shown below.
coll col2 col3 col4

1.0 24.5 346 ABC
23.4 45.6 78 "z Y"

The file is read and the returned value stored in a variable named from_txt_b.df,
and printed. Leading and trailing whitespace are removed because they are re-
cognised as part of the separators. For character strings containing embedded
spaces to be decoded as a single value, they need to be quoted in the file as in
aligned-AscCII.txt above.

from_txt_b.df <-
read.table("extdata/aligned-ASCII.txt",
stringsAsFactors = FALSE, header = TRUE)
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from_txt_b.df

## coll col2 col3 col4
# 1 1.0 24.5 346 ABC
## 2 23.4 45.6 78 zY

from_txt_b.df[["col14"]]
## [1] "ABC" "Z Y"
sapply(from_txt_b.df, class)

## coll col2 col3 col4
## "numeric" "numeric" "integer" "character"

With a fixed-width format, no delimiters are needed. Decoding is based solely
on the position of the characters in the line or record. A file like this cannot be
interpreted without a description of the format used for saving the data. Files
containing data stored in fixed width format can be read with function read. fwf().
Records for a single observation can be stored in a single or multiple lines. In either
case, each line has fields of different but fixed known widths.

Function read.fortran() is a wrapper on read. fwf () that accepts format defin-
itions similar to those used in FORTRAN. One particularity of FORTRAN formatted
data transfer is that the decimal marker can be omitted in the saved file and its
position specified as part of the format definition, a trick used to make text files
(or stacks of punch cards!) smaller. Modern versions of FORTRAN support read-
ing from and writing to other formats like those using field delimiters described
above.

The contents of file aligned-AscII.fwf are shown below.

10245346ABC
234456 787 Y

The file is read and the returned value stored in a variable named from_fwf_a.df,
and printed. The format definition is passed as a separate character vector argu-
ment, e.g., "2F3.1" describes the format of the first two columns, "13" describes
the third column and "A3" the fourth.

from_fwf_a.df <-
read. fortran("extdata/aligned-ASCII.fwf",
format = c("2F3.1", "13", "A3"),
col.names = c("coll", "col2", "col3", "col4"))

from_fwf_a.df

## coll col2 col3 col4
# 1 1.0 24.5 346 ABC
## 2 23.4 45.6 78 zZY

from_fwf_a.df[["col14"]]
## [1] "ABC" "Z Y"
sapply(from_fwf_a.df, class)

#it coll col?2 col3 col4
#it "numeric" "numeric" "integer" "character"

The file reading functions described above share with read.table() the same
parameters. In addition to those described above, other frequently useful para-
meters are skip and n, which can be used to skip lines at the top of a file and
limit the number of lines (or records) to read; header, which accepts a logical ar-
gument indicating if the fields in the first text line read should be decoded as
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column names rather than data; na.strings, to which can be passed a character
vector with strings to be interpreted as NA; and colclasses, which provides control
of the conversion of the fields to R classes and possibly skipping some columns
altogether. All these parameters are described in the corresponding help pages.

10.5 In reality read.csv(), read.csv2() and read.table() are the same func-
tion with different default arguments to several of their parameters. Study the
help page, and by passing suitable arguments, make read.csv() behave like
read.table(), then make read.table() behave like read.csv2().

A text file can be read as character strings, without attempting to decode
them. This is occasionally useful, such as when the decoding is done in a script, or
when needs to print a file as is. In this case, the function used is readLines (). The
returned value is a character vector in which each member string corresponds to
one line or record in the file, with the end-of-line markers stripped (see example
in section 10.5 on page 388).

The next example shows how a write function matching one of the read
functions described above can be used to save a data frame to a text file. The
write.csv() function takes as an argument a data frame, or an object that can be
coerced into a data frame, converts it to character strings, and saves them to a text
file. A data frame, my.df with five rows is enough for a demonstration.
my.df <- data.frame(x = 1:5, y = 5:1 / 10, z = Tetters[1:5])

We write my.df to a CSV file suitable for an English language locale, and then
display its contents.

write.csv(my.df, file = "my-filel.csv", row.names = FALSE)
file.show("my-filel.csv", pager = "console")

X,y , Z
1,0.5,"a"
2,0.4,"b"

In most cases setting, as above, row.names = FALSE when writing a CSV file
will help when it is read. Of course, if row names do contain important information,
such as gene tags, you cannot skip writing the row names to the file unless you first
copy these data into a column in the data frame. (Row names are stored separately
as an attribute in data.frame objects, see section 4.6 on page 114 for details.)

10.6 Write the data frame my.df into text files with functions write.csv2()
and write.table() instead of read.csv() and display the files.

Function cat() takes R objects and writes them after conversion to character
strings to the console or a file, inserting one or more characters as separators, by
default, a space. This separator can be set through parameter sep. In our example,
we set sep to a new line (entered as the escape sequence "\n").

my.lines <- c("abcd", "hello world", "123.45")
cat(my.lines, file = "my-file2.txt", sep = "\n")
file.show("my-file2.txt", pager = "console")
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abcd
hello world
123.45

10.6.2 ‘readr’

Package ‘readr’ is part of the ‘tidyverse’ suite. It defines functions that have differ-
ent default behaviour and that are designed to be faster under different situations
than those native to R. The functions from package ‘readr’ can sometimes wrongly
decode their input and rarely even do this silently. The ‘readr’ functions guess more
properties of the text file format; in most cases they succeed, which is very handy,
but occasionally they fail. Automatic guessing can be overridden by passing argu-
ments, and this is recommended for scripts that will be reused to read different
files in the future. Another important advantage is that these functions read char-
acter strings formatted as dates or times directly into columns of class posIxct.
All wri te functions defined in ‘readr’ have an append parameter, which can be used
to change the default behaviour of overwriting an existing file with the same name,
to appending the output at its end.

Although we exemplify the use of these functions by passing a file name as
an argument, as is the case with R native functions, URLs, and file descriptors are
also accepted (see section 10.5 on page 388). The files read are uncompressed, and
those written are compressed on the fly if their name ends in .gz, .bz2, .xz, or .zip.

Functions “equivalent” to native R functions described in the previous section
have names formed by replacing the dot with an underscore, e.g., read_csv() =
read.csv(). The similarity refers to the format of the files read, but not the order,
names, or roles of their formal parameters. For example, function read_table()
has a slightly different behaviour than read.table(), although they both read
fields separated by whitespace. Row names are not set in the returned tibble,
which inherits from data. frame, but is not fully compatible (see section 8.4.2 on
page 247).

Package ‘readr’ is under active development, and functions with the same
name from different major versions are not fully compatible. Code for some
examples from the first edition of the book no longer work because the up-
dated implementation fails to recognise escaped special characters. Function
read_table2 () has been renamed read_table().

These functions report to the console the specifications of the columns, which
is important when these are guessed from the file contents, or even only from rows
near the top of the file.

read_csv(file = "extdata/aligned-ASCII-UK.csv", show_col_types = FALSE)
## # A tibble: 2 x 4

#it coll col2 col3 col4

##  <dbl> <dbl> <dbl> <chr>

## 1 1 24.5 346 ABC

## 2 23.4 45.6 78 Zz Y

read_csv(file = "extdata/not-aligned-ASCII-UK.csv", show_col_types = FALSE)
## # A tibble: 2 x 4
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#it coll col2 col3 col4
#i#t <db1> <db1> <dbl1> <chr>
# 1 1 24.5 346 ABC
## 2 23.4 45.6 782 Y

Package ‘readr’ is under active development, and different major versions are
not fully compatible with each other. Because of the misaligned fields in file
"not-aligned-AsCII.txt" in the past we needed to use read_table2(), which al-
lowed misalignment of fields, similarly to read. table(). This function has been re-
named as read_table() and read_table2() deprecated. However, parsing of both
files fails if they are read with read_table(), quoted strings containing whitespace
are no longer recognised. See above example using read.table(). Examples below
are not run, but kept as they may work again in the future.
read_table(file = "extdata/aligned-ASCII.txt")

read_table(file = "extdata/not-aligned-ASCII.txt")

Function read_delim() with space as the delimiter succeeds only with the not-
aligned file as in this file the separator is in all cases a single space.
read_delim(file = "extdata/not-aligned-ASCII.txt",

delim = , Show_col_types = FALSE)

## # A tibble: 2 x 4
## coll col2 col3 col4
## <db1> <db1> <dbl1> <chr>
## 1 1 24.5 346 ABC
## 2 23.4 45.6 78 2 Y

Function read_tsv () reads files encoded with the tab character as the delimiter,
and read_fwf () reads files with fixed width fields. There is, however, no equivalent
to read. fortran(), supporting implicit decimal points.

10.7 Use the "wrong” read_ functions to read the example files used above
and/or your own files. As mentioned earlier, forcing errors will help you learn
how to diagnose when such errors are caused by coding or data entry mistakes. In
this case, as wrongly read data are not always accompanied by error or warning
messages, carefully check the returned tibbles for misread data values.

The functions from R’s package ‘utils’ read the whole file before attempting
to guess the class of the columns or their alignment. This is reliable but slow for
text files with many lines. The functions from ‘readr’ read by default only the top
1000 lines (guess_max = 1000) when guessing the format and class, assuming that
the guessed properties also apply to the remaining lines of the file. This is more
efficient, but rather risky. However, the functions from R’s package ‘utils’ are faster
at reading files with many fields (or columns) per line and few lines.

In earlier versions of ‘readr’, a problem was the failure to correctly decode nu-
meric values when increasingly large numbers resulted in wider fields in the lines
below those used for guessing. However, at the time of writing, this case is cor-
rectly handled. A guess based on the top lines of a text file also means that when
values in lines below guess_max lines cannot be converted to numeric, the numeric
column returned contains NA values. In contrast, in this situation, functions from
R’s package ‘utils’, skip decoding and return a character column. Below, a very
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small value for guess_max is used to demonstrate this behaviour with a file only a
few lines in length.
read_table(file = "extdata/miss-aligned-ASCII.txt", show_col_types = FALSE)

## # A tibble: 4 x 4

## coll col2 col3 col4
## <chr> <db1> <dbl1> <chr>
## 1 1.0 24.5 346 ABC
## 2 2.4 45.6 78 XYZ
## 3 20.4 45.6 78 XYZ
## 4 a 20 2500 abc

read_table(file = "extdata/miss-aligned-ASCII.txt", show_col_types = FALSE,
guess_max = 3L)

## warning: 1 parsing failure.

## row col expected actual file
## 4 coll a double a 'extdata/miss-aligned-ASCII.txt'
## # A tibble: 4 x 4

## coll col2 col3 col4

## <db1> <dbl1> <dbl1> <chr>

## 1 1 24.5 346 ABC
## 2 2.4 45.6 78 XYZ
## 3 20.4 45.6 78 XYZ
## 4 NA 20 2500 abc

The write_ functions from ‘readr’ are the counterpart to write. functions from
‘utils’. In addition to the expected write_csv(), write_csv2(), write_tsv() and
write_delim(), ‘readr’ provides functions that write MS-Excel-friendly CSV files.
Function write_excel_csv() saves a text file with comma-separated fields suitable
for import into MS-Excel.

write_excel_csv(my.df, file = "my-file6.csv")
file.show("my-file6.csv", pager = "console")
ANCORTIVE R

1,0.5,"a"

2,0.4,"b"

3,0.3,"c"

4,0.2,"d"

5,0.1,"e"

10.8 Compare the output from write_excel_csv() and write_csv(). What is
the difference? Does it matter when you import the written CSV file into Excel (in
the version you are using, and with the locale settings of your computer)?

The pair of functions read_Tlines() and write_lines() read and write charac-
ter vectors without conversion, similarly to base R readLines() and writeLines().
Functions read_file() and write_file() read and write the contents of a whole
text file into, and from, a single character string. Functions read_file() and
write_file() can also be used with raw vectors to read and write binary files or
text files of unknown encoding.

The contents of the whole file are returned as a character vector of length one,
with the embedded new line markers. We use cat() to print it so these new line
characters force the start of a new print-out line.



398 Base R and Extensions: Data Sharing

one.str <- read_file(file = "extdata/miss-aligned-ASCII.txt")
Tength(one.str)
## [1] 1

cat(one.str)
## coll col2 col3 col4

## 1.0 24.5 346 ABC
## 2.4 45.6 78 XYZ
## 20.4 45.6 78 XYZ

## a 20 2500 abc

I 10.9 Use write_file() to write a file that can be read with read_csv().

10.7 XML and HTML Files

XML files contain text with special markup. Several modern data exchange formats
are based on the XML standard (see https://www.w3.org/TR/xm1/) which uses
schemas for flexibility. Schemas define specific formats, allowing reading of
formats not specifically targeted during development of the read functions. Even
the modern XHTML standard used for web pages is based on such schemas, while
HTML only differs slightly in its syntax.

10.7.1 ‘xml2’

Package ‘xml2’ provides functions for reading and parsing XTML and HTML files.
This is a vast subject, of which I will only give a brief example.

Function read_htm1() can be used to read an HTML document, either locally or
from a URL as below.
web_page <- read_html ("https://www.learnr-book.info/")

Function htm1_structure() displays the structure of an HTML document (long
text output not shown).
htm1_structure(web_page)

Function xml_text() extracts the text content of a field. Function
xml_find_al11() returns a field searched by name. Here used to extract the
text from the title attribute, using functions xm1_find_a11() and .
xm1_text (xml_find_all(web_page, ".//title"))

## [1] "Learn R: As a Language"

The functions defined in this package can be used to “harvest” data from web
pages, but also to read data from files using formats that are defined through XML
schemas.
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10.8 GPX Files

GPX (GPS Exchange Format) files use an XML scheme designed for saving and ex-
changing data from geographic positioning systems (GPS). There is some variation
on the variables saved depending on the settings of the GPS receiver. The example
data used here is from a Transmeta BT747 GPS logger. The example below reads
the data into a tibble as character strings. For plotting, the character values rep-
resenting numbers and dates would need to be converted to numeric and datetime
(PosIxct) values, respectively. In the case of plotting tracks on a map, it is prefer-
able to use package ‘sf’ to import the tracks directly from the .gpx file into a layer
(use of R pipe operator is described in section 5.5 on page 134).

xmlTreeParse(file = "extdata/GPSDATA.gpx", useInternalNodes = TRUE) |>
xmlRoot(x = ) |>

xmlToList(node = _) |>

_[["trk™11 I>

assign(x = "temp", value = _) |[|>

_[names(x = temp) == "trkseg"] |>

unlist(x = _, recursive = FALSE) |>

map_df(.x = _, .f = function(x) as_tibble(x = t(x = unlist(x = x))))

## # A tibble: 199 x 7

## time speed name type fix .attrs.Tlat .attrs.lon
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>

## 1 2018-12-08T723:09:02.000Z 0.0366 trkpt-2018-~ T 3d -34.912071 138.660595
## 2 2018-12-08T723:09:04.000Z 0.0884 trkpt-2018-~ T 3d -34.912067 138.660543
## 3 2018-12-08T123:09:06.000Z 0.0147 trkpt-2018-~ T 3d -34.912102 138.660554
## # 1 196 more rows

rm(temp)

10.10 To understand what data transformation takes place in each statement
of this pipe, start by running the first statement by itself, excluding the pipe op-
erator, and continue adding one statement at a time, and at each step check the
returned value and look out for what has changed from the previous step. Option-
ally you can insert a line print() |> at the point where you wish to see the data
being “piped”.

10.9 Worksheets

Microsoft Office, Open Office, and Libre Office are the most frequently used suites
containing programs based on the worksheet paradigm. There is available a stand-
ardised file format for exchange of worksheet data, but it does not support all
the features present in native file formats. We will start by considering MS-Excel.
The file format used by MS-Excel has changed significantly over the years, and old
formats tend to be less well supported by available R packages and may require the
file to be updated to a more modern format with MS-Excel itself before import into
R. The current format is based on XML and relatively simple to decode, whereas
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older binary formats are more difficult. Worksheets contain code as equations in
addition to the actual data. In all cases, only values entered as such or those com-
puted by means of the embedded equations can be imported into R rather than
the equations themselves.

When directly reading from a worksheet, a column of cells with mixed type,
can introduce NA values. A wrongly selected cell range from the worksheet can
result in missing columns or rows, if the area is too small, or in rows or columns
filled with NA values, if the range includes empty cells in the worksheet. Depend-
ing on the function used, it may be possible to ignore empty cells, by passing an
argument.

Many problems related to the import of data from worksheets and workbooks
are due to translation between two different formats that impose different re-
strictions on what is allowed or not. While in a worksheet it is allowed to set the
“format” (as called in Excel, and roughly equivalent to mode in R) of individual cells,
a variable (column) in an R data frame is expected to be vector, and thus contain
members belonging the same mode or type. For the import to work as expected, the
“format” must be consistent, i.e., all cells in a column to be imported are marked
as one of the Number, Date, Time, or Text formats, with the possible exception of a
single row of column headers with the names of the variables as Text. The default
format General also works but as it does not ensure consistency, it makes more
difficult to see format inconsistencies at a glance in Excel.

When reading a csv file, text representing numbers will be recognised and con-
verted, but only if the decimal point is encoded as expected from the arguments
passed to the function call. So a single number with a comma instead of a dot as
decimal marker (or vice versa) will result in most cases in the column not being
decoded as numbers and returned as a character vector (or column) in the data
frame. In the case of package ‘readr’, a numeric vector containing NA values for the
non-decoded text may be returned instead of a character vector depending on
whether the wrong decimal marker appears near the top or near the end of the
file.

When importing data from a worksheet or workbook, my recommendation is
first to check it in the original software to ensure that the cells to be imported are
encoded as expected. When using a csv as an intermediate step, it is crucial to also
open this file in a plain-text editor such as the editor pane in RStudio (or Notepad
in Windows or Nano, Emacs, etc., in Unix and Linux). Based on what field separator,
decimal mark, and possibly character encoding has been used, which depends on
the locale settings in the operating system of the computer and in the worksheet
program, select a suitable function to call and the necessary arguments to pass to
it.

10.9.1 CSV files as middlemen

If we have access to the original software used for creating a worksheet or work-
book, then exporting worksheets to text files in CSV format and importing them
into R using the functions described in sections 10.6 and 10.6.2 starting on pages
388 and 395 provides a broadly compatible route for importing data—with the
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caveat that one must ensure that delimiters and decimal marks match the expect-
ations of the functions used. This approach is not ideal from the perspective of
having to create intermediate csv formatted text files. A better approach is, when
feasible, to import the data directly from the workbook or worksheets into R.

10.9.2 ‘readxl’

Package ‘readx!’ supports reading of MS-Excel workbooks, and selecting work-
sheets and regions within worksheets specified in ways similar to those used by
MS-Excel itself. The interface is simple, and the package easy to install. We will
import a file that in MS-Excel looks like the screen capture below.

H o o -
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Function excel_sheets () lists the sheets contained in the workbook.

sheets <- excel_sheets("extdata/Bookl.x1sx")
sheets

## [1] "my data"

In this case, the argument passed to sheet is redundant, as there is only a single
worksheet in the file. It is possible to use either the name of the sheet or a positional
index (in this case 1 would be equivalent to "my data"). Function read_excel()
with no range specification imports the whole worksheet into a tibble, as can be
expected from a package included in the ‘tidyverse’.

Bookl.df <- read_excel ("extdata/Bookl.x1sx",

sheet = "my data")
Bookl.df
## # A tibble: 10 x 3
##  sample group observation
## <db1> <chr> <db1>
## 1 1a 1
## 2 2 a 5
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## 3 3 a 7
## # 1 7 more rows

It is also possible to read a region instead of the whole worksheet.

Bookl_region.df <- read_excel ("extdata/Bookl.x1sx",
sheet = "my data",
range = "Al:B8")

Bookl_region.df

## # A tibble: 7 x 2

##  sample group

## <db1> <chr>

## 1 1la
## 2 2 a
## 3 3 a

## # 1 4 more rows

Of the remaining arguments, the most useful ones have the same names and
play similar roles as in ‘readr’ (see section 10.6.2 on page 395). For example, new
names for the columns can be passed as an argument to override the names in the
worksheet.

Bookl_region.df <- read_excel ("extdata/Bookl.x1sx",
sheet = "my data",
range = "A2:B8",
col_names = c("A", "B"))
Bookl_region.df

## # A tibble: 7 x 2

## A B

## <db1> <chr>
## 1 1a

## 2 2 a

## 3 3 a

## # 1 4 more rows

10.9.3 “xIsx’

Package ‘xIsx’ can be more difficult to install as it uses Java functions to do the
actual work. However, it is more comprehensive, with functions both for reading
and writing MS-Excel worksheets and workbooks, in different formats including
the older binary ones. Similarly to ‘readr’, it allows selected regions of a worksheet
to be imported.

Function read.x1sx() can be used indexing the worksheet by name. The re-
turned value is a data frame, and following the expectations of R package ‘utils’,
character columns are no longer converted into factors by default.

Bookl_x1sx.df <- read.xlsx("extdata/Bookl.x1sx",

sheetName = "my data")

Bookl_xTsx.df

## sample group observation
## 1 1 a 1.0
## 2 2 a 5.0
## 3 3 a 7.0
## 4 4 a 2.0
## 5 5 a 5.0
## 6 6 b 0.0
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## 7 7 b 2.0

## 8 8 b 3.0

## 9 9 b 1.0

## 10 10 b 1.5
sapply(Bookl_x1sx.df, class)

## sample group observation
##  "numeric" "character" "numeric"

With function write.x1sx(), we can write data frames out to Excel worksheets
and even append new worksheets to an existing workbook.

set.seed(456321)
my.data <- data.frame(x = 1:10, y = Tetters[1:10])
write.xlsx(my.data,
file = "extdata/my-data.x1sx",
sheetName = "first copy")
write.xlsx(my.data,
file = "extdata/my-data.x1sx",
sheetName = "second copy",
append = TRUE)

When opened in Excel, we get a workbook containing two worksheets, named
using the arguments we passed through sheetName in the code chunk above.
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10.11 If you have some worksheet files available, import them into R to get a
feel for how data is organised in the worksheets affects how easy or difficult it is
to import them into R.

10.9.4 ‘readODS’

Package ‘readODS’ provides functions for reading data saved in files that follow
the Open Documents Standard. Function read_ods () has a similar user interface
to that of read_excel() and reads one worksheet at a time, with support only for
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skipping top rows and selecting ranges of columns and rows. The value returned
is a tibble or, optionally, a data frame. Function read_fods () reads flat ODS files.

Tist_ods_sheets("extdata/Bookl.ods")
## [1] "my_data"

ods.df <- read_ods("extdata/Bookl.ods", sheet = 1)

ods.df

## # A tibble: 10 x 3
##  sample group observation

## <db1> <chr> <db1>
## 1 1a 1
## 2 2 a 5
## 3 3 a 7

## # 1 7 more rows

Functions write_ods() and write_fods() write a data frame into an ODS or
FODS file.

10.10 Statistical Software

There are two different comprehensive packages for importing data saved from
other statistical programs such as SAS, Statistica, SPSS, etc. The longtime “stand-
ard” is package ‘foreign’ included in base R, and package ‘haven’ is a newer contrib-
uted extension. In the case of files saved with old versions of statistical programs,
functions from ‘foreign’ tend to be more robust than those from ‘haven’.

10.10.1 ‘foreign’

Functions in package ‘foreign’ allow us to import data from files saved by several
statistical analysis programs, including SAS, Stata, SPSS, Systat, Octave among oth-
ers, and a function for writing data into files with formats native to SAS, Stata, and
SPSS. R documents the use of these functions in detail in the R Data Import/Export
manual. As a simple example, we use function read.spss() to read a .sav file,
saved a few years ago with the then current version of SPSS. Only the first six rows
and seven columns of the data frame are shown, including a column with dates,
which appears as numeric.

my_spss.df <- read.spss(file = "extdata/my-data.sav", to.data.frame = TRUE)
my_spss.df[1:6, c(1:6, 17)]

## block treat mycotreat waterl pot harvest harvest_date

## 1 0 watered, EM 1 1 14 1 13653705600

## 2 0 watered, EM 1 1 52 1 13653705600

## 3 0 watered, EM 1 1111 1 13653705600

## 4 0 watered, EM 1 1 127 1 13653705600

## 5 0 watered, EM 1 1 230 1 13653705600

## 6 0 watered, EM 1 1 258 1 13653705600

A second example, this time with a simple .sav file saved 15 years ago.
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thiamin.df <- read.spss(file = "extdata/thiamin.sav", to.data.frame = TRUE)
head (thiamin.df)

## THIAMIN CEREAL

## 1 5.2 wheat
## 2 4.5 wheat
## 3 6.0 wheat
## 4 6.1 wheat
## 5 6.7 wheat
## 6 5.8 wheat

Another example, for a Systat file saved on an PC more than 20 years ago, and
read with read.systat().

my_systat.df <- read.systat(file = "extdata/BIRCH1.SYS")
head(my_systat.df)

## CONT DENS BLOCK SEEDL VITAL BASE ANGLE HEIGHT DIAM

## 1 1 1 1 2 44 2 0 1 53
## 2 1 1 1 2 41 2 1 2 70
## 3 1 1 1 2 21 2 0 1 65
## 4 1 1 1 2 15 3 0 1 79
## 5 1 1 1 2 37 3 0 1 71
## 6 1 1 1 2 29 2 1 1 43

Not all functions in ‘foreign’ return data frames by default, but all of them can
be coerced to do so.

10.10.2 ‘haven’

Package ‘haven’ is less ambitious with respect to the number of formats supported,
or their vintages, providing read and write functions for only three file formats:
SAS, Stata, and SPSS. On the other hand, ‘haven’ provides flexible ways to convert
the different labelled values that cannot be directly mapped to R modes. They
also decode dates and times according to the idiosyncrasies of each of these file
formats. In cases when the imported file contains labelled values, the returned
tibble object needs some additional attention from the user. Labelled numeric
columns in SPSS are not necessarily equivalent to factors, although they sometimes
are. Consequently, conversion to factors cannot be automated and must be done
manually in a separate step.

Function read_sav() can be used to import a .sav file saved by a recent version
of SPSS. As in the previous section, we display below only the first six rows and
seven columns of the data frame, including a column treat containing a labelled
numeric vector and harvest_date with dates encoded as R date values.

my_spss.tbh <- read_sav(file = "extdata/my-data.sav")
my_spss.tbh[1:6, c(1:6, 17)]
## # A tibble: 6 x 7

## block treat mycotreat waterl pot harvest harvest_date
##  <dbl> <db1+1b1> <db1> <db1> <dbl1> <db1> <date>

## 1 0 1 [watered, EM] 1 1 14 1 2015-06-15
## 2 0 1 [watered, EM] 1 1 52 1 2015-06-15
## 3 0 1 [watered, EM] 1 1 111 1 2015-06-15

## # 1 3 more rows

In this case, the dates are correctly decoded.
Next, we import an SPSS’s .sav file saved 20 years ago.
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thiamin.tb <- read_sav(file = "extdata/thiamin.sav")
thiamin.tb

## # A tibble: 24 x 2
## THIAMIN CEREAL

## <db1> <dbT1+1b1>
## 1 5.2 1 [wheat]
## 2 4.5 1 [wheat]
## 3 6 1 [wheat]

## # 1 21 more rows

thiamin.tb <- as_factor(thiamin.tb)
thiamin.tb

## # A tibble: 24 x 2

## THIAMIN CEREAL

## <db1> <fct>
## 1 5.2 wheat
## 2 4.5 wheat
## 3 6 wheat

## # i 21 more rows

10.12 Compare the values returned by different read functions when applied
to the same file on disk. Use names (), str(), and class() as tools in your explor-
ation. If you are brave, also use attributes(), mode(), dim(), dimnames (), nrow(),
and ncol().

10.13 If you use or have in the past used other statistical software or a general-
purpose language like Python, look for some old files and import them into R.

10.11 NetCDF Files

In some fields, including geophysics and meteorology, NetCDF is a very common
format for the exchange of data. It is also used in other contexts in which data are
referenced to a grid of locations, like with data read from Affymetrix microarrays
used to study gene expression. NetCDF files are binary but use a format that allows
the storage of metadata describing each variable together with the data itself in a
well-organised and standardised format, which is ideal for exchange of moderately
large data sets measured on a spatial or spatio-temporal grid.
Officially described as follows:

NetCDF is a set of software libraries [from Unidata] and self-describing,
machine-independent data formats that support the creation, access, and shar-
ing of array-oriented scientific data.

That NetCDF files be selectively read, extracting the data from individual vari-
ables, is important as it allows computations in R with data sets too big to fit in
a computer’s RAM. Selective reading is possible using functions from packages
‘ncdf4’ or ‘RNetCDF’. As a consequence of this flexibility, contrary to other data
file reading operations, reading a NetCDF file is done in multiple steps—i.e., open-
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ing the file, reading metadata describing the variables and spatial grid, and finally
selectively reading the data of interest.

10.11.1 ‘ncdf4’

Package ‘ncdf4’ supports reading of files using NetCDF version 4 or earlier formats.
Functions in ‘ncdf4’ not only allow reading and writing of these files, but also their
modification.

Below, first file pevpr.sfc.mon.ltm.nc, containing meteorological data, is
opened with function nc_open(). The object returned is saved to meteo_data.nc.
This object contains only an index to the file contents, whose structure is displayed
with a call to str(), it plays the role of a file connection.

meteo_data.nc <- nc_open("extdata/pevpr.sfc.mon.Ttm.nc")
str(meteo_data.nc, max.level = 1)

## List of 15

## $ filename : chr "extdata/pevpr.sfc.mon.Ttm.nc"
## $ writable : logi FALSE

## $ id : int 65536

## $ error : logi FALSE

## $ safemode : logi FALSE

## $ format : chr "NC_FORMAT_NETCDF4_CLASSIC"
## $ dis_GMT : logi FALSE

## $ groups :List of 1

## $ fqgn2Rindex:List of 1

## $ ndims : num 4

## $ natts : num 8

## $ dim :List of 4

## $ unlimdimid : num -1

## $ nvars : num 3

## $ var :List of 3

## - attr(*, "class")= chr "ncdf4"

10.14 Increase max.level in the call to str() above and study how the con-
nection object stores information on the dimensions and for each data variable.
You can also print(meteo_data.nc) for a more complete printout once you have
understood the structure of the object.

The dimensions of the data array are stored as metadata, in the file used map-
ping indexes to a grid of latitudes and longitudes and into a time vector as a third
dimension. The dates are returned as character strings. The variables describing
the grid are read one at a time with function ncvar_get().
time.vec <- ncvar_get(meteo_data.nc, "time")
head(time.vec)

## [1] -657073 -657042 -657014 -656983 -656953 -656922

Tongitude <- ncvar_get(meteo_data.nc, "lon")
head(longitude)

## [1] 0.000 1.875 3.750 5.625 7.500 9.375

Tatitude <- ncvar_get(meteo_data.nc, "Tat")
head(Tatitude)

## [1] 88.5420 86.6531 84.7532 82.8508 80.9473 79.0435
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The time vector contains only monthly values as the file contains a long-term
series of monthly averages, expressed as days from 1800-01-01 corresponding to
the first day of each month of year ”1”. We use package ‘lubridate’ for the conver-
sion. To find the indexes for the grid point of interest, it is necessary to study the
vectors longitude and Tlatitude saved above.

Next, the potential evapotranspiration is read for one grid point, and used to
construct a data frame, with some values recycled.

pet.th <-
tibble(time = time.vec,
month = month(ymd("1800-01-01") + days(time)),

Ton = Tongitude[6],
lat = Tatitude[2],
pet = ncvar_get(meteo_data.nc, "pevpr")[6, 2, ]
)
pet.tb
## # A tibble: 12 x 5
#i# time month Ton Tat pet

## <db1[1d]> <db1> <db1> <db1> <dbl1>

## 1  -657073 12 9.38 86.7 4.28
## 2  -657042 1 9.38 86.7 5.72
## 3 -657014 2 9.38 86.7 4.38

## # 1 9 more rows

To read data for several grid points, different approaches are available. How-
ever, the order of nesting of dimensions can make adding the dimensions as
columns error prone. It is much simpler to use package ‘tidync’ described next.

10.11.2 ‘tidync’

Package ‘tidync’ provides functions that make it easy to extract subsets of the data
from an NetCDF file. The initial steps are the same operations as in the examples
for ‘ncdf4’.

Function tidync() is used to open the file and simultaneously activate the first
grid. The returned object is saved as meteo_data.tnc. This object is subsequently
used to access the file, and when printed displays a summary of the file structure
and data encoding.

meteo_data.tnc <- tidync("extdata/pevpr.sfc.mon.Ttm.nc")
meteo_data.tnc

##

## Data Source (1): pevpr.sfc.mon.ltm.nc ...

##

## Grids (5) <dimension family> : <associated variables>

##

## [1] DO,D1,D2 : pevpr, valid_yr_count **ACTIVE GRID** ( 216576 values per variable)
## [2] D3,D2 : climatology_bounds

## [3] DO : lon

## [4] D1 : Tlat

## [5] D2 : time

##

## Dimensions 4 (3 active):

##

## dim name Tength min max start count dmin dmax unlim coord_dim

##  <chr> <chr> <dbl> <dbl> <dbl> <int> <int> <dbl> <dbl> <1gl1> <lgl1>
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## 1 DO Ton 192 0 3.58e2 1 192 0 3.58e2 FALSE TRUE
## 2 D1 Tat 94 -8.85el 8.85el 1 94 -8.85el 8.85el FALSE TRUE
## 3 D2 time 12 -6.57e5 -6.57e5 1 12 -6.57e5 -6.57e5 FALSE TRUE
##

## Inactive dimensions:

##

## dim name length min max unlim coord_dim
##  <chr> <chr> <dbl> <dbl> <db1> <1gl1> <l1gl1>
## 1 D3 nbnds 2 1 2 FALSE FALSE
Function hyper_dims () returns a description of the grid for which observations
are available.
hyper_dims (meteo_data.tnc)
## # A tibble: 3 x 7

## name Tlength start count id unlim coord_dim
##  <chr> <dbl> <int> <int> <int> <lg1> <1gl>
## 1 Ton 192 1 192 0 FALSE TRUE
## 2 lat 94 1 94 1 FALSE TRUE
## 3 time 12 1 12 2 FALSE TRUE

Function hyper_vars() returns a description of the observations or variables
available at each grid point.

hyper_vars(meteo_data.tnc)
## # A tibble: 2 x 6

## id name type ndims natts dim_coord
##  <int> <chr> <chr> <int> <int> <lgl>
# 1 4 pevpr NC_FLOAT 3 14 FALSE
## 2 5 valid_yr_count NC_FLOAT 3 4 FALSE

Function hyper_tibble() extracts a subset of the data into a tibble in long (or
tidy) format. The selection of the grid point is done in the same operation and in
this case using signif() to test for an approximate match to actual longitude and
latitude values. A pipe is used to add the decoded dates, using the pipe operator
(I>) and methods from ‘dplyr’ (see section 8.7.2 on page 262). The decoding of
dates is done using functions from package ‘lubridate’ (see section 8.8 on page
267).

hyper_tibble(meteo_data.tnc,
Ton = signif(lon, 1) == 9,
lat = signif(lat, 2) == 87) |>
mutate(.data = _, month = month(ymd("1800-01-01") + days(time))) |>
select(.data = _, -time)
## # A tibble: 12 x 5
#i# pevpr valid_yr_count Ton Tat month

## <dbT1> <db1> <dbl1> <dbl1> <db1>
## 1 4.28 1.19e-39 9.38 86.7 12
## 2 5.72 1.19e-39 9.38 86.7 1
## 3 4.38 1.29e-39 9.38 86.7 2

## # 1 9 more rows

In this second example, data are extracted for all grid points along latitudes by
omitting the test for 1at from the chunk above. The tibble is assembled automat-
ically and columns for the active dimensions added. The decoding of the months
remains the same as above.
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hyper_tibble(meteo_data.tnc,
Ton = signif(lon, 1) == 9) |>
mutate(.data = _, month = month(ymd("1800-01-01") + days(time))) |>
select(.data = _, —-time)
## # A tibble: 1,128 x 5
## pevpr valid_yr_count Ton Tat month

## <db1> <db1> <dbl1> <dbl1> <dbl1>
## 1 1.02 1.19e-39 9.38 88.5 12
## 2 4.28 1.19e-39 9.38 86.7 12
## 3 3.03 9.18e-40 9.38 84.8 12

## # i 1,125 more rows

10.15 Instead of extracting data for one longitude across latitudes, extract
data across longitudes for one latitude near the Equator.

10.12 Remotely Located Data

Many of the functions described above accept a URL address in place of a file
name. Consequently, files can be read remotely without having to first download
and save a copy in the local file system. This can be useful, especially when file
names are generated within a script. However, one should avoid, especially in the
case of servers open to public access, repeatedly downloading the same file as
this unnecessarily increases network traffic and workload on the remote server.
Because of this, our first example reads a small file from my own web site. See
section 10.6 on page 388 for details on the use of these and other functions for
reading text files.

Togger.df <-
read.csv2(file = "http://r4photobiology.info/learnr/logger_1.txt",
header = FALSE,
col.names = c("time", "temperature"))
sapply(logger.df, class)
##t time temperature
## "character" "numeric"

While functions in package ‘readr’ support the use of URLs, those in packages
‘readx!’ and ‘xIsx’ do not. Consequently, the file has to be first downloaded and
saved locally, and subsequently imported as described in section 10.9.2 on page
401. Function download.file() in the R ‘utils’ package can be used to download
files using URLSs. It supports different modes such as binary or text for the contents,
and write or append for the local file, and different methods such as "internal",
"wget", and "1ibcurl"

For portability, MS-Excel files should be downloaded in binary mode, setting
mode = "wb", which is required under MS-Windows.
download. file("http://r4photobiology.info/Tearnr/my-data.x1sx",

"data/my-data-dwn.x1sx",
mode = "wb")
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Functions from packages ‘foreign’ and ‘haven’, useful for reading files saved by
other statistical software, support URLs. See section 10.10 on page 404 for more
information about importing this kind of data into R. The two examples below read
a file saved by SPSS located in a remote server, using these two packages.

remote_thiamin.df <-
read.spss(file = "http://r4photobiology.info/learnr/thiamin.sav",
to.data.frame = TRUE)
head(remote_thiamin.df)

## THIAMIN CEREAL

## 1 5.2 wheat
## 2 4.5 wheat
## 3 6.0 wheat
## 4 6.1 wheat
## 5 6.7 wheat
## 6 5.8 wheat

remote_my_spss.th <-
read_sav(file = "http://r4photobiology.info/learnr/thiamin.sav")
remote_my_spss.tb
## # A tibble: 24 x 2
##  THIAMIN CEREAL

## <db1> <db1+T1b1>
## 1 5.2 1 [wheat]
## 2 4.5 1 [wheat]
## 3 6 1 [wheat]

## # 1 21 more rows

Next, we download from NOAA'’s server a NetCDF file with long-term means for
potential evapotranspiration, the same file used above in the ‘ncdf4’ example. This
is a moderately large file at 834 KB. In this case, it is not possible to directly open
the connection to the NetCDF file and it has to be downloaded. The if statement
ensures that the file is downloaded only if the local copy is missing (to refresh the
local copy simply delete the existing one). Once downloaded, the file can be opened
as shown in section 10.11 on page 406.

if (!file.exists("extdata/pevpr.sfc.mon.ltm.nc")) {
my.url <- paste("ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/",
"surface_gauss/pevpr.sfc.mon.Ttm.nc",
sep = "")
download. file(my.url,
mode = "wb",
destfile = "extdata/pevpr.sfc.mon.ltm.nc")

}

pet_Ttm.nc <- nc_open("extdata/pevpr.sfc.mon.ltm.nc")

ﬂ For portability, NetCDF files should be downloaded in binary mode, setting
mode = "wb", which is required under MS-Windows.

Some NetCDF file servers support the OPeNDAP protocol. In these servers, it
is possible to open the files remotely and only download a part of the file. Function
open.nc() from package ‘RNetCDF’ transparently supports OPeNDAP URLs.
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10.13 Databases

One of the advantages of using databases is that subsets of cases and variables
can be retrieved, even remotely, making it possible to work in R both locally and
remotely with huge data sets. One should remember that R natively keeps whole
objects in RAM, and consequently, available machine memory limits the size of
data sets with which it is possible to work. Package ‘dbplyr’ provides the tools to
work with data in databases using the same verbs as when using ‘dplyr’ with data
stored in memory (RAM) (see chapter 8). This is an important subject, but extensive
enough to be outside the scope of this book. We provide a few simple examples
to show the very basics but interested readers should consult R for Data Science
(Wickham et al. 2023).

The additional steps compared to using ‘dplyr’ start with the need to establish a
connection to a local or remote database. We will use R package ‘RSQLite’ to create
a local temporary SQLite database. ‘dbplyr’ backends supporting other database
systems are also available. We will use meteorological data from ‘learnrbook’ for
this example.

Tibrary(dplyr)
con <- DBI::dbConnect(RsQLite::sqQLite(), dbname = ":memory:")
copy_to(con, weather_wk_25_2019.tb, "weather",
temporary = FALSE,
indexes = Tist(
c("month_name", "calendar_year", "solar_time"),
"time",
"sun_elevation",
"was_sunny",
"day_of_year",
"month_of_year"
)
)

weather.db <- tbl(con, "weather")
colnames (weather.db)

## [1] "time" "PAR_umo1" "PAR_diff_fr" "global_watt"
## [5] "day_of_year" "month_of_year" "month_name" "calendar_year"
## [9] "solar_time" "sun_elevation" "sun_azimuth" "was_sunny"

## [13] "wind_speed" "wind_direction" "air_temp_C" "air_RH"

## [17] "air_ppP" "air_pressure" "red_umol" "far_red_umol1"

## [21] "red_far_red"
weather.db |>

filter(.data = _, sun_elevation > 5) |>
group_by(.data = _, day_of_year) |>
summarise(.data = _, energy_Wh = sum(global_watt, na.rm = TRUE) * 60 / 3600)

## # Source: sqQL [?? x 2]
## # Database: sqlite 3.45.0 [:memory:]
#i#t day_of_year energy_wh

## <db1> <db1>
## 1 162 7500.
## 2 163 6660 .
## 3 164 3958.
## # i more rows
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Package ‘dbplyr’ translates data pipes that use ‘dplyr’ syntax into SQL queries
to databases, either local or remote. As long as there are no problems with the
backend, the use of a database is almost transparent to the R user.

It is always good to clean up, and in the case of the book, the best way to test
that the examples can be run in a “clean” system.

unlink("./data", recursive = TRUE)
unlink("./extdata", recursive = TRUE)

10.14 Data Acquisition from Physical Devices

Numerous modern data acquisition devices based on microcontrollers, including
internet-of-things (IoT) devices, have servers (or daemons) that can be queried over
a network connection to retrieve either real-time or logged data. Formats based on
XML schemas or the JSON format are commonly used for data.

10.14.1 ‘jsonlite’

The next example retrieves data from USB module from YoctoPuce (http://www.
yoctopuce.com/) using a software hub running locally. The module used in this
example is a YoctoMeteo capable of storing measured data in its own memory.

Before running this example, data recording needs to be anabled in the Yoc-
toPuce module and allow some time for the module to collect some data. In the
call to function fromison(), "cl-Meteo" needs to be replaced by the ID assigned
to the module used. The example uses an instance of Yocto VirtualHub running
locally and listening at port 4444, the default. The same code can be used over the
network by editing the string saved in hub.ur1l.

Function fromison() from package ‘jsonlite’ can be used to retrieve logged data
from one sensor module.

hub.url <- "http://Tocalhost:4444/"
Meteo0l.df <-
fromJsoN (pasteChub.url, "byName/Cl-Meteo/dataLogger.json",
sep = ""), flatten = TRUE)
str(Meteo0l.df, max.level = 2)
## 'data.frame': 3 obs. of 4 variables:
## $ id : chr "humidity" "pressure" "temperature"
## $ unit : chr "g/m3" "mbar" "'cC"
## $ calib : chr "0,"™ "0," "0,"
## $ streams:List of 3

## ..$ :'data.frame': 447 obs. of 5 variables:
## ..$ :'data.frame': 444 obs. of 5 variables:
## ..$ :'data.frame': 447 obs. of 5 variables:

The minimum, mean, and maximum values for each logging interval need to be
split from a single vector. We do this by indexing with a logical vector (recycled).
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The data returned are in long form, including measured values, quantity names,
units, and the date and time when each value was acquired.

MeteoOl.df[["streams"]][[which(Meteo0l.df$id == "temperature")]] |>
as_tibble(x = _) |>
dplyr::transmute(.data = _,
utc.time = as.POSIXct(utc, origin = "1970-01-01", tz = "uTC"),
t_min = unlist(val) [c(TRUE, FALSE, FALSE)],
t_mean = unlist(val) [c(FALSE, TRUE, FALSE)],
t_max = unlist(val) [c(FALSE, FALSE, TRUE)]) -> temperature.df

MeteoOl.df[["streams"]][[which(Meteo0l.df$id == "humidity")]] |>
as_tibble(x = _) |>
dplyr::transmute(.data = _,
utc.time = as.P0OSIXct(utc, origin = "1970-01-01", tz = "uTC"),
hr_min = unlist(val) [c(TRUE, FALSE, FALSE)],
hr_mean = unlist(val) [c(FALSE, TRUE, FALSE)],
hr_max = unlist(val) [c(FALSE, FALSE, TRUE)]) -> humidity.df

full_join(temperature.df, humidity.df)

## Joining with “by = join_by(utc.time)"

## # A tibble: 114 x 7

## utc.time t_min t_mean t_max hr_min hr_mean hr_max
##  <dttm> <db1> <dbl1> <db1l> <dbl> <db1> <dbl1>
## 1 2023-10-15 18:06:00 26.1 26.1 26.3 10.4 10.5 10.6
## 2 2023-10-15 19:00:00 25.8 26.0 26.1 10.5 10.7 10.8
## 3 2023-10-15 20:00:00 25.7 26.0 26.0 10.6 10.8 10.9
## # i 111 more rows

E Most YoctoPuce input modules have a built-in datalogger, and the stored data
can also be downloaded as a csv file through a physical or virtual hub. As shown
above, it is possible to control them through the HTML server in the physical or vir-
tual hubs. Alternatively the R package ‘reticulate’ can be used to control YoctoPuce
modules by means of the Python library giving access to their full APL

10.15 Further Reading

R includes the manual “R Data Import/Export”, a very useful reference.

Since this is the end of the book, I recommend as further reading the writings
of Burns as they are full of insight. Having arrived at the end of Learn R: As a
Language, you should read S Poetry (Burns 1998) and Tao Te Programming (Burns
2012). If you want to never get caught unaware by R’s idiosyncrasies, read also The
R Inferno (Burns 2011).
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aesthetics ('ggplot2’), see grammar of
graphics, aesthetics
AIC, see An Information Criterion
Akaike’s An Information Criterion,
204, 215
algebra of sets, 55
analysis of covariance, see linear
models, analysis of
covariance
analysis of variance, see linear
models, analysis of variance
model formula, 229
ANCOVA, see linear models, analysis
of covariance
annotations ('ggplot2’), see grammar
of graphics, annotations
ANOVA, see linear models, analysis
of variance
‘anytime’, 39, 268, 352
apply functions, 154, 164
arithmetic overflow, 37
type promotion, 37
arrays, 70-77
dimensions, 75
assignment, 26
chaining, 27
leftwise, 27
attributes, 114-118

‘base’, 184

base R, 11

bash, 21, 134

batch job, 17

Bayesian Information Criterion, 204

BIC, see Bayesian Information
Criterion

Bioconductor, 180

Bitbucket, 181
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‘blogdown’, 130

‘bookdown’, 130

Boolean arithmetic, 49

box plots, see plots, box and
whiskers plot

‘broom’, 324

G, 10, 21, 35, 41, 63, 65, 90, 159, 166,
179, 181, 375, 388
C++, 10, 11, 21, 41, 46, 65, 166, 179,
181, 246, 375
calibration curves, 206
categorical variables, see factors
chaining statements with pipes, 134,
253-256
character escape codes, 42
character string delimiters, 41
character strings, 41
number of characters, 42
partial matching and
substitution, 45
position-based operations, 45
splitting of, 48
whitespace trimming, 44
chemical reaction kinetics, 221
classes, 176
S3 class system, 176
classes and modes
character, 41-48
logical, 49-52
numeric, integer, double, 24-39
cluster analysis, 240-241
COBOL, 390
colour
definitions, 355-357
names, 355
comparison of floating point
numbers, 54



420

comparison operators, 52-54
compound code statements, 132
conditional statements, 138
console, 15
control of execution flow, 138
coordinates (ggplot2’), see grammar
of graphics, coordinates
correlation, 195-197
Kendall, 197
non-parametric, 197
parametric, 195
Pearson, 195
Spearman, 197
CRAN, 6, 20, 21,132, 179-184

data
exploration at the R console, 124
loading data sets, 118-121
saving data sets, 118-121
data frame
replacements, 247-252
data frames, 94-114
“filtering rows”, 102
attaching, 111
long vs. wide shape, 112
ordering columns, 107
ordering rows, 107, 109
splitting, 105
subsetting, 102
summarising, 105, 106
data manipulation in the tidyverse,
259-267
data sets
characteristics, 86
origin, 86
their storage, 85-124
data visualisation
annotations, 273
concepts, 272
data labels, 273
‘data.table’, 243, 244, 247
‘datasets’, 118, 155, 156, 184
‘dbplyr’, 259, 412, 413
deleting objects, see removing
objects
devices
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output, see graphic output
devices
dot-pipe operator, 253
double precision numbers
arithmetic, 35-37
‘dplyr’, 245-247, 250, 253, 259-264,
266, 409, 412, 413
‘dtplyr’, 259

Eclipse, 13

Emacs, 400

empirical probability distributions,
see probability distributions,
observed

EPS (€), see machine arithmetic
precision

Excel, 400

exporting data

text files, 394-395, 397-398
extensions to R, 179
‘extrafont’, 308

F-test, 209
facets ('ggplot2’), see grammar of
graphics, facets
factors, 79-84
arrange values, 83
convert to numeric, 82
drop unused levels, 81
labels, 80
levels, 80
merge levels, 81
ordered, 79
reorder levels, 82
reorder values, 83
file connections, 388
file formats
BMP, 379
GPX, 399
HTML, 398
JPEG, 379
JSON, 413
NetCDF, 406
ODS, 403
PDF, 122, 379
plain text, 388
PNG, 122,379
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PS, EPS, 379
R data “deparsed object”, 121
RDA “R data, multiple objects”,
118
RDS “R data, single object”, 120
SVG, 379
TIFFE, 379
xlsx, 401
XML, 398
file names
portable, 385
script portability, 385
file operations, 385-388
file paths
parsing, 386
script portability, 386
files
downloading, 410
floating point numbers
arithmetic, 35-37
floats, see floating point numbers
folders, see file paths
for loop, 146
unrolled, 147
‘foreign’, 118, 383, 404, 405, 411
formatted character strings from
numbers, 62
FORTRAN, 10, 166, 179, 181, 390,
393
functions
arguments, 172
call, 133
defining new, 169, 174
further reading
elegant R code, 414
grammar of graphics, 381
idiosyncracies or R, 414
new grammars of data, 270
object oriented programming in
R, 185
package development, 185
plotting, 381
shell scripts in Unix and Linux,
21
statistics with R, 241
the R language, 168
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using the R language, 84, 124
‘future’, 166

generalised linear models, 217-220
geometries ("ggplot2’), see grammar
of graphics, geometries
‘ggbeeswarm’, 329
‘ggforce’, 329
‘gginnards’, 380
‘ggplot2’, xvi, xvii, 121, 271, 273,
274, 276-278, 280, 287, 288,
292, 294, 295, 300, 303,
306-309, 311, 314-316, 319,
330, 334, 335, 340, 342, 344,
354-357, 359, 362, 364, 365,
368-370, 372, 377, 380, 381
‘ggpmisc’, 323, 324, 334
‘ggpp’, 311, 315, 340, 359, 360
‘ggrepel’, 310, 340
‘ggstance’, 330
‘ggtext’, 372
‘ggtrace’, 380
Git, 181
GitHub, 7, 181
GLM, see generalised linear models
‘gpmisc’, 314
grammar of graphics, 273, 377
aesthetics, 288-294
annotations, 359-361
binned scales, 357-358
cartesian coordinates, 274, 283
colour and fill scales, 355-359
column geometry, 303-304
complete themes, 365-366
continuous scales, 344-351
coordinates, 276
creating a theme, 368-369
data, 274
discrete scales, 353-354
elements, 273-276
facets, 335-339
flipped axes, 330-335
function statistic, 316-317
geometries, 275, 294-315
horizontal geometries, 330
horizontal statistics, 330
identity colour scales, 358-359
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incomplete themes, 367-368
inset-related geometries,
311-315
linewidth scales, 354-355
mapping of data, 274, 288-294
late, 292
operators, 276
orientation, 330
plot construction, 278-286
plot structure, 276-278
plot workings, 276-278
plots as R objects, 286-288
point geometry, 294-299
polar coordinates, 362-364
positions, 275
scales, 275, 341-359
setting default colour and fill
scales, 359
sf geometries, 306
size scales, 354-355
statistics, 275, 315-329
structure of plot objects,
287-288
summary statistic, 317-320
swap axes, 330
text and label geometries,
306-310
repulsive, 310
themes, 276, 364-369
tile geometry, 304-305
time and date scales, 351-353
various line and path geometries,
300-302
graphic output devices, 379
‘grid’, 271, 313, 314, 360, 380
grid graphics coordinate systems,
314
‘gridExtra’, 312
group-wise operations on data,
262-264
grouping
implementation in tidyverse, 263

‘haven’, 404, 405, 411
‘Hmisc’, 319
HTML, 372, 398

General Index

IDE, see integrated development
environment
importing data
.ods files, 403-404
Xlsx files, 401-403
character to factor conversion,
392
databases, 412-413
decimal marker, 392
from SAS, 404
from SPSS, 404
from Stata, 404
from Systat, 404
geographic positioning system,
399
GPX files, 399
jsonlite, 413
NeCDF files, 406-410
other statistical software,
404-406
physical devices, 413-414
R names, 389
remote connections, 410-411
remotely, 410
text encodings, 390
text files, 388-397
using URL, 410
worksheets and workbooks,
399-404
XML and HTML files, 398
inequality and equality tests, 54
integer numbers
arithmetic, 35-37
integer numbers and computers, 35
integrated development
environment, 12
internet-of-things, 413
iteration, 162
for loop, 146
nesting of loops, 153
repeat loop, 152
while loop, 150

Java, 11, 21

joins between data sources, 264-267
filtering, 266
mutating, 264
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‘jsonlite’, 413
‘knitr’, 19, 20, 130

languages
G, 10, 21, 35, 41, 63, 65, 90, 159,
166, 179, 181, 375, 388
C++, 10, 11, 21, 41, 46, 65, 166,
179, 181, 246, 375
COBOL, 390
FORTRAN, 10, 166, 179, 181, 390,
393
HTML, 372, 398
Java, 11, 21
KIgX, 19, 20, 130
Markdown, 7, 19, 20, 130, 372
natural and computer, 24
Pascal, 10, 11, 129
Perl, 46
Python, 10, 13, 406, 414
R markdown, 20, 130
S, 10, 22, 210, 257, 335
S-Plus, 10
XHTML, 398
XML, 398
XTML, 398
KIEX, 19, 20, 130
‘lattice’, 271, 335
‘learnrbook’, xvii, 20, 165, 180-182,
271, 362, 385,412
linear models, 200-213
ad-hoc tests for parameters, 206
analysis of covariance, 213
analysis of variance, 208-212
linear regression, 202-207
polynomial regression, 203
stepwise model selection,
214-217
structure of model fit object, 208
structure of summary object,
205
summary table, 203
linear regression, see linear models,
linear regression
Linux, 11, 14, 18, 21, 123, 134, 386
listing files or directories, 387
lists, 86-94
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append to, 90
convert into vector, 93
deletion and addition of
members, 87-91
flattening, 92
insert into, 90
member extraction, 87-91
member indexing, see lists,
member extraction
nested, 91, 92
structure, 92
literate programming, 130
LM, see linear models
‘Ime4’, 230
local polynomial regression, 223-226
LOESS, see local polynomial
regression
logical operators, 49
logical values and their algebra,
49-52
long-form- and wide-form tabular
data, 256
loops, see also iteration
faster alternatives, 154, 159, 162
nested, 153
loss of numeric precision, 54
‘lubridate’, 39, 245, 267-269, 352,
408, 409

machine arithmetic
precision, 35-37
rounding errors, 35
‘magrittr’, 245, 253-256, 262, 291
MANOVA, see multivariate analysis
of variance
Markdown, 7, 19, 20, 130, 372
math functions, 24
math operators, 24
matrices, 70-78
matrix
dimensions, 75
multiplication, 78
operations with vectors, 77
operators, 77
transpose, 77
‘matrixStats’, 78
MDS, see multidimensional scaling
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merging data from two tibbles,
264-267
methods, 176
S3 class system, 176
Michaelis-Menten equation, 221
‘microbenchmark’, 165
MiKTEX, 181
‘mixtools’, 193
model formulas, 226-231
conversion from character
strings, 231
conversion into character
strings, 231
manipulation, 230
updating, 231
models
contrasts, 210-212
fitting, 199-226
for binomial outcomes data, 217
for counts data, 217
generalised linear, see
generalised linear models
linear, see linear models
nesting of factors, 230
non-linear, see non-linear models
specification, see model
formulas
stepwise selection, 214-217
updating, 213-214
MS-Excel, 390, 397, 399, 401, 402,
410
MS-Windows, 11, 14, 18, 123, 180,
181, 386, 410, 411
‘multcomp’, 212
multidimensional scaling, 238-240
multivariate analysis of variance, 236
multivariate statistics, 236-241

named vectors

mapping with, 109
names and scoping, 173
namespaces, 173
Nano, 400
‘ncdf4’, 406, 407, 411
nested iteration loops, 153
NetCDF, 406-408, 411
netiquette, 6

General Index

network etiquette, 6
‘nlme’, 210, 230
NLS, see non-linear models
non-linear models, 220-223
Normal distribution, 189
Notepad, 400
numbers
double, 34
floating point, 34
integer, 34
whole, 34
numbers and their arithmetic, 24-39
numeric values, 24
numeric, integer and double values,
27

object names, 166
as character strings, 166
object-oriented programming, 176
objects, 176
mode, 59
Octave, 404
operating systems
Linux, 11, 14, 18, 123, 134
MS-Windows, 11, 14, 18, 123,
410, 411
OS X, 11, 14,18
Unix, 11, 14, 18, 134
operators
comparison, 52-54
defining new, 169, 175
set, 55-58
OS X, 11,14, 18, 181
overflow, see arithmetic overflow

packages
‘anytime’, 39, 268, 352
‘base’, 184

‘blogdown’, 130

‘bookdown’, 130

‘broom’, 324

‘data.table’, 243, 244, 247

‘datasets’, 118, 155, 156, 184

‘dbplyr’, 259, 412, 413

‘dplyr’, 245-247, 250, 253,
259-264, 266, 409, 412, 413

‘dtplyr’, 259
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‘extrafont’, 308

‘foreign’, 118, 383, 404, 405, 411

‘future’, 166

‘ggbeeswarm’, 329

‘ggforce’, 329

‘gginnards’, 380

‘ggplot2’, xvi, xvii, 121, 271, 273,
274, 276-278, 280, 287, 288,
292, 294, 295, 300, 303,
306-309, 311, 314-316, 319,
330, 334, 335, 340, 342, 344,
354-357, 359, 362, 364, 365,
368-370, 372,377, 380, 381

‘ggpmisc’, 323, 324, 334

‘ggpp’, 311, 315, 340, 359, 360

‘ggrepel’, 310, 340

‘ggstance’, 330

‘ggtext’, 372

‘ggtrace’, 380

‘gpmisc’, 314

‘grid’, 271, 313, 314, 360, 380

‘gridExtra’, 312

‘haven’, 404, 405, 411

‘Hmisc’, 319

‘jsonlite’, 413

‘knitr’, 19, 20, 130

‘lattice’, 271, 335

‘learnrbook’, xvii, 20, 165,
180-182, 271, 362, 385, 412

‘Ime4’, 230

‘lubridate’, 39, 245, 267-269,
352,408, 409

‘magrittr’, 245, 253-256, 262,
291

‘matrixStats’, 78

‘microbenchmark’, 165

‘mixtools’, 193

‘multcomp’, 212

‘ncdf4’, 406, 407, 411

‘nlme’, 210, 230

‘pak’, 181, 182

‘parallel’, 166

‘patchwork’, 370, 371

‘pkgdown’, 130

‘poorman’, 246, 258, 259

‘quarto’, 130
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‘readODS’, 403

‘readr’, 389, 395-397, 400, 402,
410

‘readx!’, 401, 410

‘remotes’, 181

‘reprex’, 7

‘reshape’, 257

‘reshape?2’, 257

‘reticulate’, 414

‘RNetCDF’, 406, 411

‘RSQLite’, 412

‘scales’, 347-349

‘sf’, 306, 399

‘showtext’, 308

‘stats’, 175, 184, 240

‘stringr’, 260

‘Sweave’, 19, 130

‘tibble’, 31, 32, 100, 101, 245,
247, 248

‘tidync’, 408

‘tidyr’, 245-247, 256-259, 264

‘tidyverse’, xvii, 31, 118,
243-247, 251, 253, 255, 257,
258, 260, 270, 311, 384, 395,

401
‘tools’, 390
using, 180
‘utils’, 390, 396, 397, 410
‘wrapr’, 245, 253-256, 291
‘xIsx’, 402, 410
‘xml2’, 398
‘pak’, 181, 182
‘parallel’, 166
Pascal, 10, 11, 129
‘patchwork’, 370, 371
PCA, see principal components
analysis
Perl, 46
pipe operator, 134, 253
pipes
base R, 134-137
expressions in rhs, 254
tidyverse, 253
wrapr, 253-256
‘pkgdown’, 130
plotmath, 371



plots

aesthetics, 274
axis position, 350
base R graphics, 121
bitmap output, 379
box and whiskers plot, 328-329
bubble plot, 298
caption, 342-344
circular, 362-364
column plot, 303-304
composing, 369-371
consistent styling, 377
coordinated panels, 335
data summaries, 317-320
density plot

1 dimension, 326-327

2 dimensions, 327-328
dot plot, 297-298
error bars, 317
filled-area plot, 301-302
fitted curves, 320-324
fonts, 308
histograms, 324-326
inset graphical objects, 313-314
inset plots, 312-313
inset tables, 311-312
insets, 311-315
insets as annotations, 360-361
labels, 342-344
layers, 275, 377
line plot, 300-301
major axis regression, 334
maps and spatial plots, 306
math expressions, 371-376
maths in, 306-310
means, 317
medians, 317
modular construction, 377-379
output to files, 379
PDF output, 379
pie charts, 364
plots of functions, 316-317
Postscript output, 379
printing, 379
programatic construction,

377-379

General Index

reference lines, 302
rendering, 379
reusing parts of, 377
rug margin, 299-300
saving, 379
saving to file, see plots,
rendering
scales
axis labels, 352
limits, 353
tick breaks, 347
tick labels, 347
transformations, 349
scatter plot, 294-297
secondary axes, 351
segments and arrows, 302
smooth curves, 320-324
statistics
density, 326
density 2d, 327
smooth, 320
step plot, 301
styling, 364-369
subtitle, 342-344
SVG output, 379
tag, 342-344
text in, 306-310
tile plot, 304-305
title, 342-344
trellis-like, 335
violin plot, 329
wind rose, 362-363
with colours, 355-359
polynomial regression, 203
‘poorman’, 246, 258, 259
portability, 308
precision
math operations, 34
principal components analysis,
236-238
probability distributions
density from parameters, 190
observed, 193-194
probabilities from quantiles, 190
pseudo-random draws, 192
quantiles from probabilities, 191
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standard, 189-192
theoretical, see — standard
programmes
bash, 21, 134
Eclipse, 13
Emacs, 400
Excel, 400
Git, 181
Linux, 21, 386
MiKTgX, 181
MS-Excel, 390, 397, 399, 401,
402, 410
MS-Windows, 180, 181, 386
Nano, 400
NetCDF, 406-408, 411
Notepad, 400
Octave, 404
0OS X, 181
Quarto, 20, 130
RGUI, 17, 180
RStudio, 7, 9, 13-21, 39, 40, 49,
114, 123,127-130, 132, 180,
181, 379, 400
RTools, 181
SAS, 10, 210, 404, 405
sh, 134
SPSS, 10, 210, 404, 405, 411
SQLite, 412
Stata, 404, 405
Statistica, 404
Systat, 404, 405
Unix, 21, 386
Visual Studio Code, 13
WEB, 130
pseudo-random numbers, 192
pseudo-random sampling, 194-195
Python, 10, 13, 406, 414

Quarto, 20, 130
‘quarto’, 130

R as a language, 10

R as a program, 10, 11

R markdown, 20, 130

random draws, see probability
distributions,
pseudo-random draws
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random numbers, see
pseudo-random numbers

random sampling, see
pseudo-random sampling

Raspberry Pi, 12, 21

‘readODS’, 403

‘readr’, 389, 395-397, 400, 402, 410

‘readx!’, 401, 410

Real numbers and computers, 35

recycling of arguments, 30, 162

recycling of operands, 30

regular expressions, 46-48

‘remotes’, 181

removing objects, 39

reprex, see reproducible example

‘reprex’, 7

reproducible data analysis, 18-20

reproducible example, 7

‘reshape’, 257

‘reshape?2’, 257

reshaping tibbles, 256-259

‘reticulate’, 414

RGUI, 17, 180

‘RNetCDF’, 406, 411

rOpenScience, 180

row-wise operations on data,
259-262

‘RSQLite’, 412

RStudio, 7, 9, 13-21, 39, 40, 49, 114,
123,127-130, 132, 180, 181,
379, 400

RTools, 181

S, 10, 22, 210, 257, 335
S-Plus, 10
S3 class system, 176
SAS, 10, 210, 404, 405
‘scales’, 347-349
scales ('ggplot2’), see grammar of
graphics, scales
Schwarz’s Bayesian criterion, see
Bayesian Information
Criterion
scoping rules, 173
scripts, 17, 125
debugging, 130
definition, 126
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readability, 129

sourcing, 127

writing, 128
self-starting functions, 221, 322
sequence, 30
sets, 55-58
‘sf’, 306, 399
sh, 134
‘showtext’, 308
simple code statements, 132
smoothing splines, 223-226
special values

NA, 33

NaN, 33
SPSS, 10, 210, 404, 405, 411
SQlLite, 412
StackOverflow, xvii, 7
Stata, 404, 405
Statistica, 404
statistical graphics, 272
statistics (ggplot2’), see grammar of

graphics, statistics

‘stats’, 175, 184, 240
STL, see time series decomposition
‘stringr’, 260
Student’s t-test, see t-test
summaries

statistical, 188-189
‘Sweave’, 19, 130
Systat, 404, 405

t-test, 197-199, 206-207
tests
adjusted P-values, 212
multiple comparisons, 212
post-hoc, 212
Tukey’s HSD, 212
text files
CSV files, 390
fixed width fields, 393
FORTRAN formatted data
transfer, 393
TSV files, 390
with field markers, 390
themes ("ggplot2’), see grammar of
graphics, themes

General Index

tibble
differences with data frames,
247-252
‘tibble’, 31, 32, 100, 101, 245, 247,
248
‘tidync’, 408
‘tidyr’, 245-247, 256-259, 264
‘tidyverse’, xvii, 31, 118, 243-247,
251, 253, 255, 257, 258, 260,
270, 311, 384, 395, 401
time and dates, 267-270
local time, 267
time zones, 267
universal time coordinates, 267
time series, 232-235
decomposition, 233
‘tools’, 390
type conversion, 60-64
type promotion, 37

UNICODE, 308

Unix, 11, 14, 18, 21, 134, 386
UTES, 308

‘utils’, 390, 396, 397, 410

variables, 26
vector
run length encoding, 70
vectorisation, 162
vectorised arithmetic, 30
vectorised ifelse, 144
vectors
indexing, 64-70
introduction, 28-33
member extraction, 64
named elements, 67
sorting, 69
zero length, 33
Visual Studio Code, 13

WEB, 130

Windows, see MS-Windows
working directory, 386-387
‘worksheet’, see data frame
‘wrapr’, 245, 253-256, 291

XHTML, 398
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‘xIsx’, 402, 410 YoctoPuce modules, 413
XML, 398

‘xml2’, 398

XTML, 398 zero length objects, 33
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Alphabetic Index of R Names

* 24,37

+, 24, 30, 39, 158, 276, 370

-, 24, 39, 162

>, 27,135

-Inf, 33,37

.Machine$double.eps, 36

.Machine$double.max, 36

.Machine$double.min, 36

.Machine$double.neg.eps, 36

.Machine$double.xmax, 36

.Machine$integer.max, 36

/, 24,370

:, 30

<, 52

<-, 26, 27,68,105,114, 135,173

<<-,173

<=, 52

= 27,67

==, 52,264

> 52

>=, 52

[ , 1,245, 264

[ 1,29, 64,87, 88, 92,98, 100, 102,
103, 105, 107-109, 114, 148,
162, 195, 205

L[ 11, 88,89,92,95,97,98,102,
103, 114, 205, 208, 245

$, 88, 89, 95, 102, 103, 205

%*%, 78

%+%, 276

%.>%, 253-255

%/ %, 34

%<>%, 253

%>%, 253-256, 262

*T>%, 253

%%, 34

%in%, 56, 57
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&, 50, 53

&&, 50

A, 37

N0, 173

l, 50,53

|>, 134, 135, 253-256, 260, 262, 291
I'l, 50

abs(), 39, 54

acf(), 235

aes(), 277,281, 289, 290, 292, 354,
359

after_scale(), 292

after_stat(), 292, 293, 325

aggregate(), 106, 107, 262

AIC(), 200, 204, 214

all(Q), 50,51

annotate(), 359-361

annotation_custom(), 314, 360

anoval(), 161, 200, 204, 205, 207,
209, 210, 212, 214, 218, 226

anti_join(), 266

any(), 50, 52

aov(), 210, 236

append(), 29, 90

apply (), 154, 157, 164

arrange(), 260

array, 70, 108

array(), 75

as.character(), 61, 82

as.data.frame(), 250

as.formula(), 230, 231

as.integer(), 62

as.logical(), 61

as.matrix(), 71

as.numeric(), 61, 62, 82

as.ts(), 232

as.vector(), 77



432

as_tibble(), 248
assign(), 136, 166, 167,173, 256
attach(), 104, 111, 112, 121
attr(), 115

attr()<-, 115
attributes(), 115, 197, 406

basename(), 386
BIC(), 200, 204
bind_cols(), 250
bind_rows(), 250
biplot(), 237
bold(), 374
bolditalic(), 374
boxplot.stats(), 189
bquote(), 375
break (), 149, 150, 152

c(), 28,67,86,90,116

call, 226

cars, 202

cat(), 42, 43,394
cbind(), 97, 250
ceiling(), 39
character, 41, 45, 58, 62, 72, 232
charmatch(), 57
citation(), 182
class(), 59, 95, 197, 250, 406
coef (), 200, 204, 210
coefficients(), 204
col2rgb(), 356
colMeans (), 159
colnames(), 94, 108, 116
colnames()<-, 108, 116
colors(), 355
colsums (), 159
comment (), 115

comment ()<-, 115
complex, 39
contains(), 261
contr.helmert, 210
contr.helmert(), 212
contr.poly(), 212
contr.sAs(), 212
contr.sum(), 211
contr.treatment, 210
contr.treatment(), 210, 212
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coord_fixed(), 362
coord_fTip(), 330, 333, 362
coord_polar(), 362-364
coord_sf(), 362
coord_trans(), 362
cor(), 195-197
cor.test(), 196, 197
cos(), 25

cummax (), 159
cummin(), 159
cumprod(), 159
cumsum(), 159
cutree(), 241

data(), 118
data.frame, 94, 248, 395
data.frame(), 94-96, 100, 102,
116, 247, 249, 252
Date, 268, 269
dbinom(), 189
dchisq(), 189
decompose(), 233
density, 194
density(), 193,194
detach(), 111,112, 168, 184
df (), 189
dget(), 121
diag(), 78
diff(Q, 159, 162
diffinv(Q), 159
dim(Q), 71, 75, 115, 118, 406
dim(O<-, 115
dimnames (), 116, 406
dimnames ()<-, 116
dirname(), 386
dist, 240
dinorm(), 189
dmultinom(), 189
dmy_hms (), 269
dnorm(), 189
do.call(Q), 160, 161
double, 27, 35-37, 69
double(), 27
download.file(), 410
dpois(), 189
dput(), 121
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dt(), 189
dunif(), 189
dupTicated(), 57

edit(), 114
effects(), 204
ends_with(), 261
environment(), 174
eurodist, 238, 240
excel_sheets(), 401
exists(), 174
exp(Q), 25
expand_Tlimits(), 345, 346
expansion(), 346
expression(), 372-374

facet_grid(), 335, 338
facet_wrap(), 335, 336, 338
factor, 79

factor(), 79-82, 210
factorial(), 159
file.path(), 388
file.remove(), 120
filter(), 260

fitted(), 200, 204
fitted.values(), 204
fix(), 114

for, 146-150, 153, 160, 162, 164
format(), 62, 63, 375
formula, 226, 227
fromJson(), 413
full_join(), 264
function(), 170, 173

gather(), 258
geom_abline(), 302, 355
geom_area(), 301, 355
geom_bar(), 303, 324, 355, 363,
364
geom_bin2d(), 326
geom_boxpTlot(), 328
geom_co1(), 303, 304, 355, 363
geom_curve(), 302, 355
geom_debug (), 380
geom_density(), 326
geom_errorbar(), 299, 320
geom_grob(), 311, 313, 314
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geom_hex (), 326
geom_histogram(), 324, 325
geom_hTline(), 302, 354, 361
geom_Tlabel (), 306-310, 340, 354,
372
geom_Tabel_repel (), 310
geom_11ine(), 275, 281, 294, 300,
301, 330, 354
geom_Tlinerange(), 320
geom_path(), 300, 302
geom_plot(), 311-313
geom_point(), 275, 280, 281, 293,
294, 297, 299, 307, 318, 330,
331, 335, 354, 355
geom_point_s(), 340
geom_pointrange(), 294, 299, 319
355
geom_polygon(), 301
geom_range(), 299
geom_rect(), 305, 313
geom_ribbon(), 301, 355
geom_rug(), 299
geom_segment (), 302, 355
geom_st (), 306
geom_sf_Tlabel (), 306
geom_sf_text(), 306
geom_smooth(), 278, 320, 333
geom_spoke(), 302
geom_step(), 301
geom_table(), 311, 312
geom_text (), 306-311, 340, 354,
372
geom_text_repel (), 310
geom_tile(), 304, 305
geom_violin(), 329
geom_vline(), 302, 355, 361
get(), 167
getAnywhere(), 185
getcall(), 204, 213
getElement(), 137
getwd (), 386
ggplot(), 289, 290, 374
ggplotGrob(), 360
ggtitle(), 343
910,79
glht(), 212
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gIm(), 217, 218
grep(), 46
grepl1(), 46
group_by (), 262, 264
gsub(), 45, 46, 114

hc1(Q), 356
hclust(), 240, 241
help(Q, 16, 17

hsv(), 356
html_structure(), 398
hyper_dims (), 409
hyper_tibble(), 409
hyper_vars(), 409

1(),100-102, 157, 203, 228, 252,
312, 315
identical (), 250
if, 138, 139, 141, 153
if..else, 138, 141
ifelse(), 144, 145
Inf, 33,37
inherits(), 59
inner_join(), 264
InsectSprays, 208, 217
install.packages(), 180, 181
integer, 27, 34, 35, 37,69
inverse.rle(), 159
iris, 236, 257
is.array(), 75
is.character(), 59
is.data.frame(), 94
is.element(), 56, 57
is.empty.model (), 227, 228
is.Tist(), 92
is.logical(), 59
is.matrix(), 71
is.na(), 34, 51
is.numeric(), 27,59
is_tibble(), 248
italic(), 374

Tabel_both(), 337
Tabel_bquote(), 338
Tabel_date(), 353
Tabel_date_short(), 353
Tabel_number(), 349
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Tabel_parsed(), 338

Tabel_time(), 353

Tabels(), 116

Tabs (), 342,372

Tapply (), 105, 154, 155

Teft_join(), 264

Tength(), 28, 62, 71, 227, 228

LETTERS, 64

Tetters, 64

Tevels(), 81, 82,115

Tevels()<-, 115

Tibrary(), 168, 180, 182, 184

Tines(), 123

T1ist, 86,172, 227, 248

Tist(Q), 86, 87

Tist.dirs(), 387

Tist.files(), 387

Tm, 172

Tm(), 118,172, 201, 203, 207, 210,
213, 236, 294, 321

Toad(), 119

loess, 225

Toess (), 225

log(), 25, 154, 155, 228, 350

Tog10(Q), 25, 350

Tog2(), 25

logical, 49, 50, 53, 63, 72, 139, 141

1s(), 40, 119

mad(), 188

manova(), 236
match(), 57
matches (), 261
matrix, 70, 75, 77, 108, 248
matrix(), 71, 72, 116, 196
max (), 159, 188
mean(), 159, 188, 198
median(), 188
methods (), 177,178
mget(), 167
min(), 159, 188
mode (), 188, 406
model.frame(), 204
model.matrix(), 204, 231
month.abb, 64
month.name, 64
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mtcars, 279
mutate(), 259, 260

NA, 33, 34, 63
NA_character_, 63
NA_real_, 63

names (), 87, 115, 116, 261, 406
names ()<-, 115, 116, 261

NaN, 33

nc_open(), 407

nchar(), 42

ncol (), 71, 406
ncvar_get(), 407
next (), 149, 150

nTme, 221

nls, 221

nls(), 221, 322

nottem, 233

npk, 229

nrow(), 71, 406
numeric, 24, 27, 58, 69, 141, 227
numeric(), 32

objects(), 40,119, 120
on.exit(), 167
open.nc(), 411
options(), 250

Orange, 300
order(), 69, 83, 108, 109, 260
ordered(), 79, 210

p.adjust(), 212
packageversion, 182
pairwise.t.test(), 212
parse(), 373,374
paste(), 43, 44, 308, 375
pbinom(), 189
pchisq(), 189
pf(, 189
pi, 25
pivot_Tlonger(), 257, 258
pivot_wider(), 258
pkg_install(), 181, 182
plain(), 374
plnorm(), 189
plot(), 121-123,177, 194, 200,
218, 226, 256
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pmatch(), 57
pmultinom(), 189
pnorm(), 189, 191
points(), 123
poly(), 204
position_dodge(), 339
position_fi11(), 339
position_identity(), 275, 297
position_jitter(), 297, 339
position_nudge(), 340
position_stack(), 275, 303, 304,
339
POSIXct, 39, 268, 269
POSIXI1t, 39, 268
ppois(), 189
prcomp (), 236, 238
predict(), 200, 207
pretty_breaks(), 347
print(), 18,42,62,92,127,172
197, 249, 250, 255
prod(), 159
pt(), 189, 191, 198, 207
punif(), 189
Puromycin, 221, 322

gbinom(), 189
gqchisq(), 189

aqf (), 189
gTnorm(), 189
gmultinom(), 189
gnorm(), 189, 191
gpois(), 189
qtQ), 189
quantile(), 188
qunif(), 189

range(), 188

rbind(), 250
rbinom(), 189
rchisq(), 189

read.csv(), 390-392, 394, 395
read.csv2(), 391, 392, 394
read.fortran(), 393, 396
read. fwf(), 393
read.spss(), 404
read.systat(), 405
read.table(), 249, 392-396
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read.x1sx(), 402
read_csv(), 395, 398
read_delim(), 396
read_excel (), 401
read_file(), 397
read_fods (), 404
read_fwf (), 396
read_html (), 398
read_1lines(), 397
read_ods (), 403
read_sav(), 405
read_table(), 395, 396
read_table2(), 395, 396
read_tsv(), 396
readLines(), 388
readrRDS (), 120
rel(), 367
remove(), 39, 40, 119
rename(), 261
reorder(), 83, 354
rep(), 30, 44
repeat, 146, 150, 152, 162
reshape(), 112,113, 257
resid(), 204
residuals(), 200, 204
return(), 172
rev(), 82

rf(), 189

rgb(), 356
right_join(), 264
rie(), 70, 159
rim(Q), 292, 294
rinorm(), 189

rm(), 40
rmultinom(), 189
rnorm(), 189, 192, 196
round(), 37, 270
rowMeans (), 159
rownames (), 94, 116
rownames ()<-, 116
rowsums (), 159, 164
rpois(), 189

rt(), 189
runif(), 189, 192
runmed(), 159

sampTle(), 195
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sapply(), 105, 154, 155
save(), 118-120
saveRDS (), 120
scale_colour_binned(), 357
scale_colour_brewer(), 357
scale_colour_continuous(),
275, 288, 357
scale_colour_date(), 357
scale_colour_datetime(), 357
scale_colour_discrete(), 289
342, 357
scale_colour_distiller(), 357
scale_colour_gradient(), 357
scale_colour_gradient2(), 357
scale_colour_gradientn(), 357
scale_colour_gray(), 357
scale_colour_hue(), 357
scale_colour_identity(), 342
358
scale_colour_ordinal(), 289
357
scale_colour_viridis_c(), 357
scale_colour_viridis_d(), 357
scale_fill_identity(), 358
scale_fil1_ordinal(), 357
scale_shape_discrete(), 296
scale_size(), 354
scale_size_area(), 354
scale_size_identity(), 292
scale_size_radius(), 354
scale_x_continuous(), 349
scale_x_datetime(), 352
scale_x_discrete(), 353
scale_x_1ogl1l0(), 349
scale_x_reverse(), 347
scale_y_continuous(), 349
scale_y_discrete(), 353
scale_y_log(), 349
scale_y_1ogl10(), 282, 349
scale_y_reverse(), 347
sd(), 159, 188,198
search(), 184
second(), 270
seconds (), 270
select(), 261
SEM(), 174, 175
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semi_join(), 266
seq(), 30, 149
seq_along(), 149
set.seed(), 192
setRepositories(), 182
setwd (), 386
shel1(), 386
showNonASCII(), 390
showNonASCIIfile(), 390
signif(), 38
sin(), 25
sTice(), 261
smooth.spline(), 224
solve(), 78
sort(), 69, 70, 83, 108, 260
source(), 127
spline(), 224
split(), 105, 106
spread(), 258
sprintf(), 62, 63,178,375
sqrt(Q), 25
ssmicmen(), 222, 322
stage(), 292, 293
starts_with(Q), 261
stat(), 292
stat_bin(), 324-326, 362, 363
stat_bin2d(), 326
stat_bin_hex(), 326
stat_boxplot(), 328, 331
stat_count(), 303, 324, 325
stat_density(), 331
stat_density_2d(), 327
stat_fit_residuals(), 293
stat_function(), 316
stat_histogram(), 331
stat_identity(), 278, 295, 315,
320
stat_indentity(), 277
stat_poly_1line(), 323, 334
stat_sf(), 306
stat_sf_coordinates(), 306
stat_smooth(), 275, 278, 320, 321,
323,330
stat_summary(), 275, 317-319,
331
step(), 214, 215, 217
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st10), 233,234

str(), 91-93, 114, 115, 193, 197
205, 208, 406, 407

str_extract(), 260

strftime(), 375

strptime(), 353

strrep(), 44

strsplit(), 48

strtrim(), 42

strwrap(), 42

sub(), 45, 46

subset (), 102-104, 135, 136, 245,
260, 261, 292, 303

substitute(), 376

substr(), 45

substring(), 45

sum(), 30, 159, 164, 175

summarise(), 262, 263

summary (), 105, 156, 158, 188, 200,
202, 205, 207, 210, 215, 234

switch(), 141, 143, 144

system(), 386

system.time(), 165

t(0),77

t.test(), 198

tb1, 247, 248

tb1_df, 248
terms (), 204, 229

text(), 123
theme (), 367, 369
theme_bw(), 365, 366
theme_classic(), 365, 366
theme_dark (), 365
theme_gray (), 365, 366, 368
theme_grey (), 378
theme_1light(), 365
theme_Tinedraw(), 365
theme_minimal (), 365
theme_set (), 366
theme_void(), 365
tibble, 248, 249, 259, 395, 405
tibble(), 247-249, 252, 259
tidync(), 408
tolower (), 42
toupper(), 42, 353
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transform(), 110
transmute(), 259
trimws (), 44
trunc(), 39, 62, 270
ts(), 232
Tukey.test(), 212

ungroup (), 263, 264
unique(), 57
unlink(), 120
unlist(), 92, 93
unname(), 93, 161
unnest(), 258
unsplit(), 106
update(), 213, 214, 217, 231
update.packages(), 180

vapply (), 105, 154-156
var(), 159, 174, 188
vcov (), 204
vector, 28

view(), 114

while, 146, 148, 150-152, 162
with(), 104, 110, 112, 121
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within(), 110, 112, 136
write.csv(), 390, 394
write.csv2(), 392, 394
write.table(), 394
write.x1sx(), 403
write_csv(), 397
write_csv2(), 397
write_delim(), 397
write_excel_csv(), 397
write_file(), 397, 398
write_fods (), 404
write_Tlines(), 397
write_ods (), 404
write_tsv(), 397

xTab(), 342
x1im(), 317, 345, 347
xml_find_al1(), 398
xmT_text(), 398

year(), 270
years (), 270
ylab(), 342
y1im(), 317, 345, 347
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R names and symbols grouped into the categories ‘classes and modes’, ‘constant
and special values’, ‘control of execution’, ‘data objects’, ‘functions and methods’,
‘names and their scope’, and ‘operators’.

classes and modes

array, 70, 108

call, 226

character, 41, 45, 58, 62, 72,
232

complex, 39

data.frame, 94, 248, 395

Date, 268, 269

density, 194

double, 27, 35-37, 69

factor, 79

formula, 226, 227

integer, 27, 34, 35, 37, 69

1ist, 86,172, 227, 248

Tm, 172

Togical, 49, 50, 53, 63, 72, 139,
141

matrix, 70, 75, 77, 108, 248

numeric, 24, 27, 58, 69, 141,
227

POSIXct, 39, 268, 269

POSIXTt, 39, 268

tb1, 247, 248

tb1_df, 248

tibble, 248, 249, 259, 395, 405

vector, 28

constant and special values

-Inf, 33,37

.Machine$double.eps, 36

.Machine$double.max, 36

.Machine$double.min, 36

.Machine$double.neg.eps,
36
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.Machine$double.xmax, 36
.Machine$integer.max, 36
Inf, 33, 37

LETTERS, 64

letters, 64

month.abb, 64
month.name, 64

NA, 33, 34, 63
NA_character_, 63
NA_real_, 63

NaN, 33

pi, 25

control of execution

apply(Q), 154, 157
break (), 149, 150, 152

for, 146-150, 153, 160, 162, 164
if, 138, 139, 141, 153
if..else, 138, 141
ifelse(), 144, 145
lapply(), 105, 154, 155
next(), 149, 150
repeat, 146, 150, 152, 162
return(), 172
sapply(), 105, 154, 155
switch(), 141, 143, 144
vapply(), 105, 154-156
while, 146, 148, 150, 152, 162

data objects

cars, 202
eurodist, 238, 240
InsectSprays, 208, 217
iris, 236, 257

mtcars, 279



nottem, 233

npk, 229

Orange, 300
Puromycin, 221, 322

functions and methods

\NQO, 173

abs (), 39, 54

acf(), 235

aes(), 277, 281, 289, 290, 292,
354, 359

after_scale(), 292

after_stat(), 292, 293, 325

aggregate(), 106, 107, 262

AIC(), 200, 204, 214

all(Q), 50,51

annotate(), 359-361

annotation_custom(), 314,
360

anova(), 161, 200, 204, 205,
207, 209, 210, 212, 214, 218,
226

anti_join(), 266

any(), 50, 52

aov(), 210, 236

append(), 29, 90

apply (), 157, 164

arrange(), 260

array(), 75

as.character(), 61, 82

as.data.frame(), 250

as.formuTla(), 230, 231

as.integer(), 62

as.logical(), 61

as.matrix(), 71

as.numeric(), 61, 62, 82

as.ts(), 232

as.vector(), 77

as_tibble(), 248

assign(), 136, 166, 167, 173,
256

attach(), 104, 121

attr(), 115

attr()<-, 115

attributes(), 115, 197, 406

basename (), 386

BIC(), 200, 204
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bind_cols(), 250
bind_rows (), 250
biplot(), 237

bold(), 374
bolditalic(), 374
boxplot.stats(), 189
bquote(), 375

c(), 28,67, 86,90, 116
cat(), 42, 43, 394
cbind(), 97, 250
ceiling(), 39
charmatch(), 57
citation(), 182
class(), 59, 95, 197, 250, 406
coef(), 200, 204, 210
coefficients(), 204
col2rgb(), 356
colMeans (), 159
colnames(), 94, 108,116
colnames()<-, 108, 116
colors(), 355
colsums(), 159
comment(), 115
comment () <-, 115
contains(), 261
contr.helmert, 210
contr.helmert(), 212
contr.poly(), 212
contr.SAS(), 212
contr.sum(), 211
contr.treatment, 210
contr.treatment(), 210, 212
coord_fixed(), 362
coord_fTip(), 330, 333, 362
coord_polar(), 362-364
coord_sf(), 362
coord_trans(), 362
cor(), 195-197
cor.test(), 196, 197
cos(), 25

cummax (), 159
cummin(), 159
cumprod(), 159
cumsum(), 159
cutree(), 241

data(), 118
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data.frame(), 94-96, 100, 102
116, 247, 249, 252
dbinom(), 189
dchisq(), 189
decompose(), 233
density(), 193, 194
detach(), 168
df (), 189
dget(), 121
diag(), 78
diff(), 159, 162
diffinv(), 159
dim(Q), 71, 75, 115, 118, 406
dim(<-, 115
dimnames (), 116, 406
dimnames () <-, 116
dirname(), 386
dist, 240
dlnorm(), 189
dmuTltinom(), 189
dmy_hms (), 269
dnorm(), 189
do.call(), 160, 161
double(), 27
download.file(), 410
dpois(), 189
dput(), 121
dt(), 189
dunif(), 189
duplicated(), 57
edit(), 114
effects(), 204
ends_with(), 261
environment(), 174
excel_sheets(), 401
exp(), 25
expand_Timits (), 345, 346
expansion(), 346
expression(), 372-374
facet_grid(), 335, 338
facet_wrap(), 335, 336, 338
factor(), 79-82, 210
factorial(), 159
file.path(), 388
file.remove(), 120
filter(), 260

441

fitted(), 200, 204
fitted.values(), 204
fix(), 114
format(), 62, 63, 375
fromJIsoN(), 413
full_join(), 264
function(), 170,173
gather(), 258
geom_abline(), 302, 355
geom_area(), 301, 355
geom_bar(), 303, 324, 355, 363,
364
geom_bin2d(), 326
geom_boxpTlot(), 328
geom_col(), 303, 304, 355, 363
geom_curve(), 302, 355
geom_debug (), 380
geom_density(), 326
geom_errorbar(), 299, 320
geom_grob(), 311, 313, 314
geom_hex (), 326
geom_histogram(), 324, 325
geom_hTline(), 302, 354, 361
geom_Tlabel (), 306-310, 340,
354, 372
geom_label_repel (), 310
geom_1line(), 275, 281, 294,
300, 301, 330, 354
geom_Tlinerange(), 320
geom_path(), 300, 302
geom_plot(), 311-313
geom_point(), 275, 280, 281,
293, 294, 297, 299, 307, 318,
330, 331, 335, 354, 355
geom_point_s(), 340
geom_pointrange(), 294, 299
319, 355
geom_polygon(), 301
geom_range(), 299
geom_rect(), 305, 313
geom_ribbon(), 301, 355
geom_rug(), 299
geom_segment (), 302, 355
geom_sf(), 306
geom_sf_Tlabel(), 306
geom_sf_text(), 306
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geom_smooth(), 278, 320, 333
geom_spoke (), 302
geom_step(), 301
geom_table(), 311, 312
geom_text (), 306-311, 340
354, 372
geom_text_repel (), 310
geom_tile(), 304, 305
geom_violin(), 329
geom_vline(), 302, 355, 361
get(), 167
getAnywhere(), 185
getcall(), 204, 213
getElement(), 137
getwd (), 386
ggplot(), 289, 290, 374
ggplotGrob(), 360
ggtitle(), 343
910,79
glht(Q, 212
glm(), 217,218
grep(Q), 46
grepl(), 46
group_by (), 262, 264
gsub(), 45, 46, 114
hc1(Q), 356
hclust(), 240, 241
help(), 16, 17
hsv(), 356
html_structure(), 398
hyper_dims (), 409
hyper_tibble(), 409
hyper_vars(), 409
I1(),100-102, 157, 203, 228,
252,312, 315
identical (), 250
inherits(), 59
inner_join(), 264
install.packages(), 180,
181
inverse.rle(), 159
is.array(), 75
is.character(), 59
is.data.frame(), 94
is.element(), 56, 57
is.empty.model (), 227, 228
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is.list(), 92
is.logical(), 59
is.matrix(), 71
is.na(), 34,51
is.numeric(), 27,59
is_tibble(), 248
italic(), 374
Tabel_both(), 337
Tabel_bquote(), 338
Tabel_date(), 353
label_date_short(), 353
Tabel_number (), 349
Tabel_parsed(), 338
label_time(), 353
Tabels(), 116
Tabs (), 342, 372
Teft_join(), 264
Tength(), 28, 62, 71, 227, 228
Tevels(), 81, 82, 115
Tevels()<-, 115
Tibrary(), 168, 180, 182, 184
Tines(), 123
Tist(Q), 86, 87
Tist.dirs(), 387
Tist.files(), 387
Tm(), 118,172, 201, 203, 207
210, 213, 236, 294, 321
Toad(), 119
loess, 225
loess (), 225
Tog (), 25, 154, 155, 228, 350
Togl10(Q), 25, 350
Tog2(), 25
1s(), 40, 119
mad(), 188
manova(), 236
match(), 57
matches (), 261
matrix(), 71,72,116, 196
max (), 159, 188
mean(), 159, 188, 198
median(), 188
methods (), 177,178
mget (), 167
min(), 159, 188
mode (), 188, 406
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model.frame(), 204
model.matrix(), 204, 231
mutate(), 259, 260
names (), 87, 115, 116, 261, 406
names ()<-, 115, 116, 261
nc_open(), 407
nchar(), 42
ncol (), 71, 406
ncvar_get(), 407
nlme, 221
nls, 221
nT1s(Q), 221, 322
nrow(), 71, 406
numeric(), 32
objects(), 40,119, 120
on.exit(), 167
open.nc(), 411
options(), 250
order(), 69, 83, 108, 109, 260
ordered(), 79, 210
p.adjust(), 212
packageversion, 182
pairwise.t.test(), 212
parse(), 373,374
paste(), 43, 44, 308, 375
pbinom(), 189
pchisq(), 189
pf(, 189
pivot_longer(), 257, 258
pivot_wider(), 258
pkg_install(), 181, 182
plain(), 374
plnorm(), 189
plot(), 121-123,177, 194, 200,
218, 226, 256
pmatch(), 57
pmultinom(), 189
pnorm(), 189, 191
points(), 123
poly(), 204
position_dodge(), 339
position_fil11(), 339
position_identity(), 275,
297
position_jitter(), 297,339
position_nudge(), 340
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position_stack(), 275, 303,
304, 339
ppois(), 189
prcomp (), 236, 238
predict(), 200, 207
pretty_breaks(), 347
print(), 18,42,62,92, 127,
172,197, 249, 250, 255
prod(), 159
pt(), 189,191, 198, 207
punif(), 189
gbinom(), 189
qchisq(), 189
aqf (), 189
glnorm(), 189
gmultinom(), 189
gnorm(), 189, 191
gpois(), 189
qt(), 189
quantile(), 188
qunif(), 189
range(), 188
rbind(), 250
rbinom(), 189
rchisq(), 189
read.csv(), 390-392, 394, 395
read.csv2(), 391, 392, 394
read. fortran(), 393, 396
read. fwf(), 393
read.spss(), 404
read.systat(), 405
read.table(), 249, 392-396
read.x1sx(), 402
read_csv(), 395, 398
read_delim(), 396
read_excel (), 401
read_file(), 397
read_fods (), 404
read_fwf(), 396
read_html (), 398
read_1lines(), 397
read_ods (), 403
read_sav(), 405
read_table(), 395, 396
read_table2(), 395, 396
read_tsv(), 396



readLines (), 388
readRDS (), 120
rel (), 367
remove (), 39, 40, 119
rename(), 261
reorder(), 83, 354
rep(), 30, 44
reshape(), 112,113, 257
resid(), 204
residuals(), 200, 204
rev(), 82
rf(), 189
rgb(), 356
right_join(), 264
rle(), 70, 159
rimQ), 292, 294
rTnorm(), 189
rm(), 40
rmultinom(), 189
rnorm(), 189, 192, 196
round(), 37, 270
rowMeans (), 159
rownames (), 94, 116
rownames ()<-, 116
rowsums (), 159, 164
rpois(), 189
rt(), 189
runif(), 189, 192
runmed(), 159
sample(), 195
save(), 118-120
saveRDS(), 120
scale_colour_binned(), 357
scale_colour_brewer(), 357
scale_colour_continuous(),
275, 288, 357
scale_colour_date(), 357
scale_colour_datetime(),
357
scale_colour_discrete(),
289, 342, 357
scale_colour_distiller(),
357
scale_colour_gradient(),
357
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scale_colour_gradient2(),
357
scale_colour_gradientn(),
357
scale_colour_gray(), 357
scale_colour_hue(), 357
scale_colour_identity(),
342, 358
scale_colour_ordinal(),
289, 357
scale_colour_viridis_cQ),
357
scale_colour_viridis_d(Q),
357
scale_fill_identity(), 358
scale_fill_ordinal (), 357
scale_shape_discrete(),
296
scale_size(), 354
scale_size_area(), 354
scale_size_identity(), 292
scale_size_radius(), 354
scale_x_continuous (), 349
scale_x_datetime(), 352
scale_x_discrete(), 353
scale_x_1ogl1l0(), 349
scale_x_reverse(), 347
scale_y_continuous(), 349
scale_y_discrete(), 353
scale_y_log(), 349
scale_y_1ogl1l0(), 282, 349
scale_y_reverse(), 347
sd(), 159, 188, 198
search(), 184
second(), 270
seconds (), 270
select(), 261
SEM(), 174, 175
semi_join(), 266
seq(), 30, 149
seg_along(), 149
set.seed(), 192
setRepositories(), 182
setwd (), 386
shel1(), 386
showNonASCII(), 390
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showNonASCIIfile(), 390
signif(), 38
sin(), 25
slice(), 261
smooth.spline(), 224
solve(), 78
sort(), 69, 70, 83, 108, 260
source(), 127
spline(), 224
split(), 105, 106
spread(), 258
sprintf(), 62, 63,178, 375
sqrt(), 25
ssmicmen(), 222, 322
stage(), 292, 293
starts_with(), 261
stat(), 292
stat_bin(), 324-326, 362, 363
stat_bin2d(), 326
stat_bin_hex(), 326
stat_boxplot(), 328, 331
stat_count(), 303, 324, 325
stat_density(), 331
stat_density_2d(), 327
stat_fit_residuals(), 293
stat_function(), 316
stat_histogram(), 331
stat_identity(), 278, 295,
315, 320
stat_indentity(), 277
stat_poly_1line(), 323, 334
stat_sf(), 306
stat_sf_coordinates(), 306
stat_smooth(), 275, 278, 320,
321, 323, 330
stat_summary(), 275,
317-319, 331
step(), 214, 215, 217
st1(), 233, 234
str(),91-93, 114, 115, 193
197, 205, 208, 406, 407
str_extract(), 260
strftime(), 375
strptime(), 353
strrep(), 44
strsplit(), 48
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strtrim(), 42
strwrap(), 42
sub(), 45, 46
subset (), 102-104, 135, 136,
245, 260, 261, 292, 303
substitute(), 376
substr(), 45
substring(), 45
sum(), 30, 159, 164, 175
summarise(), 262, 263
summary (), 105, 156, 158, 188,
200, 202, 205, 207, 210, 215,
234
system(), 386
system.time(), 165
t(0), 77
t.test(), 198
terms (), 204, 229
text(), 123
theme (), 367, 369
theme_bw(), 365, 366
theme_classic(), 365, 366
theme_dark (), 365
theme_gray(), 365, 366, 368
theme_grey(), 378
theme_Tl1ight(), 365
theme_Tlinedraw(), 365
theme_minimal (), 365
theme_set (), 366
theme_void(), 365
tibble(), 247-249, 252, 259
tidync(), 408
tolower (), 42
toupper(), 42, 353
transmute(), 259
trimws (), 44
trunc(), 39, 62, 270
ts(), 232
Tukey.test(), 212
ungroup (), 263, 264
unique(), 57
unlink(), 120
unlist(), 92, 93
unname (), 93, 161
unnest(), 258
unsplit(), 106
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update(), 213, 214, 217, 231

update.packages(), 180
var(), 159, 174, 188
vcov (), 204

view(), 114

whiTe, 151
with(Q), 104, 121
within(), 136
write.csv(), 390, 394
write.csv2(), 392, 394
write.table(), 394
write.xTsx(), 403
write_csv(), 397
write_csv2(), 397
write_delim(), 397
write_excel_csv(), 397
write_file(), 397, 398
write_fods (), 404
write_Tlines(), 397
write_ods (), 404
write_tsv(), 397
x1ab(), 342
xT1im(), 317, 345, 347
xml_find_al1(), 398
xml_text(), 398
year(), 270
years(), 270

ylab(), 342
y1im(), 317, 345, 347

names and their scope
attach(), 111,112
detach(), 111,112,184
exists(), 174
transform(), 110
with(), 110,112
within(), 110, 112
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operators

*, 24, 37

+, 24, 30, 39, 158, 276, 370

-, 24, 39, 162

>, 27,135

/, 24,370

;, 30

<, 52

<-, 26, 27,68,105,114, 135,173

<<—-, 173

<=, 52

=, 27,67

==, 52,264

> 52

>=,52

[ , 1,245,264

[ 1,29,64,87, 88, 92,98, 100,
102,103, 105, 107-109, 114,
148, 162, 195, 205

L[ 11, 88,89,92,95,97, 98,
102, 103, 114, 205, 208, 245

$, 88, 89, 95, 102, 103, 205

%%%, 78

%+%, 276

%.>%, 253-255

%/%, 34

%<>%, 253

%>%, 253-256, 262

BT>%, 253

%%, 34

%in%, 56, 57

&, 50, 53

&&, 50

A, 37

|, 50,53

|>, 134, 135, 253-256, 260, 262
291

| 1,50



Frequently Asked Questions

Frequently asked questions and their answers appear in the body of the book pre-

ceded by the icon m and highlighted by a marginal bar of the same colour as the
icon.

Are there any resources to support the Learn R: As a Language book?, 21

How to access the last value in a vector?, 65

How to add a new column to a data frame (to the front and end)?, 97
How to change the repository used to install packages?, 182

How to convert a factor into a vector with matching values?, 81

How to create a single character string from multiple shorter strings?, 43
How to create a vector of zeros?, 30

How to create an empty data frame?, 96

How to create an empty list?, 87

How to create an empty vector?, 29

How to drop unused levels in a factor?, 81

How to find the currently installed version of a package?, 182

How to find the length of a character string?, 42

How to get access to RStudio as a cloud service?, 21

How to install or update a package from CRAN?, 180

How to install or update a package from GitHub?, 181

How to install the RStudio IDE in my computer?, 21

How to install the R program in my computer?, 21

How to make a list of data frames?, 96

How to order columns or rows in a data frame?, 108

How to sample random rows from a data frame?, 195

How to summarise numeric variables from a data frame by group?, 106
How to summarise one variable from a data frame by group?, 106

How to test if a vector contains no values other than Na (or NaN) values?, 51
How to test if a vector contains one or more NA (or NaN) values?, 52
How to trim leading and/or trailing whitespace in character strings?, 44
How to use an installed package?, 182

How to wrap long character strings?, 42
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