
Beginning Data Science
in R 4

Data Analysis, Visualization,
and Modelling for the Data Scientist

Second Edition

Thomas Mailund

Beginning Data Science in R 4: Data Analysis, Visualization, and Modelling for the
Data Scientist

ISBN-13 (pbk): 978-1-4842-8154-3		 ISBN-13 (electronic): 978-1-4842-8155-0
https://doi.org/10.1007/978-1-4842-8155-0

Copyright © 2022 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: James Markham
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Pixabay (www.pixabay.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.
apress.com/source-code.

Printed on acid-free paper

Thomas Mailund
Aarhus, Denmark

https://doi.org/10.1007/978-1-4842-8155-0

iii

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Chapter 1: ��Introduction to R Programming��� 1

Basic Interaction with R��� 1

Using R As a Calculator�� 3

Simple Expressions�� 4

Assignments��� 6

Indexing Vectors��� 9

Vectorized Expressions��� 11

Comments�� 13

Functions��� 13

Getting Documentation for Functions��� 14

Writing Your Own Functions��� 16

Summarizing and Vector Functions�� 17

A Quick Look at Control Flow��� 20

Factors��� 26

Data Frames��� 32

Using R Packages�� 36

Dealing with Missing Values�� 37

Data Pipelines�� 38

Writing Pipelines of Function Calls��� 39

Writing Functions That Work with Pipelines��� 41

The Magical “.” Argument��� 42

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_1
https://doi.org/10.1007/978-1-4842-8155-0_1
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec19
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec20

iv

Other Pipeline Operations��� 47

Coding and Naming Conventions�� 49

Exercises�� 50

Mean of Positive Values�� 50

Root Mean Square Error��� 50

Chapter 2: ��Reproducible Analysis��� 51

Literate Programming and Integration of Workflow and Documentation������������������������������������� 52

Creating an R Markdown/knitr Document in RStudio�� 53

The YAML Language��� 57

The Markdown Language�� 59

Formatting Text��� 60

Cross-Referencing�� 64

Bibliographies��� 65

Controlling the Output (Templates/Stylesheets)��� 66

Running R Code in Markdown Documents��� 66

Using chunks when analyzing data (without compiling documents)������������������������������������� 69

Caching Results�� 70

Displaying Data�� 71

Exercises�� 72

Create an R Markdown Document�� 72

Different Output�� 72

Caching��� 72

Chapter 3: ��Data Manipulation�� 73

Data Already in R�� 73

Quickly Reviewing Data��� 75

Reading Data�� 77

Examples of Reading and Formatting Data Sets�� 79

Breast Cancer Data set��� 79

Boston Housing Data Set�� 87

The readr Package��� 90

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_1#Sec21
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec22
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec23
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec24
https://doi.org/10.1007/978-1-4842-8155-0_1#Sec25
https://doi.org/10.1007/978-1-4842-8155-0_2
https://doi.org/10.1007/978-1-4842-8155-0_2
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec121
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_2#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_3
https://doi.org/10.1007/978-1-4842-8155-0_3
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec7

v

Manipulating Data with dplyr��� 92

Some Useful dplyr Functions�� 94

Breast Cancer Data Manipulation��� 106

Tidying Data with tidyr�� 110

Exercises�� 118

Importing Data�� 118

Using dplyr��� 119

Using tidyr�� 119

Chapter 4: ��Visualizing Data��� 121

Basic Graphics��� 121

The Grammar of Graphics and the ggplot2 Package��� 128

Using qplot()��� 129

Using Geometries��� 133

Facets�� 141

Scaling��� 145

Themes and Other Graphics Transformations�� 151

Figures with Multiple Plots�� 156

Exercises�� 160

Chapter 5: ��Working with Large Data Sets�� 161

Subsample Your Data Before You Analyze the Full Data Set�� 162

Running Out of Memory During an Analysis�� 164

Too Large to Plot�� 166

Too Slow to Analyze��� 171

Too Large to Load��� 173

Exercises�� 177

Subsampling��� 177

Hex and 2D Density Plots��� 177

Chapter 6: ��Supervised Learning�� 179

Machine Learning�� 179

Supervised Learning�� 180

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_3#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_3#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_4
https://doi.org/10.1007/978-1-4842-8155-0_4
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_4#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_5
https://doi.org/10.1007/978-1-4842-8155-0_5
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_5#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_6
https://doi.org/10.1007/978-1-4842-8155-0_6
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec2

vi

Regression vs. Classification�� 181

Inference vs. Prediction�� 182

Specifying Models�� 183

Linear Regression��� 183

Logistic Regression (Classification, Really)�� 189

Model Matrices and Formula�� 194

Validating Models��� 204

Evaluating Regression Models��� 206

Evaluating Classification Models�� 209

Confusion Matrix�� 210

Accuracy��� 213

Sensitivity and Specificity�� 215

Other Measures�� 216

More Than Two Classes�� 218

Sampling Approaches�� 218

Random Permutations of Your Data�� 219

Cross-Validation��� 223

Selecting Random Training and Testing Data��� 227

Examples of Supervised Learning Packages��� 229

Decision Trees�� 230

Random Forests��� 232

Neural Networks��� 233

Support Vector Machines��� 235

Naive Bayes��� 235

Exercises�� 236

Fitting Polynomials��� 236

Evaluating Different Classification Measures��� 236

Breast Cancer Classification��� 237

Leave-One-Out Cross-Validation (Slightly More Difficult)��� 237

Decision Trees�� 237

Random Forests��� 237

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_6#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec19
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec20
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec21
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec22
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec23
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec24
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec25
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec26
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec27
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec28
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec29
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec30
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec31
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec32
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec33

vii

Neural Networks��� 238

Support Vector Machines��� 238

Compare Classification Algorithms��� 238

Chapter 7: ��Unsupervised Learning�� 239

Dimensionality Reduction�� 239

Principal Component Analysis�� 240

Multidimensional Scaling��� 250

Clustering��� 255

k-means Clustering�� 255

Hierarchical Clustering��� 263

Association Rules��� 267

Exercises�� 273

Dealing with Missing Data in the HouseVotes84 Data�� 273

k-means��� 274

Chapter 8: ��Project 1: Hitting the Bottle�� 275

Importing Data��� 275

Exploring the Data�� 276

Distribution of Quality Scores��� 276

Is This Wine Red or White?��� 277

Fitting Models�� 282

Exercises�� 285

Exploring Other Formulas��� 285

Exploring Different Models��� 285

Analyzing Your Own Data Set��� 285

Chapter 9: ��Deeper into R Programming��� 287

Expressions�� 287

Arithmetic Expressions��� 287

Boolean Expressions�� 289

Basic Data Types�� 290

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_6#Sec34
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec35
https://doi.org/10.1007/978-1-4842-8155-0_6#Sec36
https://doi.org/10.1007/978-1-4842-8155-0_7
https://doi.org/10.1007/978-1-4842-8155-0_7
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_7#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_8
https://doi.org/10.1007/978-1-4842-8155-0_8
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_8#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_9
https://doi.org/10.1007/978-1-4842-8155-0_9
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec4

viii

Numeric�� 291

Integer�� 291

Complex�� 292

Logical�� 292

Character�� 293

Data Structures�� 294

Vectors�� 294

Matrix��� 296

Lists�� 298

Indexing�� 300

Named Values��� 304

Factors�� 305

Formulas�� 305

Control Structures�� 306

Selection Statements��� 306

Loops�� 307

Functions��� 311

Named Arguments�� 312

Default Parameters��� 313

Return Values��� 314

Lazy Evaluation��� 315

Scoping��� 317

Function Names Are Different from Variable Names�� 322

Recursive Functions��� 322

Exercises�� 325

Fibonacci Numbers��� 325

Outer Product��� 325

Linear Time Merge�� 325

Binary Search��� 326

More Sorting��� 326

Selecting the k Smallest Element��� 327

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_9#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec19
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec20
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec21
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec22
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec23
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec24
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec25
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec26
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec27
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec28
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec29
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec30
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec31
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec32
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec33
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec34
https://doi.org/10.1007/978-1-4842-8155-0_9#Sec35

ix

Chapter 10: ��Working with Vectors and Lists��� 329

Working with Vectors and Vectorizing Functions��� 329

ifelse��� 332

Vectorizing Functions��� 332

The apply Family�� 335

apply��� 336

Nothing Good, It Would Seem��� 339

lapply�� 340

sapply and vapply��� 342

Advanced Functions��� 342

Special Names�� 342

Infix Operators�� 343

Replacement Functions�� 344

How Mutable Is Data Anyway?��� 347

Exercises�� 348

between�� 348

rmq��� 348

Chapter 11: ��Functional Programming��� 349

Anonymous Functions�� 349

Higher-Order Functions�� 351

Functions Taking Functions As Arguments��� 351

Functions Returning Functions (and Closures)��� 352

Filter, Map, and Reduce�� 357

Functional Programming with purrr��� 360

Functions As Both Input and Output��� 363

Ellipsis Parameters…��� 368

Exercises�� 370

apply_if��� 370

power��� 370

Row and Column Sums�� 370

Factorial Again…��� 370

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_10
https://doi.org/10.1007/978-1-4842-8155-0_10
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_10#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_11
https://doi.org/10.1007/978-1-4842-8155-0_11
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec13

x

Function Composition��� 371

Implement This Operator�� 371

Chapter 12: ��Object-Oriented Programming��� 373

Immutable Objects and Polymorphic Functions��� 373

Data Structures�� 374

Example: Bayesian Linear Model Fitting��� 374

Classes��� 376

Polymorphic Functions��� 379

Defining Your Own Polymorphic Functions��� 380

Class Hierarchies��� 382

Specialization As Interface��� 383

Specialization in Implementations��� 384

Exercises�� 388

Shapes�� 388

Polynomials�� 389

Chapter 13: ��Building an R Package��� 391

Creating an R Package��� 391

Package Names�� 392

The Structure of an R Package��� 392

.�Rbuildignore�� 393

Description��� 393

Title��� 394

Version�� 394

Description��� 395

Author and Maintainer�� 395

License��� 396

Type, Date, LazyData��� 396

URL and BugReports��� 396

Dependencies��� 396

Using an Imported Package�� 397

Using a Suggested Package��� 398

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_11#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_11#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_12
https://doi.org/10.1007/978-1-4842-8155-0_12
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_12#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_13
https://doi.org/10.1007/978-1-4842-8155-0_13
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec15

xi

NAMESPACE��� 399

R/ and man/�� 400

Checking the Package��� 400

Roxygen��� 401

Documenting Functions�� 401

Import and Export��� 402

Package Scope vs. Global Scope�� 404

Internal Functions��� 404

File Load Order��� 404

Adding Data to Your Package��� 405

NULL��� 406

Building an R Package��� 407

Exercises�� 407

Chapter 14: ��Testing and Package Checking�� 409

Unit Testing�� 409

Automating Testing��� 411

Using testthat��� 412

Writing Good Tests�� 414

Using Random Numbers in Tests�� 415

Testing Random Results��� 416

Checking a Package for Consistency��� 417

Exercise��� 417

Chapter 15: ��Version Control��� 419

Version Control and Repositories��� 419

Using Git in RStudio��� 420

Installing Git�� 421

Making Changes to Files, Staging Files, and Committing Changes�������������������������������������� 422

Adding Git to an Existing Project�� 424

Bare Repositories and Cloning Repositories�� 425

Pushing Local Changes and Fetching and Pulling Remote Changes������������������������������������ 426

Handling Conflicts�� 428

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_13#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec19
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec20
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec21
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec22
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec23
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec24
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec25
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec26
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec27
https://doi.org/10.1007/978-1-4842-8155-0_13#Sec28
https://doi.org/10.1007/978-1-4842-8155-0_14
https://doi.org/10.1007/978-1-4842-8155-0_14
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_14#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_15
https://doi.org/10.1007/978-1-4842-8155-0_15
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec8

xii

Working with Branches�� 429

Typical Workflows Involve Lots of Branches��� 432

Pushing Branches to the Global Repository��� 433

GitHub�� 434

Moving an Existing Repository to GitHub��� 436

Installing Packages from GitHub�� 437

Collaborating on GitHub��� 437

Pull Requests�� 438

Forking Repositories Instead of Cloning��� 438

Exercises�� 440

Chapter 16: ��Profiling and Optimizing�� 441

Profiling�� 441

A Graph-Flow Algorithm��� 442

Speeding Up Your Code�� 456

Parallel Execution�� 461

Switching to C++��� 466

Exercises�� 469

Chapter 17: ��Project 2: Bayesian Linear Regression��� 471

Bayesian Linear Regression��� 471

Exercises: Priors and Posteriors��� 473

Predicting Target Variables for New Predictor Values��� 476

Formulas and Their Model Matrix�� 478

Working with Model Matrices in R��� 480

Exercises�� 485

Model Matrices Without Response Variables�� 485

Exercises�� 487

Interface to a blm Class��� 487

Constructor��� 488

Updating Distributions: An Example Interface�� 489

Designing Your blm Class��� 494

Model Methods��� 494

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_15#Sec9
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec10
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec13
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec14
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_15#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_16
https://doi.org/10.1007/978-1-4842-8155-0_16
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec3
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec4
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_16#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_17
https://doi.org/10.1007/978-1-4842-8155-0_17
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec1
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec2
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec5
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec6
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec7
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec8
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec11
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec12
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec15
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec16
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec17
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec18
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec19

xiii

Building an R Package for blm�� 497

Deciding on the Package Interface��� 497

Organization of Source Files��� 498

Document Your Package Interface Well�� 498

Adding README and NEWS Files to Your Package��� 499

Testing��� 500

GitHub�� 500

��Conclusions��� 501

��Data Science�� 501

��Machine Learning�� 501

��Data Analysis��� 502

��R Programming�� 502

��The End�� 503

�Index�� 505

Table of Contents

https://doi.org/10.1007/978-1-4842-8155-0_17#Sec29
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec30
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec31
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec32
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec33
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec36
https://doi.org/10.1007/978-1-4842-8155-0_17#Sec37

xv

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus University,

Denmark. His background is in math and computer science, but for the last decade, his

main focus has been on genetics and evolutionary studies, particularly comparative

genomics, speciation, and gene flow between emerging species.

xvii

About the Technical Reviewer

Jon Westfall is an associate professor of psychology at Delta

State University. He has authored Set Up and Manage Your

Virtual Private Server, Practical R 4, Beginning Android

Web Apps Development, Windows Phone 7 Made Simple,

and several works of fiction including One in the Same,

Mandate, and Franklin: The Ghost Who Successfully Evicted

Hipsters from His Home and Other Short Stories. He lives in

Cleveland, Mississippi, with his wife.  

xix

Acknowledgments

I would like to thank Asger Hobolth for many valuable comments on earlier versions of

this manuscript that helped me improve the writing and the presentation of the material.

xxi

Introduction

Welcome to Beginning Data Science in R 4. I wrote this book from a set of lecture notes

for two classes I taught a few years back, “Data Science: Visualization and Analysis”

and “Data Science: Software Development and Testing.” The book is written to fit the

structure of these classes, where each class consists of seven weeks of lectures followed

by project work. This means that the book’s first half consists of eight chapters with core

material, where the first seven focus on data analysis and the eighth is an example of

a data analysis project. The data analysis chapters are followed by seven chapters on

developing reusable software for data science and then a second project that ties the

software development chapters together. At the end of the book, you should have a good

sense of what data science can be, both as a field covering analysis and developing new

methods and reusable software products.

�What Is Data Science?
That is a difficult question. I don’t know if it is easy to find someone who is entirely sure

what data science is, but I am pretty sure that it would be difficult to find two people

without having three opinions about it. It is undoubtedly a popular buzzword, and

everyone wants to hire data scientists these days, so data science skills are helpful to

have on the CV. But what is it?

Since I can’t give you an agreed-upon definition, I will just give you my own: data

science is the science of learning from data.

This definition is very broad—almost too broad to be useful. I realize this. But then, I

think data science is an incredibly general field. I don’t have a problem with that. Of course,

you could argue that any science is all about getting information out of data, and you might

be right. However, I would say that there is more to science than just transforming raw

data into useful information. The sciences focus on answering specific questions about

the world, while data science focuses on how to manipulate data efficiently and effectively.

The primary focus is not which questions to ask of the data but how we can answer them,

whatever they may be. It is more like computer science and mathematics than it is like

xxii

natural sciences, in this way. It isn’t so much about studying the natural world as it is about

computing efficiently on data and learning patterns from the data.

Included in data science is also the design of experiments. With the right data, we

can address the questions in which we are interested. This can be difficult with a poor

design of experiments or a poor choice of which data we gather. Study design might be

the most critical aspect of data science but is not the topic of this book. In this book, I

focus on the analysis of data, once gathered.

Computer science is mainly the study of computations, hinted at in the name, but is

a bit broader. It is also about representing and manipulating data. The name “computer

science” focuses on computation, while “data science” emphasizes data. But of course,

the fields overlap. If you are writing a sorting algorithm, are you then focusing on the

computation or the data? Is that even a meaningful question to ask?

There is considerable overlap between computer science and data science, and,

naturally, the skill sets you need overlap as well. To efficiently manipulate data, you

need the tools for doing that, so computer programming skills are a must, and some

knowledge about algorithms and data structures usually is as well. For data science,

though, the focus is always on the data. A data analysis project focuses on how the data

flows from its raw form through various manipulations until it is summarized in some

helpful way. Although the difference can be subtle, the focus is not on what operations

a program does during the analysis but how the data flows and is transformed. It is also

focused on why we do certain data transformations, what purpose those changes serve,

and how they help us gain knowledge about the data. It is as much about deciding what

to do with the data as it is about how to do it efficiently.

Statistics is, of course, also closely related to data science. So closely linked that many

consider data science as nothing more than a fancy word for statistics that looks slightly

more modern and sexy. I can’t say that I strongly disagree with this—data science does

sound hotter than statistics—but just as data science is slightly different from computer

science, data science is also somewhat different from statistics. Only, perhaps, somewhat

less so than computer science is.

A large part of doing statistics is building mathematical models for your data and

fitting the models to the data to learn about the data in this way. That is also what we

do in data science. As long as the focus is on the data, I am happy to call statistics data

science. But suppose the focus changes to the models and the mathematics. In that case,

we are drifting away from data science into something else—just as if the focus shifts

from the data to computations, we are straying from data science to computer science.

Introduction

xxiii

Data science is also related to machine learning and artificial intelligence—and

again, there are huge overlaps. Perhaps not surprising since something like machine

learning has its home both in computer science and statistics; if it focuses on data

analysis, it is also at home in data science. To be honest, it has never been clear to

me when a mathematical model changes from being a plain old statistical model to

becoming machine learning anyway.

For this book, we are just going to go with my definition, and, as long as we are

focusing on analyzing data, we will call it data science.

�Prerequisites for Reading This Book
For the first eight chapters in this book, the focus is on data analysis and not

programming. For those eight chapters, I do not assume a detailed familiarity with

software design, algorithms, data structures, etc. I do not expect you to have any

experience with the R programming language either. However, I assume that you have

had some experience with programming, mathematical modelling, and statistics.

Programming R can be quite tricky at times if you are familiar with scripting

languages or object-oriented languages. R is a functional language that does not allow

you to modify data. While it does have systems for object-oriented programming, it

handles this programming paradigm very differently from languages you are likely to

have seen, such as Java or Python.

For the data analysis part of this book, the first eight chapters, we will only use R for

very straightforward programming tasks, so none of this should pose a problem. We

will have to write simple scripts for manipulating and summarizing data, so you should

be familiar with how to write basic expressions like function calls, if statements, loops,

and such—these things you will have to be comfortable with. I will introduce every such

construction in the book when we need them to let you see how they are written in R, but

I will not spend much time explaining them. Mostly, I will expect you to be able to pick it

up from examples.

Similarly, I do not expect you to already know how to fit data and compare models

in R. I do assume that you have had enough introduction to statistics to be comfortable

with basic terms like parameter estimation, model fitting, explanatory and response

variables, and model comparison. If not, I expect you to at least be able to pick up what

we are talking about when you need to.

Introduction

xxiv

I won’t expect you to know a lot about statistics and programming, but this isn’t

“Data Science for Dummies,” so I expect you to figure out examples without me

explaining everything in detail.

After the first seven chapters is a short description of a data analysis project that one

of my students did for my class the first time I held it. It shows how such a project could

look, but I suggest that you do not wait until you have finished the first seven chapters to

start doing such analysis yourself. To get the most benefit out of reading this book, you

should continuously apply what you learn. Already when you begin reading, I suggest

that you find a data set that you would be interested in finding out more about and then

apply what you learn in each chapter to that data.

For the following eight chapters of the book, the focus is on programming. To read

this part, you should be familiar with object-oriented programming—I will explain

how we handle it in R and how it differs from languages such as Python, Java, or C++.

Still, I will expect you to be familiar with terms such as class hierarchies, inheritance,

and polymorphic methods. I will not expect you to be already familiar with functional

programming (but if you are, there should still be plenty to learn in those chapters if you

are not already familiar with R programming). The final chapter is yet another project

description.

�Plan for the Book
In the book, we will cover basic data manipulation:

•	 Filtering and selecting relevant data

•	 Transforming data into shapes readily analyzable

•	 Summarizing data

•	 Visualization data in informative ways both for exploring data and

presenting results

•	 Model building

These are the critical aspects of doing analysis in data science. After this, we will

cover how to develop R code that is reusable and works well with existing packages and

that is easy to extend, and we will see how to build new R packages that other people

will be able to use in their projects. These are the essential skills you will need to develop

your own methods and share them with the world.

Introduction

xxv

R is one of the most popular (and open source) data analysis programming

languages around at the moment. Of course, popularity doesn’t imply quality. Still,

because R is so popular, it has a rich ecosystem of extensions (called “packages” in R) for

just about any kind of analysis you could be interested in. People who develop statistical

methods often implement them as R packages, so you can usually get the state-of-the-art

techniques very easily in R. The popularity also means that there is a large community

of people who can help if you have problems. Most problems you run into can be solved

with a few minutes on Google or Stack Overflow because you are unlikely to be the first

to run into any particular issue. There are also plenty of online tutorials for learning

more about R and specialized packages. And there are plenty of books you can buy if you

want to learn more.

�Data Analysis and Visualization
The topics focusing on data analysis and visualization I cover in the first eight chapters:

	 1.	 Introduction to R Programming: In this chapter, we learn how to

work with data and write data pipelines.

	 2.	 Reproducible Analysis: In this chapter, we find out how to

integrate documentation and analysis in a single document and

how to use such documents to produce reproducible research.

	 3.	 Data Manipulation: In this chapter, we learn how to import data,

tidy up data, transform, and compute summaries from data.

	 4.	 Visualizing Data: In this chapter, we learn how to make plots for

exploring data features and presenting data features and analysis

results.

	 5.	 Working with Large Data Sets: In this chapter, we see how to deal

with data where the number of observations makes our usual

approaches too slow.

	 6.	 Supervised Learning: In this chapter, we learn how to train models

when we have data sets with known classes or regression values.

	 7.	 Unsupervised Learning: In this chapter, we learn how to search for

patterns we are not aware of in data.

Introduction

xxvi

	 8.	 Project 1: Hitting the Bottle: Following these chapters is the first

project, an analysis of physicochemical features of wine, where we

see the various techniques in use.

�Software Development
The next nine chapters cover software and package development:

	 1.	 Deeper into R Programming: In this chapter, we explore more

advanced features of the R programming language.

	 2.	 Working with Vectors and Lists: In this chapter, we explore two

essential data structures, namely, vectors and lists.

	 3.	 Functional Programming: In this chapter, we explore an advanced

feature of the R programming language, namely, functional

programming.

	 4.	 Object-Oriented Programming: In this chapter, we learn how R

handles object orientation and how we can use it to write more

generic code.

	 5.	 Building an R Package: In this chapter, we learn the necessary

components of an R package and how we can program our own.

	 6.	 Testing and Package Checking: In this chapter, we learn

techniques for testing our R code and checking our R packages’

consistency.

	 7.	 Version Control: In this chapter, we learn how to manage code

under version control and how to collaborate using GitHub.

	 8.	 Profiling and Optimizing: In this chapter, we learn how to identify

code hotspots where inefficient solutions are slowing us down and

techniques for alleviating this.

	 9.	 Project 2: Bayesian Linear Regression: In the final chapter, we

get to the second project, where we build a package for Bayesian

linear regression.

Introduction

xxvii

�Getting R and RStudio
You will need to install R on your computer to do the exercises in this book. I suggest that

you get an integrated environment since it can be slightly easier to keep track of a project

when you have your plots, documentation, code, etc., all in the same program.

I use RStudio (www.rstudio.com/products/RStudio), which I warmly recommend.

You can get it for free—just follow the link—and I will assume that you have it when I

need to refer to the software environment you are using in the following chapters. There

won’t be much RStudio specific, though, and most tools for working with R have mostly

the same features, so if you want to use something else, you can probably follow the

notes without any difficulties.

�Projects
You cannot learn how to analyze data without analyzing data, and you cannot

understand how to develop software without developing software either. Typing in

examples from the book is nothing like writing code on your own. Even doing exercises

from the book—which you really ought to do—is not the same as working on your own

projects. Exercises, after all, cover minor isolated aspects of problems you have just been

introduced to. There is not a chapter of material presented before every task you have to

deal with in the real world. You need to work out by yourself what needs to be done and

how. If you only do the exercises in this book, you will miss the most crucial lesson in

analyzing data:

•	 How to explore the data and get a feeling for it

•	 How to do the detective work necessary to pull out some

understanding from the data

•	 How to deal with all the noise and weirdness found in any data set

And for developing a package, you need to think through how to design and

implement its functionality such that the various functions and data structures fit well

together.

I will go through a data analysis project to show you what that can look like in this

book. To learn how to analyze data on your own, you need to do it yourself as well—and

you need to do it with a data set that I haven’t explored for you. You might have a data

set lying around you have worked on before, a data set from something you are just

Introduction

http://www.rstudio.com/products/RStudio

xxviii

interested in, or you can probably find something interesting at a public data repository,

for example, one of these:

•	 RDataMining.com: www.rdatamining.com/resources/data

•	 UCI Machine Learning Repository: http://archive.ics.

uci.edu/ml/

•	 KDNuggets: www.kdnuggets.com/datasets/index.html

•	 Reddit R Data sets: www.reddit.com/r/datasets

•	 GitHub Awesome Public Data sets: https://github.com/

caesar0301/awesome-public-datasets

I suggest that you find yourself a data set and that you, after each lesson, use the

skills you have learned to explore this data set. Pick data structured as a table with

observations as rows and variables as columns since that is the form of the data we will

consider in this book. At the end of the first eight chapters, you will have analyzed this

data. You can write a report about your analysis that others can evaluate to follow and

maybe modify it: you will be doing reproducible science.

For the programming topics, I will describe another project illustrating the design

and implementation issues involved in making an R package. There, you should be able

to learn from implementing your own version of the project I use, but you will, of course,

be more challenged by working on a project without any of my help at all. Whatever you

do, to get the full benefit of this book, you really ought to make your own package while

reading the programming chapters.

Introduction

http://www.rdatamining.com/resources/data
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.kdnuggets.com/datasets/index.html
http://www.reddit.com/r/datasets
https://github.com/caesar0301/awesome-public-datasets
https://github.com/caesar0301/awesome-public-datasets

1
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_1

CHAPTER 1

Introduction to R
Programming
We will use R for our data analysis, so we need to know the basics of programming in

the R language. R is a full programming language with both functional programming

and object-oriented programming features, and learning the complete language is

far beyond the scope of this chapter. We return to it later, when we have a little more

experience using R. The good news is, though, that to use R for data analysis, we rarely

need to do much programming. At least, if you do the right kind of programming, you

won’t need much.

For manipulating data—how to do this is the topic of the next chapter—you mainly

have to string together a couple of operations, such as “group the data by this feature”

followed by “calculate the mean value of these features within each group” and then

“plot these means.” Doing this used to be more complicated to do in R, but a couple of

new ideas on how to structure data flow—and some clever implementations of these in

packages such as magrittr and dplyr—have significantly simplified it. We will see some

of this at the end of this chapter and more in the next chapter. First, though, we need to

get a taste of R.

�Basic Interaction with R
Start by downloading RStudio if you haven’t done so already. If you open it, you should

get a window similar to Figure 1-1. Well, except that you will be in an empty project while

the figure shows (on the top right) that this RStudio is opened in a project called “Data

Science.” You always want to be working on a project. Projects keep track of the state of

your analysis by remembering variables and functions you have written and keep track

of which files you have opened and such. Go to File and then New Project to create a

https://doi.org/10.1007/978-1-4842-8155-0_1#DOI

2

project. You can create a project from an existing directory, but if this is the first time you

are working with R, you probably just want to create an empty project in a new directory,

so do that.

Figure 1-1.  RStudio

Once you have RStudio opened, you can type R expressions into the console, which

is the frame on the left of the RStudio window. When you write an expression there, R

will read it, evaluate it, and print the result. When you assign values to variables, and

we will see how to do this shortly, they will appear in the Environment frame on the top

right. At the bottom right, you have the directory where the project lives, and files you

create will go there.

To create a new file, you go to File and then New File…. There you can select

several different file types. Those we are interested in are the R Script, R Notebook,

and R Markdown types. The former is the file type for pure R code, while the latter two

we use for creating reports where documentation text is mixed with R code. For data

analysis projects, I would recommend using either Notebook or Markdown files. Writing

Chapter 1 Introduction to R Programming

3

documentation for what you are doing is helpful when you need to go back to a project

several months down the line.

For most of this chapter, you can just write R code in the console, or you can create

an R Script file. If you create an R Script file, it will show up on the top left; see Figure 1-2.

You can evaluate single expressions using the Run button on the top right of this frame

or evaluate the entire file using the Source button. For writing longer expressions, you

might want to write them in an R Script file for now. In the next chapter, we will talk

about R Markdown, which is the better solution for data science projects.

Figure 1-2.  RStudio with a new R Script file open

�Using R As a Calculator
You can use the R console as a calculator where you type in an expression you want to

calculate, hit “enter,” and R gives you the result. You can play around with that a little bit

to get familiar with how to write expressions in R—there is some explanation for how to

write them in the following—and then moving from using R as a calculator to writing

Chapter 1 Introduction to R Programming

4

more sophisticated analysis programs is only a matter of degree. A data analysis program

is little more than a sequence of calculations, after all.

�Simple Expressions
Simple arithmetic expressions are written, as in most other programming languages, in

the typical mathematical notation that you are used to:

1 + 2

[1] 3

4 / 2

[1] 2

(2 + 2) * 3

[1] 12

Here, the lines that start with ## show the output that R will give you. By convention,

and I don’t really know why, these two hash symbols are often used to indicate that in R

documentation.

It also works pretty much as you are used to, except, perhaps, that you might be used

to integers behaving as integers in a division. At least in some programming languages,

division between integers is integer division, but in R you can divide integers, and if

there is a remainder, you will get a floating-point number back as the result:

4 / 3

[1] 1.333333

When you write numbers like 4 and 3, they are always interpreted as floating-point

numbers, even if they print as integers, that is, without a decimal point. To explicitly get

an integer, you must write 4L and 3L:

class(4)

[1] "numeric"

class(4L)

[1] "integer"

Chapter 1 Introduction to R Programming

5

It usually doesn’t matter if you have an integer or a floating-point number, and

everywhere you see numbers in R, they are likely to be floats.

You will still get a floating-point if you divide two integers, and there is no need to tell

R explicitly that you want floating-point division. If you do want integer division, on the

other hand, you need a different operator, %/%:

4 %/% 3

[1] 1

In many languages, % is used for getting the remainder of a division, but this doesn’t

quite work with R where % is used for something else (creating new infix operators), so in

R the operator for this is %%:

4 %% 3

[1] 1

In addition to the basic arithmetic operators—addition, subtraction, multiplication,

division, and the modulus operator we just saw—you also have an exponentiation

operator for taking powers. For this, you can use either ^ or ** as infix operators:

2 ^ 2

[1] 4

2 ** 2

[1] 4

2 ^ 3

[1] 8

2 ** 3

[1] 8

There are some other data types besides numbers, but we won’t go into an

exhaustive list here. There are two types you do need to know about early, though, since

they are frequently used and since not knowing about how they work can lead to all

kinds of grief. Those are strings and “factors.”

Chapter 1 Introduction to R Programming

6

Strings work as you would expect. You write them in quotes, either double quotes or

single quotes, and that is about it:

"Hello,"

[1] "Hello,"

'world!'

[1] "world!"

Strings are not particularly tricky, but I mention them because they look a lot like

factors, but factors are not like strings, they just look sufficiently like them to cause some

confusion. I will explain the factors a little later in this chapter when we have seen how

functions and vectors work.

�Assignments
To assign a value to a variable, you use the arrow operators. So to assign the value 2 to

the variable x, you would write

x <- 2

and you can test that x now holds the value 2 by evaluating x:

x

[1] 2

and of course, you can now use x in expressions:

2 * x

[1] 4

You can assign with arrows in both directions, so you could also write

2 -> x

Chapter 1 Introduction to R Programming

7

An assignment won’t print anything if you write it into the R terminal, but you can

get R to print it by putting the assignment in parentheses:

x <- "invisible"

(y <- "visible")

[1] "visible"

Actually, all of the above are vectors of values…

If you were wondering why all the values printed earlier had a [1] in front of them, it

is because we are usually not working with single values anywhere in R. We are working

with vectors of values (and you will hear more about vectors in the next section). The

vectors we have seen have length one—they consist of a single value—so there is nothing

wrong about thinking about them as individual values. But they are vectors and what we

can do with a single number we can do with multiple in the same way.

The [1] does not indicate that we are looking at a vector of length one. The [1] tells

you that the first value after [1] is the first value in the vector. With longer vectors, you

get the index each time R moves to the next line of output. This output makes it easier to

count your way into a particular index.

You will see this if you make a longer vector, for example, we can make one of length

50 using the : operator:

1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

[31] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[46] 46 47 48 49 50

The : operator creates a sequence of numbers, starting at the number to the left of

the colon and increasing by one until it reaches the number to the right of the colon, or

just before if an increment of one would move past the last number:

-1:1

[1] -1 0 1

0.1:2.9

[1] 0.1 1.1 2.1

Chapter 1 Introduction to R Programming

8

If you want other increments than 1, you can use the seq function instead:

seq(.1, .9, .2)

[1] 0.1 0.3 0.5 0.7 0.9

Here, the first number is where we start, the second where we should stop, as with :,

but the third number gives us the increment to use.

Because we are practically always working on vectors, there is one caveat I want

to warn you about. If you want to know the length of a string, you might—reasonably

enough—think you can get that using the length function. You would be wrong. That

function gives you the length of a vector, so if you give it a single string, it will always

return 1:

length("qax")

[1] 1

length("quux")

[1] 1

length(c("foo", "bar"))

[1] 2

In the last expression, we used the function c() to concatenate two vectors of strings.

Concatenating "foo" and "bar"

c("foo", "bar")

[1] "foo" "bar"

creates a vector of two strings, and thus the result of calling length on that is 2. To get

the length of the actual string, you want nchar instead:

nchar("qax")

[1] 3

nchar("quux")

[1] 4

Chapter 1 Introduction to R Programming

9

nchar(c("foo", "bar"))

[1] 3 3

If you wanted to concatenate the strings "foo" and "bar", to get a vector with the

single string "foobar", you need to use paste:

paste("foo", "bar", sep = "")

[1] "foobar"

The argument sep = "" tells paste not to put anything between the two strings. By

default, it would put a space between them:

paste("foo", "bar")

[1] "foo bar"

�Indexing Vectors
If you have a vector and want the i’th element of that vector, you can index the vector to

get it like this:

(v <- 1:5)

[1] 1 2 3 4 5

v[1]

[1] 1

v[3]

[1] 3

We have parentheses around the first expression to see the output of the operation.

An assignment is usually silent in R, but by putting the expression in parentheses, we

make sure that R prints the result, which is the vector of integers from 1 to 5. Notice here

that the first element is at index 1. Many programming languages start indexing at zero,

but R starts indexing at one. A vector of length n is thus indexed from 1 to n, unlike in

zero-indexed languages where the indices go from 0 to n − 1.

Chapter 1 Introduction to R Programming

10

If you want to extract a subvector, you can also do this with indexing. You just use a

vector of the indices you want inside the square brackets. We can use the : operator for

this or the concatenate function, c():

v[1:3]

[1] 1 2 3

v[c(1,3,5)]

[1] 1 3 5

You can use a vector of boolean values to pick out those values that are “true”:

v[c(TRUE, FALSE, TRUE, FALSE, TRUE)]

[1] 1 3 5

This indexing is particularly useful when you combine it with expressions. We can,

for example, get a vector of boolean values telling us which values of a vector are even

numbers and then use that vector to pick them out:

v %% 2 == 0

[1] FALSE TRUE FALSE TRUE FALSE

v[v %% 2 == 0]

[1] 2 4

You can get the complement of a vector of indices if you change the sign of them:

v[-(1:3)]

[1] 4 5

It is also possible to give vector indices names, and if you do, you can use those to

index into the vector. You can set the names of a vector when constructing it or use the

names function:

v <- c("A" = 1, "B" = 2, "C" = 3)

v

A B C

Chapter 1 Introduction to R Programming

11

1 2 3

v["A"]

A

1

names(v) <- c("x", "y", "z")

v

x y z

1 2 3

v["x"]

x

1

Names can be handy for making tables where you can look up a value by a key.

�Vectorized Expressions
Now, the reason that the expressions we saw earlier worked with vector values instead

of single values is that in R, arithmetic expressions all work component-wise on vectors.

When you write an expression such as

x <- 1:3 ; y <- 4:6

x ** 2 - y

[1] -3 -1 3

you are telling R to take each element in the vector x, squaring it, and subtracting

element-wise by y:

(x <- 1:3)

[1] 1 2 3

x ** 2

[1] 1 4 9

y <- 6:8

Chapter 1 Introduction to R Programming

12

x ** 2 - y

[1] -5 -3 1

This also works if the vectors have different lengths, as they do in the preceding

example. The vector 2 is a vector of length 1 containing the number 2. The way

expressions work, when vectors do not have the same length, is you repeat the shorter

vector as many times as you need to:

(x <- 1:4)

[1] 1 2 3 4

(y <- 1:2)

[1] 1 2

x - y

[1] 0 0 2 2

If the length of the longer vector is not a multiple of the length of the shorter, you get

a warning. The expression still repeats the shorter vector a number of times, just not an

integer number of times:

(x <- 1:4)

[1] 1 2 3 4

(y <- 1:3)

[1] 1 2 3

x - y

Warning in x - y: longer object length is not a

multiple of shorter object length

[1] 0 0 0 3

Here, y is used once against the 1:3 part of x, and the first element of y is then used

for the 4 in x.

Chapter 1 Introduction to R Programming

13

�Comments
You probably don’t want to write comments when you are just interacting with the

R terminal, but in your code, you do. Comments let you describe what your code is

intended to do, and how it is achieving it, so you don’t have to work that out again when

you return to it at a later point, having forgotten all the great thoughts you thought when

you wrote it.

R interprets as comments everything that follows the # character. From a # to the end

of the line, the R parser skips the text:

This is a comment.

If you write your analysis code in R Markdown documents, which we will cover in the

next chapter, you won’t have much need for comments. In those kinds of files, you mix

text and R code differently. But if you develop R code, you will likely need it, and now you

know how to write comments.

�Functions
You have already seen the use of functions, although you probably didn’t think much

about it when we saw expressions such as

length("qax")

You didn’t think about it because there wasn’t anything surprising about it. We just

use the usual mathematical notation for functions: f (x). If you want to call a function,

you simply use this notation and give the function its parameters in parentheses.

In R, you can also use the names of the parameters when calling a function, in

addition to the positions; we saw an example with sep = "" when we used paste to

concatenate two strings.

If you have a function f (x, y) of two parameters, x and y, calling f (5, 10) means calling

f with parameter x set to 5 and parameter y set to 10. In R, you can specify this explicitly,

and these two function calls are equivalent:

f(5, 10)

f(x = 5, y = 10)

Chapter 1 Introduction to R Programming

14

(Don’t try to run this code; we haven’t defined the function f, so calling it will fail.

But if we had a function f, then the two calls would be equivalent.)

If you specify the names of the parameters, the order doesn’t matter anymore, so

another equivalent function call would be

f(y = 10, x = 5)

You can combine the two ways of passing parameters to functions as long as you put

all the positional parameters before the named ones:

f(5, y = 10)

Except for maybe making the code slightly more readable—it is usually easier to

remember what parameters do than which order they come in—there is not much need

for this in itself. Where it becomes useful is when combined with default parameters.

A lot of functions in R take many parameters. More than you really can remember

the use for and certainly the order of. They are a lot like programs that take a lot of

options but where you usually just use the defaults unless you need to tweak something.

These functions take a lot of parameters, but most of them have useful default values,

and you typically do not have to specify the values to set them to. When you do need it,

though, you can specify it with a named parameter.

�Getting Documentation for Functions
Since it can be hard to remember the details of what a function does, and especially what

all the parameters to a function do, you often have to look up the documentation for

functions. Luckily, this is very easy to do in R and RStudio. Whenever you want to know

what a function does, you can just ask R, and it will tell you (assuming that the author of

the function has written the documentation).

Take the function length from the example we saw earlier. If you want to know what

the function does, just write ?length in the R terminal. If you do this in RStudio, it will

show you the documentation in the frame on the right; see Figure 1-3.

Chapter 1 Introduction to R Programming

15

Figure 1-3.  RStudio’s help frame

Try looking up the documentation for a few functions, for example, the nchar

function we also saw earlier.

All infix operators, like + or %%, are also functions in R, and you can read the

documentation for them as well. But you cannot write ?+ in the R terminal and get the

information. The R parser doesn’t know how to deal with that. If you want help on an

infix operator, you need to quote it, and you do that using back quotes. So to read the

documentation for +, you would need to write

?`+`

You probably do not need help to figure out what addition does, but people can write

new infix operators, so this is useful to know when you need help with those.

Chapter 1 Introduction to R Programming

16

�Writing Your Own Functions
You can easily write your own functions. You use function expressions to define a

function and an assignment to give a function a name. For example, to write a function

that computes the square of a number, or a vector number, you can write

square <- function(x) x**2

square(2)

[1] 4

square(1:4)

[1] 1 4 9 16

The “function(x) x**2” expression defines the function, and anywhere you would

need a function, you can write the function explicitly like this. Assigning the function to

a name lets you use the name to refer to the function, just like assigning any other value,

like a number or a string to a name, will let you use the name for the value.

Functions you write yourself work just like any function already part of R or part of

an R package, with one exception, though: you will not have documentation for your

functions unless you write it, and that is beyond the scope of this chapter (but covered in

the chapter on building packages).

The square function just does a simple arithmetic operation on its input. Sometimes,

you want the function to do more than a single thing. If you want the function to do

several operations on its input, you need several statements for the function. In that case,

you need to give it a “body” of several statements, and such a body has to go in curly

brackets:

square_and_subtract <- function(x, y) {

 squared <- x ** 2

 squared - y

}

square_and_subtract(1:5, rev(1:5))

[1] -4 0 6 14 24

(Check the documentation for rev to see what is going on here. Make sure you

understand what this example is doing.)

Chapter 1 Introduction to R Programming

17

In this simple example, we didn’t really need several statements. We could just have

written the function as

square_and_subtract <- function(x, y) x ** 2 - y

As long as there is only a single expression in the function, we don’t need the curly

brackets. For more complex functions, you will need it, though.

The result of a function—what it returns as its value when you call it—is the last

statement or expression (there actually isn’t any difference between statements and

expressions in R; they are the same thing). You can make the return value explicit,

though, using the return() expression:

square_and_subtract <- function(x, y) return(x ** 2 - y)

Explicit returning is usually only used when you want to return a value before the

end of the function. To see examples of this, we need control structures, so we will have

to wait a little bit to see an example. It isn’t used as much as in many other programming

languages.

One crucial point here, though, if you are used to programming in other languages:

The return() expression needs to include the parentheses. In most programming

languages, you could just write

square_and_subtract <- function(x, y) return x ** 2 - y

Such an expression doesn’t work for R. Try it, and you will get an error.

�Summarizing and Vector Functions
As we have already seen, when we write arithmetic expressions such as x**2 - y,

we have an expression that will work for both single numbers for x and y, but also

element-wise for vectors x and y. If you write functions where the body consists of such

expressions, the function will work element-wise as well. The square and square_and_

subtract functions we wrote earlier work like that.

Now all functions work like this, however. While we often can treat data one element

at a time, we also often need to extract some summary of a collection of data, and

functions handle this as well.

Chapter 1 Introduction to R Programming

18

Take, for example, the function sum which adds together all the values in a vector you

give it as an argument (check ?sum now to see the documentation):

sum(1:4)

[1] 10

This function summarizes its input into a single value. There are many similar

functions, and, naturally, these cannot be used element-wise on vectors; rather, they

reduce an entire vector into some smaller summary statistics, here the sum of all

elements.

Whether a function works on vector expressions or not depends on how it is defined.

While there are exceptions, most functions in R either work on vectors or summarize

vectors like sum. When you write your own functions, whether the function works

element-wise on vectors or not depends on what you put in the body of the function. If

you write a function that just does arithmetic on the input, like square, it will work in

vectorized expressions. If you write a function that does some summary of the data, it

will not. For example, if we write a function to compute the average of its input like this:

average <- function(x) {

 n <- length(x)

 sum(x) / n

}

average(1:5)

[1] 3

This function will not give you values element-wise. Pretty obviously. It gets a little

more complicated when the function you write contains control structures, which we

will get to in the next section. In any case, this would be a nicer implementation since it

only involves one expression:

average <- function(x) sum(x) / length(x)

Oh, and by the way, don’t use this average function to compute the mean value of a

vector. R already has a function for that, mean, that deals much better with special cases

like missing data and vectors of length zero. Check out ?mean.

Chapter 1 Introduction to R Programming

19

Just because you are summarizing doesn’t mean that you have to return a single

value. In this function, we return both the mean and the standard deviation of the values

in a vector:

mean_and_sd <- function(x) c(mean = mean(x), sd = sd(x))

mean_and_sd(1:10)

mean sd

5.50000 3.02765

We use the functions mean and sd to compute the two summary statistics, and

then we combine them into a vector (with named elements) that contains the two

summaries. This isn’t a vectorized function, because we do not process the values in

the input element-wise. It doesn’t compute a single summary, but returns something

(ever so slightly) more complex. Complicated functions often return data more complex

than vectors or single values, and we shall see examples in later chapters. If you can

avoid it, though, do so. Simple functions, with simple input and output, are easier to

use, and when we write functions, we want to make things as simple for us as we can.

With this mean_and_sd function, we do not gain anything that we do not already have

with the mean and sd function, and combining both operations in a single function only

complicates things needlessly.

The rough classification of functions into the vectorized, which operate element-

wise on data, and the summarizing functions, is only a classification of how we can use

them. If you compute a value for each element in one or more vectors, you have the

former, and if you summarize all the data in one or more vectors, you have the latter. The

implementation of a function can easily combine both.

Imagine, for example, that we wish to normalize data by subtracting the mean from

each element and then dividing by the standard deviation. We could implement it

like this:

normalise <- function(x) (x - mean(x)) / sd(x)

normalise(1:10)

[1] -1.4863011 -1.1560120 -0.8257228 -0.4954337

[5] -0.1651446 0.1651446 0.4954337 0.8257228

[9] 1.1560120 1.4863011

Chapter 1 Introduction to R Programming

20

We compute a value for each element in the input, so we have a vectorized function,

but in the implementation, we use two summarizing functions, mean and sd. The

expression (x - mean(x)) / sd(x) is a vector expression because mean(x) and sd(x)

become vectors of length one, and we can use those in the expression involving x to get a

value for each element.

�A Quick Look at Control Flow
While you get very far just using expressions, for many computations, you need more

complex programming. Not that it is particularly complex, but you do need to be able

to select a choice of what to do based on data—selection or if statements—and ways of

iterating through data, looping or for statements.

If statements work like this:

if (<boolean expression>) <expression>

If the boolean expression evaluates to true, the expression is evaluated; if not, it

will not:

this won't do anything

if (2 > 3) "false"

this will

if (3 > 2) "true"

[1] "true"

For expressions like these, where we do not alter the program state by evaluating

the expression, there isn’t much of an effect in evaluating the if expression. If we, for

example, are assigning to a variable, there will be an effect:

x <- "foo"

if (2 > 3) x <- "bar"

x

[1] "foo"

if (3 > 2) x <- "baz"

x

[1] "baz"

Chapter 1 Introduction to R Programming

21

If you want to have effects for both true and false expressions, you have this:

if (<boolean expression>) <true expression> else <false expression>

if (2 > 3) "bar" else "baz"

[1] "baz"

If you want newlines in if statements, whether you have an else part or not, you

should use curly brackets.

You don’t always have to. If you have a single expression in the if part, you can leave

them out:

if (3 > 2)

 x <- "bar"

x

[1] "bar"

or if you have a single statement in the else part, you can leave out the brackets:

if (2 > 3) {

 x <- "bar"

} else

 x <- "qux"

x

[1] "qux"

but we did need the brackets in the preceding if part for R to recognize that an else

bit was following. Without it, we would get an error:

if (2 > 3)

 x <- "bar"

else

 x <- "qux"

Error: <text>:3:1: unexpected 'else'

2: x <- "bar"

3: else

^

Chapter 1 Introduction to R Programming

22

If you always use brackets, you don’t have to worry about when you strictly need

them or when you do not, and a part can have multiple statements without you having

to worry about it. If you put a newline in an if or if-else expression, I recommend that

you always use brackets as well.

An if statement works like an expression:

if (2 > 3) "bar" else "baz"

[1] "baz"

This evaluates to the result of the expression in the “if” or the “else” part, depending

on the truth value of the condition:

x <- if (2 > 3) "bar" else "baz"

x

[1] "baz"

It works just as well with braces:

x <- if (2 > 3) { "bar" } else { "baz" }

x

[1] "baz"

but when the entire statement is on a single line, and the two parts are both a single

expression, I usually do not bother with that.

You cannot use it for vectorized expressions, though, since the boolean expression, if

you give it a vector, will evaluate the first element in the vector:

x <- 1:5

if (x > 3) "bar" else "baz"

Warning in if (x > 3) "bar" else "baz": the

condition has length > 1 and only the first

element will be used

[1] "baz"

If you want a vectorized version of if statements, you can instead use the ifelse()

function:

Chapter 1 Introduction to R Programming

23

x <- 1:5

ifelse(x > 3, "bar", "baz")

[1] "baz" "baz" "baz" "bar" "bar"

(read the ?ifelse documentation to get the details of this function).

This, of course, also has consequences for writing functions that use if statements.

If your function contains a body that isn’t vectorized, your function won’t be either. So,

if you have an if statement that depends on your input—and if it doesn’t depend on the

input, it is rather useless—then that input shouldn’t be a vector:

maybe_square <- function(x) {

 if (x %% 2 == 0) x ** 2 else x

}

maybe_square(1:5)

Warning in if (x%%2 == 0) x^2 else x: the

condition has length > 1 and only the first

element will be used

[1] 1 2 3 4 5

This function was supposed to square even numbers, and it will if we give it a single

number, but we gave it a vector. Since the first value in this vector, the only one that the

if statement looked at, was 1, it decided that x %% 2 == 0 was false—it is if x[1] is 1—

and then none of the values were squared. Clearly not what we wanted, and the warning

was warranted.

If you want a vectorized function, you need to use ifelse():

maybe_square <- function(x) {

 ifelse(x %% 2 == 0, x ** 2, x)

}

maybe_square(1:5)

[1] 1 4 3 16 5

Chapter 1 Introduction to R Programming

24

or you can use the Vectorize() function to translate a function that isn’t vectorized

into one that is:

maybe_square <- function(x) {

 if (x %% 2 == 0) x ** 2 else x

}

maybe_square <- Vectorize(maybe_square)

maybe_square(1:5)

[1] 1 4 3 16 5

The Vectorize function is what is known as a “functor”—a function that takes a

function as input and returns a new function. It is beyond the scope of this chapter to

cover how we can manipulate functions like other data, but it is a very powerful feature

of R that we return to in later chapters.

For now, it suffices to know that Vectorize will take your function that can only take

single values as input and then create a function that handles an entire vector by calling

your function with each element. You only see one element at a time, and Vectorize’s

function makes sure that you can handle an entire vector, one element at a time.

To loop over elements in a vector, you use for statements:

x <- 1:5

total <- 0

for (element in x) total <- total + element

total

[1] 15

As with if statements, if you want the body to contain more than one expression,

you need to put it in curly brackets.

The for statement runs through the elements of a vector. If you want the indices

instead, you can use the seq_along() function, which given a vector as input returns a

vector of indices:

x <- 1:5

total <- 0

for (index in seq_along(x)) {

 element <- x[index]

Chapter 1 Introduction to R Programming

25

 total <- total + element

}

total

[1] 15

There are also while statements for looping. These repeat as long as an expression

is true:

x <- 1:5

total <- 0

index <- 1

while (index <= length(x)) {

 element <- x[index]

 index <- index + 1

 total <- total + element

}

total

[1] 15

If you are used to zero-indexed vectors, pay attention to the index <= length(x)

here. You would normally write index < length(x) in zero-indexed languages. Here,

that would miss the last element.

There is also a repeat statement that loops until you explicitly exit using the break

statement:

x <- 1:5

total <- 0

index <- 1

repeat {

 element <- x[index]

 total <- total + element

 index <- index + 1

 if (index > length(x)) break

}

total

[1] 15

Chapter 1 Introduction to R Programming

26

There is also a next statement that makes the loop jump to the next iteration.

Now that I have told you about loops, I feel I should also say that they generally

are not used as much in R as in many other programming languages. Many actively

discourage using loops, and they have a reputation for leading to slow code. The latter is

not justified in itself, but it is easier to write slow code using loops than the alternatives.

Instead, you use functions to take over the looping functionality. There is usually a

function for doing whatever you want to accomplish using a loop, and when there is

not, you can generally get what you want by combining the three functions Map, Filter,

and Reduce.

But that is beyond the scope of this chapter; we return to it later in the book.

�Factors
Now let us return to data types and the factors I hinted at a while ago. Factors are mostly

just vectors but of categorical values. That just means that the elements of a factor should

be considered as categories or classes and not as numbers or strings. For example,

categories such as “small,” “medium,” and “large” could be encoded as numbers, but

there aren’t any natural numbers to assign to them. We could encode soft drink sizes like

1, 2, and 3 for “small,” “medium,” and “large.” By doing this, we are implicitly saying that

the difference between “small” and “medium” is half of the difference between “small”

and “large” which may not be the case. Data with sizes “small,” “medium,” and “large”

should be encoded as categorical data, not numbers, and in R that means encoding

them as factors.

A factor is usually constructed by giving the factor() function a list of strings. The

function translates these into the different categories, and the factor becomes a vector of

the categories:

f <- factor(c("small", "small", "medium",

 "large", "small", "large"))

f

[1] small small medium large small large

Levels: large medium small

Chapter 1 Introduction to R Programming

27

The categories are called “levels”:

levels(f)

[1] "large" "medium" "small"

By default, these are ordered alphabetical, which in this example gives us the order

“large,” “medium,” “small.” You can change this order by specifying the levels when you

create the factor:

ff <- factor(c("small", "small", "medium",

 "large", "small", "large"),

 levels = c("small", "medium", "large"))

ff

[1] small small medium large small large

Levels: small medium large

Changing the order of the levels like this changes how many functions handle the

factor. Mostly it affects the order that summary statistics or plotting functions present

results in.

summary(f)

large medium small

2 1 3

summary(ff)

small medium large

3 1 2

The summary function, when used on factors, just counts how many of each kind we

see, and here we have three “small,” one “medium,” and two “large.” The only thing the

order of the levels does is determine in which order summary prints the categories.

The order in which the levels are given shouldn’t be thought of as “ordering” the

categories, though. It is just used for displaying results; there is not an order semantics

given to the levels unless you explicitly specify this.

Some categorical data has a natural order, like “small,” “medium,” and “large.” Other

categories are not naturally ordered. There is no natural way of ordering “red,” “green,”

Chapter 1 Introduction to R Programming

28

and “blue.” When we print data, it will always come out ordered since text always comes

out ordered. When we plot data, it is usually also ordered. But in many mathematical

models, we would treat ordered categorical data different from unordered categorical

data, so the distinction is sometimes important.

By default, factors do not treat the levels as ordered, so they assume that categorical

data is like “red,” “green,” and “blue,” rather than ordered like “small,” “medium,” and

“large.” If you want to specify that the levels are ordered, you can do that using the

ordered argument to the factor() function:

of <- factor(c("small", "small", "medium",

 "large", "small", "large"),

 levels = c("small", "medium", "large"),

 ordered = TRUE)

of

[1] small small medium large small large

Levels: small < medium < large

You can also use the ordered() function:

ordered(ff)

[1] small small medium large small large

Levels: small < medium < large

ordered(f, levels = c("small", "medium", "large"))

[1] small small medium large small large

Levels: small < medium < large

In many ways, you can work with a combination of strings and factors. For example,

you can check if a factor value is from a certain level by comparing it with the string of

that label:

f

[1] small small medium large small large

Levels: large medium small

f == "small"

[1] TRUE TRUE FALSE FALSE TRUE FALSE

Chapter 1 Introduction to R Programming

29

Here, we test each of the elements in the factor f against the string “small,” and we

get TRUE for those that have the level small. However, factors are not strings, and in

some places they behave fundamentally different. The fact that they so often look like

strings makes this extra tricky, when something that looks perfectly innocent can hide a

fatal error.

The case where I have seen this the most is when R users try to use factors to index

into vectors. While this is a little more advanced than most of what we see in this chapter,

I want to show it early so you are aware of the dangers.

When we create a vector, we can give the indices names. We can do this in the same

expression as we create the vector:

v <- c(a = 1, b = 2, c = 3, d = 4)

v

a b c d

1 2 3 4

or we can add the names later:

v <- 1:4

names(v) <- letters[1:4]

v

a b c d

1 2 3 4

(the letters vector contains all the lowercase letters, so letters[1:4] are a, b,

c, and d).

If we have named the elements in the vector, we can use them to index, just as we

can use numbers. If we want indices 2 and 3, we can index with 2:3, but we could also

index with c("b", "c"):

v[2:3]

b c

2 3

v[c("b", "c")]

b c

2 3

Chapter 1 Introduction to R Programming

30

The indexing does not have to be in the same order as the elements are in vector, so

we could, for example, extract indices 3 and 2, in that order with

v[c(3, 2)]

c b

3 2

or using their names

v[c("c", "b")]

c b

3 2

and if we repeat an index, we get the corresponding value more than once:

v[c("c", "b", "c")]

c b c

3 2 3

Here, we are using a vector of strings to index, but what would happen if we used

a factor?

A factor is not stored as strings, even though we create it from a vector of strings.

It is stored as a vector of integers where the integers are indices into the levels. This

representation can bite you if you try to use a factor to index into a vector.

Read the following code carefully. We have the vector v that can be indexed with the

letters A, B, C, and D (LETTERS is a vector that contains the uppercase letters). We create a

factor, ff, that consists of these four letters in that order. When we index with it, we get

what we would expect. Since ff is the letters A to D, we pick out the values from v with

those labels and in that order:

v <- 1:4

names(v) <- LETTERS[1:4]

v

A B C D

1 2 3 4

Chapter 1 Introduction to R Programming

31

(ff <- factor(LETTERS[1:4]))

[1] A B C D

Levels: A B C D

v[ff]

A B C D

1 2 3 4

We are lucky to get the expected result, and it is only luck though, because this

expression is not indexing using the names we might expect it to use. Read the following

even more carefully!

(ff <- factor(LETTERS[1:4], levels = rev(LETTERS[1:4])))

[1] A B C D

Levels: D C B A

v[ff]

D C B A

4 3 2 1

This time, ff is still a vector with the categories A to D in that order, but we have

specified that the levels are D, C, B, and A, in that order. So the numerical values that the

categories are stored as are actually these:

as.numeric(ff)

[1] 4 3 2 1

What we get when we use it to index into v are those numerical indices—so we get

the values pulled out of v in the reversed order from what we would expect if we didn’t

know this (which you now know).

The easiest way to deal with a factor as if it contained strings is to translate it into a

vector of strings. You can use such a vector to index:

as.vector(ff)

[1] "A" "B" "C" "D"

Chapter 1 Introduction to R Programming

32

v[as.vector(ff)]

A B C D

1 2 3 4

If you ever find yourself using a factor to index something—or in any other way treat

a factor as if it was a vector of strings—you should stop and make sure that you explicitly

convert it into a vector of strings. Treating a factor as if it was a vector of strings—when,

in fact, it is a vector of integers—only leads to tears and suffering in the long run.

�Data Frames
The vectors we have seen, whatever their type, are just sequences of data. There is no

structure to them except for the sequence order, which may or may not be relevant

for how to interpret the data. That is not how data we want to analyze look like. What

we usually have is several related variables from some collection of observations. For

each observed data point, you have a value for each of these variables (or missing data

indications if some variables were not observed). Essentially, what you have is a table

with a row per observation and a column per variable. The data type for such tables in R

is the data.frame.

A data frame is a collection of vectors, where all must be of the same length, and you

treat it as a two-dimensional table. We usually think of data frames as having each row

correspond to some observation and each column correspond to some property of the

observations. Treating data frames that way makes them extremely useful for statistical

modelling and fitting.

You can create a data frame explicitly using the data.frame function:

df <- data.frame(a = 1:4, b = letters[1:4])

df

a b

1 1 a

2 2 b

3 3 c

4 4 d

but usually you will read in the data frame from files.

Chapter 1 Introduction to R Programming

33

To get to the individual elements in a data frame, you must index it. Since it is a two-

dimensional data structure, you should give it two indices:

df[1,1]

[1] 1

You can, however, leave one of these empty, in which case you get an entire column

or an entire row:

df[1,]

a b

1 1 a

df[,1]

[1] 1 2 3 4

If the rows or columns are named, you can also use the names to index. This is

mostly used for column names since it is the columns that correspond to the observed

variables in a data sets. There are two ways to get to a column, but explicitly indexing

df[,"a"]

[1] 1 2 3 4

or using the $column_name notation that does the same thing but lets you get at a

column without having to use the [] operation and quote the name of a column:

df$b

[1] "a" "b" "c" "d"

Before R version 4, a data frame would consider a character vector as a factor

and implicitly convert it. It saves a little space, but was a source of errors as the one I

described in the section on factors, so with R4 the default is now to keep string vectors

as string vectors. If df$b was a factor when you run the preceding code, you are using an

older version of R, and I suggest you update it.

Chapter 1 Introduction to R Programming

34

Turning string vectors into factors, or keeping them as they are, is just the default

behavior, though. You can control it with the stringsAsFactors parameter. If you set this

to TRUE, you will get the old behavior that turns strings into factors:

data.frame(a = 1:4, b = letters[1:4],

 stringsAsFactors = TRUE)

a b

1 1 a

2 2 b

3 3 c

4 4 d

If you used stringsAsFactors = FALSE, you would get the now default behavior of

keeping string vectors as strings.

You can combine two data frames row-wise or column-wise by using the rbind and

cbind functions:

df2 <- data.frame(a = 5:7, b = letters[5:7])

rbind(df, df2)

a b

1 1 a

2 2 b

3 3 c

4 4 d

5 5 e

6 6 f

7 7 g

df3 <- data.frame(c = 5:8, d = letters[5:8])

cbind(df, df3)

a b c d

1 1 a 5 e

2 2 b 6 f

3 3 c 7 g

4 4 d 8 h

Chapter 1 Introduction to R Programming

35

These data frames are built into R, but there are various alternatives implemented

in packages. They differ from the built-in data frames by being optimized for certain use

patterns or just based on programmer taste.

The most popular variant, which you are practically guaranteed to run into sooner

rather than later, is the so-called “tibble.” You can get access to it by loading the

package tibble:

library(tibble)

or by loading the large collection of packages known as the “tidyverse”:

library(tidyverse)

The tidyverse is a large framework for working with data in a structured way,

implemented in numerous packages, but you can load all the common ones in a single

instructing by loading tidyverse.

If these two commands did not work when you tried them, it is because you haven’t

installed them yet. We return to working with packages shortly, but for now, you

can just do

install.packages("tidyverse")

After that, both of the preceding library(...) commands should work.

Then, to create a tibble instead of a built-in data frame, you can use

tibble(a = 1:4, b = letters[1:4])

A tibble: 4 × 2

a b

<int> <chr>

1 1 a

2 2 b

3 3 c

4 4 d

As you can see, the syntax is much the same as when you create a data frame with the

data.frame function, and the result is similar as well. Generally, you can use tibbles as

drop-in replacements for data frames. The operations you can do on data frames you can

also do on tibbles.

Chapter 1 Introduction to R Programming

36

In day-to-day programming, there is not a big difference between data frames

and tibbles, but the latter prints a little better by giving a nicer summary of large data

collections, and as already mentioned, they are heavily used by the tidyverse framework,

so you are more likely to use them than the classical data frames if you start using the

packages there, which I strongly suggest that you do.

For more sophisticated manipulation of data frames, you really should use the dplyr

package, also part of the tidyverse, but we will return to this in Chapter 3.

�Using R Packages
Out of the box, R has a lot of functionality, but where the real power comes in is through its

package mechanism and the large collection of packages available for download and use.

When you install RStudio, you also install a set of default packages. You can see

which packages are installed by clicking the Packages tab in the lower-right frame; see

Figure 1-4.

Figure 1-4.  RStudio packages

Chapter 1 Introduction to R Programming

https://doi.org/10.1007/978-1-4842-8155-0_3

37

From here, you can update packages—new versions of essential packages are

released regularly—and you can install new packages. You might have already done this

when we talked about tibbles, but try another one. Try installing the package magrittr.

We are going to use it shortly.

You can also install packages from the R console. Just write

install.packages("magrittr")

Once you have installed a package, you have access to the functionality in it. You

can get function f in package by writing package::f(), or you can load all functions

from a package into your global namespace to have access to them without using the

package:: prefix.

Loading the functionality from the magrittr package is done like this:

library(magrittr)

�Dealing with Missing Values
Most data sets have missing values—parameters that weren’t observed or that were

incorrectly recorded and had to be masked out. How you deal with missing data in an

analysis depends on the data and the analysis, but it must be addressed, even if all you

do is remove all observations with missing data.

Missing data is represented in R by the special value NA (not available). Values of

any type can be missing and represented as NA, and importantly R knows that NA means

missing values and treats NAs accordingly. You should always represent missing data as

NA instead of some particular number (like -1 or 999 or whatever). R knows how to work

with NA but has no way of knowing that -1 means anything besides minus one.

Operations that involve NA are themselves NA—you cannot operate on missing data

and get anything but more missing values in return. This also means that if you compare

two NAs, you get NA. Because NA is missing information, it is not even equal to itself:

NA + 5

[1] NA

NA == NA

[1] NA

Chapter 1 Introduction to R Programming

38

NA != NA

[1] NA

If you want to check if a value is missing, you must use the function is.na:

is.na(NA)

[1] TRUE

is.na(4)

[1] FALSE

Functions such as sum() will by default return NA if its input contains NA:

v <- c(1,NA,2)

sum(v)

[1] NA

If you want just to ignore the NA values, there is often a parameter for specifying this:

sum(v, na.rm = TRUE)

[1] 3

�Data Pipelines
Most data analysis consists of reading in some data, performing various operations

on that data and, in the process, transforming it from its raw form into something we

can start to extract meaning out of, and then doing some summarizing or visualization

toward the end.

These steps in an analysis are typically expressed as a sequence of function calls

that each change the data from one form to another. It could look like the following

pseudocode:

my_data <- read_data("/some/path/some_file.data")

clean_data <- remove_dodgy_data(my_data)

data_summaries <- summarize(clean_data)

plot_important_things(data_summaries)

Chapter 1 Introduction to R Programming

39

There isn’t anything wrong with writing a data analysis in this way. But there are

typically many more steps involved than listed here. When there is, you either have to get

very inventive in naming the variables you are saving the data in or you have to overwrite

variable names by reassigning to a variable after modifying the data. Both having many

variable names and reassigning to variables can be problematic.

If you have many variables, it is easier accidentally to call a function on the wrong

variable. For example, you might summarize the my_data variable instead of the clean_

data. While you would get an error if you called a function with a variable name that

doesn’t exist, there is nothing to catch when you call a function with the wrong data. You

will likely get the wrong result, and the error will not be easy to find. It would not be an

error easy to debug later.

There is slightly less of a problem with reassigning to a variable. It is mostly an issue

when you work with R interactively. There, if you want to go back and change part of the

program you are writing, you have to go back to the start, where the data is imported.

You cannot just start somewhere in the middle of the function calls with a variable that

doesn’t refer to the same data it did when you ran the program from scratch. It is less of

a problem if you always run your R scripts from the beginning, but the typical use of R is

to work with it in an interactive console or Markdown document, and there this can be a

problem.

A solution, then, is not to call the functions one at a time and assign each temporary

result to a variable. Instead of having four statements in the preceding example, one per

function call, you would just feed the result of the first function call into the next:

plot_important_things(

 summarize(

 remove_dodgy_data(

 read_data("/some/path/some_file.data"))))

You get rid of all the variables, but the readability suffers, to put it mildly. You have to

read the code from right to left and inside out.

�Writing Pipelines of Function Calls
The magrittr package introduced a trick to alleviate this problem, which was later

followed by a built-in solution in R 4.1. The solution is to introduce a “pipe operator,” %>%

in magrittr and |> in R 4.1, that lets you write the functions you want to combine from

Chapter 1 Introduction to R Programming

40

left to right but get the same effect as if you were calling one after the other and sending

the result from one function to the input of the next function.

The operator works such that writing

x %>% f()

or

x |> f()

is equivalent to writing

f(x)

With the magrittr operator, you can leave out the parentheses, writing x %>% f

instead, but with the built-in operator, x |> f is considered a syntax error.

How the two pipe operators work and how you can use them overlap, but they are

not equivalent. The built-in operator is a little faster; when you write x |> f(), it is

just syntactic sugar for f(x), meaning that the two are completely equivalent and that

there is no overhead in using the operator rather than a function call. With the magrittr

operator, x %>% f(), you are calling a function, %>%, every time you use the operator,

and there is some overhead to that. But there is also more flexibility to this, and the %>%

operator is more flexible and can handle use cases that the |> operator cannot.

You can combine sequences of such operators such that writing

x |> f() |> g() |> h()

or

x %>% f() %>% g() %>% h()

or

x %>% f %>% g %>% h

is equivalent to writing

h(g(f(x)))

The preceding example would become

read_data("/some/path/some_file.data") %>%

 remove_dodgy_data %>%

Chapter 1 Introduction to R Programming

41

 summarize %>%

 plot_important_things

with the magrittr operator, or

read_data("/some/path/some_file.data") |>

 remove_dodgy_data() |>

 summarize() |>

 plot_important_things()

with the built-in operator.

Reading code like this might still take some getting used to, but it is much easier to

read than combining functions from the inside and out.

If you have ever used pipelines in UNIX shells, you should immediately see the

similarities. It is the same approach for combining functions/programs. By combining

several functions, which each do something relatively simple, you can create very

powerful pipelines.

Writing pipelines using the %>% or |> operator is a relatively new idiom introduced

to R programming, but one that is very powerful and is being used more and more in

different R packages. We will use pipelines extensively in the coming chapters.

Incidentally, if you are wondering why the package that implements pipes in R is

called magrittr, it refers to Belgian artist René Magritte who famously painted a pipe

and wrote “Ceci n’est pas une pipe” (“This is not a pipe”) below it. But enough about

Belgian surrealists.

�Writing Functions That Work with Pipelines
The pipeline operator actually does something very simple, which in turn makes it

simple to write new functions that work well with it. It just takes whatever is computed

on the left-hand side of it and inserts it as the first argument to the function given on the

right-hand side, and it does this left to right. So x %>% f becomes f(x), x %>% f %>% g

becomes f(x) %>% g and then g(f(x)), and x %>% f(y) becomes f(x,y). If you are

providing additional parameters to a function in the pipeline, the left-hand side of %>% or

|> is inserted before the explicit parameters passed to it.

If you want to write functions that work well with pipelines, you should, therefore,

make sure that the most likely parameter to come through a pipeline is the first

Chapter 1 Introduction to R Programming

42

parameter of your function. Write your functions such that the first parameter is the data

it operates on, and you have done most of the work.

For example, if you wanted a function that would sample n random rows of a data

frame, you could write it such that it takes the data frame as the first argument and the

parameter n as its second argument:

subsample_rows <- function(d, n) {

 rows <- sample(nrow(d), n)

 d[rows,]

}

and then you could simply pop it right into a pipeline:

d <- data.frame(x = rnorm(100), y = rnorm(100))

d %>% subsample_rows(n = 3)

x y

31 0.3159150 1.3485491

76 -0.1553485 0.3320349

54 -0.5918348 0.8083360

or

d |> subsample_rows(n = 3)

x y

69 -1.2723834 -0.01965686

25 0.8190089 1.05925039

87 2.3872326 -0.18939869

Since we are simulating random data here, your output will differ from mine, but you

should see something similar.

�The Magical “.” Argument
Now, you cannot always be so lucky that all the functions you want to call in a pipeline

take the left-hand side of the pipe operator as its first parameter. If this is the case, you

can still use the function, though, but here the two operators differ in how easy they

make it.

Chapter 1 Introduction to R Programming

43

The operator from magrittr, but not the built-in operator, interprets the symbol “ . ”

in a special way. If you use “ . ” in a function call in a pipeline, then that is where the left-

hand side of the %>% operation goes instead of as the default first parameter of the right-

hand side. So if you need the data to go as the second parameter, you put a “ . ” there,

since x %>% f(y, .) is equivalent to f(y, x). The same goes when you need to provide

the left-hand side as a named parameter since x %>% f(y, z = .) is equivalent to

f(y, z = x), something that is particularly useful when the left-hand side should be

given to a model fitting function. Functions fitting a model to data are usually taking a

model specification as their first parameter and the data they are fitted to as a named

parameter called data:

d <- data.frame(x = rnorm(10), y = rnorm(10))

d %>% lm(y ~ x, data = .)

##

Call:

lm(formula = y ~ x, data = .)

##

Coefficients:

(Intercept) x

0.2866 0.3833

We will return to model fitting, and what an expression such as y ~ x means, in a

later chapter, so don’t worry if it looks a little strange for now. If you are interested, you

can always check the documentation for the lm() function.

The built-in operator does not interpret “ . ” this way, and d |> lm(y ~ x, data =

.) will give you an error (unless you have defined “ . ” somewhere, which you probably

shouldn’t). The |> operator always puts the left-hand side as the first argument to the

right-hand side. If that doesn’t fit your function, you have to adapt the function.

With lm, the data is not the first argument, but we can make a function where it is:

my_lm <- function(d) lm(y ~ x, data = d)

d |> my_lm()

##

Call:

lm(formula = y ~ x, data = d)

##

Chapter 1 Introduction to R Programming

44

Coefficients:

(Intercept) x

0.2866 0.3833

We usually don’t like having such specialized functions lying around, and we don’t

have any use for it outside of the pipeline, so this is not ideal. However, we don’t have to

first define the function, give it a name, and then use it. We could just use the function

definition as it is:

d |> (function(d) lm(y ~ x, data = d))()

##

Call:

lm(formula = y ~ x, data = d)

##

Coefficients:

(Intercept) x

0.2866 0.3833

The syntax here might look a little odd at first glance, with the function definition

in parentheses and then the extra () after that, but it is really the same syntax as what

we have been using so far. We have written pipes such as d |> f() where f refers to a

function. It is the same now, but instead of a function name, we have an expression,

(function(d) lm(...)), that gives us a function. It needs to be in parentheses so the

() that comes after the function are not considered part of the function body. In other

words, take d |> f() and put in (function(d) lm(...)) instead of f, and you get the

preceding expression.

Such functions that we do not give a name are called anonymous functions, or with

a reference to theoretical computer science, lambda expressions. From R 4.1, perhaps

to alleviate that using |> without the “ . ” is cumbersome, there is a slightly shorter way to

write them. Instead of writing function(...), you can use \(...) and get

d |> (\(d) lm(y ~ x, data = d))()

##

Call:

lm(formula = y ~ x, data = d)

##

Chapter 1 Introduction to R Programming

45

Coefficients:

(Intercept) x

0.2866 0.3833

The notation \() is supposed to look like the Greek letter lambda, λ.

Of course, even with the shorter syntax for anonymous functions, writing d |>

(\(d) lm(y ~ x, data = d))() instead of just lm(y ~ x, data = d) doesn’t give us

much, and it is more cumbersome to use the |> operator when you try to pipe together

functions where the data doesn’t flow from the first argument to the first argument from

function to function. If you are in a situation like that, you will enjoy using the magrittr

pipe more.

Anonymous functions do have their uses, though, both for the built-in and

magrittr’s pipe operator. Pipelines are great when you can call existing functions

one after another, but what happens if you need a step in the pipeline where there is

no function doing what you want? Here, anonymous functions usually are the right

solution.

As an example, consider a function that plots the variable y against the variable x and

fits and plots a linear model of y against x. We can define and name such a function to

get the following code:

plot_and_fit <- function(d) {

 plot(y ~ x, data = d)

 abline(lm(y ~ x, data = d))

}

x <- rnorm(20)

y <- x + rnorm(20)

data.frame(x, y) |> plot_and_fit()

Since giving the function a name doesn’t affect how the function works, it isn’t

necessary to do so; we can just put the code that defined the function where the name of

the function goes to get this:

data.frame(x, y) |> (\(d) {

 plot(y ~ x, data = d)

 abline(lm(y ~ x, data = d))

})()

Chapter 1 Introduction to R Programming

46

with the built-in operator, or like this

data.frame(x, y) %>% (\(d) {

 plot(y ~ x, data = d)

 abline(lm(y ~ x, data = d))

})()

with the %>% operator.

With the magrittr pipe operator, we could also leave out the final () and do simply:

data.frame(x, y) %>% (\(d) {

 plot(y ~ x, data = d)

 abline(lm(y ~ x, data = d))

})

This is because the %>% operator takes both a function call and a function on the

right-hand side, so we can write x %>% f() or x %>% f, and similarly we can write x

%>% (\(x) ...)() or x %>% (\(x) ...). You cannot leave out the parentheses around

the function definition, though. A function definition is also a function call, and the %>%

operator would try to put the left-hand side of the operator into that function call, which

would give you an error. The |> operator explicitly checks if you are trying to define a

function as the right-hand side and tells you that this is not allowed.

With the magrittr operator, though, you do not need to explicitly define an

anonymous function this way; you can use “ . ” to simulate the same effect:

data.frame(x, y) %>% {

 plot(y ~ x, data = .)

 abline(lm(y ~ x, data = .))

}

By putting the two operations in curly braces, we effectively make a function, and the

first argument of the function goes where we put the “ . ”.

The magrittr operator does more with “ . ” than just changing the order of

parameters. You can use “ . ” more than once when calling a function, and you can use it

in expressions or in function calls:

rnorm(4) %>% data.frame(x = ., is_negative = . < 0)

x is_negative

Chapter 1 Introduction to R Programming

47

1 -1.5782344 TRUE

2 -0.1215720 TRUE

3 -1.7966768 TRUE

4 -0.4755915 TRUE

rnorm(4) %>% data.frame(x = ., y = abs(.))

x y

1 -0.8841023 0.8841023

2 -3.4980590 3.4980590

3 -0.3819834 0.3819834

4 0.9776881 0.9776881

There is one caveat: if “ . ” only appears in function calls, it is still given as the first

argument to the function on the right-hand side of %>%:

rnorm(4) %>% data.frame(x = sin(.), y = cos(.))

. x y

1 -0.5580409 -0.5295254 0.8482941

2 -0.6264551 -0.5862767 0.8101109

3 -0.5304512 -0.5059226 0.8625789

4 1.8976216 0.9470663 -0.3210380

The reason is that it is more common to see expressions with function calls like this

when the full data is also needed than when it is not. So by default f(g(.),h(.)) gets

translated into f(.,g(.),h(.)). If you want to avoid this behavior, you can put curly

brackets around the function call since {f(g(.),h(.))} is equivalent to f(g(.),h(.)).

(I will explain the meaning of the curly brackets later). You can get both the behavior

f(.,g(.),h(.)) and the behavior {f(g(.),h(.))} in function calls in a pipeline; the

default is just the most common case.

�Other Pipeline Operations
The %>% and |> operators are a very powerful mechanism for specifying data analysis

pipelines, but there are some special cases where a slightly different behavior is needed,

and the magrittr package provides some of these. To get them, you need to import the

package with library(magrittr). If you use library(tidyverse) to load the tidyverse

Chapter 1 Introduction to R Programming

48

framework, you only get %>%; you need to explicitly load magrittr to get the other

operators.

One case is when you need to refer to the parameters in a data frame you get from

the left-hand side of the pipe expression directly. In many functions, you can get to the

parameters of a data frame just by naming them, as we have seen earlier in lm and plot,

but there are cases where that is not so simple.

You can do that by indexing “ . ” like this:

d <- data.frame(x = rnorm(10), y = 4 + rnorm(10))

d %>% {data.frame(mean_x = mean(.$x), mean_y = mean(.$y))}

mean_x mean_y

1 0.09496017 3.538881

but if you use the operator %$% instead of %>%, you can get to the variables just by

naming them instead:

d %$% data.frame(mean_x = mean(x), mean_y = mean(y))

mean_x mean_y

1 0.09496017 3.538881

Another common case is when you want to output or plot some intermediate result

of a pipeline. You can, of course, write the first part of a pipeline, run data through it and

store the result in a parameter, output or plot what you want, and then continue from the

stored data. But you can also use the %T>% (tee) operator. It works like the %>% operator,

but where %>% passes the result of the right-hand side of the expression on, %T>% passes

on the result of the left-hand side. The right-hand side is computed but not passed on,

which is perfect if you only want a step for its side effect, like printing some summary:

d <- data.frame(x = rnorm(10), y = rnorm(10))

d %T>% plot(y ~ x, data = .) %>% lm(y ~ x, data = .)

The final operator is %<>%, which does something I warned against earlier—it assigns

the result of a pipeline back to a variable on the left. Sometimes, you do want this

behavior—for instance, if you do some data cleaning right after loading the data and you

never want to use anything between the raw and the cleaned data, you can use %<>%:

d <- read_my_data("/path/to/data")

d %<>% clean_data

Chapter 1 Introduction to R Programming

49

I use it sparingly and would prefer just to pass this case through a pipeline:

d <- read_my_data("/path/to/data") %>% clean_data

�Coding and Naming Conventions
People have been developing R code for a long time, and they haven’t been all that

consistent in how they do it. So as you use R packages, you will see many different

conventions on how code is written and especially how variables and functions

are named.

How you choose to write your code is entirely up to you as long as you are consistent

with it. It helps somewhat if your code matches the packages you use, just to make

everything easier to read, but it is up to you.

A few words on naming are worth going through, though. There are three ways

people typically name their variables, data, or functions, and these are

underscore_notation(x, y)

camelBackNotation(x, y)

dot.notation(x, y)

You are probably familiar with the first two notations, but if you have used Python

or Java or C/C++ before, the dot notation looks like method calls in object-oriented

programming. It is not (although it is related to it). The dot in the name doesn’t mean

method call. R just allows you to use dots in variable and function names.

I will mostly use the underscore notation in this book, but you can do whatever you

want. I would recommend that you stay away from the dot notation, though. There are

good reasons for this. R put some interpretation into what dots mean in function names,

as we will see when we visit object-oriented programming in the second part of the book,

so you can get into some trouble. The built-in functions in R often use dots in function

names, but it is a dangerous path so you should probably stay away from it unless you

are absolutely sure that you are avoiding the pitfalls that are in it.

Chapter 1 Introduction to R Programming

50

�Exercises
�Mean of Positive Values
You can simulate values from the normal distribution using the rnorm() function. Its first

argument is the number of samples you want, and if you do not specify other values, it

will sample from the N (0, 1) distribution.

Write a pipeline that takes samples from this function as input, remove the negative

values, and compute the mean of the rest. Hint: One way to remove values is to replace

them with missing values (NA); if a vector has missing values, the mean() function can

ignore them if you give it the option na.rm = TRUE.

�Root Mean Square Error
If you have “true” values, t = (t1, ... , tn), and “predicted” values, y = (y1, ... , yn), then the

root mean square error is defined as RMSE t,y() = −()
=
∑1

1

2

n
t y

i

n

i i .

Write a pipeline that computes this from a data frame containing the t and y

values. Remember that you can do this by first computing the square difference in one

expression, then computing the mean of that in the next step, and finally computing the

square root of this. The R function for computing the square root is sqrt().

Chapter 1 Introduction to R Programming

51
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_2

CHAPTER 2

Reproducible Analysis
The typical data analysis workflow looks like this: you collect your data, and you put it in

a file or spreadsheet or database. Then you run some analyses, written in various scripts,

perhaps saving some intermediate results along the way or maybe always working on

the raw data. You create some plots or tables of relevant summaries of the data, and then

you go and write a report about the results in a text editor or word processor. This is the

typical workflow in many organizations and in many research groups. Most people doing

data analysis do variations thereof. But it is also a workflow that has many potential

problems.

There is a separation between the analysis scripts and the data, and there is a

separation between the analysis and the documentation of the analysis.

If all analyses are done on the raw data, then issue number one is not a major

problem. But it is common to have scripts for different parts of the analysis, with one

script saving intermediate results to files that are then read by the next script. The scripts

describe a workflow of data analysis, and to reproduce an analysis, you have to run all

the scripts in the right order. Often enough, this correct order is only described in a text

file or even worse only in the head of the data scientist who wrote the workflow. And it

gets worse; it won’t stay there for long and is likely to be lost before it is needed again.

Ideally, you would always want to have your analysis scripts written in a way where

you can rerun any part of your workflow, completely automatically, at any time.

For issue number two, the problem is that even if the workflow is automated and

easy to run again, the documentation quickly drifts away from the actual analysis scripts.

If you change the scripts, you won’t necessarily remember to update the documentation.

You probably don’t forget to update figures and tables and such, but not necessarily the

documentation of the exact analysis run—options to functions and filtering choices

and such. If the documentation drifts far enough from the actual analysis, it becomes

completely useless. You can trust automated scripts to represent the real data analysis at

any time—that is the benefit of having automated analysis workflows in the first place—

but the documentation can easily end up being pure fiction.

https://doi.org/10.1007/978-1-4842-8155-0_2#DOI

52

What you want is a way to have dynamic documentation. Reports that describe the

analysis workflow in a form that can be understood both by machines and humans.

Machines use the report as an automated workflow that can redo the analysis at any

time. We humans use it as documentation that always accurately describes the analysis

workflow that we run.

�Literate Programming and Integration of Workflow
and Documentation
One way to achieve the goal of having automated workflows and documentation that

is always up to date is something called “literate programming.” Literate programming

is an approach to software development, proposed by Stanford computer scientist

Donald Knuth, which never became popular for programming, possibly because most

programmers do not like to write documentation. But it has made a comeback in data

science, where tools such as Jupyter Notebooks1 and R Markdown (that we will explore

later) are major components in many data scientists’ daily work.

The idea in literate programming is that the documentation of a program—in

the sense of the documentation of how the program works and how algorithms and

data structures in the program work—is written together with the code implementing

the program. Tools such as Javadoc2 and Roxygen3 do something similar. They have

documentation of classes and methods written together with the code in the form of

comments. Literate programming differs slightly from this. With Javadoc and Roxygen,

the code is the primary document, and the documentation is comments added to

it. With literate programming, the documentation is the primary text for humans to

read, and the code is part of this documentation, included where it falls naturally to

have it. The computer code is extracted automatically from this document when the

program runs.

1 https://jupyter.org
2 https://en.wikipedia.org/wiki/Javadoc
3 http://roxygen.org

Chapter 2 Reproducible Analysis

https://jupyter.org
https://en.wikipedia.org/wiki/Javadoc
http://roxygen.org/

53

Literate programming never became a huge success for writing programs, but

for doing data science, it is having a comeback. The result of a data analysis project is

typically a report describing models and analysis results, and it is natural to think of

this document as the primary product. So the documentation is already the main focus.

The only thing needed to use literate programming is a way of putting the analysis code

inside the documentation report.

Many programming languages have support for this. Mathematica4 has always

had notebooks where you could write code together with documentation. Jupyter,5 the

descendant of iPython Notebook, lets you write notebooks with documentation and

graphics interspersed with executable code. And in R there are several ways of writing

documents that are used both as automated analysis scripts and for generating reports.

The most popular of these approaches is R Markdown (for writing these documents) and

knitr (for running the analysis and generating the reports), but R Notebooks, a variant

of R Markdown, is also gaining popularity.

�Creating an R Markdown/knitr Document in RStudio
To create a new R Markdown document, go to the File menu, pick New File and then R

Markdown…. Now RStudio will bring up a dialog where you can decide which kind of

document you want to make and add some information, such as title and author name.

It doesn’t matter so much what you do here, you can change it later, but try making an

HTML document.

The result is a new file with some boilerplate text in it; see Figure 2-1. At the top

of the file, between two lines containing just “---” is some meta-information for the

document, and after the second “---” is the text proper. It consists of a mix of text,

formatted in the Markdown language, and R code.

4 www.wolfram.com/mathematica
5 http://jupyter.org

Chapter 2 Reproducible Analysis

http://www.wolfram.com/mathematica
http://jupyter.org/

54

Figure 2-1.  New R Markdown file

In the toolbar above the open file, there is a menu point saying Knit. If you click it, it

will translate the R Markdown into an HTML document and open it; see Figure 2-2. You

will have to save the file first, though. If you click the Knit HTML button before saving,

you will be asked to save the file.

Chapter 2 Reproducible Analysis

55

Figure 2-2.  Compiled Markdown file

The newly created HTML file is also written to disk with a name taken from the name

you gave the R Markdown file. The R Markdown file will have suffix .Rmd, and the HTML

file will have the same prefix but suffix .html.

If you click the down-pointing arrow next to Knit, you get some additional options.

You can ask to see the HTML document in the pane to the right in RStudio instead of

in a new window. Having the document in a panel instead of a separate window can

be convenient if you are on a laptop and do not have a lot of screen space. You can also

generate a file or a Word file instead of an HTML file.

If you decide to produce a file in a different output format, RStudio will remember

this. It will update the “output:” field in the metadata to reflect this. If you want, you can

also change that line in your document and make the selection that way. Try it out.

If you had chosen File, New File, R Notebook instead of an R Markdown file, you

would have gotten a very similar file; see Figure 2-3. The Knitr button is gone, and

instead you have a Preview button. If you click it, you get the document shown on the

Chapter 2 Reproducible Analysis

56

right in Figure 2-3. The difference between the two types of files is tiny, to the point

where it doesn’t exist. The Notebook format is just a different output option, and

both _are_ R Markdown files. If you had changed the line “output: html_document” in

the first file to “output: html_notebook”, you would get a notebook instead. Try it and see

what happens.

Figure 2-3.  R Notebook

The R Markdown file is intended for creating reports, while the R Notebook format

is more intended for interactive use. Knitting a large document can be slow, because all

the analysis in your document will be run from scratch, but with the notebooks, you see

the document as it is at any moment, without rerunning any analysis when you preview.

Notebooks are thus faster, but they can be a little more dangerous to work with, if you

evaluate code out of order (see the following). You can, however, always work with a

Notebook while you do your analysis, and then change the “output: …” format later, to

generate a report from scratch. Because the formats are so similar, I will not distinguish

between them in the following, and I will refer to the files as R Markdown files as that is

the input format for both of them (as also apparent from their file suffix “.Rmd”).

Chapter 2 Reproducible Analysis

57

The actual steps in creating a document involve two tools and three languages,

but it is all integrated so you typically will not notice. There is the R code embedded in

the document. The R code is first processed by the knitr package that evaluates it and

handles the results such as data and plots according to options you give it. The result

is a Markdown document (notice no R). This Markdown document is then processed

by the tool pandoc which is responsible for generating the output file. For this, it uses

the metadata in the header, which is written in a language called YAML, and the actual

formatting, written in the Markdown language.

You will usually never have to worry about pandoc working as the back end of

document processing. If you just write R Markdown documents, then RStudio will let

you compile them into different types of output documents. But because the pipeline

goes from R Markdown via knitr to Markdown and then via pandoc to the various

output formats, you do have access to a very powerful tool for creating documents. I

have written this book in R Markdown where each chapter is a separate document that

I can run through knitr independently. I then have pandoc with some options take the

resulting Markdown documents, combining them, and produce both output and Epub

output. With pandoc, it is possible to use different templates for setting up the formatting,

and having it depend on the output document you create by using different templates

for different formats. It is a very powerful, but also very complicated, tool, and it is far

beyond what we can cover in this book. Just know that it is there if you want to take

document writing in R Markdown further than what you can readily do in RStudio.

As I mentioned, there are actually three languages involved in an R Markdown

document. We will handle them in order, first the header language, which is YAML, then

the text formatting language, which is Markdown, and then finally how R is embedded in

a document.

�The YAML Language
YAML is a language for specifying key-value data. YAML stands for the (recursive)

acronym YAML Ain’t Markup Language. So yes, when I called this section the YAML

language I shouldn’t have included language since the L stands for language, but I did. I

stand by that choice. The acronym used to stand for Yet Another Markup Language, but

since “markup language” typically refers to commands used to mark up text for either

specifying formatting or for putting structured information in a text, which YAML doesn’t

do, the acronym was changed. YAML is used for giving options in various forms to a

Chapter 2 Reproducible Analysis

58

computer program processing a document, not so much for marking up text, so it isn’t

really a markup language.

In your R Markdown document, the YAML is used in the header, which is everything

that goes between the first and the second line with three dashes. In the document you

create when you make a new R Markdown file, it can look like this:

title: "New Markdown Project"

author: "Thomas Mailund"

date: "1/10/2022"

output: html_document

You usually do not have to modify this header manually. If you use the GUI, it will

adjust the header for you when you change options. You do need to alter it to include

bibliographies, though, which we get to later. And you can always add anything you want

to the header if you need to, and it can be easier than using the GUI. But you don’t have

to modify the header that often.

YAML gives you a way to specify key-value mappings. You write key: and then the

value afterward. So in the preceding example, you have the key title referring to New

Markdown Document, the key author to refer to "Thomas Mailund", and so on. You don’t

necessarily need to quote the values unless it has a colon in it, but you always can.

The YAML header is used both by RStudio and pandoc. RStudio uses the output key

for determining which output format to translate your document into, and this choice is

reflected in the Knit toolbar button—while pandoc uses the title, author, and date to

put that information into the generated document.

You can have slightly more structure to the key-value specifications. If a key should

refer to a list of values, you use “-”, so if you have more than one author, you can use

something like this:

...

author:

 - "Thomas Mailund"

 - "Tom Maygrove"

...

Chapter 2 Reproducible Analysis

59

or you can have more key-value structure nested, so if you change the output theme

(using Output Options… after clicking the tooth wheel in the toolbar next to the Knit

button).

How the options are used depends on the toolchain used to format your document.

The YAML header just provides specifications. Which options you have available and

what they do are not part of the language.

For pandoc, it depends on the templates used to generate the final document (see

later), so there isn’t even a complete list that I can give you for pandoc. Anyone who

writes a new template can decide on new options to use. The YAML header gives you a

way to provide options to such templates, but there isn’t a fixed set of keywords to use. It

all depends on how tools later in the process interpret them.

�The Markdown Language
The Markdown language is a markup language—the name is a pun. It was originally

developed to make it easy to write web pages. HTML, the language we use to format web

pages, is also a markup language but is not always easily human readable. Markdown

intended to solve this by formatting text with very simple markup commands—familiar

from emails back in the day before emails were also HTML documents—and then have

tools for translating Markdown into HTML.

Markdown has gone far beyond just writing web pages, but it is still a very simple

and intuitive language for writing human-readable text with markup commands that can

then be translated into other document formats.

In Markdown, you write plain text as plain text. So the body of text is just written

without any markup. You will need to write it in a text editor so the text is actually text,

not a word processor where the file format usually already contains a lot of markup

information that just isn’t readily seen on screen. If you are writing code, you should

already know about text editors. If not, just use RStudio to write R Markdown files, and

you will be okay.

Markup commands are used when you want something else than just plain text.

There aren’t many commands to learn—the philosophy is that when writing you should

focus on the text and not the formatting—so they are very quickly learned.

Chapter 2 Reproducible Analysis

60

�Formatting Text
First, there are section headers. You can have different levels of headers—think chapters,

sections, subsections, etc.—and you specify them using # starting at the beginning of a

new line:

Header 1

Header 2

Header 3

For the first two, you can also use this format:

Header 1

========

Header 2

To have lists in your document, you write them as you have probably often seen them

in raw text documents. A list with bullets (and not numbers) is written like this:

* this is a

* bullet

* list

and the result looks like this:

•	 this is a

•	 bullet

•	 list

You can have sublists just by indenting. You need to move the indented line in so

there is a space between where the text starts at the outer level and where the bullet is at

the next level. Otherwise, the line goes at the outer level. The output of this

* This is the first line

 * This is a sub-line

 * This is another sub-line

 * This actually goes to the outer level

* This is definitely at the outer level

Chapter 2 Reproducible Analysis

61

is this list:

•	 This is the first line

–– This is a sub-line

–– This is another sub-line

–– This actually goes to the outer level

•	 Back to the outer level

If you prefer, you can use - instead of * for these lists, and you can mix the two:

- First line

* Second line

 - nested line

•	 First line

•	 Second line

–– nested line

To have numbered lists, just use numbers instead of * and -:

1. This is a

2. numbered

3. list

The result looks like this:

	 1.	 This is a

	 2.	 numbered

	 3.	 list

You don’t actually need to get the numbers right, you just need to use numbers. So

1. This is a

3. numbered

2. list

would produce the same output. You will start counting at the first number,

though, so

Chapter 2 Reproducible Analysis

62

4. This is a

4. numbered

4. list

produces

	 4.	 This is a

	 5.	 numbered

	 6.	 list

To construct tables, you also use a typical text representation with vertical and

horizontal lines. Vertical lines separate columns, and horizontal lines separate headers

from the table body. This code

| First Header | Second Header | Third Header |

| :------------ | :-----------: | --------------: |

| First row | Centred text | Right justified |

| Second row | *Some data* | *Some data* |

| Third row | *Some data* | *Some data* |

will result in this table:

First Header Second Header Third Header

First row Centred text Right justified

Second row Some data Some data

Third row Some data Some data

The : in the line separating the header from the body determines the justification

of the column. Put it on the left to get left justification, on both sides to get the text

centered, and on the right to get the text right justified.

Inside text, you use markup codes to make text italic or boldface. You use either

this or _this_ to make “this” italic, while you use **this** or __this__ to make

“this” boldface.

Since Markdown was developed to make HTML documents, it, of course, has an easy

way to insert links. You use the notation [link text](link URL) to put “link text” into

the document as a link to “link URL.” This notation is also used to make cross-references

inside a document—similar to how HTML documents have anchors and internal links—

but more on that later.

Chapter 2 Reproducible Analysis

63

To insert images into a document, you use a notation similar to the link notation;

you just put a ! before the link, so ![Image description](URL to image) will insert the

image pointed to by “URL to image” with a caption saying “Image description.” The URL

here will typically be a local file, but it can be a remote file referred to via HTTP.

With long URLs, the marked-up text can be hard to read even with this simple

notation, and it is possible to remove the URLs from the actual text and place it later in

the document, for example, after the paragraph referring to the URL or at the very end

of the document. For this, you use the notation [link text][link tag] and define the

“link tag” as the URL you want later:

This is some text [with a link][1].

The link tag is defined below the paragraph.

[1]: interesting-url-of-some-sort-we-dont-want-inline

You can use a string here for the tag. Using numbers is easy, but for long documents,

you won’t be able to remember what each number refers to:

This is some text [with a link][interesting].

The link tag is defined below the paragraph.

[interesting]: interesting-url-of-some-sort-we-dont-want-inline

You can make block quotes in text using notation you will be familiar with

from emails:

> This is a

> block quote

gives you this:

This is a block quote
To put verbatim input as part of your text, you can either do it inline or as a block.

In both cases, you use backticks `. Inline in the text, you use single backticks `foo`. To

create a block of text, you write

```

block of text

```

Chapter 2 Reproducible Analysis

64

You can also just indent text with four spaces, which is how I managed to make a

block of verbatim text that includes three backticks.

Markdown is used a lot by people who document programs, so there is a notation for

getting code highlighted in verbatim blocks. The convention is to write the name of the

programming language after the three backticks, then the program used for formatting

the document will highlight the code when it can. For R code, you write r, so this block

```r

f <- function(x) ifelse(x %% 2 == 0, x**2, x**3)

f(2)

```

is formatted like this:

f <- function(x) ifelse(x %% 2 == 0, x**2, x**3)

f(2)

The only thing this markup of blocks does is highlighting the code. It doesn’t try

to evaluate the code. Evaluating code happens before the Markdown document is

formatted, and we return to that shortly.

�Cross-Referencing
Out of the box, there is not a lot of support for making cross-references in Markdown

documents. You can make cross-references to sections but not figures or tables. There

are ways of doing it with extensions to pandoc—I use it in this book—but out of the box

from RStudio, you cannot yet.

However, with the work being done for making book-writing and lengthy reports in

Bookdown,6 that might change soon.7

The easiest way to reference a section is to put the name of the section in square

brackets. If I write [Cross referencing] here, I get a link to this Cross referencing

section. Of course, you don’t always want the name of the section to be the text of the

link, so you can also write [this section][Cross referencing] to get a link to the

section “Cross referencing” but display the text “this section.”

6 https://bookdown.org/yihui/bookdown
7 In any case, having cross-references to sections but not figures is still better than Word where the
feature is there but buggy to the point of uselessness, in my experience…

Chapter 2 Reproducible Analysis

https://bookdown.org/yihui/bookdown

65

This approach naturally only works if all section titles are unique. If they are not,

then you cannot refer to them simply by their names. Instead, you can tag them to give

them a unique identifier. You do this by writing the identifier after the title of the section.

To put a name after a section header, you write

Cross referencing {#section-cross-ref}

and then you can refer to the section using [this](#section-cross-ref). Here,

you do need the # sign in the identifier—that markup is leftover from HTML where

anchors use #.

�Bibliographies
Often, you want to cite books or papers in a report. You can of course always handle

citations manually, but a better approach is to have a file with the citation information

and then refer to it using markup tags. To add a bibliography, you use a tag in the YAML

header called bibliography:

...

bibliography: bibliography.bib

...

You can use several different formats here; see the R Markdown documentation8 for

a list. The suffix .bib is used for BibLaTeX. The format for the citation file is the same as

BibTeX, and you get citation information in that format from nearly every site that will

give you bibliography information.

To cite something from the bibliography, you use [@smith04] where smith04 is the

identifier used in the bibliography file. You can cite more than one paper inside square

brackets separated by a semicolon, [@smith04; doe99], and you can add text such as

chapters or page numbers [@smith04, chapter 4]. To suppress the author name(s) in

the citation, say when you mention the name already in the text, you put - before the @ so

you write As Smith showed [-@smith04].... For in-text citations, similar to \citet{} in

natbib, you just leave out the brackets, @smith04 showed that..., and you can combine

that with additional citation information as @smith04 [chapter 4] showed that....

8 http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html

Chapter 2 Reproducible Analysis

http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html

66

To specify the citation style to use, you use the csl tag in the YAML header:

...

bibliography: bibliography.bib

csl: biomed-central.csl

...

Check out the list of citation styles at https://github.com/citation-style-

language/styles for a large number of different formats. There should be most if not all

your heart desires.

�Controlling the Output (Templates/Stylesheets)
The pandoc tool has a powerful mechanism for formatting the documents it generates.

This is achieved using stylesheets in CSS for HTML and from using templates for how

to format the output for all output formats. The template mechanism lets you write an

HTML or LaTeX document, say, that determines where various part of the text goes and

where variables from the YAML header are used. This mechanism is far beyond what we

can cover in this chapter, but I just want to mention it if you want to start writing papers

using R Markdown. You can do this; you just need to have a template for formatting the

document in the style a journal wants. Often, they provide LaTeX templates, and you can

modify these to work with Markdown.

There isn’t much support for this in RStudio, but for HTML documents, you can use

the Output Options… (click the tooth wheel) to choose different output formatting.

�Running R Code in Markdown Documents
The formatting so far is all Markdown (and YAML). Where it combines with R and makes

it R Markdown is through knitr. When you format a document, the first step evaluates

R code to create a Markdown document—this translates an .Rmd document into an .md

document, but this intermediate document is deleted afterward unless you explicitly tell

RStudio not to do it. It does that by running all the R code you want to be executed and

putting it into the Markdown document.

Chapter 2 Reproducible Analysis

https://github.com/citation-style-language/styles
https://github.com/citation-style-language/styles

67

The simplest R code you can evaluate is part of a text. If you want an R expression

evaluated, you use backticks but add r right after the first. So to evaluate 2 + 2 and put

the result in your Markdown document, you write `r and then the expression 2 + 2

and get the result 4 inserted into the text. You can write any R expression there to get

it evaluated. It is useful for inserting short summary statistics like means and standard

deviations directly into the text and ensuring that the summaries are always up to date

with the actual data you are analyzing.

For longer chunks of code, you use the block quotes, the three backticks. Instead of

just writing

```r

2 + 2

```

which will only display the code (highlighted as R code), you put the r in curly

brackets.

This will insert the code in your document but also show the result of evaluating it

right after the code block. The boilerplate code you get when creating an R Markdown

document in RStudio shows you examples of this (see Figure 2-4).

Figure 2-4.  Code chunk in RStudio

You can name code chunks by putting a name right after r. You don’t have to name

all chunks—and if you have a lot of chunks, you probably won’t bother naming all of

them—but if you give them a name, they are easily located by clicking the structure

button in the bar below the document (see Figure 2-5). You can also use the name to

refer to chunks when caching results, which we will cover later.

Chapter 2 Reproducible Analysis

68

Figure 2-5.  Document structure with chunk names

You should see a toolbar to the right on every code chunk (see Figure 2-6). The

rightmost option, the “play” button, will let you evaluate the chunk. The results will

be shown below the chunk unless you have disabled that option. The middle button

evaluates all previous chunks down to and including the current one. This is useful when

the current chunk depends on previous results. The tooth wheel lets you set options for

the chunk.

Figure 2-6.  Code chunk toolbar

The chunk options (see Figure 2-7) control the output you get when evaluating a

code chunk. The Output drop-down selects what output the chunk should generate in

the resulting document, while the Show warnings and Show messages selection buttons

determine whether warnings and messages, respectively, should be included in the

output. The “Use paged tables” changes how tables are displayed, splitting large tables

into pages you can click through. The Use custom figure size is used to determine the

size of figures you generate—but we return to these later.

Chapter 2 Reproducible Analysis

69

Figure 2-7.  Code chunk options

If you modify these options, you will see that the options are included in the top line

of the chunk. You can of course also manually control the options here, and there are

more options than what you can control with the dialog in the GUI. You can read the

knitr documentation9 for all the details.

The dialog will handle most of your needs, though, except for displaying tables or

when we want to cache results of chunks, both of which we return to later.

Using chunks when analyzing data (without
compiling documents)
Before continuing, though, I want to stress that working with data analysis in an R

Markdown document is useful for more than just creating documents. I personally

do all my analysis in these documents because I can combine documentation and

code, regardless of whether I want to generate a report at the end. The combination of

explanatory text and analysis code is just convenient to have.

The way code chunks are evaluated as separate pieces of analysis is also part of this.

You can evaluate chunks individually, or all chunks down to a point, and I find that very

convenient when doing an analysis. There are keyboard shortcuts for evaluating all

chunks, all previous chunks, or just the current chunk (see Figure 2-8), which makes it

very easy to write a bit of code for an exploratory analysis and evaluating just that piece

of code. If you are familiar with Jupyter, or similar notebooks, you will recognize the

workflow.

9 http://yihui.name/knitr/

Chapter 2 Reproducible Analysis

http://yihui.name/knitr/

70

Figure 2-8.  Options for evaluating chunks

Even without the option for generating final documents from a Markdown

document, I would still be using them just for this feature.

�Caching Results
Sometimes, part of an analysis is very time-consuming. Here, I mean in CPU time, not

thinking time—it is also true for thinking time, but you don’t need to think the same

things over again and again. If you are not careful, however, you will need to run the

same analysis on the computer again and again.

If you have such very time-consuming steps in your analysis, then compiling

documents will be very slow. Each time you compile the document, all the analysis

is done from scratch. This is the functionality you want since this makes sure that the

analysis does not have results left over from code that isn’t part of the document, but it

limits the usability of the workflows if they take hours to compile.

To alleviate this, you can cache the results of a chunk. To cache the result of a chunk,

you should add the option cache=TRUE to it. This means adding that in the header of the

chunk similar to how output options are added. You will need to give the chunk a name

to use this. Chunks without names are actually given a default name, but this name

changes according to how many nameless chunks you have earlier in the document, and

you can’t have that if you use the name to remember results. So you need to name it.

Chapter 2 Reproducible Analysis

71

A named chunk that is set to be cached will not only be when you compile a document if

it has changed since the last time it was evaluated. If it hasn’t been changed, the results

of evaluating it will just be reused.

R cannot cache everything, so if you load libraries in a cached chunk, they won’t be

loaded unless the chunk is evaluating, so there are some limits to what you can do, but

generally it is a very useful feature.

Since other chunks can depend on a cached chunk, there can also be problems

if a cached chunk depends on another chunk, cached or not. The chunk will only be

reevaluated if you have changed the code inside it, so if it depends on something you

have changed, it will remember results based on outdated data. You have to be careful

about that.

You can set up dependencies between chunks, though, to fix this problem. If a

chunk is dependent on the results of another chunk, you can specify this using the

chunk option dependson=other. Then, if the chunk other (and you need to name such

chunks) is modified, the cache is considered invalid, and the depending chunk will be

evaluated again.

�Displaying Data
Since you are writing a report on data analysis, you naturally want to include some

results. That means displaying data in some form or other.

You can simply include the results of evaluating R expressions in a code chunk,

but often you want to display the data using tables or graphics, especially if the report

is something you want to show to people not familiar with R. Luckily, both tables and

graphics are easy to display.

To make a table, you can use the function kable() from the knitr package. Try

adding a chunk like this to the boilerplate document you have:

library(knitr)

kable(head(cars))

The library(knitr) imports functions from the knitr package so you get access to

the kable() function. You don’t need to include it in every chunk you use kable() in,

just in any chunk before you use the function—the setup chunk is a good place—but

adding it in the chunk you write now will work.

Chapter 2 Reproducible Analysis

72

The function kable() will create a table from a data frame in the Markdown format,

so it will be formatted in the later step of the document compilation. Don’t worry too

much about the details about the code here; the head() function just picks out the first

lines of the cars data so the table doesn’t get too long.

Using kable() should generate a table in your output document. Depending on your

setup, you might have to give the chunk the output option result="asis" to make it

work, but it usually should give you a table even without this.

We will cover how to summarize data in later chapters. Usually, you don’t want to

make tables of full data sets, but for now, you can try just getting the first few lines of the

cars data.

Adding graphics to the output is just as simple. You simply make a plot in a code

chunk, and the result will be included in the document you generate. The boilerplate

R Markdown document already gives you an example of this. We will cover plotting in

much more detail later.

�Exercises
�Create an R Markdown Document
Go to the File… menu and create an R Markdown document. Read through the

boilerplate text to see how it is structured. Evaluate the chunks. Compile the document.

�Different Output
Create from the same R Markdown document an HTML document, a document, and a

Word document.

�Caching
Add a cached code chunk to your document. Make the code there sample random

numbers, for example, using rnorm(). When you recompile the document, you should

see that the random numbers do not change.

Make another cached chunk that uses the results of the first cached chunk. Say,

compute the mean of the random numbers. Set up dependencies and see that if you

modify the first chunk the second chunk gets evaluated.

Chapter 2 Reproducible Analysis

73
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_3

CHAPTER 3

Data Manipulation
Data science is as much about manipulating data as it is about fitting models to data.

Data rarely arrives in a form that we can directly feed into the statistical models or

machine learning algorithms we want to analyze them with. The first stages of data

analysis are almost always figuring out how to load the data into R and then figuring out

how to transform it into a shape you can readily analyze.

�Data Already in R
There are some data sets already built into R or available in R packages. Those are useful

for learning how to use new methods—if you already know a data set and what it can tell

you, it is easier to evaluate how a new method performs—or for benchmarking methods

you implement. They are of course less helpful when it comes to analyzing new data.

Distributed together with R is the package dataset. We can load the package into R

using the library() function and get a list of the data sets within it, together with a short

description of each, like this:

library(datasets)

library(help = "datasets")

To load an actual data set into R’s memory, use the data() function. The data sets

are all relatively small, so they are ideal for quickly testing code you are working with. For

example, to experiment with plotting x-y plots (Figure 3-1), you could use the cars data

set that consists of only two columns, a speed and a breaking distance:

data(cars)

head(cars)

https://doi.org/10.1007/978-1-4842-8155-0_3#DOI

74

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

cars %>% plot(dist ~ speed, data = .)

I used the %>% pipe operator here, because we need to pass the left-hand side to the

data argument in plot. With |> we can only pass the left-hand side to the first argument

in the right-hand side function call, but with %>% we can use "." to move the input to

another parameter. Generally, I will use the two pipe operators interchangeably in this

chapter, except for cases where one is more convenient than another, like before, and

then point out why that is.

Don’t worry about the plotting function for now; we will return to plotting in the next

chapter.

If you are developing new analysis or plotting code, usually one of these data sets is

useful for testing it.

Another package with several useful data sets is mlbench. It contains data sets for

machine learning benchmarks, so these data sets are aimed at testing how new methods

perform on known data sets. This package is not distributed together with R, but you can

install it, load it, and get a list of the data sets within it like this:

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

Figure 3-1.  Plot of the cars data set

Chapter 3 Data Manipulation

75

install.packages("mlbench")

library(mlbench)

library(help = "mlbench")

In this book, I will use data from one of those two packages when giving examples of

data analyses.

The packages are convenient for me for giving examples, and if you are developing

new functionality for R, they are suitable for testing, but if you are interested in data

analysis, presumably you are interested in your own data, and there they are of course

useless. You need to know how to get your own data into R. We get to that shortly, but

first I want to say a few words about how you can examine a data set and get a quick

overview.

�Quickly Reviewing Data
Earlier, I have already used the function head(). This function shows the first n lines of a

data frame where n is an option with default 6. You can use another n to get more or less:

cars |> head(3)

speed dist

1 4 2

2 4 10

3 7 4

The similar function tail() gives you the last n lines:

cars %>% tail(3)

speed dist

48 24 93

49 24 120

50 25 85

Chapter 3 Data Manipulation

76

To get summary statistics for all the columns in a data frame, you can use the

summary() function:

cars %>% summary

speed dist

Min. : 4.0 Min. : 2.00

1st Qu.:12.0 1st Qu.: 26.00

Median :15.0 Median : 36.00

Mean :15.4 Mean : 42.98

3rd Qu.:19.0 3rd Qu.: 56.00

Max. :25.0 Max. :120.00

It isn’t that exciting for the cars data set, so let us see it on another built-in data set:

data(iris)

iris |> summary()

Sepal.Length Sepal.Width Petal.Length

Min. :4.300 Min. :2.000 Min. :1.000

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600

Median :5.800 Median :3.000 Median :4.350

Mean :5.843 Mean :3.057 Mean :3.758

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100

Max. :7.900 Max. :4.400 Max. :6.900

Petal.Width Species

Min. :0.100 setosa :50

1st Qu.:0.300 versicolor:50

Median :1.300 virginica :50

Mean :1.199

3rd Qu.:1.800

Max. :2.500

The summary you get depends on the types the columns have. Numerical data is

summarized by their quantiles, while categorical and boolean data are summarized

by counts of each category or TRUE/FALSE values. In the iris data set, there is one

column, Species, that is categorical, and its summary is the count of each level.

Chapter 3 Data Manipulation

77

To see the type of each column, you can use the str() function. This gives you the

structure of a data type and is much more general than we need here, but it does give you

an overview of the types of columns in a data frame and is very useful for that:

data(iris)

iris |> str()

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 ..

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 ..

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0...

$ Species : Factor w/ 3 levels "setosa","v"..

�Reading Data
There are several packages for reading data in different file formats, from Excel to JSON to

XML and so on. If you have data in a particular format, try to Google for how to read it into

R. If it is a standard data format, the chances are that there is a package that can help you.

Quite often, though, data is available in a text table of some kind. Most tools can

import and export those. R has plenty of built-in functions for reading such data. Use

?read.table

to get a list of them. These functions are all variations of the read.table() function,

just using different default options. For instance, while read.table() assumes that the

data is given in whitespace-separated columns, the read.csv() function assumes that

the data is represented as comma-separated values, so the difference between the two

functions is in what they consider being separating data columns.

The read.table() function takes a lot of arguments. These are used to adjust it to

the specific details of the text file you are reading. (The other functions take the same

arguments, they just have different defaults.) The options I find I use the most are these:

•	 header: This is a boolean value telling the function whether it should

consider the first line in the input file a header line. If set to true,

it uses the first line to set the column names of the data frame it

constructs; if it is set to false, the first line is interpreted as the first

row in the data frame.

Chapter 3 Data Manipulation

78

•	 col.names: If the first line is not used to specify the header, you can

use this option to name the columns. You need to give it a vector of

strings with a string for each column in the input.

•	 dec: This is the decimal point used in numbers. I get spreadsheets

that use both “.” and “,” for decimal points, so this is an important

parameter for me. How important it will be for you probably depends

on how many nationalities you collaborate with.

•	 comment.char: By default, the function assumes that “#” is the start

of a comment and ignores the rest of a line when it sees it. If “#” is

actually used in your data, you need to change this. The same goes if

comments are indicated with a different symbol.

•	 colClasses: This lets you specify which type each column should

have, so here you can specify that some columns should be factors,

and others should be strings. You have to specify all columns, though,

which is cumbersome and somewhat annoying since R, in general, is

pretty good at determining the right types for a column. The option

will only take you so far in any case. You can tell it that a column

should be an ordered factor but not what the levels should be and

such. I mainly use it for specifying which columns should be factors

and which should be strings, but using it will also speed up the

function for large data sets since R then doesn’t have to figure out the

column types itself.

For reading in tables of data, read.table() and friends will usually get you

there with the right options. If you are having problems reading data, check the

documentation carefully to see if you cannot tweak the functions to get the data loaded.

It isn’t always possible, but it usually is. When it really isn’t, I usually give up and write a

script in another language to format the data into a form I can load into R. For raw text

processing, R isn’t really the right tool, and rather than forcing all steps in an analysis

into R, I will be pragmatic and choose the best tools for the task, and R isn’t always it. But

before taking drastic measures, and go programming in another language, you should

carefully check if you cannot tweak one of the read.table() functions first.

Chapter 3 Data Manipulation

79

�Examples of Reading and Formatting Data Sets
Rather than discussing the import of data in the abstract, let us now see a couple of

examples of how data can be read in and formatted.

�Breast Cancer Data set
As a first example of reading data from a text file, we consider the BreastCancer data set

from mlbench. Then we have something to compare our results with. The first couple of

lines from this data set are

library(mlbench)

data(BreastCancer)

BreastCancer %>% head(3)

Id Cl.thickness Cell.size Cell.shape

1 1000025 5 1 1

2 1002945 5 4 4

3 1015425 3 1 1

Marg.adhesion Epith.c.size Bare.nuclei

1 1 2 1

2 5 7 10

3 1 2 2

Bl.cromatin Normal.nucleoli Mitoses Class

1 3 1 1 benign

2 3 2 1 benign

3 3 1 1 benign

The data can be found at https://archive.ics.uci.edu/ml/datasets/ Breast+C

ancer+Wisconsin+(Original) where there is also a description of the data. The URL to

the actual data is https://archive.ics.uci.edu/ml/machine-learning-databases/

breast-cancer-wisconsin/breast-cancer-wisconsin.data, but since this URL is too

long to fit on the pages of this book, I have saved it in a variable, data_url, that I will use

in the following code. To run the code yourself, you simply need to set the variable to

the URL:

data_url <- "https://..."

Chapter 3 Data Manipulation

https://archive.ics.uci.edu/ml/datasets/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data

80

To get the data downloaded, we could go to the URL and save the file. Explicitly

downloading data outside of our R code has pros and cons. It is pretty simple, and we

can have a look at the data before we start parsing it, but on the other hand, it gives us

a step in the analysis workflow that is not automatically reproducible. Even if the URL

is described in our documentation and at a link that doesn’t change over time, it is a

manual step in the workflow—and a step that people could make mistakes in.

Instead, I am going to read the data directly from the URL. Of course, this is also a

risky step in a workflow because I am not in control of the server the data is on, and I

cannot guarantee that the data will always be there and that it won’t change over time.

It is a bit of a risk either way. I will usually add the code to my workflow for downloading

the data, but I will also store the data in a file. If I leave the code for downloading the data

and saving it to my local disk in a cached Markdown chunk, it will only be run the one

time I need it.

I can read the data and get it as a vector of lines using the readLines() function. I

can always use that to scan the first one or two lines to see what the file looks like:

lines <- readLines(data_url) lines[1:5]

[1] "1000025,5,1,1,1,2,1,3,1,1,2"

[2] "1002945,5,4,4,5,7,10,3,2,1,2"

[3] "1015425,3,1,1,1,2,2,3,1,1,2"

[4] "1016277,6,8,8,1,3,4,3,7,1,2"

[5] "1017023,4,1,1,3,2,1,3,1,1,2"

For this data, it seems to be a comma-separated values file without a header line. So

I save the data with the “.csv” suffix. None of the functions for writing or reading data in

R cares about the suffixes, but it is easier for myself to remember what the file contains

that way:

writeLines(lines, con = "data/raw-breast-cancer.csv")

For that function to succeed, I first need to make a data/ directory. I suggest you

have a data/ directory for all your projects, always, since you want your directories and

files structured when you are working on a project.

The file I just wrote to disk can then read in using the read.csv() function:

raw_breast_cancer <- read.csv("data/raw-breast-cancer.csv") raw_breast_

cancer |> head(3)

Chapter 3 Data Manipulation

81

X1000025 X5 X1 X1.1 X1.2 X2 X1.3 X3 X1.4 X1.5

1 1002945 5 4 4 5 7 10 3 2 1

2 1015425 3 1 1 1 2 2 3 1 1

3 1016277 6 8 8 1 3 4 3 7 1

X2.1

1 2

2 2

3 2

Of course, I wouldn’t write exactly these steps into a workflow. Once I have

discovered that the data at the end of the URL is a “.csv” file, I would just read it directly

from the URL:

raw_breast_cancer <- read.csv(data_url)

raw_breast_cancer |> head(3)

X1000025 X5 X1 X1.1 X1.2 X2 X1.3 X3 X1.4 X1.5

1 1002945 5 4 4 5 7 10 3 2 1

2 1015425 3 1 1 1 2 2 3 1 1

3 1016277 6 8 8 1 3 4 3 7 1

X2.1

1 2

2 2

3 2

The good news is that this data looks similar to the BreastCancer data. The bad

news is that it appears that the first line in BreastCancer seems to have been turned into

column names in raw_breast_cancer. The read.csv() function interpreted the first line

as a header. We can fix this using the header parameter:

raw_breast_cancer <- read.csv(data_url, header = FALSE)

raw_breast_cancer |> head(3)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

1 1000025 5 1 1 1 2 1 3 1 1 2

2 1002945 5 4 4 5 7 10 3 2 1 2

3 1015425 3 1 1 1 2 2 3 1 1 2

Chapter 3 Data Manipulation

82

Now the first line is no longer interpreted as header names. That is good, but the

names we actually get are not that informative about what the columns contain.

If you read the description of the data from the website, you can see what each

column is and choose names that are appropriate. I am going to cheat here and just take

the names from the BreastCancer data set.

I can set the names explicitly like this:

names(raw_breast_cancer) <- names(BreastCancer)

raw_breast_cancer |> head(3)

Id Cl.thickness Cell.size Cell.shape

1 1000025 5 1 1

2 1002945 5 4 4

3 1015425 3 1 1

Marg.adhesion Epith.c.size Bare.nuclei

1 1 2 1

2 5 7 10

3 1 2 2

Bl.cromatin Normal.nucleoli Mitoses Class

1 3 1 1 2

2 3 2 1 2

3 3 1 1 2

or I could set them where I load the data:

raw_breast_cancer <- read.csv(data_url, header = FALSE,

 col.names = names(BreastCancer))

raw_breast_cancer |> head(3)

Id Cl.thickness Cell.size Cell.shape

1 1000025 5 1 1

2 1002945 5 4 4

3 1015425 3 1 1

Marg.adhesion Epith.c.size Bare.nuclei

1 1 2 1

2 5 7 10

3 1 2 2

Chapter 3 Data Manipulation

83

Bl.cromatin Normal.nucleoli Mitoses Class

1 3 1 1 2

2 3 2 1 2

3 3 1 1 2

Okay, we are getting somewhere. The Class column is not right. It encodes the

classes as numbers (the web page documentation specifies 2 for benign and 4 for

malignant), but in R it would be more appropriate with a factor.

We can translate the numbers into a factor by first translating the numbers into

strings and then the strings into factors. I don’t like modifying the original data—even if I

have it in a file—so I am going to copy it first and then do the modifications:

formatted_breast_cancer <- raw_breast_cancer

It is easy enough to map the numbers to strings using ifelse():

map_class <- function(x) {

 ifelse(x == 2, "bening",

 ifelse(x == 4, "malignant",

 NA))

}

mapped <- formatted_breast_cancer$Class %>% map_class

mapped |> table()

mapped

bening malignant

458 241

I could have made it simpler with

map_class <- function(x) {

ifelse(x == 2, "bening", "malignant")

}

mapped <- formatted_breast_cancer$Class %>% map_class

mapped |> table()

mapped

bening malignant

458 241

Chapter 3 Data Manipulation

84

since 2 and 4 are the only numbers in the data

formatted_breast_cancer$Class |> unique()

[1] 2 4

but it is always a little risky to assume that there are no unexpected values, so I

always prefer to have “weird values” as something I handle explicitly by setting it to NA.

Nested ifelse() are easy enough to program, but if there are many different

possible values, it also becomes somewhat cumbersome. Another option is to use a table

to map between values. To avoid confusion between a table as the one we are going

to implement and the function table(), which counts how many times a given value

appears in a vector, I am going to call the table we create a dictionary. A dictionary is a

table where you can look up words, and that is what we are implementing.

For this, we can use named values in a vector. Remember that we can index in a

vector both using numbers and using names.

You can create a vector where you use names as the indices. Use the keys you want

to map from as the indices and the names you want as results as the values. We want

to map from numbers to strings which pose a small problem. If we index into a vector

with numbers, R will think we want to get positions in the vector. If we make the vector

v <- c(2 = "benign", 4 = "malignant")—which we can’t, it is a syntax error and for

good reasons—then how should v[2] be interpreted? Do we want the value at index 2,

"malignant", or the value that has key 2, "benign"? When we use a vector as a table, we

need to have strings as keys. That also means that the numbers in the vector we want to

map from should be converted to strings before we look up in the dictionary. The code

looks like this:

dict <- c("2" = "benign", "4" = "malignant")

map_class <- function(x) dict[as.character(x)]

mapped <- formatted_breast_cancer$Class |> map_class()

mapped |> table()

mapped

benign malignant

458 241

That worked fine, but if we look at the actual vector instead of summarizing it, we

will see that it looks a little strange:

Chapter 3 Data Manipulation

85

mapped[1:5]

2 2 2 2 2

"benign" "benign" "benign" "benign" "benign"

This is because when we create a vector by mapping in this way, we preserve the

names of the values. Remember that the dictionary we made to map our keys to values

has the keys as names; these names are passed on to the resulting vector. We can get rid

of them using the unname() function:

library(magrittr)

mapped %<>% unname

mapped[1:5]

[1] "benign" "benign" "benign" "benign" "benign"

Here, I used the magrittr %<>% operator to both pipe and rename mapped;

alternatively, we could have used mapped <- mapped %>% unname or mapped <- mapped

|> unname().

You don’t need to remove these names, they are not doing any harm in themselves,

but some data manipulation can be slower when your data is dragging names along.

Now we just need to translate this vector of strings into a factor, and we will have our

Class column.

The entire reading of data and formatting can be done like this:

Download data and put it in a variable

raw_breast_cancer <- read.csv(

 data_url, header = FALSE,

 col.names = names(BreastCancer))

Get a copy of the raw data that we can transform

formatted_breast_cancer <- raw_breast_cancer

Reformat the Class variable

formatted_breast_cancer$Class <-

 formatted_breast_cancer$Class %>% {

 c("2" = "benign", "4" = "malignant")[as.character(.)]

 } |> factor(levels = c("benign", "malignant"))

Chapter 3 Data Manipulation

86

In the last statement, we use the %>% operator so we can put an expression in curly

braces. In there, the incoming class is the “.” that we translate to a character and then

use to look up the name that we want. Then we pipe the names through factor() to get

the factor that we went for. We can use either %>% or |> here. We don’t have to remove the

names with unname() when we put the result back into formatted_breast_cancer,

so we don’t bother.

It is not strictly necessary to specify the levels in the factor() call, but I prefer always

to do so explicitly. If there is an unexpected string in the input to factor(), it would end

up being one of the levels, and I wouldn’t know about it until much later. Specifying the

levels explicitly alleviates that problem.

Now, you don’t want to spend time parsing input data files all the time, so I would

recommend putting all the code you write to read in data and transforming it into the

form you want in a cached code chunk in an R Markup document. This way, you will

only evaluate the code when you change it.

You can also explicitly save data using the save() function:

formatted_breast_cancer %>%

 save(file = "data/formatted-breast-cancer.rda")

Here, I use the suffix ".rda" for the data. It stands for R data, and your computer will

probably recognize it. If you click a file with that suffix, it will be opened in RStudio (or

whatever tool you use to work on R). The actual R functions for saving and loading data

do not care what suffix you use, but it is easier to recognize the files for what they are if

you stick to a fixed suffix.

The data is saved together with the name of the data frame, so when you load it

again, using the load() function, you don’t have to assign the loaded data to a variable. It

will be loaded into the name you used when you saved the data:

load("data/formatted-breast-cancer.rda")

This is both good and bad. I would probably have preferred to control which name

the data is assigned to so I have explicit control over the variables in my code, but save()

and load() are designed to save more than one variable, so this is how they work.

I personally do not use these functions that much. I prefer to write my analysis

pipelines in Markdown documents, and there it is easier just to cache the import code.

Chapter 3 Data Manipulation

87

�Boston Housing Data Set
For the second example of loading data, we take another data set from the mlbench

package, the BostonHousing data, which contains information about crime rates and

some explanatory variables we can use to predict crime rates:

library(mlbench)

data(BostonHousing)

str(BostonHousing)

'data.frame': 506 obs. of 14 variables:

$ crim : num 0.00632 0.02731 0.02729 0.03237..

$ zn : num 18 0 0 0 0 0 12.5 12.5 ...

$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7..

$ chas : Factor w/ 2 levels "0","1": 1 1 1 1 ..

$ nox : num 0.538 0.469 0.469 0.458 0.458 0..

$ rm : num 6.58 6.42 7.18 7 ...

$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 6..

$ dis : num 4.09 4.97 4.97 6.06 ...

$ rad : num 1 2 2 3 3 3 5 5 ...

$ tax : num 296 242 242 222 222 222 311 311..

$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 1..

$ b : num 397 397 393 395 ...

$ lstat : num 4.98 9.14 4.03 2.94 ...

$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22...

As before, the link to the actual data is pretty long, so I will give you a tinyURL to

it, http://tinyurl.com/zq2u8vx, and I have saved the original URL in the variable

data_url.

Chapter 3 Data Manipulation

http://tinyurl.com/zq2u8vx

88

I have already looked at the file at the end of the URL and seen that it consists of

whitespace-separated columns of data, so the function we need to load it is read.

table():

boston_housing <- read.table(data_url)

str(boston_housing)

'data.frame': 506 obs. of 14 variables:

$ V1 : num 0.00632 0.02731 0.02729 0.03237 ...

$ V2 : num 18 0 0 0 0 0 12.5 12.5 ...

$ V3 : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 ..

$ V4 : int 0 0 0 0 0 0 0 0 ...

$ V5 : num 0.538 0.469 0.469 0.458 0.458 0.458..

$ V6 : num 6.58 6.42 7.18 7 ...

$ V7 : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 ..

$ V8 : num 4.09 4.97 4.97 6.06 ...

$ V9 : int 1 2 2 3 3 3 5 5 ...

$ V10: num 296 242 242 222 222 222 311 311 ...

$ V11: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 ..

$ V12: num 397 397 393 395 ...

$ V13: num 4.98 9.14 4.03 2.94 ...

$ V14: num 24 21.6 34.7 33.4 36.2 28.7 22.9 27..

If we compare the data that we have loaded with the data from mlbench

str(BostonHousing)

'data.frame': 506 obs. of 14 variables:

$ crim : num 0.00632 0.02731 0.02729 0.03237..

$ zn : num 18 0 0 0 0 0 12.5 12.5 ...

$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7..

$ chas : Factor w/ 2 levels "0","1": 1 1 1 1 ..

$ nox : num 0.538 0.469 0.469 0.458 0.458 0..

$ rm : num 6.58 6.42 7.18 7 ...

$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 6..

$ dis : num 4.09 4.97 4.97 6.06 ...

$ rad : num 1 2 2 3 3 3 5 5 ...

$ tax : num 296 242 242 222 222 222 311 311..

Chapter 3 Data Manipulation

89

$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 1..

$ b : num 397 397 393 395 ...

$ lstat : num 4.98 9.14 4.03 2.94 ...

$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22...

we see that we have integers and numeric data in our imported data but that it

should be a factor for the chas variable and numeric for all the rest. We can use the

colClasses parameter for read.table() to fix this. We just need to make a vector of

strings for the classes, a vector that is "numeric" for all columns except for the "chas"

column, which should be "factor":

col_classes <- rep("numeric", length(BostonHousing))

col_classes[which("chas" == names(BostonHousing))] <- "factor"

We should also name the columns, but again we can cheat and get the names from

BostonHousing:

boston_housing <- read.table(data_url,

 col.names = names(BostonHousing),

 colClasses = col_classes)

str(boston_housing)

'data.frame': 506 obs. of 14 variables:

$ crim : num 0.00632 0.02731 0.02729 0.03237..

$ zn : num 18 0 0 0 0 0 12.5 12.5 ...

$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7..

$ chas : Factor w/ 2 levels "0","1": 1 1 1 1 ..

$ nox : num 0.538 0.469 0.469 0.458 0.458 0..

$ rm : num 6.58 6.42 7.18 7 ...

$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 6..

$ dis : num 4.09 4.97 4.97 6.06 ...

$ rad : num 1 2 2 3 3 3 5 5 ...

$ tax : num 296 242 242 222 222 222 311 311..

$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 1..

$ b : num 397 397 393 395 ...

$ lstat : num 4.98 9.14 4.03 2.94 ...

$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22...

Chapter 3 Data Manipulation

90

The levels in the "chas" factor are “0” and “1.” It is not really good levels as they are

very easily confused with numbers—they will print like numbers—but they are not.

The numerical values in the factor are actually 1 for “0” and 2 for “1”, so that can be

confusing. But it is the same levels as the mlbench data frame, so I will just leave it the

way it is as well.

�The readr Package
The read.table() class of functions will usually get you to where you want to go with

importing data. I use these in almost all my work. But there is a package aimed at

importing data that tries to both speed up the importing and being more consistent in

how data is imported, so I think I should mention it.

That package is the readr package:

library(readr)

It implements the same class of import functions as the built-in functions. It just

uses underscores except for dots in the function names. So where you would use read.

table(), the readr package gives you read_table(). Similarly, it gives you read_csv()

as a substitute for read.csv().

The readr package has different defaults for how to read data. Other than that, its

main call to fame is being faster than the built-in R functions. This shouldn’t concern

you much if you put your data import code in a cached code chunk, and in any case if

loading data is an issue, you need to read Chapter 5. The functions from readr do not

return data frames but the tibble data structure we briefly discussed before. For most

purposes, this makes no difference, so we can still treat the loaded data the same way.

Let us look at how to import data using the functions in the package. We return to the

breast cancer data we imported earlier. We downloaded the breast cancer data and put

it in a file called "data/raw-breast-cancer.csv", so we can try to read it from that file.

Obviously, since it is a CSV file, we will use the read_csv() function:

raw_breast_cancer <- read_csv("data/raw-breast-cancer.csv",

 show_col_types = FALSE)

Chapter 3 Data Manipulation

https://doi.org/10.1007/978-1-4842-8155-0_5

91

New names:

• `1` -> `1...3`

• `1` -> `1...4`

• `1` -> `1...5`

• `2` -> `2...6`

• `1` -> `1...7`

• `1` -> `1...9`

• `1` -> `1...10`

• `2` -> `2...11`

raw_breast_cancer %>% head(3)

A tibble: 3 × 11

`1000025` `5` `1...3` `1...4` `1...5` `2...6`

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1002945 5 4 4 5 7

2 1015425 3 1 1 1 2

3 1016277 6 8 8 1 3

... with 5 more variables: `1...7` <chr>,

`3` <dbl>, `1...9` <dbl>, `1...10` <dbl>,

`2...11` <dbl>

(The show_col_types = FALSE option just says that we don’t want to see inferred

column types; it removes a bunch of output lines that we aren’t interested in here. If you

want to see what the function prints, you can try it out for yourself.)

The function works similar to the read.csv() function and interprets the first line as

the column names. The warning we get, and the weird column names, is because of that.

We don’t want this, but this function doesn’t have the option to tell it that the first line is

not the names of the columns. Instead, we can inform it what the names of the columns

are, and then it will read the first line as actual data:

raw_breast_cancer <- read_csv("data/raw-breast-cancer.csv",

 col_names = names(BreastCancer),

 show_col_types = FALSE)

raw_breast_cancer %>% head(3)

Chapter 3 Data Manipulation

92

A tibble: 3 × 11

Id Cl.thickness Cell.size Cell.shape

<dbl> <dbl> <dbl> <dbl>

1 1000025 5 1 1

2 1002945 5 4 4

3 1015425 3 1 1

... with 7 more variables: Marg.adhesion <dbl>,

Epith.c.size <dbl>, Bare.nuclei <chr>,

Bl.cromatin <dbl>, Normal.nucleoli <dbl>,

Mitoses <dbl>, Class <dbl>

Which functions you use to import data doesn’t much matter. You can use the built-

in functions or the readr functions. It is all up to you.

�Manipulating Data with dplyr
Data frames are ideal for representing data where each row is an observation of different

parameters you want to fit in models. Nearly all packages that implement statistical

models or machine learning algorithms in R work on data frames. But to actually

manipulate a data frame, you often have to write a lot of code to filter data, rearrange

data, summarize it in various ways, and such. A few years ago, manipulating data frames

required a lot more programming than actually analyzing data. That has improved

dramatically with the dplyr package (pronounced “d plier” where “plier” is pronounced

as “pliers”).

This package provides a number of convenient functions that let you modify data

frames in various ways and string them together in pipes using the %>% or |> operator. If

you import dplyr, you get a large selection of functions that let you build pipelines for

data frame manipulation using pipelines.

Earlier, we have formatted data by manipulating data columns by directly assigning

to them, like we did with formatted_breast_cancer$Class <- formatted_breast_

cancer$Class %>% ... statements. There is nothing inherently wrong with this

approach, but it breaks the idea of using pipelines to send data through a series of

transformations, if we have to assign the results to old or new columns from time to time.

With dplyr, you get functions that manipulate data frames as a whole, but where you can

still modify, add, or remove columns as you please.

Chapter 3 Data Manipulation

93

The transformations we did on the breast cancer set you can also do with dplyr,

going directly from the raw data set to the formatted data, without first creating the data

frame for the formatted data and then updating it. The way you would do it could look

like this:

library(dplyr)

Download data and put it in a variable

raw_breast_cancer <- read.csv("data/raw-breast-cancer.csv",

 header = FALSE,

 col.names = names(BreastCancer))

Reformat the Class column as a benign/malignant factor

formatted_breast_cancer <- raw_breast_cancer |>

 mutate(

 Class =

 case_when(Class == 2 ~ "benign", Class == 4 ~ "malignant") |>

 factor(levels = c("benign", "malignant"))

)

We still get the raw data by downloading it, we don’t have any other choice, but then

we take this raw data and pipe it through a function called mutate: raw_breast_cancer

|> mutate(...) to change the data frame. The mutate() function (see later) can modify

the columns in the data frame, and in the preceding expression, that is what we do.

With raw_breast_cancer |> mutate(Class = ...), we say that we want to change the

Class column to what is to the right of the = inside mutate. You can modify more than

one column with the same mutate, but we only change one. The right-hand side of = is

a bit complex because we are doing all the work we did earlier, translating 2 and 4 into

the strings "benign" and "malignant" and then making a factor out of that. It is not

that bad if we split the operation into two pieces, though. First, we use a dplyr function

called case_when. It works a bit like ifelse but is more general. Its input is a sequence

of so-called formulas—expressions on the form lhs ~ rhs—where the left-hand side

(lhs) should be a boolean expression and the right-hand side (rhs) the value you want if

the left-hand side is TRUE. Here, the expressions are simple: we test if Class is two or four

and return "benign" or "malignant" accordingly. This maps the 2/4 encoding to strings,

and we then pipe that through factor to get a factor out of that. The result is written

to the Class column. Notice that we can refer directly to the values in a column, here

Chapter 3 Data Manipulation

94

Class, using just the column name. We couldn’t do that in the preceding section where

we worked with the data frame’s Class column, where we had to write raw_breast_

cancer$Class to get at it. The functions in dplyr do some magic that lets you treat data

frame columns as if they were variables, and this makes the expressions you have to

write a bit more manageable.

�Some Useful dplyr Functions
I will not be able to go through all of the dplyr functionality in this chapter. In any case,

it is updated frequently enough that, by the time you read this, there is probably more

functionality than at the time I write. So you will need to check the documentation for

the package.

The following are just the functions I use on a regular basis. They all take a data

frame or equivalent as the first argument, so they work perfectly with pipelines. When

I say “data frame equivalent,” I mean that they take as an argument anything that

works like a data frame. Quite often, there are better representations of data frames

than the built-in data structure. For large data sets, it is often better to use a different

representation than the built-in data frame, something we will return to in Chapter 5.

Some alternative data structures are better because they can work with data on disk—

R’s data frames have to be loaded into memory, and others are just faster to do some

operations on. Or maybe they just print better. If you write the name of a data frame into

the R terminal, it will print the entire data. Other representations will automatically give

you just the head of the data.

The dplyr package has several representations. The tibbles, mentioned a few times

in the previous chapters, are a favorite of mine that I use just because I prefer the output

when I print such tables. You can translate a base data frame into a tibble using the

as_tibble function:

iris %>% as_tibble()

A tibble: 150 × 5

Sepal.Length Sepal.Width Petal.Length

<dbl> <dbl> <dbl>

1 5.1 3.5 1.4

2 4.9 3 1.4

3 4.7 3.2 1.3

Chapter 3 Data Manipulation

https://doi.org/10.1007/978-1-4842-8155-0_5

95

4 4.6 3.1 1.5

5 5 3.6 1.4

6 5.4 3.9 1.7

7 4.6 3.4 1.4

8 5 3.4 1.5

9 4.4 2.9 1.4

10 4.9 3.1 1.5

... with 140 more rows, and 2 more variables:

Petal.Width <dbl>, Species <fct>

It only prints the first ten rows, and it doesn’t print all columns. The output is a little

easier to read than if you get the entire data frame.

Anyway, let us get to the dplyr functions.

select—Pick selected columns and get rid of the rest.

The select() function selects columns of the data frame. It is equivalent to indexing

columns in the data.

You can use it to pick out a single column:

iris %>% as_tibble() %>% select(Petal.Width) %>% head(3)

A tibble: 3 × 1

Petal.Width

<dbl>

1 0.2

2 0.2

3 0.2

Or several columns:

iris %>% as_tibble() %>%

 select(Sepal.Width, Petal.Length) %>% head(3)

A tibble: 3 × 2

Sepal.Width Petal.Length

<dbl> <dbl>

1 3.5 1.4

2 3 1.4

3 3.2 1.3

Chapter 3 Data Manipulation

96

You can even give it ranges of columns:

iris %>% as_tibble() %>%

 select(Sepal.Length:Petal.Length) %>% head(3)

A tibble: 3 × 3

Sepal.Length Sepal.Width Petal.Length

<dbl> <dbl> <dbl>

1 5.1 3.5 1.4

2 4.9 3 1.4

3 4.7 3.2 1.3

but how that works depends on the order the columns are in for the data frame, and

it is not something I find all that useful.

I pipe iris through as_tibble() in these pipelines, because I like the formatting

more. You don’t have to, to use the dplyr functions, but if you don’t, you are working on

a base data frame instead of a tibble, and R will print your data slightly differently.

The real usefulness comes with pattern matching on column names. There are

different ways to pick columns based on the column names:

iris |> as_tibble() |> select(starts_with("Petal")) |> head(3)

A tibble: 3 × 2

Petal.Length Petal.Width

<dbl> <dbl>

1 1.4 0.2

2 1.4 0.2

3 1.3 0.2

iris |> as_tibble() |> select(ends_with("Width")) |> head(3)

A tibble: 3 × 2

Sepal.Width Petal.Width

<dbl> <dbl>

1 3.5 0.2

2 3 0.2

3 3.2 0.2

iris |> as_tibble() |> select(contains("etal")) |> head(3)

Chapter 3 Data Manipulation

97

A tibble: 3 × 2

Petal.Length Petal.Width

<dbl> <dbl>

1 1.4 0.2

2 1.4 0.2

3 1.3 0.2

iris |> as_tibble() |> select(matches(".t.")) |> head(3)

A tibble: 3 × 4

Sepal.Length Sepal.Width Petal.Length

<dbl> <dbl> <dbl>

1 5.1 3.5 1.4

2 4.9 3 1.4

3 4.7 3.2 1.3

... with 1 more variable: Petal.Width <dbl>

The matches function searches for a regular expression and in this example will

select any name that contains a t except if it is the first or last letter.

Check out the documentation for dplyr to see which options you have for selecting

columns.

You can also use select() to remove columns. The preceding examples select the

columns you want to include, but if you use “-” before the selection criteria, you will

remove, instead of include, the columns you specify:

iris %>% as_tibble() %>%

 select(-starts_with("Petal")) %>% head(3)

A tibble: 3 × 3

Sepal.Length Sepal.Width Species

<dbl> <dbl> <fct>

1 5.1 3.5 setosa

2 4.9 3 setosa

3 4.7 3.2 setosa

mutate—Add computed values to your data frame.

Chapter 3 Data Manipulation

98

The mutate() function lets you add a column to your data frame by specifying an

expression for how to compute it:

iris %>% as_tibble() %>%

 mutate(Petal.Width.plus.Length = Petal.Width + Petal.Length) %>%

 select(Species, Petal.Width.plus.Length) %>%

 head(3)

A tibble: 3 × 2

Species Petal.Width.plus.Length

<fct> <dbl>

1 setosa 1.6

2 setosa 1.6

3 setosa 1.5

You can add more columns than one by specifying them in the mutate() function:

iris %>% as_tibble() %>%

 mutate(Petal.Width.plus.Length = Petal.Width + Petal.Length,

 Sepal.Width.plus.Length = Sepal.Width + Sepal.Length) %>%

 select(Petal.Width.plus.Length, Sepal.Width.plus.Length) %>%

 head(3)

A tibble: 3 × 2

Petal.Width.plus.Length Sepal.Width.plus.Length

<dbl> <dbl>

1 1.6 8.6

2 1.6 7.9

3 1.5 7.9

but you could of course also just call mutate() several times in your pipeline.

transmute—Add computed values to your data frame and get rid of all other columns.

The transmute() function works just like the mutate() function, except it combines

it with a select() so the result is a data frame that only contains the new columns

you make:

iris %>% as_tibble() %>%

 transmute(Petal.Width.plus.Length = Petal.Width + Petal.Length) %>%

 head(3)

Chapter 3 Data Manipulation

99

A tibble: 3 × 1

Petal.Width.plus.Length

<dbl>

1 1.6

2 1.6

3 1.5

arrange—Reorder your data frame by sorting columns.

The arrange() function just reorders the data frame by sorting columns according to

what you specify:

iris %>% as_tibble() %>%

 arrange(Sepal.Length) %>%

 head(3)

A tibble: 3 × 5

Sepal.Length Sepal.Width Petal.Length

<dbl> <dbl> <dbl>

1 4.3 3 1.1

2 4.4 2.9 1.4

3 4.4 3 1.3

... with 2 more variables: Petal.Width <dbl>,

Species <fct>

By default, it orders numerical values in increasing order, but you can ask for

decreasing order using the desc() function:

iris %>% as_tibble() %>%

 arrange(desc(Sepal.Length)) %>%

 head(3)

A tibble: 3 × 5

Sepal.Length Sepal.Width Petal.Length

<dbl> <dbl> <dbl>

1 7.9 3.8 6.4

2 7.7 3.8 6.7

3 7.7 2.6 6.9

... with 2 more variables: Petal.Width <dbl>,

Species <fct>

Chapter 3 Data Manipulation

100

filter—Pick selected rows and get rid of the rest.

The filter() function lets you pick out rows based on logical expressions. You give

the function a predicate specifying what a row should satisfy to be included:

iris %>% as_tibble() %>%

 filter(Sepal.Length > 5) %>%

 head(3)

A tibble: 3 × 5

Sepal.Length Sepal.Width Petal.Length

<dbl> <dbl> <dbl>

1 5.1 3.5 1.4

2 5.4 3.9 1.7

3 5.4 3.7 1.5

... with 2 more variables: Petal.Width <dbl>,

Species <fct>

You can get as inventive as you want here with the logical expressions:

iris %>% as_tibble() %>%

 filter(Sepal.Length > 5 & Species == "virginica") %>%

 select(Species, Sepal.Length) %>%

 head(3)

A tibble: 3 × 2

Species Sepal.Length

<fct> <dbl>

1 virginica 6.3

2 virginica 5.8

3 virginica 7.1

group_by—Split your data into subtables based on values of some of the columns.

The group_by() function tells dplyr that you want to work on data separated into

different subsets.

By itself, it isn’t that useful. It just tells dplyr that, in future computations, it

should consider different subsets of the data as separate data sets. It is used with the

summarise() function where you want to compute summary statistics.

Chapter 3 Data Manipulation

101

You can group by one or more variables; you just specify the columns you want to

group by as separate arguments to the function. It works best when grouping by factors

or discrete numbers; there isn’t much fun in grouping by real numbers:

iris %>% as_tibble() %>% group_by(Species) %>% head(3)

A tibble: 3 × 5

Groups: Species [1]

Sepal.Length Sepal.Width Petal.Length

<dbl> <dbl> <dbl>

1 5.1 3.5 1.4

2 4.9 3 1.4

3 4.7 3.2 1.3

... with 2 more variables: Petal.Width <dbl>,

Species <fct>

Not much is happening here. You have restructured the data frame such that there

are groupings, but until you do something with the new data, there isn’t much to see.

The power of group_by() is the combination with the summarise() function.

summarise/summarize—Calculate summary statistics.

The spelling of this function depends on which side of the pond you are on. It is the

same function regardless of how you spell it.

The summarise() function is used to compute summary statistics from your data

frame. It lets you compute different statistics by expressing what you want to summarize.

For example, you can ask for the mean of values:

iris %>%

 summarise(Mean.Petal.Length = mean(Petal.Length),

 Mean.Sepal.Length = mean(Sepal.Length))

Mean.Petal.Length Mean.Sepal.Length

1 3.758 5.843333

Where it is really powerful is in the combination with group_by(). There, you can

split the data into different groups and compute the summaries for each group:

iris %>%

 group_by(Species) %>%

 summarise(Mean.Petal.Length = mean(Petal.Length))

Chapter 3 Data Manipulation

102

A tibble: 3 × 2

Species Mean.Petal.Length

<fct> <dbl>

1 setosa 1.46

2 versicolor 4.26

3 virginica 5.55

Depending on your version of dplyr, you might get a warning here that summarise

is “ungrouping” the output. This has to do with which groupings a data frame has when

we give it to summarise and which groupings the output has. Until dplyr 1.0.0, there

was only one option, which of course you couldn’t change, but now there are four and

a default behavior, which may or may not be what you want (but is probably there to

at least make the function backward compatible with older code). If you get a warning,

it is because you have a version of dplyr that has the new behavior, but that is still old

enough to warn you that you are using the default behavior. It will then tell you that you

can change this using the .groups argument.

The four behaviors we can get are

•	 .groups = "drop_last" removes the last grouping we introduced.

If we are summarizing over some grouping, we end up with a table

with one row per group, and there is no need to keep the group

information for that any longer. This is the old default behavior.

•	 .groups = "drop" removes all groupings, so we have called group_

by multiple times we lose all the groups; with drop_last, we would

only lose the last grouping.

•	 .groups = "keep" keeps all the groups exactly as they are.

•	 .groups = "rowwise" makes each row in the output its own group.

You can check which columns in the data frame are part of a grouping using the

group_vars, so we can see which groups the output of a summarise has for each of the

four options. First, we make a grouping for the iris data and check the group variables:

grouped_iris <- iris %>% as_tibble() %>%

 group_by(Species, Petal.Length)

grouped_iris %>% group_vars()

[1] "Species" "Petal.Length"

Chapter 3 Data Manipulation

103

With drop_last, the second grouping variable, Petal.Length, is removed, but the

first is not; we are dropping the last variable and only the last:

grouped_iris %>%

 summarise(Mean.Petal.Length = mean(Petal.Length),

 .groups = "drop_last") %>%

 group_vars()

[1] "Species"

If we use drop instead, all the grouping variables are removed, and group_vars gives

us character(0) which is the empty string vector:

grouped_iris %>%

 summarise(Mean.Petal.Length = mean(Petal.Length),

 .groups = "drop") %>%

 group_vars()

character(0)

If we use keep, none of the grouping variables are removed:

grouped_iris %>%

 summarise(Mean.Petal.Length = mean(Petal.Length),

 .groups = "keep") %>%

 group_vars()

[1] "Species" "Petal.Length"

At first glance, the rowwise option looks a lot like keep:

grouped_iris %>%

 summarise(Mean.Petal.Length = mean(Petal.Length),

 .groups = "rowwise") %>%

 group_vars()

[1] "Species" "Petal.Length"

Chapter 3 Data Manipulation

104

It isn’t the same thing, though. If we summarize with rowwise, we get a different kind

of data structure, a so-called rowwise_df (a row-wise data frame), and we can see this if

we ask for the “class” of the result:

grouped_iris %>%

 summarise(Mean.Petal.Length = mean(Petal.Length),

 .groups = "rowwise") %>%

 class()

[1] "rowwise_df" "tbl_df" "tbl"

[4] "data.frame"

The class is a list of types, and we will see how this works in the second half of the

book. The purpose of this rowwise data type is a different kind of manipulation, where

we manipulate rows of data frames. They are beyond the scope of this book, and I will

leave it at that.

For the summarise() function, the .groups option is only important if you do more

than one summary. In most usage, you don’t. You manipulate your data, then you

compute some summary statistics, and then that is your result. In cases such as those,

it doesn’t matter if you keep or drop any grouping variables. If you don’t care about

the grouping in the result of a summary, you can turn the warning off using the option

dplyr.summarise.inform = FALSE:

options(dplyr.summarise.inform = FALSE)

summary <- grouped_iris %>%

 summarise(Mean.Petal.Length = mean(Petal.Length))

Here, even though you didn’t use .groups, you shouldn’t get a warning.

If you turn the option on again, you should get the warning:

options(dplyr.summarise.inform = TRUE)

Although you usually don’t care, it is safer to specify .groups. At least you have to

think about whether you want the result to have any groups, and if you do, you have to

consider if you get the right ones.

Chapter 3 Data Manipulation

105

A summary function worth mentioning here is n() which just counts how many

observations you have in a subset of your data:

iris %>%

 summarise(Observations = n())

Observations

1 150

Again, this is more interesting when combined with group_by():

iris %>%

 group_by(Species) %>%

 summarise(Number.Of.Species = n(), .groups = "drop")

A tibble: 3 × 2

Species Number.Of.Species

<fct> <int>

1 setosa 50

2 versicolor 50

3 virginica 50

You can combine summary statistics simply by specifying more than one in the

summary() function:

iris %>%

 group_by(Species) %>%

 summarise(Number.Of.Samples = n(),

 Mean.Petal.Length = mean(Petal.Length),

 .groups = "drop")

A tibble: 3 × 3

Species Number.Of.Samples Mean.Petal.Length

<fct> <int> <dbl>

1 setosa 50 1.46

2 versicolor 50 4.26

3 virginica 50 5.55

Chapter 3 Data Manipulation

106

�Breast Cancer Data Manipulation
To get a little more feeling for how the dplyr package can help us explore data, let us see

it in action.

Let us return to the breast cancer data. We start with the modifications we used

to transform the raw data we imported from the CSV file (stored in the variable raw_

breast_cancer). Using dplyr functions, we could create the formatted_breast_cancer

data, as we saw earlier, like this:

formatted_breast_cancer <- raw_breast_cancer |>

 as_tibble() |>

 mutate(

 Class =

 case_when(Class == 2 ~ "benign", Class == 4 ~ "malignant") |>

 factor(levels = c("benign", "malignant"))

)

I piped the raw data through as_tibble first, this time, because I prefer to work with

tibbles. Otherwise, it is the same code as earlier.

We can check if things look the way they should using a select and a head:

formatted_breast_cancer |> select(Normal.nucleoli:Class) |> head(5)

A tibble: 5 × 3

Normal.nucleoli Mitoses Class

<int> <int> <fct>

1 1 1 benign

2 2 1 benign

3 1 1 benign

4 7 1 benign

5 1 1 benign

Now let us look a little at the actual data. This is a very crude analysis of the data we

can do for exploratory purposes. It is not a proper analysis, but we will return to that in

Chapter 6 later.

We could be interested in how the different parameters affect the response variable, the

Class variable. For instance, is cell thickness different for benign and malignant tumors? To

check that, we can group the data by the Cell parameter and look at the mean cell thickness:

Chapter 3 Data Manipulation

https://doi.org/10.1007/978-1-4842-8155-0_6

107

formatted_breast_cancer %>%

 group_by(Class) %>%

 summarise(mean.thickness = mean(Cl.thickness), .groups = "drop")

A tibble: 2 × 2

Class mean.thickness

<fct> <dbl>

1 benign 2.96

2 malignant 7.20

It looks like there is a difference. Now whether this difference is significant requires

a proper test—after all, we are just comparing means here, and the variance could be

huge. But just exploring the data, it gives us a hint that there might be something to work

with here.

We could ask the same question for other variables, like cell size:

formatted_breast_cancer %>%

 group_by(Class) %>%

 summarise(mean.size = mean(Cell.size), .groups = "drop")

A tibble: 2 × 2

Class mean.size

<fct> <dbl>

1 benign 1.33

2 malignant 6.57

Another way of looking at this could be to count, for each cell size, how many benign

tumors and how many malignant tumors we see. Here, we would need to group by both

cell size and class and then count, and we would probably want to arrange the data so

we get the information in order of increasing or decreasing cell size:

formatted_breast_cancer %>%

 arrange(Cell.size) %>%

 group_by(Cell.size, Class) %>%

 summarise(ClassCount = n(), .groups = "drop")

Chapter 3 Data Manipulation

108

A tibble: 18 × 3

Cell.size Class ClassCount

<int> <fct> <int>

1 1 benign 380

2 1 malignant 4

3 2 benign 37

4 2 malignant 8

5 3 benign 27

6 3 malignant 25

7 4 benign 9

8 4 malignant 31

9 5 malignant 30

10 6 benign 2

11 6 malignant 25

12 7 benign 1

13 7 malignant 18

14 8 benign 1

15 8 malignant 28

16 9 benign 1

17 9 malignant 5

18 10 malignant 67

Here again, we get some useful information. It looks like there are more benign

tumors compared to malignant tumors when the cell size is small and more malignant

tumors when the cell size is large. Again something we can start to work from when we

later want to build statistical models.

This kind of grouping only works because the cell size is measured as discrete

numbers. It wouldn’t be helpful to group by a floating-point number. There, plotting is

more useful. But for this data, we have the cell size as integers, so we can explore the data

just by building tables in this way.

We can also try to look at combined parameters. We have already seen that both cell

size and cell thickness seem to be associated with how benign or malignant a tumor is,

so let us try to see how the cell thickness behaves as a function of both class and cell size:

Chapter 3 Data Manipulation

109

formatted_breast_cancer %>%

 group_by(Class, as.factor(Cell.size)) %>%

 summarise(mean.thickness = mean(Cl.thickness),

 .groups = "drop")

A tibble: 18 × 3

Class `as.factor(Cell.size)` mean.thickness

<fct> <fct> <dbl>

1 benign 1 2.76

2 benign 2 3.49

3 benign 3 3.81

4 benign 4 5.11

5 benign 6 5

6 benign 7 5

7 benign 8 6

8 benign 9 6

9 malignant 1 7.25

10 malignant 2 6.75

11 malignant 3 6.44

12 malignant 4 7.71

13 malignant 5 6.87

14 malignant 6 6.88

15 malignant 7 6.89

16 malignant 8 7.18

17 malignant 9 8.8

18 malignant 10 7.52

I am not sure how much I learn from this. It seems that for the benign tumors, the

thickness increases with the cell size, but for the malignant, there isn’t that pattern.

Maybe we can learn more by ordering the data in a different way. What if we look

at the numbers of benign and malignant tumors for each cell size and see what the

thickness is?

formatted_breast_cancer %>%

 group_by(as.factor(Cell.size), Class) %>%

 summarise(mean.thickness = mean(Cl.thickness),

 .groups = "drop")

Chapter 3 Data Manipulation

110

A tibble: 18 × 3

`as.factor(Cell.size)` Class mean.thickness

<fct> <fct> <dbl>

1 1 benign 2.76

2 1 malignant 7.25

3 2 benign 3.49

4 2 malignant 6.75

5 3 benign 3.81

6 3 malignant 6.44

7 4 benign 5.11

8 4 malignant 7.71

9 5 malignant 6.87

10 6 benign 5

11 6 malignant 6.88

12 7 benign 5

13 7 malignant 6.89

14 8 benign 6

15 8 malignant 7.18

16 9 benign 6

17 9 malignant 8.8

18 10 malignant 7.52

I am not sure how much we learned from that either, but at least it looks like for each

cell size where we have both benign and malignant tumors the thickness is higher for

the malignant than the benign. That is something at least. A place to start the analysis.

But we can learn more when we start plotting data and when we do a proper statistical

analysis of them. We will return to that in later chapters. For now, we leave it at that.

�Tidying Data with tidyr
I am not really sure where the concept of “tidy data” comes from. Hadley Wickham, the

author of many of the essential packages you will use in your R data analysis, describes

tidy data as such:

Chapter 3 Data Manipulation

111

Tidy data is a standard way of mapping the meaning of a data set

to its structure. A data set is messy or tidy depending on how rows,

columns and tables are matched up with observations, variables

and types.

In my experience, tidy data means that I can plot or summarize the data efficiently.

It mostly comes down to what data is represented as columns in a data frame and

what is not.

In practice, this means that I have columns in my data frame that I can work with for

the analysis I want to do. For example, if I want to look at the iris data set and see how

the Petal.Length varies among species, then I can look at the Species column against

the Petal.Length column:

iris |>

 as_tibble() |>

 select(Species, Petal.Length) |>

 head(3)

A tibble: 3 × 2

Species Petal.Length

<fct> <dbl>

1 setosa 1.4

2 setosa 1.4

3 setosa 1.3

I have a column specifying the Species and another specifying the Petal.Length,

and it is easy enough to look at their correlation. I can plot one against the other (we will

cover visualization in the next chapter). I can let the x-axis be species and the y-axis be

Petal.Length (see Figure 3-2).

Chapter 3 Data Manipulation

112

2

4

6

setosa versicolor virginica
Species

P
et
al
.L
en

gt
h

Figure 3-2.  Plot species vs. petal length

library(ggplot2)

iris %>%

 select(Species, Petal.Length) %>%

 qplot(Species, Petal.Length, geom = "boxplot", data = .)

(In this pipeline, we need to use the %>% operator rather than |> because we need the

input of qplot to go into the data argument, where the “.” is, and |> cannot do this.)

This works because I have a column for the x-axis and another for the y-axis. But

what happens if I want to plot the different measurements of the irises to see how those

are? Each measurement is a separate column. They are Petal.Length, Petal.Width,

and so on.

Now I have a bit of a problem because the different measurements are in different

columns in my data frame. I cannot easily map them to an x-axis and a y-axis.

The tidyr package lets me fix that:

library(tidyr)

It has a function, pivot_longer(), that modifies the data frame, so columns become

names in a factor and other columns become values.

Chapter 3 Data Manipulation

113

What it does is essentially transforming the data frame such that you get one column

containing the name of your original columns and another column containing the

values in those columns.

In the iris data set, we have observations for sepal length and sepal width. If we

want to examine Species vs. Sepal.Length or Sepal.Width, we can readily do this. We

have more of a problem if we want to examine for each species both measurements at

the same time. The data frame just doesn’t have the structure we need for that.

If we want to see Sepal.Length and Sepal.Width as two measurements, we can plot

against their values, and we would need to make a column in our data frame that tells

us if a measurement is a length or a width and another column that shows us what the

measurement actually is. The pivot_longer() function from tidyr lets us do that:

iris |>

 pivot_longer(

 c(Sepal.Length, Sepal.Width),

 names_to = "Attribute",

 values_to = "Measurement"

) |>

 head()

A tibble: 6 × 5

Petal.Length Petal.Width Species Attribute

<dbl> <dbl> <fct> <chr>

1 1.4 0.2 setosa Sepal.Length

2 1.4 0.2 setosa Sepal.Width

3 1.4 0.2 setosa Sepal.Length

4 1.4 0.2 setosa Sepal.Width

5 1.3 0.2 setosa Sepal.Length

6 1.3 0.2 setosa Sepal.Width

... with 1 more variable: Measurement <dbl>

The preceding code tells pivot_longer() to take the columns Sepal.Length and

Sepal.Width and make them names and values in two new columns. Here, you should

read “names” as the name of the input columns a value comes from, and you should

read “values” as the actual value in that column. We are saying that we want two new

columns that hold all the values from the two columns Sepal.Length and Sepal.Width.

The first of these columns, we get to name it with the names_to parameter and we give

Chapter 3 Data Manipulation

114

it the name Attribute, will contain the original column name we got the value from,

and the second column, values_to that we name Measurement gets the values from the

original columns. The original columns that we didn’t specify are still there, but values

are duplicated to match that the Sepal.Length and Sepal.Width values now are merged

into a single column.

We don’t necessarily want to keep all columns after a transformation like this. If we

just want to plot Sepal.Length against Sepal.Width, maybe colored by Species, we can

use select to pick the columns we want to keep. That would be Species for the colors,

Attributes so we can tell which values are Sepal.Length and which are Sepal.Width,

and then Measurement for the actual values:

iris |>

 pivot_longer(

 c(Sepal.Length, Sepal.Width),

 names_to = "Attribute",

 values_to = "Measurement"

) |>

 select(Species, Attribute, Measurement) |>

 head(3)

A tibble: 3 × 3

Species Attribute Measurement

<fct> <chr> <dbl>

1 setosa Sepal.Length 5.1

2 setosa Sepal.Width 3.5

3 setosa Sepal.Length 4.9

This transforms the data into a form where we can plot the attributes against

measurements (see Figure 3-3 for the result):

iris |>

 pivot_longer(

 c(Sepal.Length, Sepal.Width),

 names_to = "Attribute",

 values_to = "Measurement"

) |>

Chapter 3 Data Manipulation

115

 select(Species, Attribute, Measurement) %>%

 qplot(Attribute, Measurement,

 geom = "boxplot",

 facets = . ~ Species, data = .)

setosa versicolor virginica

Sepal.Length Sepal.Width Sepal.Length Sepal.Width Sepal.Length Sepal.Width

2

4

6

8

Attribute

M
ea

su
re
m
en

t

Figure 3-3.  Plot measurements vs. values

The tidyr package also has a function, pivot_wider, for transforming data frames

in the other direction. It is not a reverse of pivot_longer, because pivot_longer

removes information about correlations in the data; we cannot, after pivoting, see which

lengths originally sat in the same rows as which width, unless the remaining columns

uniquely identified this, which they are not guaranteed to do (and do not for the iris

data set). With pivot_wider, you get columns back that match the names you used with

Chapter 3 Data Manipulation

116

pivot_wider, and you get the values you specified there as well, but if the other variables

do not uniquely identify how they should match up, you can get multiple values in the

same column:

iris |> as_tibble() |>

 pivot_longer(

 c(Sepal.Length, Sepal.Width),

 names_to = "Attribute",

 values_to = "Measurement"

) |>

pivot_wider(

 names_from = Attribute,

 values_from = Measurement

)

Warning: Values from `Measurement` are not uniquely identified;

output will

* Use `values_fn = list` to suppress this warning.

* Use `values_fn = {summary_fun}` to summarise duplicates.

* Use the following dplyr code to identify duplicates.

{data} %>%

dplyr::group_by(Petal.Length, Petal.Width, Species, Attribute) %>%

dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%

dplyr::filter(n > 1L)

A tibble: 103 × 5

Petal.Length Petal.Width Species Sepal.Length

<dbl> <dbl> <fct> <list>

1 1.4 0.2 setosa <dbl [8]>

2 1.3 0.2 setosa <dbl [4]>

3 1.5 0.2 setosa <dbl [7]>

4 1.7 0.4 setosa <dbl [1]>

5 1.4 0.3 setosa <dbl [3]>

6 1.5 0.1 setosa <dbl [2]>

7 1.6 0.2 setosa <dbl [5]>

Chapter 3 Data Manipulation

117

8 1.4 0.1 setosa <dbl [2]>

9 1.1 0.1 setosa <dbl [1]>

10 1.2 0.2 setosa <dbl [2]>

... with 93 more rows, and 1 more variable:

Sepal.Width <list>

You should get some warnings here; after the first transformation, we do not have

enough information to transform back. Instead, R has to map some keys to multiple

values. A column with type <list> is where you have multiple values, and the values are

printed as their type and the number, for example, <dbl [8]>. Working with this kind

of data is beyond the scope of this book, since it is atypical data for most data science

applications. We are only ending up in this situation now, because we are trying to

reverse an operation we did, when that operation isn’t reversible. You would never try

to reverse a pivot_longer() with a pivot_wider() in this way, and I have never had to

attempt it myself.

Still, there are cases where your data is in a tidy format and you want to transform it

back to a variable per column, and then pivot_wider() is your function of choice. You

just have to deal with cases that might arise, where remaining columns do not provide

enough information to do it. One option is to summarize all the values that would have

to go into the same row, that is, those that we got as lists in the iris example earlier. You

can provide a function for that using the values_fn parameter. I don’t know if it makes

sense to summarize the values here by their mean, but we can if we want to:

iris |> as_tibble() |>

 pivot_longer(

 c(Sepal.Length, Sepal.Width),

 names_to = "Attribute",

 values_to = "Measurement"

) |>

 pivot_wider(

 names_from = Attribute,

 values_from = Measurement,

 values_fn = mean

) |>

 # Let's just look at the columns we summarised...

 select(Sepal.Length, Sepal.Width)

Chapter 3 Data Manipulation

118

A tibble: 103 × 2

Sepal.Length Sepal.Width

<dbl> <dbl>

1 4.96 3.39

2 4.75 3.22

3 5.07 3.41

4 5.4 3.9

5 4.83 3.3

6 5.05 3.6

7 4.88 3.3

8 4.85 3.3

9 4.3 3

10 5.4 3.6

... with 93 more rows

�Exercises
It is time to put what we have learned into practice. There are only a few exercises, but I

hope you will do them. You can’t learn without doing exercises after all.

�Importing Data
To get a feeling of the steps in importing and transforming data, you need to try it

yourself. So try finding a data set you want to import. You can do that from one of the

repositories I listed in the first chapter:

•	 RDataMining.com

•	 UCI Machine Learning Repository

•	 KDNuggets

•	 Reddit r/data sets

•	 GitHub Awesome Public Data sets

Or maybe you already have a data set you would like to analyze.

Chapter 3 Data Manipulation

119

Have a look at it and figure out which import function you need. You might have to

set a few parameters in the function to get the data loaded correctly, but with a bit of

effort, you should be able to. For column names, you should choose some appropriate

ones from reading the data description, or if you are loading something in that is already

in mlbench, you can cheat as I did in the preceding examples.

�Using dplyr
Now take the data you just imported and examine various summaries. It is not so

important what you look at in the data as it is that you try summarizing different aspects

of it. We will look at proper analyses later. For now, just use dplyr to explore your data.

�Using tidyr
Look at the preceding dplyr example. There, I plotted Sepal.Length and Sepal.Width

for each species. Do the same thing for Petal.Length and Petal.Width.

If there is something similar to do with the data set you imported in the first exercise,

try doing it with that.

Chapter 3 Data Manipulation

121
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_4

CHAPTER 4

Visualizing Data
Nothing tells a story about your data as powerfully as good plots. Graphics captures your

data much better than summary statistics and often shows you features that you would

not be able to glean from summaries alone.

R has excellent tools for visualizing data. Unfortunately, it also has more tools than

you really know what to do with. There are several different frameworks for visualizing

data, and they are usually not compatible, so you cannot easily combine the various

approaches.

In this chapter, we look at graphics in R, and we cannot possibly cover all the

plotting functionality, so I will focus on two frameworks. The first is the basic graphics

framework. It is not something I frequently use or recommend that you use, but it is

the default for many packages, so you need to know about it. The second is the ggplot2

framework, which is my preferred approach to visualizing data. It defines a small

domain-specific language for constructing data and is perfect for exploring data as long

as you have it in a data frame (and with a little bit more work, for creating publication-

ready plots).

�Basic Graphics
The basic plotting system is implemented in the graphics package. You usually do not

have to include the package

library(graphics)

since it is already loaded when you start up R, but you can use

library(help = "graphics")

https://doi.org/10.1007/978-1-4842-8155-0_4#DOI

122

to get a list of the functions implemented in the package. This list isn’t exhaustive,

though, since the primary plotting function, plot(), is generic and many packages write

extensions to it to specialize plots.

In any case, you create basic plots using the plot() function. This function is a so-

called generic function, which means that what it does depends on the input it gets. So

you can give it different first arguments to get plots of various objects.

The simplest plot you can make is a scatter plot, plotting points for x and y values

(see Figure 4-1):

−1 0 1 2

−3
−2

−1
0

1

x

y

Figure 4-1.  Scatter plot

x <- rnorm(50)

y <- rnorm(50)

plot(x, y)

The plot() function takes a data argument you can use to plot data from a data frame,

but you cannot write code like this to plot the cars data from the datasets package:

data(cars)

cars %>% plot(speed, dist, data = .)

Despite giving plot() the data frame, it will not recognize the variables for the x and

y parameters, and so adding plots to pipelines requires that you use the %$% operator to

give plot() access to the variables in a data frame. So, for instance, we can plot the cars

data like this (see Figure 4-2):

cars %$% plot(speed, dist, main="Cars data",

 xlab="Speed", ylab="Stopping distance")

Chapter 4 Visualizing Data

123

5 10 15 20 25

0
20

40
60

80
12

0

Cars data

Speed

St
op

pi
ng

 d
is

ta
nc

e

Figure 4-2.  Scatter plot of speed and distance for cars

Here, we use main to give the figure a title and xlab and ylab to specify the

axis labels.

The data argument of plot() is used when the variables to the plot are specified

as a formula. The plot() function then interprets the formula as specifying how the

data should be plotted. If the x and y values are specified in a formula, you can give the

function a data frame that holds the variables and plot from that:

cars %>% plot(dist ~ speed, data = .)

Here, you must use the %>% operator and not |> since you need the left-hand side to

go into the data argument and not the first argument.

By default, the plot shows the data as points, but you can specify a type parameter to

display the data in other ways such as lines or histograms (see Figure 4-3):

cars %$% plot(speed, dist, main="Cars data", type="h",

 xlab="Speed", ylab="Stopping distance")

To get a histogram for a single variable, you should use the function hist() instead

of plot() (see Figure 4-4):

cars %$% hist(speed)

What is meant by plot() being a generic function (something we will cover in much

greater detail in Chapter 12) is that it will have different functionality depending on what

parameters you give it.

Chapter 4 Visualizing Data

https://doi.org/10.1007/978-1-4842-8155-0_12

124

Different kinds of objects can have their own plotting functionality, though, and

often do. This is why you probably will use basic graphics from time to time even if you

follow my advice and use ggplot2 for your own plotting.

Linear regression, for example, created with the lm() function, has its specialized

plotting routine. Try evaluating the following expression:

cars %>% lm(dist ~ speed, data = .) %>% plot()

Histogram of speed

speed

Fr
eq

ue
nc

y

0 5 10 15 20 25

0
5

10
15

Figure 4-4.  Histogram for cars speed

5 10 15 20 25

0
20

40
60

80
12

0

Cars data

Speed

St
op

pi
ng

 d
is

ta
nc

e

Figure 4-3.  Histogram plot of speed and distance for cars

Chapter 4 Visualizing Data

125

It will give you several summary plots for visualizing the quality of the linear fit.

Many model fitting algorithms return a fitted object that has specialized plotting

functionality like this, so when you have fitted a model, you can always try to call plot()

on it and see if you get something useful out of that.

Functions like plot() and hist() and a few more create new plots, but there is

also a large number of functions for annotating a plot. Functions such as lines() and

points() add lines and points, respectively, to the current plot rather than making a

new plot.

We can see them in action if we want to plot the longley data set and want to see

both the unemployment rate and people in the armed forces over the years:

data(longley)

Check the documentation for longley (?longley) for a description of the data.

The data has various statistics for each year from 1947 to 1962 including the number

of people unemployed (variable Unemployed) and the number of people in the armed

forces (variable Armed.Forces). To plot both of these on the same plot, we can first plot

Unemployed against years (variable Year) and then add lines for Armed.Forces. See

Figure 4-5.

longley %>% plot(Unemployed ~ Year, data = ., type = 'l')

longley %>% lines(Armed.Forces ~ Year, data = ., col = "blue")

This almost gets us what we want, but the y-axis is chosen by the plot() function

to match the range of y values in the call to plot(), and the Armed.Forces doesn’t quite

fit into this range. To fit both, we have to set the limits of the y-axis which we do with

parameter ylim (see Figure 4-6):

longley %$% plot(Unemployed ~ Year, type = 'l',

 ylim = range(c(Unemployed, Armed.Forces)))

longley %>% lines(Armed.Forces ~ Year, data = ., col = "blue")

Chapter 4 Visualizing Data

126

1950 1955 1960

15
0

25
0

35
0

45
0

Year

U
ne

m
pl
oy

ed

Figure 4-6.  Longley data showing Unemployed and Armed.Forces. The y-axis is
wide enough to hold all the data

Like plot(), the other plotting functions are usually generic. This means we can

sometimes give them objects such as fitted models. The abline() function is one such

case. It plots lines of the form y = a + bx, but there is a variant of it that takes a linear

model as input and plots the best fitting line defined by the model. So we can plot

the cars data together with the best-fitted line using the combination of the lm() and

abline() functions (see Figure 4-7):

cars %>% plot(dist ~ speed, data = .)

cars %>% lm(dist ~ speed, data = .) %>% abline(col = "red")

1950 1955 1960

20
0

30
0

40
0

Year

U
ne

m
pl
oy

ed

Figure 4-5.  Longley data showing Unemployed and Armed.Forces. The y-axis
doesn’t cover all of the Armed.Forces variable

Chapter 4 Visualizing Data

127

Plotting using the basic graphics usually follows this pattern. First, there is a call to

plot() that sets up the canvas to plot on—possibly adjusting the axes to make sure that

later points will fit in on it. Then any additional data points are plotted—like the second

time series we saw in the longley data. Finally, there might be some annotation like

adding text labels or margin notes (see functions text() and mtext() for this).

If you want to select the shape of points or their color according to other data

features, for example, plotting the iris data with data points in different colors

according to the Species variable, then you need to map features to columns (see

Figure 4-8):

color_map <- c("setosa" = "black",

 "versicolor" = "grey40",

 "virginica" = "grey75")

iris %$% plot(Petal.Length ~ Petal.Width,

 col = color_map[Species])

The basic graphics system has many functions for making publication-quality plots,

but most of them work at a relatively low level. You have to map variables to colors or

shapes explicitly if you want a variable to determine how points should be displayed.

You have to set the xlim and ylim parameters to have the right x- and y-axes if the first

points you plot do not cover the entire range of the data you want to plot. If you change

an axis—say log-transform—or if you flip the x- and y-axes, then you will usually need to

update several function calls. If you want to have different subplots—so-called facets—

for different subsets of your data, then you have to subset and plot this explicitly.

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

Figure 4-7.  The cars data points annotated with the best fitting line

Chapter 4 Visualizing Data

128

0.5 1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

Petal.Width

Pe
ta
l.L

en
gt
h

Figure 4-8.  Iris data plotted with different colors for different species

So while the basic graphics system is powerful for making good-looking final plots, it

is not necessarily optimal for exploring data where you often want to try different ways of

visualizing it.

�The Grammar of Graphics and the ggplot2 Package
The ggplot2 package provides an alternative to the basic graphic that is based on what

is called the “grammar of graphics.” The idea here is that the system gives you a small

domain-specific language for creating plots (similar to how dplyr provides a domain-

specific language for manipulating data frames). You construct plots through a list of

function calls—similar to how you would work with basic graphics—but these function

calls do not directly write on a canvas independently of each other. Rather, they all

manipulate a plot by either modifying it—scaling axes or splitting data into subsets that

are plotted on different facets—or adding layers of visualization to the plot.

To use it, you, of course, need to import the library:

library(ggplot2)

and you can get a list of functions it defines using

library(help = "ggplot2")

Chapter 4 Visualizing Data

129

I can only give a very brief tutorial-like introduction to the package here. There are

full books written about ggplot2 if you want to learn more details. After reading this

chapter, you should be able to construct basic plots, and you should be able to find

information about how to make more intricate plots by searching online.

We ease into ggplot2 by first introducing the qplot() function (it stands for

quick plot). This function works similar to plot()—although it handles things a little

differently—but creates the same kind of objects that the other ggplot2 functions

operate on, and so it can be combined with those.

�Using qplot()
The qplot() function can be used to plot simple scatter plots the same way as the

plot() function. To plot the cars data (see Figure 4-9), we can use

cars %>% qplot(speed, dist, data = .)

What happens is slightly different, though. The qplot() function creates a ggplot

object rather than directly plotting. It is just that when such objects are printed, which

happened at the end of the statement, the effect of printing is that they are plotted.

0

25

50

75

100

125

5 10 15 20 25
speed

di
st

Figure 4-9.  Plot of the cars data using qplot (ggplot2)

Chapter 4 Visualizing Data

130

That sounds a bit confusing, but it is what happens. The function used for printing R

objects is a generic function, so the effect of printing an object depends on what the

object implements for the print() function. For ggplot objects, this function plots the

object. It works well with the kind of code we write, though, because in the preceding

code the result of the entire expression is the return value of qplot(). When this is

evaluated at the outermost level in the R prompt, the result is printed. So the ggplot

object is plotted.

The preceding code is equivalent to

p <- cars %>% qplot(speed, dist, data = .)

p

which is equivalent to

p <- cars %>% qplot(speed, dist, data = .)

print(p)

The reason that it is the print() function rather than the plot() function—which

would otherwise be more natural—is that the print() function is the function that is

automatically called when we evaluate an expression at the R prompt. By using print(),

we don’t need to print objects explicitly, we just need the plotting code to be at the

outermost level of the program. If you create a plot inside a function, however, it isn’t

automatically printed, and you do need to do this explicitly.

I mention all these details about objects being created and printed because the

typical pattern for using ggplot2 is to build such a ggplot object, do various operations

on it to modify it, and then finally plot it by printing it.

When using qplot(), some transformations of the plotting object are done before

qplot() returns the object. The quick in quick plot consists of qplot() guessing at what

kind of plot you are likely to want and then doing transformations on a plot to get there.

To get the full control of the final plot, we skip qplot() and do all the transformations

explicitly—I personally never use qplot() anymore myself—but to get started and

getting familiar with ggplot2, it is not a bad function to use.

With qplot(), we can make the visualization of data points depend on data variables

in a more straightforward way than we can with plot(). To color the iris data according

to Species in plot(), we needed to code up a mapping and then transform the Species

column to get the colors. With qplot(), we just specify that we want the colors to depend

on the Species variable (see Figure 4-10):

Chapter 4 Visualizing Data

131

iris %>% qplot(Petal.Width, Petal.Length ,

 color = Species, data = .)

We get the legend for free when we are mapping the color like this, but we can

modify it by doing operations on the ggplot object that qplot() returns, should we

want to.

You can also use qplot() for other types of plots than scatter plots. If you give it a

single variable to plot, it will assume that you want a histogram instead of a scatter plot

and give you that (see Figure 4-11):

cars %>% qplot(speed, data = ., bins = 10)

If you want a density plot instead, you simply ask for it (see Figure 4-12):

cars %>% qplot(speed, data = ., geom = "density")

Similarly, you can get lines, box plots, violin plots, etc. by specifying a geometry.

Geometries determine how the underlying data should be visualized. They might

involve calculating some summary statistics, which they do when we create a histogram

or a density plot, or they might just visualize the raw data, as we do with scatter plots.

Still, they all describe how data should be visualized. Building a plot with ggplot2

involves adding geometries to your data, typically more than one geometry. To see how

this is done, though, we leave qplot() and look at how we can create the plots we made

earlier with qplot() using geometries instead.

Chapter 4 Visualizing Data

132

2

4

6

0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

Pe
ta
l.L

en
gt
h Species

setosa

versicolor

virginica

Figure 4-10.  Plot of iris data with colors determined by the species. Plotted with
qplot (ggplot2)

0

3

6

9

10 20speed

Figure 4-11.  Histogram of car speed created using qplot (ggplot2)

Chapter 4 Visualizing Data

133

�Using Geometries
By stringing together several geometry commands, we can either display the same

data in different ways—for example, scatter plots combined with smoothed lines—or

put several data sources on the same plot. Before we see more complex constructions,

though, we can see how the preceding qplot() plots could be made by explicitly calling

geometry functions.

We start with the scatter plot for cars where we used

cars %>% qplot(speed, dist, data = .)

To create this plot using explicit geometries, we want a ggplot object, we need to

map the speed parameter from the data frame to the x-axis and the dist parameter to

the y-axis, and we need to plot the data as points:

ggplot(cars) + geom_point(aes(x = speed, y = dist))

We create an object using the ggplot() function. We give it the cars data as input.

When we give this object the data frame, the following operations can access the data. It is

possible to override which data frame the data we plot comes from, but unless otherwise

specified, we have access to the data we gave ggplot() when we created the initial object.

0.00

0.02

0.04

0.06

5 10 15 20 25
speed

Figure 4-12.  Density of car speed created using qplot (ggplot2)

Chapter 4 Visualizing Data

134

Next, we do two things in the same function call. We specify that we want x and y values to

be plotted as points by calling geom_point(), and we map speed to the x values and dist to

the y values using the “aesthetics” function aes(). Aesthetics are responsible for mapping

from data to graphics. With the geom_point() geometry, the plot needs to have x and y

values. The aesthetics tell the function which variables in the data should be used for these.

The aes() function defines the mapping from data to graphics just for the

geom_point() function. Sometimes, we want to have different mappings for different

geometries, and sometimes we do not. If we want to share aesthetics between functions,

we can set it in the ggplot() function call instead. Then, like the data, the following

functions can access it, and we don’t have to specify it for each subsequent function call:

ggplot(cars, aes(x = speed, y = dist)) + geom_point()

The ggplot() and geom_point() functions are combined using +. You use + to string

together a series of commands to modify a ggplot object in a way very similar to how we

use %>% to string together a sequence of data manipulations. The only reason that these

are two different operators here is historical; if the %>% operator had been in common

use when ggplot2 was developed, it would most likely have used that. As it is, you use

+. Because + works slightly different in ggplot2 than %>% does in magrittr, you cannot

just use a function name when the function doesn’t take any arguments, so you need to

include the parentheses in geom_point().

Since ggplot()takes a data frame as its first argument, a typical pattern is first to

modify data in a string of %>% or |> operations and then give it to ggplot() and follow

that with a series of + operations. Doing that with cars would provide us with this simple

pipeline—in larger applications, more steps are included in both the %>% pipeline and

the + plot composition:

cars %>% ggplot(aes(x = speed, y = dist)) + geom_point()

For the iris data, we used the following qplot() call to create a scatter plot with

colors determined by the Species variable:

iris %>% qplot(Petal.Width, Petal.Length ,

 color = Species, data = .)

The corresponding code using ggplot() and geom_point() looks like this:

iris %>% ggplot() +

 geom_point(aes(x = Petal.Width, y = Petal.Length,

 color = Species))

Chapter 4 Visualizing Data

135

Here, we could also have put the aesthetics in the ggplot() call instead of the geom_

point() call.

When you specify the color as an aesthetic, you let it depend on another variable in

the data. If you instead want to hardwire a color—or any graphics parameter in general—

you simply have to move the parameter assignment outside the aes() call. If geom_

point() gets assigned a color parameter, it will use that color for the points; if it doesn’t,

it will get the color from the aesthetics (see Figure 4-13):

iris |> ggplot() +

 geom_point(aes(x = Petal.Width, y = Petal.Length),

 color = "grey50")

The qplot() code for plotting a histogram and a density plot

cars %>% qplot(speed, data = ., bins = 10)

cars %>% qplot(speed, data = ., geom = "density")

can be constructed using geom_histogram() and geom_density(), respectively:

cars |> ggplot() + geom_histogram(aes(x = speed), bins = 10)

cars |> ggplot() + geom_density(aes(x = speed))

You can combine more geometries to display the data in more than one way. Doing

this isn’t always meaningful depending on how data is summarized—combining scatter

plots and histograms might not be so useful. However, we can, for example, make a plot

showing the car speed both as a histogram and a density (see Figure 4-14):

cars |> ggplot(aes(x = speed, y = ..count..)) +

 geom_histogram(bins = 10) +

 geom_density()

It just requires us to call both geom_histogram() and geom_density(). We do also

need to add an extra aesthetics option for the y value. The reason is that histograms by

default will show the counts of how many observations fall within a bin on the y-axis,

while densities integrate to one. By setting y = ..count.., you tell both geometries to

use counts as the y-axis. To get densities instead, you can use y = ..density...

Chapter 4 Visualizing Data

136

0

3

6

9

10 20speed

co
un

t

Figure 4-14.  Combined histogram and density plot for speed from the cars data

2

4

6

0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

Pe
ta
l.L

en
gt
h

Figure 4-13.  Iris data where the color of the points is hardwired

Chapter 4 Visualizing Data

137

We can also use combinations of geometries to show summary statistics of data

together with a scatter plot. We added the result of a linear fit of the data to the scatter

plot we did for the cars data with plot(). To do the same with ggplot2, we add a geom_

smooth() call (see Figure 4-15):

cars %>% ggplot(aes(x = speed, y = dist)) +

 geom_point() + geom_smooth(method = "lm")

`geom_smooth()` using formula 'y ~ x'

The message we get from geom_smooth is that it used the formula y ~ x in the linear

model to smooth the data. It will let us know when we use a default instead of explicitly

providing a formula for what we want smoothed. Here, it just means that it is finding the

best line between the x and y values, which is exactly what we want. You could make the

formula explicit by writing geom_smooth(formula = y ~ x, method = "lm"), or you

could use a different formula, for example, geom_smooth(formula = y ~ 1, method =

"lm"), to fit the y values to a constant, getting a horizontal line to fit the mean y value

(you can try it out). The default is usually what we want.

Earlier, we told the geom_smooth() call to use the linear model method. If we didn’t

do this, it would instead plot a loess smoothing (see Figure 4-16):

cars %>% ggplot(aes(x = speed, y = dist)) +

 geom_point() + geom_smooth()

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

We can also use more than one geometry to plot more than one variable. For the

longley data, we could use two different geom_line() to plot the Unemployed and the

Armed.Forces data (see Figure 4-17):

longley %>% ggplot(aes(x = Year)) +

 geom_line(aes(y = Unemployed)) +

 geom_line(aes(y = Armed.Forces), color = "blue")

Chapter 4 Visualizing Data

138

0

25

50

75

100

125

5 10 15 20 25
speed

di
st

Figure 4-15.  Cars data plotted with a linear model smoothing

0

40

80

120

5 10 15 20 25
speed

di
st

Figure 4-16.  Cars data plotted with a loess smoothing

Chapter 4 Visualizing Data

139

200

300

400

1950 1955 1960
Year

U
ne

m
pl
oy

ed

Figure 4-17.  Longley data plotted with ggplot2

Here, we set the x value aesthetics in the ggplot() function since it is shared by the

two geom_line() geometries, but we set the y value in the two calls, and we set the color

for the Armed.Forces data, hardwiring it instead of setting it as an aesthetic. Because we

are modifying a plot rather than just drawing on a canvas with the second geom_line()

call, the y-axis is adjusted to fit both lines. We, therefore, do not need to set the y-axis

limit anywhere.

We can also combine geom_line() and geom_point() to get both lines and points for

our data (see Figure 4-18):

longley %>% ggplot(aes(x = Year)) +

 geom_point(aes(y = Unemployed)) +

 geom_line(aes(y = Unemployed)) +

 geom_point(aes(y = Armed.Forces), color = "blue") +

 geom_line(aes(y = Armed.Forces), color = "blue")

Plotting two variables using different aesthetics like this is fine for most applications,

but it is not always the optimal way to do it. The problem is that we are representing that

the two measures, Unemployed and Armed.Forces, are two different measures we have

per year and that we can plot together in the plotting code. The data is not reflecting

this as something we can compute on. Should we want to split the two measures into

Chapter 4 Visualizing Data

140

subplots instead of plotting them in the same frame, we would need to write new

plotting code. A better way is to reformat the data frame such that we have one column

telling us whether an observation is Unemployment or Armed.Forces and another

giving us the values and then set the color according to the first column and the y-axis

according to the other. We can do this with the pivot_longer function from the tidyr

package (see Figure 4-19):

longley %>%

 pivot_longer(

 c(Unemployed, Armed.Forces),

 names_to = "Class",

 values_to = "Number of People"

) %>%

 ggplot(aes(x = Year, y = `Number of People`, color = Class)) +

 geom_line()

200

300

400

1950 1955 1960
Year

U
ne

m
pl
oy

ed

Figure 4-18.  Longley data plotted with ggplot2 using both points and lines

Chapter 4 Visualizing Data

141

In the pivot_longer expression, we are saying that we want to transform the

Unemployed and the Armed.Forces columns. These are two different classes from the

statistics, so we put the original column names into a new column called Class. The

two columns count the number of people in the two classes, so the values from the two

original classes will go into a new column that we name Number of People. The names

in the pivot_longer expression are strings, and we can put anything there, but the y

value in the aes() expression has to be a valid variable name, and those cannot have

spaces, and we need to escape the string. We do that using backticks.

Once we have transformed the data, we can change the plot with little extra code.

If, for instance, we want the two values on different facets, we can simply specify this

(instead of setting the colors) (see Figure 4-20):

longley %>%

 pivot_longer(

 c(Unemployed, Armed.Forces),

 names_to = "Class",

 values_to = "Number of People"

) %>%

 ggplot(aes(x = Year, y = `Number of People`)) +

 geom_line() +

 facet_grid(Class ~ .)

�Facets
Facets are subplots showing different subsets of the data. In the preceding example, we

show the Armed.Forces variable in one subplot and the Unemployed variable in another.

You can specify facets using one of two functions: facet_grid() creates facets from a

formula rows ~ columns, and facet_wrap() creates facets from a formula ~ variables.

The former creates a row for the variables on the left-hand side of the formula and a

column for the variables on the right-hand side and builds facets based on this. In the

preceding example, we used “key ~ .”, so we get a row per key. Had we used “. ~ key”

instead, we would get a column per key. The facet_wrap() doesn’t explicitly set up rows

and columns, it simply makes a facet per combination of variables on the right-hand side

of the formula and wraps the facets in a grid to display them.

Chapter 4 Visualizing Data

142

200

300

400

1950 1955 1960
Year

N
um

be
r o

f P
eo

pl
e

Class

Armed.Forces

Unemployed

Figure 4-19.  Longley data plotted using tidy data

Arm
ed.Forces

U
nem

ployed

1950 1955 1960

200

300

400

200

300

400

Year

N
um

be
r o

f P
eo

pl
e

Figure 4-20.  Longley data plotted using facets

Chapter 4 Visualizing Data

143

By default, ggplot2 will try to put values on the same axes when you create facets

using facet_grid(). So in the preceding example, the Armed.Forces are shown on the

same x- and y-axes as Unemployment even though the y values, as we have seen, are not

covering the same range. We can use the scales parameter to change this. Facets within

a column will always have the same x-axis, however, and facets within a row will have the

same y-axis.

We can see this in action with the iris data. We can transform the iris data, so

every column except Species gets squashed into two key-value columns using pivot_

longer. We can select everything except selected columns by putting a - in front of their

name when we select them. Then we can plot the measurements for each separate

species like this:

iris %>%

 pivot_longer(

 -Species,

 names_to = "Measurement",

 values_to = "Value"

) %>%

 ggplot(aes(x = Species, y = Value)) +

 geom_boxplot() +

 facet_grid(Measurement ~ .)

We plot the four measurements for each species in different facets, but they are on

slightly different scales, so we will only get a good look at the range of values for the

largest range. We can fix this by setting the y-axis free; contrast Figures 4-21 and 4-22.

iris %>%

 pivot_longer(

 -Species,

 names_to = "Measurement",

 values_to = "Value"

) %>%

 ggplot(aes(x = Species, y = Value)) +

 geom_boxplot() +

 facet_grid(Measurement ~ ., scale = "free_y")

Chapter 4 Visualizing Data

144

Petal.Length
Petal.W

idth
Sepal.Length

Sepal.W
idth

setosa versicolor virginica

2

4

6

0.0
0.5
1.0
1.5
2.0
2.5

5
6
7
8

2.0
2.5
3.0
3.5
4.0
4.5

Species

Va
lu
e

Figure 4-22.  Iris measures plotted on different y-axes

Petal.Length
Petal.W

idth
Sepal.Length

Sepal.W
idth

setosa versicolor virginica

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

Species

Va
lu
e

Figure 4-21.  Iris measures plotted on the same y-axis

Chapter 4 Visualizing Data

145

By default, all the facets will have the same size. You can modify this using the space

variable. This is mainly useful for categorical values if one facet has many more of the

levels than another.

The labels used for facets are taken from the factors in the variables used to construct

the facet. This is a good default, but for print quality plots, you often want to modify

the labels a little. You can do this using the labeller parameter to facet_grid(). This

parameter takes a function as an argument that is responsible for constructing labels.

The easiest way to construct this function is by using another function, labeller().

You can give labeller() a named argument specifying a factor to make labels for with

lookup tables for mapping levels to labels. For the iris data, we can use this to remove

the dots in the measurement names (see Figure 4-23):

label_map <- c(Petal.Width = "Petal Width",

 Petal.Length = "Petal Length",

 Sepal.Width = "Sepal Width",

 Sepal.Length = "Sepal Length")

iris %>%

 pivot_longer(

 -Species,

 names_to = "Measurement",

 values_to = "Value"

) %>%

 ggplot(aes(x = Species, y = Value)) +

 geom_boxplot() +

 facet_grid(Measurement ~ ., scale = "free_y",

 labeller = labeller(Measurement = label_map))

�Scaling
Geometries specify part of how data should be visualized and scales another. The

geometries tell ggplot2 how you want your data mapped to visual components, like

points or densities, and scales tell ggplot2 how dimensions should be visualized.

The simplest scales to think about are the x- and y-axes, where values are mapped to

positions on the plot as you are familiar with, but scales also apply to visual properties

such as colors.

Chapter 4 Visualizing Data

146

The simplest use we can make of scales is just to put labels on the axes. We can also

do this using the xlab() and ylab() functions, and if setting labels were all we were

interested in, we would, but as an example, we can see this use of scales. To set the labels

in the cars scatter plot, we can write

cars %>%

 ggplot(aes(x = speed, y = dist)) +

 geom_point() + geom_smooth(method = "lm") +

 scale_x_continuous("Speed") +

 scale_y_continuous("Stopping Distance")

Both the x- and y-axes are showing a continuous value, so we scale like that and give

the scale a name as the parameter. This will then be the names put on the axis labels. In

general, we can use the scale_x/y_continuous() functions to control the axis graphics,

for instance, to set the breakpoints shown. If we want to plot the longley data with a tick

mark for every year instead of every five years, we can set the breakpoints to every year:

Petal Length
Petal W

idth
Sepal Length

Sepal W
idth

setosa versicolor virginica

2

4

6

0.0
0.5
1.0
1.5
2.0
2.5

5
6
7
8

2.0
2.5
3.0
3.5
4.0
4.5

Species

Va
lu

e

Figure 4-23.  Iris measures with measure labels adjusted

Chapter 4 Visualizing Data

147

longley %>%

 pivot_longer(

 c(Unemployed, Armed.Forces),

 names_to = "Class",

 values_to = "Number of People"

) %>%

 ggplot(aes(x = Year, y = `Number of People`)) +

 geom_line() +

 scale_x_continuous(breaks = 1947:1962) +

 facet_grid(Class ~ .)

You can also use the scale to modify the labels shown at tick marks or set limits on

the values displayed.

Scales are also the way to transform data shown on an axis. If you want to log-

transform the x- or y-axis, you can use the scale_x/y_log10() functions, for instance.

This usually leads to a nicer plot compared to plotting data you log-transform yourself

since the plotting code then knows that you want to show data on a log scale rather than

showing transformed data on a linear scale.

To reverse an axis, you use scale_x/y_reverse(). This is better than reversing

the data mapped in the aesthetic since all the plotting code will just be updated to the

reversed axis; you don’t need to update x or y values in all the function geometry calls.

For instance, to show the speed in the cars data in decreasing instead of increasing

order, we could write

cars %>%

 ggplot(aes(x = speed, y = dist)) +

 geom_point() +

 geom_smooth(method = "lm") +

 scale_x_reverse("Speed") +

 scale_y_continuous("Stopping Distance")

Neither axis has to be continuous. If you map a factor to x or y in the aesthetics, you

get a discrete axis; see Figure 4-24 for the iris data plotted with the factor Species on

the x-axis.

Chapter 4 Visualizing Data

148

iris %>%

 ggplot(aes(x = Species, y = Petal.Length)) +

 geom_boxplot() +

 geom_jitter(width = 0.1, height = 0.1)

Since Species is a factor, the x-axis will be discrete, and we can show the data as a

box plot and the individual data points using the jitter geometry. If we want to modify

the x-axis, we need to use scale_x_discrete() instead of scale_x_continuous().

We can, for instance, use this to modify the labels on the axis to put the species in

capital letters:

iris %>%

 ggplot(aes(x = Species, y = Petal.Length)) +

 geom_boxplot() +

 geom_jitter(width = 0.1, height = 0.1) +

 scale_x_discrete(labels = c("setosa" = "Setosa",

 "versicolor" = "Versicolor",

 "virginica" = "Virginica"))

We provide a map from the data levels to labels. There is more than one way to set

the labels, but this is by far the easiest.

2

4

6

setosa versicolor virginica
Species

Pe
ta
l.L

en
gt
h

Figure 4-24.  Iris data plotted with a factor on the x-axis

Chapter 4 Visualizing Data

149

Scales are also used to control colors. You use the various scale_color_ functions to

control the color of lines and points, and you use the scale_fill_ functions to control

the color of filled areas.

We can plot the iris measurements per species and give them a different color for

each species. Since it is the boxes we want to color, we need to use the fill aesthetics.

Otherwise, we would color the lines around the boxes. See Figure 4-25.

iris %>%

 pivot_longer(

 -Species,

 names_to = "Measurement",

 values_to = "Value"

) %>%

 ggplot(aes(x = Species, y = Value, fill = Species)) +

 geom_boxplot() +

 facet_grid(Measurement ~ ., scale = "free_y",

 labeller = labeller(Measurement = label_map))

There are different ways to modify color scales. There are two classes, as there are

for axes, discrete and continuous. The Species variable in iris is discrete, so to modify

the fill color, we need one of the functions for that. The simplest is just to give a color

per species explicitly. We can do that with the scale_fill_manual() function (see

Figure 4-26):

iris %>%

 pivot_longer(

 -Species,

 names_to = "Measurement",

 values_to = "Value"

) %>%

 ggplot(aes(x = Species, y = Value, fill = Species)) +

 geom_boxplot() +

 scale_fill_manual(values = c("black", "grey40", "grey60")) +

 facet_grid(Measurement ~ ., scale = "free_y",

 labeller = labeller(Measurement = label_map))

Chapter 4 Visualizing Data

150

Petal Length
Petal W

idth
Sepal Length

Sepal W
idth

setosa versicolor virginica

2

4

6

0.0
0.5
1.0
1.5
2.0
2.5

5
6
7
8

2.0
2.5
3.0
3.5
4.0
4.5

Species

Va
lu

e

Species
setosa

versicolor

virginica

Figure 4-25.  Iris data plotted with default fill colors

Petal Length
Petal W

idth
Sepal Length

Sepal W
idth

setosa versicolor virginica

2

4

6

0.0
0.5
1.0
1.5
2.0
2.5

5
6
7
8

2.0
2.5
3.0
3.5
4.0
4.5

Species

Va
lu

e

Species
setosa

versicolor

virginica

Figure 4-26.  Iris data plotted with custom fill colors

Chapter 4 Visualizing Data

151

Explicitly setting colors is a risky business, though, unless you have a good feeling

for how colors work together and which combinations can be problematic for color

blind people. It is better to use one of the “brewer” choices. These are methods for

constructing good combinations of colors (see http://colorbrewer2.org), and you can

use them with the scale_fill_brewer() function (see Figure 4-27):

iris %>%

 pivot_longer(

 -Species,

 names_to = "Measurement",

 values_to = "Value"

) %>%

 ggplot(aes(x = Species, y = Value, fill = Species)) +

 geom_boxplot() +

 scale_fill_brewer(palette = "Greens") +

 facet_grid(Measurement ~ ., scale = "free_y",

 labeller = labeller(Measurement = label_map))

�Themes and Other Graphics Transformations
Most of using ggplot2 consist of specifying geometries and scales to control how data is

mapped to visual components, but you also have much control over how the final plot

will look through functions that only concern the final result.

Most of this is done by modifying the so-called theme. If you have tried the examples

I have given in this chapter yourself, the results might look different from the figures in

this book. This is because I have set up a default theme for the book using the command

theme_set(theme_bw())

The theme_bw() sets up the final visual appearance of the figures you see here. You

can add a theme to a plot using + as you would any other ggplot2 modification or set it

as default as I have done here. There are several themes you can use; you can look for

functions that start with theme_, but all of them can be modified to get more control

over a plot.

Chapter 4 Visualizing Data

http://colorbrewer2.org

152

Besides themes, various other functions also affect the way a plot looks. There

is far too much to cover here on all the things you can do with themes and graphics

transformations, but I can show you an example that should give you an idea of what can

be achieved.

You can, for instance, change coordinate systems using various coord_ functions—

the simplest is just flipping x and y with coord_flip(). This can, of course, also be

achieved by changing the aesthetics, but flipping the coordinates of a complex plot can

be easier than updating aesthetics several places. For the iris plot we have looked at

before, I might want to change the axes.

I also want to put the measurement labels on the left instead of on the right. You

can control the placement of facet labels using the switch option to facet_grid(), and

giving the switch parameter the value y will switch the location of that label:

iris %>%

 pivot_longer(

 -Species,

 names_to = "Measurement",

Petal Length
Petal W

idth
Sepal Length

Sepal W
idth

setosa versicolor virginica

2

4

6

0.0
0.5
1.0
1.5
2.0
2.5

5
6
7
8

2.0
2.5
3.0
3.5
4.0
4.5

Species

Va
lu

e

Species
setosa

versicolor

virginica

Figure 4-27.  Iris data plotted with brewer fill colors

Chapter 4 Visualizing Data

153

 values_to = "Value"

) %>%

 ggplot(aes(x = Species, y = Value, fill = Species)) +

 geom_boxplot() +

 scale_x_discrete(labels = c("setosa" = "Setosa",

 "versicolor" = "Versicolor",

 "virginica" = "Virginica")) +

 scale_fill_brewer(palette = "Greens") +

 facet_grid(Measurement ~ ., switch = "y",

 labeller = labeller(Measurement = label_map)) +

 coord_flip()

If I just flip the coordinates, the axis labels on the new x-axis will be wrong if I tell the

facet_grid() function to have a free y-axis. With a free y-axis, it would have different

ranges for the y values, which is what we want, but after flipping the coordinates, we will

only see the values for one of the y-axes. The other values will be plotted as if they were

on the same axis, but they won’t be. So I have removed the scale parameter to facet_

grid(). Try to put it back and see what happens.

Pe
ta

l L
en

gt
h

Pe
ta

l W
id

th
Se

pa
l L

en
gt

h
Se

pa
l W

id
th

0 2 4 6 8

Setosa

Versicolor

Virginica

Setosa

Versicolor

Virginica

Setosa

Versicolor

Virginica

Setosa

Versicolor

Virginica

Value

Sp
ec

ie
s

Species
setosa

versicolor

virginica

Figure 4-28.  Iris with flipped coordinates and switched facet labels

Chapter 4 Visualizing Data

154

The result so far is shown in Figure 4-28. We have flipped coordinates and moved

labels, but the labels look ugly with the color background. We can remove it by modifying

the theme using theme(strip.background = element_blank()). It just sets the strip.

background, which is the graphical property of facet labels, to a blank element, so in

effect it removes the background color. We can also move the legend label using a theme

modification: theme(legend.position="top").

iris %>%

 pivot_longer(

 -Species,

 names_to = "Measurement",

 values_to = "Value"

) %>%

 ggplot(aes(x = Species, y = Value, fill = Species)) +

 geom_boxplot() +

 scale_x_discrete(labels = c("setosa" = "Setosa",

 "versicolor" = "Versicolor",

 "virginica" = "Virginica")) +

 scale_fill_brewer(palette = "Greens") +

 facet_grid(Measurement ~ ., switch = "y",

 labeller = labeller(Measurement = label_map)) +

 coord_flip() +

 theme(strip.background = element_blank()) +

 theme(legend.position="top")

The result is now as seen in Figure 4-29. It is pretty close to something we could

print. We just want the labelled species to be in capital letters just like the axis labels.

Chapter 4 Visualizing Data

155

Well, we know how to do that using the labels parameter to a scale so the final

plotting code could look like this:

label_map <- c(Petal.Width = "Petal Width",

 Petal.Length = "Petal Length",

 Sepal.Width = "Sepal Width",

 Sepal.Length = "Sepal Length")

species_map <- c(setosa = "Setosa",

 versicolor = "Versicolor",

 virginica = "Virginica")

iris %>%

 pivot_longer(

 -Species,

 names_to = "Measurement",

 values_to = "Value"

) %>%

Pe
ta

l L
en

gt
h

Pe
ta

l W
id

th
Se

pa
l L

en
gt

h
Se

pa
l W

id
th

0 2 4 6 8

Setosa
Versicolor
Virginica

Setosa
Versicolor
Virginica

Setosa
Versicolor
Virginica

Setosa
Versicolor
Virginica

Value

Sp
ec

ie
s

Species setosa versicolor virginica

Figure 4-29.  Iris data with theme modifications

Chapter 4 Visualizing Data

156

 ggplot(aes(x = Species, y = Value, fill = Species)) +

 geom_boxplot() +

 scale_x_discrete(labels = species_map) +

 scale_fill_brewer(palette = "Greens", labels = species_map) +

 facet_grid(Measurement ~ ., switch = "y",

 labeller = labeller(Measurement = label_map)) +

 coord_flip() +

 theme(strip.background = element_blank()) +

 theme(legend.position="top")

and the result is seen in Figure 4-30.

�Figures with Multiple Plots
Using facets covers many of the situation where you want to have multiple panels in the

same plot, but not all. You use facets when you want to display different subsets of the

data in separate panels but essentially have the same plot for the subsets. Sometimes,

you want to combine different types of plots, or plots of different data sets, as subplots in

different panels. For that, you need to combine otherwise independent plots.

The ggplot2 package doesn’t directly support combining multiple plots, but it can

be achieved using the underlying graphics system, grid. Working with basic grid, you

have many low-level tools for modifying graphics, but for just combining plots, you want

more high-level functions, and you can get that from the gridExtra package.

Chapter 4 Visualizing Data

157

To combine plots, you first create them as you normally would. So, for example, we

could make two plots of the iris data like this:

petal <- iris %>% ggplot() +

 geom_point(aes(x = Petal.Width, y = Petal.Length,

 color = Species)) +

 scale_color_grey() +

 theme(legend.position="none")

sepal <- iris %>% ggplot() +

 geom_point(aes(x = Sepal.Width, y = Sepal.Length,

 color = Species)) +

 scale_color_grey() +

 theme(legend.position="none")

We then import the gridExtra package:

library(gridExtra)

Pe
ta

l L
en

gt
h

Pe
ta

l W
id

th
Se

pa
l L

en
gt

h
Se

pa
l W

id
th

0 2 4 6 8

Setosa
Versicolor
Virginica

Setosa
Versicolor
Virginica

Setosa
Versicolor
Virginica

Setosa
Versicolor
Virginica

Value

Sp
ec

ie
s

Species Setosa Versicolor Virginica

Figure 4-30.  Final version of the iris plot

Chapter 4 Visualizing Data

158

and can then use the grid.arrange() function to create a grid of plots, putting in the

two plots we just created (see Figure 4-31):

grid.arrange(petal, sepal, ncol = 2)

Another approach I like to use is the plot_grid() function from the cowplot

package. This package contains several functions developed by Claus O. Wilke (where

the cow comes from) for his plotting needs, and loading it will redefine the default

ggplot2 theme. You can use the theme_set() function to change it back if you don’t like

the theme that cowplot provides.

Anyway, creating a plot with subplots using cowplot, we have to import the package:

library(cowplot)

2

4

6

0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

Pe
ta
l.L

en
gt
h

5

6

7

8

2.0 2.5 3.0 3.5 4.0 4.5
Sepal.Width

Se
pa

l.L
en

gt
h

Figure 4-31.  Combining two plots of the iris data using grid.arrange

Chapter 4 Visualizing Data

159

If we don’t want the theme it sets here, we need to change it again using theme_

set(), but otherwise we can combine the plots we have defined before using plot_

grid() (see Figure 4-32):

plot_grid(petal, sepal, labels = c("A", "B"))

With the patchwork package, combining plots is even easier. You can just add them

together to get them next to each other:

library(patchwork)

petal + sepal

The pipe operator does the same thing as the plus, so this composition does the

same thing:

petal | sepal

If you want to stack one plot over another, you use /:

petal / sepal

2

4

6

0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

Pe
ta
l.L

en
gt
h

A

5

6

7

8

2.0 2.5 3.0 3.5 4.0 4.5
Sepal.Width

Se
pa

l.L
en

gt
h

B

Figure 4-32.  Combining two plots of the iris data using cowplot

Chapter 4 Visualizing Data

160

You can combine these using parentheses, so if you want the petal and sepal plots

next to each other and over another sepal plot, you can use

(petal + sepal) / sepal

�Exercises
In the previous chapter, you should have imported a data set and used dplyr and tidyr

to explore it using summary statistics. Now do the same thing using plotting. If you

looked at summary statistics, try representing these as box plots or smoothed scatter

plots. If you have different variables that you used tidyr to gather, try to plot the data

similar to what you saw for iris earlier.

Chapter 4 Visualizing Data

161
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_5

CHAPTER 5

Working with Large
Data Sets
The concept of Big Data refers to enormous data sets, sets of sizes where you need data

warehouses to store it, where you typically need sophisticated algorithms to handle the

data and distributed computations to get anywhere with it. At the very least, we talk

many gigabytes of data but also often terabytes or exabytes.

Dealing with Big Data is also part of data science, but it is beyond the scope of this

book. This chapter is on large data sets and how to deal with data that slows down your

analysis, but it is not about data sets so large that you cannot analyze it on your desktop

computer.

If we ignore the Big Data issue, what a large data set is depends very much on what

you want to do with the data. That comes down to the complexity of what you are trying

to achieve. Some algorithms are fast and can scan through data in linear time—meaning

that the time it takes to analyze the data is linear in the number of data points—while

others take exponential time and cannot be applied to data sets with more than a few

tens or hundreds of data points. The science of what you can do with data in a given

amount of time, or a given amount of space (be it RAM or disk space or whatever you

need), is called complexity theory and is one of the fundamental topics in computer

science. In practical terms, though, it usually boils down to how long you are willing to

wait for an analysis to finish, and it is a very subjective measure.

In this chapter, we will just consider a few cases where I have found in my own work

that data gets a bit too large to do what I want, and I have had to deal with it in various

ways. Your cases are likely to be different, but maybe you can get some inspiration, at

least, from these cases.

https://doi.org/10.1007/978-1-4842-8155-0_5#DOI

162

�Subsample Your Data Before You Analyze the Full
Data Set
The first point I want to make, though, is this: you very rarely need to analyze a complete

data set to get at least an idea of how the data behaves. Unless you are looking for very

rare events, you will get as much feeling for the data looking at a few thousands of data

points as you would from looking at a few million.

Sometimes, you do need extensive data to find what you are looking for. This is the

case, for example, when looking for associations between genetic variation and common

diseases where the association can be very weak, and you need lots of data to distinguish

between chance associations and genuine associations. But for most signals in data that

are of practical importance, you will see the signals in smaller data sets. So before you

throw the full power of all your data at an analysis, especially if that analysis turns out to

be very slow, you should explore a smaller sample of your data.

Here, you must pick a random sample. There is often structure in data beyond

the columns in a data frame. This could be a structure caused by when the data was

collected. If the data is ordered by when the data was collected, then the first data points

you have can be different from later data points. This isn’t explicitly represented in the

data, but the structure is there nevertheless. Randomizing your data alleviates problems

that can arise from this. Randomizing might remove a subtle signal, but with the power

of statistics, we can deal with random noise. It is much harder to deal with consistent

biases we just don’t know about.

If you have a large data set, and your analysis is being slowed down because of it,

don’t be afraid to pick a random subset and analyze that. You may see signals in the

subsample that is not present in the full data set, but it is much less likely than you might

fear. When you are looking for signals in your data, you always have to worry about false

signals. But it is not more liable to pop up in a smaller data set than in a larger. And with

a more extensive data set to check your results against later, you are less likely to stick

with wrong results at the end of your analysis.

Getting spurious results is mostly a concern with traditional hypothesis testing. If you

set a threshold for when a signal is significant at 5% for p-values, you will see spurious

results one time out of twenty. If you don’t correct for multiple testing, you will be almost

guaranteed to see false results. These are unlikely to survive when you later throw the

complete data at your models.

Chapter 5 Working with Large Data Sets

163

In any case, with large data sets, you are more likely to have statistically significant

deviations from a null model, which are entirely irrelevant to your analysis. We usually

use simple null models when analyzing data, and any complex data sets are not

generated from a simple null model. With enough data, the chances are that anything

you look at will have significant deviations from your simple null model. The real

world does not draw samples from a simple linear model. There is always some extra

complexity. You won’t see it with a few data points, but with enough data, you can reject

any null model. It doesn’t mean that what you see has any practical importance.

If you have signals you can discover in a smaller subset of your data, and these

signals persist when you look at the full data set, you can trust them that much more.

So, if the data size slows you down, downsample and analyze a subset.

You can use dplyr functions sample_n() and sample_frac() to sample from a data

frame. Use sample_n() to get a fixed number of rows and sample_frac() to get a fraction

of the data:

iris |> sample_n(size = 5)

Sepal.Length Sepal.Width Petal.Length

1 5.5 3.5 1.3

2 6.4 2.8 5.6

3 5.7 2.8 4.5

4 5.0 3.4 1.5

5 5.1 3.8 1.6

Petal.Width Species

1 0.2 setosa

2 2.2 virginica

3 1.3 versicolor

4 0.2 setosa

5 0.2 setosa

iris |> sample_frac(size = 0.02)

Sepal.Length Sepal.Width Petal.Length

1 6.3 2.5 5.0

2 6.4 2.8 5.6

3 6.3 3.3 4.7

Chapter 5 Working with Large Data Sets

164

Petal.Width Species

1 1.9 virginica

2 2.2 virginica

3 1.6 versicolor

(Your output will be different, since these are random functions, but it should look

similar.)

Of course, to sample using dplyr, you need your data in a form that dplyr can

manipulate, and if the data is too large even to load into R, then you cannot have it in a

data frame to sample from, to begin with. Luckily, dplyr has support for using data that

is stored on disk rather than in RAM, in various back-end formats, as we will see later. It

is, for example, possible to connect a database to dplyr and sample from a large data set

this way.

�Running Out of Memory During an Analysis
R can be very wasteful of RAM. Even if your data set is small enough to fit in memory and

small enough that the analysis time is not a substantial problem, it is easy to run out of

memory because R remembers more than is immediately apparent.

In R, all objects are immutable,1 so whenever you modify an object, you are actually

creating a new object. The implementation of this is smart enough that you only have

independent copies of data when it is different. Having two different variables to refer

to the same data frame doesn’t mean that the data frame is represented twice. Still, if

you modify the data frame in one of the variables, then R will create a copy with the

modifications, and you now have the data twice, accessible through the two variables.

If you only refer to the data frame through one variable, then R is smart enough not to

make a copy, though.

You can examine memory usage and memory changes using the pryr package:

library(pryr)

For example, we can see what the cost is of creating a new vector:

mem_change(x <- rnorm(10000))

1 This is not entirely true; it is possible to make mutable objects, but it requires some work. Unless
you go out of your way to create mutable objects, it is true.

Chapter 5 Working with Large Data Sets

165

83.9 kB

(The exact value you see here will depend on your computer and your installation, so

don’t be surprised if it differs from mine.)

R doesn’t allow modification of data, so when you “modify” a vector, it makes a new

copy that contains the changes. This doesn’t significantly increase the memory usage

because R is smart about only copying when more than one variable refers to an object:

mem_change(x[1] <- 0)

528 B

If we assign the vector to another variable, we do not use twice the memory, because

both variables will just refer to the same object:

mem_change(y <- x)

584 B

but if we modify one of the vectors, we will have to make a copy, so the other vector

remains the same:

mem_change(x[1] <- 0)

80.6 kB

This is another reason for using pipelines rather than assigning to many variables

during an analysis. You are fine if you assign back to a variable, though, so the %<>%

operator does not lead to a lot of copying.

Even using pipelines, you still have to be careful, though. Many functions in R will

again copy data.

If a function does any modification to data, the data is copied to a local variable.

There might be some sharing, so, for example, just referring to a data frame in a local

variable does not create a copy. Still, if you, for example, split a data frame into training

and test data in a function, then you will be copying and now represent all the data twice.

This memory is freed after the function finishes its computations, so it is really only a

problem if you are very close to the limit of RAM.

Chapter 5 Working with Large Data Sets

166

If such copied data is returned in some way from the function, it is not freed. It is,

for example, not unusual that model fitting functions will save the entire fitting data in

the returned object. If it is copied without modification, again we do not see a memory

increase. Yet, if the function modifies it in any way, we are now using twice the memory

as before.

When you have problems with running out of memory in data analysis in R, it is

usually not that you cannot represent your data initially but that you end up having

many copies. You can avoid this to some extent by not storing temporary data frames in

variables and by not implicitly storing copies of data frames in the output of functions, or

you can explicitly remove stored data using the rm() function to free up memory.

�Too Large to Plot
The first point where I typically run into problems with large data sets is not that I run

out of RAM, but when I am plotting, especially when making scatter plots; box plots or

histograms summarize the data and are usually not a problem.

There are two problems when making scatter plots with a lot of data. The first is

that if you create files from scatter plots, you will create a plot that contains every single

individual point. That can be a huge file. Worse, it will take forever to plot, since a viewer

will have to consider every single point. You can avoid this problem by creating raster

graphics instead of PDFs, but that takes us to the second issue. With too many points,

a scatter plot is just not informative any longer. Points will overlap, and you cannot see

how many individual data points fall on the plot. This usually becomes a problem long

before the computational time becomes an issue.

If, for example, we have a data frame with 10,000 points

d <- data.frame(x = rnorm(10000), y = rnorm(10000))

we can still make a scatter plot, and if the plot is saved as raster graphic instead of PDF,

the file will not be too large to watch or print:

d |> ggplot(aes(x = x, y = y)) +

 geom_point()

Chapter 5 Working with Large Data Sets

167

The result will just not be all that informative; see Figure 5-1. The points are shown

on top of each other, making it hard to see if the big black cloud of points has different

densities in some places than others.

−5.0

−2.5

0.0

2.5

−2 0 2 4
x

y

Figure 5-1.  A scatter plot with too many points

The solution is to represent points such that they are still visible when there are

many overlapping points. If the points are overlapping because they have the same x or

y coordinates, you can jitter them; we saw that in the previous chapter. Another solution

to the same problems is plotting the points with alpha levels, so each point is partly

transparent. You can see the density of points because they are slightly transparent, but

you still end up with a plot with very many points; see Figure 5-2.

Chapter 5 Working with Large Data Sets

168

−5.0

−2.5

0.0

2.5

−2 0 2 4
x

y

Figure 5-2.  A scatter plot with alpha values

d |> ggplot(aes(x = x, y = y)) +

 geom_point(alpha = 0.2)

This, however, doesn’t solve the problem that files will draw every single point

and cause printing and file size problems. A scatter plot with transparency is just a

way of showing the 2D density, though, and we can do that directly using the

geom_density_2d() function; see Figure 5-3.

Chapter 5 Working with Large Data Sets

169

−2

−1

0

1

2

−2 −1 0 1 2
x

y

Figure 5-3.  A 2D density plot

d |> ggplot(aes(x = x, y = y)) +

 geom_density_2d()

The plot shows the contour of the density.

An alternative way of showing a 2D density is using a so-called hex plot, the 2D

equivalent of a histogram. The plot splits the 2D plane into hexagonal bins and displays

the count of points falling into each bin.

To use it, you need to install the package hexbin and use the ggplot2 function

geom_hex(); see Figure 5-4.

d |> ggplot(aes(x = x, y = y)) +

 geom_hex()

Chapter 5 Working with Large Data Sets

170

−5.0

−2.5

0.0

2.5

−2 0 2 4
x

y

25

50

75

100
count

Figure 5-4.  A hex plot

The colors used by geom_hex() are the fill colors, so you can change them using the

scale_fill functions. You can also combine hex and 2D density plots to get both the

bins and contours displayed; see Figure 5-5.

Chapter 5 Working with Large Data Sets

171

−5.0

−2.5

0.0

2.5

−2 0 2 4
x

y

25

50

75

100
count

Figure 5-5.  A plot combining hex and 2D density

d |> ggplot(aes(x = x, y = y)) +

 geom_hex() +

 scale_fill_gradient(low = "lightgray", high = "grey10") +

 geom_density2d(color = "black")

�Too Slow to Analyze
When plotting data, the problem is usually only in scatter plots. Otherwise, you don’t

have to worry about having too many points or too large plot files. Even when plotting

lots of points, the real problem doesn’t show up until you create a plot and load it into

your viewer or send it to the printer.

With enough data points, though, most analyses will slow down, and that can be a

problem.

The easy solution is again to subsample your data and work with that. It will show

you the relevant signals in your data without slowing down your analysis.

Chapter 5 Working with Large Data Sets

172

If that is not a solution for you, you need to pick analysis algorithms that work

more efficiently. That typically means linear time algorithms. Unfortunately, many

standard algorithms are not linear time, and even if they are, the implementation does

not necessarily make it easy to fit data in batches where the model parameters can be

updated one batch at a time. You often need to find packages specifically written for that

or make your own.

One package that provides both a memory-efficient linear model fitting (it avoids

creating a model matrix that would have rows for each data point and solving equations

for that) and functionality for updating the model in batches is the biglm package:

library(biglm)

You can use it for linear regression using the biglm() function instead of the lm()

function, and you can use the bigglm() function for generalized linear regression

instead of the glm() function (see Chapter 6 for details on these).

If you are using a data frame format that stores the data on disk and has support for

biglm (see the next section), the package will split the data into chunks it can load into

memory and analyze. If you do not have a package that handles this automatically, you

can split the data into chunks yourself. As a toy example, we can consider the cars data

set and try to fit a linear model of stopping distance as a function of speed but do this

in batches of ten data points. Of course, we can easily fit such a small data set without

splitting it into batches, we don’t even need to use the biglm() function for it, but as an

example, it will do.

Defining the slice indices requires some arithmetic, and after that, we can extract

subsets of the data using the slice() function from dplyr. We can create a linear model

from the first slice and then update using the following:

slice_size <- 10

n <- nrow(cars)

slice <- cars |> slice(1:slice_size)

model <- biglm(dist ~ speed, data = slice)

for (i in 1:(n/slice_size-1)) {

 slice <- cars |> slice((i*slice_size+1):((i+1)*slice_size))

 model <- update(model, moredata = slice)

}

Chapter 5 Working with Large Data Sets

https://doi.org/10.1007/978-1-4842-8155-0_6

173

Model

Large data regression model: biglm(dist ~ speed, data = slice)

Sample size = 50

Bayesian model fitting methods have a (somewhat justified) reputation for being

slow, but Bayesian models based on conjugate priors are ideal for this. Having a

conjugate prior means that the posterior distribution you get out of analyzing one data

set can be used as the prior distribution for the next data set. This way, you can split the

data into slices and fit the first slice with a real prior and the subsequent slices with the

result of the previous model fits.

The Bayesian linear regression model in the second project, the last chapter of this

book, is one such model. There, we implement an update() function that fits a new

model based on a data set and a previously fitted model. Using it on the cars data,

splitting the data into chunks of size 10, would look very similar to the biglm example.

Even better are models where you can analyze slices independently and then

combine the results to get a model for the full data set. These can not only be analyzed in

batches, but the slices can be handled in parallel, exploiting multiple cores or multiple

computer nodes. For gradient descent optimization approaches, you can compute

gradients for slices independently and then combine them to make a step in the

optimization.

There are no general solutions for dealing with data that is too large to be efficiently

analyzed, though. It requires thinking about the algorithms used and usually also some

custom implementation of these unless you are lucky and can find a package that can

handle data in batches.

�Too Large to Load
R wants to keep the data it works on in memory. So if your computer doesn’t have

the RAM to hold it, you are out of luck. At least if you work with the default data

representations like ‘data.frame’. R usually also wants to use 32-bit integers for indices.

Since it uses both positive and negative numbers for indices, you are limited to indexing

around two billion data points even if you could hold more in memory.

Chapter 5 Working with Large Data Sets

174

There are different packages for dealing with this. One such is the ff package that

works with the kind of tables we have used so far but uses memory-mapped files to

represent the data and loads data chunks into memory as needed:

library(ff)

It essentially creates flat files and has functionality for mapping chunks of these into

memory when analyzing them.

It represents data frames as objects of class ffdf. These behave just like data frames

if you use them as such, and you can translate a data frame into an ffdf object using the

as.ffdf() function.

You can, for example, convert the cars data into an ffdf object using

ffcars <- as.ffdf(cars)

summary(ffcars)

Length Class Mode

speed 50 ff_vector list

dist 50 ff_vector list

Of course, if you can already represent a data frame in memory, there is no need

for this translation, but ff also has functions for creating ffdf objects from files. If,

for example, you have a large file as comma-separated values, you can use read.

csv.ffdf().

With ff, you get various functions for computing summary statistics efficiently

from the memory-mapped flat files. These are implemented as generic functions (we

will cover generic functions in Chapter 12), and this means that for most common

summaries, we can work efficiently with ffdf objects. Not every function supports this,

however, so sometimes functions will (implicitly) work on an ffdf object as if it was

a plain data.frame. This means that the full data might be loaded into memory. This

usually doesn’t work if the data is too large to fit.

To deal with data that you cannot load into memory, you will have to analyze

it in batches. This means that you need special functions for analyzing data, and,

unfortunately, this quite often means that you have to implement analysis algorithms

yourself.

You cannot use ffdf objects together with dplyr, which is a main drawback of using

ff to represent data. However, the dplyr package itself provides support for different

back ends, such as relational databases. If you can work with data as flat files, there is

Chapter 5 Working with Large Data Sets

10.1007/978-1-4842-8095-9_6

175

no benefit for putting it in databases, but large data sets are usually stored in databases

that are accessed through the Structured Query Language (SQL). This is a language

that is worth learning, but beyond the scope of this book. In any case, dplyr can be

used to access such databases. This means that you can write dplyr pipelines of data

manipulation function calls; these will be translated into SQL expressions that are then

sent to the database system, and you can get the results back.

With dplyr, you can access commonly used database systems such as MySQL (www.

mysql.com) or PostgreSQL (www.postgresql.org). These require that you set up a

server for the data, though, so a simpler solution, if your data is not already stored in a

database, is to use LiteSQL (https://en.wikipedia.org/wiki/LiteSQL).

LiteSQL databases sit on your filesystem and provide a file format and ways of

accessing it using SQL. You can open or create a LiteSQL file using the src_sqlite()

function:2

iris_db <- DBI::dbConnect(RSQLite::SQLite(),

 path = "iris_db.sqlite3")

and load a data set into it using copy_to():

copy_to(iris_db, iris, temporary = FALSE)

Of course, if you can already represent a data frame in RAM, you wouldn’t usually

copy it to a database. It only slows down analysis to go through a database system

compared to keeping the data in memory—but the point is, of course, that you can

populate the database outside of R and then access it using dplyr.

Setting the temporary option to FALSE here ensures that the table you fill into the

database survives between sessions. If you do not set temporary to FALSE, it will only

exist as long as you have the database open; after you close it, it will be deleted. This is

useful for many operations but not what we want here.

Once you have a connection to a database, you can pull out a table using tbl():

iris_db_tbl <- tbl(iris_db, "iris")

iris_db_tbl

Source: table<iris> [?? x 5]

Database: sqlite 3.38.0 []

2 You will have to install the package RSQLite to run this code, since that package implements the
underlying functionality.

Chapter 5 Working with Large Data Sets

http://www.mysql.com
http://www.mysql.com
http://www.postgresql.org
https://en.wikipedia.org/wiki/LiteSQL

176

Sepal.Length Sepal.Width Petal.Length

<dbl> <dbl> <dbl>

1 5.1 3.5 1.4

2 4.9 3 1.4

3 4.7 3.2 1.3

4 4.6 3.1 1.5

5 5 3. 6 1.4

6 5.4 3.9 1.7

7 4.6 3.4 1.4

8 5 3. 4 1.5

9 4.4 2.9 1.4

10 4.9 3.1 1.5

… with more rows, and 2 more variables:

Petal.Width <dbl>, Species <chr>

and use dplyr functions to make a query to it:

iris_db_tbl %>% group_by(Species) %>%

 summarise(mean.Petal.Length = mean(Petal.Length, na.rm = TRUE))

Source: lazy query [?? x 2]

Database: sqlite 3.38.0 []

Species mean.Petal.Length

<chr> <dbl>

1 setosa 1.46

2 versicolor 4.26

3 virginica 5.55

Using dplyr with SQL databases is beyond the scope of this book, so I will just refer

you to the documentation for the package.

Manipulating data using dplyr with a database back end is only useful for doing

analysis exclusively using dplyr, of course. To fit models and such, you will still have to

batch data, so some custom code is usually still required.

Chapter 5 Working with Large Data Sets

177

�Exercises
�Subsampling
Take the data set you worked on the last two chapters and pick a subset of the data.

Summarize it and compare to the results you get for the full data. Plot the subsamples

and compare that to the plots you created with the full data.

�Hex and 2D Density Plots
If you have used any scatter plots to look at your data, translate them into hex or 2D

density plots.

Chapter 5 Working with Large Data Sets

179
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_6

CHAPTER 6

Supervised Learning
This chapter and the next concern the mathematical modelling of data that is the

essential core of data science. We can call this statistics, or we can call it machine

learning. At its heart, it is the same thing. It is all about extracting information out of data.

�Machine Learning
Machine learning is the discipline of developing and applying models and algorithms for

learning from data. Traditional algorithms implement fixed rules for solving particular

problems like sorting numbers or finding the shortest route between two cities. To

develop algorithms like that, you need a deep understanding of the problem you are

trying to solve—a thorough understanding that you can rarely obtain unless the problem

is particularly simple or you have abstracted away all the unusual cases. Far more often,

you can collect examples of good or bad solutions to the problem you want to solve

without being able to explain precisely why a given solution is good or bad. Or you can

obtain data that provides examples of relationships between data you are interested in

without necessarily understanding the underlying reasons for these relationships.

This is where machine learning can help. Machine learning concerns learning

from data. You do not explicitly develop an algorithm for solving a particular problem.

Instead, you use a generic learning algorithm that you feed examples of solutions to and

let it learn how to solve the problem from those examples.

This might sound very abstract, but most statistical modelling is indeed examples

of this. Take, for example, a linear model y = αx + β + ϵ where ϵ is the stochastic

noise (usually assumed to be normal distributed). When you want to model a linear

relationship between x and y, you don’t figure out α and β from the first principle.

You can write an algorithm for sorting numbers without having studied the numbers

beforehand, but you cannot usually figure out what the linear relationship is between

y and x without looking at data. When you fit the linear model, you are doing machine

https://doi.org/10.1007/978-1-4842-8155-0_6#DOI

180

learning. (Well, I suppose if you do it by hand, it isn’t machine learning, but you are not

likely to fit linear models by hand that often.) People typically do not call simple models

like linear regression machine learning, but that is mostly because the term “machine

learning” is much younger than these models. Linear regression is as much machine

learning as neural networks are.

�Supervised Learning
Supervised learning is used when you have variables you want to predict using other

variables—situations like linear regression where you have some input variables, for

example, x, and you want a model that predicts output (or response) variables, y = f (x).

Unsupervised learning, the topic for the next chapter, is instead concerned with

discovering patterns in data when you don’t necessarily know what kind of questions

you are interested in learning–when you don’t have x and y values and want to know

how they are related, but instead have a collection of data, and you want to discover what

patterns there are in the data.

For the simplest case of supervised learning, we have one response variable, y, and

one input variable, x, and we want to figure out a function, f, mapping input to output,

that is, such that y = f (x). What we have to work with is example data of matching x and y.

Let us write that as vectors x = (x1, ... , xn) and y = (y1, ... , yn) where we want to figure out a

function f such that yi = f (xi).

We will typically accept that there might be some noise in our observations, so

f doesn’t map perfectly from x to y. Therefore, we can change the setup slightly and

assume that the data we have is x = (x1, ... , xn) and t = (t1, ... , tn), where t is target values

and where ti = yi + ϵi, yi = f (xi), and ϵi is the error in the observation ti.

How we model the error ϵi and the function f are choices that are up to us. It is only

modelling, after all, and we can do whatever we want. Not all models are equally good, of

course, so we need to be a little careful with what we choose and how we evaluate if the

choice is good or bad, but in principle, we can do anything.

The way most machine learning works is that an algorithm, implicitly or explicitly,

defines a class of parameterized functions f (−; θ), each mapping input to output f (−; θ)

: x ↦ f (x; θ) = y(θ) (now the value we get for the output depends on the parameters of the

function, θ), and the learning consists of choosing parameters θ such that we minimize

the errors, that is, such that f (xi; θ) is as close to ti as we can get. We want to get close

Chapter 6 Supervised Learning

181

for all our data points, or at least get close on average, so if we let y(θ) denote the vector

(y(θ)1, ... , y(θ)n) = (f (x1; θ), ... , f (xn; θ)), we want to minimize the distance from y(θ) to t,

||y(θ) – t||, for some distance measure ||·||.

�Regression vs. Classification
There are two main types of supervised learning: regression and classification.

Regression is used when the output variable we try to target is a number. Classification is

used when we try to target some categorical variables.

Take linear regression, y = αx + β (or t = αx + β + ϵ). It is regression because the

variable we are trying to target is a number. The parameterized class of functions, fθ,

are all lines. If we let θ = (θ1, θ0) and α = θ1, β = θ0, then y(θ) = f (x; θ) = θ1x + θ0. Fitting a

linear model consists of finding the best θ, where best is defined as the θ that gets y(θ)

closest to t. The distance measure used in linear regression is the squared Euclidean

distance |y t|
θ θ()

=

− = () −()∑2

1

2

i

n

i iy t .

The reason it is the squared distance instead of just the distance is mostly

mathematical convenience—it is easier to maximize θ that way—but also related to

us interpreting the error term ϵ as normal distributed. Whenever you fit data in linear

regression, you are minimizing this distance; you are finding the parameters θ that best

fit the data in the sense of minimizing the distance from y(θ) to t:

	 ()
1 0

2
1 0

1,
arg miˆ n .

θ θ
θ θ θ

=

= + −∑
n

i i
i

x t 	

For an example of classification, let us assume that the targets ti are binary, encoded

as 0 and 1, but that the input variables xi are still real numbers. A common way of

defining the mapping function f (−; θ) is to let it map x to the unit interval [0, 1] and

interpret the resulting y(θ) as the probability that t is 1. In a classification setting, you

would then predict 0 if f (x; θ) < 0.5 and predict 1 if f (x; θ) > 0.5 (and have some strategy

for dealing with f (x; θ) = 0.5). In linear classification, the function fθ could look like this:

f (x; θ) = σ (θ1x + θ0)

where σ is a sigmoid function (a function mapping ℝ ↦ [0, 1] that is “S-shaped”). A

common choice of σ is the logistic function σ : z
e z

1

1+ − , in which case we call the

fitting of f (−; θ) logistic regression.

Chapter 6 Supervised Learning

182

Whether we are doing regression or classification, and whether we have linear

models or not, we are simply trying to find parameters θ such that our predictions y(θ)

are as close to our targets t as possible. The details that differ between different machine

learning methods are how the class of prediction functions f (−; θ) is defined, what kind

of parameters θ we have, and how we measure the distance between y(θ) and t. There are

a lot of different choices here and a lot of different machine learning algorithms. Many

of them are already implemented in R, however, so we rarely will have to implement our

own. We just need to find the right package that implements the learning algorithms

we need.

�Inference vs. Prediction
A question always worth considering when we fit parameters of a model is this: Do we

care about the model parameters or do we just want to make a function that is good at

predicting?

If you were taught statistics the same way I was, your introduction to linear

regression was mostly focused on the model parameters. You inferred the parameters θ1

and θ0 mostly to figure out if θ1 ≠ 0, that is, to find out if there was a (linear) relationship

between x and y or not. When we fit our function to data to learn about the parameters,

we say we are doing inference, and we are inferring the parameters.

This focus on model parameters makes sense in many situations. In a linear model,

the coefficient θ1 tells us if there is a significant correlation between x and y, meaning we

are statistically relatively certain that the correlation exists, and whether it is substantial,

meaning that θ1 is large enough to care about in practical situations.

When we care about model parameters, we usually want to know more than just

the best-fitting parameters, θ ̂. We want to know how certain we are that the “true

parameters” are close to our estimated parameters. This usually means estimating

not just the best parameters but also confidence intervals or posterior distributions of

parameters. How easy it is to estimate these depends very much on the models and

algorithms used.

I put “true parameters” in quotes earlier, where I talked about how close estimates

were to the “true parameters,” for a good reason. True parameters only exist if the data

you are analyzing were simulated from a function fθ where some true θ exist. When you

are estimating parameters, θ ̂, you are looking for the best choice of parameters assuming

that the data were generated by a function fθ . Outside of statistics textbooks, there is no

Chapter 6 Supervised Learning

183

reason to think that your data was generated from a function in the class of functions

you consider. Unless we are trying to model causal relationships—modelling how we

think the world actually works as forces of nature—that is usually not an underlying

assumption of model fitting. A lot of the theory we have for doing statistics on inferred

parameters does assume that we have the right class of functions, and that is where you

get confidence intervals and such from. In practice, data does not come from these sorts

of functions, so treat the results you get from theory with some skepticism.

We can get more empirical distributions of parameters directly from data if we have

a lot of data—which we usually do have when doing data science—using sampling

methods. I will briefly return to that later in this chapter.

We don’t always care about the model parameters, though. For linear regression, it is

easy to interpret what the parameters mean, but in many machine learning models, the

parameters aren’t that interpretable—and we don’t really care about them. All we care

about is if the model we have fitted is good at predicting the target values. Evaluating

how well we expect a function to be able to predict is also something that we sometimes

have theoretical results regarding, but as for parameter estimation, we shouldn’t really

trust these too much. It is much better to use the actual data to estimate this, and as for

getting empirical distributions of model parameters, it is something we return to later.

Whether you care about model parameters or not depends on your application and

quite often on how you think your model relates to reality.

�Specifying Models
The general pattern for specifying models in R is using what is called a “formula,” which

is a type of objects built into the language. The simplest form is y ~ x which we should

interpret as saying y = f (x). Implicitly, there is assumed some class of functions indexed

with model parameters, f (−; θ), and which class of functions we are working with

depends on which R functions we use.

�Linear Regression
If we take a simple linear regression, fθ (x) = θ1x + θ0, we need the function lm().

For an example, we can use the built-in data set cars, which just contains two

variables, speed and breaking distance, where we can consider speed the x value and

breaking distance the y value:

Chapter 6 Supervised Learning

184

cars |> head()

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

If we plot the data set (see Figure 6-1), we see that there is a very clear linear

relationship between speed and distance:

cars |> ggplot(aes(x = speed, y = dist)) +

 geom_point() +

 geom_smooth(formula = y ~ x, method = "lm")

0

25

50

75

100

125

5 10 15 20 25
speed

di
st

Figure 6-1.  Plot of breaking distance vs. speed for cars

Chapter 6 Supervised Learning

185

In this plot, I used the method "lm" for the smoothed statistics to see the fit. By

default, the geom_smooth() function would have given us a loess curve, but since we

are interested in linear fits, we tell it to use the lm method. By default, geom_smooth()

will also plot the uncertainty of the fit. This is the gray area in the plot. This is the area

where the line is likely to be (assuming that the data is generated by a linear model).

Do not confuse this with where data points are likely to be, though. If target values are

given by t = θ1x + θ0 + ϵ where ϵ has a very large variance, then even if we knew θ1 and

θ0 with high certainty, we still wouldn’t be able to predict with high accuracy where

any individual point would fall. There is a difference between prediction accuracy and

inference accuracy. We might know model parameters with very high accuracy without

being able to predict very well. We might also be able to predict very well without

knowing all model parameters that well. If a given model parameter has little influence

on where target variables fall, then the training data gives us little information about

that parameter. This usually doesn’t happen unless the model is more complicated

than it needs to be, though, since we often want to remove parameters that do not affect

the data.

To actually fit the data and get information about the fit, we use the lm() function

with the model specification, dist ~ speed, and we can use the summary() function to

see information about the fit:1

cars %>% lm(dist ~ speed, data = .) %>% summary()

##

Call:

lm(formula = dist ~ speed, data = .)

##

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123

speed 3.9324 0.4155 9.464 1.49e-12

1 We need the %>% operator here because of where we want the cars data to go in the call to lm; we
can’t do that this easily with |>.

Chapter 6 Supervised Learning

186

##

(Intercept) *

speed ***

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

or we can use the coefficients() function to get the point estimates and the

confint() function to get the confidence intervals for the parameters:

cars %>% lm(dist ~ speed, data = .) %>% coefficients()

(Intercept) speed

-17.579095 3.932409

cars %>% lm(dist ~ speed, data = .) %>% confint()

2.5 % 97.5 %

(Intercept) -31.167850 -3.990340

speed 3.096964 4.767853

Here, (Intercept) is θ0 and speed is θ1.

To illustrate the fitting procedure and really drive the point home, we can explicitly

draw models with different parameters, that is, draw lines with different choices of θ.

To simplify matters, I am going to set θ0 = 0. Then I can plot the lines y = θ1x for different

choices of θ1 and visually see the fit; see Figure 6-2.

predict_dist <- function(speed, theta_1)

 data.frame(speed = speed,

 dist = theta_1 * speed,

 theta = as.factor(theta_1))

cars %>% ggplot(aes(x = speed, y = dist, colour = theta)) +

 geom_point(colour = "black") +

 geom_line(data = predict_dist(cars$speed, 2)) +

Chapter 6 Supervised Learning

187

 geom_line(data = predict_dist(cars$speed, 3)) +

 geom_line(data = predict_dist(cars$speed, 4)) +

 scale_color_discrete(name=expression(theta[1]))

In this plot, I want to color the lines according to their θ1 parameter, but since the

cars data frame doesn’t have a theta column, I’m in a bit of a pickle. I specify that theta

should determine the color anyway, but when I plot the points, I overwrite this and say

that these should be plotted black; then it doesn’t matter that I didn’t have theta values.

In the geom_line() calls, where I plot the lines, I do have a theta, and that will determine

the colors for the lines. The lines are plotted according to their theta value which I set in

the predict_dist() function.

Each of the lines shows a choice of model. Given an input value x, they all produce

an output value y(θ) = f (x; θ). So we can fix θ and consider the mapping x ↦ θ1x. This is

the function we use when predicting the output for a given value of x. If we fix x instead,

we can also see it as a function of θ: θ1 ↦ θ1x. This is what we use when we fit parameters

to the data, because if we keep our data set fixed, this mapping defines an error function,

that is, a function that given parameters gives us a measure of how far our predicted

values are from our target values. If, as before, our input values and target values are

vectors x and t, then the error function is

	
E t x tx i

i

n

i i, θ θ() = −()
=
∑

1

1

2

	

and we can plot the errors against different choices of θ1 (Figure 6-3). Where this

function is minimized, we find our best estimate for θ1:

Get the error value for the specific theta

fitting_error <- Vectorize(function(theta)

 sum((theta * cars$speed - cars$dist)**2)

)

Plot the errors for a range of thetas

tibble(theta = seq(0, 5, length.out = 50)) |> # set the theta values

 mutate(errors = fitting_error(theta)) |> # add the errors

 ggplot(aes(x = theta, y = errors)) +

 geom_line() +

 xlab(expression(theta[1])) + ylab(expression(E(theta[1])))

Chapter 6 Supervised Learning

188

To wrap up this example, we can also plot and fit the best model where θ0 = 0. The

formula needed to remove the intercept is of the form “y ~ x - 1”. It is the “- 1” that

removes the intercept:

cars %>% lm(dist ~ speed - 1, data = .) %>% coefficients()

speed

2.909132

We can also plot this regression line, together with the confidence interval for where

it lies, using geom_smooth(). See Figure 6-4. Here, though, we need to use the formula

y ~ x - 1 rather than dist ~ speed - 1. This is because the geom_smooth() function

works on the ggplot2 layers that have x and y coordinates and not the data in the data

frame as such. We map the speed variable to the x-axis and the dist variable to the y

variable in the aesthetics, but it is x and y that geom_smooth() works on:

0

25

50

75

100

125

5 10 15 20 25
speed

di
st

�1

2

3

4

Figure 6-2.  Prediction lines for different choices of parameters

Chapter 6 Supervised Learning

189

cars |> ggplot(aes(x = speed, y = dist)) +

 geom_point() +

 geom_smooth(method = "lm", formula = y ~ x - 1)

�Logistic Regression (Classification, Really)
Using other statistical models works the same way. We specify the class of functions, fθ,

using a formula and use a function to fit its parameters. Consider binary classification

and logistic regression.

25000

50000

75000

100000

125000

0 1 2 3 4 5
�1

E�
� 1
�

Figure 6-3.  Error values for different choices of parameters

Chapter 6 Supervised Learning

190

Here, we can use the breast cancer data from the mlbench library that we also

discussed in Chapter 3 and ask if the clump thickness has an effect on the risk of a tumor

being malignant. That is, we want to see if we can predict the Class variable from the Cl.

thickness variable:

library(mlbench)

data("BreastCancer")

BreastCancer |> head()

Id Cl.thickness Cell.size Cell.shape

1 1000025 5 1 1

2 1002945 5 4 4

3 1015425 3 1 1

4 1016277 6 8 8

5 1017023 4 1 1

6 1017122 8 10 10

0

25

50

75

100

125

5 10 15 20 25
speed

di
st

Figure 6-4.  Best regression line going through (0,0)

Chapter 6 Supervised Learning

https://doi.org/10.1007/978-1-4842-8155-0_3

191

Marg.adhesion Epith.c.size Bare.nuclei

1 1 2 1

2 5 7 10

3 1 2 2

4 1 3 4

5 3 2 1

6 8 7 10

Bl.cromatin Normal.nucleoli Mitoses Class

1 3 1 1 benign

2 3 2 1 benign

3 3 1 1 benign

4 3 7 1 benign

5 3 1 1 benign

6 9 7 1 malignant

We can plot the data against the fit; see Figure 6-5. Since the malignant status is

either 0 or 1, the points would overlap, but if we add a little jitter to the plot, we can still

see them, and if we make them slightly transparent, we can see the density of the points.

benign

malignant

1 2 3 4 5 6 7 8 9 10
Cl.thickness

C
la
ss

Figure 6-5.  Breast cancer class vs. clump thickness

Chapter 6 Supervised Learning

192

BreastCancer |>

 ggplot(aes(x = Cl.thickness, y = Class)) +

 geom_jitter(height = 0.05, width = 0.3, alpha = 0.4)

For classification, we still specify the prediction function y = f (x) using the formula

y ~ x. The outcome parameter for y ~ x is just binary now. To fit a logistic regression,

we need to use the glm() function (generalized linear model) with the family set to

"binomial". This specifies that we use the logistic function to map from the linear space

of x and θ to the unit interval. Aside from that, fitting and getting results are very similar.

We cannot directly fit the breast cancer data with logistic regression, though. There

are two problems. The first is that the breast cancer data set considers the clump

thickness ordered factors, but for logistic regression, we need the input variable to be

numeric. While, generally, it is not advisable to directly translate categorical data into

numeric data, judging from the plot it seems okay in this case.

Using the function as.numeric() will do this, but remember that this is a risky

approach when working with factors! It actually would work for this data set, but we will

use the safer approach of first translating the factor into strings and then into numbers.

The second problem is that the glm() function expects the response variable to be

numerical, coding the classes like 0 or 1, while the BreastCancer data again encodes

the classes as a factor. Generally, it varies a little from algorithm to algorithm whether a

factor or a numerical encoding is expected for classification, so you always need to check

the documentation for that, but in any case, it is simple enough to translate between the

two representations.

We can translate the input variable to numerical values and the response variable

to 0 and 1 and plot the data together with a fitted model; see Figure 6-6. For the geom_

smooth() function, we specify that the method is glm and that the family is binomial. To

specify the family, we need to pass this argument on to the smoothing method, and that

is done by giving the parameter method.args a list of named parameters; here, we give it

list(family = "binomial):

BreastCancer |>

 mutate(Thickness =

 as.numeric(as.character(Cl.thickness))) |>

 mutate(Malignant = ifelse(Class != "benign", 1, 0)) |>

 ggplot(aes(x = Thickness, y = Malignant)) +

Chapter 6 Supervised Learning

193

 geom_jitter(height = 0.05, width = 0.3, alpha = 0.4) +

 geom_smooth(method = "glm", formula = y ~ x,

 method.args = list(family = "binomial"))

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
Thickness

M
al
ig
na

nt

Figure 6-6.  Logistic regression fit to breast cancer data

To get the fitted object, we use glm() like we used lm() for the linear regression:2

BreastCancer %>%

 mutate(Thickness =

 as.numeric(as.character(Cl.thickness))) %>%

 mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%

 glm(Malignant ~ Thickness,

 family = "binomial",

 data = .)

2 In this pipeline, we have switched to %>% again, because we need the left-hand side to go into the
data argument in glm.

Chapter 6 Supervised Learning

194

##

Call: glm(formula = Malignant ~ Thickness, family = "binomial", data = .)

##

Coefficients:

(Intercept) Thickness

-5.1602 0.9355

##

Degrees of Freedom: 698 Total (i.e. Null); 697 Residual

Null Deviance: 900.5

Residual Deviance: 464.1 AIC: 468.1

�Model Matrices and Formula
Most statistical models and machine learning algorithms actually create a map not from

a single value, f (−; θ) : x ↦ y, but from a vector, f (−; θ) : x ↦ y. When we fit a line for

single x and y values, we are actually also working with fitting a vector because we have

both the x values and the intercept to fit. That is why the model has two parameters, θ0

and θ1. For each x value, we are really using the vector (1, x) where the 1 is used to fit the

intercept.

We shouldn’t confuse this with the vector we have as input to the model fitting,

though. If we have data (x, t) to fit, then we already have a vector for our input data. But

what the linear model actually sees is a matrix for x, so let us call that X. This matrix,

known as the model matrix, has a row per value in x, and it has two columns, one for the

intercept and one for the x values:

	

X

x
x
x

xn

=























1

1

1

1

1

2

3

 

	

We can see what model matrix R generates for a given data set and formula using the

model.matrix() function. For the cars data, if we wish to fit dist vs. speed, we get this:

cars %>%

 model.matrix(dist ~ speed, data = .) %>%

Chapter 6 Supervised Learning

195

 head(5)

(Intercept) speed

1 1 4

2 1 4

3 1 7

4 1 7

5 1 8

If we remove the intercept, we simply get this:

cars %>%

 model.matrix(dist ~ speed - 1, data = .) %>%

 head(5)

speed

1 4

2 4

3 7

4 7

5 8

Pretty much all learning algorithms work on a model matrix, so, in R, they are

implemented to take a formula for specifying the model and then building the model

matrix from that and the input data.

For linear regression, the map is a pretty simple one. If we let the parameters θT = (θ0, θ1),

then it is just multiplying that with the model matrix, X:

	

X

x
x
x

x

x

n

⋅ =























⋅








 =

+
+

θ
θ
θ

θ
θ

θ
θ

1

1

1

1

1

2

3

0

1

0

0

1 1

1

 

xx
x

xn

2

0 1 3

0 1

θ θ

θ θ

+

+

























	

This combination of formulas and model matrices is a powerful tool for specifying

models. Since all the algorithms we use for fitting data work on model matrices anyway,

Chapter 6 Supervised Learning

196

there is no reason to hold back on how complex formulas to give them. The formulas will

just be translated into model matrices anyhow, and they can all deal with them.

If you want to fit more than one parameter, no problem. You just write y ~ x + z, and

the model matrix will have three columns:

	

X

x
x

z
z

x z

x zn n

=























1

1

1

1

1

2

1

2

3 3

  

	

Our model fitting functions are just as happy to fit this model matrix as the one we

get from just a single variable.

So if we wanted to fit the breast cancer data to both cell thickness and cell size, we

can do that just by adding both explanatory variables in the formula:

BreastCancer %>%

 mutate(Thickness =

 as.numeric(as.character(Cl.thickness)),

 CellSize =

 as.numeric(as.character(Cell.size))) %>%

 mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%

 model.matrix(Malignant ~ Thickness + CellSize,

 data = .) %>%

 head(5)

(Intercept) Thickness CellSize

1 1 5 1

2 1 5 4

3 1 3 1

4 1 6 8

5 1 4 1

The generalized linear model fitting function will happily work with that:

BreastCancer %>%

 mutate(Thickness =

 as.numeric(as.character(Cl.thickness)),

Chapter 6 Supervised Learning

197

 CellSize =

 as.numeric(as.character(Cell.size))) %>%

 mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%

 glm(Malignant ~ Thickness + CellSize, family = "binomial", data = .)

##

Call: glm(formula = Malignant ~ Thickness + CellSize, family = "binomial",

data = .)

##

Coefficients:

(Intercept) Thickness CellSize

-7.1517 0.6174 1.1751

##

Degrees of Freedom: 698 Total (i.e. Null); 696 Residual

Null Deviance: 900.5

Residual Deviance: 212.3 AIC: 218.3

Translating data into model matrices also works for factors; they are just represented

as a binary vector for each level:

BreastCancer %>%

 mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%

 model.matrix(Malignant ~ Bare.nuclei, data = .) %>%

 head(5)

(Intercept) Bare.nuclei2 Bare.nuclei3

1 1 0 0

2 1 0 0

3 1 1 0

4 1 0 0

5 1 0 0

Bare.nuclei4 Bare.nuclei5 Bare.nuclei6

1 0 0 0

2 0 0 0

3 0 0 0

Chapter 6 Supervised Learning

198

4 1 0 0

5 0 0 0

Bare.nuclei7 Bare.nuclei8 Bare.nuclei9

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

Bare.nuclei10

1 0

2 1

3 0

4 0

5 0

The translation for ordered factors gets a little more complicated, but R will happily

do it for you:

BreastCancer %>%

 mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%

 model.matrix(Malignant ~ Cl.thickness, data = .) %>%

 head(5)

(Intercept) Cl.thickness.L Cl.thickness.Q

1 1 -0.05504819 -0.34815531

2 1 -0.05504819 -0.34815531

3 1 -0.27524094 -0.08703883

4 1 0.05504819 -0.34815531

5 1 -0.16514456 -0.26111648

Cl.thickness.C Cl.thickness^4 Cl.thickness^5

1 0.1295501 0.33658092 -0.21483446

2 0.1295501 0.33658092 -0.21483446

3 0.3778543 -0.31788198 -0.03580574

4 -0.1295501 0.33658092 0.21483446

5 0.3346710 0.05609682 -0.39386318

Cl.thickness^6 Cl.thickness^7 Cl.thickness^8

1 -0.3113996 0.3278724 0.2617852

Chapter 6 Supervised Learning

199

2 -0.3113996 0.3278724 0.2617852

3 0.3892495 -0.5035184 0.3739788

4 -0.3113996 -0.3278724 0.2617852

5 0.2335497 0.2459043 -0.5235703

Cl.thickness^9

1 -0.5714300

2 -0.5714300

3 -0.1632657

4 0.5714300

5 0.3809534

If you want to include interactions between your parameters, you specify that using *

instead of +:

BreastCancer %>%

 mutate(Thickness =

 as.numeric(as.character(Cl.thickness)),

 CellSize =

 as.numeric(as.character(Cell.size))) %>%

 mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%

 model.matrix(Malignant ~ Thickness * CellSize,

 data = .) %>%

 head(5)

(Intercept) Thickness CellSize

1 1 5 1

2 1 5 4

3 1 3 1

4 1 6 8

5 1 4 1

Thickness:CellSize

1 5

2 20

3 3

Chapter 6 Supervised Learning

200

4 48

5 4

How interactions are modelled depends a little bit on whether your parameters are

factors or numeric, but for numeric values, the model matrix will just contain a new

column with the two values multiplied. For factors, you will get a new column for each

level of the factor:

BreastCancer %>%

 mutate(Thickness =

 as.numeric(as.character(Cl.thickness))) %>%

 mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%

 model.matrix(Malignant ~ Thickness * Bare.nuclei, data = .) %>%

 head(3)

(Intercept) Thickness Bare.nuclei2 Bare.nuclei3

1 1 5 0 0

2 1 5 0 0

3 1 3 1 0

Bare.nuclei4 Bare.nuclei5 Bare.nuclei6

1 0 0 0

2 0 0 0

3 0 0 0

Bare.nuclei7 Bare.nuclei8 Bare.nuclei9

1 0 0 0

2 0 0 0

3 0 0 0

Bare.nuclei10 Thickness:Bare.nuclei2

1 0 0

2 1 0

3 0 3

Thickness:Bare.nuclei3 Thickness:Bare.nuclei4

1 0 0

2 0 0

3 0 0

Thickness:Bare.nuclei5 Thickness:Bare.nuclei6

1 0 0

Chapter 6 Supervised Learning

201

2 0 0

3 0 0

Thickness:Bare.nuclei7 Thickness:Bare.nuclei8

1 0 0

2 0 0

3 0 0

Thickness:Bare.nuclei9 Thickness:Bare.nuclei10

1 0 0

2 0 5

3 0 0

The interaction columns all have : in their name, and you can specify an interaction

term directly by writing that in the model formula as well:

BreastCancer %>%

 mutate(Thickness =

 as.numeric(as.character(Cl.thickness))) %>%

 mutate(Malignant = ifelse(Class != "benign", 1, 0)) %>%

 model.matrix(Malignant ~ Thickness : Bare.nuclei, data = .) %>%

 head(3)

(Intercept) Thickness:Bare.nuclei1

1 1 5

2 1 0

3 1 0

Thickness:Bare.nuclei2 Thickness:Bare.nuclei3

1 0 0

2 0 0

3 3 0

Thickness:Bare.nuclei4 Thickness:Bare.nuclei5

1 0 0

2 0 0

3 0 0

Thickness:Bare.nuclei6 Thickness:Bare.nuclei7

1 0 0

Chapter 6 Supervised Learning

202

2 0 0

3 0 0

Thickness:Bare.nuclei8 Thickness:Bare.nuclei9

1 0 0

2 0 0

3 0 0

Thickness:Bare.nuclei10

1 0

2 5

3 0

If you want to use all the variables in your data except the response variable, you

can even use the formula y ~ . where the . will give you all parameters in your data

except y.

Using formulas and model matrices also means that we do not have to use our data

raw. We can transform it before we give it to our learning algorithms. In general, we

can transform our data using any function ϕ. It is traditionally called phi because we

call what it produces features of our data, and the point of it is to pull out the relevant

features of the data to give to the learning algorithm. It usually maps from vectors to

vectors, so you can use it to transform each row in your raw data into the rows of the

model matrix which we will then call Φ instead of X:

	

Φ =

−
−
−

−

()
()
()

()

−
−
−

−























φ
φ

φ

φ

x
x
x

xn

1

2

3



	

If this sounds very abstract, perhaps it will help to see some examples. We go back

to the cars data, but this time, we want to fit a polynomial to the data instead of a line.

If d denotes breaking distance and s the speed, then we want to fit d = θ0 + θ1s + θ1s2 +

· · · + θnsn. Let us just do n = 2, so we want to fit a second-degree polynomial. Don’t be

confused about the higher degrees of the polynomial, it is still a linear model. The linear

in linear model refers to the θ parameters, not the data. We just need to map the single s

parameter into a vector with the different polynomial degrees, so 1 for the intercept, s for

the linear component, and s2 for the squared component. So ϕ(s) = (1, s, s2).

Chapter 6 Supervised Learning

203

We can write that as a formula. There, we don’t need to specify the intercept term

explicitly—it will be included by default, and if we don’t want it, we have to remove it

with -1 in the formula—but we need speed, and we need speed^2:

cars %>%

 model.matrix(dist ~ speed + speed^2, data = .) %>%

 head()

(Intercept) speed

1 1 4

2 1 4

3 1 7

4 1 7

5 1 8

6 1 9

Now this doesn’t quite work—you can see that we only got the intercept and

speed—and the reason is that multiplication is interpreted as interaction terms even if

it is interaction with the parameter itself. And interaction with itself doesn’t go into the

model matrix because that would just be silly.

To avoid that problem, we need to tell R that the speed^2 term should be interpreted

just the way it is. We do that using the identity function, I():

cars %>%

 model.matrix(dist ~ speed + I(speed^2), data = .) %>%

 head()

(Intercept) speed I(speed^2)

1 1 4 16

2 1 4 16

3 1 7 49

4 1 7 49

5 1 8 64

6 1 9 81

Now our model matrix has three columns, which is precisely what we want.

Chapter 6 Supervised Learning

204

We can fit the polynomial using the linear model function like this:

cars %>% lm(dist ~ speed + I(speed^2), data = .) %>%

 summary()

##

Call:

lm(formula = dist ~ speed + I(speed^2), data = .)

##

Residuals:

Min 1Q Median 3Q Max

-28.720 -9.184 -3.188 4.628 45.152

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.47014 14.81716 0.167 0.868

speed 0.91329 2.03422 0.449 0.656

I(speed^2) 0.09996 0.06597 1.515 0.136

##

Residual standard error: 15.18 on 47 degrees of freedom

Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532

F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12

or we can plot it like this (see Figure 6-7):

cars %>% ggplot(aes(x = speed, y = dist)) +

 geom_point() +

 geom_smooth(method = "lm", formula = y ~ x + I(x^2))

This is a slightly better fitting model, but that wasn’t the point. You can see how you

can transform data in a formula to have different features to give to your fitting algorithms.

�Validating Models
How did I know the polynomial fit was better than the linear fit? Well, theoretically

a second-degree polynomial should always be a better fit than a line since a line is a

special case of a polynomial. We just set θ2 to zero. If the best-fitted polynomial doesn’t

have θ2 = 0, then that is because we can fit the data better if it is not.

Chapter 6 Supervised Learning

205

The result of fitting the polynomial tells me, in the output from the summary()

function, that the variables are not significant. It tells me that both from the linear and

the squared component, though, so it isn’t that useful. Clearly, the points are on a line,

so it cannot be correct that there isn’t a linear component. I cannot use the summary

that much because it is only telling me that when I have both components, then neither

of them is statistically significant. That doesn’t mean much.

But should I even care, though? If I know that the more complex model always

fits better, then shouldn’t I just always use it? The problem with that idea is that while

the most complex model will always fit the training data—the data I use for fitting the

model—better, it will not necessarily generalize better. If I use a high enough degree

polynomial—if I have a degree that is the same as the number of data points—I can fit

the data perfectly. But it will be fitting both the systematic relationship between x and

y and also the statistical errors in our targets t. It might be utterly useless for predicting

point number n + 1.

What I really need to know is whether one or the other model is better at predicting

the distance from the speed.

0

40

80

120

5 10 15 20 25
speed

di
st

Figure 6-7.  The cars data fitted to a second-degree polynomial

Chapter 6 Supervised Learning

206

We can fit the two models and get their predictions using the predict() function. It

takes the fitted model as the first argument and data to predict on as the second:

line <- cars %>% lm(dist ~ speed, data = .)

poly <- cars %>% lm(dist ~ speed + I(speed^2), data = .)

predict(line, cars) |> head()

1 2 3 4 5

-1.849460 -1.849460 9.947766 9.947766 13.880175

6

17.812584

predict(poly, cars) |> head()

1 2 3 4 5

7.722637 7.722637 13.761157 13.761157 16.173834

6

18.786430

�Evaluating Regression Models
To compare the two models, we need a measure of how well they fit. Since both models

are fitting the squared distances from predictions to targets, a fair measure would be

looking at the mean squared error. The unit of that would be distance squared, though,

so we usually use the square root of this mean distance to measure the quality of the

predictions, which would give us the errors in the distance unit:

rmse <- function(x,t) sqrt(mean(sum((t - x)^2)))

rmse(predict(line, cars), cars$dist)

[1] 106.5529

rmse(predict(poly, cars), cars$dist)

[1] 104.0419

Chapter 6 Supervised Learning

207

Now clearly the polynomial fits slightly better, which it should, based on theory, but

there is a bit of a cheat here. We are looking at how the models work on the data we used

to fit them. The more complex model will always be better at this. That is the problem we

are dealing with. The more complex model might be overfitting the data and capturing

the statistical noise we don’t want it to capture. What we really want to know is how well

the models generalize; how well do they work on data they haven’t already seen and

used to fit their parameters?

We have used all the data we have to fit the models. That is generally a good idea. You

want to use all the data available to get the best-fitted model. But to compare models, we

need to have data that isn’t used in the fitting.

We can split the data into two sets, one we use for training and the other we use to

test the models. There are 50 data points, so I can take the first 25 to train my models on

and the next 25 to test them on:

training_data <- cars[1:25,]

test_data <- cars[26:50,]

line <- training_data %>% lm(dist ~ speed, data = .)

poly <- training_data %>% lm(dist ~ speed + I(speed^2), data = .)

rmse(predict(line, test_data), test_data$dist)

[1] 88.89189

rmse(predict(poly, test_data), test_data$dist)

[1] 83.84263

The second-degree polynomial is still better, but I am also still cheating. There is

more structure in my data set than just the speed and distances. The data frame is sorted

according to the distance, so the training set has all the short distances and the test data

all the long distances. They are not similar. That is not good.

In general, you cannot know if there is such structure in your data. In this particular

case, it is easy to see because the structure is that obvious, but sometimes it is more

subtle. So when you split your data into training and test data, you will want to sample

data points randomly. That gets rid of the structure that is in the order of the data points.

Chapter 6 Supervised Learning

208

We can use the sample() function to sample randomly zeros and ones:

sampled_cars <- cars |>

 mutate(training = sample(0:1, nrow(cars), replace = TRUE))

sampled_cars |> head()

speed dist training

1 4 2 1

2 4 10 0

3 7 4 1

4 7 22 1

5 8 16 0

6 9 10 1

This doesn’t give us 50/50 training and test data since which data point gets into

each category will depend on the random samples, but it will be roughly half the data we

get for training:

training_data <- sampled_cars |> filter(training == 1)

test_data <- sampled_cars |> filter(training == 0)

training_data |> head()

speed dist training

1 4 2 1

2 7 4 1

3 7 22 1

4 9 10 1

5 10 18 1

6 10 34 1

test_data |> head()

speed dist training

1 4 10 0

2 8 16 0

3 10 26 0

4 12 14 0

5 12 20 0

6 12 24 0

Chapter 6 Supervised Learning

209

Now we can get a better estimate of how the functions are working:

line <- training_data %>% lm(dist ~ speed, data = .)

poly <- training_data %>% lm(dist ~ speed + I(speed^2), data = .)

rmse(predict(line, test_data), test_data$dist)

[1] 66.06671

rmse(predict(poly, test_data), test_data$dist)

[1] 65.8426

Now, of course, the accuracy scores depend on the random sampling when we create

the training and test data, so you might want to use more samples. We will return to that

in the next section.

Once you have figured out what the best model is, you will still want to train it on all

the data you have. Splitting the data is just a tool for evaluating how well different models

work. For the final model you choose to work with, you will always want to fit it with all

the data you have.

�Evaluating Classification Models
If you want to do classification rather than regression, then the root mean square error

is not the function to use to evaluate your model. With classification, you want to know

how many data points are classified correctly and how many are not.

As an example, we can take the breast cancer data and fit a model:

formatted_data <- BreastCancer |>

 mutate(Thickness =

 as.numeric(as.character(Cl.thickness)),

 CellSize =

 as.numeric(as.character(Cell.size))) %>%

 mutate(Malignant = ifelse(Class != "benign", 1, 0))

fitted_model <- formatted_data %>%

 glm(Malignant ~ Thickness + CellSize,

 family = "binomial",

 data = .)

Chapter 6 Supervised Learning

210

To get its prediction, we can again use predict(), but we will see that for this

particular model, the predictions are probabilities of a tumor being malignant:

predict(fitted_model, formatted_data, type = "response") |> head()

1 2 3 4

0.05266571 0.65374326 0.01591478 0.99740926

5 6

0.02911157 0.99992795

We would need to translate that into actual predictions. The natural choice here is

to split the probabilities at 50%. If we are more certain that a tumor is malignant than

benign, we will classify it as malignant:

classify <- function(probability) ifelse(probability < 0.5, 0, 1)

classified_malignant <- classify(predict(fitted_model, formatted_data))

Where you want to put the threshold of how to classify depends on your data and the

consequences of the classification. In a clinical situation, maybe you want to examine

further a tumor with less than 50% probability that it is malignant, or maybe you don’t

want to tell patients that a tumor might be malignant if it is only 50% probable. The

classification should take into account how sure you are about the classification, and

that depends a lot on the situation you are in. Of course, you don’t want to bet against

the best knowledge you have, so I am not suggesting that you should classify everything

below probability 75% as the “false” class, for instance. The only thing you gain from this

is making worse predictions than you could. But sometimes you want to leave some data

unpredicted. So here you can use the probabilities the model predicts to leave some data

points as NA. How you want to use that your prediction gives you probabilities instead of

just classes—assuming it does, it depends on the algorithm used for classifying—is up to

you and the situation you are analyzing.

�Confusion Matrix
In any case, if we just put the classification threshold at 50/50, then we can compare the

predicted classification against the actual classification using the table() function:

Chapter 6 Supervised Learning

211

table(formatted_data$Malignant, classified_malignant)

classified_malignant

0 1

0 447 11

1 31 210

This table, contrasting predictions against true classes, is known as the confusion

matrix. The rows count how many zeros and ones we see in the formatted_

data$Malignant argument and the columns how many zeros and ones we see in the

classified_malignant argument. So the first row is where the data says the tumors are

not malignant, and the second row is where the data says that the tumors are malignant.

The first column is where the predictions say the tumors are not malignant, while the

second column is where the predictions say that they are.

This, of course, depends on the order of the arguments to table(); it doesn’t know

which argument contains the data classes and which contains the model predictions. It

can be a little hard to remember which dimension, rows or columns, are the predictions,

but you can provide a parameter, dnn (dimnames names), to make the table remember it

for you:

table(formatted_data$Malignant, classified_malignant,

 dnn = c("Data", "Predictions"))

Predictions

Data 0 1

0 447 11

1 31 210

The correct predictions are on the diagonal, and the off-diagonal values are where

our model predicts incorrectly.

The first row is where the data says that tumors are not malignant. The first element,

where the model predicts that the tumor is benign, and the data agrees, is called the true

negatives. The element to the right of it, where the model says a tumor is malignant but

the data says it is not, is called the false positives.

The second row is where the data says that tumors are malignant. The first column

is where the prediction says that it isn’t a malignant tumor, and this is called the false

negatives. The second column is the cases where both the model and the data say that

the tumor is malignant. That is the true positives.

Chapter 6 Supervised Learning

212

The terms positives and negatives are a bit tricky here. I managed to sneak them past

you by having the classes called zeros and ones which you already associate with true

and false and positive and negative and by having a data set where it was more natural to

think of malignant tumors as being the ones we want to predict.

The classes do not have to be zeros and ones. That was just easier in this particular

model where I had to translate the classes into zeros and ones for the logistic

classification anyway. But really, the classes are "benign" and "malignant":

classify <- function(probability)

 ifelse(probability < 0.5, "benign", "malignant")

classified <- classify(predict(fitted_model, formatted_data))

table(formatted_data$Class, classified,

 dnn=c("Data", "Predictions"))

Predictions

Data benign malignant

benign 447 11

malignant 31 210

What is positive and what is negative now depends on whether we want to predict

malignant or benign tumors. Of course, we really want to predict both well, but the

terminology considers one class true and the other false.

The terms carry over into several of the terms used in classification described in the

following where the classes and predictions are not so explicitly stated. In the confusion

matrix, we can always see exactly what the true classes are and what the predicted

classes are, but once we start summarizing it in various ways, this information is no

longer explicitly available. The summaries still will often depend on which class we

consider “positive” and which we consider “negative,” though.

Since which class is which really is arbitrary, so it is always worth a thought deciding

which you want to call which and definitely something you want to make explicit in any

documentation of your analysis.

Chapter 6 Supervised Learning

213

�Accuracy
The simplest measure of how well a classification is doing is the accuracy. It measures

how many classes it gets right out of the total, so it is the diagonal values of the confusion

matrix divided by the total:

confusion_matrix <- table(formatted_data$Class, classified,

 dnn=c("Data", "Predictions"))

accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)

accuracy

[1] 0.9399142

This measure of the classification accuracy is pretty simple to understand, but you

have to be careful in what you consider a good accuracy. Of course, “good” is a subjective

term, so let us get technical and think in terms of “better than chance.” That means that

your baseline for what you consider “good” is randomly guessing. This, at least, is not

subjective.

It is still something you have to consider a bit carefully, though. Because what does

randomly guessing mean? We naturally think of a random guess as one that chooses

either class with the same 50/50 probability. If the data has the same number of

observations for each of the two classes, then that would be a good strategy and would

get the average accuracy of 0.5. So better than chance would, in that case, be better

than 0.5. The data doesn’t have to have the same number of instances for each class.

The breast cancer data does not. The breast cancer data has more benign tumors than

malignant tumors:

table(BreastCancer$Class)

##

benign malignant

458 241

Here, you would be better off guessing more benign than malignant. If you had to

guess and already knew that you were more than twice as likely to have a benign than a

malignant tumor, you would always guess benign:

Chapter 6 Supervised Learning

214

tbl <- table(BreastCancer$Class)

tbl["benign"] / sum(tbl)

benign

0.6552217

Always guessing “benign” is a lot better than 50/50. Of course, it is arguable whether

this is guessing, but it is a strategy for guessing, and you want your model to do better

than this simple strategy.

Always guessing the most frequent class—assuming that the frequency of the classes

in the data set is a representative for the frequency in new data as well (which is a strong

assumption)—is the best strategy for guessing.

If you actually want to see “random” guessing, you can get an estimate of this by

simply permuting the classes in the data. The function sample() can do this:

table(BreastCancer$Class, sample(BreastCancer$Class))

##

benign malignant

benign 291 167

malignant 167 74

This gives you an estimate for random guessing, but since it is random, you would

want to get more than one to get a feeling for how much it varies with the guess:

accuracy <- function(confusion_matrix)

 sum(diag(confusion_matrix))/sum(confusion_matrix)

sample_table <- function()

 table(BreastCancer$Class, sample(BreastCancer$Class))

replicate(8, sample_table() |> accuracy())

[1] 0.5450644 0.5336195 0.5879828 0.5565093

[5] 0.5622318 0.5565093 0.5364807 0.5278970

As you can see, even random permutations do better than 50/50—but the better

guess is still just the most frequent class, and at the very least, you would want to

beat that.

Chapter 6 Supervised Learning

215

�Sensitivity and Specificity
We want a classifier to have a high accuracy, but accuracy isn’t everything. The costs in

real life of misclassifying often have different consequences when you classify something

like a benign tumor as malignant from when you classify a malignant tumor as benign.

In a clinical setting, you have to weight the false positives against the false negatives and

the consequences they have. You are interested in more than pure accuracy.

We usually use two measures of the predictions of a classifier that takes that into

account: the specificity and the sensitivity of the model. The first measure captures how

often the model predicts a negative case correctly. In the breast cancer data, this is how

often, when the model predicts a tumor as benign, it actually is:

(specificity <- confusion_matrix[1,1] /

 (confusion_matrix[1,1] + confusion_matrix[1,2]))

[1] 0.9759825

The sensitivity does the same thing but for the positives. It captures how well, when

the data has the positive class, your model predicts this correctly:

(sensitivity <- confusion_matrix[2,2]/

 (confusion_matrix[2,1] + confusion_matrix[2,2]))

[1] 0.8713693

If your accuracy is 100%, then both of these will also be 100%. But there is usually a

trade-off between the two. Using the “best guessing” strategy of always picking the most

frequent class will set one of the two to 100% but at the cost of the other. In the breast

cancer data, the best guess is always benign, the negative case, and always guessing

benign will give us a specificity of 100%.

This strategy can always achieve 100% for one of the two measures but at the cost

of setting the other to 0%. If you only ever guess at one class, you are perfect when the

data is actually from that class, but you are always wrong when the data is from the

other class.

Because of this, we are never interested in optimizing either measure alone. That is

trivial. We want to optimize both. We might consider specificity more important than

sensitivity or vice versa, but even if we want one to be 100%, we also want the other to be

as good as we can get it.

Chapter 6 Supervised Learning

216

To evaluate how much better than chance we are doing, we can again compare to

random permutations. This tells us how well we are doing compared to random guesses

for both:

specificity <- function(confusion_matrix)

 confusion_matrix[1,1] /

 (confusion_matrix[1,1]+confusion_matrix[1,2])

sensitivity <- function(confusion_matrix)

 confusion_matrix[2,2] /

 (confusion_matrix[2,1]+confusion_matrix[2,2])

prediction_summary <- function(confusion_matrix)

 c("accuracy" = accuracy(confusion_matrix),

 "specificity" = specificity(confusion_matrix),

 "sensitivity" = sensitivity(confusion_matrix))

random_prediction_summary <- function()

 prediction_summary(

 table(BreastCancer$Class, sample(BreastCancer$Class))

)

replicate(3, random_prediction_summary())

[,1] [,2] [,3]

accuracy 0.5536481 0.5536481 0.5278970

specificity 0.6593886 0.6593886 0.6397380

sensitivity 0.3526971 0.3526971 0.3153527

�Other Measures
The specificity is also known as the true negative rate since it measures how many of the

negative classifications are true. Similarly, the sensitivity is known as the true positive

rate. There are analogue measures for getting things wrong. The false negative rate is

the analogue of the true negative rate, but instead of dividing the true negatives by all

the negatives, it divides the false negatives by all the negatives. The false positive rate

similarly divides the false positives by all the positives. Having these two measures

together with sensitivity and specificity is not really adding much. The true negative rate

Chapter 6 Supervised Learning

217

is just one minus the false negative rate and similar for the true positive rate and false

positive rate. They just focus on when the model gets things wrong instead of when it

gets things right.

All four measures split the confusing matrix into the two rows. They look at when the

data says the class is true and when the data says the class is false. We can also look at the

columns instead and consider when the predictions are true and when the predictions

are false.

When we look at the column where the predictions are false—for the breast cancer

when the tumors are predicted as benign—we have the false omission rate, which is the

false negatives divided by all the predicted negatives:

confusion_matrix[2,1] / sum(confusion_matrix[,1])

[1] 0.06485356

The negative predictive value is instead the true negatives divided by the predicted

negatives:

confusion_matrix[1,1] / sum(confusion_matrix[,1])

[1] 0.9351464

These two will always sum to one, so we are really only interested in one of them, but

which we choose is determined by which we find more important.

For the predicted positives, we have the positive predictive values and false

discovery rate:

confusion_matrix[2,2] / sum(confusion_matrix[,2])

[1] 0.9502262

confusion_matrix[1,2] / sum(confusion_matrix[,2])

[1] 0.04977376

The false discovery rate, usually abbreviated FDR, is the one most frequently used.

It is closely related to the threshold used on p-values (the significance thresholds) in

classical hypothesis testing. Remember that if you have a 5% significance threshold

in classical hypothesis testing, it means that when the null hypothesis is true, you will

predict it is false 5% of the time. This means that your false discovery rate is 5%.

Chapter 6 Supervised Learning

218

The classical approach is to pick an acceptable false discovery rate; by convention, this is

5%, but there is nothing magical about that number—it is simply convention—and then that

threshold determines how extreme a test statistic has to be before we switch from predicting

a negative to predicting a positive. This approach entirely ignores the cases where the data

is from the positive class. It has its uses, but not for classification where you have data from

both the positive class and the negative class, so we will not consider it more here. You will

have seen it in statistics classes, and you can learn more about it in any statistics textbook.

�More Than Two Classes
All of the above considers a situation where we have two classes, one we call positive

and one we call negative. This is a common case, which is the reason we have so many

measures for dealing with it, but it is not the only case. Quite often, we need to classify

data into more than two classes.

The only measure you can reuse there is the accuracy. The accuracy is always the

sum along the diagonal divided by the total number of observations. Accuracy still

isn’t everything in those cases. Some classes are perhaps more important to get right

than others—or just harder to get right than others—so you have to use a lot of sound

judgment when evaluating a classification. There are just fewer rules of thumb to use

here, so you are more left to your own judgment.

�Sampling Approaches
To validate classifiers, I suggested splitting the data into a training data set and a test

data set. I also mentioned that there might be hidden structures in your data set, so you

always want to make this split a random split of the data.

Generally, there are a lot of benefits you can get out of randomly splitting your data

or randomly subsampling from your data. We have mostly considered prediction in

this chapter, where splitting the data into training and a test data lets us evaluate how

well a model does at predicting on unseen data. But randomly splitting or subsampling

from data is also very useful for inference. When we do inference, we can typically get

confidence intervals for model parameters, but these are based on theoretical results

that assume that the data is from some (usually) simple distribution. Data is generally

not. If you want to know how a parameter is distributed from the empirical distribution

of the data, you will want to subsample and see what distribution you get.

Chapter 6 Supervised Learning

219

�Random Permutations of Your Data
With the cars data, we split the observations into two equally sized data sets. Since this

data is ordered by the stopping distance, splitting it into the first half and the second half

makes the data sets different in distributions.

The simplest approach to avoiding this problem is to reorder your data randomly

before you split it. Using the sample() function, we can get a random permutation of any

input vector—we saw that earlier—and we can exploit this to get a random order of your

data set.

Using sample(1:n), we get a random permutation of the numbers from 1 to n. We

can select rows in a data frame by giving it a vector of indices for the rows. Combining

these two observations, we can get a random order of cars observations this way:

permuted_cars <- cars[sample(1:nrow(cars)),]

permuted_cars |> head(3)

speed dist

9 10 34

1 4 2

48 24 93

The numbers to the left of the data frame are the original row numbers (it really is the

row names, but it is the same in this case).

We can write a simple function for doing this for general data frames:

permute_rows <- function(df) df[sample(1:nrow(df)),]

Using this, we can add it to a data analysis pipeline where we would write

permuted_cars <- cars |> permute_rows()

Splitting the data into two sets, training and testing, is one approach to subsampling,

but a general version of this is used in something called cross-validation. Here, the idea

is to get more than one result out of the random permutation we use. If we use a single

training/test split, we only get one estimate of how a model performs on a data set. Using

more gives us an idea about the variance of this.

Chapter 6 Supervised Learning

220

We can split a data set into n groups like this:

group_data <- function(df, n) {

 groups <- rep(1:n, each = nrow(df)/n)

 split(df, groups)

}

You don’t need to understand the details of this function for now, but it is a good

exercise to try to figure it out, so you are welcome to hit the documentation and see if you

can work it out.

The result is a list, a data structure we haven’t explored yet (but we will later in

the book, when we do some more serious programming). It is necessary to use a list

here since vectors or data frames cannot hold complex data, so if we combined the

result in one of those data structures, they would just be merged back into a single data

frame here.

As it is, we get something that contains n data structures that each have a data frame

of the same form as the cars data:

grouped_cars <- cars |> permute_rows() |> group_data(5)

grouped_cars |> str()

List of 5

$ 1:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 12 4 14 13 18 19 14 4 ...

..$ dist : num [1:10] 28 2 60 26 76 46 26 10 ...

$ 2:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 15 13 12 18 20 18 12 15 ..

..$ dist : num [1:10] 54 34 20 84 32 42 24 26 ..

$ 3:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 11 24 22 9 14 13 24 20 ...

..$ dist : num [1:10] 28 70 66 10 36 46 120 48..

$ 4:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 12 10 25 17 17 23 19 11 ..

..$ dist : num [1:10] 14 26 85 40 32 54 68 17 ..

$ 5:'data.frame': 10 obs. of 2 variables:

..$ speed: num [1:10] 10 20 15 16 13 7 19 24 ...

..$ dist : num [1:10] 18 52 20 32 34 22 36 92 ..

Chapter 6 Supervised Learning

221

grouped_cars[[1]] # First sample

speed dist

15 12 28

1 4 2

22 14 60

16 13 26

34 18 76

37 19 46

20 14 26

2 4 10

5 8 16

42 20 56

All you really need to know for now is that to get an entry in a list, you need to use

[[]] indexing instead of [] indexing.

If you use [], you will also get the data, but the result will be a list with one element,

which is not what you want:

grouped_cars[1]

$`1`

speed dist

15 12 28

1 4 2

22 14 60

16 13 26

34 18 76

37 19 46

20 14 26

2 4 10

5 8 16

42 20 56

Chapter 6 Supervised Learning

222

We can use the different groups to get estimates of the model parameters in the

linear model for cars:

lm(dist ~ speed, data = grouped_cars[[1]])$coefficients

(Intercept) speed

-10.006702 3.540214

With a bit of programming, we can get the estimates for each group:

get_coef <- function(df)

 lm(dist ~ speed, data = df)$coefficients

Get estimates from first group

estimates <- get_coef(grouped_cars[[1]])

for (i in 2:length(grouped_cars)) {

 # Append the next group

 estimates <- rbind(estimates, get_coef(grouped_cars[[i]]))

}

Estimates

(Intercept) speed

estimates -10.00670 3.540214

-33.89655 4.862069

-29.25116 4.744186

-11.82554 3.555755

-14.87639 3.494779

Right away, I will stress that this is not the best way to do this, but it shows you how

it could be done. We will get to better approaches shortly. Still, you can see how splitting

the data this way lets us get distributions for model parameters.

There are several reasons why this isn’t the optimal way of coding this. The row

names are ugly, but that is easy to fix. The way we combine the estimates in the data

frame is inefficient—although it doesn’t matter much with such a small data set—and

later in the book, we will see why. The main reason, though, is that explicit loops like this

make it hard to follow the data transformations since it isn’t a pipeline of processing.

The package purrr lets us work on lists using pipelines. You import the package:

library(purrr)

Chapter 6 Supervised Learning

223

and then you have access to the function map_df() that lets you apply a function to each

element of the list:

estimates <- grouped_cars |> map_df(get_coef)

The map_df function maps (as the name suggests) across its input, applying the

function to each element in the input list. The results of each function call are turned

into rows in a data frame (where the _df part of the name comes from). This pipeline is

essentially doing the same as the more explicit loop we wrote before; there is just less

code to write. If you are used to imperative programming languages, this will look very

succinct, but if you have experience in functional programming languages, it should look

familiar.

�Cross-Validation
A problem with splitting the data into many small groups is that we get a large variance

in estimates. Instead of working with each little data set independently, we can remove

one of the data sets and work on all the others. This will mean that our estimates are no

longer independent, but the variance goes down. The idea of removing a subset of the

data and then cycling through the groups evaluating a function for each group that is left

out is called cross-validation. Well, it is called cross-validation when we use it to validate

prediction, but it works equally well for inferring parameters.

If we already have the grouped data frames in a list, we can remove one element from

the list using [-i] indexing—just as we can for vectors—and the result is a list containing

all the other elements. We can then combine the elements in the list into a single data

frame using the do.call("rbind",.) magical invocation.

So we can write a function that takes the grouped data frames and gives us another

list of data frames that contains data where a single group is left out. One way to do this

is listed as follows; that implementation uses the bind_rows function from the dplyr

package (get it using library(dplyr)):

cross_validation_groups <- function(grouped_df) {

 remove_group <- function(group)

 # remove group "group" from the list

 grouped_df[-group] |>

 # merge the remaining groups into one data frame

 bind_rows()

Chapter 6 Supervised Learning

224

 # Iterate over indices from 1 to number of groups

 seq_along(grouped_df) |>

 # get the data frame with this group removed

 map(remove_group)

}

This function is a little more spicy than those we have written before, but it doesn’t

use anything we haven’t seen already. In the function, we write another helper function,

remove_group. You can write functions inside other functions, and if you do, then the

inner function can see the variables in the outer function. Our remove_group function

can see the grouped_df data frame. We give it an argument, group, and it removes

the group with that index using -group in the subscript grouped_df[-group]. Since

grouped_df is a list of data frames, removing one of them still leaves us with a list of

data frames, but we would rather have a single data frame. The bind_rows function

merges the list into a single data frame containing all the data points we didn’t remove.

With the function written, we can create the cross-validation groups. We use seq_

along(grouped_df) to create all the numbers from one to the length of grouped_df—

using this function is slightly safer than writing 1:len(grouped_df) because it correctly

handles empty lists, so you should get used to using it. We loop over all these numbers

with a map function—this function is also from the purrr package and behaves like map_

df except that it returns a list and not a data frame—and apply remove_group to each

index. This results in a list of data frames, which is exactly what we want.

We could have combined this with the group_data() function, but I prefer to write

functions that do one simple thing and combine them instead using pipelines. We can

use this function and all the stuff we did earlier to get estimates using cross-validation:

cars |>

 permute_rows() |> # randomize for safety...

 group_data(5) |> # get us five groups

 cross_validation_groups() |> # then make five cross-validation groups

 # For each cross-validation group, estimate the cofficients and put

 # the results in a data frame

 map_df(

 # We need a lambda expression here because lm doesn't take

 # the data frame as its first argument

 \(df) lm(dist ~ speed, data = df)$coefficients

Chapter 6 Supervised Learning

225

)

A tibble: 5 × 2

`(Intercept)` speed

<dbl> <dbl>

1 -18.0 3.92

2 -14.4 3.86

3 -20.1 4.15

4 -16.2 3.79

5 -19.5 3.96

Where cross-validation is typically used is when leaving out a subset of the data for

testing and using the rest for training.

We can write a simple function for splitting the data this way, similar to the cross_

validation_groups() function. It cannot return a list of data frames but needs to return

a list of lists, each list containing a training data frame and a test data frame. It looks

like this:

cross_validation_split <- function(grouped_df) {

 seq_along(grouped_df) |> map(

 \(group) list(

 # Test is the current group

 test = grouped_df[[group]],

 # Training is all the others

 training = grouped_df[-group] |> bind_rows()

))

}

The function follows the same pattern as the previous, I just haven’t bothered with

writing an inner function; instead I use a lambda expression (\(group) ...). It creates

a list with two elements, test and training. In test, we put the current group—we

subscript with [[group]] to get the actual data frame instead of a list that holds it—and

in training, we put all the other groups. Here, we use [-group] to get a list of all the

other elements—[[-group]] would not work for us—and then we use the bind_rows()

function we saw earlier to merge the list into a single data frame.

Don’t worry if you don’t understand all the details of it. After reading later

programming chapters, you will. Right now, I hope you just get the gist of it.

Chapter 6 Supervised Learning

226

I will not show you the result. It is just long and not that pretty, but if you want to see

it, you can type in

cars |>

 permute_rows() |>

 group_data(5) |>

 cross_validation_split()

As we have seen, we can index into a list using [[]]. We can also use the $name

indexing like we can for data frames, so if we have a list lst with a training data set and

a test data set, we can get them as lst$training and lst$test.

prediction_accuracy <- function(test_and_training) {

 test_and_training |>

 map_dbl(

 \(tt) {

 # Fit the model using training data

 fit <- lm(dist ~ speed, data = tt$training)

 # Then make predictions on the test data

 predictions <- predict(fit, newdata = tt$test)

 # Get root mean square error of result

 rmse(predictions, tt$test$dist)

 }

)

}

You should be able to understand most of this function even though we haven’t

covered much R programming yet, but if you do not, then don’t worry.

You can then add this function to your data analysis pipeline to get the cross-

validation accuracy for your different groups:

cars |>

 permute_rows() |>

 group_data(5) |>

 cross_validation_split() |>

 prediction_accuracy()

[1] 56.62113 38.55348 33.52728 59.27442 48.77524

Chapter 6 Supervised Learning

227

The prediction accuracy function isn’t general. It is hardwired to use a linear model

and the model dist ~ speed. It is possible to make a more general function, but that

requires a lot more R programming skills, so we will leave the example here.

�Selecting Random Training and Testing Data
In the example earlier where I split the data cars into training and test data using

sample(0:1, n, replacement = TRUE), I didn’t permute the data and then

deterministically split it afterward. Instead, I sampled training and test based on

probabilities of picking any given row as training and test.

What I did was adding a column to the data frame where I randomly picked whether

an observation should be used for the training or for the test data. Since it required first

adding a new column and then selecting rows based on it, it doesn’t work well as part

of a data analysis pipeline. We can do better and slightly generalize the approach at the

same time.

To do this, I shamelessly steal two functions from the documentation of the purrr

package. They do the same thing as the grouping function I wrote earlier. If you do not

quite follow the example, do not worry. But I suggest you try to read the documentation

for any function you do not understand and at least try to work out what is going

on. Follow it as far as you can, but don’t sweat it if there are things you do not fully

understand. After finishing the entire book, you can always return to the example.

The grouping function earlier defined groups by splitting the data into n equally

sized groups. The first function here instead samples from groups specified by

probabilities. It creates a vector naming the groups, just as I did before. It just names the

groups based on named values in a probability vector and creates a group vector based

on probabilities given by this vector:

random_group <- function(n, probs) {

 probs <- probs / sum(probs)

 g <- findInterval(seq(0, 1, length = n), c(0, cumsum(probs)),

 rightmost.closed = TRUE)

 names(probs)[sample(g)]

}

Chapter 6 Supervised Learning

228

If we pull the function apart, we see that it first normalizes a probability vector. This

just means that if we give it a vector that doesn’t sum to one, it will still work. To use it, it

makes the code easier to read if it already sums to one, but the function can deal with it,

even if it doesn’t.

The second line, which is where it is hardest to read, just splits the unit interval into

n subintervals and assigns a group to each subinterval based on the probability vector.

This means that the first chunk of the n intervals is assigned to the first group, the second

chunk to the second group, and so on. It is not doing any sampling yet, it just partitions

the unit interval into n subintervals and assigns each subinterval to a group.

The third line is where it is sampling. It now takes the n subintervals, permutes them,

and returns the names of the probability vector each one falls into.

We can see it in action by calling it a few times. We give it a probability vector where

we call the first probability “training” and the second “test”:

random_group(8, c(training = 0.5, test = 0.5))

[1] "training" "training" "training" "test"

[5] "test" "training" "test" "test"

random_group(8, c(training = 0.5, test = 0.5))

[1] "training" "test" "training" "test"

[5] "training" "test" "training" "test"

We get different classes out when we sample, but each class is picked with 0.5

probability. We don’t have to pick them 50/50, though; we can choose more training

than test data, for example:

random_group(8, c(training = 0.8, test = 0.2))

[1] "training" "training" "training" "training"

[5] "test" "training" "test" "training"

The second function just uses this random grouping to split the data set. It works

exactly like the cross-validation splitting we saw earlier:

partition <- function(df, n, probs) {

 replicate(n, split(df, random_group(nrow(df), probs)), FALSE)

}

Chapter 6 Supervised Learning

229

The function replicates the subsampling n times. Here, n is not the number of

observations you have in the data frame, but a parameter to the function. It lets you pick

how many subsamples of the data you want.

We can use it to pick four random partitions. Here, with training and test, select with

50/50 probability:

random_cars <- cars |> partition(4, c(training = 0.5, test = 0.5))

If you evaluate it on your computer and look at random_cars, you will see that

resulting values are a lot longer now. This is because we are not looking at smaller data

sets this time; we have as many observations as we did before (which is 50), but we have

randomly partitioned them.

We can combine this partition() function with the accuracy prediction

from before:

random_cars |> prediction_accuracy()

[1] 62.76781 87.52504 92.00689 84.99749

�Examples of Supervised Learning Packages
So far in this chapter, we have looked at classical statistical methods for regression

(linear models) and classification (logistic regression), but there are many machine

learning algorithms for both, and many are available as R packages.

They all work similarly to the classical algorithms. You give the algorithms a data set

and a formula specifying the model matrix. From this, they do their magic. All the ideas

presented in this chapter can be used together with them.

In the following, I go through a few packages, but there are many more. A Google

search should help you find a package if there is a particular algorithm you are interested

in applying.

I present their use with the same two data sets we have used earlier, the cars data

where we aim at predicting the stopping distance from the speed and the BreastCancer

where we try to predict the class from the cell thickness. For both these cases, the

classical models—a linear model and a logistic regression—are more ideal solutions,

and these models will not outcompete them, but for more complex data sets, they can

usually be quite powerful.

Chapter 6 Supervised Learning

230

�Decision Trees
Decision trees work by building a tree from the input data, splitting on a parameter

in each inner node according to a variable value. This can be splitting on whether a

numerical value is above or below a certain threshold or which level a factor has.

Decision trees are implemented in the rpart package, and models are fitted just as

linear models are:

library(rpart)

Warning: package 'rpart' was built under R version

4.1.2

model <- cars %>% rpart(dist ~ speed, data = .)

rmse(predict(model, cars), cars$dist)

[1] 117.1626

Building a classifying model works very similar. We do not need to translate the cell

thickness into a numerical value, though; we can use the data frame as it is (but you can

experiment with translating factors into numbers if you are interested in exploring this):

model <- BreastCancer %>%

 rpart(Class ~ Cl.thickness, data = .)

The predictions when we used the glm() function were probabilities for the tumor

being malignant. The predictions made using the decision tree give you the probabilities

both for being benign and malignant:

predict(model, BreastCancer) |> head()

benign malignant

1 0.82815356 0.1718464

2 0.82815356 0.1718464

3 0.82815356 0.1718464

4 0.82815356 0.1718464

5 0.82815356 0.1718464

6 0.03289474 0.9671053

Chapter 6 Supervised Learning

231

To get a confusion matrix, we need to translate these probabilities into the

corresponding classes. The output of predict() is not a data frame but a matrix, so we

first convert it into a data frame using the function as.data.frame(), and then we use

the %$% operator in the pipeline to get access to the columns by name in the next step:

predicted_class <-

 predict(model, BreastCancer) %>%

 as.data.frame() %$%

 ifelse(benign > 0.5, "benign", "malignant")

table(BreastCancer$Class, predicted_class)

predicted_class

benign malignant

benign 453 5

malignant 94 147

Another implementation of decision trees is the ctree() function from the party

package:

library(party)

model <- cars %>% ctree(dist ~ speed, data = .)

rmse(predict(model, cars), cars$dist)

[1] 117.1626

model <- BreastCancer %>%

 ctree(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head()

[1] benign benign benign benign

[5] benign malignant

Levels: benign malignant

table(BreastCancer$Class, predict(model, BreastCancer))

##

benign malignant

benign 453 5

malignant 94 147

Chapter 6 Supervised Learning

232

I like this package slightly more since it can make plots of the fitted models (see

Figure 6-8):

cars %>% ctree(dist ~ speed, data = .) %>% plot()

speed
p < 0.001

1

� 17 � 17

speed
p < 0.001

2

� 12 � 12

Node 3 (n = 15)

0
20
40
60
80

100
120

Node 4 (n = 16)

0
20
40
60
80

100
120

Node 5 (n = 19)

0
20
40
60
80

100
120

Figure 6-8.  Plot of the cars decision tree

�Random Forests
Random forests generalize decision trees by building several of them and combining

them. They are implemented in the randomForest package:

library(randomForest)

model <- cars %>% randomForest(dist ~ speed, data = .)

rmse(predict(model, cars), cars$dist)

[1] 83.7541

Chapter 6 Supervised Learning

233

For classification, the predictions are the actual classes as a factor, so no translation

is needed to get a confusion matrix:

model <- BreastCancer %>%

 randomForest(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head()

1 2 3 4 5

benign benign benign malignant benign

6

malignant

Levels: benign malignant

table(BreastCancer$Class, predict(model, BreastCancer))

##

benign malignant

benign 437 21

malignant 76 165

�Neural Networks
You can use a package called nnet to construct neural networks:

library(nnet)

You can use it for both classification and regression. We can see it in action on the

cars data set:

model <- cars %>% nnet(dist ~ speed, data = ., size = 5)

weights: 16

initial value 123632.602158

final value 120655.000000

converged

rmse(predict(model, cars), cars$dist)

[1] 347.3543

Chapter 6 Supervised Learning

234

The neural networks require a size parameter specifying how many nodes you want

in the inner layer of the network. Here, I have just used five.

For classification, you use a similar call:

model <- BreastCancer %>%

 nnet(Class ~ Cl.thickness, data = ., size = 5)

weights: 56

initial value 453.502123

iter 10 value 226.317196

iter 20 value 225.125028

iter 30 value 225.099296

iter 40 value 225.098355

final value 225.098268

converged

The output of the predict() function is probabilities for the tumor being malignant:

predict(model, BreastCancer) %>% head()

[,1]

1 0.3461460

2 0.3461460

3 0.1111139

4 0.5294021

5 0.1499858

6 0.9130386

We need to translate it into classes, and for this, we can use a lambda expression:

predicted_class <- predict(model, BreastCancer) %>%

 { ifelse(. < 0.5, "benign", "malignant") }

table(BreastCancer$Class, predicted_class)

predicted_class

benign malignant

benign 437 21

malignant 76 165

Chapter 6 Supervised Learning

235

�Support Vector Machines
Another popular method is support vector machines. These are implemented in the

ksvm() function in the kernlab package:

library(kernlab)

model <- cars %>% ksvm(dist ~ speed, data = .)

rmse(predict(model, cars), cars$dist)

[1] 92.41686

For classification, the output is again a factor we can use directly to get a

confusion matrix:

model <- BreastCancer %>%

 ksvm(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head()

[1] benign benign benign malignant

[5] benign malignant

Levels: benign malignant

table(BreastCancer$Class, predict(model, BreastCancer))

##

benign malignant

benign 437 21

malignant 76 165

�Naive Bayes
Naive Bayes essentially assumes that each explanatory variable is independent of the

others and uses the distribution of these for each category of data to construct the

distribution of the response variable given the explanatory variables.

Naive Bayes is implemented in the e1071 package:

library(e1071)

Chapter 6 Supervised Learning

236

The package doesn’t support regression analysis—after all, it needs to look

at conditional distributions for each output variable value—but we can use it for

classification. The function we need is naiveBayes(), and we can use the predict()

output directly to get a confusion matrix:

model <- BreastCancer %>%

 naiveBayes(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head

[1] benign benign benign malignant

[5] benign malignant

Levels: benign malignant

table(BreastCancer$Class, predict(model, BreastCancer))

##

benign malignant

benign 437 21

malignant 76 165

�Exercises
�Fitting Polynomials
Use the cars data to fit higher degree polynomials and use training and test data to

explore how they generalize. At which degree do you get the better generalization?

�Evaluating Different Classification Measures
Earlier, I wrote functions for computing the accuracy, specificity (true negative rate),

and sensitivity (true positive rate) of a classification. Write similar functions for the other

measures described before. Combine them in a prediction_summary() function like I

did earlier.

Chapter 6 Supervised Learning

237

�Breast Cancer Classification
You have seen how to use the glm() function to predict the classes for the breast cancer

data. Use it to make predictions for training and test data, randomly splitting the data in

these two classes, and evaluate all the measures with your prediction_summary() function.

If you can, then try to make functions similar to the ones I used to split data and

evaluate models for the cars data.

�Leave-One-Out Cross-Validation (Slightly More Difficult)
The code I wrote earlier splits the data into n groups and constructs training and test

data based on that. This is called n-fold cross-validation. There is another common

approach to cross-validation called leave-one-out cross-validation. The idea here is to

remove a single data observation and use that for testing and all the rest of the data for

training.

This isn’t used that much if you have a lot of data—leaving out a single data point

will not change the trained model much if you have lots of data points anyway—but for

smaller data sets, it can be useful.

Try to program a function for constructing subsampled training and test data for this

strategy.

�Decision Trees
Use the BreastCancer data to predict the tumor class, but try including more of the

explanatory variables. Use cross-validation or sampling of training/test data to explore

how it affects the prediction accuracy.

�Random Forests
Use the BreastCancer data to predict the tumor class, but try including more of the

explanatory variables. Use cross-validation or sampling of training/test data to explore

how it affects the prediction accuracy.

Chapter 6 Supervised Learning

238

�Neural Networks
The size parameter for the nnet function specifies the complexity of the model. Test

how the accuracy depends on this variable for classification on the BreastCancer data.

Earlier, we only used the cell thickness variable to predict the tumor class. Include

the other explanatory variables and explore if having more information improves the

prediction power.

�Support Vector Machines
Use the BreastCancer data to predict the tumor class, but try including more of the

explanatory variables. Use cross-validation or sampling of training/test data to explore

how it affects the prediction accuracy.

�Compare Classification Algorithms
Compare the logistic regression, the neural networks, the decision trees, the random

forests, and the support vector machines in how well they classify tumors in the

BreastCancer data. For each, take the best model you obtained in your experiments.

Chapter 6 Supervised Learning

239
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_7

CHAPTER 7

Unsupervised Learning
For supervised learning, we have one or more targets we want to predict using a set of

explanatory variables. But not all data analysis consists of making prediction models.

Sometimes, we are just trying to find out what structure is actually in the data we

analyze. There can be several reasons for this. Sometimes, unknown structures can tell

us more about the data. Sometimes, we want to explicitly avoid unknown structures (if

we have data sets that are supposed to be similar, we don’t want to discover later that

there are systematic differences). Whatever the reason, unsupervised learning concerns

finding unknown structures in data.

�Dimensionality Reduction
Dimensionality reduction, as the name hints at, is a method used when you have high-

dimensional data and want to map it down into fewer dimensions. The purpose here

is usually to visualize data to try and spot patterns from plots. The analysis usually

just transforms the data and doesn’t add anything to it. It possibly removes some

information, but by reducing the number of dimensions, it can be easier to analyze.

The type of data where this is necessary is when the data has lots of columns. Not

necessarily many observations, but each observation has very many variables, and

there is often little information in any single column. One example is genetic data where

there is often hundreds of thousands, if not millions, of genetic positions observed in

each individual, and at each of these positions, we have a count of how many of a given

genetic variant is present at these markers, a number from zero to two. There is little

information in any single marker, but combined they can be used to tell a lot about an

individual. The first example we shall see in this chapter, principal component analysis,

is frequently used to map thousands of genetic markers into a few more informative

dimensions to reveal relationships between different individuals.

I will not use data with very high dimensionality but illustrate them with smaller data

sets where the methods can still be useful.

https://doi.org/10.1007/978-1-4842-8155-0_7#DOI

240

�Principal Component Analysis
Principal component analysis (PCA) maps your data from one vector space to another

of the same dimensionality as the first. So it doesn’t reduce the number of dimensions

as such. However, it chooses the coordinate system of the new space such that the

most information is in the first coordinate, the second most information in the second

coordinate, and so on.

In its simplest form, it is just a linear transformation. It changes the basis of your

vector space such that the most variance in the data is along the first basis vector, and

each basis vector then has increasingly less of the variance. The basis of the new vector

space is called the components, and the name “principal component” refers to looking

at the first few, the most important, the principal components.

There might be some transformations of the data first to normalize it, but the final

step of the transformation is always such a linear map. Hence, after the transformation,

there is exactly the same amount of information in your data; it is just represented along

different dimensions.

Because the PCA just transforms your data, your data has to be numerical vectors,

to begin with. For categorical data, you will need to modify the data first. One approach

is to represent factors as a binary vector for each level, as is done with model matrices in

supervised learning. If you have a lot of factors in your data, though, PCA might not be

the right tool.

It is beyond the scope of this book to cover the theory of PCA in any detail—but

many other textbooks will—so let us just dig into how it is used in R.

To illustrate this, I will use the iris data set. It is not high-dimensional, but it will do

as a first example.

Remember that this data contains four measurements, sepal length and width and

petal length and width, for flowers from three different species:

iris |> head()

Sepal.Length Sepal.Width Petal.Length

1 5.1 3.5 1.4

2 4.9 3.0 1.4

3 4.7 3.2 1.3

4 4.6 3.1 1.5

5 5.0 3.6 1.4

6 5.4 3.9 1.7

Chapter 7 Unsupervised Learning

241

Petal.Width Species

1 0.2 setosa

2 0.2 setosa

3 0.2 setosa

4 0.2 setosa

5 0.2 setosa

6 0.4 setosa

To see if there is information in the data that would let us distinguish between

the three species based on the measurements, we could try to plot some of the

measurements against each other. See Figures 7-1 and 7-2.

iris |> ggplot() +

 geom_point(aes(x = Sepal.Length, y = Sepal.Width, colour = Species))

iris |> ggplot() +

 geom_point(aes(x = Petal.Length, y = Petal.Width, colour = Species))

It does look as if we should be able to distinguish the species. Setosa stands out on

both plots, but Versicolor and Virginia overlap on the first.

Chapter 7 Unsupervised Learning

242

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

Se
pa

l.W
id
th Species

setosa

versicolor

virginica

Figure 7-1.  Plot of iris sepal length vs. sepal width

Chapter 7 Unsupervised Learning

243

Since this is such a simple data set, and since there is obviously a structure if we just

plot a few dimensions against each other, this is not a case where we would usually pull

out the cannon that is PCA, but this is a section on PCA, so we will.

Since PCA only works on numerical data, we need to remove the Species parameter,

but after that, we can do the transformation using the function prcomp:

pca <- iris |> select(-Species) |> prcomp()

pca

Standard deviations (1, .., p=4):

[1] 2.0562689 0.4926162 0.2796596 0.1543862

##

0.0

0.5

1.0

1.5

2.0

2.5

2 4 6
Petal.Length

Pe
ta
l.W

id
th Species

setosa

versicolor

virginica

Figure 7-2.  Plot of iris petal length vs. petal width

Chapter 7 Unsupervised Learning

244

Rotation (n x k) = (4 x 4):

PC1 PC2 PC3

Sepal.Length 0.36138659 -0.65658877 0.58202985

Sepal.Width -0.08452251 -0.73016143 -0.59791083

Petal.Length 0.85667061 0.17337266 -0.07623608

Petal.Width 0.35828920 0.07548102 -0.54583143

PC4

Sepal.Length 0.3154872

Sepal.Width -0.3197231

Petal.Length -0.4798390

Petal.Width 0.7536574

The object that this produces contains different information about the result. The

standard deviations tell us how much variance is in each component and the rotation

what the linear transformation is. If we plot the pca object, we will see how much of the

variance in the data that is on each component (see Figure 7-3):

pca |> plot()

The first thing you want to look at after making the transformation is how the

variance is distributed along the components. If the first few components do not contain

most of the variance, the transformation has done little for you. When it does, there is

some hope that plotting the first few components will tell you about the data.

pca

Va
ria

nc
es

0
1

2
3

4

Figure 7-3.  Plot of the variance on each principal component for the iris data set

Chapter 7 Unsupervised Learning

245

To map the data to the new space spanned by the principal components, we use the

predict() function:

mapped_iris <- pca |> predict(iris)

mapped_iris |> head()

PC1 PC2 PC3

[1,] -2.684126 -0.3193972 0.02791483

[2,] -2.714142 0.1770012 0.21046427

[3,] -2.888991 0.1449494 -0.01790026

[4,] -2.745343 0.3182990 -0.03155937

[5,] -2.728717 -0.3267545 -0.09007924

[6,] -2.280860 -0.7413304 -0.16867766

PC4

[1,] 0.002262437

[2,] 0.099026550

[3,] 0.019968390

[4,] -0.075575817

[5,] -0.061258593

[6,] -0.024200858

This can also be used with new data that wasn’t used to create the pca object. Here,

we just give it the same data we used before. We don’t actually have to remove the

Species variable; it will figure out which of the columns to use based on their names. We

can now plot the first two components against each other (see Figure 7-4):

mapped_iris |>

 as_tibble() |>

 cbind(Species = iris$Species) |>

 ggplot() +

 geom_point(aes(x = PC1, y = PC2, colour = Species))

Chapter 7 Unsupervised Learning

246

−1.5

−1.0

−0.5

0.0

0.5

1.0

−2 0 2 4
PC1

PC
2

Species
setosa

versicolor

virginica

Figure 7-4.  Plot of the first two principal components for the iris data set

The mapped_iris object returned from the predict() function is not a data frame

but a matrix. That won’t work with ggplot(), so we need to transform it back into a data

frame, and we do that with as_tibble. This gives us the tibble variant of data frames,

but we could also have used as.data.frame to give the classical data structure. Since

we want to color the plot according to species, we need to add that information again—

remember the pca object does not know about this factor data—so we do that with

cbind(). After that, we plot.

We didn’t gain much from this. There was about as much information in the original

columns as there is in the transformed data. But now that we have seen PCA in action,

we can try it out on a little more interesting example.

We will look at the HouseVotes84 data from the mlbench package:

library(mlbench)

data(HouseVotes84)

HouseVotes84 |> head()

Chapter 7 Unsupervised Learning

247

Class V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

1 republican n y n y y y n n n y

2 republican n y n y y y n n n n

3 democrat <NA> y y <NA> y y n n n n

4 democrat n y y n <NA> y n n n n

5 democrat y y y n y y n n n n

6 democrat n y y n y y n n n n

V11 V12 V13 V14 V15 V16

1 <NA> y y y n y

2 n y y y n <NA>

3 y n y y n n

4 y n y n n y

5 y <NA> y y y y

6 n n y y y y

The data contains the votes cast for both republicans and democrats on 16 different

proposals. The types of votes are yea, nay, and missing/unknown. Now, since votes are

unlikely to be accidentally lost, missing data here means someone actively decided not

to vote, so it isn’t really missing. There is probably some information in that as well.

Now an interesting question we could ask is whether there are differences in voting

patterns between republicans and democrats. We would expect that, but can we see it

from the data?

The individual columns are binary (well, trinary if we consider the missing data as

actually informative) and do not look very different between the two groups, so there is

little information in each individual column. We can try doing a PCA on the data:

HouseVotes84 |> select(-Class) |> prcomp()

Error in colMeans(x, na.rm = TRUE): 'x' must be numeric

Okay, R is complaining that the data isn’t numeric. We know that PCA needs

numeric data, but we are giving it factors. We need to change that, so we can try to map

the votes into zeros and ones.

We want to mutate every column in the data frame, since all the columns are

encoded as factors and we need them as numerical values. However, doing mutate

(V1 = ..., V2 = ..., ...) for all the columns Vi is tedious, so let’s not do it that way.

Chapter 7 Unsupervised Learning

248

We can map over the columns of a data frame using the mapping functions from

the package purrr that we have used earlier. Since we want to process all the columns

(after removing Class), this looks like a good alternative. We want the result to be a

data frame, so the map_df variant must be the one we want. For the function to apply

to each column, we want each vote to map to 0 or 1, depending on whether it is n or

y, but missing data should remain missing. Most R functions leave missing data alone,

however, so if we do ifelse(vote == "n", 0, 1), the NA values will remain NA. For map_

df, then, we need a function \(vote) ifelse(vote == "n", 0, 1). Here we go:

HouseVotes84 |>

 select(-Class) |>

 map_df(\(vote) ifelse(vote == "n", 0, 1)) |>

 prcomp()

Error in svd(x, nu = 0, nv = k): infinite or missing values in 'x'

That doesn’t work either, but now the problem is the missing data. We have mapped

nay to 0 and yea to 1, but missing data remains missing data.

We should always think carefully about how we deal with missing data, especially in

a case like this where it might actually be informative. One approach we could take is to

translate each column into three binary columns indicating if a vote was cast as yea, nay,

or not cast.

I have left that as an exercise. Here, I will just pretend that if someone abstained

from voting, then they are equally likely to have voted yea or nay, and translate missing

data into 0.5. This isn’t true, and you shouldn’t do that in a real data analysis, but we are

interested in PCA and not truth here, so it is time to move on.

Since I want to map the data onto the principal components afterward, and since

I don’t want to write the data transformations twice, I save it in a variable and then

perform the PCA:

vote_patterns <- HouseVotes84 |>

 select(-Class) |>

 map_df(\(vote) ifelse(vote == "n", 0, 1)) |>

 map_df(\(vote) ifelse(is.na(vote), 0.5, vote))

pca <- vote_patterns |> prcomp()

Chapter 7 Unsupervised Learning

249

Now we can map the vote patterns onto the principal components and plot the first

against the second (see Figure 7-5):

mapped_votes <- pca |> predict(vote_patterns)

mapped_votes |>

 as_tibble() |>

 cbind(Class = HouseVotes84$Class) |>

 ggplot() +

 geom_point(aes(x = PC1, y = PC2, colour = Class))

−1.0

−0.5

0.0

0.5

1.0

1.5

−2 −1 0 1
PC1

PC
2

Class
democrat

republican

Figure 7-5.  Plot of the first two principal components for the house votes data set

It looks like there is a clear separation in the voting patterns, at least on the first

principal component. This is not something we could immediately see from the

original data.

Chapter 7 Unsupervised Learning

250

�Multidimensional Scaling
Sometimes, it is easier to have a measure of distance between objects than representing

them as numerical vectors. Consider, for example, strings. You could translate them

into numbers based on their encoding, but the space of possible strings is vast—infinite

if you do not restrict their length—so it is not a practical approach. However, there are

many measures of how different two strings are. For strings, at least, it is easier to define

a distance measure than a mapping into numeric values.

When what we have is a distance measure, we can represent our data as a distance

matrix, one that contains all pair-wise distances. Obviously, this is not a feasible

solution if you have very many data points—the number of pairs grows proportionally

to the number of data points squared—but up to a few thousand data points, it is not

a significant problem. Multidimensional scaling takes such a matrix of all pair-wise

distances and maps each data point into a linear space while preserving the pair-wise

distances as well as possible.

Consider the iris data set again. For this data set, of course, we do have the data

points represented as numerical vectors, but it is a data set we are familiar with, so it is

good to see the new method in use on it.

We can create a distance matrix using the dist() function:

iris_dist <- iris |> select(-Species) |> dist()

To create a representation of these distances in a two-dimensional space we use

the function cmdscale(). It takes a parameter, k, that specifies the dimensionality we

want to place the points in. Give it a high enough k and it can perfectly preserve all

pair-wise distances, but we wouldn’t be able to visualize it. We are best served with

low dimensionality, and to plot the data, we chose two. The result is a matrix with one

row per original data point and one column per dimension we asked for—here, of

course, two:

mds_iris <- iris_dist |> cmdscale(k = 2)

mds_iris |> head()

[,1] [,2]

[1,] -2.684126 0.3193972

[2,] -2.714142 -0.1770012

[3,] -2.888991 -0.1449494

[4,] -2.745343 -0.3182990

Chapter 7 Unsupervised Learning

251

[5,] -2.728717 0.3267545

[6,] -2.280860 0.7413304

We can translate this matrix into a data frame and plot it (see Figure 7-6):

mds_iris |>

 as_tibble(.name_repair = ~ c("x", "y")) |>

 cbind(Species = iris$Species) |>

 ggplot() +

 geom_point(aes(x = x, y = y, colour = Species))

The as_tibble(.name_repair = ~ c("x", "y")) part translates the matrix we have

into a data frame, as the other times where we have used as_tibble, but we need to do

something special this time. The matrix doesn’t have column names, and we need that

for data frames. The .name_repair argument to as_tibble is a powerful tool for working

with column names when you create a data frame, and all it can do is beyond the scope

of this book. Here, we just set the column names to “x” and “y.” You do need the tilde, ~,

before the string vector, though, for this to work with as_tibble, but the details of what is

going on here are more technical than we care to delve into at this point.

Because we gave the matrix column names, we can use them in aes(x = x, y = y,

...). If we hadn’t given them names, we couldn’t refer to them here.

The plot looks essentially the same as the PCA plot earlier, which is not a

coincidence, except that it is upside down.

Chapter 7 Unsupervised Learning

252

We can do exactly the same thing with the voting data—here, we can reuse the

cleaned data that has translated the factors into numbers—and the result is shown in

Figure 7-7.

mds_votes <- vote_patterns |> dist() |> cmdscale(k = 2)

mds_votes |>

 as_tibble(.name_repair = ~ c("x", "y")) |>

 cbind(Class = HouseVotes84$Class) |>

 ggplot() +

 geom_point(aes(x = x, y = y, colour = Class))

Should you ever have the need for computing a distance matrix between strings, by

the way, you might want to look at the stringdist package. As an example illustrating

this, we can simulate some strings. The following code first has a function for simulating

random strings over the letters “A,” “C,” “G,” and “T,” and the second function then adds a

random length to that. We then create ten strings using these functions:

−1.0

−0.5

0.0

0.5

1.0

1.5

−2 0 2 4
x

y

Species
setosa

versicolor

virginica

Figure 7-6.  Multidimensional scaling plot for iris data

Chapter 7 Unsupervised Learning

253

random_ngram <- function(n)

 sample(c('A','C','G','T'), size = n, replace = TRUE) |>

 paste0(collapse = "")

random_string <- function(m) {

 n <- max(1, m + sample(c(-1,1), size = 1) * rgeom(1, 1/2))

 random_ngram(n)

}

strings <- replicate(10, random_string(5))

Using the stringdist package, we can compute the all-pairs distance matrix:

library(stringdist)

string_dist <- stringdistmatrix(strings)

−1.5

−1.0

−0.5

0.0

0.5

1.0

−2 −1 0 1
x

y

Class
democrat

republican

Figure 7-7.  Multidimensional scaling plot for house voting data

Chapter 7 Unsupervised Learning

254

We can now plot the strings in two-dimensional space, roughly preserving their

distances (see Figure 7-8):

string_dist |>

 cmdscale(k = 2) |>

 as_tibble(.name_repair = ~ c("x", "y")) |>

 cbind(String = strings) |>

 ggplot(aes(x = x, y = y)) +

 geom_point() +

 geom_label(aes(label = String),

 hjust = 0, nudge_y = -0.1)

TGCA

CCATT

TT

CAGCA

ATGGT

GGACC

TG

CAAAAG

AAGG
AAATC

−2

−1

0

1

2

3

−2 −1 0 1 2
x

y

Figure 7-8.  Multidimensionality reduction for random strings

Chapter 7 Unsupervised Learning

255

�Clustering
Clustering methods seek to find similarities between data points and group data

according to these similarities. Such clusters can either have a hierarchical structure or

not; when the structure is hierarchical, each data point will be associated with several

clusters, ordered from the more specific to the more general, and when the structure is

not hierarchical, any data point is typically only assigned a single cluster. The following

are two of the most popular clustering algorithms, one of each kind of clustering.

�k-means Clustering
In k-means clustering, you attempt to separate the data into k clusters, where the

number k is determined by you. The data usually has to be in the form of numeric

vectors. Strictly speaking, the method will work as long as you have a way of computing

the mean of a set of data points and the distance between pairs of data points. The R

function for k-means clustering, kmeans, wants numerical data.

The algorithm essentially works by first guessing at k “centers” of proposed clusters.

Then each data point is assigned to the center it is closest to, creating a grouping of

the data, and then all centers are moved to the mean position of their clusters. This

is repeated until an equilibrium is reached. Because the initial centers are randomly

chosen, different calls to the function will not necessarily lead to the same result. At the

very least, expect the labelling of clusters to be different between the various calls.

Let us see it in action. We use the iris data set, and we remove the Species column

to get a numerical matrix to give to the function:

clusters <- iris |>

select(-Species) |>

kmeans(centers = 3)

We need to specify k, the number of centers, in the parameters to kmeans(), and we

choose three. We know that there are three species, so this is a natural choice. Life isn’t

always that simple, but here it is the obvious choice.

The function returns an object with information about the clustering. The two most

interesting pieces of information are the centers, the variable centers, and the cluster

assignment, the variable cluster.

Chapter 7 Unsupervised Learning

256

Let us first have a look at the centers:

clusters$centers

Sepal.Length Sepal.Width Petal.Length

1 5.901613 2.748387 4.393548

2 6.850000 3.073684 5.742105

3 5.006000 3.428000 1.462000

Petal.Width

1 1.433871

2 2.071053

3 0.246000

These are simply vectors of the same form as the input data points. They are the

center of mass for each of the three clusters we have computed.

The cluster assignment is simply an integer vector with a number for each data point

specifying which cluster that data point is assigned to:

clusters$cluster |> head()

[1] 3 3 3 3 3 3

clusters$cluster |> table()

##

1 2 3

62 38 50

There are 50 data points for each species, so if the clustering perfectly matched the

species, we should see 50 points for each cluster as well. The clustering is not perfect,

but we can try plotting the data and see how well the clustering matches up with the

species class.

We can first plot how many data points from each species are assigned to each

cluster (see Figure 7-9):

iris |>

 cbind(Cluster = clusters$cluster) |>

 ggplot() +

 geom_bar(aes(x = Species, fill = as.factor(Cluster)),

 position = "dodge") +

 scale_fill_discrete("Cluster")

Chapter 7 Unsupervised Learning

257

0

10

20

30

40

50

setosa versicolor virginica
Species

co
un

t

Cluster
1

2

3

Figure 7-9.  Cluster assignments for the three iris species

We first combine the iris data set with the cluster association from clusters and

then make a bar plot. The position argument is "dodge", so the cluster assignments are

plotted next to each other instead of stacked on top of each other.

Not unexpectedly, from what we have learned of the data by plotting it earlier,

Setosa seems clearly distinct from the other two species, which, according to the four

measurements we have available at least, overlap in features.

There is a bit of luck involved here as well. A different starting point for where

kmeans() placed the first centers will affect the final result, and had it put two clusters

inside the cloud of the Setosa data points, it would have split those points into two

clusters and merged the Versicolor and Virginia points into a single cluster, for instance.

It is always a good idea to visually examine how the clustering result matches where

the actual data points fall. We can do this by plotting the individual data points and

see how the classification and clustering looks. We could plot the points for any pair of

features, but we have seen how to map the data onto principal components, so we could

try to plot the data on the first two of these. As you remember, we can map data points

Chapter 7 Unsupervised Learning

258

from the four features to the principal components using the predict() function. This

works both for the original data used to make the PCA and the centers we get from the

k-means clustering:

pca <- iris |>

 select(-Species) |>

 prcomp()

mapped_iris <- pca |>

 predict(iris)

mapped_centers <- pca |>

 predict(clusters$centers)

We can plot the mapped data points, PC1 against PC2 (see Figure 7-10). To display

the principal components together with the species information, we need to add a

Species column. We also need to add the cluster information since that isn’t included in

the mapped vectors. This is a numeric vector, but we want to treat it as categorical, so we

need to translate it using as.factor():

mapped_iris |>

 as_tibble() |>

 cbind(Species = iris$Species,

 Clusters = as.factor(clusters$cluster)) |>

 ggplot() +

 geom_point(aes(x = PC1, y = PC2,

 colour = Species, shape = Clusters)) +

geom_point(aes(x = PC1, y = PC2), size = 5, shape = "X",

 data = as_tibble(mapped_centers))

Chapter 7 Unsupervised Learning

259

X

XX

−1.5

−1.0

−0.5

0.0

0.5

1.0

−2 0 2 4
PC1

PC
2

Clusters
1

2

3

Species
setosa

versicolor

virginica

Figure 7-10.  Clusters and species for iris

In the plot, I also show the centers. I use the data argument to geom_point() to give

it this data, and I set the size to 5 and set the shape to "X".

As mentioned, there is some luck involved in getting a good clustering like this. The

result of a second run of the kmeans() function is shown in Figures 7-11 and 7-12.

Chapter 7 Unsupervised Learning

260

0

10

20

30

40

50

setosa versicolor virginica
Species

co
un

t

Cluster
1

2

3

Figure 7-11.  A bad cluster assignment for the three iris species

If you go back and look at Figure 7-10 and think that some of the square points are

closer to the center of the “triangular cluster” than the center of the “square cluster,” or

vice versa, you are right. Don’t be too disturbed by this; two things are deceptive here.

One is that the axes are not on the same scale, so distances along the x-axis are farther

than distances along the y-axis. A second is that the distances used to group data points

are in the four-dimensional space of the original features, while the plot is a projection

onto the two-dimensional plane of the first two principal components.

Chapter 7 Unsupervised Learning

261

There is something to worry about, though, concerning distances. The algorithm

is based on the distance from cluster centers to data points, but if you have one axis in

centimeters and another in meters, a distance along one axis is numerically a hundred

times farther than along the other. This is not merely solved by representing all features

in the same unit. First of all, that isn’t always possible. There is no meaningful way of

translating time or weight into a distance. Even if it was, what is being measured is also

relevant for the unit we consider. The height of a person is meaningfully measured in

meters, but you do not want something like cell size to be measured in meters.

This is also an issue for principal component analysis. Obviously, a method that tries

to create a vector space basis based on the variance in the data is going to be affected

by the units used in the input data. The usual solution is to rescale all input features so

they are centered at zero and have variance one. You subtract from each data point the

mean of the feature and divide by the standard deviation. This means that measured in

standard deviations, all dimensions have the same variation.

−1.5

−1.0

−0.5

0.0

0.5

1.0

−2 0 2 4
PC1

PC
2

Clusters
1

2

3

Species
setosa

versicolor

virginica

Figure 7-12.  Clusters and species for iris for a bad clustering

Chapter 7 Unsupervised Learning

262

The prcomp() function takes parameters to do the scaling. Parameter center, which

defaults to TRUE, translates the data points to mean zero, and parameter scale. (notice

the “.” at the end of the name), which defaults to FALSE, scales the data points to have

variance one at all dimensions.

The kmeans() functions do not take these parameters, but you can explicitly rescale a

numerical data frame using the scale() function. I have left this as an exercise.

Now let us consider how the clustering does at predicting the species more formally.

This returns us to familiar territory: we can build a confusion matrix between species

and clusters.

table(iris$Species, clusters$cluster)

##

1 2 3

setosa 0 0 50

versicolor 48 2 0

virginica 14 36 0

One problem here is that the clustering doesn’t know about the species, so even if

there were a one-to-one correspondence between clusters and species, the confusion

matrix would only be diagonal if the clusters and species were in the same order.

We can associate each species to the cluster most of its members are assigned to.

This isn’t a perfect solution—two species could be assigned to the same cluster this way,

and we still wouldn’t be able to construct a confusion matrix—but it will work for us in

the case we consider here. We can count how many observations from each cluster are

seen in each species like this:

tbl <- table(iris$Species, clusters$cluster)

(counts <- apply(tbl, 1, which.max))

setosa versicolor virginica

3 1 2

and build a table mapping species to clusters to get the confusion matrix like this:

map <- rep(NA, each = 3)

map[counts] <- names(counts)

table(iris$Species, map[clusters$cluster])

Chapter 7 Unsupervised Learning

263

##

setosa versicolor virginica

setosa 50 0 0

versicolor 0 48 2

virginica 0 14 36

A final word on k-means is this: Since k is a parameter that needs to be specified,

how do you pick it? Here, we knew that there were three species, so we picked three for

k as well. But when we don’t know if there is any clustering in the data, to begin with,

or if there is a lot, how do we choose k? Unfortunately, there isn’t a general answer to

this. There are several rules of thumb, but no perfect solution you can always apply. Try

some, see what happens, and then use your understanding of the data to interpret what

you see.

�Hierarchical Clustering
Hierarchical clustering is a technique you can use when you have a distance matrix

of your data. Here, the idea is that you build up a tree structure of nested clusters by

iteratively merging clusters. You start with putting each data point in their own singleton

clusters. Then iteratively you find two clusters that are close together and merge them

into a new cluster. You continue this until all data points are in the same large cluster.

Different algorithms exist, and they mainly vary in how they choose which cluster to

merge next and how they compute the distance between clusters. In R, the function

hclust() implements several algorithms—the parameter method determines which is

used—and we can see it in use with the iris data set. We first need a distance matrix.

This time, I first scale the data:

iris_dist <- iris |> select(-Species) |> scale() |> dist()

Now the clustering is constructed by calling hclust() on the distance matrix:

clustering <- hclust(iris_dist)

We can plot the result using the generic plot() function; see Figure 7-13. There is

not much control over how the clustering is displayed using this function, but if you are

interested in plotting trees, you should have a look at the ape package:

plot(clustering)

Chapter 7 Unsupervised Learning

264

10
1

13
7

14
9

14
5

14
1

12
1

14
4 12
5

11
1

11
6

14
2

14
6

10
3

11
3

14
0

10
4

14
8

11
7

13
8

10
5

12
9

13
3 11

4
11

5
12

2
10

2
14

3 10
9

73 14
7 84 13
5 55 13
4

11
2

12
4

12
7 66 87 51 53 7
8 77 59 76 7
1

15
0

12
8

13
9 8
6

52 57 67 85 6
5

97 89 96 6
2

92 64 79 75 98 7
2 74 1
10

11
8

13
2

11
9

12
3

12
6

13
0

10
8

13
1

10
6

13
6

42
61

99 58 94 8
8

69 12
0 63 54 81 82
10

7
91 70 90 8

0 68 83 93 6
0

95 56 10
0

16
33 34 1

5
19 6 17 3
7 21 32 27 8 40 41 1 18 2
8 29 2
4 44 23 5 38 11 49 2
2 45 20 47 4
3 4

30 3 48 3
6 50
7

12 25
9

14 39 31 10 35 2 26 1
3 46

0
2

4
6

Cluster Dendrogram

hclust (*, "complete")
iris_dist

H
ei

gh
t

Figure 7-13.  Hierarchical clustering of iris data

To create plots that work well with ggplot2 graphics, you want the package

ggdendro, see Figure 7-14:

library(ggdendro)

clustering |>

 ggdendrogram() + theme_dendro()

Using ggdendro, you can get access to the raw plotting segments which gives you

control over much of the visualization of the tree.

Only visualizing the clustering is rarely enough, so to work with the result we need to

be able to extract the actual groupings. The cutree() function—it stands for cut tree, but

there is only one t in the name—lets us do this. You can give it a parameter h to cut the

tree into clusters by splitting the tree at height h, or you can give it parameter k to cut the

tree at the level where there is exactly k clusters.

Since we are working with the iris data, it is natural for us to want to split the data

into three clusters:

clusters <- clustering |> cutree(k = 3)

Chapter 7 Unsupervised Learning

265

The result is in the same format as we had for k-means clustering, that is, a vector

with integers specifying which cluster each data point belongs to. Since we have the

information in the familiar format, we can try plotting the clustering information as a bar

plot (Figure 7-15):

iris |>

 cbind(Cluster = clusters) |>

 ggplot() +

 geom_bar(aes(x = Species, fill = as.factor(Cluster)),

 position = "dodge") +

 scale_fill_discrete("Cluster")

or plot the individual plots together with species and cluster information

(Figure 7-16).

Figure 7-14.  Hierarchical clustering of iris data plotted with ggdendro

Chapter 7 Unsupervised Learning

266

mapped_iris |>

 as_tibble() |>

 cbind(Species = iris$Species,

 Clusters = as.factor(clusters)) |>

 ggplot() +

 geom_point(aes(x = PC1, y = PC2,

 shape = Species, colour = Clusters))

Constructing a confusion matrix if we want to use the clustering for a form of

classification is of course done similarly, but hierarchical clustering lends itself much

less to classification than k-means clustering does. With k-means clustering, it is simple

to take a new data point and see which cluster center it is nearest. With hierarchical

clustering, you would need to rebuild the entire tree to see where it falls.

0

10

20

30

40

50

setosa versicolor virginica
Species

co
un

t

Cluster
1

2

3

Figure 7-15.  Iris clustering as a bar plot

Chapter 7 Unsupervised Learning

267

�Association Rules
The last unsupervised learning method we will see is aimed at categorical data, ordered

or unordered. Just like you have to translate factors into numerical data to use methods

such as PCA, you will need to translate numerical data into factors to use association

rules. This typically isn’t a problem, and you can use the function cut() to split a

numerical vector into a factor and combine it with ordered() if you want it ordered.

Association rules search for patterns in your data by picking out subsets of the data,

X and Y, based on predicates on the input variables and evaluate rules X ⇒ Y. Picking X

and Y is a brute-force choice (which is why you need to break the numerical vectors into

discrete classes).1

Any statement X ⇒ Y is called a rule, and the algorithm evaluates all rules (at least up

to a certain size) to figure out how good each rule is.

The association rules algorithm is implemented in the arules package:

library(arules)

1 The algorithm could do it for you by considering each point between two input values, but it
doesn’t, so you have to break the data.

Chapter 7 Unsupervised Learning

268

To see it in action, we use the income data set from the kernlab package:

library(kernlab)

data(income)

income |> head()

INCOME SEX MARITAL.STATUS AGE

1 [75.000- F Married 45-54

2 [75.000- M Married 45-54

3 [75.000- F Married 25-34

4 -10.000) F Single 14-17

5 -10.000) F Single 14-17

6 [50.000-75.000) M Married 55-64

−1.5

−1.0

−0.5

0.0

0.5

1.0

−2 0 2 4
PC1

PC
2

Clusters
1

2

3

Species
setosa

versicolor

virginica

Figure 7-16.  Iris points plotted with species and hierarchical clustering
information

Chapter 7 Unsupervised Learning

269

EDUCATION OCCUPATION

1 1 to 3 years of college Homemaker

2 College graduate Homemaker

3 College graduate Professional/Managerial

4 Grades 9 to 11 Student, HS or College

5 Grades 9 to 11 Student, HS or College

6 1 to 3 years of college Retired

AREA DUAL.INCOMES HOUSEHOLD.SIZE UNDER18

1 10+ years No Three None

2 10+ years No Five Two

3 10+ years Yes Three One

4 10+ years Not Married Four Two

5 4-6 years Not Married Four Two

6 10+ years No Two None

HOUSEHOLDER HOME.TYPE ETHNIC.CLASS LANGUAGE

1 Own House White <NA>

2 Own House White English

3 Rent Apartment White English

4 Family House White English

5 Family House White English

6 Own House White English

This data contains income information together with several explanatory variables

and is already in a form the arules can deal with: all columns are factorial.

The same data is actually also available in the arules package as the Income data

set, but here it is representing in a different format than a data frame, so we will use this

version of the data:

data(Income)

Income |> head()

transactions in sparse format with

6 transactions (rows) and

50 items (columns)

Chapter 7 Unsupervised Learning

270

To construct the rules, we use the apriori() function. It takes various arguments

for controlling which rules the function will return, but we can use it with all default

parameters:

rules <- income |> apriori()

Apriori

##

Parameter specification:

confidence minval smax arem aval

0.8 0.1 1 none FALSE

originalSupport maxtime support minlen maxlen

TRUE 5 0.1 1 10

target ext

rules TRUE

##

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

##

Absolute minimum support count: 899

##

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[84 item(s), 8993 transaction(s)] done [0.01s].

sorting and recoding items ... [42 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 5 6 done [0.02s].

writing ... [785 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

The rules object we create this way is not a simple object like a data frame, but

it will let us take the head() of it, and we can use the function inspect() to see the

individual rules:

rules |> head() |> inspect(linebreak = FALSE)

lhs

[1] {} =>

Chapter 7 Unsupervised Learning

271

[2] {EDUCATION=Grad Study} =>

[3] {OCCUPATION=Clerical/Service Worker} =>

[4] {INCOME=[30.000-40.000)} =>

[5] {UNDER18=Two} =>

[6] {INCOME=[50.000-75.000)} =>

rhs support confidence

[1] {LANGUAGE=English} 0.8666741 0.8666741

[2] {LANGUAGE=English} 0.1000778 0.9316770

[3] {LANGUAGE=English} 0.1046369 0.8860640

[4] {LANGUAGE=English} 0.1111976 0.9009009

[5] {LANGUAGE=English} 0.1073057 0.8405923

[6] {LANGUAGE=English} 0.1329923 0.9143731

coverage lift count

[1] 1.0000000 1.0000000 7794

[2] 0.1074169 1.0750027 900

[3] 0.1180918 1.0223728 941

[4] 0.1234293 1.0394921 1000

[5] 0.1276548 0.9699059 965

[6] 0.1454465 1.0550368 1196

The linebreak = FALSE here splits the rules over several lines. I find it confusing too

that to break the lines you have to set linebreak to FALSE, but that is how it is.

Each rule has a right-hand side, rhs, and a left-hand side, lhs. For a rule X ⇒ Y, X is

the rhs and Y the lhs. The quality of a rule is measured by the following three columns:

•	 support: The fraction of the data where both X and Y hold true. Think

of it as Pr(X, Y).

•	 confidence: The fraction of times where X is true that Y is also true.

Think of it as Pr(Y | X).

•	 lift: How much better than random is the rule, in the sense that how

much better is it compared to X and Y being independent. Think

Pr(X, Y)/ Pr(X) Pr(Y).

Good rules should have high enough support to be interesting—if a rule only affects

a tiny number of data points out of the whole data, it probably isn’t that important—so

you want both support and confidence to be high. It should also tell you more than what

you would expect by random chance, which is captured by lift.

Chapter 7 Unsupervised Learning

272

You can use the sort() function to rearrange the data according to the quality

measures:

rules |>

sort(by = "lift") |> head() |>

inspect(linebreak = FALSE)

lhs

[1] �{MARITAL.STATUS=Married, OCCUPATION=Professional/Managerial,

LANGUAGE=

[2] {MARITAL.STATUS=Married, OCCUPATION=Professional/Managerial}

[3] {DUAL.INCOMES=No, HOUSEHOLDER=Own}

[4] {AREA=10+ years, DUAL.INCOMES=Yes, HOME.TYPE=House}

[5] �{DUAL.INCOMES=Yes, HOUSEHOLDER=Own, HOME.TYPE=House,

LANGUAGE=English}

[6] {DUAL.INCOMES=Yes, HOUSEHOLDER=Own, HOME.TYPE=House}

rhs support

[1] => {DUAL.INCOMES=Yes} 0.1091960

[2] => {DUAL.INCOMES=Yes} 0.1176471

[3] => {MARITAL.STATUS=Married} 0.1016346

[4] => {MARITAL.STATUS=Married} 0.1003002

[5] => {MARITAL.STATUS=Married} 0.1098632

[6] => {MARITAL.STATUS=Married} 0.1209830

confidence coverage lift count

[1] 0.8069022 0.1353275 3.281986 982

[2] 0.8033409 0.1464472 3.267501 1058

[3] 0.9713071 0.1046369 2.619965 914

[4] 0.9605964 0.1044145 2.591075 902

[5] 0.9601555 0.1144223 2.589886 988

[6] 0.9594356 0.1260981 2.587944 1088

You can combine this with the subset() function to filter the rules:

rules |>

 subset(support > 0.5) |>

 sort(by = "lift") |>

 head() |>

 inspect(linebreak = FALSE)

Chapter 7 Unsupervised Learning

273

lhs

[1] {ETHNIC.CLASS=White} =>

[2] {AREA=10+ years} =>

[3] {UNDER18=None} =>

[4] {} =>

[5] {DUAL.INCOMES=Not Married} =>

rhs support confidence

[1] {LANGUAGE=English} 0.6110308 0.9456204

[2] {LANGUAGE=English} 0.5098410 0.8847935

[3] {LANGUAGE=English} 0.5609919 0.8813767

[4] {LANGUAGE=English} 0.8666741 0.8666741

[5] {LANGUAGE=English} 0.5207384 0.8611622

coverage lift count

[1] 0.6461692 1.0910911 5495

[2] 0.5762260 1.0209069 4585

[3] 0.6364951 1.0169644 5045

[4] 1.0000000 1.0000000 7794

[5] 0.6046925 0.9936402 4683

�Exercises
�Dealing with Missing Data in the HouseVotes84 Data
In the PCA analysis, we translated missing data into 0.5. This was to move things

along but probably not an appropriate decision. People who do not cast a vote are

not necessarily undecided and therefore equally likely to vote yea or nay; there can be

conflicts of interests or other reasons. So we should instead translate each column into

three binary columns.

You can use the transmute() function from dplyr to add new columns and remove

old ones—it is a bit of typing since you have to do it 16 times, but it will get the job done.

If you feel more like trying to code your way out of this transformation, you should

look at the mutate_at() function from dplyr. You can combine it with column name

matches and multiple functions to build the three binary vectors (for the ifelse() calls,

Chapter 7 Unsupervised Learning

274

you have to remember that comparing with NA always gives you NA, so you need always

to check for that first). After you have created the new columns, you can remove the old

ones using select() combined with match().

Try to do the transformation and then the PCA again. Does anything change?

�k-means
Rescaling for k-means clustering

Use the scale() function to rescale the iris data set, then redo the k-means

clustering analysis.

Varying k

Analyze the iris data with kmeans() with k ranging from one to ten. Plot the clusters

for each k, coloring the data points according to the clustering.

Chapter 7 Unsupervised Learning

275
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_8

CHAPTER 8

Project 1: Hitting
the Bottle
To see a data analysis in action, I will use an analysis that my student, Dan Søndergaard,

did the first year I held my data science class. I liked his analysis so much that I wanted to

include it in the book. I am redoing his analysis in the following with his permission.

The data contains physicochemical features measured from Portuguese Vinho Verde

wines, and the goal was to try to predict wine quality from these measurements.1

�Importing Data
If we go to the data folder, we can see that the data is split into three files: the

measurements from red wine, white wine, and a description of the data (the file

winequality.names). To avoid showing large URLs, I will not list the code for reading the

files, but it is in the form

read.table(URL, header=TRUE, sep=';')

That there is a header that describes the columns, and that fields are separated by

semicolons we get from looking at the files.

We load the red and white wine data into separate data frames called red and white.

We can combine the two data frames using

wines <- bind_rows(tibble(type = "red", red),

 tibble(type = "white", white))

1 https://archive.ics.uci.edu/ml/datasets/Wine+Quality

https://doi.org/10.1007/978-1-4842-8155-0_8#DOI
https://archive.ics.uci.edu/ml/datasets/Wine+Quality

276

The tibble and bind_rows functions are from the dplyr package. We can now have a

look at the summary with

summary(wines)

You will see that there are 11 measurements for each wine, and each wine has an

associated quality score based on sensory data. At least three wine experts judged and

scored the wine on a scale between zero and ten. No wine achieved a score below three

or above nine. There are no missing values. There is not really any measurement that we

want to translate into categorical data. The quality scores are given as discrete values,

but they are ordered categories, and we might as well consider them as numerical values

for now.

�Exploring the Data
With the data loaded, we first want to do some exploratory analysis to get a feeling for it.

�Distribution of Quality Scores
The first thing Dan did was to look at the distribution of quality scores for both types of

wine (see Figure 8-1):

ggplot(wines) +

 geom_bar(aes(x = factor(quality), fill = type),

 position = 'dodge') +

 xlab('Quality') + ylab('Frequency')

There are very few wines with extremely low or high scores. The quality scores

also seem normal distributed, if we ignore that they are discrete. This might make the

analysis easier.

Chapter 8 Project 1: Hitting the Bottle

277

�Is This Wine Red or White?
The data set has two types of wine: red and white. As Dan noticed, these types are

typically described by very different words by wine experts, but several experiments2

have shown that even the best wine experts cannot distinguish red from white if the

color is obscured or the experts are blindfolded. It is, therefore, interesting to see if the

physicochemical features available in the data can help decide whether a wine is red

or white.

Dan used the Naive Bayes method to explore this, so we need the e1071 package:

library(e1071)

2 http://io9.com/wine-tasting-is-bullshit-heres-why-496098276

0

500

1000

1500

2000

3 4 5 6 7 8 9
Quality

Fr
eq

ue
nc

y type
red

white

Figure 8-1.  Distribution of wine qualities

Chapter 8 Project 1: Hitting the Bottle

http://io9.com/wine-tasting-is-bullshit-heres-why-496098276

278

He used a fivefold cross-validation to study this, but I will just use the partition()

function from Chapter 6:

random_group <- function(n, probs) {

 probs <- probs / sum(probs)

 g <- findInterval(seq(0, 1, length = n), c(0, cumsum(probs)),

 rightmost.closed = TRUE)

 names(probs)[sample(g)]

}

partition <- function(df, n, probs) {

 replicate(n, split(df, random_group(nrow(df), probs)), FALSE)

}

and I will use a variation of the prediction accuracy function we wrote there for cars but

using wines and the accuracy() function instead of rmse():

accuracy <- function(confusion_matrix)

 sum(diag(confusion_matrix)) / sum(confusion_matrix)

prediction_accuracy_wines <- function(test_and_training) {

 test_and_training |>

 map_dbl(

 \(tt) {

 # Fit the model using training data

 model <- naiveBayes(type ~ ., data = tt$training)

 # Then make predictions on the test data

 predictions <- predict(model, newdata = tt$test)

 # Get accurracy of predictions

 accuracy(table(tt$test$type, predictions))

 }

)

}

The formula type ~ . specifies that we wish to build a model for predicting type

using all the remaining variables in the data, specified as “.”.

Chapter 8 Project 1: Hitting the Bottle

https://doi.org/10.1007/978-1-4842-8155-0_6

279

We get the following accuracy if we split the data randomly into training and test

data 50/50:

random_wines <- wines |>

 partition(4, c(training = 0.5, test = 0.5))

random_wines |> prediction_accuracy_wines()

[1] 0.9781471 0.9735303 0.9772238 0.9735303

This is a pretty good accuracy, so this raises the question of why experts cannot tell

red and white wines apart.

Dan looked into this by determining the most significant features that divide red and

white wines by building a decision tree:

library('party')

In party, we have a function, ctree, for building a decision tree. We still want to

predict type based on all the other variables, so we want the formula type ~ ., but

the ctree function won’t like the wines data out of the box. It doesn’t want to predict a

variable that contains strings, so we must translate the strings in type into a factor first.

No problem, we know how to do that; we can use mutate and the expression

wines |> mutate(type = as.factor(type))

and then fit the tree with this command:

tree <- ctree(type ~ ., data = wines |> mutate(type = as.factor(type)),

 control = ctree_control(minsplit = 4420))

(The control option is just for adjusting how the function should build the decision

tree; you can experiment with it if you wish.)

The plot of the tree is too large for me to show here in the book with the size limit for

figures, but try to plot it yourself.

He limited the number of splits made to get only the most important features. From

the tree, we see that the total amount of sulfur dioxide, a chemical compound often

added to wines to prevent oxidation and bacterial activity, which may ruin the wine, is

chosen as the root split.

Chapter 8 Project 1: Hitting the Bottle

280

Sulfur dioxide is also naturally present in wines in moderate amounts. In the EU, the

quantity of sulfur dioxide is restricted to 160 ppm for red wines and 210 ppm for white

wines, so by law, we actually expect a significant difference of sulfur dioxide in the two

types of wine. So Dan looked into that:

wines |>

 group_by(type) |>

 summarise(total.mean = mean(total.sulfur.dioxide),

 total.sd = sd(total.sulfur.dioxide),

 free.mean = mean(free.sulfur.dioxide),

 free.sd = sd(free.sulfur.dioxide),

 .groups = "drop")

A tibble: 2 × 5

type total.mean total.sd free.mean free.sd

<chr> <dbl> <dbl> <dbl> <dbl>

1 red 46.5 32.9 15.9 10.5

2 white 138. 42.5 35.3 17.0

The average amount of total sulfur dioxide is indeed lower in red wines, and thus it

makes sense that this feature is picked as a significant feature in the tree. If the amount

of total sulfur dioxide in a wine is less than or equal to 67 ppm, we can say that it is a red

wine with high certainty, which also fits with the summary statistics earlier.

Another significant feature suggested by the tree is the volatile acidity, also known

as the vinegar taint. In finished (bottled) wine, a high volatile acidity is often caused

by malicious bacterial activity, which can be limited by the use of sulfur dioxide as

described earlier. Therefore, we expect a strong relationship between these features (see

Figure 8-2):

qplot(total.sulfur.dioxide, volatile.acidity, data = wines,

 color = type,

 xlab = 'Total sulfur dioxide',

 ylab = 'Volatile acidity (VA)')

The plot shows the amount of volatile acidity as a function of the amount of

sulfur dioxide. It also shows that, especially for red wines, the volatile acidity is low for

wines with a high amount of sulfur dioxide. The pattern for white wine is not as clear.

Chapter 8 Project 1: Hitting the Bottle

281

However, Dan observed, as you can clearly see in the plot, a clear difference between red

and white wines when considering the total.sulfur.dioxide and volatile.acidity

features together.

So why can humans not taste the difference between red and white wines? It turns

out that3 sulfur dioxide cannot be detected by humans in free concentrations of less than

50 ppm. Although the difference in total sulfur dioxide is very significant between the

two types of wine, the free amount is on average below the detection threshold, and thus

humans cannot use it to distinguish between red and white.

wines |>

 group_by(type) |>

 summarise(mean = mean(volatile.acidity),

 sd = sd(volatile.acidity),

 .groups = "drop")

3 http://en.wikipedia.org/wiki/Sulfur_dioxide#In_winemaking

0.4

0.8

1.2

1.6

0 100 200 300 400
Total sulfur dioxide

Vo
la

til
e

ac
id

ity
 (V

A)

type
red

white

Figure 8-2.  Sulfur dioxide vs. volatile acidity

Chapter 8 Project 1: Hitting the Bottle

http://en.wikipedia.org/wiki/Sulfur_dioxide#In_winemaking

282

A tibble: 2 × 3

type mean sd

<chr> <dbl> <dbl>

1 red 0.528 0.179

2 white 0.278 0.101

Similarly, acetic acid (which causes volatile acidity) has a detection threshold of

0.7 g/L, and again we see that the average amount is below this threshold and thus is

undetectable by the human taste buds.

So Dan concluded that some of the most significant features which we have found

to tell the types apart only appear in small concentrations in wine that cannot be tasted

by humans.

�Fitting Models
Regardless of whether we can tell red wine and white wine apart, the real question we

want to explore is whether the measurements will let us predict quality. Some of the

measures might be below human tasting ability, but the quality is based on human

tasters, so can we predict the quality based on the measurements?

Before we build a model, though, we need something to compare the accuracy

against that can be our null model. If we are not doing better than a simplistic model,

then the model construction is not worth it.

Of course, first, we need to decide whether we want to predict the precise quality as

categories or whether we consider it a regression problem. Dan looked at both options,

but since we should mostly look at the quality as a number, I will only look at the latter.

For regression, the quality measure should be the root mean square error, and the

simplest model we can think of is just to predict the mean quality for all wines:

rmse <- function(x,t) sqrt(mean(sum((t - x)^2)))

wines |>

 # predict the mean for all the wines, regardless of

 # parameters

 mutate(null_prediction = mean(quality)) |>

 # Summerise the predictions with a root mean square error

 summarise(rmse = rmse(null_prediction, quality)) |>

 # We have a data frame with a single number now, just

Chapter 8 Project 1: Hitting the Bottle

283

 # get that number

 as.numeric()

[1] 70.38242

This is what we have to beat to have any model worth considering.

We do want to compare models with training and test data sets, though, so we do not

use the mean for the entire data. So we need a function for comparing the results with

split data.

To compare different models using rmse() as the quality measure, we need to modify

our prediction accuracy function. We can give it as parameter the function used to create

a model that works with predictions. It could look like this:

prediction_accuracy_wines <- function(test_and_training,

 model_function) {

 test_and_training |>

 map_dbl(

 \(tt) {

 # Fit the model using training data

 model <- model_function(quality ~ ., data = tt$training)

 # Then make predictions on the test data

 predictions <- predict(model, newdata = tt$test)

 # Get accuracy of predictions as a root mean square error

 rmse(predictions, tt$test$quality)

 }

)

}

Here, we are hardwiring the formula to include all variables except for quality

which is potentially leading to overfitting, but we are not worried about that right now.

To get this to work, we need a model_function() that returns an object that works

with predict(). To get this to work, we need to use generic functions, something we will

not cover until later, but it mostly involves creating a so-called “class” and defining what

predict() will do on objects of that class:

null_model <- function(formula, data) {

 # Here we just remember the mean of the input by putting it in a list

 # and by wrapping it in a `structure` with class "null_model" we can

Chapter 8 Project 1: Hitting the Bottle

284

 # define we want this model to make predictions

 structure(list(mean = mean(data$quality)),

 class = "null_model")

}

The name predict.null_model says that if you call predict()

on something with class "null_model", it is this function

that R will call. Since "model" is the list we made above

we can get the prediction by looking up "mean" in the object.

predict.null_model <- function(model, newdata) {

 rep(model$mean, each = nrow(newdata))

}

This null_model() function creates an object of class null_model and defines what

the predict() function should do on objects of this class. We can use it to test how well

the null model will perform on data:

test_and_training <- wines |>

 partition(4, c(training = 0.5, test = 0.5))

test_and_training |> prediction_accuracy_wines(null_model)

[1] 48.85466 49.31583 49.74809 49.85921

Don’t be too confused about these numbers being much better than the one we get

if we use the entire data set. That is simply because the rmse() function will always give a

larger value if there is more data, and we are giving it only half the data that we did when

we looked at the entire data set.

We can instead compare it with a simple linear model:

test_and_training |> prediction_accuracy_wines(lm)

[1] 41.13091 42.22651 41.71150 42.17854

Dan also tried different models for testing the prediction accuracy, but I have left that

as an exercise. You can use this data set to explore the various methods we have seen in

the last two chapters.

Chapter 8 Project 1: Hitting the Bottle

285

�Exercises
�Exploring Other Formulas
The prediction_accuracy_wines() function is hardwired to use the formula

quality ~ . that uses all explanatory variables. Using all variables can lead to overfitting,

so it is possible that using fewer variables can give better results on the test data. Add a

parameter to the function for the formula and explore using different formulas.

�Exploring Different Models
Try using different models than the null model and the linear model. Any model that can

do regression and defines a predict() function should be applicable. Try it out.

�Analyzing Your Own Data Set
Find a data set you are interested in investigating and go for it. To learn how to interpret

data, you must use your intuition on what is worth exploring, and the only way to build

that intuition is to analyze data.

Chapter 8 Project 1: Hitting the Bottle

287
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_9

CHAPTER 9

Deeper into
R Programming
In this chapter, we leave data analysis and return to programming and software

development, topics that are the focus of the remaining chapters of the book. In the

first chapter, you took a tutorial introduction to R programming, but we left out a lot of

details. This chapter will cover many of those details, while the next two chapters will

cover more advanced aspects of R programming: functional programming and object-

oriented programming.

�Expressions
We begin the chapter by going back to expressions. Everything we do in R involves

evaluating expressions. Most expressions we evaluate to do a computation and get the

result, but some expressions have side effects—like assignments—and those we usually

evaluate because of the side effects.

�Arithmetic Expressions
We saw the arithmetic expressions already, so we will just give a very short reminder

here. The arithmetic expressions are operators that involve numbers and consist of the

unary operators + and -:

+ x

- x

where + doesn’t really do anything, while - changes the sign of its operand. Then there

are the infix operators for addition, subtraction, multiplication, and division:

https://doi.org/10.1007/978-1-4842-8155-0_9#DOI

288

x + y

x - y

x * y

x / y

Division will return a floating-point number even if both its operands are integers, so

if you want to do integer division, you need the special operator for that:

x %/% y

If you want the remainder of integer division, you need this infix operator instead:

x %% y

Finally, there are operators for exponentiation. To compute xy, you can use either of

these two operators:

x ^ y

x ** y

In all these examples, x and y can be numbers or variables referring to numbers

(actually, vectors of numbers since R always works on vectors), or they can be other

expressions evaluating to numbers. If you compose expressions from infix operators, you

have the same precedence rules you know from arithmetic. Exponentiation goes before

multiplication that goes before addition, for example. This means that you will need to

use parentheses if you need to evaluate the expressions in another order.

Since the rules are the ones you are used to, this is not likely to cause you troubles,

except if you combine these expressions with the operator :. This isn’t really an

arithmetic operator, but it is an infix operator for generating sequences, and it has a

higher precedence than multiplication but lower than exponentiation. This means that

1:2**2 will evaluate the 2**2 expression first to get 1:4 and then construct the sequence:

1:2**2

[1] 1 2 3 4

while the expression 1:2*2 will evaluate the : expression first to create a vector

containing 1 and 2 and then multiply this vector with 2:

1:2*2

[1] 2 4

Chapter 9 Deeper into R Programming

289

Since the unary - operator has higher precedence than :, it also means that -1:2 will

give you the sequence from -1 to 2 and not the sequence containing -1 and -2. For that,

you need parentheses:

-1:2

[1] -1 0 1 2

-(1:2)

[1] -1 -2

Functions are evaluated before the operators:

1:sqrt(4)

[1] 1 2

�Boolean Expressions
For boolean values—those that are either TRUE or FALSE—you also have logical operators.

The operator ! negates a value:

!TRUE

[1] FALSE

!FALSE

[1] TRUE

and | and || are logical “or” operators, while & and && are logical “and” operators. The

difference between | and || or & and && is how they deal with vectors. The one-character

version will apply the operator element-wise and create a vector, while the two-character

version will only look at the first value in vectors:

TRUE | FALSE

[1] TRUE

FALSE | FALSE

[1] FALSE

Chapter 9 Deeper into R Programming

290

TRUE || FALSE

[1] TRUE

FALSE || FALSE

[1] FALSE

x <- c(TRUE, FALSE, TRUE, FALSE)

y <- c(TRUE, TRUE, FALSE, FALSE)

x | y

[1] TRUE TRUE TRUE FALSE

x || y

[1] TRUE

x & y

[1] TRUE FALSE FALSE FALSE

x && y

[1] TRUE

We typically use the two-character version in control structures like if—since these

do not operate on vectors in any case—while we use the one-character version when we

need to compute with boolean arithmetic, where we want our expressions to work as

vectorized expressions.

Incidentally, all the arithmetic operators work like the | and & operators when

operating on more than one value, that is, they operate element-wise on vectors. We saw

that in Chapter 1 when we talked about vector expressions.

�Basic Data Types
There are a few basic types in R: numeric, integer, complex, logical, and character.

Chapter 9 Deeper into R Programming

https://doi.org/10.1007/978-1-4842-8155-0_1

291

�Numeric
The numeric type is what you get any time you write a number into R. You can test if an

object is numeric using the function is.numeric or by getting the object’s class:

is.numeric(2)

[1] TRUE

class(2)

[1] "numeric"

�Integer
The integer type is used for, well, integers. Surprisingly, the 2 earlier is not an integer in

R. It is a numeric type which is the larger type that contains all floating-point numbers as

well as integers. To get an integer, you have to make the value explicitly an integer, and

you can do that using the function as.integer or writing L1 after the literal:

is.integer(2)

[1] FALSE

is.integer(2L)

[1] TRUE

x <- as.integer(2)

is.integer(x)

[1] TRUE

class(x)

[1] "integer"

1 L stands for long, and the reason is mostly historical. In old hardware, you worried about how
many bits you should reserve for a number. Short integers had fewer bits than long integers, but
could also represent fewer values.

Chapter 9 Deeper into R Programming

292

If you translate a non-integer into an integer, you just get the integer part:

as.integer(3.2)

[1] 3

as.integer(9.9)

[1] 9

�Complex
If you ever find that you need to work with complex numbers, R has those as well. You

construct them by adding an imaginary number—a number followed by i—to any

number or explicitly using the function as.complex. The imaginary number can be zero,

0i, which creates a complex number that has a zero imaginary part:

1 + 0i

[1] 1+0i

is.complex(1 + 0i)

[1] TRUE

class(1 + 0i)

[1] "complex"

sqrt(as.complex(-1))

[1] 0+1i

�Logical
Logical values are what you get if you explicitly type in TRUE or FALSE, but it is also what

you get if you make, for example, a comparison:

x <- 5 > 4

x

Chapter 9 Deeper into R Programming

293

[1] TRUE

class(x)

[1] "logical"

is.logical(x)

[1] TRUE

�Character
Finally, characters are what you get when you type in a string such as "hello, world":

x <- "hello, world"

class(x)

[1] "character"

is.character(x)

[1] TRUE

Unlike in some languages, character here doesn’t mean a single character but

any text. So it is not like in C or Java where you have single character types, 'c', and

multicharacter strings, "string"; in R, they are both just characters.

You can, similar to the other types, explicitly convert a value into a character (string)

using as.character:

as.character(3.14)

[1] "3.14"

I will not go further into string handling in R here. There are of course lots of

functions for manipulating strings—and even though there are all those functions, I

still find it a lot harder to manipulate strings in R than in scripting languages such as

Python—but those are beyond the scope of this book.

Chapter 9 Deeper into R Programming

294

�Data Structures
From the basic types, you can construct other data structures, essentially by

concatenating simpler types into more complex ones. The basic building blocks here are

vectors—sequences of values all of the same type—and lists, sequences where the values

can have different types.

�Vectors
We have already seen vectors many times in this book, so you should be familiar with

them. Whenever we have seen expressions involving single numbers, we have actually

seen vectors containing a single value, so we have never seen anything that wasn’t a

vector. But we now consider more technical aspects of vectors.

What I have called vectors up till now is technically known as “atomic sequences.”

Those are any sequences of the basic types described earlier. You create these by

concatenating basic values using the c function:

v <- c(1, 2, 3)

v

[1] 1 2 3

or through some other operator or function, for example, the : operator or the rep

function:

1:3

[1] 1 2 3

rep("foo", 3)

[1] "foo" "foo" "foo"

We can test if something is this kind of vector using the is.atomic function:

v <- 1:3

is.atomic(v)

[1] TRUE

Chapter 9 Deeper into R Programming

295

The reason I mention that “atomic sequences” is the technically correct term for

what we have called vectors until now is that there is also something in R that is explicitly

called a vector. In practice, there is no confusion because all the atomic sequences I have

called vectors are also vectors.

v <- 1:3

is.vector(v)

[1] TRUE

It is just that R only considers such a sequence a vector—in the sense that is.vector

returns TRUE—if the object doesn’t have any attributes (except for one, names, which it is

allowed to have).

Attributes are meta-information associated with an object, and not something we

will deal with much here, but you just have to know that is.vector will be FALSE if

something that is a perfectly good vector gets an attribute:

v <- 1:3

is.vector(v)

[1] TRUE

attr(v, "foo") <- "bar"

v

[1] 1 2 3

attr(,"foo")

[1] "bar"

is.vector(v)

[1] FALSE

So if you want to test if something is the kind of vector I am talking about here, use

is.atomic instead.

When you concatenate (atomic) vectors, you always get another vector back. So

when you combine several c() calls, you don’t get any kind of tree structure if you do

something like this:

c(1, 2, c(3, 4), c(5, 6, 7))

[1] 1 2 3 4 5 6 7

Chapter 9 Deeper into R Programming

296

The type might change; if you try to concatenate vectors of different types, R will try

to translate the type into the most general type of the vectors:

c(1, 2, 3, "foo")

[1] "1" "2" "3" "foo"

�Matrix
If you want a matrix instead of a vector, what you really want is just a two-dimensional

vector. You can set the dimensions of a vector using the dim function—it sets one of

those attributes we talked about earlier—where you specify the number of rows and the

number of columns you want the matrix to have:

v <- 1:6

attributes(v)

NULL

dim(v) <- c(2, 3)

attributes(v)

$dim

[1] 2 3

dim(v)

[1] 2 3

v

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

When you do this, the values in the vector will go in the matrix column-wise, that

is, the values in the vector will go down the first column first and then on to the next

column and so forth.

You can use the convenience function matrix to create matrices, and there you can

specify if you want the values to go by column or by row using the byrow parameter:

Chapter 9 Deeper into R Programming

297

v <- 1:6

matrix(data = v, nrow = 2, ncol = 3, byrow = FALSE)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

matrix(data = v, nrow = 2, ncol = 3, byrow = TRUE)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Once you have a matrix, there is a lot of support for doing linear algebra in R,

but there are a few things you need to know. First, the * operator will not do matrix

multiplication. You use * if you want to make element-wise multiplication; for matrix

multiplication, you need the operator %*% instead:

(A <- matrix(1:4, nrow = 2))

[,1] [,2]

[1,] 1 3

[2,] 2 4

(B <- matrix(5:8, nrow = 2))

[,1] [,2]

[1,] 5 7

[2,] 6 8

A * B

[,1] [,2]

[1,] 5 21

[2,] 12 32

A %*% B

[,1] [,2]

[1,] 23 31

[2,] 34 46

Chapter 9 Deeper into R Programming

298

If you want to transpose a matrix, you use the function t, and if you want to invert it,

you use the function solve:

t(A)

[,1] [,2]

[1,] 1 2

[2,] 3 4

solve(A)

[,1] [,2]

[1,] -2 1.5

[2,] 1 -0.5

solve(A) %*% A

[,1] [,2]

[1,] 1 0

[2,] 0 1

The solve function is really aimed at solving a set of linear equations, and it does that

if it gets a vector argument as well, but you can check the documentation for the function

to see how this is done.

You can also get higher-dimensional vectors, called arrays, by setting the

dimension attribute with more than two dimensions as arguments, or you can use the

function array.

�Lists
Lists, like vectors, are sequences, but unlike vectors, the elements of a list can be any

kind of objects, and they do not have to be the same type of objects. This means that you

can construct more complex data structures out of lists.

For example, we can make a list of two vectors:

list(1:3, 5:8)

[[1]]

[1] 1 2 3

Chapter 9 Deeper into R Programming

299

##

[[2]]

[1] 5 6 7 8

Notice how the vectors do not get concatenated like they would if we combined them

with c(). The result of the preceding command is a list of two elements that happens to

be both vectors.

They didn’t have to have the same type either; we could make a list like this, which

also consists of two vectors but vectors of different types:

list(1:3, c(TRUE, FALSE))

[[1]]

[1] 1 2 3

##

[[2]]

[1] TRUE FALSE

Since lists can contain other lists, you can build tree-like data structures quite

naturally:

list(list(), list(list(), list()))

[[1]]

list()

##

[[2]]

[[2]][[1]]

list()

##

[[2]][[2]]

list()

Chapter 9 Deeper into R Programming

300

You can flatten a list into a vector using the function unlist(). This will force the

elements in the list to be converted into the same type, of course, since that is required of

vectors:

l <- list(1:4, 5:7)

l

[[1]]

[1] 1 2 3 4

##

[[2]]

[1] 5 6 7

unlist(l)

[1] 1 2 3 4 5 6 7

�Indexing
We saw basic indexing in the first chapter, but there is much more to indexing in R than

that. Type “?[[” into the R prompt and prepare to be amazed.

We have already seen the basic indexing. If you want the nth element of a vector v,

you use v[n]:

v <- c("foo", "bar", "baz", "qux", "qax")

v[2]

[1] "bar"

But this you already knew. You also know that you can get a subsequence out of the

vector using a range of indices:

v[2:3]

[1] "bar" "baz"

which is really just a special case of using a vector of indices:

v[c(1,1,4,3,2)]

[1] "foo" "foo" "qux" "baz" "bar"

Chapter 9 Deeper into R Programming

301

Here, we are indexing with positive numbers, which makes sense since the elements

in the vector have positive indices, but it is also possible to use negative numbers to

index in R. If you do that, it is interpreted as specifying the complement of the values you

want. So if you want all elements except the first element, you can use

v[-1]

[1] "bar" "baz" "qux" "qax"

You can also use multiple negative indices to remove some values:

v[-(1:2)]

[1] "baz" "qux" "qax"

You cannot combine positive and negative indices. I don’t even know how that

would even make sense, but in any case, you just can’t.

Another way to index is to use a boolean vector. This vector should be the same

length as the vector you index into, and it will pick out the elements where the boolean

vector is true:

w <- 1:length(v)

w

[1] 1 2 3 4 5

w %% 2 == 0

[1] FALSE TRUE FALSE TRUE FALSE

v[w %% 2 == 0]

[1] "bar" "qux"

If you want to assign to a vector, you just assign to elements you index; as long as the

vector to the right of the assignment operator has the same length as the elements the

indexing pulls out, you will be assigning to the vector:

v[w %% 2 == 0] <- "flob"

v

[1] "foo" "flob" "baz" "flob" "qax"

Chapter 9 Deeper into R Programming

302

If the vector has more than one dimension—remember that matrices and arrays

are really just vectors with more dimensions—then you subset them by subsetting each

dimension. If you leave out a dimension, you will get a whole range of values in that

dimension, which is a simple way of getting rows and columns of a matrix:

 m <- matrix(1:6, nrow = 2, byrow = TRUE)

 m

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

 m[1,]

[1] 1 2 3

 m[,1]

[1] 1 4

You can also index out a submatrix this way by providing ranges in one or more

dimensions:

m[1:2,1:2]

[,1] [,2]

[1,] 1 2

[2,] 4 5

When you pull out a one-dimensional submatrix—as we did earlier with m[1,]—the

result is a vector, not a matrix. Sometimes, that is what you want; sometimes, you don’t

really care if you get a matrix or a vector, but sometimes you want to do linear algebra,

and then you definitely want that the submatrix you pull out is a matrix. You can tell R

that it shouldn’t reduce a one-dimensional matrix to a row by giving the indexing an

option drop=FALSE:

m[1,,drop=FALSE]

[,1] [,2] [,3]

[1,] 1 2 3

Chapter 9 Deeper into R Programming

303

m[,1,drop=FALSE]

[,1]

[1,] 1

[2,] 4

If this looks weird to you (giving indexing an option), then what you need to

know is that everything in R involves function calls. Indexing into a matrix is just

another function call, and functions can take named arguments. That is all that is

happening here.

When you subset a list using [], the result is always another list. If this surprises you,

just remember that when you subset a vector, you also always get a vector back. You just

don’t think so much about it because the way we see single values are always as vectors

of length one, so we are more used to that.

Anyway, you will always get a list out of subsetting a list with []. Even if you are

subsetting a single element, you are not getting that element; you are getting a list

containing that one element:

L <- list(1,2,3)

L[1]

[[1]]

[1] 1

L[2:3]

[[1]]

[1] 2

##

[[2]]

[1] 3

If you want to get to the actual element in there, you need to use the [[]] operator

instead:

L <- list(1,2,3)

L[[1]]

[1] 1

Chapter 9 Deeper into R Programming

304

�Named Values
The elements in a vector or a list can have names. These are attributes that do not affect

the values of the elements but can be used to refer to them.

You can set these names when you create the vector or list:

v <- c(a = 1, b = 2, c = 3, d = 4)

v

a b c d

1 2 3 4

L <- list(a = 1:5, b = c(TRUE, FALSE))

L

$a

[1] 1 2 3 4 5

##

$b

[1] TRUE FALSE

or you can set the names using the names<- function. That weird name, by the way,

means that you are dealing with the names() function combined with assignment. We

will see how it works later.

names(v) <- LETTERS[1:4]

v

A B C D

1 2 3 4

You can use names to index vectors and lists (where the [] and [[]] return either a

list or the element of the list, as before):

v["A"]

A

1

L["a"]

Chapter 9 Deeper into R Programming

305

$a

[1] 1 2 3 4 5

L[["a"]]

[1] 1 2 3 4 5

When you have named values, you can also use a third indexing operator, the $

operator. It essentially works like [[]] except that you don’t have to put the name

in quotes:

L$a

[1] 1 2 3 4 5

There is never really any good time to introduce the [[]] operator for vectors but

here goes: if you use the [[]] operator on a vector, it will only let you extract a single

element, and if the vector has names, it will remove the name.

�Factors
The factor type we saw in the first chapter is technically also a vector type, but it isn’t

a primitive type in the same sense as the previous types. It is stored as a vector of

integers—the levels in the factor—and has associated attributes such as the levels. It is

implemented using the class system we return to in two chapters’ time, and we will not

discuss it further here.

�Formulas
Another data type is the formula. We saw these in Chapter 6, and we can create them

using the ~ operator. Like factors, the result is an object defined using a class. We will see

how we can use formulas to implement our own statistical models via model matrices in

the last chapter of the book.

Chapter 9 Deeper into R Programming

https://doi.org/10.1007/978-1-4842-8155-0_6

306

�Control Structures
Control structures determine the flow of execution of a program. You can get far by just

having one statement or expression after another, but eventually you will have to do

one thing instead of another depending on the results of a calculation, and this is where

control structures come in.

Like many other programming languages, you have two kinds of control structures in

R: select (if statements) and loops (for, while, or repeat statements).

�Selection Statements
If statements look like this:

if (boolean) {

 # do something

}

or like this

if (boolean) {

 # do one thing

} else {

 # do another thing

}

You can string them together like this:

if (x < 0) {

 # handle negative x

} else if (x > 0) {

 # handle positive x

} else {

 # handle if x is zero

}

In all the examples here I have put the statements you do if the condition is true or if

it is false in curly brackets. Strictly speaking, this isn’t necessary if we are talking about a

single statement. This would work just fine:

if (x > 0) "positive" else if (x < 0) "negative" else "zero"

Chapter 9 Deeper into R Programming

307

but it would fail if you put newlines in between the statements; the R parser would be

confused about that, and there you do need curly brackets. This would be a syntax error:

if (x > 0)

 print("positive")

else if (x < 0)

 print("negative")

else

 print("zero")

while this would be okay:

if (x > 0) {

 print("positive")

} else if (x < 0) {

 print("negative")

} else {

 print("zero")

}

I recommend always using curly brackets until you get more familiar with R, since

they work fine when you only have a single statement so you are not doing anything

wrong in that case, and they are the only thing that works when you have more than one

statement or when you have newlines in the if statement.

�Loops
The most common looping construction you will use is probably the for loop. You use

the for loop to iterate through the elements of a sequence, and the construction works

like this:

for (i in 1:4) {

 print(i)

}

[1] 1

[1] 2

[1] 3

[1] 4

Chapter 9 Deeper into R Programming

308

Keep in mind, though, that it is the elements in the sequence you are iterating

through, so the variables you assign to the iteration variable are the elements in the

sequence and not the index into the sequence:

for (i in c("foo", "bar", "baz")) {

 print(i) # i is foo, then bar, then baz, not index 1, 2, and then 3

}

[1] "foo"

[1] "bar"

[1] "baz"

If you want to loop through the indices into the sequence, you can use the seq_along

function:

x <- c("foo", "bar", "baz")

for (i in seq_along(x)) {

 print(i)

 print(x[i])

}

[1] 1

[1] "foo"

[1] 2

[1] "bar"

[1] 3

[1] "baz"

You will sometimes see code that uses this construction:

for (i in 1:length(x)) {

 # do stuff

}

Don’t do that. It won’t work if the sequence x is empty:

x <- c()

1:length(x)

[1] 1 0

Chapter 9 Deeper into R Programming

309

If you want to jump to the next iteration of a loop, you can use the next keyword. For

example, the following will only print every second element of x:

for (i in seq_along(x)) {

 if (i %% 2 == 0) {

 next

 }

 print(x[i])

}

If you want to terminate the loop completely, you can use break:

for (i in 1:100) {

 if (i %% 2 == 0) {

 next

 }

 if (i > 5) {

 break

 }

 print(i)

}

[1] 1

[1] 3

[1] 5

The two other loop constructs you won’t use as often. They are the while and

repeat loops.

The while loop iterates as long as a boolean expression is true and looks like this:

i <- 1

while (i < 5) {

 print(i)

 i <- i + 1

}

[1] 1

[1] 2

[1] 3

[1] 4

Chapter 9 Deeper into R Programming

310

The repeat loop simply goes on forever, at least until you break out of the loop:

i <- 1

repeat {

 print(i)

 i <- i + 1

 if (i > 5) break

}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

###A word of warning about looping…

If you read more about R, you will soon run into the statement that loops are slow

in R. It isn’t really as bad as some make it out to be, but it is somewhat justified. Because

R is an extremely dynamic language—functions and variables can change at any time

during program execution, if you want them to—it is hard for the interpreter to optimize

code before it runs it, unlike in some other languages (but not that different from other

dynamic languages such as Python). There haven’t been many attempts at optimizing

loops either, though, because there are typically better solutions in R than to use an

explicit loop statement.

R is a so-called functional language (among other things), and in functional

languages, you typically don’t use loops. The way looping constructions work, you need

to change the value of a looping variable or a boolean expression while you execute

the code, and changing variables is considered “impure” in function languages (so,

obviously, R is not a pure functional language, since it allows this). Instead, recursive

functions are used for looping. Most functional languages don’t even have looping

constructions—and pure functional languages certainly do not. R is a bit more

pragmatic, but you are typically better off with using alternatives to loops.

We will get more into that in the next chapter.

Chapter 9 Deeper into R Programming

311

�Functions
You define functions this way:

name <- function(arguments) expression

where name can be any variable name, arguments is a list of formal arguments to the

function, and expression is what the function will do when you call it. It says expression

because you might as well think about the body of a function as an expression, but

typically it is a sequence of statements enclosed by curly brackets:

name <- function(arguments) { statements }

It is just that such a sequence of statements is also an expression; the result of

executing a series of statements is the value of the last statement.

The following function will print a statement and return 5 because the statements

in the function body are first a print statement and then just the value 5 that will be the

return value of the function:

f <- function() {

 print("hello, world")

 5

}

f()

[1] "hello, world"

[1] 5

We usually don’t write functions without arguments—like I just did earlier—but have

one or more formal arguments. The arguments, in their simplest form, are just variable

names. They are assigned values when you call the function, and these can then be used

inside the function’s body:2

plus <- function(x, y) {

 print(paste(x, "+", y, "is", x + y))

 x + y

}

2 I am actually lying here because the arguments to a function are not assigned values but
expressions that haven’t been evaluated yet. See lazy evaluation later.

Chapter 9 Deeper into R Programming

312

div <- function(x, y) {

 print(paste(x, "/", y, "is", x / y))

 x / y

}

plus(2, 2)

[1] "2 + 2 is 4"

[1] 4

div(6, 2)

[1] "6 / 2 is 3"

[1] 3

�Named Arguments
The order of arguments matters when you call a function because it determines which

argument gets set to which value:

div(6,2)

[1] "6 / 2 is 3"

[1] 3

div(2,6)

[1] "2 / 6 is 0.333333333333333"

[1] 0.3333333

If a function has many arguments, though, it can be hard always to remember the

order they should appear in, so there is an alternative way to specify which variable is

given which values: named arguments. It means that when you call a function, you can

make explicit which parameter each argument should be set to:

div(x = 6, y = 2)

[1] "6 / 2 is 3"

[1] 3

Chapter 9 Deeper into R Programming

313

div(y = 2, x = 6)

[1] "6 / 2 is 3"

[1] 3

This makes explicit which parameter gets assigned which value, and you can think

of it as an assignment operator. You shouldn’t, though, because although you can

use = as an assignment operator, you cannot use <- for specifying named variables. It

looks like you can, but it doesn’t do what you want it to do (unless you want something

really weird):

div(x <- 6, y <- 2)

[1] "6 / 2 is 3"

[1] 3

div(y <- 2, x <- 6)

[1] "2 / 6 is 0.333333333333333"

[1] 0.3333333

The assignment operator <- returns a value, and that is passed along to the function

as positional arguments. So in the second function call earlier, you are assigning 2 to y

and 6 to x in the scope outside the function, but the values you pass to the function are

positional, so inside the function you have given 2 to x and 6 to y.

Don’t confuse the two assignment operators: the code most likely will run, but it is

unlikely to do what you want it to do!

�Default Parameters
When you define a function, you can provide default values to parameters like this:

pow <- function(x, y = 2) x^y

pow(2)

[1] 4

pow(3)

Chapter 9 Deeper into R Programming

314

[1] 9

pow(2, 3)

[1] 8

pow(3, 3)

[1] 27

Default parameter values will be used whenever you do not provide the parameter at

the function call.

�Return Values
The return value of a function is the last expression in the statements executed in the

function body. If the function is a sequence of statements, this is just the last statement

in the sequence, but by using control structures, you can have different statements as the

last statement:

safer_div <- function(x, y) {

 if (y == 0) {

 NA

 } else {

 x / y

 }

}

safer_div(4, 2)

[1] 2

safer_div(4, 0)

[1] NA

It is also possible to return explicitly from a function—similarly to breaking from a

loop—using the return() statement:

safer_div <- function(x, y) {

 if (y == 0) {

 return(NA)

 }

Chapter 9 Deeper into R Programming

315

 x / y

}

safer_div(4, 2)

[1] 2

safer_div(4, 0)

[1] NA

Notice that the return() statement has the return value in parentheses. Many

programming languages would allow you to write

safer_div <- function(x, y) {

 if (y == 0) {

 return NA

 }

 x / y

}

but this would be an error in R.

�Lazy Evaluation
Several places I have written about providing values to the function parameters when

we call a function. In many programming languages, this is exactly how function calls

work—the expressions provided for each parameter are evaluated, and the results

are assigned to the function parameters so the function can use them in the function

body—but in R it is actually the expressions that are assigned to the function parameters.

And the expressions are not evaluated until they are needed, something called lazy

evaluation.

There are some benefits to this way of handling function parameters and some weird

consequences as well.

The first benefit is that it makes default parameters more flexible. We can write a

function like this:

f <- function(x, y = x^2) y + x

Chapter 9 Deeper into R Programming

316

where y has a default value that depends on the other parameter x. At the time

where the function is declared, the value of x is not known, but y is not evaluated there,

so it doesn’t matter. Whenever we call the function, x is known inside the body of the

function, and that is where we need the value of y, so that is where the expression will be

evaluated:

f(2)

[1] 6

Since y isn’t evaluated before it is used, it does also mean that if you assign a different

value to x before you use y, then y evaluates to a value that depends on the new value of

x—not the value of x at the time the function was called!

g <- function(x, y = x^2) { x <- 0; y + x }

g(2)

[1] 0

If, on the other hand, y is evaluated before we assign to x, then it will evaluate to the

value that depends on x at the time we evaluate it and remain that value. It is evaluated

the first time it is needed, and the result is then remembered for any later time we

refer to y:

h <- function(x, y = x^2) { y; x <- 0; y + x }

h(2)

[1] 4

So lazy evaluation lets you specify default parameters that depend on other

parameters in a context where those parameters are unknown, but it comes at the prize

of the value of the parameter depending on the context at the first time it gets evaluated.

If it was just to be able to specify variables this way, we could, of course, have

a solution that doesn’t involve the weirdness that we pay for it. This is what most

programming languages have done, after all, but there are other benefits of lazy

evaluation: you only evaluate an expression if you actually need it.

Chapter 9 Deeper into R Programming

317

�Scoping
Scope in R is lexical. This means that if a variable is used in a function but not defined in

the function or part of the function’s parameters, then R will start searching outward in

the code from where the function was created. This essentially means searching outward

and upward from the point in the code where the function is specified, since a function

is created when the code is executed where the function is defined.

Consider the following code:

x <- "x"

f <- function(y) {

 g <- function() c(x, y)

 g()

}

f("y")

[1] "x" "y"

Here, we have a global variable x and a function f that takes a parameter argument

y. Inside f, we define the function g that neither defines nor takes as formal arguments

variables x and y but does return them. We evaluate g as the last statement in f, so that

becomes the result of calling f at the last line.

Inside g, we have not defined x or y, so to find their values, R will search outward

from where g is created. It will find y as the argument of the function f and so get it from

there and continue outward to find x at the global level.

The variables that g refers to are the variables and not the values at the time that g is

created, so if we update the variables after we create g, we also change the value that g

will return:

x <- "x"

f <- function(y) {

 g <- function() c(x, y)

 y <- "z"

 g()

}

f("y")

[1] "x" "z"

Chapter 9 Deeper into R Programming

318

This isn’t just the lazy evaluation madness—it is not that g hasn’t evaluated y yet, and

it, therefore, can be changed. It does look up the value of y when it needs it:

x <- "x"

f <- function(y) {

 g <- function() c(x, y)

 g()

 y <- "z"

 g()

}

f("y")

[1] "x" "z"

If we return the function g from f rather than the result of evaluating it, we see

another feature of R’s scoping—something called closures. R remembers the values of

variables inside a function that we have returned from and that is no longer an active

part of our computation. In the following example, we returned the function g at which

point there is no longer an active f function. So there is not really an active instance of

the parameter y any longer. Yet g refers to a y, so the parameter we gave to f is actually

remembered:

x <- "x"

f <- function(y) {

 g <- function() c(x, y)

 g

}

g<- f("y")

g()

[1] "x" "y"

We can see how this works if we invoke f twice, with different values for parameter y:

x <- "x"

f <- function(y) {

 g <- function() c(x, y)

 g

}

Chapter 9 Deeper into R Programming

319

g<- f("y")

h <- f("z")

g()

[1] "x" "y"

h()

[1] "x" "z"

This creates two different functions. Inside f, they are both called g, but they are

two different functions because they are created in two different calls to f, and they

remember two different y parameters because the two instances of f were invoked with

different values for y.

When looking outward from the point where a function is defined, it is looking for

the values of variables at the time a function is invoked, not the values at the time where

the function is created. Variables do not necessarily have to be defined at the time the

function is created; they just need to be defined when the function is eventually invoked.

Consider this code:

f <- function() {

 g <- function() c(y, z)

 y <- "y"

 g

}

h <- f()

h()

Error in h(): object 'z' not found

z <- "z"

h()

[1] "y" "z"

Where the function g is defined—inside function f—it refers to variables y and z that

are not defined yet. This doesn’t matter because we only create the function g; we do not

invoke it. We then set the variable y inside the context of the invocation of f and return g.

Outside of the function call, we name the return value of f() h. If we call h at this point,

it will remember that y was defined inside f—and it will remember its value at the point

Chapter 9 Deeper into R Programming

320

in time where we returned from f. There still isn’t a value set for z, so calling h results in

an error. Since z isn’t defined in the enclosing scopes of where the inner function refers

to it, it must be defined at the outermost global scope, but it isn’t. If we do set it there, the

error goes away because now R can find the variable by searching outward from where

the function was created.

I shouldn’t really be telling you this because the feature I am about to tell you about

is dangerous. I will show you a way of making functions have even more side effects than

they otherwise have, and functions really shouldn’t have side effects at all. Anyway, this

is a feature of the language, and if you are very careful with how you use it, it can be very

useful when you just feel the need to make functions have side effects.

This is the problem: What if you want to assign to a variable in a scope outside the

function where you want the assignment to be made? You cannot just assign to the

variable because if you assign to a variable that isn’t found in the current scope, then you

create that variable in the current scope:

f <- function() {

 x <- NULL

 set <- function(val) { x <- val }

 get <- function() x

 list(set = set, get = get)

}

x <- f()

x$get() # get x -- we haven't set it, so it is NULL

NULL

x$set(5) # set x to five

x$get() # now get the new value -- it doesn't work yet, though

NULL

In this code—that I urge you to read carefully because there are a few neat ideas in

it—we have created a getter and a setter function. The getter tells us what the variable x

is, and the setter is supposed to update it. It doesn’t quite work yet, though. When setting

x in the body of the set function, we create a local variable inside that function—it

doesn’t assign to the x one level up.

Chapter 9 Deeper into R Programming

321

There is a separate assignment operator, <<-, you can use for that. It will not create a

new local variable but instead search outward to find an existing variable and assign to

that. If it gets all the way to the outermost global scope, though, it will create the variable

there if it doesn’t already exist.

If we use that assignment operator in the preceding example, we get the behavior we

were aiming for:

f <- function() {

 x <- NULL

 set <- function(val) { x <<- val }

 get <- function() x

 list(set = set, get = get)

}

x <- f()

x$get() # We get x, which is still NULL

NULL

x$set(5) # We set x, and this time it works

x$get() # as you can see here

[1] 5

If we hadn’t set the variable x inside the body of f in this example, both the getter

and setter would be referring to a global variable, in case you are wondering. The first

call to get would cause an error if there was no global variable. While this example

shows you have to create an object where functions have side effects, it is quite a bit

better to let functions modify variables that are hidden away in a closure like this than it

is to work with global variables.

Chapter 9 Deeper into R Programming

322

�Function Names Are Different from Variable Names
One final note on scopes—which I am not sure should be considered a feature or a

bug—is that if R sees something that looks like a function call, it is going to go searching

for a function, even if searching outward from a function creation would get to a

nonfunction first:

n <- function(x) x

f <- function(n) n(n)

f(5)

[1] 5

Under the scoping rule that says that you should search outward, the n inside the

f function should refer to the parameter to f. But it is clear that the first n is a function

call and the second is its argument, so when we call f, it sees that the parameter isn’t

a function so it searches further outward and finds the function n. It calls that function

with its argument. So the two n’s inside f actually refer to different things.

Of course, if we call f with something that is actually a function, then it recognizes

that n is a function, and it calls that function with itself as the argument:

f(function(x) 15)

[1] 15

Interesting, right?

�Recursive Functions
The final topic we will cover in this chapter is recursive functions. Some people find this

a difficult topic, but in a functional programming language, it is one of the most basic

building blocks, so it is really worth spending some time wrapping your head around,

even though you are much less likely to need recursions in R than you are in most pure

functional languages.

At the most basic level, though, it is just that we can define a function’s computations

in terms of calls to the same function—we allow a function to call itself, just with new

parameters.

Chapter 9 Deeper into R Programming

323

Consider the factorial operator n! = n × (n − 1) × · · · × 3 × 2 × 1. We can rewrite the

factorial of n in terms of n and a smaller factorial, the factorial of n − 1, and get n! = n

× (n − 1)!. This is a classical case of where recursion is useful: we define the value for

some n in terms of the calculations on some smaller value. As a function, we would write

factorial(n) equals n * factorial(n-1).

There are two aspects to a recursive function, though. Solving a problem for size

n involves breaking down the problem into something you can do right away and

combining that with calls of the function with a smaller size, here n − 1. This part we

call the “step” of the recursion. We cannot keep reducing the problem into smaller and

smaller bits forever—that would be an infinite recursion which is as bad as an infinite

loop in that we never get anywhere—at some point, we need to have reduced the

problem to a size small enough that we can handle it directly. That is called the basis of

the recursion.

For factorial, we have a natural basis in 1 since 1! = 1. So we can write a recursive

implementation of the factorial function like this:

factorial <- function(n) {

 if (n == 1) {

 1

 } else {

 n * factorial(n - 1)

 }

}

It is actually a general algorithmic strategy, called divide and conquer, to break down

a problem into subproblems that you can handle recursively and then combine the

results some way.

Consider sorting a sequence of numbers. We could sort a sequence using this

strategy by first noticing that we have a simple basis—it is easy to sort an empty sequence

or a sequence with a single element since we don’t have to do anything there. For the

step, we can break the sequence into two equally sized pieces and sort them recursively.

Now we have two sorted sequences, and if we merge these two, we have combined them

into a single sorted sequence.

Let’s get started.

Chapter 9 Deeper into R Programming

324

We need to be able to merge two sequences so we can solve that problem first. This is

something we should be able to do with a recursive function because if either sequence

is empty, we have a base case where we can just return the other sequence. If there are

elements in both sequences, we can pick the sequence whose first element is smallest,

pick that out as the first element we need in our final result, and just concatenate the

merging of the remaining numbers:

merge <- function(x, y) {

 if (length(x) == 0) return(y)

 if (length(y) == 0) return(x)

 if (x[1] < y[1]) {

 c(x[1], merge(x[-1], y))

 } else {

 c(y[1], merge(x, y[-1]))

 }

}

A quick disclaimer here: Normally, this algorithm would run in linear time, but

because of the way we call recursively, we are actually copying vectors whenever we are

removing the first element, making it a quadratic time algorithm. Implementing a linear

time merge function is left as an exercise.

Using this function, we can implement a sorting function. This algorithm is called

merge sort, so that is what we call the function:

merge_sort <- function(x) {

 if (length(x) < 2) return(x)

 n <- length(x)

 m <- n %/% 2

 merge(merge_sort(x[1:m]), merge_sort(x[(m+1):n]))

}

So here, using two simple recursive functions, we solved a real algorithmic problem

in a few lines of code. This is typically the way to go in a functional programming

language like R. Of course, when things are easier done using loops, you shouldn’t stick

to the pure functional recursions. Use what is easiest in any situation you are in, unless

you find that it is too slow. Only then do you start getting clever.

Chapter 9 Deeper into R Programming

325

�Exercises
�Fibonacci Numbers
The Fibonacci numbers are defined as follows. The first two Fibonacci numbers are 1, F1

= F2 = 1. For larger Fibonacci numbers, they are defined as Fi = Fi−1 + Fi−2.

Implement a recursive function that computes the n’th Fibonacci number.

The recursive function for Fibonacci numbers is usually quite inefficient because you

are recomputing the same numbers several times in the recursive calls. So implement

another version that computes the n’th Fibonacci number iteratively (i.e., start from the

bottom and compute the numbers up to n without calling recursively).

�Outer Product
The outer product of two vectors, v and w, is a matrix defined as

	

v w vw
v
v
v

w w w w
v w v w v w v w
v w v wT⊗ = =
















[] =

1

2

3

1 2 3 4

1 1 1 2 1 3 1 4

2 1 2 22 2 3 2 4

3 1 3 2 3 3 3 4

v w v w
v w v w v w v w















 	

Write a function that computes the outer product of two vectors.

There actually is a built-in function, outer, that you are overwriting here. You can

get to it using the name base::outer even after you have overwritten it. You can use it to

check that your own function is doing the right thing.

�Linear Time Merge
The merge function we used earlier copies vectors in its recursive calls. This makes it

slower than it has to be. Implement a linear time merge function.

Before you start, though, you should be aware of something. If you plan to append to

a vector by writing something like

v <- c(v, element)

then you will end up with a quadratic time algorithm again. This is because when you

do this, you are actually creating a new vector where you first copy all the elements in

the old v vector into the first elements and then add the element at the end. If you do

Chapter 9 Deeper into R Programming

326

this n times, you have spent on average order n2 per operation. It is because people do

something like this in loops, more than the R interpreter, that has given R its reputation

for slow loops. You should never append to vectors unless there is no way to avoid it.

In the case of the merge function, we already know how long the result should be,

so you can preallocate a result vector and copy single elements into it. You can create a

vector of length n like this:

n <- 5

v <- vector(length = n)

Should you ever need it, you can make a list of length n like this:

vector("list", length = n)

�Binary Search
Binary search is a classical algorithm for finding out if an element is contained in a

sorted sequence. It is a simple recursive function. The basic case handles a sequence of

one element. There, you can directly compare the element you are searching for with the

element in the sequence to determine if they are the same. If you have more than one

element in the sequence, pick the middle one. If it is the element you are searching for,

you are done and can return that the element is contained in the sequence. If it is smaller

than the element you are searching for, then you know that if the element is in the list,

then it has to be in the last half of the sequence, and you can search there. If it is larger

than the element you are searching for, then you know that if it is in the sequence, it must

be in the first half of the sequence, and you search recursively there.

If you implement this exactly as described, you have to call recursively with a

subsequence. This involves copying that subsequence for the function call which makes

the implementation much less efficient than it needs to be. Try to implement binary

search without this.

�More Sorting
In the merge sort we implemented earlier, we solve the sorting problem by splitting a

sequence in two, sorting each subsequence, and then merging them. If implemented

correctly, this algorithm will run in time O(n log n) which is optimal for sorting

algorithms if we assume that the only operations we can do on the elements we sort are

comparing them.

Chapter 9 Deeper into R Programming

327

If the elements we have are all integers between 1 and n and we have m of them, we

can sort them in time O(n + m) using bucket sort instead. This algorithm first creates a

vector of counts for each number between 1 and n. This takes time O(n). It then runs

through the m elements in our sequence, updating the counter for number i each time

it sees i. This runs in time O(m). Finally, it runs through these numbers from 1 up to

n, outputting each number, the number of times indicated by the counters, in time

O(n + m).

Implement bucket sort.

Another algorithm that works by recursion, and that runs in expected time O(n log

n), is quick sort. Its worst-case complexity is actual O(n2), but on average it runs in time

O(n log n) and with a smaller overhead than merge sort (if you implement it correctly).

It works as follows: the base case—a single element—is the same as merge sort.

When you have more than one element, you pick one of the elements in the sequence

at random; call it the pivot. Now split the sequence into those elements that are smaller

than the pivot, those that are equal to the pivot, and those that are larger. Sort the

sequences of smaller and larger elements recursively. Then output all the sorted smaller

elements, then the elements equal to the pivot, and then the sorted larger elements.

Implement quick sort.

�Selecting the k Smallest Element
If you have n elements, and you want the k smallest, an easy solution is to sort the

elements and then pick number k. This works well and in most cases is easily fast

enough, but it is actually possible to do it faster. See, we don’t actually need to sort the

elements completely, we just need to have the k smallest element moved to position k in

the sequence.

The quick sort algorithm from the previous exercise can be modified to solve this

problem. Whenever we split a sequence into those smaller than, equal to, and larger

than the pivot, we sort the smaller and larger elements recursively. If we are only

interested in finding the element that would eventually end up at position k in the sorted

lists, we don’t need to sort the sequence that doesn’t overlap this index. If we have m

< k elements smaller than the pivot, we can just put them at the front of the sequence

without sorting them. We need them there to make sure that the k’th smallest element

ends up at the right index, but we don’t need them sorted. Similarly, if k < m, we don’t

need to sort the larger elements. If we sorted them, they would all end up at indices

Chapter 9 Deeper into R Programming

328

larger than k, and we don’t really care about those. Of course, if there are m < k elements

smaller than the pivot and l equal to the pivot, with m + l ≥ k, then the k smallest element

is equal to the pivot, and we can return that.

Implement this algorithm.

Chapter 9 Deeper into R Programming

329
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_10

CHAPTER 10

Working with Vectors
and Lists
In this chapter, we explore working with vectors and lists a little further. We will not cover

anything that is conceptually more complex that we did in the previous chapter. It is just

a few more technical details we will dig into.

�Working with Vectors and Vectorizing Functions
We start out by returning to expressions. In the previous chapter, we saw expressions

on single (scalar) values, but we also saw that R doesn’t really have scalar values; all the

primitive data we have is actually vectors of data. What this means is that the expressions

we use in R are actually operating on vectors, not single values.

When you write

(x <- 2 / 3)

[1] 0.6666667

(y <- x ** 2)

[1] 0.4444444

the expressions you write are, of course, working on single values—the vectors x and y

have length 1—but it is really just a special case of working on vectors:

(x <- 1:4 / 3)

[1] 0.3333333 0.6666667 1.0000000 1.3333333

(y <- x ** 2)

[1] 0.1111111 0.4444444 1.0000000 1.7777778

https://doi.org/10.1007/978-1-4842-8155-0_10#DOI

330

R works on vectors using two rules: operations are done element-wise, and vectors

are repeated as needed.

When you write an expression such as x + y, you are really saying that you want to

create a new vector that consists of the element-wise sum of the elements in vectors x

and y. So for x and y like this

x <- 1:5

y <- 6:10

writing

(z <- x + y)

[1] 7 9 11 13 15

amounts to writing

z <- vector(length = length(x))

for (i in seq_along(x)) {

 z[i] <- x[i] + y[i]

}

z

[1] 7 9 11 13 15

This is the case for all arithmetic expressions or for logical expressions involving | or

& (but not || or &&; these do not operate on vectors element-wise). It is also the case for

most functions you can call, such as sqrt or sin:

sqrt((1:5)**2)

[1] 1 2 3 4 5

sin(sqrt((1:5)**2))

[1] 0.8414710 0.9092974 0.1411200 -0.7568025

[5] -0.9589243

When you have an expression that involves vectors of different lengths, you cannot

directly evaluate expressions element-wise. When this is the case, R will try to repeat

the shorter vector(s) to create vectors of the same length. For this to work, the shorter

vector(s) should have a length divisible in the length of the longest vector, that is, you

Chapter 10 Working with Vectors and Lists

331

should be able to repeat the shorter vector(s) an integer number of times to get the

length of the longest vector. If this is possible, R repeats vectors as necessary to make all

vectors the same length as the longest and then do operations element-wise:

x <- 1:12

y <- 1:2

x + y

[1] 2 4 4 6 6 8 8 10 10 12 12 14

z <- 1:3

x + z

[1] 2 4 6 5 7 9 8 10 12 11 13 15

If the shorter vector(s) cannot be repeated an integer number of times to match up,

R will still repeat as many times as needed to match the longest vector, but you will get a

warning since most times something like this happens, it is caused by buggy code:

z <- 1:5

x + z

Warning in x + z: longer object length is not a

multiple of shorter object length

[1] 2 4 6 8 10 7 9 11 13 15 12 14

In the expression we saw a while back

(x <- 1:4 / 3)

[1] 0.3333333 0.6666667 1.0000000 1.3333333

(y <- x ** 2)

[1] 0.1111111 0.4444444 1.0000000 1.7777778

different vectors are repeated. When we divide 1:4 by 3, we need to repeat the (length

one) vector 3 four times to be able to divide the 1:4 vector with the 3 vector. When we

compute x ** 2, we must repeat 2 four times as well.

Chapter 10 Working with Vectors and Lists

332

Whenever you consider writing a loop over vectors to do some calculations for each

element, you should always consider using such vectorized expressions instead. It is

typically much less error-prone, and since it involves implicit looping handled by the R

runtime system, it is almost guaranteed to be faster than an explicit loop.

�ifelse
Control structures are not vectorized. For example, if statements are not. If you want to

compute a vector y from vector x such that y[i] == 5 if x[i] is even and y[i] == 15 if

x[i] is odd, for example, you cannot write this as a vector expression:

x <- 1:10

if (x %% 2 == 0) 5 else 15

Warning in if (x%%2 == 0) 5 else 15: the condition

has length > 1 and only the first element will be

used

[1] 15

Instead, you can use the function ifelse that works like a vectorized selection; if

the condition in its first element is true, it returns the value in its second argument,

otherwise the value in its third argument, and it does this as vector operations:

x <- 1:10

ifelse(x %% 2 == 0, 5, 15)

[1] 15 5 15 5 15 5 15 5 15 5

�Vectorizing Functions
When you write your own functions, you can write them such that they can also be

used to work on vectors, that is, you can write them such that they can take vectors as

input and return vectors as output. If you write them this way, then they can be used in

vectorized expressions the same way as built-in functions such as sqrt and sin.

The easiest way to make your function work on vectors is to write the body of the

function using expressions that work on vectors:

Chapter 10 Working with Vectors and Lists

333

f <- function(x, y) sqrt(x ** y)

f(1:6, 2)

[1] 1 2 3 4 5 6

f(1:6, 1:2)

[1] 1.000000 2.000000 1.732051 4.000000 2.236068

[6] 6.000000

If you write a function where you cannot write the body this way, but where you

still want to be able to use it in vector expressions, you can typically get there using the

Vectorize function.

As an example, say we have a table mapping keys to some values. We can imagine

that we want to map names in a class to the roles the participants in the class have. In R,

we would use a list to implement that kind of tables, and we can easily write a function

that uses such a table to map names to roles:

role_table <- list("Thomas" = "Instructor",

 "Henrik" = "Student",

 "Kristian" = "Student",

 "Randi" = "Student",

 "Heidi" = "Student",

 "Manfred" = "Student")

map_to_role <- function(name) role_table[[name]]

This works the way it is supposed to when we call it with a single name:

map_to_role("Thomas")

[1] "Instructor"

map_to_role("Henrik")

[1] "Student"

but it fails when we call the function with a vector because we cannot index the list with

a vector in this way:

x <- c("Thomas", "Henrik", "Randi")

map_to_role(x)

Error in role_table[[name]]: recursive indexing failed at level 2

Chapter 10 Working with Vectors and Lists

334

So we have a function that maps a single value to a single value but doesn’t work for

a vector. The easy way to make such a function work on vectors is to use the Vectorize

function. This function will wrap your function so it can work on vectors, and what it will

do on those vectors is what you would expect: it will calculate its value for each of the

elements in the vector, and the result will be the vector of all the results:

map_to_role <- Vectorize(map_to_role)

map_to_role(x)

Thomas Henrik Randi

"Instructor" "Student" "Student"

In this particular example with a table, the reason it fails is that we are using the ̀[[`

index operator. Had we used the ̀[` operator, we would be fine (except that the result

would be a list rather than a vector):

role_table[c("Thomas", "Henrik", "Randi")]

$Thomas

[1] "Instructor"

##

$Henrik

[1] "Student"

##

$Randi

[1] "Student"

So we could also have handled vector input directly by indexing differently and then

flattening the list:

map_to_role_2 <- function(names) unlist(role_table[names])

x <- c("Thomas", "Henrik", "Randi")

map_to_role_2(x)

Thomas Henrik Randi

"Instructor" "Student" "Student"

Chapter 10 Working with Vectors and Lists

335

It’s not always that easy to rewrite a function to work on vector input, though, and

when we cannot readily do that, then the Vectorize function can be very helpful.

As a side note, the issue with using `[[` with a vector of values isn’t just that it

doesn’t work. It actually does work, but it does something else than what we are trying

to do here. If you give `[[` a vector of indices, it is used to do what is called recursive

indexing. It is a shortcut for looking up in the list using the first variable and pulling out

the vector or list found there. It then takes that sequence and looks up using the next

index and so on. Take as an example the following code:

x <- list("first" = list("second" = "foo"), "third" = "bar")

x[[c("first", "second")]]

[1] "foo"

Here, we have a list of two elements, the first of which is a list with a single element.

We can look up the index “first” in the first list and get the list stored at that index. This

list we can then index with the “second” index to get “foo” out.

The result is analogous to this:

x[["first"]][["second"]]

[1] "foo"

This can be a useful feature—although to be honest I have rarely found much use for

it in my own programming—but it is not the effect we wanted in our mapping to roles

example.

�The apply Family
Vectorizing a function makes it possible for us to use it implicitly on vectors. We simply

give it a vector as input, and we get a vector back as output. Notice though that it isn’t

really a vectorized function just because it takes a vector as input—many functions take

vectors as input and return a single value as output, for example, sum and mean—but we

use those differently than vectorized functions. If you want that kind of function, you do

have to handle explicitly how it deals with a sequence as input.

Vectorized functions can be used on vectors of data exactly the same way as on single

values with exactly the same syntax. It is an implicit way of operating on vectors. But we

can also make it more explicit when calling a function on all the elements in a vector

Chapter 10 Working with Vectors and Lists

336

which give us a bit more control of exactly how it is called. This, in turn, lets us work with

those functions that do not just map from vectors to vectors but also from vectors to

single values.

There are many ways of doing this—because it is a common thing to do in R—and we

will see some general functions for working on sequences and calling functions on them

in various ways later. In most of the code you will read, though, the functions that do this

are named something with apply in their name, and those functions are what we will

look at here.

Let’s start with apply. This is a function for operating on vectors, matrices (two-

dimensional vectors), or arrays (higher-order dimensional vectors).

�apply
This function is easiest explained on a matrix, I think, so let’s make one:

m <- matrix(1:6, nrow = 2, byrow = TRUE)

m

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

The apply function takes (at least) three parameters. The first is the vector/matrix/

array, the second which dimension(s) we should marginalize along, and the third the

function we should apply.

What is meant by marginalization here is that you fix an index in some subset of the

dimensions and pull out all values with that index. If we are marginalizing over rows,

we will extract all the rows, so for each row, we will have a vector with an element per

column, which is what we will pass the function.

We can illustrate this using the paste function that just creates a string of its input by

concatenating it.1

If we marginalize on rows, it will be called on each of the two rows and produce two

strings:

1 So this is a case of a function that takes a vector as input but outputs a single value; it is not a
vectorized function as those we talked about earlier.

Chapter 10 Working with Vectors and Lists

337

apply(m, 1, \(x) paste(x, collapse = ":"))

[1] "1:2:3" "4:5:6"

If we marginalize on columns, it will be called on each of the three columns and

produce three strings:

apply(m, 2, \(x) paste(x, collapse = ":"))

[1] "1:4" "2:5" "3:6"

If we marginalize on both rows and columns, it will be called on each single element

instead:

apply(m, c(1, 2), \(x) paste(x, collapse = ":"))

[,1] [,2] [,3]

[1,] "1" "2" "3"

[2,] "4" "5" "6"

The output here is two-dimensional. That is of course because we are marginalizing

over two dimensions, so we get an output that corresponds to the margins.

We can get higher-dimensional output in other ways. If the function we apply

produces vectors (or higher-dimensional vectors) as output, then the output of apply

will also be higher-dimensional. Consider a function that takes a vector as input and

duplicates it by concatenating it with itself. If we apply it to rows or columns, we get a

vector for each row/column, so the output has to be two-dimensional:

apply(m, 1, \(x) c(x,x))

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

[4,] 1 4

[5,] 2 5

[6,] 3 6

Chapter 10 Working with Vectors and Lists

338

apply(m, 2, \(x) c(x,x))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 1 2 3

[4,] 4 5 6

What apply does here is that it creates a matrix as its result, where the results of

applying the function are collected as columns from left to right. The result of calling

the function on the two rows is a matrix with two columns, the first column containing

the result of applying the function to the first row and the second column the result of

applying it to the second row. Likewise, for columns, the result is a vector with three

columns, one for each column in the input matrix.

If we marginalize over more than one dimension—and get multidimensional output

through that—and at the same time produce more than one value, the two effects

combine and we get even higher-dimensional output:

apply(m, c(1,2), \(x) c(x,x))

, , 1

##

[,1] [,2]

[1,] 1 4

[2,] 1 4

##

, , 2

##

[,1] [,2]

[1,] 2 5

[2,] 2 5

##

, , 3

##

[,1] [,2]

[1,] 3 6

[2,] 3 6

Chapter 10 Working with Vectors and Lists

339

I admit that this output looks rather confusing. What happens, though, is the same

as we saw when we marginalized on rows or columns. We get output for each margin we

call the function on—in this case, each of the six cells in the input—and it gets collected

“column-wise,” except that this is at higher dimensions, so it gets collected at the highest

dimension (which is the columns for two-dimensional matrices). So to get to the result

of the six values the function was called with, we need to index these the same way they

were indexed in the input matrix—that is what the margins were—but we need to do it in

the highest dimensions. So we can get the six concatenations of input values this way:

x <- apply(m, c(1,2), \(x) c(x,x))

k <- dim(x)[3]

n <- dim(x)[2]

for (i in 1:n) {

 for (j in 1:k) {

 print(x[,i,j])

 }

}

[1] 1 1

[1] 2 2

[1] 3 3

[1] 4 4

[1] 5 5

[1] 6 6

So what happens if the function to apply takes arguments besides those we get from

the matrix?

sumpow <- \(x, n) sum(x) ** n

apply(m, 1, sumpow)

Error in FUN(newX[, i], ...): argument "n" is missing, with no default

�Nothing Good, It Would Seem
The apply function expects to give you its values, but it doesn’t a priori knows how to

provide additional arguments. You have to give those additional arguments to apply if

you want it to pass them onto your function. You can give these arguments as additional

Chapter 10 Working with Vectors and Lists

340

parameters to apply; they will be passed on to the function in the order you give them

to apply:

apply(m, 1, sumpow, 2)

[1] 36 225

It helps readability a lot, though, to explicitly name such parameters:

apply(m, 1, sumpow, n = 2)

[1] 36 225

�lapply
The lapply function is used for mapping over a list. Given a list as input, it will apply

the function to each element in the list and output a list of the same length as the input

containing the results of applying the function:

(l <- list(1, 2, 3))

[[1]]

[1] 1

##

[[2]]

[1] 2

##

[[3]]

[1] 3

lapply(l, \(x) x**2)

[[1]]

[1] 1

##

[[2]]

[1] 4

##

[[3]]

[1] 9

Chapter 10 Working with Vectors and Lists

341

If the elements in the input list have names, these are preserved in the output vector:

l <- list(a=1, b=2, c=3)

lapply(l, \(x) x**2)

$a

[1] 1

##

$b

[1] 4

##

$c

[1] 9

If the input you provide is a vector instead of a list, it will just convert it into a list, and

you will always get a list as output:

lapply(1:3, \(x) x**2)

[[1]]

[1] 1

##

[[2]]

[1] 4

##

[[3]]

[1] 9

Of course, if the elements of the list are more complex than a single number, you will

still just apply the function to the elements:

lapply(list(a=1:3, b=4:6), \(x) x**2)

$a

[1] 1 4 9

##

$b

[1] 16 25 36

Chapter 10 Working with Vectors and Lists

342

�sapply and vapply
The sapply function does the same as lapply but tries to simplify the output. Essentially,

it attempts to convert the list returned from lapply into a vector of some sort. It uses

some heuristics for this and guesses as to what you want as output, simplifies when it

can, but gives you a list when it cannot figure it out:

sapply(1:3, \(x) x**2)

[1] 1 4 9

The guessing is great for interactive work but can be unsafe when writing programs.

It isn’t a problem that it guesses and can produce different types of output when you can

see what it creates, but that is not safe deep in the guts of a program.

The function vapply essentially does the same as sapply but without the guessing.

You have to tell it what you want as output, and if it cannot produce that, it will give you

an error rather than produce an output that your program may or may not know what to

do with.

The difference in the interface between the two functions is just that vapply expects

a third parameter that should be a value of the type the output should be:

vapply(1:3, \(x) x**2, 1)

[1] 1 4 9

�Advanced Functions
We now get to some special cases for functions. I call the section “advanced functions,”

but it is not because they really are that advanced, they just require a little bit more than

the basic functions we have already seen.

�Special Names
But first a word on names. Functions can have the same kind of names that variables

have—after all, when we name a function, we are really just naming a variable that

happens to hold a function—but we cannot have all kinds of names to the right of the

assignment operator. For example, if is a function in R, but you cannot write if to the

left of an assignment.

Chapter 10 Working with Vectors and Lists

343

Functions with special names, that is, names that you couldn’t normally put before

an assignment, can be referred to by putting them in backticks, so the function if we can

refer to as `if`.

Any function can be referred to by its name in backticks, and furthermore you can

use backticks to refer to a function in a context where you usually couldn’t use its name.

This works for calling functions where you can use, for example, infix operators as

normal function calls:

2 + 2

[1] 4

`+`(2, 2)

[1] 4

or when assigning to a variable name for a function:

`%or die%` <- function(test, msg) if (!test) stop(msg)

x <- 5

(x != 0) %or die% "x should not be zero"

x <- 0

(x != 0) %or die% "x should not be zero"

Error in (x != 0) %or die% "x should not be zero": x should not be zero

�Infix Operators
If the last example looks weird to you, it may just be because you don’t know about

R’s infix operators. In R, any variable that starts and ends with % is considered an infix

operator, so calling x %foo% y amounts to calling `%foo%`(x,y). Several built-in infix

operators do not have this type of name, + and * are two, but this naming convention

makes it possible to create your own infix operators. We have seen this come to good use

in the dplyr package for the %>% pipe operator.

Chapter 10 Working with Vectors and Lists

344

�Replacement Functions
Replacement functions are functions that pretend to be modifying variables. We saw one

early where we assigned names to a vector:

v <- 1:4

names(v) <- c("a", "b", "c", "d")

v

a b c d

1 2 3 4

What happens here is that R recognizes that you are assigning to a function call

and goes looking for a function named ̀names<-`. It calls this function with the vector

v and the vector of names, and the result of the function call gets assigned back to the

variable v.

So what I just wrote means that

names(v) <- c("a", "b", "c", "d")

is short for

v <- `names<-`(v, c("a", "b", "c", "d"))

Replacement functions are generally used to modify various attributes of an object,

and you can write your own just by using the convention that their names must end

with `<-`:

`foo<-` <- function(x, value) {

 x$foo <- value

 x

}

`bar<-` <- function(x, value) {

 x$bar <- value

 x

}

x <- list(foo = 1, bar = 2)

x$foo

Chapter 10 Working with Vectors and Lists

345

[1] 1

foo(x) <- 3

x$foo

[1] 3

x$bar

[1] 2

bar(x) <- 3

x$bar

[1] 3

Keep in mind that it is just shorthand for calling a function and then reassigning the

result to a variable. It is not actually modifying any data. This means that if you have two

variables referring to the same object, only the one you call the replacement function

on will be affected. The replacement function returns a copy that is assigned the first

variable, and the other variable still refers to the old object:

y <- x

foo(x) <- 5

x

$foo

[1] 5

##

$bar

[1] 3

y

$foo

[1] 3

##

$bar

[1] 3

Chapter 10 Working with Vectors and Lists

346

Because replacement functions are just syntactic sugar on a function call and then

a reassignment, you cannot give a replacement function, as its first argument, some

expression that cannot be assigned to.

There are a few more rules regarding replacement functions. First, the parameter for

the value you are assigning has to be called value. You cannot give it another name:

`foo<-` <- function(x, val) {

 x$foo <- val

 x

}

x <- list(foo = 1, bar = 2)

foo(x) <- 3

Error in `foo<-`(`*tmp*`, value = 3): unused argument (value = 3)

The way R rewrites the expression assumes that you called the value parameter

value, so do that.

You don’t have to call the first parameter x, though:

`foo<-` <- function(y, value) {

 y$foo <- value

 y

}

x <- list(foo = 1, bar = 2)

foo(x) <- 3

x$foo

[1] 3

You should also have the value parameter as the last parameter if you have more

than two parameters. And you are allowed to, as long as the object you are modifying is

the first and the value parameter the last:

`modify<-` <- function(x, variable, value) {

 x[variable] <- value

 x

}

Chapter 10 Working with Vectors and Lists

347

x <- list(foo = 1, bar = 2)

modify(x, "foo") <- 3

modify(x, "bar") <- 4

x$foo

[1] 3

x$bar

[1] 4

�How Mutable Is Data Anyway?
We just saw that a replacement function creates a new copy, so if we use it to modify an

object, we are not actually changing it at all. Other variables that refer to the same object

will see the old value and not the updated one. So we can reasonably ask: What does it

take actually to modify an object?

The short, and almost always correct, answer is that you cannot modify objects ever.2

Whenever you “modify” an object, you are creating a new copy and assigning that new

copy back to the variable you used to refer to the old value.

This is also the case for assigning to an index in a vector or list. You will be creating

a copy, and while it looks like you are modifying it, if you look at the old object through

another reference, you will find that it hasn’t changed:

x <- 1:4

f <- function(x) {

 x[2] <- 5

 x

}

x

2 It is possible to do depending on what you consider an object. You can modify a closure by
assigning to local variables inside a function scope. This is because namespaces are objects that
can be changed. One of the object-oriented systems in R, RC, also allows for mutable objects,
but we won’t look at RC in this book. In general, you are better off thinking that every object
is immutable, and any modification you are doing is actually creating a new object because,
generally, that is what is happening.

Chapter 10 Working with Vectors and Lists

348

[1] 1 2 3 4

f(x)

[1] 1 5 3 4

X

[1] 1 2 3 4

Unless you have changed the `[` function (which I urge you not to do), it is a so-

called primitive function. This means that it is written in C, and from C you actually can

modify an object. This is important for efficiency reasons. If there is only one reference

to a vector, then assigning to it will not make a new copy, and you will modify the vector

in place as a constant time operation. If you have two references to the vector, then

when you assign to it the first time, a copy is created that you can then modify in place.

This approach to have immutable objects and still have some efficiency is called copy

on write.

To write correct programs, always keep in mind that you are not modifying objects

but creating copies—other references to the value you “modify” will still see the old

value. To write efficient programs, also keep in mind that for primitive functions you can

do efficient updates (updates in constant time instead of time proportional to the size of

the object you are modifying) as long as you only have one reference to that object.

�Exercises
�between
Write a vectorized function that takes a vector x and two numbers, lower and upper, and

replaces all elements in x smaller than lower or greater than upper with NA.

�rmq
A range minimum query, rmq, extracts from a list the indices that have minimal values.

Can you write a vectorized function that gives you the indices where the minimal value

occurs? Hint: You can use min(x) to find the minimal value, you can compare it with x to

get a logical vector, and you can get the values in vector where a logical vector is TRUE by

indexing. Also, seq_along(x) gives you a vector of the indices in x.

Chapter 10 Working with Vectors and Lists

349
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_11

CHAPTER 11

Functional Programming
In this chapter, we explore the programming paradigm called functional programming

and how it relates to R. There are many definitions of what it means for a language

to be a functional programming language, and there have been many language wars

over whether any given feature is “pure” or not. I won’t go into such discussions, but

some features, I think everyone would agree, are needed. You should be able to define

higher-order functions, you should be able to create closures, and you probably want

anonymous functions as well.

Let’s tackle anonymous functions right away, as these are pretty simple in R.

�Anonymous Functions
In R, it is pretty easy to create anonymous functions: just don’t assign the function

definition to a variable name.

Instead of doing this:

square <- function(x) x^2

you simply do this:

 function(x) x^2

If you want an even shorter expression, we have seen those as well:

\(x) x^2

In other languages where function definitions have a different syntax than variable

assignment, you will have a different syntax for anonymous functions, but in R it is really

as simple as this.

Why would you want an anonymous function?

https://doi.org/10.1007/978-1-4842-8155-0_11#DOI

350

There are two common cases:

•	 We want to use a one-off function and don’t need to give it a name.

•	 We want to create a closure.

Both cases are typically used when a function is passed as an argument to another

function or when returned from a function. The first case is something we would use

together with functions like apply. If we want to compute the sum of squares over the

rows of a matrix, we can create a named function and apply it:

m <- matrix(1:6, nrow=3)

sum_of_squares <- function(x) sum(x^2)

apply(m, 1, sum_of_squares)

[1] 17 29 45

but if this is the only time we need this sum of squares function, there isn’t really any

need to assign it a variable; we can just use the function definition direction:

apply(m, 1, \(x) sum(x^2))

[1] 17 29 45

Of course, in this example, we could do even better by just exploiting that ^ is

vectorized and write

apply(m^2, 1, sum)

[1] 17 29 45

Using anonymous functions to create closures is what we do when we write a

function that returns a function (and more about that later). We could name the function

f <- function(x) {

 g <- function(y) x + y

 g

}

but there really isn’t much point if we just want to return it:

f <- function(x) function(y) x + y

That is all there is to anonymous functions, really. You can define a function without

giving it a name, and that is about it.

Chapter 11 Functional Programming

351

�Higher-Order Functions
In the terminology often used with functional programming, higher-order functions

refer to functions that either take other functions as arguments, return functions, or both.

The apply function that we have used multiple times is thus a higher-order function, as it

takes a function as one of its inputs.

�Functions Taking Functions As Arguments
We generally use function arguments to influence how a function is executed. If the

arguments did not affect what the function did, we would have no need for them.

Sometimes, the arguments are simple, like a boolean flag that determines part of what

the function should do or a number it uses in its computation. But there are times where

such static data doesn’t suffice or at least makes it harder to implement the functionality

we need. Sometimes, we want an argument that has some dynamic behavior, for

example, an argument that can determine for each of a multiple of data pointers whether

to skip the data or do some computation. Such dynamic behavior fits functions very well,

and in these cases, a function argument is what you need.

In general, if some subcomputation of a function should be parameterized dynamically,

then you do this by taking a function as one of its parameters. Say we want to write a function

that works like apply but only apply an input function on elements that satisfy a predicate.

We can implement such a function by taking the vector and two functions as input:

apply_if <- function(x, p, f) {

 result <- vector(length = length(x))

 n <- 0

 for (i in seq_along(x)) {

 if (p(x[i])) {

 n <- n + 1

 result[n] <- f(x[i])

 }

 }

 head(result, n)

}

apply_if(1:8, \(x) x %% 2 == 0, \(x) x^2)

[1] 4 16 36 64

Chapter 11 Functional Programming

352

This isn’t the most elegant way to solve this particular problem—we get back to the

example in the exercises—but it illustrates the use of functions as parameters.

�Functions Returning Functions (and Closures)
We create closures when we create a function inside another function and return it.

Because this inner function can refer to the parameters and local variables inside

the surrounding function, even after we have returned from it, we can use such inner

functions to specialize generic functions. It can work as a template mechanism for

describing a family of functions.

We can, for instance, write a generic power function and specialize it for squaring or

cubing numbers:

power <- function(n) function(x) x^n

square <- power(2) # square fixes n to 2, so it compute squares

cube <- power(3) # cube fixes n to 3, so it compute cubes

square(1:5)

[1] 1 4 9 16 25

cube(1:5)

[1] 1 8 27 64 125

This works because the functions returned by power(2) and power(3) live in a

context—the enclosure—where n is known to be 2 and 3, respectively. We have fixed that

part of the function we return.

Generally, functions can see the variables you provide as arguments and the

variables you create inside them, but also variables in any enclosing function. So, when

we write

power <- function(n) {

 # inside power we can see n because we get it as an argument

 f <- function (x) {

 # inside f we can see x because it is an argument,

 # but *also* n, since when we are inside f, we are also

Chapter 11 Functional Programming

353

 # inside power.

 x^2

 }

 return(f)

}

we create a function that will know its argument n. When we call the function, power(2),

that n gets the value 2, and while running the function, we create the function f. We are

not running it yet, we are not calling f inside power, but we have created the function.

This is similar to how, when we have defined power, we haven’t executed its body yet;

that doesn’t happen until we call power(2). When we call power(2), we create f, and

we create it in an enclosure where it knows the n value in the call to power(2). When

we return f from power(2), the function we return still remembers the values in its

enclosure—and we call it a closure because of that. When we did

square <- power(2)

we get the inner function f out of the call and assign it to square. Now, we are no longer

running power; we just remember n through the function we returned, the function that

we now call square. When we call square(1:5), we call the function f inside the call to

power(2). This function gets x as the argument, 1:5, and remembers n from when it was

created.

This might appear a little complicated the first time you see it, and there are times

where you have to study a function carefully to see how closures and variables interact,

but it is a common programming trick because it is extremely useful. With closures

like this, we can bundle up a little bit of data with a function, without having to provide

it as arguments each time we call the function. This makes it easier to write reusable

functions, because they do not need to know much about the function arguments we

provide them, and it makes it easier to use other functions, because it can keep their

interface simple.

Let’s take another example. Say I have some algorithm in mind where I regularly

need to find the index of the first element in a sequence that satisfies some property.

Immediately, you should think of the property as some predicate function like in the

apply_if function earlier, and that is how I will write it:

first_index <- function(x, p) {

 for (i in seq_along(x)) { # Run through x

 if (p(x[i])) { # return the first index that satisfy p

Chapter 11 Functional Programming

354

 return (i)

 }

 }

}

The function (implicitly) returns NULL if we do not find any value that satisfies p, and

the loop terminates. When it does, the result of the function is the result of running the

loop, and the result of a for loop is NULL. We could handle misses differently, but I want

to keep the example simple.

Let’s check it out. We can use it to look for the first even or odd number, for example:

x <- 1:10

first_index(x, \(x) x %% 2 == 0)

[1] 2

first_index(x, \(x) x %% 2 != 0)

[1] 1

This is simple enough, because the predicate doesn’t have to know anything beyond

what even or odd means. But what if I wanted to find the first element in some given

range, say between four and seven? I could modify the function, of course:

first_index <- function(x, range) {

 for (i in seq_along(x)) { # Run through x

 if ((range[1] <= x[i]) && (x[i] <= range[2])) {

 # return the first index where x[i] is in the range

 return (i)

 }

 }

}

first_index(x, c(4, 7))

[1] 4

It gets the job done, but this function is a lot less general than the first one we wrote.

This one can only perform range queries and nothing else. It is a lot less general than

when we used a predicate function.

Chapter 11 Functional Programming

355

We can try to provide generic data to the function, similar to how the apply family of

functions permit us to provide data:

first_index <- function(x, p, p_data) {

 for (i in seq_along(x)) { # Run through x

 if (p(x[i], p_data)) {

 # return the first index where x[i] is in the range

 return (i)

 }

 }

}

and then write a range predicate based on that:

range_pred <- function(x, range) {

 (range[1] <= x) && (x <= range[2])

}

first_index(x, range_pred, c(4, 7))

[1] 4

It works, but now we need to pass range data along as well as the predicate, we must

always be careful that the extra predicate data matches what the predicate expects, and

we have to provide predicate data even for predicate functions that do not need them

(although there are ways around that problem in R).

The simplest search function we wrote was superior to the more complicated ones:

first_index <- function(x, p) {

 for (i in seq_along(x)) { # Run through x

 if (p(x[i])) { # return the first index that satisfy p

 return (i)

 }

 }

}

It does one thing, and one thing only. The interface is trivial—give it a sequence and

a predicate—and it is hard to get confused about its functionality.

Chapter 11 Functional Programming

356

If we want to do range queries, we can still use it. We can hardwire a range in the

predicate if we want:

first_index(x, \(x) (4 <= x) && (x <= 7))

[1] 4

and when we can’t hardwire the range, we can bundle the range up with the predicate:

in_range <- function(from, to) { # A function for creating a predicate

 \(x) (from <= x) && (x <= to) # the predicate function it returns

}

p <- in_range(4, 7)

first_index(x, p)

[1] 4

Because closures are as flexible as they are, we can even use the simple search

function for more complex computations. What about finding the first repeated value?

repeated <- function() { # we don't need initial data for this

 # We will remember previously seen values here

 seen <- c()

 # The predicate goes here, it will check if we have seen a

 # given value before and update the `seen`

 # values if we haven't

 function(x) {

 if (x %in% seen) {

 TRUE # We have a repeat!

 } else {

 seen <<- c(seen, x) # append `x` to `seen`

 FALSE # this was the first time we saw x

 }

 }

}

Chapter 11 Functional Programming

357

This function is, I admit, a little complicated to wrap your head around, but it isn’t

too bad. The repated function creates an environment that has the variable seen. It is

initially empty. Then it returns the closure. The closure will check if its input is in seen

(x %in% seen does this) and, if it is, return true. Otherwise, it updates seen. Here, we

need the <<- assignment to update the outer seen; if we used seen <- c(...), we would

create a local variable that would be lost as soon as we returned. The <<- gives us a way

to store data in the enclosing function. So, we store the new value x in the enclosing

seen and return false. The next time we see x, if we ever do, we will find it in seen and

report that.

x <- c(1:4, 1:5) # We see 1 a second time at index 5

first_index(x, repeated())

[1] 5

The important point here is that we didn’t have to change our search function,

first_index, to make it do something complicated. It is still simple, it can be used in

many different contexts, and when we need it to do something complicated, we can

make it do so by writing the appropriate closure.

�Filter, Map, and Reduce
Three patterns are used again and again in functional programming: filtering, mapping,

and reducing. In R, all three are implemented in different functions, but you can write all

your programs using the Filter, Map, and Reduce functions.

The Filter function takes a predicate and a vector or list and returns all the

elements that satisfy the predicate:

is_even <- \(x) x %% 2 == 0

Filter(is_even, 1:8)

[1] 2 4 6 8

Filter(is_even, as.list(1:8))

[[1]]

[1] 2

##

Chapter 11 Functional Programming

358

[[2]]

[1] 4

##

[[3]]

[1] 6

##

[[4]]

[1] 8

The Map function works like lapply: it applies a function to every element of a vector

or list and returns a list of the result. Use unlist to convert it into a vector if that is what

you want:

square <- \(x) x^2

Map(square, 1:4)

[[1]]

[1] 1

##

[[2]]

[1] 4

##

[[3]]

[1] 9

##

[[4]]

[1] 16

unlist(Map(square, 1:4))

[1] 1 4 9 16

You can do slightly more with Map, though, since Map can be applied to more than

one sequence. If you give Map more arguments, then these are applied to the function

calls as well:

plus <- \(x, y) x + y

unlist(Map(plus, 0:3, 3:0))

[1] 3 3 3 3

Chapter 11 Functional Programming

359

These constructions should be very familiar to you by now, so we will leave it at that.

The Reduce function might look less familiar. We can describe what it does in terms

of adding or multiplying numbers, and it is in a way a generalization of this. When we

write an expression like

a + b + c

or

a * b * c

we can think of this as a series of function calls:

`+`(`+`(a, b), c)

or

`*`(`*`(a, b), c)

The Reduce function generalizes this:

Reduce(f, c(a, b, c))

It is evaluated as

f(f(a, b), c)

which we can see by constructing a function that captures how it is called:

add_parenthesis <- \(a, b) paste("(", a, ", ", b, ")", sep = "")

Reduce(add_parenthesis, 1:4)

[1] "(((1, 2), 3), 4)"

Using Reduce, we could thus easily write our own sum function:

mysum <- \(x) Reduce(`+`, x)

sum(1:4)

[1] 10

mysum(1:4)

[1] 10

Chapter 11 Functional Programming

360

There are a few additional parameters to the Reduce function—to give it an

additional initial value instead of just the leftmost elements in the first function call or to

make it apply the function from right to left instead of left to right—but you can check its

documentation for details.

�Functional Programming with purrr
The three functions from the previous section are the basic building blocks for functional

programming. They are somewhat limited in what data they operate on, however,

basically preferring the list type for everything they do. This is less limiting than it

sounds, as most data structures in R are build around lists, and if you want to use R as a

programming language, operating on lists is the way to go. However, if you want to do

data science, which I assume you do if you are reading this book, then lists are rather

primitive, and you will find yourself converting to and from them all the time.

The package purrr provides the same basic functions, and more, for a more

convenient functional programming toolkit for data analysis. In this package, you get the

same functions we covered earlier, but in different flavors depending on what data you

need to do calculations on, and some functionality for converting between data types. If

you are interested in functional programming in R, this package is well worth your time

to familiarize yourself with.

A full exploration of purrr is beyond the scope of an introductory book such as this,

but I will give you an idea about how it works by going through some of the variants of

Filter, Map, and Reduce.

Start by loading purrr:

library(purrr)

For Filter, we have two variants, keep that keeps all the elements that satisfy a

predicate, just as Filter does, and discard that removes the elements that satisfy the

predicate:

1:10 |> keep(\(x) x %% 2 == 0) # get the even numbers

[1] 2 4 6 8 10

1:10 |> discard(\(x) x %% 2 == 0) # remove the even numbers

[1] 1 3 5 7 9

Chapter 11 Functional Programming

361

In purrr, there is an alternative syntax for anonymous functions based on formulas:

1:10 |> keep(~ .x %% 2 == 0) # get the even numbers

[1] 2 4 6 8 10

1:10 |> discard(~ .x %% 2 == 0) # remove the even numbers

[1] 1 3 5 7 9

The ~ prefix makes the argument a formula, but purrr will interpret it as a function.

Then, it will interpret .x (notice the dot) as the first argument to the function. The

second will be .y. You can also use .1, .2, .3, and so on. The alternative syntax is there

for historical reasons; purrr was developed before R got the short function syntax \(x)

..., and it is cumbersome to write code such as keep(function(x) x %% 2 == 0). With

\(x) ... expressions, there is less need for the alternative syntax, and I will not use it

here, but you are likely to run into it if you read R code in the future.

The closest equivalent to Map in purrr is map. It basically works the same way:

1:4 |> map(\(x) x^2) # square the numbers

[[1]]

[1] 1

##

[[2]]

[1] 4

##

[[3]]

[1] 9

##

[[4]]

[1] 16

The map function will return a list, just as Map does, but you can convert the output

to other data formats using a family of functions whose name starts with map_ and ends

with a type specifier:

get a vector of integers (The values we compute must be integers)

1L:4L |> map_int(\(x) x + 2L)

[1] 3 4 5 6

Chapter 11 Functional Programming

362

get a vector of nummerics; any number will work here

1:4 |> map_dbl(\(x) x^2)

[1] 1 4 9 16

get a vector of logical (boolean) values (we must compute booleans)

1:4 |> map_lgl(\(x) x %% 2 == 0)

[1] FALSE TRUE FALSE TRUE

You can also map over data frames with map_df. It will map over the data frames and

then merge them, so you get one data frame as output, with one row for each of the rows

you produce with your mapping function:

dfs <- list(

 tibble(x = 1:2, y = 1:2, z = 1:2),

 tibble(x = 3:4, y = 3:4),

 tibble(x = 4:5, z = 4:5)

)

mapping the identifier to see what map_df does with that

dfs |> map_df(\(df) df)

A tibble: 6 × 3

x y z

<int> <int> <int>

1 1 1 1

2 2 2 2

3 3 3 NA

4 4 4 NA

5 4 NA 4

6 5 NA 5

modifying the data frames

mut_df <- \(df) df |> mutate(w = 2 * x) # add column w

dfs |> map_df(mut_df) # now add w for all and merge them

A tibble: 6 × 4

x y z w

<int> <int> <int> <dbl>

Chapter 11 Functional Programming

363

1 1 1 1 2

2 2 2 2 4

3 3 3 NA 6

4 4 4 NA 8

5 4 NA 4 8

6 5 NA 5 10

Like Map/map, you get the purrr Reduce by changing it to lowercase:

reduce:

add_parenthesis <- \(a, b) paste("(", a, ", ", b, ")", sep = "") 1:4 |>

reduce(add_parenthesis)

[1] "(((1, 2), 3), 4)"

You can change the order of applications, so you reduce from right to left instead of

left to right, if you provide the additional argument .dir = "backward":

1:4 |> reduce(add_parenthesis, .dir = "backward")

[1] "(1, (2, (3, 4)))"

�Functions As Both Input and Output
Functions can, of course, also both take functions as input and return functions

as output.

This lets us modify functions and create new functions from existing functions.

First, let us consider two old friends, the factorial and the Fibonacci numbers. We

have computed those recursively and using tables. What if we could build a generic

function for caching results?

Here is an attempt:

cached <- function(f) {

 # ensures that we get f as it is when we call cached (see text)

 force(f)

 table <- list()

Chapter 11 Functional Programming

364

 function(n) {

 key <- as.character(n)

 if (key %in% names(table)) {

 print(paste("I have already computed the value for", n))

 table[[key]]

 } else {

 print(paste("Going to compute the value for", n))

 res <- f(n)

 print(paste("That turned out to be", res))

 table[key] <<- res # NB: <<- to update the closure table!

 print_table(table) # see function below

 res

 }

 }

}

pretty-printing the table

print_table <- function(tbl) {

 print("Current table:")

 for (key in names(tbl)) {

 print(paste(key, "=>", tbl[key]))

 }

}

I have added some output so it is easier to see what it does in the following.

It takes a function f and will give us another function back that works like f but

remembers functions it has already computed. First, it remembers what the input

function was by forcing it. This is necessary for the way we intend to use this cached

function. The plan is to replace the function in the global scope with a cached version so

the function out there will refer to the cached version. If we don’t force f here, the lazy

evaluation means that when we eventually evaluate f, we are referring to the cached

version, and we will end up in an infinite recursion. You can try removing the force(f)

call and see what happens.

Next, we create a table—we are using a list which is the best choice for tables in R

in general. A list lets us use strings for indices, and doing that we don’t need to have all

values between one and n stored to have an element with key n in the table.

Chapter 11 Functional Programming

365

The rest of the code builds a function that first looks in the table to see if the key is

there. If so, we have already computed the value we want and can get it from the table. If

not, we compute it, put it in the table, and return.

We can try it out on the factorial function:

factorial <- function(n) {

 if (n == 1) {

 1

 } else {

 n * factorial(n - 1)

 }

}

factorial <- cached(factorial)

factorial(4)

[1] "Going to compute the value for 4"

[1] "Going to compute the value for 3"

[1] "Going to compute the value for 2"

[1] "Going to compute the value for 1"

[1] "That turned out to be 1"

[1] "Current table:"

[1] "1 => 1"

[1] "That turned out to be 2"

[1] "Current table:"

[1] "1 => 1"

[1] "2 => 2"

[1] "That turned out to be 6"

[1] "Current table:"

[1] "1 => 1"

[1] "2 => 2"

[1] "3 => 6"

[1] "That turned out to be 24"

[1] "Current table:"

[1] "1 => 1"

[1] "2 => 2"

[1] "3 => 6"

Chapter 11 Functional Programming

366

[1] "4 => 24"

[1] 24

factorial(1)

[1] "I have already computed the value for 1"

[1] 1

factorial(2)

[1] "I have already computed the value for 2"

[1] 2

factorial(3)

[1] "I have already computed the value for 3"

[1] 6

factorial(4)

[1] "I have already computed the value for 4"

[1] 24

and on fibonacci

fibonacci <- function(n) {

 if (n == 1 || n == 2) {

 1

 } else {

 fibonacci(n-1) + fibonacci(n-2)

 }

}

fibonacci <- cached(fibonacci)

fibonacci(4)

[1] "Going to compute the value for 4"

[1] "Going to compute the value for 3"

[1] "Going to compute the value for 2"

Chapter 11 Functional Programming

367

[1] "That turned out to be 1"

[1] "Current table:"

[1] "2 => 1"

[1] "Going to compute the value for 1"

[1] "That turned out to be 1"

[1] "Current table:"

[1] "2 => 1"

[1] "1 => 1"

[1] "That turned out to be 2"

[1] "Current table:"

[1] "2 => 1"

[1] "1 => 1"

[1] "3 => 2"

[1] "I have already computed the value for 2"

[1] "That turned out to be 3"

[1] "Current table:"

[1] "2 => 1"

[1] "1 => 1"

[1] "3 => 2"

[1] "4 => 3"

[1] 3

fibonacci(1)

[1] "I have already computed the value for 1"

[1] 1

fibonacci(2)

[1] "I have already computed the value for 2"

[1] 1

fibonacci(3)

[1] "I have already computed the value for 3"

[1] 2

Chapter 11 Functional Programming

368

fibonacci(4)

[1] "I have already computed the value for 4"

[1] 3

�Ellipsis Parameters…
Before we see any more examples of function operations, we need to know about a

special function parameter, the ellipsis or “three-dot” parameter.

This is a magical parameter that lets you write a function that can take any number of

named arguments and pass them on to other functions.

Without it, you would get an error if you provide a parameter to a function that it

doesn’t know about:

f <- function(a, b) NULL

f(a = 1, b = 2, c = 3)

Error in f(a = 1, b = 2, c = 3): unused argument (c = 3)

With it, you can provide any named parameter you want:

g <- function(a, b, ...) NULL

g(a = 1, b = 2, c = 3)

NULL

Of course, it isn’t much of a feature to allow a function to take arguments that it

doesn’t know what to do with. But you can pass those arguments on to other functions

that maybe do know what to do with them, and that is the purpose of the “...” parameter.

We can see this in effect with a very simple function that just passes the “...”

parameter on to list. This works exactly like calling list directly with the same

parameters, so nothing magical is going on here, but it shows how the named

parameters are being passed along:

tolist <- function(...) list(...)

tolist()

list()

tolist(a = 1)

Chapter 11 Functional Programming

369

$a

[1] 1

tolist(a = 1, b = 2)

$a

[1] 1

##

$b

[1] 2

This parameter has some uses in itself because it lets you write a function that calls

other functions, and you can provide those functions parameters without explicitly

passing them along. It is particularly important for generic functions (a topic we will

cover in the next chapter) and for modifying functions in function operators.

Here, we will just have a quick second example, taken from Wickham’s Advanced

R programming book (that I cannot praise high enough), of modifying a function—

wrapping a function to time how long it takes to run.

The following function wraps the function f into a function that times it and returns

the time usage rather than the result of the function. It will work for any function since it

just passes all parameters from the closure we create to the function we wrap (although

the error profile will be different since the wrapping function will accept any named

parameter, while the original function f might not allow that):

time_it <- function(f) {

 force(f)

 function(...) {

 system.time(f(...))

 }

}

We can try it out like this:

ti_mean <- time_it(mean)

ti_mean(runif(1e6))

user system elapsed

0.024 0.000 0.023

Chapter 11 Functional Programming

370

�Exercises
�apply_if
Consider the function apply_if we implemented earlier. There, we use a loop.

Implement it using Filter and Map instead.

For the specific instance we used in the example:

apply_if(v, function(x) x %% 2 == 0, function(x) x^2)

we only have vectorized functions. Rewrite this function call using a vectorized

expression.

�power
Earlier, we defined the generic power function and the instances square and cube

this way:

power <- function(n) function(x) x^n

square <- power(2)

cube <- power(3)

If we instead defined

power <- function(x, n) x^n

how would you then define square and cube?

�Row and Column Sums
Using apply, write functions rowsum and colsum that compute the row sums and column

sums, respectively, of a matrix.

�Factorial Again…
Write a vectorized factorial function. It should take a vector as input and compute the

factorial of each element in the vector.

Chapter 11 Functional Programming

371

Try to make a version that remembers factorials it has already computed so you

don’t need to recompute them (without using the cached function from before, of

course).

�Function Composition
For two functions f and g, the function composition creates a new function f ° g such that

(f ° g)(x) = f (g(x)).

There isn’t an operator for this in R, but we can make our own. To avoid clashing

with the outer product operator, %o%, we can call it %.%.

�Implement This Operator
Using this operator, we should, for example, be able to combine Map and unlist once

and for all to get a function for the unlist(Map(...)) pattern:

uMap <- unlist %.% Map

So this function works exactly like first calling Map and then unlist:

plus <- function(x, y) x + y

unlist(Map(plus, 0:3, 3:0))

[1] 3 3 3 3

uMap(plus, 0:3, 3:0)

[1] 3 3 3 3

With it, you can build functions by stringing together other functions (not unlike how

you can create pipelines in magrittr).

For example, you can compute the root mean square error function like this:

error <- function(truth) function(x) x - truth

square <- function(x) x^2

rmse <- function(truth)

 sqrt %.% mean %.% square %.% error(truth)

Chapter 11 Functional Programming

372

mu <- 0.4

x <- rnorm(10, mean = 0.4)

rmse(mu)(x)

[1] 1.249175

Combining a sequence of functions like this requires that we read the operations

from right to left, so I personally prefer the approach in magrittr, but you can see the

similarity.

Chapter 11 Functional Programming

373
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_12

CHAPTER 12

Object-Oriented
Programming
In this chapter, we look at R’s flavor of object-oriented programming. Actually, R has

three different systems for object-oriented programming: S3, S4, and RC. We will only

look at S3, which is the simplest and (as far as I know) the most widely used.

�Immutable Objects and Polymorphic Functions
Object orientation in S3 is quite different from what you might have seen in Java or

Python or that class of languages. Naturally so, since data in R is immutable and the

underlying model in OO in languages such as Java and Python is that you have objects

with states that you can call methods on to change the state. You don’t have a state as

such in S3; you have immutable objects. Just like all other data in R.

What’s the point then of having object orientation if we don’t have object states?

What we get from the S3 system is polymorphic functions, called “generic” functions in

R. These are functions whose functionality depends on the class of an object—similar

to methods in Java or Python where methods defined in a class can be changed in a

subclass to refine behavior.

You can define a function foo to be polymorphic and then define specialized

functions, say foo.A and foo.B. Then, calling foo(x) on an object x from class A will

actually call foo.A(x) and for an object from class B will actually call foo.B(x). The

names foo.A and foo.B were not chosen at random here, we shall see, since it is

precisely how we name functions that determine which function gets called.

We do not have objects with states, we simply have a mechanism for having the

functionality of a function depend on the class an object has—something often called

“dynamic dispatch” or “polymorphic methods.” Here, of course, since we don’t have

states, we can call it polymorphic functions.

https://doi.org/10.1007/978-1-4842-8155-0_12#DOI

374

�Data Structures
Before we get to making actual classes and objects, though, we should have a look at

data structures. We discussed the various built-in data structures in R in earlier chapters.

Those built-in data types are the basic building blocks of data in R, but we never

discussed how we can build something more complex from them.

More important than any object-oriented system is the idea of keeping related data

together so we can treat it as a whole. If we are working on several pieces of data that

somehow belongs together, we don’t want it scattered out in several different variables,

perhaps in different scopes, where we have little chance of keeping it consistent. Even

with immutable data, such a program in a consistent state would be a nightmare.

For the data that we analyze, we therefore typically keep it in a data frame. This is a

simple idea for keeping data together. All the data we are working on is in the same data

frame, and we can call functions with the data frame and know that they are getting all

the data in a consistent state. At least as consistent as we can guarantee with data frames;

we cannot promise that the data itself is not messed up somehow, but we can write

functions under the assumption that data frames behave a certain way.

What about something like a fitted model? If we fit a model to some data, that fit is

stored variables capturing the fit. We certainly would like to keep those together when

we do work with the model because we would not like accidentally to use a mix of

variables fitted to two different models. We might also want to keep other data together

with the fitted model, for example, some information about what was actually fitted, if

we want to check that in the R shell later, or the data it was fitted to.

The only option we really have for collecting heterogeneous data together as a single

object is a list. And that is how you do it in R.

�Example: Bayesian Linear Model Fitting
Project 2, described in the last chapter of the book, concerns Bayesian linear models. To

represent such, we would wrap data for a model in a list. For fitting data, let us assume

that you have a function like the one in the following (refer to the last chapter for details

of the mathematics).

It takes the model specification in the form of a formula as its parameter model and

the prior precision alpha and the “precision” of the data beta. It then computes the

mean and the covariance matrix for the model fitted to the data. That part is left out here

since you are supposed to implement that yourself as an exercise, but you can see the

Chapter 12 Object-Oriented Programming

375

details in the last chapter. It then wraps up the fitted model together with some related

data—the formula used to fit the model, the data used in the model fit (here assumed to

be in the variable frame)—and put them in a list, which the function returns:

blm <- function(model, alpha = 1, beta = 1, ...) {

 # Here goes the mathematics for computing the fit.

 frame <- model.frame(model, ...)

 phi <- model.matrix(frame)

 no_params <- ncol(phi)

 target <- model.response(frame)

 covar <- solve(diag(alpha, no_params) +

 beta * t(phi) %*% phi)

 mean <- beta * covar %*% t(phi) %*% target

 list(formula = model,

 frame = frame,

 mean = mean,

 covar = covar)

}

We can see it in action by simulating some data and calling the function:

fake some data for our linear model

x <- rnorm(10)

a <- 1 ; b <- 1.3

w0 <- 0.2 ; w1 <- 3

y <- rnorm(10, mean = w0 + w1 * x, sd = sqrt(1/b))

fit a model

model <- blm(y ~ x, alpha = a, beta = b)

model

$formula

y ~ x

##

$frame

Chapter 12 Object-Oriented Programming

376

y x

1 -1.5185867 -0.5588255

2 -1.1664514 -0.6097720

3 -1.2509896 0.1808256

4 -1.9412380 -0.6595195

5 -0.5012965 -0.3030505

6 0.5057768 0.2613801

7 2.1098271 0.7792971

8 5.0790285 1.3976716

9 -3.2896676 -1.6030947

10 -0.7780154 -0.2601806

##

$mean

[,1]

(Intercept) 0.04588209

x 2.36006846

##

$covar

(Intercept) x

(Intercept) 0.07319446 0.01382804

x 0.01382804 0.10828240

Collecting the relevant data of a model fit like this together in a list, so we always

know we are working on the values that belong together, makes further analysis of the

fitted model much easier to program.

�Classes
The output we got when we wrote

model

is what we get if we call the print function on a list. It just shows us everything that is

contained within the list. The print function is an example of a polymorphic function,

however, so when you call print(x) on an object x, the behavior depends on the class of

the object x.

Chapter 12 Object-Oriented Programming

377

If you want to know what class an object has, you can use the class function:

class(model)

[1] "list"

and if you want to change it, you can use the ̀class<-` replacement function:

class(model) <- "blm"

We can use any name for a class; here, I’ve used blm for Bayesian linear model.

By convention, we usually call the class and the function that creates elements

of that class the same name, so since we are creating this type of objects with the blm

function, convention demands that we call the class of the object blm as well. It is just a

convention, though, so you can call the class anything.

We can always assign a class to an object in this way, but changing the class of an

existing object is considered bad style. We keep the data that belongs together in a list to

make sure that it is kept consistent, but the functionality we want to provide for a class is

as much a part of the class as the data, so we also need to make sure that the functions

that operate on objects of a given class always get data that is consistent with that class.

We cannot do that if we go around changing the class of objects willy-nilly.

The function that creates the object should assign the class, and then we should

leave the class of the object alone. We can set the class with the `class<-` function and

then return it from the blm function:

blm <- function(model, alpha = 1, beta = 1, ...) {

 # stuff happens here...

 object <- list(formula = model,

 frame = frame,

 mean = mean,

 covar = covar)

 class(object) <- "blm"

 object

}

Chapter 12 Object-Oriented Programming

378

The class is represented by an attribute of the object, however, and there is a function

that sets these for us, structure, and using that we can create the object and set the class

at the same time, which is a little better:

blm <- function(model, alpha = 1, beta = 1, ...) {

 # stuff happens here...

 structure(list(formula = model,

 frame = frame,

 mean = mean,

 covar = covar),

 class = "blm")

}

Now that we have given the model object a class, let’s try printing it again:

model

$formula

y ~ x

##

$frame

y x

1 -1.5185867 -0.5588255

2 -1.1664514 -0.6097720

3 -1.2509896 0.1808256

4 -1.9412380 -0.6595195

5 -0.5012965 -0.3030505

6 0.5057768 0.2613801

7 2.1098271 0.7792971

8 5.0790285 1.3976716

9 -3.2896676 -1.6030947

10 -0.7780154 -0.2601806

##

$mean

[,1]

(Intercept) 0.04588209

x 2.36006846

Chapter 12 Object-Oriented Programming

379

##

$covar

(Intercept) x

(Intercept) 0.07319446 0.01382804

x 0.01382804 0.10828240

##

attr(,"class")

[1] "blm"

The only difference from before is that it has added information about the "class"

attribute toward the end. It still just prints everything that is contained within the object.

This is because we haven’t told it to treat any object of class blm any differently yet.

�Polymorphic Functions
The print function is a polymorphic function. This means that what happens when it

is called depends on the class of its first parameter. When we call print, R will get the

class of the object, let’s say it is blm as in our case, and see if it can find a function named

print.blm. If it can, then it will call this function with the parameters you called print

with. If it cannot, it will instead try to find the function print.default and call that.

We haven’t defined a print function for the class blm, so we saw the output of the

default print function instead.

Let us try to define a blm-specific print function:

print.blm <- function(x, ...) {

 print(x$formula)

}

Here, we just tell it to print the formula we used for specifying the model rather than

the full collection of data we put in the list.

If we print the model now, this is what happens:

model

y ~ x

Chapter 12 Object-Oriented Programming

380

That is how easy it is to provide your own class-specific print function. And that is

how easy it is to define your own class-specific polymorphic function in general. You just

take the function name and append .classname to it, and if you define a function with

that name, then that function will be called when you call a polymorphic function on an

object with that class.

One thing you do have to be careful about, though, is the interface to the function.

By that I mean the parameters the function takes (and their order). Each polymorphic

function takes some arguments; you can see which by checking the function

documentation:

?print

When you define your specialized function, you can add more parameters to your

function, but you should define it such that you at least take the same parameters as

the generic function does. R will not complain if you do not define it that way, but it is

bound to lead to problems later on when someone calls the function with assumptions

about which parameters it takes based on the generic interface and then runs into

your implementation of a specialized function that behaves a different way. Don’t do

that. Implement your function so it takes the same parameters as the generic function.

This includes using the same names for parameters. Someone might provide named

parameters to the generic function, and that will only work if you call the parameters the

same names as the generic function. That is why we used x as the input parameter for

the print.blm function earlier.

�Defining Your Own Polymorphic Functions
To define a class-specific version of a polymorphic function, you just need to write a

function with the right name. There is a little bit more to do if you want to define your

very own polymorphic function. Then you also need to write the generic function—the

function you will use when you have objects of different types, and that is responsible for

dispatching the function call to class-specific functions.

You do this using the UseMethod function. The generic function typically just does

this and looks something like this:

foo <- function(x, ...) UseMethod("foo")

Chapter 12 Object-Oriented Programming

381

You specify a function with the parameters the generic function should accept and

then just call UseMethod with the name of the function to dispatch to. Then it does it

magic and finds out which class-specific function to call and forwards the parameters

to there.

When you write the generic function, it is also good style to define the default

function as well:

foo.default <- function(x, ...) print("default foo")

With that, we can call the function with all types of objects. If you don’t want that to

be possible, a safe default function would be one that throws an error:

foo("a string")

[1] "default foo"

foo(12)

[1] "default foo"

And of course, with the generic function in place, we can define class-specific

functions just like before:

foo.blm <- function(x, ...) print("blm foo")

foo(model)

[1] "blm foo"

You can add more parameters to more specialized functions when the generic

function takes ... as an argument; the generic will just ignore the extra parameters, but

the concrete function that is called might be able to do something about it:

foo.blm <- function(x, upper = FALSE, ...) {

 if (upper) {

 print("BLM FOO")

 } else {

 print("blm foo")

 }

}

Chapter 12 Object-Oriented Programming

382

foo("a string")

[1] "default foo"

foo(model)

[1] "blm foo"

foo("a string", upper = TRUE)

[1] "default foo"

foo(model, upper = TRUE)

[1] "BLM FOO"

�Class Hierarchies
Polymorphic functions are one aspect of object-oriented programming; another is

inheritance. This is the mechanism used to build more specialized classes out of more

general classes.

The best way to think about this is as levels of specialization. You have some general

class of objects, say “furniture,” and within that class are more specific categories, say

“chairs,” and within that class even more specific types of objects, say “kitchen chairs.”

A kitchen chair is also a chair, and a chair is also furniture. If there is something you can

do to all furniture, then you can definitely also do it to chairs. For example, you can set

furniture on fire; you can set a chair on fire. It is not the case, however, that everything

you can do to chairs you can do to all furniture. You can throw a chair at unwelcome

guests, but you cannot throw a piano at them (unless you are the Hulk).

The way specialization like this works is that there are some operations you can do

for the general classes. Those operations can be done on all instances of those classes,

including those that are really objects of more specialized classes.

The operations might not do exactly the same thing—like we can specialize print,

an operation we can call on all objects, to do something special for blm objects—but

there is some meaningful way of doing the operation. Quite often, the way a class is

specialized is exactly by doing an operation that can be done by all objects from the

general class, but just in a more specialized way.

Chapter 12 Object-Oriented Programming

383

The specialized classes, however, can potentially do more, so they might have more

operations that are meaningful to do to them. That is fine, as long as we can treat all

objects of a specialized class as we can treat objects of the more general class.

This kind of specialization is partly interface and partly implementation.

�Specialization As Interface
The interface is the set of which functions we can call on objects of a given class. It is a

kind of protocol for how we interact with objects of the class. If we imagine some general

class of “fitted models,” we might specify that for all models, we should be able to get the

fitted parameters, and we should be able to make predictions for new values. In R, such

functions exist, coef and predict, and any model is expected to implement them.

This means that I can write code that interacts with a fitted model through these

general model functions, and as long as I stick to the interface they provide, I could be

working on any kind of model. If, at some point, I find out that I want to replace a linear

regression model with a decision tree regression model, I can just plug in a different

fitted model and communicate with it through the same polymorphic functions. The

actual functions that will be called when I call the generic functions coef and predict

will, of course, be different, but the interface is the same.

R will not enforce such interfaces for you. Classes in R are not typed in the same way

as they are in, for example, Java, where it would be a type error to declare something

as an object satisfying a certain interface if it does in fact not implement the necessary

functions. R doesn’t care. Not until you call a function that isn’t there; then you might be

in trouble, of course. But it is up to you to implement an interface to fit the kind of class

or protocol you think your class should match.

If you implement the functions that a certain interface expects (and these functions

actually do something resembling what the interface expects the functions to do and are

not just named the same things),1 then you have a specialization of that interface. You

can do the same operations as every other class that implements the interface, but, of

course, your operations are uniquely fitted to your actual class.

1 To draw means something very different when you are a gunslinger compared to when you are
an artist, after all.

Chapter 12 Object-Oriented Programming

384

You might implement more functions, making your class capable of more than the

more general class of objects, but that is just fine. And other classes might implement

those operations as well, so now you have more than one class with the more specialized

operations—a new category that is more general and can be specialized further.

You have a hierarchy of classes defined by which functions they provide

implementations of.

�Specialization in Implementations
Providing general interfaces and then specializing them to specific kinds of objects—in

the case of R by providing implementations of polymorphic functions—is the essential

feature of the concept of class hierarchies in object-oriented programming. It is what lets

you treat objects of different kinds as a more general class.

There is another aspect of class hierarchies, though, that has to do with code reuse.

You already get a lot of this just by providing interfaces to work with objects, of course,

since you can write code that works on a general interface and then reuse it on all objects

that implement this interface. But there is another type of reuse you get when you build

a hierarchy of classes where you go from abstract, general classes to more specialized

and concrete classes. When you are specializing a class, you are taking functionality that

exists for the more abstract class and defining a new class that implements the same

interface except for a few differences here and there.

When you refine a class in this way, you don’t want to implement new versions of all

the polymorphic functions in its interface. Many of them will do exactly the same as the

implementation for their more general class.

Let’s say we want to have a class of objects where you can call functions foo and bar.

We can call that class A and define it as follows:

foo <- function(object, ...) UseMethod("foo")

foo.default <- function(object, ...) stop("foo not implemented")

bar <- function(object, ...) UseMethod("bar")

bar.default <- function(object, ...) stop("bar not implemented")

A <- function(f, b) structure(list(foo = f, bar = b), class = "A")

foo.A <- function(object, ...) paste("A::foo ->", object$foo)

bar.A <- function(object, ...) paste("A::bar ->", object$bar)

Chapter 12 Object-Oriented Programming

385

a <- A("qux", "qax")

foo(a)

[1] "A::foo -> qux"

bar(a)

[1] "A::bar -> qax"

For a refinement of that, we might want to change how bar works and add another

function baz:

baz <- function(object, ...) UseMethod("baz")

baz.default <- function(object, ...) stop("baz not implemented")

B <- function(f, b, bb) {

 a <- A(f, b)

 a$baz <- bb

 class(a) <- "B"

 a

}

bar.B <- function(object, ...) paste("B::bar ->", object$bar)

baz.B <- function(object, ...) paste("B::baz ->", object$baz)

The function foo we want to leave just the way it is, but if we define the class B as

before, calling foo on a B object gives us an error because it will be calling the foo.

default function:

b <- B("qux", "qax", "quux")

foo(b)

Error in foo.default(b): foo not implemented

This is because we haven’t told R that we consider the class B a specialization of

class A. We wrote the constructor function—the function where we make the object, the

function B—such that all B objects contain the data that is also found in an A object. We

never told R that we intended B objects also to be A objects.

Chapter 12 Object-Oriented Programming

386

We could, of course, make sure that foo called on a B object behaves the same way

as if called on an A object by defining foo.B such that it calls foo.A. This wouldn’t be

too much work for a single function, but if there are many polymorphic functions that

work on A objects, we would have to implement B versions for all of them—a tedious and

error-prone work.

If only there were a way of telling R that the class B is really an extension of the class

A. And there is. The class attribute of an object doesn’t have to be a string. It can be a

vector of strings. If, for B objects, we say that the class is B first and A second, like this:

B <- function(f, b, bb) {

 a <- A(f, b)

 a$baz <- bb

 class(a) <- c("B", "A")

 a

}

then calling foo on a B object—where foo.B is not defined—will call foo.A as its second

choice and before defaulting to foo.default:

b <- B("qux", "qax", "quux")

foo(b)

[1] "A::foo -> qux"

bar(b)

[1] "B::bar -> qax"

baz(b)

[1] "B::baz -> quux"

The way the class attribute is used with polymorphic functions is that R will look for

functions with the class names appended in the order of the class attributes. The first it

finds will be the one that is called, and if it finds no specialized version, it will go for the

.default version. When we set the class of B objects to be the vector c("B", "A"), we

are saying that R should call .B functions first, if it can find one, but otherwise call the .A

function.

Chapter 12 Object-Oriented Programming

387

This is a very flexible system that lets you implement multiple inheritances from

classes that are otherwise not related, but you do so at your own peril. The semantics

of how this works—functions are searched for in the order of the class names in the

vector—the actual code that will be run can be hard to work out if these vectors get too

complicated.

Another quick word of caution is this: if you give an object a list of classes, you

should include the classes all the way up the class hierarchy. If we define a new class, C,

intended as a specialization of B, we cannot just say that it is an object of class c("C",

"B") if we also want it to behave like an A object:

C <- function(f, b, bb) {

 b <- B(f, b, bb)

 class(b) <- c("C", "B")

 b

}

c <- C("foo", "bar", "baz")

foo(c)

Error in foo.default(c): foo not implemented

When we call foo(c) here, R will try the functions, in turn: foo.C, foo.B, and foo.

default. The only one that is defined is the last, and that throws an error if called.

So what we have defined here is an object that can behave like B but only in cases

where B differs from A’s behavior! Our intention is that B is a special type of A, so every

object that is a B object we should also be able to treat as an A object. Well, with C objects,

that doesn’t work.

We don’t have a real class hierarchy here like we would find in languages like Python,

C++, or Java. We just have a mechanism for calling polymorphic functions, and the semantic

here is just to look for them by appending the names of the classes found in the class

attribute vector. Your intentions might very well be that you have a class hierarchy with A

being the most general class, B a specialization of that, and C the most specialized class, but

that is not what you are telling R—because you cannot. You are telling R how it should look

for dynamic functions, and with the preceding code, you told it to look for .C functions first,

then .B functions, and you didn’t tell it any more, so the next step it will take is to look for

.default functions, not .A functions. It doesn’t know that this is where you want it to look.

Chapter 12 Object-Oriented Programming

388

If you add this to the class attribute, it will work, though:

C <- function(f, b, bb) {

 b <- B(f, b, bb)

 class(b) <- c("C", "B", "A")

 b

}

c <- C("foo", "bar", "baz")

foo(c)

[1] "A::foo -> foo"

bar(c)

[1] "B::bar -> bar"

baz(c)

[1] "B::baz -> baz"

You are slightly better off getting the class attribute from the object you create in

the constructor, though. If, at some point, you changed the class attribute of the object

returned from the B() constructor, you don’t want to have to change the class vector in

all classes that are extending the class:

C <- function(f, b, bb) {

 b <- B(f, b, bb)

 class(b) <- c("C", class(b))

 b

}

�Exercises
�Shapes
Let us imagine that we need to handle some geometric shapes for a program. These

could be circles, squares, triangles, etc. Properties we need to know about the shapes are

their circumference and area. These properties can be calculated from properties of the

shapes, but the calculations are different for each shape.

Chapter 12 Object-Oriented Programming

389

So for our shapes, we want (at least) an interface that gives us two functions:

circumference and area. The default functions, where we have no additional

information about an object aside from the fact that it is a shape, are meaningless and

so should raise an error (check the stop function for this), but each specialized shape

should implement these two functions.

Implement this protocol/interface and the two functions for at least circles and

rectangles—by all means, more shapes if you want to.

�Polynomials
Write a class that lets you represent polynomial objects. An n-degree polynomial is on

the form c0 + c1x + c2x2 + · · · + cnxn and can be represented by the n + 1 coefficients

(c0, c1, . . . , cn). Write the interface such that you can evaluate polynomials in any point x,

that is, with a function evaluate_polynomial(poly, x) that gives you the value of the

polynomial at the point x.

The function uniroot (built into R) lets you find the roots of a general function. Use

it to write a function that finds the roots of your polynomials. This function works by

numerically finding the points where the polynomial is zero. For lines and quadratic

polynomials, though, there are analytical solutions. Write special cases for such

polynomials such that calling the root finding function on the special cases exploits that

solutions are known there.

Chapter 12 Object-Oriented Programming

391
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_13

CHAPTER 13

Building an R Package
Now we know how to write functions and create classes in R, but neither functions

nor classes are the unit we use for collecting and distributing R code. That unit is the

package. It is packages you load and import into your namespace when you write

library(something)

and it is packages you download when you write

install.packages("something")

The topic for this chapter is how to make your own packages. In the space available,

I can only give a very broad overview of the structure of R packages, but it should be

enough to get you started. If you want to read more, I warmly recommend Hadley

Wickham’s book R Packages.

�Creating an R Package
I am going to assume that you use RStudio for this. If you don’t, you can have a look at

the package devtools. It provides functions for doing everything we can do through the

GUI in RStudio.

To create a new package, go to the menu File and choose New Project…, and you

should get a dialog that asks you whether your new project should be in a new directory,

in an existing directory, or checked out of a version control repository. Pick the New

Directory.

After that, you get the choice between an empty project, a package, or a Shiny

application. Not surprisingly, you want to pick R Package here.

Now you get to a dialog window where you can set the details of the package. You

can choose the Type of the package (where you can choose between a plain package and

one that uses Rcpp to make C++ extensions), you can specify the Name of the package,

https://doi.org/10.1007/978-1-4842-8155-0_13#DOI

392

and you can provide existing source files to include in the package. Further, you need to

choose a location to put the new package and whether you want to use a git repository

for the package.

Choose a plain package and click yes to creating a git repository (we will return to

git later). You now just need to pick a name and a place to put the package. Where you

put it is up to you, but there are some guidelines for package names.

�Package Names
A package name can consist of letters, numbers, and “ . ”, but must start with a letter

and must not have “ . ” as the last character. You cannot use other characters, such as

underscores or dashes.

Whenever you build software that you intend for other people to be able to use,

be careful with the name you give it. Give it a name that is easy to remember and easy

to Google.

For experimenting with packages, you can just create one called test.

Create a new package and have a look at the result.

�The Structure of an R Package
In the directory that RStudio built for you, you should have two directories, R and man;

three text files, .Rbuildignore, DESCRIPTION, and NAMESPACE; and one project file (its

name will be the name of your package followed by .Rproj).

The last of these files is used by RStudio, and all you need to know about it is that if

you open this file in RStudio, you get an open version of the state of the project you had

last time you worked on it.

Inside the R directory, you have an example file, R/hello.R, and inside the man

directory, you have an example documentation1 file, man/hello.Rd.

The text files and the two directories are part of what an R package looks like, and

they must always be there with exactly those names. There are a few more directories

that also have standard names,2 but they are not required, and we don’t have them here

for now.

1 man stands for manual, and the abbreviation man is a legacy from UNIX.
2 For example, vignettes/ for documentation vignettes, data/ for data you want to include with
your package, and src/ for C/C++ extensions.

Chapter 13 Building an R Package

393

�.Rbuildignore
The directory you have created contains the source code for the package, but it isn’t the

actual package. The package is something you need to build and install from this source

code. We will get to how to do that shortly.

The .Buildignore file tells R what not to include when it builds a package. Files that

are not mentioned here will automatically be included. This isn’t a disaster as such, but it

does lead to messy packages for others to use, and if you upload a package to CRAN,3 the

filters there do enforce a strict directory and file structure where you will not be allowed

to include files or directories that do not follow that structure.

The automatically generated .Buildignore file looks like this:

^.*\.Rproj$

^\.Rproj\.user$

These are two regular expressions that prevent R from including the RStudio files in

compiled packages.

The ^ character here matches the beginning of a file name, while $ matches the end.

A non-escaped . matches any character, while an escaped \. matches an actual dot. The

* specifies that the previous symbol can be repeated any number of times. So the first

regular expression specifies any file name that ends in .Rproj and the second expression

any file name that ends in .Rproj.user.

�Description
This file contains meta-information about your package. If you called your package test

and created it the same day I did (November 11, 2015), it should now look like this:

Package: test

Type: Package

Title: What the Package Does (Title Case)

Version: 0.1

Date: 2015-11-22

Author: Who wrote it

3 CRAN is the official repository for R package and the place where the install.packages
function finds them.

Chapter 13 Building an R Package

394

Maintainer: Who to complain to <yourfault@somewhere.net>

Description: More about what it does (maybe more than one line)

License: What license is it under?

LazyData: TRUE

You need to update it to describe your new package.

I give a short description of the metadata in the following, but you can also read

more about it in Hadley Wickham’s R Packages book.

�Title
The title field is pretty self-explanatory. You need to give your package a title. Here,

(Title Case) means that you need to use capital first letters in the words there like you

would for the title of a book.

If you read the documentation for a package on CRAN, it will look like this:

packagename: This is the Title. Don’t include the package name in your title here;

that is automatically added to the documentation page. You just want the title.

�Version
This is just a number to track which version of your package people have installed.

Whenever you make changes to your package and release them, this number

should go up.

The version numbers are not only used to indicate that you have updated a version,

but they are also necessary for specifying dependencies between packages sometimes.

If a feature was introduced in version 1.2 but didn’t exist in version 1.1, then other

packages that use this feature need to know whether they have access to version 1.2 or

higher. We will return to dependencies later.

There are some conventions for version numbers but nothing that is strictly enforced.

The convention here is that a released version has the numbering scheme major.minor.

patch, so the version 1.2.3 means that the major version number is 1, the minor 2, and

that this is patched version 3. Patches are smaller changes, typically bug fixes and such,

while minor revisions usually include some new functionality. The difference between

what is considered minor and major is very subjective, but any time the interface

changes—that is, you change the way a function is called such that the old types of calls

are now incorrect—you definitely should increase the major version number.

Chapter 13 Building an R Package

395

If you have a development version of your package that you are distributing for those

adventurous enough to work with a beta release, the convention is to add a development

release number as well. Then the version number looks like major.minor.patch.

develop-number where by convention the last number starts at 9000 and is increased

with every new release.

You are just beginning developing your new package, so change the version number

to 0.0.0.9000.

�Description
This field should describe the package. It is typically a one-paragraph short description.

To make R parse the DESCRIPTION file correctly, you must indent the lines following

Description: if the description spans over multiple lines.

�Author and Maintainer
Delete these two fields. There is a better way to specify the same information that makes

sure that it is provided in a more structured form. You should use a new field called

Authors@R: instead. There is nothing wrong with the Author or Maintainer fields, and

you can keep them without any trouble; the new field just lets you provide the same

information more succinctly.

This field takes an R expression specifying one or more authors where the author

information is provided by a call to the function person—which is how we make sure

that it is structured appropriately. Check the documentation for the function (?person)

for more details.

You are a single author, so you should use something like this:

Authors@R: person("First Name", "Last Name",

 email = "your.email@your.domain.com",

 role = c("aut", "cre"))

The roles here mean author and creator. The documentation for the person function

lists other options.

If there is more than one person involved as an author or a maintainer or another

sort of contributor, you can have a sequence of persons by concatenating them with the

c function.

Chapter 13 Building an R Package

396

�License
This specifies the software license the package is released under. It can really be

anything, but if you want to put your package on CRAN, you have to pick one of the

licenses that CRAN accepts.

You specify which of the recognized licenses you want to use by their abbreviation,

so to specify that your package is released under the GPL version 2 license, you write

License: GPL-2

�Type, Date, LazyData
The Type and LazyData fields are not essential. You can delete them if you want. Type

is just saying that you have a package, but we sort of know that already. LazyData

tells R that if you include data in your package, it should load it lazily. Again, this is

not something that is of particular importance (unless you plan to include extremely

large data sets with your package; if you do that, then Google for the documentation of

LazyData).

The Date of course includes the date. This should be the last date you modified the

package, that is, the last time you updated the version.

�URL and BugReports
If you have a web page for the package and a URL for reporting bugs, these are the fields

you want to use. They are not required for a package but are of course very helpful for a

user to have.

�Dependencies
If your package has dependencies, you have three fields you can specify them in:

Depends, Imports, and Suggests.4

4 There are a few more fields for, e.g., linking to external C/C++ code, but these three fields are the
most important fields.

Chapter 13 Building an R Package

397

With Depends, you can specify both packages that need to be installed for your

package to work and which version of R is required for your package to work. For

packages, though, it is better to use Imports and Suggests than Depends, so use Depends

only to specify which version of R you need.

You specify this like

Depends: R (>= 4.1)

This is saying that you need R to work (not surprisingly, but the syntax is the same for

packages), and it has to be at least version 4.1.

The syntax for dependencies is a comma-separated list of package names (or R as

before) with optional version number requirements in parentheses after the package name.

Imports and Suggests fields could look like this:

Imports:

 ggplot2,

 dplyr (>= 1.0.7),

 pracma

Suggests:

 testthat,

 knitr

specifying that we import three packages, ggplot2, dplyr, and pracma, and we use

testthat and knitr in some functions if these packages are available. We require that

dplyr has at least version 1.0.7, but do not put any demands on the versions of the other

packages. (The required version for dplyr is completely arbitrary here; it just happens to

be the version I have installed as I am writing this. Don’t read anything more into it.)

The difference between Imports and Suggests is that requirements in Imports must

be installed for your package to be installed (or they will be installed if you tell R to install

with dependencies), while requirements in Suggests do not.

�Using an Imported Package
Packages in the Imports or Suggests lists are not imported into your namespace the way

they would be if you call library(package). This is to avoid contaminating your package

namespace, and you shouldn’t break that by calling library yourself. If you want to use

functions from other packages, you must do so by explicitly accessing them through their

package namespace or by explicitly importing them at a single function level.

Chapter 13 Building an R Package

398

The way to access a function from another package without importing the package

namespace is using the :: notation. If you want to get to the filter function in dplyr

without importing dplyr, you can get the function using the name dplyr::filter.

If you access names from a package that you have listed in your Imports field, then

you know that it exists even if it isn’t imported into your namespace, so you just need to

use the long name.

An alternative way of importing functions is using Roxygen—which we will discuss

later—where you can import the namespace of another package or just the name of a

single function in another package for a single function at a time.

�Using a Suggested Package
Accessing functions in a suggested package—the packages named in the Suggests

field—is done using the :: notation, just as you would for imported packages. There is

just one more complication: the package might not be installed on the computer where

your package is installed. That is the difference between suggesting a dependency and

requiring it by putting it in the Imports field.

The purpose of suggesting packages instead of importing them is that the

functionality your package provides doesn’t strictly depend on the other package, but

you can do more or do things more efficiently if a suggested package is there.

So you need a way of checking if a package is installed before you use it, and that way

is the function requireNamespace. It returns TRUE if the namespace (package) you ask for

is installed and FALSE otherwise, so you can use it like this:

if (requireNamespace("package", quietly = TRUE)) {

 # use package functionality

} else {

 # do something that doesn't involve the package

 # or give up and throw an exception with stop()

}

The quietly option is to prevent it from printing warnings—you are handling the

cases where the package is not installed, so there is no need for it to do it.

Chapter 13 Building an R Package

399

�NAMESPACE
The NAMESPACE file provides information about which of the functions you implement

in your package should be exported to the namespace of the user when they write

library(test).

Each package has its own namespace. It is similar to how each function has a

namespace in its body where we can define and access local variables. Functions you

write in a package will look for other functions first in the package namespace and then

in the global namespace.

Someone who wants to use your package can get access to your function by loading

it into their namespace using

library(test)

or by explicitly asking for a function in your namespace

test::function_name()

but they can only get access to functions (and other objects) explicitly exported.5 If

a function is not explicitly exported, it is considered an implementation detail of the

package that code outside the package should not be able to access.

The NAMESPACE file is where you specify what should be exported from the package.6

The auto-generated file looks like this:

exportPattern("^[[:alpha:]]+")

It is just exporting anything that has an alphanumeric name. This is definitely too

much, but we ignore it for now. We are not going to edit this file manually since we can

export functions (and all other objects) much easier using Roxygen as described in the

following.

5 Strictly speaking, this is not true. You can actually get to internal functions if you use the :::
operator instead of the :: operator, so if function_name is not exported but still implemented in
package test, then you can access it with test:::function_name. But you shouldn’t. You should
keep your damned dirty paws away from internal functions! They can change at any time, with no
warning from the package maintainer, and no one will feel sorry for you when they do and your
own code breaks because of it.
6 It is also used to import selected functions or packages, but using Roxygen @import and
@importFrom are better solutions for that.

Chapter 13 Building an R Package

400

�R/ and man/
The R/ directory is where you should put all your R code, and the man/ directory is where

the package documentation goes. There is one example file in both directories just after

RStudio has generated your new package. You can have a look at them and then delete

them afterward.

All the R code you write for a package should go in files in the R/ directory to be

loaded into the package. All documentation will go in man/, but we are not going to write

the documentation there manually. Instead, we will use Roxygen to document functions,

and then Roxygen will automatically make the files that go in man/.

�Checking the Package
Before we look at Roxygen, and start adding functionality to our package, I want you to

check that it is in a consistent state. There are a number of consistency requirements that

packages should satisfy, mostly related to file names, naming conventions, and such, and

it is best to frequently check if your package looks the way it should. To check this, go to

the Build menu and pick Check Package. You can also do it on the command line using

the devtools package:

install.packages("devtools)

and the function check():

devtools::check()

It will run a bunch of checks, more every time they update devtools it seems, but

at the end, it will tell you if your package is okay. If you run it now, you should get zero

errors, zero warnings, and zero notes.

As we start modifying the package, run check() from time to time. If something

breaks the package’s consistency, it is better to know early, so you know what you broke

and can easily fix it. If you have made tons of changes, it can be harder to track down

what changes were a problem.

Chapter 13 Building an R Package

401

�Roxygen
Roxygen is a system for writing documentation for your packages, and if you are familiar

with Javadoc, you will recognize its syntax. It does a few things more, however, including

handling your namespace import and export, as we will see.

To use it, you first have to install it, so run

install.packages("roxygen2")

Now go into the Build menu and select Configure Build Tools…. There, pick Build

Tools and check Generate documentation with Roxygen, and in the dialog that pops up,

check Build & Reload. This makes sure that Roxygen is used to generate documentation

and that the documentation is generated when you build the package. This will also

make sure that Roxygen handles the import and export of namespaces.

�Documenting Functions
We can see how Roxygen works through an example:

#' Add two numbers

#'

#' This function adds two numbers together.

#'

#' @param x A number

#' @param y Another number

#' @return The sum of x and y

#'

#' @export

add <- function(x, y) x + y

The documentation for this function, add, is provided in comments above the

function, but comments starting with the characters #' instead of just #. This is what tells

Roxygen that these comments are part of the documentation that it should process.

The first line becomes the title of the documentation for the function. It should be

followed by an empty line (still in #' comments).

Chapter 13 Building an R Package

402

The text that follows is a description of the function. It is a bit silly with the

documentation for this simple function, but normally you will have a few paragraphs

describing what the function does and how it is supposed to be used. You can write as

much documentation here as you think is necessary.

The lines that start with an @ tag—for example, @param and @return—contain

information for Roxygen. They provide information that is used to make individual

sections in the documentation.

The @param tags are used for describing parameters. That tag is followed by the name

of a parameter and after that a short description of the parameter.

The @return tag provides a description of what the function returns.

After you have written some documentation in Roxygen comments, you can build it

by going into the menu Build and choosing Document. Roxygen will not overwrite the

existing NAMESPACE file, because it didn’t generate the file itself, so delete it before you

run Document. That way, Roxygen is free to write to it. You only need to do this once;

after that, Roxygen recognizes that it is a file that it controls.

After you have built the documentation, take a look at the NAMESPACE file and the

man/ directory. In the NAMESPACE file, you should see that the function has been exported:

Generated by roxygen2: do not edit by hand

export(add)

and in the man/ directory, there should be a file, add.Rd, documenting the function.

�Import and Export
In the NAMESPACE file, you should see that your documented function is explicitly

exported. That is because we provided the @export tag with the documentation. It tells

Roxygen to export it from the package namespace.

This is the easiest way to handle the namespace export, so, if for nothing else, you

should use Roxygen for this rather than manually editing the NAMESPACE file.

Roxygen will also make sure that polymorphic functions and other kinds of objects

are correctly exported if you use the @export tag—something that requires different

kinds of commands in the NAMESPACE file. You don’t have to worry about it as long as you

use Roxygen.

Chapter 13 Building an R Package

403

Roxygen can also handle import of namespaces. Remember that the packages you

list in your Imports field in the DESCRIPTION file are guaranteed to be installed on the

computer where your package is installed but that the namespaces of these packages are

not imported. You have to use the :: notation to access them.

Well, with Roxygen you can use the tag @importFrom package object to import

object (typically a function) into your namespace in a function that you give that tag to.

For normal functions, I don’t really see the point of using this feature since it isn’t shorter

to write than just using the :: notation. For infix functions, though, it makes them easier

to use since then you can actually use the infix function as an infix operator.

So in the following function, we can use the %>% operator from dplyr because we

import it explicitly. You cannot really get to infix operators otherwise.

#' Example of using dplyr

#'

#' @param data A data frame containing a column named A

#' @param p A predicate function

#' @return The data frame filtered to those rows where p is true on A

#'

#' @importFrom dplyr filter

#' @importFrom dplyr %>%

#' @export

filter_on_A <- function(data, p) {

 data %>% filter(p(A))

}

If you write a function that uses a lot of functionality from a package, you can also

import the entire namespace of that package. That is similar to using library(package)

and is done with the @import tag:

#' @import dplyr

#' @export

filter_on_A <- function(data, p) {

 data %>% filter(p(A))

}

Chapter 13 Building an R Package

404

�Package Scope vs. Global Scope
A quick comment is in order about the namespace of a package when you load it with

library(package). I mentioned it earlier, but I just want to make it entirely clear. A

package has its own namespace where its functions live. Functions that are called from

other functions written inside a package are first looked for in the package namespace

before they are looked for in the global namespace.

If you write a function that uses another function from your package and someone

redefines the function in the global namespace after loading your package, it doesn’t

change what function is found inside your package.

It doesn’t matter if a function is exported or local to a package for this to work. R will

always look in a package namespace before looking in the global namespace.

�Internal Functions
You might not want to export all functions you write in a package. If there are some

functions, you consider implementation details of your package design, you shouldn’t

export them. If you do, people might start to use them, and you don’t want that if it is

functionality you might change later on when you refine your package.

Making functions local, though, is pretty easy. You just don’t use the @export tag.

Then they are not exported from the package namespace when the package is loaded,

and then they cannot be accessed from outside the package.7

�File Load Order
Usually, it shouldn’t matter in how many files you write your package functionality. It is

usually easiest to find the right file to edit if you have one file for each (major) function or

class, but it is mostly a matter of taste.

It also shouldn’t matter in which files various functions are put—whether internal

or exported—since they will all be present in the package namespace. And if you stick to

using functions (and S3 polymorphic functions), the order in which files are processed

when building packages shouldn’t matter.

7 Except through the ::: operator, of course, but people who use this to access the internals of
your package know—or should know—that they are accessing implementation details that could
change in the future, so it is their own fault if their code is broken sometime down the line.

Chapter 13 Building an R Package

405

It does matter for S4 classes and such, and in case you ever run into it being an

issue, I will just quickly mention that package files are processed in alphabetical order.

Alphabetical for the environment you are in, though, since alphabetical order actually

depends on which language you are in, so you shouldn’t rely on this.

Instead, you can use Roxygen. It can also make sure that one file is processed before

another. You can use the @include field to make a dependency between a function and

another file:

#' @import otherfile.R

I have never had the need for this myself, and you probably won’t either, but now

you know.

�Adding Data to Your Package
It is not uncommon for packages to include some data, either data used by the package

implementation or more commonly data used for example purposes.

Such data goes in the data/ directory. You don’t have this directory in your freshly

made package, but it is where data should go if you want to include data in your package.

You cannot use any old format for your data. It has to be in a file that R can read,

typically .RData files. The easiest way to add data files, though, is using functionality

from the devtools package. If you don’t have it installed, then

install.packages("devtools")

and then you can use the use_data function to create a data file.

For example, I have a small test data set in my admixturegraph package that I made

using the command

bears <- read.table("bears.txt")

devtools::use_data(bears)

This data won’t be directly available once a package is loaded, but you can get it

using the data function:

library(admixturegraph)

data(bears)

bears

Chapter 13 Building an R Package

406

You cannot add documentation for data directly in the data file, so you need to

put it in an R file in the R/ directory. I usually have a file called data.R that I use for

documenting my package data.

For the bears data, my documentation looks like this:

#' Statistics for populations of bears

#'

#' Computed $f_4(W,X;Y,Z)$ statistics for different

#' populations of bears.

#'

#' @format A data frame with 19 rows and 6 variables:

#' \describe{

#' \item{W}{The W population}

#' \item{X}{The X population}

#' \item{Y}{The Y population}

#' \item{Z}{The Z population}

#' \item{D}{The D ($f_4(W,X;Y,Z)$) statistics}

#' \item{Z.value}{The blocked jacknife Z values}

#' }

#'

#' @source \url{http://onlinelibrary.wiley.com/doi/10.1111/

mec.13038/abstract}

#' @name bears

#' @docType data

#' @keywords data

�NULL
The NULL after the documentation is needed because Roxygen wants an object after

documentation comments, but it is the @name tag that tells it that this documentation

is actually for the object bears. The @docType tells it that this is data that we are

documenting.

The @source tag tells us where the data is from; if you have generated it yourself for

your package, you don’t need this tag.

The @format tag is the only complicated tag here. It describes the data, which is

a data frame, and it uses markup that looks very different from Roxygen markup text.

Chapter 13 Building an R Package

407

The documentation used by R is actually closer to (La)TeX than the formatting we have

been using, and the data description reflects this.

You have to put your description inside curly brackets marked up with \

description{}, and inside it, you have an item per data frame column. This has the

format \item{column name}{column description}.

�Building an R Package
In the frame to the upper right in RStudio, you should have a tab that says Build. Select it.

Inside the tab, there are three choices in the toolbar: Build & Reload, Check, and

More. They all do just what it says on the tin: the first builds and (re)loads your package,

the second checks it—this means running the consistency checks we saw earlier—and

the third gives you various other options in a drop-down menu.

You use Build & Reload to recompile your package when you have made changes

to it. It loads all your R code (and various other things) to build the package, and then it

installs it and reloads it into your terminal so you can test the new functionality.

A package you have built and installed this way can also be used in other projects

afterward.

When you have to send a package to someone, you can make a source package in the

More drop-down menu. It creates an archive file (.tar.gz).

�Exercises
In the last chapter, you wrote functions for working with shapes and polynomials.

Now try to make a package for each with documentation and correct exporting of the

functions. If you haven’t implemented all the functionality for those exercises, this is

your chance to do so.

Chapter 13 Building an R Package

409
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_14

CHAPTER 14

Testing and Package
Checking
Without testing, there is little guarantee that your code will work at all. You probably

test your code when you write it by calling your functions with a couple of chosen

parameters, but to build robust software, you will need to approach testing more

rigorously. And to prevent bugs from creeping into your code over time, you should test

often. Ideally, you should check all your code anytime you have made any changes to it.

There are different ways of testing software—software testing is almost a science in

itself—but the kind of testing we do when we want to make sure that the code we just

wrote is working as intended is called unit testing. The testing we do when we want to

ensure that changes to the code do not break anything is called regression testing.

�Unit Testing
Unit testing is called that because it tests functional units—in R, that essentially means

single functions or a few related functions. Whenever you write a new functional unit,

you should write test code for that unit as well. The test code is used to check that the

new code is actually working as intended, and if you write the tests such that they can be

run automatically later on, you have also made regression tests for the unit at the same

time. Whenever you make any changes to your code, you can run all your automated

tests, and that will check each unit and make sure that everything works as it did before.

Most programmers do not like to write tests. It is exciting to write new functionality,

but to probe new features for errors is a lot less interesting. However, you really do need

the tests, and you will be happy that you have them in the long run. Don’t delay writing

tests until after you have written all your functions. That is leaving the worst for last, and

that is not the way to motivate you to write the tests. Instead, you can write your unit tests

while you write your functions; some even suggest writing them before you write your

https://doi.org/10.1007/978-1-4842-8155-0_14#DOI

410

functions, something called test-driven programming. The idea here is that you write the

tests that specify how your function should work, and you know that your function works

as intended when it passes the tests you wrote for it.

I have never found test-driven programming that useful for myself. It doesn’t match

the way I work where I like to explore different interfaces and uses of a function while I am

implementing it, but some prefer to work that way. I do, however, combine my testing with

my programming in the sense that I write small scripts calling my functions and fitting

them together while I experiment with the functions. I write that code in a way that makes

it easy for me to take the experiments and then use them as automated tests for later.

Take, for example, the shape exercise we had earlier, where you had to write

functions for computing the area and circumference of different shapes. I have written a

version where I specify rectangles by width and height. A test of the two functions could

then look like this:

area <- function(x) UseMethod("area")

circumference <- function(x) UseMethod("circumference")

rectangle <- function(width, height) {

 structure(list(width = width, height = height),

 class = c("rectangle", "shape"))

}

area.rectangle <- function(x) x$height * x$width

circumference.rectangle <- function(x) 2 * x$height + 2 * x$width

r <- rectangle(width = 2, height = 4)

area(r)

[1] 8

circumference(r)

[1] 12

The area is 2 × 4 and the circumference is 2 × 2 + 2 × 4, so this looks fine. But I am

testing the code by calling the functions and looking at the printed output. I don’t want

to test the functions that way forever—I cannot automate my testing this way because I

then have to sit and look at the output of my tests. But they are okay tests. I just need to

automate them.

Chapter 14 Testing and Package Checking

411

�Automating Testing
All it takes to automate the test is to check the result of the functions in code rather than

looking at it, so code that resembles the following code would be an automated test:

r <- rectangle(width = 2, height = 4)

if (area(r) != 2*4) {

 stop("Area not computed correctly!")

}

if (circumference(r) != 2*2 + 2*4) {

 stop("Circumference not computed correctly!")

}

It is a little more code, yes, but it is essentially the same test, and this is something I

can run automatically later on. If it doesn’t complain about an error, then the tests are

passed, and all is good.

You can write your own test this way, put them in a directory called tests/ (which is

where R expects tests to live), and then run these tests whenever you want to check the

status of your code, that is, whenever you have made modifications to it.

Scripts in the tests/ directory will also be automatically run whenever you do a

consistency check of the package (something we return to later).

That is what happens when you click Check in the Build tab on the right in RStudio

or select Check Package in the Build menu, but it does a lot more than just run tests, so it

is not the most efficient way of running the tests.

There are some frameworks for formalizing this type of testing in R. I use a

framework called testthat. Using this framework, it is easy to run tests (without the full

package check) and easy to write tests in a more structured manner—of course at the

cost of having a bit more code to write for each test.

Install it now, if you do not have it already:

install.packages("testthat")

Chapter 14 Testing and Package Checking

412

�Using testthat
The testthat framework provides functions for writing unit tests and makes sure that

each test is run in a clean environment (so you don’t have functions defined in one

test leak into another because of typos and such). It needs a few modifications to your

DESCRIPTION file and your directory structure, but you can automatically make these

adjustments by running

usethis::use_testthat()

This adds testthat to the Suggests packages and makes the directory tests/testthat

and the file tests/testthat.R. You can have a look at the file, but it isn’t that interesting.

Its purpose is to make sure that the package testing—that runs all scripts in the tests/

directory—will also run all the testthat tests.

The testthat tests should all go in the tests/testthat directory and in files whose

names start with test. Otherwise, testthat cannot find them. The tests are organized

in contexts and tests to make the output of running the tests more readable—if a test

fails, you don’t just want to know that some test failed somewhere, but you want some

information about which test where, and that is provided by the contexts.

At the top of your test files, you set a context using the context function. It just gives

a name to the following batch of tests. This context is printed during testing, so you can

see how the tests are progressing, and if you keep to one context per file, you can see in

which files tests are failing.

The next level of tests is wrapped in calls to the test_that function. This function

takes a string as its first argument which should describe what is being tested and as its

second argument a statement that will be the test. The statement is typically more than

one single statement, and in that case, it is wrapped in {} brackets.

At the beginning of the test statements, you can create some objects or whatever

you need for the tests, and after that, you can do the actual tests. Here, testthat also

provides a whole suite of functions for testing if values are equal, almost equal, if an

expression raises a working, triggers an error, and much more. All these functions

start with expect_, and you can check the documentation for them in the testthat

documentation.

The test for computing the area and circumference of rectangles earlier would look

like this in a testthat test:

Chapter 14 Testing and Package Checking

413

context("Testing area and circumference")

test_that("we compute the correct area and circumference", {

 r <- rectangle(width = 2, height = 4)

 expect_equal(area(r), 2*4)

 expect_equal(circumference(r), 2*2 + 2*4)

})

Try to add this test to your shapes packet from the last chapter’s exercises and see

how it works. Try modifying it to trigger an error and see how that works.

You should always worry a little bit when testing equality of numbers, especially if

it is floating-point numbers. Computers do not treat floating-point numbers the way

mathematics treat real numbers. Because floating-point numbers have to be represented

in finite memory, the exact number you get will depend on how you compute it, even if

mathematically two expressions should be identical.

For the tests we do with the preceding rectangle, this is unlikely to be a problem.

There isn’t really that many ways to compute the two quantities we test for, and we

would expect to get exactly these numbers. But how about the quantities for circles?

circle <- function(radius) {

 structure(list(r = radius),

 class = c("circle", "shape"))

}

area.circle <- function(x) pi * x$r**2

circumference.circle <- function(x) 2 * pi * x$r

test_that("we compute the correct area and circumference", {

 radius <- 2

 circ <- circle(radius = radius)

 expect_equal(area(circ), pi * radius^2)

 expect_equal(circumference(circ), 2 * radius * pi)

})

Here, I use the built-in pi, but what if the implementation used something else?

Here, we are definitely working with floating-point numbers, and we shouldn’t ever test

for exact equality. Well, the good news is that expect_equal doesn’t. It actually tests

Chapter 14 Testing and Package Checking

414

for equality within some tolerance of floating-point uncertainty—that can be modified

using an additional parameter to the function—so all is good. To check exact equality,

you should instead use the function expect_identical, but it is usually expect_equal

you want.

�Writing Good Tests
The easiest way to get some tests written for your code is to take the experiments you

make when developing the code and translate them into unit tests like this right away—

or even put your checks in a unit test file, to begin with. By writing the tests at the same

time as you write the functions—or at least immediately after—you don’t build a backlog

of untested functionality (and it can be very hard to force yourself to go and spend

hours just writing tests later on). Also, it doesn’t really take that much longer to take the

informal testing you write to check your functions while you write them and put them

into a testthat file and get a formal unit test.

If this is all you do, then at least you know that the functionality that was tested when

you developed your code is still there in the future—or you will be warned if it breaks at

some point because their tests will start to fail.

But if you are writing tests anyway, you might as well be a little more systematic

about it. We always tend to check for the common cases—the cases we have in mind

when we write the function—and forget about special cases. Special cases are frequently

where bugs hide, however, so it is always a good idea to put them in your unit tests

as well.

Special cases are situations such as empty vectors and lists or NULL as a list. If you

implement a function that takes a vector as input, make sure that it also works if that

vector is empty. If it is not a meaningful value for the function to take, and you cannot

think of a reasonable value to return if the input is empty, then make sure the function

throws an error rather than just do something that it wasn’t designed to do.

For numbers, exceptional cases are often zero or negative numbers. If your functions

can handle these cases, excellent (but make sure you test it!); if they cannot handle these

special situations, throw an error.

For the shapes, it isn’t meaningful to have nonpositive dimensions, so in my

implementation, I raise an error if I get that, and a test for it, for rectangles, could look

like this:

Chapter 14 Testing and Package Checking

415

test_that("Dimensions are positive", {

 expect_error(rectangle(width = -1, height = 4))

 expect_error(rectangle(width = 2, height = -1))

 expect_error(rectangle(width = -1, height = -1))

 expect_error(rectangle(width = 0, height = 4))

 expect_error(rectangle(width = 2, height = 0))

 expect_error(rectangle(width = 0, height = 0))

})

When you are developing your code and corresponding unit tests, it is always a good

idea to think a little bit about what the special cases could be and make sure that you

have tests for how you choose to handle them.

�Using Random Numbers in Tests
Another good approach to testing is to use random data. With tests we manually set up,

we have a tendency to avoid pathological cases because we simply cannot think them

up. Random data doesn’t have this problem. Using random data in tests can, therefore,

be more efficient, but, of course, it makes the tests nonreproducible, which makes

debugging extremely hard.

You can, of course, set the random number generator seed. That makes the test

deterministic and reproducible, but defeats the purpose of having random tests, to

begin with.

I don’t really have a good solution to this, but I sometimes use this trick: I pick a

random seed and remember it, set the seed, and since I now know what the random

seed was, I can set it again if the test fails and debug from there.

You can save the seed by putting it in the name of the test. Then if the test fails, you

can get the seed from the error message:

seed <- as.integer(1000 * rnorm(1))

test_that(paste("The test works with seed", seed), {

 set.seed(seed)

 # test code that uses random numbers

})

Chapter 14 Testing and Package Checking

416

�Testing Random Results
Another issue that pops up when we are working with random numbers is what the

expected value that a function returns should be. If the function is not deterministic but

depends on random numbers, we don’t necessarily have an expected output.

If all we can do to test the result in such cases is statistical, then that is what we must

do. If a function is doing something useful, it probably isn’t completely random, and that

means that we can do some testing on it, even if that test can sometimes fail.

As a toy example, we can consider estimating the mean of a set of data by sampling

from it. It is a silly example since it is probably much faster to just compute the mean in

the first place in this example, but let’s consider it for fun anyway.

If we sample n elements, the standard error of the mean should be s n/ where s is

the sample standard error. This means that the difference between the true mean and

the sample mean should be distributed as N s n0, /() , and that is something we can

test statistically, if not deterministically.

In the following code, I normalize the distance between the two means by dividing it

with s n/ , which should make it distributed as Z ∼ N (0, 1). I then pick a threshold for

significance that should only be reached one time in a thousand. I actually pick one that

is only reached one in two thousand, but I am only testing the positive value for Z, so

there is another implicit one in two thousand at the negative end of the distribution:

seed <- as.integer(1000 * rnorm(1))

test_that(paste("Sample mean is close to true, seed", seed), {

 set.seed(seed)

 data <- rnorm(10000)

 sample_size <- 100

 samples <- sample(data, size = sample_size, replace = TRUE)

 true_mean <- mean(data)

 sample_mean <- mean(samples)

 standard_error <- sd(samples) / sqrt(sample_size)

 Z <- (true_mean - sample_mean) / standard_error

 threshold <- qnorm(1 - 1/2000)

 expect_less_than(abs(Z), threshold)

})

Chapter 14 Testing and Package Checking

417

This test is expected to fail one time in a thousand, but we cannot get absolute

certainty when the results are actually random. If this test failed a single time, I wouldn’t

worry about it, but if I see it fail a couple of times, it becomes less likely that it is just a

fluke, and then I would go and explore what is going on.

�Checking a Package for Consistency
The package check you can do by clicking Check in the Build tab on the right in RStudio,

or the Check Package in the Build menu, runs your unit tests but also a lot more.

It calls a script that runs a large number of consistency checks to make sure that

your package is in tip-top shape. It verifies that all your functions are documented, that

your code follows certain standards, that your files are in the right directories (and that

there aren’t files where there shouldn’t be1), that all the necessary meta-information

is provided, and many, many more things. You can check http://r-pkgs.had.co.nz/

check.html for a longer list of the tests done when a package is being checked.

You should try and run a check for your packages. It will write a lot of output, and at

the end, it will inform you how many errors, warnings, and notes it found.

In the output, every test that isn’t declared to be OK is something you should look

into. It might not be an error, but if the check raises any flags, you will not be allowed to

put it on CRAN—at least not without a very good excuse.

�Exercise
You have written two packages—for shapes and for polynomials—and your exercise

now is to write unit tests for these and get them to a point where they can pass a

package check.

1 If there are, you should have a look at .Rbuildignore. If you have a file just the place you want
it but the check is complaining, you can just add the file name to buildignore and it will stop
complaining. If you have a README.Rmd file, for example, it will probably complain, but then you
can add a line to .Rbuildignore that says ^README.Rmd$.

Chapter 14 Testing and Package Checking

http://r-pkgs.had.co.nz/check.html
http://r-pkgs.had.co.nz/check.html

419
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_15

CHAPTER 15

Version Control
Version control, in its simplest form, is used for tracking changes to your software. It

is also an efficient way of collaborating on software development since it often allows

several developers to make changes to the software and merge it with changes from

other developers. RStudio supports two version control systems, Subversion and git.

Of these, git is the most widely used, and although these things are very subjective of

course, I think that it is also the better system. It is certainly the system we will use here.

�Version Control and Repositories
There are two main purposes of using a version control system when you develop

software. One is simply to keep track of changes, such that you can later check when

which modifications were made to your source code, and if you discover that they were

in error, revert to earlier versions to try a different approach. It provides a log for your

software development that allows you to go back in time and try again when you find

that what you have done so far leads to some place you don’t want to go.

The other job a version control system typically does is that it makes it easier for you

to collaborate with others. Here, the idea is that you share some global repository of all

code and code changes—the log that the version control system keeps of all changes—

and each developer works on a copy when modifying the code and submits that code to

the repository when they are done changing the code. In early version control systems,

it was necessary to lock files when you wanted to modify them to prevent conflicts with

other developers who might also be editing the same files. These days version control

systems are more lenient when it comes to the concurrent editing of the same files, and

they will typically just merge changes as long as there are no changes in overlapping

lines (in which case you will have to resolve conflicts manually).

https://doi.org/10.1007/978-1-4842-8155-0_15#DOI

420

With this type of version control, different developers can work concurrently on

different parts of the code without worrying about conflicts. Should there be conflicts,

these will be recognized when you attempt to push changes to the global repository, and

you will be told to resolve the conflicts.

The version control system git allows even more concurrent and independent

development than this, by not even having a single global repository as such—at least

in theory. In practice, having a global repository for the official version of your software

is a good idea, and people do have that. The system just doesn’t enforce a single global

repository, but, instead, is built around having many repositories that can communicate

changes to each other.

Whenever you are working with git, you will have a local repository together with

your source code. You can use this repository as the log system mentioned earlier or

create branches for different features or releases as we will see later. You make changes

to your source code like normally and can then commit it to your local repository

without any conflict with other people’s changes. However, you can’t see their changes,

and they can’t see yours because you are working on different local repositories. To make

changes to another repository, you have to push your changes there, and to get changes

from another repository, you have to pull them from there.

This is where you typically use a global repository. You make changes to your local

repository while developing a feature, but when you are done, you push those changes

to the global repository. Or if you do not have permission to make changes to the global

repository—perhaps because you cloned someone else’s code and made changes to

that—ask someone who does have permission to pull your changes into the repository,

known as a “pull request.”

�Using Git in RStudio
This is all very theoretical, and if it is hard for me to write, it is probably also hard for you

to understand. Instead, let us see git in practice.

RStudio has some rudimentary tools for interacting with git: it lets you create

repositories, commit to them, and push changes to other repositories. It does not

support the full range of what you can do with git—for that, you need other tools or to

use the command-line version of git—but for day-to-day version control, it suffices for

most tasks.

Chapter 15 Version Control

421

�Installing Git
If you haven’t installed git already on your computer, you can download it from http://

git-scm.com. There should be versions for Windows, OS X, and Linux, although your

platform might have better ways of installing it.

For example, on a Debian/Ubuntu system, you should be able to use

sudo apt-get install git-core

while on a Red Hat/Fedora system, you should be able to use

sudo yum install git-core

You have to Google around to check how best to install git on other systems.

Once installed, you want to tell git who you are. It needs this to be able to tag changes

to your code with your name. It isn’t frightfully important if you are the only one working

on the code, but if more people are collaborating on the software development, it is

necessary to identify who made which changes. You tell git who you are by running the

following commands in a terminal:1

git config --global user.name "YOUR FULL NAME"

git config --global user.email "YOUR EMAIL ADDRESS"

You also might have to tell RStudio where the git command you installed can be

found. You do that by going to the Tools menu and select Global Options…. In the

window that pops up, you should find, on the icons on the left, a panel with Git/SVN,

and in there you can tell RStudio where the git command can be found.

The git you have installed is a command-line tool. RStudio has some GUI to work

with git, but you can’t do everything from the GUI. There are a few GUI tools that allow

you to do a lot more with git than RStudio, and I recommend getting one of those—I

often find it easier using them than the command lines myself since I am getting old and

forget the exact commands.

1 Not the R terminal. You need to run this in an actual shell terminal for it to work. In RStudio, next
to the R terminal, called Console, there should be a tab that says Terminal. That is where you want
to go. If you do not have that tab, there will be another way to get it on your system, but how you
do it depends on your platform. I can’t help you there. If you don’t know how to, it is time to fire
up Google once again.

Chapter 15 Version Control

http://git-scm.com/
http://git-scm.com/

422

Some good choices are

•	 Sourcetree (www.sourcetreeapp.com): For Windows and OS X

•	 GitHub Desktop (https://desktop.github.com): For Linux,

Windows, and OS X (for working with GitHub repositories)

•	 GitG (https://wiki.gnome.org/Apps/Gitg): For Linux

Sometimes, though, you do need to use the command-line version. There is a very

nice interactive web tutorial for the command-line git program here: https://try.

github.io/levels/1/challenges/1.

�Making Changes to Files, Staging Files,
and Committing Changes
If you checked that your project should use git when you created your package, you

should have a Git tab on the top right of RStudio, next to the Build tab. Click it.

In the main part of this panel, there is a list of files. There are three columns, staged,

status, and path; the latter is the names of modified files (or directories), see Figure 15-1.

If this is the first time you access this panel, the status will contain a yellow question

mark for all files you have modified since you created the object (including files that

RStudio made during the package creation). This status means that git doesn’t know

about these files yet. It can see that the files are there, but you have never told it what to

do about them. We will do something about that now.

Figure 15-1.  Git panel showing modified files

Chapter 15 Version Control

http://www.sourcetreeapp.com
https://desktop.github.com
https://wiki.gnome.org/Apps/Gitg
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1

423

The staged column has tick buttons for all the files. If you tick one, the status for that

file changes to a green “A.” This means that you have staged the file to be added to the git

repository. Do this for all of the files. When you do it for a directory, all the files in that

directory will also be staged for adding. This is also what we want for now.

The process of committing changes to git involves staging changes to be committed

before we actually commit them. What we just did was telling git that next time we

commit changes, we want these files added. Generally, committing will only affect

changes we have staged. This lets you commit only some of the changes you have

made to your source code, which can be helpful at times. You might have made several

changes to many files, but at some point, you only want to commit a particular bug fix

and not changes for a new feature that you are not quite done with yet. Staging only the

changes you want to commit allows for this.

Anyway, we have staged everything, and to commit the changes, you now have to

click the Commit button in the toolbar. This opens a new window that shows you the

changes you are about to commit and lets you write a commit message (on the upper

right). This message is what goes into the change log. Give a short and meaningful

description of your changes here. You will want it if you need to find the changes in your

log at some later time. Then click Commit and close the window. The Git panel should

now be empty of files. This is because there are no more changes since the last commit,

and the panel only shows the files that have changed between your current version of

your software and the version that is committed to git.

To do what we just did in the terminal instead, we would stage files using the git

add command:

git add filename

and we would commit staged changes using the git commit command:

git commit -m "message"

Now try modifying a file. After you have done that, you should see the file displayed

in the Git panel again, see Figure 15-2, this time with a status that is a blue “M.” This, not

surprisingly, stands for modified.

If you stage a file for commit here, the status is still “M,” but RStudio indicates that

it is now staged by moving the “M” to the left a little, see Figure 15-3. Not that you really

need that feedback, you can also see that it is staged from the ticked staged button

of course.

Committing modified files works exactly like committing added files.

Chapter 15 Version Control

424

In the terminal, you use git add for staging modified files as well. You don’t have a

separate command for staging adding new files and staging modified files. It is git add

for both.

�Adding Git to an Existing Project
If you didn’t create your project with a git repository associated with it—and you have

just learned about git now, so unless you have always just ticked the “git” button when

creating projects, you probably have many projects without git associated—you can still

set up git for an existing directory. You just have to do it on the command line.

Figure 15-2.  Modified files in the Git panel

Figure 15-3.  Modified files with one file staged for commit

Chapter 15 Version Control

425

Go to the directory where the project is and run the command:

git init

This sets up an empty repository. The files already in the directory can then be added

just as we saw earlier.

�Bare Repositories and Cloning Repositories
Most of the material in this section is not something you will ever have to worry about if

you use a repository server such as GitHub. There, creating a repository and interacting

with it is handled through a web interface, and you won’t have to worry about the

details, except for “cloning” a repository. We will create a so-called “bare” repository

manually here and see how we can communicate changes in different local repositories

through this.

The repositories we made when we created R projects or used git init in a

directory are local repositories used for version control of the source code in the project

directory. They are not really set up for collaboration between developers. While it is

technically possible to merge changes in one such repository into another, it is a bit

cumbersome and not something you want to deal with on an everyday basis.

To synchronize changes between different repositories, we want a bare repository.

This is just a repository where we don’t have the local source code included; it isn’t really

special, but it prevents you from making local changes to it, and you can only update it

with changes from other repositories.

To create it, we need to use the command-line version of git. Create a directory

where you want the repository, go in there, and type:

git --bare init

The repository now contains the various files that git needs to work with—your local

repositories also include these; they are just hidden in a subdirectory called .git/ when

you have the local source code as well.

We are not going to do anything with this repository directly. We just need it to see

how we work with other repositories connected to it.

Go to a directory where you want the working source code version of the repository

and make a copy of the bare repository by writing

git clone /path/to/bare/repository

Chapter 15 Version Control

426

You will get a warning that you have cloned an empty repository. We already know

that, so don’t worry about it. We are going to add to it soon.

To see how we communicate between repositories, though, you need to make

another working copy. You can either go to another directory and repeat the clone

command or clone the repository but give it another name with

git clone /path/to/bare/repository name

We now have two clones of the bare repository and can see how we can push

changes from a clone to the cloned repository and how we can pull updates in the

cloned repository into the clone.

As I wrote earlier, going through a bare repository is not the only way to move

changes from one repository to another, but it is the easiest way to work with git and the

one you will be using if you use a server such as GitHub. If you do, and we see later how

to, then GitHub will make the bare repository for you, and you just need to clone it to

somewhere on your own computer to work with it.

�Pushing Local Changes and Fetching and Pulling
Remote Changes
Go into one of the clones you just made. It will look like an empty directory because we

haven’t made any changes to it yet. In fact, it does contain a hidden directory, .git/,

where git keeps its magic, but we do not need to know about that.

Try to make some files, add them to git, and commit the changes:

touch foo bar

git add foo bar

git commit -m "added foo and bar"

If you now check the log

git log

you will see that you have made changes. If you look in the other clone of the bare

repository, though, you don’t yet see those changes.

There are two reasons for this: (1) we have only made changes to the cloned

repository but never pushed them to the bare repository the two clones are connected

Chapter 15 Version Control

427

to, and (2) even if we had done that, we haven’t pulled the changes down into the

other clone.

The first of these operations is done using git push. This will push the changes you

have made in your local repository up to the repository you cloned it from:2

git push

You don’t need to push changes up to the global (bare) repository after each commit;

you probably don’t want to do that, in fact. The idea with this workflow is that you make

frequent commits to your local code to make the version control fine-grained, but

you push these changes up when you have finished a feature—or at least gotten it to a

stage where it is meaningful for others to work on your code. It isn’t a major issue if you

commit code that doesn’t quite work to your local repository—although generally, you

would want to avoid that—but it will not be popular if you push code that doesn’t work

onto others.

After pushing the changes in the first cloned repository, they are still not visible in

the second repository. You need to pull them down.

There is a command

git fetch

that gets the changes made in the global repository and makes it possible for you to

check them out before merging them with your own code. This can be useful because

you can then check it out and make sure it isn’t breaking anything for you before you

merge it with your code. After running the fetch command, you can check out branches

from the global repository, make changes there, and merge them into your own code

using the branching mechanism described in the following. In most cases, however, we

just want to merge the changes made to the global repository into our current code, and

you don’t really want to modify it before you do so. In that case, the command

git pull

2 If we didn’t have a bare repository we had cloned both repositories from, we could still have
connected them to see changes made to them, but pushing changes would be much more
complicated. With a bare repository that both are cloned from, pushing changes upward is as easy
as git push.

Chapter 15 Version Control

428

will both fetch the latest changes and merge them into your local repository in a single

operation. This is by far the most common operation for merging changes others have

made and pushed to the global repository with your own.

Go to the repository clone without the changes and run the command. Check that

you now have the changes there.

The general workflow for collaborating with others on a project is to make changes

and commit them to your own repository. You use this repository to make changes you

are not ready to share yet, and you are the only one who can see them. Then, when

you are ready to share with your collaborators, you can push the changes to the shared

repository, and when you need changes others have made, you can pull them.

If you try to push to the global repository, and someone else has pushed changes

that you haven’t pulled yet, you will get an error. Don’t worry about that. Just pull the

changes; after that, you can push your changes.

If you pull changes into your repository, and you have committed changes there that

haven’t been pushed yet, the operation becomes a merge operation, and this requires a

commit message. There is a default message for this that you can just use.

You have your two repositories to experiment with, so try to make various variations

of pushing and pulling changes into a repository where you have committed changes.

The preceding explanation will hopefully make a lot more sense for you after you have

experimented a bit on your own.

RStudio has some basic support for pushing and pulling. If you make a new RStudio

project and choose to put it in an existing directory, you can try to make one that sits in

your cloned repositories. If you do this, you will find that the Git panel now has two new

buttons: push and pull.

�Handling Conflicts
If it happens that someone has pushed changes to the global repository that overlap

lines that you have been editing in your local repository, you will get a so-called conflict

when you pull changes.

Git will inform you about this, whether you pull from RStudio or use the command

line. It will tell you which files are involved, and if you open a file with a conflict, you will

see that git has marked the conflict with text that looks like this:

<<<<<<< HEAD

your version of the code

Chapter 15 Version Control

429

=======

the remote version of the code

>>>>>>> 9a0e21ccd38f7598c05fe1e21e2b32091bb0839b

It shows you the version of the changes you have made and the version of the

changes that are in the global repository. Because there are changes both places, git

doesn’t know how to merge the remote repository into your repository in the pull

command.

You have to go into the file and edit it so it contains the version you want, which

could be a merge of the two revisions. Get rid of the <<<</====/>>>> markup lines when

you are done making the changes.

Once you have edited the file with conflicts, you need to stage it—running the git

add filename on the command line or ticking the file in the staged column in the Git

plane in RStudio—and commit it. This tells git that you have handled the conflict and

will let you push your own changes if you want to do this.

�Working with Branches
Branches are a feature of most version control systems, which allow you to work on

different versions of your code at the same time. A typical example is having a branch

for developing new features and another branch for the stable version of your software.

When you are working on implementing new features, the code is in a state of flux, the

implementation of the new feature might be buggy, and the interface to the feature could

be changing between different designs. You don’t want people using your package to use

such a version of your software—at least not without being aware that the package they

are using is unstable and that the interface they are using could be changed at a moment’s

notice. So you want the development code to be separate from the released code.

If you just made releases at certain times and then implemented new features

between making releases, that wouldn’t be much of an issue. People should be using the

version you have released and not commits that fall between released versions. But the

world is not that simple if you make a release with a bug in it—and let’s face it, that is not

impossible—and you want to fix that bug when it is discovered. You probably don’t want

to wait with fixing the bug until you are done with all the new features you are working.

So you want to make changes to the code in the release. If there are more bugs, you will

commit more bug fixes onto the release code. And all this while you are still making

changes to your development code. Of course, those bug fixes you make to the released

Chapter 15 Version Control

430

code, you also want to merge into the development code. After all, you don’t want the

next release to reintroduce bugs you have already fixed.

This is where branches come in. RStudio has very limited support for branches, and

it doesn’t help you create them.3 For that, we need to use the command line.

To create a branch, you use the command git branch name, so to create a

development branch—called develop for lack of imagination—we use

git branch develop

This just creates the branch. We are not magically moved to the branch or anything.

It just tells git that we have a new branch (and it branches off our current position in the

list of commits done to the repository).

In RStudio, we can see which branch we are on in the Git panel, see Figure 15-4. In

the project you have experimented on so far—and any project you have made where you

created a git repository with git init or by ticking the git selection in the dialog window

when you created the project—you will be on branch master. This is the default branch

and the branch that is typically used for released versions.

If you click the branch drop-down in the Git panel, you get a list of the branches you

have in your repository, see Figure 15-5. You will have a branch called origin/master.

This is the master branch on the central repository and the one you merge with when

pulling data. Ignore it; it is not important for us. If you ran the git branch develop

command, you should also have a develop branch. If you select it, you move to that

branch, see Figure 15-6.

3 Some of the other GUIs for working with git have excellent support for working with branches.
You should check them out.

Figure 15-4.  Git panel when the code is on the master branch

Chapter 15 Version Control

431

You can also get a list of branches on the command line with

git branch

and you can switch to a branch using the command4

git checkout branchname

4 You can also combine the creation and checkout of a branch using git checkout -b
branchname if you want. That creates the branch first and then checks it out. To change between
branches later on, though, you need the checkout command without option -b.

Figure 15-5.  Selecting a branch to switch to

Figure 15-6.  After switching to branch develop

Chapter 15 Version Control

432

If you switch to the develop branch, you will see that the Pull and Push buttons are

grayed out. You can make changes to your code and commit them when on a given

branch, but you cannot (yet) push and pull. We will get to that shortly.

If you make some changes to your code and commit them while on branch develop

and then switch to branch master, you will see that those changes are not there. You

can see that both by looking at the files and by looking at the git history (using git

log or clicking the History button in the Git panel). Similarly, changes you make in

master will not show up in develop. This is exactly what we want. The two branches are

independent, and we can switch between working on the development branch and the

release version of our software by switching branches.

When you have made changes to one branch, and you want those changes also to be

added to another, you need to merge branches. Actually, you need to merge one branch

into another; it is not a symmetric operation. To do this, check out the branch you want

to modify and run the command:

git merge otherbranch

to merge the changes in “otherbranch” into the current branch. So, for example, if you

have made a bug fix to the master branch and want to merge it into the develop branch,

you would do

git checkout develop

git merge master

If a merge causes conflicts, you resolve them the same was as if a pull causes

conflicts, not surprisingly since a pull command is actually just a shortcut for fetching

and merging.

�Typical Workflows Involve Lots of Branches
Git is optimized for working with lots of branches (unlike some version control systems,

where creating and merging branches can be rather slow operations). This is reflected in how

many people use branches when working with git: you create many branches and work on a

graph of different versions of your code and merge them together whenever you need to.

Having a development branch and a master branch is a typical core of the repository

structure, but it is also very common to make a branch for each new feature you

implement. Typically, you branch these off the develop branch when you start working

on the feature and merge them back into develop when you are done. It is also common

Chapter 15 Version Control

433

to have a separate branch for each bug fix—typically branched off master when you

start implementing the fix and then branched back into master as well as into develop

when you are done. See Atlassian’s Git Tutorial (www.atlassian.com/git/tutorials/

comparing-workflows) for different workflows that exploit having various branches.

If you create a lot of branches for each feature or bug fix, you don’t want to keep them

around after you are done with them—unlike the develop and master branches that you

probably want to keep around forever. To delete a branch, you use the command:

git branch -d branchname

�Pushing Branches to the Global Repository
You can work on as many branches as you like in your local repository, but they are

not automatically found in the global repository. The develop branch we made earlier

exists only in the local repository, and we cannot push changes made to it to the global

repository—we can see this in RStudio since the push (and pull) buttons are grayed out.

If you want a branch to exist also on the global repository—so you can push to it, and

so collaborators can check it out—you need to create a branch in that repository and set

up a link between your local repository and the global repository.

You can do that for the develop branch by checking it out and running the

command:

git push --set-upstream origin develop

This pushes the changes and also remembers for the future that branch is linked

to the develop branch in origin. The name origin refers to the repository you cloned

when you created this repository.5

Whether you want a branch you are working on also to be found in the global

repository is a matter of taste. If you are working on a feature that you want to share

when it is completed but not before, you probably don’t want to push that branch to the

global repository. For the develop and master branches, though, you definitely want

those to be in the global repository.

5 It is slightly more complex than this; you can have links to other repositories and pull from them
or push to them (if they are bare repositories), and origin is just a default link to the one you
cloned for. It is beyond the scope of these notes, however, to go into more details. If you always
work with a single global repository that you push to and pull from, then you don’t need to know
any more about links to remote repositories.

Chapter 15 Version Control

http://www.atlassian.com/git/tutorials/comparing-workflows
http://www.atlassian.com/git/tutorials/comparing-workflows

434

�GitHub
GitHub (https://github.com) is a server for hosting git repositories. You can think of it

as a place to have your bare/global repository with some extra benefits. There are ways

for automatically installing packages that are hosted on GitHub, there is web support for

tracking bugs and feature requests, and there is support for sharing fixes and features in

hosted projects through a web interface.

To use it, you first need to go to the home page and sign up. This is free, and you just

need to pick a username and a password.

Once you have created an account on GitHub, you can create new repositories by

clicking the big + in the upper-right corner of the home page, see Figure 15-7.

Clicking it, you get to a page where you can choose the name of the repository, create

a short description, pick a license, and decide whether you want to add a README.md

file to the repository. I recommend that you always have a README.md file—it works

as the documentation for your package since it is displayed on the home page for the

repository at GitHub. You probably want to set up a README.Rmd file to generate it,

though, as we saw in Chapter 13. For now, though, you might as well just say yes to have

one generated.

Once you have generated the repository, you go to a page with an overview of the

code in the repository, see Figure 15-8.

Figure 15-7.  Button to create a new repository at the GitHub home page. Found
on the upper right of the home page

Chapter 15 Version Control

https://github.com
https://doi.org/10.1007/978-1-4842-8155-0_13

435

You can explore the web page and the features implemented there later—it is a good

idea to know what it supports you doing—but for now we can just use the repository

here as a remote global repository. To clone it, you need the address in the field next to

the button that says SSH. In my test repository, it is git@github.com:mailund/test.git.

This is an address you can use to clone the repository using the “ssh” protocol:

git clone git@github.com:mailund/test.git

This is a protocol that you will have access to on many machines, but it involves you

having to deal with a public/private key protocol. Check the documentation for setting

up the ssh key at GitHub for learning more about this (https://help.github.com/

articles/generating-ssh-keys/). It is mostly automated by now, and you should be

able to set it up just by making a push and answering yes to the question you get there.

It is not the easiest protocol to work with, though, if you are on a machine that has

HTTPS—the protocol used by your web browser for secure communication. You will

almost certainly have that on your own machine, but depending on how firewalls are set

up, you might not have access to it on computer clusters and such, and then you need to

use the ssh protocol. To use HTTPS instead of SSH, just click the SSH button drop-down

Figure 15-8.  New GitHub repository containing only a README.md file

Chapter 15 Version Control

https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/

436

and pick HTTPS instead. This gives you a slightly different address—in my repository,

I get https://github.com/mailund/test.git—and you can use that to clone instead:

git clone https://github.com/mailund/test.git

If nothing goes wrong with this, you should be able to use the cloned repository just

as the repositories we looked at earlier where we made our own bare/global repository.

You can also check out the repository and make an RStudio project at the same time

by choosing New Project… in the File menu in RStudio and selecting Version Control

(the third option) in the dialog that pops up. In the next window, choose Git and then

use the HTTPS address as the Repository URL.

�Moving an Existing Repository to GitHub
If you have already used git locally in a project and want to move it to GitHub, there is a

little more you must do—at least if you want to move your repository including all the

history stored in it and not just the current version of the source code in it.

First, you need to make a bare version of your repository. This is, as we saw a while

ago, just a version of the repository without source code associated.

If your repository is called repo, we can make a bare version of it, called repo.git, by

cloning it:

git clone --bare repo repo.git

To move this to GitHub, create an empty repository there and get the HTTPS address

of it. Then go into the bare repository we just made and run the following command:

cd repo.git

git push --mirror <https address at github>

Now just delete the bare repository we used to move the code to GitHub and clone

the version from GitHub. Now you have a version from there that you can work on:

rm -rf repo.git

git clone <https address at github>

Chapter 15 Version Control

https://github.com/mailund/test.git—and

437

�Installing Packages from GitHub
A very nice extra benefit you get from having your R packages on GitHub—in addition

to having version control—is that other people can install your package directly from

there. The requirements for putting packages on CRAN are much stricter than for putting

R packages on GitHub, and you are not allowed to upload new versions to CRAN very

often, so for development versions of your R package, GitHub is an excellent alternative.

To install a package from GitHub, you need to have the devtools package installed:

install.packages("devtools")

after which you can install a package named “packagename” written by GitHub user

“username” with the command

devtools::install_github("username/packagename")

�Collaborating on GitHub
The repositories you make on GitHub are by default only editable by yourself. Anyone

can clone them to get the source code, but only you can push changes to the repository.

This is, of course, useful to prevent random people from messing with your code but

prevents collaborations.

One way to collaborate with others is to give them write permissions to the

repository. On the repository home page, you must select the Settings entry in the

toolbar and then pick Collaborators in the menu on the left. After that, you get to a

page where you can add collaborators identified by their user account on GitHub.

Collaborators can push changes to the repository just as you can yourself. To avoid

too much confusion, when different collaborators are updating the code, it is useful to

have some discipline in how changes are merged into the master (and/or the develop)

branch. One approach that is recommended and supported by GitHub is to make

changes in separate branches and then use so-called pull requests to discuss changes

before they are merged into the main branches.

Chapter 15 Version Control

438

�Pull Requests
The workflow for making pull requests is to implement your new features or bug fixes

or whatever you are implementing on separate branches from develop or master, and

instead of merging them directly, you create what is called a pull request. You can start

a pull request by switching to the branch on the repository home page and selecting the

big green New pull request button, or if you just made changes, you should also have a

green button saying Compare & pull request that lets you start a pull request.

Clicking the button takes you to a page where you can name the pull request and

write a description of what the changes in the code you have made are doing. You also

decide which branch you want to merge the pull into; above the title you give the pull

request, you can select two branches, the one you want to merge into (base) and the

branch you have your new changes on (compare). You should pick the one you branched

out of when you made the new branch here. After that, you can create the pull request.

The only thing this is really doing is that it creates a web interface for having a

discussion about the changes you have made. It is possible to see the changes on the

web page and comment on them and to make comments to the branch in general. At

the same time, anyone can check out the branch and make their own modifications to it.

As long as the pull request is open, the discussion is going, and people can improve on

the branch.

When you are done, you can merge the pull request (using the big green Merge pull

request button you can find on the web page that contains the discussion about the pull

request).

�Forking Repositories Instead of Cloning
Making changes to separate branches and then making pull requests to merge in the

changes still requires writing access to the repository. This is excellent for collaborating

with a few friends, but not ideal for getting fixes from random strangers—or for making

fixes to packages other people write, people who won’t necessarily want to give you full

write access to their software.

Not to worry, it is still possible to collaborate with people on GitHub without having

write access to each other’s repositories. The way that pull requests work, there is

actually no need for branches to be merged to be part of the same base repository. You

can merge branches from anywhere if you want to.

Chapter 15 Version Control

439

If you want to make changes to a repository that you do not have write access to, you

can clone it and make changes to the repository you get as the clone, but you cannot

push those changes back to the repository you cloned it from. And other users on GitHub

can’t see the local changes you made (they are on your personal computer, not on the

GitHub server). What you want is a repository on GitHub that is a clone of the repository

you want to modify and that is a bare repository, so you can push changes into it. You

then want to clone that repository to your own computer. Changes you make to your own

computer can be pushed to the bare repository you have on GitHub—because it is a bare

repository and because you have writing access to it—and other users on GitHub can see

the repository you have there.

Making such a repository on GitHub is called forking the repository. Technically,

it isn’t different from cloning—except that it is a bare repository you make—and the

terminology is taking from open source software where forking a project means making

your own version and developing it independent of previous versions.

Anyway, whenever you go to a repository home page on GitHub, you should see a

button at the top right—to the right of the name and branch of the repository you are

looking at—that says Fork. Clicking that will make a copy of the repository that you have

writing access to. You cannot fork your own repositories—I’m not sure why you are

not allowed to, but in most cases, you don’t want to do that anyway, so it is not a major

issue—but you can fork any repository at other users’ accounts.

Once you have made the copy, you can clone it down to your computer and make

changes to it, as you can with any other repositories. The only way this repository is

different from a repository you made yourself is that when you make pull requests,

GitHub knows that you forked it off another repository. So when you make a pull request,

you can choose not only the base and compare branches but also the base fork and the

head fork—the former being the repository you want to merge changes into, and the

latter the repository where you made your changes. If someone forks your project and

you make a pull request in the original repository, you won’t see the base fork and head

fork choices by default, but clicking the link compare across forks when you make pull

requests will enable them there as well.

If you make a pull request with your changes to someone else’s repository, the

procedure is exactly the same as when you make a pull request on your own projects,

except that you cannot merge the pull request after the discussion about the changes.

Only someone with writing permission to the repository can do that.

Chapter 15 Version Control

440

The same goes if someone else wants to make changes to your code. They can start

a pull request with their changes into your code, but only you can decide to merge the

changes into the repository (or not) following the pull discussion.

This is a very flexible way of collaborating—even with strangers—on source code

development and one of the great strengths of git and GitHub.

�Exercises
Take any of the packages you have written earlier and create a repository on GitHub to

host it. Push your code there.

Chapter 15 Version Control

441
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_16

CHAPTER 16

Profiling and Optimizing
In this second chapter, we will briefly consider what to do when you find that your code

is running too slow and, in particular, how to figure out why it is running too slow.

Before you start worrying about your code’s performance, though, it is important to

consider if it is worth speeding it up. It takes you time to improve performance, and it is

only worth it if the improved performance saves you time when this extra programming

is included. For an analysis you can run in a day, there is no point in spending one day

making it faster, even if it gets much faster, because you still end up spending the same

time, or more, to finally get the analysis done.

Any code you just need to run a few times during an analysis is usually not worth

optimizing. We rarely need to run an analysis just once—optimistically, we might hope

to, but, in reality, we usually have to run it again and again when data or ideas change—

but we don’t expect to run it hundreds or thousands of times. So even if it will take a few

hours to rerun an analysis, your time is probably better spent working on something else

while it runs. It is rarely worth it to spend a lot of time making it faster. The CPU’s time is

cheap compared to your own.

If you are developing a package, though, you often do have to consider performance

to some extent. A package, if it is worth developing, will have more users, and the total

time spent on running your code makes it worthwhile, up to a point, to make that

code fast.

�Profiling
Before you can make your code faster, you need to figure out why it is slow, to begin with.

You might have a few ideas about where the code is slow, but it is actually surprisingly

hard to guess at this. Quite often, I have found, it is nowhere near where I thought it

would be, that most of the time is actually spend. On two separate occasions, I have tried

working really hard on speeding up an algorithm only to find out later that the reason

https://doi.org/10.1007/978-1-4842-8155-0_16#DOI

442

my program was slow was the code used for reading the program’s input. The parser

was slow. The algorithm was lightning fast in comparison. That was in C, where the

abstractions are pretty low level and where it is usually pretty easy to glance from the

code how much time it will take to run. In R, where the abstractions are very high level, it

can be extremely hard to guess how much time a single line of code will take to run.

The point is, if you find that your code is slow, you shouldn’t be guessing at where

it is slow. You should measure the running time and get to know for sure. You need

to profile your code to know which parts of it are taking up most of the running time.

Otherwise, you might end up optimizing code that uses only a few percentages of the

total running time and leaving the real time wasters alone.

In typical code, there are only a few real bottlenecks. If you can identify these and

improve their performance, your work will be done. The rest will run fast enough.

Figuring out where those bottlenecks are requires profiling.

We are going to use the package profvis for profiling. RStudio has built-in

support for this package, and you should have a Profile item in your menu bar. That

is a convenient interface to the package, but in case you want to use it from outside of

RStudio, I will just use the package directly here.

�A Graph-Flow Algorithm
For an example of some code, we could imagine we would wish to profile we consider

a small graph algorithm. It is an algorithm for smoothing out weights put on nodes

in a graph. It is part of a method used for propagating weights of evidence for nodes

in a graph and is something we’ve been using to boost searching for disease-gene

associations using gene-gene interaction networks. The idea is that if a gene is a

neighbor to another gene in this interaction network, then it is more likely to have a

similar association with a disease as the other gene. So genes with known association are

given an initial weight, and other genes get a higher weight if they are connected to such

genes than if they are not.

The details of what the algorithm is used for is not so important, though. All it

does is to smooth out weights between nodes. Initially, all nodes, n, are assigned

a weight w(n). Then in one iteration of smoothing, this weight is updated as

′() = () + −()
()

()
∈ ()
∑w n w n

N n
w v

v N n

α α1 1
 where α is a number between zero and one and

N(n) denotes the neighbors of node n. If this is iterated enough times, the weights in a

Chapter 16 Profiling and Optimizing

443

graph become equal for all connected nodes in the graph, but if stopped earlier, it is just

a slight smoothing, depending on the value of α.

To implement this, we need both a representation of graphs and the smoothing

algorithm. We start with representing the graph. There are many ways to do this, but a

simple format is a so-called incidence matrix. This is a matrix that has entry Mi,j = 0 if

nodes i and j are not directly connected and Mi,j = 1 if they are. Since we want to work on

a nondirected graph in this algorithm, we will have Mi,j = Mj,i.

We can implement this representation using a constructor function that looks

like this:

graph <- function(n, edges) {

 m <- matrix(0, nrow = n, ncol = n)

 no_edges <- length(edges)

 if (no_edges >= 1) {

 for (i in seq(1, no_edges, by = 2)) {

 m[edges[i], edges[i+1]] <- m[edges[i+1], edges[i]] <- 1

 }

 }

 structure(m, class = "graph")

}

Here, I require that the number of nodes is given as an argument n and that edges

are specified as a vector where each pair corresponds to an edge. This is not an optimal

way of representing edges if graphs should be coded by hand, but since this algorithm

is supposed to be used for very large graphs, I assume we can write code elsewhere for

reading in a graph representation and creating such an edge vector.

There is not much to the function. It just creates the incidence matrix and then

iterates through the edges to set it up. There is a special case to handle if the edge vector

is empty. Then the seq() call will return a list going from one to zero. So we avoid this.

We might also want to check that the length of the edge vector is a multiple of two, but I

haven’t bothered. I am going to assume that the code that generates the vector will take

care of that.

Even though the graph representation is just a matrix, I give it a class in case I want to

write generic functions for it later.

Chapter 16 Profiling and Optimizing

444

With this graph representation, the smoothing function can look like this:

smooth_weights <- function(graph, node_weights, alpha) {

 if (length(node_weights) != nrow(graph))

 stop("Incorrect number of nodes")

 no_nodes <- length(node_weights)

 new_weights <- vector("numeric", no_nodes)

 for (i in 1:no_nodes) {

 neighbour_weights <- 0

 n <- 0

 for (j in 1:no_nodes) {

 if (i != j && graph[i, j] == 1) {

 neighbour_weights <- neighbour_weights + node_weights[j]

 n <- n + 1

 }

 }

 if (n > 0) {

 new_weights[i] <-

 alpha * node_weights[i] +

 (1 - alpha) * neighbour_weights / n

 } else {

 new_weights[i] <- node_weights[i]

 }

 }

 new_weights

}

It creates the new weights vector we should return and then iterate through the

matrix in nested loops. If the incidence matrix says that there is a connection between i

and j, and i ≠ j—we don’t want to add a node’s own weight if there is a self-loop—we use

it to calculate the mean. If there is something to update—which there will be if there are

any neighbors to node i—we do the update.

The code is not particularly elegant, but it is a straightforward implementation of

the idea.

Chapter 16 Profiling and Optimizing

445

To profile this code, we use the profvis() function from profvis. It takes an

expression as its single argument, so to profile more than a single function call, we give it

a code block, translating the sequence of statements into an expression.

I just generate a random graph with 1000 nodes and 300 edges and random weights.

We are not testing the code here, only profiling it. However, if this was real code and not

just an example, we should, of course, have unit tests—this is especially important if

you start rewriting code to optimize it. Otherwise, you might end up getting faster but

incorrect code for all your efforts.

profvis::profvis({

 n <- 1000

 nodes <- 1:n

 edges <- sample(nodes, 600, replace = TRUE)

 weights <- rnorm(n)

 g <- graph(n, edges)

 smooth_weights(g, weights, 0.8)

})

Figure 16-1.  Window showing profile results

Chapter 16 Profiling and Optimizing

446

(If you are using RStudio, you get the same effect by highlighting the lines from n <-

1000 to smooth_weights(...) and selecting Profile Selected Line(s) in the Profile menu.)

Running this code will open a new tab showing the results; see Figure 16-1. The top

half of the tab shows your code with annotations showing memory usage first and time

usage second as horizontal bars. The bottom half of the window shows the time usage

plus a call stack.

We can see that the total execution took about 1800ms. The way to read the graph

is that, from left to right, you can see what was executed at any point in the run, with

functions called directly in the code block we gave profvis() at the bottom and code

they called directly above that and further function calls stacked even higher.

Figure 16-2.  Highlighting executing code from the profiling window

Chapter 16 Profiling and Optimizing

447

We can also see that by far the most time was spent in the smooth_weights()

function since that stretches almost all the way from the leftmost part of the graph and all

the way to the rightmost. This is what we would expect, of course, but as I’ve mentioned,

sometimes profile results can surprise you.

If you move your mouse pointer into the window, either in the code or in the bottom

graph, it will highlight what you are pointing at; see Figure 16-2. You can use this to

figure out where the time is being spent.

In this particular case, it looks like most of the time is spent in the inner loop,

checking if an edge exists or not. Since this is the inner part of a double loop, this might

not be so surprising. The reason that it is not all the body of the inner loop but the if

statement is probably that we check the if expression in each iteration, but we do not

execute its body unless it is true. And with 1000 nodes and 300 edges, it is only true with

probability around 300/(1000*1000) = 3 × 10-4 (it can be less since some edges could be

identical or self-loops).

Now if we had a performance problem with this code, this is where we should

concentrate our optimization efforts. With 1000 nodes, we don’t really have a problem.

1800ms is not a long time, after all. But the application I have in mind has around 30,000

nodes, so it might be worth optimizing a little bit.

If you need to optimize something, the first you should be thinking is: Is there a

better algorithm or a better data structure? Algorithmic improvements are much more

likely to give substantial performance improvements compared to just changing details

of an implementation.

In this case, if the graphs we are working on are sparse, meaning they have few

actual edges compared to all possible edges, then an incidence matrix is not a good

representation. We could speed the code up by using vector expressions to replace

the inner loop and hacks like that, but we are much better off considering another

representation of the graph.

Here, of course, we should first figure out if the simulated data we have used

is representative of the actual data we need to analyze. If the actual data is a dense

graph and we do performance profiling on a sparse graph, we are not getting the right

impression of where the time is being spent and where we can reasonably optimize. But

the application I have in mind, I pigheadedly claim, is one that uses sparse graphs.

With sparse graphs, we should represent edges in a different format. Instead of a

matrix, we will represent the edges as a list where for each node we have a vector of that

node’s neighbors.

Chapter 16 Profiling and Optimizing

448

We can implement that representation like this:

graph <- function(n, edges) {

 neighbours <- vector("list", length = n)

 for (i in seq_along(neighbours)) {

 neighbours[[i]] <- vector("integer", length = 0)

 }

 no_edges <- length(edges)

 if (no_edges >= 1) {

 for (i in seq(1, no_edges, by = 2)) {

 n1 <- edges[i]

 n2 <- edges[i+1]

 neighbours[[n1]] <- c(n2, neighbours[[n1]])

 neighbours[[n2]] <- c(n1, neighbours[[n2]])

 }

 }

 for (i in seq_along(neighbours)) {

 neighbours[[i]] <- unique(neighbours[[i]])

 }

 structure(neighbours, class = "graph")

}

We first generate the list of edge vectors, then we initialize them all as empty integer

vectors. We then iterate through the input edges and update the edge vectors. The way

we update the vectors is potentially computationally slow since we force a copy of the

previous vector in each update, but we don’t know the length of these vectors a priori,

so this is the easy solution, and we can worry about it later if the profiling says it is a

problem.

Now, if the edges we get as input contain the same pair of nodes twice, we will get

the same edge represented twice. This means that the same neighbor to a node will be

used twice when calculating the mean of the neighbor weights. If we want to allow such

multi-edges in the application, that is fine, but we don’t, so we explicitly make sure that

the same neighbor is only represented once by calling the unique() function on all the

vectors at the end.

Chapter 16 Profiling and Optimizing

449

With this graph representation, we can update the smoothing function to this:

smooth_weights <- function(graph, node_weights, alpha) {

 if (length(node_weights) != length(graph))

 stop("Incorrect number of nodes")

 no_nodes <- length(node_weights)

 new_weights <- vector("numeric", no_nodes)

 for (i in 1:no_nodes) {

 neighbour_weights <- 0

 n <- 0

 for (j in graph[[i]]) {

 if (i != j) {

 neighbour_weights <- neighbour_weights + node_weights[j]

 n <- n + 1

 }

 }

 if (n > 0) {

 new_weights[i] <-

 alpha * node_weights[i] +

 (1 - alpha) * neighbour_weights / n

 } else {

 new_weights[i] <- node_weights[i]

 }

 }

 new_weights

}

Very little changes. We just make sure that j only iterates through the nodes we know

to be neighbors of node i.

The profiling code is the same as before, and if we run it, we get the results shown in

Figure 16-3.

Chapter 16 Profiling and Optimizing

450

We see that we have gotten a substantial performance improvement. The execution

time is now 20ms instead of 1800ms. We can also see that half the time is spent on

constructing the graph and only half on smoothing it. In the construction, nearly all the

time is spent in unique(), while in the smoothing function, the time is spent in actually

computing the mean of the neighbors.

It should be said here, though, that the profiler works by sampling what code is

executing at certain time points. It doesn’t have an infinite resolution; it samples every

10ms as it says at the bottom left, so, in fact, it has only sampled twice in this run.

The result we see is just because the samples happened to hit those two places in the

graph construction and the smoothing, respectively. We are not actually seeing fine

details here.

Figure 16-3.  Profiling results after the first change

Chapter 16 Profiling and Optimizing

451

To get more details, and get closer to the size the actual input is expected to be, we

can try increasing the size of the graph to 10,000 nodes and 600 edges:

profvis::profvis({

 n <- 10000

 nodes <- 1:n

 edges <- sample(nodes, 1200, replace = TRUE)

 weights <- rnorm(n)

 g <- graph(n, edges)

 smooth_weights(g, weights, 0.8)

})

The result of this profiling is shown in Figure 16-4.

Figure 16-4.  Profiling results with a larger graph

Chapter 16 Profiling and Optimizing

452

To our surprise, we see that for the larger graph we are actually spending more time

constructing the graph than smoothing it. We also see that this time is spent calling the

unique() function.

Now, these calls are necessary to avoid duplicated edges, but they are not necessarily

going to be something we often see—in the random graph, they will be less likely, at

least—so most of these calls are not really doing anything.

If we could remove all the duplicated edges in a single call to unique(), we should save

some time. We can do this, but it requires a little more work in the construction function.

We want to make the edges unique, and there are two issues here. One is that we

don’t actually represent them as pairs we can call unique() on, and calling unique() on

the edges vector is certainly not a solution. The other issue is that the same edge can be

represented in two different ways: (i, j) and (j, i).

We can solve the first problem by translating the vector into a matrix. If we call

unique() on a matrix, we get the unique rows, so we just represent the pairs in that way.

The second issue we can solve by making sure that edges are represented in a canonical

form, say requiring that i < j for edges (i, j).

graph <- function(n, edges) {

 neighbours <- vector("list", length = n)

 for (i in seq_along(neighbours)) {

 neighbours[[i]] <- vector("integer", length = 0)

 }

 no_edges <- length(edges)

 if (no_edges >= 1) {

 sources <- seq(1, no_edges, by = 2)

 destinations <- seq(2, no_edges, by = 2)

 edge_matrix <- matrix(NA, nrow = length(sources), ncol = 2)

 edge_matrix[,1] <- edges[sources]

 edge_matrix[,2] <- edges[destinations]

 for (i in 1:nrow(edge_matrix)) {

 if (edge_matrix[i,1] > edge_matrix[i,2]) {

 edge_matrix[i,] <- c(edge_matrix[i,2], edge_matrix[i,1])

 }

 }

Chapter 16 Profiling and Optimizing

453

 edge_matrix <- unique(edge_matrix)

 for (i in seq(1, nrow(edge_matrix))) {

 n1 <- edge_matrix[i, 1]

 n2 <- edge_matrix[i, 2]

 neighbours[[n1]] <- c(n2, neighbours[[n1]])

 neighbours[[n2]] <- c(n1, neighbours[[n2]])

 }

 }

 structure(neighbours, class = "graph")

}

Try profiling this code and see what results you get.

When I profiled, I found that the running time is cut in half, and relatively less time is

spent constructing the graph compared to before. The time spent in executing the code

is also so short again that we cannot be too certain about the profiling samples to say

much more.

The graph size is not quite at the expected size for the application I had in mind

when I wrote this code. We can boost it up to the full size of around 20,000 nodes and

50,000 edges1 and profile for that size. Results are shown in Figure 16-5.

On a full-size graph, we still spend most of the time in constructing the graph and

not in smoothing it—and about half of the constructing time in the unique() function—

but this is a little misleading. We don’t expect to call the smoothing function just once

on a graph. Each call to the smoothing function will smooth the weights out a little more,

and we might expect to run it around ten times, say, in the real application.

We can rename the function to flow_weights_iteration() and then write a

smooth_weights() function that runs it for a number of iterations.

1 There are more edges than nodes, but it is still a sparse graph. A complete graph would have the
number of nodes squared or half that since we don’t allow both (i, j) and (j, i) as edges, so a full
dense graph would have up to 200 million edges. Compared to that, 50,000 edges is not much.

Chapter 16 Profiling and Optimizing

454

flow_weights_iteration <- function(graph, node_weights, alpha) {

 if (length(node_weights) != length(graph))

 stop("Incorrect number of nodes")

 no_nodes <- length(node_weights)

 new_weights <- vector("numeric", n)

 for (i in 1:no_nodes) {

 neighbour_weights <- 0

 n <- 0

 for (j in graph[[i]]) {

 if (i != j) {

 neighbour_weights <- neighbour_weights + node_weights[j]

Figure 16-5.  Profiling results on a full time graph

Chapter 16 Profiling and Optimizing

455

 n <- n + 1

 }

 }

 if (n > 0) {

 new_weights[i] <-

 alpha * node_weights[i] + (1 - alpha) * neighbour_weights / n

 } else {

 new_weights[i] <- node_weights[i]

 }

 }

 new_weights

}

smooth_weights <- function(graph, node_weights, alpha, no_iterations) {

 new_weights <- node_weights

 replicate(no_iterations, {

 new_weights <- flow_weights_iteration(graph, new_weights, alpha)

 })

 new_weights

}

We can then profile with ten iterations:

profvis::profvis({

 n <- 20000

 nodes <- 1:n

 edges <- sample(nodes, 100000, replace = TRUE)

 weights <- rnorm(n)

 g <- graph(n, edges)

 flow_weights(g, weights, 0.8, 10)

})

The results are shown in Figure 16-6. Obviously, if we run the smoothing function

more times, the smoothing is going to take up more of the total time, so there are no real

surprises here. There aren’t really any obvious hotspots any longer to dig into. I used

Chapter 16 Profiling and Optimizing

456

the replicate() function for the iterations, and it does have a little overhead because it

does more than just loop—it creates a vector of the results—and I can gain a few more

milliseconds by replacing it with an explicit loop:

smooth_weights <- function(graph, node_weights,

 alpha, no_iterations) {

 new_weights <- node_weights

 for (i in 1:no_iterations) {

 new_weights <-

 smooth_weights_iteration(graph, new_weights, alpha)

 }

 new_weights

}

I haven’t shown the results, so you will have to trust me on that. There is nothing

major to attack any longer, however.

If you are in that situation where there is nothing more obvious to try to speed

up, you have to consider if any more optimization is really necessary. From this point

onward, unless you can come up with a better algorithm, which might be hard, further

optimizations are going to be very hard and unlikely to be worth the effort. You are

probably better off spending your time on something else while the computations run

than wasting days on trying to squeeze a little more performance out of it.

Of course, in some cases, you really have to improve performance more to do

your analysis in reasonable time, and there are some last resorts you can go to such as

parallelizing your code or moving time-critical parts of it to C++. But for now, we can

analyze full graphs in less than two seconds, so we definitely should not spend more

time on optimizing this particular code.

�Speeding Up Your Code
If you really do have a performance problem, what do you do? I will assume that you are

not working on a problem that other people have already solved—if there is already a

package available you could have used, then you should have used it instead of writing

your own code, of course. But there might be similar problems you can adapt to your

needs, so before you do anything else, do a little bit of research to find out if anyone else

has solved a similar problem and, if so, how they did it. There are very few really unique

problems in life, and it is silly not to learn from others’ experiences.

Chapter 16 Profiling and Optimizing

457

It can take a little time to figure out what to search for, though, since similar problems

pop up in very different fields. There might be a solution out there that you just don’t

know how to search for because it is described in terms entirely different from your own

field. It might help to ask on mailing lists or Stack Overflow, but don’t burn your karma

by asking help with every little thing you should be able to figure out yourself with a bit

of work.

If you really cannot find an existing solution you can adapt, the next step is to start

thinking about algorithms and data structures. Improving these usually has much more

of an impact on performance than micro-optimizations ever can. Your first attempts at

any optimization should be to figure out if you could use better data structures or better

algorithms.

Figure 16-6.  Profiling results with multiple smoothing iterations

Chapter 16 Profiling and Optimizing

458

It is, of course, a more daunting task to reimplement complex data structures or

algorithms—and you shouldn’t if you can find solutions already implemented—but it

is usually where you gain the most performance. Of course, there is always a trade-off

between how much time you spend on reimplementing an algorithm and how much

you gain, but with experience, you will get better at judging this. Well, slightly better. If

in doubt, it is probably better to live with slow code than spend a lot of time trying to

improve it.

And before you do anything, make sure you have unit tests that ensure that new

implementations do not break old functionality! Your new code can be as fast as

lightning, and it is worthless if it isn’t correct.

If you have explored existing packages and new algorithms and data structures

and there still is a performance problem, you reach the level of micro-optimizations.

This is where you use slightly different functions and expressions to try to improve

the performance that way, and you are not likely to get massive improvements at this

level of changes. But if you have code that is executed thousands or millions of times,

those small gains can still stack up. So, if your profiling highlights a few hotspots for

performance, you can try to rewrite code there.

The sampling profiler is not terribly useful at this level of optimization. It samples

at the level of milliseconds, and that is typically a much coarse-grained measurement

than what you need here. Instead, you can use the microbenchmark package that lets you

evaluate and compare expressions. The microbenchmark() function runs a sequence of

expressions several times and computes statistics on the execution time in units down to

nanoseconds. If you want to gain some performance through micro-optimization, you

can use it to evaluate different alternatives to your computations.

For example, we can use it to compare an R implementation of sum() against the

built-in sum() function:

library(microbenchmark)

mysum <- function(sequence) {

 s <- 0

 for (x in sequence) s <- s + x

 s

}

Chapter 16 Profiling and Optimizing

459

microbenchmark(

 sum(1:10),

 mysum(1:10)

)

Unit: nanoseconds

expr min lq mean median uq

sum(1:10) 264 273.0 374.74 278.5 288

mysum(1:10) 755 768.5 26743.61 784.5 881

max neval cld

6409 100 a

2590600 100 a

The first column in the output is the expressions evaluated, then you have the

minimum, lower quarter, mean, median, upper quarter, and maximum time observed

when evaluating it, and then the number of evaluations used. The last column ranks

the performance, here showing that sum() is a and mysum() is b so the first is faster. This

ranking takes the variation in evaluation time into account and does not just rank by

the mean.

There are a few rules of thumb for speeding up the code in micro-optimization, but

you should always measure. Intuition is often a quite bad substitute for measurement.

One rule of thumb is to use built-in functions when you can. Functions such as sum()

are actually implemented in C and highly optimized, so your own implementation will

have a hard time competing with it, as we saw earlier.

Another rule of thumb is to use the simplest functions that get the work done. More

general functions introduce various overheads that simpler functions avoid.

You can add together all numbers in a sequence using Reduce(), but using such a

general function is going to be relatively slow compared to specialized functions:

microbenchmark(

 sum(1:10),

 mysum(1:10),

 Reduce(`+`, 1:10, 0)

)

Chapter 16 Profiling and Optimizing

460

Unit: nanoseconds

expr min lq mean median

sum(1:10) 262 280.0 369.34 302.5

mysum(1:10) 767 792.5 987.13 830.0

Reduce(`+`, 1:10, 0) 5211 5373.5 5946.64 5504.0

uq max neval cld

333.0 3661 100 a

891.0 5945 100 b

5649.5 19411 100 c

We use such general functions for programming convenience. They give us abstract

building blocks. We rarely get performance boosts out of them, and sometimes they can

slow things down substantially.

Thirdly, do as little as you can get away with. Many functions in R have more

functionality than we necessarily think about. A function such as read.table() not only

reads in data, it also figures out what type each column should have. If you tell it what the

types of each column are using the colClasses argument, it gets much faster because

it doesn’t have to figure it out itself. For factor(), you can give it the allowed categories

using the levels argument so it doesn’t have to work it out itself:

x <- sample(LETTERS, 1000, replace = TRUE)

microbenchmark(

 factor(x, levels = LETTERS),

 factor(x)

)

Unit: microseconds

expr min lq

factor(x, levels = LETTERS) 13.915 15.5025

factor(x) 52.322 59.4495

mean median uq max neval cld

18.83221 16.1160 18.743 44.608 100 a

73.80394 66.4465 82.080 188.268 100 b

This is not just in effect when providing input, to help functions avoid spending time

on figuring something out. Functions often also return more than you are necessarily

interested in. Functions like unlist(), for instance, will preserve the names of a list into

Chapter 16 Profiling and Optimizing

461

the resulting vector. Unless you really need those names, you should get rid of them

since it is expensive dragging the names along with you. If you are just interested in a

numerical vector, you should use use.names = FALSE:

x <- rnorm(1000)

names(x) <- paste("n", 1:1000)

microbenchmark(

 unlist(Map(function(x) x**2, x), use.names = FALSE),

 unlist(Map(function(x) x**2, x))

)

Unit: microseconds

expr

unlist(Map(function(x) x^2, x), use.names = FALSE)

unlist(Map(function(x) x^2, x))

min lq mean median uq

497.608 539.9505 624.1242 577.4815 659.0905

533.906 572.9820 653.8293 600.9775 666.7030

max neval cld

1812.271 100 a

2059.874 100 a

Fourthly, when you can, use vector expressions instead of loops, not just because

this makes the code easier to read but because the implicit loop in vector expressions is

handled much faster by the runtime system of R than your explicit loops will.

Most importantly, though, is to always measure when you try to improve

performance and only replace simple code with more complex code if there is a

substantial improvement that makes this worthwhile.

�Parallel Execution
Sometimes, you can speed things up, not by doing them faster, but by doing many things

in parallel. Most computers today have more than one core, which means that you

should be able to run more computations in parallel.

Chapter 16 Profiling and Optimizing

462

These are usually based on some variation of lapply() or Map() or similar; see, for

example, package parallel but also check the package foreach that provides a higher-

level looping construct that can also be used to run code in parallel.

If we consider our graph smoothing, we could think that since each node is an

independent computation, we should be able to speed the function up by running these

calculations in parallel. If we move the inner loop into a local function, we can replace

the outer look with a call to Map():

smooth_weights_iteration_map <- function(graph, node_weights, alpha) {

 if (length(node_weights) != length(graph))

 stop("Incorrect number of nodes")

 handle_i <- function(i) {

 neighbour_weights <- 0

 n <- 0

 for (j in graph[[i]]) {

 if (i != j) {

 neighbour_weights <- neighbour_weights + node_weights[j]

 n <- n + 1

 }

 }

 if (n > 0) {

 alpha * node_weights[i] + (1 - alpha) * neighbour_weights / n

 } else {

 node_weights[i]

 }

 }

 unlist(Map(handle_i, 1:length(node_weights)))

}

This is not likely to speed anything up—the extra overhead in the high-level Map()

function will do the opposite, if anything—but it lets us replace Map() with one of the

functions from parallel, for example, clusterMap():

unlist(clusterMap(cl, inner_loop, 1:length(node_weights)))

Chapter 16 Profiling and Optimizing

463

Here, cl is the “cluster” that just consists of two cores I have on my old laptop:

cl <- makeCluster(2, type = "FORK")

microbenchmark(

 original_smooth(),

 using_map(),

 using_cluster_map(),

 times = 5

)

The changes gave me the results below. On my two-core laptop, we could expect

the parallel version to run up to two times faster. In fact, it runs several orders of

magnitude slower:

Unit: milliseconds

 expr min lq

 original_smooth() 33.58665 33.73139

using_map() 33.12904 34.84107

using_cluster_map() 14261.97728 14442.85032

 mean median uq max

 35.88307 34.25118 36.62977 41.21634

 38.31528 40.50315 41.28726 41.81587

15198.55138 14556.09176 14913.24566 17818.59187

neval cld

 5 a

 5 a

 5 b

I am not entirely sure what the problem we are seeing here is, but most likely the

individual tasks are very short, and the communication overhead between threads

(which are actually processes here) ends up taking much more time than the actual

computation. At least my profiling seems to indicate that. With really lightweight threads,

some of the communication could be avoided, but that is not what we have here.

Parallelization of this works better when each task runs longer so the threads don’t

have to communicate so often.2

2 Parallelization on GPUs is a different case, but we won’t go there in this book.

Chapter 16 Profiling and Optimizing

464

For an example where parallelization works better, we can consider fitting a model

on training data and testing its accuracy on test data. We can use the cars data we have

looked at before and the partition() function from Chapter 6.

We write a function that evaluates a single train/test partition and then call it n times,

either sequentially or in parallel:

test_rmse <- function(data) {

 data$train %>% lm(dist ~ speed, data = .)

 model <- data$training %>% lm(dist ~ speed, data = .)

 predictions <- data$test %>% predict(model, data = .)

 rmse(data$test$dist, predictions)

}

sample_rmse <- function (n) {

 random_cars <- cars %>%

 partition(n, c(training = 0.5, test = 0.5))

 unlist(Map(test_rmse, random_cars))

}

sample_rmse_parallel <- function (n) {

 random_cars <- cars %>%

 partition(n, c(training = 0.5, test = 0.5))

 unlist(clusterMap(cl, test_rmse, random_cars))

}

When I do this for ten training/test partitions, the two functions take roughly the

same time. Maybe the parallel version is a little slower, but it is not much overhead

this time:

microbenchmark(

 sample_rmse(10),

 sample_rmse_parallel(10),

 times = 5

)

Chapter 16 Profiling and Optimizing

https://doi.org/10.1007/978-1-4842-8155-0_6

465

Unit: milliseconds

 expr min lq

 sample_rmse(10) 28.72092 29.62857

 sample_rmse_parallel(10) 26.08682 27.15047

 mean median uq max neval cld

 31.57316 33.05759 33.21979 33.23894 5 a

 34.75991 28.17528 29.37144 63.01556 5 a

If I create 1000 train/test partitions instead, however, the parallel version starts

running faster than the sequential version:

microbenchmark(

 sample_rmse(1000),

 sample_rmse_parallel(1000),

 times = 5

)

Unit: seconds

 expr min lq

 sample_rmse(1000) 3.229113 3.277292

 sample_rmse_parallel(1000) 2.570328 2.595402

 mean median uq max neval cld

 3.459333 3.508533 3.536792 3.744934 5 b

 2.921574 2.721095 3.185070 3.535977 5 a

Since my laptop only has two cores, it will never be able to run more than twice as

fast, and in general reaching the possible optimal speed-up from parallelization is rarely

possible. The communication overhead between threads adds to the time used for the

parallel version, and there are parts of the code that just have to be sequential such as

preparing data that all threads should work on.

If you have a machine with many cores, and you can split your analysis into

reasonably large independent chunks, though, there is often something to be gained.

Chapter 16 Profiling and Optimizing

466

�Switching to C++
This is a drastic step, but by switching to a language such as C or C++, you have more

fine-grained control over the computer, just because you can program at a much lower

level, and you do not have the overhead from the runtime system that R does. Of course,

this also means that you don’t have many of the features that R does either, so you don’t

want to program an entire analysis in C++, but you might want to translate the time-

critical code to C++.

Luckily, the Rcpp package makes integrating R and C++ pretty straightforward,

assuming that you can program in both languages, of course. The only thing to really be

careful about is that C++ index from zero and R from one. Rcpp takes care of converting

this, so a one-indexed vector from R can be accessed as a zero-indexed vector in C++,

but when translating code, you have to keep it in mind.

A full description of this framework for communicating between C++ and R is far

beyond the scope of this book. For that, I will refer you to the excellent book Seamless R

and C++ Integration with Rcpp by Dirk Eddelbuettel. Here, I will just give you a taste of

how Rcpp can be used to speed up a function.

We will focus on the smoothing function again. It is a relatively simple function that

is not using any of R’s advanced features, so it is ideal to translate into C++. We can do so

almost verbatim, just remembering that we should index from zero instead of one:

NumericVector

smooth_weights_iteration_cpp(List g,

 NumericVector node_weights,

 double alpha)

{

 NumericVector new_weights(g.length());

 for (int i = 0; i < g.length(); ++i) {

 IntegerVector neighbours = g[i];

 double neighbour_sum = 0.0;

 int n = 0;

 for (int j = 0; j < neighbours.length(); ++j) {

 neighbour_sum += node_weights[j];

 ++n;

 }

Chapter 16 Profiling and Optimizing

467

 if (n > 0) {

 new_weights[i] = alpha * node_weights[i] +

 (1-alpha) * (neighbour_sum / n);

 } else {

 new_weights[i] = node_weights[i];

 }

 }

 return new_weights;

}

The types List, NumericVector, and IntegerVector correspond to the R types,

and except for how we create the new_weights vector, the code very closely follows

the R code.

There are several ways you can compile this function and wrap it into an R function,

but the easiest is just to put it in a string and give it to the function cppFunction():

cppFunction("

NumericVector

smooth_weights_iteration_cpp(List g,

 NumericVector node_weights,

 double alpha)

{

 NumericVector new_weights(g.length());

 for (int i = 0; i < g.length(); ++i) {

 // The body here is just the C++ code

 // shown above...

 }

 return new_weights;

}

")

Chapter 16 Profiling and Optimizing

468

That creates a function, with the same name as the C++ function, that can be called

directly from R, and Rcpp will take care of converting types as needed:

smooth_weights_cpp <- function(graph, node_weights,

 alpha, no_iterations) {

 new_weights <- node_weights

 for (i in 1:no_iterations) {

 new_weights <-

 smooth_weights_iteration_cpp(graph, new_weights, alpha)

 }

 new_weights

}

If we compare the R and C++ functions, we see that we get a substantial performance

boost from this:

microbenchmark(

 smooth_weights(g, weights, 0.8, 10),

 smooth_weights_cpp(g, weights, 0.8, 10),

 times = 5

)

Unit: milliseconds

 expr

 smooth_weights(g, weights, 0.8, 10)

 smooth_weights_cpp(g, weights, 0.8, 10)

 min lq mean median

 1561.78635 1570.23346 1629.12784 1572.3979

 32.77344 33.38822 35.57017 36.5103

 uq max neval cld

 1694.31571 1746.90573 5 b

 37.29083 37.88803 5 a

To translate a function into C++, you are not necessarily prevented from using R’s

more advanced features. You can call R functions from C++ just as easily as you can call

C++ functions from R. Using R types translated into C++ can in many cases be used with

vector expressions just like in R. Be aware, though, that the runtime overhead of using

Chapter 16 Profiling and Optimizing

469

advanced features is the same when you use them in C++ as in R. You will likely not gain

much performance from translating such functions. Translating low-level code like loops

often gives you substantial performance boosts, though. If you have a few performance

hotspots in your code that are relatively simple, just very time-consuming because they

do a lot of work, it is worth considering translating these to C++, and Rcpp makes it easy.

Don’t go overboard, though. It is harder to profile and debug code in C++, and it is

harder to refactor your code if it is a mix of C++ and R. Use it, but use it only when you

really need it.

�Exercises
Find some code you have written and try to profile it. If there are performance hotspots

you can identify, then try to optimize them. First, think algorithmic changes, then

changes to the R expressions—checked using microbenchmark()—and if everything else

fails, try parallelizing or implementing them in C++.

Chapter 16 Profiling and Optimizing

471
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0_17

CHAPTER 17

Project 2: Bayesian Linear
Regression
The project for this chapter is building an R package for Bayesian linear regression.

The model we will work with is somewhat a toy example of what we could imagine we

could build an R package for, and the goal is not to develop all the bells and whistles of

Bayesian linear regression. We will just build enough to see the various aspects that go

into building a real R package.

�Bayesian Linear Regression
In linear regression, we assume that we have predictor variables x and target variables

y where y = w0 + w1x + ϵ where ϵ ∼ N(0, σ2). That is, we have a line with intercept w0 and

incline w1 such that the target variables are normally distributed around the point given

by the line. We sometimes write σ2 as 1/β and call β the precision. I will do this here and

assume that β is a known quantity; we are going to consider a Bayesian approach to

estimating the weights wT = (w0, w1).

Since we assume that we know the precision parameter β, if we knew the true

weights of the model, then whenever we had an x value, we would know the distribution

of y values: y ∼ N (w0 + w1x, 1/β).

For notational purposes, I am going to define a function that maps x to a vector:

ϕ : x ↦ (1, x)T. Then we have wTϕ(x) = w0 + w1x and y ∼ N (wTϕ(x), 1/β).

Of course, we do not know the values of the weights but have to estimate them. In

a Bayesian approach, we do not consider the weights as fixed but unknown values; we

consider them as random variables from some distribution we have partial knowledge

about. Learning about the weights means estimating the posterior distribution for the

vector w conditional on observed x and y values.

https://doi.org/10.1007/978-1-4842-8155-0_17#DOI

472

We will assume some prior distribution for w, p(w). If we observe a sequence of

matching x and y values xT = (x1, x2, ... , xn) and yT = (y1, y2, ... , yn), we want to update this

prior distribution for the weights w to the posterior distribution p(w | x, y).

We will assume that the prior distribution of w is a normal distribution with mean

zero and diagonal covariance matrix with some (known hyperparameter) precision α,

that is:

	
p w| N , Iα α() = ()−

0
1

. 	

For reasons that I don’t have time or space to go into here, this is a good choice

of prior for a linear model since it means that the posterior will also be a normal

distribution. It also means that, given x and y, we can compute the mean and covariance

matrix for the posterior with some simple matrix arithmetic.

But first, we need to define our model matrix. This is a matrix that captures that the

linear model we are trying to find is a line, that is, that y = w0 + w1x. We define the model

matrix for the observed vector x as such:

	

x =























1

1

1

1

1

2

3

x
x
x

xn

 

.

	

In general, we would have a row per observation with the various features of the

observation we want to include in the model, but for a simple line it is the incline and

intercept, so for observation i it is 1 and xi.

The posterior distribution for the weights, p(w | x, y, α, β), is then given by

	
p w|x, y, , N m ,Sx y x yα β() = (), , 	

where

	
m S x yx y x y, ,= β T

	

and

	
S I x xx y, .
− = +1 α β T

	

Chapter 17 Project 2: Bayesian Linear Regression

473

�Exercises: Priors and Posteriors

�Sample from a Multivariate Normal Distribution
If you want to sample from a multivariate normal distribution, the function mvrnorm

from the package MASS is what you want:

library(MASS)

mvrnorm(n = 5, mu = c(0,0), Sigma = diag(1, nrow = 2))

[,1] [,2]

[1,] -0.1664955 -0.4859753

[2,] -1.4915224 -1.0527432

[3,] -0.2284911 0.4313458

[4,] 0.4177218 -1.1576628

[5,] -1.3341254 -0.2136770

You need to provide it with a mean vector, mu, and a covariance matrix, Sigma.

The prior distribution for our weight vectors is N(0, S0) with

	
0

0
0

=










	

and

	
S I0

1 1 0

0 1
= =









α

α
α

/

/
.
	

You can use the diag function to create the diagonal covariance matrix.

Write a function make_prior(alpha) that constructs this prior distribution and

another function sample_from_prior(n, alpha) that samples n weight vectors wi from

it. My version returns the samples as a data frame with a column for the w1 samples and

another for the corresponding w0 samples. You can return the samples in any form that

is convenient for you.

If you can sample from the prior, you can plot the results, both as points in w

space and as lines in (x, y) space (a point (w0, w1) describes the line y = w0 + w1x). See

Figures 17-1 and 17-2 for samples from the prior, with the two alternative ways of looking

at them.

Chapter 17 Project 2: Bayesian Linear Regression

474

�Computing the Posterior Distribution

If we fix the parameters of the model, β and w = (w0, w1)T, we can simulate (x, y) values.

We can pick some random x values first and then simulate corresponding y values; see

Figure 17-3, where the red line is the known line (given by (w0, w1)) and the black dots

randomly sampled points given the model.

w0 <- 0.3 ; w1 <- 1.1 ; beta <- 1.3

x <- rnorm(50)

y <- rnorm(50, w1 * x + w0, 1/beta)

Of course, we do not know the true line in a setting such as this. What we have

is a prior distribution of weights (w0, w1) and then observed (x, y) values. Think of

the situation as Figure 17-3 but without the red line. If we have the points, and the

prior, though, we have information about what the underlying line might be, and that

information manifests as a posterior distribution for the weights—the distribution the

weights have given that we have observed the points. When both our prior and our model

say that the data points are normally distributed, the posterior is particularly simple, as

we saw earlier. We can get the posterior distribution using the formula we saw before.

Write a function, make_posterior(x, y, alpha, beta), that computes the

posterior distribution (mean and covariance matrix) for the weights and a function

sample_from_posterior that lets you sample from the posterior.

−1.0 −0.5 0.0 0.5

−1
.0

0.
0

1.
0

2.
0

w0

w
1

Figure 17-1.  Weight vectors sampled from the prior distribution

Chapter 17 Project 2: Bayesian Linear Regression

475

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

y

Figure 17-2.  Weight vectors sampled from the prior distribution represented as lines

−2 −1 0 1 2

−2
−1

0
1

2
3

x

y

Figure 17-3.  Randomly sampled (x, y) values. The true linear model is
shown in red

If we again pretend that we can sample from the true distribution of (x, y) points,

every time we get a bunch of points we can update the posterior knowledge we have.

Naturally, in the real world, we don’t have the true distribution to do this sampling, but

the observations we have make it out for the data points, and we can still update our

posterior each time we get new information.

Chapter 17 Project 2: Bayesian Linear Regression

476

Imagine that we have observed some n points, (x1, y1), (x2, y2), ... , (xn, yn), then we can

ask ourselves how close our posterior now is to the true line. Our posterior, of course,

isn’t a line (or a point in weight space), but rather a distribution, so one way to do this

is to sample from the posterior and see how closely they lump together—telling us how

certain we are getting about the real values—and how close they lump around the true

point, when we have that.

In Figure 17-4, you can see an example of this. The true line, the (w0, w1) the data

points are sampled from, is shown in red. The black dots are the (x, y) points we have

available to update the posterior from, and the gray lines are samples from the updated

posterior. As you can see, the more (x, y) points we have to infer the posterior from, the

closer the distribution gets to lumping around the true point.

�Predicting Target Variables for New Predictor Values
Given a new value x, we want to make predictions about the corresponding y. For a

fixed w, again, we have p(y| x, w, β) = N(wTϕ(x), 1/β), but since we don’t know w, we have

to integrate over all w. The way the training data improves our prediction is that we

integrate over w weighted by the posterior distribution of w rather than the prior:

	 p y x y p y x p| , x, , , | ,w, w|x, y, , dwα β β α β() = ∫ () () . 	

This kind of integral over the product of two normal distributions gives us another

normal distribution, and one can show that it is

	
p y x x xT

| , x, y, , N m ,x y x yα β φ σ() = () ()(), ,

2

	

Chapter 17 Project 2: Bayesian Linear Regression

477

where mx, y is the mean from the posterior distribution of w and where

	
σ

β
φ φx y x yS, ,

2 1x x xT() = + () ()
	

where Sx, y is the covariance matrix from the posterior distribution of w.

With the full distribution for the target value, y, given the predictor value, x, we can,

of course, make predictions. The point prediction for y is, of course, the mean of this

normal distribution, so m xT
x y, φ () . But we can do more than just predict the most likely

value; we can of course also get confidence values because we know the distribution.

Write a function that predicts the most likely y value for a given x value. Use it to plot

the inferred model against (x, y) points. See Figure 17-5 for an example.

Use the fact that you also have the predicted distribution for y to write a function

that gives you quantiles for this distribution and uses it to plot 95% intervals around the

predictions; see Figure 17-6.

−3 −1 1 2 3

−3
−1

1
3

5 points

x

y

−3 −1 1 2 3

−3
−1

1
3

10 points

x

y

−3 −1 1 2 3

−3
−1

1
3

20 points

x

y

−3 −1 1 2 3

−3
−1

1
3

50 points

x

y

Figure 17-4.  Lines drawn from the posterior. The true line is shown in red

Chapter 17 Project 2: Bayesian Linear Regression

478

�Formulas and Their Model Matrix
We will continue working with our Bayesian linear regression, and we will generalize the

kind of formulas we can fit.

Recall from Chapter 6 that when fitting our models to data, we did this using a so-

called model matrix (or design matrix) of the form

	

x =























1

1

1

1

1

2

3

x
x
x

xn

 

.

	

Row i in this matrix contains the vector (1, xi) = ϕ(xi)T capturing the predictor variable

for the i’th observation, xi. It actually has two predictor variables; it is just that one is a

constant 1. What it captures is the input variables we use in a linear model for predicting

targets. One variable is the x value and the other is a way of encoding the y-axis intercept.

−40 −20 0 20 40 60

−6
0

−2
0

20
60

x

y

Figure 17-5.  True linear model in red and predicted values in blue

Chapter 17 Project 2: Bayesian Linear Regression

https://doi.org/10.1007/978-1-4842-8155-0_6

479

To predict the target, we use the inner product of this row and the weights of our

fitted model:

	 () 0 1w 1 .φ= + = ⋅ + ⋅ +T
i i iy x w w xò ò 	

We call ϕ(x) the feature vector for a point x, and the model matrix contains a row for

each data point we want to fit or make predictions on, such that row i is ϕ(xi)T . With the

feature vector on the form we have used here, ϕ(x)T = (1, x), we are fitting a line, but the

feature doesn’t have to have this form. We can make more complicated feature vectors.

If we instead used the feature vector ϕ(x)T = (1, x, x2) and added another weight to

w so it now had three dimensions, (w0, w1, w2), we could be predicting the target in the

same way, y = wT ϕ(xi) + ϵ, except now of course wT ϕ(xi) = w0 + w1x + w2x2, so we would

be fitting a quadratic polynomial.

If you are thinking now “hey, that is no longer a linear model!”, you are wrong. The

linearity in the model was never actually related to the linearity in x. It is a linearity in

w that makes the model linear, and as long as we are getting the predicted value as the

inner product of a weight vector like this and some feature vector, it is a linear model we

are working with. You can make the feature vector ϕ(x) as crazy as you like.

If you construct the model matrix the same way

−40 0 20 40 60 80

−1
00

0
50

15
0

x

y

Figure 17-6.  Prediction with 95% support interval

Chapter 17 Project 2: Bayesian Linear Regression

480

	

x =

()
()
()

()

























φ

φ

φ

φ

x

x

x

x

T

T

T

n
T

1

2

3



	

the mathematics for fitting weights and predicting new target values works the same,

except of course that the weight vector w has the number of dimensions that reflects the

dimensions in the feature vectors.

The feature vector doesn’t have to be a function of a single variable, x, either. If you

want to fit a linear model in two variables—that is, a plane—then you can just let the

feature vector depend on two variables: ϕ(x, z)T = (1, x, z). The linear combination with

the weight vector would be wT ϕ(x, z) = w0 + w1x + w2z which would exactly be a linear

model in two variables.

�Working with Model Matrices in R
The way we specify both feature vectors and model matrices in R is a formula. A formula

is created as an expression containing the tilde symbol, ~, and the target variable should

be put to the left and the explanatory variables on the right.

R has quite a rich syntax for specifying formula, and if you are interested, you should

read the documentation by writing

?formula

in the R shell.

For the linear model, we would write y ~ x. The intercept variable is implicitly

there; you don’t need to tell R that you want the feature vector to include the “-1”,

instead, you would have to remove it explicitly. You can also specify polynomial feature

vectors, but R interprets multiplication, *, as involving interaction between variables.1

To specify that you want the second-order polynomial of x, you need to write y ~

I(x^2) + x. The function I is the identity function, and using it here makes R interpret

the x^2 as squaring the number x instead of trying to interpret it as part of the formula

1 In formulas, x*z means x + z + x:z where x:z is the interaction between x and z—in practice,
the product of their numbers—so y ~ x*z means ϕ(x, z) = (1, x, z, x.z)).

Chapter 17 Project 2: Bayesian Linear Regression

481

specification. If you only want to fit the square of x, you would just write y ~ I(x^2). For

a general n-degree polynomial, you can use y ~ poly(x,n, raw=TRUE).

To fit our linear model, we need data for two things. In the model we have already

implemented, we had vectors x and y, but in the general case, the prediction variable x

should be replaced with the model matrix. From the matrix and y we can fit the model.

R has functions for getting both from a formula and data. It isn’t quite

straightforward, though, because of scoping rules. If you write a formula somewhere in

your code, you want the variables in the formula to refer to the variables in the scope

where you are, not somewhere else where the code might look at the formula. So the

formula needs to capture the current scope—similar to how a closure captures the scope

around it. On the other hand, you also want to be able to provide data directly to models

via data frames. Quite often, the data you want to fit is found as columns in a data frame,

not as individual variables in a scope. Sometimes, it is even a mix.

The function model.frame lets you capture what you need for collecting data relevant

for a formula. It will know about the scope of the formula, but you can add data through

a data frame as well. Think of it as a data.frame, just with a bit more information about

the data that it gets from analyzing the formula.

We can see all of this in action in the following small example:

predictors <- data.frame(x = rnorm(5), z = rnorm(5))

y <- with(predictors, rnorm(5, mean = 3*x + 5*z + 2))

model <- y ~ x + z

model.frame(model, data = predictors)

y x z

1 5.7166648 1.2943469 0.07347801

2 -7.3801586 0.7210624 -2.12012399

3 0.4894598 -0.6444302 0.15265587

4 5.5552442 1.6107988 0.01996477

5 7.8151347 0.2048122 0.98655386

Here, we have two predictor variables, x and z, in a data frame, and we simulated

the response variable, y, in the global scope. We create the model using the formula y ~

x + z (which means ϕ(x, z)T = (1, x, z)), and we construct a model frame from this that

contains the data for all the variables used in the formula.

Chapter 17 Project 2: Bayesian Linear Regression

482

The way the model frame gets created, R first looks in the data frame it gets for a

variable, and if it is there, it uses that data; if it is not, it uses the data it can find in the

scope of the formula. If it cannot find it at all, it will, of course, report an error.

The data frame is also used to construct expressions from variables. In the scope,

you might have the variable x but not the variable x2 where the latter is needed for

constructing a model matrix. The model.frame function will construct it for you:

x <- runif(10)

model.frame(~ x + I(x^2))

x I(x^2)

1 0.9257926 0.857091....

2 0.2048174 0.041950....

3 0.3320932 0.110285....

4 0.5124721 0.262627....

5 0.4848565 0.235085....

6 0.1284884 0.016509....

7 0.9344755 0.873244....

8 0.8077187 0.652409....

9 0.7667746 0.587943....

10 0.9961101 0.992235....

In this example, we don’t have a response variable for the formula; you don’t

necessarily need one. You need it to be able to extract the vector y of course, so we do

need one for our linear model fitting, but R doesn’t necessarily need one.

Once you have a model frame, you can get the model matrix using the function

model.matrix. It needs to know the formula and the model frame (the former to know

the feature function ϕ and the latter to know the data we are fitting).

In the following, we build two models, one where we fit a line that goes through y = 0

and the second where we allow the line to intersect the y-axis at an arbitrary point.

Notice how the data frames are the same—the variables used in both models are the

same—but the model matrices differ:

x <- runif(10)

y <- rnorm(10, mean=x)

model.no.intercept <- y ~ x + 0

(frame.no.intercept <- model.frame (model.no.intercept))

Chapter 17 Project 2: Bayesian Linear Regression

483

y x

1 0.05218288 0.7020026

2 0.78985212 0.2376200

3 -0.81501744 0.4099537

4 -0.71807916 0.5834204

5 0.40083214 0.5577035

6 -0.82443129 0.2163221

7 -0.98024996 0.1702824

8 -0.47115407 0.3512283

9 0.35959763 0.2272345

10 -0.47588279 0.9553629

model.matrix(model.no.intercept, frame.no.intercept)

x

1 0.7020026

2 0.2376200

3 0.4099537

4 0.5834204

5 0.5577035

6 0.2163221

7 0.1702824

8 0.3512283

9 0.2272345

10 0.9553629

attr(,"assign")

[1] 1

model.with.intercept <- y ~ x

(frame.with.intercept <- model.frame (model.with.intercept))

y x

1 0.05218288 0.7020026

2 0.78985212 0.2376200

3 -0.81501744 0.4099537

4 -0.71807916 0.5834204

5 0.40083214 0.5577035

Chapter 17 Project 2: Bayesian Linear Regression

484

6 -0.82443129 0.2163221

7 -0.98024996 0.1702824

8 -0.47115407 0.3512283

9 0.35959763 0.2272345

10 -0.47588279 0.9553629

model.matrix(model.with.intercept, frame.with.intercept)

(Intercept) x

1 1 0.7020026

2 1 0.2376200

3 1 0.4099537

4 1 0.5834204

5 1 0.5577035

6 1 0.2163221

7 1 0.1702824

8 1 0.3512283

9 1 0.2272345

10 1 0.9553629

attr(,"assign")

[1] 0 1

The target vector, or response variable, y, can be extracted from the data frame as

well. You don’t need the formula this time because the data frame remembers which

variable is the response variable. You can get it from the model frame using the function

model.response:

model.response(frame.with.intercept)

1 2 3 4

0.05218288 0.78985212 -0.81501744 -0.71807916

5 6 7 8

0.40083214 -0.82443129 -0.98024996 -0.47115407

9 10

0.35959763 -0.47588279

Chapter 17 Project 2: Bayesian Linear Regression

485

�Exercises
�Building Model Matrices

Build a function that takes as input a formula and optionally, through the ... variable, a

data frame and build the model matrix from the formula and optional data.

�Fitting General Models

Extend the function you wrote earlier for fitting lines to a function that can fit any

formula.

�Model Matrices Without Response Variables
Building model matrices this way is all good and well when you have all the variables

needed for the model frame, but what happens when you don’t have the target value?

You need the target value to fit the parameters of your model, of course, but later on, you

want to predict targets for new data points where you do not know the target, so how do

you build the model matrix then?

With some obviously fake data, the situation could look like this:

training.data <- data.frame(x = runif(5), y = runif(5))

frame <- model.frame(y ~ x, training.data)

model.matrix(y ~ x, frame)

(Intercept) x

1 1 0.1935202

2 1 0.4235126

3 1 0.8715640

4 1 0.0687407

5 1 0.7034587

attr(,"assign")

[1] 0 1

predict.data <- data.frame(x = runif(5))

but now, if we want to build a frame for the predicted data

frame <- model.frame(y ~ x, predict.data)

Chapter 17 Project 2: Bayesian Linear Regression

486

we would get an error. The formula tells model.frame that it needs the variable y, but

predict.data doesn’t have it; it only have x. So leave out the response side of the

formula:

frame <- model.frame(~ x, predict.data)

model.matrix(~ x, frame)

(Intercept) x

1 1 0.5181431

2 1 0.6967051

3 1 0.4965555

4 1 0.0729577

5 1 0.7235315

attr(,"assign")

[1] 0 1

This is not quite as easy if you don’t know the formula, when it is input to your

model. You cannot simply replace a formula you don’t know with another that might not

be related to the first. You can, however, remove the response variable from any formula

using the delete.response function.

You cannot call delete.response directly on a formula; that is not the type of objects

it works on. But you can combine it with the function terms to get a formula without the

response variable that you can then use to build a model matrix for data where you don’t

know the target values:

assume this is a parameter you don't know

unknown <- y ~ x

get the formula without the response

responseless_formula <- delete.response(terms(unknown))

and then you can use it with model.frame

frame <- model.frame(responseless_formula, predict.data) model.

matrix(responseless_formula, frame)

(Intercept) x

1 1 0.5181431

2 1 0.6967051

3 1 0.4965555

Chapter 17 Project 2: Bayesian Linear Regression

487

4 1 0.0729577

5 1 0.7235315

attr(,"assign")

[1] 0 1

�Exercises
�Model Matrices for New Data

Write a function that takes as input a formula and a data frame as input that does not

contain the response variable and build the model matrix for that.

�Predicting New Targets

Update the function you wrote earlier for predicting the values for new variables to

work on models fitted to general formula. If it doesn’t already permit this, you should

also extend it so it can take more than one such data point. Make the input for new data

points come in the form of a data frame.

�Interface to a blm Class
By now, we have an implementation of Bayesian linear regression but not necessarily

in a form that makes it easy to reuse. Wrapping the data relevant for a fitted model

into a class and providing various methods to access it is what makes it easy to reuse a

model/class.

Generally, you want to access objects through functions as much as you can. If you

know which $fields the class has, it is easy to write code that just accesses this, but that

makes it hard to change the implementation of the class later. A lot of code that makes

assumptions about how objects look like will break. It will also make it hard at some later

point to change the model/class in an analysis because different classes generally do not

look the same in their internals.

To make it easier for others—and your future self—to use the Bayesian linear

regression model, we will make a class for it and provide functions for working with it.

This involves both writing functions specific to your own class and writing

polymorphic functions that people, in general, expect a fitted model to implement. It is

the latter that will make it possible to replace another fitted model with your blm class.

Chapter 17 Project 2: Bayesian Linear Regression

488

How you go about designing your class and implementing the functions—and

choosing which functions to implement, in general—is up to you, except, of course,

when you implement blm-specific versions of already existing polymorphic functions; in

that case, you need to obey the existing interface.

How you choose to represent objects of your class and which functions you choose

to implement for it is generally up to you. There is a general convention in R, though,

that you create objects of a given class by calling a function with the same name as the

class. So I suggest that you write a constructor called blm.

There aren’t really any obvious classes to inherit from, so the class of blm objects

should probably only be "blm" and not a vector of classes. If you want to make a class

hierarchy in your implementation or implement more than one class to deal with

different aspects of your model interface, you should knock yourself out.

�Constructor
A constructor is what we call a function that creates an object of a given class. In some

programming languages, there is a distinction between creating and initializing an

object. This is mostly relevant when you have to worry about memory management

and such and can get quite complicated, and it is not something we worry about in R. It

is the reason, though, that in Python the constructor is called init—it is actually the

initialization it handles. The same is the case for Java—which enforces the rule that the

constructor must have the same name as the class, where for R it is just a convention. In

Java, you have a special syntax for creating new objects: new ClassName(). In Python,

you have to use the name of the class to create the object—ClassName()—but the syntax

looks just like a function call. In R, it is only a convention that says that the class name

and the constructor should be the same. The syntax for creating an object looks like a

function call because it is a function call, and nothing special is going on in that function

except that it returns an object where we have set the class attribute.

So you should write a function called blm that returns an object where you have set

the class attribute to "blm". You can do this with the `class<-` replacement function or

the structure function when you create the object. The object is a list—that is the only

way you have of storing complex data, after all—and what you put in it depends on what

you need for the functions that will be the interface of your class. You might have to go

back and change what data is stored in the object from time to time as you develop the

Chapter 17 Project 2: Bayesian Linear Regression

489

interface for your function. That is okay. Try to use functions to access the internals of

the object as much as you can, though, since that tends to minimize how much code you

need to rewrite when you change the data stored in the object.

�Updating Distributions: An Example Interface
Let’s consider a case of something we could have as an interface to Bayesian linear

models. This is not something you have to implement, but it is a good exercise to try.

The thing we do when we fit models in Bayesian statistics is that we take a prior

distribution of our model parameters, P(θ), and update them to a posterior distribution,

P(θ | D), when observing data D. Think of it this way: the prior distribution is what we just

know about the parameters. Okay, typically we just make the prior up based on mathematical

convenience, but you should think about it as what we know about the parameters from our

understanding of how the universe works and what prior experience has taught us. Then

when you observe more, you add information about the world which changes the conditional

probability of how the parameters look given the observations you have made.

There is nothing really magical about what we call prior and posterior here. Both are

just distributions for our model parameters. If the prior is based on previous experience,

then it is really a posterior for those experiences. We just haven’t modelled it that way.

Let’s say we have observed data D1 and obtained a posterior P(θ | D1). If we then later

observe more data, D2, we obtain even more information about our parameters and can

update the distribution for them to P(θ | D1, D2).

We can of course always compute this distribution by taking all the old data and all

the new and push it through our fitting code. But if we have chosen the prior distribution

carefully with respect to the likelihood of the model—and by carefully I mean that we

have a so-called conjugate prior—then we can just fit the new data but with a different

prior: the old posterior.

A conjugate prior is a prior distribution that is chosen such that both prior and

posterior are from the same class of distributions (just with different parameters). In our

Bayesian linear model, both prior and posterior are normal distributions, so we have a

conjugate prior. This means that we can, in principle, update our fitted model with more

observations just by using the same fitting code but with a different prior.

I hinted a bit at this in the exercises earlier, but now you can deal with it more

formally. You need a way of representing multivariate normal distributions—but you

need this anyway to represent your blm objects—and a way of getting to a fitted one

inside your blm objects to extract a posterior.

Chapter 17 Project 2: Bayesian Linear Regression

490

There are many ways to implement this feature, so you have something to

experiment with. You can have an update function that takes a prior and new

observations as parameters and outputs the (updated) posterior. Here, you need to

include the formula as well somehow to build the model matrix. Or you can let update

take a fitted object together with new data and get the formula and prior from the fitted

object. Of course, if you do this, you need to treat the prior without any observations as a

special case—and that prior will not know anything about formulas or model matrices.

We can try with an interface like this:

update <- function(model, data, prior) { ... }

where model is the formula, data a new data set, and prior the prior to use for fitting.

This is roughly the interface you have for the constructor, except there you don’t

necessarily have data as an explicit parameter (you want to be able to fit models without

data in a data frame, after all), and you don’t have prior as a parameter at all.

Thinking about it a few seconds and realizing that whatever model fitting we put in

here is going to be exactly the same as in blm, we can change the interface to get rid of

the explicit data parameter. If we let that parameter go through ... instead, we can use

exactly the same code as in blm (and later remove the code from blm by calling update

there instead):

update <- function(model, prior, ...) { ... }

blm <- function(model, ...) {

 # some code here...

 prior <- make_a_prior_distribution_somehow()

 posterior <- update(model, prior, ...)

 # some code that returns an object here...

}

To get this version of blm to work, you need to get the prior in a form you can pass

along to update, but if you did the exercises earlier, you should already have a function

that does this (although you might want to create a class for these distributions and

return them as such so you can manipulate them through an interface if you want to take

it a bit further).

Of course, instead of getting rid of the model fitting code in the body of blm, you

could also get rid of update and put that functionality in blm by letting that function take

a prior parameter. If you do that, though, you want to give it a default so you can use the

original one if it isn’t specified:

Chapter 17 Project 2: Bayesian Linear Regression

491

blm <- function(model, prior = NULL, ...) {

 # some code here...

 if (is.null(prior)) {

 prior <- make_a_prior_distribution_somehow()

 }

 posterior <- update(model, prior, ...)

 # some code that returns an object here...

}

Let us stick with having update for now, though. How would we use update with a

fitted model?

fit1 <- blm(y ~ x)

fit2 <- update(y ~ x, new_data, fit1)

This doesn’t work because fit1 is a blm object and not a normal distribution. You

need to extract the distribution from the fitted model.

If you have stored the distribution in the object—and you should because otherwise,

you cannot use the object for anything since the fit is the posterior distribution—you

should be able to get at it. What you don’t want to do, however, is access the posterior

directly from the object as fit1$posterior or something like that. It would work, yes,

but accessing the internals of the object makes it harder to change the representation

later. I know I am repeating myself here, but it bears repeating. You don’t want to access

the internals of an object more than you have to because it makes it harder to change the

representation.

Instead, write a function posterior that gives you the posterior:

posterior <- function(fit) fit$posterior

This function has to access the internals—eventually, you will have to get the

information, after all—but if this is the only function that does it, and every other

function uses this function, then you only need to change this one function if you change

the representation of the object.

With that function in hand, you can do this:

fit2 <- update(y ~ x, new_data, posterior(fit1))

Chapter 17 Project 2: Bayesian Linear Regression

492

You can also write update such that it can take both fitted models and distributions

as its input. Then you just need a way of getting to the prior object (that might be a

distribution or might be a fitted model’s posterior distribution) that works either way.

One approach is to test the class of the prior parameter directly:

update <- function(model, prior, ...) {

 if (class(prior) == "blm") {

 prior <- posterior(prior)

 }

 # fitting code here

}

This is a terrible solution, though, for various reasons. First of all, it only works if you

either get a prior distribution or an object with class "blm". What if someone, later on,

writes a class that extends your blm? Their class attribute might be c("myblm","blm")

which is different from "blm", and so this test will fail—and so will the following code

because there you assume that you have a distribution but what you have is an object of

a very different class.

To get around that problem, you can use the function inherits. It tests if a given

class name is in the class attribute, so it would work if someone gives your update

function a class that specializes your blm class:

update <- function(model, prior, ...) {

 if (inherits(prior, "blm")) {

 prior <- posterior(prior)

 }

 # fitting code here

}

This is a decent solution—and one you will see in a lot of code if you start reading

object-oriented code—but it still has some drawbacks. It assumes that the only object

that can provide a distribution you can use as a prior is either the way you have

implemented priors by default (and you are not testing that earlier) or an object of class

"blm" (or specializations thereof).

You could, of course, make a test for whether the prior, if it isn’t a fitted object, is of a

class you define for your distributions, which would solve the first problem, but how do

you deal with other kinds of objects that might also be able to give you a prior/posterior

distribution?

Chapter 17 Project 2: Bayesian Linear Regression

493

Whenever you write such a class that can provide it, you can also update your update

function, but other people cannot provide a distribution for you this way (unless they

change your code). Explicitly testing for the type of an object in this way is not a good

code design. The solution to fixing it is the same as for accessing object internals: you

access stuff through functions.

If we require that any object we give to update as the prior parameter can give us a

distribution if we ask for it, we can update the code to be just

update <- function(model, prior, ...) {

 prior <- posterior(prior)

 # fitting code here

}

This requires that we make a polymorphic function for posterior and possibly that

we write a version for distribution objects as well. I will take a shortcut here and make

the default implementation the identity function:

posterior <- function(x) UseMethod("posterior")

posterior.default <- function(x) x

posterior.blm <- function(x) x$posterior

The only annoyance now is that we call it posterior. It is the posterior distribution

when we have a fitted object, but it isn’t really otherwise. Let us change it to distribution:

distribution <- function(x) UseMethod("distribution")

distribution.default <- function(x) x

distribution.blm <- function(x) x$posterior

and update update accordingly:

update <- function(model, prior, ...) {

 prior <- distribution(prior)

 # fitting code here

}

This way, it even looks nicer in the update function.

Chapter 17 Project 2: Bayesian Linear Regression

494

�Designing Your blm Class
As you play around with implementing your blm class, think about the interface you are

creating, how various functions fit together, and how you think other people will be able

to reuse your model. Keep in mind that “future you” is also “other people,” so you are

helping yourself when you do this.

The update function we developed earlier is an example of what functionality we

could put in the class design and how we made it reusable. You should think about other

functions for accessing your objects and design them.

One example could be extracting the distribution for a given input point. You

implemented a function for predicting the response variable from predictor variables

already, and later you will do it in the predict function again, but if you want to gain

the full benefits of having a distribution for the response at a given input, you want to

have the distribution. How would you provide that to users? How could you use this

functionality in your own functions?

Play around with it as you develop your class. Whenever you change something,

think about whether this could make other functions simpler or if things could be

generalized to make your code more reusable.

�Model Methods
There are some polymorphic functions that are generally provided by classes that

represent fitted models. Not all models implement all of them, but the more you

implement, the more existing code can manipulate your new class, another reason for

providing interfaces to objects through functions only.

The following is a list of functions that I think your blm class should implement. The

functions are listed in alphabetical order, but many of them are easier to implement by

using one or more of the others. So read through the list before you start programming.

If you think that one function can be implemented simpler by calling one of the others,

then implement it that way.

In all cases, read the R documentation for the generic function first. You need the

documentation to implement the right interface for each function anyway, so you might

at least read the whole thing. The description in this note is just an overview of what the

functions should do.

Chapter 17 Project 2: Bayesian Linear Regression

495

�coefficients

This function should return fitted parameters of the model. It is not entirely

straightforward to interpret what that means with our Bayesian models where a fitted

model is a distribution and not a single point parameter. We could let the function

return the fitted distribution, but the way this function is typically used that would make

it useless for existing code. Existing code expects that it can get parameters of a fitted

model using this function, so it is probably better to return the point estimates of the

parameters which would be the mean of the posterior you compute when fitting.

Return the result as a numeric vector with the parameters named. That would fit

what you get from lm.

�confint

The function confint gives you confidence intervals for the fitted parameters. Here,

we have the same issue as with coefficients: we infer an entire distribution and not a

parameter (and in any case, our parameters do not have confidence intervals; they have

a joint distribution). Nevertheless, we can compute the analogue to confidence intervals

from the distribution we have inferred.

If our posterior is distributed as w ~ N (m, S), then component i of the weight vector

is distributed as wi ~ N (mi, Si,i). From this, and the desired fraction of density you want,

you can pull out the thresholds that match the quantiles you need.

You take the level parameter of the function and get the threshold quantiles by

exploiting that a normal distribution is symmetric. So you want the quantiles to be

c(level/2, 1-level/2). From that, you can get the thresholds using the function qnorm.

�deviance

This function just computes the sum of squared distances from the predicted response

variables to the observed. This should be easy enough to compute if you could get the

squared distances or even if you only had the distances and had to square them yourself.

Perhaps there is a function that gives you that?

Chapter 17 Project 2: Bayesian Linear Regression

496

�fitted

This function should give you the fitted response variables. This is not the response

variables in the data you fitted the model to, but instead the predictions that the

model makes.

�plot

This function plots your model. You are pretty free to decide how you want to plot it, but

I could imagine that it would be useful to see an x-y plot with a line going through it for

the fit. If there is more than one predictor variable, though, I am not sure what would

be a good way to visualize the fitted model. There are no explicit rules for what the plot

function should do, except for plotting something, so you can use your imagination.

�predict

This function should make predictions based on the fitted model. Its interface is

predict(object, ...)

but the convention is that you give it new data in a variable newdata. If you do not

provide new data, it instead gives you the predictions on the data used to fit the model.

�print

This function is what gets called if you explicitly print an object or if you just write an

expression that evaluates to an object of the class in the R terminal. Typically, it prints a

very short description of the object.

For fitted objects, it customarily prints how the fitting function was called and

perhaps what the fitted coefficients were or how good the fit was. You can check out how

lm objects are printed to see an example.

If you want to print how the fitting function was called, you need to get that from

when you fit the object in the blm constructor. It is how the constructor was called that

is of interest, after all. Inside that function, you can get the way it was called by using the

function sys.call.

Chapter 17 Project 2: Bayesian Linear Regression

497

�residuals

This function returns the residuals of the fit. That is the difference between predicted

values and observed values for the response variable.

�summary

This function is usually used as a longer version of print. It gives you more information

about the fitted model.

It does more than this, however. It returns an object with summary information.

What that actually means is up to the model implementation, so do what you like here.

�Building an R Package for blm
We have most of the pieces put together now for our Bayesian linear regression software,

and it is the time we collect it in an R package. That is the next step in our project.

You already have an implementation of Bayesian linear regression with a class, blm,

and various functions for accessing objects of this type. Now it is time to collect these

functions in a package.

�Deciding on the Package Interface
When you designed your class functionality and interface, you had to decide on what

functionality should be available for objects of your class and how all your functions

would fit together to make the code easy to extend and use. There is a similar process of

design involved with making a package.

Everything you did for designing the class, of course, is the same for a package, but

for the package, you have to decide on which functions should be exported and which

should be kept internal.

Only exported functions can be used by someone else who loads your package, so

you might be tempted to export everything you can. This, however, is a poor choice. The

interface of your package is the exported functions, and if you export too much, you have

a huge interface that you need to maintain. If you make changes to the interface of a

package, then everyone using your package will have to update their code to adapt to the

changing interface. You want to keep changes to the package interface at a minimum.

Chapter 17 Project 2: Bayesian Linear Regression

498

You should figure out which functionality you consider essential parts of the package

functionality and what you consider internal helper functions and only export the

functions that are part of the package interface.

�Organization of Source Files
R doesn’t really care how many files you use to have your source code in or how the

source code is organized, but you might. At some point in the future, you will need to be

able to find relevant functions to fix bugs or extend the functionality of your package.

Decide how you want to organize your source code. Do you want one function per

file? Is there instead some logical way of splitting the functionality of your code into

categories where you can have a file per category?

�Document Your Package Interface Well
At the very least, the functions you export from your package should be documented.

Without documentation, a user (and that could be you in the future) won’t know how a

function is supposed to be used.

This documentation is mostly useful for online help—the kind of help you get

using ?—so it shouldn’t be too long but should give the reader a good idea of how a

function is supposed to be used.

To give an overall description of the entire package and how various functions fit

together and how they should be used, you can write documentation for the package as

a whole.

Like with package data, there isn’t a place for doing this, really, but you can use the

same trick as for data. Put the documentation in a source code file in the R/ directory.

Here is my documentation for the admixturegraph package:

#' admixturegraph: Visualising and analysing admixture graphs.

#'

#' The package provides functionality to analyse and test

#' admixture graphs against the \eqn{f} statistics described

#' in the paper

#' \href{http://tinyurl.com/o5a4kr4}{Ancient Admixture in Human History},

#' Patternson \emph{et al.}, Genetics, Vol. 192, 1065--1093, 2012.

#'

Chapter 17 Project 2: Bayesian Linear Regression

499

#' The \eqn{f} statistics, \eqn{f_2}, \eqn{f_3}, and \eqn{f_4},

#' extract information about correlations between gene frequencies

#" in different populations (or single diploid genome samples),

#' which can be informative about patterns of gene flow between

#' <<more description here>>

#'

#' @docType package

#' @name admixturegraph

NULL

It is the @docType and @name tags that tell Roxygen that I am writing documentation

for the entire package.

�Adding README and NEWS Files to Your Package
It is customary to also have a README and a NEWS file in your package. The README

file describes what your package does and how and can be thought of as a short

advertisement for the package, while the NEWS file describes which changes you have

made to your package over time.

Many developers prefer to use “markdown” as the format for these files—in which

case they are typically named README.md and NEWS.md—and especially if you put

your package on GitHub,2 it is a good idea to have the README.md file since it will be

prominently displayed when people go to the package home page on GitHub.

�README

What you write in your README file is up to you, but it is customary to have it briefly

describe what the package does and maybe give an example or two on how it is used.

If you write it in markdown—in a file called README.md—it will be the home page if

you put your package on GitHub.

You might want to write it in R Markdown instead to get all the benefits of knitr to

go with the file. In that case, you should just name the file README.Rmd and put this in

the header:

2 We return to git and GitHub in a later session.

Chapter 17 Project 2: Bayesian Linear Regression

500

output:

 md_document:

 variant: markdown_github

This tells knitr that it should make a markdown file as output—it will be called

README.md.

�NEWS

This file should simply contain a list of changes you have made to your package over

time. To make it easier for people to see which changes go with which versions of the

package, you can split it into sections with each section corresponding to a version.

�Testing
In the package, we should now make sure that all of our functions are tested by at least

one unit test and that our package can make it through a package test.

�GitHub
Sign up to GitHub and create a repository for the project. Move the code there.

Chapter 17 Project 2: Bayesian Linear Regression

501
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0

�Conclusions

Well, this is the end of the book but hopefully not the end of your data science career.

I have said all I wanted to say in this book. There are many things I have left out—text

processing, for instance. R is not my favorite language for processing text, so I don’t use

it, but it does have functionality for it. It just goes beyond the kind of data we have looked

at here. If you want to process text, like genomes or natural languages, you need different

tools than what I have covered in this book. I have assumed that you are just working

on data frames. It made the book easier to write, which matched my laziness well. But it

doesn’t cover all that data science is about. For more specialized data analysis, you will

need to look elsewhere. There are many good books you can consult. It just wasn’t within

the scope of this book.

It is the end of this book, but I would like to leave you with some pointers for learning

more about data science and R. There are different directions you might want to go

in depending on whether you are more interested in analyzing data or more about

developing methods. R is a good choice for either. In the long run, you probably will

want to do both. The books listed in the following will get you started in the direction you

want to go.

�Data Science
•	 The Art of Data Science by Roger Peng and Elizabeth Matsui

This is a general overview of the steps and philosophies underlying data science. It

describes the various stages a project goes through—exploratory analysis, fitting models,

etc.—and while it doesn’t cover any technical details, it is a good overview.

�Machine Learning
•	 Pattern Recognition and Machine Learning by Christopher Bishop

https://doi.org/10.1007/978-1-4842-8155-0

502

This is a book I have been using to teach a machine learning class for many years

now. It covers a lot of different algorithms for both supervised and unsupervised

learning—also types of analysis not covered in this book. It is rather mathematical and

focused on methods, but if you are interested in the underlying machine learning, it is an

excellent introduction.

�Data Analysis
•	 Linear Models in R by Julian J. Faraway

•	 Extending the Linear Model with R: Generalized Linear, Mixed Effects

and Nonparametric Regression Models by Julian J. Faraway

Linear models and generalized linear models are the first things I try. Pretty much

always. These are great books for seeing how those models are used in R.

•	 R Graphics by Paul Murrell

•	 ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham

The first book describes the basic graphics package and the grid system that

underlies ggplot2. The second book, obviously, is the go-to book for learning more

about ggplot2.

�R Programming
•	 Advanced R by Hadley Wickham

•	 R Packages by Hadley Wickham

These are great books if you want to learn more about advanced R programming and

package development.

•	 Seamless R and C++ Integration with Rcpp by Dirk Eddelbuettel

If you are interested in integrating C++ and R, then Rcpp is the way to go, and this is

an excellent introduction to Rcpp.

CONCLUSIONS

503

�The End
This is where I leave you. I hope you have found the book useful, and if you want to leave

me any comments and criticism, please do. It will help me improve it for future versions.

If you think things should be added, let me know, and I will add a chapter or two to cover

it. And definitely, let me know if you find any mistakes in the book. I will be particularly

grateful if you spot any errors in the code included in the book.

CONCLUSIONS

505
© Thomas Mailund 2022
T. Mailund, Beginning Data Science in R 4, https://doi.org/10.1007/978-1-4842-8155-0

Index

A
Automating testing, 411

B
Bare repositories, 425, 426
Bayesian linear model fitting, 374–376
Bayesian linear regression, 471, 472

blm class
building R package, 497
designing, 494
interface to, 487, 488

building model matrices, 485
constructor, 488, 489
deviance, 495
fitting general models, 485
GitHub, 500
model matrices without response

variables, 485, 486
model methods, 494

coefficients, 495
confint, 495
fitted response variables, 496
plots, 496
predictions, 496
print, 496
residuals, 497
summary, 497

new data, model matrices
for, 487

news, 500
organization of source files, 498

package interface, deciding on,
497, 498

package interface well, document,
498, 499

predicting new targets, 487
priors and posteriors

formulas and model
matrix, 478–480

multivariate normal distribution,
sample from, 473

new predictor values/predicting
target variables, 476, 477

posterior distribution,
computing, 474–476

README and NEWS file, 499
R, working with model matrices

in, 480–484
testing, 500
updating distributions, 489–493

BugReports, 396
.Buildignore, 393

C
C++, 466–469
Classes, 376–379
Class hierarchies, object-oriented

programming, 382, 383
Cloning repositories, 425, 426
Code, speeding up, 456–461
Confint, 495
Conjugate prior, 173, 489

https://doi.org/10.1007/978-1-4842-8155-0

506

Constructor, 488, 489
Control structures, 306

looping construction, 307, 309, 310
selection statements, 306

D
Data analysis, 1, 2, 4, 38, 39, 47, 51, 53, 69,

71, 73, 75, 110, 502
Data manipulation

arrange() function, 99
BostonHousing data, 87
BreastCancer data set, 82, 106
cars dataset, 74
colClasses function, 78
col.names function, 78
comment.char function, 78
data() function, 73
decimal point, 78
desc() function, 99
dplyr functionality, 92, 94
filter() function, 100
group_by() function, 100
groups argument, 102
header function, 77
head(), 75
library(), 73
mlbench, 74
mutate(), 93, 98
pivot_longer(), 113
read.csv(), 77, 80, 81, 90, 91
readLines() function, 80
readr package, 90
read.table() function, 77, 78, 88
save(), 86
select(), 95
Sepal.Length, 113
str() function, 77

summarise() function, 76, 100, 101, 104
tail() function, 75
tidy data, 110
tidyr package, 115
transmute() function, 98
unname() function, 85

Data science, 1, 51, 53, 73, 117, 161, 501
Data structures, 294, 374

factor type, 305
formula, 305
indexing, 300
lists, 298
matrix, 296
names values, 304
vectors, 294

Data types, 290
characters, 293
complex numbers, 292
integer type, 291
logical values, 292
numeric type, 291

Deviance, 495
Documenting functions, 401, 402
Dynamic dispatch, 373

E
Expressions, 287

arithmetic expressions, 287
boolean expressions, 289

F
Fitted response variables, 496
Functional programming, 349

anonymous functions, 349
caching results, 363
ellipsis parameters, 368, 369

INDEX

507

factorial function, 365
filter function, 357
higher-order functions, 351

function arguments, 351
functions returning functions,

352, 354–357
power function, 352
repeated function, 356

input and output functions, 363
Map function, 358
purrr package, 360, 361, 363
Reduce function, 359

Functions, 311
default values, 313
lazy evaluation, 315
named arguments, 312
return values, 314
scoping rule, 317–321
variable names, 322

G, H
GitG, 422
GitHub, 426, 433–436

collaborating on, 437
installing packages from, 437
moving an existing repository to, 436

GitHub Desktop, 422
Git, installation, 421, 422
Global repository, pushing

branches to, 433
Graph-flow algorithm, 442–456

I
ifelse() function, 83
Immutable objects, 348, 373
Incidence matrix, 443, 444, 447

J
Java, 49, 293, 373, 383

K
kable() function, 71

L
Large data sets

as.ffdf() function, 174
Bayesian linear regression model, 173
Bayesian model fitting methods, 173
biglm() function, 172
complexity theory, 161
dplyr functions, 163, 176
fitting functions, 166
geom_density_2d() function, 168
geom_hex() function, 170
glm() function, 172
read.csv.ffdf(). function, 174
running out of memory, 164
scatter plot, 166, 167
slice() function, 172
src_sqlite() function, 175
tbl() function, 175
traditional hypothesis testing, 162
update() function, 173

Literate programming, 52, 53

M
Machine learning, 179, 180, 182, 183, 194,

229, 501, 502
Markdown language, 59

bibliography, 65
cross referencing, 64
formatting text, 60

INDEX

508

pandoc tool, 66
verbatim blocks, 64

Model matrices, without response
variables, 485, 486

Model matrix, 172, 194–197, 200, 478–480,
485–487, 490

Multivariate normal distribution,
sample from, 473

N
Naive Bayes, 235, 277
NAMESPACE, 392, 397–399
NEWS file, 499
NULL, 406, 407, 414

O
Object-oriented programming

Bayesian linear model fitting, 374–376
classes, 376–379
class hierarchies, 382, 383
data structures, 374
immutable objects and polymorphic

functions, 373
implementations, specialization

in, 384–388
polymorphic functions, 379–381
polynomials, 389
shapes, 388, 389
specialization as interface, 383, 384

P, Q
Parallel execution, 461–465
Pattern recognition, 501
Plots, 45, 51, 56, 57, 496

Polymorphic functions, 379–381
Polymorphic methods, 373
Polynomials, 389
Portuguese Vinho Verde wines, 275

accuracy() function, 278
ctree function, 279
fitting models, 282
import data, 275
null_model() function, 284
partition() function, 278
predict() function, 283
prediction_accuracy_wines()

function, 284
quality scores, 276
red and white wine, 277
rmse() function, 283
tibble and bind_rows functions, 276
volatile acidity, 280, 281

Posterior distribution,
computing, 474–476

Profiling, 441, 442
code, speeding up, 456–461
graph-flow algorithm, 442–456
parallel execution, 461–465
switching to C++, 466–469

Pull requests, 420, 437–439
Python, 49, 53, 193, 373

R
R/ and man/, 400
README file, 499, 500
Recursive functions, 310, 322, 323
R Markdown document, 66

boilerplate code, 67
caching, 70
chunk options, 68
code chunks, 67, 69

Markdown language (cont.)

INDEX

509

complication, 55
creation, 53, 72
displaying data, 71
HTML document, 55, 72
Notebook format, 56
using rnorm(), 72

Roxygen, 398–401
R Package, 391

adding data, 405, 406
author and maintainer, 395
.Buildignore, 393
building, 407
checking the package, 400
creation, 391, 392
dependencies, 397
description, 393–395
documenting functions, 401, 402
file load order, 404, 405
import and export, 402, 403
imported package, using, 397, 398
internal functions, 404
license, 396
NAMESPACE, 399
NULL, 406, 407
package names, 392
package scope vs. global scope, 404
R/ and man/, 400
Roxygen, 401
structure of, 392
suggested package, using, 398
title, 394
Type, Date, LazyData, 396
URL and BugReports, 396
version, 394, 395

R programming language, 1, 502
calculator, 3

arithmetic expressions, 4
assignments, 6, 7

indexing vectors, 9–11
vectorized expressions, 11

comments, 13
data frames, 32, 33, 35
data magical argument, 42
data manipulation, 1
data pipelines, 38

anonymous functions, 45
coding and naming

conventions, 49
lm() function, 43
magrittr operator, 39, 46
Pipeline Operations, 47
writing functions, 41, 44

factors, 26–31
functions, 13

control flow statement,
20–23, 25, 26

documentation, 14
square function, 16
summarizes function, 18
vectorized function, 20
write yourself, 16

missing values, 37
packages, 36
R Script file, 3
RStudio window, 2

RStudio, 36, 53, 55, 57–59, 64, 420, 430

S
Second-degree polynomial, 204

accuracy, 213, 214
classification models, 209
confusing matrix, 210, 217
predict() function, 206
regression models, 206
sample() function, 208

INDEX

510

specificity sensitivity, 215
summary() function, 205
two classes, 218

Sorting function, 324
Sourcetree, 422
Splitting data, 218

cross-validation, 223, 224
random permutation, 219, 220, 222
training and test data, 227

Structured Query Language (SQL), 175
Supervised learning, 180

classification, 181
decision trees, 230
formulas, 195, 202
geom_smooth() function, 185
glm() function, 192
inference vs. prediction, 182
interactions, 199, 200
linear model function, 204
linear regression, 183
logistic regression, 189
model fitting function, 196
model matrices, 194, 197, 202
neural networks, 233
predict_dist() function, 187
random forests, 232
regression, 181
support vector machines, 235

T
Testing and package checking

automating testing, 411
consistency, 417
testing random, 416, 417
testthat, 412–414
unit testing, 409, 410

using random numbers, 415
writing good tests, 414, 415

testthat, 412–414

U
Unit testing, 409, 410
Unsupervised learning

association rules algorithm, 267
apriori() function, 270
arules package, 269
head() function, 270
sort() function, 272
subset() function, 272

clustering methods, 255
bad clustering, 261
confusion matrix, 262
hierarchical clustering, 263,

265, 266
iris species, 257
kmeans() function, 259
k-means clustering, 255
generic plot() function, 263
prcomp() function, 262
predict() function, 258

dimensionality reduction, 239
multidimensional scaling, 250
PCA, 240

URL, 396

V, W, X
Vectorized expressions

advanced functions, 343
arithmetic/logic expressions, 330
ifelse statements, 332
infix operator, 343
.lapply function, 340

Second-degree polynomial (cont.)

INDEX

511

modify objects, 347
operations, 330
replacement functions, 344, 346
.sapply function, 342
.vapply function, 342
Vectorize function, 334, 335

Version control, 419
bare repositories and cloning

repositories, 425, 426
collaborating on GitHub, 437
existing project, adding git to, 424, 425
existing repository, moving, 436
files, staging files/committing

changes/making changes to,
422, 423

forking repositories, instead of
cloning, 438–440

GitHub, 433–436
GitHub, installing packages from, 437
git installation, 421, 422
global repository, pushing

branches to, 433
handling conflicts, 428, 429
pull requests, 438
pushing local changes/fetching/

pulling remote changes, 426–428
and repositories, 419, 420
RStudio, 420
typical workflows, 432, 433
working with branches, 429–432

Visualizing data, 121
cowplot, 158
facet_grid() function, 153

facets, 141, 143, 145
ggplot2 package, 128, 156

aes() function, 134
creation, 133
explicit geometries, 133
geom_histogram() function, 135
geom_point() functions, 134, 135
geom_smooth() method, 137
iris data, 132
pivot_longer function, 140
print() function, 130
qplot() function, 129

graphics package, 121
abline() function, 126
Iris data plotted, 128
lm() function, 124
plot() function, 122, 123
publication-quality plots, 127

grid.arrange() function, 158
plot_grid() function, 158, 159
scaling, 145

iris measurements, 149
scale_fill_brewer() function, 151
scale_fill_manual() function, 149
scale_x/y_continuous()

functions, 146
xlab() and ylab() functions, 146

theme_bw() function, 151
theme modifications, 155

Y, Z
YAML language, 57

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	What Is Data Science?
	Prerequisites for Reading This Book
	Plan for the Book
	Data Analysis and Visualization
	Software Development
	Getting R and RStudio
	Projects

	Chapter 1: Introduction to R Programming
	Basic Interaction with R
	Using R As a Calculator
	Simple Expressions
	Assignments
	Indexing Vectors
	Vectorized Expressions

	Comments
	Functions
	Getting Documentation for Functions
	Writing Your Own Functions
	Summarizing and Vector Functions
	A Quick Look at Control Flow

	Factors
	Data Frames
	Using R Packages
	Dealing with Missing Values
	Data Pipelines
	Writing Pipelines of Function Calls
	Writing Functions That Work with Pipelines
	The Magical “.” Argument
	Other Pipeline Operations
	Coding and Naming Conventions

	Exercises
	Mean of Positive Values
	Root Mean Square Error

	Chapter 2: Reproducible Analysis
	Literate Programming and Integration of Workflow and Documentation
	Creating an R Markdown/knitr Document in RStudio
	The YAML Language
	The Markdown Language
	Formatting Text
	Cross-Referencing
	Bibliographies
	Controlling the Output (Templates/Stylesheets)

	Running R Code in Markdown Documents
	Using chunks when analyzing data (without compiling documents)
	Caching Results
	Displaying Data

	Exercises
	Create an R Markdown Document
	Different Output
	Caching

	Chapter 3: Data Manipulation
	Data Already in R
	Quickly Reviewing Data
	Reading Data
	Examples of Reading and Formatting Data Sets
	Breast Cancer Data set
	Boston Housing Data Set
	The readr Package

	Manipulating Data with dplyr
	Some Useful dplyr Functions
	Breast Cancer Data Manipulation
	Tidying Data with tidyr

	Exercises
	Importing Data
	Using dplyr
	Using tidyr

	Chapter 4: Visualizing Data
	Basic Graphics
	The Grammar of Graphics and the ggplot2 Package
	Using qplot()
	Using Geometries

	Facets
	Scaling
	Themes and Other Graphics Transformations

	Figures with Multiple Plots
	Exercises

	Chapter 5: Working with Large Data Sets
	Subsample Your Data Before You Analyze the Full Data Set
	Running Out of Memory During an Analysis
	Too Large to Plot
	Too Slow to Analyze
	Too Large to Load
	Exercises
	Subsampling
	Hex and 2D Density Plots

	Chapter 6: Supervised Learning
	Machine Learning
	Supervised Learning
	Regression vs. Classification
	Inference vs. Prediction

	Specifying Models
	Linear Regression
	Logistic Regression (Classification, Really)
	Model Matrices and Formula

	Validating Models
	Evaluating Regression Models
	Evaluating Classification Models
	Confusion Matrix
	Accuracy
	Sensitivity and Specificity
	Other Measures
	More Than Two Classes

	Sampling Approaches
	Random Permutations of Your Data
	Cross-Validation
	Selecting Random Training and Testing Data

	Examples of Supervised Learning Packages
	Decision Trees
	Random Forests
	Neural Networks
	Support Vector Machines

	Naive Bayes
	Exercises
	Fitting Polynomials
	Evaluating Different Classification Measures
	Breast Cancer Classification
	Leave-One-Out Cross-Validation (Slightly More Difficult)
	Decision Trees
	Random Forests
	Neural Networks
	Support Vector Machines
	Compare Classification Algorithms

	Chapter 7: Unsupervised Learning
	Dimensionality Reduction
	Principal Component Analysis
	Multidimensional Scaling

	Clustering
	k-means Clustering
	Hierarchical Clustering

	Association Rules
	Exercises
	Dealing with Missing Data in the HouseVotes84 Data
	k-means

	Chapter 8: Project 1: Hitting the Bottle
	Importing Data
	Exploring the Data
	Distribution of Quality Scores
	Is This Wine Red or White?

	Fitting Models
	Exercises
	Exploring Other Formulas
	Exploring Different Models
	Analyzing Your Own Data Set

	Chapter 9: Deeper into R Programming
	Expressions
	Arithmetic Expressions
	Boolean Expressions

	Basic Data Types
	Numeric
	Integer
	Complex
	Logical
	Character

	Data Structures
	Vectors
	Matrix
	Lists
	Indexing
	Named Values
	Factors
	Formulas

	Control Structures
	Selection Statements
	Loops

	Functions
	Named Arguments
	Default Parameters
	Return Values
	Lazy Evaluation
	Scoping
	Function Names Are Different from Variable Names

	Recursive Functions
	Exercises
	Fibonacci Numbers
	Outer Product
	Linear Time Merge
	Binary Search
	More Sorting
	Selecting the k Smallest Element

	Chapter 10: Working with Vectors and Lists
	Working with Vectors and Vectorizing Functions
	ifelse
	Vectorizing Functions
	The apply Family
	apply
	Nothing Good, It Would Seem
	lapply
	sapply and vapply

	Advanced Functions
	Special Names
	Infix Operators
	Replacement Functions

	How Mutable Is Data Anyway?
	Exercises
	between
	rmq

	Chapter 11: Functional Programming
	Anonymous Functions
	Higher-Order Functions
	Functions Taking Functions As Arguments
	Functions Returning Functions (and Closures)

	Filter, Map, and Reduce
	Functional Programming with purrr
	Functions As Both Input and Output
	Ellipsis Parameters…

	Exercises
	apply_if
	power
	Row and Column Sums
	Factorial Again…
	Function Composition
	Implement This Operator

	Chapter 12: Object-Oriented Programming
	Immutable Objects and Polymorphic Functions
	Data Structures
	Example: Bayesian Linear Model Fitting

	Classes
	Polymorphic Functions
	Defining Your Own Polymorphic Functions

	Class Hierarchies
	Specialization As Interface
	Specialization in Implementations

	Exercises
	Shapes
	Polynomials

	Chapter 13: Building an R Package
	Creating an R Package
	Package Names
	The Structure of an R Package
	.Rbuildignore

	Description
	Title
	Version
	Description
	Author and Maintainer
	License
	Type, Date, LazyData
	URL and BugReports
	Dependencies
	Using an Imported Package
	Using a Suggested Package

	NAMESPACE
	R/ and man/

	Checking the Package
	Roxygen
	Documenting Functions
	Import and Export
	Package Scope vs. Global Scope
	Internal Functions
	File Load Order

	Adding Data to Your Package
	NULL

	Building an R Package
	Exercises

	Chapter 14: Testing and Package Checking
	Unit Testing
	Automating Testing

	Using testthat
	Writing Good Tests
	Using Random Numbers in Tests
	Testing Random Results

	Checking a Package for Consistency
	Exercise

	Chapter 15: Version Control
	Version Control and Repositories
	Using Git in RStudio
	Installing Git
	Making Changes to Files, Staging Files, and Committing Changes
	Adding Git to an Existing Project
	Bare Repositories and Cloning Repositories
	Pushing Local Changes and Fetching and Pulling Remote Changes
	Handling Conflicts
	Working with Branches
	Typical Workflows Involve Lots of Branches
	Pushing Branches to the Global Repository

	GitHub
	Moving an Existing Repository to GitHub
	Installing Packages from GitHub

	Collaborating on GitHub
	Pull Requests
	Forking Repositories Instead of Cloning

	Exercises

	Chapter 16: Profiling and Optimizing
	Profiling
	A Graph-Flow Algorithm

	Speeding Up Your Code
	Parallel Execution
	Switching to C++
	Exercises

	Chapter 17: Project 2: Bayesian Linear Regression
	Bayesian Linear Regression
	Exercises: Priors and Posteriors
	Sample from a Multivariate Normal Distribution
	Computing the Posterior Distribution

	Predicting Target Variables for New Predictor Values

	Formulas and Their Model Matrix
	Working with Model Matrices in R
	Exercises
	Building Model Matrices
	Fitting General Models

	Model Matrices Without Response Variables
	Exercises
	Model Matrices for New Data
	Predicting New Targets

	Interface to a blm Class
	Constructor
	Updating Distributions: An Example Interface
	Designing Your blm Class
	Model Methods
	coefficients
	confint
	deviance
	fitted
	plot
	predict
	print
	residuals
	summary

	Building an R Package for blm
	Deciding on the Package Interface
	Organization of Source Files
	Document Your Package Interface Well
	Adding README and NEWS Files to Your Package
	README
	NEWS

	Testing
	GitHub

	Conclusions
	Data Science
	Machine Learning
	Data Analysis
	R Programming
	The End

	Index

