Beginning Data Science
inR 4

Data Analysis, Visualization,
and Modelling for the Data Scientist

Second Edition

Thomas Mailund

Apress’

Beginning Data Science in R 4: Data Analysis, Visualization, and Modelling for the
Data Scientist

Thomas Mailund
Aarhus, Denmark

ISBN-13 (pbk): 978-1-4842-8154-3 ISBN-13 (electronic): 978-1-4842-8155-0
https://doi.org/10.1007/978-1-4842-8155-0

Copyright © 2022 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: James Markham

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Pixabay (www.pixabay.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.
apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8155-0

Table of Contents

About the AUROFcccccemmismninsnssssss s n s san s an s nnnannn s nnnnnnns XV
About the Technical REVIEWETcccccussssmnmssssnsssssnsssssnsssssssssssnsssssnsssssnsssssnssnssnnnnss Xvii
Acknowledgments.......ccccceruusssssmennmmmmmmsssssssssssnnnmessssssssssssnnsssesssssssssnnnnnsssessssssnnnnnnns Xix
INtroductioncccciinmmmimnninn s ——————— XXi
Chapter 1: Introduction to R Programmingcccccsssmsesmssssssssssssssssssssssssssssnsssssssssnns 1
Basic Interaction With R..........ccoviiiiinnsnsen e s 1
0o s WO L[- 3
SIMPIE EXPIrESSIONS ...evvevveererersessrsessessessesessessessesssssssessessesssssssessesssssssessessesssssssessessessssessessenes 4
LTS T4] 1 6
INABXING VECTOISveerereeriesererere st sesse s s e e s e sse s sas e s ssesae e s e saesaesaesa s e saesaesas e saesaesaessssensesnes 9
VECTIONZEA EXPrESSIONS. ...civertereriersersesersersessessssesessesssssssessessessssessessessessssessesssssssessessesssnessesaes 11

L8] 0111 TP 13
11T 0 L 13
Getting Documentation for FUNCHIONS..........ccocvrincninr e 14
Writing Your OWn FUNCLIONSccceiiiircrecn s 16
Summarizing and Vector FUNCHONS..........cccvcirennsnsnnc s 17

A Quick LOOK at CONTrol FIOW.........coeoeeeeecrercsereereecsese e se e 20

2 T (0] 26
DAtA FrAMES......ccceeeeeerreerisese s s R e e e 32
USING R PACKAGEServeuererrerirsiserresesissessssesesss s s se s se s e sss s sssssssssssesssssssssessssssessnsessnns 36
Dealing With MiSSING VAIUESccvrerrererreriererresessesesesessessessesssssssessesssssssessessesssssssessesssssssensesses 37

D ez B 13T 38
Writing Pipelines of FUNCHON CallS........ccccvoivrirverierssenseresesessesessessssessessessssessessesssssssessesaes 39
Writing Functions That Work with PIpelines.........ccceeerirvrienniercnse s seses e 41

The Magical “.” ArgUMENT.........c.covriererrer e r e s s a e s re e eae s 42

https://doi.org/10.1007/978-1-4842-8155-0_1
https://doi.org/10.1007/978-1-4842-8155-0_1
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec19
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec20

TABLE OF CONTENTS

Other Pipeling OPErationS.......ccvevvereriererssensessesessssessessessesessessessessssessessesssssssessessessssensessens 47
Coding and Naming CONVENTIONS.......c.ccvevrrerierierenersersessessesessessessessssessessesssssssessessessssessessens 49
(] (01T TR 50
Mean Of POSItIVE VAIUES.........ccoerreecrrcrereer e 50
R0Ot MEAN SQUAIE EFTOFccceueerrecrirerire ettt se s e s 50
Chapter 2: Reproducible AnalySisccuccrrusemsmssnsssssnsmsssssesssssesssnsssssnssssssnssssnnssssans 51
Literate Programming and Integration of Workflow and Documentation............cccoecervecrnccnene 52
Creating an R Markdown/knitr Document in RSTUAIOcccvveernienmnesersserrseseseses e 53
THE YAML LANQUAGEccererreierersersessasessessessesssssssssssssssssssssssssssssssssssssssnsassassssessasssssssessessansansssens 57
The Markdown LANQUAGEcccoereriiriinnienersissse s sssssse s se s s s s s sesssessesaessssssessesssssssssesaesnnnns 59
FOrmMatting TEXL......coivorrerererir s s s a e e s a e r e e e 60

L0 0T 1= (=T €T3 T o RS 64

3110 00 0] L= 65
Controlling the Output (Templates/StyleShEets)ccvvrrrrrrriere s 66
Running R Code in Markdown DOCUMENTES.........ccvvriererersersersessssessessessessssessessssssssssessessesssessesses 66
Using chunks when analyzing data (without compiling documents)cccoccvvrvnverieriene. 69
CACHING RESUILS......vectrereerreserierersesessersessessssesessessessssessessessessssessesaessssessesassssssssessesaessssensessens 70
Displaying DAta........c.ccucererininiinne e e 71
(] (01T 72
Create an R Markdown DOCUMENL...........ccceererererneencseress e sesssssens 72
Different QUIPUL ..o s 72

072 T 311 OO 72
Chapter 3: Data Manipulation.........cccccnnsemnnnnssssnnmmnsssssnessssssmnssssssssss————————" 73
Data AIrEaY iN B......oeeeeeeee e 73
Quickly RevieWing Datacccovureerererrnsnsesesesssssssssesesssss s s s sssssssessssssssssssesssssssssssssnsns 75
REAMING DALA.......cceeerreeriresirese s e e e e r e 77
Examples of Reading and Formatting Data Sets.........ccocvvvvrinnnninienn s sessessesnes 79
Breast Cancer Data Set...........ccovrinsnnss s 79
Boston Housing Data Set.........cccvierrinininnrirsere s s e s s e s saessssesnesne s 87
The readr PACKAQEcocvieinieririirsie s s s s s s a e s s n e s 90

iv

https://doi.org/10.1007/978-1-4842-8155-0_1#Sec21
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec22
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec23
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec24
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec25
https://doi.org/10.1007/978-1-4842-8155-0_2
https://doi.org/10.1007/978-1-4842-8155-0_2
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec121
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_3
https://doi.org/10.1007/978-1-4842-8155-0_3
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec7

TABLE OF CONTENTS

Manipulating Data With dpIyr.......coceverii s 92
Some Useful dplyr FUNCHIONS.........ccocvverenniiriere s sessesse e sss e s ssesessessessesssssssessesees 94
Breast Cancer Data Manipulation...........ccccvvververiernrensenienissensessesessssesessesssssssessesasssssessesaes 106
Tidying Data With tidyr........ccoccvvinnir 110

(] (01T 118
IMPOrNG DALA.......ccccrer e ————————— 118
USING UPIYT e e e e e e s 119
USING BIAYT oo e e e e e e s 119

Chapter 4: Visualizing Dataccussemmmmnsssnnmmmmsssnsmmssnnns 121

BASIC GrAPNICSuevuerueriiirerer et s e e s e s e b et p e nne 121

The Grammar of Graphics and the ggplot2 Packagecccevvvererenmrrssesnsesesssesssesessesesseens 128
LS 1 o]0 P 129
USING GEOMEINIES ...cveerecrercrerese s s 133

L (0] . TSSO SSRN 141

£ 11 o OO 145
Themes and Other Graphics TranSformationsc.cocvvnnnnnssn s 151

Figures with MUIiple PIOTScocviiiiirrin i se e 156

(] (01T 160

Chapter 5: Working with Large Data Sets......c.cccrrmmmmmmnmmsssssnnmssssssnssssssssssesssssnnnss 161

Subsample Your Data Before You Analyze the Full Data Set ... 162

Running Out of Memory During an AN@lYSisccooueermrererenesssesessessssssessssssssssssssssssesessssesenns 164

TOO LArge t0 POt ...t s s 166

TOO SIOW 10 ANAIYZE ...ccueevereerererie s s s s e s s s a e e s s b e e e saesee e e e e aesae e e e s e nnees 171

Lo ol I T T (0 T Lo S 173

(] (01T 177
ST 072 1] o111 o OO 177
Hex and 2D Density PIOLS ... s 177

Chapter 6: Supervised Learningcccussscssssssssnsesssnsssssnsesssnsesssssesssnsssssnnssssansessas 179

MaChINE LEAMINGcoeereecrercreree e s e ne e 179

SUPEIVISEA LEAININGcoveeeeerrererreserrssesesesessesesessesessesessssesessesssnns 180

https://doi.org/10.1007/978-1-4842-8155-0_3#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_4
https://doi.org/10.1007/978-1-4842-8155-0_4
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_5
https://doi.org/10.1007/978-1-4842-8155-0_5
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_6
https://doi.org/10.1007/978-1-4842-8155-0_6
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec2

TABLE OF CONTENTS

Regression VS. ClasSifiCation.........ccucvvvierevnsensenennsensene s sessese s ssssessessessssessessesasssssessesnes 181
Inference VS. PrediCtion....... ..o s 182
SPECITYING MOUEIS.......ceeeeeeereecerrer sttt e e e 183
Linear REGreSSION........cccviciiiererrsir e s s s s s s p s e p e e 183
Logistic Regression (Classification, Really)c.ccccererrrierrenersscrnesere e sesessesessesesennes 189
Model Matrices and FOrMUIA............cooeerrierreser e 194
Validating MOGEIS........cceoeeeecrrcrerese e nne e 204
Evaluating Regression MOTEIScoorerrenmrenerrsc e 206
Evaluating Classification MOEIS..........cccoreermrenerenrreser e 209
CONFUSION MEEFIX ... 210
ACCUIACYcreruenerrenereeeressesessesersesesesesesse e sse e sesse e eae e sae e ree e sesae e sse e see e senan e nse e seesesensessnsenens 213
Sensitivity and SPECITICILYccovererererrrcrrere s 215
OtNEI IMBASUIESceeereecereeeee e r e re e e se e s e ne e e nne e nre s 216
MOre THaN TWO CIASSEScovreerueerreereeeresesesre e see e sesse e se e se s e sssenenas 218
Sampling APProaChEScoevi i ——————— 218
Random Permutations of YOUr Data..........ccuceerenernnmnnnmnesnssessse s ssssesennes 219
CroSS-Validationccoveerenseneresernsesessesese s s s se s se s sesnsessnns 223
Selecting Random Training and Testing Data.............cccccvinrennenenssesnsesse s 227
Examples of Supervised Learning Packagesccucvvermrenernsesnesnnesesssessssesssseses e sessesenns 229
DECISION TIEES ..uevrueerreerreerise s sr s r e e e e r e e e e na e nr s 230
Random FOIESISccvceiircirirese s s s 232
NEUFAl NBIWOIKS.......cce e s 233
Support Vector MaChines.........cuucevvvernesinesesnsessse s s ss s sss s s s ssanes 235
NAIVE BAYESevrereerieririereressssesse s sseses e sse s sss e s e saesaess s e ssesaeses e ssesaessssessesaessessnsessessesssnsnsesnens 235
(] (0T 236
Fitting POIYNOMIAISc.ccevueiiiirsiene i s se e s r e s sae s s 236
Evaluating Different Classification MEASUIEScucvrerrerererserseressssersessesssssssessessessssessesses 236
Breast Cancer ClasSifiCation.........c.c.ounnnnsnsnssssess s sssssesens 237
Leave-One-Out Cross-Validation (Slightly More Difficult)......c.ccocvrvvrrrierienensensensenessensenenns 237
DECISION TIBES ...cvrucerrieriee s 237
RaNdom FOrESIS ..o s 237

https://doi.org/10.1007/978-1-4842-8155-0_6#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec19
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec20
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec21
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec22
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec23
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec24
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec25
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec26
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec27
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec28
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec29
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec30
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec31
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec32
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec33

TABLE OF CONTENTS

NEUIal NEIWOIKS.....ccciuiereeeririescse s s 238
SUPPOIrt VECIOr MACKINES.cveveererierere s sere e s e s e e s e ssesnesasnessesne s 238
Compare Classification AIgOrthmS..........cvvvvvriene s sne s 238
Chapter 7: Unsupervised Learningccuccuressssssnsssnnnss 239
Dimensionality ReAUCHIONcocviiir e 239
Principal Component ANAIYSISccccvrerrieriresere s e sss e se e sae e sse s 240
Multidimensional SCAlINGcccuerrerrnierre e sae s 250
[T g T 255
K-MEANS CIUSTEIINGcovecreeeererereecrere e 255
HierarchiCal ClUSTEINGc.voceereeererere e 263
ASSOCIALION RUIES.......ceerecereeer s e r e nr s 267
] (o TSSOSO 273
Dealing with Missing Data in the HouseVotes84 Data..........c.cccoevrevrrennnsennsesnesesesenennes 273

G 11 - T LSRR 274
Chapter 8: Project 1: Hitting the Bottle.........ccccccmnninnnmmmmnissnnnmnnssnnnmnsssssmnsssnn 275
g0 (100D O RRS 275
EXpIoring the Data...........ccciiiniinine e s s e 276
Distribution of QUAlITY SCOIEScccviirierrerr s 276

Is This Wine Red or WHIte? ... sesssssssss 277
FIttiNg MOUEIS ..ot 282
(] (01T 285
Exploring Other FOrmMUIAS..........ocoeeeeeeeeere e 285
Exploring Different MOGEIS ... 285
Analyzing Your OWn Data Set ..o 285
Chapter 9: Deeper into R Programming......ccccuussssssssmmssmsmsssssssssssssssssssssssssssssnssness 287
EXPIESSIONSvetiirerie st s s e e e e e R e R e e e ae 287
ArithmEetic EXPreSSIONS.......cvcvvererierrerreesereressee s sessessse s ssesssssessessessssaesaessessssssesaesaesnes 287
B00IEAN EXPrESSIONSciveriiirireriesissise e ses s se s s a ettt e e 289
BaSiC DAtA TYPES ...eeererreerreerrnessssesesseseses e s e e se e s s se s se e sr s e e a e r e ne e 290

vii

https://doi.org/10.1007/978-1-4842-8155-0_6#Sec34
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec35
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec36
https://doi.org/10.1007/978-1-4842-8155-0_7
https://doi.org/10.1007/978-1-4842-8155-0_7
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_8
https://doi.org/10.1007/978-1-4842-8155-0_8
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_9
https://doi.org/10.1007/978-1-4842-8155-0_9
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec4

TABLE OF CONTENTS

T4 TN 291
1Y (T < SO 291
0] 1110 292
00 SO 292
[0 T 293
DAt STPUCIUIES ...t 294
L= (0 TSR 294
2T 296
I £ T 298
1T (] OSSOSO 300
NAMEA VAIUES ...t nne e 304
2 T (0] T 305
L]0 11] T 3T 305
CONIOl STIUCKUIES ... e n e r e ne e 306
Selection STAteMENTS ... s 306
0T 0L OSSOSO 307
14T 0 LSS 311
NAMEA ArQUMENTS.....cueoereeerrnerrsesesese s se s e e s s se s e s s e ss e ses e sensssnssssensnns 312
Default Parameters........cocovverrenmnesess s s 313
RETUIN VAIUES ... nns s 314
IV AT =17 112 (o] O 315
B30 o TS 317
Function Names Are Different from Variable Names..........ccccoovernrnnnennenesnsesssesessssenenns 322
RECUISIVE FUNCHIONS.......ccoiirricsiresi e 322
(=] (T 325
FIDONACCT NUMDETS......cciiriiccci e 325
L0 g o 0T 11 325
LiNEar TiME MEIQE.....cccvuevrererrererreserseressesesses e sseseeses e ssesaessssessessesae e s e saesaesssnessesnessssensesneses 325
3Ty Fo TV (o O 326
10T =T T0] 1 o 326
Selecting the K Smallest EIEMENL...........ccocvvriernnrinienie s sese s sessessessessssessessens 327

viil

https://doi.org/10.1007/978-1-4842-8155-0_9#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec19
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec20
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec21
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec22
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec23
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec24
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec25
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec26
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec27
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec28
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec29
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec30
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec31
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec32
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec33
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec34
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec35

TABLE OF CONTENTS

Chapter 10: Working with Vectors and LiStSccccussemrrnsssnmnmnsssssnssssssssssssssssnnnss 329
Working with Vectors and Vectorizing FUNCLIONScccoviininininncnc e 329
1] 332
Vectorizing FUNCHIONS ..ot 332
The apply FAMIIY ..o s 335
ADPIY e ——————————————————————————— 336
Nothing Good, It WOUI SEEM ..o e ae s 339
JADPIY e ————————————————————— 340
SAPPIY AN VAPPIY ..o e e e 342
AdVANCEA FUNCHIONS.....ceieeeeeerecr e e nne e nr s 342
SPECIAl NAMES......cccieccc e e e e e nne s 342
INFIX OPEIATONS ... e e e 343
Replacement FUNCHIONS.........c.ccoiincn e s 344
How Mutable IS Data ANYWaY?........ccoeernrennererene s ssssssssssssssssssessssenns 347
EXBICISES.c.tiviuerrierrssisesrese st sr s se e e s e e e e e e e R e e AR nr e nns 348
DBIWEEN......eeeee e e s 348

1 1 1o 348
Chapter 11: Functional Programmingccccussssemsmsssssssnssssssssnssssssnsssssssssnssssssnnnnss 349
ANONYMOUS FUNCLIONS......cceciierere s s e se s sa e sa et sae e s naennens 349
Higher-0rder FUNCHONS........cvvvrverere s sese e sss s sessessesessessesaessssessessesssssssesaessssssssnsesaens 351
Functions Taking FUNctions AS AFQUMENTScccceverinienneeniensensessesessesses e ssessessesssessessenns 351
Functions Returning FUNCtions (and CIOSUIES).......cuourrerereerersersersessssersessessssessessesssssssessesses 352
Filter, Map, and REUUCE..........ceceriereereeccrerte s r s e e s s e e s e e e e sae s s e e sn e sae s e e s e nnesnenannns 357
Functional Programming With PUITT ..o snens 360
Functions As Both Input and QUEPUL.........cccoeriirinin s 363
EllipSiS Parameters. st s s 368
] (oSSR 370
APPIY i e ——————————————— 370
0101 370
RoW and COIUMN SUMScovveeiriiersersessseses e ss s sr s sn s e s s s nenss 370
FACIOrial AQAIN.ccoeecerei e e 370

ix

https://doi.org/10.1007/978-1-4842-8155-0_10
https://doi.org/10.1007/978-1-4842-8155-0_10
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_11
https://doi.org/10.1007/978-1-4842-8155-0_11
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec13

TABLE OF CONTENTS

U010 (] B 00 g o T 371
IMplement ThiS OPEIALOrccveveverreriereree s s s sae e e e snesa e e s ene s 371
Chapter 12: Object-Oriented Programmingccccesssssnsssssssssssssssssnnsssssssssssssssnnnnss 373
Immutable Objects and Polymorphic FUNCHONS........c.cccovvvnnncncns s 373
DAtA STIUCIUIES ...t 374
Example: Bayesian Linear Model Fitting.........ccoeorrernnenerenere s 374

[TS 376
Polymorphic FUNCLIONS........ccoviiieircse e s 379
Defining Your Own Polymorphic FUNCHIONS.........cccoicevienncsennse e seanes 380
Class HIBrarChiescuvurmemneseresssssssss s s s 382
Specialization AS INTEITACEcovvrrriererr s s sa e e ene e 383
Specialization in Implementationsccccvvrirernrni e ————— 384
(] (0T T 388
SAPES. .ttt ——————————————————————————————— 388

0] 0] g L OSSN 389
Chapter 13: Building an R Packageuceeurrmsssnnnssssssnnsssssssnnssssssssnsssssssnnsssssssnnnss 391
Creating an B PACKAQE.cccueeerrrerinerire sttt se et sessesesassesessese s st s 391
PaCKAJE NAMES........ccreiirreircn st s n e e 392
The Structure of an R PACKAGE.........cccveeerereririerireser s se s sessesessesesassesessesessenens 392
RBUIAIGNOTE ... e e e 393
DESCHIPLION......viiicec e e p e nne e 393
L TR 394
L= o PR 394
DESCHIPLION .. e 395
Author and MaINTAINETccoeeerreererere e e nnenens 395
T T 396
Type, Date, LazyData..........ccccorererercrereneree e se s se e sre e senseesnenens 396
URL and BUGREPOIS........ccoreeereereecrerese e s s nsenis 396
DEPENUBNCIESciveeeirere et e e e s e e e nn 396
Using an Imported PACKAGE..........coueecrerererererenererene e sss e ssenis 397
Using @ Suggested PACKAGEc..eccverermrererrcre e 398

https://doi.org/10.1007/978-1-4842-8155-0_11#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_12
https://doi.org/10.1007/978-1-4842-8155-0_12
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_13
https://doi.org/10.1007/978-1-4842-8155-0_13
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec15

TABLE OF CONTENTS

NAMESPAGEcccotiiteiessssesss s ss s b b b e e e e s 399
2T 1 8 1 PO 400
Checking the PACKAGEcccoeeererermneenereressseesese e sesss e sasssssssssesesssssssaes 400
(310 1 401
Documenting FUNCHONS..........coviierecreecrre e 401
IMPOrt and EXPOM ..o e e s e e 402
Package Scope VS. GIODAl SCOPE........ccueririirrrer e e 404
INTErNal FUNCHONS........coeecece e 404
LTI I o B0 T TS 404
Adding Data 10 YOUr PACKAGE.........ccueererenerrnnerrnesesesess e sessesesse e s sessesessssessssesesssssssssessssessnns 405
NULL ..ttt se e e e bbb et e 406
Building @n R PACKAQEccccvvvirieririerir st s e se s ss s s ssese e saesnesassesnesnens 407
(=] (T R 407
Chapter 14: Testing and Package Checkingccccuuseemsrsssssnnsssssssnnssssssssnsssssssnnnss 409
0T =1 T 409
Automating TESTING.....c.uecrererrrei e e 411
USINgG teSTENAL ... —————————— 412
WIiting GOOU TESTS....cueiirucere st e e s eene e 414
Using Random NUumDbers in TESTS ..o e sss s 415
Testing RaNdom ReSUIS ..o s 416
Checking a Package for CONSISTENCYcceeerereererermrerereresese e a7
(] (o1 SRS 417
Chapter 15: Version Control...........cccccumnssmmmmmmsssssnnmmssssssnmssssssssmssssssnsssssssssssssssnnnnss 419
Version Control and RePOSItOriEScuueerrerernsensnisissse e s sr s ssanes 419
USINgG Git iN RSTUAIOvecerererirsiriere et sr e s sre s saesae e e e s nne s 420
1153 = 11T o OO 421
Making Changes to Files, Staging Files, and Committing Changes..........ccocvvriervveriercennen 422
Adding Git to an EXiSting ProjeCtccoucvvrierennsrrene s sirsese s sesessessesessesessessssesessesnes 424
Bare Repositories and Cloning REPOSITOFIES......c.civverrerererenrersene s s s ses s ssesessessesnes 425
Pushing Local Changes and Fetching and Pulling Remote Changes........cccocvvvvervrerrerennen 426
T T0 | T 00T T O 428

https://doi.org/10.1007/978-1-4842-8155-0_13#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec19
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec20
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec21
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec22
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec23
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec24
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec25
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec26
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec27
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec28
https://doi.org/10.1007/978-1-4842-8155-0_14
https://doi.org/10.1007/978-1-4842-8155-0_14
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_15
https://doi.org/10.1007/978-1-4842-8155-0_15
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec8

TABLE OF CONTENTS

Working With Branches ... s 429
Typical Workflows Involve Lots of Branches...........c.cocriennnnnnnnsnsssesse s 432
Pushing Branches to the Global RepoSitory ... 433
€710 1 TR 434
Moving an Existing Repository 10 GitHub...........cccovvrvninincr e 436
Installing Packages from GitHUDccooeve e s 437
Collaborating on GItHUD ..o e 437
PUIT REQUESTS.......ciiiiiircre ettt s s e 438
Forking Repositories Instead of CloNINg..........cccocreerrienrieneres e 438
(] (o1 S 440
Chapter 16: Profiling and Optimizingcucccmssemmmsssnsmsssnnmsssnsssssnsssssnsssssnnssssansssns 411
[0 (0] 1111 OSSOSO 4411
A Graph-FIOW AlGOrithm ... 442
Speeding Up YOUT COB........ccccerriiieisi s ss s s 456
Parallel EXECULIONcccreeriiisiieesse s s 461
(0] 1T o O OO 466
(] (o1 469
Chapter 17: Project 2: Bayesian Linear Regression........cccuuesssssesssssnsssssnsssssanssssns 471
Bayesian Linear REGreSSION........cuouurrerernsesenesmssesesessessssessssssessssssesssssssssssssssssssssssssssssssssssssssnns 471
Exercises: Priors and POSTEIONSccvveerrrsererenerrssssenesesssess s sessesessssessssessssesesssssssssessnses 473
Predicting Target Variables for New Predictor Values...........ccccrevnininennnnsniennsensenennns 476
Formulas and Their Model MAtriXcoouverneneninernsesrsesesese s sessesenns 478
Working with Model Matrices in R.........cccvveernennennnse s sessessssenens 480
EXBICISES .euveuerriserrrsesssesessesesssse s s e e sr s e e e e e e e R R e e e R e 485
Model Matrices Without Response Variables.............couvvnenrnsnnsennsessnnse e 485
EXBICISES .euveuerriserrnsesssesessesesssse s s e sr s e e e e e e R e R e e e e R nr s 487
Interface 10 @ DIM ClaSScvvirriririi s 487
L0041 (0] N 488
Updating Distributions: An Example INterfacecccvvvievrvrrnennnensenie s sessesesessesessens 489
Designing YOUr DIM ClaSScccviererirneriererinsesesessssessessesaesessessessessssessessesssssssessesssssssessesaes 494
Model Methods.........ccoueriiii s —————— 494

xii

https://doi.org/10.1007/978-1-4842-8155-0_15#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_16
https://doi.org/10.1007/978-1-4842-8155-0_16
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_17
https://doi.org/10.1007/978-1-4842-8155-0_17
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec19

TABLE OF CONTENTS

Building an R Package fOr DImccccvvvvrrierenensensenersssessessessesessessessessssessessesssssssessessesssssssesnens 497
Deciding on the Package INterface..........cccvvrvrrenniniinse s s s ses s ssenns 497
Organization 0f SOUICE FIlES........ouvrrrierernrersereresessese s s ssesssssssessesaessssessessesssssssesnees 498
Document Your Package Interface WEll..........cccoverrininnnnininsinse e sesses s ssessessenns 498
Adding README and NEWS Files t0 YOUr PACKAQEcevurrerrerrerensersersersesensessessessssessensenees 499

TESTING. e ——————————————— 500

GIEHUD ..ottt bbb e nE s 500

T L T 501

DAtA SCIBNCEcceerererreerree s s e e e e e e 501

MaChINE LEAMMINGccoveeerieerinerinesere s ne s 501

DaAta ANGIYSISveereerrereeierere s s e e e e e a e e e e e ae R e e e e e e nnee 502

R ProgramimMingcccccoceriiiinsn s se s s s sas s s sse s s s s s e s ssesaesae s s s saesnessesssssaesaenannns 502

TRE EN ..t bbb e 503

1T - 505

xiii

https://doi.org/10.1007/978-1-4842-8155-0_17#Sec29
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec30
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec31
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec32
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec33
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec36
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec37

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus University,
Denmark. His background is in math and computer science, but for the last decade, his
main focus has been on genetics and evolutionary studies, particularly comparative
genomics, speciation, and gene flow between emerging species.

About the Technical Reviewer

Jon Westfall is an associate professor of psychology at Delta
State University. He has authored Set Up and Manage Your
Virtual Private Server, Practical R 4, Beginning Android

Web Apps Development, Windows Phone 7 Made Simple,
and several works of fiction including One in the Same,
Mandate, and Franklin: The Ghost Who Successfully Evicted
Hipsters from His Home and Other Short Stories. He lives in
Cleveland, Mississippi, with his wife.

xvii

Acknowledgments

I would like to thank Asger Hobolth for many valuable comments on earlier versions of
this manuscript that helped me improve the writing and the presentation of the material.

Xix

Introduction

Welcome to Beginning Data Science in R 4. 1 wrote this book from a set of lecture notes
for two classes I taught a few years back, “Data Science: Visualization and Analysis”

and “Data Science: Software Development and Testing.” The book is written to fit the
structure of these classes, where each class consists of seven weeks of lectures followed
by project work. This means that the book’s first half consists of eight chapters with core
material, where the first seven focus on data analysis and the eighth is an example of

a data analysis project. The data analysis chapters are followed by seven chapters on
developing reusable software for data science and then a second project that ties the
software development chapters together. At the end of the book, you should have a good
sense of what data science can be, both as a field covering analysis and developing new
methods and reusable software products.

What Is Data Science?

That is a difficult question. I don’t know if it is easy to find someone who is entirely sure
what data science is, but I am pretty sure that it would be difficult to find two people
without having three opinions about it. It is undoubtedly a popular buzzword, and
everyone wants to hire data scientists these days, so data science skills are helpful to
have on the CV. But what is it?

Since I can’t give you an agreed-upon definition, I will just give you my own: data
science is the science of learning from data.

This definition is very broad—almost too broad to be useful. I realize this. But then, I
think data science is an incredibly general field. I don’t have a problem with that. Of course,
you could argue that any science is all about getting information out of data, and you might
be right. However, I would say that there is more to science than just transforming raw
data into useful information. The sciences focus on answering specific questions about
the world, while data science focuses on how to manipulate data efficiently and effectively.
The primary focus is not which questions to ask of the data but how we can answer them,
whatever they may be. It is more like computer science and mathematics than it is like

xxi

INTRODUCTION

natural sciences, in this way. It isn’t so much about studying the natural world as it is about
computing efficiently on data and learning patterns from the data.

Included in data science is also the design of experiments. With the right data, we
can address the questions in which we are interested. This can be difficult with a poor
design of experiments or a poor choice of which data we gather. Study design might be
the most critical aspect of data science but is not the topic of this book. In this book, I
focus on the analysis of data, once gathered.

Computer science is mainly the study of computations, hinted at in the name, but is
a bit broader. It is also about representing and manipulating data. The name “computer
science” focuses on computation, while “data science” emphasizes data. But of course,
the fields overlap. If you are writing a sorting algorithm, are you then focusing on the
computation or the data? Is that even a meaningful question to ask?

There is considerable overlap between computer science and data science, and,
naturally, the skill sets you need overlap as well. To efficiently manipulate data, you
need the tools for doing that, so computer programming skills are a must, and some
knowledge about algorithms and data structures usually is as well. For data science,
though, the focus is always on the data. A data analysis project focuses on how the data
flows from its raw form through various manipulations until it is summarized in some
helpful way. Although the difference can be subtle, the focus is not on what operations
a program does during the analysis but how the data flows and is transformed. It is also
focused on why we do certain data transformations, what purpose those changes serve,
and how they help us gain knowledge about the data. It is as much about deciding what
to do with the data as it is about how to do it efficiently.

Statistics is, of course, also closely related to data science. So closely linked that many
consider data science as nothing more than a fancy word for statistics that looks slightly
more modern and sexy. I can’t say that I strongly disagree with this—data science does
sound hotter than statistics—but just as data science is slightly different from computer
science, data science is also somewhat different from statistics. Only, perhaps, somewhat
less so than computer science is.

A large part of doing statistics is building mathematical models for your data and
fitting the models to the data to learn about the data in this way. That is also what we
do in data science. As long as the focus is on the data, I am happy to call statistics data
science. But suppose the focus changes to the models and the mathematics. In that case,
we are drifting away from data science into something else—just as if the focus shifts
from the data to computations, we are straying from data science to computer science.

xxii

INTRODUCTION

Data science is also related to machine learning and artificial intelligence—and
again, there are huge overlaps. Perhaps not surprising since something like machine
learning has its home both in computer science and statistics; if it focuses on data
analysis, it is also at home in data science. To be honest, it has never been clear to
me when a mathematical model changes from being a plain old statistical model to
becoming machine learning anyway.

For this book, we are just going to go with my definition, and, as long as we are
focusing on analyzing data, we will call it data science.

Prerequisites for Reading This Book

For the first eight chapters in this book, the focus is on data analysis and not
programming. For those eight chapters, I do not assume a detailed familiarity with
software design, algorithms, data structures, etc. I do not expect you to have any
experience with the R programming language either. However, I assume that you have
had some experience with programming, mathematical modelling, and statistics.

Programming R can be quite tricky at times if you are familiar with scripting
languages or object-oriented languages. R is a functional language that does not allow
you to modify data. While it does have systems for object-oriented programming, it
handles this programming paradigm very differently from languages you are likely to
have seen, such as Java or Python.

For the data analysis part of this book, the first eight chapters, we will only use R for
very straightforward programming tasks, so none of this should pose a problem. We
will have to write simple scripts for manipulating and summarizing data, so you should
be familiar with how to write basic expressions like function calls, if statements, loops,
and such—these things you will have to be comfortable with. I will introduce every such
construction in the book when we need them to let you see how they are written in R, but
I will not spend much time explaining them. Mostly, I will expect you to be able to pick it
up from examples.

Similarly, I do not expect you to already know how to fit data and compare models
in R. I do assume that you have had enough introduction to statistics to be comfortable
with basic terms like parameter estimation, model fitting, explanatory and response
variables, and model comparison. If not, I expect you to at least be able to pick up what
we are talking about when you need to.

xxiii

INTRODUCTION

Iwon’t expect you to know a lot about statistics and programming, but this isn’t
“Data Science for Dummies,” so I expect you to figure out examples without me
explaining everything in detail.

After the first seven chapters is a short description of a data analysis project that one
of my students did for my class the first time I held it. It shows how such a project could
look, but I suggest that you do not wait until you have finished the first seven chapters to
start doing such analysis yourself. To get the most benefit out of reading this book, you
should continuously apply what you learn. Already when you begin reading, I suggest
that you find a data set that you would be interested in finding out more about and then
apply what you learn in each chapter to that data.

For the following eight chapters of the book, the focus is on programming. To read
this part, you should be familiar with object-oriented programming—I will explain
how we handle it in R and how it differs from languages such as Python, Java, or C++.
Still, I will expect you to be familiar with terms such as class hierarchies, inheritance,
and polymorphic methods. I will not expect you to be already familiar with functional
programming (but if you are, there should still be plenty to learn in those chapters if you
are not already familiar with R programming). The final chapter is yet another project
description.

Plan for the Book

In the book, we will cover basic data manipulation:
o Filtering and selecting relevant data
o Transforming data into shapes readily analyzable
e Summarizing data

e Visualization data in informative ways both for exploring data and
presenting results

e Model building

These are the critical aspects of doing analysis in data science. After this, we will
cover how to develop R code that is reusable and works well with existing packages and
that is easy to extend, and we will see how to build new R packages that other people
will be able to use in their projects. These are the essential skills you will need to develop
your own methods and share them with the world.

XXiv

INTRODUCTION

R is one of the most popular (and open source) data analysis programming
languages around at the moment. Of course, popularity doesn’t imply quality. Still,
because R is so popular, it has a rich ecosystem of extensions (called “packages” in R) for
just about any kind of analysis you could be interested in. People who develop statistical
methods often implement them as R packages, so you can usually get the state-of-the-art
techniques very easily in R. The popularity also means that there is a large community
of people who can help if you have problems. Most problems you run into can be solved
with a few minutes on Google or Stack Overflow because you are unlikely to be the first
to run into any particular issue. There are also plenty of online tutorials for learning
more about R and specialized packages. And there are plenty of books you can buy if you
want to learn more.

Data Analysis and Visualization

The topics focusing on data analysis and visualization I cover in the first eight chapters:

1. Introduction to R Programming: In this chapter, we learn how to
work with data and write data pipelines.

2. Reproducible Analysis: In this chapter, we find out how to
integrate documentation and analysis in a single document and
how to use such documents to produce reproducible research.

3. Data Manipulation: In this chapter, we learn how to import data,
tidy up data, transform, and compute summaries from data.

4. Visualizing Data: In this chapter, we learn how to make plots for
exploring data features and presenting data features and analysis
results.

5. Working with Large Data Sets: In this chapter, we see how to deal
with data where the number of observations makes our usual
approaches too slow.

6. Supervised Learning: In this chapter, we learn how to train models
when we have data sets with known classes or regression values.

7. Unsupervised Learning: In this chapter, we learn how to search for

patterns we are not aware of in data.

INTRODUCTION

8.

Project 1: Hitting the Bottle: Following these chapters is the first
project, an analysis of physicochemical features of wine, where we
see the various techniques in use.

Software Development

The next nine chapters cover software and package development:

XxVi

1.

Deeper into R Programming: In this chapter, we explore more
advanced features of the R programming language.

Working with Vectors and Lists: In this chapter, we explore two
essential data structures, namely, vectors and lists.

Functional Programming: In this chapter, we explore an advanced
feature of the R programming language, namely, functional

programming.

Object-Oriented Programming: In this chapter, we learn how R
handles object orientation and how we can use it to write more
generic code.

Building an R Package: In this chapter, we learn the necessary
components of an R package and how we can program our own.

Testing and Package Checking: In this chapter, we learn
techniques for testing our R code and checking our R packages’
consistency.

Version Control: In this chapter, we learn how to manage code
under version control and how to collaborate using GitHub.

Profiling and Optimizing: In this chapter, we learn how to identify
code hotspots where inefficient solutions are slowing us down and
techniques for alleviating this.

Project 2: Bayesian Linear Regression: In the final chapter, we
get to the second project, where we build a package for Bayesian
linear regression.

INTRODUCTION

Getting R and RStudio

You will need to install R on your computer to do the exercises in this book. I suggest that
you get an integrated environment since it can be slightly easier to keep track of a project
when you have your plots, documentation, code, etc., all in the same program.

I use RStudio (www.rstudio.com/products/RStudio), which I warmly recommend.
You can get it for free—just follow the link—and I will assume that you have it when I
need to refer to the software environment you are using in the following chapters. There
won’t be much RStudio specific, though, and most tools for working with R have mostly
the same features, so if you want to use something else, you can probably follow the
notes without any difficulties.

Projects

You cannot learn how to analyze data without analyzing data, and you cannot
understand how to develop software without developing software either. Typing in
examples from the book is nothing like writing code on your own. Even doing exercises
from the book—which you really ought to do—is not the same as working on your own
projects. Exercises, after all, cover minor isolated aspects of problems you have just been
introduced to. There is not a chapter of material presented before every task you have to
deal with in the real world. You need to work out by yourself what needs to be done and
how. If you only do the exercises in this book, you will miss the most crucial lesson in
analyzing data:

o How to explore the data and get a feeling for it

e How to do the detective work necessary to pull out some
understanding from the data

o How to deal with all the noise and weirdness found in any data set

And for developing a package, you need to think through how to design and
implement its functionality such that the various functions and data structures fit well
together.

I'will go through a data analysis project to show you what that can look like in this
book. To learn how to analyze data on your own, you need to do it yourself as well—and
you need to do it with a data set that I haven’t explored for you. You might have a data
set lying around you have worked on before, a data set from something you are just

Xxvii

http://www.rstudio.com/products/RStudio

INTRODUCTION

interested in, or you can probably find something interesting at a public data repository,

for example, one of these:

RDataMining.com: www.rdatamining.com/resources/data

UCI Machine Learning Repository: http://archive.ics.
uci.edu/ml/

KDNuggets: www. kdnuggets.com/datasets/index.html
Reddit R Data sets: www.reddit.com/r/datasets

GitHub Awesome Public Data sets: https://github.com/
caesar0301/awesome-public-datasets

I suggest that you find yourself a data set and that you, after each lesson, use the

skills you have learned to explore this data set. Pick data structured as a table with

observations as rows and variables as columns since that is the form of the data we will

consider in this book. At the end of the first eight chapters, you will have analyzed this

data. You can write a report about your analysis that others can evaluate to follow and

maybe modify it: you will be doing reproducible science.

For the programming topics, I will describe another project illustrating the design

and implementation issues involved in making an R package. There, you should be able

to learn from implementing your own version of the project I use, but you will, of course,

be more challenged by working on a project without any of my help at all. Whatever you

do, to get the full benefit of this book, you really ought to make your own package while

reading the programming chapters.

xxviii

http://www.rdatamining.com/resources/data
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.kdnuggets.com/datasets/index.html
http://www.reddit.com/r/datasets
https://github.com/caesar0301/awesome-public-datasets
https://github.com/caesar0301/awesome-public-datasets

CHAPTER 1

Introduction to R
Programming

We will use R for our data analysis, so we need to know the basics of programming in
the R language. R is a full programming language with both functional programming
and object-oriented programming features, and learning the complete language is

far beyond the scope of this chapter. We return to it later, when we have a little more
experience using R. The good news is, though, that to use R for data analysis, we rarely
need to do much programming. At least, if you do the right kind of programming, you
won’t need much.

For manipulating data—how to do this is the topic of the next chapter—you mainly
have to string together a couple of operations, such as “group the data by this feature”
followed by “calculate the mean value of these features within each group” and then
“plot these means.” Doing this used to be more complicated to do in R, but a couple of
new ideas on how to structure data flow—and some clever implementations of these in
packages such as magrittr and dplyr—have significantly simplified it. We will see some
of this at the end of this chapter and more in the next chapter. First, though, we need to
get a taste of R.

Basic Interaction with R

Start by downloading RStudio if you haven’t done so already. If you open it, you should
get a window similar to Figure 1-1. Well, except that you will be in an empty project while
the figure shows (on the top right) that this RStudio is opened in a project called “Data
Science.” You always want to be working on a project. Projects keep track of the state of
your analysis by remembering variables and functions you have written and keep track
of which files you have opened and such. Go to File and then New Project to create a

© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_1

https://doi.org/10.1007/978-1-4842-8155-0_1#DOI

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

project. You can create a project from an existing directory, but if this is the first time you
are working with R, you probably just want to create an empty project in a new directory,
so do that.

ece ~Oeskicp/Data Science - RStudio
Qls (2~ - K Data Science =
Console ~/Deiktop/ Data Schence - Iavironment History =t
e B eweonDause- f & Uste
R version 3,2,2 (2015-08-14) -- “Fire Sofety”

£} Cloba! [rvirgn=est >
Copyright (C) 2915 The R Foundotion for Stotisticol Computing i Cloal Eanleon

Plotform: a6 _GA-opple-dorminll. 4. @ (G4-bit)

R i3 free softmare ond comes mith ABSOLUTELY NO NARRANTY
You ore melcome to redistribute it under certoin conditions,
Type ‘license()" or “licence()" for gistribution details.

R i3 o colleborotive project mith somy contributors.
r3{)* for more information ond
{}" on hom to cite R or R pockeges in publicaticons,

Type ‘co
"eitation Fides PMots Pathages Help Viewer =
Qi New Folder Q| Delete (o) Revame 0F Move~

ve ‘denil} for 0 at . *haled® for andlin 10, oF

T"T demo()* for some demos, ‘help()” for on-line help, © /D Home Desitop Duta Scesce P
*help.stort)" for on WML Bromser interfoce to help.

- N &
Type "g{)"' to quit R, sl See Modified

t

p Duta 204 8 han 29 2016, 922 AM
ScienceRoroj 248 Jun 19, 2016, 922 A

Figure 1-1. RStudio

Once you have RStudio opened, you can type R expressions into the console, which
is the frame on the left of the RStudio window. When you write an expression there, R
will read it, evaluate it, and print the result. When you assign values to variables, and
we will see how to do this shortly, they will appear in the Environment frame on the top
right. At the bottom right, you have the directory where the project lives, and files you
create will go there.

To create a new file, you go to File and then New File.... There you can select
several different file types. Those we are interested in are the R Script, R Notebook,
and R Markdown types. The former is the file type for pure R code, while the latter two
we use for creating reports where documentation text is mixed with R code. For data
analysis projects, I would recommend using either Notebook or Markdown files. Writing

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

documentation for what you are doing is helpful when you need to go back to a project
several months down the line.

For most of this chapter, you can just write R code in the console, or you can create
an R Script file. If you create an R Script file, it will show up on the top left; see Figure 1-2.
You can evaluate single expressions using the Run button on the top right of this frame
or evaluate the entire file using the Source button. For writing longer expressions, you
might want to write them in an R Script file for now. In the next chapter, we will talk
about R Markdown, which is the better solution for data science projects.

ene ~/Cesitop/Data Science - RStudio
Q-8 24 K Data Scence =
0 Untiied] x =l [nvironment History =t
= Sourceontave QS | Shus e [wtource = | OF E impot Datasete § (& Usts
: (B Clodul [nvironmant »
Fides PMets Pachages Help Viewer =)
Qi New Foider Q| Delete () Rerame) More =
£ Home Deskiop Duta Scence L -
Name Sre Mos fed
+
(Top Lewed 3 R Lorigt g D 4B Jun 29, 2016, 922 AM
Science Rpro) e 7
Convole ~/Desktep/Dats Siende =0

You ore melcome to redistribute {t under certaln conditioms.

+ "help()* for on-line help, or
M HTML bromier interfoce to help.

Figure 1-2. RStudio with a new R Script file open

Using R As a Calculator

You can use the R console as a calculator where you type in an expression you want to
calculate, hit “enter,” and R gives you the result. You can play around with that a little bit
to get familiar with how to write expressions in R—there is some explanation for how to
write them in the following—and then moving from using R as a calculator to writing

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

more sophisticated analysis programs is only a matter of degree. A data analysis program
is little more than a sequence of calculations, after all.

Simple Expressions

Simple arithmetic expressions are written, as in most other programming languages, in
the typical mathematical notation that you are used to:
1+ 2

[1] 3

4/ 2

[1] 2

(2 +2) *3
[1] 12

Here, the lines that start with ## show the output that R will give you. By convention,
and I don’t really know why, these two hash symbols are often used to indicate thatin R
documentation.

It also works pretty much as you are used to, except, perhaps, that you might be used
to integers behaving as integers in a division. At least in some programming languages,
division between integers is integer division, but in R you can divide integers, and if
there is a remainder, you will get a floating-point number back as the result:

4/ 3
[1] 1.333333

When you write numbers like 4 and 3, they are always interpreted as floating-point
numbers, even if they print as integers, that is, without a decimal point. To explicitly get
an integer, you must write 4L and 3L:

class(4)
[1] "numeric"
class(4L)

[1] "integer"

4

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

It usually doesn’t matter if you have an integer or a floating-point number, and
everywhere you see numbers in R, they are likely to be floats.

You will still get a floating-point if you divide two integers, and there is no need to tell
R explicitly that you want floating-point division. If you do want integer division, on the
other hand, you need a different operator, %/%:

4 %/% 3
[1] 1

In many languages, % is used for getting the remainder of a division, but this doesn’t
quite work with R where % is used for something else (creating new infix operators), so in
R the operator for this is %%:

4 %% 3
[1] 1

In addition to the basic arithmetic operators—addition, subtraction, multiplication,
division, and the modulus operator we just saw—you also have an exponentiation
operator for taking powers. For this, you can use either * or ** as infix operators:

2 M2
[1] 4
2 *¥*)
[1] 4
23
[1] 8
2**3
[1] 8

There are some other data types besides numbers, but we won’t go into an
exhaustive list here. There are two types you do need to know about early, though, since
they are frequently used and since not knowing about how they work can lead to all
kinds of grief. Those are strings and “factors.”

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Strings work as you would expect. You write them in quotes, either double quotes or
single quotes, and that is about it:

"Hello, "
[1] "Hello,"
'world!"
[1] "world!"

Strings are not particularly tricky, but I mention them because they look a lot like
factors, but factors are not like strings, they just look sufficiently like them to cause some
confusion. I will explain the factors a little later in this chapter when we have seen how
functions and vectors work.

Assignments

To assign a value to a variable, you use the arrow operators. So to assign the value 2 to
the variable x, you would write

X <- 2
and you can test that x now holds the value 2 by evaluating x:
X
[1] 2
and of course, you can now use X in expressions:
2 * X
[1] 4
You can assign with arrows in both directions, so you could also write

2 -> X

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

An assignment won'’t print anything if you write it into the R terminal, but you can
get R to print it by putting the assignment in parentheses:

X <- "invisible"
(y <- "visible")

[1] "visible"

Actually, all of the above are vectors of values...

If you were wondering why all the values printed earlier had a [1] in front of them, it
is because we are usually not working with single values anywhere in R. We are working
with vectors of values (and you will hear more about vectors in the next section). The
vectors we have seen have length one—they consist of a single value—so there is nothing
wrong about thinking about them as individual values. But they are vectors and what we
can do with a single number we can do with multiple in the same way.

The [1] does not indicate that we are looking at a vector of length one. The [1] tells
you that the first value after [1] is the first value in the vector. With longer vectors, you
get the index each time R moves to the next line of output. This output makes it easier to
count your way into a particular index.

You will see this if you make a longer vector, for example, we can make one of length
50 using the : operator:

1:50

#4 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
[31] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[46] 46 47 48 49 50

The : operator creates a sequence of numbers, starting at the number to the left of
the colon and increasing by one until it reaches the number to the right of the colon, or
just before if an increment of one would move past the last number:

-1:1
[1] -1 0 1
0.1:2.9

[1] 0.1 1.1 2.1

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

If you want other increments than 1, you can use the seq function instead:
seq(.1, .9, .2)
[1] 0.1 0.3 0.5 0.7 0.9

Here, the first number is where we start, the second where we should stop, as with :,
but the third number gives us the increment to use.

Because we are practically always working on vectors, there is one caveat I want
to warn you about. If you want to know the length of a string, you might—reasonably
enough—think you can get that using the length function. You would be wrong. That
function gives you the length of a vector, so if you give it a single string, it will always

return 1:

length("qax")

[1] 1
length("quux")

[1] 1
length(c("foo", "bar"))
[1] 2

In the last expression, we used the function c() to concatenate two vectors of strings.
Concatenating "foo" and "bar"

C(II_FOOII’ "barll)
[1] "foo" "bar"

creates a vector of two strings, and thus the result of calling length on that is 2. To get
the length of the actual string, you want nchar instead:

nchar("qax")
[1] 3
nchar ("quux")

[1] 4

CHAPTER 1 INTRODUCTION TO R PROGRAMMING
nchar(c("foo", "bar"))
[1] 3 3

If you wanted to concatenate the strings "foo" and "bar", to get a vector with the
single string "foobar", you need to use paste:

paste("foo", "bar", sep = "")
[1] "foobar"

The argument sep = "" tells paste not to put anything between the two strings. By

default, it would put a space between them:
paste("foo", "bar")

[1] "foo bar"

Indexing Vectors

If you have a vector and want the i'th element of that vector, you can index the vector to
get it like this:

(v <- 1:5)

[1] 12345
v[1]

[1] 1

v[3]

[1] 3

We have parentheses around the first expression to see the output of the operation.
An assignment is usually silent in R, but by putting the expression in parentheses, we
make sure that R prints the result, which is the vector of integers from 1 to 5. Notice here
that the first element is at index 1. Many programming languages start indexing at zero,
but R starts indexing at one. A vector of length r is thus indexed from 1 to n, unlike in
zero-indexed languages where the indices go from0ton — 1.

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

If you want to extract a subvector, you can also do this with indexing. You just use a
vector of the indices you want inside the square brackets. We can use the : operator for
this or the concatenate function, c():

v[1:3]
[1] 1 2 3
v[c(1,3,5)]
[1] 13 5
You can use a vector of boolean values to pick out those values that are “true”:
v[c(TRUE, FALSE, TRUE, FALSE, TRUE)]
[1] 13 5

This indexing is particularly useful when you combine it with expressions. We can,
for example, get a vector of boolean values telling us which values of a vector are even
numbers and then use that vector to pick them out:

v bk 2 ==
[1] FALSE TRUE FALSE TRUE FALSE
v[v %% 2 == 0]
[1] 2 4
You can get the complement of a vector of indices if you change the sign of them:
v[-(1:3)]
[1] 4 5

It is also possible to give vector indices names, and if you do, you can use those to
index into the vector. You can set the names of a vector when constructing it or use the
names function:

v <_ C(IIAII - 1, IIBII — 2, "C" — 3)
Vv

ABC

10

CHAPTER 1 INTRODUCTION TO R PROGRAMMING
12 3
v[|IAII]

A
1

names(v) <- c("x", "y", "z")
v

xy z
123

v["x"]

x
#i# 1

Names can be handy for making tables where you can look up a value by a key.

Vectorized Expressions

Now, the reason that the expressions we saw earlier worked with vector values instead
of single values is that in R, arithmetic expressions all work component-wise on vectors.
When you write an expression such as

X <- 1:3 ; y <- 4:6

[1] -3 -1 3

you are telling R to take each element in the vector X, squaring it, and subtracting
element-wise by y:

(x <- 1:3)
[1] 1 2 3
X *¥* 2

[1] 1 4 9
y <- 6:8

11

CHAPTER 1 INTRODUCTION TO R PROGRAMMING
X kk 2 — y
[1] -5 -3 1

This also works if the vectors have different lengths, as they do in the preceding
example. The vector 2 is a vector of length 1 containing the number 2. The way
expressions work, when vectors do not have the same length, is you repeat the shorter
vector as many times as you need to:

(x <- 1:4)

[1] 123 4

(y <- 1:2)
[1] 1 2
X -y

[1] 002 2

If the length of the longer vector is not a multiple of the length of the shorter, you get
a warning. The expression still repeats the shorter vector a number of times, just not an
integer number of times:

(x <- 1:4)

[1] 123 4

(y <- 1:3)
[1] 1 2 3
X -y

Warning in x - y: longer object length is not a
multiple of shorter object length

[1] 000 3

Here, y is used once against the 1:3 part of X, and the first element of y is then used
for the 4 in x.

12

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Comments

You probably don’t want to write comments when you are just interacting with the
R terminal, but in your code, you do. Comments let you describe what your code is
intended to do, and how it is achieving it, so you don’t have to work that out again when
you return to it at a later point, having forgotten all the great thoughts you thought when
you wrote it.

Rinterprets as comments everything that follows the # character. From a # to the end
of the line, the R parser skips the text:

This is a comment.

If you write your analysis code in R Markdown documents, which we will cover in the
next chapter, you won’t have much need for comments. In those kinds of files, you mix
text and R code differently. But if you develop R code, you will likely need it, and now you
know how to write comments.

Functions

You have already seen the use of functions, although you probably didn’t think much
about it when we saw expressions such as

length("qax")

You didn’t think about it because there wasn’t anything surprising about it. We just
use the usual mathematical notation for functions: f(x). If you want to call a function,
you simply use this notation and give the function its parameters in parentheses.

In R, you can also use the names of the parameters when calling a function, in

addition to the positions; we saw an example with sep = "" when we used paste to
concatenate two strings.

If you have a function f(x, y) of two parameters, x and y, calling f(5, 10) means calling
fwith parameter x set to 5 and parameter y set to 10. In R, you can specify this explicitly,

and these two function calls are equivalent:

(5, 10)
f(x =5, y = 10)

13

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

(Don’t try to run this code; we haven’t defined the function f, so calling it will fail.
But if we had a function f, then the two calls would be equivalent.)

If you specify the names of the parameters, the order doesn’t matter anymore, so
another equivalent function call would be

f(y = 10, x = 5)

You can combine the two ways of passing parameters to functions as long as you put
all the positional parameters before the named ones:

f(SJ y = 10)

Except for maybe making the code slightly more readable—it is usually easier to
remember what parameters do than which order they come in—there is not much need
for this in itself. Where it becomes useful is when combined with default parameters.

A lot of functions in R take many parameters. More than you really can remember
the use for and certainly the order of. They are a lot like programs that take a lot of
options but where you usually just use the defaults unless you need to tweak something.
These functions take a lot of parameters, but most of them have useful default values,
and you typically do not have to specify the values to set them to. When you do need it,
though, you can specify it with a named parameter.

Getting Documentation for Functions

Since it can be hard to remember the details of what a function does, and especially what
all the parameters to a function do, you often have to look up the documentation for
functions. Luckily, this is very easy to do in R and RStudio. Whenever you want to know
what a function does, you can just ask R, and it will tell you (assuming that the author of
the function has written the documentation).

Take the function length from the example we saw earlier. If you want to know what
the function does, just write ?1ength in the R terminal. If you do this in RStudio, it will
show you the documentation in the frame on the right; see Figure 1-3.

14

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

ece ~/DesktopyData Science - RStudio

Q- 88 &8 (» K Duta Science =
0 Untiied] x = | Umironment History -
[=] Sowrce Q- L1 2% [Soure v | 2 B S mport Datasesr | F & Liate

1 0 Clobal Ervicomment qQ

Ve

Files PFots Pachages Help Viewer -]

b >l S Q

K Lesgth of an Object =

long™ {Dase) R DOoumantanon
Length of an Object
Description
111 (Toplewed § B Serion 3 | Gel of 800 The longth of vectons (inclucing Esta) and lacions, and of any oher R Oluect lor which a
meod has been dofined
Contole ~[Deshtop/Data Schende -
Type "licerse()" or "licence()" for distribution details. Usage

Naturol lemguoge swpport but running in on [nglish logole loagthix)
leagth(x) <= value
R s o collcborotive project mith mony contributors,
Type 'contributors()’ for more information and Arguments
"chtation()” on hom to cite R or R pocheges in publications,
x an B object. For replacomont, a vocior of Lactor
Type “demo()" for 1ome demos, “help()’ for on-lime help, or value & NON-NOGEIYD INfoger of Couble (which wil ba 1oundod down)
*help.stort()" for on WTML Brosser interfoce to help.
Type “"a{)"' to quit R, .
Detalls
Mlength
Dioth functons ane genoric: you can wiite methods 10 handie spocic classes of olyocts, e
ImernaiMethods. leaqgth<= has a *factor® method.

Figure 1-3. RStudio’s help frame

Try looking up the documentation for a few functions, for example, the nchar
function we also saw earlier.

All infix operators, like + or %%, are also functions in R, and you can read the
documentation for them as well. But you cannot write ?+ in the R terminal and get the
information. The R parser doesn’t know how to deal with that. If you want help on an
infix operator, you need to quote it, and you do that using back quotes. So to read the
documentation for +, you would need to write

~

27+

You probably do not need help to figure out what addition does, but people can write
new infix operators, so this is useful to know when you need help with those.

15

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Writing Your Own Functions

You can easily write your own functions. You use function expressions to define a
function and an assignment to give a function a name. For example, to write a function

that computes the square of a number, or a vector number, you can write

square <- function(x) x**2
square(2)

[1] 4
square(1:4)
#[1] 1 4 9 16

The “function(x) x**2” expression defines the function, and anywhere you would
need a function, you can write the function explicitly like this. Assigning the function to
a name lets you use the name to refer to the function, just like assigning any other value,
like a number or a string to a name, will let you use the name for the value.

Functions you write yourself work just like any function already part of R or part of
an R package, with one exception, though: you will not have documentation for your
functions unless you write it, and that is beyond the scope of this chapter (but covered in
the chapter on building packages).

The square function just does a simple arithmetic operation on its input. Sometimes,
you want the function to do more than a single thing. If you want the function to do
several operations on its input, you need several statements for the function. In that case,
you need to give it a “body” of several statements, and such a body has to go in curly
brackets:

square_and subtract <- function(x, y) {
squared <- x ** 2
squared - y

}

square_and subtract(1:5, rev(1:5))
[1] -4 0 6 14 24

(Check the documentation for rev to see what is going on here. Make sure you
understand what this example is doing.)

16

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

In this simple example, we didn’t really need several statements. We could just have
written the function as

square_and subtract <- function(x, y) x ** 2 -y

As long as there is only a single expression in the function, we don’t need the curly
brackets. For more complex functions, you will need it, though.

The result of a function—what it returns as its value when you call it—is the last
statement or expression (there actually isn’t any difference between statements and
expressions in R; they are the same thing). You can make the return value explicit,
though, using the return() expression:

square_and_subtract <- function(x, y) return(x ** 2 - y)

Explicit returning is usually only used when you want to return a value before the
end of the function. To see examples of this, we need control structures, so we will have
to wait a little bit to see an example. It isn’t used as much as in many other programming
languages.

One crucial point here, though, if you are used to programming in other languages:
The return() expression needs to include the parentheses. In most programming
languages, you could just write

square_and_subtract <- function(x, y) return x ** 2 -y

Such an expression doesn’t work for R. Try it, and you will get an error.

Summarizing and Vector Functions

As we have already seen, when we write arithmetic expressions such as x**2 -y,
we have an expression that will work for both single numbers for x and y, but also
element-wise for vectors x and y. If you write functions where the body consists of such
expressions, the function will work element-wise as well. The square and square_and_
subtract functions we wrote earlier work like that.

Now all functions work like this, however. While we often can treat data one element
at a time, we also often need to extract some summary of a collection of data, and
functions handle this as well.

17

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Take, for example, the function sum which adds together all the values in a vector you
give it as an argument (check ?sum now to see the documentation):

sum(1:4)
[1] 10

This function summarizes its input into a single value. There are many similar
functions, and, naturally, these cannot be used element-wise on vectors; rather, they
reduce an entire vector into some smaller summary statistics, here the sum of all
elements.

Whether a function works on vector expressions or not depends on how it is defined.
While there are exceptions, most functions in R either work on vectors or summarize
vectors like sum. When you write your own functions, whether the function works
element-wise on vectors or not depends on what you put in the body of the function. If
you write a function that just does arithmetic on the input, like square, it will work in
vectorized expressions. If you write a function that does some summary of the data, it
will not. For example, if we write a function to compute the average of its input like this:

average <- function(x) {
n <- length(x)
sum(x) / n

}

average(1:5)
[1] 3

This function will not give you values element-wise. Pretty obviously. It gets a little
more complicated when the function you write contains control structures, which we
will get to in the next section. In any case, this would be a nicer implementation since it
only involves one expression:

average <- function(x) sum(x) / length(x)

Oh, and by the way, don’t use this average function to compute the mean value of a
vector. R already has a function for that, mean, that deals much better with special cases
like missing data and vectors of length zero. Check out ?mean.

18

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Just because you are summarizing doesn’t mean that you have to return a single
value. In this function, we return both the mean and the standard deviation of the values

in a vector:

mean_and_sd <- function(x) c(mean = mean(x), sd = sd(x))
mean_and_sd(1:10)

#it mean sd
5.50000 3.02765

We use the functions mean and sd to compute the two summary statistics, and
then we combine them into a vector (with named elements) that contains the two
summaries. This isn’t a vectorized function, because we do not process the values in
the input element-wise. It doesn’t compute a single summary, but returns something
(ever so slightly) more complex. Complicated functions often return data more complex
than vectors or single values, and we shall see examples in later chapters. If you can
avoid it, though, do so. Simple functions, with simple input and output, are easier to
use, and when we write functions, we want to make things as simple for us as we can.
With this mean_and_sd function, we do not gain anything that we do not already have
with the mean and sd function, and combining both operations in a single function only
complicates things needlessly.

The rough classification of functions into the vectorized, which operate element-
wise on data, and the summarizing functions, is only a classification of how we can use
them. If you compute a value for each element in one or more vectors, you have the
former, and if you summarize all the data in one or more vectors, you have the latter. The
implementation of a function can easily combine both.

Imagine, for example, that we wish to normalize data by subtracting the mean from
each element and then dividing by the standard deviation. We could implement it
like this:

normalise <- function(x) (x - mean(x)) / sd(x)
normalise(1:10)

[1] -1.4863011 -1.1560120 -0.8257228 -0.4954337
[5] -0.1651446 0.1651446 0.4954337 0.8257228
[9] 1.1560120 1.4863011

19

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

We compute a value for each element in the input, so we have a vectorized function,
but in the implementation, we use two summarizing functions, mean and sd. The
expression (x - mean(x)) / sd(x) isa vector expression because mean(x) and sd(x)
become vectors of length one, and we can use those in the expression involving x to get a
value for each element.

A Quick Look at Control Flow

While you get very far just using expressions, for many computations, you need more
complex programming. Not that it is particularly complex, but you do need to be able
to select a choice of what to do based on data—selection or if statements—and ways of
iterating through data, looping or for statements.

If statements work like this:

if (<boolean expression>) <expression>

If the boolean expression evaluates to true, the expression is evaluated; if not, it
will not:

this won't do anything
if (2 > 3) "false"

this will
if (3 > 2) "true"

[1] "true"

For expressions like these, where we do not alter the program state by evaluating
the expression, there isn’t much of an effect in evaluating the if expression. If we, for
example, are assigning to a variable, there will be an effect:

X <- "foo"

if (2 > 3) x <- "bar"
X

[1] "foo"

if (3 » 2) x <- "baz"
X

[1] "baz"

20

CHAPTER 1 INTRODUCTION TO R PROGRAMMING
If you want to have effects for both true and false expressions, you have this:
if (<boolean expression>) <true expression> else <false expression>
if (2 > 3) "bar" else "baz"
[1] "baz"

If you want newlines in if statements, whether you have an else part or not, you
should use curly brackets.

You don’t always have to. If you have a single expression in the if part, you can leave
them out:

if (3> 2)
X <- "bar"
X

[1] "bar"
or if you have a single statement in the else part, you can leave out the brackets:

if (2> 3) {

x <- "bar"
} else

X <- "qux"
X

[1] "qux"

but we did need the brackets in the preceding if part for R to recognize that an else
bit was following. Without it, we would get an error:

if (2> 3)

X <- "bar"
else

x <- "qux"

Error: <text>:3:1: unexpected 'else’

#it 2: X <- "bar"
3: else
it A

21

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

If you always use brackets, you don’t have to worry about when you strictly need
them or when you do not, and a part can have multiple statements without you having
to worry about it. If you put a newline in an if or if-else expression, I recommend that
you always use brackets as well.

An if statement works like an expression:

if (2 > 3) "bar" else "baz"
[1] "baz"

This evaluates to the result of the expression in the “if” or the “else” part, depending
on the truth value of the condition:

x <- if (2 > 3) "bar" else "baz"
X

[1] "baz"
It works just as well with braces:

x <- if (2 > 3) { "bar" } else { "baz" }
X

[1] "baz"

but when the entire statement is on a single line, and the two parts are both a single
expression, [usually do not bother with that.

You cannot use it for vectorized expressions, though, since the boolean expression, if
you give it a vector, will evaluate the first element in the vector:

X <- 1:5
if (x > 3) "bar" else "baz"

Warning in if (x > 3) "bar" else "baz": the
condition has length > 1 and only the first
element will be used

[1] "baz"

If you want a vectorized version of if statements, you can instead use the ifelse()
function:

22

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

X <- 1:5
ifelse(x > 3, "bar", "baz")

[1] "baZ" "baZ" "baZ" "bal‘" "baI'"

(read the ?ifelse documentation to get the details of this function).

This, of course, also has consequences for writing functions that use if statements.
If your function contains a body that isn’t vectorized, your function won’t be either. So,
if you have an if statement that depends on your input—and if it doesn’t depend on the
input, it is rather useless—then that input shouldn’t be a vector:

maybe_square <- function(x) {
if (x %% 2 == 0) x ** 2 else x
}

maybe square(1:5)

Warning in if (x%%2 == 0) x*2 else x: the
condition has length > 1 and only the first
element will be used

#[1] 12345

This function was supposed to square even numbers, and it will if we give it a single
number, but we gave it a vector. Since the first value in this vector, the only one that the
if statement looked at, was 1, it decided that x %% 2 == 0was false—itisifx[1]is 1—
and then none of the values were squared. Clearly not what we wanted, and the warning
was warranted.

If you want a vectorized function, you need to use ifelse():

maybe_square <- function(x) {
ifelse(x %% 2 == 0, x ** 2, x)

}

maybe square(1:5)

#[1] 143 16 5

23

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

or you can use the Vectorize() function to translate a function that isn’t vectorized
into one that is:

maybe_square <- function(x) {
if (x %% 2 == 0) x ** 2 else x
}
maybe_square <- Vectorize(maybe square)
maybe square(1:5)

[1] 14 3 16 5

The Vectorize function is what is known as a “functor”—a function that takes a
function as input and returns a new function. It is beyond the scope of this chapter to
cover how we can manipulate functions like other data, but it is a very powerful feature
of R that we return to in later chapters.

For now, it suffices to know that Vectorize will take your function that can only take
single values as input and then create a function that handles an entire vector by calling
your function with each element. You only see one element at a time, and Vectorize’s
function makes sure that you can handle an entire vector, one element at a time.

To loop over elements in a vector, you use for statements:

X <- 1:5

total <- 0

for (element in x) total <- total + element
total

[1] 15

As with if statements, if you want the body to contain more than one expression,
you need to put it in curly brackets.

The for statement runs through the elements of a vector. If you want the indices
instead, you can use the seq_along() function, which given a vector as input returns a
vector of indices:

X <- 1:5
total <- 0

for (index in seq_along(x)) {
element <- x[index]

24

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

total <- total + element

}
total

[1] 15

There are also while statements for looping. These repeat as long as an expression
is true:

X <- 1:5

total <- 0

index <- 1

while (index <= length(x)) {
element <- x[index]
index <- index + 1
total <- total + element

}
total

[1] 15

If you are used to zero-indexed vectors, pay attention to the index <= length(x)
here. You would normally write index < length(x) in zero-indexed languages. Here,
that would miss the last element.

There is also a repeat statement that loops until you explicitly exit using the break

statement:

X <- 1:5
total <- 0
index <- 1
repeat {
element <- x[index]
total <- total + element
index <- index + 1
if (index > length(x)) break

}
total

[1] 15

25

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

There is also a next statement that makes the loop jump to the next iteration.

Now that I have told you about loops, I feel I should also say that they generally
are not used as much in R as in many other programming languages. Many actively
discourage using loops, and they have a reputation for leading to slow code. The latter is
not justified in itself, but it is easier to write slow code using loops than the alternatives.
Instead, you use functions to take over the looping functionality. There is usually a
function for doing whatever you want to accomplish using a loop, and when there is
not, you can generally get what you want by combining the three functions Map, Filter,
and Reduce.

But that is beyond the scope of this chapter; we return to it later in the book.

Factors

Now let us return to data types and the factors I hinted at a while ago. Factors are mostly
just vectors but of categorical values. That just means that the elements of a factor should
be considered as categories or classes and not as numbers or strings. For example,
categories such as “small,” “medium,” and “large” could be encoded as numbers, but
there aren’t any natural numbers to assign to them. We could encode soft drink sizes like
1, 2, and 3 for “small,” “medium,” and “large.” By doing this, we are implicitly saying that
the difference between “small” and “medium” is half of the difference between “small”
and “large” which may not be the case. Data with sizes “small,” “medium,” and “large”
should be encoded as categorical data, not numbers, and in R that means encoding
them as factors.

A factor is usually constructed by giving the factor () function a list of strings. The
function translates these into the different categories, and the factor becomes a vector of
the categories:

f <- factor(c("small", "small", "medium",
"large"”, "small", "large"))
.F

[1] small small medium large small large
Levels: large medium small

26

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

The categories are called “levels”:

levels(f)

[1] "large" "medium" "small"

By default, these are ordered alphabetical, which in this example gives us the order

“large,” “medium,” “small” You can change this order by specifying the levels when you
create the factor:

ff <- factor(c("small", "small", "medium",
"large", "small", "large"),
levels = c("small", "medium", "large"))
ff

[1] small small medium large small large
Levels: small medium large

Changing the order of the levels like this changes how many functions handle the
factor. Mostly it affects the order that summary statistics or plotting functions present
results in.

summary ()

large medium small
#H 2 1 3

summary ()

small medium large
Ht 3 1 2

The summary function, when used on factors, just counts how many of each kind we
see, and here we have three “small,” one “medium,” and two “large.” The only thing the
order of the levels does is determine in which order summary prints the categories.

The order in which the levels are given shouldn’t be thought of as “ordering” the
categories, though. It is just used for displaying results; there is not an order semantics
given to the levels unless you explicitly specify this.

Some categorical data has a natural order, like “small,” “medium,” and “large.” Other
categories are not naturally ordered. There is no natural way of ordering “red,” “green,”

27

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

and “blue” When we print data, it will always come out ordered since text always comes
out ordered. When we plot data, it is usually also ordered. But in many mathematical
models, we would treat ordered categorical data different from unordered categorical
data, so the distinction is sometimes important.

By default, factors do not treat the levels as ordered, so they assume that categorical
datais like “red,” “green,” and “blue,” rather than ordered like “small,” “medium,” and
“large.” If you want to specify that the levels are ordered, you can do that using the
ordered argument to the factor() function:

of <- factor(c("small", "small", "medium",
"large", "small", "large"),
levels = c("small", "medium", "large"),
ordered = TRUE)
of

[1] small small medium large small large
Levels: small < medium < large

You can also use the ordered() function:
ordered(ff)

[1] small small medium large small large
Levels: small < medium < large

ordered(f, levels = c("small", "medium", "large"))

[1] small small medium large small large
Levels: small < medium < large

In many ways, you can work with a combination of strings and factors. For example,
you can check if a factor value is from a certain level by comparing it with the string of
that label:

.F

[1] small small medium large small large
Levels: large medium small

[1] TRUE TRUE FALSE FALSE TRUE FALSE

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Here, we test each of the elements in the factor f against the string “small,” and we
get TRUE for those that have the level small. However, factors are not strings, and in
some places they behave fundamentally different. The fact that they so often look like
strings makes this extra tricky, when something that looks perfectly innocent can hide a
fatal error.

The case where I have seen this the most is when R users try to use factors to index
into vectors. While this is a little more advanced than most of what we see in this chapter,
I want to show it early so you are aware of the dangers.

When we create a vector, we can give the indices names. We can do this in the same
expression as we create the vector:

v<-c(a=1,b=2,c=3,d=24)
v

#abcd
#1234

or we can add the names later:

vV <- 1:4
names(v) <- letters[1:4]
v

#Habcd
#1234

(the letters vector contains all the lowercase letters, so letters[1:4] are a, b,
¢, and d).

If we have named the elements in the vector, we can use them to index, just as we
can use numbers. If we want indices 2 and 3, we can index with 2: 3, but we could also
index with c("b", "c"):

v[2:3]

b c
2 3

vIe("b", ")

b c
#t 2 3

29

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

The indexing does not have to be in the same order as the elements are in vector, so
we could, for example, extract indices 3 and 2, in that order with

v[c(3, 2)]

cb
3 2

or using their names
V[C(IICII’ llbll)]

c b
3 2

and if we repeat an index, we get the corresponding value more than once:
V[C(IICII’ "b", IICII)]

cbc
323

Here, we are using a vector of strings to index, but what would happen if we used
a factor?

A factor is not stored as strings, even though we create it from a vector of strings.

It is stored as a vector of integers where the integers are indices into the levels. This
representation can bite you if you try to use a factor to index into a vector.

Read the following code carefully. We have the vector v that can be indexed with the
letters A, B, C, and D (LETTERS is a vector that contains the uppercase letters). We create a
factor, ff, that consists of these four letters in that order. When we index with it, we get
what we would expect. Since fT is the letters A to D, we pick out the values from v with
those labels and in that order:

v <- 1:4
names(v) <- LETTERS[1:4]
v

ABCD
#1234

30

CHAPTER 1 INTRODUCTION TO R PROGRAMMING
(ff <- factor(LETTERS[1:4]))

[1] ABCD
Levels: ABCD

v[ff]

ABCD
#1234

We are lucky to get the expected result, and it is only luck though, because this
expression is not indexing using the names we might expect it to use. Read the following
even more carefully!

(ff <- factor(LETTERS[1:4], levels = rev(LETTERS[1:4])))

[1] ABCD
Levels: D C B A

v[ff]

D CB A
#4321

This time, ff is still a vector with the categories A to D in that order, but we have
specified that the levels are D, C, B, and A, in that order. So the numerical values that the
categories are stored as are actually these:

as.numeric(ff)
(1] 4321

What we get when we use it to index into v are those numerical indices—so we get
the values pulled out of v in the reversed order from what we would expect if we didn’t
know this (which you now know).

The easiest way to deal with a factor as if it contained strings is to translate it into a
vector of strings. You can use such a vector to index:

as.vector(ff)

[1] IIAII IIBII "C" IIDII

31

CHAPTER 1 INTRODUCTION TO R PROGRAMMING
v[as.vector(ff)]

ABCD
#1234

If you ever find yourself using a factor to index something—or in any other way treat
a factor as if it was a vector of strings—you should stop and make sure that you explicitly
convert it into a vector of strings. Treating a factor as if it was a vector of strings—when,
in fact, it is a vector of integers—only leads to tears and suffering in the long run.

Data Frames

The vectors we have seen, whatever their type, are just sequences of data. There is no
structure to them except for the sequence order, which may or may not be relevant

for how to interpret the data. That is not how data we want to analyze look like. What

we usually have is several related variables from some collection of observations. For
each observed data point, you have a value for each of these variables (or missing data
indications if some variables were not observed). Essentially, what you have is a table
with a row per observation and a column per variable. The data type for such tables in R
is the data.frame.

A data frame is a collection of vectors, where all must be of the same length, and you
treat it as a two-dimensional table. We usually think of data frames as having each row
correspond to some observation and each column correspond to some property of the
observations. Treating data frames that way makes them extremely useful for statistical
modelling and fitting.

You can create a data frame explicitly using the data.frame function:

df <- data.frame(a = 1:4, b = letters[1:4])
df

ab
11 a
#H 220D
#33c
4 4d

but usually you will read in the data frame from files.

32

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

To get to the individual elements in a data frame, you must index it. Since it is a two-
dimensional data structure, you should give it two indices:

df[1,1]
i [1] 1

You can, however, leave one of these empty, in which case you get an entire column

or an entire row:
df[1,]

ab

##f 11 a

df[,1]

#[1] 123 4

If the rows or columns are named, you can also use the names to index. This is
mostly used for column names since it is the columns that correspond to the observed
variables in a data sets. There are two ways to get to a column, but explicitly indexing

df[,"a"]
[1] 123 4

or using the $column_name notation that does the same thing but lets you get at a
column without having to use the [] operation and quote the name of a column:

df$b

[1] llall llbll IICII lldll

Before R version 4, a data frame would consider a character vector as a factor
and implicitly convert it. It saves a little space, but was a source of errors as the one I
described in the section on factors, so with R4 the default is now to keep string vectors
as string vectors. If df$b was a factor when you run the preceding code, you are using an
older version of R, and I suggest you update it.

33

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Turning string vectors into factors, or keeping them as they are, is just the default
behavior, though. You can control it with the stringsAsFactors parameter. If you set this
to TRUE, you will get the old behavior that turns strings into factors:

data.frame(a = 1:4, b = letters[1:4],
stringsAsFactors = TRUE)

ab
11 a
#H 220D
#33c
4 4d

If you used stringsAsFactors = FALSE, you would get the now default behavior of
keeping string vectors as strings.

You can combine two data frames row-wise or column-wise by using the rbind and
cbind functions:

df2 <- data.frame(a = 5:7, b = letters[5:7])
rbind(df, df2)

#H ab
11 a
#22b
33 c
4 4 d
55 e
#H 66 f
#77¢

df3 <- data.frame(c = 5:8, d = letters[5:8])
cbind(df, df3)

abcd
#t 11a5e
#H22be6f
#33c7¢g
4 4d8h

34

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

These data frames are built into R, but there are various alternatives implemented
in packages. They differ from the built-in data frames by being optimized for certain use
patterns or just based on programmer taste.

The most popular variant, which you are practically guaranteed to run into sooner
rather than later, is the so-called “tibble.” You can get access to it by loading the
package tibble:

library(tibble)
or by loading the large collection of packages known as the “tidyverse”:
library(tidyverse)

The tidyverse is a large framework for working with data in a structured way,
implemented in numerous packages, but you can load all the common ones in a single
instructing by loading tidyverse.

If these two commands did not work when you tried them, it is because you haven’t
installed them yet. We return to working with packages shortly, but for now, you
can justdo

install.packages("tidyverse")

After that, both of the preceding library(...) commands should work.
Then, to create a tibble instead of a built-in data frame, you can use

tibble(a = 1:4, b = letters[1:4])

A tibble: 4 x 2

Hit ab
<int> <chr>
1 1a
#H 2 2 b
3 3 c
4 4 d

As you can see, the syntax is much the same as when you create a data frame with the
data.frame function, and the result is similar as well. Generally, you can use tibbles as
drop-in replacements for data frames. The operations you can do on data frames you can
also do on tibbles.

35

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

In day-to-day programming, there is not a big difference between data frames
and tibbles, but the latter prints a little better by giving a nicer summary of large data
collections, and as already mentioned, they are heavily used by the tidyverse framework,
so you are more likely to use them than the classical data frames if you start using the
packages there, which I strongly suggest that you do.

For more sophisticated manipulation of data frames, you really should use the dplyr
package, also part of the tidyverse, but we will return to this in Chapter 3.

Using R Packages

Out of the box, R has a lot of functionality, but where the real power comes in is through its
package mechanism and the large collection of packages available for download and use.

When you install RStudio, you also install a set of default packages. You can see
which packages are installed by clicking the Packages tab in the lower-right frame; see
Figure 1-4.

Files Plots Packages Help Viewer = [

Ol install @ update = g8 Packrat (&) ol
Name Description Version

System Library

admixturegraph Admixture Graph Manipulation and Fitting 1.0.0.9000
arules Mining Association Rules and Frequent ltemsets 1.2-1
assertthat Easy pre and post assertions. 0.1
BH Boost C++ Header Files 1.58.0-1
bitops Bitwise Operations 1.0-6
bim A Package For Implementing Bayesian Linear 0.0.0.9002
Regression
blmPackage Bayesian Linear Regression 0.1
boot Bootstrap Functions (Originally by Angelo Canty for 1.3-17
S)
brew Templating Framework for Report Generation 1.0-6
caTools Tools: moving window statistics, GIF, Base64, ROC 1.17.1
AUC, etc.
class Functions for Classification 7.3-13
cluster “Finding Groups in Data"; Cluster Analysis Extended 2.0.3
Rousseeuw et al.
coda Output Analysis and Diagnostics for MCMC 0.18-1
codetools Code Analysis Tools for R 0.2-14
cain Conditional Inference Procedures in a Permutation 1.1-0
Test Framework

colorspace Color Space Manipulation 1.2-6
Figure 1-4. RStudio packages

36

https://doi.org/10.1007/978-1-4842-8155-0_3

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

From here, you can update packages—new versions of essential packages are
released regularly—and you can install new packages. You might have already done this
when we talked about tibbles, but try another one. Try installing the package magrittr.
We are going to use it shortly.

You can also install packages from the R console. Just write

install.packages("magrittr")

Once you have installed a package, you have access to the functionality in it. You
can get function f in package by writing package: : f(), or you can load all functions
from a package into your global namespace to have access to them without using the
package: : prefix.

Loading the functionality from the magrittr package is done like this:

library(magrittr)

Dealing with Missing Values

Most data sets have missing values—parameters that weren’t observed or that were
incorrectly recorded and had to be masked out. How you deal with missing data in an
analysis depends on the data and the analysis, but it must be addressed, even if all you
do is remove all observations with missing data.

Missing data is represented in R by the special value NA (not available). Values of
any type can be missing and represented as NA, and importantly R knows that NA means
missing values and treats NAs accordingly. You should always represent missing data as
NA instead of some particular number (like -1 or 999 or whatever). R knows how to work
with NA but has no way of knowing that -1 means anything besides minus one.

Operations that involve NA are themselves NA—you cannot operate on missing data
and get anything but more missing values in return. This also means that if you compare
two NAs, you get NA. Because NA is missing information, it is not even equal to itself:

NA + 5
[1] NA
NA == NA

[1] NA

37

CHAPTER 1 INTRODUCTION TO R PROGRAMMING
NA = NA
[1] NA
If you want to check if a value is missing, you must use the function is.na:
is.na(NA)
[1] TRUE
is.na(4)
[1] FALSE
Functions such as sum() will by default return NA if its input contains NA:

v <- c(1,NA,2)
sum(v)

[1] NA
If you want just to ignore the NA values, there is often a parameter for specifying this:
sum(v, na.rm = TRUE)

[1] 3

Data Pipelines

Most data analysis consists of reading in some data, performing various operations
on that data and, in the process, transforming it from its raw form into something we
can start to extract meaning out of, and then doing some summarizing or visualization
toward the end.

These steps in an analysis are typically expressed as a sequence of function calls
that each change the data from one form to another. It could look like the following
pseudocode:

my data <- read data("/some/path/some file.data")
clean_data <- remove dodgy data(my_data)
data_summaries <- summarize(clean data)
plot_important things(data summaries)

38

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

There isn’t anything wrong with writing a data analysis in this way. But there are
typically many more steps involved than listed here. When there is, you either have to get
very inventive in naming the variables you are saving the data in or you have to overwrite
variable names by reassigning to a variable after modifying the data. Both having many
variable names and reassigning to variables can be problematic.

If you have many variables, it is easier accidentally to call a function on the wrong
variable. For example, you might summarize the my_data variable instead of the clean_
data. While you would get an error if you called a function with a variable name that
doesn’t exist, there is nothing to catch when you call a function with the wrong data. You
will likely get the wrong result, and the error will not be easy to find. It would not be an
error easy to debug later.

There is slightly less of a problem with reassigning to a variable. It is mostly an issue
when you work with R interactively. There, if you want to go back and change part of the
program you are writing, you have to go back to the start, where the data is imported.
You cannot just start somewhere in the middle of the function calls with a variable that
doesn’t refer to the same data it did when you ran the program from scratch. It is less of
a problem if you always run your R scripts from the beginning, but the typical use of R is
to work with it in an interactive console or Markdown document, and there this can be a
problem.

A solution, then, is not to call the functions one at a time and assign each temporary
result to a variable. Instead of having four statements in the preceding example, one per
function call, you would just feed the result of the first function call into the next:

plot_important_things(
summarize(
remove dodgy data(
read _data("/some/path/some file.data"))))

You getrid of all the variables, but the readability suffers, to put it mildly. You have to
read the code from right to left and inside out.

Writing Pipelines of Function Calls

The magrittr package introduced a trick to alleviate this problem, which was later
followed by a built-in solution in R 4.1. The solution is to introduce a “pipe operator,” %>%
inmagrittr and |> in R 4.1, that lets you write the functions you want to combine from

39

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

left to right but get the same effect as if you were calling one after the other and sending
the result from one function to the input of the next function.
The operator works such that writing

x %% ()

or
x |> ()

is equivalent to writing
£(x)

With the magrittr operator, you can leave out the parentheses, writing x %>% f
instead, but with the built-in operator, x |> f is considered a syntax error.

How the two pipe operators work and how you can use them overlap, but they are
not equivalent. The built-in operator is a little faster; when you write x |> (), itis
just syntactic sugar for f(x), meaning that the two are completely equivalent and that
there is no overhead in using the operator rather than a function call. With the magrittr
operator, X %>% f(), you are calling a function, %>%, every time you use the operator,
and there is some overhead to that. But there is also more flexibility to this, and the %>%
operator is more flexible and can handle use cases that the | > operator cannot.

You can combine sequences of such operators such that writing

x > £0) > g() > h()
or
x %% () %% g() %% h()
or
x %% £ %% g %>% h
is equivalent to writing
h(g(£(x)))
The preceding example would become

read data("/some/path/some_file.data") %>%
remove_dodgy data %>%

40

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

summarize %>%
plot_important_things

with the magrittr operator, or

read data("/some/path/some_file.data") |[>
remove_dodgy data() |>
summarize() |»>
plot_important things()

with the built-in operator.

Reading code like this might still take some getting used to, but it is much easier to
read than combining functions from the inside and out.

If you have ever used pipelines in UNIX shells, you should immediately see the
similarities. It is the same approach for combining functions/programs. By combining
several functions, which each do something relatively simple, you can create very
powerful pipelines.

Writing pipelines using the %>% or | > operator is a relatively new idiom introduced
to R programming, but one that is very powerful and is being used more and more in
different R packages. We will use pipelines extensively in the coming chapters.

Incidentally, if you are wondering why the package that implements pipes in R is
called magrittr, it refers to Belgian artist René Magritte who famously painted a pipe
and wrote “Ceci n’est pas une pipe” (“This is not a pipe”) below it. But enough about
Belgian surrealists.

Writing Functions That Work with Pipelines

The pipeline operator actually does something very simple, which in turn makes it
simple to write new functions that work well with it. It just takes whatever is computed
on the left-hand side of it and inserts it as the first argument to the function given on the
right-hand side, and it does this left to right. So x %>% f becomes f(x), x %>% f %>% g
becomes f(x) %>% gand then g(f(x)), and x %>% f(y) becomes f(x,y). Ifyou are
providing additional parameters to a function in the pipeline, the left-hand side of %>% or
| > is inserted before the explicit parameters passed to it.

If you want to write functions that work well with pipelines, you should, therefore,
make sure that the most likely parameter to come through a pipeline is the first

41

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

parameter of your function. Write your functions such that the first parameter is the data
it operates on, and you have done most of the work.

For example, if you wanted a function that would sample n random rows of a data
frame, you could write it such that it takes the data frame as the first argument and the
parameter n as its second argument:

subsample rows <- function(d, n) {
rows <- sample(nrow(d), n)
d[rows,]

}

and then you could simply pop it right into a pipeline:

d <- data.frame(x = rnorm(100), y = rnorm(100))
d %>% subsample_rows(n = 3)

#Hit X y
31 0.3159150 1.3485491
76 -0.1553485 0.3320349
54 -0.5918348 0.8083360

or
d |» subsample rows(n = 3)

Hit X y
69 -1.2723834 -0.01965686
25 0.8190089 1.05925039
87 2.3872326 -0.18939869

Since we are simulating random data here, your output will differ from mine, but you
should see something similar.

The Magical “.” Argument

Now, you cannot always be so lucky that all the functions you want to call in a pipeline
take the left-hand side of the pipe operator as its first parameter. If this is the case, you
can still use the function, though, but here the two operators differ in how easy they
make it.

42

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

The operator from magrittr, but not the built-in operator, interprets the symbol “.”
in a special way. If you use “.” in a function call in a pipeline, then that is where the left-
hand side of the %>% operation goes instead of as the default first parameter of the right-
hand side. So if you need the data to go as the second parameter, you put a “.” there,
since x %>% f(y, .)isequivalentto f(y, x).The same goes when you need to provide
the left-hand side as a named parameter since x %>% f(y, z = .) isequivalent to
f(y, z = x), something that is particularly useful when the left-hand side should be
given to a model fitting function. Functions fitting a model to data are usually taking a
model specification as their first parameter and the data they are fitted to as a named

parameter called data:

d <- data.frame(x = rnorm(10), y = rnorm(10))
d %>% Im(y ~ x, data = .)

##

Call:

Im(formula =y ~ x, data = .)
##

Coefficients:

(Intercept) X

0.2866 0.3833

We will return to model fitting, and what an expression such asy ~ x means, in a
later chapter, so don’t worry if it looks a little strange for now. If you are interested, you
can always check the documentation for the 1m() function.

The built-in operator does not interpret “.” this way, andd |> Im(y ~ x, data =
.) will give you an error (unless you have defined “.” somewhere, which you probably
shouldn’t). The |> operator always puts the left-hand side as the first argument to the
right-hand side. If that doesn't fit your function, you have to adapt the function.

With 1m, the data is not the first argument, but we can make a function where it is:

my 1m <- function(d) lm(y ~ x, data = d)
d [my 1Im()

##

Call:

lm(formula = y ~ x, data = d)
##

43

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Coefficients:
(Intercept) X
it 0.2866 0.3833

We usually don’t like having such specialized functions lying around, and we don’t
have any use for it outside of the pipeline, so this is not ideal. However, we don’t have to
first define the function, give it a name, and then use it. We could just use the function
definition as it is:

d |» (function(d) Im(y ~ x, data = d))()

#H#

Call:

Im(formula = y ~ x, data = d)
##

Coefficients:

(Intercept) X

i 0.2866 0.3833

The syntax here might look a little odd at first glance, with the function definition
in parentheses and then the extra () after that, but it is really the same syntax as what
we have been using so far. We have written pipes such asd |> f() where f refers to a
function. It is the same now, but instead of a function name, we have an expression,
(function(d) 1m(...)), that gives us a function. It needs to be in parentheses so the
() that comes after the function are not considered part of the function body. In other
words, taked |> () and putin (function(d) 1m(...)) instead of f, and you get the
preceding expression.

Such functions that we do not give a name are called anonymous functions, or with
areference to theoretical computer science, lambda expressions. From R 4.1, perhaps

«»

to alleviate that using | > without the “.” is cumbersome, there is a slightly shorter way to
write them. Instead of writing function(...), you canuse \(...) and get

d |[> (\(d) Im(y ~ x, data = d))()

#H#

Call:

Im(formula = y ~ x, data = d)
#H#

44

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Coefficients:
(Intercept) X
it 0.2866 0.3833

The notation \ () is supposed to look like the Greek letter lambda, A.

Of course, even with the shorter syntax for anonymous functions, writingd |>
(\(d) Im(y ~ x, data = d))() instead of just Im(y ~ x, data = d) doesn’t give us
much, and it is more cumbersome to use the | > operator when you try to pipe together
functions where the data doesn’t flow from the first argument to the first argument from
function to function. If you are in a situation like that, you will enjoy using the magrittr
pipe more.

Anonymous functions do have their uses, though, both for the built-in and
magrittr’s pipe operator. Pipelines are great when you can call existing functions
one after another, but what happens if you need a step in the pipeline where there is
no function doing what you want? Here, anonymous functions usually are the right
solution.

As an example, consider a function that plots the variable y against the variable x and
fits and plots a linear model of y against x. We can define and name such a function to
get the following code:

plot _and fit <- function(d) {
plot(y ~ x, data = d)
abline(lm(y ~ x, data = d))
}

X <- rnorm(20)
y <- X + rnorm(20)
data.frame(x, y) |» plot_and_fit()

Since giving the function a name doesn’t affect how the function works, it isn’t
necessary to do so; we can just put the code that defined the function where the name of
the function goes to get this:

data.frame(x, y) |> (\(d) {
plot(y ~ x, data = d)
abline(Im(y ~ x, data = d))
H0O

45

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

with the built-in operator, or like this

data.frame(x, y) %% (\(d) {
plot(y ~ x, data = d)
abline(lm(y ~ x, data = d))
1910)

with the %>% operator.
With the magrittr pipe operator, we could also leave out the final () and do simply:

data.frame(x, y) %% (\(d) {
plot(y ~ x, data = d)
abline(lm(y ~ x, data

d))
1)

This is because the %>% operator takes both a function call and a function on the
right-hand side, so we can write x %>% f() orx %>% f, and similarly we can write x
B>% (\(x) ...)()orx %% (\(x) ...).Youcannotleave out the parentheses around
the function definition, though. A function definition is also a function call, and the %>%
operator would try to put the left-hand side of the operator into that function call, which
would give you an error. The |> operator explicitly checks if you are trying to define a
function as the right-hand side and tells you that this is not allowed.

With the magrittr operator, though, you do not need to explicitly define an

o n

anonymous function this way; you can use “.” to simulate the same effect:

data.frame(x, y) %>% {
plot(y ~ x, data = .)
abline(Im(y ~ x, data = .))
}

By putting the two operations in curly braces, we effectively make a function, and the
first argument of the function goes where we put the “.”.
The magrittr operator does more with “.” than just changing the order of

“w n

parameters. You can use “.” more than once when calling a function, and you can use it

in expressions or in function calls:
rnorm(4) %>% data.frame(x = ., is_negative = . < 0)

X 1s_negative

46

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

1 -1.5782344 TRUE
2 -0.1215720 TRUE
3 -1.7966768 TRUE
4 -0.4755915 TRUE

rnorm(4) %>% data.frame(x = ., y = abs(.))

#it X y
1 -0.8841023 0.8841023
2 -3.4980590 3.4980590
3 -0.3819834 0.3819834
4 0.9776881 0.9776881

There is one caveat: if “.” only appears in function calls, it is still given as the first
argument to the function on the right-hand side of %>%:

rnorm(4) %>% data.frame(x = sin(.), y = cos(.))

Hit . X y
1 -0.5580409 -0.5295254 0.8482941
2 -0.6264551 -0.5862767 0.8101109
3 -0.5304512 -0.5059226 0.8625789
4 1.8976216 0.9470663 -0.3210380

The reason is that it is more common to see expressions with function calls like this
when the full data is also needed than when it is not. So by default f(g(.),h(.)) gets
translated into f(.,g(.),h(.)). If you want to avoid this behavior, you can put curly
brackets around the function call since {f(g(.),h(.))} is equivalentto f(g(.),h(.)).
(I will explain the meaning of the curly brackets later). You can get both the behavior
f(.,g(.),h(.)) and the behavior {f(g(.),h(.))} in function calls in a pipeline; the
default is just the most common case.

Other Pipeline Operations

The %>% and | > operators are a very powerful mechanism for specifying data analysis
pipelines, but there are some special cases where a slightly different behavior is needed,
and the magrittr package provides some of these. To get them, you need to import the
package with library(magrittr). If you use library(tidyverse) to load the tidyverse

47

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

framework, you only get %>%; you need to explicitly load magrittr to get the other
operators.

One case is when you need to refer to the parameters in a data frame you get from
the left-hand side of the pipe expression directly. In many functions, you can get to the
parameters of a data frame just by naming them, as we have seen earlier in 1m and plot,
but there are cases where that is not so simple.

You can do that by indexing “.” like this:

d <- data.frame(x = rnorm(10), y = 4 + rnorm(10))
d %>% {data.frame(mean_x = mean(.$x), mean_y = mean(.$y))}

#Hit mean_Xx mean_y
1 0.09496017 3.538881

but if you use the operator %$% instead of %>%, you can get to the variables just by

naming them instead:
d %$% data.frame(mean x = mean(x), mean_y = mean(y))

#H mean_x mean_y
1 0.09496017 3.538881

Another common case is when you want to output or plot some intermediate result
of a pipeline. You can, of course, write the first part of a pipeline, run data through it and
store the result in a parameter, output or plot what you want, and then continue from the
stored data. But you can also use the %T>% (tee) operator. It works like the %>% operator,
but where %>% passes the result of the right-hand side of the expression on, %T>% passes
on the result of the left-hand side. The right-hand side is computed but not passed on,
which is perfect if you only want a step for its side effect, like printing some summary:

d <- data.frame(x = rnorm(10), y = rnorm(10))
d %T>% plot(y ~ x, data = .) %% Im(y ~ x, data = .)

The final operator is %<>%, which does something I warned against earlier—it assigns
the result of a pipeline back to a variable on the left. Sometimes, you do want this
behavior—for instance, if you do some data cleaning right after loading the data and you
never want to use anything between the raw and the cleaned data, you can use %<>%:

d <- read_my data("/path/to/data")
d %<>% clean_data

48

CHAPTER 1 INTRODUCTION TO R PROGRAMMING
I use it sparingly and would prefer just to pass this case through a pipeline:

d <- read_my data("/path/to/data") %>% clean_data

Coding and Naming Conventions

People have been developing R code for a long time, and they haven’t been all that
consistent in how they do it. So as you use R packages, you will see many different
conventions on how code is written and especially how variables and functions
are named.

How you choose to write your code is entirely up to you as long as you are consistent
with it. It helps somewhat if your code matches the packages you use, just to make
everything easier to read, but it is up to you.

A few words on naming are worth going through, though. There are three ways
people typically name their variables, data, or functions, and these are

underscore notation(x, y)
camelBackNotation(x, y)
dot.notation(x, y)

You are probably familiar with the first two notations, but if you have used Python
or Java or C/C++ before, the dot notation looks like method calls in object-oriented
programming. It is not (although it is related to it). The dot in the name doesn’t mean
method call. R just allows you to use dots in variable and function names.

I will mostly use the underscore notation in this book, but you can do whatever you
want. I would recommend that you stay away from the dot notation, though. There are
good reasons for this. R put some interpretation into what dots mean in function names,
as we will see when we visit object-oriented programming in the second part of the book,
so you can get into some trouble. The built-in functions in R often use dots in function
names, but it is a dangerous path so you should probably stay away from it unless you
are absolutely sure that you are avoiding the pitfalls that are in it.

49

CHAPTER 1 INTRODUCTION TO R PROGRAMMING

Exercises
Mean of Positive Values

You can simulate values from the normal distribution using the rnorm() function. Its first
argument is the number of samples you want, and if you do not specify other values, it
will sample from the N (0, 1) distribution.

Write a pipeline that takes samples from this function as input, remove the negative
values, and compute the mean of the rest. Hint: One way to remove values is to replace
them with missing values (NA); if a vector has missing values, the mean() function can
ignore them if you give it the option na.rm = TRUE.

Root Mean Square Error

If you have “true” values, t = (¢, ..., t,), and “predicted” values, y = (y,, ..., ¥,.), then the

1 n
root mean square error is defined as RMSE(t,y) =, [=> (1, -,)2.
=]
Write a pipeline that computes this from a data frame containing the t and y

values. Remember that you can do this by first computing the square difference in one
expression, then computing the mean of that in the next step, and finally computing the
square root of this. The R function for computing the square root is sqrt().

50

CHAPTER 2

Reproducible Analysis

The typical data analysis workflow looks like this: you collect your data, and you put it in
a file or spreadsheet or database. Then you run some analyses, written in various scripts,
perhaps saving some intermediate results along the way or maybe always working on
the raw data. You create some plots or tables of relevant summaries of the data, and then
you go and write a report about the results in a text editor or word processor. This is the
typical workflow in many organizations and in many research groups. Most people doing
data analysis do variations thereof. But it is also a workflow that has many potential
problems.

There is a separation between the analysis scripts and the data, and there is a
separation between the analysis and the documentation of the analysis.

If all analyses are done on the raw data, then issue number one is not a major
problem. But it is common to have scripts for different parts of the analysis, with one
script saving intermediate results to files that are then read by the next script. The scripts
describe a workflow of data analysis, and to reproduce an analysis, you have to run all
the scripts in the right order. Often enough, this correct order is only described in a text
file or even worse only in the head of the data scientist who wrote the workflow. And it
gets worse; it won't stay there for long and is likely to be lost before it is needed again.

Ideally, you would always want to have your analysis scripts written in a way where
you can rerun any part of your workflow, completely automatically, at any time.

For issue number two, the problem is that even if the workflow is automated and
easy to run again, the documentation quickly drifts away from the actual analysis scripts.
If you change the scripts, you won’t necessarily remember to update the documentation.
You probably don'’t forget to update figures and tables and such, but not necessarily the
documentation of the exact analysis run—options to functions and filtering choices
and such. If the documentation drifts far enough from the actual analysis, it becomes
completely useless. You can trust automated scripts to represent the real data analysis at
any time—that is the benefit of having automated analysis workflows in the first place—
but the documentation can easily end up being pure fiction.

51
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_2

https://doi.org/10.1007/978-1-4842-8155-0_2#DOI

CHAPTER 2 REPRODUCIBLE ANALYSIS

What you want is a way to have dynamic documentation. Reports that describe the
analysis workflow in a form that can be understood both by machines and humans.
Machines use the report as an automated workflow that can redo the analysis at any
time. We humans use it as documentation that always accurately describes the analysis
workflow that we run.

Literate Programming and Integration of Workflow
and Documentation

One way to achieve the goal of having automated workflows and documentation that
is always up to date is something called “literate programming.” Literate programming
is an approach to software development, proposed by Stanford computer scientist
Donald Knuth, which never became popular for programming, possibly because most
programmers do not like to write documentation. But it has made a comeback in data
science, where tools such as Jupyter Notebooks' and R Markdown (that we will explore
later) are major components in many data scientists’ daily work.

The idea in literate programming is that the documentation of a program—in
the sense of the documentation of how the program works and how algorithms and
data structures in the program work—is written together with the code implementing
the program. Tools such as Javadoc? and Roxygen® do something similar. They have
documentation of classes and methods written together with the code in the form of
comments. Literate programming differs slightly from this. With Javadoc and Roxygen,
the code is the primary document, and the documentation is comments added to
it. With literate programming, the documentation is the primary text for humans to
read, and the code is part of this documentation, included where it falls naturally to
have it. The computer code is extracted automatically from this document when the
program runs.

"https://jupyter.org
*https://en.wikipedia.org/wiki/Javadoc
Shttp://roxygen.org

52

https://jupyter.org
https://en.wikipedia.org/wiki/Javadoc
http://roxygen.org/

CHAPTER 2 REPRODUCIBLE ANALYSIS

Literate programming never became a huge success for writing programs, but
for doing data science, it is having a comeback. The result of a data analysis project is
typically a report describing models and analysis results, and it is natural to think of
this document as the primary product. So the documentation is already the main focus.
The only thing needed to use literate programming is a way of putting the analysis code
inside the documentation report.

Many programming languages have support for this. Mathematica* has always
had notebooks where you could write code together with documentation. Jupyter,® the
descendant of iPython Notebook, lets you write notebooks with documentation and
graphics interspersed with executable code. And in R there are several ways of writing
documents that are used both as automated analysis scripts and for generating reports.
The most popular of these approaches is R Markdown (for writing these documents) and
knitr (for running the analysis and generating the reports), but R Notebooks, a variant
of R Markdown, is also gaining popularity.

Creating an R Markdown/knitr Document in RStudio

To create a new R Markdown document, go to the File menu, pick New File and then R
Markdown.... Now RStudio will bring up a dialog where you can decide which kind of
document you want to make and add some information, such as title and author name.
It doesn’t matter so much what you do here, you can change it later, but try making an
HTML document.

The result is a new file with some boilerplate text in it; see Figure 2-1. At the top
of the file, between two lines containing just “---" is some meta-information for the
document, and after the second “---" is the text proper. It consists of a mix of text,
formatted in the Markdown language, and R code.

“www.wolfram.com/mathematica
*http://jupyter.org

53

http://www.wolfram.com/mathematica
http://jupyter.org/

CHAPTER 2 REPRODUCIBLE ANALYSIS

S unsiledl = Environment Histery Conmections Tutorial
WY A e - . 3 - +Run - | - = i (™import Dataset - % 7aMiB - o

1= — R = ik Global Ervirosment =

2 title: "New Markdown Project”

3 author: "Thomas Mailund"

4 date: "1/10/2022" Environment is empty

5 output: html_document

6.

7

8- """ {r setup, include=FALSE}

9 knitr::opts_chunk$set{echo = TRUE =

10- "

il

12- ## R Markdown Fils Plots Packages Help Viewer

13 O Mew Folder | © Delete = Rename | Gk Move -

14 This is an R Markdown document. Markdown is a simple & oS =
formatting syntax for authoring HTML, PDF, and MS Word t.
documents. For more details on using R Markdown see B Bix Sciuure ra) pida
<http://rmarkdown.rstudio.com>.

15

16 When you click the #xKnit#* button a document will be

17

18- °°

19

generated that includes both content as well as the output
of any embedded R code chunks within the document. You can
embed an R code chunk like this:

{r cars}
summary(cars

20- -

21

2=

23

24

P
Conale

Including Plots

You can also embed plots, for example:

O New Markdown Project & Markdown *

Figure 2-1. New R Markdown file

Mexsilied

Jan 10, 2022, 7:23 AM

In the toolbar above the open file, there is a menu point saying Knit. If you click it, it

will translate the R Markdown into an HTML document and open it; see Figure 2-2. You

will have to save the file first, though. If you click the Knit HTML button before saving,

you will be asked to save the file.

54

CHAPTER 2 REPRODUCIBLE ANALYSIS

0 -0 - K F P FF—
S unsitied Rmd al Environment Histery Conmections Tutorial 'l
L o AL e .- et Files Plots Packages Help Viewsr =
- P o4 “Ee Publish =
2 title: "New Markdown Project”
3 author: Th({l'lﬂh Mailund New Markdown Pm]ect
4 date: "1/10/2022" .
5 tvoitinl id t Thomas Mailund
output: htm men
SRR 11012022
6 -
7 R Markdown
&- {r setup, include=FALSE} 5 This is an R Markdown document, Markdown is a simple formating syntax for authoring HTML,
9 knitr::opts_chunk$set{echo = TRUE FDF, nits, For mors details on using R Markdown see
10- °°° hitp:
11 When you click buttan a document will be generated that includes both content as well
as the oulput of embadded R code churks within the document. You can embed an R code
12- #% R Markdown ehuni like this:
13

14 This is an R Markdown document. Markdown is a simple
formatting syntax for authoring HTML, PDF, and MS Word
documents. For more details on using R Markdown see

<http://rmarkdown.rstudio.com>.
20 D New Markdown Project & Marksdown 3
Consobe Terminal Render Jobs (]

R R4.10 - ~/Data Science/

Including Plots

Matural language support but running in an English locale You can also smbed piots, for axampla:

R is a collaborative project with many centributors.
Type 'contributors()' for more information and

‘citation()' on how to cite R or R packages in publications. § o
Type 'demo()' for some demos, 'help()' for on-line help, or g -
a o

'help.start()' for an HTML browser interface to help. g
Type 'q()" to quit R. 32

3 = o

i
> o

\ g

Figure 2-2. Compiled Markdown file

The newly created HTML file is also written to disk with a name taken from the name
you gave the R Markdown file. The R Markdown file will have suffix .Rmd, and the HTML
file will have the same prefix but suffix . html.

Ifyou click the down-pointing arrow next to Knit, you get some additional options.
You can ask to see the HTML document in the pane to the right in RStudio instead of
in a new window. Having the document in a panel instead of a separate window can
be convenient if you are on a laptop and do not have a lot of screen space. You can also
generate a file or a Word file instead of an HTML file.

If you decide to produce a file in a different output format, RStudio will remember
this. It will update the “output:” field in the metadata to reflect this. If you want, you can
also change that line in your document and make the selection that way. Try it out.

If you had chosen File, New File, R Notebook instead of an R Markdown file, you
would have gotten a very similar file; see Figure 2-3. The Knitr button is gone, and
instead you have a Preview button. If you click it, you get the document shown on the

55

CHAPTER 2 REPRODUCIBLE ANALYSIS

right in Figure 2-3. The difference between the two types of files is tiny, to the point

where it doesn’t exist. The Notebook format is just a different output option, and

both _are_ R Markdown files. If you had changed the line “output: html_document” in

the first file to “output: html_notebook’, you would get a notebook instead. Try it and see

what happens.

o .0y o T - - adding -

a -+ Ru =
1-
2 title: "R Notebook®
html_notebook

3 output:

6 This is an [R Markdown]{http://rmarkdown.rstudio.com) Notebook. When
you execute code within the notebook, the results appear beneath the
code.

& Try executing this chunk by clicking the =Run+ button within the
chunk or by placing your cursor inside it and pressing
Cmd+Shift+Enters

16~ **"{r}

11 ploticars

B Markdows =

Render Jobs. =0
R RALO - -iData Soence

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()’ for more information and
‘citation()' on how to cite R or R packages in publications.

Type ‘demo()’' for some demos, 'help()' for on-line help, or
'help.start()" for an HTML browser interface to help.
Type 'q()}' to quit R.

» plot(cars)

b3

L

Figure 2-3. R Notebook

K Duta Science -
Lmvironmest Westery Connecticns Tusorial =

Files Moty Help Viewss =

LR 4

Packages

New Markdown Project

Thomas Mailund
1Mor2022

R Markdown
This is an A Markdown documant. Markdown is simple formatting syntax for aushoring
M3 Word documents. For more detalls on using R Markdown see

Wihan you click the Knit button a document will ba genarated that includes both content as
well as the output of any embedded R code chunks within the document. You can embed an R
coda chunk like this:

Hita

Including Plots
You can also embed plots, for example:

Note that the eshe = FALSE parameter was added 10 the code chunk to prevent printing of
the R code that generated the piot

The R Markdown file is intended for creating reports, while the R Notebook format

is more intended for interactive use. Knitting a large document can be slow, because all

the analysis in your document will be run from scratch, but with the notebooks, you see

the document as it is at any moment, without rerunning any analysis when you preview.

Notebooks are thus faster, but they can be a little more dangerous to work with, if you

evaluate code out of order (see the following). You can, however, always work with a

Notebook while you do your analysis, and then change the “output: ...” format later, to

generate a report from scratch. Because the formats are so similar, [will not distinguish

between them in the following, and I will refer to the files as R Markdown files as that is

the input format for both of them (as also apparent from their file suffix “Rmd”).

56

CHAPTER 2 REPRODUCIBLE ANALYSIS

The actual steps in creating a document involve two tools and three languages,
but it is all integrated so you typically will not notice. There is the R code embedded in
the document. The R code is first processed by the knitr package that evaluates it and
handles the results such as data and plots according to options you give it. The result
is a Markdown document (notice no R). This Markdown document is then processed
by the tool pandoc which is responsible for generating the output file. For this, it uses
the metadata in the header, which is written in a language called YAML, and the actual
formatting, written in the Markdown language.

You will usually never have to worry about pandoc working as the back end of
document processing. If you just write R Markdown documents, then RStudio will let
you compile them into different types of output documents. But because the pipeline
goes from R Markdown via knitr to Markdown and then via pandoc to the various
output formats, you do have access to a very powerful tool for creating documents. I
have written this book in R Markdown where each chapter is a separate document that
I can run through knitr independently. I then have pandoc with some options take the
resulting Markdown documents, combining them, and produce both output and Epub
output. With pandoc, it is possible to use different templates for setting up the formatting,
and having it depend on the output document you create by using different templates
for different formats. It is a very powerful, but also very complicated, tool, and it is far
beyond what we can cover in this book. Just know that it is there if you want to take
document writing in R Markdown further than what you can readily do in RStudio.

As I mentioned, there are actually three languages involved in an R Markdown
document. We will handle them in order, first the header language, which is YAML, then
the text formatting language, which is Markdown, and then finally how R is embedded in
a document.

The YAML Language

YAML is a language for specifying key-value data. YAML stands for the (recursive)
acronym YAML Ain’t Markup Language. So yes, when I called this section the YAML
language I shouldn’t have included language since the L stands for language, but I did. I
stand by that choice. The acronym used to stand for Yet Another Markup Language, but
since “markup language” typically refers to commands used to mark up text for either
specifying formatting or for putting structured information in a text, which YAML doesn’t
do, the acronym was changed. YAML is used for giving options in various forms to a

57

CHAPTER 2 REPRODUCIBLE ANALYSIS

computer program processing a document, not so much for marking up text, so itisn’t
really a markup language.

In your R Markdown document, the YAML is used in the header, which is everything
that goes between the first and the second line with three dashes. In the document you
create when you make a new R Markdown file, it can look like this:

title: "New Markdown Project"
author: "Thomas Mailund"
date: "1/10/2022"

output: html document

You usually do not have to modify this header manually. If you use the GUI, it will
adjust the header for you when you change options. You do need to alter it to include
bibliographies, though, which we get to later. And you can always add anything you want
to the header if you need to, and it can be easier than using the GUI. But you don’t have
to modify the header that often.

YAML gives you a way to specify key-value mappings. You write key: and then the
value afterward. So in the preceding example, you have the key title referring to New
Markdown Document, the key author to refer to "Thomas Mailund", and so on. You don’t
necessarily need to quote the values unless it has a colon in it, but you always can.

The YAML header is used both by RStudio and pandoc. RStudio uses the output key
for determining which output format to translate your document into, and this choice is
reflected in the Knit toolbar button—while pandoc uses the title, author, and date to
put that information into the generated document.

You can have slightly more structure to the key-value specifications. If a key should
refer to a list of values, you use “-’) so if you have more than one author, you can use
something like this:

author:
- "Thomas Mailund"
- "Tom Maygrove"

58

CHAPTER 2 REPRODUCIBLE ANALYSIS

or you can have more key-value structure nested, so if you change the output theme
(using Output Options... after clicking the tooth wheel in the toolbar next to the Knit
button).

How the options are used depends on the toolchain used to format your document.
The YAML header just provides specifications. Which options you have available and
what they do are not part of the language.

For pandoc, it depends on the templates used to generate the final document (see
later), so there isn’t even a complete list that I can give you for pandoc. Anyone who
writes a new template can decide on new options to use. The YAML header gives you a
way to provide options to such templates, but there isn’t a fixed set of keywords to use. It
all depends on how tools later in the process interpret them.

The Markdown Language

The Markdown language is a markup language—the name is a pun. It was originally
developed to make it easy to write web pages. HTML, the language we use to format web
pages, is also a markup language but is not always easily human readable. Markdown
intended to solve this by formatting text with very simple markup commands—familiar
from emails back in the day before emails were also HTML documents—and then have
tools for translating Markdown into HTML.

Markdown has gone far beyond just writing web pages, but it is still a very simple
and intuitive language for writing human-readable text with markup commands that can
then be translated into other document formats.

In Markdown, you write plain text as plain text. So the body of text is just written
without any markup. You will need to write it in a text editor so the text is actually text,
not a word processor where the file format usually already contains a lot of markup
information that just isn’t readily seen on screen. If you are writing code, you should
already know about text editors. If not, just use RStudio to write R Markdown files, and
you will be okay.

Markup commands are used when you want something else than just plain text.
There aren’t many commands to learn—the philosophy is that when writing you should
focus on the text and not the formatting—so they are very quickly learned.

59

CHAPTER 2 REPRODUCIBLE ANALYSIS

Formatting Text

First, there are section headers. You can have different levels of headers—think chapters,
sections, subsections, etc.—and you specify them using # starting at the beginning of a
new line:

Header 1
Header 2
Header 3

For the first two, you can also use this format:

Header 1

To have lists in your document, you write them as you have probably often seen them
in raw text documents. A list with bullets (and not numbers) is written like this:
* this is a
* bullet

* Jist

and the result looks like this:

o thisisa
e Dbullet
o list

You can have sublists just by indenting. You need to move the indented line in so
there is a space between where the text starts at the outer level and where the bullet is at
the next level. Otherwise, the line goes at the outer level. The output of this

* This is the first line
* This is a sub-line
* This is another sub-line
* This actually goes to the outer level
* This is definitely at the outer level

60

CHAPTER 2 REPRODUCIBLE ANALYSIS

is this list:
e This s the first line
— This is a sub-line
— This is another sub-line
— This actually goes to the outer level
e Backto the outer level

If you prefer, you can use - instead of * for these lists, and you can mix the two:

- First line
* Second line
- nested line

e Firstline
¢ Secondline
— nested line

To have numbered lists, just use numbers instead of * and -:

1. This is a
2. numbered
3. list

The result looks like this:
1. Thisisa
2. numbered
3. list

You don’t actually need to get the numbers right, you just need to use numbers. So

1. This is a
3. numbered
2. list

would produce the same output. You will start counting at the first number,
though, so

61

CHAPTER 2 REPRODUCIBLE ANALYSIS

4. This is a
4. numbered
4. list

produces
4. Thisisa
5. numbered
6. list

To construct tables, you also use a typical text representation with vertical and
horizontal lines. Vertical lines separate columns, and horizontal lines separate headers
from the table body. This code

| First Header | Second Header | Third Header |

| s--mmmme- | i I I S E R 2
| First row Centred text Right justified |

| |
| Second row | *Some data* | *Some data* |
| Third row | *Some data* | *Some data* |

will result in this table:

First Header Second Header Third Header

First row Centred text Right justified
Second row Some data Some data

Third row Some data Some data

The : in the line separating the header from the body determines the justification
of the column. Put it on the left to get left justification, on both sides to get the text
centered, and on the right to get the text right justified.

Inside text, you use markup codes to make text italic or boldface. You use either
this or _this_to make “this” italic, while you use **this** or _ this__ to make
“this” boldface.

Since Markdown was developed to make HTML documents, it, of course, has an easy
way to insert links. You use the notation [1ink text](1link URL) to put “link text” into
the document as a link to “link URL.” This notation is also used to make cross-references
inside a document—similar to how HTML documents have anchors and internal links—
but more on that later.

62

CHAPTER 2 REPRODUCIBLE ANALYSIS

To insert images into a document, you use a notation similar to the link notation;
you just put a ! before the link, so ! [Image description](URL to image) will insert the
image pointed to by “URL to image” with a caption saying “Image description.” The URL
here will typically be a local file, but it can be a remote file referred to via HTTP.

With long URLs, the marked-up text can be hard to read even with this simple
notation, and it is possible to remove the URLs from the actual text and place it later in
the document, for example, after the paragraph referring to the URL or at the very end
of the document. For this, you use the notation [1link text][link tag] and define the
“link tag” as the URL you want later:

This is some text [with a link][1].
The link tag is defined below the paragraph.

[1]: interesting-url-of-some-sort-we-dont-want-inline

You can use a string here for the tag. Using numbers is easy, but for long documents,
you won't be able to remember what each number refers to:

This is some text [with a link][interesting].
The link tag is defined below the paragraph.

[interesting]: interesting-url-of-some-sort-we-dont-want-inline

You can make block quotes in text using notation you will be familiar with
from emails:

> This is a
> block quote

gives you this:

This is a block quote
To put verbatim input as part of your text, you can either do it inline or as a block.
In both cases, you use backticks ". Inline in the text, you use single backticks “foo". To
create a block of text, you write

RN

block of text

[NENEN

63

CHAPTER 2 REPRODUCIBLE ANALYSIS

You can also just indent text with four spaces, which is how I managed to make a
block of verbatim text that includes three backticks.

Markdown is used a lot by people who document programes, so there is a notation for
getting code highlighted in verbatim blocks. The convention is to write the name of the
programming language after the three backticks, then the program used for formatting
the document will highlight the code when it can. For R code, you write 1, so this block

NENEN

s
f <- function(x) ifelse(x %% 2 == 0, x**2, x**3)

£(2)

ENENEN

is formatted like this:

f <- function(x) ifelse(x %% 2 == 0, x**2, x**3)

£(2)

The only thing this markup of blocks does is highlighting the code. It doesn’t try
to evaluate the code. Evaluating code happens before the Markdown document is
formatted, and we return to that shortly.

Cross-Referencing

Out of the box, there is not a lot of support for making cross-references in Markdown
documents. You can make cross-references to sections but not figures or tables. There
are ways of doing it with extensions to pandoc—I use it in this book—but out of the box
from RStudio, you cannot yet.

However, with the work being done for making book-writing and lengthy reports in
Bookdown,® that might change soon.”

The easiest way to reference a section is to put the name of the section in square
brackets. If [write [Cross referencing] here, I get a link to this Cross referencing
section. Of course, you don’t always want the name of the section to be the text of the
link, so you can also write [this section][Cross referencing] to geta link to the
section “Cross referencing” but display the text “this section.”

®https://bookdown.org/yihui/bookdown

"In any case, having cross-references to sections but not figures is still better than Word where the
feature is there but buggy to the point of uselessness, in my experience...

64

https://bookdown.org/yihui/bookdown

CHAPTER 2 REPRODUCIBLE ANALYSIS

This approach naturally only works if all section titles are unique. If they are not,
then you cannot refer to them simply by their names. Instead, you can tag them to give
them a unique identifier. You do this by writing the identifier after the title of the section.
To put a name after a section header, you write

Cross referencing {#section-cross-ref}

and then you can refer to the section using [this](#section-cross-ref). Here,
you do need the # sign in the identifier—that markup is leftover from HTML where
anchors use #.

Bibliographies

Often, you want to cite books or papers in a report. You can of course always handle
citations manually, but a better approach is to have a file with the citation information
and then refer to it using markup tags. To add a bibliography, you use a tag in the YAML
header called bibliography:

bibliography: bibliography.bib

You can use several different formats here; see the R Markdown documentation?® for
a list. The suffix .bib is used for BibLaTeX. The format for the citation file is the same as
BibTeX, and you get citation information in that format from nearly every site that will
give you bibliography information.

To cite something from the bibliography, you use [@smitho4] where smitho4 is the
identifier used in the bibliography file. You can cite more than one paper inside square
brackets separated by a semicolon, [@smitho4; doe99], and you can add text such as
chapters or page numbers [@smitho4, chapter 4].To suppress the author name(s) in
the citation, say when you mention the name already in the text, you put - before the @ so
youwrite As Smith showed [-@smitho4]....For in-text citations, similar to \citet{}in
natbib, you just leave out the brackets, @smitho4 showed that..., and you can combine
that with additional citation information as @smitho4 [chapter 4] showed that....

8http://rmarkdown.rstudio.com/authoring bibliographies and_citations.html
65

http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html

CHAPTER 2 REPRODUCIBLE ANALYSIS

To specify the citation style to use, you use the csl tag in the YAML header:

bibliography: bibliography.bib
csl: biomed-central.csl

Check out the list of citation styles at https://github.com/citation-style-
language/styles for a large number of different formats. There should be most if not all
your heart desires.

Controlling the Output (Templates/Stylesheets)

The pandoc tool has a powerful mechanism for formatting the documents it generates.
This is achieved using stylesheets in CSS for HTML and from using templates for how
to format the output for all output formats. The template mechanism lets you write an
HTML or LaTeX document, say, that determines where various part of the text goes and
where variables from the YAML header are used. This mechanism is far beyond what we
can cover in this chapter, but I just want to mention it if you want to start writing papers
using R Markdown. You can do this; you just need to have a template for formatting the
document in the style a journal wants. Often, they provide LaTeX templates, and you can
modify these to work with Markdown.

There isn’t much support for this in RStudio, but for HTML documents, you can use
the Output Options... (click the tooth wheel) to choose different output formatting.

Running R Code in Markdown Documents

The formatting so far is all Markdown (and YAML). Where it combines with R and makes
it R Markdown is through knitr. When you format a document, the first step evaluates

R code to create a Markdown document—this translates an .Rmd document into an .md
document, but this intermediate document is deleted afterward unless you explicitly tell
RStudio not to do it. It does that by running all the R code you want to be executed and
putting it into the Markdown document.

66

https://github.com/citation-style-language/styles
https://github.com/citation-style-language/styles

CHAPTER 2 REPRODUCIBLE ANALYSIS

The simplest R code you can evaluate is part of a text. If you want an R expression
evaluated, you use backticks but add r right after the first. So to evaluate 2 + 2 and put
the result in your Markdown document, you write " r and then the expression 2 + 2
and get the result 4 inserted into the text. You can write any R expression there to get
it evaluated. It is useful for inserting short summary statistics like means and standard
deviations directly into the text and ensuring that the summaries are always up to date
with the actual data you are analyzing.

For longer chunks of code, you use the block quotes, the three backticks. Instead of
just writing

which will only display the code (highlighted as R code), you put the r in curly
brackets.

This will insert the code in your document but also show the result of evaluating it
right after the code block. The boilerplate code you get when creating an R Markdown
document in RStudio shows you examples of this (see Figure 2-4).

17

18~ ***{r cars} = b
19 summary(cars)

20

21

Figure 2-4. Code chunk in RStudio

You can name code chunks by putting a name right after r. You don’t have to name
all chunks—and if you have a lot of chunks, you probably won’t bother naming all of
them—but if you give them a name, they are easily located by clicking the structure
button in the bar below the document (see Figure 2-5). You can also use the name to
refer to chunks when caching results, which we will cover later.

67

CHAPTER 2 REPRODUCIBLE ANALYSIS

You can also embed plots,

../ Untitled L¢
»1(Chunk 1: setup
**| R Markdown

Chunk 2: cars

Including Plots

Chunk 3: pressure

Ey—]

E3 Untitled =

Figure 2-5. Document structure with chunk names

You should see a toolbar to the right on every code chunk (see Figure 2-6). The
rightmost option, the “play” button, will let you evaluate the chunk. The results will
be shown below the chunk unless you have disabled that option. The middle button
evaluates all previous chunks down to and including the current one. This is useful when
the current chunk depends on previous results. The tooth wheel lets you set options for
the chunk.

17
18~ ***{r cars}
19 summary(cars)

20
21

Figure 2-6. Code chunk toolbar

The chunk options (see Figure 2-7) control the output you get when evaluating a
code chunk. The Output drop-down selects what output the chunk should generate in
the resulting document, while the Show warnings and Show messages selection buttons
determine whether warnings and messages, respectively, should be included in the
output. The “Use paged tables” changes how tables are displayed, splitting large tables
into pages you can click through. The Use custom figure size is used to determine the
size of figures you generate—but we return to these later.

68

CHAPTER 2 REPRODUCIBLE ANALYSIS

LIS I cdl L P Ve LIV LI LR

Chunk Name: | cars|

Output: | (Use document default) 4

@ Show warnings

(@ Show messages

@ Use paged tables

(3D Use custom figure size

?) Chunk options Revert | | Apply

enmmariri Aare

Figure 2-7. Code chunk options

If you modify these options, you will see that the options are included in the top line
of the chunk. You can of course also manually control the options here, and there are
more options than what you can control with the dialog in the GUI. You can read the
knitr documentation® for all the details.

The dialog will handle most of your needs, though, except for displaying tables or
when we want to cache results of chunks, both of which we return to later.

Using chunks when analyzing data (without
compiling documents)

Before continuing, though, I want to stress that working with data analysis in an R
Markdown document is useful for more than just creating documents. I personally

do all my analysis in these documents because I can combine documentation and
code, regardless of whether I want to generate a report at the end. The combination of
explanatory text and analysis code is just convenient to have.

The way code chunks are evaluated as separate pieces of analysis is also part of this.
You can evaluate chunks individually, or all chunks down to a point, and I find that very
convenient when doing an analysis. There are keyboard shortcuts for evaluating all
chunks, all previous chunks, or just the current chunk (see Figure 2-8), which makes it
very easy to write a bit of code for an exploratory analysis and evaluating just that piece
of code. If you are familiar with Jupyter, or similar notebooks, you will recognize the

workflow.

*http://yihui.name/knitxr/
69

http://yihui.name/knitr/

CHAPTER 2 REPRODUCIBLE ANALYSIS

| =® Run Selected Line(s) $
| ’ Run Current Chunk oK !

Run Next Chunk AW

Run Setup Chunk
+ Run Setup Chunk Automatically

Run All Chunks Above P
Run All Chunks Below

Restart R and Run All Chunks
Restart R and Clear Output

Run All 3R

Figure 2-8. Options for evaluating chunks

Even without the option for generating final documents from a Markdown
document, I would still be using them just for this feature.

Caching Results

Sometimes, part of an analysis is very time-consuming. Here, I mean in CPU time, not
thinking time—it is also true for thinking time, but you don’t need to think the same
things over again and again. If you are not careful, however, you will need to run the
same analysis on the computer again and again.

If you have such very time-consuming steps in your analysis, then compiling
documents will be very slow. Each time you compile the document, all the analysis
is done from scratch. This is the functionality you want since this makes sure that the
analysis does not have results left over from code that isn’t part of the document, but it
limits the usability of the workflows if they take hours to compile.

To alleviate this, you can cache the results of a chunk. To cache the result of a chunk,
you should add the option cache=TRUE to it. This means adding that in the header of the
chunk similar to how output options are added. You will need to give the chunk a name
to use this. Chunks without names are actually given a default name, but this name
changes according to how many nameless chunks you have earlier in the document, and
you can’t have that if you use the name to remember results. So you need to name it.

70

CHAPTER 2 REPRODUCIBLE ANALYSIS

A named chunk that is set to be cached will not only be when you compile a document if
it has changed since the last time it was evaluated. If it hasn’t been changed, the results
of evaluating it will just be reused.

R cannot cache everything, so if you load libraries in a cached chunk, they won’t be
loaded unless the chunk is evaluating, so there are some limits to what you can do, but
generally it is a very useful feature.

Since other chunks can depend on a cached chunk, there can also be problems
if a cached chunk depends on another chunk, cached or not. The chunk will only be
reevaluated if you have changed the code inside it, so if it depends on something you
have changed, it will remember results based on outdated data. You have to be careful
about that.

You can set up dependencies between chunks, though, to fix this problem. If a
chunk is dependent on the results of another chunk, you can specify this using the
chunk option dependson=other. Then, if the chunk other (and you need to name such
chunks) is modified, the cache is considered invalid, and the depending chunk will be
evaluated again.

Displaying Data

Since you are writing a report on data analysis, you naturally want to include some
results. That means displaying data in some form or other.

You can simply include the results of evaluating R expressions in a code chunk,
but often you want to display the data using tables or graphics, especially if the report
is something you want to show to people not familiar with R. Luckily, both tables and
graphics are easy to display.

To make a table, you can use the function kable() from the knitr package. Try
adding a chunk like this to the boilerplate document you have:

library(knitr)
kable(head(cars))

The library(knitr) imports functions from the knitr package so you get access to
the kable() function. You don’t need to include it in every chunk you use kable() in,
justin any chunk before you use the function—the setup chunk is a good place—but
adding it in the chunk you write now will work.

71

CHAPTER 2 REPRODUCIBLE ANALYSIS

The function kable () will create a table from a data frame in the Markdown format,
so it will be formatted in the later step of the document compilation. Don’t worry too
much about the details about the code here; the head() function just picks out the first
lines of the cars data so the table doesn’t get too long.

Using kable() should generate a table in your output document. Depending on your
setup, you might have to give the chunk the output option result="asis" to make it
work, but it usually should give you a table even without this.

We will cover how to summarize data in later chapters. Usually, you don’t want to
make tables of full data sets, but for now, you can try just getting the first few lines of the
cars data.

Adding graphics to the output is just as simple. You simply make a plot in a code
chunk, and the result will be included in the document you generate. The boilerplate
R Markdown document already gives you an example of this. We will cover plotting in
much more detail later.

Exercises
Create an R Markdown Document

Go to the File... menu and create an R Markdown document. Read through the
boilerplate text to see how it is structured. Evaluate the chunks. Compile the document.

Different Output

Create from the same R Markdown document an HTML document, a document, and a
Word document.

Caching

Add a cached code chunk to your document. Make the code there sample random
numbers, for example, using rnorm(). When you recompile the document, you should
see that the random numbers do not change.

Make another cached chunk that uses the results of the first cached chunk. Say,
compute the mean of the random numbers. Set up dependencies and see that if you
modify the first chunk the second chunk gets evaluated.

72

CHAPTER 3

Data Manipulation

Data science is as much about manipulating data as it is about fitting models to data.
Data rarely arrives in a form that we can directly feed into the statistical models or
machine learning algorithms we want to analyze them with. The first stages of data
analysis are almost always figuring out how to load the data into R and then figuring out
how to transform it into a shape you can readily analyze.

Data Already in R

There are some data sets already built into R or available in R packages. Those are useful
for learning how to use new methods—if you already know a data set and what it can tell
you, it is easier to evaluate how a new method performs—or for benchmarking methods
you implement. They are of course less helpful when it comes to analyzing new data.

Distributed together with R is the package dataset. We can load the package into R
using the library() function and get a list of the data sets within it, together with a short
description of each, like this:

library(datasets)
library(help = "datasets")

To load an actual data set into R's memory, use the data() function. The data sets
are all relatively small, so they are ideal for quickly testing code you are working with. For
example, to experiment with plotting x-y plots (Figure 3-1), you could use the cars data
set that consists of only two columns, a speed and a breaking distance:

data(cars)
head(cars)

73
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_3

https://doi.org/10.1007/978-1-4842-8155-0_3#DOI

CHAPTER 3 DATA MANIPULATION

speed dist

1 4 2
2 4 10
3 7 4
#t 4 7 22
#t 5 8 16
6 9 10

cars %>% plot(dist ~ speed, data = .)

T used the %>% pipe operator here, because we need to pass the left-hand side to the
data argument in plot. With |> we can only pass the left-hand side to the first argument
in the right-hand side function call, but with %>% we can use "." to move the input to
another parameter. Generally, I will use the two pipe operators interchangeably in this
chapter, except for cases where one is more convenient than another, like before, and
then point out why that is.

Don’t worry about the plotting function for now; we will return to plotting in the next
chapter.

If you are developing new analysis or plotting code, usually one of these data sets is
useful for testing it.

Another package with several useful data sets is mlbench. It contains data sets for
machine learning benchmarks, so these data sets are aimed at testing how new methods
perform on known data sets. This package is not distributed together with R, but you can
install it, load it, and get a list of the data sets within it like this:

20

— o
()
o o
8 | o o o
3 g _ o % o
S o
o 4 g o
o _| o
oo
< o 0© o) oo
o 0°Boo09
[o Ooo
o
o 4o _©
T T T T T
5 10 15 20 25
speed

Figure 3-1. Plot of the cars data set

74

CHAPTER 3 DATA MANIPULATION

install.packages("mlbench")
library(mlbench)
library(help = "mlbench")

In this book, I will use data from one of those two packages when giving examples of
data analyses.

The packages are convenient for me for giving examples, and if you are developing
new functionality for R, they are suitable for testing, but if you are interested in data
analysis, presumably you are interested in your own data, and there they are of course
useless. You need to know how to get your own data into R. We get to that shortly, but
first I want to say a few words about how you can examine a data set and get a quick

overview.

Quickly Reviewing Data

Earlier, I have already used the function head(). This function shows the first n lines of a
data frame where 7 is an option with default 6. You can use another 7z to get more or less:

cars |> head(3)

speed dist
#H 1 4 2
2 4 10
3 7 4

The similar function tail() gives you the last n lines:
cars %>% tail(3)

i speed dist
48 24 93
49 24 120
50 25 85

75

CHAPTER 3

summary () function:

cars %>% summary

#Hit
#Hit
#
#Hit
#Hit
#H
#Ht

speed
Min. :
1st Qu.:
Median
Mean
3rd Qu.:
Max.

data(iris)

4.0
12.0

:15.0
:15.4

19.0

:25.0

iris |> summary()

#Hit
#Ht
#H
#Hit
#it
#H
#Hit
#Hit
#HH#
#Hit
#Hit
#H
#Ht
#Hit

summarized by their quantiles, while categorical and boolean data are summarized
by counts of each category or TRUE/FALSE values. In the iris data set, there is one
column, Species, that is categorical, and its summary is the count of each level.

76

Sepal.Length
Min. :4.300
1st Qu.:5.100
Median :5.800
Mean :5.843
3rd Qu.:6.400
Max. :7.900

Petal.Width
Min. :0.100
1st Qu.:0.300
Median :1.300
Mean :1.199
3rd Qu.:1.800
Max. :2.500

DATA MANIPULATION

dist
Min. : 2.00
1st Qu.: 26.00
Median : 36.00

Mean : 42.98
3rd Qu.: 56.00
Max. :120.00

Sepal.Width
Min. :2.000
1st Qu.:2.800
Median :3.000
Mean :3.057
3rd Qu.:3.300
Max. :4.400

Species
setosa :50

versicolor:50
virginica :50

To get summary statistics for all the columns in a data frame, you can use the

It isn’t that exciting for the cars data set, so let us see it on another built-in data set:

Petal.Length

Min.

1st Qu.

Median
Mean

3rd Qu.

Max.

:1.000
:1.600
:4.350
:3.758
:5.100
:6.900

The summary you get depends on the types the columns have. Numerical data is

CHAPTER 3 DATA MANIPULATION

To see the type of each column, you can use the str() function. This gives you the
structure of a data type and is much more general than we need here, but it does give you
an overview of the types of columns in a data frame and is very useful for that:

data(iris)
iris |> str()

'data.frame': 150 obs. of 5 variables:

$ Sepal.length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 ..
¢ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 ..
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 O...

$ Species : Factor w/ 3 levels "setosa","v"..

Reading Data

There are several packages for reading data in different file formats, from Excel to JSON to
XML and so on. If you have data in a particular format, try to Google for how to read it into
R.Ifitis a standard data format, the chances are that there is a package that can help you.
Quite often, though, data is available in a text table of some kind. Most tools can
import and export those. R has plenty of built-in functions for reading such data. Use

?read.table

to get a list of them. These functions are all variations of the read.table() function,
just using different default options. For instance, while read.table() assumes that the
data is given in whitespace-separated columns, the read. csv() function assumes that
the data is represented as comma-separated values, so the difference between the two
functions is in what they consider being separating data columns.

The read.table() function takes a lot of arguments. These are used to adjust it to
the specific details of the text file you are reading. (The other functions take the same
arguments, they just have different defaults.) The options I find I use the most are these:

o header: This is a boolean value telling the function whether it should
consider the first line in the input file a header line. If set to true,
it uses the first line to set the column names of the data frame it
constructs; if it is set to false, the first line is interpreted as the first
row in the data frame.

77

CHAPTER 3 DATA MANIPULATION

e col.names: If the first line is not used to specify the header, you can
use this option to name the columns. You need to give it a vector of
strings with a string for each column in the input.

e dec: This is the decimal point used in numbers. I get spreadsheets
that use both ” and " for decimal points, so this is an important
parameter for me. How important it will be for you probably depends
on how many nationalities you collaborate with.

o comment.char: By default, the function assumes that “#” is the start
of a comment and ignores the rest of a line when it sees it. If “#” is
actually used in your data, you need to change this. The same goes if
comments are indicated with a different symbol.

e colClasses: This lets you specify which type each column should
have, so here you can specify that some columns should be factors,
and others should be strings. You have to specity all columns, though,
which is cumbersome and somewhat annoying since R, in general, is
pretty good at determining the right types for a column. The option
will only take you so far in any case. You can tell it that a column
should be an ordered factor but not what the levels should be and
such. I mainly use it for specifying which columns should be factors
and which should be strings, but using it will also speed up the
function for large data sets since R then doesn’t have to figure out the
column types itself.

For reading in tables of data, read.table() and friends will usually get you
there with the right options. If you are having problems reading data, check the
documentation carefully to see if you cannot tweak the functions to get the data loaded.
It isn’t always possible, but it usually is. When it really isn’t, I usually give up and write a
script in another language to format the data into a form I can load into R. For raw text
processing, R isn’t really the right tool, and rather than forcing all steps in an analysis
into R, I will be pragmatic and choose the best tools for the task, and R isn’t always it. But
before taking drastic measures, and go programming in another language, you should
carefully check if you cannot tweak one of the read.table() functions first.

78

CHAPTER 3 DATA MANIPULATION

Examples of Reading and Formatting Data Sets

Rather than discussing the import of data in the abstract, let us now see a couple of
examples of how data can be read in and formatted.

Breast Cancer Data set

As a first example of reading data from a text file, we consider the BreastCancer data set
from mlbench. Then we have something to compare our results with. The first couple of
lines from this data set are

library(mlbench)
data(BreastCancer)
BreastCancer %>% head(3)

Id Cl.thickness Cell.size Cell.shape
1 1000025 5 1 1
2 1002945 5 4 4
3 1015425 3 1 1
Marg.adhesion Epith.c.size Bare.nuclei
1 1 2 1
#t 2 5 7 10
3 1 2 2
Bl.cromatin Normal.nucleoli Mitoses Class
1 3 1 1 benign
2 3 2 1 benign
3 3 1 1 benign

The data can be found at https://archive.ics.uci.edu/ml/datasets/ Breast+C
ancer+Wisconsin+(Original) where there is also a description of the data. The URL to
the actual data is https://archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/breast-cancer-wisconsin.data, but since this URL is too
long to fit on the pages of this book, I have saved it in a variable, data_url, that I will use
in the following code. To run the code yourself, you simply need to set the variable to
the URL:

data_url <- "https://..."

79

https://archive.ics.uci.edu/ml/datasets/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data

CHAPTER 3 DATA MANIPULATION

To get the data downloaded, we could go to the URL and save the file. Explicitly
downloading data outside of our R code has pros and cons. It is pretty simple, and we
can have a look at the data before we start parsing it, but on the other hand, it gives us
a step in the analysis workflow that is not automatically reproducible. Even if the URL
is described in our documentation and at a link that doesn’t change over time, it is a
manual step in the workflow—and a step that people could make mistakes in.

Instead, I am going to read the data directly from the URL. Of course, this is also a
risky step in a workflow because I am not in control of the server the datais on, and I
cannot guarantee that the data will always be there and that it won’t change over time.
It is a bit of a risk either way. I will usually add the code to my workflow for downloading
the data, but I will also store the data in a file. If I leave the code for downloading the data
and saving it to my local disk in a cached Markdown chunk, it will only be run the one
time I need it.

I can read the data and get it as a vector of lines using the readLines () function. I
can always use that to scan the first one or two lines to see what the file looks like:

lines <- readlLines(data url) lines[1:5]

1] "1000025,5,1,1,1,2,1,3,1,1,2"
2] "1002945,5,4,4,5,7,10,3,2,1,2"
3] "1015425,3,1,1,1,2,2,3,1,1,2"
4]
5]

[
[
[
[4] "1016277,6,8,8,1,3,4,3,7,1,2"
[5] "1017023,4,1,1,3,2,1,3,1,1,2"

For this data, it seems to be a comma-separated values file without a header line. So
I save the data with the “csv” suffix. None of the functions for writing or reading data in
R cares about the suffixes, but it is easier for myself to remember what the file contains

that way:
writeLines(lines, con = "data/raw-breast-cancer.csv")

For that function to succeed, I first need to make a data/ directory. I suggest you
have a data/ directory for all your projects, always, since you want your directories and
files structured when you are working on a project.

The file I just wrote to disk can then read in using the read.csv() function:

raw_breast cancer <- read.csv("data/raw-breast-cancer.csv") raw_breast
cancer |> head(3)

80

CHAPTER 3 DATA MANIPULATION

X1000025 X5 X1 X1.1 X1.2 X2 X1.3 X3 X1.4 X1.5
1 1002945 5 4 4 5 7 10 3 2 1
2 1015425 3 1 1 1 2 2 3 1 1
3 1016277 6 8 8 13 4 3 7 1

X2.1
1 2
#t 2 2
#t 3 2

Of course, I wouldn’t write exactly these steps into a workflow. Once I have
discovered that the data at the end of the URL is a “csv” file, would just read it directly
from the URL:

raw_breast cancer <- read.csv(data url)
raw_breast cancer |> head(3)

X1000025 X5 X1 X1.1 X1.2 X2 X1.3 X3 X1.4 X1.5
1 1002945 5 4 4 5 7 10 3 2 1
2 1015425 3 1 1 1 2 2 3 1 1
3 1016277 6 8 8 13 4 3 7 1

X2.1
#H 1 2
#t 2 2
#t 3 2

The good news is that this data looks similar to the BreastCancer data. The bad
news is that it appears that the first line in BreastCancer seems to have been turned into
column names in raw_breast cancer. The read.csv() function interpreted the first line
as a header. We can fix this using the header parameter:

raw_breast cancer <- read.csv(data url, header = FALSE)
raw_breast cancer [> head(3)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Vi1
1 1000025 5 1 1 1 2 1 3 1 1 2
2 1002945 5 4 4 5 710 3 2 1 2
#4 3 1015425 3 1 1 1 2 2 3 1 1 2

81

CHAPTER 3 DATA MANIPULATION

Now the first line is no longer interpreted as header names. That is good, but the
names we actually get are not that informative about what the columns contain.

If you read the description of the data from the website, you can see what each
column is and choose names that are appropriate. I am going to cheat here and just take
the names from the BreastCancer data set.

I can set the names explicitly like this:

names(raw_breast cancer) <- names(BreastCancer)
raw_breast cancer |> head(3)

Id Cl.thickness Cell.size Cell.shape
1 1000025 5 1 1
2 1002945 5 4 4
3 1015425 3 1 1
Marg.adhesion Epith.c.size Bare.nuclei

1 1 2 1

2 5 7 10

3 1 2 2

Bl.cromatin Normal.nucleoli Mitoses Class

1 3 1 1 2

2 3 2 1 2

3 3 1 1 2

or I could set them where I load the data:

raw_breast cancer <- read.csv(data url, header = FALSE,
col.names = names(BreastCancer))
raw_breast cancer |> head(3)

Id Cl.thickness Cell.size Cell.shape
1 1000025 5 1 1
2 1002945 5 4 4
3 1015425 3 1 1
Marg.adhesion Epith.c.size Bare.nuclei
1 1 2 1
#t 2 5 7 10
3 1 2 2

82

CHAPTER 3 DATA MANIPULATION

Bl.cromatin Normal.nucleoli Mitoses Class

1 3 1 1 2
2 3 2 1 2
3 3 1 1 2

Okay, we are getting somewhere. The Class column is not right. It encodes the
classes as numbers (the web page documentation specifies 2 for benign and 4 for
malignant), but in R it would be more appropriate with a factor.

We can translate the numbers into a factor by first translating the numbers into
strings and then the strings into factors. I don’t like modifying the original data—even if I
have it in a file—so I am going to copy it first and then do the modifications:

formatted breast_cancer <- raw_breast cancer
It is easy enough to map the numbers to strings using ifelse():

map_class <- function(x) {
ifelse(x == 2, "bening",
ifelse(x == 4, "malignant",
NA))
}
mapped <- formatted breast cancer$Class %>% map class
mapped |» table()

mapped
bening malignant
#Ht 458 241

I could have made it simpler with

map_class <- function(x) {

ifelse(x == 2, "bening", "malignant")

}

mapped <- formatted breast cancer$Class %>% map_class
mapped |» table()

mapped
bening malignant
458 241

83

CHAPTER 3 DATA MANIPULATION

since 2 and 4 are the only numbers in the data
formatted breast cancer$Class |> unique()
[1] 2 4

but it is always a little risky to assume that there are no unexpected values, so I
always prefer to have “weird values” as something I handle explicitly by setting it to NA.

Nested ifelse() are easy enough to program, but if there are many different
possible values, it also becomes somewhat cumbersome. Another option is to use a table
to map between values. To avoid confusion between a table as the one we are going
to implement and the function table(), which counts how many times a given value
appears in a vector, I am going to call the table we create a dictionary. A dictionary is a
table where you can look up words, and that is what we are implementing.

For this, we can use named values in a vector. Remember that we can index in a
vector both using numbers and using names.

You can create a vector where you use names as the indices. Use the keys you want
to map from as the indices and the names you want as results as the values. We want
to map from numbers to strings which pose a small problem. If we index into a vector
with numbers, R will think we want to get positions in the vector. If we make the vector
v <- ¢(2 = "benign", 4 = "malignant")—which we can't, itis a syntax error and for
good reasons—then how should v[2] be interpreted? Do we want the value at index 2,
"malignant”, or the value that has key 2, "benign"? When we use a vector as a table, we
need to have strings as keys. That also means that the numbers in the vector we want to
map from should be converted to strings before we look up in the dictionary. The code
looks like this:

dict <- c("2" = "benign", "4" = "malignant")
map_class <- function(x) dict[as.character(x)]

mapped <- formatted breast cancer$Class |» map class()
mapped |» table()

mapped
benign malignant
#i 458 241

That worked fine, but if we look at the actual vector instead of summarizing it, we
will see that it looks a little strange:

84

CHAPTER 3 DATA MANIPULATION
mapped[1:5]

2 2 2 2 2
"benign" "benign" "benign" "benign" "benign"

This is because when we create a vector by mapping in this way, we preserve the
names of the values. Remember that the dictionary we made to map our keys to values
has the keys as names; these names are passed on to the resulting vector. We can get rid
of them using the unname () function:

library(magrittr)
mapped %<>% unname
mapped[1:5]

[1] "benign" "benign" "benign" "benign" "benign"

Here, [used the magrittr %<>% operator to both pipe and rename mapped;
alternatively, we could have used mapped <- mapped %>% unname or mapped <- mapped
|> unname().

You don’t need to remove these names, they are not doing any harm in themselves,
but some data manipulation can be slower when your data is dragging names along.

Now we just need to translate this vector of strings into a factor, and we will have our
Class column.

The entire reading of data and formatting can be done like this:

Download data and put it in a variable
raw_breast cancer <- read.csv(

data_url, header = FALSE,

col.names = names(BreastCancer))

Get a copy of the raw data that we can transform
formatted breast cancer <- raw_breast cancer

Reformat the Class variable
formatted_breast_cancer$Class <-
formatted breast cancer$Class %>% {
c("2" = "benign", "4" = "malignant")[as.character(.)]
} |» factor(levels = c("benign", "malignant"))

85

CHAPTER 3 DATA MANIPULATION

In the last statement, we use the %>% operator so we can put an expression in curly
braces. In there, the incoming class is the “.” that we translate to a character and then
use to look up the name that we want. Then we pipe the names through factor() to get
the factor that we went for. We can use either %>% or |> here. We don’t have to remove the
names with unname () when we put the result back into formatted breast cancer,
so we don’t bother.

It is not strictly necessary to specify the levels in the factor () call, but I prefer always
to do so explicitly. If there is an unexpected string in the input to factor(), it would end
up being one of the levels, and I wouldn’t know about it until much later. Specifying the
levels explicitly alleviates that problem.

Now, you don’t want to spend time parsing input data files all the time, so I would
recommend putting all the code you write to read in data and transforming it into the
form you want in a cached code chunk in an R Markup document. This way, you will
only evaluate the code when you change it.

You can also explicitly save data using the save() function:

formatted breast cancer %>%
save(file = "data/formatted-breast-cancer.rda")

Here, I use the suffix ".rda" for the data. It stands for R data, and your computer will
probably recognize it. If you click a file with that suffix, it will be opened in RStudio (or
whatever tool you use to work on R). The actual R functions for saving and loading data
do not care what suffix you use, but it is easier to recognize the files for what they are if
you stick to a fixed suffix.

The data is saved together with the name of the data frame, so when you load it
again, using the load() function, you don’t have to assign the loaded data to a variable. It
will be loaded into the name you used when you saved the data:

load("data/formatted-breast-cancer.rda")

This is both good and bad. I would probably have preferred to control which name
the data is assigned to so I have explicit control over the variables in my code, but save()
and load() are designed to save more than one variable, so this is how they work.

I personally do not use these functions that much. I prefer to write my analysis
pipelines in Markdown documents, and there it is easier just to cache the import code.

86

CHAPTER 3 DATA MANIPULATION

Boston Housing Data Set

For the second example of loading data, we take another data set from the mlbench
package, the BostonHousing data, which contains information about crime rates and

some explanatory variables we can use to predict crime rates:

library(mlbench)
data(BostonHousing)
str(BostonHousing)
'data.frame':
$ crim : num
#H $ zn D num
$ indus : num
$ chas

#$ nox D num
#H % rm : num
¢ age : num
#H ¢ dis D num
$ rad : num
#H ¢ tax : num
¢ ptratio: num
#H $b :num
$ lstat : num
$ medv : num

data_url.

506 obs. of 14 variables:
0.00632 0.02731 0.02729 0.03237..
18 00 00 0 12.5 12.5 ...
2.31 7.07 7.07 2.18 2.18 2.18 7..

: Factor w/ 2 levels "0","1": 1111 ..

0.538 0.469 0.469 0.458 0.458 O..
6.58 6.42 7.18 7 ...

65.2 78.9 61.1 45.8 54.2 58.7 6..
4.09 4.97 4.97 6.06 ...
12233355 ...

296 242 242 222 222 222 311 311..
15.3 17.8 17.8 18.7 18.7 18.7 1..
397 397 393 395 ...

4.98 9.14 4.03 2.94 ...

24 21.6 34.7 33.4 36.2 28.7 22...

As before, the link to the actual data is pretty long, so I will give you a tinyURL to
it, http://tinyurl.com/zq2u8vx, and I have saved the original URL in the variable

87

http://tinyurl.com/zq2u8vx

CHAPTER 3 DATA MANIPULATION

I have already looked at the file at the end of the URL and seen that it consists of

whitespace-separated columns of data, so the function we need to load it is read.
table():

boston_housing <- read.table(data url)
str(boston_housing)

'data.frame': 506 obs. of 14 variables:

$ V1 : num 0.00632 0.02731 0.02729 0.03237 ...
#W $V2 :num 2180000 0 12.5 12.5 ...

$V3 :num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 ..
#H $V4:int 0000000O0...

$ V5 : num 0.538 0.469 0.469 0.458 0.458 0.458..
$V6 : num 6.58 6.42 7.18 7 ...

$ V7 : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 ..
$V8 : num 4.09 4.97 4.97 6.06 ...

$V9 :int 12233355 ...

$ V10: num 296 242 242 222 222 222 311 311 ...
$ Vii: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 ..
$ Vi2: num 397 397 393 395 ...

$ V1i3: num 4.98 9.14 4.03 2.94 ...

$ V1i4: num 24 21.6 34.7 33.4 36.2 28.7 22.9 27..

If we compare the data that we have loaded with the data from mlbench

str(BostonHousing)

'data.frame': 506 obs. of 14 variables:

$ crim : num 0.00632 0.02731 0.02729 0.03237..
#H $ zn :num 18 0 0 0 0 0 12.5 12.5 ...

$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7..
¢ chas : Factor w/ 2 levels "0","1": 1111 ..
% nox : num 0.538 0.469 0.469 0.458 0.458 0..
#H $ m :num 6.58 6.42 7.18 7 ...

$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 6..
% dis :num 4.09 4.97 4.97 6.06 ...

$ rad :num 12233355 ...

#H ¢ tax :onum 296 242 242 222 222 222 311 311..

88

CHAPTER 3 DATA MANIPULATION

$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 1..
$b : num 397 397 393 395 ...

$ lstat : num 4.98 9.14 4.03 2.94 ...

$medv : num 24 21.6 34.7 33.4 36.2 28.7 22...

we see that we have integers and numeric data in our imported data but that it
should be a factor for the chas variable and numeric for all the rest. We can use the
colClasses parameter for read.table() to fix this. We just need to make a vector of
strings for the classes, a vector that is "numeric" for all columns except for the "chas"
column, which should be "factor":

col classes <- rep("numeric", length(BostonHousing))
col classes[which("chas" == names(BostonHousing))] <- "factor"

We should also name the columns, but again we can cheat and get the names from
BostonHousing:

boston_housing <- read.table(data url,
col.names = names(BostonHousing),
colClasses = col classes)
str(boston_housing)

'data.frame': 506 obs. of 14 variables:

$ crim : num 0.00632 0.02731 0.02729 0.03237..
#H $ zn :num 18 0 0 0 0 0 12.5 12.5 ...

$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7..
$ chas : Factor w/ 2 levels "0","1": 1111 ..
#H$ nox : num 0.538 0.469 0.469 0.458 0.458 0..
#H$ rm :num 6.58 6.42 7.18 7 ...

$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 6..
#H ¢ dis :num 4.09 4.97 4.97 6.06 ...

$ rad :num 12233355 ...

#$ tax :onum 296 242 242 222 222 222 311 311..
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 1..
$b : num 397 397 393 395 ...

$ lstat : num 4.98 9.14 4.03 2.94 ...
$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22...

89

CHAPTER 3 DATA MANIPULATION

The levels in the "chas" factor are “0” and “1” It is not really good levels as they are
very easily confused with numbers—they will print like numbers—but they are not.
The numerical values in the factor are actually 1 for “0” and 2 for “1’; so that can be
confusing. But it is the same levels as the mlbench data frame, so I will just leave it the
way it is as well.

The readr Package

The read.table() class of functions will usually get you to where you want to go with
importing data. I use these in almost all my work. But there is a package aimed at
importing data that tries to both speed up the importing and being more consistent in
how data is imported, so I think I should mention it.

That package is the readr package:

library(readr)

It implements the same class of import functions as the built-in functions. It just
uses underscores except for dots in the function names. So where you would use read.
table(), the readr package gives you read_table(). Similarly, it gives you read_csv()
as a substitute for read.csv().

The readr package has different defaults for how to read data. Other than that, its
main call to fame is being faster than the built-in R functions. This shouldn’t concern
you much if you put your data import code in a cached code chunk, and in any case if
loading data is an issue, you need to read Chapter 5. The functions from readr do not
return data frames but the tibble data structure we briefly discussed before. For most
purposes, this makes no difference, so we can still treat the loaded data the same way.

Let us look at how to import data using the functions in the package. We return to the
breast cancer data we imported earlier. We downloaded the breast cancer data and put
itin a file called "data/raw-breast-cancer.csv", so we can try to read it from that file.
Obviously, since it is a CSV file, we will use the read_csv() function:

raw_breast _cancer <- read csv("data/raw-breast-cancer.csv",
show col types = FALSE)

90

https://doi.org/10.1007/978-1-4842-8155-0_5

CHAPTER 3 DATA MANIPULATION

New names:

e "1 > "1...3°
#Hoe "1 > T1...4
e "1° > "1...5
e "2° -> "2...6°
e "1 > "1...7
e "10 -> "1...9°
e "1° -> "1...10°
e "2° > "2...11°

raw_breast cancer %>% head(3)

A tibble: 3 x 11
1000025 57 “1...3° "1...4° “1...5 "2...6°

#H <dbl> <dbl> <dbl> <dbl> «<dbl> <dbl>
1 1002945 5 4 4 5 7
2 1015425 3 1 1 1 2
3 1016277 6 8 8 1 3
... with 5 more variables: “1...7 <chr>,

~

#HH
#Ht

37 <dbl>, "1...9" <dbl>, "1...10 <dbl>,
"2...11° <dbl>

(The show_col types = FALSE option just says that we don’t want to see inferred
column types; it removes a bunch of output lines that we aren’t interested in here. If you
want to see what the function prints, you can try it out for yourself.)

The function works similar to the read.csv() function and interprets the first line as
the column names. The warning we get, and the weird column names, is because of that.
We don’t want this, but this function doesn’t have the option to tell it that the first line is
not the names of the columns. Instead, we can inform it what the names of the columns
are, and then it will read the first line as actual data:

raw_breast cancer <- read csv("data/raw-breast-cancer.csv",
col names = names(BreastCancer),
show_col types = FALSE)
raw_breast cancer %>% head(3)

91

CHAPTER 3 DATA MANIPULATION

A tibble: 3 x 11

i Id Cl.thickness Cell.size Cell.shape

#Ht <dbl> <dbl> <dbl> <dbl>

1 1000025 5 1 1

2 1002945 5 4 4

3 1015425 3 1 1

... with 7 more variables: Marg.adhesion <dbl>,
Epith.c.size <dbl>, Bare.nuclei <chr>,

Bl.cromatin <dbl>, Normal.nucleoli <dbl>,

Mitoses <dbl>, Class <dbl>

Which functions you use to import data doesn’t much matter. You can use the built-
in functions or the readr functions. It is all up to you.

Manipulating Data with dplyr

Data frames are ideal for representing data where each row is an observation of different
parameters you want to fit in models. Nearly all packages that implement statistical
models or machine learning algorithms in R work on data frames. But to actually
manipulate a data frame, you often have to write a lot of code to filter data, rearrange
data, summarize it in various ways, and such. A few years ago, manipulating data frames
required a lot more programming than actually analyzing data. That has improved
dramatically with the dplyr package (pronounced “d plier” where “plier” is pronounced
as “pliers”).

This package provides a number of convenient functions that let you modify data
frames in various ways and string them together in pipes using the %>% or | > operator. If
you import dplyr, you get a large selection of functions that let you build pipelines for
data frame manipulation using pipelines.

Earlier, we have formatted data by manipulating data columns by directly assigning
to them, like we did with formatted breast cancer$Class <- formatted breast_
cancer$Class %>% ... statements. There is nothing inherently wrong with this
approach, but it breaks the idea of using pipelines to send data through a series of
transformations, if we have to assign the results to old or new columns from time to time.
With dplyr, you get functions that manipulate data frames as a whole, but where you can
still modity, add, or remove columns as you please.

92

CHAPTER 3 DATA MANIPULATION

The transformations we did on the breast cancer set you can also do with dplyr,
going directly from the raw data set to the formatted data, without first creating the data
frame for the formatted data and then updating it. The way you would do it could look
like this:

library(dplyr)

Download data and put it in a variable

raw_breast cancer <- read.csv("data/raw-breast-cancer.csv",
header = FALSE,
col.names = names(BreastCancer))

Reformat the Class column as a benign/malignant factor
formatted breast cancer <- raw_breast cancer |»
mutate(
Class =
case_when(Class == 2 ~ "benign", Class == 4 ~ "malignant") |»
factor(levels = c("benign", "malignant"))

We still get the raw data by downloading it, we don’t have any other choice, but then
we take this raw data and pipe it through a function called mutate: raw_breast_cancer
|> mutate(...) to change the data frame. The mutate() function (see later) can modify
the columns in the data frame, and in the preceding expression, that is what we do.
With raw_breast cancer |> mutate(Class = ...), we say that we want to change the
Class column to what is to the right of the = inside mutate. You can modify more than
one column with the same mutate, but we only change one. The right-hand side of = is
a bit complex because we are doing all the work we did earlier, translating 2 and 4 into
the strings "benign" and "malignant” and then making a factor out of that. It is not
that bad if we split the operation into two pieces, though. First, we use a dplyr function
called case_when. It works a bit like ifelse but is more general. Its input is a sequence
of so-called formulas—expressions on the form lhs ~ rhs—where the left-hand side
(Ihs) should be a boolean expression and the right-hand side (rhs) the value you want if
the left-hand side is TRUE. Here, the expressions are simple: we test if Class is two or four
and return "benign" or "malignant"” accordingly. This maps the 2/4 encoding to strings,
and we then pipe that through factor to get a factor out of that. The result is written
to the Class column. Notice that we can refer directly to the values in a column, here

93

CHAPTER 3 DATA MANIPULATION

Class, using just the column name. We couldn’t do that in the preceding section where
we worked with the data frame’s Class column, where we had to write raw_breast
cancer$Class to get at it. The functions in dplyr do some magic that lets you treat data
frame columns as if they were variables, and this makes the expressions you have to
write a bit more manageable.

Some Useful dplyr Functions

I will not be able to go through all of the dplyr functionality in this chapter. In any case,
itis updated frequently enough that, by the time you read this, there is probably more
functionality than at the time I write. So you will need to check the documentation for
the package.

The following are just the functions I use on a regular basis. They all take a data
frame or equivalent as the first argument, so they work perfectly with pipelines. When
I say “data frame equivalent,” I mean that they take as an argument anything that
works like a data frame. Quite often, there are better representations of data frames
than the built-in data structure. For large data sets, it is often better to use a different
representation than the built-in data frame, something we will return to in Chapter 5.
Some alternative data structures are better because they can work with data on disk—
R’s data frames have to be loaded into memory, and others are just faster to do some
operations on. Or maybe they just print better. If you write the name of a data frame into
the R terminal, it will print the entire data. Other representations will automatically give
you just the head of the data.

The dplyr package has several representations. The tibbles, mentioned a few times
in the previous chapters, are a favorite of mine that I use just because I prefer the output
when I print such tables. You can translate a base data frame into a tibble using the
as_tibble function:

iris %>% as_tibble()

A tibble: 150 x 5
Sepal.Length Sepal.Width Petal.Length

#Ht <dbl> <dbl> <dbl>
1 5.1 3.5 1.4
Ht 2 4.9 3 1.4
#H 3 4.7 3.2 1.3

94

https://doi.org/10.1007/978-1-4842-8155-0_5

CHAPTER 3 DATA MANIPULATION

o4 4.6 3.1 1.5
5 5 3.6 1.4
6 5.4 3.9 1.7
7 4.6 3.4 1.4
#t 8 5 3.4 1.5
#H o9 4.4 2.9 1.4
10 4.9 3.1 1.5

#H # ... with 140 more rows, and 2 more variables:
Petal.Width <dbl>, Species <fct>

It only prints the first ten rows, and it doesn’t print all columns. The output is a little
easier to read than if you get the entire data frame.

Anyway, let us get to the dplyr functions.

select—Pick selected columns and get rid of the rest.

The select() function selects columns of the data frame. It is equivalent to indexing
columns in the data.

You can use it to pick out a single column:

iris %>% as_tibble() %>% select(Petal.Width) %>% head(3)

A tibble: 3 x 1
Petal.Width

#Hit <dbl>
1 0.2
2 0.2
#t 3 0.2

Or several columns:

iris %>% as_tibble() %>%
select(Sepal.Width, Petal.Length) %>% head(3)

A tibble: 3 x 2
Sepal.Width Petal.Length

#Ht <dbl> <dbl>
1 3.5 1.4
#i# 2 3 1.4
#t 3 3.2 1.3

95

CHAPTER 3 DATA MANIPULATION

You can even give it ranges of columns:

iris %>% as_tibble() %>%
select(Sepal.Length:Petal.Length) %>% head(3)

A tibble: 3 x 3
Sepal.lLength Sepal.Width Petal.Length

Hit <dbl> <dbl> <dbl>
1 5.1 3.5 1.4
#H 2 4.9 3 1.4
3 4.7 3.2 1.3

but how that works depends on the order the columns are in for the data frame, and
itis not something I find all that useful.

I pipe iris through as_tibble() in these pipelines, because I like the formatting
more. You don’t have to, to use the dplyr functions, but if you don’t, you are working on
a base data frame instead of a tibble, and R will print your data slightly differently.

The real usefulness comes with pattern matching on column names. There are
different ways to pick columns based on the column names:

iris |> as_tibble() |> select(starts with("Petal")) |> head(3)

A tibble: 3 x 2
Petal.Length Petal.Width

#H <dbl> <dbl>
H## 1 1.4 0.2
2 1.4 0.2
3 1.3 0.2

iris |> as_tibble() |> select(ends with("Width")) |> head(3)

A tibble: 3 x 2
Sepal.Width Petal.Width

#H <dbl> <dbl>
1 3.5 0.2
2 3 0.2
3 3.2 0.2

iris |> as_tibble() |> select(contains("etal")) |> head(3)

96

CHAPTER 3 DATA MANIPULATION

A tibble: 3 x 2
Petal.Length Petal.Width

#H <dbl> <dbl>
1 1.4 0.2
#H 2 1.4 0.2
3 1.3 0.2

iris |> as_tibble() |> select(matches(".t.")) |> head(3)

A tibble: 3 x 4
Sepal.lLength Sepal.Width Petal.Length

#H <dbl> <dbl> <dbl>
H## 1 5.1 3.5 1.4
2 4.9 3 1.4
3 4.7 3.2 1.3
... with 1 more variable: Petal.Width <dbl>

The matches function searches for a regular expression and in this example will
select any name that contains a t except if it is the first or last letter.

Check out the documentation for dplyr to see which options you have for selecting
columns.

You can also use select() to remove columns. The preceding examples select the
columns you want to include, but if you use “-” before the selection criteria, you will
remove, instead of include, the columns you specify:

iris %>% as_tibble() %>%
select(-starts with("Petal")) %>% head(3)

A tibble: 3 x 3
Sepal.Length Sepal.Width Species

#H <dbl> <dbl> <fct>
1 5.1 3.5 setosa
2 4.9 3 setosa
#4# 3 4.7 3.2 setosa

mutate—Add computed values to your data frame.

97

CHAPTER 3 DATA MANIPULATION

The mutate() function lets you add a column to your data frame by specifying an
expression for how to compute it:

iris %>% as_tibble() %>%
mutate(Petal.Width.plus.Length = Petal.Width + Petal.Length) %>%
select(Species, Petal.Width.plus.Length) %>%
head(3)

A tibble: 3 x 2
Species Petal.Width.plus.Length

#H o <fct> <dbl>
1 setosa 1.6
2 setosa 1.6
3 setosa 1.5

You can add more columns than one by specifying them in the mutate() function:

iris %>% as_tibble() %>%
mutate(Petal.Width.plus.Length = Petal.Width + Petal.Length,
Sepal.Width.plus.Length = Sepal.Width + Sepal.length) %>%
select(Petal.Width.plus.Length, Sepal.Width.plus.Length) %>%
head(3)

A tibble: 3 x 2
Petal.Width.plus.Length Sepal.Width.plus.Length

#HH <dbl> <dbl>
1 1.6 8.6
#t 2 1.6 7.9
3 1.5 7.9

but you could of course also just call nutate() several times in your pipeline.
transmute—Add computed values to your data frame and get rid of all other columns.
The transmute() function works just like the mutate() function, except it combines
itwith a select() so the result is a data frame that only contains the new columns
you make:

iris %>% as_tibble() %>%
transmute(Petal.Width.plus.Length = Petal.Width + Petal.Length) %>%
head(3)

98

CHAPTER 3 DATA MANIPULATION

A tibble: 3 x 1
Petal.Width.plus.Length

#H <dbl>
1 1.6
#i# 2 1.6
3 1.5

arrange—Reorder your data frame by sorting columns.
The arrange() function just reorders the data frame by sorting columns according to
what you specify:

iris %>% as_tibble() %>%
arrange(Sepal.Length) %>%
head(3)

A tibble: 3 x 5
Sepal.Length Sepal.Width Petal.Length

T <dbl> <dbl> <dbl>

#H 1 4.3 3 1.1

#t 2 4.4 2.9 1.4

3 4.4 3 1.3

... with 2 more variables: Petal.Width <dbl>,
Species <fct>

By default, it orders numerical values in increasing order, but you can ask for
decreasing order using the desc() function:

iris %>% as_tibble() %>%
arrange(desc(Sepal.Length)) %>%
head(3)

A tibble: 3 x 5
Sepal.Length Sepal.Width Petal.Length

#Ht <dbl> <dbl> <dbl>

1 7.9 3.8 6.4

2 7.7 3.8 6.7

3 7.7 2.6 6.9

... with 2 more variables: Petal.Width <dbl>,
Species <fct>

99

CHAPTER 3 DATA MANIPULATION

filter—Pick selected rows and get rid of the rest.
The filter() function lets you pick out rows based on logical expressions. You give
the function a predicate specifying what a row should satisfy to be included:

iris %>% as_tibble() %>%
filter(Sepal.Length > 5) %>%
head(3)

A tibble: 3 x 5
Sepal.Length Sepal.Width Petal.Length

#Ht <dbl> <dbl> <dbl>

1 5.1 3.5 1.4

2 5.4 3.9 1.7

3 5.4 3.7 1.5

... with 2 more variables: Petal.Width <dbl>,
Species <fct>

You can get as inventive as you want here with the logical expressions:

iris %>% as_tibble() %>%
filter(Sepal.Length > 5 & Species == "virginica") %>%
select(Species, Sepal.length) %>%

head(3)
A tibble: 3 x 2
Species Sepal.Length
#H o <fct <dbl>
1 virginica 6.3
2 virginica 5.8
3 virginica 7.1

group_by—Split your data into subtables based on values of some of the columns.

The group_by() function tells dplyr that you want to work on data separated into
different subsets.

By itself, it isn’t that useful. It just tells dplyr that, in future computations, it
should consider different subsets of the data as separate data sets. It is used with the
summarise() function where you want to compute summary statistics.

100

CHAPTER 3 DATA MANIPULATION

You can group by one or more variables; you just specify the columns you want to
group by as separate arguments to the function. It works best when grouping by factors
or discrete numbers; there isn’t much fun in grouping by real numbers:

iris %>% as_tibble() %>% group by(Species) %>% head(3)

A tibble: 3 x 5
Groups: Species [1]
Sepal.lLength Sepal.Width Petal.Length

i <dbl> <dbl> <dbl>

1 5.1 3.5 1.4

2 4.9 3 1.4

3 4.7 3.2 1.3

... with 2 more variables: Petal.Width <dbl>,
Species <fct>

Not much is happening here. You have restructured the data frame such that there
are groupings, but until you do something with the new data, there isn’t much to see.
The power of group by() is the combination with the summarise() function.

summarise/summarize—Calculate summary statistics.

The spelling of this function depends on which side of the pond you are on. It is the
same function regardless of how you spell it.

The summarise() function is used to compute summary statistics from your data
frame. It lets you compute different statistics by expressing what you want to summarize.
For example, you can ask for the mean of values:

iris %>%
summarise(Mean.Petal.Length
Mean.Sepal.Length

mean(Petal.Length),
mean(Sepal.Length))

Mean.Petal.Length Mean.Sepal.length
1 3.758 5.843333

Where it is really powerful is in the combination with group _by(). There, you can
split the data into different groups and compute the summaries for each group:
iris %>%
group_by(Species) %>%
summarise(Mean.Petal.Length = mean(Petal.Length))

101

CHAPTER 3 DATA MANIPULATION

A tibble: 3 x 2
Species Mean.Petal.Length

#H o <fct> <dbl>
1 setosa 1.46
2 versicolor 4.26
3 virginica 5.55

Depending on your version of dplyr, you might get a warning here that summarise
is “ungrouping” the output. This has to do with which groupings a data frame has when
we give it to summarise and which groupings the output has. Until dplyr 1.0.0, there
was only one option, which of course you couldn’t change, but now there are four and
a default behavior, which may or may not be what you want (but is probably there to
atleast make the function backward compatible with older code). If you get a warning,
it is because you have a version of dplyr that has the new behavior, but that is still old
enough to warn you that you are using the default behavior. It will then tell you that you
can change this using the .groups argument.

The four behaviors we can get are

e .groups = "drop_last" removes the last grouping we introduced.
If we are summarizing over some grouping, we end up with a table
with one row per group, and there is no need to keep the group
information for that any longer. This is the old default behavior.

o .groups = "drop" removes all groupings, so we have called group
by multiple times we lose all the groups; with drop_last, we would
only lose the last grouping.

o .groups = "keep" keeps all the groups exactly as they are.
e .groups = "rowwise" makes each row in the output its own group.

You can check which columns in the data frame are part of a grouping using the
group_vars, so we can see which groups the output of a summarise has for each of the
four options. First, we make a grouping for the iris data and check the group variables:
grouped iris <- iris %>% as_tibble() %>%

group by(Species, Petal.Length)
grouped iris %>% group vars()

[1] "Species” "Petal.Length"

102

CHAPTER 3 DATA MANIPULATION

With drop_last, the second grouping variable, Petal. Length, is removed, but the
first is not; we are dropping the last variable and only the last:

grouped_iris %>%
summarise(Mean.Petal.Length = mean(Petal.Length),
.groups = "drop last") %>%
group_vars()

[1] "Species”

If we use drop instead, all the grouping variables are removed, and group_vars gives
us character(0) which is the empty string vector:
grouped_iris %>%
summarise(Mean.Petal.Length = mean(Petal.Length),
.groups = "drop") %>%
group vars()

character(0)
If we use keep, none of the grouping variables are removed:

grouped_iris %>%
summarise(Mean.Petal.Length = mean(Petal.Length),
.groups = "keep") %>%
group vars()

[1] "Species” "Petal.Length”
At first glance, the rowwise option looks a lot like keep:

grouped_iris %>%
summarise(Mean.Petal.Length = mean(Petal.Length),
.groups = "rowwise") %>%
group_vars()

[1] "Species” "Petal.Length”

103

CHAPTER 3 DATA MANIPULATION

Itisn’t the same thing, though. If we summarize with rowwise, we get a different kind
of data structure, a so-called rowwise df (a row-wise data frame), and we can see this if
we ask for the “class” of the result:

grouped_iris %>%
summarise(Mean.Petal.Length = mean(Petal.Length),
.groups = "rowwise") %>%
class()

[1] "rowwise df" "tbl df" "tbl"
[4] "data.frame"

The class is a list of types, and we will see how this works in the second half of the
book. The purpose of this rowwise data type is a different kind of manipulation, where
we manipulate rows of data frames. They are beyond the scope of this book, and I will
leave it at that.

For the summarise() function, the .groups option is only important if you do more
than one summary. In most usage, you don’t. You manipulate your data, then you
compute some summary statistics, and then that is your result. In cases such as those,
it doesn’t matter if you keep or drop any grouping variables. If you don'’t care about
the grouping in the result of a summary, you can turn the warning off using the option
dplyr.summarise.inform = FALSE:

options(dplyr.summarise.inform = FALSE)
summary <- grouped iris %>%
summarise(Mean.Petal.Length = mean(Petal.Llength))

Here, even though you didn’t use . groups, you shouldn’t get a warning.
If you turn the option on again, you should get the warning:

options(dplyr.summarise.inform = TRUE)

Although you usually don’t care, it is safer to specify . groups. At least you have to
think about whether you want the result to have any groups, and if you do, you have to
consider if you get the right ones.

104

CHAPTER 3 DATA MANIPULATION

A summary function worth mentioning here is n() which just counts how many
observations you have in a subset of your data:
iris %>%
summarise(Observations = n())

Observations
#H 1 150

Again, this is more interesting when combined with group by ():

iris %>%
group_by(Species) %>%
summarise(Number.Of.Species = n(), .groups = "drop")

A tibble: 3 x 2
Species Number.Of.Species

#H <fct> <int>
1 setosa 50
2 versicolor 50
3 virginica 50

You can combine summary statistics simply by specifying more than one in the
summary () function:

iris %>%
group_by(Species) %>%
summarise(Number.Of.Samples
Mean.Petal.Length
.groups = "drop")

n(),
mean(Petal.Length),

A tibble: 3 x 3
Species Number.Of.Samples Mean.Petal.Llength

#H o <fct> <int> <dbl>
1 setosa 50 1.46
2 versicolor 50 4.26
3 virginica 50 5.55

105

CHAPTER 3 DATA MANIPULATION

Breast Cancer Data Manipulation

To get a little more feeling for how the dplyr package can help us explore data, let us see
itin action.

Let us return to the breast cancer data. We start with the modifications we used
to transform the raw data we imported from the CSV file (stored in the variable raw_
breast cancer). Using dplyr functions, we could create the formatted breast cancer
data, as we saw earlier, like this:

formatted breast cancer <- raw_breast cancer |»
as_tibble() |»
mutate(
Class =
case_when(Class == 2 ~ "benign", Class == 4 ~ "malignant") |>
factor(levels = c("benign", "malignant"))

I piped the raw data through as_tibble first, this time, because I prefer to work with
tibbles. Otherwise, it is the same code as earlier.
We can check if things look the way they should using a select and a head:

formatted breast cancer |> select(Normal.nucleoli:Class) |> head(5)

A tibble: 5 x 3
Normal.nucleoli Mitoses Class

<int> <int> <fct>
1 1 1 benign
2 2 1 benign
3 1 1 benign
4 7 1 benign
5 1 1 benign

Now let us look a little at the actual data. This is a very crude analysis of the data we
can do for exploratory purposes. It is not a proper analysis, but we will return to that in
Chapter 6 later.

We could be interested in how the different parameters affect the response variable, the
Class variable. For instance, is cell thickness different for benign and malignant tumors? To
check that, we can group the data by the Cell parameter and look at the mean cell thickness:

106

https://doi.org/10.1007/978-1-4842-8155-0_6

CHAPTER 3 DATA MANIPULATION

formatted breast cancer %>%
group_by(Class) %>%
summarise(mean.thickness = mean(Cl.thickness), .groups = "drop")

A tibble: 2 x 2

Class mean.thickness
#H o <fct> <dbl>
1 benign 2.96
2 malignant 7.20

It looks like there is a difference. Now whether this difference is significant requires
a proper test—after all, we are just comparing means here, and the variance could be
huge. But just exploring the data, it gives us a hint that there might be something to work
with here.

We could ask the same question for other variables, like cell size:

formatted breast cancer %>%
group_by(Class) %>%
summarise(mean.size = mean(Cell.size), .groups = "drop")

A tibble: 2 x 2

Class mean.size
#H o <fct> <dbl>
1 benign 1.33
2 malignant 6.57

Another way of looking at this could be to count, for each cell size, how many benign
tumors and how many malignant tumors we see. Here, we would need to group by both
cell size and class and then count, and we would probably want to arrange the data so
we get the information in order of increasing or decreasing cell size:

formatted breast cancer %>%
arrange(Cell.size) %>%
group_by(Cell.size, Class) %>%
summarise(ClassCount = n(), .groups = "drop")

107

CHAPTER 3 DATA MANIPULATION

#i# # A tibble: 18 x 3
Cell.size Class ClassCount

#H <int> <fct> <int>
1 1 benign 380
2 1 malignant 4
3 2 benign 37
4 2 malignant 8
5 3 benign 27
6 3 malignant 25
7 4 benign 9
8 4 malignant 31
9 5 malignant 30
10 6 benign 2
11 6 malignant 25
12 7 benign 1
13 7 malignant 18
14 8 benign 1
15 8 malignant 28
16 9 benign 1
17 9 malignant

18 10 malignant 67

Here again, we get some useful information. It looks like there are more benign
tumors compared to malignant tumors when the cell size is small and more malignant
tumors when the cell size is large. Again something we can start to work from when we
later want to build statistical models.

This kind of grouping only works because the cell size is measured as discrete
numbers. It wouldn’t be helpful to group by a floating-point number. There, plotting is
more useful. But for this data, we have the cell size as integers, so we can explore the data
just by building tables in this way.

We can also try to look at combined parameters. We have already seen that both cell
size and cell thickness seem to be associated with how benign or malignant a tumor is,
so let us try to see how the cell thickness behaves as a function of both class and cell size:

108

formatted breast cancer %>%
group_by(Class, as.factor(Cell.size)) %>%

summarise(mean.thickness = mean(Cl.thickness),

.groups = "drop")

A tibble: 18 x 3

#Hit
#Ht
#H
Hit
#Ht
#H
Hit
#Hit
#H
#Ht
#it
#H#
#Hit
#Hit
#H
#H
#Hit
#Ht
#H
Hit

thickness increases with the cell size, but for the malignant, there isn’t that pattern.

at the numbers of benign and malignant tumors for each cell size and see what the

Class
<fct>
benign
benign
benign
benign
benign
benign
benign
benign
malignant
malignant

W 00N OO U1 B W N -

Y
=L O

malignant

[N
N

malignant
malignant
malignant

R R R
v W

malignant
malignant
malignant

B R R
0 N o

malignant

I am not sure how much I learn from this. It seems that for the benign tumors, the

Maybe we can learn more by ordering the data in a different way. What if we look

thickness is?

CHAPTER 3 DATA MANIPULATION

“as.factor(Cell.size)™ mean.thickness
<fect> <dbl>

OW 00 N OO U1 B W N B OW 0N OP> W N -
~N 00NN OO OO NN OO OO U1 T U W W

[N
o

formatted breast cancer %>%

group_by(as.factor(Cell.size), Class) %>%
summarise(mean.thickness = mean(Cl.thickness),

.groups = "drop")

2.
.49
.81
11

76

.25
.75
.44
.71
.87
.88
.89
.18
.8

.52

109

CHAPTER 3 DATA MANIPULATION

#i# # A tibble: 18 x 3

#it
#H
#H
#Hit
#Ht
#H
#Hit
#Ht
#H
#Hit
#Hit
#H
#Hit
#Hit
#H#
#Hit
#it
#
#H
#Hit

“as.factor(Cell.size)™ Class mean.thickness
<fect> <fect> <dbl>
11 benign 2.76
21 malignant 7.25
32 benign 3.49
4 2 malignant 6.75
53 benign 3.81
6 3 malignant 6.44
74 benign 5.11
8 4 malignant 7.71
95 malignant 6.87
10 6 benign 5
11 6 malignant 6.88
12 7 benign 5
13 7 malignant 6.89
14 8 benign 6
15 8 malignant 7.18
16 9 benign 6
17 9 malignant 8.8
18 10 malignant 7.52

I am not sure how much we learned from that either, but at least it looks like for each

cell size where we have both benign and malignant tumors the thickness is higher for

the malignant than the benign. That is something at least. A place to start the analysis.

But we can learn more when we start plotting data and when we do a proper statistical

analysis of them. We will return to that in later chapters. For now, we leave it at that.

Tidying Data with tidyr

I am not really sure where the concept of “tidy data” comes from. Hadley Wickham, the

author of many of the essential packages you will use in your R data analysis, describes

tidy data as such:

110

CHAPTER 3 DATA MANIPULATION

Tidy data is a standard way of mapping the meaning of a data set
to its structure. A data set is messy or tidy depending on how rows,
columns and tables are matched up with observations, variables
and types.

In my experience, tidy data means that I can plot or summarize the data efficiently.
It mostly comes down to what data is represented as columns in a data frame and
what is not.

In practice, this means that I have columns in my data frame that I can work with for
the analysis I want to do. For example, if I want to look at the iris data set and see how
the Petal.Length varies among species, then I can look at the Species column against
the Petal.Length column:
iris |>

as_tibble() |»>
select(Species, Petal.Length) |>
head(3)

A tibble: 3 x 2
Species Petal.length

#H <fct> <dbl>
1 setosa 1.4
2 setosa 1.4
3 setosa 1.3

I have a column specifying the Species and another specifying the Petal. Length,
and it is easy enough to look at their correlation. I can plot one against the other (we will
cover visualization in the next chapter). I can let the x-axis be species and the y-axis be
Petal.Length (see Figure 3-2).

111

CHAPTER 3 DATA MANIPULATION

Petal.Length
N

EEEE#EEEE

setosa versicolor virginica
Species

Figure 3-2. Plot species vs. petal length

library(ggplot2)

iris %>%
select(Species, Petal.Length) %>%
gplot(Species, Petal.Length, geom = "boxplot", data = .)

(In this pipeline, we need to use the %>% operator rather than |> because we need the
input of gplot to go into the data argument, where the “’ is, and |> cannot do this.)

This works because I have a column for the x-axis and another for the y-axis. But
what happens if I want to plot the different measurements of the irises to see how those
are? Each measurement is a separate column. They are Petal.Length, Petal.Width,
and so on.

Now I have a bit of a problem because the different measurements are in different
columns in my data frame. I cannot easily map them to an x-axis and a y-axis.

The tidyr package lets me fix that:

library(tidyr)

It has a function, pivot_longer(), that modifies the data frame, so columns become
names in a factor and other columns become values.

112

CHAPTER 3 DATA MANIPULATION

What it does is essentially transforming the data frame such that you get one column
containing the name of your original columns and another column containing the
values in those columns.

In the iris data set, we have observations for sepal length and sepal width. If we
want to examine Species vs. Sepal.Length or Sepal.Width, we can readily do this. We
have more of a problem if we want to examine for each species both measurements at
the same time. The data frame just doesn’t have the structure we need for that.

If we want to see Sepal.Length and Sepal.Width as two measurements, we can plot
against their values, and we would need to make a column in our data frame that tells
us if a measurement is a length or a width and another column that shows us what the
measurement actually is. The pivot longer() function from tidyr lets us do that:

iris |>
pivot longer(
c(Sepal.Length, Sepal.Width),
names_to = "Attribute",
values to = "Measurement"

) 1>
head()

A tibble: 6 x 5
Petal.Length Petal.Width Species Attribute
#H <dbl> <dbl> <fct> <chr>

1 1.4 0.2 setosa Sepal.lLength
#H 2 1.4 0.2 setosa Sepal.Width
3 1.4 0.2 setosa Sepal.length
4 1.4 0.2 setosa Sepal.Width
5 1.3 0.2 setosa Sepal.Length
6 1.3 0.2 setosa Sepal.Width
... with 1 more variable: Measurement <dbl>

The preceding code tells pivot longer() to take the columns Sepal.Length and
Sepal.Width and make them names and values in two new columns. Here, you should
read “names” as the name of the input columns a value comes from, and you should
read “values” as the actual value in that column. We are saying that we want two new
columns that hold all the values from the two columns Sepal.Length and Sepal.Width.
The first of these columns, we get to name it with the names_to parameter and we give

113

CHAPTER 3 DATA MANIPULATION

it the name Attribute, will contain the original column name we got the value from,
and the second column, values_to that we name Measurement gets the values from the
original columns. The original columns that we didn’t specify are still there, but values
are duplicated to match that the Sepal.Length and Sepal.Width values now are merged
into a single column.

We don’t necessarily want to keep all columns after a transformation like this. If we
just want to plot Sepal.Length against Sepal.Width, maybe colored by Species, we can
use select to pick the columns we want to keep. That would be Species for the colors,
Attributes so we can tell which values are Sepal.Length and which are Sepal.Width,
and then Measurement for the actual values:
iris |>

pivot longer(
c(Sepal.Length, Sepal.Width),
names_to = "Attribute",
values to = "Measurement"
) 1>
select(Species, Attribute, Measurement) |>
head(3)

A tibble: 3 x 3
Species Attribute Measurement

<fct> <chr> <dbl>
1 setosa Sepal.length 5.1
2 setosa Sepal.Width 3.5
3 setosa Sepal.length 4.9

This transforms the data into a form where we can plot the attributes against
measurements (see Figure 3-3 for the result):
iris |>
pivot longer(
c(Sepal.Length, Sepal.Width),

names_to = "Attribute",
values to = "Measurement"

) >

114

CHAPTER 3 DATA MANIPULATION

select(Species, Attribute, Measurement) %>%
gplot(Attribute, Measurement,

geom = "boxplot",

facets = . ~ Species, data = .)

setosa versicolor virginica
8 -
6 -
€
(0]
Il —
2 °
o}
@
% °
4
°
. | I
2 -

T
Sepal.Length Sepal.Width Sepal.Length Sepal.Width Sepal.Length Sepal.Width
Attribute

Figure 3-3. Plot measurements vs. values

The tidyr package also has a function, pivot_wider, for transforming data frames
in the other direction. It is not a reverse of pivot_longer, because pivot_longer
removes information about correlations in the data; we cannot, after pivoting, see which
lengths originally sat in the same rows as which width, unless the remaining columns
uniquely identified this, which they are not guaranteed to do (and do not for the iris

data set). With pivot_wider, you get columns back that match the names you used with

115

CHAPTER 3 DATA MANIPULATION

pivot_wider, and you get the values you specified there as well, but if the other variables
do not uniquely identify how they should match up, you can get multiple values in the
same column:

iris |> as_tibble() |»
pivot_longer(

c(Sepal.Length, Sepal.Width),
names to = "Attribute",
values to = "Measurement”

) >

pivot wider(
names_from = Attribute,
values from = Measurement

)

Warning: Values from "Measurement™ are not uniquely identified;

output will

* Use “values fn = list™ to suppress this warning.

* Use “values fn = {summary fun} to summarise duplicates.

* Use the following dplyr code to identify duplicates.

{data} %>%

dplyr::group_by(Petal.Length, Petal.Width, Species, Attribute) %>%
it dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%

#H dplyr::filter(n > 1L)

A tibble: 103 x 5
Petal.Length Petal.Width Species Sepal.lLength
<dbl> <dbl> <fct> «<list>

1 1.4 0.2 setosa <«dbl [8]>
2 1.3 0.2 setosa <dbl [4]>
3 1.5 0.2 setosa «dbl [7]>
4 1.7 0.4 setosa «<dbl [1]>
5 1.4 0.3 setosa <dbl [3]>
6 1.5 0.1 setosa <dbl [2]>
#t 7 1.6 0.2 setosa «dbl [5]>

116

CHAPTER 3 DATA MANIPULATION

#it 8 1.4 0.1 setosa <dbl [2]>
9 1.1 0.1 setosa «<dbl [1]>
10 1.2 0.2 setosa <«dbl [2]>

... with 93 more rows, and 1 more variable:
Sepal.Width <list>

You should get some warnings here; after the first transformation, we do not have
enough information to transform back. Instead, R has to map some keys to multiple
values. A column with type <1ist> is where you have multiple values, and the values are
printed as their type and the number, for example, <dbl [8]>. Working with this kind
of data is beyond the scope of this book, since it is atypical data for most data science
applications. We are only ending up in this situation now, because we are trying to
reverse an operation we did, when that operation isn’t reversible. You would never try
to reverse a pivot longer() with a pivot wider() in this way, and I have never had to
attempt it myself.

Still, there are cases where your data is in a tidy format and you want to transform it
back to a variable per column, and then pivot wider() is your function of choice. You
just have to deal with cases that might arise, where remaining columns do not provide
enough information to do it. One option is to summarize all the values that would have
to go into the same row, that is, those that we got as lists in the iris example earlier. You
can provide a function for that using the values_fn parameter. I don’t know if it makes
sense to summarize the values here by their mean, but we can if we want to:

iris |> as_tibble() |»

pivot longer(
c(Sepal.Length, Sepal.Width),
names_to = "Attribute",
values to = "Measurement"

) >

pivot wider(
names from = Attribute,
values from = Measurement,
values fn = mean

) >

Let's just look at the columns we summarised...

select(Sepal.Length, Sepal.Width)

117

CHAPTER 3 DATA MANIPULATION

A tibble: 103 x 2
Sepal.Length Sepal.Width

#Ht <dbl> <dbl>
1 4.96 3.39
#i# 2 4.75 3.22
3 5.07 3.41
4 5.4 3.9
5 4.83 3.3
6 5.05 3.6
7 4.88 3.3
8 4.85 3.3
9 4.3 3

10 5.4 3.6
... with 93 more rows
Exercises

It is time to put what we have learned into practice. There are only a few exercises, but I
hope you will do them. You can’t learn without doing exercises after all.

Importing Data

To get a feeling of the steps in importing and transforming data, you need to try it
yourself. So try finding a data set you want to import. You can do that from one of the
repositories I listed in the first chapter:

o RDataMining.com

e UCIMachine Learning Repository
o KDNuggets

o Redditr/data sets

e GitHub Awesome Public Data sets

Or maybe you already have a data set you would like to analyze.

118

CHAPTER 3 DATA MANIPULATION

Have a look at it and figure out which import function you need. You might have to
set a few parameters in the function to get the data loaded correctly, but with a bit of
effort, you should be able to. For column names, you should choose some appropriate
ones from reading the data description, or if you are loading something in that is already
in mlbench, you can cheat as I did in the preceding examples.

Using dplyr

Now take the data you just imported and examine various summaries. It is not so
important what you look at in the data as it is that you try summarizing different aspects
of it. We will look at proper analyses later. For now, just use dplyr to explore your data.

Using tidyr

Look at the preceding dplyr example. There, I plotted Sepal.Length and Sepal.Width
for each species. Do the same thing for Petal.Length and Petal.Width.

If there is something similar to do with the data set you imported in the first exercise,
try doing it with that.

119

CHAPTER 4

Visualizing Data

Nothing tells a story about your data as powerfully as good plots. Graphics captures your
data much better than summary statistics and often shows you features that you would
not be able to glean from summaries alone.

R has excellent tools for visualizing data. Unfortunately, it also has more tools than
you really know what to do with. There are several different frameworks for visualizing
data, and they are usually not compatible, so you cannot easily combine the various
approaches.

In this chapter, we look at graphics in R, and we cannot possibly cover all the
plotting functionality, so I will focus on two frameworks. The first is the basic graphics
framework. It is not something I frequently use or recommend that you use, but it is
the default for many packages, so you need to know about it. The second is the ggplot2
framework, which is my preferred approach to visualizing data. It defines a small
domain-specific language for constructing data and is perfect for exploring data as long
as you have it in a data frame (and with a little bit more work, for creating publication-
ready plots).

Basic Graphics

The basic plotting system is implemented in the graphics package. You usually do not
have to include the package

library(graphics)
since it is already loaded when you start up R, but you can use

library(help = "graphics")

121
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_4

https://doi.org/10.1007/978-1-4842-8155-0_4#DOI

CHAPTER 4 VISUALIZING DATA

to get a list of the functions implemented in the package. This list isn’t exhaustive,
though, since the primary plotting function, plot(), is generic and many packages write
extensions to it to specialize plots.

In any case, you create basic plots using the plot () function. This function is a so-
called generic function, which means that what it does depends on the input it gets. So
you can give it different first arguments to get plots of various objects.

The simplest plot you can make is a scatter plot, plotting points for x and y values
(see Figure 4-1):

o)
° o oo O
- o
° @o © o
oo
o
& oo g °
>
4o @ % ° °
o o o
o
4 o ©
o 0]
i T T T T
-1 0 1 2
X

Figure 4-1. Scatter plot

X <- rnorm(50)
y <- rnorm(50)
plot(x, y)

The plot() function takes a data argument you can use to plot data from a data frame,
but you cannot write code like this to plot the cars data from the datasets package:

data(cars)
cars %>% plot(speed, dist, data = .)

Despite giving plot () the data frame, it will not recognize the variables for the x and
y parameters, and so adding plots to pipelines requires that you use the %$% operator to
give plot() access to the variables in a data frame. So, for instance, we can plot the cars
data like this (see Figure 4-2):

cars %$% plot(speed, dist, main="Cars data",
xlab="Speed", ylab="Stopping distance")

122

CHAPTER 4 VISUALIZING DATA

Cars data
& o
[0} (e}
o
c (@) (o]
5 27 ° 5
T o] o %5 © ©
28 °© ,°8 o
% o Oooo
el ~ (o] 0% 00 OO
2 008000
& 7 C)o oo
o e}
o -9 °
I I I I I
5 10 15 20 25
Speed

Figure 4-2. Scatter plot of speed and distance for cars

Here, we use main to give the figure a title and x1ab and ylab to specify the
axis labels.

The data argument of plot () is used when the variables to the plot are specified
as a formula. The plot() function then interprets the formula as specifying how the
data should be plotted. If the x and y values are specified in a formula, you can give the
function a data frame that holds the variables and plot from that:

cars %>% plot(dist ~ speed, data = .)

Here, you must use the %>% operator and not | > since you need the left-hand side to
go into the data argument and not the first argument.

By default, the plot shows the data as points, but you can specify a type parameter to
display the data in other ways such as lines or histograms (see Figure 4-3):

cars %$% plot(speed, dist, main="Cars data", type="h",
xlab="Speed", ylab="Stopping distance")

To get a histogram for a single variable, you should use the function hist() instead
of plot() (see Figure 4-4):

cars %$% hist(speed)

What is meant by plot () being a generic function (something we will cover in much
greater detail in Chapter 12) is that it will have different functionality depending on what
parameters you give it.

123

https://doi.org/10.1007/978-1-4842-8155-0_12

CHAPTER 4 VISUALIZING DATA

Different kinds of objects can have their own plotting functionality, though, and
often do. This is why you probably will use basic graphics from time to time even if you
follow my advice and use ggplot2 for your own plotting.

Linear regression, for example, created with the 1m() function, has its specialized
plotting routine. Try evaluating the following expression:

cars %>% lm(dist ~ speed, data = .) %>% plot()

Cars data
Q
o
o _
[$)
C
© o
"J)‘ [*e)
2
> _
£
g
9 S
n
O
1 H
ol I
T T T T T
5 10 15 20 25
Speed

Figure 4-3. Histogram plot of speed and distance for cars

Histogram of speed

0 —
3 o
C
(0]
>
[on
0
[T 0 —
o -
[I I I I |
0 5 10 15 20 25
speed

Figure 4-4. Histogram for cars speed

124

CHAPTER 4 VISUALIZING DATA

It will give you several summary plots for visualizing the quality of the linear fit.
Many model fitting algorithms return a fitted object that has specialized plotting
functionality like this, so when you have fitted a model, you can always try to call plot()

on it and see if you get something useful out of that.

Functions like plot() and hist() and a few more create new plots, but there is
also a large number of functions for annotating a plot. Functions such as lines() and
points() add lines and points, respectively, to the current plot rather than making a
new plot.

We can see them in action if we want to plot the longley data set and want to see
both the unemployment rate and people in the armed forces over the years:

data(longley)

Check the documentation for longley (?1ongley) for a description of the data.
The data has various statistics for each year from 1947 to 1962 including the number
of people unemployed (variable Unemployed) and the number of people in the armed
forces (variable Armed. Forces). To plot both of these on the same plot, we can first plot
Unemployed against years (variable Year) and then add lines for Armed. Forces. See
Figure 4-5.

longley %>% plot(Unemployed ~ Year, data = ., type = '1")
longley %>% lines(Armed.Forces ~ Year, data = ., col = "blue")

This almost gets us what we want, but the y-axis is chosen by the plot() function
to match the range of y values in the call to plot (), and the Armed. Forces doesn’t quite
fit into this range. To fit both, we have to set the limits of the y-axis which we do with
parameter ylim (see Figure 4-6):

longley %$% plot(Unemployed ~ Year, type = '1',
ylim = range(c(Unemployed, Armed.Forces)))
longley %>% lines(Armed.Forces ~ Year, data = ., col = "blue")

125

CHAPTER 4 VISUALIZING DATA

Q]
o
T <
(0]
>
3 -
£
g 8
) (5]
o
S -
[aV)
| | |
1950 1955 1960
Year

Figure 4-5. Longley data showing Unemployed and Armed.Forces. The y-axis
doesn’t cover all of the Armed.Forces variable

o
Q4
<t
©
o Q4
S 9
s]
€
(0]
cC O
D &7
o
Q4
| | |
1950 1955 1960
Year

Figure 4-6. Longley data showing Unemployed and Armed.Forces. The y-axis is
wide enough to hold all the data

Like plot(), the other plotting functions are usually generic. This means we can
sometimes give them objects such as fitted models. The abline() function is one such
case. It plots lines of the form y = a + bx, but there is a variant of it that takes a linear
model as input and plots the best fitting line defined by the model. So we can plot
the cars data together with the best-fitted line using the combination of the 1m() and
abline() functions (see Figure 4-7):

cars %>% plot(dist ~ speed, data = .)
cars %>% lm(dist ~ speed, data = .) %>% abline(col = "red")

126

CHAPTER 4 VISUALIZING DATA

Plotting using the basic graphics usually follows this pattern. First, there is a call to
plot() that sets up the canvas to plot on—possibly adjusting the axes to make sure that
later points will fit in on it. Then any additional data points are plotted—Ilike the second
time series we saw in the longley data. Finally, there might be some annotation like
adding text labels or margin notes (see functions text() and mtext() for this).

If you want to select the shape of points or their color according to other data
features, for example, plotting the iris data with data points in different colors
according to the Species variable, then you need to map features to columns (see
Figure 4-8):

color map <- c("setosa" = "black",
"versicolor" = "grey40",
"virginica" = "grey7s")

iris %$% plot(Petal.Length ~ Petal.Width,
col = color map[Species])

The basic graphics system has many functions for making publication-quality plots,
but most of them work at a relatively low level. You have to map variables to colors or
shapes explicitly if you want a variable to determine how points should be displayed.
You have to set the x1im and ylim parameters to have the right x- and y-axes if the first
points you plot do not cover the entire range of the data you want to plot. If you change
an axis—say log-transform—or if you flip the x- and y-axes, then you will usually need to
update several function calls. If you want to have different subplots—so-called facets—
for different subsets of your data, then you have to subset and plot this explicitly.

120
|
(o]

80
]

dist

20

speed

Figure 4-7. The cars data points annotated with the best fitting line

127

CHAPTER 4 VISUALIZING DATA

© —
£ 0 ~90
I °g§58
3~ ggg o°

s 8 °

& ™ — o

7 o

ofiggoo

oH8
I T T T I
05 10 15 20 25

Petal.Width

Figure 4-8. Iris data plotted with different colors for different species

So while the basic graphics system is powerful for making good-looking final plots, it
is not necessarily optimal for exploring data where you often want to try different ways of
visualizing it.

The Grammar of Graphics and the ggplot2 Package

The ggplot2 package provides an alternative to the basic graphic that is based on what
is called the “grammar of graphics.” The idea here is that the system gives you a small
domain-specific language for creating plots (similar to how dplyr provides a domain-
specific language for manipulating data frames). You construct plots through a list of
function calls—similar to how you would work with basic graphics—but these function
calls do not directly write on a canvas independently of each other. Rather, they all
manipulate a plot by either modifying it—scaling axes or splitting data into subsets that
are plotted on different facets—or adding layers of visualization to the plot.

To use it, you, of course, need to import the library:

library(ggplot2)
and you can get a list of functions it defines using

library(help = "ggplot2")

128

CHAPTER 4 VISUALIZING DATA

I can only give a very brief tutorial-like introduction to the package here. There are
full books written about ggplot2 if you want to learn more details. After reading this
chapter, you should be able to construct basic plots, and you should be able to find
information about how to make more intricate plots by searching online.

We ease into ggplot2 by first introducing the qplot () function (it stands for
quick plot). This function works similar to plot()—although it handles things a little
differently—but creates the same kind of objects that the other ggplot2 functions
operate on, and so it can be combined with those.

125
°
100 1
[}
°
°
75 1
3 e o
5 °
° * 2 °
: °
50 . o®
oo ®
¢ *® .0
5 5 e®ce0e
. *o° °
°
°
°
O-
5 10 15 20 25
speed

Figure 4-9. Plot of the cars data using qplot (ggplot2)

Using qplot()

The gplot() function can be used to plot simple scatter plots the same way as the
plot() function. To plot the cars data (see Figure 4-9), we can use

cars %>% gplot(speed, dist, data = .)

What happens is slightly different, though. The qplot() function creates a ggplot
object rather than directly plotting. It is just that when such objects are printed, which
happened at the end of the statement, the effect of printing is that they are plotted.

129

CHAPTER 4 VISUALIZING DATA

That sounds a bit confusing, but it is what happens. The function used for printing R
objects is a generic function, so the effect of printing an object depends on what the
object implements for the print() function. For ggplot objects, this function plots the
object. It works well with the kind of code we write, though, because in the preceding
code the result of the entire expression is the return value of qplot (). When this is
evaluated at the outermost level in the R prompt, the result is printed. So the ggplot
object is plotted.

The preceding code is equivalent to

p <- cars %>% qplot(speed, dist, data = .)
p

which is equivalent to

p <- cars %>% qplot(speed, dist, data = .)

print(p)

The reason that it is the print () function rather than the plot () function—which
would otherwise be more natural—is that the print () function is the function that is
automatically called when we evaluate an expression at the R prompt. By using print(),
we don’t need to print objects explicitly, we just need the plotting code to be at the
outermost level of the program. If you create a plot inside a function, however, it isn’t
automatically printed, and you do need to do this explicitly.

I mention all these details about objects being created and printed because the
typical pattern for using ggplot2 is to build such a ggplot object, do various operations
on it to modify it, and then finally plot it by printing it.

When using gplot (), some transformations of the plotting object are done before
gplot () returns the object. The quick in quick plot consists of gplot () guessing at what
kind of plot you are likely to want and then doing transformations on a plot to get there.
To get the full control of the final plot, we skip gplot() and do all the transformations
explicitly—I personally never use gplot () anymore myself—but to get started and
getting familiar with ggplot2, it is not a bad function to use.

With gplot (), we can make the visualization of data points depend on data variables
in a more straightforward way than we can with plot(). To color the iris data according
to Species in plot(), we needed to code up a mapping and then transform the Species
column to get the colors. With gplot (), we just specify that we want the colors to depend
on the Species variable (see Figure 4-10):

130

CHAPTER 4 VISUALIZING DATA

iris %>% gplot(Petal.Width, Petal.lLength ,
color = Species, data = .)

We get the legend for free when we are mapping the color like this, but we can
modify it by doing operations on the ggplot object that gplot() returns, should we
want to.

You can also use gplot() for other types of plots than scatter plots. If you give it a
single variable to plot, it will assume that you want a histogram instead of a scatter plot
and give you that (see Figure 4-11):

cars %>% gqplot(speed, data = ., bins = 10)
If you want a density plot instead, you simply ask for it (see Figure 4-12):
cars %>% gqplot(speed, data = ., geom = "density")

Similarly, you can get lines, box plots, violin plots, etc. by specifying a geometry.
Geometries determine how the underlying data should be visualized. They might
involve calculating some summary statistics, which they do when we create a histogram
or a density plot, or they might just visualize the raw data, as we do with scatter plots.
Still, they all describe how data should be visualized. Building a plot with ggplot2
involves adding geometries to your data, typically more than one geometry. To see how
this is done, though, we leave gplot() and look at how we can create the plots we made
earlier with gplot() using geometries instead.

131

CHAPTER 4 VISUALIZING DATA

[] [] .
= . !!. Species
(®)]
%) o8 o ® setosa
g4 g8%e .
= ° © versicolor
-— [] ®
& ° virginica

0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

Figure 4-10. Plot of iris data with colors determined by the species. Plotted with
gplot (ggplot2)

10 20
speed

Figure 4-11. Histogram of car speed created using gplot (ggplot2)

132

CHAPTER 4 VISUALIZING DATA

0.06 |
0.04 1
0.02 |
0.00 |
5 10 15 20 25
speed

Figure 4-12. Density of car speed created using qplot (ggplot2)

Using Geometries

By stringing together several geometry commands, we can either display the same

data in different ways—for example, scatter plots combined with smoothed lines—or
put several data sources on the same plot. Before we see more complex constructions,
though, we can see how the preceding gplot () plots could be made by explicitly calling
geometry functions.

We start with the scatter plot for cars where we used
cars %>% gplot(speed, dist, data = .)

To create this plot using explicit geometries, we want a ggplot object, we need to
map the speed parameter from the data frame to the x-axis and the dist parameter to
the y-axis, and we need to plot the data as points:

ggplot(cars) + geom point(aes(x = speed, y = dist))

We create an object using the ggplot () function. We give it the cars data as input.
When we give this object the data frame, the following operations can access the data. It is
possible to override which data frame the data we plot comes from, but unless otherwise
specified, we have access to the data we gave ggplot () when we created the initial object.

133

CHAPTER 4 VISUALIZING DATA

Next, we do two things in the same function call. We specify that we want x and y values to
be plotted as points by calling geom point(), and we map speed to the x values and dist to
the y values using the “aesthetics” function aes (). Aesthetics are responsible for mapping
from data to graphics. With the geom _point() geometry, the plot needs to have x and y
values. The aesthetics tell the function which variables in the data should be used for these.
The aes () function defines the mapping from data to graphics just for the
geom_point() function. Sometimes, we want to have different mappings for different
geometries, and sometimes we do not. If we want to share aesthetics between functions,
we can set it in the ggplot () function call instead. Then, like the data, the following
functions can access it, and we don’t have to specify it for each subsequent function call:

ggplot(cars, aes(x = speed, y = dist)) + geom point()

The ggplot() and geom point() functions are combined using +. You use + to string
together a series of commands to modify a ggplot object in a way very similar to how we
use %>% to string together a sequence of data manipulations. The only reason that these
are two different operators here is historical; if the %>% operator had been in common
use when ggplot2 was developed, it would most likely have used that. As it is, you use
+. Because + works slightly different in ggplot2 than %>% does in magrittr, you cannot
just use a function name when the function doesn’t take any arguments, so you need to
include the parentheses in geom point().

Since ggplot()takes a data frame as its first argument, a typical pattern is first to
modify data in a string of %>% or |> operations and then give it to ggplot() and follow
that with a series of + operations. Doing that with cars would provide us with this simple
pipeline—in larger applications, more steps are included in both the %>% pipeline and
the + plot composition:

cars %>% ggplot(aes(x = speed, y = dist)) + geom point()

For the iris data, we used the following gplot () call to create a scatter plot with
colors determined by the Species variable:

iris %>% gplot(Petal.Width, Petal.length ,
color = Species, data = .)

The corresponding code using ggplot () and geom point() looks like this:
iris %>% ggplot() +

geom point(aes(x = Petal.Width, y = Petal.Length,
color = Species))

134

CHAPTER 4 VISUALIZING DATA

Here, we could also have put the aesthetics in the ggplot () call instead of the geom_
point() call.

When you specify the color as an aesthetic, you let it depend on another variable in
the data. If you instead want to hardwire a color—or any graphics parameter in general—
you simply have to move the parameter assignment outside the aes () call. If geom
point() gets assigned a color parameter, it will use that color for the points; if it doesn'’t,
it will get the color from the aesthetics (see Figure 4-13):

iris |> ggplot() +
geom_point(aes(x = Petal.Width, y = Petal.Length),
color = "grey50")

The gplot() code for plotting a histogram and a density plot

10)
"density")

cars %>% gqplot(speed, data = ., bins
cars %>% gplot(speed, data

., geom
can be constructed using geom_histogram() and geom density(), respectively:

cars |> ggplot() + geom histogram(aes(x = speed), bins = 10)
cars |> ggplot() + geom density(aes(x = speed))

You can combine more geometries to display the data in more than one way. Doing
this isn’t always meaningful depending on how data is summarized—combining scatter
plots and histograms might not be so useful. However, we can, for example, make a plot
showing the car speed both as a histogram and a density (see Figure 4-14):

cars |> ggplot(aes(x = speed, y = ..count..)) +
geom_histogram(bins = 10) +
geom density()

It just requires us to call both geom_histogram() and geom density(). We do also
need to add an extra aesthetics option for the y value. The reason is that histograms by
default will show the counts of how many observations fall within a bin on the y-axis,
while densities integrate to one. By settingy = ..count.., you tell both geometries to
use counts as the y-axis. To get densities instead, you canusey = ..density...

135

CHAPTER 4 VISUALIZING DATA

°
o 0
o ©
3 Citen
[] 8 i. [
!...;i i.
£ ° !‘o s
&) o0
2 1
:!4 "' 5
S t.
g .
°
21 e o
.!..
o]
..
0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

Figure 4-13. Iris data where the color of the points is hardwired

count

speed 20

Figure 4-14. Combined histogram and density plot for speed from the cars data

136

CHAPTER 4 VISUALIZING DATA

We can also use combinations of geometries to show summary statistics of data
together with a scatter plot. We added the result of a linear fit of the data to the scatter
plot we did for the cars data with plot(). To do the same with ggplot2, we add a geom
smooth() call (see Figure 4-15):

cars %>% ggplot(aes(x = speed, y = dist)) +
geom_point() + geom smooth(method = "1lm")

~geom_smooth()™ using formula 'y ~ x

The message we get from geom_smooth is that it used the formulay ~ xin the linear
model to smooth the data. It will let us know when we use a default instead of explicitly
providing a formula for what we want smoothed. Here, it just means that it is finding the
best line between the x and y values, which is exactly what we want. You could make the
formula explicit by writing geom_smooth(formula = y ~ x, method = "1Im"), or you
could use a different formula, for example, geom_smooth(formula = y ~ 1, method =
"1Im"), to fit the y values to a constant, getting a horizontal line to fit the mean y value
(you can try it out). The default is usually what we want.

Earlier, we told the geom _smooth() call to use the linear model method. If we didn’t
do this, it would instead plot a loess smoothing (see Figure 4-16):

cars %>% ggplot(aes(x = speed, y = dist)) +
geom_point() + geom smooth()

~geom_smooth()" using method = 'loess' and formula 'y ~ x

We can also use more than one geometry to plot more than one variable. For the

longley data, we could use two different geom line() to plot the Unemployed and the
Armed.Forces data (see Figure 4-17):

longley %>% ggplot(aes(x = Year)) +
geom line(aes(y = Unemployed)) +
geom_line(aes(y = Armed.Forces), color = "blue")

137

CHAPTER 4 VISUALIZING DATA

125 A

100 1

75 4

dist

50 1

25 ~

10 15 20
speed

Figure 4-15. Cars data plotted with a linear model smoothing

25

120 1

80 1

dist

40 A

10 15 20 25
speed

Figure 4-16. Cars data plotted with a loess smoothing

138

CHAPTER 4 VISUALIZING DATA

400

300

Unemployed

200 A

1950 1955 1960
Year

Figure 4-17. Longley data plotted with ggplot2

Here, we set the x value aesthetics in the ggplot () function since it is shared by the
two geom_line() geometries, but we set the y value in the two calls, and we set the color
for the Armed. Forces data, hardwiring it instead of setting it as an aesthetic. Because we
are modifying a plot rather than just drawing on a canvas with the second geom line()
call, the y-axis is adjusted to fit both lines. We, therefore, do not need to set the y-axis
limit anywhere.

We can also combine geom_line() and geom point() to get both lines and points for
our data (see Figure 4-18):

longley %>% ggplot(aes(x = Year)) +
geom_point(aes(y = Unemployed)) +
geom line(aes(y = Unemployed)) +
geom _point(aes(y = Armed.Forces), color = "blue") +
geom line(aes(y = Armed.Forces), color = "blue")

Plotting two variables using different aesthetics like this is fine for most applications,
but it is not always the optimal way to do it. The problem is that we are representing that
the two measures, Unemployed and Armed. Forces, are two different measures we have
per year and that we can plot together in the plotting code. The data is not reflecting
this as something we can compute on. Should we want to split the two measures into

139

CHAPTER 4 VISUALIZING DATA

subplots instead of plotting them in the same frame, we would need to write new
plotting code. A better way is to reformat the data frame such that we have one column
telling us whether an observation is Unemployment or Armed. Forces and another
giving us the values and then set the color according to the first column and the y-axis
according to the other. We can do this with the pivot_longer function from the tidyr
package (see Figure 4-19):

longley %>%
pivot longer(
c(Unemployed, Armed.Forces),
names to = "Class",
values to = "Number of People"
) %>%

ggplot(aes(x = Year, y = "Number of People’, color = Class)) +
geom_line()

400 4

300 A

Unemployed

200 1

1950 1955 1960
Year

Figure 4-18. Longley data plotted with ggplot2 using both points and lines

140

CHAPTER 4 VISUALIZING DATA

In the pivot_longer expression, we are saying that we want to transform the
Unemployed and the Armed. Forces columns. These are two different classes from the
statistics, so we put the original column names into a new column called Class. The
two columns count the number of people in the two classes, so the values from the two
original classes will go into a new column that we name Number of People. The names
in the pivot_longer expression are strings, and we can put anything there, but the y
value in the aes () expression has to be a valid variable name, and those cannot have
spaces, and we need to escape the string. We do that using backticks.

Once we have transformed the data, we can change the plot with little extra code.
If, for instance, we want the two values on different facets, we can simply specify this
(instead of setting the colors) (see Figure 4-20):

longley %>%
pivot longer(
c(Unemployed, Armed.Forces),
names_to = "Class",
values to = "Number of People"
) %>%
ggplot(aes(x = Year, y = "Number of People’)) +
geom_line() +
facet grid(Class ~ .)

Facets

Facets are subplots showing different subsets of the data. In the preceding example, we
show the Armed. Forces variable in one subplot and the Unemployed variable in another.
You can specify facets using one of two functions: facet _grid() creates facets from a
formula rows ~ columns, and facet_wrap() creates facets from a formula ~ variables.
The former creates a row for the variables on the left-hand side of the formula and a
column for the variables on the right-hand side and builds facets based on this. In the
preceding example, we used “key ~ .’} so we get a row per key. Had we used “. ~ key”
instead, we would get a column per key. The facet_wrap() doesn’t explicitly set up rows
and columns, it simply makes a facet per combination of variables on the right-hand side
of the formula and wraps the facets in a grid to display them.

141

CHAPTER 4 VISUALIZING DATA

400 1

300 1 \

Number of People

Class

— Armed.Forces

\/ Unemployed
2001
1950 1955 1960
Year
Figure 4-19. Longley data plotted using tidy data
400
2
3
8
300 1 I
o 8
s
S 200
o
©
o}
Ke]
£
400
Z =
3
3
300 2
g
200
1950 1955 1960
Year

Figure 4-20. Longley data plotted using facets

142

CHAPTER 4 VISUALIZING DATA

By default, ggplot2 will try to put values on the same axes when you create facets
using facet_grid(). So in the preceding example, the Armed. Forces are shown on the
same x- and y-axes as Unemployment even though the y values, as we have seen, are not
covering the same range. We can use the scales parameter to change this. Facets within
a column will always have the same x-axis, however, and facets within a row will have the
same y-axis.

We can see this in action with the iris data. We can transform the iris data, so
every column except Species gets squashed into two key-value columns using pivot_
longer. We can select everything except selected columns by putting a - in front of their
name when we select them. Then we can plot the measurements for each separate

species like this:

iris %>%
pivot longer(
-Species,
names_to = "Measurement",
values to = "Value"
) %>%
ggplot(aes(x = Species, y = Value)) +
geom_boxplot() +
facet_grid(Measurement ~ .)

We plot the four measurements for each species in different facets, but they are on
slightly different scales, so we will only get a good look at the range of values for the
largest range. We can fix this by setting the y-axis free; contrast Figures 4-21 and 4-22.

iris %>%
pivot longer(
-Species,
names_to = "Measurement",
values to = "Value"
) %>%
ggplot(aes(x = Species, y = Value)) +
geom_boxplot() +
facet grid(Measurement ~ ., scale = "free y")

143

CHAPTER 4 VISUALIZING DATA

8 -
61 $ g
5
4 - # c,;
3 R g
>0
O -
8 -
64 P
£
41 =
2 e =
S — >
8o —=
m -f
> 8 1 r—l— (7]
6 - 7 o
* I ° o
4- =
@
2- a
0 5
8 -
o £
44 % —— + é
2- » =
>0
O - T T T
setosa versicolor virginica
Species
Figure 4-21. Iris measures plotted on the same y-axis
6 $ g
g
44 = =
2+ : 5
2.5
2.0 E &
151 =——— 2
05 =
27 % o
S og
s ®
7 - I]
5
6+ #’ I &
=}
5- $. g
4.5 ®
4.0 o
[) (]
35 $ | | g
3.0 0 | |] | =
o — 1 5
o -0
2.0- 2

versicolor
Species

setosa virginica

Figure 4-22. Iris measures plotted on different y-axes

144

CHAPTER 4 VISUALIZING DATA

By default, all the facets will have the same size. You can modify this using the space
variable. This is mainly useful for categorical values if one facet has many more of the
levels than another.

The labels used for facets are taken from the factors in the variables used to construct
the facet. This is a good default, but for print quality plots, you often want to modify
the labels a little. You can do this using the 1labeller parameter to facet _grid(). This
parameter takes a function as an argument that is responsible for constructing labels.
The easiest way to construct this function is by using another function, labeller().
You can give labeller() a named argument specifying a factor to make labels for with
lookup tables for mapping levels to labels. For the iris data, we can use this to remove
the dots in the measurement names (see Figure 4-23):

label map <- c(Petal.Width = "Petal Width",
Petal.Length = "Petal Length",
Sepal.Width = "Sepal Width",
Sepal.Length = "Sepal Length")

iris %>%
pivot longer(
-Species,
names to = "Measurement",
values to = "Value"
) %>%
ggplot(aes(x = Species, y = Value)) +
geom_boxplot() +
facet grid(Measurement ~ ., scale = "free y",
labeller = labeller(Measurement = label map))

Scaling

Geometries specify part of how data should be visualized and scales another. The
geometries tell ggplot2 how you want your data mapped to visual components, like
points or densities, and scales tell ggplot2 how dimensions should be visualized.
The simplest scales to think about are the x- and y-axes, where values are mapped to
positions on the plot as you are familiar with, but scales also apply to visual properties
such as colors.

145

CHAPTER 4 VISUALIZING DATA

The simplest use we can make of scales is just to put labels on the axes. We can also
do this using the x1ab() and ylab() functions, and if setting labels were all we were
interested in, we would, but as an example, we can see this use of scales. To set the labels
in the cars scatter plot, we can write

cars %>%
ggplot(aes(x = speed, y = dist)) +
geom_point() + geom smooth(method = "1m") +
scale x_continuous("Speed") +
scale y continuous("Stopping Distance")

61 $ g
g
4 = =
2- i E
2.5
20- = |z
1.5+ $ 2
03 =
92 % =
E 0g
s ®
7- S
)
61 $ a
54 $ ° =
4.5 ®
4.0 ®
[) (0]
35- $! 1 g
30 =l [] L I J §
2.5- '—'—' =
[) =3
2.0- ! , 2
setosa versicolor virginica
Species

Figure 4-23. Iris measures with measure labels adjusted

Both the x- and y-axes are showing a continuous value, so we scale like that and give
the scale a name as the parameter. This will then be the names put on the axis labels. In
general, we can use the scale x/y continuous() functions to control the axis graphics,
for instance, to set the breakpoints shown. If we want to plot the longley data with a tick
mark for every year instead of every five years, we can set the breakpoints to every year:

146

CHAPTER 4 VISUALIZING DATA

longley %>%
pivot longer(
c(Unemployed, Armed.Forces),
names_to = "Class",
values to = "Number of People"
) %>%
ggplot(aes(x = Year, y = "Number of People’)) +
geom_line() +
scale x_continuous(breaks = 1947:1962) +
facet_grid(Class ~ .)

You can also use the scale to modify the labels shown at tick marks or set limits on
the values displayed.

Scales are also the way to transform data shown on an axis. If you want to log-
transform the x- or y-axis, you can use the scale x/y log10() functions, for instance.
This usually leads to a nicer plot compared to plotting data you log-transform yourself
since the plotting code then knows that you want to show data on a log scale rather than
showing transformed data on a linear scale.

To reverse an axis, you use scale_x/y reverse(). This is better than reversing
the data mapped in the aesthetic since all the plotting code will just be updated to the
reversed axis; you don’t need to update x or y values in all the function geometry calls.
For instance, to show the speed in the cars data in decreasing instead of increasing
order, we could write

cars %>%
ggplot(aes(x = speed, y = dist)) +
geom_point() +
geom_smooth(method = "1m") +
scale x_reverse("Speed") +
scale y continuous("Stopping Distance")

Neither axis has to be continuous. If you map a factor to x or y in the aesthetics, you
get a discrete axis; see Figure 4-24 for the iris data plotted with the factor Species on
the x-axis.

147

CHAPTER 4 VISUALIZING DATA

iris %>%
ggplot(aes(x = Species, y = Petal.Length)) +
geom_boxplot() +
geom_jitter(width = 0.1, height = 0.1)

Since Species is a factor, the x-axis will be discrete, and we can show the data as a
box plot and the individual data points using the jitter geometry. If we want to modify
the x-axis, we need to use scale x_discrete() instead of scale x_continuous().

We can, for instance, use this to modify the labels on the axis to put the species in
capital letters:

iris %>%
ggplot(aes(x = Species, y = Petal.lLength)) +
geom_boxplot() +
geom_jitter(width = 0.1, height = 0.1) +

scale x_discrete(labels = c("setosa" = "Setosa",
"versicolor" = "Versicolor",
"virginica" = "Virginica"))
64
8o
<
=
=
84
T
& .
.
24
° i
seiosa verlsicolor virgl;inica
Species

Figure 4-24. Iris data plotted with a factor on the x-axis

We provide a map from the data levels to labels. There is more than one way to set
the labels, but this is by far the easiest.

148

CHAPTER 4 VISUALIZING DATA

Scales are also used to control colors. You use the various scale color functions to
control the color of lines and points, and you use the scale fill functions to control
the color of filled areas.

We can plot the iris measurements per species and give them a different color for
each species. Since it is the boxes we want to color, we need to use the Till aesthetics.
Otherwise, we would color the lines around the boxes. See Figure 4-25.

iris %>%

pivot_longer(

-Species,

names _to = "Measurement",

values to = "Value"
) %>%
ggplot(aes(x = Species, y = Value, fill = Species)) +
geom_boxplot() +
facet_grid(Measurement ~ ., scale = "free y",

labeller = labeller(Measurement = label map))

There are different ways to modify color scales. There are two classes, as there are
for axes, discrete and continuous. The Species variable in iris is discrete, so to modify
the fill color, we need one of the functions for that. The simplest is just to give a color
per species explicitly. We can do that with the scale_fill manual() function (see
Figure 4-26):

iris %>%
pivot_longer(
-Species,
names _to = "Measurement”,
values to = "Value"
) %>%
ggplot(aes(x = Species, y = Value, fill = Species)) +
geom_boxplot() +
scale fill manual(values = c("black", "grey40", "grey60")) +

facet_grid(Measurement ~ ., scale = "free y",
labeller = labeller(Measurement = label map))

149

CHAPTER 4 VISUALIZING DATA

6 * g
5
4- E—— =
* a
2 i 5
2.5
20- == |;
151 == :
1.0 S
0.5 1 : 5
> %)
61 * 5
=)
51 + ° =3
4.5 ')
4.0- o
Y o)
35- * £
3.0 * * =
2.54 s
) >
20+ . -
setosa versicolor virginica

Figure 4-25. Iris data plotted with default fill colors

Species

61 $ g
o
4- E—— =
* 3
21 i =
2.5
20] == |z
151 == =
1.0 2
0.54 : 5
> %)
61 * g
3
5+ + ° =3
4.5 ®
4.0 o
Y o)
354 * H
3.01 * é £
2.51 g
[] =
20—, . ¥
setosa versicolor virginica

Figure 4-26. Iris data plotted with custom fill colors

150

Species

Species

‘ setosa
‘ versicolor
‘ virginica

Species

‘ setosa
‘ versicolor
E virginica

CHAPTER 4 VISUALIZING DATA

Explicitly setting colors is a risky business, though, unless you have a good feeling
for how colors work together and which combinations can be problematic for color
blind people. It is better to use one of the “brewer” choices. These are methods for
constructing good combinations of colors (see http://colorbrewer2.org), and you can
use them with the scale fill brewer() function (see Figure 4-27):

iris %>%
pivot longer(
-Species,
names_to = "Measurement",
values to = "Value"
) %>%
ggplot(aes(x = Species, y
geom_boxplot() +
scale fill brewer(palette = "Greens") +
facet_grid(Measurement ~ ., scale = "free y",
labeller = labeller(Measurement = label map))

Value, fill = Species)) +

Themes and Other Graphics Transformations

Most of using ggplot2 consist of specifying geometries and scales to control how data is
mapped to visual components, but you also have much control over how the final plot
will look through functions that only concern the final result.

Most of this is done by modifying the so-called theme. If you have tried the examples
I have given in this chapter yourself, the results might look different from the figures in
this book. This is because I have set up a default theme for the book using the command

theme_set(theme bw())

The theme_bw() sets up the final visual appearance of the figures you see here. You
can add a theme to a plot using + as you would any other ggplot2 modification or set it
as default as T have done here. There are several themes you can use; you can look for
functions that start with theme_, but all of them can be modified to get more control
over a plot.

151

http://colorbrewer2.org

CHAPTER 4 VISUALIZING DATA

Besides themes, various other functions also affect the way a plotlooks. There
is far too much to cover here on all the things you can do with themes and graphics
transformations, but I can show you an example that should give you an idea of what can
be achieved.

°] * g
5
4 $ =
. 2
2 i =
2.54
20] * 2
54 = o .
1.0 g Species
5

0.5
g 00 * E setosa
c>u 8 » E versicolor
& g B virginica
61 $ 5
5- EEE%EE I g
4.5 9
4.0 o
° @
351 $ g
301 $ =
2.51 3
) -0
204 L

setosa versicolor virginica
Species

Figure 4-27. Iris data plotted with brewer fill colors

You can, for instance, change coordinate systems using various coord functions—
the simplest is just flipping x and y with coord f1ip(). This can, of course, also be
achieved by changing the aesthetics, but flipping the coordinates of a complex plot can
be easier than updating aesthetics several places. For the iris plot we have looked at
before, I might want to change the axes.

I also want to put the measurement labels on the left instead of on the right. You
can control the placement of facet labels using the switch option to facet _grid(), and
giving the switch parameter the value y will switch the location of that label:

iris %>%
pivot longer(
-Species,
names_to = "Measurement",

152

CHAPTER 4 VISUALIZING DATA

values to = "Value"
) %>%
ggplot(aes(x = Species, y
geom_boxplot() +

Value, fill = Species)) +

scale x_discrete(labels = c("setosa" = "Setosa",
"versicolor" = "Versicolor",
"virginica" = "Virginica")) +

scale fill brewer(palette = "Greens") +
facet grid(Measurement ~ ., switch = "y",
labeller = labeller(Measurement = label map)) +

coord flip()

If I just flip the coordinates, the axis labels on the new x-axis will be wrong if I tell the
facet _grid() function to have a free y-axis. With a free y-axis, it would have different
ranges for the y values, which is what we want, but after flipping the coordinates, we will
only see the values for one of the y-axes. The other values will be plotted as if they were
on the same axis, but they won’t be. So I have removed the scale parameter to facet
grid(). Try to put it back and see what happens.

Virginica 4

Versicolor 4

Petal Length
é

Setosa

Virginica 4

Versicolor - Species

Petal Width

_8 Setosa 1 I. E setosa
3
s versicolor
& Virginica{ £ ° —.— E
= . e
3 virginica
Versicolorq = —[[l— ‘ E
]
Setosaq & —[I]—
Virginica - o-l-.

Versicolor 4

Sepal Width

Setosa

Figure 4-28. Iris with flipped coordinates and switched facet labels
153

CHAPTER 4 VISUALIZING DATA

The result so far is shown in Figure 4-28. We have flipped coordinates and moved
labels, but the labels look ugly with the color background. We can remove it by modifying
the theme using theme(strip.background = element blank()). It just sets the strip.
background, which is the graphical property of facet labels, to a blank element, so in
effect it removes the background color. We can also move the legend label using a theme
modification: theme(legend.position="top").

iris %>%
pivot longer(
-Species,
names_to = "Measurement",
values to = "Value"
) %>%
ggplot(aes(x = Species, y = Value, fill = Species)) +
geom_boxplot() +

scale x discrete(labels = c("setosa" = "Setosa",
"versicolor" = "Versicolor",
"virginica" = "Virginica")) +

scale fill brewer(palette = "Greens") +
facet_grid(Measurement ~ ., switch = "y",

labeller = labeller(Measurement = label map)) +
coord flip() +
theme(strip.background = element blank()) +

theme(legend.position="top")

The result is now as seen in Figure 4-29. It is pretty close to something we could
print. We just want the labelled species to be in capital letters just like the axis labels.

154

CHAPTER 4 VISUALIZING DATA

Species E setosa E versicolor - virginica

Virginica - *g-, —-—
Versicolor - 3 o« —TH
S
Setosa- @ .-|I-0
Virginica- £ —.—
; .=
Versicolor - -m—
$ setosa- & | {le
©
(0] <
& Virginica - ‘g ° —-—
Versicolor - =
arsioor - 2 —mm—
Setosa- @ _m_
Virginica - § o
Versicolor - % —m—
o
Setosa- & o {[}—-
T T T T T
0 2 4 6 8
Value

Figure 4-29. Iris data with theme modifications

Well, we know how to do that using the labels parameter to a scale so the final
plotting code could look like this:

label map <- c(Petal.Width = "Petal Width",
Petal.Length = "Petal Length",
Sepal.Width = "Sepal Width",
Sepal.Length = "Sepal Length")

species _map <- c(setosa = "Setosa",
versicolor = "Versicolor",
virginica = "Virginica")

iris %>%
pivot longer(
-Species,
names_to = "Measurement”,
values to = "Value"
) %>%

155

CHAPTER 4 VISUALIZING DATA

ggplot(aes(x = Species, y = Value, fill = Species)) +
geom_boxplot() +
scale x_discrete(labels = species map) +
scale fill brewer(palette = "Greens", labels = species_map) +
facet_grid(Measurement ~ ., switch = "y",

labeller = labeller(Measurement = label map)) +
coord flip() +
theme(strip.background = element blank()) +

theme(legend.position="top")

and the result is seen in Figure 4-30.

Figures with Multiple Plots

Using facets covers many of the situation where you want to have multiple panels in the
same plot, but not all. You use facets when you want to display different subsets of the
data in separate panels but essentially have the same plot for the subsets. Sometimes,
you want to combine different types of plots, or plots of different data sets, as subplots in
different panels. For that, you need to combine otherwise independent plots.

The ggplot2 package doesn’t directly support combining multiple plots, but it can
be achieved using the underlying graphics system, grid. Working with basic grid, you
have many low-level tools for modifying graphics, but for just combining plots, you want
more high-level functions, and you can get that from the gridExtra package.

156

CHAPTER 4 VISUALIZING DATA

Species E Setosa E Versicolor . Virginica

Virginica -

Versicolor -

Petal Length
°

Setosa -

Virginica -

Versicolor -

Petal Width

Setosa -

Species

Virginica -
Versicolor -

Setosa -

Virginica - 3

Versicolor -

Sepal Width Sepal Length

Setosa -

Figure 4-30. Final version of the iris plot

To combine plots, you first create them as you normally would. So, for example, we
could make two plots of the iris data like this:

petal <- iris %>% ggplot() +
geom_point(aes(x = Petal.Width, y = Petal.Length,
color = Species)) +
scale _color grey() +
theme(legend.position="none")

sepal <- iris %>% ggplot() +
geom_point(aes(x = Sepal.Width, y = Sepal.Length,
color = Species)) +
scale color grey() +
theme(legend.position="none")

We then import the gridExtra package:

library(gridExtra)

157

CHAPTER 4 VISUALIZING DATA

and can then use the grid.arrange() function to create a grid of plots, putting in the
two plots we just created (see Figure 4-31):

grid.arrange(petal, sepal, ncol = 2)

the theme that cowplot provides.

library(cowplot)

Petal.Length

00 05 1.0 15 2.0 25
Petal.Width

Sepal.Length

Another approach I like to use is the plot_grid() function from the cowplot
package. This package contains several functions developed by Claus O. Wilke (where
the cow comes from) for his plotting needs, and loading it will redefine the default
ggplot2 theme. You can use the theme_set() function to change it back if you don’t like

Anyway, creating a plot with subplots using cowplot, we have to import the package:

20 25 3.0 35 40 45
Sepal.Width

Figure 4-31. Combining two plots of the iris data using grid.arrange

158

CHAPTER 4 VISUALIZING DATA

(o)
1

Petal.Length
N
Sepal.Length

0.0 05 1.0 15 20 25 20 25 3.0 35 40 45
Petal.Width Sepal.Width

Figure 4-32. Combining two plots of the iris data using cowplot

If we don’t want the theme it sets here, we need to change it again using theme
set(), but otherwise we can combine the plots we have defined before using plot
grid() (see Figure 4-32):

plot grid(petal, sepal, labels = c("A", "B"))

With the patchwork package, combining plots is even easier. You can just add them
together to get them next to each other:

library(patchwork)
petal + sepal

The pipe operator does the same thing as the plus, so this composition does the
same thing:

petal | sepal
If you want to stack one plot over another, you use /:

petal / sepal

159

CHAPTER 4 VISUALIZING DATA

You can combine these using parentheses, so if you want the petal and sepal plots
next to each other and over another sepal plot, you can use

(petal + sepal) / sepal

Exercises

In the previous chapter, you should have imported a data set and used dplyr and tidyr
to explore it using summary statistics. Now do the same thing using plotting. If you
looked at summary statistics, try representing these as box plots or smoothed scatter
plots. If you have different variables that you used tidyr to gather, try to plot the data
similar to what you saw for iris earlier.

160

CHAPTER 5

Working with Large
Data Sets

The concept of Big Data refers to enormous data sets, sets of sizes where you need data
warehouses to store it, where you typically need sophisticated algorithms to handle the
data and distributed computations to get anywhere with it. At the very least, we talk
many gigabytes of data but also often terabytes or exabytes.

Dealing with Big Data is also part of data science, but it is beyond the scope of this
book. This chapter is on large data sets and how to deal with data that slows down your
analysis, but it is not about data sets so large that you cannot analyze it on your desktop
computer.

If we ignore the Big Data issue, what a large data set is depends very much on what
you want to do with the data. That comes down to the complexity of what you are trying
to achieve. Some algorithms are fast and can scan through data in linear time—meaning
that the time it takes to analyze the data is linear in the number of data points—while
others take exponential time and cannot be applied to data sets with more than a few
tens or hundreds of data points. The science of what you can do with data in a given
amount of time, or a given amount of space (be it RAM or disk space or whatever you
need), is called complexity theory and is one of the fundamental topics in computer
science. In practical terms, though, it usually boils down to how long you are willing to
wait for an analysis to finish, and it is a very subjective measure.

In this chapter, we will just consider a few cases where I have found in my own work
that data gets a bit too large to do what I want, and I have had to deal with it in various
ways. Your cases are likely to be different, but maybe you can get some inspiration, at
least, from these cases.

161
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_5

https://doi.org/10.1007/978-1-4842-8155-0_5#DOI

CHAPTER5 WORKING WITH LARGE DATA SETS

Subsample Your Data Before You Analyze the Full
Data Set

The first point I want to make, though, is this: you very rarely need to analyze a complete
data set to get at least an idea of how the data behaves. Unless you are looking for very
rare events, you will get as much feeling for the data looking at a few thousands of data
points as you would from looking at a few million.

Sometimes, you do need extensive data to find what you are looking for. This is the
case, for example, when looking for associations between genetic variation and common
diseases where the association can be very weak, and you need lots of data to distinguish
between chance associations and genuine associations. But for most signals in data that
are of practical importance, you will see the signals in smaller data sets. So before you
throw the full power of all your data at an analysis, especially if that analysis turns out to
be very slow, you should explore a smaller sample of your data.

Here, you must pick a random sample. There is often structure in data beyond
the columns in a data frame. This could be a structure caused by when the data was
collected. If the data is ordered by when the data was collected, then the first data points
you have can be different from later data points. This isn’t explicitly represented in the
data, but the structure is there nevertheless. Randomizing your data alleviates problems
that can arise from this. Randomizing might remove a subtle signal, but with the power
of statistics, we can deal with random noise. It is much harder to deal with consistent
biases we just don’t know about.

If you have a large data set, and your analysis is being slowed down because of it,
don’t be afraid to pick a random subset and analyze that. You may see signals in the
subsample that is not present in the full data set, but it is much less likely than you might
fear. When you are looking for signals in your data, you always have to worry about false
signals. But it is not more liable to pop up in a smaller data set than in a larger. And with
a more extensive data set to check your results against later, you are less likely to stick
with wrong results at the end of your analysis.

Getting spurious results is mostly a concern with traditional hypothesis testing. If you
set a threshold for when a signal is significant at 5% for p-values, you will see spurious
results one time out of twenty. If you don’t correct for multiple testing, you will be almost
guaranteed to see false results. These are unlikely to survive when you later throw the
complete data at your models.

162

CHAPTER5 WORKING WITH LARGE DATA SETS

In any case, with large data sets, you are more likely to have statistically significant
deviations from a null model, which are entirely irrelevant to your analysis. We usually
use simple null models when analyzing data, and any complex data sets are not
generated from a simple null model. With enough data, the chances are that anything
you look at will have significant deviations from your simple null model. The real
world does not draw samples from a simple linear model. There is always some extra
complexity. You won'’t see it with a few data points, but with enough data, you can reject
any null model. It doesn’t mean that what you see has any practical importance.

If you have signals you can discover in a smaller subset of your data, and these
signals persist when you look at the full data set, you can trust them that much more.

So, if the data size slows you down, downsample and analyze a subset.

You can use dplyr functions sample n() and sample frac() to sample from a data
frame. Use sample n() to get a fixed number of rows and sample frac() to get a fraction
of the data:

iris |> sample n(size = 5)

Sepal.lLength Sepal.Width Petal.Length

#H o1 5.5 3.5 1.3
#H 2 6.4 2.8 5.6
3 5.7 2.8 4.5
4 5.0 3.4 1.5
5 5.1 3.8 1.6
Petal.Width Species
1 0.2 setosa
2 2.2 virginica
3 1.3 versicolor
4 0.2 setosa
5 0.2 setosa

iris |> sample frac(size = 0.02)

Sepal.Length Sepal.Width Petal.Length

1 6.3 2.5 5.0
2 6.4 2.8 5.6
#t 3 6.3 3.3 4.7

163

CHAPTER5 WORKING WITH LARGE DATA SETS

Petal.Width Species

1 1.9 virginica
2 2.2 virginica
3 1.6 versicolor

(Your output will be different, since these are random functions, but it should look
similar.)

Of course, to sample using dplyr, you need your data in a form that dplyr can
manipulate, and if the data is too large even to load into R, then you cannot have it in a
data frame to sample from, to begin with. Luckily, dplyr has support for using data that
is stored on disk rather than in RAM, in various back-end formats, as we will see later. It
is, for example, possible to connect a database to dplyr and sample from a large data set
this way.

Running Out of Memory During an Analysis

R can be very wasteful of RAM. Even if your data set is small enough to fit in memory and
small enough that the analysis time is not a substantial problem, it is easy to run out of
memory because R remembers more than is immediately apparent.

In R, all objects are immutable,' so whenever you modify an object, you are actually
creating a new object. The implementation of this is smart enough that you only have
independent copies of data when it is different. Having two different variables to refer
to the same data frame doesn’t mean that the data frame is represented twice. Still, if
you modify the data frame in one of the variables, then R will create a copy with the
modifications, and you now have the data twice, accessible through the two variables.
If you only refer to the data frame through one variable, then R is smart enough not to
make a copy, though.

You can examine memory usage and memory changes using the pryr package:

library(pryr)
For example, we can see what the cost is of creating a new vector:

mem_change(x <- rnorm(10000))

'This is not entirely true; it is possible to make mutable objects, but it requires some work. Unless
you go out of your way to create mutable objects, it is true.

164

CHAPTER5 WORKING WITH LARGE DATA SETS
83.9 kB

(The exact value you see here will depend on your computer and your installation, so
don’t be surprised if it differs from mine.)

R doesn’t allow modification of data, so when you “modify” a vector, it makes a new
copy that contains the changes. This doesn’t significantly increase the memory usage
because R is smart about only copying when more than one variable refers to an object:

mem_change(x[1] <- 0)
528 B

If we assign the vector to another variable, we do not use twice the memory, because
both variables will just refer to the same object:

mem_change(y <- x)
584 B

but if we modify one of the vectors, we will have to make a copy, so the other vector

remains the same:
mem_change(x[1] <- 0)
80.6 kB

This is another reason for using pipelines rather than assigning to many variables
during an analysis. You are fine if you assign back to a variable, though, so the %<>%
operator does not lead to a lot of copying.

Even using pipelines, you still have to be careful, though. Many functions in R will
again copy data.

If a function does any modification to data, the data is copied to a local variable.
There might be some sharing, so, for example, just referring to a data frame in a local
variable does not create a copy. Still, if you, for example, split a data frame into training
and test data in a function, then you will be copying and now represent all the data twice.
This memory is freed after the function finishes its computations, so it is really only a
problem if you are very close to the limit of RAM.

165

CHAPTER5 WORKING WITH LARGE DATA SETS

If such copied data is returned in some way from the function, it is not freed. It is,
for example, not unusual that model fitting functions will save the entire fitting data in
the returned object. If it is copied without modification, again we do not see a memory
increase. Yet, if the function modifies it in any way, we are now using twice the memory
as before.

When you have problems with running out of memory in data analysis in R, it is
usually not that you cannot represent your data initially but that you end up having
many copies. You can avoid this to some extent by not storing temporary data frames in
variables and by not implicitly storing copies of data frames in the output of functions, or
you can explicitly remove stored data using the rm() function to free up memory.

Too Large to Plot

The first point where I typically run into problems with large data sets is not that I run
out of RAM, but when I am plotting, especially when making scatter plots; box plots or
histograms summarize the data and are usually not a problem.

There are two problems when making scatter plots with a lot of data. The first is
that if you create files from scatter plots, you will create a plot that contains every single
individual point. That can be a huge file. Worse, it will take forever to plot, since a viewer
will have to consider every single point. You can avoid this problem by creating raster
graphics instead of PDFs, but that takes us to the second issue. With too many points,

a scatter plot is just not informative any longer. Points will overlap, and you cannot see
how many individual data points fall on the plot. This usually becomes a problem long
before the computational time becomes an issue.

If, for example, we have a data frame with 10,000 points

d <- data.frame(x = rnorm(10000), y = rnorm(10000))

we can still make a scatter plot, and if the plot is saved as raster graphic instead of PDE,
the file will not be too large to watch or print:

d |> ggplot(aes(x = x, y =y)) +
geom_point()

166

CHAPTER5 WORKING WITH LARGE DATA SETS

The result will just not be all that informative; see Figure 5-1. The points are shown
on top of each other, making it hard to see if the big black cloud of points has different
densities in some places than others.

-5.0 1

Figure 5-1. A scatter plot with too many points

The solution is to represent points such that they are still visible when there are
many overlapping points. If the points are overlapping because they have the same x or
y coordinates, you can jitter them; we saw that in the previous chapter. Another solution
to the same problems is plotting the points with alpha levels, so each point is partly
transparent. You can see the density of points because they are slightly transparent, but
you still end up with a plot with very many points; see Figure 5-2.

167

CHAPTER5 WORKING WITH LARGE DATA SETS

2.5
- 0.0
-2.51
-5.01
-2 0 2 4
X

Figure 5-2. A scatter plot with alpha values

d |> ggplot(aes(x = x, y =y)) +
geom_point(alpha = 0.2)

This, however, doesn’t solve the problem that files will draw every single point
and cause printing and file size problems. A scatter plot with transparency is just a
way of showing the 2D density, though, and we can do that directly using the
geom_density 2d() function; see Figure 5-3.

168

CHAPTER5 WORKING WITH LARGE DATA SETS

2
14
> 01
-1 4
-2 4
-2 -1 0 1 2
X

Figure 5-3. A 2D density plot

d |> ggplot(aes(x = x, y =y)) +
geom density 2d()

The plot shows the contour of the density.

An alternative way of showing a 2D density is using a so-called hex plot, the 2D
equivalent of a histogram. The plot splits the 2D plane into hexagonal bins and displays
the count of points falling into each bin.

To use it, you need to install the package hexbin and use the ggplot2 function
geom_hex(); see Figure 5-4.

d |> ggplot(aes(x = x, y = y)) +
geom_hex()

169

CHAPTER5 WORKING WITH LARGE DATA SETS

[]
2.5
count
100
[
0.0 75
o 0
50
25
2.5+
5.0 L
N S
X

Figure 5-4. A hex plot

The colors used by geom_hex() are the fill colors, so you can change them using the
scale fill functions. You can also combine hex and 2D density plots to get both the
bins and contours displayed; see Figure 5-5.

170

CHAPTER5 WORKING WITH LARGE DATA SETS

2.5+
count
- 100
0.0 - 75
>
- 50
25
-2.5-
-5.01
N
X

Figure 5-5. A plot combining hex and 2D density

d |> ggplot(aes(x = x, y =y)) +
geom_hex() +
scale fill gradient(low = "lightgray", high = "grey10") +
geom_density2d(color = "black")

Too Slow to Analyze

When plotting data, the problem is usually only in scatter plots. Otherwise, you don’t
have to worry about having too many points or too large plot files. Even when plotting
lots of points, the real problem doesn’t show up until you create a plot and load it into
your viewer or send it to the printer.

With enough data points, though, most analyses will slow down, and that can be a
problem.

The easy solution is again to subsample your data and work with that. It will show
you the relevant signals in your data without slowing down your analysis.

171

CHAPTER5 WORKING WITH LARGE DATA SETS

If that is not a solution for you, you need to pick analysis algorithms that work
more efficiently. That typically means linear time algorithms. Unfortunately, many
standard algorithms are not linear time, and even if they are, the implementation does
not necessarily make it easy to fit data in batches where the model parameters can be
updated one batch at a time. You often need to find packages specifically written for that
or make your own.

One package that provides both a memory-efficient linear model fitting (it avoids
creating a model matrix that would have rows for each data point and solving equations
for that) and functionality for updating the model in batches is the biglm package:

library(biglm)

You can use it for linear regression using the biglm() function instead of the 1m()
function, and you can use the bigglm() function for generalized linear regression
instead of the glm() function (see Chapter 6 for details on these).

If you are using a data frame format that stores the data on disk and has support for
biglm (see the next section), the package will split the data into chunks it can load into
memory and analyze. If you do not have a package that handles this automatically, you
can split the data into chunks yourself. As a toy example, we can consider the cars data
set and try to fit a linear model of stopping distance as a function of speed but do this
in batches of ten data points. Of course, we can easily fit such a small data set without
splitting it into batches, we don’t even need to use the biglm() function for it, but as an
example, it will do.

Defining the slice indices requires some arithmetic, and after that, we can extract
subsets of the data using the slice() function from dplyr. We can create a linear model
from the first slice and then update using the following:

slice size <- 10

n <- nrow(cars)

slice <- cars |> slice(1:slice size)

model <- biglm(dist ~ speed, data = slice)

for (i im 1:(n/slice size-1)) {
slice <- cars |> slice((i*slice size+1):((i+1)*slice size))
model <- update(model, moredata = slice)

}

172

https://doi.org/10.1007/978-1-4842-8155-0_6

CHAPTER5 WORKING WITH LARGE DATA SETS
Model

Large data regression model: biglm(dist ~ speed, data = slice)
Sample size = 50

Bayesian model fitting methods have a (somewhat justified) reputation for being
slow, but Bayesian models based on conjugate priors are ideal for this. Having a
conjugate prior means that the posterior distribution you get out of analyzing one data
set can be used as the prior distribution for the next data set. This way, you can split the
data into slices and fit the first slice with a real prior and the subsequent slices with the
result of the previous model fits.

The Bayesian linear regression model in the second project, the last chapter of this
book, is one such model. There, we implement an update() function that fits a new
model based on a data set and a previously fitted model. Using it on the cars data,
splitting the data into chunks of size 10, would look very similar to the biglm example.

Even better are models where you can analyze slices independently and then
combine the results to get a model for the full data set. These can not only be analyzed in
batches, but the slices can be handled in parallel, exploiting multiple cores or multiple
computer nodes. For gradient descent optimization approaches, you can compute
gradients for slices independently and then combine them to make a step in the
optimization.

There are no general solutions for dealing with data that is too large to be efficiently
analyzed, though. It requires thinking about the algorithms used and usually also some
custom implementation of these unless you are lucky and can find a package that can
handle data in batches.

Too Large to Load

R wants to keep the data it works on in memory. So if your computer doesn’t have

the RAM to hold it, you are out of luck. At least if you work with the default data
representations like ‘data.frame’ R usually also wants to use 32-bit integers for indices.
Since it uses both positive and negative numbers for indices, you are limited to indexing
around two billion data points even if you could hold more in memory.

173

CHAPTER5 WORKING WITH LARGE DATA SETS

There are different packages for dealing with this. One such is the ff package that
works with the kind of tables we have used so far but uses memory-mapped files to
represent the data and loads data chunks into memory as needed:

library(ff)

It essentially creates flat files and has functionality for mapping chunks of these into
memory when analyzing them.

It represents data frames as objects of class ffdf. These behave just like data frames
if you use them as such, and you can translate a data frame into an ffdf object using the
as.ffdf() function.

You can, for example, convert the cars data into an ffdf object using

ffcars <- as.ffdf(cars)
summary (ffcars)

i Length Class Mode
speed 50 ff_vector list
dist 50 ff vector list

Of course, if you can already represent a data frame in memory, there is no need
for this translation, but ff also has functions for creating ffdf objects from files. If,
for example, you have a large file as comma-separated values, you can use read.
csv.ffdf().

With ff, you get various functions for computing summary statistics efficiently
from the memory-mapped flat files. These are implemented as generic functions (we
will cover generic functions in Chapter 12), and this means that for most common
summaries, we can work efficiently with ffdf objects. Not every function supports this,
however, so sometimes functions will (implicitly) work on an ffdf object as if it was
a plain data.frame. This means that the full data might be loaded into memory. This
usually doesn’t work if the data is too large to fit.

To deal with data that you cannot load into memory, you will have to analyze
itin batches. This means that you need special functions for analyzing data, and,
unfortunately, this quite often means that you have to implement analysis algorithms
yourself.

You cannot use ffdf objects together with dplyr, which is a main drawback of using
Tt to represent data. However, the dplyr package itself provides support for different
back ends, such as relational databases. If you can work with data as flat files, there is

174

10.1007/978-1-4842-8095-9_6

CHAPTER5 WORKING WITH LARGE DATA SETS

no benefit for putting it in databases, but large data sets are usually stored in databases
that are accessed through the Structured Query Language (SQL). This is a language
that is worth learning, but beyond the scope of this book. In any case, dplyr can be
used to access such databases. This means that you can write dplyr pipelines of data
manipulation function calls; these will be translated into SQL expressions that are then
sent to the database system, and you can get the results back.

With dplyr, you can access commonly used database systems such as MySQL (www.
mysql.com) or PostgreSQL (www.postgresql.org). These require that you set up a
server for the data, though, so a simpler solution, if your data is not already stored in a
database, is to use LiteSQL (https://en.wikipedia.org/wiki/LiteSQL).

LiteSQL databases sit on your filesystem and provide a file format and ways of
accessing it using SQL. You can open or create a LiteSQL file using the src_sqlite()
function:?

iris db <- DBI::dbConnect(RSQLite::SQLite(),
path = "iris db.sqlite3")

and load a data set into it using copy to():
copy to(iris db, iris, temporary = FALSE)

Of course, if you can already represent a data frame in RAM, you wouldn’t usually
copy it to a database. It only slows down analysis to go through a database system
compared to keeping the data in memory—but the point is, of course, that you can
populate the database outside of R and then access it using dplyr.

Setting the temporary option to FALSE here ensures that the table you fill into the
database survives between sessions. If you do not set temporary to FALSE, it will only
exist as long as you have the database open; after you close it, it will be deleted. This is
useful for many operations but not what we want here.

Once you have a connection to a database, you can pull out a table using tb1():

iris db_tbl <- tbl(iris db, "iris"
iris db _tbl

Source: table<iris> [?? x 5]
Database: sqlite 3.38.0 []

2You will have to install the package RSQLite to run this code, since that package implements the
underlying functionality.

175

http://www.mysql.com
http://www.mysql.com
http://www.postgresql.org
https://en.wikipedia.org/wiki/LiteSQL

CHAPTER5 WORKING WITH LARGE DATA SETS

Sepal.Length Sepal.Width Petal.Length

i <dbl> <dbl> <dbl>
1 5.1 3.5 1.4
2 4.9 3 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5 3. 6 1.4
6 5.4 3.9 1.7
7 4.6 3.4 1.4
8 5 3. 4 1.5
9 4.4 2.9 1.4
10 4.9 3.1 1.5
.. with more rows, and 2 more variables:

Petal.Width <dbl>, Species <chr>
and use dplyr functions to make a query to it:

iris db_tbl %>% group by(Species) %>%
summarise(mean.Petal.Length = mean(Petal.Length, na.rm = TRUE))

Source: lazy query [?? x 2]
Database: sqlite 3.38.0 []
Species mean.Petal.Length

<chr> <dbl>
1 setosa 1.46
2 versicolor 4.26
3 virginica 5.55

Using dplyr with SQL databases is beyond the scope of this book, so I will just refer
you to the documentation for the package.

Manipulating data using dplyr with a database back end is only useful for doing
analysis exclusively using dplyr, of course. To fit models and such, you will still have to
batch data, so some custom code is usually still required.

176

CHAPTER5 WORKING WITH LARGE DATA SETS

Exercises
Subsampling

Take the data set you worked on the last two chapters and pick a subset of the data.
Summarize it and compare to the results you get for the full data. Plot the subsamples
and compare that to the plots you created with the full data.

Hex and 2D Density Plots

If you have used any scatter plots to look at your data, translate them into hex or 2D

density plots.

177

CHAPTER 6

Supervised Learning

This chapter and the next concern the mathematical modelling of data that is the
essential core of data science. We can call this statistics, or we can call it machine
learning. At its heart, it is the same thing. It is all about extracting information out of data.

Machine Learning

Machine learning is the discipline of developing and applying models and algorithms for
learning from data. Traditional algorithms implement fixed rules for solving particular
problems like sorting numbers or finding the shortest route between two cities. To
develop algorithms like that, you need a deep understanding of the problem you are
trying to solve—a thorough understanding that you can rarely obtain unless the problem
is particularly simple or you have abstracted away all the unusual cases. Far more often,
you can collect examples of good or bad solutions to the problem you want to solve
without being able to explain precisely why a given solution is good or bad. Or you can
obtain data that provides examples of relationships between data you are interested in
without necessarily understanding the underlying reasons for these relationships.

This is where machine learning can help. Machine learning concerns learning
from data. You do not explicitly develop an algorithm for solving a particular problem.
Instead, you use a generic learning algorithm that you feed examples of solutions to and
let it learn how to solve the problem from those examples.

This might sound very abstract, but most statistical modelling is indeed examples
of this. Take, for example, a linear model y = ax + f§ + ¢ where ¢ is the stochastic
noise (usually assumed to be normal distributed). When you want to model a linear
relationship between x and y, you don'’t figure out @ and f from the first principle.
You can write an algorithm for sorting numbers without having studied the numbers
beforehand, but you cannot usually figure out what the linear relationship is between
y and x without looking at data. When you fit the linear model, you are doing machine

179
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_6

https://doi.org/10.1007/978-1-4842-8155-0_6#DOI

CHAPTER 6 SUPERVISED LEARNING

learning. (Well, I suppose if you do it by hand, it isn’t machine learning, but you are not
likely to fit linear models by hand that often.) People typically do not call simple models
like linear regression machine learning, but that is mostly because the term “machine
learning” is much younger than these models. Linear regression is as much machine

learning as neural networks are.

Supervised Learning

Supervised learning is used when you have variables you want to predict using other
variables—situations like linear regression where you have some input variables, for
example, x, and you want a model that predicts output (or response) variables, y = f(x).

Unsupervised learning, the topic for the next chapter, is instead concerned with
discovering patterns in data when you don’t necessarily know what kind of questions
you are interested in learning-when you don’t have x and y values and want to know
how they are related, but instead have a collection of data, and you want to discover what
patterns there are in the data.

For the simplest case of supervised learning, we have one response variable, y, and
one input variable, x, and we want to figure out a function, f, mapping input to output,
that is, such that y = f(x). What we have to work with is example data of matching x and y.
Let us write that as vectors x = (x,, ..., x,,) and y = (y,, ...,) where we want to figure out a
function fsuch that y; = f(x;,).

We will typically accept that there might be some noise in our observations, so
fdoesn’t map perfectly from x to y. Therefore, we can change the setup slightly and
assume that the data we have isx = (x,, ..., x,) and t = (¢,, ..., t,,), where t is target values
and where ;= y; + ¢, y;=f(x;), and €i is the error in the observation ;.

How we model the error ¢; and the function fare choices that are up to us. Itis only
modelling, after all, and we can do whatever we want. Not all models are equally good, of
course, so we need to be a little careful with what we choose and how we evaluate if the
choice is good or bad, but in principle, we can do anything.

The way most machine learning works is that an algorithm, implicitly or explicitly,
defines a class of parameterized functions f(—; 8), each mapping input to output f(—;)
:x + f(x; 0) = y(0) (now the value we get for the output depends on the parameters of the
function, €), and the learning consists of choosing parameters 0 such that we minimize
the errors, that is, such that f(x; 0) is as close to ti as we can get. We want to get close

180

CHAPTER 6 SUPERVISED LEARNING

for all our data points, or at least get close on average, so if we let y(#) denote the vector
WOy ..., Y(),) = (f(x1; 0), ..., f(x,; 6)), we want to minimize the distance from y(6) to t,
[y(0) - t]|, for some distance measure ||-||.

Regression vs. Classification

There are two main types of supervised learning: regression and classification.
Regression is used when the output variable we try to target is a number. Classification is
used when we try to target some categorical variables.

Take linear regression, y = ax + 5 (or t = ax + f§ + €). It is regression because the
variable we are trying to target is a number. The parameterized class of functions, fj,
are all lines. If we let 0 = (0, 6,) and a = 0,, 5 = 6,, then y(0) = f(x; 0) = O,x + 0,. Fitting a
linear model consists of finding the best 9, where best is defined as the 0 that gets y(6)
closest to t. The distance measure used in linear regression is the squared Euclidean

n

distance [y” —{f* = >(3:(0)-1,)2 .

i=1
The reason it is the squared distance instead of just the distance is mostly
mathematical convenience—it is easier to maximize ¢ that way—but also related to
us interpreting the error term e as normal distributed. Whenever you fit data in linear
regression, you are minimizing this distance; you are finding the parameters 0 that best
fit the data in the sense of minimizing the distance from y(6) to t:

0= argminzn:(ﬁlxi +06, —z‘i)2 .
6.6, =1
For an example of classification, let us assume that the targets ¢; are binary, encoded
as 0 and 1, but that the input variables x; are still real numbers. A common way of
defining the mapping function f(—; €) is to let it map x to the unit interval [0, 1] and
interpret the resulting y(6) as the probability that ¢ is 1. In a classification setting, you
would then predict 0 if f(x; 8) < 0.5 and predict 1 if f(x; #) > 0.5 (and have some strategy
for dealing with f(x;) = 0.5). In linear classification, the function f; could look like this:

f(x0)=0(0,x+0,)
where ¢ is a sigmoid function (a function mapping R + [0, 1] that is “S-shaped”). A

common choice of ¢ is the logistic function ¢ : z o in which case we call the
+e
fitting of f(—; 6) logistic regression.

181

CHAPTER 6 SUPERVISED LEARNING

Whether we are doing regression or classification, and whether we have linear
models or not, we are simply trying to find parameters 6 such that our predictions y(6)
are as close to our targets t as possible. The details that differ between different machine
learning methods are how the class of prediction functions f(—; 0) is defined, what kind
of parameters # we have, and how we measure the distance between y(6) and t. There are
a lot of different choices here and a lot of different machine learning algorithms. Many
of them are already implemented in R, however, so we rarely will have to implement our
own. We just need to find the right package that implements the learning algorithms

we need.

Inference vs. Prediction

A question always worth considering when we fit parameters of a model is this: Do we
care about the model parameters or do we just want to make a function that is good at
predicting?

If you were taught statistics the same way I was, your introduction to linear
regression was mostly focused on the model parameters. You inferred the parameters 6,
and 6, mostly to figure out if 6, # 0, that is, to find out if there was a (linear) relationship
between x and y or not. When we fit our function to data to learn about the parameters,
we say we are doing inference, and we are inferring the parameters.

This focus on model parameters makes sense in many situations. In a linear model,
the coefficient 6, tells us if there is a significant correlation between x and y, meaning we
are statistically relatively certain that the correlation exists, and whether it is substantial,
meaning that 0, is large enough to care about in practical situations.

When we care about model parameters, we usually want to know more than just
the best-fitting parameters, 6. We want to know how certain we are that the “true
parameters” are close to our estimated parameters. This usually means estimating
not just the best parameters but also confidence intervals or posterior distributions of
parameters. How easy it is to estimate these depends very much on the models and
algorithms used.

I put “true parameters” in quotes earlier, where I talked about how close estimates
were to the “true parameters,” for a good reason. True parameters only exist if the data
you are analyzing were simulated from a function f, where some true 6 exist. When you
are estimating parameters, 0, you are looking for the best choice of parameters assuming
that the data were generated by a function f;, . Outside of statistics textbooks, there is no

182

CHAPTER 6 SUPERVISED LEARNING

reason to think that your data was generated from a function in the class of functions
you consider. Unless we are trying to model causal relationships—modelling how we
think the world actually works as forces of nature—that is usually not an underlying
assumption of model fitting. A lot of the theory we have for doing statistics on inferred
parameters does assume that we have the right class of functions, and that is where you
get confidence intervals and such from. In practice, data does not come from these sorts
of functions, so treat the results you get from theory with some skepticism.

We can get more empirical distributions of parameters directly from data if we have
a lot of data—which we usually do have when doing data science—using sampling
methods. I will briefly return to that later in this chapter.

We don’t always care about the model parameters, though. For linear regression, it is
easy to interpret what the parameters mean, but in many machine learning models, the
parameters aren’t that interpretable—and we don’t really care about them. All we care
about is if the model we have fitted is good at predicting the target values. Evaluating
how well we expect a function to be able to predict is also something that we sometimes
have theoretical results regarding, but as for parameter estimation, we shouldn’t really
trust these too much. It is much better to use the actual data to estimate this, and as for
getting empirical distributions of model parameters, it is something we return to later.

Whether you care about model parameters or not depends on your application and
quite often on how you think your model relates to reality.

Specifying Models

The general pattern for specifying models in R is using what is called a “formula,” which
is a type of objects built into the language. The simplest formisy ~ x which we should
interpret as saying y = f(x). Implicitly, there is assumed some class of functions indexed
with model parameters, f(—; #), and which class of functions we are working with
depends on which R functions we use.

Linear Regression

If we take a simple linear regression, f; (x) = 6,x + ,, we need the function 1m().

For an example, we can use the built-in data set cars, which just contains two
variables, speed and breaking distance, where we can consider speed the x value and
breaking distance the y value:

183

CHAPTER 6 SUPERVISED LEARNING
cars |> head()

speed dist
1 4 2

2 4 10
#t 3 7 4
#t 4 7 22
#t 5 8 16
6 9 10
125 -
[]
100 -
.
754
Az
T 50-
251
0_

5 10 15 20 25
speed

Figure 6-1. Plot of breaking distance vs. speed for cars

If we plot the data set (see Figure 6-1), we see that there is a very clear linear
relationship between speed and distance:

cars |> ggplot(aes(x = speed, y = dist)) +
geom point() +
geom_smooth(formula = y ~ x, method = "1m")

184

CHAPTER 6 SUPERVISED LEARNING

In this plot, I used the method "1m" for the smoothed statistics to see the fit. By
default, the geom_smooth () function would have given us a loess curve, but since we
are interested in linear fits, we tell it to use the 1Im method. By default, geom _smooth()
will also plot the uncertainty of the fit. This is the gray area in the plot. This is the area
where the line is likely to be (assuming that the data is generated by a linear model).

Do not confuse this with where data points are likely to be, though. If target values are
given by ¢ = 6,x + 6, + ¢ where € has a very large variance, then even if we knew ¢, and

6, with high certainty, we still wouldn’t be able to predict with high accuracy where

any individual point would fall. There is a difference between prediction accuracy and
inference accuracy. We might know model parameters with very high accuracy without
being able to predict very well. We might also be able to predict very well without
knowing all model parameters that well. If a given model parameter has little influence
on where target variables fall, then the training data gives us little information about
that parameter. This usually doesn’t happen unless the model is more complicated
than it needs to be, though, since we often want to remove parameters that do not affect
the data.

To actually fit the data and get information about the fit, we use the 1m() function
with the model specification, dist ~ speed, and we can use the summary () function to
see information about the fit:!

cars %>% lm(dist ~ speed, data = .) %>% summary()

##

Call:

Im(formula = dist ~ speed, data = .)

##

Residuals:

Ht Min 10 Median 30 Max

-29.069 -9.525 -2.272 9.215 43.201

#i#

Coefficients:

it Estimate Std. Error t value Pr(>|t])
(Intercept) -17.5791 6.7584 -2.601 0.0123
speed 3.9324 0.4155 9.464 1.49e-12

'We need the %>% operator here because of where we want the cars data to go in the call to 1m; we
can’t do that this easily with | >.

185

CHAPTER 6 SUPERVISED LEARNING

#Ht

(Intercept) *

speed ok

#HH ---

Signif. codes:

#H o0 "' 0,001 '**' 0.01 '*'" 0.05 '." 0.2 " "1
#H

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

or we can use the coefficients() function to get the point estimates and the
confint() function to get the confidence intervals for the parameters:

cars %>% lm(dist ~ speed, data = .) %>% coefficients()

(Intercept) speed
-17.579095 3.932409

cars %>% lm(dist ~ speed, data

.) %>% confint()

2.5 % 97.5 %
(Intercept) -31.167850 -3.990340
speed 3.096964 4.767853

Here, (Intercept) is 6, and speed is 6,.

To illustrate the fitting procedure and really drive the point home, we can explicitly
draw models with different parameters, that is, draw lines with different choices of 6.
To simplify matters, I am going to set 6, = 0. Then I can plot the lines y = 6,x for different
choices of ¢, and visually see the fit; see Figure 6-2.

predict _dist <- function(speed, theta 1)
data.frame(speed = speed,
dist = theta 1 * speed,
theta = as.factor(theta 1))

cars %>% ggplot(aes(x = speed, y = dist, colour = theta)) +
geom_point(colour = "black") +
geom line(data = predict dist(cars$speed, 2)) +

186

CHAPTER 6 SUPERVISED LEARNING

predict dist(cars$speed, 3)) +
geom line(data = predict dist(cars$speed, 4)) +
scale _color discrete(name=expression(theta[1]))

geom_line(data

In this plot, I want to color the lines according to their 8, parameter, but since the
cars data frame doesn’t have a theta column, I'm in a bit of a pickle. I specify that theta
should determine the color anyway, but when I plot the points, I overwrite this and say
that these should be plotted black; then it doesn’t matter that I didn’t have theta values.
In the geom line() calls, where I plot the lines, I do have a theta, and that will determine
the colors for the lines. The lines are plotted according to their theta value which I set in
the predict dist() function.

Each of the lines shows a choice of model. Given an input value x, they all produce
an output value y(6) = f(x; 6). So we can fix 6 and consider the mapping x — 6,x. This is
the function we use when predicting the output for a given value of x. If we fix x instead,
we can also see it as a function of €: 9, — 6,x. This is what we use when we fit parameters
to the data, because if we keep our data set fixed, this mapping defines an error function,
that is, a function that given parameters gives us a measure of how far our predicted
values are from our target values. If, as before, our input values and target values are
vectors x and t, then the error function is

E(6)=> (6 1)

i=1

and we can plot the errors against different choices of 9, (Figure 6-3). Where this

function is minimized, we find our best estimate for 6;:

Get the error value for the specific theta

fitting error <- Vectorize(function(theta)
sum((theta * cars$speed - cars$dist)**2)

)

Plot the errors for a range of thetas

tibble(theta = seq(0, 5, length.out = 50)) |» # set the theta values
mutate(errors = fitting error(theta)) |» # add the errors
ggplot(aes(x = theta, y = errors)) +
geom line() +
xlab(expression(theta[1])) + ylab(expression(E(theta[1])))

187

CHAPTER 6 SUPERVISED LEARNING

1251

dist

5 10 15 20 25
speed

Figure 6-2. Prediction lines for different choices of parameters

To wrap up this example, we can also plot and fit the best model where 6, = 0. The
formula needed to remove the intercept is of the form “y ~ x - 1”Itisthe “- 1” that
removes the intercept:

cars %>% lm(dist ~ speed - 1, data = .) %>% coefficients()

speed
2.909132

We can also plot this regression line, together with the confidence interval for where
it lies, using geom _smooth (). See Figure 6-4. Here, though, we need to use the formula
y ~ x - 1ratherthandist ~ speed - 1.This is because the geom smooth() function
works on the ggplot2 layers that have x and y coordinates and not the data in the data
frame as such. We map the speed variable to the x-axis and the dist variable to the y
variable in the aesthetics, but it is x and y that geom_smooth() works on:

188

CHAPTER 6 SUPERVISED LEARNING

cars |> ggplot(aes(x = speed, y = dist)) +
geom_point() +
geom_smooth(method = "Im", formula =y ~ x - 1)

Logistic Regression (Classification, Really)

Using other statistical models works the same way. We specify the class of functions, f;,
using a formula and use a function to fit its parameters. Consider binary classification
and logistic regression.

125000 -

100000 ~

75000

E(61)

50000 -

25000 -

Figure 6-3. Error values for different choices of parameters

189

CHAPTER 6 SUPERVISED LEARNING

1251

100 1

dist

5 10 15 20 25
speed

Figure 6-4. Best regression line going through (0,0)

Here, we can use the breast cancer data from the mlbench library that we also
discussed in Chapter 3 and ask if the clump thickness has an effect on the risk of a tumor
being malignant. That is, we want to see if we can predict the Class variable from the C1.
thickness variable:

library(mlbench)
data("BreastCancer")
BreastCancer |> head()

Id Cl.thickness Cell.size Cell.shape
1 1000025 5 1 1
2 1002945 5 4 4
3 1015425 3 1 1
4 1016277 6 8 8
5 1017023 4 1 1
6 1017122 8 10 10

190

https://doi.org/10.1007/978-1-4842-8155-0_3

#Ht
#it
#H
#H
#Hit
#Hit
#Ht
#Hit
##
#H
#Hit
#Hit
#H
#Ht

CHAPTER 6 SUPERVISED LEARNING

Marg.adhesion Epith.c.size Bare.nuclei

1
2
3
4
5
6

Bl.cromatin
1 3
2 3
3 3
4 3
5 3
6 9

We can plot the data against the fit; see Figure 6-5. Since the malignant status is

1 2

5 7

1 2

1 3

3 2

8 7

Normal.nucleoli Mitoses
1 1
2 1
1 1
7 1
1 1
7 1

1
10

10
Class
benign
benign
benign
benign
benign
malignant

either 0 or 1, the points would overlap, but if we add a little jitter to the plot, we can still

see them, and if we make them slightly transparent, we can see the density of the points.

Class

malignant4 § & &§ .g * s" *’ ! ® ‘

T Y L1 L

5 6 7 8 9 10

Cl.thickness

Figure 6-5. Breast cancer class vs. clump thickness

191

CHAPTER 6 SUPERVISED LEARNING

BreastCancer |»>
ggplot(aes(x = Cl.thickness, y = Class)) +
geom jitter(height = 0.05, width = 0.3, alpha = 0.4)

For classification, we still specify the prediction function y = f(x) using the formula
y ~ x.The outcome parameter fory ~ xis just binary now. To fit a logistic regression,
we need to use the glm() function (generalized linear model) with the family set to
"binomial". This specifies that we use the logistic function to map from the linear space
of x and 6 to the unit interval. Aside from that, fitting and getting results are very similar.

We cannot directly fit the breast cancer data with logistic regression, though. There
are two problems. The first is that the breast cancer data set considers the clump
thickness ordered factors, but for logistic regression, we need the input variable to be
numeric. While, generally, it is not advisable to directly translate categorical data into
numeric data, judging from the plot it seems okay in this case.

Using the function as.numeric() will do this, but remember that this is a risky
approach when working with factors! It actually would work for this data set, but we will
use the safer approach of first translating the factor into strings and then into numbers.

The second problem is that the glm() function expects the response variable to be
numerical, coding the classes like 0 or 1, while the BreastCancer data again encodes
the classes as a factor. Generally, it varies a little from algorithm to algorithm whether a
factor or a numerical encoding is expected for classification, so you always need to check
the documentation for that, but in any case, it is simple enough to translate between the
two representations.

We can translate the input variable to numerical values and the response variable
to 0 and 1 and plot the data together with a fitted model; see Figure 6-6. For the geom_
smooth() function, we specify that the method is glm and that the family is binomial. To
specify the family, we need to pass this argument on to the smoothing method, and that
is done by giving the parameter method.args a list of named parameters; here, we give it
list(family = "binomial):

BreastCancer |>
mutate(Thickness =
as.numeric(as.character(Cl.thickness))) |»>
mutate(Malignant = ifelse(Class != "benign", 1, 0)) |>
ggplot(aes(x = Thickness, y = Malignant)) +

192

CHAPTER 6 SUPERVISED LEARNING

geom_jitter(height = 0.05, width = 0.3, alpha = 0.4) +
geom_smooth(method = "glm", formula =y ~ x,

method.args = list(family = "binomial"))

1.00 4 ;é‘w ®e % g.:?; gs.‘: k# %;

0.75 1

Malignant
o
3

0.25

0.00 -

7.5 10.0

@
e®
EREy.
25 5.0
Thickness

Figure 6-6. Logistic regression fit to breast cancer data

To get the fitted object, we use glm() like we used 1m() for the linear regression:?

BreastCancer %>%
mutate(Thickness =

as.numeric(as.character(Cl.thickness))) %>%

mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%
glm(Malignant ~ Thickness,

family

= "binomial",
data = .)

2In this pipeline, we have switched to %>% again, because we need the left-hand side to go into the
data argument in glm.

193

CHAPTER 6 SUPERVISED LEARNING

#Ht

Call: glm(formula = Malignant ~ Thickness, family = "binomial", data = .)
#H

Coefficients:

(Intercept) Thickness

#H# -5.1602 0.9355

#H#

Degrees of Freedom: 698 Total (i.e. Null); 697 Residual
Null Deviance: 900.5

Residual Deviance: 464.1 AIC: 468.1

Model Matrices and Formula

Most statistical models and machine learning algorithms actually create a map not from
a single value, f(—; #) : x — y, but from a vector, f(—;) : x = y. When we fit a line for
single x and y values, we are actually also working with fitting a vector because we have
both the x values and the intercept to fit. That is why the model has two parameters, 6,
and 6,. For each x value, we are really using the vector (1, x) where the 1 is used to fit the
intercept

We shouldn’t confuse this with the vector we have as input to the model fitting,
though. If we have data (x, t) to fit, then we already have a vector for our input data. But
what the linear model actually sees is a matrix for x, so let us call that X. This matrix,
known as the model matrix, has a row per value in x, and it has two columns, one for the
intercept and one for the x values:

We can see what model matrix R generates for a given data set and formula using the
model.matrix() function. For the cars data, if we wish to fit dist vs. speed, we get this:

cars %>%
model.matrix(dist ~ speed, data = .) %>%

194

head(5)
(Intercept) speed
1 1 4
2 1 4
3 1 7
##t 4 1 7
5 1 8

If we remove the intercept, we simply get this:

cars %>%

model.matrix(dist ~ speed - 1, data = .) %%

head(5)
speed
1 4
2 4
3 7
4 7
5 8

CHAPTER 6 SUPERVISED LEARNING

Pretty much all learning algorithms work on a model matrix, so, in R, they are

implemented to take a formula for specifying the model and then building the model

matrix from that and the input data.

For linear regression, the map is a pretty simple one. If we let the parameters 67 = (6, 6,),

then it is just multiplying that with the model matrix, X:

1 x 0, +
1 x, 0 0, +
X-0=|1 x, { ‘i: 0, +
A 91 :
1 x, | 160, +

0,x,
0,x,

0,x,

91 xn

This combination of formulas and model matrices is a powerful tool for specifying

models. Since all the algorithms we use for fitting data work on model matrices anyway,

195

CHAPTER 6 SUPERVISED LEARNING

there is no reason to hold back on how complex formulas to give them. The formulas will
just be translated into model matrices anyhow, and they can all deal with them.
If you want to fit more than one parameter, no problem. You just writey ~ x + z,and

the model matrix will have three columns:

1 x 2z

1 x, z
X=|1 x5 z

11 x, z,]

Our model fitting functions are just as happy to fit this model matrix as the one we
get from just a single variable.

So if we wanted to fit the breast cancer data to both cell thickness and cell size, we
can do that just by adding both explanatory variables in the formula:

BreastCancer %>%

mutate(Thickness =

as.numeric(as.character(Cl.thickness)),

CellSize =

as.numeric(as.character(Cell.size))) %>%
mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%
model.matrix(Malignant ~ Thickness + CellSize,

data = .) %%

head(5)
(Intercept) Thickness CellSize
1 1 5 1
#t 2 1 5 4
3 1 3 1
4 1 6 8
#t 5 1 4 1

The generalized linear model fitting function will happily work with that:

BreastCancer %>%
mutate(Thickness =
as.numeric(as.character(Cl.thickness)),

196

#H
#Hit
#Ht
#H
Hit
#Ht
#H
Hit
#Hit
#H
#Ht

CHAPTER 6 SUPERVISED LEARNING

CellSize =
as.numeric(as.character(Cell.size))) %>%
mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%
glm(Malignant ~ Thickness + CellSize, family = "binomial", data = .)

Call: glm(formula = Malignant ~ Thickness + CellSize, family = "binomial",

C
(

D
N
R

data = .)

oefficients:
Intercept) Thickness CellSize
-7.1517 0.6174 1.1751

egrees of Freedom: 698 Total (i.e. Null); 696 Residual
ull Deviance: 900.5
esidual Deviance: 212.3 AIC: 218.3

Translating data into model matrices also works for factors; they are just represented

as a binary vector for each level:

BreastCancer %>%

#Hit
#H
#Ht
#Hit
#Hit
#H
#Hit
#Ht

vi B W N R

1

2

Hit

mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%
model.matrix(Malignant ~ Bare.nuclei, data = .) %%

head(5)

(Intercept) Bare.nuclei2 Bare.nuclei3
1 0 0
1 0 0
1 1 0
1 0 0
1 0 0

Bare.nuclei4 Bare.nuclei5 Bare.nuclei6
0 0 0
0 0 0
0 0 0

197

CHAPTER 6 SUPERVISED LEARNING

4 1 0 0
5 0 0 0
Bare.nuclei7 Bare.nuclei8 Bare.nuclei9
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
Bare.nucleilo
1 0
2 1
3 0
4 0
5 0

The translation for ordered factors gets a little more complicated, but R will happily
do it for you:

BreastCancer %>%
mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%

model.matrix(Malignant ~ Cl.thickness, data = .) %>%
head(5)
(Intercept) Cl.thickness.L Cl.thickness.Q
1 1 -0.05504819 -0.34815531
2 1 -0.05504819 -0.34815531
3 1 -0.27524094 -0.08703883
4 1 0.05504819 -0.34815531
5 1 -0.16514456 -0.26111648
Cl.thickness.C Cl.thickness”4 Cl.thickness”5
H## 1 0.1295501 0.33658092 -0.21483446
2 0.1295501 0.33658092 -0.21483446
3 0.3778543 -0.31788198 -0.03580574
4 -0.1295501 0.33658092 0.21483446
5 0.3346710 0.05609682 -0.39386318
Cl.thickness”6 Cl.thickness”7 Cl.thickness”8
1 -0.3113996 0.3278724 0.2617852

198

#Ht
#it
#H
#H
#Hit
#Hit
#Ht
#Hit
##
#H

vi B W N R

-0.3113996
0.3892495
-0.3113996
0.2335497

0.3278724
-0.5035184
-0.3278724

0.2459043

Cl.thickness”9
-0.5714300
-0.5714300
-0.1632657

0.5714300
0.3809534

0.2617852
0.3739788
0.2617852
-0.5235703

CHAPTER 6 SUPERVISED LEARNING

If you want to include interactions between your parameters, you specify that using *

instead of +:

BreastCancer %>%

#
#H
#Hit
#Hit
#H
#Hit
#t
#
Hit
#it

m

Ui A WN R

=

utate(Thickness =

as.numeric(as.character(Cl.thickness)),

CellSize =

as.numeric(as.character(Cell.size))) %>%
mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%
model.matrix(Malignant ~ Thickness * CellSize,

data = .) %%

head(5)
(Intercept) Thickness CellSize
1 5 1
1 5 4
1 3 1
1 6 8
1 4 1
Thickness:CellSize
5
20
3

199

CHAPTER 6 SUPERVISED LEARNING

#t 4 48
5 4

How interactions are modelled depends a little bit on whether your parameters are
factors or numeric, but for numeric values, the model matrix will just contain a new
column with the two values multiplied. For factors, you will get a new column for each
level of the factor:

BreastCancer %>%
mutate(Thickness =
as.numeric(as.character(Cl.thickness))) %>%
mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%
model.matrix(Malignant ~ Thickness * Bare.nuclei, data = .) %>%
head(3)

(Intercept) Thickness Bare.nuclei2 Bare.nuclei3

#H o1 1 5 0 0
#H 2 1 5 0 0
#t 3 1 3 1 0
Bare.nuclei4 Bare.nuclei5 Bare.nuclei6

H## 1 0 0 0

2 0 0 0

3 0 0 0

Bare.nuclei7 Bare.nuclei8 Bare.nuclei9

1 0 0 0

2 0 0 0

3 0 0 0

Bare.nucleil0 Thickness:Bare.nuclei2

#t 1 0 0

#H# 2 1 0

3 0 3

Thickness:Bare.nuclei3 Thickness:Bare.nuclei4
1 0 0
2 0 0
#t 3 0 0
Thickness:Bare.nuclei5 Thickness:Bare.nuclei6
H## 1 0 0

200

CHAPTER 6 SUPERVISED LEARNING

2 0 0
3 0 0
Thickness:Bare.nuclei7 Thickness:Bare.nuclei8
1 0 0
#H# 2 0 0
3 0 0
Thickness:Bare.nuclei9 Thickness:Bare.nucleil0
1 0 0
2 0 5
3 0 0

The interaction columns all have : in their name, and you can specify an interaction

term directly by writing that in the model formula as well:

BreastCancer %>%
mutate(Thickness =
as.numeric(as.character(Cl.thickness))) %>%
mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%
model.matrix(Malignant ~ Thickness : Bare.nuclei, data = .) %>%
head(3)

(Intercept) Thickness:Bare.nucleil

1 1 5

2 1 0

3 1 0

Thickness:Bare.nuclei2 Thickness:Bare.nuclei3
H## 1 0 0
H##t 2 0 0
3 3 0
Thickness:Bare.nuclei4 Thickness:Bare.nucleis
HH# 1 0 0
2 0 0
3 0 0
Thickness:Bare.nuclei6 Thickness:Bare.nuclei7
1 0 0

201

CHAPTER 6 SUPERVISED LEARNING

2 0 0
3 0 0
Thickness:Bare.nuclei8 Thickness:Bare.nuclei9
1 0 0
2 0 0
3 0 0
Thickness:Bare.nucleil0
1 0
#i#t 2 5
3 0

If you want to use all the variables in your data except the response variable, you
can even use the formulay ~ . where the . will give you all parameters in your data
excepty.

Using formulas and model matrices also means that we do not have to use our data
raw. We can transform it before we give it to our learning algorithms. In general, we
can transform our data using any function ¢. It is traditionally called phi because we
call what it produces features of our data, and the point of it is to pull out the relevant
features of the data to give to the learning algorithm. It usually maps from vectors to
vectors, so you can use it to transform each row in your raw data into the rows of the
model matrix which we will then call ® instead of X:

—¢(x])—
—¢(x2)—
D=\ —¢(x;)-
¢(xn)

If this sounds very abstract, perhaps it will help to see some examples. We go back
to the cars data, but this time, we want to fit a polynomial to the data instead of a line.
If d denotes breaking distance and s the speed, then we want to fitd = 6, + 6;s + 0,s* +
.-+ +0,5". Let us just do n = 2, so we want to fit a second-degree polynomial. Don’t be
confused about the higher degrees of the polynomial, it is still a linear model. The linear
in linear model refers to the § parameters, not the data. We just need to map the single s
parameter into a vector with the different polynomial degrees, so 1 for the intercept, s for
the linear component, and s” for the squared component. So ¢(s) = (1, s, s?).

202

CHAPTER 6 SUPERVISED LEARNING

We can write that as a formula. There, we don’t need to specify the intercept term
explicitly—it will be included by default, and if we don’t want it, we have to remove it
with -1 in the formula—but we need speed, and we need speed”2:

cars %>%
model.matrix(dist ~ speed + speed*2, data = .) %>%
head()

(Intercept) speed
1
#Hit
#H#
##
##
#H#

oV A W N R
L N = =Y
© 0N N B D

Now this doesn’t quite work—you can see that we only got the intercept and
speed—and the reason is that multiplication is interpreted as interaction terms even if
it is interaction with the parameter itself. And interaction with itself doesn’t go into the
model matrix because that would just be silly.

To avoid that problem, we need to tell R that the speed”2 term should be interpreted
just the way it is. We do that using the identity function, I():

cars %>%
model.matrix(dist ~ speed + I(speed”2), data = .) %>%

head()
(Intercept) speed I(speed”2)
1 1 4 16
2 1 4 16
3 1 7 49
##t 4 1 7 49
5 1 8 64
6 1 9 81

Now our model matrix has three columns, which is precisely what we want.

203

CHAPTER 6 SUPERVISED LEARNING
We can fit the polynomial using the linear model function like this:

cars %>% lm(dist ~ speed + I(speed"2), data = .) %>%

summaxry ()
#H#
Call:
1m(formula = dist ~ speed + I(speed*2), data = .)
#H#
Residuals:
Hit Min 10 Median 30 Max
-28.720 -9.184 -3.188 4.628 45.152
#H#
Coefficients:
#t Estimate Std. Error t value Pr(>|t])
(Intercept) 2.47014 14.81716 0.167 0.868
speed 0.91329 2.03422 0.449 0.656
TI(speed™2) 0.09996 0.06597 1.515 0.136
##

Residual standard error: 15.18 on 47 degrees of freedom
Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532
F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12

or we can plot it like this (see Figure 6-7):

cars %>% ggplot(aes(x = speed, y = dist)) +
geom point() +
geom_smooth(method = "lm", formula =y ~ x + I(x"2))

This is a slightly better fitting model, but that wasn’t the point. You can see how you
can transform data in a formula to have different features to give to your fitting algorithms.

Validating Models

How did I know the polynomial fit was better than the linear fit? Well, theoretically

a second-degree polynomial should always be a better fit than a line since a line is a
special case of a polynomial. We just set 6, to zero. If the best-fitted polynomial doesn’t
have 6, = 0, then that is because we can fit the data better if it is not.

204

CHAPTER 6 SUPERVISED LEARNING

The result of fitting the polynomial tells me, in the output from the summary ()
function, that the variables are not significant. It tells me that both from the linear and
the squared component, though, so it isn’t that useful. Clearly, the points are on a line,
so it cannot be correct that there isn’t a linear component. I cannot use the summary
that much because it is only telling me that when I have both components, then neither
of them is statistically significant. That doesn’t mean much.

But should I even care, though? If I know that the more complex model always
fits better, then shouldn’t I just always use it? The problem with that idea is that while
the most complex model will always fit the training data—the data I use for fitting the
model—Dbetter, it will not necessarily generalize better. If T use a high enough degree
polynomial—ifI have a degree that is the same as the number of data points—I can fit
the data perfectly. But it will be fitting both the systematic relationship between x and
y and also the statistical errors in our targets ¢. It might be utterly useless for predicting
point number 7 + 1.

What I really need to know is whether one or the other model is better at predicting
the distance from the speed.

120 1 °

dist

5 10 15 20 25
speed

Figure 6-7. The cars data fitted to a second-degree polynomial
205

CHAPTER 6 SUPERVISED LEARNING

We can fit the two models and get their predictions using the predict() function. It
takes the fitted model as the first argument and data to predict on as the second:

line <- cars %>% lm(dist ~ speed, data = .)
poly <- cars %>% lm(dist ~ speed + I(speed”*2), data = .)

predict(line, cars) |> head()

#Hit 1 2 3 4 5
-1.849460 -1.849460 9.947766 9.947766 13.880175
#Hit 6

17.812584

predict(poly, cars) |> head()

#Hit 1 2 3 4 5
7.722637 7.722637 13.761157 13.761157 16.173834
#Ht 6

18.786430

Evaluating Regression Models

To compare the two models, we need a measure of how well they fit. Since both models
are fitting the squared distances from predictions to targets, a fair measure would be
looking at the mean squared error. The unit of that would be distance squared, though,
so we usually use the square root of this mean distance to measure the quality of the
predictions, which would give us the errors in the distance unit:

rmse <- function(x,t) sqrt(mean(sum((t - x)"2)))
rmse(predict(line, cars), cars$dist)

[1] 106.5529

rmse(predict(poly, cars), cars$dist)

[1] 104.0419

206

CHAPTER 6 SUPERVISED LEARNING

Now clearly the polynomial fits slightly better, which it should, based on theory, but
there is a bit of a cheat here. We are looking at how the models work on the data we used
to fit them. The more complex model will always be better at this. That is the problem we
are dealing with. The more complex model might be overfitting the data and capturing
the statistical noise we don’t want it to capture. What we really want to know is how well
the models generalize; how well do they work on data they haven’t already seen and
used to fit their parameters?

We have used all the data we have to fit the models. That is generally a good idea. You
want to use all the data available to get the best-fitted model. But to compare models, we
need to have data that isn’t used in the fitting.

We can split the data into two sets, one we use for training and the other we use to
test the models. There are 50 data points, so I can take the first 25 to train my models on
and the next 25 to test them on:

training data <- cars[1:25,]
test data <- cars[26:50,]

line <- training data %>% 1lm(dist ~ speed, data = .)
poly <- training data %>% lm(dist ~ speed + I(speed*2), data = .)

rmse(predict(line, test data), test data$dist)
[1] 88.89189
rmse(predict(poly, test data), test data$dist)
[1] 83.84263

The second-degree polynomial is still better, but I am also still cheating. There is
more structure in my data set than just the speed and distances. The data frame is sorted
according to the distance, so the training set has all the short distances and the test data
all the long distances. They are not similar. That is not good.

In general, you cannot know if there is such structure in your data. In this particular
case, it is easy to see because the structure is that obvious, but sometimes it is more
subtle. So when you split your data into training and test data, you will want to sample
data points randomly. That gets rid of the structure that is in the order of the data points.

207

CHAPTER 6 SUPERVISED LEARNING
We can use the sample() function to sample randomly zeros and ones:

sampled cars <- cars |>
mutate(training = sample(0:1, nrow(cars), replace = TRUE))

sampled cars |> head()

speed dist training

#H# 1 4 2 1
#t 2 4 10 0
#t 3 7 4 1
4 7 22 1
#t 5 8 16 0
6 9 10 1

This doesn’t give us 50/50 training and test data since which data point gets into
each category will depend on the random samples, but it will be roughly half the data we
get for training:

training data <- sampled cars |> filter(training == 1)
test data <- sampled cars |> filter(training == 0)

training data |> head()

speed dist training
1 4 2
#t 2 7 4
#t 3 7 22
4 9 10
5 10 18
6 10 34

S N N N

test data |> head()

speed dist training
#t 1 4 10
2 8 16
3 10 26
4 12 14
#t 5 12 20
6 12 24

208

o O ©O O ©o o

CHAPTER 6 SUPERVISED LEARNING
Now we can get a better estimate of how the functions are working:

line <- training data %>% 1lm(dist ~ speed, data = .)
poly <- training data %>% lm(dist ~ speed + I(speed*2), data = .)

rmse(predict(line, test data), test data$dist)
[1] 66.06671
rmse(predict(poly, test data), test data$dist)
[1] 65.8426

Now, of course, the accuracy scores depend on the random sampling when we create
the training and test data, so you might want to use more samples. We will return to that
in the next section.

Once you have figured out what the best model is, you will still want to train it on all
the data you have. Splitting the data is just a tool for evaluating how well different models
work. For the final model you choose to work with, you will always want to fit it with all
the data you have.

Evaluating Classification Models

If you want to do classification rather than regression, then the root mean square error
is not the function to use to evaluate your model. With classification, you want to know
how many data points are classified correctly and how many are not.

As an example, we can take the breast cancer data and fit a model:

formatted data <- BreastCancer |>
mutate(Thickness =
as.numeric(as.character(Cl.thickness)),
CellSize =
as.numeric(as.character(Cell.size))) %>%
mutate(Malignant = ifelse(Class != "benign", 1, 0))

fitted model <- formatted data %>%
glm(Malignant ~ Thickness + CellSize,
family = "binomial”,
data = .)

209

CHAPTER 6 SUPERVISED LEARNING

To get its prediction, we can again use predict (), but we will see that for this
particular model, the predictions are probabilities of a tumor being malignant:

predict(fitted model, formatted data, type = "response") [> head()

i 1 2 3 4
0.05266571 0.65374326 0.01591478 0.99740926
it 5 6

0.02911157 0.99992795

We would need to translate that into actual predictions. The natural choice here is
to split the probabilities at 50%. If we are more certain that a tumor is malignant than
benign, we will classify it as malignant:

classify <- function(probability) ifelse(probability < 0.5, 0, 1)
classified malignant <- classify(predict(fitted model, formatted data))

Where you want to put the threshold of how to classify depends on your data and the
consequences of the classification. In a clinical situation, maybe you want to examine
further a tumor with less than 50% probability that it is malignant, or maybe you don’t
want to tell patients that a tumor might be malignant if it is only 50% probable. The
classification should take into account how sure you are about the classification, and
that depends a lot on the situation you are in. Of course, you don’t want to bet against
the best knowledge you have, so I am not suggesting that you should classify everything
below probability 75% as the “false” class, for instance. The only thing you gain from this
is making worse predictions than you could. But sometimes you want to leave some data
unpredicted. So here you can use the probabilities the model predicts to leave some data
points as NA. How you want to use that your prediction gives you probabilities instead of
just classes—assuming it does, it depends on the algorithm used for classifying—is up to
you and the situation you are analyzing.

Confusion Matrix

In any case, if we just put the classification threshold at 50/50, then we can compare the
predicted classification against the actual classification using the table() function:

210

CHAPTER 6 SUPERVISED LEARNING
table(formatted data$Malignant, classified malignant)

classified malignant
#Hit 0o 1
#0447 11
1 31 210

This table, contrasting predictions against true classes, is known as the confusion
matrix. The rows count how many zeros and ones we see in the formatted
data$Malignant argument and the columns how many zeros and ones we see in the
classified _malignant argument. So the first row is where the data says the tumors are
not malignant, and the second row is where the data says that the tumors are malignant.
The first column is where the predictions say the tumors are not malignant, while the
second column is where the predictions say that they are.

This, of course, depends on the order of the arguments to table(); it doesn’t know
which argument contains the data classes and which contains the model predictions. It
can be a little hard to remember which dimension, rows or columns, are the predictions,
but you can provide a parameter, dnn (dimnames names), to make the table remember it
for you:

table(formatted data$Malignant, classified malignant,
dnn = c("Data", "Predictions"))

#Ht Predictions
Data 0 1
it 0 447 11
#H 1 31 210

The correct predictions are on the diagonal, and the off-diagonal values are where
our model predicts incorrectly.

The first row is where the data says that tumors are not malignant. The first element,
where the model predicts that the tumor is benign, and the data agrees, is called the true
negatives. The element to the right of it, where the model says a tumor is malignant but
the data says it is not, is called the false positives.

The second row is where the data says that tumors are malignant. The first column
is where the prediction says that it isn’t a malignant tumor, and this is called the false
negatives. The second column is the cases where both the model and the data say that
the tumor is malignant. That is the true positives.

211

CHAPTER 6 SUPERVISED LEARNING

The terms positives and negatives are a bit tricky here. I managed to sneak them past
you by having the classes called zeros and ones which you already associate with true
and false and positive and negative and by having a data set where it was more natural to
think of malignant tumors as being the ones we want to predict.

The classes do not have to be zeros and ones. That was just easier in this particular
model where I had to translate the classes into zeros and ones for the logistic
classification anyway. But really, the classes are "benign" and "malignant":

classify <- function(probability)
ifelse(probability < 0.5, "benign", "malignant")
classified <- classify(predict(fitted model, formatted data))

table(formatted data$Class, classified,
dnn=c("Data", "Predictions"))

Predictions

Data benign malignant
benign 447 11
malignant 31 210

What is positive and what is negative now depends on whether we want to predict
malignant or benign tumors. Of course, we really want to predict both well, but the
terminology considers one class true and the other false.

The terms carry over into several of the terms used in classification described in the
following where the classes and predictions are not so explicitly stated. In the confusion
matrix, we can always see exactly what the true classes are and what the predicted
classes are, but once we start summarizing it in various ways, this information is no
longer explicitly available. The summaries still will often depend on which class we
consider “positive” and which we consider “negative,” though.

Since which class is which really is arbitrary, so it is always worth a thought deciding
which you want to call which and definitely something you want to make explicit in any
documentation of your analysis.

212

CHAPTER 6 SUPERVISED LEARNING

Accuracy

The simplest measure of how well a classification is doing is the accuracy. It measures
how many classes it gets right out of the total, so it is the diagonal values of the confusion
matrix divided by the total:

confusion matrix <- table(formatted data$Class, classified,

dnn=c("Data", "Predictions"))
accuracy <- sum(diag(confusion matrix)) / sum(confusion matrix)
accuracy

[1] 0.9399142

This measure of the classification accuracy is pretty simple to understand, but you
have to be careful in what you consider a good accuracy. Of course, “good” is a subjective
term, so let us get technical and think in terms of “better than chance.” That means that
your baseline for what you consider “good” is randomly guessing. This, at least, is not
subjective.

It is still something you have to consider a bit carefully, though. Because what does
randomly guessing mean? We naturally think of a random guess as one that chooses
either class with the same 50/50 probability. If the data has the same number of
observations for each of the two classes, then that would be a good strategy and would
get the average accuracy of 0.5. So better than chance would, in that case, be better
than 0.5. The data doesn’t have to have the same number of instances for each class.
The breast cancer data does not. The breast cancer data has more benign tumors than

malignant tumors:

table(BreastCancer$Class)

##
benign malignant
Hit 458 241

Here, you would be better off guessing more benign than malignant. If you had to
guess and already knew that you were more than twice as likely to have a benign than a
malignant tumor, you would always guess benign:

213

CHAPTER 6 SUPERVISED LEARNING

tbl <- table(BreastCancer$Class)
tb1l["benign"] / sum(tbl)

benign
0.6552217

Always guessing “benign” is a lot better than 50/50. Of course, it is arguable whether
this is guessing, but it is a strategy for guessing, and you want your model to do better
than this simple strategy.

Always guessing the most frequent class—assuming that the frequency of the classes
in the data set is a representative for the frequency in new data as well (which is a strong
assumption)—is the best strategy for guessing.

If you actually want to see “random” guessing, you can get an estimate of this by
simply permuting the classes in the data. The function sample() can do this:

table(BreastCancer$Class, sample(BreastCancer$Class))

#H

#H# benign malignant
benign 291 167
malignant 167 74

This gives you an estimate for random guessing, but since it is random, you would
want to get more than one to get a feeling for how much it varies with the guess:

accuracy <- function(confusion matrix)
sum(diag(confusion _matrix))/sum(confusion matrix)
sample table <- function()
table(BreastCancer$Class, sample(BreastCancer$Class))

replicate(8, sample table() |> accuracy())

[1] 0.5450644 0.5336195 0.5879828 0.5565093
[5] 0.5622318 0.5565093 0.5364807 0.5278970

As you can see, even random permutations do better than 50/50—but the better
guess is still just the most frequent class, and at the very least, you would want to
beat that.

214

CHAPTER 6 SUPERVISED LEARNING

Sensitivity and Specificity

We want a classifier to have a high accuracy, but accuracy isn’t everything. The costs in
real life of misclassifying often have different consequences when you classify something
like a benign tumor as malignant from when you classify a malignant tumor as benign.
In a clinical setting, you have to weight the false positives against the false negatives and
the consequences they have. You are interested in more than pure accuracy.

We usually use two measures of the predictions of a classifier that takes that into
account: the specificity and the sensitivity of the model. The first measure captures how
often the model predicts a negative case correctly. In the breast cancer data, this is how
often, when the model predicts a tumor as benign, it actually is:

(specificity <- confusion matrix[1,1] /
(confusion matrix[1,1] + confusion matrix[1,2]))

[1] 0.9759825

The sensitivity does the same thing but for the positives. It captures how well, when
the data has the positive class, your model predicts this correctly:

(sensitivity <- confusion matrix[2,2]/
(confusion matrix[2,1] + confusion matrix[2,2]))

[1] 0.8713693

If your accuracy is 100%, then both of these will also be 100%. But there is usually a
trade-off between the two. Using the “best guessing” strategy of always picking the most
frequent class will set one of the two to 100% but at the cost of the other. In the breast
cancer data, the best guess is always benign, the negative case, and always guessing
benign will give us a specificity of 100%.

This strategy can always achieve 100% for one of the two measures but at the cost
of setting the other to 0%. If you only ever guess at one class, you are perfect when the
data is actually from that class, but you are always wrong when the data is from the
other class.

Because of this, we are never interested in optimizing either measure alone. That is
trivial. We want to optimize both. We might consider specificity more important than
sensitivity or vice versa, but even if we want one to be 100%, we also want the other to be
as good as we can get it.

215

CHAPTER 6 SUPERVISED LEARNING

To evaluate how much better than chance we are doing, we can again compare to
random permutations. This tells us how well we are doing compared to random guesses
for both:

specificity <- function(confusion matrix)
confusion matrix[1,1] /
(confusion matrix[1,1]+confusion matrix[1,2])

sensitivity <- function(confusion matrix)
confusion matrix[2,2] /
(confusion matrix[2,1]+confusion matrix[2,2])

prediction summary <- function(confusion matrix)
c("accuracy" = accuracy(confusion matrix),

specificity(confusion matrix),

sensitivity(confusion matrix))

"specificity"

"sensitivity"

random_prediction_summary <- function()
prediction_summary(
table(BreastCancer$Class, sample(BreastCancer$Class))

)

replicate(3, random prediction summary())

i [,1] [,2] [,3]
accuracy 0.5536481 0.5536481 0.5278970
specificity 0.6593886 0.6593886 0.6397380
sensitivity 0.3526971 0.3526971 0.3153527

Other Measures

The specificity is also known as the true negative rate since it measures how many of the
negative classifications are true. Similarly, the sensitivity is known as the true positive
rate. There are analogue measures for getting things wrong. The false negative rate is
the analogue of the true negative rate, but instead of dividing the true negatives by all
the negatives, it divides the false negatives by all the negatives. The false positive rate
similarly divides the false positives by all the positives. Having these two measures
together with sensitivity and specificity is not really adding much. The true negative rate

216

CHAPTER 6 SUPERVISED LEARNING

is just one minus the false negative rate and similar for the true positive rate and false
positive rate. They just focus on when the model gets things wrong instead of when it
gets things right.

All four measures split the confusing matrix into the two rows. They look at when the
data says the class is true and when the data says the class is false. We can also look at the
columns instead and consider when the predictions are true and when the predictions
are false.

When we look at the column where the predictions are false—for the breast cancer
when the tumors are predicted as benign—we have the false omission rate, which is the
false negatives divided by all the predicted negatives:

confusion matrix[2,1] / sum(confusion matrix[,1])
[1] 0.06485356

The negative predictive value is instead the true negatives divided by the predicted
negatives:

confusion matrix[1,1] / sum(confusion matrix[,1])
[1] 0.9351464

These two will always sum to one, so we are really only interested in one of them, but
which we choose is determined by which we find more important.

For the predicted positives, we have the positive predictive values and false
discovery rate:

confusion matrix[2,2] / sum(confusion matrix[,2])
[1] 0.9502262

confusion matrix[1,2] / sum(confusion matrix[,2])
#t [1] 0.04977376

The false discovery rate, usually abbreviated FDR, is the one most frequently used.
It is closely related to the threshold used on p-values (the significance thresholds) in
classical hypothesis testing. Remember that if you have a 5% significance threshold
in classical hypothesis testing, it means that when the null hypothesis is true, you will
predict it is false 5% of the time. This means that your false discovery rate is 5%.

217

CHAPTER 6 SUPERVISED LEARNING

The classical approach is to pick an acceptable false discovery rate; by convention, this is
5%, but there is nothing magical about that number—it is simply convention—and then that
threshold determines how extreme a test statistic has to be before we switch from predicting
anegative to predicting a positive. This approach entirely ignores the cases where the data
is from the positive class. It has its uses, but not for classification where you have data from
both the positive class and the negative class, so we will not consider it more here. You will
have seen it in statistics classes, and you can learn more about it in any statistics textbook.

More Than Two Classes

All of the above considers a situation where we have two classes, one we call positive
and one we call negative. This is a common case, which is the reason we have so many
measures for dealing with it, but it is not the only case. Quite often, we need to classify
data into more than two classes.

The only measure you can reuse there is the accuracy. The accuracy is always the
sum along the diagonal divided by the total number of observations. Accuracy still
isn’t everything in those cases. Some classes are perhaps more important to get right
than others—or just harder to get right than others—so you have to use a lot of sound
judgment when evaluating a classification. There are just fewer rules of thumb to use
here, so you are more left to your own judgment.

Sampling Approaches

To validate classifiers, I suggested splitting the data into a training data set and a test
data set. I also mentioned that there might be hidden structures in your data set, so you
always want to make this split a random split of the data.

Generally, there are a lot of benefits you can get out of randomly splitting your data
or randomly subsampling from your data. We have mostly considered prediction in
this chapter, where splitting the data into training and a test data lets us evaluate how
well a model does at predicting on unseen data. But randomly splitting or subsampling
from data is also very useful for inference. When we do inference, we can typically get
confidence intervals for model parameters, but these are based on theoretical results
that assume that the data is from some (usually) simple distribution. Data is generally
not. If you want to know how a parameter is distributed from the empirical distribution
of the data, you will want to subsample and see what distribution you get.

218

CHAPTER 6 SUPERVISED LEARNING

Random Permutations of Your Data

With the cars data, we split the observations into two equally sized data sets. Since this
data is ordered by the stopping distance, splitting it into the first half and the second half
makes the data sets different in distributions.

The simplest approach to avoiding this problem is to reorder your data randomly
before you split it. Using the sample() function, we can get a random permutation of any
input vector—we saw that earlier—and we can exploit this to get a random order of your
data set.

Using sample(1:n), we get a random permutation of the numbers from 1 to n. We
can select rows in a data frame by giving it a vector of indices for the rows. Combining
these two observations, we can get a random order of cars observations this way:

permuted cars <- cars[sample(1:nrow(cars)),]
permuted cars |> head(3)

speed dist
9 10 34
1 4 2
#H 48 24 93

The numbers to the left of the data frame are the original row numbers (it really is the
row names, but it is the same in this case).
We can write a simple function for doing this for general data frames:

permute_rows <- function(df) df[sample(1:nrow(df)),]
Using this, we can add it to a data analysis pipeline where we would write
permuted cars <- cars |> permute rows()

Splitting the data into two sets, training and testing, is one approach to subsampling,
but a general version of this is used in something called cross-validation. Here, the idea
is to get more than one result out of the random permutation we use. If we use a single
training/test split, we only get one estimate of how a model performs on a data set. Using
more gives us an idea about the variance of this.

219

CHAPTER 6 SUPERVISED LEARNING
We can split a data set into n groups like this:

group_data <- function(df, n) {
groups <- rep(1:n, each = nrow(df)/n)
split(df, groups)

You don’t need to understand the details of this function for now, but it is a good
exercise to try to figure it out, so you are welcome to hit the documentation and see if you
can work it out.

The result is a 1ist, a data structure we haven’t explored yet (but we will later in
the book, when we do some more serious programming). It is necessary to use a list
here since vectors or data frames cannot hold complex data, so if we combined the
result in one of those data structures, they would just be merged back into a single data
frame here.

As itis, we get something that contains n data structures that each have a data frame
of the same form as the cars data:

grouped cars <- cars |> permute_rows() |> group_data(5)
grouped _cars |> str()

List of 5

¢ 1:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 12 4 14 13 18 19 14 4 ...
..$ dist : num [1:10] 28 2 60 26 76 46 26 10 ...
¢ 2:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 15 13 12 18 20 18 12 15 ..
..$ dist : num [1:10] 54 34 20 84 32 42 24 26 ..
¢ 3:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 11 24 22 9 14 13 24 20 ...
..$ dist : num [1:10] 28 70 66 10 36 46 120 48..
$ 4:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 12 10 25 17 17 23 19 11 ..
..$ dist : num [1:10] 14 26 85 40 32 54 68 17 ..
$ 5:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 10 20 15 16 13 7 19 24 ...
..$ dist : num [1:10] 18 52 20 32 34 22 36 92 ..

220

CHAPTER 6 SUPERVISED LEARNING

grouped cars[[1]] # First sample

speed dist
15 12 28
1 4 2
22 14 60
16 13 26
34 18 76
37 19 46
20 14 26
2 4 10
5 8 16
#t 42 20 56

All you really need to know for now is that to get an entry in a list, you need to use
[[]] indexing instead of [] indexing.

If you use [], you will also get the data, but the result will be a list with one element,
which is not what you want:

grouped_cars[1]

#$ 1

i speed dist
15 12 28
1 4 2
#4 22 14 60
16 13 26
34 18 76
37 19 46
20 14 26
2 4 10
#t 5 8 16
#t 42 20 56

221

CHAPTER 6 SUPERVISED LEARNING

We can use the different groups to get estimates of the model parameters in the
linear model for cars:

Im(dist ~ speed, data = grouped cars[[1]])$coefficients

(Intercept) speed
-10.006702 3.540214

With a bit of programming, we can get the estimates for each group:

get _coef <- function(df)
Im(dist ~ speed, data = df)$coefficients

Get estimates from first group
estimates <- get coef(grouped cars[[1]])
for (i in 2:length(grouped cars)) {
Append the next group
estimates <- rbind(estimates, get coef(grouped cars[[i]]))

}

Estimates

i (Intercept) speed
estimates -10.00670 3.540214
-33.89655 4.862069
#H -29.25116 4.744186
-11.82554 3.555755
-14.87639 3.494779

Right away, I will stress that this is not the best way to do this, but it shows you how
it could be done. We will get to better approaches shortly. Still, you can see how splitting
the data this way lets us get distributions for model parameters.

There are several reasons why this isn’t the optimal way of coding this. The row
names are ugly, but that is easy to fix. The way we combine the estimates in the data
frame is inefficient—although it doesn’t matter much with such a small data set—and
later in the book, we will see why. The main reason, though, is that explicit loops like this
make it hard to follow the data transformations since it isn’t a pipeline of processing.

The package purrr lets us work on lists using pipelines. You import the package:

library(purrr)

222

CHAPTER 6 SUPERVISED LEARNING

and then you have access to the function map_df() that lets you apply a function to each
element of the list:

estimates <- grouped cars |> map_df(get coef)

The map_df function maps (as the name suggests) across its input, applying the
function to each element in the input list. The results of each function call are turned
into rows in a data frame (where the _df part of the name comes from). This pipeline is
essentially doing the same as the more explicit loop we wrote before; there is just less
code to write. If you are used to imperative programming languages, this will look very
succinct, but if you have experience in functional programming languages, it should look
familiar.

Cross-Validation

A problem with splitting the data into many small groups is that we get a large variance
in estimates. Instead of working with each little data set independently, we can remove
one of the data sets and work on all the others. This will mean that our estimates are no
longer independent, but the variance goes down. The idea of removing a subset of the
data and then cycling through the groups evaluating a function for each group that is left
out is called cross-validation. Well, it is called cross-validation when we use it to validate
prediction, but it works equally well for inferring parameters.

If we already have the grouped data frames in a list, we can remove one element from
the list using [-1] indexing—just as we can for vectors—and the result is a list containing
all the other elements. We can then combine the elements in the list into a single data
frame using the do.call("rbind",.) magical invocation.

So we can write a function that takes the grouped data frames and gives us another
list of data frames that contains data where a single group is left out. One way to do this
is listed as follows; that implementation uses the bind_rows function from the dplyr
package (get it using library(dplyr)):

cross_validation groups <- function(grouped df) {
remove _group <- function(group)
remove group "group" from the list
grouped _df[-group] |»
merge the remaining groups into one data frame
bind rows()

223

CHAPTER 6 SUPERVISED LEARNING

Iterate over indices from 1 to number of groups
seq_along(grouped df) |»
get the data frame with this group removed
map (remove_group)

This function is a little more spicy than those we have written before, but it doesn’t
use anything we haven’t seen already. In the function, we write another helper function,
remove_group. You can write functions inside other functions, and if you do, then the
inner function can see the variables in the outer function. Our remove_group function
can see the grouped df data frame. We give it an argument, group, and it removes
the group with that index using -group in the subscript grouped_df[-group]. Since
grouped_df is a list of data frames, removing one of them still leaves us with a list of
data frames, but we would rather have a single data frame. The bind_rows function
merges the list into a single data frame containing all the data points we didn’t remove.

With the function written, we can create the cross-validation groups. We use seq_
along(grouped df) to create all the numbers from one to the length of grouped df—
using this function is slightly safer than writing 1: len(grouped df) because it correctly
handles empty lists, so you should get used to using it. We loop over all these numbers
with a map function—this function is also from the purrr package and behaves like map
df except that it returns a list and not a data frame—and apply remove_group to each
index. This results in a list of data frames, which is exactly what we want.

We could have combined this with the group_data() function, but I prefer to write
functions that do one simple thing and combine them instead using pipelines. We can
use this function and all the stuff we did earlier to get estimates using cross-validation:

cars |»
permute_rows() |» # randomize for safety...
group_data(5) |» # get us five groups
cross_validation_groups() |» # then make five cross-validation groups
For each cross-validation group, estimate the cofficients and put
the results in a data frame
map_df(
We need a lambda expression here because 1m doesn't take
the data frame as its first arqument
\(df) Im(dist ~ speed, data = df)$coefficients

224

CHAPTER 6 SUPERVISED LEARNING

)

A tibble: 5 x 2
" (Intercept)” speed

#H <dbl> <dbl>
1 -18.0 3.92
#i# 2 -14.4 3.86
3 -20.1 4.15
4 -16.2 3.79
#4 5 -19.5 3.96

Where cross-validation is typically used is when leaving out a subset of the data for
testing and using the rest for training.

We can write a simple function for splitting the data this way, similar to the cross_
validation_groups() function. It cannot return a list of data frames but needs to return
alist of lists, each list containing a training data frame and a test data frame. It looks
like this:

cross_validation split <- function(grouped df) {
seq_along(grouped df) |» map(
\(group) list(
Test is the current group
test = grouped df[[group]],
Training is all the others
training = grouped df[-group] |» bind rows()
)

The function follows the same pattern as the previous, I just haven’t bothered with
writing an inner function; instead I use a lambda expression (\(group) ...).Itcreates
a list with two elements, test and training. In test, we put the current group—we
subscript with [[group]] to get the actual data frame instead of a list that holds it—and
in training, we put all the other groups. Here, we use [-group] to get a list of all the
other elements—[[-group]] would not work for us—and then we use the bind_rows()
function we saw earlier to merge the list into a single data frame.

Don’t worry if you don’t understand all the details of it. After reading later
programming chapters, you will. Right now, I hope you just get the gist of it.

225

CHAPTER 6 SUPERVISED LEARNING

I will not show you the result. It is just long and not that pretty, but if you want to see
it, you can type in

cars |>
permute_rows() |>
group data(5) |>
cross_validation split()

As we have seen, we can index into a list using [[]]. We can also use the $name
indexing like we can for data frames, so if we have a list 1st with a training data set and
a test data set, we can get them as 1st$training and 1st$test.

prediction_accuracy <- function(test_and_training) {
test_and training |»
map_dbl(
\(tt) {
Fit the model using training data
fit <- Im(dist ~ speed, data = tt$training)
Then make predictions on the test data
predictions <- predict(fit, newdata = tt$test)
Get root mean square error of result
rmse(predictions, tt$test$dist)

You should be able to understand most of this function even though we haven'’t
covered much R programming yet, but if you do not, then don’t worry.

You can then add this function to your data analysis pipeline to get the cross-
validation accuracy for your different groups:

cars |»>
permute_rows() |>
group data(s) |>
cross_validation split() |>
prediction accuracy()

[1] 56.62113 38.55348 33.52728 59.27442 48.77524

226

CHAPTER 6 SUPERVISED LEARNING

The prediction accuracy function isn’t general. It is hardwired to use a linear model
and the model dist ~ speed. It is possible to make a more general function, but that
requires a lot more R programming skills, so we will leave the example here.

Selecting Random Training and Testing Data

In the example earlier where I split the data cars into training and test data using
sample(0:1, n, replacement = TRUE), I didn’t permute the data and then
deterministically split it afterward. Instead, I sampled training and test based on
probabilities of picking any given row as training and test.

What I did was adding a column to the data frame where I randomly picked whether
an observation should be used for the training or for the test data. Since it required first
adding a new column and then selecting rows based on it, it doesn’t work well as part
of a data analysis pipeline. We can do better and slightly generalize the approach at the
same time.

To do this, I shamelessly steal two functions from the documentation of the purrr
package. They do the same thing as the grouping function I wrote earlier. If you do not
quite follow the example, do not worry. But I suggest you try to read the documentation
for any function you do not understand and at least try to work out what is going
on. Follow it as far as you can, but don’t sweat it if there are things you do not fully
understand. After finishing the entire book, you can always return to the example.

The grouping function earlier defined groups by splitting the data into n equally
sized groups. The first function here instead samples from groups specified by
probabilities. It creates a vector naming the groups, just as I did before. It just names the
groups based on named values in a probability vector and creates a group vector based
on probabilities given by this vector:

random_group <- function(n, probs) {
probs <- probs / sum(probs)
g <- findInterval(seq(0, 1, length
rightmost.closed
names (probs)[sample(g)]

n), c(0, cumsum(probs)),
TRUE)

227

CHAPTER 6 SUPERVISED LEARNING

If we pull the function apart, we see that it first normalizes a probability vector. This
just means that if we give it a vector that doesn’t sum to one, it will still work. To use it, it
makes the code easier to read if it already sums to one, but the function can deal with it,
even if it doesn’t.

The second line, which is where it is hardest to read, just splits the unit interval into
n subintervals and assigns a group to each subinterval based on the probability vector.
This means that the first chunk of the n intervals is assigned to the first group, the second
chunk to the second group, and so on. It is not doing any sampling yet, it just partitions
the unit interval into n subintervals and assigns each subinterval to a group.

The third line is where it is sampling. It now takes the n subintervals, permutes them,
and returns the names of the probability vector each one falls into.

We can see it in action by calling it a few times. We give it a probability vector where
we call the first probability “training” and the second “test”:

random _group(8, c(training = 0.5, test = 0.5))

[1] "training" "training" "training" "test"
[5] "test" "training" "test" "test"

random group(8, c(training = 0.5, test = 0.5))

[1] "training" "test" "training" "test"
[5] "training" "test" "training" "test"

We get different classes out when we sample, but each class is picked with 0.5
probability. We don’t have to pick them 50/50, though; we can choose more training
than test data, for example:

random group(8, c(training = 0.8, test = 0.2))

[1] "training" "training" "training" "training"

[5] "test" "training" "test" "training"

The second function just uses this random grouping to split the data set. It works
exactly like the cross-validation splitting we saw earlier:

partition <- function(df, n, probs) {
replicate(n, split(df, random group(nrow(df), probs)), FALSE)

228

CHAPTER 6 SUPERVISED LEARNING

The function replicates the subsampling n times. Here, n is not the number of
observations you have in the data frame, but a parameter to the function. It lets you pick
how many subsamples of the data you want.

We can use it to pick four random partitions. Here, with training and test, select with
50/50 probability:

random cars <- cars |> partition(4, c(training = 0.5, test = 0.5))

If you evaluate it on your computer and look at random_cars, you will see that
resulting values are a lot longer now. This is because we are not looking at smaller data
sets this time; we have as many observations as we did before (which is 50), but we have
randomly partitioned them.

We can combine this partition() function with the accuracy prediction
from before:

random_cars |> prediction_accuracy()

[1] 62.76781 87.52504 92.00689 84.99749

Examples of Supervised Learning Packages

So far in this chapter, we have looked at classical statistical methods for regression
(linear models) and classification (logistic regression), but there are many machine
learning algorithms for both, and many are available as R packages.

They all work similarly to the classical algorithms. You give the algorithms a data set
and a formula specifying the model matrix. From this, they do their magic. All the ideas
presented in this chapter can be used together with them.

In the following, I go through a few packages, but there are many more. A Google
search should help you find a package if there is a particular algorithm you are interested
in applying.

I present their use with the same two data sets we have used earlier, the cars data
where we aim at predicting the stopping distance from the speed and the BreastCancer
where we try to predict the class from the cell thickness. For both these cases, the
classical models—a linear model and a logistic regression—are more ideal solutions,
and these models will not outcompete them, but for more complex data sets, they can
usually be quite powerful.

229

CHAPTER 6 SUPERVISED LEARNING

Decision Trees

Decision trees work by building a tree from the input data, splitting on a parameter

in each inner node according to a variable value. This can be splitting on whether a

numerical value is above or below a certain threshold or which level a factor has.
Decision trees are implemented in the rpart package, and models are fitted just as

linear models are:
library(rpart)

Warning: package 'rpart' was built under R version
4.1.2

model <- cars %>% rpart(dist ~ speed, data = .)
rmse(predict(model, cars), cars$dist)

[1] 117.1626

Building a classifying model works very similar. We do not need to translate the cell
thickness into a numerical value, though; we can use the data frame as it is (but you can
experiment with translating factors into numbers if you are interested in exploring this):

model <- BreastCancer %>%
rpart(Class ~ Cl.thickness, data = .)

The predictions when we used the glm() function were probabilities for the tumor
being malignant. The predictions made using the decision tree give you the probabilities
both for being benign and malignant:

predict(model, BreastCancer) |> head()

benign malignant
1 0.82815356 0.1718464
2 0.82815356 0.1718464
3 0.82815356 0.1718464
4 0.82815356 0.1718464
5 0.82815356 0.1718464
6 0.03289474 0.9671053

230

CHAPTER 6 SUPERVISED LEARNING

To get a confusion matrix, we need to translate these probabilities into the
corresponding classes. The output of predict() is not a data frame but a matrix, so we
first convert it into a data frame using the function as.data.frame(), and then we use
the %%$% operator in the pipeline to get access to the columns by name in the next step:

predicted class <-
predict(model, BreastCancer) %>%
as.data.frame() %$%
ifelse(benign > 0.5, "benign", "malignant")

table(BreastCancer$Class, predicted class)

predicted class
benign malignant
benign 453 5
malignant 94 147
Another implementation of decision trees is the ctree() function from the party
package:
library(party)

model <- cars %>% ctree(dist ~ speed, data = .)
rmse(predict(model, cars), cars$dist)

[1] 117.1626

model <- BreastCancer %>%
ctree(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head()

[1] benign benign benign benign
[5] benign malignant
Levels: benign malignant

table(BreastCancer$Class, predict(model, BreastCancer))

#Ht

g benign malignant
benign 453 5
malignant 94 147

231

CHAPTER 6 SUPERVISED LEARNING

I like this package slightly more since it can make plots of the fitted models (see
Figure 6-8):

cars %>% ctree(dist ~ speed, data = .) %>% plot()

speed
p < 0.001

speed
p < 0.001

Node3(n=1 Node4(n=1 Node5(nh=19)

120 — 120 - 120 | +
100 — 100 — 100 - !
80 80 - © 80
60 — 60 | — GO—E
40 - _ 40 - 3 40 - L+
20 4 B3 20 4 —~ 20
0 - = 0 - 0 -

Figure 6-8. Plot of the cars decision tree

Random Forests

Random forests generalize decision trees by building several of them and combining
them. They are implemented in the randomForest package:

library(randomForest)

model <- cars %>% randomForest(dist ~ speed, data = .)
rmse(predict(model, cars), cars$dist)

[1] 83.7541

232

CHAPTER 6 SUPERVISED LEARNING

For classification, the predictions are the actual classes as a factor, so no translation
is needed to get a confusion matrix:

model <- BreastCancer %>%
randomForest(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head()

#H 1 2 3 4 5
benign benign benign malignant benign
6

malignant
Levels: benign malignant

table(BreastCancer$Class, predict(model, BreastCancer))

#H#

#H benign malignant
benign 437 21
malignant 76 165

Neural Networks

You can use a package called nnet to construct neural networks:
library(nnet)

You can use it for both classification and regression. We can see it in action on the
cars data set:

model <- cars %>% nnet(dist ~ speed, data = ., size = 5)

weights: 16

initial value 123632.602158
final value 120655.000000
converged

rmse(predict(model, cars), cars$dist)

[1] 347.3543

233

CHAPTER 6 SUPERVISED LEARNING

The neural networks require a size parameter specifying how many nodes you want

in the inner layer of the network. Here, I have just used five.

For classification, you use a similar call:

model <- BreastCancer %>%

#
#Hit
#Hit
#H
#Ht
#Hit
#Ht
#H

nnet(Class ~ Cl.thickness, data = ., size = 5)

weights: 56

initial value 453.502123
iter 10 value 226.317196
iter 20 value 225.125028
iter 30 value 225.099296
iter 40 value 225.098355
final value 225.098268
converged

The output of the predict() function is probabilities for the tumor being malignant:

predict(model, BreastCancer) %>% head()

#H
#Hit
#it
#H
#Hit
#Hit
#HH#

[,1]
1 0.3461460
2 0.3461460
3 0.1111139
4 0.5294021
5 0.1499858
6 0.9130386

We need to translate it into classes, and for this, we can use alambda expression:

predicted class <- predict(model, BreastCancer) %>%

{ ifelse(. < 0.5, "benign", "malignant") }

table(BreastCancer$Class, predicted class)

#Ht
#Hit
#Ht
#H

234

predicted class
benign malignant
benign 437 21
malignant 76 165

CHAPTER 6 SUPERVISED LEARNING

Support Vector Machines

Another popular method is support vector machines. These are implemented in the
ksvm() function in the kernlab package:

library(kernlab)

model <- cars %>% ksvm(dist ~ speed, data = .)
rmse(predict(model, cars), cars$dist)

[1] 92.41686

For classification, the output is again a factor we can use directly to get a
confusion matrix:

model <- BreastCancer %>%
ksvm(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head()

[1] benign benign benign malignant
[5] benign malignant
Levels: benign malignant

table(BreastCancer$Class, predict(model, BreastCancer))

#H

benign malignant
benign 437 21
malignant 76 165

Naive Bayes

Naive Bayes essentially assumes that each explanatory variable is independent of the
others and uses the distribution of these for each category of data to construct the
distribution of the response variable given the explanatory variables.

Naive Bayes is implemented in the e1071 package:

library(e1071)

235

CHAPTER 6 SUPERVISED LEARNING

The package doesn’t support regression analysis—after all, it needs to look
at conditional distributions for each output variable value—but we can use it for
classification. The function we need is naiveBayes (), and we can use the predict()
output directly to get a confusion matrix:

model <- BreastCancer %>%
naiveBayes(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head

[1] benign benign benign malignant
[5] benign malignant
Levels: benign malignant

table(BreastCancer$Class, predict(model, BreastCancer))

#Ht

benign malignant
benign 437 21
malignant 76 165
Exercises

Fitting Polynomials

Use the cars data to fit higher degree polynomials and use training and test data to
explore how they generalize. At which degree do you get the better generalization?

Evaluating Different Classification Measures

Earlier, I wrote functions for computing the accuracy, specificity (true negative rate),
and sensitivity (true positive rate) of a classification. Write similar functions for the other
measures described before. Combine them in a prediction_summary() function like I
did earlier.

236

CHAPTER 6 SUPERVISED LEARNING

Breast Cancer Classification

You have seen how to use the glm() function to predict the classes for the breast cancer

data. Use it to make predictions for training and test data, randomly splitting the data in

these two classes, and evaluate all the measures with your prediction_summary() function.
If you can, then try to make functions similar to the ones I used to split data and

evaluate models for the cars data.

Leave-One-0ut Cross-Validation (Slightly More Difficult)

The code I wrote earlier splits the data into 7 groups and constructs training and test
data based on that. This is called n-fold cross-validation. There is another common
approach to cross-validation called leave-one-out cross-validation. The idea here is to
remove a single data observation and use that for testing and all the rest of the data for
training.

This isn’t used that much if you have a lot of data—leaving out a single data point
will not change the trained model much if you have lots of data points anyway—but for
smaller data sets, it can be useful.

Try to program a function for constructing subsampled training and test data for this

strategy.

Decision Trees

Use the BreastCancer data to predict the tumor class, but try including more of the
explanatory variables. Use cross-validation or sampling of training/test data to explore
how it affects the prediction accuracy.

Random Forests

Use the BreastCancer data to predict the tumor class, but try including more of the
explanatory variables. Use cross-validation or sampling of training/test data to explore
how it affects the prediction accuracy.

237

CHAPTER 6 SUPERVISED LEARNING

Neural Networks

The size parameter for the nnet function specifies the complexity of the model. Test
how the accuracy depends on this variable for classification on the BreastCancer data.

Earlier, we only used the cell thickness variable to predict the tumor class. Include
the other explanatory variables and explore if having more information improves the
prediction power.

Support Vector Machines

Use the BreastCancer data to predict the tumor class, but try including more of the
explanatory variables. Use cross-validation or sampling of training/test data to explore
how it affects the prediction accuracy.

Compare Classification Algorithms

Compare the logistic regression, the neural networks, the decision trees, the random
forests, and the support vector machines in how well they classify tumors in the
BreastCancer data. For each, take the best model you obtained in your experiments.

238

CHAPTER 7

Unsupervised Learning

For supervised learning, we have one or more targets we want to predict using a set of
explanatory variables. But not all data analysis consists of making prediction models.
Sometimes, we are just trying to find out what structure is actually in the data we
analyze. There can be several reasons for this. Sometimes, unknown structures can tell
us more about the data. Sometimes, we want to explicitly avoid unknown structures (if
we have data sets that are supposed to be similar, we don’t want to discover later that
there are systematic differences). Whatever the reason, unsupervised learning concerns
finding unknown structures in data.

Dimensionality Reduction

Dimensionality reduction, as the name hints at, is a method used when you have high-
dimensional data and want to map it down into fewer dimensions. The purpose here
is usually to visualize data to try and spot patterns from plots. The analysis usually

just transforms the data and doesn’t add anything to it. It possibly removes some
information, but by reducing the number of dimensions, it can be easier to analyze.

The type of data where this is necessary is when the data has lots of columns. Not
necessarily many observations, but each observation has very many variables, and
there is often little information in any single column. One example is genetic data where
there is often hundreds of thousands, if not millions, of genetic positions observed in
each individual, and at each of these positions, we have a count of how many of a given
genetic variant is present at these markers, a number from zero to two. There is little
information in any single marker, but combined they can be used to tell a lot about an
individual. The first example we shall see in this chapter, principal component analysis,
is frequently used to map thousands of genetic markers into a few more informative
dimensions to reveal relationships between different individuals.

I will not use data with very high dimensionality but illustrate them with smaller data
sets where the methods can still be useful.

239
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_7

https://doi.org/10.1007/978-1-4842-8155-0_7#DOI

CHAPTER 7 UNSUPERVISED LEARNING

Principal Component Analysis

Principal component analysis (PCA) maps your data from one vector space to another
of the same dimensionality as the first. So it doesn’t reduce the number of dimensions
as such. However, it chooses the coordinate system of the new space such that the
most information is in the first coordinate, the second most information in the second
coordinate, and so on.

In its simplest form, it is just a linear transformation. It changes the basis of your
vector space such that the most variance in the data is along the first basis vector, and
each basis vector then has increasingly less of the variance. The basis of the new vector
space is called the components, and the name “principal component” refers to looking
at the first few, the most important, the principal components.

There might be some transformations of the data first to normalize it, but the final
step of the transformation is always such a linear map. Hence, after the transformation,
there is exactly the same amount of information in your data; it is just represented along
different dimensions.

Because the PCA just transforms your data, your data has to be numerical vectors,
to begin with. For categorical data, you will need to modify the data first. One approach
is to represent factors as a binary vector for each level, as is done with model matrices in
supervised learning. If you have a lot of factors in your data, though, PCA might not be
the right tool.

It is beyond the scope of this book to cover the theory of PCA in any detail—but
many other textbooks will—so let us just dig into how it is used in R.

To illustrate this, I will use the iris data set. It is not high-dimensional, but it will do
as a first example.

Remember that this data contains four measurements, sepal length and width and
petal length and width, for flowers from three different species:

iris |> head()

Sepal.Length Sepal.Width Petal.Length

1 5.1 3.5 1.4
#i 2 4.9 3.0 1.4
3 4.7 3.2 1.3
#H 4 4.6 3.1 1.5
S 5.0 3.6 1.4
6 5.4 3.9 1.7

240

Petal.Width

1 0
2
3
4
5
#t 6

o O O O o

.2
.2
.2
.2
.2
4

Species
setosa
setosa
setosa
setosa
setosa
setosa

CHAPTER 7 UNSUPERVISED LEARNING

To see if there is information in the data that would let us distinguish between

the three species based on the measurements, we could try to plot some of the

measurements against each other. See Figures 7-1 and 7-2.

iris |> ggplot() +

geom_point(aes(x

Sepal.Length, y

iris |> ggplot() +

geom_point(aes(x

Petal.Length, y

Sepal.Width, colour

Petal.Width, colour

Species))

Species))

It does look as if we should be able to distinguish the species. Setosa stands out on

both plots, but Versicolor and Virginia overlap on the first.

241

CHAPTER 7 UNSUPERVISED LEARNING

4.54
°
°
°
4.0+ °
°
° ° (X))
° o0
o o0 °
<« 3.51 es® o
o] oo 0000 o oo
§ () e o
- o000 o o o0 o000
g ° o0 X
O 3.0{e0 ec0o o co 000 eso0 o0 o0
2] ° oo oo0ee © °
000 00000 © I
e o000 oo
o0 o °
2.5 1 oo eo0 o o
° °
o o o °
(X
2.0 1 °
5 6 7 8

Sepal.Length

Figure 7-1. Plot of iris sepal length vs. sepal width

242

Species

setosa
versicolor

virginica

CHAPTER 7 UNSUPERVISED LEARNING

2.5 1 o®
o 0
o 000 [)
e o
ane []
2.0 on oo
«0e []
@e ®ee o
o0
- 0o o Species
5 1.5 o emen
§ o o [] ® setosa
g o amm
< YY) ® versicolor
o e ® L
o o- e00-0 ® virginica
°
0.5 A1 °
oeme
e
oD o
o®
0.0+ + + +
2 4 6

Petal.Length
Figure 7-2. Plot of iris petal length vs. petal width

Since this is such a simple data set, and since there is obviously a structure if we just
plot a few dimensions against each other, this is not a case where we would usually pull
out the cannon that is PCA, but this is a section on PCA, so we will.

Since PCA only works on numerical data, we need to remove the Species parameter,
but after that, we can do the transformation using the function prcomp:

pca <- iris |> select(-Species) |> prcomp()
pca

Standard deviations (1, .., p=4):

[1] 2.0562689 0.4926162 0.2796596 0.1543862
it

243

CHAPTER 7 UNSUPERVISED LEARNING

Rotation (n x k) = (4 x 4):

#it PC1 PC2 PC3
Sepal.length 0.36138659 -0.65658877 0.58202985
Sepal.Width -0.08452251 -0.73016143 -0.59791083
Petal.length 0.85667061 0.17337266 -0.07623608
Petal.Width 0.35828920 0.07548102 -0.54583143
#H PC4

Sepal.lLength 0.3154872

Sepal.Width -0.3197231

Petal.Length -0.4798390

Petal.Width 0.7536574

The object that this produces contains different information about the result. The
standard deviations tell us how much variance is in each component and the rotation
what the linear transformation is. If we plot the pca object, we will see how much of the
variance in the data that is on each component (see Figure 7-3):

pca |> plot()

The first thing you want to look at after making the transformation is how the
variance is distributed along the components. If the first few components do not contain
most of the variance, the transformation has done little for you. When it does, there is
some hope that plotting the first few components will tell you about the data.

pca
<+ —
(YJ_
(7]
[0
(&]
[
8 o
Q)
s
o_

Figure 7-3. Plot of the variance on each principal component for the iris data set

244

CHAPTER 7 UNSUPERVISED LEARNING

To map the data to the new space spanned by the principal components, we use the
predict() function:

mapped iris <- pca |> predict(iris)
mapped_iris |> head()

#it PC1 PC2 PC3
[1,] -2.684126 -0.3193972 0.02791483
[2,] -2.714142 0.1770012 0.21046427
[3,] -2.888991 0.1449494 -0.01790026
[4,] -2.745343 0.3182990 -0.03155937
[5,] -2.728717 -0.3267545 -0.09007924
[6,] -2.280860 -0.7413304 -0.16867766

#Hit PC4

[1,] 0.002262437
[2,] 0.099026550
[3,] 0.019968390
[4,] -0.075575817
[5,] -0.061258593
[6,] -0.024200858

This can also be used with new data that wasn’t used to create the pca object. Here,
we just give it the same data we used before. We don'’t actually have to remove the
Species variable; it will figure out which of the columns to use based on their names. We
can now plot the first two components against each other (see Figure 7-4):

mapped_iris |>
as_tibble() |»>
cbind(Species = iris$Species) |>

ggplot() +
geom point(aes(x = PC1, y = PC2, colour = Species))

245

CHAPTER 7 UNSUPERVISED LEARNING

[]
[]
1.0 o L4
°
* '0. :
0.5+ ‘: .‘o..'O
° o3P >
5 % :V’ Species
8 0.0- {o '.?" L ® setosa
o e £ .
o ° °..o: ., % ® versicolor
P
%. ¢ L d ¢ ® virginica
“ .. ’Q []
-0.5+ a ° e ®
.: ° ‘o
-1.01
[]
[] []
® °
_15 T T T T
-2 0 2 4
PC1

Figure 7-4. Plot of the first two principal components for the iris data set

The mapped_iris object returned from the predict() function is not a data frame
but a matrix. That won’t work with ggplot (), so we need to transform it back into a data
frame, and we do that with as_tibble. This gives us the tibble variant of data frames,
but we could also have used as.data. frame to give the classical data structure. Since
we want to color the plot according to species, we need to add that information again—
remember the pca object does not know about this factor data—so we do that with
cbind(). After that, we plot.

We didn’t gain much from this. There was about as much information in the original
columns as there is in the transformed data. But now that we have seen PCA in action,
we can try it out on a little more interesting example.

We will look at the HouseVotes84 data from the mlbench package:

library(mlbench)
data(HouseVotes84)
HouseVotes84 |> head()

246

CHAPTER 7 UNSUPERVISED LEARNING

#H# Class Vi Vv2V3 V4 V5Ve V7 V8 V9 Vi0
1 republican n y n y y y nnn y
2 republican n y n y y y nnn n
3 democrat <NA> y y <NA> y y nnn n
4 democrat nyy n<NA> y n n n n
5 democrat y y vy n y y nnn n
6 democrat n 'y 'y n y y nnn n
Vil Vi2 Vi3 Vi4 Vi5 V16
1 <NA> y Yy Yy n y
2 n y y 'y n<NA>
#t 3 y n y y n n
4 y n y n n y
5 y<NA> 'y y vy y
#it 6 n n 'y y y y

The data contains the votes cast for both republicans and democrats on 16 different
proposals. The types of votes are yea, nay, and missing/unknown. Now, since votes are
unlikely to be accidentally lost, missing data here means someone actively decided not
to vote, so it isn’t really missing. There is probably some information in that as well.

Now an interesting question we could ask is whether there are differences in voting
patterns between republicans and democrats. We would expect that, but can we see it
from the data?

The individual columns are binary (well, trinary if we consider the missing data as
actually informative) and do not look very different between the two groups, so there is
little information in each individual column. We can try doing a PCA on the data:

HouseVotes84 |> select(-Class) |> prcomp()
Error in colMeans(x, na.rm = TRUE): 'x' must be numeric

Okay, R is complaining that the data isn’t numeric. We know that PCA needs
numeric data, but we are giving it factors. We need to change that, so we can try to map
the votes into zeros and ones.

We want to mutate every column in the data frame, since all the columns are
encoded as factors and we need them as numerical values. However, doing mutate
(Vi = ..., V2 = ..., ...) forall the columns Vi is tedious, so let’s not do it that way.

247

CHAPTER 7 UNSUPERVISED LEARNING

We can map over the columns of a data frame using the mapping functions from
the package purrr that we have used earlier. Since we want to process all the columns
(after removing Class), this looks like a good alternative. We want the result to be a
data frame, so the map_df variant must be the one we want. For the function to apply
to each column, we want each vote to map to 0 or 1, depending on whether it is n or
y, but missing data should remain missing. Most R functions leave missing data alone,

however, so if we do ifelse(vote == "n", 0, 1), the NAvalues will remain NA. For map

df, then, we need a function \ (vote) ifelse(vote == "n", 0, 1).Here we go:

HouseVotes84 |»>
select(-Class) |»
map_df(\(vote) ifelse(vote == "n", 0, 1)) |>
prcomp()

Error in svd(x, nu = 0, nv = k): infinite or missing values in 'x

That doesn’t work either, but now the problem is the missing data. We have mapped
nay to 0 and yea to 1, but missing data remains missing data.

We should always think carefully about how we deal with missing data, especially in
a case like this where it might actually be informative. One approach we could take is to
translate each column into three binary columns indicating if a vote was cast as yea, nay,
or not cast.

I have left that as an exercise. Here, I will just pretend that if someone abstained
from voting, then they are equally likely to have voted yea or nay, and translate missing
data into 0.5. This isn’t true, and you shouldn’t do that in a real data analysis, but we are
interested in PCA and not truth here, so it is time to move on.

Since I want to map the data onto the principal components afterward, and since
I don’t want to write the data transformations twice, I save it in a variable and then
perform the PCA:

vote patterns <- HouseVotes84 |>
select(-Class) |>
map_df(\(vote) ifelse(vote == "n", 0, 1)) |>
map_df(\(vote) ifelse(is.na(vote), 0.5, vote))

pca <- vote patterns |> prcomp()

248

CHAPTER 7 UNSUPERVISED LEARNING

Now we can map the vote patterns onto the principal components and plot the first
against the second (see Figure 7-5):

mapped votes <- pca |> predict(vote patterns)
mapped_votes |>

as_tibble() |»

cbind(Class = HouseVotes84$Class) |>

ggplot() +

geom_point(aes(x = PC1, y = PC2, colour = Class))

1.54
°
[]
.... .: []
1.0 .':‘ % oo 8 o,
o:' °.oo.. ? .".'.
° ° e ©® ‘.0' °
054 o ‘.. °® :.‘ L)
Oh‘oo o™ o ."
@, 8° o0 09 o 30 ’0. Class
o 0,% ° o0 © %
©] o ® democrat
o o.o-;o. T ::.~.:".‘3: _
° o ® So, ® republican
RO~
® ® o ° Py
0.5+ ".“:‘0‘ ¢ . t.‘.o'
® C)
..... S0 o @
e ° 4 o ‘:; oo @
-1.07 ¢ L o o
0 © 0% o
[}
—I2 —I1 (I) I

Figure 7-5. Plot of the first two principal components for the house votes data set

It looks like there is a clear separation in the voting patterns, at least on the first
principal component. This is not something we could immediately see from the
original data.

249

CHAPTER 7 UNSUPERVISED LEARNING

Multidimensional Scaling

Sometimes, it is easier to have a measure of distance between objects than representing
them as numerical vectors. Consider, for example, strings. You could translate them
into numbers based on their encoding, but the space of possible strings is vast—infinite
if you do not restrict their length—so it is not a practical approach. However, there are
many measures of how different two strings are. For strings, at least, it is easier to define
a distance measure than a mapping into numeric values.

When what we have is a distance measure, we can represent our data as a distance
matrix, one that contains all pair-wise distances. Obviously, this is not a feasible
solution if you have very many data points—the number of pairs grows proportionally
to the number of data points squared—but up to a few thousand data points, it is not
a significant problem. Multidimensional scaling takes such a matrix of all pair-wise
distances and maps each data point into a linear space while preserving the pair-wise
distances as well as possible.

Consider the iris data set again. For this data set, of course, we do have the data
points represented as numerical vectors, but it is a data set we are familiar with, so it is
good to see the new method in use on it.

We can create a distance matrix using the dist () function:

iris dist <- iris |> select(-Species) |> dist()

To create a representation of these distances in a two-dimensional space we use
the function cmdscale(). It takes a parameter, k, that specifies the dimensionality we
want to place the points in. Give it a high enough k and it can perfectly preserve all
pair-wise distances, but we wouldn'’t be able to visualize it. We are best served with
low dimensionality, and to plot the data, we chose two. The result is a matrix with one
row per original data point and one column per dimension we asked for—here, of
course, two:

mds_iris <- iris dist |> cmdscale(k = 2)
mds_iris |> head()

it [,1] [,2]
-2.684126 0.3193972
-2.714142 -0.1770012
-2.888991 -0.1449494
-2.745343 -0.3182990

)

[1
[2,
[3,
[4

)

—_ e

250

CHAPTER 7 UNSUPERVISED LEARNING

[5,] -2.728717 0.3267545
[6,] -2.280860 0.7413304

We can translate this matrix into a data frame and plot it (see Figure 7-6):

mds_iris |>
as_tibble(.name_repair = ~ c("x", "y")) [>
cbind(Species = iris$Species) |>
ggplot() +
geom point(aes(x = x, y =y, colour = Species))

The as_tibble(.name_repair = ~ c("x", "y")) part translates the matrix we have
into a data frame, as the other times where we have used as_tibble, but we need to do
something special this time. The matrix doesn’t have column names, and we need that
for data frames. The .name_repair argument to as_tibble is a powerful tool for working
with column names when you create a data frame, and all it can do is beyond the scope
of this book. Here, we just set the column names to “x” and “y.” You do need the tilde, ~,
before the string vector, though, for this to work with as_tibble, but the details of what is
going on here are more technical than we care to delve into at this point.

Because we gave the matrix column names, we can use them inaes(x = x, y =y,
...).If we hadn’t given them names, we couldn’t refer to them here.

The plot looks essentially the same as the PCA plot earlier, which is not a
coincidence, except that it is upside down.

251

CHAPTER 7 UNSUPERVISED LEARNING

1.5
N °
[J [J
°
1.0+
° [J
‘. [J “
054 ¢ "o %
.ov ° '-{.s Species
R }0\ o °
° 8 & 3 ® setosa
> 001 ‘e, o *. o v
% 'y Ve, versicolor
} o O o, Lo
X AL ® virginica
o® LI - I
-0.5+ o‘. .:° ° &
[]
\: °
104 ° .
°
[]
e
X

Figure 7-6. Multidimensional scaling plot for iris data

We can do exactly the same thing with the voting data—here, we can reuse the
cleaned data that has translated the factors into numbers—and the result is shown in

Figure 7-7.
mds_votes <- vote patterns |> dist() |> cmdscale(k = 2)

mds_votes |>
as_tibble(.name_repair = ~ c("x", "y")) |>
cbind(Class = HouseVotes84$Class) |»>

ggplot() +
geom_point(aes(x = x, y =y, colour = Class))

Should you ever have the need for computing a distance matrix between strings, by
the way, you might want to look at the stringdist package. As an example illustrating
this, we can simulate some strings. The following code first has a function for simulating
random strings over the letters “A,” “C,” “G,” and “T,” and the second function then adds a

random length to that. We then create ten strings using these functions:

252

CHAPTER 7 UNSUPERVISED LEARNING

random_ngram <- function(n)
sample(c('A','C','G",'T"), size = n, replace = TRUE) |»
pasteo(collapse = "")

random_string <- function(m) {
n <- max(1, m + sample(c(-1,1), size = 1) * rgeom(1, 1/2))
random_ngram(n)
}
strings <- replicate(10, random_string(5s))
Using the stringdist package, we can compute the all-pairs distance matrix:
library(stringdist)

string dist <- stringdistmatrix(strings)

1.0 1 [o ..‘.
[
S o. 0. : ." ":'. ..:.'
o ° ° [] ° .~.
) [

0.5-.:.. .’.. Y 00; ®
ot..O '. ‘?&..

° Lo PR IR Class

| » 0e® %0 |)
> 00 :o.. R :,.".’“.: ® democrat
Q° 2 % o0 o 3’ 4 e republican
P . .f‘gﬂzsigr
-0.5+ - o0 oo % % °
&% () °
° ® 0% °
3 3
':oo"....Q::
-1.0+ .:.')
Ceoce e® o
¢ oo
°
—1.5'I ! ! !
-2 -1 0 1
X

Figure 7-7. Multidimensional scaling plot for house voting data

253

CHAPTER 7 UNSUPERVISED LEARNING

We can now plot the strings in two-dimensional space, roughly preserving their
distances (see Figure 7-8):

string dist |>

cmdscale(k = 2) |>

as_tibble(.name_repair = ~ c("x", "y")) |>
strings) |>
X, y=y))+

cbind(String

ggplot(aes(x
geom point() +
geom label(aes(label = String),

hjust = 0, nudge y = -0.1)

gy

~ | farce)
1 " fanaTc]

(=]

TGC

GGACC
CAGCA

-2 -1 0 1 2
X

Figure 7-8. Multidimensionality reduction for random strings

254

CHAPTER 7 UNSUPERVISED LEARNING

Clustering

Clustering methods seek to find similarities between data points and group data
according to these similarities. Such clusters can either have a hierarchical structure or
not; when the structure is hierarchical, each data point will be associated with several
clusters, ordered from the more specific to the more general, and when the structure is
not hierarchical, any data point is typically only assigned a single cluster. The following
are two of the most popular clustering algorithms, one of each kind of clustering.

k-means Clustering

In k-means clustering, you attempt to separate the data into k clusters, where the
number k is determined by you. The data usually has to be in the form of numeric
vectors. Strictly speaking, the method will work as long as you have a way of computing
the mean of a set of data points and the distance between pairs of data points. The R
function for k-means clustering, kmeans, wants numerical data.

The algorithm essentially works by first guessing at k “centers” of proposed clusters.
Then each data point is assigned to the center it is closest to, creating a grouping of
the data, and then all centers are moved to the mean position of their clusters. This
is repeated until an equilibrium is reached. Because the initial centers are randomly
chosen, different calls to the function will not necessarily lead to the same result. At the
very least, expect the labelling of clusters to be different between the various calls.

Let us see it in action. We use the iris data set, and we remove the Species column
to get a numerical matrix to give to the function:

clusters <- iris |»
select(-Species) |>
kmeans (centers = 3)

We need to specify k, the number of centers, in the parameters to kmeans (), and we
choose three. We know that there are three species, so this is a natural choice. Life isn’t
always that simple, but here it is the obvious choice.

The function returns an object with information about the clustering. The two most
interesting pieces of information are the centers, the variable centers, and the cluster
assignment, the variable cluster.

255

CHAPTER 7 UNSUPERVISED LEARNING
Let us first have a look at the centers:

clusters$centers

Sepal.lLength Sepal.Width Petal.Length
1 5.901613 2.748387 4.393548
#Hit 6.850000 3.073684 5.742105
3 5.006000 3.428000 1.462000
Petal.Width
1 1.433871
2 2.071053
3 0.246000

N

These are simply vectors of the same form as the input data points. They are the
center of mass for each of the three clusters we have computed.

The cluster assignment is simply an integer vector with a number for each data point
specifying which cluster that data point is assigned to:

clusters$cluster |> head()
[1]1 333333

clusters$cluster |> table()

#t
1 2 3
62 38 50

There are 50 data points for each species, so if the clustering perfectly matched the
species, we should see 50 points for each cluster as well. The clustering is not perfect,
but we can try plotting the data and see how well the clustering matches up with the
species class.

We can first plot how many data points from each species are assigned to each
cluster (see Figure 7-9):

iris |>
cbind(Cluster = clusters$cluster) |>
ggplot() +
geom bar(aes(x = Species, fill = as.factor(Cluster)),
position = "dodge") +
scale fill discrete("Cluster")
256

CHAPTER 7 UNSUPERVISED LEARNING

50 4

40+

304 Cluster
€ 1
: []
8 K

£

10 -

O -
setosa versicolor virginica
Species

Figure 7-9. Cluster assignments for the three iris species

We first combine the iris data set with the cluster association from clusters and
then make a bar plot. The position argumentis "dodge", so the cluster assignments are
plotted next to each other instead of stacked on top of each other.

Not unexpectedly, from what we have learned of the data by plotting it earlier,
Setosa seems clearly distinct from the other two species, which, according to the four
measurements we have available at least, overlap in features.

There is a bit of luck involved here as well. A different starting point for where
kmeans () placed the first centers will affect the final result, and had it put two clusters
inside the cloud of the Setosa data points, it would have split those points into two
clusters and merged the Versicolor and Virginia points into a single cluster, for instance.

It is always a good idea to visually examine how the clustering result matches where
the actual data points fall. We can do this by plotting the individual data points and
see how the classification and clustering looks. We could plot the points for any pair of
features, but we have seen how to map the data onto principal components, so we could
try to plot the data on the first two of these. As you remember, we can map data points

257

CHAPTER 7 UNSUPERVISED LEARNING

from the four features to the principal components using the predict() function. This
works both for the original data used to make the PCA and the centers we get from the
k-means clustering:

pca <- iris |[>
select(-Species) |>
prcomp()

mapped iris <- pca |>
predict(iris)

mapped centers <- pca |>
predict(clusters$centers)

We can plot the mapped data points, PC1 against PC2 (see Figure 7-10). To display
the principal components together with the species information, we need to add a
Species column. We also need to add the cluster information since that isn’t included in
the mapped vectors. This is a numeric vector, but we want to treat it as categorical, so we
need to translate it using as . factor():

mapped iris |>

as_tibble() |»

cbind(Species = iris$Species,

Clusters = as.factor(clusters$cluster)) |»>
ggplot() +
geom point(aes(x = PC1, y = PC2,
colour = Species, shape = Clusters)) +
geom_point(aes(x = PC1, y = PC2), size = 5, shape = "X",
data = as_tibble(mapped centers))

258

CHAPTER 7 UNSUPERVISED LEARNING

1.04
" P Clusters
(T
[]
0.57 "m % ® " .
" o ;' oo A 2
KPPV
2 -9 -3
n o o A
& 004 = o A
o u ° ’ 4A
° A .
Qe A Species
.. AA: A
-0.5+ " ® 4 . ® setosa
t ° A ® versicolor
I. A L
n ® virginica
-1.04
[|
[|
u A
_15 T T T T
-2 0 2 4
PC1

Figure 7-10. Clusters and species for iris

In the plot, I also show the centers. I use the data argument to geom_point() to give
it this data, and I set the size to 5 and set the shape to "X".
As mentioned, there is some luck involved in getting a good clustering like this. The

result of a second run of the kmeans () function is shown in Figures 7-11 and 7-12.

259

CHAPTER 7 UNSUPERVISED LEARNING

50 1

40

Cluster

30 1

count

]
| K
s

20 4

104

O-

T T T
setosa versicolor virginica
Species

Figure 7-11. A bad cluster assignment for the three iris species

If you go back and look at Figure 7-10 and think that some of the square points are
closer to the center of the “triangular cluster” than the center of the “square cluster,” or
vice versa, you are right. Don’t be too disturbed by this; two things are deceptive here.
One is that the axes are not on the same scale, so distances along the x-axis are farther
than distances along the y-axis. A second is that the distances used to group data points
are in the four-dimensional space of the original features, while the plot is a projection
onto the two-dimensional plane of the first two principal components.

260

CHAPTER 7 UNSUPERVISED LEARNING

[]
[]
1.04 .
. ,’ o Clusters
(X)
[]
0.5+ .l. ..'o. ..A °
" oé.' .:o A 2
[]
% ‘g - 3
o o
A - L] ° A,
O 00 [[)
o I'. ... iA
oL A Species
o° AA:A R . '
0.5 - A 1 setosa
t ° A ® versicolor
-. A L
n ® virginica
-1.0 -
[|
] A
u A
_1.5 T T T T
-2 0 2 4
PC1

Figure 7-12. Clusters and species for iris for a bad clustering

There is something to worry about, though, concerning distances. The algorithm
is based on the distance from cluster centers to data points, but if you have one axis in
centimeters and another in meters, a distance along one axis is numerically a hundred
times farther than along the other. This is not merely solved by representing all features
in the same unit. First of all, that isn’t always possible. There is no meaningful way of
translating time or weight into a distance. Even if it was, what is being measured is also
relevant for the unit we consider. The height of a person is meaningfully measured in
meters, but you do not want something like cell size to be measured in meters.

This is also an issue for principal component analysis. Obviously, a method that tries
to create a vector space basis based on the variance in the data is going to be affected
by the units used in the input data. The usual solution is to rescale all input features so
they are centered at zero and have variance one. You subtract from each data point the
mean of the feature and divide by the standard deviation. This means that measured in

standard deviations, all dimensions have the same variation.

261

CHAPTER 7 UNSUPERVISED LEARNING

The prcomp() function takes parameters to do the scaling. Parameter center, which
defaults to TRUE, translates the data points to mean zero, and parameter scale. (notice
the “” at the end of the name), which defaults to FALSE, scales the data points to have
variance one at all dimensions.

The kmeans () functions do not take these parameters, but you can explicitly rescale a
numerical data frame using the scale() function. I have left this as an exercise.

Now let us consider how the clustering does at predicting the species more formally.
This returns us to familiar territory: we can build a confusion matrix between species
and clusters.

table(iris$Species, clusters$cluster)

#it
#it 1 2 3
setosa 0 050

versicolor 48 2 0
virginica 14 36 O

One problem here is that the clustering doesn’t know about the species, so even if
there were a one-to-one correspondence between clusters and species, the confusion
matrix would only be diagonal if the clusters and species were in the same order.

We can associate each species to the cluster most of its members are assigned to.
This isn’t a perfect solution—two species could be assigned to the same cluster this way,
and we still wouldn’t be able to construct a confusion matrix—but it will work for us in
the case we consider here. We can count how many observations from each cluster are
seen in each species like this:

tbl <- table(iris$Species, clusters$cluster)
(counts <- apply(tbl, 1, which.max))

setosa versicolor virginica
#Hit 3 1 2

and build a table mapping species to clusters to get the confusion matrix like this:

map <- rep(NA, each = 3)
map[counts] <- names(counts)
table(iris$Species, map[clusters$cluster])

262

CHAPTER 7 UNSUPERVISED LEARNING

#H#

g setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 14 36

A final word on k-means is this: Since k is a parameter that needs to be specified,
how do you pick it? Here, we knew that there were three species, so we picked three for
k as well. But when we don’t know if there is any clustering in the data, to begin with,
or if there is a lot, how do we choose k? Unfortunately, there isn’t a general answer to
this. There are several rules of thumb, but no perfect solution you can always apply. Try
some, see what happens, and then use your understanding of the data to interpret what
you see.

Hierarchical Clustering

Hierarchical clustering is a technique you can use when you have a distance matrix

of your data. Here, the idea is that you build up a tree structure of nested clusters by
iteratively merging clusters. You start with putting each data point in their own singleton
clusters. Then iteratively you find two clusters that are close together and merge them
into a new cluster. You continue this until all data points are in the same large cluster.
Different algorithms exist, and they mainly vary in how they choose which cluster to
merge next and how they compute the distance between clusters. In R, the function
hclust() implements several algorithms—the parameter method determines which is
used—and we can see it in use with the iris data set. We first need a distance matrix.
This time, I first scale the data:

iris dist <- iris |> select(-Species) |> scale() |> dist()
Now the clustering is constructed by calling hclust() on the distance matrix:
clustering <- hclust(iris dist)

We can plot the result using the generic plot() function; see Figure 7-13. There is
not much control over how the clustering is displayed using this function, but if you are
interested in plotting trees, you should have a look at the ape package:

plot(clustering)

263

CHAPTER 7 UNSUPERVISED LEARNING

Cluster Dendrogram

Height

iris_dist
hclust (*, "complete")

Figure 7-13. Hierarchical clustering of iris data

To create plots that work well with ggplot2 graphics, you want the package
ggdendro, see Figure 7-14:

library(ggdendro)

clustering |»
ggdendrogram() + theme_dendro()

Using ggdendro, you can get access to the raw plotting segments which gives you
control over much of the visualization of the tree.

Only visualizing the clustering is rarely enough, so to work with the result we need to
be able to extract the actual groupings. The cutree() function—it stands for cut tree, but
there is only one t in the name—Ilets us do this. You can give it a parameter h to cut the
tree into clusters by splitting the tree at height h, or you can give it parameter k to cut the
tree at the level where there is exactly k clusters.

Since we are working with the iris data, it is natural for us to want to split the data
into three clusters:

clusters <- clustering |> cutree(k = 3)

264

CHAPTER 7 UNSUPERVISED LEARNING

The result is in the same format as we had for k-means clustering, that is, a vector
with integers specifying which cluster each data point belongs to. Since we have the
information in the familiar format, we can try plotting the clustering information as a bar
plot (Figure 7-15):
iris |>

cbind(Cluster = clusters) |>

ggplot() +

geom bar(aes(x = Species, fill = as.factor(Cluster)),
position = "dodge") +
scale fill discrete("Cluster")

or plot the individual plots together with species and cluster information
(Figure 7-16).

DR bhdaunibE

Figure 7-14. Hierarchical clustering of iris data plotted with ggdendro

265

CHAPTER 7 UNSUPERVISED LEARNING

50 4
40 1
30 Cluster
€ 1
: []
8 K
o
3
10 -
O -
setosa versicolor virginica
Species

Figure 7-15. Iris clustering as a bar plot

mapped iris |>
as_tibble() |»
cbind(Species = iris$Species,
Clusters = as.factor(clusters)) |»>
ggplot() +
geom point(aes(x = PC1, y = PC2,
shape = Species, colour = Clusters))

Constructing a confusion matrix if we want to use the clustering for a form of
classification is of course done similarly, but hierarchical clustering lends itself much
less to classification than k-means clustering does. With k-means clustering, it is simple
to take a new data point and see which cluster center it is nearest. With hierarchical
clustering, you would need to rebuild the entire tree to see where it falls.

266

CHAPTER 7 UNSUPERVISED LEARNING

Association Rules

The last unsupervised learning method we will see is aimed at categorical data, ordered
or unordered. Just like you have to translate factors into numerical data to use methods
such as PCA, you will need to translate numerical data into factors to use association
rules. This typically isn’t a problem, and you can use the function cut () to split a
numerical vector into a factor and combine it with ordered() if you want it ordered.

Association rules search for patterns in your data by picking out subsets of the data,
X and Y, based on predicates on the input variables and evaluate rules X = Y. Picking X
and Y'is a brute-force choice (which is why you need to break the numerical vectors into
discrete classes).!

Any statement X = Yis called a rule, and the algorithm evaluates all rules (at least up
to a certain size) to figure out how good each rule is.

The association rules algorithm is implemented in the arules package:

library(arules)

' The algorithm could do it for you by considering each point between two input values, but it
doesn’t, so you have to break the data.

267

CHAPTER 7 UNSUPERVISED LEARNING

A
[|
1.04 A
A
Clusters
r AAA
A | |
0.54 ': ’AA "- e
. A %ﬁp :l e 2
" . A A - '..- e 3
[)
Al 0.0 ,. ‘A:A L]
O : o. A A
o oW =
() A A 1
.'. e] = Species
f. A -JH
-0.5+ : A '. .' e setosa
@ A n A versicolor
n
¢ B virginica
-1.01
[]
[] | |
© n
_15 T T T T
-2 0 2 4
PC1

Figure 7-16. Iris points plotted with species and hierarchical clustering
information

To see it in action, we use the income data set from the kernlab package:
library(kernlab)

data(income)
income |> head()

it INCOME SEX MARITAL.STATUS AGE
1 [75.000- F Married 45-54
2 [75.000- M Married 45-54
3 [75.000- F Married 25-34
4 -10.000) F Single 14-17
5 -10.000) F Single 14-17
6 [50.000-75.000) M Married 55-64

268

#Ht
#it
#H
#H
#Hit
#Hit
#Ht
#Hit
##
#H
#Hit
#Hit
#H
#Ht
#Hit
#H
#Ht
#it
#H
#H
#Hit

and is already in a form the arules can deal with: all columns are factorial.

EDUCATION
1 1 to 3 years of college
2 College graduate
3 College graduate
4 Grades 9 to 11
5 Grades 9 to 11
6

CHAPTER 7 UNSUPERVISED LEARNING

OCCUPATION
Homemaker
Homemaker

Professional/Managerial
Student, HS or College
Student, HS or College

1 to 3 years of college Retired
AREA DUAL.INCOMES HOUSEHOLD.SIZE UNDER18
1 10+ years No Three None
2 10+ years No Five Two
3 10+ years Yes Three One
4 10+ years Not Married Four Two
5 4-6 years Not Married Four Two
6 10+ years No Two None
HOUSEHOLDER HOME.TYPE ETHNIC.CLASS LANGUAGE
1 Own House White <NA>
2 Own House White English
3 Rent Apartment White English
4 Family House White English
5 Family House White English
6 Own House White English

This data contains income information together with several explanatory variables

The same data is actually also available in the arules package as the Income data

set, but here it is representing in a different format than a data frame, so we will use this

version of the data:

data(Income)
Income |> head()

transactions in sparse format with

6 transactions (rows) and

#it

50 items (columns)

269

CHAPTER 7 UNSUPERVISED LEARNING

To construct the rules, we use the apriori() function. It takes various arguments
for controlling which rules the function will return, but we can use it with all default
parameters:

rules <- income |> apriori()

Apriori

##

Parameter specification:

confidence minval smax arem aval

#H 0.8 0.1 1 none FALSE
originalSupport maxtime support minlen maxlen
#H TRUE 5 0.1 1 10

target ext

rules TRUE

##

Algorithmic control:

filter tree heap memopt load sort verbose

#H# 0.1 TRUE TRUE FALSE TRUE 2 TRUE

##

Absolute minimum support count: 899

##

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[84 item(s), 8993 transaction(s)] done [0.01s].
sorting and recoding items ... [42 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 5 6 done [0.02s].

writing ... [785 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

The rules object we create this way is not a simple object like a data frame, but
it will let us take the head() of it, and we can use the function inspect() to see the
individual rules:

rules |> head() |> inspect(linebreak = FALSE)

#H# lhs
[1] {} =>

270

#Hit
#Hit
#H
#Ht
#Hit
#Ht
#H
Hit
#Ht
#H
#Hit
#Hit
#H
#Hit
#Hit
#HH
#Ht
#Hit
#H

N

L T o T s T s B ey |
_ e e e

(o))

rhs

N

L T e T s T s T s B e |

(o))
— 0 L L L

coverage
.0000000
.1074169
.1180918
.1234293
.1276548
. 1454465

w N R
[T T S S N |

O O O O O Bk

6

L T s T s B s T s B s |

The linebreak

{LANGUAGE=English} o.
{LANGUAGE=English} o.
{LANGUAGE=English} o.
{LANGUAGE=English} o.
{LANGUAGE=English} o.
{LANGUAGE=English} o.
lift

{EDUCATION=Grad Study}
{OCCUPATION=Clerical/Service
{INCOME=[30.000-40.000) }
{UNDER18=Two}
{INCOME=[50.000-75.000) }
support
8666741
1000778
1046369
1111976
1073057
1329923
count
1.0000000 7794
1.0750027 900
1.0223728 941
1.
0
1

0394921 1000

.9699059 965
.0550368 1196

=>
Worker} =>

confidence
.8666741
.9316770
.8860640
.9009009
.8405923

0
0
0
0
0
0.9143731

CHAPTER 7 UNSUPERVISED LEARNING

FALSE here splits the rules over several lines. I find it confusing too

that to break the lines you have to set 1inebreak to FALSE, but that is how it is.
Each rule has a right-hand side, rhs, and a left-hand side, 1hs. For a rule X= Y, Xis
the rhs and Y'the 1hs. The quality of a rule is measured by the following three columns:

o support: The fraction of the data where both X and Y hold true. Think
ofitas Pr(X, Y).

o confidence: The fraction of times where X is true that Yis also true.
Think of it as Pr(Y | X).

o lift: How much better than random is the rule, in the sense that how

much better is it compared to X and Y being independent. Think
Pr(X, Y)/ Pr(X) Pr(Y).

Good rules should have high enough support to be interesting—if a rule only affects

a tiny number of data points out of the whole data, it probably isn’t that important—so

you want both support and confidence to be high. It should also tell you more than what

you would expect by random chance, which is captured by lift.

271

CHAPTER 7 UNSUPERVISED LEARNING

You can use the sort() function to rearrange the data according to the quality

measures:

rules |>
sort(by = "1ift") |> head() |>
inspect(linebreak = FALSE)

#H lhs

[1] {MARITAL.STATUS=Married, OCCUPATION=Professional/Managerial,
LANGUAGE=

[2] {MARITAL.STATUS=Married, OCCUPATION=Professional/Managerial}

[3] {DUAL.INCOMES=No, HOUSEHOLDER=Own}

[4] {AREA=10+ years, DUAL.INCOMES=Yes, HOME.TYPE=House}

[5] {DUAL.INCOMES=Yes, HOUSEHOLDER=Own, HOME.TYPE=House,
LANGUAGE=English}

[6] {DUAL.INCOMES=Yes, HOUSEHOLDER=Own, HOME.TYPE=House}

rhs support

#4# [1] => {DUAL.INCOMES=Yes} 0.1091960

[2] => {DUAL.INCOMES=Yes} 0.1176471

[3] => {MARITAL.STATUS=Married} 0.1016346
[4] => {MARITAL.STATUS=Married} 0.1003002
[5] => {MARITAL.STATUS=Married} 0.1098632
[6] => {MARITAL.STATUS=Married} 0.1209830
confidence coverage lift count
[1] 0.8069022 0.1353275 3.281986 982
[2] 0.8033409 0.1464472 3.267501 1058
[3] 0.9713071 0.1046369 2.619965 914
[4] 0.9605964 0.1044145 2.591075 902
[5] 0.9601555 0.1144223 2.589886 988
[6] 0.9594356 0.1260981 2.587944 1088

You can combine this with the subset () function to filter the rules:

rules |>
subset(support > 0.5) |>
sort(by = "1ift") |>
head() |»
inspect(linebreak = FALSE)

272

CHAPTER 7 UNSUPERVISED LEARNING

lhs

[1] {ETHNIC.CLASS=White} =>

[2] {AREA=10+ years} =>

[3] {UNDER18=None} =>

[4] {3 =

[5] {DUAL.INCOMES=Not Married} =>

rhs support confidence
[1] {LANGUAGE=English} 0.6110308 0.9456204
[2] {LANGUAGE=English} 0.5098410 0.8847935
[3] {LANGUAGE=English} 0.5609919 0.8813767
[4] {LANGUAGE=English} 0.8666741 0.8666741
[5] {LANGUAGE=English} 0.5207384 0.8611622

coverage lift count
0.6461692 1.0910911 5495
#4 0.5762260 1.0209069 4585
0.6364951 1.0169644 5045
1.0000000 1.0000000 7794
#4 0.6046925 0.9936402 4683

N R

— o
w
_ e e e

(9a]

Exercises
Dealing with Missing Data in the HouseVotes84 Data

In the PCA analysis, we translated missing data into 0.5. This was to move things
along but probably not an appropriate decision. People who do not cast a vote are
not necessarily undecided and therefore equally likely to vote yea or nay; there can be
conflicts of interests or other reasons. So we should instead translate each column into
three binary columns.
You can use the transmute() function from dplyr to add new columns and remove
old ones—it is a bit of typing since you have to do it 16 times, but it will get the job done.
If you feel more like trying to code your way out of this transformation, you should
look at the mutate_at() function from dplyr. You can combine it with column name
matches and multiple functions to build the three binary vectors (for the ifelse() calls,

273

CHAPTER 7 UNSUPERVISED LEARNING

you have to remember that comparing with NA always gives you NA, so you need always
to check for that first). After you have created the new columns, you can remove the old
ones using select() combined with match().

Try to do the transformation and then the PCA again. Does anything change?

k-means

Rescaling for k-means clustering

Use the scale() function to rescale the iris data set, then redo the k-means
clustering analysis.

Varying k

Analyze the iris data with kmeans () with k ranging from one to ten. Plot the clusters
for each k, coloring the data points according to the clustering.

274

CHAPTER 8

Project 1: Hitting
the Bottle

To see a data analysis in action, I will use an analysis that my student, Dan Sendergaard,
did the first year I held my data science class. I liked his analysis so much that I wanted to
include it in the book. I am redoing his analysis in the following with his permission.

The data contains physicochemical features measured from Portuguese Vinho Verde
wines, and the goal was to try to predict wine quality from these measurements.!

Importing Data

If we go to the data folder, we can see that the data is split into three files: the
measurements from red wine, white wine, and a description of the data (the file
winequality.names). To avoid showing large URLs, I will not list the code for reading the
files, but it is in the form

read.table(URL, header=TRUE, sep=";")

That there is a header that describes the columns, and that fields are separated by
semicolons we get from looking at the files.

We load the red and white wine data into separate data frames called red and white.

We can combine the two data frames using

"red", red),
"white", white))

wines <- bind_rows(tibble(type
tibble(type

'https://archive.ics.uci.edu/ml/datasets/Wine+Quality

275
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_8

https://doi.org/10.1007/978-1-4842-8155-0_8#DOI
https://archive.ics.uci.edu/ml/datasets/Wine+Quality

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

The tibble and bind_rows functions are from the dplyr package. We can now have a
look at the summary with

summary(wines)

You will see that there are 11 measurements for each wine, and each wine has an
associated quality score based on sensory data. At least three wine experts judged and
scored the wine on a scale between zero and ten. No wine achieved a score below three
or above nine. There are no missing values. There is not really any measurement that we
want to translate into categorical data. The quality scores are given as discrete values,
but they are ordered categories, and we might as well consider them as numerical values
for now.

Exploring the Data

With the data loaded, we first want to do some exploratory analysis to get a feeling for it.

Distribution of Quality Scores

The first thing Dan did was to look at the distribution of quality scores for both types of
wine (see Figure 8-1):

ggplot(wines) +
geom_bar(aes(x = factor(quality), fill = type),
position = 'dodge') +
xlab('Quality') + ylab('Frequency')

There are very few wines with extremely low or high scores. The quality scores
also seem normal distributed, if we ignore that they are discrete. This might make the
analysis easier.

276

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

2000 -
1500 4
? type
%’_ . red
1 -
£ 000 B white
500 4
0 o ——— J

3 4 5 6 7 8 9
Quality

Figure 8-1. Distribution of wine qualities

Is This Wine Red or White?

The data set has two types of wine: red and white. As Dan noticed, these types are
typically described by very different words by wine experts, but several experiments?
have shown that even the best wine experts cannot distinguish red from white if the
color is obscured or the experts are blindfolded. It is, therefore, interesting to see if the
physicochemical features available in the data can help decide whether a wine is red
or white.

Dan used the Naive Bayes method to explore this, so we need the e1071 package:

library(e1071)

*http://109.com/wine-tasting-is-bullshit-heres-why-496098276

277

http://io9.com/wine-tasting-is-bullshit-heres-why-496098276

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

He used a fivefold cross-validation to study this, but I will just use the partition()
function from Chapter 6:

random_group <- function(n, probs) {
probs <- probs / sum(probs)
g <- findInterval(seq(0, 1, length = n), c(0, cumsum(probs)),

TRUE)

rightmost.closed
names (probs)[sample(g)]

}

partition <- function(df, n, probs) {
replicate(n, split(df, random group(nrow(df), probs)), FALSE)

}

and I will use a variation of the prediction accuracy function we wrote there for cars but
using wines and the accuracy() function instead of rmse():

accuracy <- function(confusion matrix)
sum(diag(confusion_matrix)) / sum(confusion matrix)

prediction _accuracy wines <- function(test and training) {
test_and training |»
map_db1(
\(tt) {

Fit the model using training data
model <- naiveBayes(type ~ ., data = tt$training)
Then make predictions on the test data
predictions <- predict(model, newdata = tt$test)
Get accurracy of predictions
accuracy(table(tt$test$type, predictions))

The formula type ~ . specifies that we wish to build a model for predicting type

“w on

using all the remaining variables in the data, specified as “.

278

https://doi.org/10.1007/978-1-4842-8155-0_6

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

We get the following accuracy if we split the data randomly into training and test
data 50/50:

random_wines <- wines |»
partition(4, c(training = 0.5, test = 0.5))
random wines |» prediction accuracy wines()

[1] 0.9781471 0.9735303 0.9772238 0.9735303

This is a pretty good accuracy, so this raises the question of why experts cannot tell
red and white wines apart.

Dan looked into this by determining the most significant features that divide red and
white wines by building a decision tree:

library('party')

In party, we have a function, ctree, for building a decision tree. We still want to
predict type based on all the other variables, so we want the formula type ~ ., but
the ctree function won't like the wines data out of the box. It doesn’t want to predict a
variable that contains strings, so we must translate the strings in type into a factor first.
No problem, we know how to do that; we can use mutate and the expression

wines |» mutate(type = as.factor(type))
and then fit the tree with this command:

tree <- ctree(type ~ ., data = wines |» mutate(type = as.factor(type)),
control = ctree control(minsplit = 4420))

(The control option is just for adjusting how the function should build the decision
tree; you can experiment with it if you wish.)

The plot of the tree is too large for me to show here in the book with the size limit for
figures, but try to plot it yourself.

He limited the number of splits made to get only the most important features. From
the tree, we see that the total amount of sulfur dioxide, a chemical compound often
added to wines to prevent oxidation and bacterial activity, which may ruin the wine, is
chosen as the root split.

279

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

Sulfur dioxide is also naturally present in wines in moderate amounts. In the EU, the
quantity of sulfur dioxide is restricted to 160 ppm for red wines and 210 ppm for white
wines, so by law, we actually expect a significant difference of sulfur dioxide in the two
types of wine. So Dan looked into that:

wines |»
group_by(type) [»
summarise(total.mean = mean(total.sulfur.dioxide),
total.sd = sd(total.sulfur.dioxide),
free.mean = mean(free.sulfur.dioxide),
free.sd = sd(free.sulfur.dioxide),
.groups = "drop")

A tibble: 2 x 5

type total.mean total.sd free.mean free.sd
<chr> «dbl> <dbl> <dbl> <dbl>

1 red 46.5 32.9 15.9 10.5

2 white 138. 42.5 35.3 17.0

The average amount of total sulfur dioxide is indeed lower in red wines, and thus it
makes sense that this feature is picked as a significant feature in the tree. If the amount
of total sulfur dioxide in a wine is less than or equal to 67 ppm, we can say that it is a red
wine with high certainty, which also fits with the summary statistics earlier.

Another significant feature suggested by the tree is the volatile acidity, also known
as the vinegar taint. In finished (bottled) wine, a high volatile acidity is often caused
by malicious bacterial activity, which can be limited by the use of sulfur dioxide as
described earlier. Therefore, we expect a strong relationship between these features (see
Figure 8-2):

gplot(total.sulfur.dioxide, volatile.acidity, data = wines,
color = type,
xlab = 'Total sulfur dioxide',
ylab = 'Volatile acidity (VA)')

The plot shows the amount of volatile acidity as a function of the amount of
sulfur dioxide. It also shows that, especially for red wines, the volatile acidity is low for
wines with a high amount of sulfur dioxide. The pattern for white wine is not as clear.

280

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

However, Dan observed, as you can clearly see in the plot, a clear difference between red
and white wines when considering the total.sulfur.dioxide and volatile.acidity
features together.

So why can humans not taste the difference between red and white wines? It turns
out that® sulfur dioxide cannot be detected by humans in free concentrations of less than
50 ppm. Although the difference in total sulfur dioxide is very significant between the
two types of wine, the free amount is on average below the detection threshold, and thus
humans cannot use it to distinguish between red and white.

1.6 1 o

s

= type

o

8 ® red
.% ® white
o

S

0 100 200 300 400
Total sulfur dioxide

Figure 8-2. Sulfur dioxide vs. volatile acidity

wines |»
group_by(type) [»
summarise(mean = mean(volatile.acidity),
sd = sd(volatile.acidity),
.groups = "drop")

Shttp://en.wikipedia.org/wiki/Sulfur_dioxide#In_winemaking

281

http://en.wikipedia.org/wiki/Sulfur_dioxide#In_winemaking

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

A tibble: 2 x 3

type mean sd
<chr> <dbl> <dbl>
1 red 0.528 0.179
2 white 0.278 0.101

Similarly, acetic acid (which causes volatile acidity) has a detection threshold of
0.7 g/L, and again we see that the average amount is below this threshold and thus is
undetectable by the human taste buds.

So Dan concluded that some of the most significant features which we have found
to tell the types apart only appear in small concentrations in wine that cannot be tasted
by humans.

Fitting Models

Regardless of whether we can tell red wine and white wine apart, the real question we
want to explore is whether the measurements will let us predict quality. Some of the
measures might be below human tasting ability, but the quality is based on human
tasters, so can we predict the quality based on the measurements?

Before we build a model, though, we need something to compare the accuracy
against that can be our null model. If we are not doing better than a simplistic model,
then the model construction is not worth it.

Of course, first, we need to decide whether we want to predict the precise quality as
categories or whether we consider it a regression problem. Dan looked at both options,
but since we should mostly look at the quality as a number, I will only look at the latter.

For regression, the quality measure should be the root mean square error, and the
simplest model we can think of is just to predict the mean quality for all wines:

rmse <- function(x,t) sqrt(mean(sum((t - x)"2)))

wines |»
predict the mean for all the wines, regardless of
parameters
mutate(null prediction = mean(quality)) |»
Summerise the predictions with a root mean square error
summarise(rmse = rmse(null prediction, quality)) |»
We have a data frame with a single number now, just

282

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

get that number
as.numeric()

[1] 70.38242

This is what we have to beat to have any model worth considering.

We do want to compare models with training and test data sets, though, so we do not
use the mean for the entire data. So we need a function for comparing the results with
split data.

To compare different models using rmse () as the quality measure, we need to modify
our prediction accuracy function. We can give it as parameter the function used to create
a model that works with predictions. It could look like this:

prediction_accuracy wines <- function(test and training,
model function) {
test_and training |»
map_db1(
\(tt) {
Fit the model using training data
model <- model function(quality ~ ., data = tt$training)
Then make predictions on the test data
predictions <- predict(model, newdata = tt$test)
Get accuracy of predictions as a root mean square error
rmse(predictions, tt$test$quality)

Here, we are hardwiring the formula to include all variables except for quality
which is potentially leading to overfitting, but we are not worried about that right now.

To get this to work, we need amodel function() that returns an object that works
with predict(). To get this to work, we need to use generic functions, something we will
not cover until later, but it mostly involves creating a so-called “class” and defining what
predict() will do on objects of that class:

null model <- function(formula, data) {
Here we just remember the mean of the input by putting it in a list
and by wrapping it in a “structure” with class "null model" we can

283

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

define we want this model to make predictions
structure(list(mean = mean(data$quality)),
class = "null model")

}

The name predict.null model says that if you call predict()

on something with class "null model”, it is this function

that R will call. Since "model" is the list we made above

we can get the prediction by looking up "mean" in the object.

predict.null model <- function(model, newdata) {
rep(model$mean, each = nrow(newdata))

}

This null model() function creates an object of class null model and defines what
the predict() function should do on objects of this class. We can use it to test how well
the null model will perform on data:

test_and training <- wines |»
partition(4, c(training = 0.5, test = 0.5))
test _and training |» prediction accuracy wines(null model)

[1] 48.85466 49.31583 49.74809 49.85921

Don’t be too confused about these numbers being much better than the one we get
if we use the entire data set. That is simply because the rmse () function will always give a
larger value if there is more data, and we are giving it only half the data that we did when
we looked at the entire data set.

We can instead compare it with a simple linear model:

test_and_training |» prediction_accuracy wines(1m)
[1] 41.13091 42.22651 41.71150 42.17854

Dan also tried different models for testing the prediction accuracy, but I have left that
as an exercise. You can use this data set to explore the various methods we have seen in
the last two chapters.

284

CHAPTER 8 PROJECT 1: HITTING THE BOTTLE

Exercises
Exploring Other Formulas

The prediction_accuracy wines() function is hardwired to use the formula

quality ~ . thatuses all explanatory variables. Using all variables can lead to overfitting,
so it is possible that using fewer variables can give better results on the test data. Add a
parameter to the function for the formula and explore using different formulas.

Exploring Different Models

Try using different models than the null model and the linear model. Any model that can
do regression and defines a predict() function should be applicable. Try it out.

Analyzing Your Own Data Set

Find a data set you are interested in investigating and go for it. To learn how to interpret
data, you must use your intuition on what is worth exploring, and the only way to build
that intuition is to analyze data.

285

CHAPTER 9

Deeper into
R Programming

In this chapter, we leave data analysis and return to programming and software
development, topics that are the focus of the remaining chapters of the book. In the
first chapter, you took a tutorial introduction to R programming, but we left out a lot of
details. This chapter will cover many of those details, while the next two chapters will
cover more advanced aspects of R programming: functional programming and object-
oriented programming.

Expressions

We begin the chapter by going back to expressions. Everything we do in R involves
evaluating expressions. Most expressions we evaluate to do a computation and get the
result, but some expressions have side effects—like assignments—and those we usually
evaluate because of the side effects.

Arithmetic Expressions

We saw the arithmetic expressions already, so we will just give a very short reminder
here. The arithmetic expressions are operators that involve numbers and consist of the
unary operators + and -:

+ X
- X

where + doesn’t really do anything, while - changes the sign of its operand. Then there
are the infix operators for addition, subtraction, multiplication, and division:

287
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_9

https://doi.org/10.1007/978-1-4842-8155-0_9#DOI

CHAPTER9 DEEPER INTO R PROGRAMMING

X X X X
*
< <K K X

Division will return a floating-point number even if both its operands are integers, so
if you want to do integer division, you need the special operator for that:

X kI%'y
If you want the remainder of integer division, you need this infix operator instead:
X %kby

Finally, there are operators for exponentiation. To compute x’, you can use either of
these two operators:

XNy
X**y

In all these examples, x and y can be numbers or variables referring to numbers
(actually, vectors of numbers since R always works on vectors), or they can be other
expressions evaluating to numbers. If you compose expressions from infix operators, you
have the same precedence rules you know from arithmetic. Exponentiation goes before
multiplication that goes before addition, for example. This means that you will need to
use parentheses if you need to evaluate the expressions in another order.

Since the rules are the ones you are used to, this is not likely to cause you troubles,
except if you combine these expressions with the operator :. This isn’t really an
arithmetic operator, but it is an infix operator for generating sequences, and it has a
higher precedence than multiplication but lower than exponentiation. This means that
1:2**2 will evaluate the 2**2 expression first to get 1:4 and then construct the sequence:

1:2%%2
[1] 12 3 4

while the expression 1:2*2 will evaluate the : expression first to create a vector
containing 1 and 2 and then multiply this vector with 2:

1:2%2
[1] 2 4
288

CHAPTER9 DEEPER INTO R PROGRAMMING

Since the unary - operator has higher precedence than :, it also means that -1:2 will
give you the sequence from -1 to 2 and not the sequence containing -1 and -2. For that,
you need parentheses:

-1:2
[1] -1 01 2
-(2:2)
[1] -1 -2
Functions are evaluated before the operators:
1:sqrt(4)

[1] 1 2

Boolean Expressions

For boolean values—those that are either TRUE or FALSE—you also have logical operators.
The operator ! negates a value:

I TRUE
[1] FALSE
IFALSE
[1] TRUE

and | and | | are logical “or” operators, while & and 88& are logical “and” operators. The
difference between | and | | or & and 88 is how they deal with vectors. The one-character
version will apply the operator element-wise and create a vector, while the two-character
version will only look at the first value in vectors:

TRUE | FALSE
[1] TRUE
FALSE | FALSE

[1] FALSE

289

CHAPTER9 DEEPER INTO R PROGRAMMING
TRUE || FALSE

[1] TRUE

FALSE || FALSE

[1] FALSE

x <- c(TRUE, FALSE, TRUE, FALSE)
y <- c(TRUE, TRUE, FALSE, FALSE)

x |y
i [1] TRUE TRUE TRUE FALSE

x |1y
[1] TRUE
x &y

[1] TRUE FALSE FALSE FALSE
x && y

[1] TRUE

We typically use the two-character version in control structures like if—since these

do not operate on vectors in any case—while we use the one-character version when we

need to compute with boolean arithmetic, where we want our expressions to work as

vectorized expressions.

Incidentally, all the arithmetic operators work like the | and & operators when

operating on more than one value, that is, they operate element-wise on vectors. We saw

that in Chapter 1 when we talked about vector expressions.

Basic Data Types

There are a few basic types in R: numeric, integer, complex, logical, and character.

290

https://doi.org/10.1007/978-1-4842-8155-0_1

CHAPTER9 DEEPER INTO R PROGRAMMING

Numeric

The numeric type is what you get any time you write a number into R. You can test if an
object is numeric using the function is.numeric or by getting the object’s class:

is.numeric(2)
[1] TRUE
class(2)

[1] "numeric"

Integer

The integer type is used for, well, integers. Surprisingly, the 2 earlier is not an integer in
R. It is a numeric type which is the larger type that contains all floating-point numbers as
well as integers. To get an integer, you have to make the value explicitly an integer, and
you can do that using the function as.integer or writing L' after the literal:

is.integer(2)
[1] FALSE
is.integer(2L)
[1] TRUE

X <- as.integer(2)
is.integer(x)

[1] TRUE
class(x)

[1] "integer"

'L stands for long, and the reason is mostly historical. In old hardware, you worried about how
many bits you should reserve for a number. Short integers had fewer bits than long integers, but
could also represent fewer values.

291

CHAPTER 9 DEEPER INTO R PROGRAMMING
Ifyou translate a non-integer into an integer, you just get the integer part:
as.integer(3.2)
[1] 3
as.integer(9.9)

[1] 9

Complex

If you ever find that you need to work with complex numbers, R has those as well. You
construct them by adding an imaginary number—a number followed by i—to any
number or explicitly using the function as.complex. The imaginary number can be zero,
01, which creates a complex number that has a zero imaginary part:

1+ 01

[1] 1+01
is.complex(1 + 0i)
[1] TRUE

class(1 + 0i)

[1] "complex"
sqrt(as.complex(-1))

[1] o+1i

Logical

Logical values are what you get if you explicitly type in TRUE or FALSE, but it is also what
you get if you make, for example, a comparison:

X<-5>4
X

292

CHAPTER9 DEEPER INTO R PROGRAMMING
[1] TRUE
class(x)
[1] "logical"
is.logical(x)

[1] TRUE

Character

Finally, characters are what you get when you type in a string such as "hello, world":

x <- "hello, world"
class(x)

[1] "character”
is.character(x)
[1] TRUE

Unlike in some languages, character here doesn’t mean a single character but
any text. So it is not like in C or Java where you have single character types, 'c', and
multicharacter strings, "string"; in R, they are both just characters.

You can, similar to the other types, explicitly convert a value into a character (string)
using as.character:

as.character(3.14)
[1] "3.14"

I'will not go further into string handling in R here. There are of course lots of
functions for manipulating strings—and even though there are all those functions, I
still find it a lot harder to manipulate strings in R than in scripting languages such as
Python—but those are beyond the scope of this book.

293

CHAPTER9 DEEPER INTO R PROGRAMMING

Data Structures

From the basic types, you can construct other data structures, essentially by
concatenating simpler types into more complex ones. The basic building blocks here are
vectors—sequences of values all of the same type—and lists, sequences where the values
can have different types.

Vectors

We have already seen vectors many times in this book, so you should be familiar with
them. Whenever we have seen expressions involving single numbers, we have actually
seen vectors containing a single value, so we have never seen anything that wasn’t a
vector. But we now consider more technical aspects of vectors.

What I have called vectors up till now is technically known as “atomic sequences.”
Those are any sequences of the basic types described earlier. You create these by
concatenating basic values using the ¢ function:

v <- c(1, 2, 3)
\"

[1] 1 2 3

or through some other operator or function, for example, the : operator or the rep
function:

1:3
[1] 1 2 3
rep("foo", 3)
[1] "foo" "foo" "foo"
We can test if something is this kind of vector using the is.atomic function:

v <- 1:3
is.atomic(v)

[1] TRUE

294

CHAPTER9 DEEPER INTO R PROGRAMMING

The reason I mention that “atomic sequences” is the technically correct term for
what we have called vectors until now is that there is also something in R that is explicitly
called a vector. In practice, there is no confusion because all the atomic sequences I have
called vectors are also vectors.

Vv <- 1:3
is.vector(v)

[1] TRUE

It is just that R only considers such a sequence a vector—in the sense that is.vector
returns TRUE—if the object doesn’t have any attributes (except for one, names, which it is
allowed to have).

Attributes are meta-information associated with an object, and not something we
will deal with much here, but you just have to know that is.vector will be FALSE if
something that is a perfectly good vector gets an attribute:

v <- 1:3
is.vector(v)

[1] TRUE

attr(v, "foo") <- "bar"
v

[1] 1 2 3
attr(,"foo")
[1] "bar"

is.vector(v)
[1] FALSE

So if you want to test if something is the kind of vector I am talking about here, use
is.atomic instead.

When you concatenate (atomic) vectors, you always get another vector back. So
when you combine several ¢ () calls, you don’t get any kind of tree structure if you do
something like this:

c(1, 2, c(3, 4), (5, 6, 7))

[1] 1234567
295

CHAPTER9 DEEPER INTO R PROGRAMMING

The type might change; if you try to concatenate vectors of different types, R will try
to translate the type into the most general type of the vectors:

c(1, 2, 3, "foo")

[1] "1" "2“ II3II II_FOO"

Matrix

If you want a matrix instead of a vector, what you really want is just a two-dimensional
vector. You can set the dimensions of a vector using the dim function—it sets one of
those attributes we talked about earlier—where you specify the number of rows and the
number of columns you want the matrix to have:

vV <- 1:6
attributes(v)

NULL

dim(v) <- c(2, 3)
attributes(v)

$dim
[1] 2 3

dim(v)

[1] 2 3

When you do this, the values in the vector will go in the matrix column-wise, that
is, the values in the vector will go down the first column first and then on to the next
column and so forth.

You can use the convenience function matrix to create matrices, and there you can
specify if you want the values to go by column or by row using the byrow parameter:

296

CHAPTER9 DEEPER INTO R PROGRAMMING

vV <- 1:6

matrix(data = v, nrow = 2, ncol = 3, byrow = FALSE)
#it [,1] [,2] [,3]

#[1,] 1 3 5

[2,] 2 4

matrix(data = v, nrow = 2, ncol = 3, byrow = TRUE)

it 1] [,2] [,3]
#[1,] 1 2 3
[2,] 4 5

Once you have a matrix, there is a lot of support for doing linear algebra in R,
but there are a few things you need to know. First, the * operator will not do matrix
multiplication. You use * if you want to make element-wise multiplication; for matrix
multiplication, you need the operator %*% instead:

(A <- matrix(1:4, nrow = 2))
[,1] [,2]

#[1,] 1 3

[2,]

(B <- matrix(5:8, nrow = 2))

i [,1] [,2]
#[1,] 5 7
[2,] 6 8

it [,1] [,2]
[1,] 5 21
[2,] 12 32

A 7*% B

it [,1] [,2]
[1,] 23 31
[2,] 34 46

297

CHAPTER9 DEEPER INTO R PROGRAMMING

If you want to transpose a matrix, you use the function t, and if you want to invert it,
you use the function solve:

t(A)

#it [,1] [,2]
#[1,] 1 2
#[2,] 3 4

solve(A)

it [,1] [,2]
[1,] -2 1.5
#[2,] 1 -0.5

solve(A) %*% A

it [,1] [,2]
[1,] 1
[2,] 0

The solve function is really aimed at solving a set of linear equations, and it does that
if it gets a vector argument as well, but you can check the documentation for the function
to see how this is done.

You can also get higher-dimensional vectors, called arrays, by setting the
dimension attribute with more than two dimensions as arguments, or you can use the
function array.

Lists

Lists, like vectors, are sequences, but unlike vectors, the elements of a list can be any
kind of objects, and they do not have to be the same type of objects. This means that you
can construct more complex data structures out of lists.

For example, we can make a list of two vectors:

list(1:3, 5:8)

[[1]]
[1] 1 2 3

298

CHAPTER9 DEEPER INTO R PROGRAMMING

#Ht

[[2]]
[1] 56 7 8

Notice how the vectors do not get concatenated like they would if we combined them
with c(). The result of the preceding command is a list of two elements that happens to
be both vectors.

They didn’t have to have the same type either; we could make a list like this, which
also consists of two vectors but vectors of different types:

list(1:3, c(TRUE, FALSE))

[[1]]
[1] 1 2 3
##

[[2]]
[1] TRUE FALSE

Since lists can contain other lists, you can build tree-like data structures quite
naturally:

list(list(), list(list(), list()))

[[1]]

list()

#

[[2]]

[[2]1][[1]]
list()

#

[[2]][[2]]
list()

E=

299

CHAPTER9 DEEPER INTO R PROGRAMMING

You can flatten a list into a vector using the function unlist(). This will force the
elements in the list to be converted into the same type, of course, since that is required of

vectors:

1 <- list(1:4, 5:7)
1

[[1]]
[1] 123 4
##

[[2]]
[1] 56 7

unlist(1)

[1] 1234567

Indexing

We saw basic indexing in the first chapter, but there is much more to indexing in R than
that. Type “?[[” into the R prompt and prepare to be amazed.

We have already seen the basic indexing. If you want the nth element of a vector v,
youuse v[n]:

v <_ C(II_FOOII’ llbarll’ "baZ", llquxll’ "an")
v[2]

[1] "bar"

But this you already knew. You also know that you can get a subsequence out of the
vector using a range of indices:

v[2:3]

[1] "bar" "baz"

which is really just a special case of using a vector of indices:
v[c(1,1,4,3,2)]

[1] II_FOOII II_FOOII "quX" Ilbazll IlbaI_ll

300

CHAPTER9 DEEPER INTO R PROGRAMMING

Here, we are indexing with positive numbers, which makes sense since the elements
in the vector have positive indices, but it is also possible to use negative numbers to
index in R. If you do that, it is interpreted as specifying the complement of the values you
want. So if you want all elements except the first element, you can use

v[-1]
[1] "bar" "baz" "qux" "gax"
You can also use multiple negative indices to remove some values:
v[-(1:2)]
[1] "baz" "qux" "gax"

You cannot combine positive and negative indices. I don’t even know how that
would even make sense, but in any case, you just can't.

Another way to index is to use a boolean vector. This vector should be the same
length as the vector you index into, and it will pick out the elements where the boolean
vector is true:

w <- 1:length(v)
W

[1] 12345

W %% 2 ==0

[1] FALSE TRUE FALSE TRUE FALSE
viw %% 2 == 0]

[1] "bar" "qux"

If you want to assign to a vector, you just assign to elements you index; as long as the
vector to the right of the assignment operator has the same length as the elements the
indexing pulls out, you will be assigning to the vector:

v[w %% 2 == 0] <- "flob"
v

[1] II_FOOII Il_Flobll llbazll ||_Flobll Ilqaxll

301

CHAPTER9 DEEPER INTO R PROGRAMMING

If the vector has more than one dimension—remember that matrices and arrays
are really just vectors with more dimensions—then you subset them by subsetting each
dimension. If you leave out a dimension, you will get a whole range of values in that

dimension, which is a simple way of getting rows and columns of a matrix:

m <- matrix(1:6, nrow = 2, byrow = TRUE)
m

it [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5

You can also index out a submatrix this way by providing ranges in one or more

dimensions:
m[1:2,1:2]

i [,1] [,2]
[1,] 1 2
#[2,] 4 5

When you pull out a one-dimensional submatrix—as we did earlier with m[1,] —the
result is a vector, not a matrix. Sometimes, that is what you want; sometimes, you don'’t
really care if you get a matrix or a vector, but sometimes you want to do linear algebra,
and then you definitely want that the submatrix you pull out is a matrix. You can tell R
that it shouldn’t reduce a one-dimensional matrix to a row by giving the indexing an
option drop=FALSE:

m[1,,drop=FALSE]

it [,1] [,2] [,3]
#[1,] 1 2 3

302

CHAPTER9 DEEPER INTO R PROGRAMMING

m[,1,drop=FALSE]

it [,1]
[1,] 1
[2,] 4

If this looks weird to you (giving indexing an option), then what you need to
know is that everything in R involves function calls. Indexing into a matrix is just
another function call, and functions can take named arguments. That is all that is
happening here.

When you subset a list using [], the result is always another list. If this surprises you,
just remember that when you subset a vector, you also always get a vector back. You just
don’t think so much about it because the way we see single values are always as vectors
of length one, so we are more used to that.

Anyway, you will always get a list out of subsetting a list with []. Even if you are
subsetting a single element, you are not getting that element; you are getting a list

containing that one element:

L <- list(1,2,3)
L[1]

[[1]]
[1] 1

L[2:3]

[[1]]
[1] 2

If you want to get to the actual element in there, you need to use the [[]] operator
instead:

L <- list(1,2,3)
L[[1]]

i [1] 1

303

CHAPTER9 DEEPER INTO R PROGRAMMING

Named Values

The elements in a vector or a list can have names. These are attributes that do not affect
the values of the elements but can be used to refer to them.
You can set these names when you create the vector or list:

v<-cla=1,b=2,c=3,d=24)
v

#abcd
#tt 12 3 4

L <- list(a = 1:5, b = c(TRUE, FALSE))
L

#Ht $a

[1] 12345
it

$b

[1] TRUE FALSE

or you can set the names using the names<- function. That weird name, by the way,
means that you are dealing with the names () function combined with assignment. We
will see how it works later.

names(v) <- LETTERS[1:4]
v

ABCD
#1234

You can use names to index vectors and lists (where the [] and [[]] return either a
list or the element of the list, as before):

v["A"]

A
o1

L["a"]

304

CHAPTER9 DEEPER INTO R PROGRAMMING

#Ht $a
[1] 12345

L[["a"]]
[1] 12345

When you have named values, you can also use a third indexing operator, the $
operator. It essentially works like [[]] except that you don’t have to put the name
in quotes:

L$a
[1] 12345

There is never really any good time to introduce the [[]] operator for vectors but
here goes: if you use the [[]] operator on a vector, it will only let you extract a single
element, and if the vector has names, it will remove the name.

Factors

The factor type we saw in the first chapter is technically also a vector type, but itisn’t

a primitive type in the same sense as the previous types. It is stored as a vector of
integers—the levels in the factor—and has associated attributes such as the levels. It is
implemented using the class system we return to in two chapters’ time, and we will not
discuss it further here.

Formulas

Another data type is the formula. We saw these in Chapter 6, and we can create them
using the ~ operator. Like factors, the result is an object defined using a class. We will see
how we can use formulas to implement our own statistical models via model matrices in
the last chapter of the book.

305

https://doi.org/10.1007/978-1-4842-8155-0_6

CHAPTER9 DEEPER INTO R PROGRAMMING

Control Structures

Control structures determine the flow of execution of a program. You can get far by just
having one statement or expression after another, but eventually you will have to do
one thing instead of another depending on the results of a calculation, and this is where
control structures come in.

Like many other programming languages, you have two kinds of control structures in
R: select (if statements) and loops (for, while, or repeat statements).

Selection Statements
If statements look like this:

if (boolean) {
do something

or like this

if (boolean) {
do one thing
} else {
do another thing

You can string them together like this:

if (x < 0) {
handle negative x
} else if (x > 0) {
handle positive x
} else {
handle if x is zero

In all the examples here I have put the statements you do if the condition is true or if
it is false in curly brackets. Strictly speaking, this isn’t necessary if we are talking about a
single statement. This would work just fine:

if (x > 0) "positive" else if (x < 0) "negative" else "zero"

306

CHAPTER9 DEEPER INTO R PROGRAMMING

but it would fail if you put newlines in between the statements; the R parser would be
confused about that, and there you do need curly brackets. This would be a syntax error:

if (x > 0)
print("positive")
else if (x < 0)
print("negative")
else
print(“zero")

while this would be okay:

if (x > 0) {
print("positive")

} else if (x < 0) {
print("negative")

} else {
print("zero")

I recommend always using curly brackets until you get more familiar with R, since
they work fine when you only have a single statement so you are not doing anything
wrong in that case, and they are the only thing that works when you have more than one
statement or when you have newlines in the if statement.

Loops

The most common looping construction you will use is probably the for loop. You use
the for loop to iterate through the elements of a sequence, and the construction works
like this:

for (i in 1:4) {

print(i)
}
[1] 1
[1] 2
[1] 3
[1] 4

307

CHAPTER9 DEEPER INTO R PROGRAMMING

Keep in mind, though, that it is the elements in the sequence you are iterating
through, so the variables you assign to the iteration variable are the elements in the
sequence and not the index into the sequence:

for (i in c("foo", "bar", "baz")) {
print(i) # i is foo, then bar, then baz, not index 1, 2, and then 3
}
[1] "foo"
[1] "bar"
[1] "baz"

If you want to loop through the indices into the sequence, you can use the seq_along
function:

x <- c("foo", "bar", "baz")
for (i in seq along(x)) {

print(i)
print(x[i])
}
[1] 1
[1] "foo"
[1] 2
[1] "bar"
[1] 3
[1] "baz"

You will sometimes see code that uses this construction:

for (i im 1:length(x)) {

do stuff
}

Don’t do that. It won’t work if the sequence x is empty:
x <- c()

1:1ength(x)

[1] 1 0

308

CHAPTER9 DEEPER INTO R PROGRAMMING

If you want to jump to the next iteration of a loop, you can use the next keyword. For
example, the following will only print every second element of x:

for (i in seq along(x)) {
if (i %% 2 ==0) {
next

}
print(x[i])

If you want to terminate the loop completely, you can use break:

for (i in 1:100) {
if (1 %% 2 == 0) {

next
}
if (i > 5) {
break
}
print(i)
}
[1] 1
[1] 3
[1] 5

The two other loop constructs you won'’t use as often. They are the while and
repeat loops.
The while loop iterates as long as a boolean expression is true and looks like this:

i<-1

while (i < 5) {
print(i)
ic-1+1

}

[1] 1

[1] 2

[1] 3

[1] 4

309

CHAPTER9 DEEPER INTO R PROGRAMMING

The repeat loop simply goes on forever, at least until you break out of the loop:

i<-1
repeat {
print(i)
ic-1+1
if (i > 5) break
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

###A word of warning about looping...

If you read more about R, you will soon run into the statement that loops are slow
in R. Itisn’t really as bad as some make it out to be, but it is somewhat justified. Because
Ris an extremely dynamic language—functions and variables can change at any time
during program execution, if you want them to—it is hard for the interpreter to optimize
code before it runs it, unlike in some other languages (but not that different from other
dynamic languages such as Python). There haven’t been many attempts at optimizing
loops either, though, because there are typically better solutions in R than to use an
explicit loop statement.

Ris a so-called functional language (among other things), and in functional
languages, you typically don’t use loops. The way looping constructions work, you need
to change the value of a looping variable or a boolean expression while you execute
the code, and changing variables is considered “impure” in function languages (so,
obviously, R is not a pure functional language, since it allows this). Instead, recursive
functions are used for looping. Most functional languages don’t even have looping
constructions—and pure functional languages certainly do not. R is a bit more
pragmatic, but you are typically better off with using alternatives to loops.

We will get more into that in the next chapter.

310

CHAPTER9 DEEPER INTO R PROGRAMMING

Functions

You define functions this way:
name <- function(arguments) expression

where name can be any variable name, arguments is a list of formal arguments to the
function, and expression is what the function will do when you call it. It says expression
because you might as well think about the body of a function as an expression, but
typically it is a sequence of statements enclosed by curly brackets:

name <- function(arguments) { statements }

It is just that such a sequence of statements is also an expression; the result of
executing a series of statements is the value of the last statement.

The following function will print a statement and return 5 because the statements
in the function body are first a print statement and then just the value 5 that will be the

return value of the function:

f <- function() {
print("hello, world")
5

}

f0)

[1] "hello, world"
[1] 5

We usually don’t write functions without arguments—Ilike I just did earlier—but have
one or more formal arguments. The arguments, in their simplest form, are just variable
names. They are assigned values when you call the function, and these can then be used
inside the function’s body:*

plus <- function(x, y) {

print(paste(x, "+", y, "is", x +y))
X +Yy

*] am actually lying here because the arguments to a function are not assigned values but
expressions that haven’t been evaluated yet. See lazy evaluation later.

311

CHAPTER9 DEEPER INTO R PROGRAMMING

div <- function(x, y) {
print(paste(x, "/", y, "is", x / y))
x/y

}

plus(2, 2)

#[1] "2 + 2 is 4"
[1] 4

div(6, 2)

#t [1] "6 / 2 is 3"

[1] 3

Named Arguments

The order of arguments matters when you call a function because it determines which
argument gets set to which value:

div(6,2)

[1] "6 / 2 is 3"

[1] 3

div(2,6)

[1] "2 / 6 is 0.333333333333333"
[1] 0.3333333

If a function has many arguments, though, it can be hard always to remember the
order they should appear in, so there is an alternative way to specify which variable is
given which values: named arguments. It means that when you call a function, you can
make explicit which parameter each argument should be set to:

div(x = 6, y = 2)
[1] "6 / 2 is 3"

[1] 3
312

CHAPTER9 DEEPER INTO R PROGRAMMING
div(y = 2, x = 6)
[1] "6 / 2 is 3"
[1] 3

This makes explicit which parameter gets assigned which value, and you can think
of it as an assignment operator. You shouldn'’t, though, because although you can
use = as an assignment operator, you cannot use < - for specifying named variables. It
looks like you can, but it doesn’t do what you want it to do (unless you want something
really weird):

div(x <- 6, y <- 2)

[1] "6 / 2 is 3"

[1] 3

div(y <- 2, x <- 6)

#4# [1] "2 / 6 is 0.333333333333333"
[1] 0.3333333

The assignment operator <- returns a value, and that is passed along to the function
as positional arguments. So in the second function call earlier, you are assigning 2 to y
and 6 to x in the scope outside the function, but the values you pass to the function are
positional, so inside the function you have given2 to xand 6 to y.

Don’t confuse the two assignment operators: the code most likely will run, but it is
unlikely to do what you want it to do!

Default Parameters

When you define a function, you can provide default values to parameters like this:

pow <- function(x, y = 2) x"y
pow(2)

[1] 4

pow(3)

313

CHAPTER9 DEEPER INTO R PROGRAMMING
[1] 9
pow(2, 3)
[1] 8
pow(3, 3)
[1] 27

Default parameter values will be used whenever you do not provide the parameter at
the function call.

Return Values

The return value of a function is the last expression in the statements executed in the
function body. If the function is a sequence of statements, this is just the last statement
in the sequence, but by using control structures, you can have different statements as the
last statement:

safer div <- function(x, y) {

if (y == 0) {
NA

} else {
x/y

}

}

safer div(4, 2)
[1] 2

safer div(4, 0)
[1] NA

It is also possible to return explicitly from a function—similarly to breaking from a
loop—using the return() statement:

safer div <- function(x, y) {

if (y == 0) {
return(NA)

314

CHAPTER9 DEEPER INTO R PROGRAMMING

x/y
}

safer_div(4, 2)
[1] 2

safer div(4, 0)
[1] NA

Notice that the return() statement has the return value in parentheses. Many
programming languages would allow you to write

safer div <- function(x, y) {

if (y == 0) {
return NA

}

x/y

but this would be an error in R.

Lazy Evaluation

Several places I have written about providing values to the function parameters when
we call a function. In many programming languages, this is exactly how function calls
work—the expressions provided for each parameter are evaluated, and the results
are assigned to the function parameters so the function can use them in the function
body—but in R it is actually the expressions that are assigned to the function parameters.
And the expressions are not evaluated until they are needed, something called lazy
evaluation.

There are some benefits to this way of handling function parameters and some weird
consequences as well.

The first benefit is that it makes default parameters more flexible. We can write a
function like this:

f <- function(x, y = x*2) y + x

315

CHAPTER9 DEEPER INTO R PROGRAMMING

where y has a default value that depends on the other parameter x. At the time
where the function is declared, the value of x is not known, but y is not evaluated there,
so it doesn’t matter. Whenever we call the function, x is known inside the body of the
function, and that is where we need the value of y, so that is where the expression will be
evaluated:

(2)
[1] 6

Since y isn’t evaluated before it is used, it does also mean that if you assign a different
value to x before you use y, then y evaluates to a value that depends on the new value of
x—not the value of x at the time the function was called!

g <- function(x, y = x*2) { x <- 0; y + x }
g(2)
[1] O

If, on the other hand, y is evaluated before we assign to x, then it will evaluate to the
value that depends on x at the time we evaluate it and remain that value. It is evaluated
the first time it is needed, and the result is then remembered for any later time we
refer toy:

h <- function(x, y = x*2) { y; x <- 0; y + X }

h(2)
[1] 4

So lazy evaluation lets you specify default parameters that depend on other
parameters in a context where those parameters are unknown, but it comes at the prize
of the value of the parameter depending on the context at the first time it gets evaluated.

If it was just to be able to specify variables this way, we could, of course, have
a solution that doesn’t involve the weirdness that we pay for it. This is what most
programming languages have done, after all, but there are other benefits of lazy
evaluation: you only evaluate an expression if you actually need it.

316

CHAPTER9 DEEPER INTO R PROGRAMMING

Scoping

Scope in Ris lexical. This means that if a variable is used in a function but not defined in
the function or part of the function’s parameters, then R will start searching outward in
the code from where the function was created. This essentially means searching outward
and upward from the point in the code where the function is specified, since a function
is created when the code is executed where the function is defined.

Consider the following code:

X <- "X
f <- function(y) {
g <- function() c(x, y)
g()

"y")
[1]

1 IIXII llyll

Here, we have a global variable x and a function f that takes a parameter argument
y. Inside f, we define the function g that neither defines nor takes as formal arguments
variables x and y but does return them. We evaluate g as the last statement in f, so that
becomes the result of calling f at the last line.

Inside g, we have not defined x or y, so to find their values, R will search outward
from where g is created. It will find y as the argument of the function f and so get it from
there and continue outward to find x at the global level.

The variables that g refers to are the variables and not the values at the time that g is
created, so if we update the variables after we create g, we also change the value that g

will return:

x <- "X
f <- function(y) {
g <- function() c(x, y)

y <- "z
g()

}

f("y")

[1] "x" "z"

317

CHAPTER9 DEEPER INTO R PROGRAMMING

This isn’t just the lazy evaluation madness—it is not that g hasn’t evaluated y yet, and
it, therefore, can be changed. It does look up the value of y when it needs it:

X <- "X
f <- function(y) {
g <- function() c(x, y)

g()
y <- "z"
g()
}
f("y")
[1] "x" "z"

If we return the function g from f rather than the result of evaluating it, we see
another feature of R’s scoping—something called closures. R remembers the values of
variables inside a function that we have returned from and that is no longer an active
part of our computation. In the following example, we returned the function g at which
point there is no longer an active f function. So there is not really an active instance of
the parameter y any longer. Yet g refers to a y, so the parameter we gave to f is actually
remembered:

X <- "X

f <- function(y) {
g <- function() c(x, y)
g

}

ge- F("y")

g()

[1] "x" "y"

We can see how this works if we invoke f twice, with different values for parameter y:

X <- "X

f <- function(y) {
g <- function() c(x, y)
g

}

318

CHAPTER9 DEEPER INTO R PROGRAMMING

g<- f("y")

h <- £("z")
g()

[1] "x" "y"
h()

[1] "x" "z"

This creates two different functions. Inside f, they are both called g, but they are
two different functions because they are created in two different calls to f, and they
remember two different y parameters because the two instances of f were invoked with
different values for y.

When looking outward from the point where a function is defined, it is looking for
the values of variables at the time a function is invoked, not the values at the time where
the function is created. Variables do not necessarily have to be defined at the time the
function is created; they just need to be defined when the function is eventually invoked.

Consider this code:

f <- function() {
g <- function() c(y, z)
y <-"y"
g

}

h <- f()

h()
Error in h(): object 'z

not found

z<- "z
h()
[1] "y" "z"

Where the function g is defined—inside function f—it refers to variables y and z that
are not defined yet. This doesn’t matter because we only create the function g; we do not
invoke it. We then set the variable y inside the context of the invocation of f and return g.
Outside of the function call, we name the return value of £() h. If we call h at this point,
it will remember that y was defined inside f—and it will remember its value at the point

319

CHAPTER9 DEEPER INTO R PROGRAMMING

in time where we returned from f. There still isn’t a value set for z, so calling h results in
an error. Since z isn’t defined in the enclosing scopes of where the inner function refers
to it, it must be defined at the outermost global scope, but it isn’t. If we do set it there, the
error goes away because now R can find the variable by searching outward from where
the function was created.

I shouldn’t really be telling you this because the feature I am about to tell you about
is dangerous. I will show you a way of making functions have even more side effects than
they otherwise have, and functions really shouldn’t have side effects at all. Anyway, this
is a feature of the language, and if you are very careful with how you use it, it can be very
useful when you just feel the need to make functions have side effects.

This is the problem: What if you want to assign to a variable in a scope outside the
function where you want the assignment to be made? You cannot just assign to the
variable because if you assign to a variable that isn’t found in the current scope, then you
create that variable in the current scope:

f <- function() {
x <- NULL
set <- function(val) { x <- val }
get <- function() x
list(set = set, get = get)
}

x <- f()
x$get() # get x -- we haven't set it, so it is NULL

NULL

x$set(5) # set x to five
x$get() # now get the new value -- it doesn't work yet, though

NULL

In this code—that I urge you to read carefully because there are a few neat ideas in
it—we have created a getter and a setter function. The getter tells us what the variable x
is, and the setter is supposed to update it. It doesn’t quite work yet, though. When setting
x in the body of the set function, we create a local variable inside that function—it
doesn’t assign to the x one level up.

320

CHAPTER9 DEEPER INTO R PROGRAMMING

There is a separate assignment operator, << -, you can use for that. It will not create a
new local variable but instead search outward to find an existing variable and assign to
that. If it gets all the way to the outermost global scope, though, it will create the variable
there if it doesn’t already exist.

If we use that assignment operator in the preceding example, we get the behavior we
were aiming for:

f <- function() {
x <- NULL
set <- function(val) { x <<- val }
get <- function() x
list(set = set, get = get)
}

x <- ()
x$get() # We get x, which is still NULL

NULL

x$set(5) # We set x, and this time it works
x$get() # as you can see here

[1] 5

If we hadn’t set the variable x inside the body of f in this example, both the getter
and setter would be referring to a global variable, in case you are wondering. The first
call to get would cause an error if there was no global variable. While this example
shows you have to create an object where functions have side effects, it is quite a bit
better to let functions modify variables that are hidden away in a closure like this than it
is to work with global variables.

321

CHAPTER9 DEEPER INTO R PROGRAMMING

Function Names Are Different from Variable Names

One final note on scopes—which I am not sure should be considered a feature or a
bug—is that if R sees something that looks like a function call, it is going to go searching
for a function, even if searching outward from a function creation would get to a
nonfunction first:

n <- function(x) x
f <- function(n) n(n)
£(5)

[1] 5

Under the scoping rule that says that you should search outward, the n inside the
f function should refer to the parameter to . But it is clear that the first n is a function
call and the second is its argument, so when we call f, it sees that the parameter isn’t
a function so it searches further outward and finds the function n. It calls that function
with its argument. So the two n’s inside f actually refer to different things.

Of course, if we call f with something that is actually a function, then it recognizes
that n is a function, and it calls that function with itself as the argument:

f(function(x) 15)
[1] 15

Interesting, right?

Recursive Functions

The final topic we will cover in this chapter is recursive functions. Some people find this
a difficult topic, but in a functional programming language, it is one of the most basic
building blocks, so it is really worth spending some time wrapping your head around,
even though you are much less likely to need recursions in R than you are in most pure
functional languages.

At the most basic level, though, it is just that we can define a function’s computations
in terms of calls to the same function—we allow a function to call itself, just with new
parameters.

322

CHAPTER9 DEEPER INTO R PROGRAMMING

Consider the factorial operator n!=n x (n — 1) x - - - x 3 x 2 x 1. We can rewrite the
factorial of n in terms of n and a smaller factorial, the factorial of n — 1, and getn! =n
x (n = 1)!. This is a classical case of where recursion is useful: we define the value for
some n in terms of the calculations on some smaller value. As a function, we would write
factorial(n) equalsn * factorial(n-1).

There are two aspects to a recursive function, though. Solving a problem for size
n involves breaking down the problem into something you can do right away and
combining that with calls of the function with a smaller size, here n — 1. This part we
call the “step” of the recursion. We cannot keep reducing the problem into smaller and
smaller bits forever—that would be an infinite recursion which is as bad as an infinite
loop in that we never get anywhere—at some point, we need to have reduced the
problem to a size small enough that we can handle it directly. That is called the basis of
the recursion.

For factorial, we have a natural basis in 1 since 1! = 1. So we can write a recursive
implementation of the factorial function like this:

factorial <- function(n) {

if (n == 1) {
1
} else {

n * factorial(n - 1)

It is actually a general algorithmic strategy, called divide and conquer, to break down
a problem into subproblems that you can handle recursively and then combine the
results some way.

Consider sorting a sequence of numbers. We could sort a sequence using this
strategy by first noticing that we have a simple basis—it is easy to sort an empty sequence
or a sequence with a single element since we don’t have to do anything there. For the
step, we can break the sequence into two equally sized pieces and sort them recursively.
Now we have two sorted sequences, and if we merge these two, we have combined them
into a single sorted sequence.

Let’s get started.

323

CHAPTER9 DEEPER INTO R PROGRAMMING

We need to be able to merge two sequences so we can solve that problem first. This is
something we should be able to do with a recursive function because if either sequence
is empty, we have a base case where we can just return the other sequence. If there are
elements in both sequences, we can pick the sequence whose first element is smallest,
pick that out as the first element we need in our final result, and just concatenate the
merging of the remaining numbers:

merge <- function(x, y) {
if (length(x) == 0) return(y)
if (length(y) == 0) return(x)

if (x[1] < y[1]) {
c(x[1], merge(x[-1], y))
} else {
c(y[1], merge(x, y[-1]))
}
}

A quick disclaimer here: Normally, this algorithm would run in linear time, but
because of the way we call recursively, we are actually copying vectors whenever we are
removing the first element, making it a quadratic time algorithm. Implementing a linear
time merge function is left as an exercise.

Using this function, we can implement a sorting function. This algorithm is called
merge sort, so that is what we call the function:

merge sort <- function(x) {
if (length(x) < 2) return(x)

n <- length(x)
m<-n %/% 2

merge(merge sort(x[1:m]), merge sort(x[(m+1):n]))

}

So here, using two simple recursive functions, we solved a real algorithmic problem
in a few lines of code. This is typically the way to go in a functional programming
language like R. Of course, when things are easier done using loops, you shouldn’t stick
to the pure functional recursions. Use what is easiest in any situation you are in, unless
you find that it is too slow. Only then do you start getting clever.

324

CHAPTER9 DEEPER INTO R PROGRAMMING

Exercises
Fibonacci Numbers

The Fibonacci numbers are defined as follows. The first two Fibonacci numbers are 1, F,
= F, = 1. For larger Fibonacci numbers, they are defined as F;= F;_, + F,_,.

Implement a recursive function that computes the n’th Fibonacci number.

The recursive function for Fibonacci numbers is usually quite inefficient because you
are recomputing the same numbers several times in the recursive calls. So implement
another version that computes the n’th Fibonacci number iteratively (i.e., start from the
bottom and compute the numbers up to n without calling recursively).

Outer Product

The outer product of two vectors, vand w, is a matrix defined as

4l ww ovpw, viwy viw,
_ T _ _
vOw=w" =|v, ([w, w, wy ow]=|vw v, vwy v,

Vs W VsW, VsWy VW

Write a function that computes the outer product of two vectors.

There actually is a built-in function, outer, that you are overwriting here. You can
get to it using the name base: :outer even after you have overwritten it. You can use it to
check that your own function is doing the right thing.

Linear Time Merge

The merge function we used earlier copies vectors in its recursive calls. This makes it
slower than it has to be. Implement a linear time merge function.

Before you start, though, you should be aware of something. If you plan to append to
a vector by writing something like

v <- c(v, element)

then you will end up with a quadratic time algorithm again. This is because when you
do this, you are actually creating a new vector where you first copy all the elements in
the old v vector into the first elements and then add the element at the end. If you do

325

CHAPTER9 DEEPER INTO R PROGRAMMING

this n times, you have spent on average order n* per operation. It is because people do
something like this in loops, more than the R interpreter, that has given R its reputation
for slow loops. You should never append to vectors unless there is no way to avoid it.

In the case of the merge function, we already know how long the result should be,
so you can preallocate a result vector and copy single elements into it. You can create a
vector of length 7 like this:

n<-5
v <- vector(length = n)

Should you ever need it, you can make a list of length 7 like this:

vector("list", length = n)

Binary Search

Binary search is a classical algorithm for finding out if an element is contained in a
sorted sequence. It is a simple recursive function. The basic case handles a sequence of
one element. There, you can directly compare the element you are searching for with the
element in the sequence to determine if they are the same. If you have more than one
element in the sequence, pick the middle one. If it is the element you are searching for,
you are done and can return that the element is contained in the sequence. If it is smaller
than the element you are searching for, then you know that if the element is in the list,
then it has to be in the last half of the sequence, and you can search there. If it is larger
than the element you are searching for, then you know that if it is in the sequence, it must
be in the first half of the sequence, and you search recursively there.

If you implement this exactly as described, you have to call recursively with a
subsequence. This involves copying that subsequence for the function call which makes
the implementation much less efficient than it needs to be. Try to implement binary
search without this.

More Sorting

In the merge sort we implemented earlier, we solve the sorting problem by splitting a
sequence in two, sorting each subsequence, and then merging them. If implemented
correctly, this algorithm will run in time O(n log n) which is optimal for sorting
algorithms if we assume that the only operations we can do on the elements we sort are
comparing them.

326

CHAPTER9 DEEPER INTO R PROGRAMMING

If the elements we have are all integers between 1 and n and we have m of them, we
can sort them in time O(n + m) using bucket sort instead. This algorithm first creates a
vector of counts for each number between 1 and n. This takes time O(n). It then runs
through the m elements in our sequence, updating the counter for number i each time
it sees i. This runs in time O(m). Finally, it runs through these numbers from 1 up to
n, outputting each number, the number of times indicated by the counters, in time
O(n+m).

Implement bucket sort.

Another algorithm that works by recursion, and that runs in expected time O(n log
n), is quick sort. Its worst-case complexity is actual O(n?), but on average it runs in time
O(n log n) and with a smaller overhead than merge sort (if you implement it correctly).

It works as follows: the base case—a single element—is the same as merge sort.
When you have more than one element, you pick one of the elements in the sequence
at random,; call it the pivot. Now split the sequence into those elements that are smaller
than the pivot, those that are equal to the pivot, and those that are larger. Sort the
sequences of smaller and larger elements recursively. Then output all the sorted smaller
elements, then the elements equal to the pivot, and then the sorted larger elements.

Implement quick sort.

Selecting the k Smallest Element

If you have n elements, and you want the k smallest, an easy solution is to sort the
elements and then pick number k. This works well and in most cases is easily fast
enough, but it is actually possible to do it faster. See, we don’t actually need to sort the
elements completely, we just need to have the k smallest element moved to position kin
the sequence.

The quick sort algorithm from the previous exercise can be modified to solve this
problem. Whenever we split a sequence into those smaller than, equal to, and larger
than the pivot, we sort the smaller and larger elements recursively. If we are only
interested in finding the element that would eventually end up at position k in the sorted
lists, we don’t need to sort the sequence that doesn’t overlap this index. If we have m
< k elements smaller than the pivot, we can just put them at the front of the sequence
without sorting them. We need them there to make sure that the k’th smallest element
ends up at the right index, but we don’t need them sorted. Similarly, if k < m, we don’t
need to sort the larger elements. If we sorted them, they would all end up at indices

327

CHAPTER9 DEEPER INTO R PROGRAMMING

larger than k, and we don’t really care about those. Of course, if there are m < k elements
smaller than the pivot and / equal to the pivot, with m + [> k, then the k smallest element
is equal to the pivot, and we can return that.

Implement this algorithm.

328

CHAPTER 10

Working with Vectors
and Lists

In this chapter, we explore working with vectors and lists a little further. We will not cover
anything that is conceptually more complex that we did in the previous chapter. It is just
a few more technical details we will dig into.

Working with Vectors and Vectorizing Functions

We start out by returning to expressions. In the previous chapter, we saw expressions
on single (scalar) values, but we also saw that R doesn’t really have scalar values; all the
primitive data we have is actually vectors of data. What this means is that the expressions
we use in R are actually operating on vectors, not single values.

When you write

(x <- 27/ 3)
[1] 0.6666667
(y <- x ** 2)
[1] 0.4444444

the expressions you write are, of course, working on single values—the vectors x and y
have length 1—but it is really just a special case of working on vectors:

(x <- 1:4 / 3)
[1] 0.3333333 0.6666667 1.0000000 1.3333333
(y <= x ** 2)

[1] 0.1111111 0.4444444 1.0000000 1.7777778

329
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_10

https://doi.org/10.1007/978-1-4842-8155-0_10#DOI

CHAPTER 10 WORKING WITH VECTORS AND LISTS

R works on vectors using two rules: operations are done element-wise, and vectors
are repeated as needed.

When you write an expression such as x + y, you are really saying that you want to
create a new vector that consists of the element-wise sum of the elements in vectors x
andy. So for x and y like this

X <- 1:5
y <- 6:10

writing

(z <- x +y)

[1] 7 9 11 13 15
amounts to writing

z <- vector(length = length(x))
for (i in seq_along(x)) {
z[1i] <- x[i] + y[i]

[1] 7 9 11 13 15

This is the case for all arithmetic expressions or for logical expressions involving | or
& (but not | | or 88; these do not operate on vectors element-wise). It is also the case for
most functions you can call, such as sqrt or sin:

sqrt((1:5)**2)
[1] 123 4 5
sin(sqrt((1:5)**2))

[1] 0.8414710 0.9092974 0.1411200 -0.7568025
[5] -0.9589243

When you have an expression that involves vectors of different lengths, you cannot
directly evaluate expressions element-wise. When this is the case, R will try to repeat
the shorter vector(s) to create vectors of the same length. For this to work, the shorter
vector(s) should have a length divisible in the length of the longest vector, that is, you

330

CHAPTER 10 WORKING WITH VECTORS AND LISTS

should be able to repeat the shorter vector(s) an integer number of times to get the
length of the longest vector. If this is possible, R repeats vectors as necessary to make all
vectors the same length as the longest and then do operations element-wise:

X <- 1:12
y <- 1:2
X+Yy

[1] 2 4 4 6 6 8 8 10 10 12 12 14

z <- 1:3
X+ z

[1] 2 4 6 5 7 9 810 12 11 13 15

If the shorter vector(s) cannot be repeated an integer number of times to match up,
R will still repeat as many times as needed to match the longest vector, but you will get a
warning since most times something like this happens, it is caused by buggy code:

z <- 1:5
X+ z

Warning in x + z: longer object length is not a
multiple of shorter object length

[1] 2 4 6 810 7 9 11 13 15 12 14
In the expression we saw a while back
(x <- 1:4 / 3)
[1] 0.3333333 0.6666667 1.0000000 1.3333333
(y <- x ** 2)
[1] 0.1111111 0.4444444 1.0000000 1.7777778

different vectors are repeated. When we divide 1:4 by 3, we need to repeat the (length
one) vector 3 four times to be able to divide the 1:4 vector with the 3 vector. When we
compute x ** 2, we must repeat 2 four times as well.

331

CHAPTER 10 WORKING WITH VECTORS AND LISTS

Whenever you consider writing a loop over vectors to do some calculations for each
element, you should always consider using such vectorized expressions instead. It is
typically much less error-prone, and since it involves implicit looping handled by the R
runtime system, it is almost guaranteed to be faster than an explicit loop.

ifelse

Control structures are not vectorized. For example, if statements are not. If you want to
compute a vector y from vector x such thaty[i] == 5ifx[i]isevenandy[i] == 15if
x[1] is odd, for example, you cannot write this as a vector expression:

X <- 1:10
if (x %% 2 == 0) 5 else 15

Warning in if (x%%2 == 0) 5 else 15: the condition
has length > 1 and only the first element will be
used

[1] 15

Instead, you can use the function ifelse that works like a vectorized selection; if
the condition in its first element is true, it returns the value in its second argument,
otherwise the value in its third argument, and it does this as vector operations:

X <- 1:10
ifelse(x %% 2 == 0, 5, 15)

[1] 15 515 515 515 515 5

Vectorizing Functions

When you write your own functions, you can write them such that they can also be
used to work on vectors, that is, you can write them such that they can take vectors as
input and return vectors as output. If you write them this way, then they can be used in
vectorized expressions the same way as built-in functions such as sqrt and sin.

The easiest way to make your function work on vectors is to write the body of the
function using expressions that work on vectors:

332

CHAPTER 10 WORKING WITH VECTORS AND LISTS

f <- function(x, y) sqrt(x ** y)
f(1:6, 2)

[1] 123456
f(1:6, 1:2)

[1] 1.000000 2.000000 1.732051 4.000000 2.236068
[6] 6.000000

If you write a function where you cannot write the body this way, but where you
still want to be able to use it in vector expressions, you can typically get there using the
Vectorize function.

As an example, say we have a table mapping keys to some values. We can imagine
that we want to map names in a class to the roles the participants in the class have. In R,
we would use a list to implement that kind of tables, and we can easily write a function
that uses such a table to map names to roles:

role table <- list("Thomas" = "Instructor",
"Henrik" = "Student",
"Kristian" = "Student",
"Randi" = "Student",
"Heidi" = "Student",

"Manfred" = "Student")

map_to role <- function(name) role table[[name]]
This works the way it is supposed to when we call it with a single name:
map_to role("Thomas")
[1] "Instructor”
map_to role("Henrik")
[1] "Student"

but it fails when we call the function with a vector because we cannot index the list with
a vector in this way:

x <- c("Thomas", "Henrik", "Randi")
map_to role(x)

Error in role table[[name]]: recursive indexing failed at level 2
333

CHAPTER 10 WORKING WITH VECTORS AND LISTS

So we have a function that maps a single value to a single value but doesn’t work for
avector. The easy way to make such a function work on vectors is to use the Vectorize
function. This function will wrap your function so it can work on vectors, and what it will
do on those vectors is what you would expect: it will calculate its value for each of the
elements in the vector, and the result will be the vector of all the results:

map_to role <- Vectorize(map to_role)
map_to role(x)

Thomas Henrik Randi
"Instructor" "Student" "Student"

In this particular example with a table, the reason it fails is that we are using the [[~
index operator. Had we used the [~ operator, we would be fine (except that the result
would be a list rather than a vector):

role table[c("Thomas", "Henrik", "Randi")]

$Thomas

[1] "Instructor”
it

$Henrik

[1] "Student"

##

$Randi

[1] "Student"

So we could also have handled vector input directly by indexing differently and then
flattening the list:

map_to role 2 <- function(names) unlist(role table[names])

x <- c("Thomas", "Henrik", "Randi")
map_to role 2(x)

#it Thomas Henrik Randi
"Instructor" "Student" "Student"

334

CHAPTER 10 WORKING WITH VECTORS AND LISTS

It’s not always that easy to rewrite a function to work on vector input, though, and
when we cannot readily do that, then the Vectorize function can be very helpful.

As a side note, the issue with using " [[~ with a vector of values isn’t just that it
doesn’t work. It actually does work, but it does something else than what we are trying
to do here. If you give " [[~ a vector of indices, it is used to do what is called recursive
indexing. It is a shortcut for looking up in the list using the first variable and pulling out
the vector or list found there. It then takes that sequence and looks up using the next
index and so on. Take as an example the following code:

x <- list("first" = list("second" = "foo"), "third" = "bar")
x[[c("first", "second")]]

[1] "foo"

Here, we have a list of two elements, the first of which is a list with a single element.
We can look up the index “first” in the first list and get the list stored at that index. This
list we can then index with the “second” index to get “foo” out.

The result is analogous to this:

x[["first"]][["second"]]
[1] "foo"

This can be a useful feature—although to be honest I have rarely found much use for
it in my own programming—but it is not the effect we wanted in our mapping to roles

example.

The apply Family

Vectorizing a function makes it possible for us to use it implicitly on vectors. We simply
give it a vector as input, and we get a vector back as output. Notice though that it isn’t
really a vectorized function just because it takes a vector as input—many functions take
vectors as input and return a single value as output, for example, sum and mean—but we
use those differently than vectorized functions. If you want that kind of function, you do
have to handle explicitly how it deals with a sequence as input.

Vectorized functions can be used on vectors of data exactly the same way as on single
values with exactly the same syntax. It is an implicit way of operating on vectors. But we
can also make it more explicit when calling a function on all the elements in a vector

335

CHAPTER 10 WORKING WITH VECTORS AND LISTS

which give us a bit more control of exactly how it is called. This, in turn, lets us work with
those functions that do not just map from vectors to vectors but also from vectors to
single values.

There are many ways of doing this—because it is a common thing to do in R—and we
will see some general functions for working on sequences and calling functions on them
in various ways later. In most of the code you will read, though, the functions that do this
are named something with apply in their name, and those functions are what we will
look at here.

Let’s start with apply. This is a function for operating on vectors, matrices (two-
dimensional vectors), or arrays (higher-order dimensional vectors).

apply
This function is easiest explained on a matrix, I think, so let’s make one:

m <- matrix(1:6, nrow = 2, byrow = TRUE)
m

#it [,1] [,2] [,3]
#[1,] 1 2 3
#[2,] 4 5

The apply function takes (at least) three parameters. The first is the vector/matrix/
array, the second which dimension(s) we should marginalize along, and the third the
function we should apply.

What is meant by marginalization here is that you fix an index in some subset of the
dimensions and pull out all values with that index. If we are marginalizing over rows,
we will extract all the rows, so for each row, we will have a vector with an element per
column, which is what we will pass the function.

We can illustrate this using the paste function that just creates a string of its input by
concatenating it.!

If we marginalize on rows, it will be called on each of the two rows and produce two
strings:

!So this is a case of a function that takes a vector as input but outputs a single value; it is not a
vectorized function as those we talked about earlier.

336

CHAPTER 10 WORKING WITH VECTORS AND LISTS
apply(m, 1, \(x) paste(x, collapse = ":"))
[1] "1:2:3" "4:5:6"

If we marginalize on columns, it will be called on each of the three columns and
produce three strings:

apply(m, 2, \(x) paste(x, collapse = ":"))
[1] ||1:4n u2:5|| "3:6"

If we marginalize on both rows and columns, it will be called on each single element

instead:
apply(m, c(1, 2), \(x) paste(x, collapse = ":"))
[,1] [,2] [,3]

[1)] "1" Il2II II3II
[2)] Il4ll II5II ||6|l

The output here is two-dimensional. That is of course because we are marginalizing
over two dimensions, so we get an output that corresponds to the margins.

We can get higher-dimensional output in other ways. If the function we apply
produces vectors (or higher-dimensional vectors) as output, then the output of apply
will also be higher-dimensional. Consider a function that takes a vector as input and
duplicates it by concatenating it with itself. If we apply it to rows or columns, we get a
vector for each row/column, so the output has to be two-dimensional:

apply(m, 1, \(x) c(x,x))

it [,1] [,2]
#[1,] 1 4
#[2,] 2 5
[3,] 3 6
[4,] 1 4
[5,] 2 5
[6,] 3 6

337

CHAPTER 10 WORKING WITH VECTORS AND LISTS

apply(m, 2, \(x) c(x,x))

it [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 1 2 3
#t [4,] 4 5 6

What apply does here is that it creates a matrix as its result, where the results of
applying the function are collected as columns from left to right. The result of calling
the function on the two rows is a matrix with two columns, the first column containing
the result of applying the function to the first row and the second column the result of
applying it to the second row. Likewise, for columns, the result is a vector with three
columns, one for each column in the input matrix.

If we marginalize over more than one dimension—and get multidimensional output
through that—and at the same time produce more than one value, the two effects
combine and we get even higher-dimensional output:

apply(m, c(1,2), \(x) c(x,x))

#o, , 1

it

i [,1] [,2]
[1,] 1 4
#[2,] 1 4
it

#o, , 2

it

[,1] [,2]
#[1,]

#[2,]

it

#, , 3

it

it [,1] [,2]
#[1,]

#[2,]

CHAPTER 10 WORKING WITH VECTORS AND LISTS

I admit that this output looks rather confusing. What happens, though, is the same
as we saw when we marginalized on rows or columns. We get output for each margin we
call the function on—in this case, each of the six cells in the input—and it gets collected
“column-wise,” except that this is at higher dimensions, so it gets collected at the highest
dimension (which is the columns for two-dimensional matrices). So to get to the result
of the six values the function was called with, we need to index these the same way they
were indexed in the input matrix—that is what the margins were—but we need to do it in
the highest dimensions. So we can get the six concatenations of input values this way:

x <- apply(m, c(1,2), \(x) c(x,x))
k <- dim(x)[3]
n <- dim(x)[2]
for (i im 1:n) {
for (j im 1:k) {

print (x[, 1,31)
}
}
[1] 1 1
[1] 2 2
[1] 3 3
[1] 4 4
[1] 55
[1] 6 6
So what happens if the function to apply takes arguments besides those we get from
the matrix?

sumpow <- \(x, n) sum(x) ** n
apply(m, 1, sumpow)

Error in FUN(newX[, i], ...): argument "n" is missing, with no default

Nothing Good, It Would Seem

The apply function expects to give you its values, but it doesn’t a priori knows how to
provide additional arguments. You have to give those additional arguments to apply if
you want it to pass them onto your function. You can give these arguments as additional

339

CHAPTER 10 WORKING WITH VECTORS AND LISTS

parameters to apply; they will be passed on to the function in the order you give them
to apply:
apply(m, 1, sumpow, 2)
[1] 36 225
It helps readability a lot, though, to explicitly name such parameters:
apply(m, 1, sumpow, n = 2)

[1] 36 225

lapply
The lapply function is used for mapping over a list. Given a list as input, it will apply

the function to each element in the list and output a list of the same length as the input
containing the results of applying the function:

(1 <- list(1, 2, 3))

[[1]]
[1] 1
it

[[2]]
[1] 2
it

[[3]]
[1] 3

lapply(1, \(x) x**2)

[[1]]
[1] 1
##

[[2]]
(1] 4
#H#

[[3]]
[1] 9

340

CHAPTER 10 WORKING WITH VECTORS AND LISTS
If the elements in the input list have names, these are preserved in the output vector:

1 <- list(a=1, b=2, c=3)
lapply(1, \(x) x**2)

#Ht $a
[1] 1
#H

$b
[1] 4
HH#

#H $c

[1] 9

If the input you provide is a vector instead of a list, it will just convert it into a list, and
you will always get a list as output:

lapply(1:3, \(x) x**2)

[[1]]
[1] 1
##

[[2]]
[1] 4
##

[[3]]
[1] 9

Of course, if the elements of the list are more complex than a single number, you will
still just apply the function to the elements:

lapply(list(a=1:3, b=4:6), \(x) x**2)

$a

[1] 14 9

HH#

#t $b

#t [1] 16 25 36

341

CHAPTER 10 WORKING WITH VECTORS AND LISTS

sapply and vapply

The sapply function does the same as lapply but tries to simplify the output. Essentially,
it attempts to convert the list returned from lapply into a vector of some sort. It uses
some heuristics for this and guesses as to what you want as output, simplifies when it
can, but gives you a list when it cannot figure it out:

sapply(1:3, \(x) x**2)
[1] 1 4 9

The guessing is great for interactive work but can be unsafe when writing programs.
Itisn’t a problem that it guesses and can produce different types of output when you can
see what it creates, but that is not safe deep in the guts of a program.

The function vapply essentially does the same as sapply but without the guessing.
You have to tell it what you want as output, and if it cannot produce that, it will give you
an error rather than produce an output that your program may or may not know what to
do with.

The difference in the interface between the two functions is just that vapply expects
a third parameter that should be a value of the type the output should be:

vapply(1:3, \(x) x**2, 1)

#[1] 14 9

Advanced Functions

We now get to some special cases for functions. I call the section “advanced functions,”
but it is not because they really are that advanced, they just require a little bit more than
the basic functions we have already seen.

Special Names

But first a word on names. Functions can have the same kind of names that variables
have—after all, when we name a function, we are really just naming a variable that
happens to hold a function—but we cannot have all kinds of names to the right of the
assignment operator. For example, if is a function in R, but you cannot write if to the
left of an assignment.

342

CHAPTER 10 WORKING WITH VECTORS AND LISTS

Functions with special names, that is, names that you couldn’t normally put before
an assignment, can be referred to by putting them in backticks, so the function if we can
refer toas "if".

Any function can be referred to by its name in backticks, and furthermore you can
use backticks to refer to a function in a context where you usually couldn’t use its name.
This works for calling functions where you can use, for example, infix operators as
normal function calls:

2 + 2

[1] 4

“+7(2, 2)

[1] 4

or when assigning to a variable name for a function:

“%or die%” <- function(test, msg) if (!test) stop(msg)

X <-5
(x !'= 0) %or die% "x should not be zero"

X <-0
(x '= 0) %or die% "x should not be zero"

Error in (x != 0) %or die% "x should not be zero": x should not be zero

Infix Operators

If the last example looks weird to you, it may just be because you don’t know about

R’s infix operators. In R, any variable that starts and ends with % is considered an infix
operator, so calling x %foo% y amounts to calling ~%foo%" (x,y). Several built-in infix
operators do not have this type of name, + and * are two, but this naming convention
makes it possible to create your own infix operators. We have seen this come to good use
in the dplyr package for the %>% pipe operator.

343

CHAPTER 10 WORKING WITH VECTORS AND LISTS

Replacement Functions

Replacement functions are functions that pretend to be modifying variables. We saw one

early where we assigned names to a vector:

v <- 1:4
names(v) <- C("a") llbll’ "C", lldll)
\'

#abcd
#tt 12 3 4

What happens here is that R recognizes that you are assigning to a function call
and goes looking for a function named names<-". It calls this function with the vector
v and the vector of names, and the result of the function call gets assigned back to the
variable v.

So what I just wrote means that

names(v) <_ c(llall) Ilbll’ IICII, Ildll)
is short for
V <_ \names<_\(v) C(llall, Ilbll) IICII’ lldll))

Replacement functions are generally used to modify various attributes of an object,
and you can write your own just by using the convention that their names must end
with “<-":

“foo<-" <- function(x, value) {

x$foo <- value
X

}

“bar<-" <- function(x, value) {
x$bar <- value
X

}

x <- list(foo

1
=
-
S
Q
=
1
N
N—

x$foo

344

CHAPTER 10 WORKING WITH VECTORS AND LISTS
[1] 1

foo(x) <- 3
x$foo

[1] 3
x$bar
[1] 2

bar(x) <- 3
x$bar

[1] 3

Keep in mind that it is just shorthand for calling a function and then reassigning the
result to a variable. It is not actually modifying any data. This means that if you have two
variables referring to the same object, only the one you call the replacement function
on will be affected. The replacement function returns a copy that is assigned the first
variable, and the other variable still refers to the old object:

y <- X
foo(x) <- 5
X

$foo
[1] 5
#i#

$bar
[1] 3

y

$foo
[1] 3
it

$bar
[1] 3

345

CHAPTER 10 WORKING WITH VECTORS AND LISTS

Because replacement functions are just syntactic sugar on a function call and then
a reassignment, you cannot give a replacement function, as its first argument, some
expression that cannot be assigned to.

There are a few more rules regarding replacement functions. First, the parameter for
the value you are assigning has to be called value. You cannot give it another name:

“foo<-" <- function(x, val) {
x$foo <- val

X
}

x <- list(foo = 1, bar = 2)
foo(x) <- 3

Error in ~foo<- (T *tmp*", value = 3): unused argument (value = 3)

The way R rewrites the expression assumes that you called the value parameter
value, so do that.
You don’t have to call the first parameter X, though:

“foo<-" <- function(y, value) {
y$foo <- value

y
}
x <- list(foo = 1, bar = 2)
foo(x) <- 3
x$foo
[1] 3

You should also have the value parameter as the last parameter if you have more
than two parameters. And you are allowed to, as long as the object you are modifying is
the first and the value parameter the last:

“modify<-" <- function(x, variable, value) {
x[variable] <- value
X

346

CHAPTER 10 WORKING WITH VECTORS AND LISTS
x <- list(foo = 1, bar = 2)

modify(x, "foo") <- 3
modify(x, "bar") <- 4
x$foo

[1] 3
x$bar

[1] 4

How Mutable Is Data Anyway?

We just saw that a replacement function creates a new copy, so if we use it to modify an
object, we are not actually changing it at all. Other variables that refer to the same object
will see the old value and not the updated one. So we can reasonably ask: What does it
take actually to modify an object?

The short, and almost always correct, answer is that you cannot modify objects ever.?
Whenever you “modify” an object, you are creating a new copy and assigning that new
copy back to the variable you used to refer to the old value.

This is also the case for assigning to an index in a vector or list. You will be creating
a copy, and while it looks like you are modifying it, if you look at the old object through
another reference, you will find that it hasn’t changed:

X <- 1:4

f <- function(x) {
x[2] <- 5
X

}

X

%]t is possible to do depending on what you consider an object. You can modify a closure by
assigning to local variables inside a function scope. This is because namespaces are objects that
can be changed. One of the object-oriented systems in R, RC, also allows for mutable objects,
but we won’t look at RC in this book. In general, you are better off thinking that every object

is immutable, and any modification you are doing is actually creating a new object because,
generally, that is what is happening.

347

CHAPTER 10 WORKING WITH VECTORS AND LISTS
[1] 123 4

f(x)

[1] 153 4

X

[1] 123 4

Unless you have changed the " [~ function (which I urge you not to do), it is a so-
called primitive function. This means that it is written in C, and from C you actually can
modify an object. This is important for efficiency reasons. If there is only one reference
to a vector, then assigning to it will not make a new copy, and you will modify the vector
in place as a constant time operation. If you have two references to the vector, then
when you assign to it the first time, a copy is created that you can then modify in place.
This approach to have immutable objects and still have some efficiency is called copy
on write.

To write correct programs, always keep in mind that you are not modifying objects
but creating copies—other references to the value you “modify” will still see the old
value. To write efficient programs, also keep in mind that for primitive functions you can
do efficient updates (updates in constant time instead of time proportional to the size of
the object you are modifying) as long as you only have one reference to that object.

Exercises
between

Write a vectorized function that takes a vector x and two numbers, lower and upper, and
replaces all elements in x smaller than lower or greater than upper with NA.

rmq

A range minimum query, rmq, extracts from a list the indices that have minimal values.
Can you write a vectorized function that gives you the indices where the minimal value
occurs? Hint: You can use min(x) to find the minimal value, you can compare it with x to
get a logical vector, and you can get the values in vector where a logical vector is TRUE by
indexing. Also, seq_along(x) gives you a vector of the indices in x.

348

CHAPTER 11

Functional Programming

In this chapter, we explore the programming paradigm called functional programming
and how it relates to R. There are many definitions of what it means for a language
to be a functional programming language, and there have been many language wars
over whether any given feature is “pure” or not. I won’t go into such discussions, but
some features, I think everyone would agree, are needed. You should be able to define
higher-order functions, you should be able to create closures, and you probably want
anonymous functions as well.

Let’s tackle anonymous functions right away, as these are pretty simple in R.

Anonymous Functions

In R, it is pretty easy to create anonymous functions: just don’t assign the function
definition to a variable name.
Instead of doing this:

square <- function(x) x"2
you simply do this:
function(x) x"2
If you want an even shorter expression, we have seen those as well:
\(x) x*2

In other languages where function definitions have a different syntax than variable
assignment, you will have a different syntax for anonymous functions, but in R it is really
as simple as this.

Why would you want an anonymous function?

349
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_11

https://doi.org/10.1007/978-1-4842-8155-0_11#DOI

CHAPTER 11 FUNCTIONAL PROGRAMMING

There are two common cases:
o We want to use a one-off function and don’t need to give it a name.
o We want to create a closure.

Both cases are typically used when a function is passed as an argument to another
function or when returned from a function. The first case is something we would use
together with functions like apply. If we want to compute the sum of squares over the

rows of a matrix, we can create a named function and apply it:

m <- matrix(1:6, nrow=3)
sum_of squares <- function(x) sum(x"2)
apply(m, 1, sum of squares)

[1] 17 29 45

but if this is the only time we need this sum of squares function, there isn’t really any
need to assign it a variable; we can just use the function definition direction:

apply(m, 1, \(x) sum(x"2))
[1] 17 29 45

Of course, in this example, we could do even better by just exploiting that » is

vectorized and write
apply(m"2, 1, sum)
[1] 17 29 45

Using anonymous functions to create closures is what we do when we write a
function that returns a function (and more about that later). We could name the function

f <- function(x) {
g <- function(y) x +y

8
}

but there really isn’t much point if we just want to return it:
f <- function(x) function(y) x +y

That is all there is to anonymous functions, really. You can define a function without
giving it a name, and that is about it.

350

CHAPTER 11 FUNCTIONAL PROGRAMMING

Higher-Order Functions

In the terminology often used with functional programming, higher-order functions
refer to functions that either take other functions as arguments, return functions, or both.
The apply function that we have used multiple times is thus a higher-order function, as it

takes a function as one of its inputs.

Functions Taking Functions As Arguments

We generally use function arguments to influence how a function is executed. If the
arguments did not affect what the function did, we would have no need for them.
Sometimes, the arguments are simple, like a boolean flag that determines part of what
the function should do or a number it uses in its computation. But there are times where
such static data doesn'’t suffice or at least makes it harder to implement the functionality
we need. Sometimes, we want an argument that has some dynamic behavior, for
example, an argument that can determine for each of a multiple of data pointers whether
to skip the data or do some computation. Such dynamic behavior fits functions very well,
and in these cases, a function argument is what you need.

In general, if some subcomputation of a function should be parameterized dynamically,
then you do this by taking a function as one of its parameters. Say we want to write a function
that works like apply but only apply an input function on elements that satisfy a predicate.
We can implement such a function by taking the vector and two functions as input:

apply if <- function(x, p, f) {
result <- vector(length = length(x))
n<-20
for (i in seq_along(x)) {
if (p(x[1])) {
n<n+1
result[n] <- f(x[i])

}
head(result, n)

}
apply if(1:8, \(x) x %% 2 == 0, \(x) x"2)

[1] 4 16 36 64
351

CHAPTER 11 FUNCTIONAL PROGRAMMING

This isn’t the most elegant way to solve this particular problem—we get back to the
example in the exercises—but it illustrates the use of functions as parameters.

Functions Returning Functions (and Closures)

We create closures when we create a function inside another function and return it.
Because this inner function can refer to the parameters and local variables inside
the surrounding function, even after we have returned from it, we can use such inner
functions to specialize generic functions. It can work as a template mechanism for
describing a family of functions.

We can, for instance, write a generic power function and specialize it for squaring or
cubing numbers:

power <- function(n) function(x) x"n

square <- power(2) # square fixes n to 2, so it compute squares
cube <- power(3) # cube fixes n to 3, so it compute cubes
square(1:5)

[1] 1 4 9 16 25
cube(1:5)
[1] 1 8 27 64 125

This works because the functions returned by power (2) and power(3) live in a
context—the enclosure—where n is known to be 2 and 3, respectively. We have fixed that
part of the function we return.

Generally, functions can see the variables you provide as arguments and the
variables you create inside them, but also variables in any enclosing function. So, when

we write

power <- function(n) {
inside power we can see n because we get it as an arqgument
f <- function (x) {
inside f we can see x because it is an arqument,
but *also* n, since when we are inside f, we are also

352

CHAPTER 11 FUNCTIONAL PROGRAMMING

inside power.
x"2

}

return(f)

}

we create a function that will know its argument n. When we call the function, power (2),
that n gets the value 2, and while running the function, we create the function f. We are
not running it yet, we are not calling inside power, but we have created the function.
This is similar to how, when we have defined power, we haven’t executed its body yet;
that doesn’t happen until we call power (2). When we call power (2), we create f, and

we create it in an enclosure where it knows the n value in the call to power (2). When

we return f from power (2), the function we return still remembers the values in its
enclosure—and we call it a closure because of that. When we did

square <- power(2)

we get the inner function f out of the call and assign it to square. Now, we are no longer
running power; we just remember n through the function we returned, the function that
we now call square. When we call square(1:5), we call the function f inside the call to
power (2). This function gets x as the argument, 1: 5, and remembers n from when it was
created.

This might appear a little complicated the first time you see it, and there are times
where you have to study a function carefully to see how closures and variables interact,
but it is a common programming trick because it is extremely useful. With closures
like this, we can bundle up a little bit of data with a function, without having to provide
it as arguments each time we call the function. This makes it easier to write reusable
functions, because they do not need to know much about the function arguments we
provide them, and it makes it easier to use other functions, because it can keep their
interface simple.

Let’s take another example. Say I have some algorithm in mind where I regularly
need to find the index of the first element in a sequence that satisfies some property.
Immediately, you should think of the property as some predicate function like in the
apply if function earlier, and that is how I will write it:

first _index <- function(x, p) {
for (i in seq_along(x)) { # Run through x
if (p(x[i])) { # return the first index that satisfy p

353

CHAPTER 11 FUNCTIONAL PROGRAMMING

return (i)

The function (implicitly) returns NULL if we do not find any value that satisfies p, and
the loop terminates. When it does, the result of the function is the result of running the
loop, and the result of a for loop is NULL. We could handle misses differently, but I want
to keep the example simple.

Let’s check it out. We can use it to look for the first even or odd number, for example:

X <- 1:10
first index(x, \(x) x %% 2 == 0)
[1] 2
first index(x, \(x) x %% 2 != 0)
[1] 1
This is simple enough, because the predicate doesn’t have to know anything beyond

what even or odd means. But what if I wanted to find the first element in some given
range, say between four and seven? I could modify the function, of course:

first index <- function(x, range) {
for (i in seq_along(x)) { # Run through x
if ((range[1] <= x[1]) 8& (x[i] <= range[2])) {
return the first index where x[i] is in the range
return (i)

}
first_index(x, c(4, 7))

#t [1] 4

It gets the job done, but this function is a lot less general than the first one we wrote.
This one can only perform range queries and nothing else. It is a lot less general than
when we used a predicate function.

354

CHAPTER 11 FUNCTIONAL PROGRAMMING

We can try to provide generic data to the function, similar to how the apply family of
functions permit us to provide data:

first index <- function(x, p, p data) {
for (i in seq_along(x)) { # Run through x
if (p(x[i], p_data)) {
return the first index where x[i] is in the range
return (i)

}

and then write a range predicate based on that:

range_pred <- function(x, range) {
(range[1] <= x) 8& (x <= range[2])

}

first _index(x, range pred, c(4, 7))

[1] 4

It works, but now we need to pass range data along as well as the predicate, we must
always be careful that the extra predicate data matches what the predicate expects, and
we have to provide predicate data even for predicate functions that do not need them
(although there are ways around that problem in R).

The simplest search function we wrote was superior to the more complicated ones:

first _index <- function(x, p) {
for (i in seq_along(x)) { # Run through x
if (p(x[i])) { # return the first index that satisfy p
return (i)

It does one thing, and one thing only. The interface is trivial—give it a sequence and
a predicate—and it is hard to get confused about its functionality.

355

CHAPTER 11 FUNCTIONAL PROGRAMMING

If we want to do range queries, we can still use it. We can hardwire a range in the
predicate if we want:

first index(x, \(x) (4 <= x) 8& (x <= 7))
[1] 4
and when we can’t hardwire the range, we can bundle the range up with the predicate:

in_range <- function(from, to) { # A function for creating a predicate
\(x) (from <= x) & (x <= to) # the predicate function it returns

}

p <- in_range(4, 7)
first_index(x, p)

[1] 4

Because closures are as flexible as they are, we can even use the simple search
function for more complex computations. What about finding the first repeated value?

repeated <- function() { # we don't need initial data for this
We will remember previously seen values here
seen <- c()

The predicate goes here, it will check if we have seen a
given value before and update the “seen’
values if we haven't
function(x) {
if (x %in% seen) {
TRUE # We have a repeat!
} else {
seen <<- c(seen, x) # append “x to “seen’
FALSE # this was the first time we saw X

356

CHAPTER 11 FUNCTIONAL PROGRAMMING

This function is, I admit, a little complicated to wrap your head around, but it isn’t
too bad. The repated function creates an environment that has the variable seen. It is
initially empty. Then it returns the closure. The closure will check if its input is in seen
(x %in% seen does this) and, if it is, return true. Otherwise, it updates seen. Here, we
need the <<- assignment to update the outer seen; if we used seen <- c(...), we would
create a local variable that would be lost as soon as we returned. The <<- gives us a way
to store data in the enclosing function. So, we store the new value x in the enclosing
seen and return false. The next time we see X, if we ever do, we will find it in seen and
report that.

X <- c(1:4, 1:5) # We see 1 a second time at index 5
first index(x, repeated())

[1] 5

The important point here is that we didn’t have to change our search function,
first_index, to make it do something complicated. It is still simple, it can be used in
many different contexts, and when we need it to do something complicated, we can
make it do so by writing the appropriate closure.

Filter, Map, and Reduce

Three patterns are used again and again in functional programming: filtering, mapping,
and reducing. In R, all three are implemented in different functions, but you can write all
your programs using the Filter, Map, and Reduce functions.

The Filter function takes a predicate and a vector or list and returns all the
elements that satisfy the predicate:

is_even <- \(x) x %% 2 ==
Filter(is_even, 1:8)

[1] 24638
Filter(is_even, as.list(1:8))

[[1]]
[1] 2
it

357

CHAPTER 11 FUNCTIONAL PROGRAMMING

[[2]]
[1] 4
#H#

[[3]]
[1] 6
s

[[4]]
[1] 8

The Map function works like lapply: it applies a function to every element of a vector
or list and returns a list of the result. Use unlist to convert it into a vector if that is what

you want:

square <- \(x) x"2
Map(square, 1:4)

[[1]]
[1] 1
HHt

[[2]]
[1] 4
it

[[3]]
[1] 9
#Hit

[[4]]
[1] 16

unlist(Map(square, 1:4))
[1] 1 4 9 16

You can do slightly more with Map, though, since Map can be applied to more than
one sequence. If you give Map more arguments, then these are applied to the function
calls as well:

plus <- \(x, y) X +y
unlist(Map(plus, 0:3, 3:0))

[1] 3333
358

CHAPTER 11 FUNCTIONAL PROGRAMMING

These constructions should be very familiar to you by now, so we will leave it at that.

The Reduce function might look less familiar. We can describe what it does in terms

of adding or multiplying numbers, and it is in a way a generalization of this. When we

write an expression like
a+b+c
or
a*b*c
we can think of this as a series of function calls:
+(C+(a, b), ©)
or
> (*(a, b),)
The Reduce function generalizes this:
Reduce(f, c(a, b, c))
It is evaluated as
f(f(a, b), c)
which we can see by constructing a function that captures how it is called:

add_parenthesis <- \(a, b) paste("(", a, u, n, b, u)u, sep - nu)
Reduce(add_parenthesis, 1:4)

[1] "(((2, 2), 3), 4)"
Using Reduce, we could thus easily write our own sum function:

mysum <- \(x) Reduce("+, x)
sum(1:4)

[1] 10
mysum(1:4)

[1] 10

359

CHAPTER 11 FUNCTIONAL PROGRAMMING

There are a few additional parameters to the Reduce function—to give it an
additional initial value instead of just the leftmost elements in the first function call or to
make it apply the function from right to left instead of left to right—but you can check its
documentation for details.

Functional Programming with purrr

The three functions from the previous section are the basic building blocks for functional
programming. They are somewhat limited in what data they operate on, however,
basically preferring the 1ist type for everything they do. This is less limiting than it
sounds, as most data structures in R are build around lists, and if you want to use R as a
programming language, operating on lists is the way to go. However, if you want to do
data science, which I assume you do if you are reading this book, then lists are rather
primitive, and you will find yourself converting to and from them all the time.

The package purrr provides the same basic functions, and more, for a more
convenient functional programming toolkit for data analysis. In this package, you get the
same functions we covered earlier, but in different flavors depending on what data you
need to do calculations on, and some functionality for converting between data types. If
you are interested in functional programming in R, this package is well worth your time
to familiarize yourself with.

A full exploration of purrr is beyond the scope of an introductory book such as this,
but I will give you an idea about how it works by going through some of the variants of
Filter, Map, and Reduce.

Start by loading purrr:

library(purrr)

For Filter, we have two variants, keep that keeps all the elements that satisfy a
predicate, just as Filter does, and discard that removes the elements that satisfy the
predicate:

1:10 |> keep(\(x) x %% 2 == 0) # get the even numbers
[1] 2 4 6 8 10
1:10 |> discard(\(x) x %% 2 == 0) # remove the even numbers

(1113579

360

CHAPTER 11 FUNCTIONAL PROGRAMMING
In purrr, there is an alternative syntax for anonymous functions based on formulas:
1:10 |> keep(™ .x %% 2 == 0) # get the even numbers
[1] 2 4 6 8 10
1:10 |> discard(™~ .x %% 2 == 0) # remove the even numbers
[1] 13579

The ~ prefix makes the argument a formula, but purrr will interpret it as a function.
Then, it will interpret .x (notice the dot) as the first argument to the function. The
second will be .y. You can also use .1, .2, .3, and so on. The alternative syntax is there
for historical reasons; purrr was developed before R got the short function syntax \ (x)
..., and it is cumbersome to write code such as keep(function(x) x %% 2 == 0).With
\(x) ... expressions, there is less need for the alternative syntax, and I will not use it
here, but you are likely to run into it if you read R code in the future.

The closest equivalent to Map in purrr is map. It basically works the same way:

1:4 |> map(\(x) x"2) # square the numbers

[[1]]
[1] 1
it

[[2]]
[1] 4
it

[[3]]
[1] 9
i

[[4]]
[1] 16

The map function will return a 1ist, just as Map does, but you can convert the output
to other data formats using a family of functions whose name starts with map_ and ends
with a type specifier:

get a vector of integers (The values we compute must be integers)
1L:4L |> map_int(\(x) x + 2L)

[1]1 3456
361

CHAPTER 11 FUNCTIONAL PROGRAMMING

get a vector of nummerics; any number will work here
1:4 |> map_dbl(\(x) x"2)

#[1] 1 4 9 16

get a vector of logical (boolean) values (we must compute booleans)
1:4 |> map_1gl(\(x) x %% 2 == 0)

[1] FALSE TRUE FALSE TRUE

You can also map over data frames with map_df. It will map over the data frames and
then merge them, so you get one data frame as output, with one row for each of the rows
you produce with your mapping function:

dfs <- list(
tibble(x = 1:2, y = 1:2, z = 1:2),
tibble(x = 3:4, y = 3:4),
tibble(x = 4:5, z = 4:5)

)

mapping the identifier to see what map _df does with that
dfs |» map_df(\(df) df)

A tibble: 6 x 3

Hit X y z
<int> <int> <int>
#H o1 1 1 1
2 2 2 2
3 3 3 NA
4 4 4 NA
5 4 NA

6 5 NA 5

modifying the data frames
mut_df <- \(df) df |» mutate(w = 2 * x) # add column w
dfs |» map_df(mut_df) # now add w for all and merge them

#i# # A tibble: 6 x 4
#Hit X y z W
#H <int> <int> <int> <dbl>

362

#Ht
#it
#H
#H
#Hit
#Hit

CHAPTER 11 FUNCTIONAL PROGRAMMING

1 1 1 1 2
2 2 2 2 4
3 3 3 NA 6
4 4 4 NA 8
5 4 NA 8
6 5 NA 5 10

Like Map/map, you get the purrr Reduce by changing it to lowercase:
reduce:

add_parenthesis <- \(a, b) paste("(", a, ", ", b, ")", sep = "") 1:4 |>
reduce(add_parenthesis)

#H

[1] "(((1, 2), 3), 4)"

You can change the order of applications, so you reduce from right to left instead of

left to right, if you provide the additional argument .dir = "backward":

1:4 |> reduce(add_parenthesis, .dir = "backward")

Hit

[1] "(2, (2, (3, 4))"

Functions As Both Input and Output

Functions can, of course, also both take functions as input and return functions

as output.

This lets us modify functions and create new functions from existing functions.
First, let us consider two old friends, the factorial and the Fibonacci numbers. We

have computed those recursively and using tables. What if we could build a generic

function for caching results?

Here is an attempt:

cached <- function(f) {

ensures that we get f as it is when we call cached (see text)
force(f)
table <- list()

363

CHAPTER 11 FUNCTIONAL PROGRAMMING

function(n) {

key <- as.character(n)

if (key %in% names(table)) {
print(paste("I have already computed the value for", n))
table[[key]]

} else {
print(paste("Going to compute the value for", n))
res <- f(n)
print(paste("That turned out to be", res))
table[key] <<- res # NB: <<- to update the closure table!
print_table(table) # see function below
res

}

pretty-printing the table
print_table <- function(tbl) {
print("Current table:")
for (key im names(tbl)) {
print(paste(key, "=>", tbl[key]))

I'have added some output so it is easier to see what it does in the following.

It takes a function f and will give us another function back that works like f but
remembers functions it has already computed. First, it remembers what the input
function was by forcing it. This is necessary for the way we intend to use this cached
function. The plan is to replace the function in the global scope with a cached version so
the function out there will refer to the cached version. If we don’t force f here, the lazy
evaluation means that when we eventually evaluate f, we are referring to the cached
version, and we will end up in an infinite recursion. You can try removing the force(f)
call and see what happens.

Next, we create a table—we are using a 1ist which is the best choice for tables in R
in general. A list lets us use strings for indices, and doing that we don’t need to have all
values between one and 7 stored to have an element with key 7 in the table.

364

CHAPTER 11 FUNCTIONAL PROGRAMMING

The rest of the code builds a function that first looks in the table to see if the key is
there. If so, we have already computed the value we want and can get it from the table. If
not, we compute it, put it in the table, and return.

We can try it out on the factorial function:

factorial <- function(n) {
if (n ==1) {
1
} else {
n * factorial(n - 1)

}

factorial <- cached(factorial)
factorial(4)

#H
#Hit
#Ht
#H
Hit
#Hit
#HH#
#Hit
#Hit
#HH#
#Ht
#Hit
#H
#Ht
#Hit
##
#H
Hit
#Ht
#H
Hit

[EEN

"Going to compute the value for 4"
"Going to compute the value for 3"
"Going to compute the value for 2"
"Going to compute the value for 1"
"That turned out to be 1"

"Current table:"

"1 => 1"

"That turned out to be 2"

"Current table:"

"1 => 1"

"2 = 2"

"That turned out to be 6"

"Current table:"

"1 => 1"

"2 => 2"

"3 => 6"

"That turned out to be 24"
"Current table:"

"1 = 1"

"2 = 2"

"3 => 6"

L N O N O =Y

N N N =

=

L T e B e B e B e T T e T e T e, O e T e T s T e B e B e Y e B e s B s B e B |
=
— e e e e e e e e e e e e e et e e)))

365

CHAPTER 11 FUNCTIONAL PROGRAMMING

[1] "4 => 24"

[1] 24

factorial(1)

[1] "I have already computed the value for 1"
[1] 1

factorial(2)

[1] "I have already computed the value for 2"
[1] 2

factorial(3)

[1] "I have already computed the value for 3"
[1] 6

factorial(4)

[1] "I have already computed the value for 4"
[1] 24

and on fibonacci

fibonacci <- function(n) {
if (n==1]| n==2){
1
} else {
fibonacci(n-1) + fibonacci(n-2)

}

fibonacci <- cached(fibonacci)
fibonacci(4)

[1] "Going to compute the value for 4"
[1] "Going to compute the value for 3"
[1] "Going to compute the value for 2"

366

CHAPTER 11

[1] "That turned out to be 1"
[1] "Current table:"

[1] "2 => 1"

[1] "Going to compute the value for 1"
[1] "That turned out to be 1"
[1] "Current table:"

[1] "2 => 1"

[1] "1 => 1"

[1] "That turned out to be 2"
[1] "Current table:"

[1] "2 => 1"

[1] "1 => 1"

[1] "3 => 2"

[1] "I have already computed the value for 2"
[1] "That turned out to be 3"
[1] "Current table:"

[1] "2 => 1"

[1] "1 => 1"

[1] "3 = 2"

[1] "4 = 3"

[1] 3

fibonacci(1)

[1] "I have already computed the value for 1"

[1] 1

fibonacci(2)

[1] "I have already computed the value for 2"

[1] 1

fibonacci(3)

[1] "I have already computed the value for 3"

[1] 2

FUNCTIONAL PROGRAMMING

367

CHAPTER 11 FUNCTIONAL PROGRAMMING
fibonacci(4)
[1] "I have already computed the value for 4"

[1] 3

Ellipsis Parameters...

Before we see any more examples of function operations, we need to know about a
special function parameter, the ellipsis or “three-dot” parameter.

This is a magical parameter that lets you write a function that can take any number of
named arguments and pass them on to other functions.

Without it, you would get an error if you provide a parameter to a function that it
doesn’t know about:

f <- function(a, b) NULL

f(a=1,b=2,c=3)

Error in f(a = 1, b = 2, c = 3): unused argument (c = 3)
With it, you can provide any named parameter you want:

g <- function(a, b, ...) NULL

gla=1,b=2,c=3)

NULL

Of course, it isn’t much of a feature to allow a function to take arguments that it
doesn’t know what to do with. But you can pass those arguments on to other functions
that maybe do know what to do with them, and that is the purpose of the “. . .” parameter.

We can see this in effect with a very simple function that just passes the “...”
parameter on to 1ist. This works exactly like calling 1ist directly with the same
parameters, so nothing magical is going on here, but it shows how the named

parameters are being passed along:
tolist <- function(...) list(...)
tolist()

list()

tolist(a = 1)
368

CHAPTER 11 FUNCTIONAL PROGRAMMING

#Ht $a
[1] 1

tolist(a = 1, b = 2)

#Ht $a
[1] 1
it

$b

[1] 2

This parameter has some uses in itself because it lets you write a function that calls
other functions, and you can provide those functions parameters without explicitly
passing them along. It is particularly important for generic functions (a topic we will
cover in the next chapter) and for modifying functions in function operators.

Here, we will just have a quick second example, taken from Wickham’s Advanced
R programming book (that I cannot praise high enough), of modifying a function—
wrapping a function to time how long it takes to run.

The following function wraps the function f into a function that times it and returns
the time usage rather than the result of the function. It will work for any function since it
just passes all parameters from the closure we create to the function we wrap (although
the error profile will be different since the wrapping function will accept any named
parameter, while the original function f might not allow that):

time it <- function(f) {
force(f)
function(...) {
system.time(f(...))

We can try it out like this:

ti mean <- time_it(mean)
ti mean(runif(1e6))

user system elapsed
0.024 0.000 0.023

369

CHAPTER 11 FUNCTIONAL PROGRAMMING

Exercises
apply if

Consider the function apply if we implemented earlier. There, we use a loop.
Implement it using Filter and Map instead.
For the specific instance we used in the example:

apply if(v, function(x) x %% 2 == 0, function(x) x"2)

we only have vectorized functions. Rewrite this function call using a vectorized

expression.

power

Earlier, we defined the generic power function and the instances square and cube
this way:

power <- function(n) function(x) x"n
square <- power(2)
cube <- power(3)

If we instead defined
power <- function(x, n) x"n

how would you then define square and cube?

Row and Column Sums

Using apply, write functions rowsum and colsum that compute the row sums and column
sums, respectively, of a matrix.

Factorial Again...

Write a vectorized factorial function. It should take a vector as input and compute the
factorial of each element in the vector.

370

CHAPTER 11 FUNCTIONAL PROGRAMMING

Try to make a version that remembers factorials it has already computed so you
don’t need to recompute them (without using the cached function from before, of
course).

Function Composition

For two functions fand g, the function composition creates a new function f° g such that

(F° 8)(x) = f (g(x)).
There isn’t an operator for this in R, but we can make our own. To avoid clashing
with the outer product operator, %0%, we can call it %.%.

Implement This Operator

Using this operator, we should, for example, be able to combine Map and unlist once
and for all to get a function for the unlist(Map(...)) pattern:

uMap <- unlist %.% Map
So this function works exactly like first calling Map and then unlist:

plus <- function(x, y) x +y
unlist(Map(plus, 0:3, 3:0))

[1] 3333
uMap(plus, 0:3, 3:0)
[1] 3333

With it, you can build functions by stringing together other functions (not unlike how
you can create pipelines in magrittr).
For example, you can compute the root mean square error function like this:

error <- function(truth) function(x) x - truth
square <- function(x) x"2

rmse <- function(truth)
sqrt %.% mean %.% square %.% error(truth)

371

CHAPTER 11 FUNCTIONAL PROGRAMMING

mu <- 0.4
X <- rnorm(10, mean = 0.4)
rmse(mu) (x)

[1] 1.249175

Combining a sequence of functions like this requires that we read the operations
from right to left, so I personally prefer the approach in magrittr, butyou can see the
similarity.

372

CHAPTER 12

Object-Oriented
Programming

In this chapter, we look at R’s flavor of object-oriented programming. Actually, R has
three different systems for object-oriented programming: S3, S4, and RC. We will only
look at S3, which is the simplest and (as far as I know) the most widely used.

Immutable Objects and Polymorphic Functions

Obiject orientation in S3 is quite different from what you might have seen in Java or
Python or that class of languages. Naturally so, since data in R is immutable and the
underlying model in OO in languages such as Java and Python is that you have objects
with states that you can call methods on to change the state. You don’t have a state as
such in S3; you have immutable objects. Just like all other data in R.

What's the point then of having object orientation if we don’t have object states?
What we get from the S3 system is polymorphic functions, called “generic” functions in
R. These are functions whose functionality depends on the class of an object—similar
to methods in Java or Python where methods defined in a class can be changed in a
subclass to refine behavior.

You can define a function foo to be polymorphic and then define specialized
functions, say foo.A and foo.B. Then, calling foo(x) on an object x from class A will
actually call foo.A(x) and for an object from class B will actually call foo.B(x). The
names f0o.A and foo.B were not chosen at random here, we shall see, since it is
precisely how we name functions that determine which function gets called.

We do not have objects with states, we simply have a mechanism for having the
functionality of a function depend on the class an object has—something often called
“dynamic dispatch” or “polymorphic methods.” Here, of course, since we don’t have
states, we can call it polymorphic functions.

373
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_12

https://doi.org/10.1007/978-1-4842-8155-0_12#DOI

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

Data Structures

Before we get to making actual classes and objects, though, we should have a look at
data structures. We discussed the various built-in data structures in R in earlier chapters.
Those built-in data types are the basic building blocks of data in R, but we never
discussed how we can build something more complex from them.

More important than any object-oriented system is the idea of keeping related data
together so we can treat it as a whole. If we are working on several pieces of data that
somehow belongs together, we don’t want it scattered out in several different variables,
perhaps in different scopes, where we have little chance of keeping it consistent. Even
with immutable data, such a program in a consistent state would be a nightmare.

For the data that we analyze, we therefore typically keep it in a data frame. This is a
simple idea for keeping data together. All the data we are working on is in the same data
frame, and we can call functions with the data frame and know that they are getting all
the data in a consistent state. At least as consistent as we can guarantee with data frames;
we cannot promise that the data itself is not messed up somehow, but we can write
functions under the assumption that data frames behave a certain way.

What about something like a fitted model? If we fit a model to some data, that fit is
stored variables capturing the fit. We certainly would like to keep those together when
we do work with the model because we would not like accidentally to use a mix of
variables fitted to two different models. We might also want to keep other data together
with the fitted model, for example, some information about what was actually fitted, if
we want to check that in the R shell later, or the data it was fitted to.

The only option we really have for collecting heterogeneous data together as a single
object is a list. And that is how you do it in R.

Example: Bayesian Linear Model Fitting

Project 2, described in the last chapter of the book, concerns Bayesian linear models. To
represent such, we would wrap data for a model in a list. For fitting data, let us assume
that you have a function like the one in the following (refer to the last chapter for details
of the mathematics).

It takes the model specification in the form of a formula as its parameter model and
the prior precision alpha and the “precision” of the data beta. It then computes the
mean and the covariance matrix for the model fitted to the data. That part is left out here
since you are supposed to implement that yourself as an exercise, but you can see the

374

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

details in the last chapter. It then wraps up the fitted model together with some related
data—the formula used to fit the model, the data used in the model fit (here assumed to
be in the variable frame)—and put them in a list, which the function returns:

blm <- function(model, alpha = 1, beta = 1, ...) {

Here goes the mathematics for computing the fit.
frame <- model.frame(model, ...)

phi <- model.matrix(frame)

no_params <- ncol(phi)

target <- model.response(frame)

covar <- solve(diag(alpha, no_params) +
beta * t(phi) %*% phi)
mean <- beta * covar %*% t(phi) %*% target
list(formula = model,
frame = frame,
mean = mean,
covar = covar)

We can see it in action by simulating some data and calling the function:

fake some data for our linear model
X <- rnorm(10)

a<-1;bc<-1.3
WO <- 0.2 ; wl <- 3
y <- rnorm(10, mean = w0 + wl * x, sd = sqrt(1/b))

fit a model
model <- blm(y ~ x, alpha = a, beta = b)
model

$formula
##y ~ X
##

#t $frame

375

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

Hit y X
#H -1.5185867 -0.5588255
#H -1.1664514 -0.6097720
-1.2509896 0.1808256
#H -1.9412380 -0.6595195
5012965 -0.3030505
0.5057768 0.2613801
2.1098271 0.7792971
#H 5.0790285 1.3976716
#H -3.2896676 -1.6030947

OW 00 N OO U1 B W N -
1
o

10 -0.7780154 -0.2601806

Hit

#t $mean

#t [,1]

(Intercept) 0.04588209

x 2.36006846

##

$covar

#t (Intercept) X
(Intercept) 0.07319446 0.01382804
x 0.01382804 0.10828240

Collecting the relevant data of a model fit like this together in a list, so we always
know we are working on the values that belong together, makes further analysis of the
fitted model much easier to program.

Classes

The output we got when we wrote
model

is what we get if we call the print function on a list. It just shows us everything that is
contained within the list. The print function is an example of a polymorphic function,
however, so when you call print(x) on an object x, the behavior depends on the class of
the object x.

376

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING
If you want to know what class an object has, you can use the class function:
class(model)
[1] "list"
and if you want to change it, you can use the class<-" replacement function:
class(model) <- "blm"

We can use any name for a class; here, I've used blm for Bayesian linear model.

By convention, we usually call the class and the function that creates elements
of that class the same name, so since we are creating this type of objects with the b1lm
function, convention demands that we call the class of the object blm as well. It is just a
convention, though, so you can call the class anything.

We can always assign a class to an object in this way, but changing the class of an
existing object is considered bad style. We keep the data that belongs together in a list to
make sure that it is kept consistent, but the functionality we want to provide for a class is
as much a part of the class as the data, so we also need to make sure that the functions
that operate on objects of a given class always get data that is consistent with that class.
We cannot do that if we go around changing the class of objects willy-nilly.

The function that creates the object should assign the class, and then we should
leave the class of the object alone. We can set the class with the “class<-" function and
then return it from the blm function:

blm <- function(model, alpha = 1, beta = 1, ...) {
stuff happens here...

object <- list(formula = model,
frame = frame,
mean = mean,
covar = covar)

class(object) <- "blm"

object

377

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

The class is represented by an attribute of the object, however, and there is a function
that sets these for us, structure, and using that we can create the object and set the class
at the same time, which is a little better:

blm <- function(model, alpha = 1, beta = 1, ...) {
stuff happens here...

structure(list(formula = model,
frame = frame,
mean = mean,
covar = covar),
class = "blm")

Now that we have given the model object a class, let’s try printing it again:
model

$formula

#y ~ x

#Hit

$frame

Hit y X
1 -1.5185867 -0.5588255
2 -1.1664514 -0.6097720
3 -1.2509896 0.1808256
4 -1.9412380 -0.6595195
5 -0.5012965 -0.3030505
6 0.5057768 0.2613801
7 2.1098271 0.7792971
8 5.0790285 1.3976716
9 -3.2896676 -1.6030947
10 -0.7780154 -0.2601806
#Ht

$mean

it [,1]
(Intercept) 0.04588209
X 2.36006846

378

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

##

$covar

i (Intercept) X
(Intercept) 0.07319446 0.01382804
x 0.01382804 0.10828240
##

attr(,"class")

[1] "blm"

The only difference from before is that it has added information about the "class"
attribute toward the end. It still just prints everything that is contained within the object.
This is because we haven’t told it to treat any object of class blm any differently yet.

Polymorphic Functions

The print function is a polymorphic function. This means that what happens when it
is called depends on the class of its first parameter. When we call print, R will get the
class of the object, let’s say it is blm as in our case, and see if it can find a function named
print.blm. If it can, then it will call this function with the parameters you called print
with. If it cannot, it will instead try to find the function print.default and call that.

We haven’t defined a print function for the class blm, so we saw the output of the
default print function instead.

Let us try to define a blm-specific print function:

print.blm <- function(x, ...) {
print(x$formula)

Here, we just tell it to print the formula we used for specifying the model rather than
the full collection of data we put in the list.
If we print the model now, this is what happens:

model

#Hy ~ x

379

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

That is how easy it is to provide your own class-specific print function. And that is
how easy it is to define your own class-specific polymorphic function in general. You just
take the function name and append . classname to it, and if you define a function with
that name, then that function will be called when you call a polymorphic function on an
object with that class.

One thing you do have to be careful about, though, is the interface to the function.
By that I mean the parameters the function takes (and their order). Each polymorphic
function takes some arguments; you can see which by checking the function
documentation:

?print

When you define your specialized function, you can add more parameters to your
function, but you should define it such that you at least take the same parameters as
the generic function does. R will not complain if you do not define it that way, but it is
bound to lead to problems later on when someone calls the function with assumptions
about which parameters it takes based on the generic interface and then runs into
your implementation of a specialized function that behaves a different way. Don’t do
that. Implement your function so it takes the same parameters as the generic function.
This includes using the same names for parameters. Someone might provide named
parameters to the generic function, and that will only work if you call the parameters the
same names as the generic function. That is why we used x as the input parameter for
the print.blm function earlier.

Defining Your Own Polymorphic Functions

To define a class-specific version of a polymorphic function, you just need to write a
function with the right name. There is a little bit more to do if you want to define your
very own polymorphic function. Then you also need to write the generic function—the
function you will use when you have objects of different types, and that is responsible for
dispatching the function call to class-specific functions.

You do this using the UseMethod function. The generic function typically just does
this and looks something like this:

foo <- function(x, ...) UseMethod("foo")

380

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

You specify a function with the parameters the generic function should accept and
then just call UseMethod with the name of the function to dispatch to. Then it does it
magic and finds out which class-specific function to call and forwards the parameters
to there.

When you write the generic function, it is also good style to define the default
function as well:

foo.default <- function(x, ...) print("default foo")

With that, we can call the function with all types of objects. If you don’t want that to
be possible, a safe default function would be one that throws an error:

foo("a string")

[1] "default foo"
foo(12)

[1] "default foo"

And of course, with the generic function in place, we can define class-specific
functions just like before:

foo.blm <- function(x, ...) print("blm foo")
foo(model)

[1] "blm foo"

You can add more parameters to more specialized functions when the generic
function takes ... as an argument; the generic will just ignore the extra parameters, but
the concrete function that is called might be able to do something about it:

foo.blm <- function(x, upper = FALSE, ...) {
if (upper) {
print("BLM FO0")
} else {
print("blm foo")

381

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING
foo("a string")

[1] "default foo"

foo(model)

[1] "blm foo"

foo("a string", upper = TRUE)

[1] "default foo"

foo(model, upper = TRUE)

[1] "BLM F00"

Class Hierarchies

Polymorphic functions are one aspect of object-oriented programming; another is
inheritance. This is the mechanism used to build more specialized classes out of more
general classes.

The best way to think about this is as levels of specialization. You have some general
class of objects, say “furniture,” and within that class are more specific categories, say
“chairs,” and within that class even more specific types of objects, say “kitchen chairs.”
A kitchen chair is also a chair, and a chair is also furniture. If there is something you can
do to all furniture, then you can definitely also do it to chairs. For example, you can set
furniture on fire; you can set a chair on fire. It is not the case, however, that everything
you can do to chairs you can do to all furniture. You can throw a chair at unwelcome
guests, but you cannot throw a piano at them (unless you are the Hulk).

The way specialization like this works is that there are some operations you can do
for the general classes. Those operations can be done on all instances of those classes,
including those that are really objects of more specialized classes.

The operations might not do exactly the same thing—like we can specialize print,
an operation we can call on all objects, to do something special for blm objects—but
there is some meaningful way of doing the operation. Quite often, the way a class is
specialized is exactly by doing an operation that can be done by all objects from the
general class, but just in a more specialized way.

382

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

The specialized classes, however, can potentially do more, so they might have more
operations that are meaningful to do to them. That is fine, as long as we can treat all
objects of a specialized class as we can treat objects of the more general class.

This kind of specialization is partly interface and partly implementation.

Specialization As Interface

The interface is the set of which functions we can call on objects of a given class. Itis a
kind of protocol for how we interact with objects of the class. If we imagine some general
class of “fitted models,” we might specify that for all models, we should be able to get the
fitted parameters, and we should be able to make predictions for new values. In R, such
functions exist, coef and predict, and any model is expected to implement them.

This means that I can write code that interacts with a fitted model through these
general model functions, and as long as I stick to the interface they provide, I could be
working on any kind of model. If, at some point, I find out that I want to replace a linear
regression model with a decision tree regression model, I can just plug in a different
fitted model and communicate with it through the same polymorphic functions. The
actual functions that will be called when I call the generic functions coef and predict
will, of course, be different, but the interface is the same.

R will not enforce such interfaces for you. Classes in R are not typed in the same way
as they are in, for example, Java, where it would be a type error to declare something
as an object satisfying a certain interface if it does in fact not implement the necessary
functions. R doesn’t care. Not until you call a function that isn’t there; then you might be
in trouble, of course. But it is up to you to implement an interface to fit the kind of class
or protocol you think your class should match.

If you implement the functions that a certain interface expects (and these functions
actually do something resembling what the interface expects the functions to do and are
not just named the same things),' then you have a specialization of that interface. You
can do the same operations as every other class that implements the interface, but, of
course, your operations are uniquely fitted to your actual class.

'To draw means something very different when you are a gunslinger compared to when you are
an artist, after all.

383

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

You might implement more functions, making your class capable of more than the
more general class of objects, but that is just fine. And other classes might implement
those operations as well, so now you have more than one class with the more specialized
operations—a new category that is more general and can be specialized further.

You have a hierarchy of classes defined by which functions they provide
implementations of.

Specialization in Implementations

Providing general interfaces and then specializing them to specific kinds of objects—in
the case of R by providing implementations of polymorphic functions—is the essential
feature of the concept of class hierarchies in object-oriented programming. It is what lets
you treat objects of different kinds as a more general class.

There is another aspect of class hierarchies, though, that has to do with code reuse.
You already get a lot of this just by providing interfaces to work with objects, of course,
since you can write code that works on a general interface and then reuse it on all objects
that implement this interface. But there is another type of reuse you get when you build
a hierarchy of classes where you go from abstract, general classes to more specialized
and concrete classes. When you are specializing a class, you are taking functionality that
exists for the more abstract class and defining a new class that implements the same
interface except for a few differences here and there.

When you refine a class in this way, you don’t want to implement new versions of all
the polymorphic functions in its interface. Many of them will do exactly the same as the
implementation for their more general class.

Let’s say we want to have a class of objects where you can call functions foo and bar.
We can call that class A and define it as follows:

foo <- function(object, ...) UseMethod("foo")
foo.default <- function(object, ...) stop("foo not implemented")

bar <- function(object, ...) UseMethod("bar")
bar.default <- function(object, ...) stop("bar not implemented")

A <- function(f, b) structure(list(foo = f, bar = b), class = "A")
foo.A <- function(object, ...) paste("A::foo ->", object$foo)
bar.A <- function(object, ...) paste("A::bar ->", object$bar)

384

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

a <_ A(Ilquxll’ |Iqaxll)
foo(a)

[1] "A::foo -> qux"
bar(a)
[1] "A::bar -> gax"

For a refinement of that, we might want to change how bar works and add another
function baz:

baz <- function(object, ...) UseMethod("baz")
baz.default <- function(object, ...) stop("baz not implemented")

B <- function(f, b, bb) {
a <- A(f, b)
a$baz <- bb
class(a) <- "B"
a

}

bar.B <- function(object, ...) paste("B::bar ->", object$bar)
baz.B <- function(object, ...) paste("B::baz ->", object$baz)

The function foo we want to leave just the way it is, but if we define the class B as
before, calling foo on a B object gives us an error because it will be calling the foo.
default function:

b <_ B(Ilquxll, llqaxll’ "quuxll)
foo(b)

Error in foo.default(b): foo not implemented

This is because we haven’t told R that we consider the class B a specialization of
class A. We wrote the constructor function—the function where we make the object, the
function B—such that all B objects contain the data that is also found in an A object. We
never told R that we intended B objects also to be A objects.

385

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

We could, of course, make sure that foo called on a B object behaves the same way
as if called on an A object by defining foo.B such that it calls foo.A. This wouldn’t be
too much work for a single function, but if there are many polymorphic functions that
work on A objects, we would have to implement B versions for all of them—a tedious and
error-prone work.

If only there were a way of telling R that the class B is really an extension of the class
A. And there is. The class attribute of an object doesn’t have to be a string. It can be a
vector of strings. If, for B objects, we say that the class is B first and A second, like this:

B <- function(f, b, bb) {
a <- A(f, b)
a$baz <- bb
class(a) <- c("B", "A")
a

}

then calling foo on a B object—where foo.B is not defined—will call foo.A as its second
choice and before defaulting to foo.default:

b <_ B(llquxll’ "an", "quuxll)
foo(b)

[1] "A::foo -> qux"
bar(b)

[1] "B::bar -> gax"
baz(b)

[1] "B::baz -> quux"

The way the class attribute is used with polymorphic functions is that R will look for
functions with the class names appended in the order of the class attributes. The first it
finds will be the one that is called, and if it finds no specialized version, it will go for the
.default version. When we set the class of B objects to be the vector c("B", "A"), we
are saying that R should call . B functions first, if it can find one, but otherwise call the . A

function.

386

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

This is a very flexible system that lets you implement multiple inheritances from
classes that are otherwise not related, but you do so at your own peril. The semantics
of how this works—functions are searched for in the order of the class names in the
vector—the actual code that will be run can be hard to work out if these vectors get too
complicated.

Another quick word of caution is this: if you give an object a list of classes, you
should include the classes all the way up the class hierarchy. If we define a new class, C,
intended as a specialization of B, we cannot just say that it is an object of class c("C",
"B") if we also want it to behave like an A object:

C <- function(f, b, bb) {
b <- B(f, b, bb)
class(b) <- c("C", "B")
b

}

c <- C("foo", "bar", "baz")
foo(c)

Error in foo.default(c): foo not implemented

When we call foo(c) here, R will try the functions, in turn: foo.C, f00.B, and foo.
default. The only one that is defined is the last, and that throws an error if called.

So what we have defined here is an object that can behave like B but only in cases
where B differs from A’s behavior! Our intention is that B is a special type of A, so every
object that is a B object we should also be able to treat as an A object. Well, with C objects,
that doesn’t work.

We don’t have a real class hierarchy here like we would find in languages like Python,
C++, or Java. We just have a mechanism for calling polymorphic functions, and the semantic
here is just to look for them by appending the names of the classes found in the class
attribute vector. Your intentions might very well be that you have a class hierarchy with A
being the most general class, B a specialization of that, and C the most specialized class, but
that is not what you are telling R—because you cannot. You are telling R how it should look
for dynamic functions, and with the preceding code, you told it to look for . C functions first,
then .B functions, and you didn’t tell it any more, so the next step it will take is to look for
.default functions, not . A functions. It doesn’t know that this is where you want it to look.

387

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

If you add this to the class attribute, it will work, though:

C <- function(f, b, bb) {
b <- B(f, b, bb)
class(b) <- c("C", "B", "A")
b

}

c <- C("foo", "bar", "baz")
foo(c)

[1] "A::foo -> foo"
bar(c)
[1] "B::bar -> bar"
baz(c)
[1] "B::baz -> baz"

You are slightly better off getting the class attribute from the object you create in
the constructor, though. If, at some point, you changed the class attribute of the object
returned from the B() constructor, you don’t want to have to change the class vector in
all classes that are extending the class:

C <- function(f, b, bb) {
b <- B(f, b, bb)
class(b) <- c("C", class(b))
b

Exercises
Shapes

Let us imagine that we need to handle some geometric shapes for a program. These
could be circles, squares, triangles, etc. Properties we need to know about the shapes are
their circumference and area. These properties can be calculated from properties of the
shapes, but the calculations are different for each shape.

388

CHAPTER 12 OBJECT-ORIENTED PROGRAMMING

So for our shapes, we want (at least) an interface that gives us two functions:
circumference and area. The default functions, where we have no additional
information about an object aside from the fact that it is a shape, are meaningless and
so should raise an error (check the stop function for this), but each specialized shape
should implement these two functions.

Implement this protocol/interface and the two functions for at least circles and

rectangles—by all means, more shapes if you want to.

Polynomials

Write a class that lets you represent polynomial objects. An n-degree polynomial is on
the form ¢, + ¢;x + ¢,x* + - - - + ¢, X" and can be represented by the n + 1 coefficients

(co cy - . ., C,). Write the interface such that you can evaluate polynomials in any point x,
that is, with a function evaluate _polynomial(poly, x) that gives you the value of the
polynomial at the point x.

The function uniroot (built into R) lets you find the roots of a general function. Use
it to write a function that finds the roots of your polynomials. This function works by
numerically finding the points where the polynomial is zero. For lines and quadratic
polynomials, though, there are analytical solutions. Write special cases for such
polynomials such that calling the root finding function on the special cases exploits that
solutions are known there.

389

CHAPTER 13

Building an R Package

Now we know how to write functions and create classes in R, but neither functions
nor classes are the unit we use for collecting and distributing R code. That unit is the
package. It is packages you load and import into your namespace when you write

library(something)
and it is packages you download when you write
install.packages("something")

The topic for this chapter is how to make your own packages. In the space available,
I can only give a very broad overview of the structure of R packages, but it should be
enough to get you started. If you want to read more, [warmly recommend Hadley
Wickham's book R Packages.

Creating an R Package

I am going to assume that you use RStudio for this. If you don’t, you can have a look at
the package devtools. It provides functions for doing everything we can do through the
GUI in RStudio.

To create a new package, go to the menu File and choose New Project..., and you
should get a dialog that asks you whether your new project should be in a new directory,
in an existing directory, or checked out of a version control repository. Pick the New
Directory.

After that, you get the choice between an empty project, a package, or a Shiny
application. Not surprisingly, you want to pick R Package here.

Now you get to a dialog window where you can set the details of the package. You
can choose the Type of the package (where you can choose between a plain package and
one that uses Rcpp to make C++ extensions), you can specify the Name of the package,

391
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_13

https://doi.org/10.1007/978-1-4842-8155-0_13#DOI

CHAPTER 13 BUILDING AN R PACKAGE

and you can provide existing source files to include in the package. Further, you need to
choose alocation to put the new package and whether you want to use a git repository
for the package.

Choose a plain package and click yes to creating a git repository (we will return to
git later). You now just need to pick a name and a place to put the package. Where you
putitis up to you, but there are some guidelines for package names.

Package Names

A package name can consist of letters, numbers, and “.”, but must start with a letter
and must not have “.” as the last character. You cannot use other characters, such as
underscores or dashes.

Whenever you build software that you intend for other people to be able to use,
be careful with the name you give it. Give it a name that is easy to remember and easy
to Google.

For experimenting with packages, you can just create one called test.

Create a new package and have a look at the result.

The Structure of an R Package

In the directory that RStudio built for you, you should have two directories, R and man;
three text files, .Rbuildignore, DESCRIPTION, and NAMESPACE; and one project file (its
name will be the name of your package followed by .Rproj).

The last of these files is used by RStudio, and all you need to know about it is that if
you open this file in RStudio, you get an open version of the state of the project you had
last time you worked on it.

Inside the R directory, you have an example file, R/hello.R, and inside the man
directory, you have an example documentation' file, man/hello.Rd.

The text files and the two directories are part of what an R package looks like, and
they must always be there with exactly those names. There are a few more directories
that also have standard names,? but they are not required, and we don’t have them here
for now.

'man stands for manual, and the abbreviation man is a legacy from UNIX.

2For example, vignettes/ for documentation vignettes, data/ for data you want to include with
your package, and src/ for C/C++ extensions.

392

CHAPTER 13 BUILDING AN R PACKAGE

.Rbuildignore

The directory you have created contains the source code for the package, but it isn’t the
actual package. The package is something you need to build and install from this source
code. We will get to how to do that shortly.

The .Buildignore file tells R what not to include when it builds a package. Files that
are not mentioned here will automatically be included. This isn’t a disaster as such, but it
does lead to messy packages for others to use, and if you upload a package to CRAN,? the
filters there do enforce a strict directory and file structure where you will not be allowed
to include files or directories that do not follow that structure.

The automatically generated .Buildignore file looks like this:

" J*\.Rproj$
"\.Rproj\.user$

These are two regular expressions that prevent R from including the RStudio files in
compiled packages.

The * character here matches the beginning of a file name, while $ matches the end.
A non-escaped . matches any character, while an escaped \. matches an actual dot. The
* specifies that the previous symbol can be repeated any number of times. So the first
regular expression specifies any file name that ends in .Rproj and the second expression
any file name that ends in .Rproj.user.

Description

This file contains meta-information about your package. If you called your package test
and created it the same day I did (November 11, 2015), it should now look like this:

Package: test

Type: Package

Title: What the Package Does (Title Case)
Version: 0.1

Date: 2015-11-22

Author: Who wrote it

3CRAN is the official repository for R package and the place where the install.packages
function finds them.

393

CHAPTER 13 BUILDING AN R PACKAGE

Maintainer: Who to complain to <yourfault@somewhere.net>
Description: More about what it does (maybe more than one line)
License: What license is it under?

LazyData: TRUE

You need to update it to describe your new package.
I give a short description of the metadata in the following, but you can also read
more about it in Hadley Wickham’s R Packages book.

Title

The title field is pretty self-explanatory. You need to give your package a title. Here,
(Title Case) means that you need to use capital first letters in the words there like you
would for the title of a book.

If you read the documentation for a package on CRAN, it will look like this:
packagename: This is the Title. Don’tinclude the package name in your title here;
that is automatically added to the documentation page. You just want the title.

Version

This is just a number to track which version of your package people have installed.
Whenever you make changes to your package and release them, this number
should go up.

The version numbers are not only used to indicate that you have updated a version,
but they are also necessary for specifying dependencies between packages sometimes.
If a feature was introduced in version 1.2 but didn’t exist in version 1.1, then other
packages that use this feature need to know whether they have access to version 1.2 or
higher. We will return to dependencies later.

There are some conventions for version numbers but nothing that is strictly enforced.
The convention here is that a released version has the numbering scheme major.minor.
patch, so the version 1.2.3 means that the major version number is 1, the minor 2, and
that this is patched version 3. Patches are smaller changes, typically bug fixes and such,
while minor revisions usually include some new functionality. The difference between
what is considered minor and major is very subjective, but any time the interface
changes—that is, you change the way a function is called such that the old types of calls

are now incorrect—you definitely should increase the major version number.

394

CHAPTER 13 BUILDING AN R PACKAGE

If you have a development version of your package that you are distributing for those
adventurous enough to work with a beta release, the convention is to add a development
release number as well. Then the version number looks like major.minor.patch.
develop-number where by convention the last number starts at 9000 and is increased
with every new release.

You are just beginning developing your new package, so change the version number
t00.0.0.9000.

Description

This field should describe the package. It is typically a one-paragraph short description.
To make R parse the DESCRIPTION file correctly, you must indent the lines following
Description: if the description spans over multiple lines.

Author and Maintainer

Delete these two fields. There is a better way to specify the same information that makes
sure that it is provided in a more structured form. You should use a new field called
Authors@R: instead. There is nothing wrong with the Author or Maintainer fields, and
you can keep them without any trouble; the new field just lets you provide the same
information more succinctly.

This field takes an R expression specifying one or more authors where the author
information is provided by a call to the function person—which is how we make sure
that it is structured appropriately. Check the documentation for the function (?person)
for more details.

You are a single author, so you should use something like this:

Authors@R: person("First Name", "Last Name",
email = "your.email@your.domain.com",
role = c("aut", "cre"))

The roles here mean author and creator. The documentation for the person function
lists other options.

If there is more than one person involved as an author or a maintainer or another
sort of contributor, you can have a sequence of persons by concatenating them with the
¢ function.

395

CHAPTER 13 BUILDING AN R PACKAGE

License

This specifies the software license the package is released under. It can really be
anything, but if you want to put your package on CRAN, you have to pick one of the
licenses that CRAN accepts.

You specify which of the recognized licenses you want to use by their abbreviation,
so to specify that your package is released under the GPL version 2 license, you write

License: GPL-2

Type, Date, LazyData

The Type and LazyData fields are not essential. You can delete them if you want. Type
is just saying that you have a package, but we sort of know that already. LazyData
tells R that if you include data in your package, it should load it lazily. Again, this is
not something that is of particular importance (unless you plan to include extremely
large data sets with your package; if you do that, then Google for the documentation of
LazyData).

The Date of course includes the date. This should be the last date you modified the
package, that is, the last time you updated the version.

URL and BugReports

If you have a web page for the package and a URL for reporting bugs, these are the fields
you want to use. They are not required for a package but are of course very helpful for a
user to have.

Dependencies

If your package has dependencies, you have three fields you can specify them in:
Depends, Imports, and Suggests.

*There are a few more fields for, e.g., linking to external C/C++ code, but these three fields are the
most important fields.

396

CHAPTER 13 BUILDING AN R PACKAGE

With Depends, you can specify both packages that need to be installed for your
package to work and which version of R is required for your package to work. For
packages, though, it is better to use Imports and Suggests than Depends, so use Depends
only to specify which version of R you need.

You specify this like

Depends: R (>= 4.1)

This is saying that you need R to work (not surprisingly, but the syntax is the same for
packages), and it has to be at least version 4.1.

The syntax for dependencies is a comma-separated list of package names (or R as
before) with optional version number requirements in parentheses after the package name.

Imports and Suggests fields could look like this:

Imports:
ggplot2,
dplyr (>= 1.0.7),
pracma
Suggests:
testthat,
knitr

specifying that we import three packages, ggplot2, dplyr, and pracma, and we use
testthat and knitr in some functions if these packages are available. We require that
dplyr has at least version 1.0.7, but do not put any demands on the versions of the other
packages. (The required version for dplyr is completely arbitrary here; it just happens to
be the version I have installed as I am writing this. Don’t read anything more into it.)

The difference between Imports and Suggests is that requirements in Imports must
be installed for your package to be installed (or they will be installed if you tell R to install
with dependencies), while requirements in Suggests do not.

Using an Imported Package

Packages in the Imports or Suggests lists are not imported into your namespace the way
they would be if you call 1ibrary(package). This is to avoid contaminating your package
namespace, and you shouldn’t break that by calling 1ibrary yourself. If you want to use
functions from other packages, you must do so by explicitly accessing them through their
package namespace or by explicitly importing them at a single function level.

397

CHAPTER 13 BUILDING AN R PACKAGE

The way to access a function from another package without importing the package
namespace is using the : : notation. If you want to get to the filter function in dplyr
without importing dplyr, you can get the function using the name dplyr::filter.

If you access names from a package that you have listed in your Imports field, then
you know that it exists even if it isn’t imported into your namespace, so you just need to
use the long name.

An alternative way of importing functions is using Roxygen—which we will discuss
later—where you can import the namespace of another package or just the name of a
single function in another package for a single function at a time.

Using a Suggested Package

Accessing functions in a suggested package—the packages named in the Suggests
field—is done using the : : notation, just as you would for imported packages. There is
just one more complication: the package might not be installed on the computer where
your package is installed. That is the difference between suggesting a dependency and
requiring it by putting it in the Imports field.

The purpose of suggesting packages instead of importing them is that the
functionality your package provides doesn’t strictly depend on the other package, but
you can do more or do things more efficiently if a suggested package is there.

So you need a way of checking if a package is installed before you use it, and that way
is the function requireNamespace. It returns TRUE if the namespace (package) you ask for
is installed and FALSE otherwise, so you can use it like this:

if (requireNamespace("package", quietly = TRUE)) {
use package functionality

} else {
do something that doesn't involve the package
or give up and throw an exception with stop()

The quietly option is to prevent it from printing warnings—you are handling the
cases where the package is not installed, so there is no need for it to do it.

398

CHAPTER 13 BUILDING AN R PACKAGE

NAMESPACE

The NAMESPACE file provides information about which of the functions you implement
in your package should be exported to the namespace of the user when they write
library(test).

Each package has its own namespace. It is similar to how each function has a
namespace in its body where we can define and access local variables. Functions you
write in a package will look for other functions first in the package namespace and then
in the global namespace.

Someone who wants to use your package can get access to your function by loading
it into their namespace using

library(test)
or by explicitly asking for a function in your namespace
test::function name()

but they can only get access to functions (and other objects) explicitly exported.® If
a function is not explicitly exported, it is considered an implementation detail of the
package that code outside the package should not be able to access.
The NAMESPACE file is where you specify what should be exported from the package.®
The auto-generated file looks like this:

exportPattern("~[[:alpha:]]+")

It is just exporting anything that has an alphanumeric name. This is definitely too
much, but we ignore it for now. We are not going to edit this file manually since we can
export functions (and all other objects) much easier using Roxygen as described in the
following.

5Strictly speaking, this is not true. You can actually get to internal functions if you use the : : :
operator instead of the : : operator, so if function_name is not exported but still implemented in
package test, then you can access it with test: : : function_name. But you shouldn’t. You should
keep your damned dirty paws away from internal functions! They can change at any time, with no
warning from the package maintainer, and no one will feel sorry for you when they do and your
own code breaks because of it.

6Tt is also used to import selected functions or packages, but using Roxygen @import and
@importFrom are better solutions for that.

399

CHAPTER 13 BUILDING AN R PACKAGE

R/ and man/

The R/ directory is where you should put all your R code, and the man/ directory is where
the package documentation goes. There is one example file in both directories just after
RStudio has generated your new package. You can have a look at them and then delete
them afterward.

All the R code you write for a package should go in files in the R/ directory to be
loaded into the package. All documentation will go in man/, but we are not going to write
the documentation there manually. Instead, we will use Roxygen to document functions,
and then Roxygen will automatically make the files that go in man/.

Checking the Package

Before we look at Roxygen, and start adding functionality to our package, I want you to
check that it is in a consistent state. There are a number of consistency requirements that
packages should satisfy, mostly related to file names, naming conventions, and such, and
itis best to frequently check if your package looks the way it should. To check this, go to
the Build menu and pick Check Package. You can also do it on the command line using
the devtools package:

install.packages("devtools)
and the function check():
devtools: :check()

It will run a bunch of checks, more every time they update devtools it seems, but
at the end, it will tell you if your package is okay. If you run it now, you should get zero
errors, zero warnings, and zero notes.

As we start modifying the package, run check () from time to time. If something
breaks the package’s consistency, it is better to know early, so you know what you broke
and can easily fix it. If you have made tons of changes, it can be harder to track down
what changes were a problem.

400

CHAPTER 13 BUILDING AN R PACKAGE

Roxygen

Roxygen is a system for writing documentation for your packages, and if you are familiar
with Javadoc, you will recognize its syntax. It does a few things more, however, including
handling your namespace import and export, as we will see.

To use it, you first have to install it, so run

install.packages("roxygen2")

Now go into the Build menu and select Configure Build Tools.... There, pick Build
Tools and check Generate documentation with Roxygen, and in the dialog that pops up,
check Build & Reload. This makes sure that Roxygen is used to generate documentation
and that the documentation is generated when you build the package. This will also
make sure that Roxygen handles the import and export of namespaces.

Documenting Functions

We can see how Roxygen works through an example:

#' Add two numbers
#l
" This function adds two numbers together.
" @param x A number

" @param y Another number

" @return The sum of x and y

HORH OB R R R

#' @export
add <- function(x, y) x +y

The documentation for this function, add, is provided in comments above the
function, but comments starting with the characters #' instead of just #. This is what tells
Roxygen that these comments are part of the documentation that it should process.

The first line becomes the title of the documentation for the function. It should be
followed by an empty line (still in #' comments).

401

CHAPTER 13 BUILDING AN R PACKAGE

The text that follows is a description of the function. It is a bit silly with the
documentation for this simple function, but normally you will have a few paragraphs
describing what the function does and how it is supposed to be used. You can write as
much documentation here as you think is necessary.

The lines that start with an @ tag—for example, @param and @return—contain
information for Roxygen. They provide information that is used to make individual
sections in the documentation.

The @param tags are used for describing parameters. That tag is followed by the name
of a parameter and after that a short description of the parameter.

The @return tag provides a description of what the function returns.

After you have written some documentation in Roxygen comments, you can build it
by going into the menu Build and choosing Document. Roxygen will not overwrite the
existing NAMESPACE file, because it didn’t generate the file itself, so delete it before you
run Document. That way, Roxygen is free to write to it. You only need to do this once;
after that, Roxygen recognizes that it is a file that it controls.

After you have built the documentation, take a look at the NAMESPACE file and the
man/ directory. In the NAMESPACE file, you should see that the function has been exported:

Generated by roxygen2: do not edit by hand
export(add)

and in the man/ directory, there should be a file, add.Rd, documenting the function.

Import and Export

In the NAMESPACE file, you should see that your documented function is explicitly
exported. That is because we provided the @export tag with the documentation. It tells
Roxygen to export it from the package namespace.

This is the easiest way to handle the namespace export, so, if for nothing else, you
should use Roxygen for this rather than manually editing the NAMESPACE file.

Roxygen will also make sure that polymorphic functions and other kinds of objects
are correctly exported if you use the @export tag—something that requires different
kinds of commands in the NAMESPACE file. You don’t have to worry about it as long as you
use Roxygen.

402

CHAPTER 13 BUILDING AN R PACKAGE

Roxygen can also handle import of namespaces. Remember that the packages you
list in your Imports field in the DESCRIPTION file are guaranteed to be installed on the
computer where your package is installed but that the namespaces of these packages are
not imported. You have to use the : : notation to access them.

Well, with Roxygen you can use the tag @importFrom package object to import
object (typically a function) into your namespace in a function that you give that tag to.
For normal functions, I don’t really see the point of using this feature since it isn’t shorter
to write than just using the : : notation. For infix functions, though, it makes them easier
to use since then you can actually use the infix function as an infix operator.

So in the following function, we can use the %>% operator from dplyr because we
import it explicitly. You cannot really get to infix operators otherwise.

#' Example of using dplyr
4
#' @param data A data frame containing a column named A
#' @param p A predicate function
#' @return The data frame filtered to those rows where p is true on A
4
#' @importFrom dplyr filter
#' @importFrom dplyr %>%
#' @export
filter on A <- function(data, p) {
data %>% filter(p(A))

If you write a function that uses a lot of functionality from a package, you can also
import the entire namespace of that package. That is similar to using library(package)
and is done with the @import tag:

#' @import dplyr

#' @export

filter on_A <- function(data, p) {
data %>% filter(p(A))

403

CHAPTER 13 BUILDING AN R PACKAGE

Package Scope vs. Global Scope

A quick comment is in order about the namespace of a package when you load it with
library(package). I mentioned it earlier, but I just want to make it entirely clear. A
package has its own namespace where its functions live. Functions that are called from
other functions written inside a package are first looked for in the package namespace
before they are looked for in the global namespace.

If you write a function that uses another function from your package and someone
redefines the function in the global namespace after loading your package, it doesn’t
change what function is found inside your package.

It doesn’t matter if a function is exported or local to a package for this to work. R will
always look in a package namespace before looking in the global namespace.

Internal Functions

You might not want to export all functions you write in a package. If there are some
functions, you consider implementation details of your package design, you shouldn’t
export them. If you do, people might start to use them, and you don’t want that if it is
functionality you might change later on when you refine your package.

Making functions local, though, is pretty easy. You just don’t use the @export tag.
Then they are not exported from the package namespace when the package is loaded,
and then they cannot be accessed from outside the package.”

File Load Order

Usually, it shouldn’t matter in how many files you write your package functionality. It is
usually easiest to find the right file to edit if you have one file for each (major) function or
class, but it is mostly a matter of taste.

It also shouldn’t matter in which files various functions are put—whether internal
or exported—since they will all be present in the package namespace. And if you stick to
using functions (and S3 polymorphic functions), the order in which files are processed
when building packages shouldn’t matter.

"Except through the : : : operator, of course, but people who use this to access the internals of
your package know—or should know—that they are accessing implementation details that could
change in the future, so it is their own fault if their code is broken sometime down the line.

404

CHAPTER 13 BUILDING AN R PACKAGE

It does matter for S4 classes and such, and in case you ever run into it being an
issue, I will just quickly mention that package files are processed in alphabetical order.
Alphabetical for the environment you are in, though, since alphabetical order actually
depends on which language you are in, so you shouldn’t rely on this.

Instead, you can use Roxygen. It can also make sure that one file is processed before
another. You can use the @include field to make a dependency between a function and
another file:

#' @import otherfile.R

I have never had the need for this myself, and you probably won’t either, but now
you know.

Adding Data to Your Package

It is not uncommon for packages to include some data, either data used by the package
implementation or more commonly data used for example purposes.
Such data goes in the data/ directory. You don’t have this directory in your freshly
made package, but it is where data should go if you want to include data in your package.
You cannot use any old format for your data. It has to be in a file that R can read,
typically .RData files. The easiest way to add data files, though, is using functionality
from the devtools package. If you don’t have it installed, then

install.packages("devtools")

and then you can use the use_data function to create a data file.
For example, I have a small test data set in my admixturegraph package that I made
using the command

bears <- read.table("bears.txt")
devtools: :use_data(bears)

This data won’t be directly available once a package is loaded, but you can get it
using the data function:

library(admixturegraph)
data(bears)
bears

405

CHAPTER 13 BUILDING AN R PACKAGE

You cannot add documentation for data directly in the data file, so you need to
putitin an R file in the R/ directory. I usually have a file called data.R that I use for
documenting my package data.

For the bears data, my documentation looks like this:

#' Statistics for populations of bears

#

#' Computed $f 4(W,X;Y,Z)$ statistics for different
#' populations of bears.

#

#' @format A data frame with 19 rows and 6 variables:
#' \describe{

\item{W}{The W population}

\item{X}{The X population}

\item{Y}{The Y population}

\item{Z}{The Z population}

\item{D}{The D ($f 4(W,X;Y,Z)$) statistics}
\item{Z.value}{The blocked jacknife Z values}

HORH OHE OH R ¥ O™ X
—

#' @source \url{http://onlinelibrary.wiley.com/doi/10.1111/
mec.13038/abstract}

#' @name bears

#' @docType data

#' @keywords data

NULL

The NULL after the documentation is needed because Roxygen wants an object after
documentation comments, but it is the @name tag that tells it that this documentation
is actually for the object bears. The @docType tells it that this is data that we are
documenting.

The @source tag tells us where the data is from; if you have generated it yourself for
your package, you don’t need this tag.

The @format tag is the only complicated tag here. It describes the data, which is
a data frame, and it uses markup that looks very different from Roxygen markup text.

406

CHAPTER 13 BUILDING AN R PACKAGE

The documentation used by R is actually closer to (La)TeX than the formatting we have
been using, and the data description reflects this.

You have to put your description inside curly brackets marked up with \
description{}, and inside it, you have an item per data frame column. This has the
format \item{column name}{column description}.

Building an R Package

In the frame to the upper right in RStudio, you should have a tab that says Build. Select it.

Inside the tab, there are three choices in the toolbar: Build & Reload, Check, and
More. They all do just what it says on the tin: the first builds and (re)loads your package,
the second checks it—this means running the consistency checks we saw earlier—and
the third gives you various other options in a drop-down menu.

You use Build & Reload to recompile your package when you have made changes
to it. It loads all your R code (and various other things) to build the package, and then it
installs it and reloads it into your terminal so you can test the new functionality.

A package you have built and installed this way can also be used in other projects
afterward.

When you have to send a package to someone, you can make a source package in the
More drop-down menu. It creates an archive file (. tar.gz).

Exercises

In the last chapter, you wrote functions for working with shapes and polynomials.
Now try to make a package for each with documentation and correct exporting of the
functions. If you haven’t implemented all the functionality for those exercises, this is
your chance to do so.

407

CHAPTER 14

Testing and Package
Checking

Without testing, there is little guarantee that your code will work at all. You probably
test your code when you write it by calling your functions with a couple of chosen
parameters, but to build robust software, you will need to approach testing more
rigorously. And to prevent bugs from creeping into your code over time, you should test
often. Ideally, you should check all your code anytime you have made any changes to it.
There are different ways of testing software—software testing is almost a science in
itself—but the kind of testing we do when we want to make sure that the code we just
wrote is working as intended is called unit testing. The testing we do when we want to
ensure that changes to the code do not break anything is called regression testing.

Unit Testing

Unit testing is called that because it tests functional units—in R, that essentially means
single functions or a few related functions. Whenever you write a new functional unit,
you should write test code for that unit as well. The test code is used to check that the
new code is actually working as intended, and if you write the tests such that they can be
run automatically later on, you have also made regression tests for the unit at the same
time. Whenever you make any changes to your code, you can run all your automated
tests, and that will check each unit and make sure that everything works as it did before.
Most programmers do not like to write tests. It is exciting to write new functionality,
but to probe new features for errors is a lot less interesting. However, you really do need
the tests, and you will be happy that you have them in the long run. Don’t delay writing
tests until after you have written all your functions. That is leaving the worst for last, and
that is not the way to motivate you to write the tests. Instead, you can write your unit tests
while you write your functions; some even suggest writing them before you write your

409
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_14

https://doi.org/10.1007/978-1-4842-8155-0_14#DOI

CHAPTER 14 TESTING AND PACKAGE CHECKING

functions, something called test-driven programming. The idea here is that you write the
tests that specify how your function should work, and you know that your function works
as intended when it passes the tests you wrote for it.

I have never found test-driven programming that useful for myself. It doesn’t match
the way I work where I like to explore different interfaces and uses of a function while I am
implementing it, but some prefer to work that way. I do, however, combine my testing with
my programming in the sense that I write small scripts calling my functions and fitting
them together while I experiment with the functions. I write that code in a way that makes
it easy for me to take the experiments and then use them as automated tests for later.

Take, for example, the shape exercise we had earlier, where you had to write
functions for computing the area and circumference of different shapes. I have written a
version where I specify rectangles by width and height. A test of the two functions could
then look like this:

area <- function(x) UseMethod("area"
circumference <- function(x) UseMethod("circumference")

rectangle <- function(width, height) {
structure(list(width = width, height = height),
class = c("rectangle", "shape"))

}

area.rectangle <- function(x) x$height * x$width
circumference.rectangle <- function(x) 2 * x$height + 2 * x$width

r <- rectangle(width = 2, height = 4)
area(r)

[1] 8
circumference(r)
[1] 12

The area is 2 x 4 and the circumference is 2 x 2 + 2 x 4, so this looks fine. But I am
testing the code by calling the functions and looking at the printed output. I don’t want
to test the functions that way forever—I cannot automate my testing this way because I
then have to sit and look at the output of my tests. But they are okay tests. I just need to
automate them.

410

CHAPTER 14 TESTING AND PACKAGE CHECKING

Automating Testing

All it takes to automate the test is to check the result of the functions in code rather than
looking at it, so code that resembles the following code would be an automated test:

r <- rectangle(width = 2, height = 4)
if (area(r) != 2*%4) {
stop("Area not computed correctly!")

}

if (circumference(r) != 2*%2 + 2*4) {
stop("Circumference not computed correctly!")

}

It is a little more code, yes, but it is essentially the same test, and this is something I
can run automatically later on. If it doesn’t complain about an error, then the tests are
passed, and all is good.

You can write your own test this way, put them in a directory called tests/ (which is
where R expects tests to live), and then run these tests whenever you want to check the
status of your code, that is, whenever you have made modifications to it.

Scripts in the tests/ directory will also be automatically run whenever you do a
consistency check of the package (something we return to later).

That is what happens when you click Check in the Build tab on the right in RStudio
or select Check Package in the Build menu, but it does a lot more than just run tests, so it
is not the most efficient way of running the tests.

There are some frameworks for formalizing this type of testing in R. I use a
framework called testthat. Using this framework, it is easy to run tests (without the full
package check) and easy to write tests in a more structured manner—of course at the
cost of having a bit more code to write for each test.

Install it now, if you do not have it already:

install.packages("testthat")

411

CHAPTER 14 TESTING AND PACKAGE CHECKING

Using testthat

The testthat framework provides functions for writing unit tests and makes sure that
each test is run in a clean environment (so you don’t have functions defined in one
test leak into another because of typos and such). It needs a few modifications to your
DESCRIPTION file and your directory structure, but you can automatically make these
adjustments by running

usethis::use testthat()

This adds testthat to the Suggests packages and makes the directory tests/testthat
and the file tests/testthat.R. You can have a look at the file, but it isn’t that interesting.
Its purpose is to make sure that the package testing—that runs all scripts in the tests/
directory—will also run all the testthat tests.

The testthat tests should all go in the tests/testthat directory and in files whose
names start with test. Otherwise, testthat cannot find them. The tests are organized
in contexts and tests to make the output of running the tests more readable—if a test
fails, you don’t just want to know that some test failed somewhere, but you want some
information about which test where, and that is provided by the contexts.

At the top of your test files, you set a context using the context function. It just gives
a name to the following batch of tests. This context is printed during testing, so you can
see how the tests are progressing, and if you keep to one context per file, you can see in
which files tests are failing.

The next level of tests is wrapped in calls to the test_that function. This function
takes a string as its first argument which should describe what is being tested and as its
second argument a statement that will be the test. The statement is typically more than
one single statement, and in that case, it is wrapped in { } brackets.

At the beginning of the test statements, you can create some objects or whatever
you need for the tests, and after that, you can do the actual tests. Here, testthat also
provides a whole suite of functions for testing if values are equal, almost equal, if an
expression raises a working, triggers an error, and much more. All these functions
start with expect_, and you can check the documentation for them in the testthat
documentation.

The test for computing the area and circumference of rectangles earlier would look
like this in a testthat test:

412

CHAPTER 14 TESTING AND PACKAGE CHECKING

context("Testing area and circumference")

test that("we compute the correct area and circumference", {
r <- rectangle(width = 2, height = 4)

expect _equal(area(r), 2*4)
expect _equal(circumference(r), 2*2 + 2*4)

1)

Try to add this test to your shapes packet from the last chapter’s exercises and see
how it works. Try modifying it to trigger an error and see how that works.

You should always worry a little bit when testing equality of numbers, especially if
it is floating-point numbers. Computers do not treat floating-point numbers the way
mathematics treat real numbers. Because floating-point numbers have to be represented
in finite memory, the exact number you get will depend on how you compute it, even if
mathematically two expressions should be identical.

For the tests we do with the preceding rectangle, this is unlikely to be a problem.
There isn’t really that many ways to compute the two quantities we test for, and we
would expect to get exactly these numbers. But how about the quantities for circles?

circle <- function(radius) {
structure(list(r = radius),
class = c("circle", "shape"))
}
area.circle <- function(x) pi * x$r**2
circumference.circle <- function(x) 2 * pi * x$r

test that("we compute the correct area and circumference”, {
radius <- 2
circ <- circle(radius = radius)

expect_equal(area(circ), pi * radius”2)
expect _equal(circumference(circ), 2 * radius * pi)

1)

Here, I use the built-in pi, but what if the implementation used something else?
Here, we are definitely working with floating-point numbers, and we shouldn’t ever test
for exact equality. Well, the good news is that expect_equal doesn’t. It actually tests

413

CHAPTER 14 TESTING AND PACKAGE CHECKING

for equality within some tolerance of floating-point uncertainty—that can be modified
using an additional parameter to the function—so all is good. To check exact equality,
you should instead use the function expect_identical, but it is usually expect equal

you want.

Writing Good Tests

The easiest way to get some tests written for your code is to take the experiments you
make when developing the code and translate them into unit tests like this right away—
or even put your checks in a unit test file, to begin with. By writing the tests at the same
time as you write the functions—or at least immediately after—you don’t build a backlog
of untested functionality (and it can be very hard to force yourself to go and spend

hours just writing tests later on). Also, it doesn’t really take that much longer to take the
informal testing you write to check your functions while you write them and put them
into a testthat file and get a formal unit test.

If this is all you do, then at least you know that the functionality that was tested when
you developed your code is still there in the future—or you will be warned if it breaks at
some point because their tests will start to fail.

But if you are writing tests anyway, you might as well be a little more systematic
about it. We always tend to check for the common cases—the cases we have in mind
when we write the function—and forget about special cases. Special cases are frequently
where bugs hide, however, so it is always a good idea to put them in your unit tests
as well.

Special cases are situations such as empty vectors and lists or NULL as a list. If you
implement a function that takes a vector as input, make sure that it also works if that
vector is empty. If it is not a meaningful value for the function to take, and you cannot
think of a reasonable value to return if the input is empty, then make sure the function
throws an error rather than just do something that it wasn’t designed to do.

For numbers, exceptional cases are often zero or negative numbers. If your functions
can handle these cases, excellent (but make sure you test it!); if they cannot handle these
special situations, throw an error.

For the shapes, it isn’t meaningful to have nonpositive dimensions, so in my
implementation, I raise an error if I get that, and a test for it, for rectangles, could look
like this:

414

CHAPTER 14 TESTING AND PACKAGE CHECKING

test_that("Dimensions are positive", {

-1, height = 4))
2, height = -1))
-1, height = -1))

expect_error(rectangle(width
expect_error(rectangle(width
expect_error(rectangle(width

expect_error(rectangle(width = 0, height = 4))
expect_error(rectangle(width = 2, height = 0))
expect_error(rectangle(width = 0, height = 0))

1)

When you are developing your code and corresponding unit tests, it is always a good
idea to think a little bit about what the special cases could be and make sure that you
have tests for how you choose to handle them.

Using Random Numbers in Tests

Another good approach to testing is to use random data. With tests we manually set up,
we have a tendency to avoid pathological cases because we simply cannot think them
up. Random data doesn’t have this problem. Using random data in tests can, therefore,
be more efficient, but, of course, it makes the tests nonreproducible, which makes
debugging extremely hard.

You can, of course, set the random number generator seed. That makes the test
deterministic and reproducible, but defeats the purpose of having random tests, to
begin with.

I don’t really have a good solution to this, but I sometimes use this trick: I pick a
random seed and remember it, set the seed, and since I now know what the random
seed was, I can set it again if the test fails and debug from there.

You can save the seed by putting it in the name of the test. Then if the test fails, you
can get the seed from the error message:

seed <- as.integer(1000 * rnorm(1))

test that(paste("The test works with seed", seed), {
set.seed(seed)
test code that uses random numbers

1)

415

CHAPTER 14 TESTING AND PACKAGE CHECKING

Testing Random Results

Another issue that pops up when we are working with random numbers is what the
expected value that a function returns should be. If the function is not deterministic but
depends on random numbers, we don’t necessarily have an expected output.

If all we can do to test the result in such cases is statistical, then that is what we must
do. If a function is doing something useful, it probably isn’t completely random, and that
means that we can do some testing on it, even if that test can sometimes fail.

As a toy example, we can consider estimating the mean of a set of data by sampling
from it. It is a silly example since it is probably much faster to just compute the mean in
the first place in this example, but let’s consider it for fun anyway.

If we sample n elements, the standard error of the mean should be s/ \/; where s is
the sample standard error. This means that the difference between the true mean and
the sample mean should be distributed as N (O,S / \/Z) , and that is something we can
test statistically, if not deterministically.

In the following code, I normalize the distance between the two means by dividing it
with s //n , which should make it distributed as Z ~ N (0, 1). I then pick a threshold for
significance that should only be reached one time in a thousand. I actually pick one that
is only reached one in two thousand, but I am only testing the positive value for Z, so
there is another implicit one in two thousand at the negative end of the distribution:

seed <- as.integer(1000 * rnorm(1))
test that(paste("Sample mean is close to true, seed", seed), {
set.seed(seed)

data <- rnorm(10000)
sample _size <- 100
samples <- sample(data, size = sample_size, replace = TRUE)

true mean <- mean(data)
sample mean <- mean(samples)

standard _error <- sd(samples) / sqrt(sample size)
Z <- (true mean - sample mean) / standard error
threshold <- gnorm(1 - 1/2000)

expect less than(abs(Z), threshold)
1)

416

CHAPTER 14 TESTING AND PACKAGE CHECKING

This test is expected to fail one time in a thousand, but we cannot get absolute
certainty when the results are actually random. If this test failed a single time, I wouldn’t
worry about it, but if I see it fail a couple of times, it becomes less likely that it is just a
fluke, and then I would go and explore what is going on.

Checking a Package for Consistency

The package check you can do by clicking Check in the Build tab on the right in RStudio,
or the Check Package in the Build menu, runs your unit tests but also a lot more.

It calls a script that runs a large number of consistency checks to make sure that
your package is in tip-top shape. It verifies that all your functions are documented, that
your code follows certain standards, that your files are in the right directories (and that
there aren’t files where there shouldn’t be!), that all the necessary meta-information
is provided, and many, many more things. You can check http://r-pkgs.had.co.nz/
check.html for a longer list of the tests done when a package is being checked.

You should try and run a check for your packages. It will write a lot of output, and at
the end, it will inform you how many errors, warnings, and notes it found.

In the output, every test that isn’t declared to be OK is something you should look
into. It might not be an error, but if the check raises any flags, you will not be allowed to
put it on CRAN—at least not without a very good excuse.

Exercise

You have written two packages—for shapes and for polynomials—and your exercise
now is to write unit tests for these and get them to a point where they can pass a
package check.

!If there are, you should have a look at .Rbuildignore. If you have a file just the place you want
it but the check is complaining, you can just add the file name to buildignore and it will stop
complaining. If you have a README .Rmd file, for example, it will probably complain, but then you
can add a line to .Rbuildignore that says "README . Rmd$.

417

http://r-pkgs.had.co.nz/check.html
http://r-pkgs.had.co.nz/check.html

CHAPTER 15

Version Control

Version control, in its simplest form, is used for tracking changes to your software. It

is also an efficient way of collaborating on software development since it often allows
several developers to make changes to the software and merge it with changes from
other developers. RStudio supports two version control systems, Subversion and git.

Of these, git is the most widely used, and although these things are very subjective of
course, I think that it is also the better system. It is certainly the system we will use here.

Version Gontrol and Repositories

There are two main purposes of using a version control system when you develop
software. One is simply to keep track of changes, such that you can later check when
which modifications were made to your source code, and if you discover that they were
in error, revert to earlier versions to try a different approach. It provides a log for your
software development that allows you to go back in time and try again when you find
that what you have done so far leads to some place you don’t want to go.

The other job a version control system typically does is that it makes it easier for you
to collaborate with others. Here, the idea is that you share some global repository of all
code and code changes—the log that the version control system keeps of all changes—
and each developer works on a copy when modifying the code and submits that code to
the repository when they are done changing the code. In early version control systems,
it was necessary to lock files when you wanted to modify them to prevent conflicts with
other developers who might also be editing the same files. These days version control
systems are more lenient when it comes to the concurrent editing of the same files, and
they will typically just merge changes as long as there are no changes in overlapping
lines (in which case you will have to resolve conflicts manually).

419
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_15

https://doi.org/10.1007/978-1-4842-8155-0_15#DOI

CHAPTER 15 VERSION CONTROL

With this type of version control, different developers can work concurrently on
different parts of the code without worrying about conflicts. Should there be conflicts,
these will be recognized when you attempt to push changes to the global repository, and
you will be told to resolve the conflicts.

The version control system git allows even more concurrent and independent
development than this, by not even having a single global repository as such—at least
in theory. In practice, having a global repository for the official version of your software
is a good idea, and people do have that. The system just doesn’t enforce a single global
repository, but, instead, is built around having many repositories that can communicate
changes to each other.

Whenever you are working with git, you will have a local repository together with
your source code. You can use this repository as the log system mentioned earlier or
create branches for different features or releases as we will see later. You make changes
to your source code like normally and can then commit it to your local repository
without any conflict with other people’s changes. However, you can’t see their changes,
and they can’t see yours because you are working on different local repositories. To make
changes to another repository, you have to push your changes there, and to get changes
from another repository, you have to pull them from there.

This is where you typically use a global repository. You make changes to your local
repository while developing a feature, but when you are done, you push those changes
to the global repository. Or if you do not have permission to make changes to the global
repository—perhaps because you cloned someone else’s code and made changes to
that—ask someone who does have permission to pull your changes into the repository,
known as a “pull request.”

Using Git in RStudio

This is all very theoretical, and if it is hard for me to write, it is probably also hard for you
to understand. Instead, let us see git in practice.

RStudio has some rudimentary tools for interacting with git: it lets you create
repositories, commit to them, and push changes to other repositories. It does not
support the full range of what you can do with git—for that, you need other tools or to
use the command-line version of git—but for day-to-day version control, it suffices for
most tasks.

420

CHAPTER 15 VERSION CONTROL

Installing Git

If you haven'’t installed git already on your computer, you can download it from http://
git-scm.com. There should be versions for Windows, OS X, and Linux, although your
platform might have better ways of installing it.

For example, on a Debian/Ubuntu system, you should be able to use

sudo apt-get install git-core
while on a Red Hat/Fedora system, you should be able to use
sudo yum install git-core

You have to Google around to check how best to install git on other systems.

Once installed, you want to tell git who you are. It needs this to be able to tag changes
to your code with your name. It isn’t frightfully important if you are the only one working
on the code, but if more people are collaborating on the software development, it is
necessary to identify who made which changes. You tell git who you are by running the
following commands in a terminal:’

git config --global user.name "YOUR FULL NAME"
git config --global user.email "YOUR EMAIL ADDRESS"

You also might have to tell RStudio where the git command you installed can be
found. You do that by going to the Tools menu and select Global Options.... In the
window that pops up, you should find, on the icons on the left, a panel with Git/SVN,
and in there you can tell RStudio where the git command can be found.

The git you have installed is a command-line tool. RStudio has some GUI to work
with git, but you can’t do everything from the GUI. There are a few GUI tools that allow
you to do a lot more with git than RStudio, and I recommend getting one of those—I
often find it easier using them than the command lines myself since I am getting old and
forget the exact commands.

' Not the R terminal. You need to run this in an actual shell terminal for it to work. In RStudio, next
to the R terminal, called Console, there should be a tab that says Terminal. That is where you want
to go. If you do not have that tab, there will be another way to get it on your system, but how you
do it depends on your platform. I can’t help you there. If you don’t know how to, it is time to fire
up Google once again.

421

http://git-scm.com/
http://git-scm.com/

CHAPTER 15 VERSION CONTROL

Some good choices are
e Sourcetree (www.sourcetreeapp.com): For Windows and OS X

o GitHub Desktop (https://desktop.github.com): For Linux,
Windows, and OS X (for working with GitHub repositories)

o GitG (https://wiki.gnome.org/Apps/Gitg): For Linux

Sometimes, though, you do need to use the command-line version. There is a very
nice interactive web tutorial for the command-line git program here: https://try.
github.io/levels/1/challenges/1.

Making Changes to Files, Staging Files,
and Committing Changes

If you checked that your project should use git when you created your package, you
should have a Git tab on the top right of RStudio, next to the Build tab. Click it.

In the main part of this panel, there is a list of files. There are three columns, staged,
status, and path; the latter is the names of modified files (or directories), see Figure 15-1.

If this is the first time you access this panel, the status will contain a yellow question
mark for all files you have modified since you created the object (including files that
RStudio made during the package creation). This status means that git doesn’t know
about these files yet. It can see that the files are there, but you have never told it what to
do about them. We will do something about that now.

f—

Environment History Build Git o= =)

= Diff | v Commit ONE - 3 (No branch)» (&
Staged Status -~ Path

.Rbuildignore

.gitignore

DESCRIPTION

NAMESPACE

R/

man/

shapes.Rproj

Figure 15-1. Git panel showing modified files

422

http://www.sourcetreeapp.com
https://desktop.github.com
https://wiki.gnome.org/Apps/Gitg
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1

CHAPTER 15 VERSION CONTROL

The staged column has tick buttons for all the files. If you tick one, the status for that
file changes to a green “A” This means that you have staged the file to be added to the git
repository. Do this for all of the files. When you do it for a directory, all the files in that
directory will also be staged for adding. This is also what we want for now.

The process of committing changes to git involves staging changes to be committed
before we actually commit them. What we just did was telling git that next time we
commit changes, we want these files added. Generally, committing will only affect
changes we have staged. This lets you commit only some of the changes you have
made to your source code, which can be helpful at times. You might have made several
changes to many files, but at some point, you only want to commit a particular bug fix
and not changes for a new feature that you are not quite done with yet. Staging only the
changes you want to commit allows for this.

Anyway, we have staged everything, and to commit the changes, you now have to
click the Commit button in the toolbar. This opens a new window that shows you the
changes you are about to commit and lets you write a commit message (on the upper
right). This message is what goes into the change log. Give a short and meaningful
description of your changes here. You will want it if you need to find the changes in your
log at some later time. Then click Commit and close the window. The Git panel should
now be empty of files. This is because there are no more changes since the last commit,
and the panel only shows the files that have changed between your current version of
your software and the version that is committed to git.

To do what we just did in the terminal instead, we would stage files using the git
add command:

git add filename
and we would commit staged changes using the git commit command:
git commit -m "message"

Now try modifying a file. After you have done that, you should see the file displayed
in the Git panel again, see Figure 15-2, this time with a status that is a blue “M.” This, not
surprisingly, stands for modified.

If you stage a file for commit here, the status is still “M,” but RStudio indicates that
it is now staged by moving the “M” to the left a little, see Figure 15-3. Not that you really
need that feedback, you can also see that it is staged from the ticked staged button
of course.

Committing modified files works exactly like committing added files.

423

CHAPTER 15 VERSION CONTROL

In the terminal, you use git add for staging modified files as well. You don’t have a
separate command for staging adding new files and staging modified files. It is git add
for both.

Adding Git to an Existing Project

If you didn’t create your project with a git repository associated with it—and you have
justlearned about git now, so unless you have always just ticked the “git” button when
creating projects, you probably have many projects without git associated—you can still
set up git for an existing directory. You just have to do it on the command line.

Environment History Build Git =[]
= Diff |/ Commit ORE" 2 master> (= |
Staged ¥ Status Path

[0 R/classes.R

[man/rectangle.Rd

Figure 15-2. Modlified files in the Git panel

Environment History Build Git = [

=, Diff v/ Commit DRI T2 master~

Staged + Status Path
M| R/classes.R
@ man/rectangle.Rd

Figure 15-3. Modified files with one file staged for commit

424

CHAPTER 15 VERSION CONTROL
Go to the directory where the project is and run the command:
git init

This sets up an empty repository. The files already in the directory can then be added
just as we saw earlier.

Bare Repositories and Cloning Repositories

Most of the material in this section is not something you will ever have to worry about if
you use a repository server such as GitHub. There, creating a repository and interacting
with it is handled through a web interface, and you won’t have to worry about the
details, except for “cloning” a repository. We will create a so-called “bare” repository
manually here and see how we can communicate changes in different local repositories
through this.

The repositories we made when we created R projects or used git initina
directory are local repositories used for version control of the source code in the project
directory. They are not really set up for collaboration between developers. While it is
technically possible to merge changes in one such repository into another, it is a bit
cumbersome and not something you want to deal with on an everyday basis.

To synchronize changes between different repositories, we want a bare repository.
This is just a repository where we don’t have the local source code included; it isn’t really
special, but it prevents you from making local changes to it, and you can only update it
with changes from other repositories.

To create it, we need to use the command-line version of git. Create a directory
where you want the repository, go in there, and type:

git --bare init

The repository now contains the various files that git needs to work with—your local
repositories also include these; they are just hidden in a subdirectory called .git/ when
you have the local source code as well.

We are not going to do anything with this repository directly. We just need it to see
how we work with other repositories connected to it.

Go to a directory where you want the working source code version of the repository
and make a copy of the bare repository by writing

git clone /path/to/bare/repository

425

CHAPTER 15 VERSION CONTROL

You will get a warning that you have cloned an empty repository. We already know
that, so don’t worry about it. We are going to add to it soon.

To see how we communicate between repositories, though, you need to make
another working copy. You can either go to another directory and repeat the clone
command or clone the repository but give it another name with

git clone /path/to/bare/repository name

We now have two clones of the bare repository and can see how we can push
changes from a clone to the cloned repository and how we can pull updates in the
cloned repository into the clone.

As I'wrote earlier, going through a bare repository is not the only way to move
changes from one repository to another, but it is the easiest way to work with git and the
one you will be using if you use a server such as GitHub. If you do, and we see later how
to, then GitHub will make the bare repository for you, and you just need to clone it to
somewhere on your own computer to work with it.

Pushing Local Changes and Fetching and Pulling
Remote Changes

Go into one of the clones you just made. It will look like an empty directory because we
haven’t made any changes to it yet. In fact, it does contain a hidden directory, .git/,
where git keeps its magic, but we do not need to know about that.

Try to make some files, add them to git, and commit the changes:

touch foo bar
git add foo bar
git commit -m "added foo and bar"

If you now check the log
git log

you will see that you have made changes. If you look in the other clone of the bare
repository, though, you don’t yet see those changes.

There are two reasons for this: (1) we have only made changes to the cloned
repository but never pushed them to the bare repository the two clones are connected

426

CHAPTER 15 VERSION CONTROL

to, and (2) even if we had done that, we haven’t pulled the changes down into the
other clone.

The first of these operations is done using git push. This will push the changes you
have made in your local repository up to the repository you cloned it from:?

git push

You don’t need to push changes up to the global (bare) repository after each commit;
you probably don’t want to do that, in fact. The idea with this workflow is that you make
frequent commits to your local code to make the version control fine-grained, but
you push these changes up when you have finished a feature—or at least gotten it to a
stage where it is meaningful for others to work on your code. It isn’t a major issue if you
commit code that doesn’t quite work to your local repository—although generally, you
would want to avoid that—but it will not be popular if you push code that doesn’t work
onto others.

After pushing the changes in the first cloned repository, they are still not visible in
the second repository. You need to pull them down.

There is a command
git fetch

that gets the changes made in the global repository and makes it possible for you to
check them out before merging them with your own code. This can be useful because
you can then check it out and make sure it isn’t breaking anything for you before you
merge it with your code. After running the fetch command, you can check out branches
from the global repository, make changes there, and merge them into your own code
using the branching mechanism described in the following. In most cases, however, we
just want to merge the changes made to the global repository into our current code, and
you don’t really want to modify it before you do so. In that case, the command

git pull

2If we didn’t have a bare repository we had cloned both repositories from, we could still have
connected them to see changes made to them, but pushing changes would be much more
complicated. With a bare repository that both are cloned from, pushing changes upward is as easy
asgit push.

427

CHAPTER 15 VERSION CONTROL

will both fetch the latest changes and merge them into your local repository in a single
operation. This is by far the most common operation for merging changes others have
made and pushed to the global repository with your own.

Go to the repository clone without the changes and run the command. Check that
you now have the changes there.

The general workflow for collaborating with others on a project is to make changes
and commit them to your own repository. You use this repository to make changes you
are not ready to share yet, and you are the only one who can see them. Then, when
you are ready to share with your collaborators, you can push the changes to the shared
repository, and when you need changes others have made, you can pull them.

If you try to push to the global repository, and someone else has pushed changes
that you haven’t pulled yet, you will get an error. Don’t worry about that. Just pull the
changes; after that, you can push your changes.

If you pull changes into your repository, and you have committed changes there that
haven’t been pushed yet, the operation becomes a merge operation, and this requires a
commit message. There is a default message for this that you can just use.

You have your two repositories to experiment with, so try to make various variations
of pushing and pulling changes into a repository where you have committed changes.
The preceding explanation will hopefully make a lot more sense for you after you have
experimented a bit on your own.

RStudio has some basic support for pushing and pulling. If you make a new RStudio
project and choose to put it in an existing directory, you can try to make one that sits in
your cloned repositories. If you do this, you will find that the Git panel now has two new
buttons: push and pull.

Handling Conflicts

If it happens that someone has pushed changes to the global repository that overlap
lines that you have been editing in your local repository, you will get a so-called conflict
when you pull changes.

Git will inform you about this, whether you pull from RStudio or use the command
line. It will tell you which files are involved, and if you open a file with a conflict, you will
see that git has marked the conflict with text that looks like this:

<<<<<<< HEAD
your version of the code

428

CHAPTER 15 VERSION CONTROL

the remote version of the code
>>>>>>> 9a0e21ccd38f7598c05fele21e2b32091bb0839b

It shows you the version of the changes you have made and the version of the
changes that are in the global repository. Because there are changes both places, git
doesn’t know how to merge the remote repository into your repository in the pull
command.

You have to go into the file and edit it so it contains the version you want, which
could be a merge of the two revisions. Get rid of the <<<</====/>>>> markup lines when
you are done making the changes.

Once you have edited the file with conflicts, you need to stage it—running the git
add filename on the command line or ticking the file in the staged column in the Git
plane in RStudio—and commiit it. This tells git that you have handled the conflict and
will let you push your own changes if you want to do this.

Working with Branches

Branches are a feature of most version control systems, which allow you to work on
different versions of your code at the same time. A typical example is having a branch

for developing new features and another branch for the stable version of your software.
When you are working on implementing new features, the code is in a state of flux, the
implementation of the new feature might be buggy, and the interface to the feature could
be changing between different designs. You don’t want people using your package to use
such a version of your software—at least not without being aware that the package they
are using is unstable and that the interface they are using could be changed at a moment’s
notice. So you want the development code to be separate from the released code.

If you just made releases at certain times and then implemented new features
between making releases, that wouldn’t be much of an issue. People should be using the
version you have released and not commits that fall between released versions. But the
world is not that simple if you make a release with a bug in it—and let’s face it, that is not
impossible—and you want to fix that bug when it is discovered. You probably don’t want
to wait with fixing the bug until you are done with all the new features you are working.
So you want to make changes to the code in the release. If there are more bugs, you will
commit more bug fixes onto the release code. And all this while you are still making
changes to your development code. Of course, those bug fixes you make to the released

429

CHAPTER 15 VERSION CONTROL

code, you also want to merge into the development code. After all, you don’t want the
next release to reintroduce bugs you have already fixed.

This is where branches come in. RStudio has very limited support for branches, and
it doesn’t help you create them.? For that, we need to use the command line.

Environment History Git]
= Diff v Commit & Pull 4 Push (L History Gk More~)
Staged Status « Path

Figure 15-4. Git panel when the code is on the master branch

To create a branch, you use the command git branch name, so to create a
development branch—called develop for lack of imagination—we use

git branch develop

This just creates the branch. We are not magically moved to the branch or anything.
It just tells git that we have a new branch (and it branches off our current position in the
list of commits done to the repository).

In RStudio, we can see which branch we are on in the Git panel, see Figure 15-4. In
the project you have experimented on so far—and any project you have made where you
created a git repository with git init or by ticking the git selection in the dialog window
when you created the project—you will be on branch master. This is the default branch
and the branch that is typically used for released versions.

Ifyou click the branch drop-down in the Git panel, you get a list of the branches you
have in your repository, see Figure 15-5. You will have a branch called origin/master.
This is the master branch on the central repository and the one you merge with when
pulling data. Ignore it; it is not important for us. If you ran the git branch develop
command, you should also have a develop branch. If you select it, you move to that
branch, see Figure 15-6.

3Some of the other GUIs for working with git have excellent support for working with branches.
You should check them out.

430

CHAPTER 15 VERSION CONTROL

Environment History Git — |

= Diff | v Commit & Pull 4 Push (X History G More~ master~ (&

Staged Status 4 Path |
| develop ‘

master

origin/master ‘

Figure 15-5. Selecting a branch to switch to

Environment History = Git =]

= Diff |+, Commit L) History {EMorev develop ~ @
Staged Status -~ Path

Figure 15-6. After switching to branch develop

You can also get a list of branches on the command line with
git branch
and you can switch to a branch using the command*

git checkout branchname

*You can also combine the creation and checkout of a branch using git checkout -b
branchname if you want. That creates the branch first and then checks it out. To change between
branches later on, though, you need the checkout command without option -b.

431

CHAPTER 15 VERSION CONTROL

If you switch to the develop branch, you will see that the Pull and Push buttons are
grayed out. You can make changes to your code and commit them when on a given
branch, but you cannot (yet) push and pull. We will get to that shortly.

If you make some changes to your code and commit them while on branch develop
and then switch to branch master, you will see that those changes are not there. You
can see that both by looking at the files and by looking at the git history (using git
log or clicking the History button in the Git panel). Similarly, changes you make in
master will not show up in develop. This is exactly what we want. The two branches are
independent, and we can switch between working on the development branch and the
release version of our software by switching branches.

When you have made changes to one branch, and you want those changes also to be
added to another, you need to merge branches. Actually, you need to merge one branch
into another; it is not a symmetric operation. To do this, check out the branch you want
to modify and run the command:

git merge otherbranch

to merge the changes in “otherbranch” into the current branch. So, for example, if you
have made a bug fix to the master branch and want to merge it into the develop branch,
you would do

git checkout develop
git merge master

If a merge causes conflicts, you resolve them the same was as if a pull causes
conflicts, not surprisingly since a pull command is actually just a shortcut for fetching
and merging.

Typical Workflows Involve Lots of Branches

Git is optimized for working with lots of branches (unlike some version control systems,
where creating and merging branches can be rather slow operations). This is reflected in how
many people use branches when working with git: you create many branches and work on a
graph of different versions of your code and merge them together whenever you need to.
Having a development branch and a master branch is a typical core of the repository
structure, but it is also very common to make a branch for each new feature you
implement. Typically, you branch these off the develop branch when you start working
on the feature and merge them back into develop when you are done. It is also common

432

CHAPTER 15 VERSION CONTROL

to have a separate branch for each bug fix—typically branched off master when you
start implementing the fix and then branched back into master as well as into develop
when you are done. See Atlassian’s Git Tutorial (www.atlassian.com/git/tutorials/
comparing-workflows) for different workflows that exploit having various branches.

If you create a lot of branches for each feature or bug fix, you don’t want to keep them
around after you are done with them—unlike the develop and master branches that you
probably want to keep around forever. To delete a branch, you use the command:

git branch -d branchname

Pushing Branches to the Global Repository

You can work on as many branches as you like in your local repository, but they are
not automatically found in the global repository. The develop branch we made earlier
exists only in the local repository, and we cannot push changes made to it to the global
repository—we can see this in RStudio since the push (and pull) buttons are grayed out.
If you want a branch to exist also on the global repository—so you can push to it, and
so collaborators can check it out—you need to create a branch in that repository and set
up a link between your local repository and the global repository.
You can do that for the develop branch by checking it out and running the

command:
git push --set-upstream origin develop

This pushes the changes and also remembers for the future that branch is linked
to the develop branch in origin. The name origin refers to the repository you cloned
when you created this repository.®

Whether you want a branch you are working on also to be found in the global
repository is a matter of taste. If you are working on a feature that you want to share
when it is completed but not before, you probably don’t want to push that branch to the
global repository. For the develop and master branches, though, you definitely want
those to be in the global repository.

°It is slightly more complex than this; you can have links to other repositories and pull from them
or push to them (if they are bare repositories), and origin is just a default link to the one you
cloned for. It is beyond the scope of these notes, however, to go into more details. If you always
work with a single global repository that you push to and pull from, then you don’t need to know
any more about links to remote repositories.

433

http://www.atlassian.com/git/tutorials/comparing-workflows
http://www.atlassian.com/git/tutorials/comparing-workflows

CHAPTER 15 VERSION CONTROL

GitHub

GitHub (https://github.com) is a server for hosting git repositories. You can think of it
as a place to have your bare/global repository with some extra benefits. There are ways
for automatically installing packages that are hosted on GitHub, there is web support for
tracking bugs and feature requests, and there is support for sharing fixes and features in
hosted projects through a web interface.

To use it, you first need to go to the home page and sign up. This is free, and you just
need to pick a username and a password.

Once you have created an account on GitHub, you can create new repositories by
clicking the big + in the upper-right corner of the home page, see Figure 15-7.

Clicking it, you get to a page where you can choose the name of the repository, create
a short description, pick a license, and decide whether you want to add a README.md
file to the repository. I recommend that you always have a README.md file—it works
as the documentation for your package since it is displayed on the home page for the
repository at GitHub. You probably want to set up a README.Rmd file to generate it,
though, as we saw in Chapter 13. For now, though, you might as well just say yes to have
one generated.

Once you have generated the repository, you go to a page with an overview of the
code in the repository, see Figure 15-8.

o

Figure 15-7. Button to create a new repository at the GitHub home page. Found
on the upper right of the home page

434

https://github.com
https://doi.org/10.1007/978-1-4842-8155-0_13

CHAPTER 15 VERSION CONTROL

O This reposiory Pull requests Issues Gist a +- -
mailund / test ©Unwatch~ 1 HStar ¢ YFork ©
£ Coda Issuos © Pull roquests 0 Wid v~ Pulso Graphs Sottings

test for my lecture notes — Edit

o1 ¥ 1 branch 1] 1 cor

Newfile Findfilo SSM~ gitégithud.commailund/test.g [2 (8] Download ZIP

Latost cOmmE 620be64 just now

. README.md

test

test for my lecturo notes

Figure 15-8. New GitHub repository containing only a README.md file

You can explore the web page and the features implemented there later—it is a good
idea to know what it supports you doing—but for now we can just use the repository
here as a remote global repository. To clone it, you need the address in the field next to
the button that says SSH. In my test repository, it is git@github.com:mailund/test.git.
This is an address you can use to clone the repository using the “ssh” protocol:

git clone git@github.com:mailund/test.git

This is a protocol that you will have access to on many machines, but it involves you
having to deal with a public/private key protocol. Check the documentation for setting
up the ssh key at GitHub for learning more about this (https://help.github.com/
articles/generating-ssh-keys/). It is mostly automated by now, and you should be
able to set it up just by making a push and answering yes to the question you get there.

It is not the easiest protocol to work with, though, if you are on a machine that has
HTTPS—the protocol used by your web browser for secure communication. You will
almost certainly have that on your own machine, but depending on how firewalls are set
up, you might not have access to it on computer clusters and such, and then you need to
use the ssh protocol. To use HTTPS instead of SSH, just click the SSH button drop-down

435

https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/

CHAPTER 15 VERSION CONTROL

and pick HTTPS instead. This gives you a slightly different address—in my repository,
Igethttps://github.com/mailund/test.git—and you can use that to clone instead:

git clone https://github.com/mailund/test.git

If nothing goes wrong with this, you should be able to use the cloned repository just
as the repositories we looked at earlier where we made our own bare/global repository.

You can also check out the repository and make an RStudio project at the same time
by choosing New Project... in the File menu in RStudio and selecting Version Control
(the third option) in the dialog that pops up. In the next window, choose Git and then
use the HTTPS address as the Repository URL.

Moving an Existing Repository to GitHub

If you have already used git locally in a project and want to move it to GitHub, there is a
little more you must do—at least if you want to move your repository including all the
history stored in it and not just the current version of the source code in it.

First, you need to make a bare version of your repository. This is, as we saw a while
ago, just a version of the repository without source code associated.

If your repository is called repo, we can make a bare version of it, called repo.git, by
cloning it:

git clone --bare repo repo.git

To move this to GitHub, create an empty repository there and get the HTTPS address
of it. Then go into the bare repository we just made and run the following command:

cd repo.git
git push --mirror <https address at github>

Now just delete the bare repository we used to move the code to GitHub and clone
the version from GitHub. Now you have a version from there that you can work on:

m -rf repo.git
git clone <https address at github>

436

https://github.com/mailund/test.git—and

CHAPTER 15 VERSION CONTROL

Installing Packages from GitHub

A very nice extra benefit you get from having your R packages on GitHub—in addition

to having version control—is that other people can install your package directly from

there. The requirements for putting packages on CRAN are much stricter than for putting

R packages on GitHub, and you are not allowed to upload new versions to CRAN very

often, so for development versions of your R package, GitHub is an excellent alternative.
To install a package from GitHub, you need to have the devtools package installed:

install.packages("devtools")

after which you can install a package named “packagename” written by GitHub user
“username” with the command

devtools::install github("username/packagename™)

Collaborating on GitHub

The repositories you make on GitHub are by default only editable by yourself. Anyone
can clone them to get the source code, but only you can push changes to the repository.
This is, of course, useful to prevent random people from messing with your code but
prevents collaborations.

One way to collaborate with others is to give them write permissions to the
repository. On the repository home page, you must select the Settings entry in the
toolbar and then pick Collaborators in the menu on the left. After that, you get to a
page where you can add collaborators identified by their user account on GitHub.
Collaborators can push changes to the repository just as you can yourself. To avoid
too much confusion, when different collaborators are updating the code, it is useful to
have some discipline in how changes are merged into the master (and/or the develop)
branch. One approach that is recommended and supported by GitHub is to make
changes in separate branches and then use so-called pull requests to discuss changes
before they are merged into the main branches.

437

CHAPTER 15 VERSION CONTROL

Pull Requests

The workflow for making pull requests is to implement your new features or bug fixes
or whatever you are implementing on separate branches from develop or master, and
instead of merging them directly, you create what is called a pull request. You can start
a pull request by switching to the branch on the repository home page and selecting the
big green New pull request button, or if you just made changes, you should also have a
green button saying Compare & pull request that lets you start a pull request.

Clicking the button takes you to a page where you can name the pull request and
write a description of what the changes in the code you have made are doing. You also
decide which branch you want to merge the pull into; above the title you give the pull
request, you can select two branches, the one you want to merge into (base) and the
branch you have your new changes on (compare). You should pick the one you branched
out of when you made the new branch here. After that, you can create the pull request.

The only thing this is really doing is that it creates a web interface for having a
discussion about the changes you have made. It is possible to see the changes on the
web page and comment on them and to make comments to the branch in general. At
the same time, anyone can check out the branch and make their own modifications to it.
As long as the pull request is open, the discussion is going, and people can improve on
the branch.

When you are done, you can merge the pull request (using the big green Merge pull
request button you can find on the web page that contains the discussion about the pull
request).

Forking Repositories Instead of Cloning

Making changes to separate branches and then making pull requests to merge in the
changes still requires writing access to the repository. This is excellent for collaborating
with a few friends, but not ideal for getting fixes from random strangers—or for making
fixes to packages other people write, people who won’t necessarily want to give you full
write access to their software.

Not to worry, it is still possible to collaborate with people on GitHub without having
write access to each other’s repositories. The way that pull requests work, there is
actually no need for branches to be merged to be part of the same base repository. You
can merge branches from anywhere if you want to.

438

CHAPTER 15 VERSION CONTROL

If you want to make changes to a repository that you do not have write access to, you
can clone it and make changes to the repository you get as the clone, but you cannot
push those changes back to the repository you cloned it from. And other users on GitHub
can’t see the local changes you made (they are on your personal computer, not on the
GitHub server). What you want is a repository on GitHub that is a clone of the repository
you want to modify and that is a bare repository, so you can push changes into it. You
then want to clone that repository to your own computer. Changes you make to your own
computer can be pushed to the bare repository you have on GitHub—because it is a bare
repository and because you have writing access to it—and other users on GitHub can see
the repository you have there.

Making such a repository on GitHub is called forking the repository. Technically,
itisn’t different from cloning—except that it is a bare repository you make—and the
terminology is taking from open source software where forking a project means making
your own version and developing it independent of previous versions.

Anyway, whenever you go to a repository home page on GitHub, you should see a
button at the top right—to the right of the name and branch of the repository you are
looking at—that says Fork. Clicking that will make a copy of the repository that you have
writing access to. You cannot fork your own repositories—I'm not sure why you are
not allowed to, but in most cases, you don’t want to do that anyway, so it is not a major
issue—but you can fork any repository at other users’ accounts.

Once you have made the copy, you can clone it down to your computer and make
changes to it, as you can with any other repositories. The only way this repository is
different from a repository you made yourself is that when you make pull requests,
GitHub knows that you forked it off another repository. So when you make a pull request,
you can choose not only the base and compare branches but also the base fork and the
head fork—the former being the repository you want to merge changes into, and the
latter the repository where you made your changes. If someone forks your project and
you make a pull request in the original repository, you won'’t see the base fork and head
fork choices by default, but clicking the link compare across forks when you make pull
requests will enable them there as well.

If you make a pull request with your changes to someone else’s repository, the
procedure is exactly the same as when you make a pull request on your own projects,
except that you cannot merge the pull request after the discussion about the changes.
Only someone with writing permission to the repository can do that.

439

CHAPTER 15 VERSION CONTROL

The same goes if someone else wants to make changes to your code. They can start
a pull request with their changes into your code, but only you can decide to merge the
changes into the repository (or not) following the pull discussion.

This is a very flexible way of collaborating—even with strangers—on source code
development and one of the great strengths of git and GitHub.

Exercises

Take any of the packages you have written earlier and create a repository on GitHub to
host it. Push your code there.

440

CHAPTER 16

Profiling and Optimizing

In this second chapter, we will briefly consider what to do when you find that your code
is running too slow and, in particular, how to figure out why it is running too slow.

Before you start worrying about your code’s performance, though, it is important to
consider if it is worth speeding it up. It takes you time to improve performance, and it is
only worth it if the improved performance saves you time when this extra programming
is included. For an analysis you can run in a day, there is no point in spending one day
making it faster, even if it gets much faster, because you still end up spending the same
time, or more, to finally get the analysis done.

Any code you just need to run a few times during an analysis is usually not worth
optimizing. We rarely need to run an analysis just once—optimistically, we might hope
to, but, in reality, we usually have to run it again and again when data or ideas change—
but we don’t expect to run it hundreds or thousands of times. So even if it will take a few
hours to rerun an analysis, your time is probably better spent working on something else
while it runs. It is rarely worth it to spend a lot of time making it faster. The CPU’s time is
cheap compared to your own.

If you are developing a package, though, you often do have to consider performance
to some extent. A package, if it is worth developing, will have more users, and the total
time spent on running your code makes it worthwhile, up to a point, to make that
code fast.

Profiling

Before you can make your code faster, you need to figure out why it is slow, to begin with.
You might have a few ideas about where the code is slow, but it is actually surprisingly
hard to guess at this. Quite often, I have found, it is nowhere near where I thought it
would be, that most of the time is actually spend. On two separate occasions, I have tried
working really hard on speeding up an algorithm only to find out later that the reason

441
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_16

https://doi.org/10.1007/978-1-4842-8155-0_16#DOI

CHAPTER 16 PROFILING AND OPTIMIZING

my program was slow was the code used for reading the program’s input. The parser

was slow. The algorithm was lightning fast in comparison. That was in C, where the
abstractions are pretty low level and where it is usually pretty easy to glance from the
code how much time it will take to run. In R, where the abstractions are very high level, it
can be extremely hard to guess how much time a single line of code will take to run.

The point is, if you find that your code is slow, you shouldn’t be guessing at where
it is slow. You should measure the running time and get to know for sure. You need
to profile your code to know which parts of it are taking up most of the running time.
Otherwise, you might end up optimizing code that uses only a few percentages of the
total running time and leaving the real time wasters alone.

In typical code, there are only a few real bottlenecks. If you can identify these and
improve their performance, your work will be done. The rest will run fast enough.
Figuring out where those bottlenecks are requires profiling.

We are going to use the package profvis for profiling. RStudio has built-in
support for this package, and you should have a Profile item in your menu bar. That
is a convenient interface to the package, but in case you want to use it from outside of
RStudio, I will just use the package directly here.

A Graph-Flow Algorithm

For an example of some code, we could imagine we would wish to profile we consider
a small graph algorithm. It is an algorithm for smoothing out weights put on nodes
in a graph. It is part of a method used for propagating weights of evidence for nodes
in a graph and is something we’ve been using to boost searching for disease-gene
associations using gene-gene interaction networks. The idea is that if a gene is a
neighbor to another gene in this interaction network, then it is more likely to have a
similar association with a disease as the other gene. So genes with known association are
given an initial weight, and other genes get a higher weight if they are connected to such
genes than if they are not.

The details of what the algorithm is used for is not so important, though. All it
does is to smooth out weights between nodes. Initially, all nodes, n, are assigned
a weight w(n). Then in one iteration of smoothing, this weight is updated as
w(n)=aw(n)+(1-a)wﬁ Z(:)w(v) where « is a number between zero and one and
veN(n

N(n) denotes the neighbors of node n. If this is iterated enough times, the weights in a

442

CHAPTER 16 PROFILING AND OPTIMIZING

graph become equal for all connected nodes in the graph, but if stopped earlier, it is just
a slight smoothing, depending on the value of a.

To implement this, we need both a representation of graphs and the smoothing
algorithm. We start with representing the graph. There are many ways to do this, but a
simple format is a so-called incidence matrix. This is a matrix that has entry M;; = 0 if
nodes i and j are not directly connected and M;; = 1 if they are. Since we want to work on
anondirected graph in this algorithm, we will have M;; = M;,.

We can implement this representation using a constructor function that looks
like this:

graph <- function(n, edges) {
m <- matrix(0, nrow = n, ncol = n)

no_edges <- length(edges)
if (no_edges >= 1) {
for (i im seq(1, no_edges, by = 2)) {
m[edges[i], edges[i+1]] <- m[edges[i+1], edges[i]] <- 1
}
}

structure(m, class = "graph")

}

Here, I require that the number of nodes is given as an argument n and that edges
are specified as a vector where each pair corresponds to an edge. This is not an optimal
way of representing edges if graphs should be coded by hand, but since this algorithm
is supposed to be used for very large graphs, I assume we can write code elsewhere for
reading in a graph representation and creating such an edge vector.

There is not much to the function. It just creates the incidence matrix and then
iterates through the edges to set it up. There is a special case to handle if the edge vector
is empty. Then the seq() call will return a list going from one to zero. So we avoid this.
We might also want to check that the length of the edge vector is a multiple of two, but I
haven’t bothered. I am going to assume that the code that generates the vector will take
care of that.

Even though the graph representation is just a matrix, I give it a class in case I want to
write generic functions for it later.

443

CHAPTER 16 PROFILING AND OPTIMIZING
With this graph representation, the smoothing function can look like this:

smooth weights <- function(graph, node weights, alpha) {
if (length(node weights) != nrow(graph))
stop("Incorrect number of nodes")

no_nodes <- length(node_weights)
new_weights <- vector("numeric", no_nodes)

for (i in 1:no_nodes) {
neighbour_weights <- 0
n<-0
for (j in 1:no_nodes) {
if (i !'= j 88& graph[i, j] == 1) {
neighbour weights <- neighbour_weights + node_weights[j]
n<-n+1
}
}

if (n > 0) {
new_weights[i] <-
alpha * node weights[i] +
(1 - alpha) * neighbour weights / n
} else {
new_weights[i] <- node_weights[i]

}
}

new_weights

}

It creates the new weights vector we should return and then iterate through the
matrix in nested loops. If the incidence matrix says that there is a connection between i
and j, and i # j—we don’t want to add a node’s own weight if there is a self-loop—we use
it to calculate the mean. If there is something to update—which there will be if there are
any neighbors to node i—we do the update.

The code is not particularly elegant, but it is a straightforward implementation of
the idea.

444

CHAPTER 16 PROFILING AND OPTIMIZING

To profile this code, we use the profvis() function from profvis. It takes an
expression as its single argument, so to profile more than a single function call, we give it
a code block, translating the sequence of statements into an expression.

Ijust generate a random graph with 1000 nodes and 300 edges and random weights.
We are not testing the code here, only profiling it. However, if this was real code and not
just an example, we should, of course, have unit tests—this is especially important if
you start rewriting code to optimize it. Otherwise, you might end up getting faster but
incorrect code for all your efforts.

profvis::profvis({
n <- 1000
nodes <- 1:n
edges <- sample(nodes, 600, replace = TRUE)
weights <- rnorm(n)
g <- graph(n, edges)
smooth weights(g, weights, 0.8)

(] =] =[Dropbox/Misc. writing/Data Science/introduction 1o Data Science and Statistical Programming in R/R code = RStudio
L-la- g S o = Adding - L R coce -
O)graphRx [Protiel x Olgrapgh2Rx D)graph2-1Rx OJgaphdRx 0Jgraphd-2Rx OJgaphdRx ©)gapht-1R x -5
k= e Pub
Flame Craph | Duta Optice

Bav_welgatal] <- node_welgata(i]

Bav_welghts

Fen) 15.3 0|
. welghts, 0.8} 3124 181 1780

ancots welgits
aad ih

Sampie Interval: 10ms 1800

Conrole

Figure 16-1. Window showing profile results
445

CHAPTER 16 PROFILING AND OPTIMIZING

(If you are using RStudio, you get the same effect by highlighting the lines from n <-
1000 to smooth_weights(...) and selecting Profile Selected Line(s) in the Profile menu.)

Running this code will open a new tab showing the results; see Figure 16-1. The top
half of the tab shows your code with annotations showing memory usage first and time
usage second as horizontal bars. The bottom half of the window shows the time usage
plus a call stack.

We can see that the total execution took about 1800ms. The way to read the graph
is that, from left to right, you can see what was executed at any point in the run, with
functions called directly in the code block we gave profvis() at the bottom and code
they called directly above that and further function calls stacked even higher.

ene ~[Dropbox/Misc. writing/Data Science/fintroduction to Data Science and Statistical Programming in R/R code - RStudio
Qi-lce- B 8| &[4 ottt o v Addins = L Reode =
Oloraphkx [Profiel x O)graph2x Dlgraph2-1kx Ploaphlkx QJgraphd-2Rx Qjgrapha x 0 praphd-1R x =
: a % % posian |
flame Craph Duta Opticns = |
no_nodes <- lengidinode_weighis) |
new_welghts <= vestor| mamerle”, a)
for (1 in lino_nodes) | ‘
Relgibour_welghts <- ©
n <= 9 |
for (3 in lipo_nodes) (1.0 100 |
Belgilour_welghts <- nelgibour welghts + node welghte[))

A<en]
]
)

i1t (a > 0) {
raw_welghts[i] «-

A€ (L 1= 3 66 graphil, J] == 1) { -36.7 ‘ 0.8 1680

Label I 01 b=) B8 graphl,] == 1) [
Called from <exprr#l6
Total time &0ma

Memory 0/0.7 M8
Agg- total time 1640ms
Calll stack depth 2

iyt =300 a0 pom o AR M AR A
FFI_PBCDFLLYI_ i B 1 1 | s QB:,-

1z
ULl
_amooth —li!l
- T T T ™1
C m [] oo 1,000 'M lm 1800
Sample Interval: 10ms 1800ms
Console S0

Figure 16-2. Highlighting executing code from the profiling window

446

CHAPTER 16 PROFILING AND OPTIMIZING

We can also see that by far the most time was spent in the smooth_weights()
function since that stretches almost all the way from the leftmost part of the graph and all
the way to the rightmost. This is what we would expect, of course, but as I've mentioned,
sometimes profile results can surprise you.

If you move your mouse pointer into the window, either in the code or in the bottom
graph, it will highlight what you are pointing at; see Figure 16-2. You can use this to
figure out where the time is being spent.

In this particular case, it looks like most of the time is spent in the inner loop,
checking if an edge exists or not. Since this is the inner part of a double loop, this might
not be so surprising. The reason that it is not all the body of the inner loop but the if
statement is probably that we check the if expression in each iteration, but we do not
execute its body unless it is true. And with 1000 nodes and 300 edges, it is only true with
probability around 300/(1000*1000) = 3 x 10-4 (it can be less since some edges could be
identical or self-loops).

Now if we had a performance problem with this code, this is where we should
concentrate our optimization efforts. With 1000 nodes, we don'’t really have a problem.
1800ms is not a long time, after all. But the application I have in mind has around 30,000
nodes, so it might be worth optimizing a little bit.

If you need to optimize something, the first you should be thinking is: Is there a
better algorithm or a better data structure? Algorithmic improvements are much more
likely to give substantial performance improvements compared to just changing details
of an implementation.

In this case, if the graphs we are working on are sparse, meaning they have few
actual edges compared to all possible edges, then an incidence matrix is not a good
representation. We could speed the code up by using vector expressions to replace
the inner loop and hacks like that, but we are much better off considering another
representation of the graph.

Here, of course, we should first figure out if the simulated data we have used
is representative of the actual data we need to analyze. If the actual data is a dense
graph and we do performance profiling on a sparse graph, we are not getting the right
impression of where the time is being spent and where we can reasonably optimize. But
the application I have in mind, I pigheadedly claim, is one that uses sparse graphs.

With sparse graphs, we should represent edges in a different format. Instead of a
matrix, we will represent the edges as a list where for each node we have a vector of that
node’s neighbors.

447

CHAPTER 16 PROFILING AND OPTIMIZING
We can implement that representation like this:

graph <- function(n, edges) {
neighbours <- vector("list", length = n)

for (i in seq_along(neighbours)) {
neighbours[[i]] <- vector("integer", length = 0)

}
no_edges <- length(edges)

if (no_edges >= 1) {
for (i in seq(1, no_edges, by = 2)) {
nl <- edges[i]
n2 <- edges[i+1]
neighbours[[n1]] <- c(n2, neighbours[[n1]])
neighbours[[n2]] <- c(n1, neighbours[[n2]])
}
}

for (i in seq_along(neighbours)) {
neighbours[[i]] <- unique(neighbours[[i]])

}

structure(neighbours, class = "graph")

We first generate the list of edge vectors, then we initialize them all as empty integer
vectors. We then iterate through the input edges and update the edge vectors. The way
we update the vectors is potentially computationally slow since we force a copy of the
previous vector in each update, but we don’t know the length of these vectors a priori,
so this is the easy solution, and we can worry about it later if the profiling says it is a
problem.

Now, if the edges we get as input contain the same pair of nodes twice, we will get
the same edge represented twice. This means that the same neighbor to a node will be
used twice when calculating the mean of the neighbor weights. If we want to allow such
multi-edges in the application, that is fine, but we don’t, so we explicitly make sure that
the same neighbor is only represented once by calling the unique() function on all the
vectors at the end.

448

CHAPTER 16 PROFILING AND OPTIMIZING
With this graph representation, we can update the smoothing function to this:

smooth weights <- function(graph, node weights, alpha) {
if (length(node weights) != length(graph))
stop("Incorrect number of nodes")

no_nodes <- length(node_weights)
new_weights <- vector("numeric", no_nodes)

for (i in 1:no_nodes) {
neighbour_weights <- 0
n<-0
for (j in graph[[i]]) {
if (i 1= 9) {
neighbour weights <- neighbour_weights + node_weights[j]
n<n+1
}
}

if (n > 0) {
new_weights[i] <-
alpha * node weights[i] +
(1 - alpha) * neighbour weights / n
} else {
new_weights[i] <- node weights[i]

}
}

new_weights

}

Very little changes. We just make sure that j only iterates through the nodes we know
to be neighbors of node i.

The profiling code is the same as before, and if we run it, we get the results shown in
Figure 16-3.

449

CHAPTER 16 PROFILING AND OPTIMIZING

We see that we have gotten a substantial performance improvement. The execution
time is now 20ms instead of 1800ms. We can also see that half the time is spent on
constructing the graph and only half on smoothing it. In the construction, nearly all the
time is spent in unique(), while in the smoothing function, the time is spent in actually
computing the mean of the neighbors.

[] =] ~[DropboxiMisc. writing/Data Sciencefintroduction 1o Data Science and Statistical Programming in R/R code - RStudio
-l B3 4 Lol v Adding = L Reode =
OJgraphi x O graph2.k x) Profitel x | DJgraph2-1Rx DJgraphikx OJgraphl-2-x Olgraghdkx ©)graphd-1R x -
(= 4 Publan
Flame Craph Data Opticny =
<anpr> Memary Time
graph <- functica(m, edges) (
melgibours <- vector(“list”, leagth = a)
[{ in sy _alo nelgiboure {
2] soare|[L]] <= vecto gt
Bo_odjes <- lengid(edges
Bo_odges ==
r (L in seq ¥ Mm
ai jes
relg e Lghtoare] [a
ralghlecar e lghiCur
standardCeneric
s lque Belghbour_velgiile <= Relgidour_welgits + node wveigdts|)]
‘1 ra;\-\ — — - — 7l] P_“'.E\QII - — - >
2 4 L] L] 4 " " x
Sample Interval: 10ms 20m

Console

Figure 16-3. Profiling results after the first change

It should be said here, though, that the profiler works by sampling what code is
executing at certain time points. It doesn’t have an infinite resolution; it samples every
10ms as it says at the bottom left, so, in fact, it has only sampled twice in this run.

The result we see is just because the samples happened to hit those two places in the
graph construction and the smoothing, respectively. We are not actually seeing fine
details here.

450

CHAPTER 16 PROFILING AND OPTIMIZING

To get more details, and get closer to the size the actual input is expected to be, we
can try increasing the size of the graph to 10,000 nodes and 600 edges:

profvis: :profvis({
n <- 10000
nodes <- 1:n

edges <- sample(nodes, 1200, replace = TRUE)
weights <- rnorm(n)
g <- graph(n, edges)
smooth weights(g, weights, 0.8)
1)

o [] ~[DropboxjMisc. writing/Data Science/introduction to Data Science and Statistical Programming in R/R code - RStudio
Q- B B SllAcnn Gl = Addins - L & code -
OJonghRx ©)gaph2Rx Ojgngh2-1Rx (¥ Profilel x OjoaphlRx Ojgraphl-2Rx OjgnghdRx ©]gmphd-1R x —
a = S Publsh
Flame Craph Duta Optiony =
<erpr> Memory Time

graph <- fusctica(m, edges) {
melgidours <- vector(“iist®, leagih = a)

for (L Ln seq_aloag(nelgiboure)) (
seigiboars|(i]] <= vector(“iateger®, leagth = Q) 0 I

po_odjes <- leagiiedges)
if (no_edges >= 1) (
for (L in seqil, no_edges, by = 1)) (
al <= edjes|i]
al <= edjealisl)
ralghboure|(nl)) <- ¢(n2. nelgddoars|(al}))
selghboure|(nl)) <- cinl, nelgibours|(n)))

=

wAlgue.defanit

wnique unigee

stasdarsceseric standardCessrie

vestor whigie whique wa lque !
raph ancOth_weight

s T T T T T T T T eighte,
© 0 @0 w0 L] 00 20 "w 0 "w
Sample Interval: 10ms 180e
Console o -

Figure 16-4. Profiling results with a larger graph

The result of this profiling is shown in Figure 16-4.

451

CHAPTER 16 PROFILING AND OPTIMIZING

To our surprise, we see that for the larger graph we are actually spending more time
constructing the graph than smoothing it. We also see that this time is spent calling the
unique() function.

Now, these calls are necessary to avoid duplicated edges, but they are not necessarily
going to be something we often see—in the random graph, they will be less likely, at
least—so most of these calls are not really doing anything.

If we could remove all the duplicated edges in a single call to unique(), we should save
some time. We can do this, but it requires a little more work in the construction function.

We want to make the edges unique, and there are two issues here. One is that we
don’t actually represent them as pairs we can call unique() on, and calling unique() on
the edges vector is certainly not a solution. The other issue is that the same edge can be
represented in two different ways: (i, j) and (j, 7).

We can solve the first problem by translating the vector into a matrix. If we call
unique() on a matrix, we get the unique rows, so we just represent the pairs in that way.
The second issue we can solve by making sure that edges are represented in a canonical
form, say requiring that i < j for edges (i, j).

graph <- function(n, edges) {
neighbours <- vector("list", length = n)

for (i in seq_along(neighbours)) {
neighbours[[i]] <- vector("integer", length = 0)

}

no_edges <- length(edges)

if (no_edges >= 1) {
sources <- seq(1, no_edges, by = 2)
destinations <- seq(2, no_edges, by = 2)

edge matrix <- matrix(NA, nrow = length(sources), ncol = 2)
edge matrix[,1] <- edges[sources]
edge matrix[,2] <- edges[destinations]

for (i in 1:nrow(edge matrix)) {
if (edge matrix[i,1] > edge matrix[i,2]) {
edge matrix[i,] <- c(edge matrix[i,2], edge matrix[i,1])
}
}

452

CHAPTER 16 PROFILING AND OPTIMIZING
edge matrix <- unique(edge matrix)

for (i im seq(1, nrow(edge matrix))) {
nl <- edge matrix[i, 1]
n2 <- edge matrix[i, 2]
neighbours[[n1]] <- c(n2, neighbours[[n1]])
neighbours[[n2]] <- c(n1, neighbours[[n2]])

}

structure(neighbours, class = "graph")

}

Try profiling this code and see what results you get.

When I profiled, I found that the running time is cut in half, and relatively less time is
spent constructing the graph compared to before. The time spent in executing the code
is also so short again that we cannot be too certain about the profiling samples to say
much more.

The graph size is not quite at the expected size for the application I had in mind
when I wrote this code. We can boost it up to the full size of around 20,000 nodes and
50,000 edges' and profile for that size. Results are shown in Figure 16-5.

On a full-size graph, we still spend most of the time in constructing the graph and
not in smoothing it—and about half of the constructing time in the unique() function—
but this is a little misleading. We don’t expect to call the smoothing function just once
on a graph. Each call to the smoothing function will smooth the weights out a little more,
and we might expect to run it around ten times, say, in the real application.

We can rename the function to flow_weights iteration() and then write a
smooth_weights() function that runs it for a number of iterations.

'There are more edges than nodes, but it is still a sparse graph. A complete graph would have the
number of nodes squared or half that since we don’t allow both (i, j) and (j, i) as edges, so a full
dense graph would have up to 200 million edges. Compared to that, 50,000 edges is not much.

453

CHAPTER 16 PROFILING AND OPTIMIZING

[] [] ~[Dropbax/Misc. writing/Data Science/introduction to Data Science and Statistical Programming in R/R code - RStudio
Q- - 808 24 Lol | Adding = K R code
OlgraphRx OJonph2Rx ©Joaph2-1Rx DJonphlRx Ojgraphd-2Rx (7 Profiel x | OJgraghdRx O] graphd-1R x -5
=] S Publish
Flame Craph Data Options =
<enpr> Memaory Time
graph <= functloa(n, edges) |
nelgidours <- vestor(®liat®, leagth = n)
tor (L in seQ aloag(neliqiboars)) {
nelgiboure|[L]] <- vector(“iateger”, leagth = ¢) 60 .
) |
2o _edjes <- leagthedges) |
L1f (md_odges >= 1) | |
surces <- soqil, no_adjes, by = 1) |
destinaticas <- seqil, no_odjes, :‘]f - 1)
edpe_Patrin <= matrix(¥a, arow = leagth(ecurces), mcol = 2)
edpe_patcin], 1] <= odjes[sdurces| :
paste _paste
et] Hrew
appiy
GRigee . PaALTiN
uniqee
L, atasdardCesarlc . =1
unigee < 0 .
> th_welght
L ATaph r — o— — — — — —saonh veighte —
-] ') 00 00 0 E) L=] b
Samzie Iaterval: 10ms 650ma

Contole

Figure 16-5. Profiling results on a full time graph

flow weights iteration <- function(graph, node weights, alpha) {
if (length(node weights) != length(graph))
stop("Incorrect number of nodes")

no_nodes <- length(node_weights)
new_weights <- vector("numeric", n)

for (i in 1:no_nodes) {
neighbour weights <- 0
n<-0
for (j in graph[[i]]) {
if (1=) {
neighbour weights <- neighbour weights + node weights[j]

454

CHAPTER 16 PROFILING AND OPTIMIZING

n<-n+1

}
}

if (n > 0) {
new_weights[i] <-
alpha * node weights[i] + (1 - alpha) * neighbour weights / n
} else {
new_weights[i] <- node weights[i]

}
}

new_weights

smooth weights <- function(graph, node weights, alpha, no iterations) {
new_weights <- node_weights
replicate(no_iterations, {

new_weights <- flow weights_iteration(graph, new_weights, alpha)
1)

new_weights

We can then profile with ten iterations:

profvis: :profvis({

n <- 20000

nodes <- 1:n

edges <- sample(nodes, 100000, replace = TRUE)
weights <- rnorm(n)

g <- graph(n, edges)

flow weights(g, weights, 0.8, 10)

The results are shown in Figure 16-6. Obviously, if we run the smoothing function
more times, the smoothing is going to take up more of the total time, so there are no real
surprises here. There aren’t really any obvious hotspots any longer to dig into. I used

455

CHAPTER 16 PROFILING AND OPTIMIZING

the replicate() function for the iterations, and it does have a little overhead because it
does more than just loop—it creates a vector of the results—and I can gain a few more
milliseconds by replacing it with an explicit loop:

smooth weights <- function(graph, node weights,
alpha, no_iterations) {
new_weights <- node_weights
for (i im 1:no_iterations) {
new_weights <-
smooth _weights_iteration(graph, new weights, alpha)
}

new_weights

}

I haven’t shown the results, so you will have to trust me on that. There is nothing
major to attack any longer, however.

If you are in that situation where there is nothing more obvious to try to speed
up, you have to consider if any more optimization is really necessary. From this point
onward, unless you can come up with a better algorithm, which might be hard, further
optimizations are going to be very hard and unlikely to be worth the effort. You are
probably better off spending your time on something else while the computations run
than wasting days on trying to squeeze a little more performance out of it.

Of course, in some cases, you really have to improve performance more to do
your analysis in reasonable time, and there are some last resorts you can go to such as
parallelizing your code or moving time-critical parts of it to C++. But for now, we can
analyze full graphs in less than two seconds, so we definitely should not spend more
time on optimizing this particular code.

Speeding Up Your Code

If you really do have a performance problem, what do you do? I will assume that you are
not working on a problem that other people have already solved—if there is already a
package available you could have used, then you should have used it instead of writing
your own code, of course. But there might be similar problems you can adapt to your
needs, so before you do anything else, do a little bit of research to find out if anyone else
has solved a similar problem and, if so, how they did it. There are very few really unique
problems in life, and it is silly not to learn from others’ experiences.

456

CHAPTER 16 PROFILING AND OPTIMIZING

o000 ~[Dropbax/Misc. writing/Data Science/introduction to Data Science and Statistical Programming in R/R code - RStudio
Q-le-la 3Bl Bl = Addins - L Reode =
Olgraph2 R x D]graph2-1Rx PlgraphlRx P jgraphl-2.R x D] graphd R x (] Profilel x O] graphd-1.R x Frrotiezx » =%
- = 75 Publah
Flame Craph Dana Opticns =
. ! 3.8 I i 34 -
}
i A > i
sav_welghta[l] <- alpha * node welghte[Ll] » (I - alpha) * meigibour welghts / m
} #lse
v welgital] <- nide welgdis[li]
)
niy § o13s e S

fev_welghts

smcoth_welghts srlon(qrapd, nose_welgits, alphs iterations)
nev_welqits node welgit
piicate(nd_lterations, { mev_weigits flovw_welights oalg & -
aloda)l
paste [pante
e
pely
salque.matrix
e lque | | :
standardCensric 1] |] }) 2)
L b flow_welghts_Lteration
Iiu?\ = y _l';wl'_w:'i.‘.n - : 2 - :
-] 0 @0 L) o 0,000 00 a0 1000
Samgle Interval: 10ms 1710ma

Console o —

Figure 16-6. Profiling results with multiple smoothing iterations

It can take a little time to figure out what to search for, though, since similar problems
pop up in very different fields. There might be a solution out there that you just don’t
know how to search for because it is described in terms entirely different from your own
field. It might help to ask on mailing lists or Stack Overflow, but don’t burn your karma
by asking help with every little thing you should be able to figure out yourself with a bit
of work.

If you really cannot find an existing solution you can adapt, the next step is to start
thinking about algorithms and data structures. Improving these usually has much more
of an impact on performance than micro-optimizations ever can. Your first attempts at
any optimization should be to figure out if you could use better data structures or better
algorithms.

457

CHAPTER 16 PROFILING AND OPTIMIZING

It is, of course, a more daunting task to reimplement complex data structures or
algorithms—and you shouldn’t if you can find solutions already implemented—but it
is usually where you gain the most performance. Of course, there is always a trade-off
between how much time you spend on reimplementing an algorithm and how much
you gain, but with experience, you will get better at judging this. Well, slightly better. If
in doubt, it is probably better to live with slow code than spend a lot of time trying to
improve it.

And before you do anything, make sure you have unit tests that ensure that new
implementations do not break old functionality! Your new code can be as fast as
lightning, and it is worthless if it isn’t correct.

If you have explored existing packages and new algorithms and data structures
and there still is a performance problem, you reach the level of micro-optimizations.
This is where you use slightly different functions and expressions to try to improve
the performance that way, and you are not likely to get massive improvements at this
level of changes. But if you have code that is executed thousands or millions of times,
those small gains can still stack up. So, if your profiling highlights a few hotspots for
performance, you can try to rewrite code there.

The sampling profiler is not terribly useful at this level of optimization. It samples
at the level of milliseconds, and that is typically a much coarse-grained measurement
than what you need here. Instead, you can use the microbenchmark package that lets you
evaluate and compare expressions. The microbenchmark() function runs a sequence of
expressions several times and computes statistics on the execution time in units down to
nanoseconds. If you want to gain some performance through micro-optimization, you
can use it to evaluate different alternatives to your computations.

For example, we can use it to compare an R implementation of sum() against the
built-in sum() function:

library(microbenchmark)

mysum <- function(sequence) {

s -0
for (x inm sequence) s <- s + X
S

458

CHAPTER 16 PROFILING AND OPTIMIZING

microbenchmark(
sum(1:10),
mysum(1:10)

)

Unit: nanoseconds
i expr min 1q mean median ugq
#t sum(1:10) 264 273.0 374.74 278.5 288
mysum(1:10) 755 768.5 26743.61 784.5 881
#H max neval cld
6409 100 a
2590600 100 a

The first column in the output is the expressions evaluated, then you have the
minimum, lower quarter, mean, median, upper quarter, and maximum time observed
when evaluating it, and then the number of evaluations used. The last column ranks
the performance, here showing that sum() is a and mysum() is b so the first is faster. This
ranking takes the variation in evaluation time into account and does not just rank by
the mean.

There are a few rules of thumb for speeding up the code in micro-optimization, but
you should always measure. Intuition is often a quite bad substitute for measurement.

One rule of thumb is to use built-in functions when you can. Functions such as sum()
are actually implemented in C and highly optimized, so your own implementation will
have a hard time competing with it, as we saw earlier.

Another rule of thumb is to use the simplest functions that get the work done. More
general functions introduce various overheads that simpler functions avoid.

You can add together all numbers in a sequence using Reduce (), but using such a
general function is going to be relatively slow compared to specialized functions:

microbenchmark(
sum(1:10),
mysum(1:10),
Reduce("+", 1:10, 0)

)

459

CHAPTER 16 PROFILING AND OPTIMIZING

Unit: nanoseconds

i expr min 1q mean median
i sum(1:10) 262 280.0 369.34 302.5
it mysum(1:10) 767 792.5 987.13 830.0
Reduce("+, 1:10, 0) 5211 5373.5 5946.64 5504.0
uq max neval cld

333.0 3661 100 a
891.0 5945 100 b
5649.5 19411 100

We use such general functions for programming convenience. They give us abstract
building blocks. We rarely get performance boosts out of them, and sometimes they can
slow things down substantially.

Thirdly, do as little as you can get away with. Many functions in R have more
functionality than we necessarily think about. A function such as read.table() not only
reads in data, it also figures out what type each column should have. If you tell it what the
types of each column are using the colClasses argument, it gets much faster because
it doesn’t have to figure it out itself. For factor(), you can give it the allowed categories
using the levels argument so it doesn’t have to work it out itself:

X <- sample(LETTERS, 1000, replace = TRUE)
microbenchmark(

factor(x, levels = LETTERS),

factor(x)
)
Unit: microseconds
i expr min 1q
factor(x, levels = LETTERS) 13.915 15.5025
#t factor(x) 52.322 59.4495
mean median uq max neval cld

18.83221 16.1160 18.743 44.608 100 a
73.80394 66.4465 82.080 188.268 100 b

This is not just in effect when providing input, to help functions avoid spending time
on figuring something out. Functions often also return more than you are necessarily
interested in. Functions like unlist (), for instance, will preserve the names of a list into

460

CHAPTER 16 PROFILING AND OPTIMIZING

the resulting vector. Unless you really need those names, you should get rid of them
since it is expensive dragging the names along with you. If you are just interested in a
numerical vector, you should use use.names = FALSE:

X <- rnorm(1000)

names(x) <- paste("n", 1:1000)

microbenchmark(
unlist(Map(function(x) x**2, x), use.names = FALSE),
unlist(Map(function(x) x**2, x))

)

Unit: microseconds

#Hit expr
unlist(Map(function(x) x*2, x), use.names = FALSE)
#it unlist(Map(function(x) x"2, x))
i min 1q mean median uq

497.608 539.9505 624.1242 577.4815 659.0905
533.906 572.9820 653.8293 600.9775 666.7030
Hit max neval cld
1812.271 100 a
2059.874 100 a

Fourthly, when you can, use vector expressions instead of loops, not just because
this makes the code easier to read but because the implicit loop in vector expressions is
handled much faster by the runtime system of R than your explicit loops will.

Most importantly, though, is to always measure when you try to improve
performance and only replace simple code with more complex code if there is a
substantial improvement that makes this worthwhile.

Parallel Execution

Sometimes, you can speed things up, not by doing them faster, but by doing many things
in parallel. Most computers today have more than one core, which means that you
should be able to run more computations in parallel.

461

CHAPTER 16 PROFILING AND OPTIMIZING

These are usually based on some variation of lapply() or Map() or similar; see, for
example, package parallel but also check the package foreach that provides a higher-
level looping construct that can also be used to run code in parallel.

If we consider our graph smoothing, we could think that since each node is an
independent computation, we should be able to speed the function up by running these
calculations in parallel. If we move the inner loop into a local function, we can replace
the outer look with a call to Map():

smooth weights iteration map <- function(graph, node weights, alpha) {
if (length(node weights) != length(graph))
stop("Incorrect number of nodes")

handle i <- function(i) {
neighbour weights <- 0
n<-0
for (j in graph[[i]]) {
if (i1=9) {
neighbour weights <- neighbour weights + node weights[j]
n<-n+1
}
}

if (n > 0) {
alpha * node weights[i] + (1 - alpha) * neighbour weights / n
} else {
node weights[i]
}
}

unlist(Map(handle i, 1:length(node weights)))
}

This is not likely to speed anything up—the extra overhead in the high-level Map()
function will do the opposite, if anything—but it lets us replace Map () with one of the
functions from parallel, for example, clusterMap():

unlist(clusterMap(cl, inner loop, 1:length(node weights)))

462

CHAPTER 16 PROFILING AND OPTIMIZING
Here, cl is the “cluster” that just consists of two cores I have on my old laptop:
cl <- makeCluster(2, type = "FORK")

microbenchmark(
original smooth(),
using_map(),
using cluster map(),
times = 5

)

The changes gave me the results below. On my two-core laptop, we could expect
the parallel version to run up to two times faster. In fact, it runs several orders of

magnitude slower:
Unit: milliseconds

expr min 1q
original smooth() 33.58665 33.73139

using map() 33.12904 34.84107
using cluster map() 14261.97728 14442.85032
mean median uq max

35.88307 34.25118 36.62977 41.21634
38.31528 40.50315 41.28726 41.81587
15198.55138 14556.09176 14913.24566 17818.59187

neval cld
5 a
5 a
5 b

I am not entirely sure what the problem we are seeing here is, but most likely the
individual tasks are very short, and the communication overhead between threads
(which are actually processes here) ends up taking much more time than the actual
computation. At least my profiling seems to indicate that. With really lightweight threads,
some of the communication could be avoided, but that is not what we have here.

Parallelization of this works better when each task runs longer so the threads don'’t

have to communicate so often.?

2Parallelization on GPUs is a different case, but we won’t go there in this book.

463

CHAPTER 16 PROFILING AND OPTIMIZING

For an example where parallelization works better, we can consider fitting a model
on training data and testing its accuracy on test data. We can use the cars data we have
looked at before and the partition() function from Chapter 6.

We write a function that evaluates a single train/test partition and then call it n times,
either sequentially or in parallel:

test rmse <- function(data) {
data$train %>% lm(dist ~ speed, data = .)

]
.
~

model <- data$training %>% Im(dist ~ speed, data
predictions <- data$test %>% predict(model, data
rmse(data$test$dist, predictions)

1l
.
~

}

sample rmse <- function (n) {
random_cars <- cars %>%

partition(n, c(training = 0.5, test = 0.5))
unlist(Map(test rmse, random cars))
}
sample_rmse_parallel <- function (n) {
random_cars <- cars %>%
partition(n, c(training = 0.5, test = 0.5))

unlist(clusterMap(cl, test rmse, random cars))

}

When I do this for ten training/test partitions, the two functions take roughly the
same time. Maybe the parallel version is a little slower, but it is not much overhead
this time:

microbenchmark(
sample rmse(10),
sample_rmse_parallel(10),
times = 5

464

https://doi.org/10.1007/978-1-4842-8155-0_6

CHAPTER 16 PROFILING AND OPTIMIZING
Unit: milliseconds

expr min 1q

sample rmse(10) 28.72092 29.62857

sample _rmse parallel(10) 26.08682 27.15047
mean median uq max neval cld
31.57316 33.05759 33.21979 33.23894 5 a
34.75991 28.17528 29.37144 63.01556 5 a

If I create 1000 train/test partitions instead, however, the parallel version starts
running faster than the sequential version:

microbenchmark(
sample rmse(1000),
sample _rmse parallel(1000),
times = 5

)

Unit: seconds
expr min 1q
sample_rmse(1000) 3.229113 3.277292
sample rmse parallel(1000) 2.570328 2.595402
mean median uq max neval cld
3.459333 3.508533 3.536792 3.744934 5 b
2.921574 2.721095 3.185070 3.535977 5 a

Since my laptop only has two cores, it will never be able to run more than twice as
fast, and in general reaching the possible optimal speed-up from parallelization is rarely
possible. The communication overhead between threads adds to the time used for the
parallel version, and there are parts of the code that just have to be sequential such as
preparing data that all threads should work on.

If you have a machine with many cores, and you can split your analysis into
reasonably large independent chunks, though, there is often something to be gained.

465

CHAPTER 16 PROFILING AND OPTIMIZING

Switching to C++

This is a drastic step, but by switching to a language such as C or C++, you have more
fine-grained control over the computer, just because you can program at a much lower
level, and you do not have the overhead from the runtime system that R does. Of course,
this also means that you don’t have many of the features that R does either, so you don’t
want to program an entire analysis in C++, but you might want to translate the time-
critical code to C++.

Luckily, the Repp package makes integrating R and C++ pretty straightforward,
assuming that you can program in both languages, of course. The only thing to really be
careful about is that C++ index from zero and R from one. Rcpp takes care of converting
this, so a one-indexed vector from R can be accessed as a zero-indexed vector in C++,
but when translating code, you have to keep it in mind.

A full description of this framework for communicating between C++ and R is far
beyond the scope of this book. For that, I will refer you to the excellent book Seamless R
and C++ Integration with Rcpp by Dirk Eddelbuettel. Here, I will just give you a taste of
how Rcpp can be used to speed up a function.

We will focus on the smoothing function again. It is a relatively simple function that
is not using any of R’s advanced features, so it is ideal to translate into C++. We can do so
almost verbatim, just remembering that we should index from zero instead of one:

NumericVector

smooth_weights iteration cpp(List g,
NumericVector node weights,
double alpha)

{
NumericVector new weights(g.length());

for (int i = 0; i < g.length(); ++i) {

IntegerVector neighbours = g[i];

double neighbour sum = 0.0;

int n = 0;

for (int j = 0; j < neighbours.length(); ++j) {
neighbour sum += node weights[j];
++n;

}
466

CHAPTER 16 PROFILING AND OPTIMIZING

if (n > 0) {
new weights[i] = alpha * node weights[i] +
(1-alpha) * (neighbour sum / n);
} else {
new weights[i] = node weights[i];
}
}

return new weights;

}

The types List, NumericVector, and IntegerVector correspond to the R types,
and except for how we create the new_weights vector, the code very closely follows
the R code.

There are several ways you can compile this function and wrap it into an R function,
but the easiest is just to put it in a string and give it to the function cppFunction():

cppFunction("”

NumericVector

smooth weights iteration cpp(List g,
NumericVector node weights,
double alpha)

{
NumericVector new weights(g.length());

for (int i = 0; 1 < g.length(); ++i) {

// The body here is just the C++ code
// shown above...

}

return new_weights;

}
")

467

CHAPTER 16 PROFILING AND OPTIMIZING

That creates a function, with the same name as the C++ function, that can be called
directly from R, and Rcpp will take care of converting types as needed:

smooth weights cpp <- function(graph, node weights,
alpha, no iterations) {
new_weights <- node_weights

for (i im 1:no_iterations) {
new_weights <-
smooth_weights_iteration cpp(graph, new_weights, alpha)
}

new_weights

If we compare the R and C++ functions, we see that we get a substantial performance
boost from this:

microbenchmark(
smooth_weights(g, weights, 0.8, 10),
smooth_weights cpp(g, weights, 0.8, 10),
times = 5

)

Unit: milliseconds
expr
smooth weights(g, weights, 0.8, 10)
smooth weights cpp(g, weights, 0.8, 10)
min 1q mean median
1561.78635 1570.23346 1629.12784 1572.3979
32.77344 33.38822 35.57017 36.5103
uq max neval cld
1694.31571 1746.90573 5 b
37.29083 37.88803 5 a

To translate a function into C++, you are not necessarily prevented from using R’s
more advanced features. You can call R functions from C++ just as easily as you can call
C++ functions from R. Using R types translated into C++ can in many cases be used with
vector expressions just like in R. Be aware, though, that the runtime overhead of using

468

CHAPTER 16 PROFILING AND OPTIMIZING

advanced features is the same when you use them in C++ as in R. You will likely not gain
much performance from translating such functions. Translating low-level code like loops
often gives you substantial performance boosts, though. If you have a few performance
hotspots in your code that are relatively simple, just very time-consuming because they
do a lot of work, it is worth considering translating these to C++, and Rcpp makes it easy.

Don’t go overboard, though. It is harder to profile and debug code in C++, and it is
harder to refactor your code if it is a mix of C++ and R. Use it, but use it only when you
really need it.

Exercises

Find some code you have written and try to profile it. If there are performance hotspots
you can identify, then try to optimize them. First, think algorithmic changes, then
changes to the R expressions—checked using microbenchmark()—and if everything else
fails, try parallelizing or implementing them in C++.

469

CHAPTER 17

Project 2: Bayesian Linear
Regression

The project for this chapter is building an R package for Bayesian linear regression.
The model we will work with is somewhat a toy example of what we could imagine we
could build an R package for, and the goal is not to develop all the bells and whistles of
Bayesian linear regression. We will just build enough to see the various aspects that go
into building a real R package.

Bayesian Linear Regression

In linear regression, we assume that we have predictor variables x and target variables
ywhere y = w, + w,x + € where e ~ N(0, 6%). That is, we have a line with intercept w, and
incline w, such that the target variables are normally distributed around the point given
by the line. We sometimes write ¢* as 1/ and call f the precision. I will do this here and
assume that f is a known quantity; we are going to consider a Bayesian approach to
estimating the weights w’ = (w,, w,).

Since we assume that we know the precision parameter f, if we knew the true
weights of the model, then whenever we had an x value, we would know the distribution
of yvalues: y ~ N (w, + wx, 1/5).

For notational purposes, I am going to define a function that maps x to a vector:
¢ :x v (1, x)". Then we have w’¢(x) = w, + wix and y ~ N (w'p(x), 1/p).

Of course, we do not know the values of the weights but have to estimate them. In
a Bayesian approach, we do not consider the weights as fixed but unknown values; we
consider them as random variables from some distribution we have partial knowledge
about. Learning about the weights means estimating the posterior distribution for the
vector w conditional on observed x and y values.

471
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_17

https://doi.org/10.1007/978-1-4842-8155-0_17#DOI

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

We will assume some prior distribution for w, p(w). If we observe a sequence of
matching x and y values x” = (x,, x,, ..., x,) and y* = (yy, o ..., ¥), we want to update this
prior distribution for the weights w to the posterior distribution p(w | x, y).

We will assume that the prior distribution of w is a normal distribution with mean
zero and diagonal covariance matrix with some (known hyperparameter) precision «,
that is:

p(Wa)= N(O,a’ll).

For reasons that I don’t have time or space to go into here, this is a good choice
of prior for a linear model since it means that the posterior will also be a normal
distribution. It also means that, given x and y, we can compute the mean and covariance
matrix for the posterior with some simple matrix arithmetic.

But first, we need to define our model matrix. This is a matrix that captures that the
linear model we are trying to find is a line, that is, that y = w, + w,x. We define the model

matrix for the observed vector x as such:

1 x

In general, we would have a row per observation with the various features of the
observation we want to include in the model, but for a simple line it is the incline and
intercept, so for observation i itis 1 and x;.

The posterior distribution for the weights, p(w | x, y, a, /), is then given by

p(wix,y,a,8)=N(m, .S,)
where
m, , =pS, x'y
and

-1 _ T
S,y =al+pBx x.

472

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION
Exercises: Priors and Posteriors

Sample from a Multivariate Normal Distribution
If you want to sample from a multivariate normal distribution, the function mvrnorm
from the package MASS is what you want:

library(MASS)

mvrnorm(n = 5, mu = c(0,0), Sigma = diag(1, nrow = 2))

#t [,1] [,2]
[1,] -0.1664955 -0.4859753
[2,] -1.4915224 -1.0527432
[3,] -0.2284911 0.4313458
[4,] 0.4177218 -1.1576628
[5,] -1.3341254 -0.2136770

You need to provide it with a mean vector, mu, and a covariance matrix, Sigma.
The prior distribution for our weight vectors is N(0, S,) with

S

1 1/ O
S, =—I= .
o 0 1/«

You can use the diag function to create the diagonal covariance matrix.

and

Write a function make_prior(alpha) that constructs this prior distribution and
another function sample from prior(n, alpha) that samples n weight vectors wi from
it. My version returns the samples as a data frame with a column for the w, samples and
another for the corresponding w, samples. You can return the samples in any form that
is convenient for you.

If you can sample from the prior, you can plot the results, both as points in w
space and as lines in (x, y) space (a point (w,, w,) describes the line y = w, + w,x). See
Figures 17-1 and 17-2 for samples from the prior, with the two alternative ways of looking
at them.

473

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

Computing the Posterior Distribution

If we fix the parameters of the model, f and w = (w,, w,)’, we can simulate (x, y) values.
We can pick some random x values first and then simulate corresponding y values; see
Figure 17-3, where the red line is the known line (given by (w,, w,)) and the black dots
randomly sampled points given the model.

WO <- 0.3 ; wl <- 1.1 ; beta <- 1.3
x <- rnorm(50)
y <- rnorm(50, wl * x + w0, 1/beta)

Of course, we do not know the true line in a setting such as this. What we have
is a prior distribution of weights (w,, w;) and then observed (x, y) values. Think of
the situation as Figure 17-3 but without the red line. If we have the points, and the
prior, though, we have information about what the underlying line might be, and that
information manifests as a posterior distribution for the weights—the distribution the
weights have given that we have observed the points. When both our prior and our model
say that the data points are normally distributed, the posterior is particularly simple, as
we saw earlier. We can get the posterior distribution using the formula we saw before.
Write a function, make_posterior(x, y, alpha, beta), that computes the
posterior distribution (mean and covariance matrix) for the weights and a function

sample from_posterior that lets you sample from the posterior.

(@) °
o -
o |
Al °
=3 u . o
o | ¢ .
o ° °
I °
<
M N °
[[[[
-1.0 -0.5 0.0 0.5
Wo

Figure 17-1. Weight vectors sampled from the prior distribution
474

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

_ /

1.0

0.5

-0.5 0.0

-1.0

-1.0 -0.5 0.0 0.5 1.0

X

Figure 17-2. Weight vectors sampled from the prior distribution represented as lines

o — []
Al — .o

°
R X} z

LY °

> Y
o —
s..o 000.0

-— e® o ®
I 7] ° °

-2
(]
[]

Figure 17-3. Randomly sampled (x, y) values. The true linear model is
shown in red

If we again pretend that we can sample from the true distribution of (x, y) points,
every time we get a bunch of points we can update the posterior knowledge we have.
Naturally, in the real world, we don’t have the true distribution to do this sampling, but
the observations we have make it out for the data points, and we can still update our

posterior each time we get new information.
475

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

Imagine that we have observed some 7 points, (x;, y1), (x5 ¥2), ..., (X, ¥,), then we can
ask ourselves how close our posterior now is to the true line. Our posterior, of course,
isn’t a line (or a point in weight space), but rather a distribution, so one way to do this
is to sample from the posterior and see how closely they lump together—telling us how
certain we are getting about the real values—and how close they lump around the true
point, when we have that.

In Figure 17-4, you can see an example of this. The true line, the (w,, w,) the data
points are sampled from, is shown in red. The black dots are the (x, y) points we have
available to update the posterior from, and the gray lines are samples from the updated
posterior. As you can see, the more (x, y) points we have to infer the posterior from, the
closer the distribution gets to lumping around the true point.

Predicting Target Variables for New Predictor Values

Given a new value x, we want to make predictions about the corresponding y. For a
fixed w, again, we have p(y|x, w, #) = N(w’¢(x), 1//), but since we don’t know w, we have
to integrate over all w. The way the training data improves our prediction is that we
integrate over w weighted by the posterior distribution of w rather than the prior:

p(y|x,x,y,a,ﬁ):fp(y|x,w,ﬂ)p(w|x,y,a,ﬂ)dw.

This kind of integral over the product of two normal distributions gives us another

normal distribution, and one can show that it is

p(ykx.x.y.0.8)=N(m] ¢ (x).07,(x))

476

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

5 points 10 points
o — o -
[]
_| . _ Z
> — A > — b
™ ™~ L]
[° [L]
— . —
o _] o _|
[R N B L I Y S B
-3 -1 1 2 3 -3 -1 1 2 3
X X
20 points 50 points
o — . o — ..o
. = 5
] .] sy
> — y ° s > — ® - 'o..
T e T
— — (] °
o _] o]
O A R L R A R
-3 -1 1 2 3 -3 -1 1 2 3
X X

Figure 17-4. Lines drawn from the posterior. The true line is shown in red

where m, , is the mean from the posterior distribution of w and where

0%, (1)= 40 (x)' S, 0(x)
B
where S, , is the covariance matrix from the posterior distribution of w.

With the full distribution for the target value, y, given the predictor value, x, we can,
of course, make predictions. The point prediction for y is, of course, the mean of this
normal distribution, so m ¢ (x).But we can do more than just predict the most likely
value; we can of course also get confidence values because we know the distribution.

Write a function that predicts the most likely y value for a given x value. Use it to plot
the inferred model against (x, y) points. See Figure 17-5 for an example.

Use the fact that you also have the predicted distribution for y to write a function
that gives you quantiles for this distribution and uses it to plot 95% intervals around the
predictions; see Figure 17-6.

477

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

Formulas and Their Model Matrix

We will continue working with our Bayesian linear regression, and we will generalize the

kind of formulas we can fit.
Recall from Chapter 6 that when fitting our models to data, we did this using a so-

called model matrix (or design matrix) of the form

1 x
I x,

x=|1 x|

Row i in this matrix contains the vector (1, x;) = ¢(x;)! capturing the predictor variable
for the i'th observation, xi. It actually has two predictor variables; it is just that one is a
constant 1. What it captures is the input variables we use in a linear model for predicting
targets. One variable is the x value and the other is a way of encoding the y-axis intercept.

-60

I I I I I I
-40 -20 O 20 40 60

X

Figure 17-5. True linear model in red and predicted values in blue

478

https://doi.org/10.1007/978-1-4842-8155-0_6

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

150
I

y
50

0

-100

I I I I I I I
-40 0O 20 40 60 80

X
Figure 17-6. Prediction with 95% support interval

To predict the target, we use the inner product of this row and the weights of our
fitted model:

Y, =w'¢(x,)+0=w, -1+ w -x, +0.

We call ¢(x) the feature vector for a point x, and the model matrix contains a row for
each data point we want to fit or make predictions on, such that row i is ¢(x;)" . With the
feature vector on the form we have used here, ¢(x)” = (1, x), we are fitting a line, but the
feature doesn’t have to have this form. We can make more complicated feature vectors.

If we instead used the feature vector ¢(x)” = (1, x, x*) and added another weight to
w so it now had three dimensions, (w,, w,, w,), we could be predicting the target in the
same way, y = w’ ¢(x;) + €, except now of course w’ ¢(x;) = w, + wix + w,x?* so we would
be fitting a quadratic polynomial.

If you are thinking now “hey, that is no longer a linear model!’, you are wrong. The
linearity in the model was never actually related to the linearity in x. It is a linearity in
w that makes the model linear, and as long as we are getting the predicted value as the
inner product of a weight vector like this and some feature vector, it is a linear model we
are working with. You can make the feature vector ¢(x) as crazy as you like.

If you construct the model matrix the same way

479

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

the mathematics for fitting weights and predicting new target values works the same,
except of course that the weight vector w has the number of dimensions that reflects the
dimensions in the feature vectors.

The feature vector doesn’t have to be a function of a single variable, x, either. If you
want to fit a linear model in two variables—that is, a plane—then you can just let the
feature vector depend on two variables: ¢(x, z)" = (1, x, z). The linear combination with
the weight vector would be w” ¢(x, z) = w, + w,x + w,z which would exactly be a linear
model in two variables.

Working with Model Matrices in R

The way we specify both feature vectors and model matrices in R is a formula. A formula
is created as an expression containing the tilde symbol, ~, and the target variable should
be put to the left and the explanatory variables on the right.

R has quite a rich syntax for specifying formula, and if you are interested, you should
read the documentation by writing

?formula

in the R shell.

For the linear model, we would write y ~ x. The intercept variable is implicitly
there; you don’t need to tell R that you want the feature vector to include the “-1’,
instead, you would have to remove it explicitly. You can also specify polynomial feature
vectors, but R interprets multiplication, *, as involving interaction between variables.!
To specify that you want the second-order polynomial of x, you need to writey ~
I(x"2) + x.The function I is the identity function, and using it here makes R interpret
the x"2 as squaring the number x instead of trying to interpret it as part of the formula

'In formulas, x*z means X + z + x:z where x:z is the interaction between x and z—in practice,
the product of their numbers—soy ~ x*z means ¢(x, z) = (1, x, z, x.z)).

480

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

specification. If you only want to fit the square of x, you would just writey ~ I(x"2). For
a general n-degree polynomial, you canusey ~ poly(x,n, raw=TRUE).

To fit our linear model, we need data for two things. In the model we have already
implemented, we had vectors x and y, but in the general case, the prediction variable x
should be replaced with the model matrix. From the matrix and y we can fit the model.

R has functions for getting both from a formula and data. It isn’t quite
straightforward, though, because of scoping rules. If you write a formula somewhere in
your code, you want the variables in the formula to refer to the variables in the scope
where you are, not somewhere else where the code might look at the formula. So the
formula needs to capture the current scope—similar to how a closure captures the scope
around it. On the other hand, you also want to be able to provide data directly to models
via data frames. Quite often, the data you want to fit is found as columns in a data frame,
not as individual variables in a scope. Sometimes, it is even a mix.

The function model. frame lets you capture what you need for collecting data relevant
for a formula. It will know about the scope of the formula, but you can add data through
a data frame as well. Think of it as a data.frame, just with a bit more information about
the data that it gets from analyzing the formula.

We can see all of this in action in the following small example:

predictors <- data.frame(x = rnorm(5), z = rnorm(5))
y <- with(predictors, rnorm(5, mean = 3*x + 5%z + 2))

model <- y ¥ x + z
model.frame(model, data = predictors)

#Hit y X z
1 5.7166648 1.2943469 0.07347801
2 -7.3801586 0.7210624 -2.12012399
3 0.4894598 -0.6444302 0.15265587
4 5.5552442 1.6107988 0.01996477
5 7.8151347 0.2048122 0.98655386

Here, we have two predictor variables, x and z, in a data frame, and we simulated
the response variable, y, in the global scope. We create the model using the formulay ~
X + z (which means ¢(x, z)* = (1, x, z)), and we construct a model frame from this that
contains the data for all the variables used in the formula.

481

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

The way the model frame gets created, R first looks in the data frame it gets for a
variable, and if it is there, it uses that data; if it is not, it uses the data it can find in the
scope of the formula. If it cannot find it at all, it will, of course, report an error.

The data frame is also used to construct expressions from variables. In the scope,
you might have the variable x but not the variable x*> where the latter is needed for
constructing a model matrix. The model. frame function will construct it for you:

X <- runif(10)
model.frame(~ x + I(x"2))

#t X I(x"2)
1 0.9257926 0.857091....
2 0.2048174 0.041950....
3 0.3320932 0.110285....
4 0.5124721 0.262627....
5 0.4848565 0.235085....
6 0.1284884 0.016509....
7 0.9344755 0.873244....
8 0.8077187 0.652409....
9 0.7667746 0.587943....
10 0.9961101 0.992235....

In this example, we don’t have a response variable for the formula; you don'’t
necessarily need one. You need it to be able to extract the vector y of course, so we do
need one for our linear model fitting, but R doesn’t necessarily need one.

Once you have a model frame, you can get the model matrix using the function
model.matrix. It needs to know the formula and the model frame (the former to know
the feature function ¢ and the latter to know the data we are fitting).

In the following, we build two models, one where we fit a line that goes through y =0
and the second where we allow the line to intersect the y-axis at an arbitrary point.

Notice how the data frames are the same—the variables used in both models are the
same—but the model matrices differ:

X <- runif(10)
y <- rnorm(10, mean=x)

model.no.intercept <- y ¥~ x + 0
(frame.no.intercept <- model.frame (model.no.intercept))

482

attr(,"assign")

y
.05218288

.78985212
.81501744
.71807916
.40083214
.82443129
.98024996
.47115407
35959763
.47588279

0
0
0
0
0
0
0
0
0
0

X

.7020026
.2376200
.4099537
.5834204
.5577035
.2163221
.1702824
.3512283
.2272345
9553629

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

matrix(model.no.intercept, frame.no.intercept)

##

1 0
#2 o0
3 -0
4 -0
#s5 0
6 -0
7 -0
8 -0
#9 O
10 -0
model.
##

1 0
2 0
3 0
4 0
5 0
6 0
7 O
8 0
9 0
10 O.
[1] 1

model.with.intercept <- y ~ x

X

.7020026
2376200
.4099537
.5834204
.5577035
.2163221
.1702824
.3512283
.2272345

9553629

(frame.with.intercept <- model.frame (model.with.intercept))

#H

1
#t 2
3
4
#t 5

y

X

0.05218288 0.7020026
0.78985212 0.2376200
-0.81501744 0.4099537
-0.71807916 0.5834204
0.40083214 0.5577035

483

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

6 -0.82443129 0.2163221
7 -0.98024996 0.1702824
8 -0.47115407 0.3512283
9 0.35959763 0.2272345
10 -0.47588279 0.9553629

model.matrix(model.with.intercept, frame.with.intercept)

it (Intercept) X
H## 1 1 0.7020026
#H# 2 1 0.2376200
3 1 0.4099537
4 1 0.5834204
5 1 0.5577035
6 1 0.2163221
#4 7 1 0.1702824
8 1 0.3512283
9 1 0.2272345
10 1 0.9553629
attr(,"assign")

[1] 0 1

The target vector, or response variable, y, can be extracted from the data frame as
well. You don’t need the formula this time because the data frame remembers which
variable is the response variable. You can get it from the model frame using the function
model.response:

model.response(frame.with.intercept)

#Ht 1 2 3 4
0.05218288 0.78985212 -0.81501744 -0.71807916
#Hit 5 6 7 8

0.40083214 -0.82443129 -0.98024996 -0.47115407
#Ht 9 10
0.35959763 -0.47588279

484

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

Exercises
Building Model Matrices

Build a function that takes as input a formula and optionally, through the ... variable, a
data frame and build the model matrix from the formula and optional data.

Fitting General Models

Extend the function you wrote earlier for fitting lines to a function that can fit any
formula.

Model Matrices Without Response Variables

Building model matrices this way is all good and well when you have all the variables
needed for the model frame, but what happens when you don’t have the target value?
You need the target value to fit the parameters of your model, of course, but later on, you
want to predict targets for new data points where you do not know the target, so how do
you build the model matrix then?

With some obviously fake data, the situation could look like this:

training.data <- data.frame(x = runif(5), y = runif(5s))
frame <- model.frame(y ~ x, training.data)
model.matrix(y ~ x, frame)

(Intercept) X
1 1 0.1935202
2 1 0.4235126
#t 3 1 0.8715640
4 1 0.0687407
5 1 0.7034587
attr(,"assign")

[1] 0 1

predict.data <- data.frame(x = runif(5))
but now, if we want to build a frame for the predicted data

frame <- model.frame(y ~ x, predict.data)

485

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

we would get an error. The formula tells model. frame that it needs the variable y, but
predict.data doesn’t have it; it only have x. So leave out the response side of the
formula:

frame <- model.frame(~ x, predict.data)
model.matrix(~ x, frame)

(Intercept) X
1 1 0.5181431
#H# 2 1 0.6967051
3 1 0.4965555
#t 4 1 0.0729577
5 1 0.7235315
attr(,"assign")

[1] 0 1

This is not quite as easy if you don’t know the formula, when it is input to your
model. You cannot simply replace a formula you don’t know with another that might not
be related to the first. You can, however, remove the response variable from any formula
using the delete.response function.

You cannot call delete.response directly on a formula; that is not the type of objects
it works on. But you can combine it with the function terms to get a formula without the
response variable that you can then use to build a model matrix for data where you don'’t
know the target values:

assume this is a parameter you don't know
unknown <- y ~ x

get the formula without the response

responseless formula <- delete.response(terms(unknown))

and then you can use it with model. frame

frame <- model.frame(responseless formula, predict.data) model.
matrix(responseless formula, frame)

(Intercept) X
1 1 0.5181431
2 1 0.6967051
3 1 0.4965555

486

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

4 1 0.0729577
#4 5 1 0.7235315
attr(,"assign")

[1] 0 1

Exercises

Model Matrices for New Data

Write a function that takes as input a formula and a data frame as input that does not
contain the response variable and build the model matrix for that.

Predicting New Targets

Update the function you wrote earlier for predicting the values for new variables to
work on models fitted to general formula. If it doesn’t already permit this, you should
also extend it so it can take more than one such data point. Make the input for new data
points come in the form of a data frame.

Interface to a blm Class

By now, we have an implementation of Bayesian linear regression but not necessarily
in a form that makes it easy to reuse. Wrapping the data relevant for a fitted model
into a class and providing various methods to access it is what makes it easy to reuse a
model/class.

Generally, you want to access objects through functions as much as you can. If you
know which $fields the class has, it is easy to write code that just accesses this, but that
makes it hard to change the implementation of the class later. A lot of code that makes
assumptions about how objects look like will break. It will also make it hard at some later
point to change the model/class in an analysis because different classes generally do not
look the same in their internals.

To make it easier for others—and your future self—to use the Bayesian linear
regression model, we will make a class for it and provide functions for working with it.

This involves both writing functions specific to your own class and writing
polymorphic functions that people, in general, expect a fitted model to implement. It is
the latter that will make it possible to replace another fitted model with your blm class.

487

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

How you go about designing your class and implementing the functions—and
choosing which functions to implement, in general—is up to you, except, of course,
when you implement blm-specific versions of already existing polymorphic functions; in
that case, you need to obey the existing interface.

How you choose to represent objects of your class and which functions you choose
to implement for it is generally up to you. There is a general convention in R, though,
that you create objects of a given class by calling a function with the same name as the
class. So I suggest that you write a constructor called b1lm.

There aren’t really any obvious classes to inherit from, so the class of blm objects
should probably only be "blm" and not a vector of classes. If you want to make a class
hierarchy in your implementation or implement more than one class to deal with
different aspects of your model interface, you should knock yourself out.

Constructor

A constructor is what we call a function that creates an object of a given class. In some
programming languages, there is a distinction between creating and initializing an
object. This is mostly relevant when you have to worry about memory management

and such and can get quite complicated, and it is not something we worry about in R. It
is the reason, though, that in Python the constructor is called init—itis actually the
initialization it handles. The same is the case for Java—which enforces the rule that the
constructor must have the same name as the class, where for R it is just a convention. In
Java, you have a special syntax for creating new objects: new ClassName().In Python,
you have to use the name of the class to create the object—ClassName () —but the syntax
looks just like a function call. In R, it is only a convention that says that the class name
and the constructor should be the same. The syntax for creating an object looks like a
function call because it is a function call, and nothing special is going on in that function
except that it returns an object where we have set the class attribute.

So you should write a function called blm that returns an object where you have set
the class attribute to "blm". You can do this with the “class<-" replacement function or
the structure function when you create the object. The object is a list—that is the only
way you have of storing complex data, after all—and what you put in it depends on what
you need for the functions that will be the interface of your class. You might have to go
back and change what data is stored in the object from time to time as you develop the

488

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

interface for your function. That is okay. Try to use functions to access the internals of
the object as much as you can, though, since that tends to minimize how much code you
need to rewrite when you change the data stored in the object.

Updating Distributions: An Example Interface

Let’s consider a case of something we could have as an interface to Bayesian linear
models. This is not something you have to implement, but it is a good exercise to try.

The thing we do when we fit models in Bayesian statistics is that we take a prior
distribution of our model parameters, P(#), and update them to a posterior distribution,
P(0| D), when observing data D. Think of it this way: the prior distribution is what we just
know about the parameters. Okay, typically we just make the prior up based on mathematical
convenience, but you should think about it as what we know about the parameters from our
understanding of how the universe works and what prior experience has taught us. Then
when you observe more, you add information about the world which changes the conditional
probability of how the parameters look given the observations you have made.

There is nothing really magical about what we call prior and posterior here. Both are
just distributions for our model parameters. If the prior is based on previous experience,
then it is really a posterior for those experiences. We just haven’t modelled it that way.

Let’s say we have observed data D, and obtained a posterior P(6 | D,). If we then later
observe more data, D,, we obtain even more information about our parameters and can
update the distribution for them to P(@ | D,, D).

We can of course always compute this distribution by taking all the old data and all
the new and push it through our fitting code. But if we have chosen the prior distribution
carefully with respect to the likelihood of the model—and by carefully I mean that we
have a so-called conjugate prior—then we can just fit the new data but with a different
prior: the old posterior.

A conjugate prior is a prior distribution that is chosen such that both prior and
posterior are from the same class of distributions (just with different parameters). In our
Bayesian linear model, both prior and posterior are normal distributions, so we have a
conjugate prior. This means that we can, in principle, update our fitted model with more
observations just by using the same fitting code but with a different prior.

Ihinted a bit at this in the exercises earlier, but now you can deal with it more
formally. You need a way of representing multivariate normal distributions—but you
need this anyway to represent your blm objects—and a way of getting to a fitted one
inside your blm objects to extract a posterior.

489

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

There are many ways to implement this feature, so you have something to
experiment with. You can have an update function that takes a prior and new
observations as parameters and outputs the (updated) posterior. Here, you need to
include the formula as well somehow to build the model matrix. Or you can let update
take a fitted object together with new data and get the formula and prior from the fitted
object. Of course, if you do this, you need to treat the prior without any observations as a
special case—and that prior will not know anything about formulas or model matrices.

We can try with an interface like this:

update <- function(model, data, prior) { ... }

where model is the formula, data a new data set, and prior the prior to use for fitting.
This is roughly the interface you have for the constructor, except there you don'’t
necessarily have data as an explicit parameter (you want to be able to fit models without
data in a data frame, after all), and you don’t have prior as a parameter at all.

Thinking about it a few seconds and realizing that whatever model fitting we putin
here is going to be exactly the same as in blm, we can change the interface to get rid of
the explicit data parameter. If we let that parameter go through ... instead, we can use
exactly the same code as in blm (and later remove the code from blm by calling update
there instead):

update <- function(model, prior, ...) { ... }
blm <- function(model, ...) {
some code here...
prior <- make a_prior distribution_somehow()
posterior <- update(model, prior, ...)
some code that returns an object here...

To get this version of blm to work, you need to get the prior in a form you can pass
along to update, but if you did the exercises earlier, you should already have a function
that does this (although you might want to create a class for these distributions and
return them as such so you can manipulate them through an interface if you want to take
it a bit further).

Of course, instead of getting rid of the model fitting code in the body of b1lm, you
could also get rid of update and put that functionality in blm by letting that function take
a prior parameter. If you do that, though, you want to give it a default so you can use the
original one if it isn’t specified:

490

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

blm <- function(model, prior = NULL, ...) {
some code here...

if (is.null(prior)) {
prior <- make_a prior distribution_somehow()
}
posterior <- update(model, prior, ...)
some code that returns an object here...

Let us stick with having update for now, though. How would we use update with a
fitted model?

fit1 <- blm(y ~ x)
fit2 <- update(y ~ x, new data, fit1)

This doesn’t work because fit1 is a blm object and not a normal distribution. You
need to extract the distribution from the fitted model.

If you have stored the distribution in the object—and you should because otherwise,
you cannot use the object for anything since the fit is the posterior distribution—you
should be able to get at it. What you don’t want to do, however, is access the posterior
directly from the object as fit1$posterior or something like that. It would work, yes,
but accessing the internals of the object makes it harder to change the representation
later. I know I am repeating myself here, but it bears repeating. You don’t want to access
the internals of an object more than you have to because it makes it harder to change the
representation.

Instead, write a function posterior that gives you the posterior:
posterior <- function(fit) fit$posterior

This function has to access the internals—eventually, you will have to get the
information, after all—but if this is the only function that does it, and every other
function uses this function, then you only need to change this one function if you change
the representation of the object.

With that function in hand, you can do this:

fit2 <- update(y ~ x, new data, posterior(fit1))

491

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

You can also write update such that it can take both fitted models and distributions
as its input. Then you just need a way of getting to the prior object (that might be a
distribution or might be a fitted model’s posterior distribution) that works either way.
One approach is to test the class of the prior parameter directly:

update <- function(model, prior, ...) {
if (class(prior) == "blm") {
prior <- posterior(prior)
}
fitting code here

This is a terrible solution, though, for various reasons. First of all, it only works if you
either get a prior distribution or an object with class "blm". What if someone, later on,
writes a class that extends your blm? Their class attribute might be c("myblm","blm")
which is different from "blm", and so this test will fail—and so will the following code
because there you assume that you have a distribution but what you have is an object of
a very different class.

To get around that problem, you can use the function inherits. It tests if a given
class name is in the class attribute, so it would work if someone gives your update
function a class that specializes your blm class:

update <- function(model, prior, ...) {
if (inherits(prior, "blm")) {
prior <- posterior(prior)
}
fitting code here

This is a decent solution—and one you will see in a lot of code if you start reading
object-oriented code—but it still has some drawbacks. It assumes that the only object
that can provide a distribution you can use as a prior is either the way you have
implemented priors by default (and you are not testing that earlier) or an object of class
"blm" (or specializations thereof).

You could, of course, make a test for whether the prior, if it isn’t a fitted object, is of a
class you define for your distributions, which would solve the first problem, but how do
you deal with other kinds of objects that might also be able to give you a prior/posterior
distribution?

492

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

Whenever you write such a class that can provide it, you can also update your update
function, but other people cannot provide a distribution for you this way (unless they
change your code). Explicitly testing for the type of an object in this way is not a good
code design. The solution to fixing it is the same as for accessing object internals: you
access stuff through functions.

If we require that any object we give to update as the prior parameter can give us a
distribution if we ask for it, we can update the code to be just

update <- function(model, prior, ...) {
prior <- posterior(prior)
fitting code here

This requires that we make a polymorphic function for posterior and possibly that
we write a version for distribution objects as well. I will take a shortcut here and make
the default implementation the identity function:

posterior <- function(x) UseMethod("posterior")
posterior.default <- function(x) x
posterior.blm <- function(x) x$posterior

The only annoyance now is that we call it posterior. It is the posterior distribution
when we have a fitted object, but it isn’t really otherwise. Let us change it to distribution:

distribution <- function(x) UseMethod("distribution")
distribution.default <- function(x) x
distribution.blm <- function(x) x$posterior

and update update accordingly:

update <- function(model, prior, ...) {
prior <- distribution(prior)
fitting code here

This way, it even looks nicer in the update function.

493

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

Designing Your b1lm Class

As you play around with implementing your blm class, think about the interface you are
creating, how various functions fit together, and how you think other people will be able
to reuse your model. Keep in mind that “future you” is also “other people,” so you are
helping yourself when you do this.

The update function we developed earlier is an example of what functionality we
could put in the class design and how we made it reusable. You should think about other
functions for accessing your objects and design them.

One example could be extracting the distribution for a given input point. You
implemented a function for predicting the response variable from predictor variables
already, and later you will do it in the predict function again, but if you want to gain
the full benefits of having a distribution for the response at a given input, you want to
have the distribution. How would you provide that to users? How could you use this
functionality in your own functions?

Play around with it as you develop your class. Whenever you change something,
think about whether this could make other functions simpler or if things could be
generalized to make your code more reusable.

Model Methods

There are some polymorphic functions that are generally provided by classes that
represent fitted models. Not all models implement all of them, but the more you
implement, the more existing code can manipulate your new class, another reason for
providing interfaces to objects through functions only.

The following is a list of functions that I think your blm class should implement. The
functions are listed in alphabetical order, but many of them are easier to implement by
using one or more of the others. So read through the list before you start programming.
If you think that one function can be implemented simpler by calling one of the others,
then implement it that way.

In all cases, read the R documentation for the generic function first. You need the
documentation to implement the right interface for each function anyway, so you might
at least read the whole thing. The description in this note is just an overview of what the
functions should do.

494

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

coefficients

This function should return fitted parameters of the model. It is not entirely
straightforward to interpret what that means with our Bayesian models where a fitted
model is a distribution and not a single point parameter. We could let the function
return the fitted distribution, but the way this function is typically used that would make
it useless for existing code. Existing code expects that it can get parameters of a fitted
model using this function, so it is probably better to return the point estimates of the
parameters which would be the mean of the posterior you compute when fitting.

Return the result as a numeric vector with the parameters named. That would fit
what you get from 1m.

confint

The function confint gives you confidence intervals for the fitted parameters. Here,

we have the same issue as with coefficients: we infer an entire distribution and not a
parameter (and in any case, our parameters do not have confidence intervals; they have
a joint distribution). Nevertheless, we can compute the analogue to confidence intervals
from the distribution we have inferred.

If our posterior is distributed as w ~ N (m, S), then component i of the weight vector
is distributed as w; ~ N (m,, S;;). From this, and the desired fraction of density you want,
you can pull out the thresholds that match the quantiles you need.

You take the level parameter of the function and get the threshold quantiles by
exploiting that a normal distribution is symmetric. So you want the quantiles to be
c(level/2, 1-level/2).From that, you can get the thresholds using the function gnorm.

deviance

This function just computes the sum of squared distances from the predicted response
variables to the observed. This should be easy enough to compute if you could get the
squared distances or even if you only had the distances and had to square them yourself.
Perhaps there is a function that gives you that?

495

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

fitted

This function should give you the fitted response variables. This is not the response
variables in the data you fitted the model to, but instead the predictions that the
model makes.

plot

This function plots your model. You are pretty free to decide how you want to plot it, but
I could imagine that it would be useful to see an x-y plot with a line going through it for
the fit. If there is more than one predictor variable, though, I am not sure what would

be a good way to visualize the fitted model. There are no explicit rules for what the plot
function should do, except for plotting something, so you can use your imagination.

predict
This function should make predictions based on the fitted model. Its interface is
predict(object, ...)

but the convention is that you give it new data in a variable newdata. If you do not
provide new data, it instead gives you the predictions on the data used to fit the model.

print

This function is what gets called if you explicitly print an object or if you just write an
expression that evaluates to an object of the class in the R terminal. Typically, it prints a
very short description of the object.

For fitted objects, it customarily prints how the fitting function was called and
perhaps what the fitted coefficients were or how good the fit was. You can check out how
1m objects are printed to see an example.

If you want to print how the fitting function was called, you need to get that from
when you fit the object in the blm constructor. It is how the constructor was called that
is of interest, after all. Inside that function, you can get the way it was called by using the
function sys.call.

496

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

residuals

This function returns the residuals of the fit. That is the difference between predicted
values and observed values for the response variable.

summary

This function is usually used as a longer version of print. It gives you more information
about the fitted model.

It does more than this, however. It returns an object with summary information.
What that actually means is up to the model implementation, so do what you like here.

Building an R Package for blm

We have most of the pieces put together now for our Bayesian linear regression software,
and it is the time we collect it in an R package. That is the next step in our project.

You already have an implementation of Bayesian linear regression with a class, blm,
and various functions for accessing objects of this type. Now it is time to collect these
functions in a package.

Deciding on the Package Interface

When you designed your class functionality and interface, you had to decide on what
functionality should be available for objects of your class and how all your functions
would fit together to make the code easy to extend and use. There is a similar process of
design involved with making a package.

Everything you did for designing the class, of course, is the same for a package, but
for the package, you have to decide on which functions should be exported and which
should be kept internal.

Only exported functions can be used by someone else who loads your package, so
you might be tempted to export everything you can. This, however, is a poor choice. The
interface of your package is the exported functions, and if you export too much, you have
a huge interface that you need to maintain. If you make changes to the interface of a
package, then everyone using your package will have to update their code to adapt to the
changing interface. You want to keep changes to the package interface at a minimum.

497

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

You should figure out which functionality you consider essential parts of the package
functionality and what you consider internal helper functions and only export the
functions that are part of the package interface.

Organization of Source Files

R doesn’t really care how many files you use to have your source code in or how the
source code is organized, but you might. At some point in the future, you will need to be
able to find relevant functions to fix bugs or extend the functionality of your package.

Decide how you want to organize your source code. Do you want one function per
file? Is there instead some logical way of splitting the functionality of your code into
categories where you can have a file per category?

Document Your Package Interface Well

At the very least, the functions you export from your package should be documented.
Without documentation, a user (and that could be you in the future) won’t know how a
function is supposed to be used.

This documentation is mostly useful for online help—the kind of help you get
using ?—so it shouldn’t be too long but should give the reader a good idea of how a
function is supposed to be used.

To give an overall description of the entire package and how various functions fit
together and how they should be used, you can write documentation for the package as
awhole.

Like with package data, there isn’t a place for doing this, really, but you can use the
same trick as for data. Put the documentation in a source code file in the R/ directory.

Here is my documentation for the admixturegraph package:

admixturegraph: Visualising and analysing admixture graphs.

The package provides functionality to analyse and test

admixture graphs against the \eqn{f} statistics described

in the paper

\href{http://tinyurl.com/o5a4kr4}{Ancient Admixture in Human History},
Patternson \emph{et al.}, Genetics, Vol. 192, 1065--1093, 2012.

HOoRH OB O® OB OB OB O®

498

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

#' The \eqn{f} statistics, \eqn{f 2}, \eqn{f 3}, and \eqn{f 4},

#' extract information about correlations between gene frequencies
#" in different populations (or single diploid genome samples),

" which can be informative about patterns of gene flow between
<<more description here>>

1

H R B R

I

@docType package
#' @name admixturegraph
NULL

It is the @docType and @name tags that tell Roxygen that I am writing documentation
for the entire package.

Adding README and NEWS Files to Your Package

It is customary to also have a README and a NEWS file in your package. The README
file describes what your package does and how and can be thought of as a short
advertisement for the package, while the NEWS file describes which changes you have
made to your package over time.

Many developers prefer to use “markdown” as the format for these files—in which
case they are typically named README .md and NEWS .md—and especially if you put
your package on GitHub,? it is a good idea to have the README . md file since it will be
prominently displayed when people go to the package home page on GitHub.

README

What you write in your README file is up to you, but it is customary to have it briefly
describe what the package does and maybe give an example or two on how it is used.
If you write it in markdown—in a file called README . md—it will be the home page if
you put your package on GitHub.
You might want to write it in R Markdown instead to get all the benefits of knitr to
go with the file. In that case, you should just name the file README .Rmd and put this in
the header:

*We return to git and GitHub in a later session.

499

CHAPTER 17 PROJECT 2: BAYESIAN LINEAR REGRESSION

output:
md_document:
variant: markdown_github

This tells knitr that it should make a markdown file as output—it will be called
README . md.

NEWS

This file should simply contain a list of changes you have made to your package over
time. To make it easier for people to see which changes go with which versions of the
package, you can split it into sections with each section corresponding to a version.

Testing

In the package, we should now make sure that all of our functions are tested by at least
one unit test and that our package can make it through a package test.

GitHub

Sign up to GitHub and create a repository for the project. Move the code there.

500

Conclusions

Well, this is the end of the book but hopefully not the end of your data science career.
I have said all I wanted to say in this book. There are many things I have left out—text
processing, for instance. R is not my favorite language for processing text, so I don’t use
it, but it does have functionality for it. It just goes beyond the kind of data we have looked
at here. If you want to process text, like genomes or natural languages, you need different
tools than what I have covered in this book. I have assumed that you are just working
on data frames. It made the book easier to write, which matched my laziness well. But it
doesn’t cover all that data science is about. For more specialized data analysis, you will
need to look elsewhere. There are many good books you can consult. It just wasn’t within
the scope of this book.

It is the end of this book, but I would like to leave you with some pointers for learning
more about data science and R. There are different directions you might want to go
in depending on whether you are more interested in analyzing data or more about
developing methods. R is a good choice for either. In the long run, you probably will
want to do both. The books listed in the following will get you started in the direction you
want to go.

Data Science

e The Art of Data Science by Roger Peng and Elizabeth Matsui

This is a general overview of the steps and philosophies underlying data science. It
describes the various stages a project goes through—exploratory analysis, fitting models,
etc.—and while it doesn’t cover any technical details, it is a good overview.

Machine Learning

o Pattern Recognition and Machine Learning by Christopher Bishop

501
© Thomas Mailund 2022

T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0

https://doi.org/10.1007/978-1-4842-8155-0

CONCLUSIONS

This is a book I have been using to teach a machine learning class for many years
now. It covers a lot of different algorithms for both supervised and unsupervised
learning—also types of analysis not covered in this book. It is rather mathematical and
focused on methods, but if you are interested in the underlying machine learning, it is an
excellent introduction.

Data Analysis

e Linear Models in R by Julian J. Faraway

o Extending the Linear Model with R: Generalized Linear, Mixed Effects
and Nonparametric Regression Models by Julian J. Faraway

Linear models and generalized linear models are the first things I try. Pretty much
always. These are great books for seeing how those models are used in R.

e R Graphics by Paul Murrell
o ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham

The first book describes the basic graphics package and the grid system that
underlies ggplot2. The second book, obviously, is the go-to book for learning more
about ggplot2.

R Programming

e Advanced R by Hadley Wickham
e R Packages by Hadley Wickham

These are great books if you want to learn more about advanced R programming and
package development.

o Seamless R and C++ Integration with Rcpp by Dirk Eddelbuettel

Ifyou are interested in integrating C++ and R, then Rcpp is the way to go, and this is
an excellent introduction to Rcpp.

502

CONCLUSIONS

The End

This is where I leave you. I hope you have found the book useful, and if you want to leave
me any comments and criticism, please do. It will help me improve it for future versions.
If you think things should be added, let me know, and I will add a chapter or two to cover
it. And definitely, let me know if you find any mistakes in the book. I will be particularly
grateful if you spot any errors in the code included in the book.

503

Index

A

Automating testing, 411

B

Bare repositories, 425, 426
Bayesian linear model fitting, 374-376
Bayesian linear regression, 471, 472

blm class
building R package, 497
designing, 494
interface to, 487, 488
building model matrices, 485
constructor, 488, 489
deviance, 495
fitting general models, 485
GitHub, 500
model matrices without response
variables, 485, 486
model methods, 494
coefficients, 495
confint, 495
fitted response variables, 496
plots, 496
predictions, 496
print, 496
residuals, 497
summary, 497
new data, model matrices
for, 487
news, 500
organization of source files, 498

© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0

package interface, deciding on,
497, 498

package interface well, document,

498, 499
predicting new targets, 487
priors and posteriors
formulas and model
matrix, 478-480

multivariate normal distribution,

sample from, 473

new predictor values/predicting

target variables, 476, 477
posterior distribution,
computing, 474-476
README and NEWS file, 499
R, working with model matrices
in, 480-484
testing, 500
updating distributions, 489-493
BugReports, 396
.Buildignore, 393

C

C++, 466-469

Classes, 376-379

Class hierarchies, object-oriented
programming, 382, 383

Cloning repositories, 425, 426

Code, speeding up, 456-461

Confint, 495

Conjugate prior, 173, 489

505

https://doi.org/10.1007/978-1-4842-8155-0

INDEX

Constructor, 488, 489

Control structures, 306
looping construction, 307, 309, 310
selection statements, 306

D

Data analysis, 1, 2, 4, 38, 39, 47, 51, 53, 69,
71,73,75, 110, 502

Data manipulation
arrange() function, 99
BostonHousing data, 87
BreastCancer data set, 82, 106
cars dataset, 74
colClasses function, 78
col.names function, 78
comment.char function, 78
data() function, 73
decimal point, 78
desc() function, 99
dplyr functionality, 92, 94
filter() function, 100
group_by() function, 100
groups argument, 102
header function, 77
head(), 75
library(), 73
mlbench, 74
mutate(), 93, 98
pivot_longer(), 113
read.csv(), 77, 80, 81, 90, 91
readLines() function, 80
readr package, 90
read.table() function, 77, 78, 88
save(), 86
select(), 95
Sepal.Length, 113
str() function, 77

506

summarise() function, 76, 100, 101, 104

tail() function, 75

tidy data, 110

tidyr package, 115

transmute() function, 98

unname() function, 85
Data science, 1, 51, 53, 73,117, 161, 501
Data structures, 294, 374

factor type, 305

formula, 305

indexing, 300

lists, 298

matrix, 296

names values, 304

vectors, 294
Data types, 290

characters, 293

complex numbers, 292

integer type, 291

logical values, 292

numeric type, 291
Deviance, 495
Documenting functions, 401, 402
Dynamic dispatch, 373

E

Expressions, 287
arithmetic expressions, 287
boolean expressions, 289

F

Fitted response variables, 496
Functional programming, 349
anonymous functions, 349
caching results, 363
ellipsis parameters, 368, 369

factorial function, 365

filter function, 357

higher-order functions, 351
function arguments, 351
functions returning functions,

352, 354-357

power function, 352
repeated function, 356

input and output functions, 363

Map function, 358

purrr package, 360, 361, 363

Reduce function, 359

Functions, 311

default values, 313

lazy evaluation, 315

named arguments, 312

return values, 314

scoping rule, 317-321

variable names, 322

G H

GitG, 422

GitHub, 426, 433-436
collaborating on, 437
installing packages from, 437
moving an existing repository to, 436

GitHub Desktop, 422

Git, installation, 421, 422

Global repository, pushing

branches to, 433
Graph-flow algorithm, 442-456

ifelse() function, 83
Immutable objects, 348, 373
Incidence matrix, 443, 444, 447

INDEX

J

Java, 49, 293, 373, 383

K

kable() function, 71

L

Large data sets
as.ffdf() function, 174
Bayesian linear regression model, 173
Bayesian model fitting methods, 173
biglm() function, 172
complexity theory, 161
dplyr functions, 163, 176
fitting functions, 166
geom_density_2d() function, 168
geom_hex() function, 170
glm() function, 172
read.csv.ffdf(). function, 174
running out of memory, 164
scatter plot, 166, 167
slice() function, 172
src_sqlite() function, 175
tbl() function, 175
traditional hypothesis testing, 162
update() function, 173

Literate programming, 52, 53

Machine learning, 179, 180, 182, 183, 194,
229, 501, 502
Markdown language, 59
bibliography, 65
cross referencing, 64
formatting text, 60

507

INDEX

Markdown language (cont.)
pandoc tool, 66
verbatim blocks, 64
Model matrices, without response
variables, 485, 486
Model matrix, 172, 194-197, 200, 478-480,
485-487, 490
Multivariate normal distribution,
sample from, 473

N

Naive Bayes, 235, 277
NAMESPACE, 392, 397-399
NEWS file, 499

NULL, 406, 407, 414

O

Object-oriented programming
Bayesian linear model fitting, 374-376
classes, 376-379
class hierarchies, 382, 383
data structures, 374
immutable objects and polymorphic

functions, 373
implementations, specialization
in, 384-388
polymorphic functions, 379-381
polynomials, 389
shapes, 388, 389
specialization as interface, 383, 384

P,Q

Parallel execution, 461-465
Pattern recognition, 501
Plots, 45, 51, 56, 57, 496

508

Polymorphic functions, 379-381
Polymorphic methods, 373
Polynomials, 389
Portuguese Vinho Verde wines, 275
accuracy() function, 278
ctree function, 279
fitting models, 282
import data, 275
null_model() function, 284
partition() function, 278
predict() function, 283
prediction_accuracy_wines()
function, 284
quality scores, 276
red and white wine, 277
rmse() function, 283
tibble and bind_rows functions, 276
volatile acidity, 280, 281
Posterior distribution,
computing, 474-476
Profiling, 441, 442
code, speeding up, 456-461
graph-flow algorithm, 442-456
parallel execution, 461-465
switching to C++, 466-469
Pull requests, 420, 437-439
Python, 49, 53, 193, 373

R

R/ and man/, 400
README file, 499, 500
Recursive functions, 310, 322, 323
R Markdown document, 66
boilerplate code, 67
caching, 70
chunk options, 68
code chunks, 67, 69

complication, 55
creation, 53, 72
displaying data, 71
HTML document, 55, 72
Notebook format, 56
using rnorm(), 72

Roxygen, 398-401

R Package, 391
adding data, 405, 406
author and maintainer, 395
.Buildignore, 393
building, 407
checking the package, 400
creation, 391, 392
dependencies, 397
description, 393-395
documenting functions, 401, 402
file load order, 404, 405
import and export, 402, 403
imported package, using, 397, 398
internal functions, 404
license, 396
NAMESPACE, 399
NULL, 406, 407
package names, 392
package scope vs. global scope, 404
R/ and man/, 400
Roxygen, 401
structure of, 392
suggested package, using, 398
title, 394
Type, Date, LazyData, 396
URL and BugReports, 396
version, 394, 395

R programming language, 1, 502
calculator, 3

arithmetic expressions, 4
assignments, 6, 7

INDEX

indexing vectors, 9-11
vectorized expressions, 11

comments, 13

data frames, 32, 33, 35

data magical argument, 42

data manipulation, 1

data pipelines, 38
anonymous functions, 45
coding and naming

conventions, 49

Im() function, 43
magrittr operator, 39, 46
Pipeline Operations, 47
writing functions, 41, 44

factors, 26-31

functions, 13
control flow statement,

20-23, 25, 26

documentation, 14
square function, 16
summarizes function, 18
vectorized function, 20
write yourself, 16

missing values, 37

packages, 36

R Script file, 3

RStudio window, 2

RStudio, 36, 53, 55, 57-59, 64, 420, 430

Second-degree polynomial, 204

accuracy, 213, 214
classification models, 209
confusing matrix, 210, 217
predict() function, 206
regression models, 206
sample() function, 208

509

INDEX

Second-degree polynomial (cont.)
specificity sensitivity, 215
summary() function, 205
two classes, 218

Sorting function, 324

Sourcetree, 422

Splitting data, 218
cross-validation, 223, 224
random permutation, 219, 220, 222
training and test data, 227

Structured Query Language (SQL), 175

Supervised learning, 180
classification, 181
decision trees, 230
formulas, 195, 202
geom_smooth() function, 185
glm() function, 192
inference vs. prediction, 182
interactions, 199, 200
linear model function, 204
linear regression, 183
logistic regression, 189
model fitting function, 196
model matrices, 194, 197, 202
neural networks, 233
predict_dist() function, 187
random forests, 232
regression, 181
support vector machines, 235

T

Testing and package checking
automating testing, 411
consistency, 417
testing random, 416, 417
testthat, 412-414
unit testing, 409, 410

510

using random numbers, 415
writing good tests, 414, 415
testthat, 412-414

U

Unit testing, 409, 410
Unsupervised learning
association rules algorithm, 267
apriori() function, 270
arules package, 269
head() function, 270
sort() function, 272
subset() function, 272
clustering methods, 255
bad clustering, 261
confusion matrix, 262
hierarchical clustering, 263,
265, 266
iris species, 257
kmeans() function, 259
k-means clustering, 255
generic plot() function, 263
prcomp() function, 262
predict() function, 258
dimensionality reduction, 239
multidimensional scaling, 250
PCA, 240
URL, 396

VvV, W, X

Vectorized expressions
advanced functions, 343
arithmetic/logic expressions, 330
ifelse statements, 332
infix operator, 343
Jlapply function, 340

modify objects, 347

operations, 330

replacement functions, 344, 346
.sapply function, 342

.-vapply function, 342

Vectorize function, 334, 335

Version control, 419

bare repositories and cloning
repositories, 425, 426

collaborating on GitHub, 437

existing project, adding git to, 424, 425

existing repository, moving, 436

files, staging files/committing
changes/making changes to,
422,423

forking repositories, instead of
cloning, 438-440

GitHub, 433-436

GitHub, installing packages from, 437

git installation, 421, 422

global repository, pushing
branches to, 433

handling conflicts, 428, 429

pull requests, 438

pushing local changes/fetching/
pulling remote changes, 426-428

and repositories, 419, 420

RStudio, 420

typical workflows, 432, 433

working with branches, 429-432

Visualizing data, 121

cowplot, 158
facet_grid() function, 153

INDEX

facets, 141, 143, 145
ggplot2 package, 128, 156
aes() function, 134
creation, 133
explicit geometries, 133
geom_histogram() function, 135
geom_point() functions, 134, 135
geom_smooth() method, 137
iris data, 132
pivot_longer function, 140
print() function, 130
gplot() function, 129
graphics package, 121
abline() function, 126
Iris data plotted, 128
Im() function, 124
plot() function, 122, 123
publication-quality plots, 127
grid.arrange() function, 158
plot_grid() function, 158, 159
scaling, 145
iris measurements, 149
scale_fill_brewer() function, 151
scale_fill_manual() function, 149
scale_x/y_continuous()
functions, 146
xlab() and ylab() functions, 146
theme_bw() function, 151
theme modifications, 155

Y,Z

YAML language, 57

511

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	What Is Data Science?
	Prerequisites for Reading This Book
	Plan for the Book
	Data Analysis and Visualization
	Software Development
	Getting R and RStudio
	Projects

	Chapter 1: Introduction to R Programming
	Basic Interaction with R
	Using R As a Calculator
	Simple Expressions
	Assignments
	Indexing Vectors
	Vectorized Expressions

	Comments
	Functions
	Getting Documentation for Functions
	Writing Your Own Functions
	Summarizing and Vector Functions
	A Quick Look at Control Flow

	Factors
	Data Frames
	Using R Packages
	Dealing with Missing Values
	Data Pipelines
	Writing Pipelines of Function Calls
	Writing Functions That Work with Pipelines
	The Magical “.” Argument
	Other Pipeline Operations
	Coding and Naming Conventions

	Exercises
	Mean of Positive Values
	Root Mean Square Error

	Chapter 2: Reproducible Analysis
	Literate Programming and Integration of Workflow and Documentation
	Creating an R Markdown/knitr Document in RStudio
	The YAML Language
	The Markdown Language
	Formatting Text
	Cross-Referencing
	Bibliographies
	Controlling the Output (Templates/Stylesheets)

	Running R Code in Markdown Documents
	Using chunks when analyzing data (without compiling documents)
	Caching Results
	Displaying Data

	Exercises
	Create an R Markdown Document
	Different Output
	Caching

	Chapter 3: Data Manipulation
	Data Already in R
	Quickly Reviewing Data
	Reading Data
	Examples of Reading and Formatting Data Sets
	Breast Cancer Data set
	Boston Housing Data Set
	The readr Package

	Manipulating Data with dplyr
	Some Useful dplyr Functions
	Breast Cancer Data Manipulation
	Tidying Data with tidyr

	Exercises
	Importing Data
	Using dplyr
	Using tidyr

	Chapter 4: Visualizing Data
	Basic Graphics
	The Grammar of Graphics and the ggplot2 Package
	Using qplot()
	Using Geometries

	Facets
	Scaling
	Themes and Other Graphics Transformations

	Figures with Multiple Plots
	Exercises

	Chapter 5: Working with Large Data Sets
	Subsample Your Data Before You Analyze the Full Data Set
	Running Out of Memory During an Analysis
	Too Large to Plot
	Too Slow to Analyze
	Too Large to Load
	Exercises
	Subsampling
	Hex and 2D Density Plots

	Chapter 6: Supervised Learning
	Machine Learning
	Supervised Learning
	Regression vs. Classification
	Inference vs. Prediction

	Specifying Models
	Linear Regression
	Logistic Regression (Classification, Really)
	Model Matrices and Formula

	Validating Models
	Evaluating Regression Models
	Evaluating Classification Models
	Confusion Matrix
	Accuracy
	Sensitivity and Specificity
	Other Measures
	More Than Two Classes

	Sampling Approaches
	Random Permutations of Your Data
	Cross-Validation
	Selecting Random Training and Testing Data

	Examples of Supervised Learning Packages
	Decision Trees
	Random Forests
	Neural Networks
	Support Vector Machines

	Naive Bayes
	Exercises
	Fitting Polynomials
	Evaluating Different Classification Measures
	Breast Cancer Classification
	Leave-One-Out Cross-Validation (Slightly More Difficult)
	Decision Trees
	Random Forests
	Neural Networks
	Support Vector Machines
	Compare Classification Algorithms

	Chapter 7: Unsupervised Learning
	Dimensionality Reduction
	Principal Component Analysis
	Multidimensional Scaling

	Clustering
	k-means Clustering
	Hierarchical Clustering

	Association Rules
	Exercises
	Dealing with Missing Data in the HouseVotes84 Data
	k-means

	Chapter 8: Project 1: Hitting the Bottle
	Importing Data
	Exploring the Data
	Distribution of Quality Scores
	Is This Wine Red or White?

	Fitting Models
	Exercises
	Exploring Other Formulas
	Exploring Different Models
	Analyzing Your Own Data Set

	Chapter 9: Deeper into R Programming
	Expressions
	Arithmetic Expressions
	Boolean Expressions

	Basic Data Types
	Numeric
	Integer
	Complex
	Logical
	Character

	Data Structures
	Vectors
	Matrix
	Lists
	Indexing
	Named Values
	Factors
	Formulas

	Control Structures
	Selection Statements
	Loops

	Functions
	Named Arguments
	Default Parameters
	Return Values
	Lazy Evaluation
	Scoping
	Function Names Are Different from Variable Names

	Recursive Functions
	Exercises
	Fibonacci Numbers
	Outer Product
	Linear Time Merge
	Binary Search
	More Sorting
	Selecting the k Smallest Element

	Chapter 10: Working with Vectors and Lists
	Working with Vectors and Vectorizing Functions
	ifelse
	Vectorizing Functions
	The apply Family
	apply
	Nothing Good, It Would Seem
	lapply
	sapply and vapply

	Advanced Functions
	Special Names
	Infix Operators
	Replacement Functions

	How Mutable Is Data Anyway?
	Exercises
	between
	rmq

	Chapter 11: Functional Programming
	Anonymous Functions
	Higher-Order Functions
	Functions Taking Functions As Arguments
	Functions Returning Functions (and Closures)

	Filter, Map, and Reduce
	Functional Programming with purrr
	Functions As Both Input and Output
	Ellipsis Parameters…

	Exercises
	apply_if
	power
	Row and Column Sums
	Factorial Again…
	Function Composition
	Implement This Operator

	Chapter 12: Object-Oriented Programming
	Immutable Objects and Polymorphic Functions
	Data Structures
	Example: Bayesian Linear Model Fitting

	Classes
	Polymorphic Functions
	Defining Your Own Polymorphic Functions

	Class Hierarchies
	Specialization As Interface
	Specialization in Implementations

	Exercises
	Shapes
	Polynomials

	Chapter 13: Building an R Package
	Creating an R Package
	Package Names
	The Structure of an R Package
	.Rbuildignore

	Description
	Title
	Version
	Description
	Author and Maintainer
	License
	Type, Date, LazyData
	URL and BugReports
	Dependencies
	Using an Imported Package
	Using a Suggested Package

	NAMESPACE
	R/ and man/

	Checking the Package
	Roxygen
	Documenting Functions
	Import and Export
	Package Scope vs. Global Scope
	Internal Functions
	File Load Order

	Adding Data to Your Package
	NULL

	Building an R Package
	Exercises

	Chapter 14: Testing and Package Checking
	Unit Testing
	Automating Testing

	Using testthat
	Writing Good Tests
	Using Random Numbers in Tests
	Testing Random Results

	Checking a Package for Consistency
	Exercise

	Chapter 15: Version Control
	Version Control and Repositories
	Using Git in RStudio
	Installing Git
	Making Changes to Files, Staging Files, and Committing Changes
	Adding Git to an Existing Project
	Bare Repositories and Cloning Repositories
	Pushing Local Changes and Fetching and Pulling Remote Changes
	Handling Conflicts
	Working with Branches
	Typical Workflows Involve Lots of Branches
	Pushing Branches to the Global Repository

	GitHub
	Moving an Existing Repository to GitHub
	Installing Packages from GitHub

	Collaborating on GitHub
	Pull Requests
	Forking Repositories Instead of Cloning

	Exercises

	Chapter 16: Profiling and Optimizing
	Profiling
	A Graph-Flow Algorithm

	Speeding Up Your Code
	Parallel Execution
	Switching to C++
	Exercises

	Chapter 17: Project 2: Bayesian Linear Regression
	Bayesian Linear Regression
	Exercises: Priors and Posteriors
	Sample from a Multivariate Normal Distribution
	Computing the Posterior Distribution

	Predicting Target Variables for New Predictor Values

	Formulas and Their Model Matrix
	Working with Model Matrices in R
	Exercises
	Building Model Matrices
	Fitting General Models

	Model Matrices Without Response Variables
	Exercises
	Model Matrices for New Data
	Predicting New Targets

	Interface to a blm Class
	Constructor
	Updating Distributions: An Example Interface
	Designing Your blm Class
	Model Methods
	coefficients
	confint
	deviance
	fitted
	plot
	predict
	print
	residuals
	summary

	Building an R Package for blm
	Deciding on the Package Interface
	Organization of Source Files
	Document Your Package Interface Well
	Adding README and NEWS Files to Your Package
	README
	NEWS

	Testing
	GitHub

	Conclusions
	Data Science
	Machine Learning
	Data Analysis
	R Programming
	The End

	Index

