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Preface

“A picture is worth a thousand words,” says the proverb. Sometimes,
a picture is worth a lot of numbers, too! Complex relationships are
often more easily grasped by looking at a picture or a graph than
they might be if one tried to absorb the nuances in a verbal descrip-
tion or discern the relationships in columns of numbers. This book
is about using graphical methods to understand complex data by
highlighting important relationships and trends, reducing the data
to simpler forms, and making it possible to take in a lot of numbers
at a glance.

Who Is This Book For?

Just about anyone who needs to visualize and analyze data will find
something useful here. My primary aim, however, is to make graphi-
cal data analysis accessible to a wide range of people—especially
those who do not have much (or any) previous experience with R
but who need or want to create various types of graphs to help them
understand data important to them. This will likely include people
working in business, media, graphic arts, social sciences, and health
sciences who have real needs for data analysis but might not have
backgrounds in advanced mathematics and computer program-
ming. Although this book is designed for self-study, it might also
find a place as a supplemental text for courses in elementary and
intermediate statistics or research methods.

The vehicle for this book is R, but this is not a comprehensive
course on R. Many computer classes and computer books attempt to
show you every possible thing one can do with a language or tool.
For many of us who have attempted to learn this way, it gets to be
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quite confusing and boring. This book will focus on understanding
the elements of graphics for data analysis and how to use R to pro-
duce the kinds of graphs discussed here; it will show you how to use
some of R’s built-in resources for finding help, and leave a lot of the
other stuff for you to pursue elsewhere. You should have access to a
computer and feel comfortable using it for some task(s), such as
sending email, browsing the Internet, or perhaps using applications
such as word processor or spreadsheet. Familiarity with basic statis-
tics will be helpful for some of the topics covered here, but it is not
necessary for most of them.

Why R?

It is possible to make useful graphs of small datasets by hand. It is
much more efficient, however, to take advantage of computer tech-
nology to produce accurate and appealing visual data analyses. For
large datasets, hand work is effectively impossible. Computer soft-
ware, conversely, makes producing complex graphs of even very
large datasets practical.

This technology is now readily available through open source soft-
ware to virtually anyone who has access to a computer. “Open
source” refers to programs for which the source code is made avail-
able to all—to examine, to use, or to make one’s own modifications
or additions.

Open source software products are offered as free downloads to
anyone who wants them. Perhaps you suspect that stuff given away
for free cannot be of high quality. Let me assure you that some of
this free software conforms to the highest professional standards.

The particular software chosen for this book, R, is a programming
language and collection of statistical, mathematical, and graphing
programs used by literally millions of people around the world,
including many leading professionals in science, business, and
media. You have likely seen graphics produced by R on websites, in
major newspapers, and in other publications. You will be able to
produce this kind of professional data visualization, too, because R
works on computers running Windows, Macintosh, or Linux oper-
ating systems. This covers just about all the desktop and laptop
computers out there today!
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How to Use This Book

The way to get the most out of this book is to make a lot of graphs
yourself. To this end, read the book while seated in front of your
computer and reproduce all of the commands given here. Further,
many sections have exercises that challenge you to go a step beyond
the illustrations in the text, either by refining the example com-
mands or by making another graph of a different dataset. It would
be best to do this before going on to the next topic.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width
Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data-
bases, data types, environment variables, statements, and key-
words.

Constant width bold
Shows commands or other text that should be typed literally by
the user.

Constant width italic
Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a general note.

Using Code Examples

This book is here to help you get your job done. In general, if exam-
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless youre reproducing a significant portion of the code. For
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example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O'Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your products documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu-
ally includes the title, author, publisher, and ISBN. For example:
“Graphing Data with R by John Jay Hilfiger (O’Reilly). Copyright
2016 John Jay Hilfiger, 978-1-491-92261-3”

If you feel your use of code examples falls outside fair use or the per-
mission given above, feel free to contact us at permis-
sions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital

1 D library that delivers expert content in both
book and video form from the world’s lead-
ing authors in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif-
ication training.

Safari Books Online offers a range of plans and pricing for enter-
prise, government, education, and individuals.

Members have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from
publishers like O'Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress,
Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and hundreds more. For more information about Safari
Books Online, please visit us online.
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How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
www.oreilly.com/catalog/0636920038382.do.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART |
Getting Started with R

In this section, we will learn some of the basic commands in the R
language. We will also learn about data types and how to prepare
data for use in R, as well as how to import data created by other soft-
ware into a form in which you can use R to analyze it. This will be
followed by a discussion of some special properties of R graphs,
such as how to save them for use in other programs and the differ-
ences between graphs used for data analysis and graphic presenta-
tion. Finally, we will look briefly at several graphics systems available
to R users.






CHAPTER1
R Basics

Downloading the Software

The first thing you will need to do is download the free R software
and install it on your computer. Start your computer, open your web
browser, and navigate to the R Project for Statistical Computing at
http://www.r-project.org. Click “download R” and then choose one of
the mirror sites close to you. (The R software is stored on many
computers around the world, not just one. Because they all contain
the same files, and they all look the same, they are called “mirror”
sites. You can choose any one of those computers.) Click the site
address and a page will open from which you can select the version
of R that will run on your computer’s operating system. If your com-
puter can run the latest version of R—3.0 or higher—that is best.
However, if your computer is several years old and cannot run the
most up-to-date version, get the latest one that your computer can
run. There might be a few small differences from the examples in
this book, but most things should work.

Follow the instructions and you should have R installed in a short
time. This is base R, but there are thousands (this is not an exaggera-
tion) of add-on “packages” that you can download for free to expand
the functionality of your R installation. Depending on your particu-
lar needs, you might not add any of these, but you might be delight-
fully surprised to discover that there are capabilities you could not
have imagined and now absolutely must have.



http://www.r-project.org/

Try Some Simple Tasks

If you are using Windows or OS X, you can click the “R” icon on
your desktop to start R, or, on Linux or OS X, you can start by typ-
ing R as a command in a terminal window. This will open the con-
sole. This is a window in which you type commands and see the
results of many of those commands, although commands to create
graphs will, in most cases, open a new window for the resulting
graph. R displays a prompt, the greater-than symbol (>), when it is
ready to accept a command from you. The simplest use of R is as a
calculator. So, after the prompt, type a mathematical expression to
which you want an answer:

> 12/4

[1] 3
Here, we asked for “12 divided by 4" R responded with “3,” and then
displayed another prompt, showing that it is ready for the next
problem. The [1] before the answer is an index. In this case, it just
shows that the answer begins with the first number in a vector.
There is only one number in this example, but sometimes there will
be multiple numbers, so it is helpful to know where the set of num-
bers begins. If you do not understand the index, do not worry about
it for now; it will become clearer after seeing more examples. The
division sign (/) is called an operator. Table 1-1 presents the symbols
for standard arithmetic operators.

Table I1-1. R arithmetic operators

+ Addition 3+4=7or3+4i.e., with no spaces)

- Subtraction 5-2=3

* Multiplication 100*2.5 = 250

/ Division 20/5=4

~or**  Exponent 3A2=90r3**2=9

%% Remainder of division 5 %% 2 = 1(5/2 = 2 with remainder of 1)

%/ % Divide and round down 5 %/%2 = 2 (5/2 = 2.5, round down, = 2)

You can use parentheses as in ordinary arithmetic, to show the order
in which operations are performed:
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> (4/2)+1
[1] 3

> 4/(2+1)
[1] 1.333333

Try another problem:

> sqrt(57)
[1] 7.549834

This time, arithmetic was done with a function; in this case, sqrt().
Table 1-2 lists somecommonly used arithmetic functions.

Table 1-2. Some commonly used R mathematical functions

Function Operation

cos() Cosine

sin() Sine

tan() Tangent

sqrt() Square root

log() Natural logarithm

exp() Exponential, inverse of natural logarithm
sum() Sum (i.e., total)

mean() Mean (i.e., average)

median() Median (i.e., the middle value)

min() Minimum

max() Maximum

var() Variance

sd() Standard deviation

The functions take arguments. An argument is a sort of modifier
that you use with a function to make more specific requests of R. So,
rather than simply requesting a sum, you might request the sum of
particular numbers; or rather than simply drawing a line on a graph,
you might use an argument to specify the color of the line or the
width. The argument, or arguments, must be in parentheses after
the function name. If you need help in using a function—or any R
command—you can ask for assistance:

> help(sum)
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R will open a new window with information about the specified
function and its arguments. Here is a shortcut to get exactly the
same response:

> ?sum

Be aware that R is case sensitive, so “help” and “Help” are not equiv-
alent! Spaces, however, are not relevant, so the preceding command
could just as well be the following:

> ? sum

Sometimes, as in the sqrt() example, there is only one argument.
Other times, a function operates on a group of numbers, called a
vector, as shown here:

> sum(3,2,1,4)

[1] 10
In this case, the sum() function found the total of the numbers 3, 2,
1, and 4. You cannot always type all of the vectors into a function
statement like in the preceding example. Usually you will need to
create the vector first. Try this:

> x1 <- c(1,2,3,4)

After you enter this command, nothing happens! Actually, nothing
happens that you can see. Any time the special operator made of the
two symbols, < and - appears, the name to the left of this operator is
given the value of the expression to the right of the operator. (Newer
versions of R allow the use of one symbol, =, to accomplish the same
thing. After Chapter 1, we will use the simpler form as well.) In this
case, a new vector was created, which the user called x1. R is an
object-oriented language, and the vector x1 is an object in your work-
space.

What Is an “Object?”

Think of an object as a box filled with items that are related to one
another. These items could be simple numbers, or names, or the
results of a statistical analysis, or some combination of these or
other items. Objects help you to keep things organized, putting
things related to one another in the same box and unrelated things
in a different box; they also inform R what kinds of things are in
them so that R can take appropriate actions on items in a particular
object. A vector is one kind of object that contains a bunch of
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things all of the same type—perhaps all numbers or all alphanu-
meric values. An object can even contain other objects. After all,
you could put a box inside a bigger one. So, you could put a vector,
or several vectors, into a data frame, which is another kind of
object. You can see what objects are in your current workspace by
typing the command 1s().

« »

Creating a new vector requires typing the letter “c” in front of the
parenthesis preceding the numbers in the vector. See what happens
when you type the following:

> x1

The set of numbers 1, 2, 3, 4 has been saved with a name of x1. Typ-
ing the name of the vector instructs R to print the values of x1. You
can ask R to do various kinds of operations on that vector at any
time. For example, the command:

> mean(x1)

returns, as evidenced by printing to the screen, the mean, or average,
of the numbers in the vector x1. Try using some of the other opera-
tors in Table 1-2 to see some other things R can do.

Create another object, this time a single number:
> pl <- 3.14

At any time, you can get a list of all the objects presently in your
workspace by using the following command:

> 1s()
And, you can use any or all of the objects in a new computation:
> newvar <- pi*x1

This creates yet another object named newvar.

User Interface

The examples you have seen so far are all command-line instructions.
In other words, you directed R what to do by typing command
words. This is not the only way to interface with R. The basic instal-
lation of R has some graphical user interface (GUI, pronounced
“GOO0-ee”) capabilities, too. The GUI refers to the point-and-click
interface that you have probably come to appreciate with other
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applications you use. The problem is that each of the types of instal-
lation—Windows, OS X, and Linux—has somewhat different GUI
capabilities. OS X is a little “GUI-er” than the others, and you may
quickly decide that you prefer to issue a lot of commands this way.
Whichever operating system you are using has a menu at the top of
the console window. Before you enter important data, experiment a
little to see what point-and-click commands you can use.

This book uses the command-line interface because it is the same for
all three versions of R—Windows, OS X, and Linux—so only one
explanation is necessary, and you can easily move from one com-
puter to another. Listing code—that is, a set of command lines—is
far easier and terser than trying to explain every menu choice and
mouse click. Further, learning R this way helps you to understand
the logic of the software a little better. Finally, the command lan-
guage is more precise than point-and-click direction and affords the
user greater control and power.

Installing a Package: A GUI Interface

No matter which operating system you are using, you can down-
load a free “frontend” program that will provide a GUI for you.
There are several available. After you have learned a little more
about R, and appreciate its considerable usefulness, you might be
ready to try one of these GUI interfaces. For example, earlier I men-
tioned that a large number of packages are available that you can
add to R; one of them is a well-designed GUI called “R
Commander” If you are connected to the Internet, try the following
command:

> install.packages("Rcmdr", dependencies=TRUE)

R will download this package and any other packages that are neces-
sary to make R Commander work. The packages will be perma-
nently saved on your computer, so you will not need to install them
again. Every time you open R, if you want to use R Commander, you
will need to load the package this way:

> library(Rcmdr)

We are all different. For some of us, the command language is great.
Others, who dislike Rs command-line interface, might find R
Commander just the thing to make R their favorite computer tool.
You can produce many of the graphs in this book by using R
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Commander, but you can’t produce all of them. If you want to try R
Commander, you can find additional information in Appendix C.

To retrieve a complete list of the packages available, use this com-
mand:

> available.packages()

You can learn a lot more about these packages, by topic, from
CRAN Task Views at http://cran.r-project.org/web/views/.

You can see a list of all packages, by name, by going to http://cran.r-
project.org/web/packages/available_packages_by_name.html.

To get help on the package you just downloaded, type the following:

> library(help=Rcmdr)

Error Messages

If you make a mistake when typing a command, instead of the
expected result you will see an error message, which might or might
not help! Appendix G has some guidance on dealing with the most
likely types of errors.

Data Structures

You can put data into objects that are organized or “structured” in
various ways. We have already worked with one type of structure,
the vector. You can think of a vector as one-dimensional—a row of
elements or a column of elements. A vector can contain any number
of elements, from one to as high a number as your computer’s mem-
ory can hold. The elements in a vector can be of type numeric; char-
acter, with alphabetic, numeric, and special characters; or logical,
containing TRUE or FALSE values. All of the elements of a vector
must be of the same type. Here are some examples of vector cre-
ation:

> x <- c(14,6.7,5.1,-8) #numeric
> name <- c("Lou","Mary","Rhoda","Ted") #character/quotes
#needed

> test <- c(TRUE,TRUE,TRUE,FALSE,TRUE) #logical/caps needed
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Anything that appears after the octothorpe (#)
character is a comment. This is information or
notes intended for us to read, but it will be
ignored by R. (Being a musician, I prefer sharp
for this symbol.) It is a good idea to get in the
habit of putting comments into code to remind
you of why you did a particular thing and help
you to fix problems or expand upon a good idea
when you come back to your program later. It is
also a good idea to read the comments in the R
code examples throughout the book.

The data frame is the main kind of structure with which we will
work. It is a two-dimensional object, with rows and columns. You
can think of it as a box with column vectors in it, or as a rectangular
dataset of rows and columns. For better understanding, see the next
section on sample datasets and the exercise on reading CO, emis-
sions data into R. A data frame can include column vectors of all the
same type or any combination of types.

R has other structures, such as matrices, arrays, and lists, which will
not be discussed here.

You can use the str() function to find out what structure any given
object has:

> str(x)
num [1:4] 14 6.7 5.1 -8

> str(name)
chr [1:4] "Lou" "Mary" "Rhoda" "Ted"

> str(test)
logil [1:5] TRUE TRUE TRUE FALSE TRUE

Sample Datasets

The base R package includes some sample datasets that will be help-
ful to illustrate the graphical tools we will learn about. To see what
datasets are available on your computer, type this command:

> data()

Ensure that the empty parentheses follow the command; otherwise,
you will not get the expected result. Many more datasets are avail-
able. Nearly all additional packages contain sample datasets. To see a
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description of a particular dataset that has come with base R or that
you have downloaded, just use the help command. For instance, to
get some information about the airquality dataset, such as brief
description, its source, references, and so on, type:

> ?airquality

Look at the first six observations in the dataset by using the follow-
ing:

> head(airquality)

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

This dataset is a data frame. There are 153 rows of data, each row
representing air quality measurements (e.g., Ozone, Solar.R, and
Wind) taken on one day. The head() command by default prints out
the names of the variables followed by the first six rows of data, so
that we can see what the data looks like. Had we wanted to see a dif-
ferent number of rows—for example, 25—we could have typed the
following:

>head(airquality,25)

Had we wanted to see the last four rows of the dataset, we could
have typed this command:

> tail(airquality,4)

Each row has a row number and the values of six variables; that is,
six measurements taken on that day. The first row, or first day, has
the values 1, 41, 190, 7.4, 67, 5, 1. The values of the first variable,
Ozone, for the first six days are 41, 36, 12, 18, NA, 28. This is an
example of a rectangular dataset or flat file. Most statistical analysis
programs require data to be in this format.

Notice that among the numbers in the dataset, you can see the “NA”
entries. This is the standard R notation for “not available” or “miss-
ing” You can handle these values in various ways. One way is to
delete the rows with one or more missing values and do the calcula-
tion with all the other rows. Another way is to refuse to do the cal-
culation and return an error message. Some procedures offer the
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user a means to specify which method to use. It is also possible to
impute, or estimate, a value for a missing value and use the estimate
in a computation. Treatment of missing values is a complex and
controversial subject and not to be taken lightly. Kabacoff (2011) has
a good introductory chapter on handling missing values in R.

There are two ways to access the data. The first method is to use the
attach() command, issue some commands with variable names,
and then issue the detach() command, as in the following example:

> attach(airquality)

> table (Temp) # get counts of Temp values

> mean (Temp) # find the average Temp

> plot(Wind,Temp) # make a scatter plot of Wind and Temp
> detach(airquality)

The advantage of this method is that, if you are going to do several
steps, it is not necessary to type the dataset name over and over
again. The second method is to specify whatever analysis you want
by using a combination of the dataset name and variable name, sep-
arated by a dollar sign ($). For example, if we wanted to do just this:

> attach(airquality)
> plot(Wind,Temp)
> detach(airquality)

We could use the equivalent code:
> plot(airqualitySWind,airquality$Temp)

The advantage of this method is that if you are calling upon several
datasets in quick succession, it is not necessary to use many attach
and detach statements.

The Working Directory

When using R, you will often want to read data from a file into R, or
write data from R to a file. For instance, you might have some data
that you created using a spreadsheet, a statistical package such as
SAS or SPSS, or a text editor, and you want to analyze that data
using R. Alternatively, you will often create an R dataset that you
want to save and use again. Those files must be stored somewhere in
your computer’s file structure. With each read or write operation, it
is possible to specify a (frequently long) path to the precise file con-
taining the data you want to read or the place where you will write
the data. This can be cumbersome, so R has a working directory, or
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default location for files. In other words, if you do not instruct R
where to find a particular file, it will just assume that you mean it is
in the working directory. Likewise, if you do not specify where to
save something, R will automatically write it in the working direc-
tory. You can find your current working directory with this com-
mand:

> getwd()

Suppose that you got the response that follows (your actual result
will be quite different, of course!):

[1] "/Users/yourname/Desktop/"

The last folder in the chain (i.e., the last name on the righthand side)
is the place where R looks for files and writes files unless you direct
it to look elsewhere. You can change the working directory by using
the setwd() command. You might want to create a new folder
specifically for the use of R, or even specifically for your exercises
with this book. Call it something that clearly suggests its purpose,
such as “R folder” or “R graphical data” Assuming you have created
a folder called “R things” within the folder “Desktop,” you can then
issue the following command:

> setwd("/Users/yourname/Desktop/R things")

From this point on, R will consider the folder “R things” to be your
working directory, until the next time you give a setwd() command
or shut down R by typing q(), for “quit” If you do not want to have
to set the working directory every time you start R, see the section
“Sourcing a Script” on page 22 to learn how to do this.

Putting Datainto R

You now know how to use the sample datasets that come with vari-
ous R packages. This is a tremendous resource for learning to use R,
but you are learning R because you want to do graphical analysis of
your own data. The method you choose to put your data into R will
depend on several factors:

» How large your dataset is

« Whether the data already exists as a data file in any one of vari-
ous forms
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« How comfortable you are with using tools outside of R to create
afile

o How much time you have to devote to data entry

 Your threshold for pain ;)

Beginner Alert!

The next three sections show various ways to enter data. If you are a
beginner and find these sections too demanding, you might want to
read the section “Typing into a Command Line” (coming up next)
and then try an easy data entry problem, such as Exercise 1-4, at the
end of the chapter. You can return to the sections “Using the Data
Editor” on page 14 and “Reading from an External File” on page 16
later. In fact, after doing Exercise 1-4, you could actually go directly
to Chapter 3 and then read from the section “Using the Data Edi-
tor” through Chapter 2 later, when you need the information there.

If you are not especially interested in data entry because you expect
to use datasets that have already been created as spreadsheets, statis-
tical package datasets, ASCII files, or other types of data files, you
should skim the remainder of this section and consult Appendix E
for the data file type of interest.

Typing into a Command Line

The most direct way to enter data into R is to type, from a command
line, a statement creating a vector, as you have already done. If your
need is to analyze one or a few fairly short vectors, that is probably
the easiest thing to do.

Exercise 1-1.

Backblaze, a data backup company, runs about 25,000 disk drives
and reports on survival rates (in percent) of hard drives. It showed
the following annual survival rates for its drives (read from a graph;
source: http://bit.ly/1IKVU57t):

year rate

1 94 # (i.e., after one year, 94% of drives still work)
2 92

3 90

4 80
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Create two vectors by using the following commands:

> year <- c(1,2,3,4)

> rate <- c(94,92,90,80)
Be sure that you enter the numbers in the proper order; for example,
if 1 is first in the year vector, 94 must be first in the rate vector, and
so on. You can examine the relationship of these two vectors by
using this command:

> plot(year,rate)

Most graphic commands open a new window. If you have several
open applications, you might miss it and be forced to look for it.

The plot statement in the previous code snippet called the plot()
function and instructed it to do an analysis on the two arguments,
year and rate. The graph we just made is a simple one, but it is pos-
sible to make very elaborate graphs with R. The plot on the right
side of Figure 1-1 shows a few ways in which you could customize
the basic plot. We will examine many such options throughout this
book. You can enter the ?plot command to see a long list of avail-
able options.
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Disk drive survival over time
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Figure 1-1. The plot on the left side, disk drive survival rate versus
years in use, was created by the simple command plot(year,rate). The
plot on the right is customized and required many choices. How many
differences do you see?

You could combine the two vectors, year and rate, into a new data
frame, mydata, as shown here:

> mydata <- data.frame(year, rate)

Using the Data Editor

If your data is just a little more complex or larger, you could use the
simple data editor from the R console. Even if you do not enter your
data this way, it is a good thing to know about the editor because
someday (or maybe lots of days) you might need to fix an occasional
problem data point in an object in your R workspace. I suspect that
for most people it will be an unnecessary effort to try to use the edi-
tor for data entry. Read this section to learn some terms and to see
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how to save a file. You will probably prefer to use your favorite
spreadsheet program for data entry, but you might need to use the
editor if you do not have a spreadsheet program. See the section
“Reading from an External File” on page 16 to learn how to read
your spreadsheet data into R.

Exercise 1-2

The data presented in Table 1-3 (from the US Energy Information
Administration) concerns worldwide carbon dioxide emissions over
a recent eight-year period. You will enter it into R by using the built-
in data editor, but let us see what is in this dataset first.

Table 1-3. Per capita carbon dioxide emissions from energy use (metric
tons of carbon dioxide per person), by region of the world

Year North Central/South Europe Eurasia Middle East Africa Asia/Oceania
America America
2004 16.2 24 79 85 7.1 1.1 2.7
2005 16.2 25 7.9 8.5 7.6 1229
2006 15.9 25 7.9 8.7 7.7 1.1 3.1
2007 159 2.6 7.8 8.6 7.6 1.1 32
2008 15.4 2.6 7.7 8.9 7.9 12 33
2009 14.2 2.6 7.1 8 83 1.1 35
2010 145 27 7.2 8.4 8.4 1.1 3.6

(source: http://1.usa.gov/1R65j99)

The top row in Table 1-3 is header information, naming each of the
variables recorded. Each row contains all the information gathered
during one year. Each row is said to be a statistical unit. Social scien-
tists usually call the row a case, whereas natural scientists most often
refer to the row as an observation. Computer professionals usually
call the row a record. Each of the columns is called a variable, or in
the case of computer science, a field. The emissions dataset has
seven rows (observations) and eight variables: the year, and the
amount of emissions from each of seven regions in the study.

The editor looks like a spreadsheet and has some of the features of a
good spreadsheet, but is not as convenient to use as Excel or Num-
bers. It is also easy to lose your changes if you are not careful. To
begin, choose an object name and assign this name to a new data
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frame. There are several ways to do this. I find the safest way is to
name each variable, identify its type, and specify how many rows:

> emissions <- data.frame(Year=numeric(7),N_Amer = numeric(7),
CS_Amer=numeric(7), Europe=numeric(7),Eurasia=numeric(7),
Mid_East=numeric(7),Africa=numeric(7), Asia_Oceania=numeric(7))

This creates an empty data frame, called emissions. To open up the
editor, call the edit() function by assigning an object to hold the
empty data frame:

> emissions <- edit(emissions)

Remember, emissions is empty. By calling the object “emissions” in
the preceding command, you are telling R to overwrite the empty
data frame with whatever edited data you enter. Enter the data by
double-clicking the cell that you want to write/edit. When you are
done, click the upper-left corner of the spreadsheet in OS X or the
“X” in the upper-right corner in Windows. Do not click Stop, which
is on the edit window in OS X or at the top of the screen in Win-
dows. If you click Stop, you will lose any changes. After the data is
entered, check carefully to ensure that there are no errors. If you see
an error, just double-click the cell that you want to fix and type the
corrected number. If necessary, you can use the previous command
again to go back to the editor and fix any problems. Save this data
frame so that you can use it again later without the need to retype it:

> save (emissions,file="emiss.rda")

The preceding command writes the emissions data frame into a file
called emiss.rda in the working directory. You can retrieve the data
by using the following command, assuming that you still have the
same working directory:

> load("emiss.rda")

Reading from an External File

You might already have a favorite tool that you use for data entry;
for many people this is a spreadsheet program, but it also could be a
text editor. I like Numbers on my Mac, but Excel or another spread-
sheet will work just as well. The general approach is to create the
file in the spreadsheet program and save it to your working direc-
tory. After it’s there, you can read it into R for analysis.
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Exercise 1-3

Prolific English composer Edward Elgar (1857-1934) is, perhaps,
most famous for two celebrated works: “Pomp and Circumstance,”
the processional march for innumerable graduation ceremonies;
and the “Enigma Variations,” for symphony orchestra. Although the
entire latter work is a popular part of symphony programs, the
extraordinarily beautiful “Nimrod” variation is often performed by
itself, not only by orchestras, but also by other ensembles (musical
groups) or soloists.

One of the most fundamental questions one must ask before per-
forming a musical work is, “What should the tempo be?” In other
words, “How fast should it be played?” Although the composer usu-
ally gives an indication, some works have received a wide range of
interpretations, even among the most highly regarded musicians.
Learning how other musicians perform the work can be quite
instructive to someone planning her own performance. The “Nim-
rod” tempo data presented in Table 1-4 comes from a number of
recorded performances that were available on YouTube on Novem-
ber 9, 2013.

Table 1-4. Performance times of “Nimrod” by various ensembles

Performer Medium Time Level

Barenboim—Chicago SO so 240 p
Solti—London Phil 50 204 p
Davis 50 2710 p
Remembrance2009 b 236 p
Belcher org 254 p
Bish org 232 p
ColdstrGuards b 239 p
Pallhuber-3 Lions BB bb 257 a
Bernstein—BBC 50 315 p
Dudamel—-SBolivarSym 50 239 p
John org 252 p
Sunshine Brass bb 186 a
Mahidol Sym Band b 173 a
Hills org 240 p
Grimethorpe CollB bb 200 p
Barbirolli_Halle O ) 200 p
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Performer Medium Time Level

Stokowski s0 244 p
Boult—London SO s0 211 p
Kindl-Marktoberdorfer BB bb 238 a
Carter—Charlotte (B b 196 a
Cord—Indianal bb 188 a
Mack—SUNYFredonia (B b 160 a
U Akron (B b 193 a
Akron Youth Sym S0 188 a
BP-Ostwestfalen b 198 a
Santarsola—MoldovaP0  so 30 p
Klumpp_NWD PO S0 187 p
Burke—MancunianWinds  cb 257 a
US Army Field Band b 235 p
EE-Phonograph S0 186 p
Niemczyk-NWC 0 S0 169 a
Allentoff-Brockport SO 50 200 a

The Nimrod dataset has 32 rows (cases/observations) and 4 columns
(variables). This data will become a data frame in R.

Nimrod codebook

All but the simplest datasets need a “codebook,” which offers an
explanation of the meaning of each of the values of the variables.
The codebook for the Nimrod dataset is as follows:

performer
Name of both conductor and ensemble, if available. At least one
must be available for inclusion in the study.

medium
bb brass band
cb concert band
org organ solo
so symphony orchestra

time
Performance time, in seconds, from first note to last note, leaving
out announcements, tuning, applause, etc. Proxy measure for
tempo; i.e., assumes same tempo throughout.
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level (proficiency level of the performers)
a amateur (or student)
p professional

The variable time is a quantitative variable; that is, it's a measure-
ment of an amount. You can use quantitative variables in arithmetic,
so one could calculate the sum or the average of the variable time.
These are R numeric vectors, as discussed in the section “Data
Structures” on page 7. All the other variables in this particular data-
set are categorical variables; i.e., the observations are assigned to cat-
egories. Some people refer to categorical variables as qualitative or
nominal variables. These are R character vectors. We cannot calcu-
late the average of medium, because the values bb, cb, and so on are
not numbers; calculation does not even make sense. There are some
things we can do with categorical variables, though, such as finding
the frequency of bb or of cb. We might also use the values of catego-
rical variables to form groups. So, for instance, we might break the
dataset into parts, according to the values of level, so we could
compare the average time in the amateur group to average time in
the professional group.

You can enter the data in one of the following ways:

o Type the data into your favorite spreadsheet program and save
(export) the spreadsheet to your working directory as a .csv file,
with the name Nimrod.Tempo.csv. R can read other file types,
but .csv seems to be the easiest and the least prone to error.
Then open R and type the following command:

> Nimrod <- read.csv("Nimrod.Tempo.csv",header=TRUE)

If you want to read a file that does not have a header, use
header=FALSE.

o If you want to read Excel files without converting them to .csv
files, there is a package called XLConnect that is meant for
exactly this purpose. XLConnect can do many other tasks, such
as editing a spreadsheet and writing R data to an Excel file. You
will not be able to use this package if you have an old version of
R (before version 3.0). The code that follows shows how to read
the Nimrod data when it has been saved as an Excel file with the
name Nimrod.xls:
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> install.packages ("XLConnect")

> library (XLConnect)

> Nimrod2 <-readWorksheetFromFile("Nimrod.xls",
sheet = 1, header = TRUE)

What if a command is too long for one line?

If you need to issue a command (like the preceding one) that is
too long to fit on one line in the console, just keep on typing,
and R will place the remaining text on the next line. Do not
press “return” or “enter” until you reach the end of the com-
mand. If you press the “return” key before the command is
complete, R will not understand your request and will probably
return a cryptic error message.

You do not actually need to have Excel installed on your computer
to use this package. There are many datasets, freely available
from government agencies and sundry other sources, that you
can download in Excel format. See Appendix E for more infor-
mation on this topic. You can copy them and read them into R
for your own analysis with XLConnect. This package can read or
write .xls or the newer .xlsx formats. You can find complete doc-
umentation at http://cran.r-project.org/web/packages/XLConnect/
XLConnect.pdf.

Use a text editor or word processor to create a text file called
Nimrod. Tempo.txt that uses spaces as separators between values.
The file can be read as follows:

nn
s

> Nimrod <-read.table("Nimrod.Tempo.txt", sep =
header=TRUE)

If you find yourself in a situation that the preceding discussion of
methods for putting data into R did not cover, consult the R help
file, “R Data Import/Export” This file is included in the “R Help”
that is part of the base R installation. After you have read the data
into R using any one of the aforementioned methods, check to see if
it worked by using one of the following:

> Nimrod # types out complete dataset
> head(Nimrod) # types out first 6 rows

> fix(Nimrod) # opens Nimrod data in editor
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The final option will open the editor (see Figure 1-2) so that you can
check the data or change data values, if necessary.

R Data Editor

Ep B =
performer medium time level

Barenboim-ChicagoS0O 50 240 p M
Solti-London Phil S0 204 p

Davis S0 270 p

Rembrance2009 cb 236 p

Belcher org 254 p

Bish org 232 p

ColdstrGuards cb 239 p

Pallhuber-3 Lions BB bb 257 a

Bernstein-BBC S0 315 p

Dudamel-5BolivarSym S0 239 p

John org 252 p

Sunshine Brass bb 186 a

Mahidol Sym Band cb 173 a

Hills org 240 p

Grimethorpe CollB bb 200 p

Barbirolli_Halle O 50 200 p

Stokowski S0 244 p

Boult-London SO S0 211 p

Kindl-Marktoberdorfer BB bb 238 a

Carter-Charlotte CB cb 196 a

Cord-Indianal bb 188 a

Mack-SUNYFredonia CB  cb 160 a

U Akron CB cb 193 a

Akron Youth Sym 50 188 a

BP-Ostwestfalen cb 198 a

Santarsola-MoldovaPO S0 320 p

Klumpp_NWD PO 50 187 p L
Burke-MancunianWinds  cb 257 a ]
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Figure 1-2. The R data editor, with the Nimrod data. You can use the
editor to view the data and/or change specific values.

You can also give R commands to analyze the data in various ways,
such as shown here:

> mean(Nimrod$time)
[1] 222.0938

> table(NimrodSmedium) # get counts within each medium
bb cb org so
5 9 4 14

And you can create some cool graphs, which we will get to in due
course.

You can also ask R for some general information about the dataset
Nimrod:
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> summary(Nimrod)

performer medium time level
Akron Youth Sym :1 bb:5 Min. :160.0 a:13
Allentoff-Brockport SO: 1 cb : 9 1st Qu.:191.8 p:19
Barbirolli_Halle 0 1 org: 4 Median :221.5
Barenboim-ChicagoSO : 1 so :14 Mean :222.1
Belcher 1 3rd Qu.:241.0
Bernstein-BBC 1 Max. :320.0

(Other) 126

Save the Nimrod data frame the same way you did the emissions
dataset (but with a different filename, of course), because you will
need to retrieve it for a later exercise:

> save (Nimrod,file="Nimrod.rda")
You can retrieve it later by using the load() command:
> load("Nimrod.rda")

You can find more information about reading and importing exter-
nal files in Appendix E.

Sourcing a Script

Up to this point, we have typed single-line commands. Most of the
time, this will work just fine. There might be instances, however,
when you want to perform a sequence of commands and repeat the
entire sequence. This can get to be quite tedious if the sequence is
very long or you want to repeat it many times. Fortunately, R can
work with scripts. A script is a list of commands, set up in the order
in which you want them to be performed. You can create a script by
using a text editor and save it in a file. Then, you can source the
script, which means to retrieve the script and execute the saved com-
mands.

To see how this works, imagine that you are updating the Nimrod
data on an ongoing basis. You add a few new observations from time
to time in an Excel spreadsheet and would like to do some analysis
in R to see where things stand with the latest data included. The list
of commands for this analysis that follows requires that you have
previously installed a couple of packages. If you are not sure of what
packages you have installed on your computer, you can find out by
using the command:

> installed.packages()

If you do not have gmodels and XLConnect, install them now:

22 | Chapter 1:RBasics



> install.packages("gmodels")
> install.packages("XLConnect")

Now, here is a list of commands that you might use to carry out this
analysis. Note that when we use a block of commands, we will usu-
ally not precede each one with the R prompt, >:!

# The following group of commands is a script
library(gmodels) # required to use the CrossTable command
library (XLConnect) # must have installed XLConnect
Nimrod2 <- readWorksheetFromFile("Nimrod.xls",sheet=1,
header=TRUE)
attach(Nimrod2)
CrossTable(medium, level,
prop.r=FALSE,
prop.c=FALSE,
prop.t=FALSE,
prop.chisq=FALSE)
# above command prints table with counts in each cell,
# but no percents

perf_time <- summary(time) # save summary output

title = "Summary of performance times:"

cat(title,"\n", "\n") # print title and 2 linefeeds
print(perf_time) # print results of summary(time)
detach(Nimrod2)

It would be a bit of a bother to key in these exact same commands
every time you wanted to see results. So, I recommend that you use
an editor to create a file that contains the preceding commands. A
text editor is provided in R. In most versions of R, you can access it
from the File menu at the upper-left corner of the R console. Choose
New Document or New Script to open a text window, and enter the
commands. Save the edited script in the working directory, using
the name NimTotals.R for this example. Then, use the following
command to execute all of the commands in the file:

1 Many of the remaining examples of code will be written as scripts, without the >
prompt at the beginning of each line. Furthermore, long commands, such as the CrossT
able() command in the example, are often broken up over several lines; this makes
reading them a little easier.
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> source("NimTotals.R")

Cell Contents

Total Observations in Table: 32

| level

medium | a | p | Row Total |
------------- R ERnl ELERERRREER
bb | 4 | 1| 5]
------------- R ERel EEEEEERREER
cb | 6 | 3| 9 |
------------- SRRl ELEEEERRERR
org | 0 | 4 | 4 |
------------- RS Enel EEEEEERRERR
so | 3| 11 | 14 |
------------- R R Rl EEREEERREER
Column Total | 13 | 19 | 32 |
------------- ] EECEEEER ] EERRERRREER

Summary of performance times:

Min. 1st Qu. Median Mean 3rd Qu. Max.

160.0 191.8 221.5 222.1 241.0 320.0

The CrossTable() command in your script created a contingency
table or cross tabulation. At the top of the table is a header row,
which includes values for the variable level. The column on the left
gives the names of the values for the variable medium. The first row
below the header shows information for “bb”—brass bands. There

«_»

are four brass bands that are “a,” or amateur groups, and one that is
“p> or professional. The column on the right and the row on the
bottom give totals for the respective rows or columns. For example,
the Row Total column shows that there are five brass bands of all

kinds. Statisticians call the totals marginal values or just marginals.

Below the table, you will find summary information for the variable
time—the performance time. We see a minimum time of 160 sec-
onds and a maximum time of 320 seconds. There are two measures
of the center of the distribution of time: the mean, or ordinary aver-
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age, where all the numbers are added and then the sum is divided by
the total number of numbers; and the median, which is the number
that is higher than 50 percent of the numbers and lower than 50 per-
cent. Finally, we have the first quartile, 191.8 (the point at which one
quarter of the numbers are lower), and the third quartile, 241 (the
point at which three-quarters of the numbers are lower).

You might also find it convenient to write a script containing
library() and setwd() commands so that you can, with one com-
mand, execute many such commands that you would otherwise
need to enter separately. If you have downloaded several packages
that you use frequently, it might be a good idea to load them all in
one step rather than trying to remember when you need a particular
package. Even though it is not a great inconvenience to issue a
source() command each time you start R, some people prefer hav-
ing R source such a script automatically. This is possible, but the
method is a little different for each platform. In OS X, at the top of
the screen, open the R menu and choose Preferences. You will be
able to specify a working directory that will apply every time you
start R. Configure it so that R starts by dragging and dropping a file
containing a script that will be sourced at startup. In Windows, you
will need to find the .Rprofile or Rprofile.site file and edit it to
include the commands that you want to execute at startup. To see
examples, try this:

> ?Startup

User-Written Functions

Sourcing a script is a great tool when you need to repeat a sequence
of commands exactly. However, there may be times when you want
to do some procedure repeatedly, but not always on the same vari-
ables or same arguments. If you wanted to use the script we created
in the previous section, but not always on the same file, you could
write your own function that would let you choose which file to
retrieve and analyze.

The general format for a user-written function is as follows:

name <- function (argumentl, argument2,...){
commands

}

Suppose that you want to name your function “update” and have it
retrieve an Excel file that you will name each time you use the func-
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tion. The code that follows, which is almost the same as the script in
the previous section, would do this. The argument fn appears in the
function statement and in the Nimrod2 statement, indicating what-
ever argument is supplied by the user in the function call will be
substituted in the Nimrod2 command when R executes the com-
mands:

# a user-written function, called "update"
update <- function (fn){
library(gmodels)
library (XLConnect)
Nimrod2<-readWorksheetFromFile(fn,sheet=1,header=TRUE)
attach(Nimrod2)
CrossTable(medium, level,

prop.r=FALSE,

prop.c=FALSE,

prop.t=FALSE,

prop.chisq=FALSE)

# print table with counts in each cell, but no percents
perf_time = summary(time) # save summary output
title = "Summary of performance times:"
cat(title,"\n", "\n") # print title and 2 linefeeds
print(perf_time)
detach(Nimrod2)

}

To use this function, you must first save it, as you would save any R
script, and then load it or source it. You can then issue any number
of commands until you are ready to call the function, which you
would do the following way, where myfile.xls is the name of the
Excel file that you wish to analyze:

> update("myfile.x1s") # filename in quotes because myfile.xls
# is the value of a character variable
Of course, you might want to analyze a different file the next time.
Just substitute the name of the new file. You can also create simple
mathematical functions or quite complex programs, such as one that
produces a special type of graph, as we will see later.

A Taste of Things to Come

Figure 1-3 displays several graphs based on the Nimrod data. All of
these types of graphs will be discussed in the following chapters, and
you should be able to produce any of them, and many more, by the
time you finish this book.
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Figure 1-3. Several types of graphs based on the Nimrod data.

Exercise 1-4

If you had trouble entering data in “Exercise 1-2” on page 15 or
“Exercise 1-3” on page 17, try entering the simple dataset from
“Exercise 1-1” on page 12 by one of the following methods. First,
here is the data again:

1 94
2 92
3 90
4

80

Method 1: spreadsheet
Open your spreadsheet program. Enter the data into five rows
(including the header) and two columns, just as the data is laid out
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here. Export the file into your working directory (see the section
“The Working Directory” on page 10) as a .csv file with the name
simplel.csv Then, create the new data frame mydata:

> mydata = read.csv("simplel.csv",header=TRUE)

> mydata
year rate
1 1 94
2 2 92
3 3 90
4 4 80
5 NA NA

In this case, there was a blank row in the spreadsheet, so the last row
of the R data frame has missing values. You can fix this by using the
nrows argument to read in only the specified number of rows:

> mydata= read.csv("simplel.csv",header=TRUE,nrows=4)

> mydata
year rate
1 1 9%
2 2 92
3 390
4 4 80

If you had an extra (blank) row before the header, here would be the
result:

> mydata

X X.1 X.2 X.3
1 NA year rate NA
2 NA 1 94 NA

3 NA 2 92 NA
4 NA 3 99 NA
5 NA 4 80 NA

You could use the skip argument to ignore the first row:

> mydata= read.csv("simplela.csv",header=TRUE,skip=1, nrows=4)
> mydata

X year rate X.1
1 NA 1 94 NA

2 NA 2 92 NA
3 NA 3 90 NA
4 NA 4 80 NA

In this last example, we have extra columns. This is not a big prob-
lem, because we could simply ignore them. The important thing is
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that the two vectors of interest, year and rate, have the right num-
ber of rows. If you want to delete one of the useless columns, you
can do it this way:

> mydata$X = NULL
> mydata

year rate X.1

1 1 94 NA
2 2 92 NA
3 3 90 NA

4 4 80 NA
Method 2: text
Open your word processor or text editor. Type in the data with a
space between each entry and the next on a line, and a carriage
return at the end of each line, like so:

year rate

Extra spaces should not matter, but the data should be saved as plain
text, not rich text. If your word processor allows you to save a .txt
file, use the Save As command to save your file into your working
directory, with the name simple2.txt. Otherwise, you will probably
need to use the Export command, again using the name simple2.txt.
Read the data into R and create the data frame newdata by using the
following command:

> newdata = read.table("simple2.txt",sep="",header=TRUE)
> newdata

year rate

1 94
2 92
390
4 80

A WN PR
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CHAPTER 2
An Overview of R Graphics

This chapter discusses how to export a graph and the differences
between exploratory and presentation graphs. There is also a brief
overview of several graphics systems in R. If you have some past
programming experience or substantial experience with graphics,
you will probably appreciate having this information before going
on to the specifics of R graph types. If youre not coming from that
background, you might find this material a little too technical and
unnecessary at this point. If so, go directly to Chapter 3 and come
back to this one when you are ready for it.

Exporting a Graph

After you have made a graph, you will probably want to save it or
put it in a document. How you do this will depend on what other
software you are using. With some word processors, for instance,
you can simply copy the graph by opening the graph window in R
and clicking Copy in the Edit menu or a context menu connected to
the graph. You can then paste it into the word processor.

Other software will require a little more effort on your part. If you
have tried the copy-and-paste method and it does not work, you will
need to choose a file type and instruct R to save your graph in this
format, to a specific file. You can save the graph in any one of several
formats, including .bmp, .pdf, .jpeg, .png, .tiff, .ps (PostScript), and
others. The code example that follows shows how to save the graph
we made in “Exercise 1-1” on page 12 to a .jpeg file, named fest.jpeg
(you could, of course, give it any other name you choose, as long as
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the extension is “jpeg”; for example, you might name it
mywork.jpeg):

jpeg("test.jpeg") # opens a device

plot(year,rate)

dev.off() # closes the graphic device - you must do this
After the graph has been saved in this manner, you can insert it into
the word processor document. For example, in OpenOffice, you
open the Insert window, click Picture, click From File, and then
select the file test.jpeg from the working directory. Of course, after
your graph is saved in a file, it is ready to load into all kinds of appli-
cations, such as drawing or illustration programs—for example, you
can “brush up” your R graphs in Adobe Illustrator or Inkscape, if so
desired. The graphs in this book were saved as .png files and uploa-
ded, with no brushing up, to my editor’s Google Drive account. For
a higher resolution graph, I used this code:

dpi=600

png("filename.png", width = 6*dpi, height = 6*dpi,
res = dpi)

graphic commands

dev.off()

For more information on saving files this way, type ?png.

What Is a “Device”?

Specifying a device is a way to instruct R where to draw a graph and
define what form it will take. If no device is specified, graphs appear
in a graphic window on the computer screen. If you want to save a
graph to a file (on a hard drive, flash memory, or whatever), you
must instruct R what file (device) to write to, by “opening a device””
You do that by using a command that also informs R what format
the file will be, such as .jpeg, .pdf, .png, and so on. Then, you can
draw a graph on the device by using whatever graphic commands
you need to make the kind of graph you want. Finally, “close the
device”; that is, stop writing to that file. After you've closed the
device (by using dev.off()), any further results go to the screen, or
to another device if you open a new one. For more information
about devices, type ?device.
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Exploratory Graphs and Presentation Graphs

Graphs are useful both for exploration and for presentation. Explora-
tion is the process of analyzing the data and finding relationships
and patterns. Presentation of your findings is making your case to
others who have not studied the data as intensively as you have.
While you are exploring the data, your graphs can be stark, lean,
and somewhat unattractive. In the role of data analyst—the person
who knows the data, and is getting to know it better with each graph
made—you do not need all the titles, labels, reference details, and
colors that someone sitting through a presentation might expect,
and indeed might find necessary. Furthermore, adding all this extra-
neous detail just slows down the exploration phase. Also, some
graphs will prove to be dead ends or just not very interesting. Con-
sequently, many graphs might be discarded during the discovery
journey.

As the process of exploration continues, adding some details can
make relationships a little clearer. As you get closer to presentation
and/or publication, the graphs become more detailed and prettier.
You will probably create many plain graphs in the process of analysis
and relatively few beautiful graphs to appear in the final report.

Following are two graphs of the mtcars dataset included with the
base installation of R, which shows the relationship between mpg
(miles per gallon) and wt (weight of the car). The first graph (see
Figure 2-1) is an early attempt to discern the relationship between
the two variables by using a scatter plot. It clearly shows that as the
weight of a car increases, the mileage per gallon decreases. If you are
not familiar with scatter plots, you might want to come back to this
example after you have read Chapter 12. The second graph, shown
in Figure 2-2, shows quite a bit of refinement over the first effort. It
includes a title, labels on the axes, and a breakdown of cars by the
number of cylinders, and, of course, color is applied. This might be
something that appears in a PowerPoint presentation. Between these
two examples, there might have been several other relatively plain
exploratory graphs. Because this book is about the process of
graphic analysis, many of the examples included will be plain and
skeletal, but they lead toward an attractive finished product.
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Figure 2-1. An exploratory graph of wt versus mpg.
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Figure 2-2. Presentation graph of wt versus mpg; a refinement of the
graph in Figure 2-1.

One line of code produced the graph in Figure 2-1:
plot(mtcars$wt, mtcars$mpg, pch=16)

The more colorful and elaborate graph in Figure 2-2 required sev-
eral more lines of code. It took more work, but its usefulness as a
presentation object makes this worth the effort. The various types of
commands that went into this graph are not explained here; we will
examine them in several chapters later in the book. The point is that
simple and effective graphs are easy to make with R, but if you want
very fancy graphs, you can get them with a bit of extra labor. The
script to produce Figure 2-2 looks like this:
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# Script producing Figure 2-2
library(car)
attach(mtcars)
par(bg="snow",fg="snow",col.axis="black",bty="1")
mtcars$wt2 = 1000*wt
attach(mtcars)
scatter plot(mpg~wt2|cyl,
smoother=FALSE,
reg.line=FALSE,
col=c("indianred4","blue","purple"),
pch=c(15,16,17),
main="Fuel Consumption in Selected Cars",
ylab="Miles per Gallon",
xlab="Weight of Car in Pounds",las=1,
legend.plot=FALSE,bty="1")
axis(2,col="black",at=c(10,15,20,25,30,35),las=2)
axis(1,col="black",at=c(1000,2000,3000,4000,5000,6000))
legend("topright",
title="No. of Cylinders",
c("4","6","8"),
inset=-.005,
text.col=c("indianred4",
"blue","purple"),
title.col="black",
cex =.65,
pch=c(15,16,17),
col=c("indianred4","blue","purple"),
bty="n")
detach(mtcars)

Graphics Systems in R

There are several graphics systems available in R. Base R includes
many useful graphic functions, but different R users have extended
the graphics capabilities by contributing new graphics packages. The
following discussion characterizes the strengths and styles of various
graphics packages.

Base Graphics and grid

Base R includes a graphics package that is automatically installed
when you first install R, and is also automatically loaded each time
you start R. It is quite powerful in that it is able to produce many
kinds of graphics that you can customize extensively. Many R users
will never need more power or flexibility than what is provided in
base R, so this is a good place to begin. Most of the graphics in this
book were produced by the base R graphics package.
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Even though base R graphics are quite impressive, there are some-
times applications that call for more control over the details of
graphic output. For this reason, a package called grid was developed
for low-level graphics. “Low-level” means that grid provides a num-
ber of tools or materials that are used by developers of still other
packages that will be used, in turn, to make finished graphs.

In this respect, grid is somewhat like a lumber mill that makes
boards (low-level material) that will be used by builders or home-
owners for projects in a house (high-level), such as floors or book-
shelves. One can be a fine builder without being concerned about
how the lumber mill sections trees, rough-cuts planks, and planes
them smooth. The builder starts with the board, not the tree. The
grid package provides processed materials used to make the other
graphics systems discussed in this chapter, as well as some graphic
procedures included in various other R packages. It does not pro-
vide any functions that we will use directly to make finished graphs.
However, some of the graphic functions we will use have been built
from grid functions. For detailed information about grid, see Mur-
rell (2011). Because users generally do not write grid code directly,
there is no grid example given here.

lattice

The lattice package was developed to provide improved graphics
for multivariate data—i.e., for graphing more than two variables at a
time. lattice is modeled on the trellis graphics described by Cleve-
land (1985, 1993). The idea here is that sometimes the most effec-
tive way to visualize relationships of several variables is not to
attempt to put all of them in one graph, but to look at several related
graphs, organized in a purposeful way. For example, Figure 2-3
shows a trellis plot of four windows, or panels, from the BP dataset in
the epicalc package. In each panel, there is a plot of systolic blood
pressure by diastolic blood pressure. Each panel shows the plot for a
combination of sex and saltadd (whether salt was added to the
diet).
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Figure 2-3. A trellis plot produced by using the lattice package.

Figure 2-3 demonstrates a way of examining the relationship of four
variables at once by scanning four related graphs on one page. Here
is the code to do it:

# Figure 2-3

library(lattice)

library(epicalc)

attach(BP)
xyplot(sbp~dbp|saltadd*sex,pch=16)
detach(BP)

lattice comes with the base R installation, but you must load it
during each session for which you need it. In addition to trellis
graphics, it includes functions for many other graphic types as well.
Although this book uses only a few examples of lattice, it is an
excellent graphics package that extends the capabilities of R. You
might find it worth the time to learn, after you become more famil-
iar with R and base graphics.
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ggplot2

The ggplot2 package is designed to have a syntax that is consistent
across all graphic types; that is to say, the command language is sur-
prisingly similar from one type of graph to another. This is in
marked contrast to base R, for which there are many arguments that
can be used for several different kinds of graphs, but there are also a
number of inconsistencies. The ggplot2 package is also quite versa-
tile, enabling you to customize graphical displays relatively easily.
Because the syntax of this package differs so much from that of base
R graphics, very few examples of its use appear in this book. I should
mention, however, that there are a few commands that are designed
to look similar to base R, so you can try some of the capabilities of
ggplot2 without much effort. If you have need for some of the spe-
cial features of this package, it might be something for you to learn
after you have acquired a greater understanding of R. The aesthetic
style of ggplot2 is rather different from base R graphics, and you
might or might not like it. An example appears in Figure 2-4, and
the code that follows is what created it:

# Figure 2-4
library(ggplot2)
ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point()
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Figure 2-4. A simple graph produced by ggplot2, based on the same
data as the base R graphs in Figure 2-1 and Figure 2-2.

ggplot2 does not come with base R, so if you want it, you must
install it first and then load it during every session for which you
want to use it.

Special Applications/Graphs Incorporated into Packages

Many packages, even those that are not primarily graphics packages,
include some graphic capabilities. You can get a sense of the diverse
and plentiful graphic offerings at the CRAN Task Views web page
(http://cran.r-project.org/web/views/). Click Graphics to see a one-
page overview of the types of graphics included in many packages,
but keep in mind that this does not include all graphics. Also, some
packages might have only a few graphic functions mixed in with
many other features, and these kinds of packages will not usually
appear in Task Views. Use your favorite search engine to scour the
Internet for references to a particular graphic in R. Among the thou-
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sands of R packages, it can be a daunting quest to find exactly what
you need!

User-Written Graphic Functions

If you just cannot find the right graphic for your data, it is possible
to write your own graphic function. This is simply an extension of
the method covered in Chapter 1, but later I will introduce a num-
ber of graphics tools that you can include in such functions. An
example of a user-written graphic function to produce a Bland-
Altman plot is presented in Chapter 14.
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PART lI
Single-Variable Graphs

Exploratory analysis of a dataset usually begins with an examination
of a single variable at a time. In this section, we will consider several
graphical methods for discovery of patterns in a single characteris-
tic. For instance, if people are the statistical units of interest, how
much variability is there in a characteristic such as height, weight, or
IQ? If automobiles are the units, we might be curious about how
they vary in maximum speed, fuel consumption, or horsepower. As
we gain insight about each variable alone, it usually makes sense to
examine the relationships between variables, but that will be the
topic of the next section.

The single-variable methods in the next several chapters are
designed for quantitative variables, except for the bar chart and pie
chart, which are appropriate for categorical variables. You also can
expand most of the graphs in this section to study the effect of a sec-
ond variable on the variable of primary interest. These expansions
are equivalent to two (or more) single-variable graphs, arranged by
value of the second variable. For this reason, they are included in
this section with their corresponding single-variable graphs.






CHAPTER 3
Strip Charts

A Simple Graph

One of the simplest yet still quite useful graphs is the strip chart
(called a “dot plot” by some analysts). This graph provides a way to
view how a set of numbers is distributed. That is to say, what is the
shape of the data? Can we identify what the maximum and mini-
mum numbers are, how spread out they are, and whether some of
the numbers cluster together?

Lets examine the trees dataset provided with base R. To see a
description of this data, type the following:

> ?trees

A new window opens, describing the data. Following is the informa-
tion provided in the window:

Description
This is a brief narrative about the data.

Usage
This displays the dataset name.

Format
This explains that the structure is a data frame and that it has 31
observations with 3 variables, and gives the variable names and the
units of measurement.

Source
This indicates where the data came from.
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References
This gives examples of books or articles in which an analysis of the
data appears. I sometimes copy and paste a reference into a search
engine to see such an analysis. This does not always work, but
when it does, it is usually very helpful.

Examples
This gives some R code using the dataset. It is sometimes very
interesting to copy and paste one or more of the examples into the
R console and see what kinds of statistical analyses and/or graphs
are produced. In this particular case, the kinds of plots produced
will be discussed later in the book, but there is also some statistical
analysis that is not covered here.

Most help files for datasets give information for most of the previous
categories.

When You Need a Little Help...

R provides several kinds of readily accessible help. For example:

o ?numbers gives help for a dataset named numbers.
» ?mighty gives help for a function named mighty.

o example(x) gives example output for the function x. Try exam
ple(stripchart).

o vignette() lists all vignettes for packages installed on your
computer. Try it!

 vignette(x) shows the vignette for x. Vignettes can be almost
anything, from a user manual to R code and sample output.

All the variables in the trees dataset measure, in different ways, the
size of the 31 trees in the sample. Consider first the variable, Volume.
Try the commands that follow. Be sure to use an uppercase “V” in
Volume; otherwise, R will indicate that there was an error, because it
does not recognize the variable volume:

> attach(trees)
> Volume

You will see the following:
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[1] 16.3 16.3 10.2 16.4 18.8 19.7 15.6

18.2 22.6 19.9 24.2 ...
[19] 25.7 24.9 34.5 31.7 36.3 38.3 42.6 55.4 55.7 58.3 51.5 ...
R printed out the volume of each of the 31 trees. Index numbers are
included in the output, showing that the first line begins with [1],
the first element of the vector. The second line begins with the 19th
element. It might take a while to process this information. You need
a strategy. Perhaps you should look first for the smallest and largest
numbers. You might also try to guess at the average, or see if several
trees have the same volume. Even with a relatively small dataset like

this one, the process can seem difficult. Now try a simple graph:
> stripchart(Volume)

The strip chart appears in Figure 3-1.

[m} MIONonomood Omoo O m oo [m]

Figure 3-1. A strip chart of the variable Volume

The axis on the bottom shows the numerical values of the volumes
of the 31 trees. The graph shows that many of the values are clus-
tered around 20-30 cubic feet, with a smaller cluster between 50 and
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60. There is one extremely large value, well over 70. This one large
value may raise some important questions. Was there some over-
looked factor that could explain the unusual size? Was there a mis-
take in measuring or recording the measurement of this tree? Is
there some way to verify or correct this number? If there will be fur-
ther analysis of this data, should this extraordinary value be
included or excluded? All these questions might have been neglected
had the analysis begun with consideration of numbers alone—in
other words, asking simply about the average volume.

There are not 31 distinct squares on the plot, because some of the
trees have the same, or nearly the same, volume. You can separate
those trees competing for the same location on the graph by adding
an argument in the stripchart() command:

> stripchart(Volume, method = "jitter")

Figure 3-2 is a marked improvement over the previous graph.
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nfa] 5 o
m} [m]
o o oof o
g ° Ty O 2 "o

Figure 3-2. A jittered strip chart of tree volume.
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There is still some overprinting in Figure 3-2, but careful counting
shows that there are now 31 points. Some of the points that had
been sharing the same space are “jittered” above or below each
other, making the graph much easier to read. One way to improve
this display further would be to increase the amount of jittering in
this graph. You can use a help command to see what options are
available:

> ?stripchart

The help file for stripchart() has a lot of useful information,
including a great deal that is not described in this book but might be
of use to you later. It contains the following sections:

Description
This indicates what the function does and what circumstances are
appropriate for its use.

Usage
This shows the basic syntax and default options. In other words, if
you do not specify a particular argument, what will happen?

Arguments
This describes the choices that you can make to alter the results to
your own liking. (Arguments were defined in the section “Try
Some Simple Tasks” on page 2.)

Details
This provides various details such as where to find more informa-
tion, who developed the function, and so on.

Examples
This presents code that you can copy and paste into the console to
get a feel for what the function really does.

The help file shows that the default value of jitter is 0.1. Experi-
ment with the jitter argument and the stack argument to see how
they work. Another way to improve the graph is to change the char-
acter representing each point with the pch (think “plot character”)
parameter. This time, add a label to the x-axis by using the x1lab
argument:

> stripchart(Volume, method = "jitter", pch = 20,
xlab = "Volume in cubic feet")

You can see the results of this change in Figure 3-3.
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Figure 3-3. A strip chart of volume with jittering and change of print
character.

The separation of tree volumes is much clearer in Figure 3-3 because
the print characters are smaller and do not overlap as in the previ-
ous graph. If you look at Figure 3-2 and Figure 3-3 very closely, you
will see that the placement of the points seems a little different.
Actually, they are both right! When you use method = "jitter", the
points are placed at random above or below the horizon. Therefore,
each time you issue the stripchart() command with jittering the
result will be slightly different, even with exactly the same data. That
is, the vertical placement will vary slightly, but the horizontal place-
ment will be exactly the same, and the horizontal position is what we
are concerned about. (Actually, there is a way to fix this, but it
brings up a technical issue that I would prefer not to introduce at
this point. If you want to see the points in the same place on every
chart, just type the command set.seed(1) before the stripchart()
command, each time you use it.)
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The command:
> ?points

opens a help window that includes, among a lot of other informa-
tion, the options for the pch parameter. In Figure 3-4, pch options
are extracted and displayed in a much more convenient form.

Values of pch

0 o 5 ¢ 10 o 15 = 20 o 25 v

Figure 3-4. Options for the graphical parameter pch.

The best symbols for this kind of plot—the ones that overlap the
least—tend to be open circles (pch=1) or very small symbols (pch=20
or pch=18). You can also use other characters, so if you wanted a
really small plot symbol, you could use the period:

pch =
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Data Can Be Beautiful

Figure 3-3 is a perfectly fine display for our understanding of the
data. For the purpose of presentation, however, we might like some-
thing a little more eye-catching. There are several things that can be
done to make this graph a little more interesting. The options exam-
ined here will be useful for later graphs, as well.

Most R graphs are created with a box around them. These boxes are
often unnecessary, look unappealing, and can be distracting. (Some
people like the box, but play along with me here; there probably will
come a time when you would like to know how to get rid of it.) For-
tunately, you can remove them quite easily. There are many argu-
ments available to control graphic output. To see a list of graphic
parameters, type the following:

> ?par

You can use many of these parameters in various graphic com-
mands. A few of them must be used only with a par() command,
usually given before calling another graphic function. The argument
controlling the box around a graph is bty (i.e., box type). To sup-
press the box entirely, issue the par(bty="n") command before typ-
ing the graphic command. The following two commands produce
Figure 3-5, with no box around the plot:
> par(bty = "n") # Figure 3-5

> stripchart(Volume, method = "jitter", pch = 20,
xlab = "Volume in cubic feet")
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Figure 3-5. A strip chart of Volume, without a box around the plot.

A Box Around Your Graph?

You can have a box, a partial box, or no box around a graph. The
options available with the bty argument of the par() function are
"0" (the default), "1", "7", "c", "u", or "]". Each one creates a par-
tial box around the plot, in the shape suggested by the parameter.
bty = "n" removes the box entirely. The best way to understand
this is to try one or more of them yourself. For more information,

type ?par.

Notice that with no box around the plot in Figure 3-5, the single
extreme value of Volume looks out of place, beyond the graph. You
can fix that by using the xlim argument to extend the x-axis, as
shown in Figure 3-6.
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Figure 3-6. A strip chart without a box and with added color, an
extended x-axis, and added margin text.

Probably the next thing that comes to mind is color. It is easy to
change the color of the points by adding one more argument to the
stripchart() command:

# Figure 3-6
par(bty = "n")
stripchart(Volume,
method = "jitter", jitter = .3,
pch = 20,
xlab = "Volume in cubic feet",
col = "dodgerblue4",
ylim = c(0,8),
x1lim = c(10,80)) # x1lim forces x between 10 & 80

# and ylim closer to x-axis

Notice that the col argument gives a color name. R has 657 named
colors for you to use. You can see them listed in Appendix B. You
can also see the R colors on your computer screen by issuing the fol-
lowing command:

> demo(colors)

After looking at the plot produced by the preceding command,
which changes the color of the points only, you might also like to
change the color of the axis. You can do this by using the axis()
command, as shown in the code that follows. This operates on an
existing graph. The axis() command changes the color of the axis
in the graph produced by the previous command (again, refer to
Figure 3-6 to see the result):

> axis(1, col = "dodgerblue4", at = c(10,20,30,40,50,60,70,80))
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Take Control of the Axis

The axis() function adds an axis to the current plot. The parame-
ters in the axis() command used here are:

o Which axis to operate upon: 1. This parameter is required and
you do not need to include the parameter name (side). Possi-
ble values are 1 = bottom, 2 = left, 3 = top, and 4 = right.

o The color of the axis: col = "dodgerblue4".

o Where to put tick marks and labels: at =
c(10,20,30,40,50,60,70,80).

There are several other arguments that allow you to specify features
such as fonts, labels, line width, and so on. You can add this func-
tion to most graphs, not just strip charts. axis() is not required for
any plot, but it gives you a great deal of control over the final result.
For more information, type ?axtis.

The mtext() command adds a note outside of the plotting area of
the graph.

> mtext("Data source: Minitab Student Handbook",
side = 1, line = 4, adj = 1, col = "dodgerblue4", cex = .7)
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Add Text to Your Plots

You can use the text() and mtext() functions to add text within
the plotting area or in the margins, respectively, of an existing
graph. The mtext() command in the strip chart example specifies
the following:

o Text to be displayed: in our example, "Data source: Minitab
Student Handbook".

o Where it should be: side = 1 specifies the bottom. Other pos-
sible values are 2 (left), 3 (top), and 4 (right).

« How many lines below (or above, left of, or right of) the graph:
line = 4.

o Justification: adj = 1 specifies far right, adj = 0 means far left,
and a number between 0 and 1 can be provided to indicate how
far to the left/right.

e Color: col = "dodgerblue4".

o Typesize: cex = .7.

For more information, type ?mtext or ?text.

Being finished with the trees dataset, type:

> detach(trees)

Exercise 3-1

Try your hand at strip charts with another dataset, mtcars. Do a
simple strip chart of the variable mpg. What do you learn? Try a
more sophisticated chart by looking at the mpg strip chart broken
down by the number of cylinders a car has; that is, a subplot of mpg
for each value of cyl (i.e, cylinder). The following command does
that by using a grouping variable, cyl, after the symbol ~ (tilde).

Usually, a grouping variable is a categorical variable. In this case, it is
actually a quantitative variable that has a small number of possible
values—the car can have 4, 6, or 8 cylinders:

> attach(mtcars)

> stripchart(mpg~cyl)

> detach(mtcars)
Is this an improvement? What additional information did you glean
from this plot? Try jittering the plot. Does this help?
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Exercise 3-2

Many of the packages that you can add to R offer alternatives to the
functions provided in base R. Try out an alternative to strip
chart() by installing the plotrix package and testing the function
dotplot.mtb() on the variable Volume from the trees dataset. How
is this function like stripchart(), and how is it different? Do you
like one better?
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CHAPTER 4
Dot Charts

Basic Dot Chart

The dot chart (sometimes called “dot plot”) is quite similar to the
strip chart in that it shows how spread out or clumped together
points are. But the dot chart goes beyond this and gives us the
opportunity to glean even more information from our data. You
might consider the next dataset a bit gruesome, but consider that
some readers of this book might indeed deal with this kind of data
on a regular basis. Because the methods introduced in this book can
be applied to a wide range of subjects, for readers with varying
needs, diverse types of data have been chosen to illustrate the use of
graphs. So, let’s look at the USArrests dataset, which gives arrest
rates per 100,000 population for serious crimes in each of the US
states in 1973:

> attach(USArrests)
> head(USArrests) #shows first 6 rows, can get all with:
USArrests

Murder Assault UrbanPop Rape

Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.7

This dataset includes values for four named variables. There is also
one column without a variable name in the top row. The values in

59



the lefthand column are row.names—in this particular case, the
names of states. Many times, the row name is simply a number.

Lets explore this dataset. First, see what a strip chart can tell you
about murder arrests. Try it and ponder what you have learned
about murder arrests from the strip chart. Are the arrest rates nearly
the same or very different? Are they clustered together or spread
out? What would you have expected? Although you might have
arrived at some interesting insights, consider the further capabilities
of the dot chart:

> dotchart(Murder)

The graph in Figure 4-1 is similar to the strip chart in that it shows
the location (along the x-axis) of each state. It is different, however,
in that each state has its own “row;,” or horizontal line. Therefore,
there is no overprinting and no need for jittering.
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Figure 4-1. Dot chart of murder arrest rates in each of the states.
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Another useful refinement is possible. All data frames include a
character vector containing a row identifier that is recognized by the
name row.names. Notice that each row in the data frame has a state
name. You can label each row in the dot chart with its state name by
adding the argument labels = row.names(USArrests). The labels
could also be the values of any other variable, if we wanted that:

# Figure 4-2

dotchart(Murder, labels = row.names(USArrests), cex = .5)
Figure 4-2 demonstrates that it is easy to identify exactly which
states had the lowest and highest murder arrest rates and to find
some that are typical or nearly average rates. The labels argument
placed the state names on the plot; the cex argument changed the
character size. The default value of cex is 1, so any smaller value
makes the characters smaller.
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Figure 4-2. Dot chart of murder rate, identified by state.
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A more interesting view of this data might be to see the murder
arrest rates arranged by size. To do that, the data must first be sorted
by Murder. This means that the dataset’s rows will be rearranged in
order of their murder arrest rates. You can create a new dataset sor-
ted this way by using the order() function. The name of the sorted
dataset could be just about anything. This one is arbitrarily called
data2 (no awards for originality here):

> data2 = USArrests[order (USArrests$Murder),]

Next, redraw the graph (see Figure 4-3) using this newly sorted data
and add a title and label:

> dotchart(data2$Murder, labels = row.names(data2),
cex = .5, main = "Murder arrests by state, 1973",
xlab = "Murder arrests per 100,000 population")

Murder arrests by state, 1973
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Figure 4-3. Dot chart of states sorted by murder rate.

Now, it is easy to see which states are the leaders and the laggards in
murder arrest rates. Of course, you could see that information in a
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table of numbers, but with this chart you can see at a glance the rela-
tive differences among the states. Are the results what you would
have expected? Remember that the rates in our data are rates of
arrests, not rates of murders.

The plot could be made a little more attractive with a few small
adjustments. The plot character would stand out more if it were
solid, so add pch = 19. Color would catch the viewer’s attention, so
make the points and labels a different color by using the col argu-
ment. The lines are quite close together, too, so try using color to
facilitate reading by alternating colors, line by line. To do this, use
the argument col = c("darkblue","dodgerblue"). Make the hori-
zontal reference lines a different color by using lcolor = "gray9e".

Recycling Arguments

Many R functions recycle arguments. This means that if there are
not enough items in a vector, for instance, R will reuse items. So, to
make Figure 4-4, the argument col = c("darkblue","dodg
erblue") applies to the 50 states. Because there are only two colors
specified, when R needs to apply a color to the third state, it goes
back to the first color, and so on until all the states have colors. The
col argument could have included any number of colors. If there
were 50 or more, R would have used the first 50 colors. If there
were any number less than 50, R would recycle as necessary until
each state had a color.

You can see what colors are available by using the following com-
mand:

> demo(colors)
Here’s how you can get a list of the color names:
> colors()

Appendix B contains a color chart. The R code that created the chart
is also there, so you can print one out if you want. A couple of nice
R color charts are also available on the Internet at http://
www.stat.columbia.edu/~tzheng/files/Rcolor.pdf and http://
research.stowers-institute.org/efg/R/Color/Chart/.
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The title of the graph would stand out more if it were larger, so add
cex.main = 2; that is, make the main title twice its size. The com-
plete command looks like this:

> dotchart(data2$Murder, labels = row.names(data2),
cex = .6, main = "Murder arrests by state, 1973",
xlab = "Murder arrests per 100,000 population",
pch = 19, col = c("darkblue","dodgerblue"),
lcolor = "gray90",
cex.main = 2, cex.lab = 1.5)

Figure 4-4 presents the results.

Murder arrests by state, 1973
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Figure 4-4. Dot chart of states by murder arrest rates with added color.

Exercise 4-1

To understand why cex was added to the plot in Figure 4-2, try the
dotchart() command without this parameter and see what hap-
pens.
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Exercise 4-2

Make a dot chart of the variable time from the Nimrod dataset.
Remember that you will first need to use the load() command to
retrieve the data.
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CHAPTER 5
Box Plots

The Box Plot

Sometimes, it can be helpful to look at summary information about
a group of numbers instead of the numbers themselves. One type of
graph that does this by breaking the data into well-defined ranges of
numbers is the box plot. We will try this graph on a relatively large
dataset, one with which our previous types of graphs do not work
very well.

There are some interesting datasets in the nlme package. Get this
package and load it by using these commands:

> install.packages("nlme")

> library(nlme)
Next, take a look at the MathAchieve dataset. With more than 7,000
rows, this is much larger than the datasets we have dealt with previ-
ously. What problems will this create for us if we want to examine

the distribution of MathAch scores? Let’s see what happens with a
strip chart of this data.

In the code that produces Figure 5-1, as in many following exam-
ples, the mfrow argument is used in par() to make multiple graphs
appear on one page. The format is mfrow = c(1, ), where 1 is the
number of rows of graphs and j is the number of columns:
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# Figure 5-1
library(nlme)
par(mfrow=c(2,1)) # set up one graph above another: 2 rows/1 col

stripchart(MathAchieve$MathAch, method = "jitter",

main = "a. Math Ach Scores,
pch = '19'", xlab = "Scores", pch = "19")

stripchart(MathAchieve$MathAch, method = "jitter",
main = "b. Math Ach Scores,
pch = ".'", xlab = "Scores", pch = ".")

a. Math Ach Scores,
pch ="'19'

T I T I T I
0 5 10 15 20 25

Scores

b. Math Ach Scores,
pch=""

Scores

Figure 5-1. Strip charts of math achievement scores

These strip charts show the results of using the plot character from
Figure 3-4 (in Figure 5-1a), and using a different, smaller character
(in Figure 5-1b). Even then, the plot is very dense. There are too
many points, so it is difficult to judge the shape of the distribution.
Where is the center? Maybe at about 10, or a little higher? Is the dis-
tribution a little skewed, or less dense, to the left? How many points
are extreme values? Unfortunately, the help file gives no reference to
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the study. It would be interesting to know something about the scor-
ing of the math test, because there are many scores below zero.

Perhaps a different kind of chart would be more revealing. The box
plot graphically displays several key measurements that are not
obvious in the strip chart. First, let's make some box plots with the
code that follows. Note that this time the mfrow argument creates a
different layout of graphs on the page, with one row and two col-
umns:

# Figure 5-2
library(nlme)
par(mfrow = c(1,2)) # two graphs side-by-side: 1 row, 2 cols

boxplot(MathAchieveSMathAch,
main = "Math Achievement Scores", ylab = "Scores")

boxplot(MathAchieveS$SES,
main = "Sociloeconomic Status", ylab = "SES score")

The graph, shown in Figure 5-2 (also known as a box-and-whiskers
plot) shows a dark line in the center representing the median, the
point at which half of the scores are lower and half are higher. Read-
ing off the chart, it appears that the median is about 13. Other ways
to describe the median are as the 50th percentile, the point at which
50 percent of the scores are lower, or as the second quartile, the
point at which two quarters of the scores are lower. The lower edge
of the box is the first quartile, the point at which one quarter, or 25
percent, of the scores are lower. The upper edge of the box is the
third quartile, the point at which three-quarters, or 75 percent, of
the scores are lower. The vertical lines coming out of the box are the
“whiskers,” which go to the highest and lowest points if they are no
more than 1.5 times the interquartile range (the distance between the
first and third quartiles). If the points are beyond the whiskers, they
appear as small circles.
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Figure 5-2. Box-and-whiskers plots of math achievement scores and
SES

Figure 5-2 shows the distribution of math achievement scores to be
nearly symmetrical but slightly skewed to the lower scores; that is,
the lower whisker is a little longer.

One of the other variables in the dataset, SES (socioeconomic sta-
tus), is interesting to examine. Compare its box plot (the right side
of Figure 5-2) to that of the math scores. There are several points
beyond the whiskers in the SES plot. Extreme values always raise
some questions about the variable under scrutiny as well as the
accuracy of the data. You might want to check the extreme values to
ensure that the data has been entered correctly. If so, it might be
appropriate to consult the literature on the SES measure to look for
explanations of the extremes and to think about the nature of the
sample selected for the study.
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Let’s return to the math scores. It might be illuminating to break the
sample into smaller groups so that we can compare test scores.
Figure 5-3 shows the results of generating box plots of MathAch with
several group breakdowns. The par () function sets the page for four
graphs by passing to the mfrow argument a vector indicating two
rows and two columns. Each graph has a label—on the x-axis—of
the command that creates that graph. This is accomplished by

including the argument sub = 'text to appear'.
a. Math by Minority b. Math by Min & Sex
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Figure 5-3. A comparison of progressively more detailed graphs.
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Here are the commands for creating Figure 5-3:

# Figure 5-3, i.e. 4 graphs
par(mfrow=c(2,2)) #set up page for 2 rows of 2 graphs each
attach(MathAchieve)

boxplot(MathAch ~ Minority, xlab = "boxplot(MathAch~Minority)",
main = "a. Math by Minority", cex = .4)

boxplot(MathAch~Minority*Sex,
xlab = "boxplot(MathAch ~ Minority*Sex)",
main = "b. Math by Min & Sex", cex = .4)

boxplot(MathAch ~ Minority * Sex,
xlab = "boxplot(MathAch ~ Minority * Sex)",
sub = 'varwidth=TRUE))', varwidth = TRUE,

main = "c. By Min & Sex, width~size", cex = .4)

boxplot(MathAch ~ Minority*Sex,

xlab = 'boxplot(MathAch ~ Minority * Sex',

varwidth = TRUE, col = c("red","blue"),

main = "d. Same as c. plus color",

cex = .4, sub = 'varwidth = TRUE,

col = c("red","blue"))")
Let’s examine the four graphs. Figure 5-3a shows a box plot for non-
minority students and another box plot for minority students. We
see that although the median and quartile scores of nonminority
students are higher, the maximum and minimum scores are similar.
In Figure 5-3b, each of the minority groups has been further broken
down by sex. We see not only lower math scores for minorities in
both genders, but also lower math scores for females among both
minorities and nonminorities. Figure 5-3c and Figure 5-3d are both
improvements on Figure 5-3b. In these graphs, the width of each
box is related to the size of the group it represents. We can see that
fewer of the students are minorities, and there are fewer males than
females in each of the minority and nonminority groups. Figure
5-3d uses color to make the groups more easily distinguishable. The
color vector specifies only two colors, which are given to the first
two boxes and then recycled to give the same two colors to the last
two boxes. The effect of this recycling is to give nonminority males
and females red, and minority males and females blue. (As we saw
in the previous chapter, R recycles any vector that is not long
enough to accomplish the task given to it.)
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Nimrod Again

Now is a good time to revisit the Nimrod dataset. We can use box
plots to look at the distribution of performance times in the various
performance media and in amateur versus professional ensembles.
Furthermore, we can look at one important piece of information
that I neglected to mention earlier. Let’s begin with box plots of time
broken down by level and medium:

# Figure 5-4a, first must have loaded Nimrod
# load("Nimrod.rda") / see Chapter 1
attach(Nimrod)
par(mfrow=c(2,1)) #graphs laid out in 1 display w/ 2 rows, 1 col
boxplot(time ~ level * medium,
main = "a. Performance time by level and medium")

The result of this command is depicted in Figure 5-4a. We see con-
siderable variation by group. Except for the brass bands, professio-
nal groups tend to play the piece slower than amateur groups. In the
next version of this graph, it might be clearer to highlight amateur
versus professional status with color. Because professional groups
consistently play the piece slower, does this difference indicate that
the “correct” tempo is rather slow? It is certainly something to think
about.
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Figure 5-4. Performance time of “Nimrod” by medium and level

Now it’s time to reveal the identity of a secretly coded performer in
the dataset. “EE” is none other than Edward Elgar, the composer
himself! Despite the learned execution of the highly trained profes-
sional musicians in the sample, we can reasonably argue that the
composer should be taken as a more authoritative source of infor-
mation about the proper tempo of this work. Of course, we have
only one performance by the composer and do not know if he con-
ducted at this tempo, or near this tempo, every time. Nonetheless, it
might be revealing to show Elgar’s tempo, in comparison to all the
others, on the graph. We can do this by adding a reference line. Upon
consulting the spreadsheet we started with (Table 1-4), we find that
Elgar’s performance time was 186. A horizontal line, across all the
boxes, at the level of 186 would make it easy to compare each per-
formance time to the composer’s. We can do this with the abline()
command, which will place a line on the graph produced immedi-
ately before this command:
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# Figure 5-4b

boxplot(time ~ level * medium,
main = "b. Performance time by level and medium with reference
1ine", col = c("white", "light blue"))

abline(h = 186, lty = "dotted")

detach(Nimrod)

Adding Lines on the Graph

You can use the abline() function to put one or more reference
lines on a graph (you can use the function as many times as neces-
sary to put multiple lines on a single graph). This function draws
only straight lines; different methods are used for curves. The line
can be specified by its intercept and slope (if you do not remember
the meanings of intercept and slope from high school math, see the
brief review of lines in Chapter 12), or, as in the Nimrod example,
you can draw a horizontal line by giving only the y-intercept (h =
186; i.e., time = 186). Where appropriate, a vertical line could be
requested by using v = instead of h. Various line types can be called
for, as in the present example, which uses 1ty="dotted". For more
information, type ?abline or ?par.

The graph in Figure 5-4b shows that amateur musicians were in
much closer agreement with the composer’s idea of tempo than pro-
fessional musicians. This is a surprising result and will make for a
provocative graph. Of course, we have only a small sample of per-
formances. Were it our purpose to make generalizations to profes-
sional and amateur performances, our present sample would not be
sufficient. However, we are just exploring possible relationships and
formulating a hypothesis that we might wish to investigate further,
and we have enough data for this.

Making the Data Beautiful

Figure 5-4b does the basic job of showing the relationship of time
with level and medium. If this is all you want at this point, you can
skip to the exercises at the end of the chapter. You might want to
come back to this section later, as you begin to feel more comforta-
ble writing R code and find yourself wanting a more attractive
graph.
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We can make the Nimrod graph much more eye-catching and
appealing as well as easier to interpret. One of the most unsatisfying
features of Figure 5-4b is the names of the instrumental groups,
“a.bb” and so on. Longer names, such as “amateur brass band,” sim-
ply will not fit in the limited space. One way to fix this problem is to
make the bars go horizontally, dedicating a line for each group name
in the margin. We will also give meaningful names to instrumental
groups and put some text on the graph. This new graph appears in
Figure 5-5.

Performance Times of Elgar's Nimrod

Elgar himself—-)f

e |> o g- 4444444444444 ‘I

orchestra |— - . -I
e : '— l
Professional

Amateur
concert band !

Level

concert |> o
band

brass band |

e e _ . —{

T T T 1
160 200 250 300

Time in seconds

Figure 5-5. The improved graph of performance time of “Nimrod” by
medium and level. Compare this to Figure 5-4.

Do you agree that Figure 5-5 is an improvement over Figure 5-4b? If
so, let’s see how to make these improvements.

The following script will produce the new graph. There are several
commands that are set apart by blank lines between them to make
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reading them a little easier. The comments above each command
explain the arguments’ meaning:

# Script for Figure 5-5
attach(Nimrod)

# par() sets bkgrnd color, foreground color, axis color,

# text size (cex), horiz.

# text on y-axis (las=1), margins (mar). Graph too big for
# default margins. ?par for more info on above arguments.

par(bg = "white", fg = "white",
col.axis = "gray47", mar = c(7,8,5,4),
cex = .65, las = 1)

boxplot() determines formula (time ~ level * medium),
makes plot horizontal,

sets color for box border and box colors (col),

creates titles (main, xlab), creates names

for the combinations of level*medium (names), names size
(cex.names). One of the names is "" because there is no
category "amateur organ."

HOHF O H R R

boxplot(time ~ level * medium, horizontal = TRUE,
border = "cadetblue",
main="Performance Times of Elgar's Nimrod",
col = c("deepskyblue","peachpuff4"),
xlab = "Time in seconds",
names = c("brass band","brass band","concert

band", "concert band","", "organ ", "orchestra","orchestra"),
cex.names = .4)

# abline() puts vert. line at time = 186 sec. to show the
# performance conducted by Elgar. Line type (lty) dotted & color
# (col) black.

abline(v = 186, 1ty = "dotted", col = "black")

# legend() chooses legend text & color & location on the graph.
# Legend shows that pros are peachpuff4 & amateurs are
# deepskyblue.

legend("right", title = "Level", title.col = "black",
c("Professional", "Amateur"),
text.col = c("peachpuff4","deepskyblue"),
text.font = 2, cex = 1.2)

# mtext() puts text at a place specified by the user
mtext(" Elgar himself - - >", side = 3,

line = -2, adj = 0,

cex = .7, col = "black")
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# axis() modifies x-axis (1) & sets the color & length and
# tickmarks
axis(1, col = "cadetblue", at = c(160,200,250,300))

detach(Nimrod)

What Do the Symbols Mean? The legend() Function

A legend is a notation on a graph that indicates the meaning of par-
ticular symbols or colors. In Figure 5-5, for instance, the legend on
the right side stipulates that brown (R’s “peachpuff4”) boxes repre-
sent professional ensembles, whereas the blue boxes represent the
times of amateur groups. The legend() function allows specifica-
tion of the location on the graph, specific text, colors, fonts, and so

on. For more information, type ?legend.

The lesson learned from study of Figure 5-4 and Figure 5-5, again, is
that with R, you can produce basic plots for exploring data quickly
and easily (often with one line of code)—and if really pretty graphs
are needed for presentation purposes, R can make that possible, too
(but it might take considerably more effort!).

Exercise 5-1

before, Correlation does not prove causation. The apparent relation
between math scores and minority status in Figure 5-3 may actually
be a function of other factors. Perform a box plot analysis of the SES
variable, grouped by Minority and Sex. Save your graphs (see Chap-
ter 2 for information on how to save graphs) to use in further analy-
sis later. Using a word-processing program, write a paragraph or two
about what you discovered, and insert the graphs that illustrate your
points. In a later exercise, we will examine the relationship between
the math scores and SES directly.

Exercise 5-2

An alternative to box plots comparing two or more groups is the
Engelmann-Hecker-Plot (EH-Plot). Compare the box plot of mpg in
the mtcars dataset with cyl as a grouping variable (see “Exercise
3-1” on page 56) to an EH-Plot that you can create by using the
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ehplot() function in the plotrix package. In what ways is the EH-
Plot better? How is the box plot better?
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CHAPTER 6
Stem-and-Leaf Plots

Basic Stem-and-Leaf Plot

This short chapter might be considered “nostalgia” by some because
it describes a type of graph that was important in the paper-and-
pencil days of data analysis. You probably will not see many exam-
ples of this type of graph in modern presentations, but it is included
here because it will help you to understand the histogram a little
better, which is the topic of Chapter 7. You might also find it useful
in the exploratory phase of your data examination. If you are already
knowledgeable about histograms, you can skip this chapter without
fear of missing necessary material.

The sbp dataset in the multcomp package includes the variables sbp
—the systolic blood pressure of 69 patients—and the gender of each
of those people as well as the age of each. We can look at the distri-
bution of the blood pressures with a stem-and-leaf plot. This type of
graph reveals not only the general shape of the data distribution, but
the (rounded) value of each data point as well.

The stem-and-leaf plot works by putting all of the values in order,
from lowest to highest. Then, it reserves a line for all of the values in
a common range and writes the last significant digit of each number
on the appropriate line. You can use the stem() command in base R
to create a stem-and-leaf plot of the sbp variable in the sbp dataset.

This type of display, sometimes called a textual display, appears in
the R console, not in a graphic window. We can produce the display
shown in Figure 6-1 as follows:
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> library(multcomp)
> stem(sbp$sbp)

The decimal peint is 1 digit(s) te the right of the |

11
12
13
14
15
16
17
18

246

20444588
Q0B244568889
002224444589
B0234466788889
B0224589
B02244566

245

Figure 6-1. A stem-and-leaf plot of the sbp variable

The display in Figure 6-1 shows all the blood pressures in the data-
set. The column on the left side of the display, including the num-
bers 11, 12, 13, and so on, contains the “stems.” The blood pressures
are all three-digit numbers, so the stem contains the first two digits,
and the “leaf” contains the last digit of each number. Reading from
the top of the display, the numbers represented in the first stem are
numbers beginning with “11” and the leaves are 0, 4, and 6. Thus,
the numbers represented on the first line are 110, 114, and 116. The
next stem includes the numbers 120, 120, 124, 124, 124, 125, 128,
and 128. We can see that there are exactly two systolic blood pres-
sures of 170 and four of 158, but only one of 185.

Figure 6-1 shows the distribution of the data to be approximately
symmetrical. There are about the same number of low blood pres-
sures as there are high blood pressures, and a relatively large num-
ber of blood pressures near the center of the distribution (i.e., blood
pressures of about 130 to 160). In this figure, the width of a stem is
about 10 (e.g., 110-119, 120-129). If the width of the stem is
changed, the shape of the graph may well change, too. You can make
such a change to the stem width by adding another argument to the
stem() command. The argument scale = x, where x is a positive
number, controls how wide each stem will be. For example, try this
command:

> stem(sbpSsbp, scale = 2)

In Figure 6-2, the graph is twice as long as before. Each stem is half
as wide (i.e., width 5 instead of 10), but there are twice as many
stems. The general shape of the distribution has not changed very
much, although there is a dip in the center, around 145, that we did
not see earlier. In some distributions, a change of scale will dramati-
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cally change the shape. The width of leaves corresponds to the size
of what we will call bins in the histogram. Perhaps the stem-and-leaf
plot does not look as appealing as some other types of graph, with
nicely formed rectangles and colors. However, this type of plot
shows the precise value of each number in the vector studied. This
can aid in understanding the data and suggest modifications to
make in a graph.

The decimal point is 1 digit(s) to the right of the |

11
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13
13
14
14
15
15
16
16
17
17
18
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|
|
|
|
|
|
|
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Figure 6-2. Stem-and-leaf plot of sbp, with twice as many stems.

The stem-and-leaf plot works best for small to medium-sized data-
sets. If there are too many numbers in one stem, they will run off the
page! When this happens, we lose all sense of the real shape of the
distribution. One way to deal with this is to make the scale bigger.
This makes more leaves with fewer numbers in each one of them.
Sometimes, even this strategy will not help enough. Again, you
might not use this type of plot in a final presentation, but perhaps
you will find this elegant tool helpful to understand the histogram
and revealing during the exploratory phase of your project.

Exercise 6-1

Try your hand at picking a suitable scale for the blood pressure
data. The numbers you choose do not need to be integers. They can
also be smaller than 1. Try the same thing with some of the datasets
we have examined in earlier chapters.
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Exercise 6-2

Sometimes, it is useful to compare the distributions of two variables
on the same plot. It is possible to do two stem-and-leaf plots back-
to-back with the stem.leaf() function in the aplpack package (you
will need to install and load the package). Do this for Height and
Volume in the trees dataset. Do you see what you expected? Why or
why not? (Hint: what units is each variable measured in?) Try the
same kind of plot for pretest.1 and post.test.1 in the Baumann
dataset in the car package. Is the posttest higher or lower than the
pretest? Is this a useful tool?
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CHAPTER 7
Histograms

Simple Histograms

Let’s revisit the sbp dataset from the multcomp package. A useful tool
for examination of the blood pressure data is the familiar histogram.
In this type of graph, the range of values of a numeric variable of
interest (e.g., sbp) is usually laid out on the horizontal scale (x-axis).
This scale is divided into sections, called bins. The vertical scale (y-
axis) shows how many observations fall into each bin.

Figure 7-1 was produced by calling the hist() function four times,
once for each graph in the figure. Of course, you could have accom-
plished the same thing by typing several command lines at the con-
sole. The basic command is simply hist(sbp).
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Figure 7-1. Histograms of the sbp variable from the sbp dataset, dis-
playing the effect of differing numbers of bins.

Here is the script to produce Figure 7-1:

# Script for Figure 7-1

library(multcomp)

attach(sbp)

par(mfrow = c(2,2))

hist(sbp, main = "a. Let R decide bin sizes")

hist(sbp, main = "b. Choose 4 particular breakpoints",
breaks = c(110,135,160,185))

hist(sbp, main = "c. Suggest number of breakpoints",
breaks = 30)

hist(sbp, main = "d. Set first, last and increment",
breaks = seq(110,190,15))

detach(sbp)

This code leaves the choice of number of bins to R, which is often a
pretty good decision. In addition, each command line adds the
argument main = to produce a title for that particular histogram.

Finally, except for the first graph, the breaks = argument suggests
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the number of bins to use and/or how wide the bins should be. Note
that in all of the graphs created here, the bins in any one graph are
all the same size; in other words, the bars are all the same width.
This is the usual practice for histograms. Anything else would be
very difficult to interpret.

You can use the breaks argument to do the following:
« Provide a number of breaks between bars; for example, breaks
= 30.

o Define specified breakpoints; for example, breaks
c(110,135,160,185).

o Give first, last, and increment values; for example, breaks
seq(110,190,15).

o Provide any other valid specification of a series of numbers; for
example, breaks = c(110:190).

When using breaks, be careful to begin with the lowest number in
the vector; otherwise, you will get an error message. In the previous
example, the lowest value in sbp is 110.

Figure 7-1 shows several examples of histograms of the sbp data. All
of them are histograms of the same variable, but they look quite dif-
ferent. This is because they all have different numbers of bins. You
might draw different conclusions about the distribution of the sbp
scores from the various histograms.

Figure 7-1a gives the impression that many patients have an sbp
score of about 150-160, but fewer patients have higher and lower
scores. Further, the distribution is not symmetrical. Figure 7-1b,
however, which was created by using the argument breaks =
c(110,135,160,185), gives the impression that the distribution is
perfectly symmetrical. Figure 7-1c, which was created by using the
argument breaks = 30, is more like 7-1a than 7-1b, but shows more
detail than either; it is also more volatile than any of the other histo-
grams, with more sudden ups and downs. Figure 7-1d, created by
using the argument breaks = seq(110,190,15), seems to be simi-
lar to 7-1a, but does not show the big drop in blood pressure at the
high end (near 180).

Figure 7-1a uses the default number of bins; this is the number that
R chooses if you do not specify one. Figure 7-1a gives higher resolu-
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tion than Figure 7-1b—there are more bars and a clearer under-
standing of just where the data falls—but lower resolution than
Figure 7-1c. Looking at all of the histograms, it seems that a lack of
symmetry and falling off at the high end are two important features
of the data that we would want to show. In this particular example,
the default option (Figure 7-1a) gives a very good result. This is
often but not always true. See “Exercise 7-1” on page 94 for an
example of a contrary case.

You can control the number of bins in a histogram, but not as easily
as you might hope. If you specify the number of breaks, as in Figure
7-1c, this is treated as a suggestion only. R will select a number that
is probably close, but satisfies a “pretty” criterion. To find more
information about this rule, type ?pretty.

You can add many other arguments to the hist() command. A few
of them are demonstrated in the next example and shown in
Figure 7-2. For example, las = 1 flips the numbers on the y-axis so
that they are upright instead of on their sides, label = T adds the
frequency number at the top of each bar, col="maroon" determines
the color of the bars, and the xlab = argument provides a more
descriptive label on the x-axis:

# Figure 7-2
hist(sbp, main = "sbp dataset", las = 1, label =T,
col = "maroon", xlab = "Systolic blood pressure")
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Figure 7-2. A histogram with added features.

Histograms with a Second Variable

Sometimes, it is important to delve deeper into the data than were
able to do with the simple histogram. For instance, it would be inter-
esting to know if the distribution of blood pressures is similar or dif-
ferent for each gender. One way to assess this possibility is by using
a stacked histogram. The sbp dataset includes the variable gender,
which we can use with a stacked histogram to divide each of the bars
in Figure 7-1a to show how many observations are males and how
many are females. Although the hist() function does not allow us
to do this, histStack(), a function provided in the plotrix pack-
age, makes this easy to do:
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# Figure 7-3
library(plotrix)
library(multcomp)
histStack(sbp$sbp, z = sbp$gender,
col=c("navy","skyblue"),
main = "Systolic blood pressure by gender",
xlab = "Systolic blood pressure", legend.pos = "topright")

The result appears in Figure 7-3.

Systolic blood pressure by gender
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O female
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Systolic blood pressure

Figure 7-3. A stacked histogram of systolic blood pressure by gender.

The stacked histogram readily provides a lot of useful information.
First, it is easy to see the distribution of female blood pressures, in
light blue. However, the male distribution is not so easy to interpret:
because the bottoms of the bars are all at different levels, it is hard to
compare their heights. Nonetheless, we can tell that males have
some higher scores than females, and vice versa. There is another
way to present this data that most people find easier to read. Rather
than putting all the information on one graph, it is possible to break
the information up into two graphs that can appear side-by-side or
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one atop the other. There are several ways to do this in R. One of the
easiest is by using the Hist() function in the RCmdrMisc package:

# Figure 7-4
library(RcmdrMisc)
library(multcomp)
Hist(sbp$sbp, groups = sbpS$Sgender,
main = "Systolic blood pressure by gender",
col = "navy ", xlab = "Systolic blood pressure")

Figure 7-4 presents the results.

Systolic blood pressure by gender

sbp$gender = male

frequency
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I T I

120 140 160 180

Systolic blood pressure

Figure 7-4. Separate histograms of systolic blood pressure for males
and females.

The graphs in Figure 7-4 more clearly display not only that males
have the highest blood pressures, but that they cluster toward the
high end. The Hist() function is fine for a small number of groups,
but it is not so convenient when the number of groups is large. For
that, we can turn to the lattice package.
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The lattice package has a very nice layout for trellis graphics—the
graphics are broken down by groups of observations, appearing as
separate graphs for each group. The Salaries dataset from the car
package includes nine-month salary data for faculty at a college in
the United States for the years 2008-2009. It was collected for the
purpose of studying differences between male and female compen-
sation. Lets produce a set of histograms for each combination of
rank (three ranks) and gender (two genders), or six groups in all.
Install and load the necessary packages first. Then, look at the infor-
mation provided in the dataset. Notice the slightly different syntax
for the histogram() command. The variable Salaries$salary is
preceded by a tilde (~). The combination of variables that will form
the groups follows the vertical bar symbol (|), and we use an aster-
isk (*) to indicate crossing the two variables. We get a very readable
display in Figure 7-5, in which it is easy to compare male and female
faculty salaries at a glance. The order of the grouping variables is
important, however. If we had reversed the order, it would have
resulted in a display that is not so easy to read. Try it for yourself:

# Figure 7-5

install.packages("lattice") # you probably already have it
install.packages("car")

library(lattice)

library(car)

head(Salaries)

rank discipline yrs.since.phd yrs.service sex salary

1 Prof B 19 18 Male 139750
2 Prof B 20 16 Male 173200
3 AsstProf B 4 3 Male 79750
4 Prof B 45 39 Male 115000
5 Prof B 40 41 Male 141500
6 AssocProf B 6 6 Male 97000

histogram(~ Salaries$salary | SalariesS$rank * SalariesSsex,
type = "count", main = "Faculty Salaries by Rank & Gender")
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Faculty Salaries by Rank & Gender
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Figure 7-5. Histograms by groups, produced by using the histogram()
function in the lattice package.

We can make several observations about the data presented in
Figure 7-5. First, comparing the top row of histograms, which show
data for males, to the bottom row, we can see that there are many
more males than females in this study. Next, looking at the histo-
grams from left to right, it is quite clear that there are many more
professors (the highest rank) than associate professors or assistant
professors. Finally, the salary distributions of males and females
have about the same median for each rank, but there are more males
at the high end of salary in both the professor and associate profes-
sor ranks.
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Exercise 7-1

Consider the case0302 dataset from the Sleuth2 package. Make a
histogram of the Dioxin variable, without specifying the number of
breaks. Next, try several different ways of creating bins of various
sizes. Does the distributional shape seem to change? Look at a strip
chart of Dioxin. What does this tell you about the histograms?

Exercise 7-2

Sometimes, you might want to compare two variables. There are
many ways to do this, one way being to look at their histograms. If
two variables are measured on the same scale, it may be enlightening
to look at the histograms back-to-back. The package Hmiscincludes
the histbackback() function for just this purpose. You can use this
function to study the relation between the IQ measurements of
brothers in the Burt dataset from the car package. Also, you can
compare male and female salaries from the Salaries dataset.
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CHAPTER 8
Kernel Density Plots

Density Estimation

A common problem in science is to estimate, from a data sample, a
mathematical function that describes the relative likelihood that a
variable (such as the systolic blood pressure in the sbp example in
the previous two chapters) takes a particular value. We tried to make
a rough estimate of such a graph with histograms in Chapter 7. So,
for instance, if you take a glance at the histogram in Figure 7-2, you
can see that systolic blood pressures close to 150 are very likely to
occur, but scores of about 110 are relatively unlikely. The rule, or
formula, that gives the likelihood of a given value of, for example,
blood pressure is called the density function.

Histograms are a good tool for many problems, being easy to under-
stand and relatively easy to compute. There is, however, a shortcom-
ing of which you should be aware. Many functions of interest are
continuous; that is, they can take any value within a certain range. A
blood pressure value could be 120 or 123 or 129.2, yet the histogram
might force all of those values to be in the same bin and thereby all
to take the value of 120. (Remember that the bin width in the histo-
gram in Figure 7-2 was 10, so all scores equal to or greater than 120
and less than 130 fall within the same bin.) That is to say, we used a
discrete function—one that can only take selected values of blood
pressure—to estimate the density function, which is continuous.
The graph in Figure 8-1a, a kernel density plot, is a smooth line
approximation of the density function.
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Figure 8-1. Kernel density of blood pressures and kernel density
imposed on a histogram of blood pressures.

Look at the graph in Figure 8-1b to see the density estimate pro-

duced by R’s density() function superimposed on the histogram.

You can see that the density curve sometimes goes above the histo-
gram and sometimes below. Imagine that you took several weighted
averages of numeric values of groups of adjacent bins and replaced
the histogram values with smooth lines connecting those averages.
This is a type of smoothing. Several examples appear in Figure 8-1,

the script for which is presented here:

# Script for Figure 8-1; there are 4 graphs

library(multcomp)
par(mfrow =

# Figure 8-1a

c(2,2), cex.main

=.9)

eq = density(sbpSsbp) # estimate density curve of sbp

plot(eq, xlim = c(100,190),
main = "a.

wd = 2) # plot estimate

Systolic Blood Pressure Density Plot",
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# Figure 8-1b
# use histogram to estimate density
hist (sbpS$sbp,
main = "b. Histogram + Kernel Density", col = "maroon",
las = 1, cex.axis = .8, freq = F) # freq=F: prob. densities
lines(eq,lwd = 2) # plot density curve on existing histogram

# Figure 8-1c
eq2 = density(sbp$sbp, bw = 5)
hist (sbp$sbp,
main = "c. Histogram + Kernel Density, bw = 5",
col = "maroon", las = 1, cex.axis = .8,
freq = F) # freq=F: prob. densities
lines(eq2,lwd = 2) # plot density curve on existing histogram

# Figure 8-1d
eq3 = density(sbp$sbp, bw = 10)
hist (sbp$sbp,

main = "d. Histogram + Kernel Density, bw = 10",
col = "maroon", las =1,
cex.axis = .8, freq = F) # freq=F: prob. densities

lines(eq3, lwd = 2) # plot density curve on existing histogram

Figure 8-1a is a kernel density plot. The term kernel refers to the
method used to estimate the points that make up the plot. In Figure
8-1b, a new plot is superimposed on top of the existing histogram by
using the lines() command. Combining two graphs this way is
very useful, and we will use variations of this trick often. In this case,
we view two different methods of summarizing a single distribution.

Putting Curved Lines on a Graph

The 1lines() function is one more tool (remember abline(),
text(), axis(), etc.?) that you can use to put new information on
the current graph. Unlike abline(), which only draws straight
lines, 1ines() can draw lines of almost any shape. 1ines() takes an
argument of either a vector containing points that define a line,
such as the eq vector in the script for Figure 8-1, or a pair of vari-
ables, x and y, that are used to draw the line. Further arguments can
be most of the parameters in par(). For more information, type ?
lines.

The plot in Figure 8-1a shows the default label on the x-axis, which
gives the sample size, N, and the bandwidth. The bandwidth indi-
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cates how spread out the plot is. Figures 8-1b, 8-1c, and 8-1d show
the effects of changing the bandwidth. Figure 8-1b shows the default
bandwidth, the same as Figure 8-1a. Note that it conforms to the
general shape of the histogram. It changes direction three times—
that is, there are three (very small) bends in the line—and we may
well conclude that it is a reasonably good fit to the histogram. Figure
8-1c shows a smaller bandwidth, which fits more tightly to the his-
togram and changes direction five times. Figure 8-1d shows a larger
bandwidth, which results in a flatter line that bends only once.

Choosing a Bandwidth

Which bandwidth should we use? That is not always easy to deter-
mine, and a precise answer is beyond the scope of this book. It
might seem that making the bandwidth very small—creating a line
that fits very closely to the histogram—would be best. Remember,
however, that the histogram is based on a sample of data. If we took
another sample, even a sample from the 69 blood pressures in the
sbp dataset, the peaks and valleys in the histogram would be some-
what different. Maybe a lot different! The more precise we try to
make the density curve, the less likely it is that it will be a good fit to
the histogram from a new sample. Making estimates that are more
detailed than the data warrants is called overfitting and can lead to
embarrassing failures to be replicated on new data. On the other
hand, if we make the bandwidth large, it will probably be a reasona-
bly good fit to most samples but will not capture much detail. In
many cases, you might find that trial and error with different band-
widths gives you some additional insight. In general, very dense data
(i.e., a lot of data) probably warrants a smaller bandwidth, and very
sparse data suggests a larger bandwidth. Many R packages offer den-
sity estimation and methods for finding an appropriate bandwidth.
For example, ASH and KernSmooth are especially fast for large data-
sets, whereas np offers bandwidth calculation based on the data but
is comparatively slow.

Comparing Two or More Density Plots

It is sometimes desirable to compare two or more density plots. For
example, you might want to compare the means of two distributions
and see if they have similar shape and variance. Consider the emis
sions data from Chapter 1, in the section “Using the Data Editor”
on page 14:
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> load("emiss.rda") # load emissions data from Chapter 1
> emissions # look at emissions data

Year N_Amer CS_Amer Europe Eurasia Mid_East Africa
2004 16.2 2.4 7.9 8.5 7.1 1.1
2005 16.
2006 15.
2007 15.
2008 15.
2009 14.
2010 14.
Asia_Oceania
2.7
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Suppose that we wanted to compare the emission profiles of Europe
and Eurasia. We could first make a density plot of the European
emissions data and then use the l1ines() function to plot the Eura-
sian data on top of it. Notice that the following code for Figure 8-2
makes use of the x1im and ylim arguments. This is a way of forcing
the plot of the European density to be big enough that the plot of the
Eurasian density does not run off the graph. Do not be overly
impressed by my seemingly awesome foresight here—I tried it first
without extending the limits of the graph and made a mess! Some-
times trial and error is the only path to enlightenment. The script to
produce the figure follows:

# Script for Figure 8-2
# following par() sets white characters on black background
load("emiss.rda")
par(bg = "black", col.lab = "white",
col.axis = "white", bty="1",
fg = "white", col.main = "white")
euro = density(emissions$Europe) # points on density(Euro)
ea = density(emissions$Eurasia) # points on density(Eurasia)

# use xlim & ylim so 2nd plot does not go out of range
plot(euro, xlim = c(6.9,9), ylim = c(0,2),

main = "CO2 Emissions in Europe and Eurasia",

col = "goldenrod1", lwd = 2)
lines(ea, xlim = c(6.9,9), ylim =

1ty = 2, lwd = 2, col = "cyan")
# lty=2 is dotted line

c(0,2),
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# lwd = 2 is a wider line than default line

legend("topleft",c("Europe","Eurasia"),
text.col = c("goldenrod3","cyan"), bty = "n")

Figure 8-2 illustrates what the preceding code produces.

CO2 Emissions in Europe and Eurasia

Europe
Eurasia

7.5 8.0 8.5

N =7 Bandwidth = 0.2048

Figure 8-2. Two density plots on the same axis. The xlim and ylim
arguments were used in the first plot to make the plotting area big
enough to include the second plot, which otherwise would have gone
out of range.

A Background That Is Not White

Most of the graphs in this book are on white backgrounds, which
looks clean and clear. Notice that Figure 8-2 is on a black back-
ground; this was done just to show what you can do, if youre so
inclined. If you run the script for Figure 8-2 without the par() com-
mand, the usual white background will be used. Run the script
again, this time with the par() command included, and a black
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background will appear. If the black background is produced first,
though, reverting to the white background is not as simple as just
leaving par () out. Running it once will have changed some parame-
ters, and those changes will still be in effect. Each parameter will
need to be reset as an argument in another par() command, chang-
ing “black” to “white,” and vice versa. By the way, if you ever need to
know, you can see just what parameters are in effect by typing the
par() command, with no arguments.

The Cumulative Distribution Function

As enlightening as density plots can be, they do not always give us
the information we really need. Even though the density plot gives a
sense of the relative likelihood of a value on the horizontal axis,
oftentimes we would like to know the likelihood of, for example, a
systolic blood pressure of 120 or less, or 135 or greater, or between
120 and 140. A plot of the cumulative distribution function (CDF)
displays on the y-axis the probability of a score equal to or less than
the value on the x-axis.

Consider a data distribution that follows the normal distribution—
the so-called “bell curve” Our example comes from a simulation, or
a computer imitation of selecting a large sample of numbers from a
population of numbers with specified characteristics. The following
code for Figure 8-3 shows how to do this with the rnorm() function:

# code for Figure 8-3

library(multcomp)

library(Hmisc)

par(mfrow = c(2,2), cex.main = .9, bg = "white")

# get 100,000 numbers sampled from a normal dist
# with mean = 0 and sd = 1
sam <- (rnorm(100000)) #mean = 0 and sd = 1 are default values
plot(density(sam),
main = "a. Density (sampling from Normal distribution)",
col = "corald") # Figure 8-3a

polygon(density(sam), col = "coral4") # color area under curve
plot(ecdf(sam),
main = "b. Cumulative distribution function of sample in

Figure 8-3a", col = "turquoise")

plot(ecdf(sbp$sbp), main = "c. ecdf(sbp$sbp) - base R")
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Ecdf(sbpSsbp,
main="d. Ecdf(sbp$sbp) - Hmisc pack. + grid()",
xlab = "sys blood pressure", col = "deepskyblue3")
grid(col = "gray70") # adds gray grid to current plot
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Figure 8-3. The empirical cumulative distribution function.

The graph in Figure 8-3a is the density plot of the sample of 100,000
numbers generated by the computer. Figure 8-3b shows the CDF of
the dataset. You can see from this plot that about half of all the num-
bers on the y-axis are less than or equal to the x value of 0. You can
also easily see that nearly (but not quite) all of the numbers are less
than 2. The CDF plot in Figure 8-3b was produced by using R’s
ecdf() function, which plots the empirical cumulative density func-
tion. It is a smooth curve because there are so many numbers and
the distribution is continuous. Figure 8-3c shows what happens
when the ecdf() function is applied to the small sbp dataset. The
“curve” is interpreted in the same way as it was in Figure 8-3b, but
the data is so sparse that there are breaks in the plot, making it less
attractive and more difficult to read. Practice reading Figure 8-3c.
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What blood pressure is greater than about half of all the blood pres-
sures? Find the place on the y-axis equal to proportion = 0.5. The x
coordinate is about 150, or slightly less, so about 50 percent of the
blood pressures are equal to or less than 150.

An alternative method to find the CDF is to use the Ecdf() function
in the Hmisc package. You can see the plot produced by this function
in Figure 8-3d. It is a step function rather than a smooth curve, but
it is more appealing than the graph in Figure 8-3c, and easier to
read. There are many advanced features available with this function,
such as the ability to produce graphs for multiple groups and some
labeling options. Although there are still other options for produc-
ing CDFs, one that is especially interesting is the stat_ecdf() func-
tion in the ggplot2 package. Figure 8-4 shows a graph produced by
this function. It is both attractive and easy to read, largely because of
the grid lines. Following is the code to produce it:

# code for Figure 8-4
library(ggplot2)
ggplot(sbp, aes(x=sbp)) + stat_ecdf()
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Figure 8-4. Empirical cumulative density plot produced by the ggplot2
package. The grid lines make this graph relatively easy to read.

Exercise 8-1

Continue the experiment of Figure 8-1. Choose a variety of band-
widths and plot the resulting density-on-top-of-histogram graphs.
Use some bandwidths close to those in Figure 8-1 and some wildly
different. What did you learn?

Exercise 8-2

Based on Figure 8-4, what is the probability of selecting, at random,
a person with a systolic blood pressure of 125 or less? What about
175 or greater? Finally, what is the probability of a blood pressure
greater than or equal to 125, but less than or equal to 1752
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CHAPTER 9
Bar Plots (Bar Charts)

Basic Bar Plot

Let’s revisit the Salaries dataset from Chapter 7. In Figure 7-5, we

produced a display of six histograms, showing the distribution of
faculty salaries in each of six combinations of rank and gender.
Another interesting way of looking at the data would be to compare
the counts of faculty members in each defined group. Let’s begin
with a simpler graph, representing just counts of the three faculty
ranks. If we knew the counts in each rank, we could type them into a
vector, such as in the following:

> ranknum = c(67,64,266)

then make a bar plot (also called a “bar chart”) from the ranknum
vector:

> barplot(ranknum)

If the counts are unknown, we can use the table() function to put
these counts into a vector, and then have barplot() operate on that
vector:
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# preliminary to Fig. 9-1

install.packages("car" # 1f you have not yet installed car
library(car)
attach(Salaries)
rankcount = table(rank) #get counts & save in vector rankcount
rankcount # print results
rank
AsstProf AssocProf Prof
67 64 266

The barplot() function shown in the code that follows uses bar
height to represent the elements in a vector; in this case, it is the
counts of each faculty rank. Thus, the graph will have three bars, the
first two of nearly equal height, and the third one about four times
the height of the other two:

# Fig. 9-1a
barplot(rankcount, ylab = "Count", col = "skyblue",
main = "Faculty by Rank", sub = "a. Number in each rank")

Figure 9-1a shows this bar plot.
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Figure 9-1. Bar plots of the number of professors in each category, of
the average salary in each category, and counts by rank and sex.

Note that although the bar plot looks a little like a histogram, it is
quite different. The bars in the histogram were defined by breaking
a quantitative variable, ever increasing (or ever decreasing) along
the axis, into sections. You could define the bars by different break-
points, if desired. The bar chart uses discrete—or even categorical—
definitions of the bars, so breakpoints are usually fixed and logically
cannot be moved. The bars of a bar plot could be male/female or
horse/cow/pig or mountain/seashore or gold/diamond/paper
money, or any other categories that are mutually exclusive and not
quantitative. Fitting a density plot makes sense over a histogram, but
not usually over a bar plot.

In Figure 9-1a, the height of the bars represented a count of items in
each bar. Although bar plots often are used for displaying counts,
the height of the bar could represent anything; for example a meas-
urement, a mean, income after taxes, and so on. Figure 9-1b illus-
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trates such a bar plot that shows the average salary of each rank. To
make such a graph, you must first put the average salaries in a vector
by means of the aggregate() function and then call barplot() to
operate on the newly created data. The expression salary~rank
indicates that some operation will be performed on salary for each
of the three ranks. FUN = mean shows that the operation will be find-
ing the mean:

aver = aggregate(salary ~ rank, FUN = mean) # aver is new vector
aver # see what is in aver
rank salary
1 AsstProf 80775.99
2 AssocProf 93876.44
3 Prof 126772.11

# Fig. 9-1b- bar height shows mean salary, names are ranks
barplot(averS$salary, ylab = "Average Salary",

names.arg = averS$rank, col = "skyblue",

main = "Faculty Salaries", sub = "b. Average salary by rank")

You can modify the bar plot to show the relationship between two
variables. One way to accomplish this is the stacked bar plot, which
you can see in Figure 9-1c. In this next example, two bars, showing
numbers of male and female professors in the study, are each broken
into smaller sections showing how many of each sex hold each rank.
The first thing to do is to create a table, rank2, breaking down all the
professors into groups of rank and sex:

rank2 = table(rank,sex)
rank2
sex
rank Female Male
AsstProf 11 56
AssocProf 10 54
Prof 18 248

You can display the data in rank2 by using barplot() (the result
appears in Figure 9-1c):

# Fig. 9-1c
barplot(rank2, ylab = "Count", names.arg = c("Female","Male"),
main = "Faculty by Rank and Sex",
col = c("skyblue","skyblue4","burlywood"),
sub = "c. Stacked plot")
legend("topleft", c("Prof","Assoc","Asst"),
text.col = c("burlywood","skyblue4","skyblue"))

It is sometimes difficult to interpret a stacked bar plot, so you might
want to consider another option. The various rectangles represent-
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ing each combination of rank and sex can each become a separate
bar and be grouped, in this case by putting all the bars for one sex
together. You can see such a graph in Figure 9-1d. This requires one
modification from the code used to create Figure 9-1c, which is to
add the beside = T argument:
# Fig. 9-1d
barplot(rank2, ylab = "Count", names.arg = c("Female","Male"),
main = "Faculty by Rank and Sex",
col = c("skyblue","skyblue4","burlywood"),
sub = "d. Grouped plot", beside = T)
legend("topleft", c("Prof","Assoc","Asst"),
text.col = c("burlywood","skyblue4","skyblue"))

Note that the legend() function was added to the code for Figures
9-1c and 9-1d. This is to add extra text to the graph to explain the
meaning of various colors and/or symbols. Depending on context,
the legend can be essential or unnecessary, and sometimes even
counterproductive. The legend can become clutter, so it is important
to determine if it is needed. If it is, your next decision is where to
place it for best effect. It is usually best to put the legend in a part of
the graph that is relatively far away from important figures. Note
that in Figure 9-1c and 9-1d, the legend is in the upper-left corner.
This is done by using the "topleft" argument. The names in the
legend correspond to the values of rank, and the color vector (col
=) is exactly the same as the color vector in the barplot() com-
mand.

Spine Plot

We can improve the stacked bar plot that was a little difficult to read
in Figure 9-1c by using a variation known as the spine plot (also
called a spinogram or proportional stacked bar graph). The idea is
that each of the six rectangles will be proportional in area to the
number of professors in that combination, as they were in the
stacked bar plot. However, in the bar plot both bars were the same
width, and therefore the height was the sole indicator of the count
within a particular sex/rank combination. This resulted in the height
of some portions of bars being so small that they were difficult to
compare to others. The spine plot takes a different approach. Both
bars will be the same height, but they will be different widths. A
scale located on the right side covers the interval from 0 to 1, mak-
ing it easy to estimate the proportion of a rank within a given bar.
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Compare the spine plot in Figure 9-2 to the stacked bar plot in Fig-
ure 9-1c. Which is more comprehensible?
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Figure 9-2. A spine plot (spinogram). Compare this to Figure 9-1c.
Which of the two is easier to comprehend?

Here is the code that produces Figure 9-2:

# script for Figure 9-2
rank3 = table(sex, rank)

rank3
rank
sex AsstProf AssocProf Prof
Female 11 10 18
Male 56 54 248

spineplot(rank3, col = c("skyblue","skyblue4","burlywood"),
main = "Faculty by Sex and Rank")
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Bar Spacing and Orientation

The spacing and orientation of the bars in a chart are important to
communicating the message. Consider the problem of comparing
the salaries of the six combinations of sex and rank. The following
script shows several ways to present the average salaries for each of
the combinations:

# Script for Fig. 9-3
library(car) # Fig. 9-3
attach(Salaries)
par(mfrow = c(2, 2))
grp.sal = aggregate(
salary ~ sex * rank, FUN = mean) # mean of each group

# labels reused several times, can type vector name in commands
rankname = c(" Asst", " ", " Assoc", " ", " Prof", "")

sexcol = c("blue", "maroon"

sexlab = c("Female", "Male")

# Fig. 9-3a
barplot(grp.sal$salary, ylab = "average salary",
names.arg = rankname, col = sexcol,
main = "Faculty Salaries",
sub = "a. Default spacing between bars")
legend("topleft", sexlab, text.col = sexcol,
text.font = 2, title = "Sex",

title.col = "black", cex = 0.8)

# Fig. 9-3b
barplot(grp.sal$salary, ylab = "average salary",
names.arg = rankname, col = sexcol,

main = "Faculty Salaries", space = 1.5,
sub = "b. Wide space between, space = 1.5")
legend("topleft", sexlab, text.col = sexcol, text.font = 2,
bty = lln||)
# Fig. 9-3c

barplot(grp.sals$salary, ylab = "average salary",
names.arg = rankname, col = sexcol,
main = "Faculty Salaries", space = c(1, 0, 1, 0, 1, 0),
sub = "c. Same rank together, space = ¢(1,0,1,0,1,0)")
legend("topleft", sexlab, text.col = sexcol,
text.font = 2, bty = "n")

# Fig. 9-3d

barplot(grp.sal$salary, ylab = "average salary", col = sexcol,
main = "Faculty Salaries", space = c(1, 0, 1, 0, 1, 0),
horiz = T, sub = "d. Horizontal version of c. horiz=T",

names.arg = rankname,
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cex.names = 0.8, las = 1)
legend("bottomright", sexlab, text.col = sexcol,
text.font = 2, bty = "n")

detach(Salaries)

First, we get a vector of mean salaries, grp.mean, for each combina-
tion by using the aggregate() function. The expression salary ~
sex * rank indicates that some operation will be performed on sal
ary in each of the six combinations of sex and rank. FUN = mean
shows that the operation will be finding the mean. We will make
several bar plots, showing different spacings between the bars and a
change of vertical bars to horizontal ones. Such changes can make a
difference in how we perceive the plots.

The next step is to define some character vectors, rankname, sexcol,
and sexlab. This is not necessary, but its a definite convenience:
rather than typing out the character strings in each of the following
calls of the barplot() function, you can substitute the relatively
short vector names.

Figure 9-3 shows that there are four bar plots produced.
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Figure 9-3. Four variants of the same graph, juxtaposing rank and sex.

Each plot command is followed by a legend() command, putting a
legend on the previously produced bar plot. You could type all of the
lines separately in the console; however, it is usually more conve-
nient to put a group of commands for which you want to see the
results on one screen, or one page, into a script. This way, if you
make a mistake, you can simply correct the one error and run the
entire batch of commands again without retyping all of it.

The four bar plots are quite similar, in terms of the groups exam-
ined, the colors, the labels, and the legends. The most important dif-
ference is the spacing between the bars, and in the last plot the
orientation is different, too. In the first plot, Figure 9-3a, the space
argument does not appear, so the default value is used to make the
graph. In Figure 9-3b, the bars are widely separated because we used
space = 1.5; that is, the spaces between bars are 1.5 times the width
of the bars. In the last two bar plots, the male and female bars for
each rank are adjacent, whereas the ranks are separated. This is
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accomplished by using the argument space = c(1, 0, 1, 0, 1,
0), which instructs R that there should be a space of size 1 before the
first bar, size 0 before the second, and so on.

The legend() command for the first plot produces a very tradi-
tional legend with a title and a box around it. In this case, neither of
those elements is really necessary, so the other plots leave out the
title argument and add bty = "n", which deletes the box.

Compare the four bar plots in Figure 9-3. Notice that the legend in
Figure 9-3a makes the graph look a little cluttered. The other graphs
draw attention directly to the bars. If you examine the first two plots
carefully, you will eventually notice that females have a lower aver-
age salary than males in every rank, but, especially in Figure 9-3b,
this is obscured a bit by the wide separation of the bars. Conversely,
in the last two graphs, the difference is obvious immediately! This
demonstrates that just as you should carefully choose words to make
your meaning clear, so too should you choose graphic devices to
make your point as clear as possible.

Exercise 9-1

There is a little quirk in the legend in Figure 9-3d. The legend was
fine for the first three graphs, but when the graph was made hori-
zontal, the order in the legend should have been changed. Why? Try
to fix it.

Exercise 9-2

This one is challenging, but will help you to see how much R you
can do on your own. With the Salaries dataset used in this chapter,
try to reproduce the graph in Figure 9-4, this time by using the pyra
mid() function in the epicalc package. Is this a bar plot or a histo-
gram?
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Figure 9-4. Salaries by sex.
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CHAPTER 10
Pie Charts

Ordinary Pie Chart

The pie chart is one of the most familiar types of graph. It would be
difficult to imagine that you have not seen hundreds of them. One
place where they seem to be taken for granted is in the realm of
investment portfolios. Investment advisors recommend that their
clients allocate their holdings to certain categories of investment, in
specified amounts. Such recommendations are usually presented in
the form of pie charts. Fund managers also report their holdings (at
a point in time) in a similar way. Consider the following portfolio,
allocated to “sectors” (this is not a recommendation, by the way):

o Domestic stocks—30 percent

o Foreign stocks—25 percent

o Bonds—28 percent
 Gold/precious metals—10 percent

o Cash equivalents—7 percent

We can make a vector out of the percentages and use the pie()
function to produce the desired chart, as shown in the following
script:
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# Script for Figure 10-1
par(mfrow = c(2,2))

allocation = c(30,25,28,10,7) # investment allocations

# sector & sectcol will be reused; we won't have to retype them
sector = c("Stock","For'n'","Bonds",
"Gold","Cash") # names fit page
sectcol = c("burlywood","turquoise","firebrick",
"gold3","green4")

# Figure 10-1 top left
pie(allocation, labels = sector, main = "pie, default colors")

# Figure 10-1 top right
pie(allocation, labels = sector, col = sectcol,
main = "pie, choose colors")

# Figure 10-1 bottom left

install.packages("plotrix", dependencies = TRUE)

library(plotrix) # must have first installed plotrix

pie3D(allocation, labels = sector, col = sectcol, explode = .1,
labelcex = .95, labelrad = 1.3, main = "pie3D")

# explode separates pieces/labelrad pushes labels away from edge

# Figure 10-1 bottom right
barplot(allocation, names.arg = sector, col = sectcol,
main = "barplot")

Figure 10-1 shows the results of this script.
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Figure 10-1. Pie charts and a bar plot of the same data. Notice how
much easier it is to compare group sizes with the bar plot.

Figure 10-1 displays three pie charts: one with default colors, created
by using the pie() function; one with the colors in the sectcol vec-
tor, also created by using the pie() function; and one sporting a
three-dimensional view (which looks great!), created by using the
pie3D() function. There is also a bar plot for comparison. Notice
that in the pie charts, the largest three categories appear to be pretty
much the same size. Likewise, the smaller categories, “Gold” and
“Cash,” seem to be equal. However, the bar plot, which was pro-
duced with exactly the same numbers, clearly shows there are differ-
ences. Thus, you may not be surprised to learn that pie charts get a
lot of bad press from statisticians, and for good reason!

Despite the shortcomings of pie charts, there are times when they
might be useful. When there are few categories, and the differences
are pretty obvious, you might prefer to use this type of graph. Fur-
ther, when you want to emphasize what part of the whole is repre-
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sented by a single slice, the pie chart does this well. There are
various ways in which you could organize data to make a pie chart.
Working on the exercises for this chapter will help you to get a bet-
ter understanding of this problem.

Fan Plot

An alternative to the pie chart is the fan plot, which you can see in
Figure 10-2.

Fan Plot

For'n

Bonds
Stock

Figure 10-2. A fan plot.

This type of graph looks a little like a pie chart but fixes the most
serious problem of that kind of graph. Here is the code to create
Figure 10-2:

# Figure 10-2

library(plotrix)

allocation = c(30,25,28,10,7) # investment allocations

# sector & sectcol will be reused; we won't have to retype them
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sector = c("Stock","For'n","Bonds","Gold","Cash")
sectcol = c("burlywood","turquoise","firebrick","gold3",
"green4")

fan.plot(allocation, labels = sector, col = sectcol,
ticks = 30, main = "Fan Plot")

The fan plot in Figure 10-2 uses similar labels and the same colors as
the pie charts in Figure 10-1. It is a little confusing, though, in that
the sizes of the visible wedges do not represent the proportions of
the portfolio given to the sectors named by the wedges. Rather, the
allocations are represented by the arc in the color of each named
wedge. So, you can see that the “Stock” portion is largest, “Bonds” is
second largest, and so on. Another way to think about this graph is
to imagine that the slices from the pie chart were laid down with the
biggest on the bottom, the second largest on top of that, and so
forth. Then, the visible part of the largest slice shows how much
larger that slice is than the second largest. Likewise, we can easily see
how much larger the second largest slice is than the next largest. If
you understand how this plot works, it can be useful to you, but if
you use it for presentation of your data, you will need to explain it
carefully. Even so, there is a good chance that some people will not
understand it, and will conclude, for instance, that the “foreign” sec-
tor is the largest in Figure 10-2. The fan plot is a very clever design,
but long experience with the pie chart may be an impediment to its
adoption. Be careful with this one.

Exercise 10-1

Make a pie chart of the causes of death of British soldiers during the
Crimean War. You can find the data in the Nightingale dataset in
the HistData package. You will need to install and load the package
first. Notice how the dataset is structured; the three causes of death
are three separate variables. You will need to create a new vector
with three numbers: the sums of each of the variables. You can do it
this way:

install.packages("HistData")

library(HistData)

attach(Nightingale)

deaths = c(sum(Disease), sum(Wounds), sum(Other))
Explain how this works. Is this a better use of the pie chart than the
portfolio example? Why or why not?
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Exercise 10-2

Make a pie chart of medium in the Nimrod dataset. You will need to
create a vector containing the frequencies of each medium. The
table() command will work for this. Make this chart a work of art!
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CHAPTER 11

Rug Plots

The Rug Plot

The rug is not really a separate plot. It is a one-dimensional display
that you can add to existing plots to illuminate information that is
sometimes lost in other types of graphs. Like a strip plot, it repre-
sents values of a variable by putting a symbol at various points along
an axis. However, it uses short lines to represent points. You can
place it at the bottom (the default) or top of a graph (side = 3). If
appropriate—for example, if a box plot is vertical—the rug can be
put on the left (side = 2) or right (side = 4) axis. When two
observations have the same value, they are overprinted, so that the
line is darker. Here are some examples:

# Script for Figure 11-1
library(multcomp)
par(mfrow = c(2,2))
stripchart(mtcars$drat,
main="a. side = 3", method = "jitter",
pch = 20, col = "sienna4")
rug(mtcars$drat, side = 3)

boxplot(mtcarsSdrat, main = "b. side = 2",

col = "firebrick")
rug(mtcarsédrat, col = "darkmagenta", side = 2)
hist(airquality$0zone, main = "c. side = 1", col = "cyan4")

rug(airquality$0zone, col = "cyan4")
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boxplot(sbp$sbp,
main = "d. side
rug(sbp$sbp, side

4", col = "darkorange3")
4, col = "cornsilk4")

The preceding script produces the plots in Figure 11-1.
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Figure 11-1. Uses of the rug plot.

Figure 11-1a shows that adding a rug is essentially like putting a
strip chart at the bottom or top of another graph. This is not very
useful on strip charts, because the rug is simply redundant. How-
ever, the rug can be helpful on other types of graphs to reveal infor-
mation that might be lost in those displays. For example, in Figure
11-1b, the box plot shows a skewed distribution, but we could not
possibly know from the box plot alone that the data is in several
clumps, which is clearly shown in the rug. The long upper whisker,
for example, might be the result of several dispersed points or sim-
ply one extreme value. The rug shows all the points and their place-
ment, with one extreme value and a few points clumped just above
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the third quartile. Compare that to Figure 11-1d, in which the rug is
nearly equally spaced throughout its range. The rug in Figure 11-1c
again shows the data to be in clumps. This suggests that changing
the bin size can change the shape of the histogram. By default, the
rug is placed at the bottom of the graph, but you can place it at the
top with the argument side = 3. For more information on the
arguments that you can use, type ?rug. The rug can sometimes be
very helpful, but at other times it offers no real advantage.

Exercise 11-1

Add a rug plot to a density plot of time from the Nimrod dataset.
Add a rug to a box plot of MathAchieve$SES (refer to Figure 5-2).
Which of these is more helpful?
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PART Il
Two-Variable Graphs

It is natural to study the relationship between two variables. If we
examine two quantitative variables, we might wonder if they are
associated or correlated; that is, do they vary together? Or, put
another way, does one become larger as the other grows in size? Or
perhaps just the opposite: does one grow larger as the other becomes
smaller? Is there some other kind of relationship? Or perhaps no
relationship at all? Two-variable graphs enable us to address such
questions as these.






CHAPTER 12
Scatter Plots and Line Charts

Basic Scatter Plots

The scatter plot may be one of the most useful graphic tools that we
have. We can easily study the associations between two variables—
or lack thereof—on this familiar type of graph. Further, many other
graph types are simply variants of the basic scatter plot.

Again, let’s examine the trees dataset. Remember, the head() func-
tion prints out the first six rows. You can see the entire dataset by
typing trees:

> head(trees)
Girth Height Volume

1 8.3 70  10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

There are probably strong relationships among the three variables,
which we should be able to see on a scatter plot. We will use the
plot() function to produce scatter plots. Its basic form is as follows:

plot(x-variable, y-variable, arguments...)

The following scripts produce several scatter plots of the trees data:
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# 4 short scripts to produce the 4 graphs in Fig. 12-1
attach(trees)
par(mfrow = c(2,2), cex = .7)

# Fig. 12-1a: show just 2 points on the graph
trees2 = trees[1:2,] # trees2 a subset, only 1st 2 trees
# see sidebar
plot(trees2$Height, trees2$Girth,
x1lim = c(63,80),
ylim = ¢(7.8,10),
xlab = "Height",
ylab = "Girth",

main = "a. First two trees")

# text() allows annotation on the graph
text(72,8.1,labels = "(Height = 70, Girth = 8.3)",
x1lim = c(61,80),
ylim = c(8,22))
text(65,8.8, labels = "(65, 8.6)",
x1lim = c(62,89),
ylim = c(8,22))

# Fig. 12-1b: note that a basic plot requires very little
coding!
plot(Height, Girth, main = "b. All trees")

# Fig. 12-1c / see Table 3-1 for plot characters
plot(Height, Girth,
main = "c. Change plot character, add grid",
pch = 20,
col = "deepskyblue")
grid(col = "gray70")

# Fig. 12-1d # abline puts linear regression line on plot
plot(Height, Girth,
main = "d. Add regression line", pch = 20,
col = "deepskyblue")
abline(lm(Girth ~ Height),
col = "dodgerblue4",
1ty = 1,
wd = 2) # writes over last plot
grid(col = "gray70")
detach(trees)

Figure 12-1 displays the results.
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Figure 12-1. Scatter plots of Height and Girth.

Figure 12-1 shows several things about using scatter plots. Figure
12-1a shows how to interpret the points (little circles here), just in
case it has been a long time since you did high school math. The
very first tree in the dataset had a Height of 70 and Girth of 8.3. You
can see how it is placed on the graph to correspond to those meas-
urements.

Figure 12-1b takes the next step of plotting all the points (i.e., trees)
on the graph. Note that there does seem to be a relationship between
Height and Girth. As Height becomes bigger, so does Girth. It is
not a perfect relationship, but it is not a random scatter, either.

Figure 12-1c takes the simple step of changing the plot characters.
Not only does this look better, but it is a little easier to read, too. It
also introduces a grid. The grid() function will add reference lines
to the active plot, which is the last plot created if you have not issued
a further command after you created the plot. By default, it draws

Basic Scatter Plots | 131



the grid lines at the tick marks on the axis, but you can change this if
desired. Type ?grid to see how.

What Happened to All the Graphs | Made?

You might want to compare a number of graphs made during a sin-
gle R session. If you simply type a command to make a graph, the
previous one is normally wiped out—gone forever. It is possible,
however, to keep the previous graphic window(s) open. In fact, you
can have as many as 63 graphic windows open at one time. As with
most tasks in R, there are several ways to do this. By the way, it
might be useful to have a few windows open at the same time, but
63 is not recommended!

A method that works on all platforms is to type dev.new() before
issuing the command to make the next graph. This creates a blank
graphic window in which to display the next graph. All previously
created graphic windows remain undisturbed. You can then reex-
amine any of the graphs you have made. You can click any window
of interest to bring it to the foreground, but if there are several,
finding the one you want can be quite tedious.

If you're using a Mac, a more convenient method is to open the
Window menu and click New Quartz Device Window before issu-
ing the command to make a new graph. As before, previous graphs
are undisturbed. It is easy to move from one graph to another by
opening the Window menu and then selecting Quartz2, Quartz5,
and so on.

For Windows-based computers, after creating a new graphics win-
dow by using dev.new(), you can move from one graph to another
by opening the Window menu and then choosing “R Graphics
Device n”

Another approach is to create a graph and click its window. If you
want to save it, open the File menu and then click Save As. In OS X,
you can save the graph as a PDF file. In Windows, you will be given
the choice of saving as any one of several different file types. (There
is also another way to save in various formats, on either platform.
For more information on how to do that, see the section “Exporting
a Graph” on page 31.)

A more convenient method still, if your word processor (or presen-
tation) program allows it, is to click the graph that you want, open
the Edit menu, and then choose Copy. Then, click Paste to place it
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into your word processor. Unfortunately, not all word-processor
programs accommodate this. After you have examined all the
graphs, just delete the ones that you do not want; the remaining
ones are already in a document to which you can add text.

Figure 12-1d adds a regression line on top of the points. This was
done by using the abline() function, which writes over the active
plot. Linear regression is a method of finding the “best-fitting”
straight line to the observed data. If you found the vertical distance
from each point to the place on the line having the same x value,
that distance is an “error”; in other words, it shows how far off the
line was in predicting the value of that point. As a measure of how
well any particular line fits, square all the errors and add them up.
The “best fitting” of the infinite number of lines one could put on
the graph is the one with the smallest sum of squared errors: the
“least squares” line. R finds that line with the lm() function that you
can see in the abline() command in the script of the trees data
from earlier. If the points had fit even closer to the line, we would
have concluded that the relationship between Height and Girth was
even stronger than what we see in Figure 12-1d.

Recall the formula for a straight line, where Y'is a point on the line:
Y=a+(b*X)

In the formula, a = the intercept (the point on the y-axis where the
line crosses it), and b = the slope (the “rise over the run”; that is, the
amount Y changes for every unit change of X).

Here’s how you can get the values for intercept and slope:
Im(Girth ~ Height)

Call:
Im(formula = Girth ~ Height)

Coefficients:
(Intercept) Height
-6.1884 0.2557

So, the formula tells us that the line is determined by the equation:
Girth = -6.1884 + (0.2557 * Height)

Further, we could get relevant statistics for this model by using the
following command:
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summary(lm(Girth ~ Height))

Interpretation of that information, however, is beyond the scope of
this book. In other situations, we might have seen a pattern in the
data that was not close to a straight line, and might have attempted
to fit a curve or have concluded that there was no association
between the two variables. Although it is great to have the capability
of adding regression lines to your plot, if you do not really under-
stand what you are doing, you will be a bit like a child playing with
matches, so be cautious!

Subsets

In Figure 12-1a, trees2 is a subset—a smaller dataset, extracted
from trees. Subsets are useful for comparing a part to the whole, or
two component parts to each other. Even though R offers several
ways to make subsets, the method used in the script is elegant and
economical, requiring little typing. The data frame/vector name is
followed by two items in square brackets: an expression about rows,
and an expression about columns.

The simplest use is finding a single element. For example, to find
the element in the 3rd row and 2nd column:

> trees[3,2]
[1] 63
Alternatively, you might want to create a new vector with that num-

ber in it:

> newrow = trees[3,2]
> newrow
[1] 63
If the row expression or the column expression is left empty, the
subset includes that entire row or column. If you wanted the entire
3rd row, you could use this:

> trees[3,] # trees[-3,] for everything *but* the 3rd row

Girth Height Volume
3 8.8 63 10.2

You can use a:b notation to get the elements beginning with a and
ending with b. So, if you wanted all the rows from the 4th to the
6th, but only columns 2 and 3, you could do this:

> trees[4:6, 2:3]
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Height Volume
4 72 16.4
5 81 18.8
6 83 19.7

You can use vector notation to select noncontiguous rows or col-
umns by number and/or by variable name:

> trees[,c("Girth","Volume")] #trees[,c(1,3)] does same thing

Girth Volume

1 8.3 10.3
2 8.6 10.3
3 8.8 10.2
4 10.5 16.4
5 10.7 18.8

Here’s how you can delete any rows with missing values:
> mysubset = na.omit(airquality)

To select only those observations with certain characteristics, the
subset() function will probably be the best choice. For example:

> subset(trees, Height > 70) # only trees with Height > 70

Girth Height Volume

4 10.5 72 16.4

5 10.7 81 18.8

6 10.8 83 19.7

8 11.0 75 18.2
Line Charts

A special case of the scatter plot that is very common and very use-
ful is the line chart (also called “line graph” or “line plot”). In this
type of graph, no two points have the same x value. Further, the
points are connected by a line from the point with the lowest x value
to the point with the next lowest x, and so on. It is also possible to
display two or more line charts on the same set of axes. The plot()
function, used for scatter plots, also produces line charts. Some
examples of line charts are presented in Figure 12-2.

To create our charts, let’s use the Nightingale dataset from the Hist
Data package, which you first saw in “Exercise 10-1” on page 121.
Load this package and take a look at the data:
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# if not already done, must install HistData or the

# following won't work

# install.packages("HistData", dep = T)
library(HistData)

attach(Nightingale)

head(Nightingale) # head() prints out the 1st 6 rows

Date Month Year Army Disease Wounds Other

1 1854-04-01 Apr 1854 8571 1 0 5

2 1854-05-01 May 1854 23333 12 0 9

3 1854-06-01 Jun 1854 28333 11 0 6

4 1854-07-01  Jul 1854 28722 359 0 23

5 1854-08-01 Aug 1854 30246 828 1 30

6 1854-09-01 Sep 1854 30290 788 81 70
Disease.rate Wounds.rate Other.rate

1 1.4 0.0 7.0

2 6.2 0.0 4.6

3 4.7 0.0 2.5

4 150.0 0.0 9.6

5 328.5 0.4 11.9

6 312.2 32.1 27.7

The data records the monthly deaths of British soldiers in the Cri-
mean War. Each line of the data represents one month, with a num-
ber of variables such as the month and year, army size, and number
of deaths from each of three causes. It is easy enough to plot the
number of deaths from Disease for each Date, which would give an
ordinary scatter plot. You might want to try it. The graph will give a
much greater sense of order, however, if the dots are connected,
from the first month to the second month, the second to the third,
and so on. This is a basic line chart. You can create such a graph by
adding the argument type = "b" to plot(). It is also necessary to
add the argument 1ty = "solid" to specify the type of line. (The
line could also be "dotted", "dashed", or other types; type ?par for
more information.) The following script produces the line charts in
Figure 12-2:

# Figure 12-2 - 4 graphs

par(mfrow = c(2,2)) # put 4 graphs on one page

library(HistData)
attach(Nightingale)

# Figure 12-2a
plot(Date, Disease,
type = lIbH’
pch = 20,
1ty = "solid",

main = "a. Line chart of Disease")
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# Figure 12-2b

plot(Date,Disease,

type = "1",

1ty = "solid",

main = "b. Line chart, Disease, Wounds, Other")
lines(Date,Wounds,

1ty = "dashed",

col = "red",

wd = 2)

lines(Date, Other,
1ty = "dotted",
col = "navyblue",
wd = 2)

# Figure 12-2c
plot(Date, Disease,

type = "h",

1ty = "solid",

wd = 20,

main = "c. Change Disease to histogram",col="gray67",
lend="butt")

lines(Date,Wounds,

1ty = "solid",

col = "red",

wd = 2)

lines(Date, Other,
1ty = "dotted",
col = "navyblue",
wd = 2)

# Figure 12-2d
plot(Date, Disease,

type = "h",

1ty = "solid",

wd = 20,

main = "d. Add legend, remove box",col="gray67",

lend ="butt",bty="1")
lines(Date, Wounds,
1ty = "solid",
col = "red",
wd = 2)
lines(Date, Other,
1ty = "dotted",
col = "navyblue",
wd = 2)
legend("topleft",
c("Death from Disease","Death from Wounds","Other Deaths"),
text.col = c("gray40", "red", "navyblue"),
bty = "n",

LineCharts | 137



cex = .5)

detach(Nightingale)
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Figure 12-2. A line chart of the causes of death in the Nightingale data-
set, in several transformations.

For the moment, take a look at Figure 12-2a. Another way to present
this plot is to leave out the dots and have a completely connected
line, which we can do by changing type = "b" to type = "1", asin
Figure 12-2b. The lines() function has also been applied to Figure
12-2b to place two additional lines on the chart, the deaths due to
Wounds and Other.

The differences in cause of death over the course of the war are
stunning. Deaths from disease far outnumber deaths from wounds
and other causes for much of the war. Although the effect is notable
in Figure 12-2b, we can highlight it by a simple change in the
graph . See Table 12-1 for type argument options. One of them is
type = "h" for histogram, which is what we see in the plot in Figure
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12-2c. It was also necessary to add lend = "butt" to make the his-
togram bars (line end or “lend”) have square corners instead of
rounded ones.

Figure 12-2c tells the story more dramatically, showing the gray bars
of disease in the histogram, looming over the entire war. As if war
were not tragic enough, disease, for which the British were not pre-
pared, multiplied the catastrophe. The next step is to add a legend in
which the colors of the various causes of death are identified, as is
done in Figure 12-2d. (If you need to review the legend() function,
refer to the section “Data Can Be Beautiful” on page 52.) Further-
more, Figure 12-2d removes the box around the plot by using the
bty = "1" argument.

Table 12-1. Options for lines made with plot() or lines()

type = "p" Points

type = "1" Lines

type = "b" Both lines and open points

type = "c" Lines with spaces at the places points would be
type = "o" Overplotted (i.e., lines with filled-in points)
type = "h" Histogram-like vertical lines

type = "s" Stair steps

type = "S" Different stair steps

type = "n" No plotting

1ty = "blank"

1ty = "dotted"

lty = "dashed"

1ty = "dotdash"
1ty = "longdash"
1ty = "solid"

1ty = "twodash"

wd = 1 Line width. The default is 1. Specify a greater number for a thicker line or
a smaller number for a thinner line.

Finally, the next graph (see Figure 12-3) might seem a little “over the
top” in terms of the amount of extra work it takes, but it is included
here to make a point. We'll go over how to create it, but if you want,
you can just skip to the last paragraph of this section.
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British Army Deaths, Crimean War
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Figure 12-3. A completed line chart of the Nightingale dataset.

Here are several improvements that make the graph in Figure 12-3
more attractive and more complete:

Add a title by using the main argument in plot() as well as labels for
the axes
I have chosen to make the already long plot command shorter by
defining a vector, t, separately and then using main = t in plot().
Similarly, the vectors x and y have been created for labels.

Add another line to show the size of the army during each month
This is a little tricky because the size of the army is much larger
than the number of deaths. Using the same scale would either send
the Army data off the graph or make Wounds and Other so small and
close to the horizontal axis that they would be barely noticeable. I
decided to divide Army by 20 and plot the resulting new variable
with a second vertical axis, on the right side, to show the scale for
troop strength. Plotting a variable that is measured on a different
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scale can be confusing or misleading, so you need to take great care
when doing it. In this case, I deliberately made the right axis quite
different from the left axis, in terms of color, size of numbers, and
line type so that it would be as clear as possible that two different
scales are being presented.

Improve the presentation of the horizontal axis

Figure 12-4 shows only two points on the x-axis for the Date vari-
able. I created a new variable, mon, with values from 1 to 24 for the
24 months during which the war took place. This variable will be
on the x-axis. This works only because the dataset is sorted by
month. In plot(), the argument xaxt = "n" suppresses the print-
ing of x-axis labels so that a new axis can be created with the labels
that will be specified for three months of each year, enough to give
sufficient detail, but not so many that they run together and
become unreadable. The at argument gives the values of months
and the labels argument gives the names of the months.

The following is the script to create the enhanced Figure 12-3:

# Script for Figure 12-3

# 1f not already done, must:

# install.packages("HistData", dep = T)

library(HistData)

attach(Nightingale)

par(mar = c(6,6,5,5), cex = .8) # control size of plot window

Army2 = (Army)/20 # reduce size of Army so it fits on plot

t = "British Army Deaths, Crimean War" # make plot stmt shorter
x = "Date, by Month, from April, 1854 to March, 1856"

y = "Number of Deaths per Month"

mon = 1:24 # create new var, easier to work with than Date

plot(mon, Disease,
type = "h",
wd = 22,
col = "gray67",
lend = "butt",

main = t,
col.main = "maroon",
ylab = vy,
xlab = x,
cex.lab = .8,
las = 1,
cex.axis = .9,
bty = "l",
xaxt = "n")
#xaxt = "n" suppresses x-axis labels; use axis() for custom axis
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lines(mon,Wounds,

pch = 18,

col = "red",
1ty = "solid",
wd = 2)

lines(mon, Other,
1ty = "dotted",
col = "pavyblue",
wd = 3)

lines(mon, Army2,
1ty = "dashed",
col = "seagreen4",
wd = 2)

# horizontal axis
axis(1, at = c(2,6,10,14,18,22),
labels = c("May 54","Sep 54","Jan 55","May 55","Sep 55",
"Jan 56"))
# right axis
axis(4, at = c(0,500,1000,1500,2000,2500),
labels = c("@", "10K","20K","30K","40K","50K"),

las = 1,

tick = T,

cex.lab = .6,

col = "seagreen4",
col.axis = "seagreen4",

ylab = "Troop Strength")

legend("topleft", c("Death from Disease","Death from Wounds",
"Other Deaths","Troop Strength"),
text.col = c("gray40","red","navyblue","seagreen4"),

bty = "n",
cex = .8)
detach(Nightingale)

This section demonstrated the construction of a complex line chart.
As with some previous examples, constructing this graph involved
creating several layers, applied one-by-one to make a complex dis-
play that afforded us a great deal of control over the final product.
Maybe Figure 12-2b would have met your needs and you would not
have needed to go to all the trouble of producing a graph like that in
Figure 12-3. On the other hand, you might want a really eye-
catching display. Sometimes, you might need to do all the ugly work
to get one, but you can make really beautiful graphs. Other times,
you can take advantage of the work that the maker of a package has
already done, as we will see in the next section.
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Templates

R produces fine basic scatter plots with little trouble. You can also
customize your plots by taking advantage of the many arguments
available with the plot() function. You can alter the axes; add titles;
change the plot characters; change the colors of the background,
titles, and points; and so on. This customization can sometimes be a
lot of work, as it was in the preceding section. However, some pack-
age designers have included templates, or style types, in their pack-
ages to make a variety of styles easy to implement. One that I like is
from the latticeExtra package, which imitates the style used for
graphs in the Economist magazine. Figure 12-4 presents the plot
from Figure 12-1b, redone with this style.
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Figure 12-4. Plot of trees data as a lattice graph with asTheEcono-
mist() function.

You get a very pretty graph with very little code:
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# use a template to produce Fig. 12-4

# if not already done, must:

# install.packages("latticeExtra", dependencies = T)

library(latticeExtra)

attach(trees)

asTheEconomist(xyplot(Girth ~ Height), xlab = "Height",

type = "p", with.bg = T)

detach(trees)
Another set of templates is provided in the epade package. The scat
ter.ade() function produces scatter plots. Using its wall argument,
you can choose from several output styles. The argument wall = 0
produces a graph similar to the plot() function, but arguments
from 1 to 6 create interesting alternatives. Each of the six fancy
graphs in Figure 12-5 required just one line of code. There are also
arguments for colors of points, text, background, and lines, as well
as arguments for legends, line types, point types, and so on. For
more information, type ?scatter.ade.
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Figure 12-5. Scatter plot styles produced by scatter.ade() function in
the epade package
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The script that follows shows how easy it was to produce the six
graphs in Figure 12-5. You may or may not like the styles, but they
will look quite different in color, as you will see later, in Figure 12-7:

# Figure 12-5
install.packages("epade") # if not already installed

library(epade)

attach(trees)

par(mfrow = c(2,3))

scatter.ade(Height, Girth, wall = 1, main = "wall = 1")
scatter.ade(Height, Girth, wall = 2, main = "wall = 2")
scatter.ade(Height, Girth, wall = 3, main = "wall = 3")
scatter.ade(Height, Girth, wall = 4, main = "wall = 4")
scatter.ade(Height, Girth, wall = 5, main = "wall = 5")
scatter.ade(Height, Girth, wall = 6, main = "wall = 6")

detach(trees)

Any of the styles in Figure 12-4 and Figure 12-5 would have taken
quite a bit of effort to produce from scratch, and a lot of code. How-
ever, the package developers shared their efforts with us, and it was
pretty easy to make graphs using the templates they provided. The
epade package also provides similar templates for certain other
functions. Although it can take a lot of time to search through the
thousands of R packages, it is frequently time well spent.

Enhanced Scatter Plots

In addition to plot(), there are many other R functions for scatter
plots. Some of them offer substantial enhancements. A good exam-
ple is scatter plot() from the car package. Figure 12-6 shows a
plot produced by this function including several extras:

» Box plots in the margins to show the distribution of each vari-
able

o A regression line, in green

o Agrid

o A smoother, in red, with a measure of spread, in dotted red
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Figure 12-6. Scatter plot of Girth and Height produced by the scatter-
plot() function in the car package.

A smoother is a tool for making patterns in scatter plot data a little
easier to see. There are several types of smoothers, but they all show
the center of the y’s at a given value of x (or several close x’s) and do
it in such a way that the (usually curved) line formed by connecting
all such points is relatively smooth. Figure 12-6 shows a scatter plot
with a smoother, represented as a red line. You can use the smoother
argument to select a smoothing method, but Figure 12-6 uses the
default method, “loess,” or locally weighted regression.

scatterplot() can also easily handle regression lines by groups,
outlier identification, and other things that are beyond the scope of
this book. For more information, type ?sp. Here is the code to pro-
duce Figure 12-6:

# Figure 12-6
library(car)
attach(trees)
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sp(Height, Girth) # note the abbreviation "sp"
detach(trees)

Aside from the templates that we saw in the last section, the scat
ter.ade() function in the epade package has a few other notable
features. It can plot data by groups; it can plot points with size repre-
senting magnitude; or it can place linear regression, loess, or poly-
nomial lines on a plot, and handle legends quite easily. Figure 12-7
shows an example of scatter.ade() plotting data by the groups
“treated” and “untreated” To get a little information about the
experiment from which the data came, you can type ?Puromycin.
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Figure 12-7. Plot of Puromycin data by scatter.ade() in the epade pack-
age.
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Here is the code to produce Figure 12-7:

# Figure 12-7

library(epade)

attach(Puromycin)

scatter.ade(conc, rate, group=state,
col = c("royalblue3", "siennal"),
legendon = "topleft", wall = 6,
main = "Puromycin dataset")

detach(Puromycin)

The lattice package is designed to produce trellis plots, which
were first mentioned in the section “lattice” on page 37. This might
be a good time to go back and review that section. There is an exam-
ple of a scatter plot trellis graph in Figure 2-3. Figure 12-8 shows the
Puromycin data plotted by using lattice, with the treated and
untreated subjects in different windows, or panels. Contrast this to
Figure 12-7.
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Figure 12-8. The Puromycin data plotted as a trellis graph by xyplot()
in the lattice package.
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Following is the code to create Figure 12-8:

# Figure 12-8
library(lattice)
attach(Puromycin)
xyplot(rate ~ conc | state)
detach(Puromycin)

The scatter plot is, perhaps, the most useful and most frequently
used type of graph. Many other graphs, including several of the
graphs in following chapters of this book, are based on the scatter
plot. R provides many implementations of this graphic type, a few of
which have been discussed in this chapter. Ponder for a moment
that the varied scatter plots in this chapter are all “R” The plot func-
tions in this chapter will probably serve you well, but there are more
scatter plot functions to find in R, if you care to search for them.

x and y: Why?

Some functions that produce scatter plots, such as plot() and scat
ter.ade(), expect the variable names for x and y to be in a list, in
the form x, y. Other functions, notably xyplot(), expect a formula
oftheformy ~ xory ~ x | z where zis a conditioning variable.
Some functions, such as scatter plot(), accept the variable
names in either format. Actually, plot() will also accept either,
even though its help file doesn’t say that. Many—perhaps most—R
functions will accept one or both of these forms, or a close variant.

Exercise 12-1

If you saved the emissions dataset used in “Exercise 1-2” on page
15, you can retrieve it now by using the command:

> load("emiss.rda")
If you did not save it, enter part of the data now, as three vectors:

> Year = c(2004:2010)

> Europe = (7.9, 7.9, 7.9, 7.8, 7.7, 7.1, 7.2)

> Eurasia = c(8.5, 8.5, 8.7, 8.6, 8.9, 8, 8.4)
Make a line chart showing emissions in both Europe and Eurasia
over the seven-year period. Make the lines different, by color and/or
line type. Include a legend. Your graph should look something like
Figure 12-9.
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Figure 12-9. A line chart of emissions in Eurasia and Europe.

Exercise 12-2

Make a simple plot of the Velocity (x-axis) and Distance (y-axis)
of the nebulae outside the Milky Way, which you can find in the
case0701 dataset from the Sleuth2 package. What is the relation-
ship between these two variables? Next, use a template of your own
choosing to make a more interesting display of the data.
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CHAPTER 13
High-Density Plots

Working with Large Datasets

Sometimes a large dataset can be a challenge when applying techni-
ques such as scatter plots. Let’s consider one such dataset from the
car package. Vocab contains more than 21,000 observations con-
taining some basic demographic data and scores on a vocabulary
test. Load the package and look at the data (be careful to use the
head() command; you do not want to print the entire dataset!):

> library(car)

> attach(Vocab)
> head(Vocab)

year sex education vocabulary
20040001 2004 Female 9 3
20040002 2004 Female 14 6
20040003 2004 Male 14 9
20040005 2004 Female 17 8
20040008 2004 Male 14 1
20040010 2004 Male 14 7

It might be interesting to examine the relationship between vocabu
lary and education. Does it seem reasonable to expect that those
with low education will have low vocabulary scores and that the
scores will increase as amount of education increases? A scatter plot
should make this clear. Here’s how to create it:
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# Figure 13-1

library(car)

attach(Vocab)
plot(education, vocabulary)
detach(Vocab)

The scatter plot in Figure 13-1 is anything but clear! There is not a
simple line or band of points showing the relationship we thought

we would see. There is a little whitespace at the upper left and the
lower right, but every other place looks equally populated.
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Figure 13-1. A scatter plot of education and vocabulary

The two variables are discrete; that is, even though they are numeric,
not categorical, they take on only limited numbers of values over
their numerical range. The amount of education is measured in
number of complete years. Therefore, an individual might have
completed 12 years of education, but not 12.4 or 10.75. Likewise,
vocabulary is measured in number of correct answers. With vocabu
lary taking only 11 values, from 0 to 10, and education taking only
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21 values, from 0 to 20, there are just 11 x 21 = 231 places on the
graph where points can appear—yet there are more than 21,000 peo-
ple in the survey. This means, of course, that there is a lot of over-
printing. What can we do?

In Chapter 3, we used a clever trick called jittering to deal with a
similar problem in a strip chart. This might work. However, if points
are jittered up or down, it will look like the vocabulary scores are
not whole numbers, suggesting a more precise test than it actually
was. Let’s try it, with scatter plot(), which has a jitter argu-
ment:

# Figure 13-2

library(car)

attach(Vocab)

sp(education, vocabulary, jitter = list(x =2, y = 2),
smoother = F, spread = F, reg.line = F)

Figure 13-2 depicts the results.

vocabulary

education

0O 0 0O 0o o o o o o

Figure 13-2. Scatter plot with jittering.

Working with Large Datasets | 153



The scatter plot in Figure 13-2 shows a marked improvement over
the first plot, and we can now discern a clear pattern. You can con-
trol the amount of jittering using the following argument:

jitter = list(x = 2, y = 2)

Try changing the jitter amount from 2 to other values to see what
effect this has.

The other method we used earlier was to employ a smaller plot sym-
bol, but that trick is no good in this situation. Here, it would not
separate the points, it would only make them smaller. However,
making smaller points and jittering at the same time could clear
things up a little more. Try it.

Sunflower Plot

Another alternative method of plotting is the sunflower plot. This
type of plot uses differing characters on a particular graph location,
depending on how many points are coincident at that spot. Let’s take
a look:

# Figure 13-3
library(car)
attach(Vocab)
sunflowerplot(education, vocabulary,
main = "Sunflower Plot",
col.main = "deepskyblue3",
family = "HersheySerif",
font.lab = 3) # x and y labels are in italic
detach(Vocab)

Figure 13-3 shows what this plot looks like.
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Figure 13-3. A sunflower plot of education and vocabulary

The sunflower plot in Figure 13-3 looks somewhat similar to the jit-
tered scatter plot. Let’s consider how the sunflower plot represents
the data. Look at the point at the extreme upper left. It is a black dot
with a red petal above the dot and another red petal below. This rep-
resents two observations (there were actually 2 of the 21,000 people
in the survey who reported no education and a perfect score on the
vocabulary test!). Likewise, at the lower left, there is one person with
20 years of education (PhD? MD? Two master’s degrees?) who
answered no questions correctly on the vocabulary test. Might this
say something about the quality of the data? Are there mistakes
here? If we go back to the upper left and move across the top of the
graph, toward the right, we see the next two dots representing one
observation each, another point with two petals, a point with nine
petals (representing nine observations), the next with three petals,
and so on. The solid red circles represent many observations; so
many, in fact, that we can no longer count the petals.
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Although this graph still does not offer ideal visual resolution, it
does provide a pretty good indication of the density of points at any
particular location on the graph. It seems that the expected relation-
ship between years of education and vocabulary holds true.

Change Fonts?

Did you notice a change in the font types in Figure 13-3? A number
of alternative fonts are available in R. You can request fonts by
using the family argument in the par() command, which will
affect any commands given thereafter until a new par() command
is issued. Most commands for plotting will also accept the family
argument for just the graph created by one command. For more
information about available fonts, type ?Hershey or demo(Her
shey).

In addition, you can specify font types by using the font argument
(or font.axis, font.lab, font.main, or font.sub):

o 1 =plain text

o 2=bold

o 3 =italic

4 =bold italic

o 5=symbol font

Note that not all families include all font types (e.g., bold italic,
extra bold, condensed). For more details, type ?Hershey.

Smooth Scatter Plot

There are even better graphical tools in R to deal with this problem
of high-density data. The smoothScatter() function takes a differ-
ent approach:

# Figure 13-4
library(car)
attach(Vocab)
smoothScatter(education, vocabulary,
las = 1,
family = "HersheyGothicGerman",
main = "Smooth Scatter Plot", font=3)
# las = 1 rotates numbers on y-axis
detach(Vocab)
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Figure 13-4 shows the results of using smoothScatter().

CGmooth Scatter Plot

10 4 -

pocabulary

education

Figure 13-4. A smooth scatter plot of education and vocabulary.

The smooth scatter plot in Figure 13-4 uses hue and color intensity
to show areas of high versus low density. This is not only more aes-
thetically pleasing than the sunflower plot, but it offers better reso-
lution, too. Notice, for instance, a very dark spot for about 12 years
of education (high school graduate) and vocabulary scores of about
5 to 7. There are other dark bands at about 14 years of education
(community college) and 16 years of education (college graduate).
No such thing was visible on the sunflower plot.

The sunflower plot shows the major trend quite well, perhaps even
better than the smooth scatter plot. The smooth scatter plot, on the
other hand, shows certain details that we would have missed entirely
had we relied only on the sunflower plot. While exploring data, it is
usually a good idea to look at the data in several different ways. Even
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though the smooth scatter might be our choice for a final presenta-
tion of this data, it will not always be the best choice.

Hexbin Plot

Another choice for such a large dataset is to do binning. This is
rather like the sunflower plot, but provides counts in bins rather
than simply varying shapes. This can be accomplished using the hex
bin() function provided in the hexbin package; an example of the
result appears in Figure 13-5. Several color gradients are available, as
colramp = options. (For more information, type ?ColorRamps.) The
example shown uses the color gradient BTC. Note that there is a key
on the right side, showing the number of counts represented by a
particular color. A number of options are also possible, such as
smoothing, trellis hexbins, adding a straight line, hexbin plot matri-
ces, and others. For more information, type ?hexbin.
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Figure 13-5. An example of binning by using the hexbin() function.
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Here is the code to produce Figure 13-5:

# Figure 13-5 - hexbinning

install.packages("hexbin", dependencies = T)

library(car)

library(hexbin)

plot(hexbin(Vocab$education, Vocab$vocabulary, xbins = 10),
xlab = "Education", ylab = "Vocabulary", colramp = BTC)

You do not always need the xbins argument. In this particular case,
though, it is very useful. Try making this plot without the xbins
argument to see what happens. The default value of xbins (the num-
ber of bins along the x-axis) is 30. The argument xbins = 10 makes
the bins wide enough to fill up the empty space. A higher number
puts smaller bins farther apart, and a lower number puts fatter bins
closer together.

It would, perhaps, be more satisfying to see a smoother plot, but
there are a couple of constraints that prevent this. First, the data is
discrete, consisting only of whole numbers, so there can only be 11
levels of vocabulary and only 21 levels of education. Second, the
color ramp is designed to have only so many levels that the progres-
sion from one color to the next is a “just detectable difference”
Therefore, we can have no more than 16 levels of color.

The hexbin and smooth scatter plots are two types of false-color
plots, which use color gradients to represent amounts or intensities.
The heat map plot, discussed later in the book, is another type of
false-color plot.

Exercise 13-1

Make a simple scatter plot of MathAch (y-axis) and SES (x-axis) from
the MathAchieve dataset in the nlme package. Is there a clear trend?
Can you get a better grasp of the relationship with another kind of
plot? Try each of the plot types introduced in this chapter. Which
type offered the most insight, and which offered the least?
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CHAPTER 14

The Bland-Altman Plot

If you are not interested in programming, you
can skip this chapter with no loss of continuity.

Assessing Measurement Reliability

This chapter illustrates the flexibility of R. You cannot find the type
of graph examined here in base R, and it can take a bit of effort to
find such a specialized kind of plot among the thousands of avail-
able packages. I decided to write my own function to accomplish the
task and have included it here. Since I wrote this function, I discov-
ered that at least two packages include this plot; I'll introduce one of
them here. There is a little more typing to do in this chapter than in
most others, with a dataset to enter in a spreadsheet or text file and a
relatively long R function to type. There is an alternate, shorter ver-
sion of the function at the end of the chapter that you can use
instead if you like.

The Bland-Altman plot is a tool used to assess the agreement
between two measurement techniques, or the reliability/repeatabil-
ity of a measurement. It is also known as the “Tukey mean-
difference plot”

Bland and Altman (1986) give the data listed in Table 14-1 on meas-
uring peak expiratory flow rate (PEFR), in liters/minute, with two
different types of meters, a Wright flow meter and a Mini Wright
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flow meter. Two measurements were made with each meter, on each
subject. The object here is to determine whether the Mini meter
gives substantially the same readings as the Wright meter and could,
therefore, be substituted for the standard measurement. Note that
this is not a correlation problem. (A brief introduction to correla-
tion appears in the section “Corrgram” on page 190.) Close associa-
tion—even perfect correlation—of the two methods is not enough;
the measurements themselves must be interchangeable. In other
words, does one get the same results with both meters?

Table 14-1. Bland-Altman PEFR data
Subject Wright1 Wright2 Mini1 Mini2

1 494 490 512 525
2 395 397 430 415
3 516 512 520 508
4 434 401 428 444
5 476 470 500 500
6 557 611 600 625
7 413 415 364 460
8 442 431 380 390
9 650 638 658 642
10 433 429 445 432
n 417 420 432 420
12 656 633 626 605
13 267 275 260 227
14 478 492 477 467
15 178 165 259 268
16 423 372 350 370
17 427 o 451 443

Enter the data in a spreadsheet and save it as a .csv file named Blan-
dAltmanPeakFlow.csv. Read the data into an R data frame named
Flow by using the following command:

Flow <- read.csv("BlandAltmanPeakFlow.csv", header=TRUE)

Use the following command to verify that the data is the same as in
Table 14-1:

head(Flow)
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The R function presented next will produce the Bland-Altman plot
shown in Figure 14-1. It is basically a scatter plot of 17 points, one
for each subject in the study. A point (x,y) on the graph is defined as
x = the average of the two measures for one subject, and y = the dif-
ference between those same two measures. The function is defined
as follows:

# result in Figure 14-1; shorter version at end of chapter
baplot <- function(measl, meas2){

# calculate averages and differences
ave = (measl + meas2)/2
dif = measl - meas2

# calculate parameters for reference lines
std = sd(dif)
mdif = mean(dif)
mdrnd = round(mdif,3)
mxav = max(ave) - (max(ave) - min(ave))/12
upperci = round((mdif + std*1.96), 3)
lowerci = round((mdif - std*1.96), 3)
maxx = 1.05*(max(ave))
minx = 1.05*(min(ave))
maxy = max(upperci,max(dif))
miny = (min(lowerci,min(dif)))

# plot points

plot(ave,dif,

pch = 16, col = "deepskyblue3",

x1lim = c(minx,maxx), ylim = c(1.1*miny, 1.1*maxy),
main = "Bland-Altman Plot",

col.main ="deepskyblue4",

xlab ="Average of two methods",

ylab ="Difference between two methods", las=1)

# draw reference lines
abline(h = mdif,

1ty = "solid", col = "grey75", lwd = 2)
abline(h = mdif + std*1.96,
1ty ="dotted", col = "grey75", lwd = 2)

abline(h = mdif - std*1.96,
1ty = "dotted", col = "grey75", lwd = 2)

# put text around reference lines
text(mxav, mdif,

labels = "mean difference",
pos = 3,
cex = .7)

text(mxav, mdif,
labels = mdrnd,
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pos =1,
cex = .7)
text(mxav, upperci,
labels = "upper 95% limit of agreement",
pos = 3,
cex = .7)
text(mxav, upperci,
labels = uppercti,

pos =1,
cex = .7)
text(mxav, lowerci,
labels = "lower 95% limit of agreement",
pos = 3,
cex = .7)

text(mxav, lowerci,
labels = lowercti,
pos =1,
cex = .7)

}

Save the function to a file:

save("baplot",file = "baplot")

After you have typed and saved both the data and the function, you
can start an R session and make the graph of this data depicted in

Figure 14-1, comparing wright1 to minil. To do so, issue the fol-
lowing commands:

# Figure 14-1

Flow <- read.csv("BlandAltmanPeakFlow.csv", header = TRUE)
load("baplot")

baplot(FlowSwrightl, Flow$minil)
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Figure 14-1. Bland-Altman plot of PEFR data, produced by using the
baplot() function.

The plot shows one point for each subject. The point represents the
subject’s average of the two measurements (horizontal axis) against
the difference between those same measurements (vertical axis).
There are three reference lines. The solid line indicates mean differ-
ence (called bias in comparison studies). The dotted lines indicate
the limits of agreement. The limits of agreement are calculated by
first finding the mean of the differences (call it #1) and the standard
deviation of the differences (call it s). Thus, the upper and lower
limits are:

m+ 1.96 * s

If you prefer a graph with reference lines but no labels, simply omit
the text statements from the baplot() function.
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The differences between the values in
Figure 14-1 and the values in Bland and Altman
(1986) are due to rounding error. The baplot()
function carries more decimal places and uses
the precise multiplier of 1.96 standard devia-
tions rather than rounding to 2. In practice,
these differences are trivial.

If there were no systematic bias, the points would cluster in a band
around the reference line of the mean. The limits of agreement
should be no larger than clinically acceptable error. In this case, the
limits are quite large—up to nearly 80 I/min—and clinically unac-
ceptable. Differences between the two methods might be related to
the mean of the two measurements. Take note of the cluster of large
differences, near to an average of 400, and the single extreme value
at an average of about 200. The Mini meter appears to be an unac-
ceptable substitute for the standard method. However, this is based
on a very small sample. The apparent discrepancies might not be so
apparent in a much larger sample.

Another use of this type of plot is to compare repeated measures on
the same subject. For example, you could examine the reliability of
the standard method of measurement by constructing the plot for
the variables wrightl and wright2. This is crucial. If the Wright
meter measurements on the same subject do not agree with each
other, there is little point in attempting to assess the agreement with
the Mini meter. Here is the code to produce such a plot:

# Figure 14-2
baplot(Flow$Swrightl, FlowSwright2)

You can see the results of the repeated measure trial in Figure 14-2.
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Figure 14-2. Comparison of wrightl and wright2. Each subject was
measured twice with the same kind of meter.

Whereas most of the differences are pretty small, a couple of the 17
subjects displayed differences of about +50. This outcome raises
some questions about the reliability of flow measurements. Another
study on a larger sample might be helpful.

The epade package provides several plotting tools, including one to
produce a Bland-Altman plot quite similar to mine. This can be
done using the following code:

# Figure 14-3

install.packages("epade") # if not already installed
library(epade)

Flow <- read.csv("BlandAltmanPeakFlow.csv", header = TRUE)
bland.altman.ade(FlowSwrightl, Flow$minil, fitline = 0)

Compare the result, which appears in Figure 14-3, to Figure 14-1.
This function also allows for placing regression lines, either linear,

Assessing Measurement Reliability | 167



polynomial, or loess, on the plot. To see the help file, type the fol-
lowing:

> library(help = epade)

Bland-Altman Plot
+1.96 SD
___________ . gl
[ ]
3 °
[ ]
g
[ ]
% o - ° ° Mean
= ¢ .
2 ° °
[ )
L]
o
8 -
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300 400 500 600
Mean (wright1, mini1)

Figure 14-3. Bland-Altman plot from the epade package.

In this chapter, we have seen how to make a type of graph not pro-
vided in base R by writing a function to make such a graph. You can
save this function and use it again. We also compared a similar but
not identical graph provided in a package that you can download
and add to R. This demonstrates the flexibility and extensibility of R
and suggests that you need to take care in selecting the right tools
for the job. Note that baplot() is a simple example presented to
demonstrate how to write a function. It has limitations. For exam-
ple, it does not work if there are missing values, and it does not offer
any options such as placing regression lines on the plot. If you do
not need more, it should be fine for your use. You might find it
interesting to compare baplot() to a more complex function, such

168 | Chapter 14: The Bland-Altman Plot



as the one in epade. You can view its code by typing the name of the
function, without parentheses (assuming, of course, that you have
previously installed and loaded epade):

bland.altman.ade # displays code for this function

Exercise 14-1

Choose one of the Bland-Altman plots introduced in this chapter to
plot the MFSV data from the ResearchMethods package. What is your
conclusion? Are the two methods interchangeable?

A Shorter Version of baplot()

Here is a shorter version of baplot() without two of the reference
lines. You might want to try a user-defined function, but with con-
siderably less typing!

baplot <- function(measi,meas2){
ave = (measl + meas2)/2
dif = measl - meas2
mdif = mean(dif)
plot(ave,dif,
pch = 16,
main = "Bland-Altman Plot",
xlab = "Average of two methods",
ylab = "Difference between two methods", las = 1)
abline(h = mdif,
1ty = "solid", col = "grey75", lwd = 2)
}
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CHAPTER 15

QQ Plots

Comparing Sets of Numbers

It can be quite useful to compare the distributions of two sets of
numbers; for example, two variables or two vectors. The sets of
numbers might both be sets of measurements, or one might be a
theoretical distribution. For example, we might want to see how a
particular variable compared to the theoretical “normal” distribu-
tion.

In the United States and many other parts of the world, it is custom-
ary for customers to leave a tip for people who perform services. Just
how much to give is a topic of frequent discussion among patrons of
restaurants. The reshape2 package includes a dataset, tips, that was
compiled by a waiter about tips his own customers gave to him. Let’s
take a look inside this interesting dataset:

> library(reshape2)
> attach(tips)
> head(tips)

total_bill tip sex smoker day time size
1 16.99 1.01 Female No Sun Dinner 2
2 10.34 1.66 Male No Sun Dinner 3
3 21.01 3.50 Male No Sun Dinner 3
4 23.68 3.31 Male No Sun Dinner 2
5 24.59 3.61 Female No Sun Dinner 4
6 25.29 4.71 Male No Sun Dinner 4

Now, we'll try to learn more about the tip variable. First, how are
the tips distributed? We could plot the density of tip to get an idea
of that:

m



# Figure 15-1a
library(reshape?)
attach(tips)
par(mfrow = c(3,2))
plot(density(tip),
main = "a. Density(tip)",
col = "blue",
wd = 2)

The plot in Figure 15-1a shows that the distribution is quite skewed,;
that is, it has a long tail to the right. In other words, a few patrons
give relatively large tips, but most others are clustered around $2 to
$4. This is important because many methods of statistical analysis
depend on the data being, at least approximately, “normally dis-
tributed,” or nearly aligned with the bell-shaped curve.

Tips are usually based on the size of the bill.
Treating the tips in this manner is the subject of
one of the exercises at the end of the chapter.
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Figure 15-1. Comparing tip (and transformations of tip) to a normal
distribution.

To get a better idea of how much the tip variable differs from the
normal distribution, we could plot a normal distribution and the
tip data on the same graph. To do this, use the rnorm() function to
generate a large sample of numbers, which will be called ran, from a
normal distribution. Then, plot the density of ran and fill in the
curve with the polygon() function. This will make it stand out from
the tip density. Finally, use the 1ines() function to plot the density
of tip on the same graph:
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# Figure 15-1b
ran = rnorm(1000000) # a million random obs from a normal dist.
plot(density(ran),
main = "b. Density(tip) vs. Normal Distribution",
xlim = c(-4,10))
polygon(density(ran), col = "burlywood")

lines(density(tip),
col = "blue",
wd = 2)

The aspect ratio of a graph is the height of the
graph divided by its length. This is important
because changing this ratio can make it easier or
more difficult for viewers to perceive the rela-
tionships between variables on the graph.
Research in perceptual psychology has shown
that lines with a slope close to 45° are optimum.
Choosing an aspect ratio to achieve this opti-
mum is called banking. R scatter plots, one per
page, generally use an effective aspect ratio,
although you can alter this by using arguments
such as asp, mar, and ylim. Throughout this
book, there are many examples of multiple
graphs on one page. When the display is square
—2 x 2 or 3 x 3—the aspect ratio of the various
graphs on one page stays about the same as it
would be in a single-page graph. (Try it your-
self.) In Figure 15-1, which is a 3 x 2 display, the
aspect ratio has been changed quite a bit. In this
case, the advantage of having six graphs on one
page for easy comparison was deemed more
important than preserving the aspect ratio. Your
audiences might not all agree. Be careful when
you change aspect ratios!

Figure 15-1b shows the tip density plot superimposed on the nor-
mal distribution. This might be a little more informative than Figure
15-1a, but it would be easier to assess the differences if the plots
coincided more closely. That is to say, we could compare the plots
more readily if they had the same means. The vector ran was created
by using the rnorm() function with the default options (what you
get if you do not specify values) of mean = 0 and standard deviation
= 1. Statisticians often standardize or normalize a variable to make it
easy to compare with some distribution with known characteristics.
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The tip variable can be standardized to have a mean of 0 and stan-
dard deviation of 1 by a simple procedure. First, find the mean and
standard deviation of tip:

> mean(tip)
[1] 2.998279
> sd(tip)
[1] 1.383638

Next, create a new variable, newtip, by subtracting 2.998 (the mean)
from every tip and dividing the resulting number by 1.384 (the stan-
dard deviation). This is an example of a transformation of the vari-
able. A transformation is a replacement of the original variable with
a function of the variable that keeps the essential information but
makes the new variable easier to work with or more closely in com-
pliance with the necessary assumptions underlying the statistical
method in use. Here’s the code to create the newtip variable:

> newtip = (tip-2.998)/1.384 # transform tip to have
# mean = 0 and sd = 1

Then, plot the two densities again:

# Figure 15-1c
newtip = (tip-2.998)/1.384 # transform tip to have
# mean=0 and sd=1
plot(density(ran),
ylim = c(0,.48),
main = "c. Density(newtip) vs. Normal Distribution",
xlim = c(-4,8))
polygon(density(ran),
col = "burlywood")
lines(density(newtip),
col = "blue",
wd = 2)

Figure 15-1c shows the superimposition of the two densities in a
much more informative way.

There are other ways to compare the two distributions, leading to
different kinds of graphs. Consider first a numerical summary of the
tip variable:
> summary(tip)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 2.900 2.998 3.562 10.000
The summary() function gives quartiles—the 25th, 50th (median),
and 75th percentiles—as is detailed in Chapter 1. We could divide
the distribution of the tip variable into any groupings that we find
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useful, not just quartiles (four groups). For instance, we could break
the variable into groups that were 10 percentage points apart. The
breakpoints are called quantiles. There is a quantile() function that
you can use to compute quantiles of a given variable, according to
the requirements of the user. To see how this works, create a new
variable, qtip, which contains the quantiles of tip, spaced every 10
percentage points apart. The quantiles must fall within the range of
0 to 1, so you need to use the seq() function to specify that the first
and last points must be 0 and 1 and that the interval is 0.1. Then,
print the values in qtip to see how it worked:

> qtip = quantile(tip, seq(0,1,.1))
> qtip

0% 10% 20% 30% 40%
1.000 1.500 2.000 2.000 2.476
50% 60% 70% 80%

2.900 3.016 3.480 4.000

90%  100%

5.000 10.000

We can plot quantiles of the tip variable against quantiles of ran to
determine how closely the two distributions conform. So, for
instance, the value of the 10th quantile for qtip is plotted against
the 10th quantile for ran, and so on. This type of display is called a
quantile-quantile plot, or QQ plot. This kind of graph is usually eas-
ier to read, because comparing how close a group of dots comes to a
straight line is more direct than comparing two curves. Figure 15-1d
uses qtip2(), a function that makes the interval between the quan-
tiles smaller than before. This creates more points on the graph. The
plotting was done by using the qgplot() function and a reference
line was added with the qqline() function. Finally, a grid was added
to facilitate reading the axes. The code to produce Figure 15-1d fol-
lows:

# Figure 15-1d
qtip2 = quantile(tip, seq(0,1,.005))
qgplot(ran, qtip2,
main = "d. QQ plot(qtip2)",
xlim = c(-3,3),
col = "skyblue2")
qqline(qtip2,
col = "burlywood",
wd = 2)
grid(lty = "dotted",
col = "gray75")
# required calculation of ran and qtip2 first
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Figure 15-1d shows that even though tip is close to a normal distri-
bution (as measured by the straight line) over much of its range, it is
far off at both ends, and especially at the high end. This suggests that
tip is not close to a normal distribution and that proceeding with
an analysis that depends on such a distribution would be unwise.

This plot was used to show what QQ plots are. Now that you under-
stand what they are, it is good to know that you can make virtually
the same plot more easily, without first creating quantile variables
(i.e., ran and qtip). The qgnorm() function, shown in the following
code, can operate directly on the tip variable and produce the plot
seen in Figure 15-1e:

# Figure 15-1e

qgnorm(tip,
main = "e. Easiler way to get QQ plot",
col = "blue",
ylab = "tip quantiles")
qqline(tip,
col = "burlywood",
wd = 2)

grid(lty = "dotted",
col = "gray75")

Because tip seems not to be normally distributed, we might see if
there is a transformation of tip thatis. Recall that the idea behind a
transformation is that if the original data does not meet the assump-
tions required for the analysis to give valid results, sometimes apply-
ing a function of the data (i.e., a transformation) can produce data
that does meet the assumptions. If so, the analysis can be performed
on the transformed data. Conclusions will then necessarily be about
the transformed data, not the original data. Although there are
many things that could be tried, a log transform is often successful
at reducing or removing skewness (the degree of asymmetry of a
distribution). The following code produces Figure 15-1f, which
shows that the log (common or base 10) transformation works very
well:

# Figure 15-1f
logtip = log10(tip)
qgnorm(logtip,
main = "f. QQ plot of logl@(tip)",
col = "blued")
qqline(logtip,
col = "burlywood3",
wd = 2)
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So far, we have used QQ plots to compare a variable’s distribution to
that of a theoretical distribution. You can also use QQ plots to com-
pare the distributions of two variables. This could be two variables
such as tip and size in the tips dataset. In this particular dataset,
however, it might be much more interesting to compare tips given
by men and women, or at lunch and dinner, and so on. To do this,
you could form appropriate subsets of the data and make QQ plots
of the groups. The lattice package makes it very easy to compare
two groups when there are exactly two levels of a variable, such as
sex in the tips dataset. Use the qq function:

qq(y ~ x)
In this case, y has exactly two levels and x is quantitative:

# Figure 15-2,left

library(lattice)
qq(sex ~ tip,
main = "Tips given by men and women")

Figure 15-2 shows the results, on the left.

Tips given by men and women Tips as percent of total bill, for men and women
10 4 F
60 o F
s L
°
8
6
2 ¢ g
= =

T T T T T T T T
2 4 6 8 10 20 40 60

Female Female

Figure 15-2. QQ plots of tip for men and women (left) and ratio [i.e.,
100*(tip/total_bill)] (right). These plots were produced by using the
lattice package.

The graph on the left in Figure 15-2 shows that the distribution of
tips given by males and females is pretty similar for tips below about
five dollars. Tips higher than five dollars, however, are more likely to
be from males. We can confirm that with a numerical summary:

> summary(tip[sex == "Male"]) # subset containing only males
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 2.00 3.00 3.09 3.76 10.00
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> summary(tip[sex == "Female"]) # subset containing only females
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 2.750 2.833 3.500 6.500

We have learned some interesting things about the distribution of
tips, but perhaps it would make more sense to study not the tips, but
the tip as a percentage of the total bill. After all, most guidelines
about tipping suggest something like “15 percent of the bill.” We can
compute a new variable by multiplying the ratio of tip to total bill by
100. Then, we can make a QQ plot of that variable for males and
females:

# Figure 15-2, right

tips$ratio = 100*(tip/total_bill)

qq(sex ~ tips$ratio,

main = "Tips as percent of total bill, for men and women")

The graph on the right in Figure 15-2 shows males and females as
equally generous up to about 25 percent, but then females become
more generous, with the exception of one very big extreme. Maybe
this guy was trying to impress his girlfriend? Maybe the decimal
point was inadvertently moved? Problems like this occur in real data
analysis pretty frequently. You'll need to recheck the data to see if it
is right. Further, you will need to decide whether to include or
exclude that one point, or analyze the data both ways and report
both results. Things like this make life interesting!

Exercise 15-1

Continue analyzing the tips dataset. Use the variable ratio instead
of tip. Are other factors related to the size of tips? Do apparent rela-
tionships make sense? Could other factors be misleading you?

Exercise 15-2

Take another look at the Vocab dataset in the car package. Are the
variables vocabulary and education “normally distributed™? Are
vocabulary scores equally distributed for males and females?
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PART IV
Multivariable Graphs

Sometimes, we need to examine relationships among three or more
variables—but the media we usually have available for graphs, such
as paper or computer screens, are only two-dimensional objects.
Although this presents challenges, a number of clever ways of visu-
alizing higher-dimensional data have been devised. Some of these
methods involve looking at pairs of variables at a time, usually with
other pairs on the same page, so that we can readily make compari-
sons, whereas others attempt to display three or more variables in
one plot. The next section examines a few promising graphical
methods for multivariable visualization.






CHAPTER 16

Scatter plot Matrices and
Corrgrams

Scatter plot Matrix

When faced with many quantitative variables, it sometimes helps to
look at the relationships of each of the possible pairs of variables
first. To avoid making you type a plot() command for each of the
combinations, R provides a shortcut command, patirs(), which will
do the same thing. Furthermore, pairs() puts all the plots on the
same page so that they can be compared quite easily. The result is
called a scatter plot matrix. We will use the scatter plot matrix to
study the relationships among member characteristics of various
church groups.

A long line of research on American religious life has shown that
weekly attendance and membership seem to be related to a church’s
strictness. Iannaccone (1994) discusses this research and gives an
interesting dataset showing several variables for each of 18 religious
denominations. You can find the data in ex1713 from the Sleuth2
package. Let’s take a look:

183



v

library(Sleuth2)
attach(ex1713)
head(ex1713)

\

v

Denomination Distinct Attend NonChurch StrongPct AnnInc

1 American Baptist 2.5 25.6 1.01 50.6 24000
2 Assemblies of God 4.8 35.4 0.68 58.6 27100
3 Catholic 3.0 26.4 1.43 40.0 32900
4 Disciples of Christ 2.1 24.3 2.58 47.0 28600
5 Episcopal 1.1 17.3 1.93 32.0 39000
6 Evangelical Lutheran 2.7 23.0 1.71 41.5 33700

To see the codebook for this data, type:
> ?2ex1713

Here’s a brief summary of the codebook:

Distinct
The distinctiveness/strictness of discipline, on a seven-point scale

Attend
The average percentage of weekly attendance

NonChurch
The average number of secular organizations to which members
belong

StrongPct
The average percentage of members who consider themselves
strong church members

AnnInc
The average annual income

The scatter plot matrix shown in Figure 16-1 was produced by using
the pairs() function. Note that the variable names are typed as a
formula, beginning with the ~ symbol, followed by the variable
names in the order in which they will appear on the graph, separated
by the + symbol. Further, you can add any of a number of special
arguments for this function, as well as par() arguments. For the
code to produce Figure 16-1, only the pch and col arguments have
been used:

# Figure 16-1: produce scatter plot matrix of denomination data
library(Sleuth2)

attach(ex1713)

pairs(~ Distinct + Attend + NonChurch + StrongPct + AnnInc,
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pch = 16,
col = "deepskyblue")
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Figure 16-1. A scatter plot matrix of the church denomination data.

In the scatter plot matrix in Figure 16-1, each variable is plotted
against every other variable, twice. In each pair, a given variable is
once the x-variable and once the y-variable. For example, in the sec-
ond row, the variable Attend is the y-variable in each of the four
scatter plots, and each of the other four variables is the x-variable
once. In the second column, Attend is the x-variable in each of the
four scatter plots, and each of the other variables is the y-variable
one time.

Looking across the second row, we can see that Attend has a positive
association with Distinct; that is, as one of these increases, the
other does also. Likewise, there is a positive association between
Attend and StrongPct. In contrast, Attend has negative associations
with NonChurch and Annlnc; as one increases, the other decreases.
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However, these negative associations are not as strong as the positive
ones. In other words, the points in the negative associations do not
hug a straight line as tightly as the positive association plots do. This
is clearer in Figure 16-3, in which least-squares lines are placed on
each scatter plot. Of course, associations, even strong ones, do not
imply causation—or, put another way, knowing that greater strict-
ness and higher attendance usually go together does not prove that
one causes the other. It does, however, suggest that this relationship
might be an interesting one to study further.

The car package has a function called scatterplotMatrix() that
adds some useful features to the scatter plot matrix. First, it is easy to
plot the distribution of each of the variables on the diagonal of the
matrix as a histogram, density plot, box plot, QQ plot, or 1D (diago-
nal) strip chart. In addition, you can easily add a least-squares line
to each plot.

Smoothers are also available for each plot. As we saw in Chapter 12,
a smoother is a tool for making patterns in scatter plot data a little
easier to see. There are several types of smoothers, but they all show
the center of the y’s at a given value of x (or several close x’s) and do
it in such a way that the (usually curved) line formed by connecting
all such points is relatively smooth. Figure 16-2 shows a scatter plot
matrix with smoothers, represented as red lines. You can use the
smoother argument to select a smoothing method, but Figure 16-2
uses the default method, “loess,” or locally weighted regression.
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Figure 16-2. A scatter plot matrix produced by scatterplotMatrix() in
the car package. The default options add kernel density plots and rug
plots in the diagonal as well as least-squares lines and smoothers in
each of the plot windows.

Here is the code to produce Figure 16-2:

#Fig 16-2: scatter plot matrix w/ smoother & diagonal density

library(car)

library(Sleuth2)

attach(ex1713)

scatterplotMatrix(~Distinct + Attend + NonChurch + StrongPct +
AnnInc)

The lines produced by the smoother in Figure 16-2 show some
interesting things. The associations between Attend and Distinct
and between Attend and StrongPct are close to straight lines and
suggest that these relationships may be described as simple linear
correlations. Certain other associations that looked close to linear
on the simple scatter plot—for example, that between Attend and
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AnnInc—now appear more complex. It should be noted, however,
that this dataset only has 18 denominations in it, which is a rather
small number from which to draw conclusions about the shape of
the relation between any two variables. This example is merely an
illustration of the features available in the package. In most cases,
you will probably find it useful to look at a display like Figure 16-1
first; after getting a feel for the data, you might find some of the
other features helpful.

You can customize the matrix produced by scatterplot() quite a
bit. You can omit the smoother by using the smoother = NULL argu-
ment, as shown in the code that follows. Likewise, you could remove
the regression line by using the reg.line = F argument. It is also
possible to change the type of graph on the diagonals by using the
diagonal argument. To see the options, type ?scatterplotMatrix.

Figure 16-3 illustrates the customized scatterplot() matrix cre-
ated by the following code:

# Figure 16-3: scatter plot matrix w/out smoother & with
histograms

scatterplotMatrix(~Distinct + Attend + NonChurch + StrongPct
+ AnnInc, diagonal = "histogram",
smoother = NULL)
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Figure 16-3. A scatter plot matrix produced by scatterplotMatrix() in
the car package. Smoothers have been left out and the diagonal density
plots replaced with histograms.

Figure 16-3 shows a matrix with diagonal histograms. This might be
a better choice than the density plots that are produced by default, at
least in this instance, given that the sample size is only 18. The dis-
tribution of a couple of variables, Attend and NonChurch, is less
smooth than the density plots might lead us to think. Further, the
two especially large values of NonChurch can cause the relationship
between that variable and Attend to appear stronger and more lin-
ear than it really is. You can probably see that by looking carefully at
the scatter plot of those two variables, but you might have missed it
had not the histogram flagged the plot first.

When examining a scatter plot matrix, it is important to remember
that you are actually being presented with many separate plots. Do
not let yourself become overwhelmed by the amount of information
on the page. Look at each plot by itself. After you have done this for
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many of the plots, you will probably find it enlightening to compare
them.

Corrgram

The corrgram (sometimes called “correlogram,” although this term
actually refers to something else) is a type of graph related to the
scatter plot matrix. In this type of graph, the individual scatter plots
are replaced by symbols that represent numbers measuring the
amount of linear correlation between two quantitative variables. The
Pearson correlation coefficient, usually denoted as r, can vary
between -1 and 1. A perfect positive correlation is 1, meaning that
all the points on the scatter plot of two quantitative variables lie
exactly on an ascending straight line. A perfect negative correlation
is -1, indicating that all points lie exactly on a descending straight
line. Values near 0 indicate little or no association between two vari-
ables. Take note that the correlation coefficient is not a measure of
the steepness of a line’s slope. It is, instead, a measure of the total
deviation of the points from a straight line. Figure 16-4 illustrates
the meaning of the correlation coefficient. A further caution: the
correlation coefficient is useful only if the relationship between the
variables is linear; that is to say, if the points fall on a straight line.

In other situations, the correlation coefficient can be misleading or
even deceptive.
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Figure 16-4. A perfect positive correlation of 1 has all the points falling
exactly on an upward-sloping line. A perfect negative correlation of -1
has all the points falling exactly on a downward-sloping line. A corre-
lation of 0 shows no discernible pattern. A positive correlation of .79
shows points falling “close” to a straight line.

To make a corrgram, it is first necessary to make a correlation matrix
—a matrix containing the correlation coefficients of all the variable
pairs in the dataset. This is accomplished by using the cor() func-
tion:

> library(Sleuth2)
> attach(ex1713)
>y = cor(ex1713[, 2:6]) # use all rows and columns 2-6
>y
Distinct Attend NonChurch StrongPct AnnInc

Distinct 1.0000000 0.7891067 -0.6585883 0.8127124 -0.6003892
Attend 0.7891067 1.0000000 -0.6107342 0.8649691 -0.6766143
NonChurch -0.6585883 -0.6107342 1.0000000 -0.4218525 0.6458747
StrongPct 0.8127124 0.8649691 -0.4218525 1.0000000 -0.6146261
AnnInc -0.6003892 -0.6766143 0.6458747 -0.6146261 1.0000000
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When the correlation matrix has been produced, you can use the
corrplot() function from the corrplot package to make several
types of corrgram. Some examples appear in Figure 16-5. All of the
examples use color to depict size of correlation. You can also use size
of object, orientation of object, or numbers to show how large the
correlation of a given pair of variables is.

Attend
NonChurch
StrongPct

1

Distinct Distinct

Attend Attend

8
.6
4
2

NonChurch 0 NonChurch

StrongPct

.2
4 StrongPct
6
8

Anninc Anninc

00000

. . ‘ .. Distinct
00000 -
. . ‘ . ‘ NonChurch
90000
EEEEN -

=l

5 =
= O °
— S o 2
g 2 &6 2 ¢ %
- (0] c o c A
RZ] = o S c a k]
(=) < z ] < c 5
- ! Distinct / £ 5
Distinct | 1 | 0.79 |-0.66/ 0.81 | -0.6 < 5
Attend ,/ 5

Attend | 0.79| 1 |-0.61|0.86 -0.68

)nChurch “/
NonChurch |-0.66/-0.61| 1 |-0.42|0.65
>troncht ,/./
StrongPct | 0.81 |0.86 |-0.42| 1 |-0.61|[10.4
s QPR
Anninc | -0.6 |-0.68|0.65 |-0.61| 1 .8

- -1-0.8-0.6-0.4-0.2 0 0.20.4060.8 1

M A O
StrongPct

Anninc

Figure 16-5. Visualizations of the correlation matrix. This is a type of
summary, or approximation, of the scatter plot matrix, produced by
the corrplot() function in the corrplot package. Upper left: method =
‘circle”; upper right: method = “color”; lower left: method="number”;
lower right: method= ‘ellipse”, type="lower”

The correlation between variables A and B is the same as the corre-
lation between B and A, so the complete corrgram is redundant.
That is to say, the correlations in the upper half are exactly the same
as the correlations in the lower half. For this reason, some prefer to
display only the upper half or only the lower half of the matrix. An
example of this appears in the lower-right corner of Figure 16-5. You
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can do this by using the argument type = "lower". The code to
produce the corrgrams in Figure 16-5 follows:

# Figure 16-5: various corrgrams
library(corrplot)

library(Sleuth2)

attach(ex1713)

y = cor(ex1713[, 2:6])

par(mfrow = c(2,2))

corrplot(y) # default method is "circle"
corrplot(y, method = "color")

corrplot(y, method = "number")

corrplot(y, method = "ellipse", type = "lower")

Despite all the warnings about correlation coefficients, the corrgram
can be an effective way to present and screen data, if you take the
time to look at the scatter plots (and possibly smoothers), first, to
see if correlation coefficients make sense. Compare the corrgrams in
Figure 16-5 to the scatter plot matrices in earlier figures in this
chapter to see how consistent the conclusions from these varied dis-
plays may be. Corrgrams are also available through the cor.plot()
function in the psych package.

All of the plots in Figure 16-5 use color to indicate the strength of
the correlation, with a color gradient either on the right or the bot-
tom to show the color meanings. Shades of blue show a positive
relationship, with darker colors being stronger (i.e., closer to 1).
Shades of red show a negative correlation, with darker colors being
closer to -1. In two graphs (the upper-left corner and the lower-
right corner), size also indicates strength, but in opposite ways. In
the upper-left graph, larger size shows larger absolute value. In the
lower-right graph, orientation indicates positive or negative correla-
tion, with narrow ovals showing points close to a line (i.e., strong
correlation). Fat ovals indicate a lot of variation around a line, or
weaker correlation. You probably picked this up without my telling
you, but it feels better to have your suspicions confirmed, right?

It is also possible to combine the scatter plot matrix with the corr-
gram by putting one of these graphs in the lower half of the matrix,
and the other in the upper half. The ggscatmat() function in the
GGally package does exactly that:

# Figure 16-6

library(GGally)

library(Sleuth2)
ggscatmat(ex1713, columns = 2:6)

Corrgram | 193



Figure 16-6 shows the results.
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Figure 16-6. A combination of scatter plot matrix and corrgram pro-
duced by the ggscatmat() function in the GGally package. Note the
overprinting on the x-axis in the lower-right corner. This can be fixed!

Note a small problem in Figure 16-6. The x-axis values in the lower-
right corner are overprinting because the numbers are too big to fit
in a small space. There is a pretty simple fix for this. Change the
scale of the values of AnnInc from dollars to thousands of dollars,
and redo the graph with this new variable. Accomplishing this will
require one new command and a small change in another one. First,
create a new variable, Inc, that is AnnInc divided by one thousand.
This new variable becomes the seventh column of the data frame.
Next, modify the ggscatmat() command to include the desired col-
umns, leaving out AnnInc and including Inc:
# Figure 16-7: fix a bug in Figure 16-6

library(GGally)
library(Sleuth2)
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ex1713$Inc = ex1713$AnnInc/1000
ggscatmat(ex1713, columns = c(2:5,7))

Take a look at Figure 16-7 to see how that resolved the overprinting
problem.
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Figure 16-7. A bug in Figure 16-6 has been fixed. Note that the x-axis
in the lower-right corner is now readable.

Generalized Pairs Matrix with Mixed
Quantitative and Categorical Variables

Datasets with both quantitative and categorical variables are quite
common. In such cases, although scatter plots do not work with cat-
egorical variables, it is still possible to produce a meaningful display
of all the pairwise plots of variables. It simply means that the display
will include several types of plots, each appropriate for the variable
types included. This type of graphical display is illustrated in the
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code example that follows with ggpairs() from the GGally package
and gpairs() from the gpairs package.

Consider again the Nimrod dataset. This dataset has one quantitative
variable, time, and two categorical variables, level and medium. The
variable performer, simply being the names, will not give us any
useful insight and will make the page more crowded, so we'll leave it
out. We can do this by using a subset of the dataset (see the section
“Basic Scatter Plots” on page 129, in Chapter 12 to review this con-
cept). The subset we want is Nimrod[, 2:4]; that is, all the rows, but
only columns 2 through 4:

# Figure 16-8
library(GGally)
ggpairs(Nimrod[,2:4])

Look at Figure 16-8 to see how that comes out.
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Figure 16-8. Generalized pairs matrix, for data with mixed quantita-
tive and categorical variables. This was produced by using ggpairs() in
the GGally package.
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There are some familiar types of graphs in Figure 16-8. The diagonal
displays bar charts for the two categorical variables and a density
plot for the quantitative variable. There are also some box plots, for
pairs including one quantitative and one categorical variable.

Additionally, there are some plots that we have not seen yet. The
lower-left corner and the upper-right corner are plots of the same
two categorical variables. In each case, the square is broken up into
multiple bar charts. In the lower left, there are bar charts of medium
for each of the two values of level. In the upper-right square, there
are bar charts of level for each of the values of medium.

Finally, there are barcode plots in some squares plotting a categorical
and a quantitative variable. For instance, the middle square in the
lefthand column presents the data as something that looks rather
like a barcode stamped on a book cover or other item. Each point is
represented by a small bar. The bars are arranged as four strip
charts, one for each value of medium. When there are ties, the second
bar is not simply overprinted, but placed next to the one already in
the location that it shares. In other words, these bars are jittered, but
in a very orderly manner. The middle square of the bottom row is
also a barcode plot, but this time it contains two strip charts of
level, amateur and professional.

One last observation about this figure. Note that when there is a
quantitative and a categorical variable, the two displays of that pair
are presented as two different types of graph. Each of those two dis-
plays gives, perhaps, a slightly different insight about the relation-
ship. There are a number of options available. For more information
about them, type ?ggpairs.

The gpatirs() function shown in the code that follows gives a simi-
lar overview of the pairwise comparisons but introduces one addi-
tional type of plot, the mosaic plot. Chapter 20 is devoted to this type
of plot, so I will not discuss it here. After you have read about the
mosaic plot, it might be worth your time to come back to this exam-
ple and compare Figure 16-8 and Figure 16-9 again. The code to
produce Figure 16-9 is:

# Figure 16-9

install.packages("gpairs") # if not already installed
library(gpairs)

gpairs(Nimrod[,2:4])
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Figure 16-9. Generalized pairs matrix, for data with mixed quantita-
tive and categorical variables. This was produced by using gpairs() in
the gpairs package.

Look closely at Figure 16-9. The diagonal mixes the bar plot and the
histogram. Which is which? Why? If you are not sure, review Chap-
ter 7 and Chapter 9. To see the options available for gpairs(), type ?
gpairs.

Exercise 16-1

Use the tools introduced in this chapter to study the Ginzberg data
from the car package—just the first three variables. Do you find
some interesting relationships? Are they linear?
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CHAPTER 17
Three-Dimensional Plots

3D Scatter plots

The trees dataset has three quantitative variables. We looked at the
distribution of one of them, Volume, in a strip chart and the relation-
ship of two of them, Height and Girth, in a scatter plot. It is possible
to visualize all three at once in an extension of the scatter plot, a
graph commonly called a 3D scatter plot. Several packages have
functions to create 3D scatter plots, including lattice, scatter
plot3d, rgl, plot3D, car, and probably others.

In this section, the scatterplot3d package is emphasized because
its syntax is very much like that of the plot() function in base R. It
is also relatively easy to work with and quite versatile. Finally, many
of the tricks that you can use to make 3D plots comprehensible are
easily demonstrated with this package. A couple of other functions
will also be introduced and compared.

The scatterplot3d() function has a basic syntax of either:
scatterplot3d(x, optional arguments)

where x is a data frame or matrix,

or:
scatterplot3d(x, vy, z, optional arguments)

where x, y, and z are vectors.
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Although the first option is usually more convenient, the second is
often preferable because it gives you the ability to decide upon the
order of the variables or to select a subset of variables. Variable x is
plotted on the horizontal axis, y on the diagonal axis, and z on the
vertical axis. In the example script that follows, x, y, and z are
Height, Girth, and Volume.

# script for Figure 17-1
library(scatterplot3d)
attach(trees)
par(mfrow = c(2,2),
cex.main = .9,
las = 1)

scatterplot3d(Height, Girth, Volume,

main="a. 3D scatter plot of trees data")
# you could substitute: scatterplot3d(trees)
# to see what happens...

scatterplot3d(Height,Girth,Volume,
pch = 16,
highlight.3d = T,
main = "b. 3D scatter plot with highlighting",
cex.axis = .5)

scatterplot3d(Height,Girth,Volume,

pch = 16,

highlight.3d = T,

type = "h",

main = "c. 3D scatter plot with lines and highlighting",

cex.axis = .5)

scatterplot3d(Height, Girth, Volume,
pch = 15, type = "h",

wd = 5,

color = "cyan4",

main = "d. 3D bar plot without box",
box = F,

cex.axis = .5)

Figure 17-2 shows the result of this script.
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Figure 17-1. The basic scatterplot3d() output and several improve-
ments.

Figure 17-1a shows a basic 3D scatter plot. A grid in the base of the
box surrounding the graph helps a little to suggest a three-
dimensional space on a two-dimensional surface. It is still pretty dif-
ficult to reckon the coordinates of a given point from the picture,
however.

Figure 17-1b shows an improvement. Specifying the argument
highlight.3d=T adds color to the points in such a way that points
“out front” (those with lower y values) are bright red and the color
becomes darker as the y values grow larger. The pch=16 argument
fills in the circles and thereby strengthens the color effect a bit.

Figure 17-1c makes a further improvement by adding vertical lines
from each point to the grid on the base. This is done by using the
type="h" argument, making it much easier to discern the precise x
and y values.
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Finally, Figure 17-1d turns the plot with lines into a bar plot by
changing the plot characters to squares and increasing the width of
the vertical lines to match the width of the squares. The plot charac-
ters are changed by using the pch=15 argument and the line width
with lwd=5. Finding the right line width often takes some trial and
error. The box around the graph was removed by using box=F.
Decide for yourself: which of these plots is easiest to read?

Another way to help the viewer make sense of a 3D plot is to place a
reference surface on the graph. This could be a plane or a curved sur-
face. Figure 17-2 shows one possibility, a prediction plane defined
by a linear model. If you do not already know about multiple regres-
sion, you can skip this example.

3D scatterplot with prediction plane

Volume
N
Girth

Figure 17-2. A 3D scatter plot with a prediction plane/reference sur-
face, made by using scatterplot3d()

Here is the code to produce Figure 17-2:
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# Figure 17-2

library(scatterplot3d)

attach(trees)

par(mfrow=c(1,1), las = 1)

# put plot results in an object, sp3

sp3 = scatterplot3d(Height, Girth, Volume, pch = 16,
highlight.3d = T,

type = "h",

main = "3D scatter plot with prediction plane",
cex.axis = .7,

box= F)

model = Im(Volume ~ Height +Girth) # fit linear model, named
"model" sp3$plane(model) # draw the plane created by the
# model

The plot in Figure 17-2 is a little confusing because it is very hard to
gauge whether a particular point lies above or below the reference
plane. We can generate a better image by using the scatter3d()
function in the car package. The graph displayed in Figure 17-3 is
similar, but the plane is colored to give it more substance and the
points are colored differently depending on whether they lie above
or below the plane.

Vmungh

Figure 17-3. A 3D scatter plot with prediction a plane, made by using
scatter3d() in the car package.

In contrast to scatterplot3d(), scatter3d() puts y on the vertical
axis, so to make a graph that can easily be compared to the one pro-
duced by scatterplot3d(), you must change the order of the vari-
ables. Furthermore, the orientation of the z variable is opposite, so
the variable Girth has been multiplied by -1 to make the plot com-
parable to Figure 17-2. This is one of those things that is not clear
until you experiment with your code. Following is the code to pro-
duce Figure 17-3:
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# Figure 17-3

library(car)

library(rgl)

attach(trees)

scatter3d(Height, Volume, -1*Girth)
rgl.snapshot("ch17.3.png", fmt = "png") # save to working dir

Figure 17-3 is clearly an improvement, but it is still difficult to get a
good view of all the points. One approach to this problem is to look
at the plot from a different angle, which you can accomplish easily
by changing the order of the variables, as demonstrated in
Figure 17-4.Even better, by adding the argument revolutions = n,
as shown in the code that follows, we can make the graph spin
around # times on the screen, enabling a good view from all sides.
Try it!

# Figure 17-4

library(car)

library(rgl)
attach(trees)

scatter3d(Girth, Volume, Height, revolutions = 2)
rgl.snapshot("ch17.4.png", fmt = "png") # save to working dir

Volum
# o

Figure 17-4. The plot from Figure 17-3, but viewed from a different
angle. The revolutions = 2 argument makes it spin around twice on the
screen.
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There are many options to customize scatter3d(), such as colors,
lines on the surface grid, speed of revolution, and more. For more
information, type ?scatter3d.

False Color Plots

3D scatter plots represent three dimensions as horizontal, vertical,
and diagonal. This is sometimes successful, but other times it is con-
fusing. A different approach to representing the third dimension is
to use gradations in color to give a sense of depth. Called a false-
color plot, this type of 3D plot is implemented in the levelplot()
function in the lattice package. Figure 17-5 shows an example of
such a plot with two variables represented spatially and the third by
color intensity. The dataset plotted here is the coalash dataset from
Gomez and Hazen (1970), found in the sm package.

18

20 -
- 16

North

12

10

East

Figure 17-5. False-color plot of coalash data produced by levelplot() in
the lattice package. The amount of coal ash, at any point, is repre-
sented by color gradient.
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The axes represent northerly and easterly directions, whereas the
color gradient represents amount of coal ash. It is easy to see how
high the concentrations are and the precise locations of each. Fol-
lowing is the code to produce this plot:

# Figure 17-5

library(lattice)

library(sm)

data(coalash)

attach(coalash)
levelplot(Percent ~ East*North)

Bubble Plots

Yet another way to represent three-dimensional data is the bubble
plot. In this type of graph, two variables are plotted on the x- and y-
axes, and the third variable is represented by the area of the circle, or
“bubble,” on the plot. The symbols() function in base R can create
bubble plots, but I find PlotBubble(), which you can find in the
DescTools package, easier to use. Here is its syntax:

PlotBubble(x = x-variable, y = y-variable,
area = var represented by bubble,
col = bubble color,
border = color of bubble border,
inches = diameter of largest bubble)

The arguments x, y, area, and col are all required. Note that,
because the area of a circle is proportional to the square of the
radius, it is necessary to make the area variable proportional to the
square root of the variable represented by the bubble. Otherwise, the
larger bubbles will be too big, relative to the smaller ones. Another
way of thinking about this is that the variable’s size should be repre-
sented by the bubble’s area, not by the bubbles diameter. Fortu-
nately, PlotBubble() does this automatically Had we used
symbols(), an adjustment to Volume would have been necessary. I
had to run several problems with each of the two functions and
measure the bubbles to convince myself that this is true. You might
find it useful to do the same.

First, consider the trees data, with Volume as the variable repre-
sented by the bubbles. The code that follows (for Figure 17-6) shows
that Volume has been assigned to the area argument. The bubble
plot of the trees data might be a bit clearer than other 3D plots of
the same data. This is true because the amount of data is small, and
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with the inches argument set at an appropriate size, there is rela-
tively little overlap of bubbles (try setting inches at various sizes
and see what you get):

# Figure 17-6

library(DescTools)

attach(trees)

PlotBubble(x = Height, y = Girth, area = Volume,
col="steelblue", border = "burlywood",
inches = .25,
xlab = "Height", ylab = "Girth",
main = "Tree volume, proportional to circle area",
family = "HersheySerif", font.main = 4,
col.main = "maroon"

Figure 17-6 shows the bubble plot created by this script.

Tree volume, proportional to circle area
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Figure 17-6. Bubble plot of the trees data.

To illustrate another use of the bubble plot we'll consider a much
larger dataset, ex0923 from the Sleuth3 package. The data is taken
from a study of male and female incomes, accounting for amount of
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education and IQ. Our goal is to produce a plot that shows the three
quantitative variables, Educ, AFQT, and Income2005, and distin-
guishes the points by Gender. That is to say, the plot will show four
variables! In PlotBubble(), the argument area operates on
Income2005, but this particular dataset presents a problem because a
few of the income values are very high—more than half a million
dollars. PlotBubble() apparently overadjusts by leaving too much
empty space on the graph and pushing all the points together. To
correct this, make an adjustment in the data by dividing all the
incomes by 1,000. This leaves all the relationships between individ-
ual incomes intact but prevents the crowding problem:

# Figure 17-7
library(DescTools)
library(Sleuth3)
attach(ex0923)
PlotBubble( x= Educ, y = AFQT, area = Income2005/1000,
col = SetAlpha(as.numeric(Gender)), border = "burlywood",
inches = .5, xlab = "Education", ylab = "AFQT test score")
title(main = "Income, proportional to circle area")
legend("left", c("Female","Male"),
text.col = c(1:2), cex =.9, bty = "n")

The argument col = SetAlpha(as.numeric(Gender)) enables the
two values of Gender to have different colors. The argument inches
= .5 makes the largest bubble a half-inch wide and scales all the
others to be the correct size relative to the largest. In the legend()

command, the two values of Gender are in alphabetical order, ensur-
ing that the right names are assigned to the colors.
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Income, proportional to circle area
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Figure 17-7. Bubble plot of incomes related to education and IQ.

The bubble plot shows that Educ and AFQT are related, but it is diffi-
cult to make a determination about income because there are so
many overlapping circles. Making inches larger would make things
worse, whereas making it smaller might help. Try setting inches at
various sizes to see what you get. You probably won't find a value
that helps very much, as bubble plots rarely work well for a large
amount of data. To see what effect sample size has, let’s take a ran-
dom sample of the dataset and make a new bubble plot. We'll pare
the dataset down from more than 2,500 observations to just 100.
Our approach to this problem is to use the sample() function to
pick a random sample of 100 row numbers. After that, we use the [ ]
method (see the section “Basic Scatter Plots” on page 129 to review
this method) to find a subset of the complete dataset, keeping only
the rows from our random sample, but keeping all columns. Note
that the resulting subset is a random sample of the larger dataset,
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because the rows in samp = ex0923[s, ] came from a random sam-
ple. Here’s the entire script:

# Figure 17-8
library(DescTools)
library(Sleuth3)
attach(ex0923)

# take random sample from ex0923

set.seed(3) # get the same random sample each time
s = sample(nrow(ex0923), 100) # random sample of 100 row IDs
samp = ex0923[s,] # all rows in s; all columns in ex0923
detach(ex0923) # R will not use the full dataset, ex0923
attach(samp) # R will use the subset data

PlotBubble( x= Educ, y = AFQT, area = Income2005/1000,

col = SetAlpha(as.numeric(Gender) +3), border = "burlywood",

inches = .25, xlab = "Education", ylab = "AFQT test score")
title(main = "Income, proportional to circle area")
legend("left", c("Female","Male"),

text.col = c(1:2)+3, cex =.9, bty = "n")

You can see the result in Figure 17-8.
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Figure 17-8. Bubble plot relating education, 1Q, income, and gender, in
a random sample of the ex0923 dataset.

The argument col = SetAlpha(as.numeric(Gender) +3) makes
the two values of Gender have different colors and sets the colors
three steps along the color scale that can be seen by issuing the fol-
lowing command(s):

> library(DescTools)

> PlotPar()
Therefore, instead of using the default colors 1 = black and 2 = red,
used in Figure 17-6, the colors are 1+3 = dark blue and 2+3 = light
blue. Note that it is also necessary to adjust the text.col argument
with +3 to make the legend colors match the circles on the plot.
There are other color palettes that you could choose, as well. To see
other color options, type ?hblue.

Figure 17-8 is much easier to read than the very dense plot in
Figure 17-7. We can clearly see that incomes rise with increasing
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education and IQ. It is also easy to compare the incomes of males
and females. In most cases, when other factors are about equal the
bubbles for males are bigger, meaning higher income.

Exercise 17-1

Use 3D scatter plots to examine the relationship between deaths,
smoke, and S02 in the SO2 dataset in the epicalc package. Plot
deaths on the vertical axis and explain its relationship to the other
variables.

Exercise 17-2

Using the same data as in the previous exercise, make deaths the
false-color variable in a false-color plot. What do you conclude from
the graph?
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CHAPTER 18
Coplots (Conditioning Plots)

The Coplot

Sometimes, the apparent relationship between two variables can be
quite misleading. This may well be due to a strong association that
one or both variables have to a third variable. Consider the States
dataset from the car package. This is data about the SAT exam, a
test that many students in the United States take as part of the col-
lege admissions process. States also contains several other variables
about secondary education on the state level in 1992. Each of the 51
observations in this dataset represents one state, or the District of
Columbia. Figure 18-1 shows a scatter plot of average scores on the
SATM, the math subtest of the SAT, against the amount of money
(in thousands of dollars per student) spent on public education in
each state.
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Figure 18-1. A scatter plot of the state average SATM scores and the
average amount of state spending on public education, per student, in
thousands of dollars. There are 51 points, one for each state and the
District of Columbia.

Here is the code to produce Figure 18-1:

# Figure 18-1

library(car)

attach(States)

plot(dollars,SATM,

pch = 16,

col = "maroon"

grid(lty = "solid")
Figure 18-1 seems to indicate that states that spent relatively little on
education had high SATM scores, whereas higher-spending states
had relatively low scores. This is completely counterintuitive! We
would expect—or at least hope—that spending more on education
leads to better results. Could it be that some other factor is influenc-
ing outcomes?
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The dataset includes a variable called percent, which is the percent-
age of graduating seniors who take the SAT. Are test averages differ-
ent in states where few students take the SAT and those states where
most students take the test? Might it be that in states where few take
the test, only the higher-performing students are included? Perhaps
in states where nearly everyone takes the test, the less talented or less
motivated students bring the state average down. We can study this
theory with a type of graph called a conditioning plot, or coplot. The
idea is to slice the data into pieces so that we can look at several scat-
ter plots of SATM by dollars, each at a different value of percent, the
conditioning variable. If all of the scatter plots look the same, or
very similar, this indicates that percent did not influence the out-
come. If the plots look quite different, however, this shows that per
cent did influence the relationship between SATM and dollars. The
coplot() function takes a formula of the following form:

y~x|z

Here, y is the vertical axis, x is the horizontal axis, and z is the con-
ditioning variable. It is also possible to condition with two variables,
a and b, in which case the formulais y ~ x | a * b. The following
script produces the coplot in Figure 18-2:

# Figure 18-2

library(car)

attach(States)

coplot(SATM ~ dollars | percent,
pch = 16,

col = "royalblue",

bar.bg = c(num = "goldenrod2"))
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Figure 18-2. Coplot of SATM by dollars with percent as the condition-
ing variable.

Figure 18-2 shows six scatter plots, each of them for a “slice,” or sub-
set, of the data with a particular range of values of percent. The box
at the top of the display shows a group of six bars, each bar indicat-
ing what range of percents are included in one of the scatter plots.
The bar in the lower-left corner indicates that the plot at the lower
left includes states with a percent of up to about 12 percent. The
next bar up from the bottom shows that the second plot in the lower
row includes states with percent scores of about 8 to about 16. The
bar at the top of the pile shows that the plot at the upper right
includes states with percent scores of about 54 and higher. The
coplot seems to be consistent with the hypothesis expressed earlier:
states with the smallest percentage of students taking the test had the
highest scores, and vice versa. Furthermore, in none of the six plots
does there seem to be any notable association between SATM and dol
lars!
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The bars in Figure 18-2 are overlapping. This means that some
states are represented in two, or even three, plots. R does this by
default to ensure that there are sufficient points in each plot to make
a useful graph. Notice that there are about 15 to 17 points in each
plot. If each of the plots were to be nonoverlapping, there would
only be about 8 or 9 points in each (51 divided by 6), or possibly a
few more or less depending on just where the cut points were. In
this case, the defaults chosen by R seem to have done what we had
hoped for, but this might not always be true.

It is possible to control how many slices there will be by using the
number argument. You can control how much individual slices over-
lap by using the overlap argument, as is demonstrated in following
example:

# Figure 18-3

library(car)

attach(States)

coplot(SATM ~ dollars | percent,
pch = 16,

col = "royalblue",

bar.bg = c(num = "seagreen"),
overlap = 0,

number = 5)

As you can see in Figure 18-3, there are only five slices now, and
they do not overlap. Notice that R chose where the cut points would

be, creating the slices in such a way that the number of points would
be about equal in all the plots.
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Figure 18-3. Coplot of SATM by dollars with percent as the condition-
ing variable. The user specified five slices, with no overlap.

The results in Figure 18-3 still look pretty good, even though we
surrendered control of the cut points to R. There might be circum-
stances in which we want to pick the exact cut points without avail-
ing ourselves of Rs sage wisdom, though. It is possible, but it takes a
little bit of effort. Suppose that we want to have four nonoverlapping
plots and to pick the precise cut points. We need to create a matrix
with four rows, one for each plot. Each row will have two numbers:
the lowest percent in the plot and the highest. The name of the
matrix will be supplied to the given.values argument. The matrix
will look like this:

0 19.9
20 39.9
40 59.9
60 75
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For more information about creating a matrix,
type ?matrix.

Figure 18-4 has four slices with exactly equal widths of percent
(except the highest one), but very different numbers of points in
each plot. The script to create it follows:

# Figure 18-4

library(car)

attach(States)
mat = matrix(c(0,19.9,20,39.9,40,59.9,60,75),
byrow = T,

nrow = 4,

ncol = 2)
coplot(SATM ~ dollars |percent,
pch = 16,

col = "royalblue",

bar.bg = c(num = "maroon"),
given.values = mat)

Figure 18-4 shows you the results.
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Figure 18-4. Coplot of SATM by dollars with percent as the condition-
ing variable. The user has specified four slices with precise cut points.

The extent of the relationship of percent with SATM is still so strong
that our conclusion is unchanged. In this case, there were no fewer
than five points in a panel. However, there could be instances where
one or more panels contain zero, one, or two points, making those
panels of little value or difficult to interpret. Thus, R defaults to the
overlapping bars we saw in Figure 18-2, thereby avoiding empty or
nearly empty panels. We always have the option to create a coplot
with panels that do not overlap. When given a sufficiently large
number of points, this will often be easier to interpret.

Exercise 18-1

Does pollution kill? Examine the relationship between mortality and
air pollution in the ex1123 dataset from the Sleuth2 package. Could
other factors explain the apparent connection?
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CHAPTER 19

Clustering: Dendrograms and Heat
Maps

Clustering

Clustering refers to a number of related methods for exploring mul-
tivariate data. There are dozens of clustering functions available in
R. We will focus on just one of them in this chapter: the hclust()
function in base R. This function performs hierarchical clustering,
which is one of the most commonly used clustering techniques and
will be a good introduction to clustering in general. The idea is to
put observations into clusters, or groups, in which the members of a
single cluster are similar to each other and different from observa-
tions in other clusters. Further, a particular cluster may be judged to
be similar, in varying degrees, to other clusters. We will use a graph
called the dendrogram—which looks like an inverted tree—to
understand the relationships of clusters to one another. Figure 19-2,
later in this chapter, presents an example of a dendrogram.)

Consider the mtcars dataset from Motor Trend Magazine’s 1974
report on the characteristics of a number of new models for that
year. Let’s take a look at the first six rows of this dataset by using the
head() function:
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> head(mtcars)
mpg cyl disp hp drat wt gsec vs am

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0
gear carb

Mazda RX4 4 4

Mazda RX4 Wag 4 4

Datsun 710 4 1

Hornet 4 Drive 3 1

Hornet Sportabout 3 2

Valiant 3 1

We would like to put the various models into clusters, such that sim-
ilar cars are in the same cluster. There are two ways to do this. The
agglomerative method begins by making a cluster of the most closely
matched pair, then making a cluster of the next most closely
matched of either a pair of single observations or a pair of a single
observation and an existing cluster, and so on, until all the observa-
tions are in one big cluster. The other approach, the divisive method,
breaks the total group into subgroups, those subgroups into further
subgroups, and so on. The hclust() function uses agglomeration,
but there are several methods available. We will use the default
method, “complete”

How should we measure the similarity, or distance, between two
observations? This involves finding a measure—combining all the
available information—to determine the “distance” between one car
model and another. If we had only one variable to consider, the
absolute difference between the values of that variable for each car
model would be the obvious choice. In our example, however, there
are 11 variables, so we would like to have a distance measure that
takes all 11 into account. Let’s begin with a simpler example. Sup-
pose that there are two cars, Car-1 and Car-2, each with measure-
ments on two variables, x and y. So, Car-1 is a point (xI,yI) and
Car-2 is a point (x2,y2). These two points are represented in the
graph in the upper left of Figure 19-1. The shortest distance between
the points is displayed by the solid line in Figure 19-1, in the graph
in the upper-right corner.
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Variables x and y, Observations 1 and 2 Euclidean distance
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Figure 19-1. Measuring distances in two-dimensional space.

Note that this line is the hypotenuse of a right triangle, so it is easy
to calculate the distance:

distance = sqgrt[(x2 - x1)72 + (y2 - y1)~2]

Remember that the square of the hypotenuse equals the sum of the
squares of the two sides. This distance, “as the crow flies,” is called
the Euclidean distance; it is the default distance measure used by the
dist() function in R. There are several other ways to measure dis-
tance. One of them is shown in the graph in the lower left of
Figure 19-1. This is the Manhattan option, also called “taxi cab” or
“city block” distance. Depending on the particular problem you are
solving, this measure might be more appropriate. R makes this
option available as well as several others, but we will stick with
Euclidean distance for this problem. If there are three variables, you
can extend the Euclidean method as follows:
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Euclidean distance = sqrt[(x2 - x1)72 + (y2 - y1)*2 +
(z2 - z1)72]

Likewise, you can extend the measure to as many variables as
needed.

Putting Mathematical Expressions in Graphs

There are times when a mathematical formula or expression greatly
enhances a graph. Fortunately, R accommodates adding such
expressions by using expression as an argument to any of the
functions text(), mtext(), axis(), and legend(). The following
script produced Figure 19-1 with mathematical expressions in the
text() commands:

# script for Figure 19-1
par(mfrow = c(2,2))

x = c(2,5)

y = c(3,6)

yp = c(0,6)

xp = c(0,8)

plot(x,y, pch = 16, xlim = xp, ylim = yp,

xaxt ="n", yaxt = "n", bty ="1",

main="Variables x and y, Observations 1 and 2",

cex.main = .9,

ylab = "")
text(x = 3.2, y = 3,

labels = expression(group("(", list(x[1], y[11]), ")")))
text(x = 6.2, y = 6,

labels = expression(group("(", list(x[2], y[2]), ")")))
mtext(text = "y",

side = 2, las =1,

cex = .8, line = 3)
plot(x, y, pch = 16, type = "0", xlim = xp, ylim = yp,
main = "Euclidean distance",

xaxt = "n", yaxt = "n", bty = "1l", ylab
text(3.6, 1.5, labels =

expression(sqrt((x[2] - x[1]1)"2 + (y[2] - y[11)"2)))
lines(x, y, type = "s", lty = "dotted")

mtext(text = "y", side = 2, las = 1, cex = .8, line = 3)

")

plot(x,y,
pch = 16, x1lim = xp, ylim = yp,
main = "Manhattan distance",

xaxt = "n", yaxt = "n", bty = "1l", ylab
lines(x,y,type="s" )
text(3.6, 1.5,

labels = expression(group("|", x[2] - x[11,"|") +

")
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group("|",y[2] -y [11,"1")))
mtext(text = "y", side = 2, las = 1,cex = .8, line = 3)

For usage details, refer to the plotmath help file.

Notice that the values of the variables in mtcars vary widely. For
example, disp has values well in excess of 100, but cylis all in single
digits. This means that disp will play a much more important role in
determining the distance than cyl will, if only because of the scale
on which it is measured. Imagine that two variables were measure-
ments of length but one was expressed in inches, whereas the other
was in feet. The exact same distance would be noted in very differ-
ent numbers, giving the one with a higher number more influence
on the Euclidean distance. For this reason, it makes sense to convert
all the variables to a comparable measurement scale.

We can normalize (or “standardize”) the data by applying a simple
transformation. We will make each variable have a mean of 0 and a
standard deviation of 1. Let’s try this with mpg. First get the mean
and standard deviation of mpg:

> mean(mpg)

[1] 20.09062

> sd(mpg)

[1] 6.026948
If we subtract the mean from each value of mpg and divide that by
the standard deviation, we will have an mpg variable that has a mean
of 0 and standard deviation of 1:

> mpg2 = (mpg - 20.09)/6.026948

> mean(mpg2)

[1] 0.0001037009 # tiny round-off error!
> sd(mpg2)

[1] 1

This kind of process of normalization happens so frequently that R
provides a function that makes it a one-step operation:

> mpg3 = scale(mpg)

> mean(mpg3)

[1] 7.112366e-17  #tiny, tiny; for all practical purposes = 0
> sd(mpg3)

[1] 1

Fortunately, we do not need to scale each variable: we can do an
entire matrix at once. Let’s now convert the data frame to a matrix,
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make the distance measurements on a scaled matrix, compute the
clusters, and plot the dendrogram:

# Figure 19-2

attach(mtcars)

cars = as.matrix(mtcars) # convert to matrix- dist requires it
h = dist(scale(cars)) # scale cars matrix & compute dist matrix
h2 = hclust(h) # compute clusters

plot(h2) # plot dendrogram

The dendrogram in Figure 19-2 shows the results of the clustering
procedure.
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Figure 19-2. Dendrogram of clusters in mtcars dataset.

The vertical scale, called “Height,” will help us to understand what
has happened. The figures that look rather like staples connect
observations in the same cluster. The lower down on the Height
scale the horizontal part of the staple is, the earlier that cluster was
formed. Thus, the staples that have a Height near zero were the first
ones formed and therefore are the closest in Euclidean distance.
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Conversely, clusters with a Height of close to eight were among the
last formed and thus are relatively far apart. Clusters that are next to
each other are not necessarily close! For example, look at the right-
hand side of the graph. The two Mazda models are very close, hav-
ing formed a cluster at a height of about 1. The Ford Pantera, which
is next to the Mazda cluster, is not especially close to the Mazdas,
because it did not become part of a cluster with them until a height
of about 5.

It is also possible to cluster the variables, rather than the observa-
tions, by transposing the cars matrix; that is, making the first row
become the first column, the first column become the first row, and
so on:

newcars = t(cars) # newcars is the transpose of cars
h = dist(scale(newcars))

h2 = hclust(h)

plot(h2)

Heat Maps

Another way to get an overview of all the numbers in the mtcars
dataset is to look at a heat map. In this kind of visualization, every
number in the standardized matrix is transformed into a colored
rectangle. This is done in a systematic way so that a color represents
the approximate value, or intensity, of the number. For instance, one
possible range of colors we might use runs from dark red for very
low numbers, through ever lighter shades of red, orange, yellow, and
finally white as the numbers become higher. This range of colors is
the default for the image() function, but many other color sets are
possible. A simple heat map on scaled values in the mtcars dataset
appears in Figure 19-3. The code that produced it follows:

# Figure 19-3

attach(mtcars)
cars = as.matrix(mtcars)
image(scale(cars)) # simple heat map
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Figure 19-3. Heat map of mtcars dataset in default colors

The col = rainbow() argument controls the color range in the
image() function. Another reasonable color scheme is a range of
blues, from very dark to very light. The following command shows
how to invoke the blue range of colors:

# Figure 19-4
image(scale(cars), col = rainbow(256, start = .5, end = .6))
# heat map with range of blues

The result appears in Figure 19-4.
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Figure 19-4. Heat map of mtcars dataset in a range of blue colors.

Not all color sets are easily interpreted. If you used all possible col-
ors, it would be difficult to know whether, for instance, dark green
was more positive or more negative than dark blue. The color
schemes in Figure 19-3 and Figure 19-4, however, are relatively easy
for most people to grasp. Each of the values start and end in the
rainbow argument must be 0 or larger but no larger than 1, and the
two values must be different. You might experiment with different
values and see if you find a combination that works as well for you
as the two demonstrated here. For more information, type ?rain
bow.

The heat map in Figure 19-3 (also Figure 19-4) is turned on its side,
as if the data matrix fell to the left. If you count, you can find 11
rows and 32 columns, instead of the 11 columns and 32 rows in the
original dataset. Even though the colors show a wide range of values,
with many dark red (low) values and some pale yellow and white
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(high) values, there does not seem to be any obvious pattern in the
graph.

We would like to find patterns in the data, just as we did with the
cluster analysis. It is actually possible to combine the dendrogram
and the heat map into one visual display to aid in understanding the
relationships among the variables and particular car models. The
heatmap() function can both perform clustering and make a heat
map at the same time. Rows and/or columns are reordered to put
like items together, and cells are colored appropriately. The com-
mand that follows produced Figure 19-5, using the default options:

> heatmap(scale(cars)) # Figure 19-5

See the help file for more information about the
many options available, such as whether to
include a row and/or column dendrogram,
methods for measuring distances, how to weight
rows and columns, and more.
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You can see some striking patterns in Figure 19-5. Notice how the
colors set off some groups of car models from others. Compare
those clusters to the ones indicated by the dendrogram on the left-
hand side. We can see not only that certain models are in the same
clusters, but that models within clusters—especially in the ones that
were among the earliest formed—have similar color patterns among
the variables.

A similar heat map is shown in Figure 19-6.
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Figure 19-6. Heat map of mtcars, using heatmap.2() from the gplots
package.

Figure 19-6 was made by using the function heatmap.2() from the
gplots package. There are a couple of extra features provided by
heatmap.2() that make interpretation of the map a bit easier. First,
there is a key in the upper-left corner that shows the relation of the
colors to variable values. Second, there is a system of vertical lines
running through each of the columns. The dotted line represents the
value 0. The solid line shows how much the value in a particular cell
varies, positively or negatively, from 0. This reinforces the key, giv-
ing a confirmation in each cell. The code to produce this figure fol-
lows:

# Figure 19-6

library(gplots)

heatmap.2(scale(cars))
Clustering is not an exact science; rather, it is a way of searching for
order in complex data. Clustering algorithms, dendrograms, and
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heat maps are tools we use in that search. Like other tools, they can
help us reach our goals, or they can scrape, cut, or burn, if we are
not careful! The foregoing discussion is far from a complete explan-
ation of clustering, but more of a teaser, perhaps inspiring you to go
ahead and learn more. There are many other clustering and heat
map functions provided in R.

Exercise 19-1

Create a new dendrogram for the mtcars data by using a different
agglomerative method. Use the help function (?hclust) to see what
methods are available. How different are the results? The alternate
methods will not necessarily give the same answers. You might find
one method works very well on one problem, but not well on
another problem. Furthermore, you can try a different method of
measuring distance. Type ?dist to see the methods available.

Exercise 19-2

Make alternate heat maps of the mtcars data by using each of these
color schemes:

heat.colors

cm.colors

terrain.colors

topo.colors

rainbow.colors
Are some easier to read than others? Which ones do you think you
will continue to use? Are there any that you will not use?

Exercise 19-3

Recall that the airquality dataset we examined in Chapter 1 had a
number of missing values. The missmap() function in the Amelia
package uses a simple type of heat map to look for missing values.
Install and load Amelia and find the missing values in airquality.
In what way is this heat map simpler than the ones discussed in this
chapter? How does this graphic help you to understand the dataset?
Compare it to the output provided by the misstiogram() function in
the epade package.
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CHAPTER 20
Mosaic Plots

Graphing Categorical Data

Most of the graphs we have studied so far have been of quantitative
variables. In a few cases, we have mixed quantitative and categorical
variables, usually by making the distinct values of the categorical
variable(s) define groups, each one having its own graph. Some-
times, however, all of the variables of interest are categorical. This
requires special graphical methods.

Let’s consider a dataset in the epicalc package. You will need to
install this package, as well as vcd, which includes some functions
for working with categorical variables. Here’s how to do that:

install.packages("epicalc")
install.packages("vcd")
library(epicalc)
library(ved)

vV V V Vv

We will be looking at the ANCdata dataset. You'll need to get some
information about this dataset:

> ?ANCdata

This data is from a study of the types of care given to women with
high-risk pregnancies in two clinics. There are three variables, all
categorical, and each has only two values, or levels. We would like to
know if perinatal mortality (i.e., a stillborn fetus or death of new-
born within seven days) is related to the type of treatment or the
clinic in which care was received. Let’s first look at the relationship
between death and anc (treatment). The table() command shown
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in the following script will count the number of observations in
each combination of the two variables:

# Table 20-1

library(epicalc)

library(vcd)

attach(ANCdata)

xtabl = table(death,anc) # make this table an object, "xtab1"
xtab1 # show the values in xtabl

Table 20-1. Frequencies of expectant mothers by treatment and infant
mortality

anc
death old new
no 373 316
yes 46 20

This table shows that of the women receiving the “old” treatment,
373 of their babies survived and 46 died. Of those women receiving
the “new” treatment, 20 lost their babies and 316 did not. This is a
small table, yet it might take a little while to process mentally. Which
treatment had better results? The answer might be more obvious
with a visual presentation of this summarized data. We will use a
mosaic plot, which represents the number in each cell (each count)
by the size of the area of a rectangle. Notice that the following
mosaic() command takes information from the table in the object
xtab1:

> mosaic(xtabl) # command operates on table, not original cases

Alternatively, the mosaic() command can take an argument as a for-
mula. So, the following two commands are equivalent:

> mosaic(xtabl)
> mosaic(~death+anc)

The entire set of commands to produce Figure 20-1 includes the fol-
lowing:

# Figure 20-1

library(epicalc)

library(vcd)

attach(ANCdata)

xtabl = table(death,anc)

mosaic(xtabl) # or mosaic(~death+anc)
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What if the Only Data | Have Is a Table of Frequencies?

An article in a scientific journal, report, or presentation might give
a table of frequencies, similar to the one we've produced for the
ANCdata dataset (Table 20-1). Perhaps you want to continue the
analysis, but do not have access to the original data. Do not despair!
Create a short script, including the frequency data, and you can
produce all the graphs in this chapter, plus more. This involves cre-
ating a type of data structure we have not yet discussed: an array.
Here is the basic form of the array() command:

array(data, dim = length(data), dimnames = 1list())

Here, data is a vector, dim is a vector of table dimensions, and dim
names gives the names of the possible variable outcomes. To create
Table 20-1, we could use a command like this:

xtabl = array(c(373, 46, 316, 20), c(2,2),
Ust(c("no", "yes"), c("old", "new")))

The object, xtab1, is essentially the same as the xtab1 produced by
table(). Alternatively, you can use the following equivalent, in a
script, which breaks the long array() command into smaller pieces
(which some people find easier to read):

# enter table of ANC frequencies, rather than read ANCdata
# two-way table - data from Table 20-1

library(vcd)

counts = c(373, 46, 316, 20) # enter 1st col, 2nd col
death = c("no", "yes")

anc = c("old", "new"

xtabl = array(counts, c(2,2), list(death, anc))
names(dimnames(xtab1)) = c("death", "anc"

xtab1 # prints Table 20-1

mosaic(xtabl) # produces Figure 20-1

# three-way table - data from Table 20-2

library(vcd)

cnts = c(176, 197, 12, 34, 293, 23, 16, 4)

clinic = c("A", "B")

death = c("no", "yes")

anc = c("old", "new")

xtab2 = array(cnts, c(2,2,2), list(clinic, death, anc))
names(dimnames(xtab2)) = c("clinic", "death", "anc")
xtab2 # Table 20-2

mosaic(xtab2) # Figure 20-2

# use appropriate mosaic() command for any other plot in
# chapter
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The plot in Figure 20-1 shows slightly more women received the old
treatment, because the block under “old” is bigger than that under
“new” Deaths among those receiving the old treatment are dispro-
portionately high. Notice that the “yes” rectangle under the “old”
treatment column extends under the “new” treatment column, and
not by just a little bit. This shows that the two variables, death and
anc, are associated or correlated; that is, the proportion of deaths in
the old treatment group is greater than the proportion of deaths in
the new treatment group. As we have pointed out earlier, however,
correlation does not prove causation. It makes sense to look at the
other variable we have available to see if there might be a more com-
plex relationship among all the variables.

anc
old new

no

death

yes

Figure 20-1. Mosaic plot of death by anc (treatment).

Mosaic plots are helpful for examining two categorical variables but
will illuminate even more when studying three variables. Next, we'll
create the three-way table so that we can examine the frequencies
and then make the frequencies into a mosaic plot:
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# Table 20-2
xtab2 = table(clinic,death,anc)
xtab2 # produces the following table

Table 20-2. Frequencies of patients by treatment and mortality and clinic

, , anc = old

death
clinic no yes

A 176 12

B 197 34

, , anc = new

death
clinic no yes

A 293 16

B 23 4

Running the following code produces Figure 20-2:

# Figure 20-2
xtab2 = table(clinic,death,anc)
mosaic(xtab2)
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Figure 20-2. Mosaic plot of clinic,death,anc.

Figure 20-2 shows some quite interesting relationships. First, the
plot is broken into an upper part, representing clinic A, and a lower
part, representing clinic B. Take a look at each part separately for a
moment. The relationship we saw in the two-way table (Figure 20-1)
between treatment type and deaths still exists in clinic A, but not in
clinic B. Considering the entire plot, it is quite striking that the
death rate is much higher in clinic B, as a whole, than in clinic A.
Also worth noting is that, whereas more women in clinic A received
the new treatment, in clinic B patients overwhelmingly received the
old treatment.

There are several ways that we can modify the plot to make certain
relationships stand out. For instance, suppose that we wanted to
highlight the fact that the distribution of treatments was far different
in the two clinics. We could add one more argument to the
mosaic() command:
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# Figure 20-3
# make treatment groups (anc) obvious
mosaic(xtab2, highlighting = "anc"

This returns Figure 20-3.
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Figure 20-3. Mosaic plot of clinic,death,anc, with anc highlighted.

We might also highlight a variable that is considered a response vari-
able; in other words, a variable that is the consequence of the condi-
tion of the other variables. In this case, the response variable is
death. We could add a vector of colors as well to make the plot more
interesting (you may well find that the relationships are more strik-
ing when the tiles are in contrasting colors):

# Figure 20-4
mosaic(xtab2,
highlighting = "death",
highlighting_fill = c("royal blue","gold"))

Figure 20-4 shows the results.
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Figure 20-4. Mosaic plot of clinic,death,anc, with anc highlighted and
color added.
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death

yes

no
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Sometimes changing the orientation of the table can make certain
associations stand out or be hidden. Try highlighting a different
variable and see how it might change the ease of interpreting the
outcome:

# Figure 20-5
mosaic(xtab2,
highlighting = "clinic",
highlighting_fill = c("royal blue","gold"))

Figure 20-5 shows the results.
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Figure 20-5. Mosaic plot of clinic,death,anc, with clinic highlighted and
color added.

Another approach to interpretation of the mosaic plot is a residual
analysis. If there is no association between the variables in the table
—that is to say, the variables are independent—we would expect that
the cells would be of a certain number. The differences between the
actual frequencies in the table and the expected values are called
residuals. The following shows the process of calculating expected
values for the two-way table:
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Table 20-3. Actual values from Table 20-1 and calculated totals, expected
values, and residuals

anc
death old new Totals
no 373 316 689 = 91.3% of 755
yes 46 20 66 = 8.7% of 755

Expected values

old new
no 382.5 (91.3% of 419) 306.6 (91.3% of 336)
yes 36.5 (8.7% of 419) 29.4 (8.7% of 336)
Residuals

old new
no 373 - 382.5 = -9.5 316 - 306.6 = 9.4
yes 46 - 36.5 = 9.5 20 - 29.4 = -9.4

The idea is the same for the three-way table, but we will not do the
calculation here, because it is a little messier and it is not necessary
for our purposes. The mosaic plot can use the information about
residuals to show us where the discrepancies between the actual fre-
quencies and the expected frequencies (under the assumption of
independence) are. To get the residual plot, add the argument
shade=TRUE to the mosaic() command. To have an explanation of
the meaning of the various colors and shades on the graph, add the
argument legend=TRUE:

# Figure 20-6
mosaic(xtab2, shade = TRUE, legend=TRUE)

You can see the resulting plot in Figure 20-6. The blue-colored tiles
represent cells that have large positive residuals, whereas the red
tiles represent cells that have large negative residuals. The gray tiles
indicate that the corresponding cells were close to their expected
values. If you compare the four tiles in clinic A to their correspond-
ing tiles in clinic B, you will see a pattern of stark differences
between the two clinics.
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Figure 20-6. Residual shading of results in Figure 20-3.

Exercise 20-1

The well-known tragic sinking of the Titanic has been the topic of
much study. A dataset concerning the characteristics of survivors
and nonsurvivors comes with the base R installation and is called,
appropriately, Titanic. Use the mosaic plot technique to determine
which factors are related to survival. When you are done, search the
Internet to find at least two other analyses of this same dataset to
which you can compare your analysis. It should not be hard to find
several other studies.
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PARTV
What Now?

We have covered a lot of ground, but if you have interesting data to
study, you may yet have lots of unanswered questions. Fortunately,
this book is not the last word on graphics and R. Graphing Data with
R has prepared you to move on to more advanced resources, such as
the ones introduced in this last section.






CHAPTER 21

Resources for Extending Your
Knowledge of Things Graphical
and R Fluency

Art is never finished, only abandoned.

—attributed to
Leonardo da Vinci

This book will never be finished, but there comes a time when it
should be turned over to those who can benefit from the knowledge
accumulated thus far, incomplete though it may be. I am astounded
by the ingenuity of the countless people who have devised useful
ways to visualize data and by those who have contributed their
implementations of graphical methods to R. It would take many
more years than I have left to thoroughly describe them all. Long
before I could ever finish with the methods presently available,
many more will have appeared. Recognizing the futility of complet-
ing this quest, I hand the further search for graphical wisdom and R
truth over to you.

Having read this book, you now have a basic knowledge of making
graphic displays of data by using R. There are many ways to apply
your newfound skills, and no doubt you will find outlets for putting
these skills to work. It is also very likely that you will encounter
problems for which you are, at present, unprepared. Although I
hope that you will find this book a handy reference tool that will
help you solve many of those problems, there are also a number of
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excellent materials for further self-study readily available. What fol-
lows is far from a comprehensive list, but it includes materials that I
have found helpful and feel comfortable recommending to you. For
full references, see Appendix A.

R Graphics

The Comprehensive R Archive Network (CRAN) is part of the R
Project. CRAN Task Views, at http://cran.r-project.org/web/views/,
gives an overview of R packages, broken down by categories. If you
click Graphics, you will see a general discussion of graphics pack-
ages with some mention of specific packages and their strengths as
well as links to documentation for many graphics packages. What
you will not find here is information about packages that might have
some useful graphic features but are not primarily graphics pack-
ages. If you have a very specialized interest, take a look at the corre-
sponding category: say, the Survival category if you are interested in
survival curves, TimeSeries if you are interested in plotting time-
series data, SpacioTemporal if you are interested in geography, and
so on.

If you want to delve into the lattice package, look at the very read-
able book by the creator of this package, Sarkar (2008). Likewise,
Wickham (2009) is the package creator’s approachable book on
ggplot2. Chang (2013) is a “cookbook” with lots of recipes for mak-
ing graphs in R, mostly with ggplot2. This book is especially appro-
priate if you know beforehand the basics of R and a bit about
various types of graphs—but, of course, now you do!

General Principles of Graphics

Tufte (1983) is probably one of the most cited books on data graph-
ics. The author covers centuries of graphics and deduces a number
of principles of effective display. There are many great—and poor—
examples from which to learn what makes a good graph.

The books by Cleveland (1985, 1993) are masterworks of clear and
logical thought. They do require a bit of math for complete under-
standing, but will give most readers—even those without advanced
math backgrounds—a much better grasp of graphic principles. The
graphs look a little plain compared to the colorful displays now pos-
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sible, but the design of Cleveland’s graphs surpasses most others
anyway. Much of lattice derives from these two books.

Learning More About R

R is becoming enormously popular, and there are now a large num-
ber of books on the market devoted to it. I cannot tell you which is
the best, but my favorite for general data analysis with R is Kabacoff
(2011). An expanded second edition has just been published, but I
have not seen it yet. To get the most out of this book, you should
understand basic statistics.

If you want to know more about R as a programming language, see
Matloff (2011). You might now know most of what you wanted to
learn about graphics. There are, however, lots of issues with data
handling, simulations, text strings, and a host of other subjects that
you probably cannot imagine yet that Matloff deals with.

Statistics with R

If you did not have any background in statistics before reading this
book, you might want to learn something about this subject now.
There are several basic textbooks on statistics that incorporate R.
One that I can suggest to you is Diez et al. (2012). In keeping with
the open source philosophy of R, this book is free and you can
download it at www.openintro.org. A paper copy is offered at Ama-
zon for a very low cost. The datasets used in the book are in the open
intro package.

There you have it. I believe this book works as a prerequisite to most
of the resources discussed in this chapter, which is one of the rea-
sons that I felt it needed to be written. I hope you will find your new
expertise in R graphics just what you were looking for.

Exercise 21-1

Here is a real test of how much you have learned: reproduce
Figure 1-3.
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APPENDIX B
R Colors

You can obtain a display of 657 named R colors by using the follow-
ing command:

> demo(colors)
For a list of the color names, use this command:
> colors()

The following script produced the color table shown in Figure B-1 (I
included it here so that you can reproduce if it you want to print
your own copy):

# Script to produce color chart
par(col.axis="white",col.lab="white", mar=c(0.1,0.1,0.4,0.1),
xaxt="n",yaxt="n")

n = c(0:656) # a number for each color

n2 = (n %%73) # each color has a number (1 to 73) in its column
cc = t(colors()) # color names

k = (2:9) # a number for each column

x=rep(c(1),times=73)

for(i in k) {

r = rep(c(i),times=73)
x = (c(x,r))

}

# print, at (x,n2), color rectangle
plot(x,n2,col=cc,pch=15,
x1lim=c(0,10),

ylim=c(0,73),

bty="n",
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.65)

,cex.main

R"

in

.4) # print (at x1,n2), the color name vector

"Named colors available

main=
x1 = x+ 0.5
text(x1,n2,cc,cex
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R Colors

1. 657 named colors.

Appendix B

A nice R color chart by Professor Tian Zheng of Columbia Univer-

sity is available on the Internet at http
~tzheng/files/Rcolor.pdf.

Figure B

258


http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

APPENDIX C

The R Commander Graphical User
Interface

Some people just do not like the command-line interface of R and
would prefer to work in a graphical user interface (GUI; a.k.a. point-
and-click) environment. If you do not work with R on a regular
basis, it can be hard to remember the R commands; or you might
find that you make a lot of mistakes when typing, or that it can be
painfully slow to make some simple graphs. Using R Commander
could make your life a little more pleasant, with the caveat that you
will not have access to the full range of R capabilities with the point-
and-click interface.

If you want to try R Commander, you first must install it by using
the following command:

> install.packages("Rcmdr", dependencies=TRUE)

After you've installed it, you won’t need to do it again, but you must
load it during each session for which you want to use it. Here’s the
command to do that:

> library(Rcmdr)

The R Commander window appears in Figure C-1. You will proba-
bly find that you can produce routine graphs/tables/analyses more
quickly by using R Commander, but some highly customized graphs
will not be possible. The console will stay open and you can go back
and forth between the two windows if you want to use both the GUI
and the command-line interface. Alternatively, you can type a com-
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mand into the R Script window of R Commander and select it. To
select a command, click the beginning of the line, drag across the
line to the end, and release the mouse button. The line will now be
highlighted. Click the Submit button, and R will execute the com-
mand.

000 X/ R Commander

File Edit Data Statistics Graphs Models Distributions Tools Help ‘

@ Data set: <No active dataset= | I /" Edit data set “ [ View data set Model: X <No active model> ‘

R Seript R Markdown

output g Submit

Messages

[1] NOTE: R Commander Version 2.1-2: Fri Jan 16 17:51:17 2015

Figure C-1. The R Commander GUI interface for R.

Try working through the strip chart problems in Chapter 3 using R
Commander. At the top of the screen, on the menu bar, click Data.
On the menu that opens, choose “Data in packages” and “Read data-
set from an attached package” Figure C-2 shows the window that
opens, in which you can select the trees data set. Click OK.
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000 X/ R Commander

File Edit Data Statistics Graphs Models Distributions Tocls Help

a_m 66 X Read Data From Package ta set Model: = <No active model>

Package (Double-click to select) Data set (Double-click to select)
car

datasets
sandwich

OR
Enter name of data set:

Help on selected data set
@ e

Messages

[1] NOTE: R Commander Version 2.1-2: Fri Jan 16 17:51:17 2015

4

Figure C-2. Selecting a dataset in R Commander for analysis with R.

Below the menu bar, you will see that trees is now the active data-
set. Continue by selecting “strip chart” from the Graphs window.
Compare your result to the first chart in Chapter 3. Next, try to
duplicate the second chart, the one that demonstrates jittering.
(Hint: after you open the strip chart window, click “options”) You
will not be able to replicate the other charts in that chapter by using
only the GUI. If you want to produce the third graph, you can sub-
mit a command line to R in the R Script window. The easiest way to
do this is to edit the command line produced when you made the
previous graph. Just add the pch=20 parameter and edit the xlab
argument (see Figure C-3). When you have the command the way
you want it, select it and then click Submit.
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X! R Commander

File Edit Data Statistics Graphs Models Distributions Tools Help

@ Data set: trees | l / Edit data set H [ View data set | Model: ¥ <No active modsl>

R Script R Markdown

data(trees, package="datasets")
stripchart(treesgvolume, methed="jitter", xlab="Volume in cubic feet")

Output g Submit

= data(trees, package="datasets")

= stripchart(trees$Volume, method="jitter", xlab="Volume in cubic feet")

Messages

[1] NOTE: R Commander Version 2.1-2: Fri Jan 16 17:51:17 2015
[2] NOTE: The dataset trees has 31 rows and 3 columns.

4

Figure C-3. Using the R Script window to submit a command line to R.

If you like R Commander, try to replicate some other examples from
the book with this GUI In many cases, it will not be hard to figure
out what to do if you know how the graph should look. For more
complex graphs, you will need to type a command.

It is possible to extend R Commander (i.e., add more commands).
You can do this by using a plug-in. As I write this, 36 plug-ins are
available to be installed, just the way you would install other pack-
ages. Most of them add many new commands. It is also possible to
write your own. For more information, click Help on the menu bar,
or see the R Commander web page at http://www.rcommander.com,
the author’s web page at http://socserv.mcmaster.ca/jfox/Misc/
Remdr/, or the complete list of R packages at http://cran.r-
project.org/web/packages/available_packages_by_name.html.  Scroll
down to the entries that begin with “RemdrPlugin”

Many of the plug-ins have one or more graphical functions. To see
how plug-ins work, install RemdrPlugin. HH. The package HH con-
tains a number of useful graphic functions. The plug-in makes these
functions available from R Commander. First, install the package:
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> install.packages("RcmdrPlugin.HH", dependencies=TRUE)
Next, start R Commander:
> library(Rcmdr)

When the R Commander screen opens, on the menu bar, click
Graphs. Get a sense of how many options there are without the
plug-in. To load the plug-in, click the Tools option on the Menu bar
and select “Load Remdr plug-ins” On the menu that follows, select
the plug-in name. Now, look at the Graphs option again: you will
notice many more choices than before, all in the bottom half of the
menu. Some of these add really useful options. For example, the
Scatterplot. HH plug-in offers much greater control of output (such
as type and size of plot character), several kinds of lines to put on
the graph, and even the ability to click a point and have it identified.

Several other plug-ins include nice graphic functions, too. Unlike
RemdrPlug. HH, some of them will add a new menu to the menu bar.
Among the ones that add interesting graphs are RcmdrPlu-
gin.KMggplot2, RcmdrPlugin NMBU, RcmdrPlugin.EZR, and oth-
ers.
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APPENDIXD

Package

Amelia

aplpack

car

corrplot

DescTools

epade
epicalc

foreign

GGally

Packages Used/Referenced

Authors

James Honaker
Gary King
Matthew Blackwell

Hans Peter Wolf
Uni Bielefeld

John Fox
Sanford Weisberg

Taiyun Wei

Andri Signorell
Other contributors

Andreas Schulz
Virasakdi Chongsuvivatwong

R Core Team

Barret Schloerke
Jason Crowley
Di Cook

Heike Hofmann
Hadley Wickham
Francois Briatte
Moritz Marbach
Edwin Thoen

Description

Program for missing data

Another Plot PACKage: adds
stem.leaf(), bagplot(),
faces(), spin3R(), plotsum
mary(), plothulls(),and
some slider functions

Companion to Applied Regression

Visualization of a correlation matrix

Tools for descriptive statistics

Easy Plots
Epidemiological calculator

Read data stored by Minitab, S, SAS,
SPSS, Stata, Systat, Weka, dBase...

Extension to ggplot2
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Package Authors

ggplot2 Hadley Wickham
Winston Chang

gmodels Gregory R. Warnes
other contributors

gpairs John W. Emerson
Walton A. Green

gplots Gregory R. Warnes
Ben Bolker
Lodewijk Bonebakker
Robert Gentleman
Wolfgang Huber
Andy Liaw
Thomas Lumley
Martin Maechler
Arni Magnusson
Steffen Moeller
Marc Schwartz
Bill Venables

grid Paul Murrell

hexbin Dan Carr
Other contributors

HistData Michael Friendly
Stephane Dray
Hadley Wickham
James Hanley
Dennis Murphy

Hmisc Frank E. Harrell Jr,
Other contributors
lattice Deepayan Sarkar

latticeExtra Deepayan Sarkar
Felix Andrews

multcomp Torston Hothorn
Frank Bretz
Peter Westfall
Other contributors

ncdf David Pierce

nlme Jose Pinheiro
Douglas Bates
Other contributors

Description

An implementation of the Grammar
of Graphics

Various R programming tools for
model fitting

Produces a generalized pairs
(gpairs) plot

Various R programming tools for
plotting data

The Grid Graphics Package

Hexagonal Binning Routines

Datasets from the history of
statistics and data visualization

Harrell Miscellaneous

Lattice Graphics

Extra Graphical Utilities Based on
Lattice

Simultaneous Inference in General
Parametric Models

Interface to Unidata netCDF data
files

Linear and Nonlinear Mixed Effects
Models
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Package
plotrix

psych

Quandl

Rcmdr

RcmdrMisc

RcmdrPlu
gin.EZR

RcmdrPlugin.HH

RcmdrPlu
gin.KMggplot2

RcmdrPlu
gin.NMBU

ResearchMe
thods

rgl

Authors

Jim Lemon, Ben Bolker, Sander
0Oom, Eduardo Klein, Barry
Rowlingson, Hadley Wickham,
Anupam Tyagi,

Olivier Eterradossi, Gabor

Grothendieck, Michael Toews, John

Kane, Rolf Turner, Carl Witthoft,
Julian Stander, Thomas Petzoldt,
Remko Duursma, Elisa Biancotto,
Ofir Levy,

Christophe Dutang, Peter Solymos,

Robby Engelmann,

Michael Hecker, Felix Steinbeck,
Hans Borchers,

Henrik Singmann, Ted Toal, Derek
Ogle

William Revelle

Raymond McTaggart
Gergely Daroczi

John Fox
Milan Bouchet-Valat
Other contributors

John Fox
Other contributors

Yoshinobu Kanda

Richard M. Heiberger
Contributions from Burt Holland

Triad sou
Kengo Nagashima

Kristian Hovde Liland
Solve Saebg

Mohamed Abdolell
Sam Stewart

Hadley Wickham

Daniel Adler
Duncan Murdoch
Other contributors

Description

Various plotting functions

Procedures for Psychological,
Psychometric, and Personality
Research

Quandl Data Connection

A platform-independent basic-
statistics GUI (graphical user
interface) for R, based on the
tcltk package

R Commander Miscellaneous
Functions

R Commander Plug-in for the EZR
(Easy R) Package

Remdr support for the HH package

Remdr Plug-in for Kaplan-Meier
Plots and Other Plots by Using the
ggplot2 Package

R Commander Plug-in for Statistics
at NMBU

Using GUIs to help teach statistics to
non-statistics students

Flexibly reshape data: a reboot of
the reshape package

3D Visualization Using OpenGL
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Package Authors Description

scatterplot3d Uwe Ligges 3D Scatter Plot
Martin Maechler
Sarah Schnackenberg
RCurl Duncan Temple Lang General network (HTTP/FTP/...)
client interface for R
Sleuth2 F. L. Ramsey Data sets from Ramsey and Schafer
D. W. Schafer (2001)
Other contributors
sm Adrian Bowman Smoothing methods for
Adelchi Azzalini nonparametric regression and
density estimation
ved David Meyer Visualizing Categorical Data
Achim Zeileis
Kurt Hornik
Other contributors
XLConnect Mirai Solutions GmbH Excel Connector for R
Martin Studer
Other contributors
XML Duncan Temple Lang Reading and creating XML (and
HTML) documents
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APPENDIX E
Importing Data from Qutside of R

Some Useful Internet Data Repositories

There are many websites from which you can download datasets
and to analyze with R. A few sources are presented in the list that
follows, as examples of the vast universe of shared data. In many
cases, it is necessary to register to use the datasets and/or agree to
terms of use. Carefully read the requirements of any provider from
whom you plan to acquire data. Datasets from the following sources
are frequently offered in Excel or CSV format, which have already
been discussed in the section “Reading from an External File” on
page 16; some examples in other formats follow:

Open Access Directory (http://oad.simmons.edu/oadwiki/Main_Page)
This site provides links to downloadable data from many sources
on diverse subjects, especially the sciences. Many of the datasets are
free; some you must purchase. Scroll down the table of contents to
“Data repositories” to see the variety of topics covered. Scroll down
this page to “Social sciences” and choose from the listing:

FedStats (http://fedstats.sites.usa.gov/)
This is a repository of many kinds of United States federal govern-
ment data freely available to the public. This page has links to vari-
ous government agencies sharing data.

DATA.GOV (http://catalog.data.gov/dataset)
This is another repository of federal data.
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Quandl (http://www.quandl.com)

This is a repository of more than 10 million datasets that are avail-
able for free download in several formats, including R data frames.
Compared to many other sources, Quandl is easy to work with.
Install and load the Quandl package:

> install.packages("Quandl")

> library(Quandl)
Browse the Quandl web page until you find a file that you want.
For example, suppose that you chose the FBI “Crimes by State”
file for Pennsylvania at http://www.quandl.com/FBI_UCR/
USCRIME_STATE _PENNSYLVANIA. You can load it into an R
data frame, penn.crime, with one command:

> penn.crime = Quandl("FBI_UCR/USCRIME_STATE_PENNSYLVANIA")

Importing Data of Various Types into R

R can read data in many different formats. Importing data from
some of the most important ones is discussed in this section.

csv

Our first example is a simple CSV file from the National Science
Foundation. Note that it looks very much like the example in the
section “Reading from an External File” on page 16; however,
because this file is not in a working directory on your computer, you
must include the entire URL in quotes—identifying the web page
from which it comes—as shown here:

> nsf2011 = read.csv(
"http://www.nsf.gov/statistics/ffrdc/data/exp2011.csv",
header=TRUE)

Statistical Packages (SPSS, SAS, Etc.)

I found an interesting dataset at the Association of Religion Data
Archives (http://www.thearda.com). After reading about ARDA,
click Data Archive on the Menu bar at the top of the page to see
what datasets are available. Datasets come in many different for-
mats. As an example, you can download “The Gravestone Index,”
collected by Wilbur Zelinsky, at http://www.thearda.com/Archive/
Files/Downloads/CEMFILE_DL.asp in any of three versions. Two
formats, SPSS and Stata, were designed for rival statistical software
packages. An R package called foreign can translate either of these
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formats into an R data frame. Here’s how to install and load the
package:

> install.packages("foreign", dependencies=TRUE)

> library(foreign)
After downloading the SPSS file to your working directory, you can
read it into an R data frame named stone by using the following
commands:

> stone=read.spss("The Gravestone Index.SAV",to.data.frame=TRUE)

> fix(stone) # look at the data in the editor
The foreign package can also read and write other data formats,
such as Minitab, SAS, Octave, and Systat. You can learn more about
the foreign package by using this command:

> library(help=foreign)

ASCI

The Gravestone file is also available as an ASCII file with fixed-width
format. This means that the data falls into fixed positions on a line,
without a space or other separator between data points. The first few
lines and last few lines look like this:

11862 8 1182000000000000000000000000000000000
11868 8 1182000000000010000000000000000000000
11875 8 1182000000000000000000000000000000000
11910 8 1182000000000000000000000000000000000
11885 8 1182000000000000000000000000000000000
11861 8 1182000000000010000000000000000000000
11864 8 1182000000000010000000000000000000000

52003 18 64120000
52003 18 64120000
52007 18 64120000
52003 18 64120000
51990 18 64120000

=
[<)

0 00000001 0 OOOOOOOOEO O
0 00000000 0 0OOOEOOOEO O
0 0000000010 0010000000 0
0 00000000 0 0OOOEOEOEO O
0 00000000 0 OOOOOOOO0O O

ooks like this:

(ool ol oMol
(ol o R ORI
[cl o oo

~

The first part of the codeboo

1) BOOKNUM: 1

2) YBIRTH: 2-5

3) CEMNAME: 6-8
4) YEAREST: 9-10
5) CITYCEM: 11-12
6) COUNTRY: 13

7) COLLYEAR: 14
8) GOTHICW: 15

9) MARRIAG: 16
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10) HEART: 17

11) HEARTSS: 18
12) MILITAR: 19
13) SECMESS: 20
14) OCCUPAT: 21

You can read the data by using the read.fwf() (read fixed-width
format) command. Notice that there is no header information.
Including the header=TRUE argument would give misleading infor-
mation to R, which would try to assign variable names according to
the numbers in the first row. This would result in an error message.
It will be necessary to include the widths argument, followed by a
vector giving the column widths of each of the variables, as indica-
ted in the codebook. The first variable, BOOKNUM, is one column; the
second variable, YBIRTH, four columns (2 through 5); the third vari-
able, CEMNAME, is three columns (6 through 8); and so on. The fol-
lowing command reads the ASCII file, which has been copied to the
working directory:

gs = read.fwf("The Gravestone Index.DAT",widths = c(1,4,3,2,2,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1))

Alternatively, instead of typing 42 1s, you can use the rep() function
to accomplish the same thing:

> gs = read.fwf("The Gravestone Index.DAT",
widths = c(1,4,3,2,2,rep(1,42)))

The SPSS datafile of this same data had variable names, but the
ASCII file comes without names and the variables are assigned
names of V1, V2, V3, and so on. We can give the variables real names
by creating a new vector with the names from the codebook:

vars = c("BOOKNUM", "YBIRTH", "CEMNAME", "YEAREST", "CITYCEM",
"COUNTRY", "COLLYEAR", "GOTHICW", "MARRIAG", "HEART", "HEARTSS",
"MILITAR", "SECMESS", "OCCUPAT", "PICTORIA", "DECEAEL",
"PHOTODEC", "RELMES", "SYMBOL", "ANGEL", "SYMBOOK", "SYMDEATH",
"DOVE", "FISH", "FINGERS", "SYMDIVIN", "GATES", "HANDSIP",
"IHSE", "HANDS", "LAMB", "SYMCROSS", "STATUE", "STAANGEL",
"STABOOK", "STADIVIN", "STALAMB", "STACROSS", "EFFIGY",
"WEEPWIL", "SECULAR", "SYMCHURC", "HANDSCIP", "CROWN",
"STADOVE", "PICCHURC", "STADEATH")

Then we can give the variables of gs the names in the vars vector:

> names(gs) = vars
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XML

XML (Extensible Markup Language) is a text format used for
exchange of data. Because there are so many different formats for
data, some of which are proprietary or even secret, it becomes virtu-
ally impossible to translate every format to every other one. XML,
which is transparent and open, is a common means for sharing data
among different computer systems and applications. There is an XML
package for R, making it possible for R users to read and create XML
documents. You can find the documentation for this package at
http://www.omegahat.org/RSXML/. XML files can be considerably
more complex than the simple flat files we have looked at so far.
There will usually be some exploration of the XML file required—to
learn its structure—before converting it to an R data frame. Follow-
ing is an example of converting a relatively simple XML file to a data
frame. This is the Federal Election Commission 2009-10 Candidate
Summary File, which you can find at http://catalog.data.gov/dataset/
2009-2010-candidate-summary-file.

You can do the conversion after you install and load the XML pack-
age:
> install.packages("XML",,dependencies=TRUE)

> library(XML)
> cand = xmlToDataFrame("CandidateSummaryAction.xml")

netCDF

You can find the following dataset in the data repositories list on the
National Snow and Ice Data Center (http://nsidc.org). I have chosen
it to demonstrate another data type, the netCDF (Network Common
Data Form) file. This format has become popular for storing large
arrays of scientific data, especially geophysical data. Like XML, data-
sets in this format can be complex. Download the dataset by FTP
from http://bit.ly/1jO6Ir9 and and save it your to your working
directory. Install and load the ncdf package to work with this data in
R:

> install.packages("ncdf")
> library(ncdf)

This dataset is a rather complex list of objects, each of which is itself
a list of objects. In netCDF parlance, each of the main lists is a “vari-
able” To use the data in R, it is necessary make a subset of the data
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that will include the list of items associated with one variable. You
can accomplish this as follows:

ice = open.ncdf("seaice_conc_monthly_nh_f08_198707_v02r00.nc")
# creates an R object named "ice"

str(ice) # shows that ice is a list comprised of other lists
icedata = get.var.ncdf(ice,"seailce_conc_monthly_cdr")
close.ncdf(ice)

vV V.V VvV Vv

The names of the variables were discovered in the results of the
str(ice) command, and seaice_conc_monthly_cdr was selected
for the sake of this example. In most cases, you will need to know
more about the data in order to select a variable name.

Web Scraping

It is also possible to copy data contained within web pages. This is
commonly known as web scraping. A thorough discussion of the
topic is beyond the scope of this book, but should you have a need
to extract web data, a good place to start would be the help files for
download.file() and readLines(). There are some packages that
might be useful, such as RCurl, XML, and several others.
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APPENDIX F
Solutions to Chapter Exercises

A solution is provided for each exercise in the book. Do not look at
the solution until you have made a serious effort to solve the exer-
cise! For many problems, there will be several possible solutions in
R. If you come up with a solution different from the one provided,
try to see if the two solutions are equivalent—do you get the same
answer? Why or why not?

Exercises 1-1 Through 1-4

Solutions provided in the chapter.

Exercise 3-1

attach(mtcars)
stripchart(mpg ~ cyl, method = "jitter")

This helps to separate the cars a bit. Now we can see how many cars
are in each group.

Not surprisingly, cars with fewer cylinders get better gas mileage.

Exercise 3-2

install.packages("plotrix", dependencies=TRUE)
library(plotrix)

attach(trees)

dotplot.mtb(Volume)
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A type of jittering is automatic. Even so, some values that are very
close still run together. One way to deal with this is to make the plot
character smaller:

dotplot.mtb(Volume, pch = 20) # or
dotplot.mtb(Volume, pch = ".") # too small!
dotplot.mtb(Volume, pch = "/") # Hmm...

detach(trees)

Exercise 4-1

dotchart(USArrests$Murder, labels = row.names(USArrests))

The state names are so big, they overwrite and become illegible!

Exercise 4-2

load("Nimrod.rda") # .rda shows it was saved as an R data frame
dotchart(NimrodStime)

Good!

dotchart(Nimrod$time, labels = Nimrod$performer, cex = .5)

Better!

Nimrod2 = Nimrod[order(Nimrod$time), ]
dotchart(Nimrod2$time, labels = Nimrod2$performer, cex = .5)

Yeah!

Exercise 5-1

# print results to screen
library(nlme)
attach(MathAchieve)
boxplot(SES ~ Minority * Sex)

# graph to file

pdf("SES.pdf") # opens a device
library(nlme)

attach(MathAchieve)

boxplot(SES ~ Minority * Sex)
dev.off() # closes and saves file

Insert the file SES.pdf into a word processor document.

It looks like SES has the same relationship to Minority and Sex that
MathAch has.
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Exercise 5-2

par(mfrow = c(1,2)) # show 2 graphs side-by-side

attach(mtcars)

boxplot(mpg ~ cyl)

library(plotrix)

ehplot(mpg, cyl)

detach(mtcars)

par(mfrow=c(1,1)) # reset to one graph/page
The box plot shows reference points (i.e., quartiles); the EH-Plot
shows actual points, including jittering.

You can add a box and whiskers to the EH-Plot: ehplot(mpg, cyl,
box = T).

Exercise 6-1

library(multcomp)

stem(sbp$sbp, scale = .5)
stem(sbp$sbp, scale = 3)
stem(sbp$sbp, scale = 4)

A scale choice larger than 3 seems to give us worthless charts! This
will not necessarily be true for all datasets.

Exercise 6-2

install.packages("aplpack", dependencies = T)
library(aplpack)

attach(trees)

stem. leaf.backback(Height, Volume)
detach(trees)

The units of measurement are different. What happens if you stand-
ardize the units?

library(car)
attach(Baumann)
stem.leaf.backback(pretest.1, post.test.1)

It appears that the posttest scores are higher.

Exercise 7-1

library(Sleuth2)

attach(case0302)

par(mfrow = c(2,2)) # show 4 graphs on one page
hist(Dioxin)
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hist(Dioxin, breaks = 20)
hist(Dioxin, breaks = 30)
hist(Dioxin, breaks = 40)
par(mfrow = c(1,1)) # reset to one graph/page

The distributional shape changes a great deal. With no breaks speci-
fied, it looks like most points are clustered around zero. With many
breaks, it looks like a nearly symmetrical distribution with a few
extreme values added to it. The strip chart emphasizes this idea. It
appears that just two points are atypical. Why are they so different?
Are they mistakes? Should they be included?

Exercise 7-2

library(Hmisc) library(car) attach(Burt) histbackback(IQbio, IQfoster)
detach(Burt)

The two histograms look fairly similar, except that the IQbio group
has a few more higher-end IQs.

Studying the salaries of males and females in the Salary dataset is a
little trickier than the previous problem, because there are not sepa-
rate vectors for “male salary” and “female salary” So, to use hist
backback(), we must create such vectors. There are several ways to
do this. Here is one of them:

attach(Salaries)

m = subset(Salaries, sex == "Male") # contains only male data
f = subset(Salaries, sex == "Female") # contains female data
histbackback(m$salary, f$salary)

detach(Salaries)

Exercise 8-1

library(multcomp)
eq2 = density(sbp$sbp, bw = 4) # Figure 8-1c
hist (sbp$sbp,
main="c. Histogram + Kernel Density, bw = 4",
col = "maroon", las = 1, cex.axis = .8,
freq = F) #freq=F: prob. densities
lines(eq2,lwd = 2) # Plot density curve on existing histogram

This gives us sharper bends than when bw = 5.

eq2 = density(sbp$sbp, bw = 2) # Figure 8-1-c
hist (sbp$sbp,
main="c. Histogram + Kernel Density, bw = 2",
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col = "maroon", las = 1, cex.axis = .8,
freq = F) #freq=F: prob. densities
lines(eq2,lwd = 2) # Plot density curve on existing histogram
This produces about a dozen bends; further detail does not really fit
the histogram better, but then, the histogram is a very rough
approximation.

eq2 = density(sbp$sbp, bw = 20) # Figure 8-1c
hist (sbpS$sbp,
main="c. Histogram + Kernel Density, bw = 20",
col = "maroon", las = 1, cex.axis = .8,
freq = F) #freq=F: prob. densities
lines(eq2,lwd = 2) # Plot density curve on existing histogram

This line is flatter than bw = 10, but not a radical change.

Exercise 8-2

The sbp of 125 has a y-coordinate about halfway between 0 and
0.25, or about 0.125. That is to say, the probability of selecting a
patient with systolic blood pressure of 125 or less is about 0.125, or
12.5 percent.

By a similar process, we can determine that the probability of a sys-
tolic blood pressure less than or equal to 175 is about 90 percent.
The probability of selecting a person with systolic blood pressure of
175 or greater is 1 — prob[175 or less] =1 - 0.9 = 0.1, or 10 percent.

The probability of falling between 125 and 175 is prob[175 or less] -
prob[125 or less] = 90% — 12.5% = 77.5%.

Exercise 9-1

The Ma'e bars are on top in each group, but the legend is reversed in
order, making the chart confusing to read. Change sexlab to
c("Male", "Female") in legend().

Exercise 9-2

library(car)

attach(Salaries)

library(epicalc)

salK=salary/10000

pyramid(salK,sex, binwidth = 1,
col = "seagreen",
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main = "Salaries in 10,000s of Dollars",
cex.bar.value =.4, cex.axis = .8)

Compare this to the result from “Exercise 7-2” on page 94.

Exercise 10-1

install.packages("HistData")

library(HistData)

attach(Nightingale)

deaths = c(sum(Disease), sum(Wounds), sum(Other))
pie(deaths, labels=c("Disease","Wounds","Other"))

The deaths command found the totals in each of the columns Dis
ease, Wounds, and Other. Those totals were used to make the pie
chart. The difference between Disease and the other causes was
very obvious, but the difference between the other variables is not
easy to see.

Exercise 10-2

load("Nimrod.rda")

x = table(NimrodSmedium)

X

pie(x, labels = c("Brass band","Concert band","Organ",
"Orchestra"),

col = c("gold3","deepskyblue","peachpuff3","magenta"))

Exercise 11-1

load("Nimrod.rda")

den = density(NimrodStime)
plot(den)

rug(Nimrod$time)

library(nlme)

boxplot(MathAchieve$SES,main="Socioeconomic Status", ylab="SES
score"

rug(MathAchieve$SES)

The first of these is probably more helpful. The second one is so
dense that we cannot see a separation of points over most of the
range of the data.
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Exercise 12-1

Year = c(2004:2010)
Europe = (7.9, 7.9, 7.9, 7.8, 7.7, 7.1, 7.2)
Eurasia = c(8.5, 8.5, 8.7, 8.6, 8.9, 8, 8.4)

plot(Year, Europe, type = "l",
col = "maroon", ylim = c(7,9),
ylab = "Emissions", lwd = 2)
# ylim makes graph big enough for Eurasia with values > 7.9

lines(Year, Eurasia,
1ty = "dashed",
col = "steelblue", lwd = 2)
legend("topleft", c("Eurasia", "Europe"),
text.col = c("steelblue","maroon"),
1ty = c("dashed","solid"))

Exercise 12-2

library(Sleuth2)
library(epade)
attach(case0701)
plot(Velocity, Distance)

As expected, distance is greater with greater velocity.

scatter.ade(Velocity, Distance, wall = 3,
main = "The Big Bang", col="red")

Very cool!

Exercise 13-1

library(nilme)
attach(MathAchieve)
plot(SES, MathAch)

There may be a near-linear relationship, but it is hard to be sure.

library(nlme)
attach(MathAchieve)
sunflowerplot(SES, MathAch)

The sunflower plot does not help very much.

library(nlme)

attach(MathAchieve)

library(hexbin)

plot(hexbin(SES, MathAch), colramp = heat.ob)
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The relationship is much clearer, nearly vertical; that is to say, there
is a similar wide range of math scores for all SES scores from -1 to
about 1.5.

detach(MathAchieve)

Exercise 14-1

library(ResearchMethods)
load("baplot") # if you saved baplot!
data(MFSV)

attach(MFSV)

baplot(MF,SV)

There is no obvious pattern, but we don’t know, based on the infor-
mation given in the help file, what the clinically acceptable differ-
ence is.

Exercise 15-1

library(reshape2)

library(car)

attach(tips)

tips$ratio = 100*(tip/total_bill)
attach(tips)

qgnorm(ratio)

qqline(ratio)

ratio is not normally distributed; it is skewed at the upper end.
qq(time ~ ratio)

lunch and dinner are very different distributions.
qq(smoker ~ ratio)

smoker and nonsmoker are also very different.

Exercise 15-2

library(reshape2)
library(car)
attach(Vocab)
qgnorm(vocabulary)
qgline(vocabulary)

vocabulary does not seem to be normally distributed.

qgnorm(education)
qgline(education)
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education is not, either.
qq(sex ~ vocabulary)

It is predominantly female through most of the range, and male at
the upper extreme.

Exercise 16-1

library(car)

attach(Ginzberg)

head(Ginzberg)

pairs(~ simplicity + fatalism + depression)

scatterplotMatrix(~ simplicity + fatalism + depression)

library(corrplot)
corrplot(y)

library(GGally)
ggscatmat(Ginzberg, columns = 1:3)

Exercise 17-1

library(scatterplot3d)

library(epicalc)

data(S02)

scatterplot3d(S02$smoke, S02$502, S02$deaths,
highlight.3d = T,
type = "h")

This is a tricky dataset to work with, because the dataset and a vari-
able have the same name. If you try attach(S02) and scatter
plot3d(smoke, S02, deaths), it won't work! Therefore, use the

S02$smoke name instead. Deaths seem to be positively related to
both of the other variables.

Exercise 17-2

library(lattice)

library(epicalc)

data(S02)

levelplot(S02$deaths ~ S02$smoke + S02$502)
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Exercise 18-1

library(Sleuth2)
attach(ex1123)
plot(S02, Mort)

There appears to be a strong relationship between SO2 and mortal-
ity, with the exception of a single, high-mortality point.

coplot(Mort ~ SO2 | Educ)

The coplot shows that there is little SO2, and lower mortality, in cit-
ies where education levels are highest! Perhaps there are fewer
smokestacks in cities with major financial businesses or research
centers.

Exercise 19-1

attach(mtcars)

cars = as.matrix(mtcars)

h = dist(scale(cars))

h2 = hclust(h, method = "single")

plot(h2)

h = dist(scale(cars), method = "manhattan")
h2 = hclust(h, method = "single")

plot(h2)

Exercise 19-2

cars = as.matrix(mtcars)

image(scale(cars), col = cm.colors(256))
image(scale(cars), col = rainbow(100))
image(scale(cars), col = terrain.colors(16))

And so on. The number after colors tells how many colors are in
the range.

Exercise 19-3

install.packages("Amelia", dependencies = T)
library(Amelia)
missmap(airquality)

library(epade)
missiogram.ade(airquality)
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Exercise 20-1

The Wikipedia article on mosaic plots includes a demonstration of
the Titanic dataset. You can also find a mosaic plot of this data at
http://bit.ly/1IVDPbmp in a different orientation. You can find
another one at http://bit.ly/1jdkQKr.

Exercise 21-1

attach(Nimrod)
par(bg = "white", mfrow = c(2,2))

# graph 1
x = table(medium)
barplot(x, horiz = T,
main = "Number of ensembles of each medium",
names = c("Brass band", "Concert band", "Organ","Orchestra"),
las = 1, cex.names = .8, col = "turquoise", space = 1.5)

# graph 2

cols = "cadetblue4"

boxplot(time ~ medium,
col = c("goldenrod","firebrick"),
ylab = "Time", xlab = "Medium",
varwidth = T,
main = "Performance times by medium",
col.main = cols,
col.axis = cols,
las = 1, col.lab = cols,
names = c("","","",""))

mtext(text = c("Brass band", Concert band",
"Organ", "Orchestra"),
side = 1, cex = .6,
at = c(1,2,3,4), line = 1)

# graph 3

pro = subset(Nimrod, level == "p")

am = subset(Nimrod, level == "a")

plot(density(proStime), ylim = c(0,.028),
main = "Professional vs. amateur groups",
xlab = "Time in seconds",

col = "pavy", lwd = 2,

bty = "n", xlim = c(100,350),

family = "HersheyScript",

cex.main = 1.4, cex.lab = 1.3)
lines(density(am$time), 1ty = "dotted",

col = "lightblue4", lwd = 2)
legend("topright", c("Amateur","Professional"),

cex = .8, text.col = c("lightblue4","navy"),
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#

bty - unn)

graph 4
data2 = Nimrod[order(NimrodStime), ]
dotchart(data2$time,
labels = data2$performer, cex = .34,
main = "Performance Time by Performer",
xlab = "Performance time", pch = 19,

col = c("violetred1", "violetred4"),
lcolor = "gray9e",

cex.main = 1.9, col.main = "violetred4",
cex.lab = 1.4,

family = "HersheySerif")

detach(Nimrod)
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APPENDIX G

Troubleshooting: Why Doesn’t My
Code Work?

Beginners at almost anything will make mistakes. Fortunately,
beginners with R receive error messages when they make mistakes,
indicating what needs to be changed. Unfortunately, those messages
are often cryptic and seem to be written in a language that only
vaguely resembles English. A little experience with R will smooth
the difficulties in a short time. The following pages include some
examples of easily made errors and messages that accompany them.
You should know that I have made each of the following errors
myself, some of them many times!

Misspelling

One of the most common mistakes is simple misspelling. R, how-
ever, apparently does not have the word “misspelling” in its vocabu-
lary and therefore labels this problem in sundry other ways:

> attach(trees)

> plt(Girth, Height)

Error: could not find function "plt"
In this example, R suggested that we wanted to use a function that
does not exist, or is hiding, but it was a simple spelling error! Retype
the command with the correct spelling:

> plot(Girth, Height)
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Actually, you do not need to retype the whole command. In the pre-
ceding example it is not a big deal, but sometimes you will have a
long line that it would be quite tedious to repeat. In that case, there
are two shortcuts:

« Copy and paste the incorrect line to the most recent prompt (>)
and fix the error before pressing Return (or Enter).

o Press the up-arrow key; the previous line will be copied, and
you can edit it. If you press the up-arrow key twice, the com-
mand two lines above will be copied, and so on.

Here’s another example:

> plot(Girth, Heilght, color = "red")
Warning messages:

1: In plot.window(...) : "color" is not a graphical parameter

2: In plot.xy(xy, type, ...) : "color" is not a graphical
parameter

3: In axis(side = side, at = at, labels = labels, ...) :
"color" is not a graphical parameter

4: In axis(side = side, at = at, labels = labels, ...) :
"color" is not a graphical parameter

5: In box(...) : "color" is not a graphical parameter

6: In title(...) : "color" is not a graphical parameter

This set of messages looks terrifying, but when you read each line,
you can see that R simply cannot get over our using the word
“color” To find the correct abbreviation, type ?plot, and all is for-
given. Simply change color to col, as shown here, and this now
works just fine:

> plot(Girth, Height, col = "red")
Take a look at this next example:

> library(poltrix)
Error in library(poltrix) : there is no package called 'poltrix'

Indeed, there is no package named poltrix. Check the spelling!
> library(plotrix)

No problem now! Notice that each of the three examples in this sec-
tion were, interpreted loosely, spelling errors. Nonetheless, R gave
three entirely different responses. This shows that error messages
are not always to be interpreted literally. You just need to have a little
experience to understand what the messages could mean.
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Confusing Uppercase/Lowercase

Remember that R treats uppercase and lowercase versions of the
same letter as if they were completely different letters. In this exam-
ple, R cannot find the object height because there is no such object:

> attach(trees)

> plot(Girth, height)

Error in xy.coords(x, y, xlabel, ylabel, log) : object 'height'
not found

Change height to Height and the command will work. If you can-
not remember the right variable name, you can use the str(trees)
command or head(trees) to find the precise name.

Too Few (or Too Many) Parenthesis Signs

In the following example, R does not execute the command and
prints + instead of >:

> plot(density(Girth)

+
This means that R was expecting something more. In this particular

case, typing one more right (close) parenthesis sign, after the +,
would make everything work.

In the next example, there are too many parentheses. The error mes-
sage points to the culprit:

> plot(density(Girth)))

Error: unexpected ')' in "plot(density(Girth)))"

>
When using parenthetical expressions, the number of left parenthe-
sis signs must be equal to the number of right parenthesis signs. If
you have long commands, it is a good idea to count “lefts” and
“rights” before you press the Return key.

Forgetting to Load a Package

Remember that any extra packages that you have installed—not in
base R—must be loaded for each session in which you intend to use
them. Suppose that you want to do some analysis of the Nightin
gale dataset from the HistData package, and you receive this mes-
sage:
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> attach(Nightingale)

Error in attach(Nightingale) : object 'Nightingale' not found

>
This is similar to the error message that a misspelling generates, but
it’s produced for a very different reason. The solution here is to load
HistData first:

> library(HistData)

> attach(Nightingale)
You can then use any commands or datasets in HistData without
having to load it again until you quit R. If you want to use anything
in HistData the next time you start R, you will need to load it again.

Forgetting to Install a Package

Many examples in the book load a package by using the library()
command. Remember that to load a package, you first must have
installed it by using the install.packages() function, or you’ll see
a message such as this:

> library(abctools)
Error in library(abctools) :
there is no package called 'abctools'
You only need to install a package once. It will reside on your com-
puter forever. However, you must load it for every session in which
you need it.

When I typed the command in the preceding example, I did not
have the abctools package installed on my computer. I could install
it by using this command:

> install.packages("abctools")
It would be even better if I used the command:
> install.packages("abctools", dependencies = TRUE)

This command not only installs abctools, it also installs any other
packages that abctools might depend on; that is, packages that abc
tools itself uses. On Windows-based computers, you can also install
packages by going to the Packages menu and selecting Install Pack-
age(s). A “CRAN mirror” window opens; either select a mirror site
or use the one that is already highlighted and press OK. Then, select
the package you want. Mac users can go to the Packages & Data
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menu, select Package Installer, click the Get List button, and then
select a package.

After the first few chapters, this book does not remind you to install
a package every time library() appears. I assume that you already
know you need to do this, having done it several times. If you are
not sure whether you have previously installed a package, you can
see what packages you have by using this command:

> installed.packages() # "installed" not "install"

This command might give you more information than you want,
but it works on all R systems. A more convenient way to see what
you have on Windows-based machines is to go to the Packages
menu and select Load Packages. For Macintosh computers, go to the
Packages & Data menu and select Package Manager.

A Dataset in a Loaded Package Is Not Found

When you load a package, the datasets included in that package
should be available to use:

> library(reshape2) # load a package
> head(tips) # use a dataset in that package

total_bill tip sex smoker day time size

1 16.99 1.01 Female No Sun Dinner 2
2 10.34 1.66 Male No Sun Dinner 3
3 21.01 3.50 Male No Sun Dinner 3
4 23.68 3.31 Male No Sun Dinner 2
5 24.59 3.61 Female No Sun Dinner 4
6 25.29 4.71 Male No Sun Dinner 4

This one worked just as it should have. Sometimes, though, some-
thing goes wrong and R cannot find the data:

> library(epicalc)

Loading required package: foreign
Loading required package: survival
Loading required package: splines
Loading required package: MASS
Loading required package: nnet
Warning message:

'.find.package' is deprecated.

Use 'find.package' instead.

See help("Deprecated")

> head(Ectopic)
Error in head(Ectopic) : object 'Ectopic' not found
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Ectopic is a dataset in the package epicalc, but even though the
package has just been loaded, R says it cannot find the dataset.
When that happens, you can add one more step, calling the data()
function, to load the particular dataset that you want:

> data(Ectopic)
> head(Ectopic)
id outc hia gravi
1 Deli ever IA 1-2
2 Deli ever IA 3-4
3 Deli never IA 1-2
4 Delil never IA 1-2
5 Deli never IA 1-2
6 IA ever IA 1-2

AU WN

Now, all is right with the world!

Leaving Out a Comma
Commas show R where one argument ends and another begins.

What happens if you leave one out?

> plot(Girth, Height col = "red")
Error: unexpected symbol in "plot(Girth,Height col"

The unexpected symbol was anything other than a comma. Argu-
ments must be separated by commas:

> plot(Girth, Height, col = "red")

Copy-and-Paste Error

The command that follows was copied from a successful execution
of that same command earlier in the session. The error message
might leave you scratching your head:

> > head(Nightingale)

Error: unexpected '>' in ">

The problem here is that the copy included the prompt symbol, >, so
that the command line, when pasted, had two of them. The way
around this problem is do one of the following:

 Copy only the part of the line after the >.

o After you have pasted, delete the second > before pressing the
Return key.
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Directory Problems—Cannot Load a Saved
File

You might have trouble retrieving a file that you know you have pre-
viously saved. Even if you spell everything correctly, R might not
find the file. Possible error messages are:

cannot open the connection
and/or:
no such file or directory

The most likely reason for such an error is that you are not search-
ing the right directory—in other words, the file is not in your work-
ing directory.

First, read the section “The Working Directory” on page 10. If that
does not answer all your questions, open the working directory to
see if the file in question is really there. On Windows-based comput-
ers, go to the File menu and select “Display file(s).” On a Mac, go to
the File menu and select Open Document.

On either platform, if the file is not in the working directory you
will need to search for it and do one of the following:

o Move it to the working directory.

 Change the working directory to be the directory where the file
is located by using the setwd() command.

o In the load() command, give the entire path to the file. For
example, if the file you wanted was cands.rda in the directory /
Users/yourname/Desktop/R Things/, you would use the com-
mand:

load("/Users/yourname/Desktop/R Things/cands.rda")
# note quotes!

Ensure that you spell everything correctly and include all the
slashes, quotes, and so on.

Missing File Extension

This not an R problem, per se, but something that could easily cause
a problem for R users. Consider the dataset created in the section
“Reading from an External File” on page 16. It was entered into a
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spreadsheet and exported as a CSV file. On either Windows-based
or Macintosh computers, depending on what options you have
selected—or neglected to select—the filename may appear to be
Nimrod. Tempo.

This is because your computer is set up not to show file extensions.
If we believe the filename and issue an R command with that name,
R indicates that no such file exists:

> Nimrod <- read.csv("Nimrod.Tempo", header = TRUE)
Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") :
cannot open file 'Nimrod.Tempo': No such file or directory

If we simply add the extension to the filename, there is no problem:
> Nimrod <- read.csv("Nimrod.Tempo.csv", header = TRUE)

A similar problem can arise with scripts that you try to source if you
leave off the file extension, .R:

> source("NimTotals")

Error in file(filename, "r", encoding = encoding) :
cannot open the connection

In addition: Warning message:

In file(filename, "r", encoding = encoding) :
cannot open file 'NimTotals': No such file or directory

On the other hand:

> source("NimTotals.R") # works fine!

Do Not Assume That All Packages Use the
Same Argument Abbreviations

Although many packages are quite consistent with base R in their
use of arguments and abbreviations, not all of them are, as the error
message in this next example demonstrates:

> scatterplot3d(Solar.R, Ozone, Wind, col = "blue")

Error in scatterplot3d(Solar.R, Ozone, Wind, col = "blue") :

argument 4 matches multiple formal arguments

The ++col++ argument is almost a universal standard among R
packages, but consulting the help file for scatterplot3d reveals that
it is not the right option for that package. Instead, you need to use
the following argument:

> scatterplot3d(Solar.R, Ozone, Wind, color = "blue")

294 | Appendix G: Troubleshooting: Why Doesn’t My Code Work?



Now, this works just fine.

Outdated Packages/Package Incompatibility

Many packages depend on certain other packages being available. If
a package does not load, it might be because some other required
package is absent. If an error message indicates this, for instance by
naming a package or command that could not be found, it might
only be necessary to install the required package. Sometimes, the
particular versions of installed packages can be the problem. To
check this, use the following command:

> library(help = packagename)
For example, if you have trouble loading Remdr, type the following:
> library(help = Rcmdr)

You will see a basic information file about the package, which
includes the required/suggested packages and the necessary ver-
sions. Here is a small excerpt from this file, after the naming of the
authors:

Depends: R (>= 3.0.0), grDevices, utils, splines,
RcmdrMisc (>= 1.0-2), car (>= 2.0-21)

Imports: tcltk, tcltk2 (>= 1.2-6), markdown, knitr,
abind

Suggests: aplpack, colorspace, effects (>= 3.0-1),

e1071, foreign, grid, Hmisc, lattice,

leaps, lmtest, MASS, mgcv,

multcomp (>= 0.991-2), nlme, nnet,

relimp, rgl, rJava, RODBC, sem

(>= 2.1-1)
This excerpt indicates that the version of Rcmdr installed on this
computer requires R version 3.0 or later. It also depends on several
other packages, such as grDevices, utils, and so, having been
installed. Further, some packages must be of a certain version; for
example, car must be version 2.0-21 or later. If you do not have the
proper matches, Rcmdr will either not load or not work properly.
The easiest way to fix this problem is simply to reinstall Remdr, with
its dependencies:

> install.packages("Rcmdr", dependencies = TRUE)

This will install/reinstall the latest version of Remdr and the latest
versions of its dependencies. If this does not work, you might need
to reinstall R.
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The help file for the package also references imports, such as tcltk,
which is crucial to the GUI of Remdr. If you do not have this pack-
age, which normally comes as part of R, you should reinstall R. Be
sure that you install the binary version. If your computer is a Mac
running OS X 10.9 or higher, you will also need to install XQuartz.

Finally, there are some suggested packages. Without these, parts of
Remdr might work, but not all of it.
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APPENDIX H

R Functions Introduced in This

Book

Here is a list of functions used in this book, for quick reference. It is
far from a complete list of R functions. For further information
about a given function, x, see the index, or type help(x) or ?x.

Data Input/Output

load()

Reload an R dataset previously created by using save().

open.ncdf()
Open an .ncdf file (ncdf package).

Quandl()
Read a Quandl dataset (Quandl package).

read.csv()
Read a file in .csv format and create a data frame.

read. fwf()
Read a fixed-width file.

read.spss()
Read an SPSS dataset (foreign package).

read.table()

Read a file in table format and create a data frame.
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read. txt()
Read a file in .txt format and create a data frame.

read.xport()
Read an SAS XPORT file (foreign package).

readWorksheetFromFile()
Read an Excel spreadsheet (XLConnect package).

save()
Write an R object to the working directory or a specified file.

xmlToDataFrame()
Read an XML file (XML package).

Datasets

attach()
Select a particular dataset for the following analysis.

data()
Determine what datasets are available (with no argument) or load a
dataset.

data.frame()
Combine two or more vectors to make a new data frame.

detach()
Deselect a dataset; that is, following commands no longer analyze
that dataset.

edit()
Edit a dataset.

fix()
Edit a dataset.

head()
View selected lines of a dataset, from the top.

str()
Determine the structure of an object.

subset()
Create a subset of a specified data frame.
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tail()
View selected lines of a dataset, from the bottom.

Graphical Functions 1—Creates Graph

barplot()
Produce a bar plot.

bland.altman.ade()
Produce a Bland-Altman plot (epade package).

boxplot()
Produce a box plot.

coplot()
Produce a coplot (conditioning plot).

cor.plot()
Produce a corrgram (psych package).

corrplot()
Produce a corrgram (corrplot package).

dotchart()
Produce a dot chart.

dotplot.mtb()
Produce a dot chart as in Minitab (plotrix package).

ehplot()
Produce an Engelmann-Hecker-Plot (plotrix package).

fan.plot()
Produce a fan plot (plotrix package).

ggpairs()
Produce a generalized pairs plot (GGally package).

ggplot()
Produce many types of plots (ggplot2 package).

ggscatmat()
Produce a scatter plot matrix with corr coefficients on top (GGally
package).

gpairs()
Produce a generalized pairs plot (gpairs package).
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grid()
Draw a grid on the current plot.

heatmap()
Produce a heat map.

heatmap.2()
Produce an enhanced heat map (gplots package).

hexbin()
Produce a hexbin plot (hexbin package).

hist()
Produce a histogram.

Hist()
Produce a histogram for multiple groups (RemdrMisc package).

histbackback()
Produce back-to-back histograms (Hmisc package).

histogram()
Produce histograms for multiple groups (lattice package).

histStack()
Produce a stacked histogram (plotrix package).

image()
Create a heat map.

levelplot()
Produce a false-color plot (lattice package).

missiogram()
Produce a plot of missing values (epade package).

missmap()
Produce a plot of missing values (Amelia package).

mosaic()
Produce a mosaic plot (vcd package).

mosaicplot()
Produce a mosaic plot.

pairs()
Create a scatter plot matrix.
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pie()
Produce a pie chart.

pie3D()
Produce a three-dimensional pie chart (plotrix package).

plot()
Produce a scatter plot or other plots.

PlotBubble()
Produce a bubble plot (DescTools package).

pyramid()
Produce a pyramid plot (epicalc package).

aq()
Produce a quantile-quantile (QQ) plot (lattice package).

qgnorm()
Produce a QQ plot with theoretical quantiles.

aqplot()
Produce a QQ plot.

scatter3d()
Produce a three-dimensional scatter plot with a regression surface
(car package).

scatterplot()
Produce a scatter plot with advanced features (car package).

scatterplot3d()
Produce a three-dimensional scatter plot (scatterplot3d pack-
age).

scatterplotMatrix()
Produce a scatter plot matrix with advanced features (car package);
also ++spm()++.

scatter.ade()
Produce a scatter plot with advanced features (epade package).

smoothScatter()
Produce a smooth scatter plot.

spineplot()
Produce a spine plot (spinogram).
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stem()
Produce a stem-and-leaf plot.

stem.leaf()
Produce an advanced stem-and-leaf plot (aplpack package).

stripchart()
Produce a strip chart.

sunflowerplot()
Produce a sunflower plot.

xyplot()
Produce a scatter plot (lattice package).

Graphical Functions 2—Adds Features to
Existing Graph

abline()
Draw a straight line on an existing graph.

axis()
Add an axis to the current plot.

legend()
Add a legend on the current plot.

lines()
Put curved lines on the current plot.

mtext()
Put text in the margins of the current plot.

par()
Set graphical parameters, or query about same.

plotmath
See ?plotmath to include math expressions on graphs.

points()
Draw points on the current plot.

polygon()
Draw/fill a polygon.
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aqline()
Add a line to a QQ plot.

rug()
Draw a rug plot on the current plot.

text()
Put text in the plotting area of the current plot.

Miscellaneous

asTheEconomist()
Style imitator for lattice graphs (latticeExtra package).

c()

Combine the arguments, forming a vector.

cat()
For printing output from functions.

colors()
Give R color names.

demo()
Run a demonstration of selected R capabilities.

dev.off()
Complete writing to a graphical device and save a file.

peg()
Open a file to be saved in .jpeg format; must conclude with
dev.off().

order()
Reorder the rows of a data frame by the values of a selected vari-
able.

par()
Set graphical parameters, or query about same.

png()
Open a file to be saved in .png format; must conclude with
dev.off().

print()
Print output.
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rgl.snapshot()
Save a screenshot as a .png file (rgl package).

Packages

available.packages()
Check what packages are available for download.

install.packages()
Download and install one or more R packages.

installed.packages()
Check what packages are installed on a computer.

library()
Load a previously installed package into the current R session.

Statistics

R has many statistics functions not covered in this book. The ones
we looked at include:

aggregate()
Divide data into subsets, computing summary statistics for each
subset.

cor()
Calculate the Pearson correlation coefficient.

CrossTable()
Produce a contingency table in SPSS or SAS format (gmodels pack-
age).

density()
Compute kernel density estimates.

dist()
Compute the distance between rows of a matrix.

ecdf()
Compute an empirical cumulative distribution function.

Ecdf()
Compute an empirical cumulative distribution function (Hmisc
package).
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hclust()
Perform a hierarchical cluster analysis.

m()
Compute a linear model (e.g., a regression).

max()
Compute the maximum value of a vector.

mean()
Compute the mean of a vector.

median()
Compute the median of a vector.

min()
Compute the minimum value of a vector.

quantile()
Find quantiles of a vector.

scale()
Center and/or scale columns of a matrix.

sd()
Compute the standard deviation of a vector.

summary()
Compute several summary statistics of a vector.

table()
Compute one-way or two-way frequencies.

var()
Compute the variance of a vector.

User-Defined Functions and Scripts

function() {}
Create a user-defined function.

source()
Execute a script.
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Workspace and Directories

s()
Determine what objects are in the current workspace.

getwd()
Find the current working directory.

setwd()
Change the working directory .
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Symbols
# (octothorpe), in comments, 8
% (percent sign)
%% remainder operator, 2
%/% (divide and round down)
operator, 2
() (parentheses)
grouping with, 2
in functions, 3
troubleshooting in R code, 289
* (multiplication) operator, 2
** (exponent) operator, 2
+ (addition) operator, 2
, (comma) in R code, 292
- (subtraction) operator, 2
/ (division) operator, 2
3D (see three-dimensional plots)
<- operator, 4
using to create vectors, 13
? (question mark), help command
shortcut, 4, 46
[] (bracket) operator in R, 134, 209
A (exponent) operator, 2
~ (tilde), in grouping variables, 56, 92

A

a:b notation (subsets), 134
abline() function, 74
adding regression line in scatter
plot, 133
active plot, 131
agglomeration, using in clustering,
222

Index

aggregate() function, 108
using to get vector of mean salar-
ies, 112
airquality dataset, 9
ANCdata dataset, 235
aplpack package, 84
arguments (function), 3
abbreviations of, differences
among packages, 294
arithmetic operators, 2
array() function, 237
ASCII files, 271
aspect ratio, 174
asTheEconomist() function, 143
attach() function, 10
available.packages() function, 7
axis() function, 54

B
backgrounds, non-white, 100
bandwidth, 97
choosing, 98
banking, 174
baplot() user-defined function, 163,
168
shorter version of, 169
bar charts (see bar plots)
bar plots, 105-114
bar spacing and orientation, 111
four variants of a graph, 113
comparing to pie chart of invest-
ment portfolio, 119
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faculty ranks, salaries, and sex,
107
in generalized pairs matrix, 198
showing relationship between
variables
stacked bar plot, 108
spine plot, 109
barcode plots, 197
barplot() function, 106
space argument, 113
bias, 165
bins, 83, 85
different numbers of in sbp histo-
grams, effects of, 87
exercise, experimenting with
number, 94
number of, leaving to R, 86
sizing in histograms, 87
Bland-Altman plot, 161-169
comparison of two measurements,
167
produced using epade package,
167
bland.altman.ade() function, 167
blood pressures dataset (see sbp data-
set)
box plots, 67-79
adding a reference line, 74
comparison of progressively more
detailed charts, 71
improving appearance of, 75
commands used, 77
of math achievement scores, 69
of Nimrod dataset
performance time by level and
medium, 73
box type (bty) parameter, 52
box-and-whiskers plots, 69
boxes around graphs, 53
BP (blood pressure) dataset, 37
bracket operator ([]), 134, 209
breaks = argument, hist() function,
86
bty (box type) parameter, 52
bubble plots, 206-212
of income, related to education
and 1Q, 208

of trees data produced by Plot-
Bubble(), 207

relating IQ, gender, and education
in subset of data, 211

C

car package
scatter3d() function, 203
scatterplot() function, 145
scatterplotMatrix() function, 186
case sensitivity in R, 4
errors, using wrong case, 289
categorical variables, 19
and quantitative variables in gen-
eralized pairs matrix, 195-198
graphing, 235-245
in ANCdata dataset, 235
causation versus correlation, 78
church denominations dataset
(ex1713), 183
codebook, summary of, 184
scatterplot matrix of, 184
clustering, 221-233
agglomerative and divisive meth-
ods for, 222
dendrograms, 221
of clusters in mtcars dataset,
226
heat maps, 227
combining with a dendro-
gram, 231
produced with heatmap.2()
from gplots, 232
coalash dataset, 206
codebook (datasets), 18
for ex1713 (church denomina-
tions), 184
col (color) argument, stripchart, 54
colors
adding color to points in 3D scat-
ter plot, 201
adding to mosaic plots, 241
in heat maps, 227
in R, quick reference on, 257
listing and viewing colors in R, 54
range of, controlling in image()
function, 228
using in correlation matrix, 193
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usng in box plots, 72
colors() function, 257
command line, using to enter data
into R, 12
command-line instructions, 5
command-line interface, 6
comments, 8
Comprehensive R Archive Network
(CRAN), 250
console
starting, 2
textual display in, 81
contingency table, 24
continuous functions, 95
coplot() function, 215
number and overlap arguments,
217
coplots, 213-220
of SATM scores by dollars with
percent as conditioning vari-
able
with five slices and no overlap,
218
with four slices and precise cut
points, 220
copy-and-paste errors, 292
cor() function, 191
cor.plot() function, 193
correlation
Bland-Altman PEFR data and,
162
causation versus, 78
correlation coefficient, 190
correlation matrix, 191
corrgrams, 190-195
combining wih a scatterplot
matrix, 193
creating using corrplot() function,
192
producing a correlation matrix,
191
corrplot() function, 192
CRAN Task Views, 250
learning about packages from, 7
viewing graphs incorporated into
packages, 40
cross tabulation, 24
CSV files, 269

importing into R, 270
cumulative distribution function
(CDF), 101
cut points
chosen by R, 217
picking, 218

D

data
putting into R, 11-22
exercises, 27
reading from an external file,
16-22
typing into a command line,
12
using the data editor, 14
data editor, 14
spreadsheet features, 15
with Nimrod dataset (example),
21
data frames, 8
creating empty data frame, 16
creating using the data editor, 15
data input/output, functions for, 297
data structures, 7
data frames, 8
vectors, 7
data() function, 8
datasets
accessing data, using attach() and
detach(), 10
codebook, 18
data frame as rectangular dataset,
8
examining parts of, 15
importing from outside of R, 269
in a loaded package, not found,
291
in nlme package, 67
sample, in base R package, 8
selecting in R Commander GUI,
260
subsets, 134
demo() function, 257
dendrograms, 221
combining with a heat map, 230
of clusters in mtcars dataset, 226
density estimation, 95
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density function, 95
density plots, 95
(see also kernel density plots)
in scatterplot matrix diagonal, 187
replaced with histograms, 189
tip density plot with normal dis-
tribution, 174
density() function, 96
DescTools package, 206
PlotPar() function, 211
detach() function, 10
dev.new() function, 132
dev.off() function, 32
device, specifying for R, 32
diagonal argument, scatterplotMa-
trix() function, 188
directory problems, inability to load
saved file, 293
discrete functions, 95
dist() function, 223
distances
measuring in two-dimensional
space, 222
ways to measure, 223
divisive approach to clustering, 222
dotplot.mtb() function, 57

E
ecdf() function, 102
Ecdf() function, 103
edit() function, 16
Elgar, Edward, 17
emissions dataset, 15
comparing data using density
plots, 98
empirical cumulative density func-
tion (see ecdf() function)
Engelman-Hecker Plot (E-H Plot), 78
epade package, 144
Bland-Altman plot produced by,
167
epicalc package, 235
BP dataset, 37
Ectopic dataset, 292
pyramid() function, 114
error messages, 7
estimating (imputing) a value for a
missing value, 10

Euclidean distance, 223
ex0923 dataset, Sleuth3 package, 207
ex1713 dataset on church denomina-
tions, 183
codebook, 184
Excel files, 269
reading into R without converting
to .csv files, 19
Excel, using for data entry in R, 16
exercise solutions, 275-286
exploratory graphs, 33

F

false-color plots, 205
of coalash data produced by level-
plot(), 206
fan plots, 120
fields, 15
file extensions, missing, 293
file formats
importing data of various types
into R, 270-274
saving graphs in R, 31
flat files, 9
foreign package, 270
function() function, 26
functions, 3
arguments, 3
continuous and discrete, 95
operating on a vector, 4
reference, R functions in this
book, 297-306
user-defined, 25
user-defined graphics functions,
41
x and y variables, forms of, 149

G

generalized pairs matrix, 195-198
produced using ggpairs() func-
tion, 196
produced using gpairs() function,
197
getwd() function, 11
GGally package, 196
ggscatmat() function, 193
ggpairs() function, 196
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ggplot2, 39
resource for further learning, 250
stat_ecdf() function, 103
ggscatmat() function, 193
gmodels package, 22
gpairs() function, 195
generalized pairs matrix produced
with, 197
gplots package, 232
graphic parameters, listing, 52
graphics
general principles of, 250
graphics packages in R, informa-
tion resources, 250
graphics systems in R, 36-41
base graphics and grid, 36
ggplot2, 39
lattice, 37
special applications/graphs in
packages, 40
graphs
aspect ratio, 174
displaying Nimrod data (exam-
ple), 26
exploratory and presentation, 33
exporting, 31
keeping all graphs made in a ses-
sion, 132
special applications/graphs incor-
porated into packages, 40
grid package, 37
grid() function
adding a grid to QQ plot, 176
using to add reference lines to
active plot, 131
grouping variables, 56
GUIs (graphical user interfaces), 6
(see also R Commander GUI)
GUI capabilities in R, 5
installing Remdr package, 6

H
hclust() function, 221
head() function, 9, 129
headers, 15
heat maps, 227
combining with a dendrogram,
230

map of mtcars dataset in default
colors, 228
map of mtcars dataset in range of
blue colors, 229
of mtcars data, using heatmap.2()
function, 232
heatmap() function, 230
heatmap.2() function, 232
help
creating a matrix, 219
files provided by R, 46
getting for functions in R, 3
getting on packages, 7
R Data Import/Export, 20
hierarchical clustering, 221
hist() function, 85
breaks = argument, 86
main = argument, 86
other arguments with, 88
Hist() function, 91
histbackback() function, 94
histogram() function, 92
histograms, 85-94
bins, 85
in generalized pairs matrix, 198
in scatterplot matrix, 189
limitations of, 95
of sbp variable
with added features, 88
with different numbers of bins,
85
of systolic blood pressures, 95
kernel density imposed on, 96
stem-and-leaf plots and, 81
with a second variable
faculty salaries by rank and
gender, 92
separate histograms, 91
stacked histograms, 89
histStack() function, 89
Hmisc package
Ecdf() function, 103
histbackback() function, 94

image() function, 227
importing data from outside of R,
269-274
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data formats, 270-274
Internet data repositories, 269
incomes, related to education and IQ,
208
independent variables, 243
indexes, 2
install.packages() function, 6, 290
installed.packages() function, 22, 291
intercept, 75
Internet data repositories, 269
interquartile range, 69
investment portfolio
comparing pie chart and bar chart
of, 118
fan plot graph of, 120
pie charts of, 117

J
jittering
in a scatter plot, 153
in strip charts, 48
editing in R Commander GUI,
261
experimenting with, 49
jpeg file, saving a graph as, 31

K
kernel density plots, 95-104
comparing density plots, 98
using non-white background,
100
cumulative distribution function,
101
density estimation, 95
choosing a bandwidth, 98
of blood pressures, 96
kernel, defined, 97

L
labels
adding to stripchart x-axis, 49
omitting from Bland-Altman plot,
165
positioning with axis() function,
55
lattice graph, using asTheEcono-
mist() function, 143

lattice package, 37, 92, 148
levelplot() function, 205
QQ plots, 178
resources for further learning, 250
latticeExtra package, 143
legend() function, 78
adding text to bar plot, 109
bty argument, 114
in bubble plot, 208
in four variations of a bar plot,
113
legends, 78
levelplot() function, 205
library() function, 6, 290
writing script containing, 25
limits of agreement, 165, 166
line charts, 135-142
making more attractive and com-
plete, 140
linear regression, 133
lines
adding to graphs with abline(), 75
curved, putting on a graph, 97
made with plot() or lines(),
options for, 139
reference line, plotting with
qqline(), 176
lines() function, 97
options for lines made with, 138
plotting density of tip data, 173
putting two density plots on same
axis, 99
using in line charts, 138
Linux
GUI capabilities, 6
starting R, 2
load() function, 164
giving entire path to a file, 293
loading a data frame, 16, 22
loess regression method, 146
used by smoothers in scatterplot
matrix, 186
log transforms, 177
Is command, 5
Ity argument
for lines made with plot() or
lines(), 138
values for line charts, 136

312 | Index



Iwd agument, plot() and lines() func-
tions, 139

M
Macintosh systems
GUI capabilities, 6
Numbers spreadsheet, 16
sourcing a script, 25
starting R, 2
using the data editor, 16
XQuartz, 296
main = argument, hist() function, 86
marginal values (marginals), 24
math achievement scores
box plot analysis of SES data and,
exercises, 78
box plot of, 69
breaking down by sex and minor-
ity status, 71
strip chart of, 67
mathematical functions, commonly
used, 3
matrices, 183
(see also scatterplot matrix)
creating, 218
transposing, 227
mean, 5
getting for Nimrod dataset, 21
operation finding (FUN = mean),
112
mean difference, 165
mean() function, 21, 225
median, 25
in box-and-whiskers plot of math
achievement scores, 69
mfrow argument, par() function, 67
miscellaneous functions, 303
missing values
Amelia and epade packages, 233
handling in R, 10
mosaic plots, 235-245
plot of clinic, death, and anc, 240
with anc highlighted, 241
with anc highlighted and color
added, 242
plot of death by anc (treatment),
236
residual analysis, 243

residual shading of results, 244
table of frequencies data, 237
mosaic() function, 236
argument as formula, 236
making certain relationships
stand out, 240
mtcars dataset, 33, 221
mtext() function, 55
multcomp package, sbp dataset, 81
musical tempo data, reading into R
(example), 17

N
ncdf package, 273
netCDF files, 273
Nimrod dataset, 17
analyzing using R commands, 21
box plots of time broken down by
level and medium, 73
improved graph, 75
codebook, 18
graphs based on, 26
using subset in generalized pairs
matrix, 196
nlme package, 67
nominal variables, 19
normal distribution, 101, 172
comparing tip variables to, 173
normalizing variables, 174, 225

0

objects, 4
listing all in your workspace, 5
observations, 15
octothorpe character (#), introducing
comments, 8
oned (diagonal strip chart), 186
openintro package, 251
operators (arithmetic) in R, 2
overfitting, 98

P

packages
available, retrieving list of, 7
forgetting to load, problems
caused by, 289
functions for, 304
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installing a GUT interface package,
6
loading after starting R, 6
outdated or incompatible, 295
used/referenced in this book,
265-268
pairs() function, 183
scatterplot matrix produced with,
184
panels, 148
par() function, 52
bty argument, 53
mfrow argument, 67
non-white background for charts,
100
parameters (function), 52
(see also par() function)
pch (plot character) argument, strip-
chart, 49, 68
help file displaying options for, 51
peak expiratory flow rate (PEFR)
data, 161
Bland-Altman plot of, produced
using baplot(), 165
Pearson correlation coefficient, 190
pie charts, 117-122
creating, exercises in, 121
fan plot alternative to, 120
of investment portfolio, 117
pie() function, 117
pie3D() function, 119
plot() function, 10
analyzing relationship between
vectors, 13
line chart produced with, improv-
ing, 140
Ity argument, 136
options for lines made with, 138
producing line charts, 135
using for scatter plots, 129
xlim and ylim arguments, 99
PlotBubble() function, 206
bubble plot of incomes related to
education and 1Q, 208
bubble plot of trees data produced
by, 207
PlotPar() function, 211
plotrix package, 57

histStack() function, 89
plug-ins for R Commander GUI, 262
.png files, saving graphs as, 32
polygon() function, 173
prediction plane in 3D scatter plot,
202-205
presentation graphs, 33
psych package, 193
pyramid() function, 114

Q
QQ plots, 171-179
comparing distribution of two
variables, 178
tips by sex of tippers, 178
comparing variable distribution to
theoretical distribution, 172
qq() function, 178
qqline() function, 176
qqnorm() function, 177
qqplot() function, 176
qualitative (or nominal) variables, 19
quantile-quantile plots (see QQ plots)
quantiles, 176
quantitative variables, 19
and categorical variables in gener-
alized pairs matrix, 195-198
quartiles, 69, 175

R

R
downloading and installing, 1
learning more about, 251
putting data into, 11
starting and trying simple tasks, 2
statistics with, 251
troubleshooting errors, 287

(see also troubleshooting R
code)

R Commander GUI, 6, 259-263
creating strip charts, 261
extending with use of plug-ins,

262
installing and loading, 259
selecting a dataset for analysis,
260
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using R Script window to submit a
command line to R, 261
R Data Import/Export help file, 20
.R file extension, 294
rainbow argument, image() function,
228
start and end values, 229
Remdr package, 6, 295
(see also R Commander GUI)
RCmdrMisc package, 91
read.csv() function, 162
reading data from external files,
16-22
records, 15
rectangular datasets, 9
reference lines, 74
adding to scatter plots, 131
regression lines
handling with scatterplot(), 146
on Bland-Altman plot, 167
removing with scatterplotMa-
trix(), 188
ResearchMethods package, MFSV
data, 169
reshape2 package, 171
residual analysis, 243
residuals, 243
resources for extending your knowl-
edge, 249-251
response variables, 241
revolutions argument, scatter3d()
function, 204
rnorm() function, 101, 173
rug plots, 123-125
uses of, 124
rug() function, 123

S

Salaries dataset, 92
histogram, faculty salaries by rank

and gender, 92

sample() function, 209

SAS files, 271

save() function, 16, 22

sbp (systolic blood pressure) dataset,
81
simple histograms of, 85

effects of different numbers of
bins, 87
stem-and-leaf plot of sbp variable,
82
systolic blood pressure by gender
separate histograms, 91
stacked histograms, 89
scale argument, stem() function, 82
experimenting with, 83
scatter plots, 33, 129-135
3D, 199-205
with prediction plane, 202
creating for trees dataset, 129
enhanced, 145-149
interpreting the points, 131
templates for, 143-145
usefulness and frequency of use,
149
scatter.ade() function, epade package,
144
other capabilities of, 147
scatter3d() function, 203
options to customize, 205
revolutions argument, 204
scatterplot matrix, 183-190
combining with a corrgram, 193
corrgrams and, 193
of church denomination data, 184
produced by using scatterplotMa-
trix(), 186
lines produced by smoother,
187
scatterplot() function, 145
scatterplot3d package, 199
scatterplot3d() function, 199
arguments, 201
scatter plot with prediction plane,
202
scatterplotMatrix() function, 186
customizing the matrix, 188
scripts, sourcing, 22-25, 305
.R file extension, 294
set.seed() function, 50
sets of numbers, comparing, 171
setwd() function, 11
writing script containing, 25
side argument, 123
simulations, 101
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Sleuth2 package, 183
Sleuth3 package, 207
slope, 75
sm package, coalash dataset, 206
smoothers, 146
omitting with scatterplotMatrix(),
188
using with scatterplot matrix data,
186
smoothing, 96
socio-economic status (SES), com-
paring to math achievement
scores, 70
exercises, 78
in box plots, 69
in strip charts, 67
sourcing scripts, 22-25, 305
.R file extension, 294
space argument, barplot(), 113
spine plots (spinograms), 109
spreadsheet programs, using to enter
data into R, 16, 27
SPSS files, 270
stacked bar plots, 108
stacked histograms, 89
standard deviation of mean differ-
ences, 165, 174
standardizing variables, 174
Stata files, 270
statistical packages, importing into R,
270
statistical units, 15
statistics
functions in R, 304
with R, resources for learning, 251
stat_ecdf() function, 103
stem() function, 81
scale argument, 82
stem-and-leaf plots, 81-84
changing scale, 82
of systolic blood pressure (sbp)
variable, 82
stem.leaf() function, 84
str() function, 8
strip charts, 45-57
adding text to, 55
box around R graphs, eliminating,
52

changing color of points and axes,
54
creating in R Commander GUI,
261
experimenting with jittering and
pch values, 49
help file for stripchart command,
49
help window for pch parameter,
51
jittered strip chart of tree volume
(example), 48
of math achievement scores, 67
of variable Volume (example), 47
taking control of the axis, 54
subset() function, 135
subsets, 134, 196
finding using [] (bracket) opera-
tor, 209
summary() function, 21, 175
symbols() function, 206

T
table of frequencies, 237
table() function, 21, 105, 235
tail() function, 9
templates, using for scatter plots,
143-145
text
added margin text in strip chart,
54
adding in margin or plotting area
of a graph, 55
text editors
editor in R, 23
using for data entry in R, 16
using to enter data in R, 29
text() function, 56
textual displays, 81
three-dimensional plots
3D pie charts, 119
3D scatter plots, 199-205
of trees data, 200
producing using scatter3D(),
203
with prediction plane, 202-205
bubble plots, 206-212
false color plots, 205
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tips dataset, 171
titles, producing with main argu-
ment, 86, 140
transformation, 175, 177, 225
transposing a matrix, 227
trees dataset, 45, 129
3D scatter plots of, 200
bubble plot, 206
scatter plot of, 129
trellis graphics, 37, 92
produced by using lattice package,
xyplot(), 148
troubleshooting R code, 287-296
argument abbreviations in differ-
ent packages, 294
confusing uppercase/lowercase,
289
copy-and-paste errors, 292
dataset in a loaded package, not
found, 291
directory problems, inability to
load saved file, 293
forgetting to install a package, 290
forgetting to load a package, 289
leaving out a comma, 292
missing file extensions, 293
misspellings, 287
outdated or incompatible pack-
ages, 295
Tukey mean-difference plot (see
Bland-Altman plot)
type argument, options for lines
made with plot() or lines(), 138

u
user interface, 6
(see also R Commander GUI)
GUI capabilities in R, 5
user-defined functions, 25, 305
baplot(), 163
graphics functions, 41

v

variables, 15
kinds of, 19

transformation of, 175
ved package, 235
vector notation, using to select rows/
columns, 135
vectors, 2
creating, 5
creating on the command line, 13
creating, examples of, 7
defining character vectors for bar
plot, 112
function operating on, 4
ranknum vector for faculty ranks,
105

W

webscraping, 274

Windows systems
GUI capabilities, 6
sourcing a script, 25
starting R, 2
using the data editor, 16

working directory, 10
current, finding in R, 11
functions for, 306
searching for files not in, 293
setting in R, 11

X

x and y axes, variable names in func-
tions, 149
xaxt argument, plot() function, 141
xlab argument, stripchart, 49
XLConnect package, 19, 22
xlim argument
extending x-axis in a strip chart,
53
plot() function, 99
xls or .xlsx file formats, 20
XML files, 273
XML package, 273
xyplot() function, lattice package, 148

Y

ylim argument, plot() function, 99
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Colophon

The animal on the cover of Graphing Data with R is a Red-and-
yellow barbet (Trachyphonus erythrocephalus). It is part of the Lybii-
dae family, which contains 42 species of birds. The red-and-yellow
barbet can be found in uneven terrain such as riverbeds, cliffs, and
termite nests or mounds of Eastern African countries, such as Kenya
and South Sudan.

This bird has a distinct, colorful look. Plummage is made up of
black, red, and yellow coloring, with white spots on much of the
black parts (mostly the wings and back). Males also have black fore-
heads and a slight crest, while both sexes have a lot of red coloring
to their heads. The neck and breast include a reddish-orange that
changes into yellow in the remainder of the lower body. The tail is
colored with black and yellow bars. Females and juveniles are duller
in coloring than males, and have more yellow and white than orange
and red. Adults can grow up to nine inches in length with a wing-
span of four inches, and weigh about 72 grams.

The red-and-yellow barbet is omnivorous and their diet consists of
various fruits, seeds, and insects. They are known to eat smaller
birds as well. Because of the minimal changes of season in their
environment, red-and-yellow barbets only move around for the pur-
pose of attaining food.

Breeding prep and raising of the young extends beyond the breeding
pair, as there is always one or more assistants to help. Nesting sites
are usually termite mounds in which the birds will dig a tunnel. A
nesting chamber made up of feathers and grass can be found at the



end of this tunnel. They lay between two and six eggs per brood.
Once eggs hatch, parents and helpers mostly feed the chicks insects,
as the chicks are in need of protein. Once the hatchlings are ready to
leave the nest... they don't. Instead, they will stick around to become
helpers for the next brood, until it’s time for them to start a family of
their own.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help,
go to animals.oreilly.com.

The cover image has been colorized by Karen Montgomery, based
on a black and white engraving from Cassell’s Natural History. The
cover fonts are URW Typewriter and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.


http://animals.oreilly.com
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