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Introduction

The multicore revolution is at hand. Parallel processing is no longer the exclusive domain of
supercomputers or clusters. The entry-level server and even the basic developer workstation have the
capacity for hardware- and software-level parallel processing. The question is what does this mean for
the software developer and what impact will it have on the software development process? In the race
for who has the fastest computer, it is now more attractive for chip manufacturers to place multiple
processors on a single chip than it is to increase the speed of the processor. Until now the software
developer could rely on the next new processor to speed up the software without having to make any
actual improvements to the software. Those days are gone. To increase overall system performance,
computer manufacturers have decided to add more processors rather than increase clock frequency. This
means if the software developer wants the application to benefit from the next new processor, the
application will have to be modified to exploit multiprocessor computers.

Although sequential programming and single core application development have a place and will
remain with us, the landscape of software development now reflects a shift toward multithreading and
multiprocessing. Parallel programming techniques that were once only the concern of theoretical
computer scientists and university academics are in the process of being reworked for the masses. The
ideas of multicore application design and development are now a concern for the mainstream.

Learn Multicore Programming

Our book Professional Multicore Programming: Design and Implementation for C++ Developers presents

the ABCs of multicore programming in terms the average working software developer can understand.
We introduce the reader to the everyday fundamentals of programming for multiprocessor and
multithreaded architectures. We provide a practical yet gentle introduction to the notions of parallel
processing and software concurrency. This book takes complicated, almost unapproachable,

parallel programming techniques and presents them in a simple, understandable manner. We address
the pitfalls and traps of concurrency programming and synchronization. We provide a no-nonsense
discussion of multiprocessing and multithreading models. This book provides numerous programming
examples that demonstrate how successful multicore programming is done. We also include methods
and techniques for debugging and testing multicore programming. Finally, we demonstrate how to take
advantage of processor specific features using cross-platform techniques.

Different Points of View

The material in this book is designed to serve a wide audience with different entry points into multicore
programming and application development. The audience for this book includes but is not limited to:

Q  Library and tool producers

O  Operating system programmers
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Kernel developers
Database and application server designers and implementers

Scientific programmers and users with compute-intensive applications

0O 0 0O O

Application developers

QO  System programmers

Each group sees the multicore computer from a somewhat different perspective. Some are concerned
with bottom-up methods and need to develop software that takes advantage of hardware-specific and
vendor-specific features. For these groups, the more detailed the information about the nooks and
crannies of multithreaded processing the better. Other groups are interested in top-down methods. This
group does not want to be bothered with the details of concurrent task synchronization or thread safety.
This group prefers to use high-level libraries and tools to get the job done. Still other groups need a mix
of bottom-up and top-down approaches. This book provides an introduction to the many points of
view of multicore programming, covering both bottom-up and top-down approaches.

Multiparadigm Approaches are the Solution

First, we recognize that not every software solution requires multiprocessing or multithreading. Some
software solutions are better implemented using sequential programming techniques (even if the target
platform is multicore). Our approach is solution and model driven. First, develop the model or solution
for the problem. If the solution requires that some instructions, procedures, or tasks need to execute
concurrently then determine which the best set of techniques to use are. This approach is in contrast to
forcing the solution or model to fit some preselected library or development tool. The technique should
follow the solution. Although this book discusses libraries and development tools, it does not advocate
any specific vendor library or tool set. Although we include examples that take advantage of particular
hardware platforms, we rely on cross-platform approaches. POSIX standard operating system calls and
libraries are used. Only features of C++ that are supported by the International C++ standard are used.

We advocate a component approach to the challenges and obstacles found in multiprocessing and
multithreading. Our primary objective is to take advantage of framework classes as building blocks for
concurrency. The framework classes are supported by object-oriented mutexes, semaphores, pipes,
queues, and sockets. The complexity of task synchronization and communication is significantly reduced
through the use of interface classes. The control mechanism in our multithreaded and multiprocessing
applications is primarily agent driven. This means that the application architectures that you will see in
this book support the multiple-paradigm approach to software development.

We use object-oriented programming techniques for component implementation and primarily agent-
oriented programming techniques for the control mechanism. The agent-oriented programming ideas
are sometimes supported by logic programming techniques. As the number of available cores on the
processor increase, software development models will need to rely more on agent-oriented and logic
programming. This book includes an introduction to this multiparadigm approach for software
development.

xxXii
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Why C++?

There are C++ compilers available for virtually every platform and operating environment. The ANSI
American National Standards Institute (ANSI) and International Organization for Standardization (ISO)
have defined standards for the C++ language and its library. There are robust open-source
implementations as well as commercial implementations of the language. The language has to be widely
adopted by researchers, designers, and professional developers around the world. The C++ language has
been used to solve problems of all sizes and shapes from device drivers to large-scale industrial
applications. The language supports a multiparadigm approach to software development. We can
implement Object-Oriented designs, logic programming designs, and agent-oriented designs seamlessly
in C++. We can also use structured programming techniques or low-level programming techniques
where necessary. This flexibility is exactly what’s needed to take advantage of the new multicore world.
Further, C++ compilers provide the software developer with a direct interface to the new features of the
multicore processors.

UML Diagrams

Many of the diagrams in this book use the Unified Modeling Language (UML) standard. In particular,
activity diagrams, deployment diagrams, class diagrams and state diagrams are used to describe
important concurrency architectures and class relationships. Although a knowledge of the UML is not
necessary, familiarity is helpful.

Development Environments Supported

The examples in this book were all developed using ISO standard C/C++. This means the examples and
programs can be compiled in all the major environments. Only POSIX-compliant operating system calls
or libraries are used in the complete programs. Therefore, these programs will be portable to all
operating system environments that are POSIX compliant. The examples and programs in this book were
tested on the SunFire 2000 with UltraSparc T1 multiprocessor, the Intel Core 2 Duo, the IBM Cell
Broadband Engine, and the AMD Dual Core Opteron.

Program Profiles

Most complete programs in the book are accompanied by a program profile. The profile will contain
implementation specifics such as headers required, libraries required, compile instructions, and link
instructions. The profile also includes a notes section that will contain any special considerations that
need to be taken when executing the program. All code is meant for exposition purposes only.

xxiii
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Testing and Code Reliability

Although all examples and applications in this book were tested to ensure correctness, we make no
warranties that the programs contained in this book are free of defects or error or are consistent with any
particular standard or mechantability, or will meet your requirement for any particular application. They
should not be relied upon for solving problems whose incorrect solution could result in injury to person
or loss of property. The authors and publishers disclaim all liability for direct or consequential damages
resulting from your use of the examples, programs, or applications present in this book.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q  We highlight new terms and important words when we introduce them.

QO  We show keyboard strokes like this: Ctrl+A.

O  We show filenames, URLs, and code within the text like this: persistence.properties.
a

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that's particularly important in the
present context.

This book contains both code listings and code examples.

Q  Code listings are complete programs that are runnable. As previously mentioned, in most cases,
they will be accompanied with a program profile that tells you the environment the program
was written in and gives you a description and the compiling and linking instructions, and so
forth.

QO  Code examples are snippets. They do not run as is. They are used to focus on showing how
something is called or used, but the code cannot run as seen.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

XXiv
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Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-28962-4.

Once you download the code, just decompress it with your favorite decompression tool. Alternately, you
can go to the main Wrox code download page at www.wrox . com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher-
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox . com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com, you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:
1. Gotop2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3.  Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.
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You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.
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The New Architecture

If a person walks fast on a road covering fifty miles in a day, this does not mean he is
capable of running unceasingly from morning till night. Even an unskilled runner
may run all day, but without going very far.

—Miyamoto Musahi, The Book of Five Rings

The most recent advances in microprocessor design for desktop computers involve putting
multiple processors on a single computer chip. These multicore designs are completely replacing
the traditional single core designs that have been the foundation of desktop computers. IBM, Sun,
Intel, and AMD have all changed their chip pipelines from single core processor production to
multicore processor production. This has prompted computer vendors such as Dell, HP, and Apple
to change their focus to selling desktop computers with multicores. The race to control market
share in this new area has each computer chip manufacturer pushing the envelope on the number
of cores that can be economically placed on a single chip. All of this competition places more
computing power in the hands of the consumer than ever before. The primary problem is that
regular desktop software has not been designed to take advantage of the new multicore
architectures. In fact, to see any real speedup from the new multicore architectures, desktop
software will have to be redesigned.

The approaches to designing and implementing application software that will take advantage

of the multicore processors are radically different from techniques used in single core
development. The focus of software design and development will have to change from sequential
programming techniques to parallel and multithreaded programming techniques.

The standard developer’s workstation and the entry-level server are now multiprocessors capable
of hardware-level multithreading, multiprocessing, and parallel processing. Although sequential
programming and single core application development have a place and will remain with us, the
ideas of multicore application design and development are now in the mainstream.
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This chapter begins your look at multicore programming. We will cover:

Q  What is a multicore?
QO  What multicore architectures are there and how do they differ from each other?

QO  What do you as a designer and developer of software need to know about moving from
sequential programming and single core application development to multicore programming?

What Is a Multicore?

A multicore is an architecture design that places multiple processors on a single die (computer chip). Each
processor is called a core. As chip capacity increased, placing multiple processors on a single chip
became practical. These designs are known as Chip Multiprocessors (CMPs) because they allow for single
chip multiprocessing. Multicore is simply a popular name for CMP or single chip multiprocessors. The
concept of single chip multiprocessing is not new, and chip manufacturers have been exploring the idea
of multiple cores on a uniprocessor since the early 1990s. Recently, the CMP has become the preferred
method of improving overall system performance. This is a departure from the approach of increasing
the clock frequency or processor speed to achieve gains in overall system performance. Increasing the
clock frequency has started to hit its limits in terms of cost-effectiveness. Higher frequency requires more
power, making it harder and more expensive to cool the system. This also affects sizing and packaging
considerations. So, instead of trying to make the processor faster to gain performance, the response is
now just to add more processors. The simple realization that this approach is better has prompted the
multicore revolution. Multicore architectures are now center stage in terms of improving overall system
performance.

For software developers who are familiar with multiprocessing, multicore development will be familiar.
From a logical point of view, there is no real significant difference between programming for multiple
processors in separate packages and programming for multiple processors contained in a single package
on a single chip. There may be performance differences, however, because the new CMPs are using
advances in bus architectures and in connections between processors. In some circumstances, this may
cause an application that was originally written for multiple processors to run faster when executed on a
CMP. Aside from the potential performance gains, the design and implementation are very similar. We
discuss minor differences throughout the book. For developers who are only familiar with sequential
programming and single core development, the multicore approach offers many new software
development paradigms.

Multicore Architectures

CMPs come in multiple flavors: two processors (dual core), four processors (quad core), and eight
processors (octa-core) configurations. Some configurations are multithreaded; some are not. There are
several variations in how cache and memory are approached in the new CMPs. The approaches to
processor-to-processor communication vary among different implementations. The CMP implementations
from the major chip manufacturers each handle the I/O bus and the Front Side Bus (FSB) differently.
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Again, most of these differences are not visible when looking strictly at the logical view of an application
that is being designed to take advantage of a multicore architecture. Figure 1-1 illustrates three common
configurations that support multiprocessing.
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Q  Configuration 1 in Figure 1-1 uses hyperthreading. Like CMP, a hyperthreaded processor allows
two or more threads to execute on a single chip. However, in a hyperthreaded package the
multiple processors are logical instead of physical. There is some duplication of hardware but
not enough to qualify a separate physical processor. So hyperthreading allows the processor to
present itself to the operating system as complete multiple processors when in fact there is a
single processor running multiple threads.

Q  Configuration 2 in Figure 1-1 is the classic multiprocessor. In configuration 2, each processor is
on a separate chip with its own hardware.

Q  Configuration 3 represents the current trend in multiprocessors. It provides complete processors
on a single chip.

As you shall see in Chapter 2, some multicore designs support hyperthreading within their cores. For
example, a hyperthreaded dual core processor could present itself logically as a quad core processor to
the operating system.

Hybrid Multicore Architectures

Hybrid multicore architectures mix multiple processor types and/or threading schemes on a single

package. This can provide a very effective approach to code optimization and specialization by

combining unique capabilities into a single functional core. One of the most common examples of the
hybrid multicore architecture is IBM’s Cell broadband engine (Cell). We explore the architecture of
the Cell in the next chapter.
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What'’s important to remember is that each configuration presents itself to the developer as a set of two
or more logical processors capable of executing multiple tasks concurrently. The challenge for system
programmers, kernel programmers, and application developers is to know when and how to take
advantage of this.

The Software Developer’s Viewpoint

The low cost and wide availability of CMPs bring the full range of parallel processing within the reach
of the average software developer. Parallel processing is no longer the exclusive domain of supercomputers
or clusters. The basic developer workstation and entry-level server now have the capacity for hardware-
and software-level parallel processing. This means that programmers and software developers can
deploy applications that take advantage of multiprocessing and multithreading as needed without
compromising design or performance. However, a word of caution is in order. Not every software
application requires multiprocessing or multithreading. In fact, some software solutions and computer
algorithms are better implemented using sequential programming techniques. In some cases,
introducing the overhead of parallel programming techniques into a piece of software can degrade its
performance. Parallelism and multiprocessing come at a cost. If the amount of work required to solve the
problem sequentially in software is less than the amount of work required to create additional threads
and processes or less than the work required to coordinate communication between concurrently
executing tasks, then the sequential approach is better.

Sometimes determining when or where to use parallelism is easy because the nature of the software
solution demands parallelism. For example, the parallelism in many client-server configurations is
obvious. You might have one server, say a database, and many clients that can simultaneously make
requests of the database. In most cases, you don’t want one client to be required to wait until another
client’s request is filled. An acceptable solution allows the software to process the clients’ requests
concurrently. On the other hand, there is sometimes a temptation to use parallelism when it is not
required. For instance, you might be tempted to believe that a keyword word search through text in
parallel will automatically be faster than a sequential search. But this depends on the size of text to be
searched for and on the time and amount of overhead setup required to start multiple search agents in
parallel. The design decision in favor of a solution that uses concurrency has to consider break-even
points and problem size. In most cases, software design and software implementation are separate
efforts and in many situations are performed by different groups. But in the case where software
speedup or optimal performance is a primary system requirement, the software design effort has to at
least be aware of the software implementation choices, and the software implementation choices have to
be informed by potential target platforms.

In this book, the target platforms are multicore. To take full advantage of a multicore platform, you need
to understand what you can do to access the capabilities of a CMP. You need to understand what
elements of a CMP you have control over. You will see that you have access to the CMP through the
compiler, through operating system calls/libraries, through language features, and through application-
level libraries. But first, to understand what to do with the CMP access, you need a basic understanding
of the processor architecture.
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The Basic Processor Architecture

The components you can access and influence include registers, main memory, virtual memory,
instruction set usage, and object code optimizations. It is important to understand what you can
influence in single processor architectures before attempting to tackle multiprocessor architectures.
Figure 1-2 shows a simplified logical overview of a processor architecture and memory components.
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There are many variations on processor architecture, and Figure 1-2 is only a logical overview. It
illustrates the primary processor components you can work with. While this level of detail and these
components are often transparent to certain types of application development, they play a more central
role in bottom-up multicore programming and in software development efforts where speedup and
optimal performance are primary objectives. Your primary interface to the processor is the compiler. The
operating system is the secondary interface.

In this book, we will use C++ compilers to generate the object code. Parallel programming can be used
for all types of applications using multiple approaches, from low to high level, from object-oriented to
structured applications. C++ supports multiparadigm approaches to programming, so we use it for its
flexibility.

Table 1-1 shows a list of categories where the compiler interfaces with the CPU and instruction set.
Categories include floating-point, register manipulation, and memory models.
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Table 1-1
Compiler Switch
Options Description Examples of Usage
Vectorization This option enables the vectorizer,a  -x -ax

Auto parallelization

Parallelization
with OpenMP

Fast

Floating point

component of the compiler that
automatically uses Single
Instruction Multiple Data (SIMD)
instructions in the MMX registers
and all the SSE instruction sets.

This option identifies loop
structures that contain parallelism
and then (if possible) safely
generates the multithreaded
equivalent executing in parallel.

With this option the compiler
generates multithreaded code based
on OpenMP directives in the source
code added by the programmer.

is option detects incompatible
Th tion detect tibl
processors; error messages are
generated during execution.

Set of switches that allows the
compiler to influence the selection
and use of floating-point
instructions.

Enables the vectorizer.

-parallel

Triggers auto parallelization.

#pragma omp parallel
{
#pragma omp for
// your code

-01

Optimized to favor code size and
code locality and disables loop
unrolling, software pipelining, and
global code scheduling.

-02
Default; turns pipelining ON.

-fschedule-insns

Tells the compiler that other
instructions can be issued until the
results of a floating-point
instruction are required.

-float-store
Tells the compiler that when
generating object code do not use

instructions that would store a
floating-point variable in registers.
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Memory bandwidth

Code generation

Thread checking

Thread library

unrolling. This applies only to loops
that the compiler determines should
be unrolled. If n is omitted, lets the
compiler decide whether to perform
unrolling or not.

This option enables or disables
control of memory bandwidth

used by processors; if disabled,
bandwidth will be well shared
among multiple threads. This can be
used with the auto parallelization
option. This option is used for 64-bit
architectures only.

With this option code is generated
optimized for a particular
architecture or processor; if there is a
performance benefit, the compiler
generates multiple, processor-
specific code paths; used for 32- and
64- bit architectures.

This option enables thread analysis
of a threaded application of
program; can only be used with
Intel’s Thread Checker tool.

This option causes the compiler
to include code from the Thread
Library; The programmer needs to
include API calls in source code.

Compiler Switch
Options Description Examples of Usage
Loop unrolling This option enables loop -unroll<n>

Enables loop unrolling; <n> sets the
maximum time to unroll the loop.

n=20
Disables loop unrolling, only

allowable value for 64-bit
architectures.

-opt-mem-bandwidth<n>
n =2

Enables compiler optimizations for
parallel code such as pthreads and
MPI code.

n=1

Enables compiler optimizations for
multithreaded code generated by
the compiler.

-ax<processor>

Generates optimized code for the
specified processor.

-axS

Generates specialized code paths
using SIMD Extensions 4 (SSE4)
vectorizing compiler and media
accelerators instructions.
-tcheck

Enables analysis of threaded
application or program.

-pthread

Uses the pthread library for
multithreading support.

The CPU (Instruction Set)

A CPU has a native instruction set that it recognizes and executes. It’s the C++ compiler’s job to translate
C++ program code to the native instruction set of the target platform. The compiler converts the C++
and produces an object file that consists of only instructions that are native to the target processor.

Figure 1-3 shows an outline of the basic compilation process.
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During the process of converting C++ code into the native language of the target CPU, the compiler has
options for how to produce the object code. The compiler can be used to help determine how registers
are used, or whether to perform loop unrolling. The compiler has options that can be set to determine
whether to generate 16-bit, 32-bit, or 64-bit object code. The compiler can be used to select the memory
model. The compiler can provide code hints that declare how much level 1 (L1) or level 2 (L2) cache is
present. Notice in Table 1-1 in the floating-point operations category that switches from this category
allow the compiler to influence the selection of floating-point instructions. For example, the GNU gcc
compiler has the --float-store switch. This switch tells the compiler that when generating object code
it should not use instructions that would store floating-point variable in registers. The Sun C++ compiler
has a - fma switch. This switch enables automatic generation of floating-point and multi-add
instructions. The - fma=none disables generation of these instructions. The - fma=fused switch allows
the compiler to attempt to improve the performance of the code by using floating-point, fused, and
multiply=add instructions. In both cases, the switches are provided as options to the compiler:

gcc -ffloat-store my_program.cc
or

CC -fma=used my_program.cc
Other switches influence cache usage. For instance the Sun C++ compiler has a -xcache=c that defines
the cache properties for use by the optimizer. The GNU gcc compiler has the -Funroll -loops that

specifies how loops are to be unrolled. The GNU gcc compiler has a -pthread switch that turns on
support for multithreading with pthreads. The compilers even have options for setting the typical



Chapter 1: The New Architecture

memory reference interval using the -mmemory-latency=time switch. In fact, there are compiler
options and switches that can influence the use of any of the components in Figure 1-2.

The fact that the compiler provides access to the processor has implications for the developer who is
writing multicore applications for a particular target processor or a family of processors. For example,
The UltraSparc, Opteron, Intel Core 2 Duo, and Cell processors are commonly used multicore
configurations. These processors each support high-speed vector operations and calculations. They have
support for the Single Instruction Multiple Data (SIMD) model of parallel computation. This support can
be accessed and influenced by the compiler.

Chapter 4 contains a closer look at the part compilers play in multicore development.

It is important to note that using many of these types of compiler options cause the compiler to optimize
code for a particular processor. If cross-platform compatibility is a design goal, then compiler options
have to be used very carefully. For system programmers, library producers, compiler writers, kernel
developers, and database and server engine developers, a fundamental understanding of the basic
processor architecture, instruction set and compiler interface is a prerequisite for developing effective
software that takes advantage of CMP.

Memory Is the Key

Virtually anything that happens in a computer system passes through some kind of memory. Most things
pass through many levels of memory. Software and its associated data are typically stored on some kind
of external medium (usually hard disks, CD-ROMs, DVDs, etc.) prior to its execution. For example, say
you have an important and very long list of numbers stored on an optical disc, and you need to add
those numbers together. Also say that the fancy program required to add the very long list of numbers is
also stored on the optical disc. Figure 1-4 illustrates the flow of programs and data to the processor.
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In the maze of different types of memory, you have to remember that the typical CPU operates only on
data stored in its registers. It does not have the capacity to directly access data or programs stored
elsewhere. Figure 1-4 shows the ALU reading and writing the registers. This is the normal state of affairs.
The instruction set commands (native language of the processor) are designed to primarily work with
data or instructions in the CPU’s registers. To get your long list of important numbers and your fancy
program to the processor, the software and data must be retrieved from the optical disc and loaded into
primary memory. From primary memory, bits and pieces of your software and data are passed on to L2
cache, then to L1 cache, and then into instruction and data registers so that the CPU can perform its
work. It is important to note that at each stage the memory performs at a different speed. Secondary
storage such as CD-ROMs, DVDs, and hard disks are slower than the main random access memory
(RAM). RAM is slower than L2 cache memory. L2 cache memory is slower than L1 cache memory, and so
on. The registers on the processor are the fastest memory that you can directly deal with.

Besides the speed of the various types of memory, size is also a factor. Figure 1-5 shows an overview of
the memory hierarchy.
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The register is the fastest but has the least capacity. For instance, a 64-bit computer will typically have a
set of registers that can each hold up to 64 bits. In some instances, the registers can be used in pairs
allowing for 128 bits. Following the registers in capacity is L1 cache and if present L2 cache. L2 cache is

10
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currently measured in megabytes. Then there is a big jump in maximum capacity from L2 to the system
main memory, which is currently measured in gigabytes. In addition to the speeds of the various types
of memory and the capacities of the various types of memory, there are the connections between the
memory types. These connections turn out to have a major impact on overall system performance. Data
and instructions stored in secondary storage typically have to travel over an I/O channel or bus to get to
RAM. Once in RAM, the data or instruction normally travels over a system bus to get to L1 cache. The
speed and capacity of the I/O buses and system buses can become bottlenecks in a multiprocessor
environment. As the number of cores on a chip increases, the performance of bus architectures and
datapaths become more of an issue.

We discuss the bus connection later in this chapter, but first it’s time to examine the memory hierarchy
and the part it plays in your view of multicore application development. Keep in mind that just as you
can use the influence that the compiler has over instruction set choices, you can use it to manipulate
register usage and RAM object layouts, give cache sizing hints, and so on. You can use further C++
language elements to specify register usage, RAM, and I/O. So, before you can get a clear picture of
multiprocessing or multithreading, you have to have a fundamental grasp of the memory hierarchy that
a processor deals with.

Registers

The registers are special-purpose, small but fast memory that are directly accessed by the core. The
registers are volatile. When the program exits, any data or instructions that it had in its registers are gone
for all intents and purposes. Also unlike swap memory, or virtual memory, which is permanent because
it is stored in some kind of secondary storage, the registers are temporary. Register data lasts only as
long as the system is powered or the program is running. In general-purpose computers, the registers are
located inside the processor and, therefore, have almost zero latency. Table 1-2 contains the general types
of registers found in most general-purpose processors.

Table 1-2

Registers Description

Index Used in general computations and special uses when dealing with addresses.

Segment Used to hold segment parts of addresses.

P Used to hold the offset part of the address of the next instruction to be executed.

Counter Used with looping constructs, but can also be used for general computational
use.

Base Used in the calculation and placement of addresses.

Data Used as general-purpose registers and can be used for temp storage and
calculation.

Flag Shows the state of the machine or state of the processor.

Floating point Used in calculation and movement of floating-point numbers.

11
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Most C/C++ compilers have switches that can influence register use. In addition to compiler options
that can be used to influence register use, C++ has the asm{ } directive, which allows assembly
language to written within a C++ procedure or function, for example:

void my_fast_calculation(void)

{
asm{
mov 2 , %r3
inc (%r3)

}

my_fast_calculation() loads a 2 into the $r3 general-purpose register on an UltraSparc processor.
While cache is not easily visible for C++, registers and RAM are visible. Depending on the type of
multiprocessor software being developed, register manipulation, either through the compiler or the C++
asm{} facility, can be necessary.

Cache

Cache is memory placed between the processor and main system memory (RAM). While cache is not as
fast as registers, it is faster than RAM. It holds more than the registers but does not have the capacity of
main memory. Cache increases the effective memory transfer rates and, therefore, overall processor
performance. Cache is used to contain copies of recently used data or instruction by the processor. Small
chunks of memory are fetched from main memory and stored in cache in anticipation that they will be
needed by the processor. Programs tend to exhibit both temporal locality and spatial locality.

Q  Temporal locality is the tendency to reuse recently accessed instructions or data.
0  Spatial locality is the tendency to access instructions or data that are physically close to items

that were most recently accessed.

One of the primary functions of cache is to take advantage of this temporal and spatial locality
characteristic of a program. Cache is often divided into two levels, level 1 and level 2.

A complete discussion of cache is beyond the scope of this book. For a thorough discussion of cache, see
[Hennessy, Patterson, 2007].

Level 1 Cache

Level 1 cache is small in size sometimes as small as 16K. L1 cache is usually located inside the processor
and is used to capture the most recently used bytes of instruction or data.

Level 2 Cache

Level 2 cache is bigger and slower than L1 cache. Currently, it is stored on the motherboard (outside the
processor), but this is slowly changing. L2 cache is currently measured in megabytes. L2 cache can hold
an even bigger chunk of the most recently used instruction, data, and items that are in the near vicinity

12
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than L1 holds. Because L1 and L2 are faster than general-purpose RAM, the more correct the guesses of
what the program is going to do next are, the better the overall system performance because the right
chunks of data will be located in either L1 or L2 cache. This saves a trip out to either RAM or virtual
memory or, even worse, external storage.

Compiler Switches for Cache?

Most developers doing multicore application development will not be concerned with manually
managing cache unless, of course, they are doing kernel development, compiler development, or other
types of low-level system programming. However, compiler options that give the compiler a hint as to
how much L1 or L2 cache is available or a hint about the properties of the L1 or L2 cache can be found in
most of the mainstream compilers in use. For example, the Sun C++ compiler has an xcache switch. The
man page for that switch shows the syntax and its use.

-xcache=c defines the cache properties that the optimizer can use. It does not guarantee that any
particular cache property is used. Although this option can be used alone, it is part of the expansion of

the -xtarget option; its primary use is to override a value supplied by the -xtarget option.

-xcache=16/32/4:1024/32/1 specifies the following:

Level 1 cache has: Level 2 cache has:
16K bytes 1024K bytes
32-byte line size 32-byte line size
4-way associativity Direct mapping

Developing software to truly take advantage of CMP requires careful thought about the instruction set of
the target processor or family of processors and about memory usage. This includes being aware of
opportunities for optimizations, such as loop unrolling, high-speed vector manipulations, SIMD processing,
and MP compiler directives, and giving compilers hints for values such as the size of L1 or L2 cache.

Main Memory

Figure 1-2 shows the relative relationship between registers, cache, the ALU, and main memory. Outside
of external storage (for example, hard disks, CD-ROMs, DVDs, and so on), RAM is the slowest memory
the developer works with. Also RAM is located physically outside the processor, and data transfers
across a bus to the processor slow things down a little more. On the other hand, RAM is the most visible
to you as a software developer of multithreaded or multiprocessing applications. The data shared
between processors and tasks in most cases is stored in RAM. The instructions that each processor has to
execute are kept in RAM during runtime. The critical sections that must be synchronized among
multiple processors are primarily stored in RAM. When there is task or processor lockup, it is normally
due to some memory management violation. In almost every case, the communication between
processors and tasks, or multiple agents, will take place through variables, message queues, containers,
and mutexes that will reside in RAM during runtime. A major element in the software developer’s view
of multicore application programming is memory access and management. Just as was the case with the
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other logical components shown in Figure 1-2 that have been discussed so far, you have access to
compiler switches that influence how memory is handled by an application. The memory model selected
is important. Objects created by the new () operator in C++ end up in either the free store (heap) or in
virtual memory (if the data object is large enough). The free store is logically in RAM. Virtual memory is
mapped from external storage.

We take a closer look at how a process or thread uses RAM in Chapter 5.

The Bus Connection

Typically the subsystems in a computer communicate using buses. The bus serves as a shared
communication link between the subsystems [Hennessy, Patterson, 1996]. The bus is a channel or path
between components in a computer. Traditionally, buses are classified as CPU-memory buses or I/O
buses. A basic system configuration consists of two main buses, a system bus also referred to as the Front
Side Bus (FSB), and an I/O bus. If the system has cache, there is also usually a Back Side Bus (BSB)
connected to the processor and the cache. Figure 1-6 shows a simplified processor-to-bus configuration.

BSB
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PCI g
CONTROLLER
Figure 1-6

In Figure 1-6 the FSB is used to transport data to or from the CPU and memory. The FSB is a
CPU-memory bus. The I/O bus generally sends information to and from other peripherals. Notice in
Figure 1-6 that the BSB is used to move data between the CPU, cache, and main memory. The Peripheral
Component Interconnect (PCI) is an example of an I/O bus. The PCI provides a direct connection to the
devices that it is connected to. However, the PCI is usually connected to the FSB through some type of
bridge technology. Since the buses provide communication paths between the CPU, the memory
controller, the I/O controller, cache, and peripherals, there is the potential for throughput bottlenecks.
Configurations with multiple processors can put a strain on the FSB. The trend is to add more processors
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to a chip. This puts more communication demands on bus-based architectures. The performance of the
system is constrained by the maximum throughput of the buses used between the CPU, memory, and
other system peripherals. If the bus is slower than the CPU or memory or the buses do not have the
proper capacity, timing, or synchronization, then the bus will be a bottleneck, impeding overall system
performance.

From Single Core to Multicore

In single core configurations you are concerned only with one (general-purpose) processor, although it’s
important to keep in mind that many of today’s single core configurations contain special graphic
processing units, multimedia processing units, and sometimes special math coprocessors. But even with
single core or single processor computers multithreading, parallel programming, pipelining, and
multiprogramming are all possible. So this section can help clear the air on some of the basic ideas that
move you from single core to multicore programming.

Multiprogramming and Multiprocessing

Multiprogramming is usually talked about in the context of operating systems as opposed to
applications. Multiprogramming is a scheduling technique that allows more than one job to be in an
executable state at any one time. In a multiprogrammed system, the jobs (or processes) share system
resources such as the main system memory and the processor. There is an illusion in a single core system
that the processes are executing simultaneously because the operating system uses the technique of time
slices. In the time slice scheme, each process is given a small interval to execute. After that interval, the
operating system switches contexts and lets another process execute for an interval. These intervals are
called time slices, and they are so small that the operating system switches the context fast enough to
give the illusion that more than one process or job is executing at the same time. So in a scenario where
you have single core architecture and two major tasks are being performed concurrently (for example,
burning a DVD and rendering a computer graphic), you say that the system is multiprogramming.

Multiprogramming is a scheduling technique. In contrast, a multiprocessor is a computer that has more
than one processor. In this case, you are specifically referring to the idea of having two or more general-
purpose processors. Technically speaking, a computer with a CPU and a GPU is a multiprocessor. But for
the purposes of this discussion, we focus instead on multiple general-purpose processors. Consequently,
multiprocessing is a technique of programming that uses more than one processor to perform work
concurrently. In this book we are interested in techniques that fall under the category of parallel
programming.

Parallel Programming

Parallel programming is the art and science of implementing an algorithm, a computer program, or a
computer application, using sets of instructions or tasks designed to be executed concurrently. Figure 1-7
illustrates the parts of each type and what is executed in parallel.
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instruction 5 instruction 6
PROCEDURE C PROCEDURE D
thread 1 thread 2
TASK A TASK B thread 3 thread 4
TASKD TASK C Components can execute concurrently.
The concepts are logically the same in the parallel
algorithm, program, and application. But the size of the unit
SUBSYSTEM 1 SUBSYSTEM 2 of work is different. This unit of work is the granularity.
Figure 1-7

The parallel algorithm in Figure 1-7 can execute a set of instructions in parallel. Instruction 1 and
Instruction 2 can both be executed concurrently. Instruction 5 and 6 can both be executed concurrently.

In the algorithm, the parallelism happens between two instructions. This is in contrast to the computer
program in Figure 1-7, where the unit of work is a procedure or function, or thread. Procedure A and
Procedure B can execute simultaneously. In addition to the concurrency between Procedure A and B, they
may both have concurrency within themselves. Procedure A’s functions may be able to execute in parallel.
So for the computer program that contains parallelism, the unit of work is larger than the algorithm.

The application in Figure 1-7 has the largest unit of work. Task A and Task B may consist of many
procedures, functions, objects, and so on. When you look at the parallel programming at the application
level, you are talking about larger units of work. Besides tasks, the application might contain
subsystems, for example, background network components or multimedia components that are
executing simultaneously in background to the set of tasks that the user can perform. The key idea here
is that each structure in Figure 1-7 uses parallel programming; the difference is the unit of work,
sometimes called granularity.

We talk more about levels of parallelism in Chapter 4.

ulticore Application Design and Implementation

Multicore application design and implementation uses parallel programming techniques to design
software that can take advantage of CMP. The design process specifies the work of some task as either
two or more threads, two or more processes, or some combination of threads and processes. That design
can then be implemented using template libraries, class libraries, thread libraries, operating system calls,
or low-level programming techniques (for example, pipelining, vectorization, and so on). This book
introduces the basics of multithreading, multiprocessing, Interprocess Communication, Interthread
Communication, synchronization, thread libraries, and multithreading class libraries or template
libraries. The low cost of CMP implementations has brought parallel programming and its very close
cousin multithreading within the reach of the average developer. The focus on this book is on
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developing multicore applications using multiprocessing and multithreading techniques that are
portable across operating system environments. We use only libraries and language features that are part
of the POSIX standard for operating systems and only C++ features that are part of the ISO standard.

Summary

This chapter has covered key concepts that you need to understand as you consider developing
multicore application. Some of the important considerations this chapter introduced are:

a

Q

A multicore chip is a chip that has two or more processors. This processor configuration is
referred to as CMP. CMPs currently range from dual core to octa-core.

Hybrid multicore processors can contain different types of processors. The Cell broadband
engine is a good example of a hybrid multicore.

Multicore development can be approached from the bottom up or top down, depending on
whether the developers in question are system programmers, kernel programmers, library
developers, server developers, or application developers. Each group is faced with similar
problems but looks at the cores from a different vantage point.

All developers that plan to write software that takes advantage of multiprocessor configurations
should be familiar with the basic processor architecture of the target platform. The primary
interface to the specific features of a multicore processor is the C/C++ compiler. To get the most
from the target processor or family of target processors, the developer should be familiar with
the options of the compiler, the assembler subcomponent of the compiler, and the linker. The
secondary interface comprises the operating system calls and operating system synchronization
and communication components.

Parallel programming is the art and science of implementing an algorithm, a computer program,
or a computer application using sets of instructions or tasks designed to be executed
concurrently. Multicore application development and design is all about using parallel
programming techniques and tools to develop software that can take advantage of CMP
architectures.

Now that you have in mind some of the basic ideas and issues surrounding multicore programming,
Chapter 2 will take a look at four multicore designs from some of the computer industry’s leading chip
manufacturers: AMD, Intel, IBM, and Sun. We look at each approach to CMP for the Dual Core Opteron,
Core 2 Duo, Cell Broadband Engine architecture, and UltraSparc T1 multiprocessor cores.
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Four Effective Multicore
Designs

Please. As I was saying, she stumbled upon a solution whereby nearly ninety-nine
percent of all test subjects accepted the program as long as they were given a choice,
even if they were only aware of the choice at a near unconscious level.

—The Architect, The Matrix Reloaded

In this chapter we take a closer look at four multicore designs from some of the computer
industry’s leading chip manufacturers:

Q  The AMD Multicore Opteron

Q  The Sun UltraSparc T1

Q  The IBM Cell Broadband Engine (CBE)
Q  The Intel Core 2 Duo

Each of these vendors approaches the Chip Multiprocessor (CMP) differently. Their approaches to
multicore design are implemented effectively with each design having its advantages, strengths,
and weaknesses in comparison to the other designs. We will use these designs for all of the
examples in this book. The program examples in this book have been compiled and executed on
one or more of these multicore processor designs. In this chapter, we introduce you to the basics of
each design, and throughout the book we fill in the necessary detail as it pertains to multicore
application development and design.

In many mass market software applications, the differences among hardware implementations are
abstracted away because often one of the primary design goals is to make the software compatible
with as many different hardware platforms as possible. So there is a conscious effort to avoid
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platform-specific features. In these scenarios, the software designer and developer appropriately rely on
the operating system to hide any platform differences that the applications might encounter. The
developers move happily and blissfully through the development process without the burden of having
to worry about hardware-specific issues. This is a good thing! One of the primary jobs of the operating
system is to hide and manage hardware details. And this approach works for an entire class of mass
market or wide vertical market applications.

However, not every kind of software developer is so lucky. For example, those developing high-
transaction database servers, web servers, application servers, hardware-intensive game engines,
compilers, operating system kernels, device drivers, and high-performance scientific modeling and
visualization software are practically forced to look for and exploit platform features that will make their
applications acceptable to the end user. For this class of developer, familiarity with a specific processor or
family of processors is a prerequisite for effective software development. Table 2-1 lists the types of
applications that can require platform-specific optimization.

Table 2-1
Software Type Developer Type
High transaction software servers ¢ Software architects
e Database Software vendors

¢ Financial transaction servers
¢ Application servers and so on

Kernels

Game engines

Device drivers

Large-scale matrix and vector computations

Compilers

Database engines

High-definition computer animation

Scientific visualization modeling

Software manufacturers

System programmers

System programmers
Software designers
Game developers
Graphics programmers

System programmers

Scientific programmers
Mathematicians
Scientific application developers

System programmers

Software vendors
Database architects

Graphics programmers
Game developers
Scientific programmers
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In Table 2-1, we have also listed some of the types of developers involved with these types of applications.
System programmers, graphics programmers, application developers, and software engineers who are
trying to optimize the performance of a piece of software need to be aware of the capabilities of the target
platform. In the cases where cross-platform portability is the primary consideration, platform-specific
optimizations should be approached with caution. In other cases, cross-platform compatibility is not a
concern, and the best performance on the target platform is the goal. In these situations the more the
developer knows about the target processor or family of processors the better.

In this book, we look at top-down and bottom-up approaches to multiprocessor application design and
implementation. To take advantage of bottom-up approaches to multiprocessor programming requires a
fundamental understanding of the CMP architecture, the operating system’s support for multithreading
and multiprocessing, and the C/C++ compiler for the target platform. In Chapter 4, we take a closer look
at operating system and compiler support for multicore development. But first here in this chapter we
explore the four effective multicore designs we mentioned at the start of the chapter. Table 2-2 shows a
comparison of the Opteron, UltraSparc T1, CBE, and Core 2 Duo processors.

Table 2-2
Cache 2
Processor Name  Hyperthreaded/SMT Use FSB  Shared Memory Location # Cores
Opteron No No No motherboard 2
UltraSparc T1 Yes No No die 8
CBE Yes No Yes die 9
Core 2 Duo No Yes Yes die 2

The AMD Multicore Opteron

The dual core Opteron is the entry level into AMD’s multicore processor line. The dual core Opteron

is the most basic configuration, and it captures AMD’s fundamental approach to multicore architectures.
The Opteron is source and binary code compatible with Intel’s family of processors, that is, applications
written for the Intel processors can compile and execute on Opterons. Figure 2-1 shows a simple block
diagram of a dual core Opteron.
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CPUD CPU1

L2 CACHE (1 MB) L2 CACHE (1 MB)

SYSTEM REQUEST INTERFACE

CROSSBAR SWITCH

MEMORY
CONTROLLER

HT 0 HT 1 HT 2

Figure 2-1

The dual core Opteron consists of two AMD 64 processors, two sets of level 1 (L1) cache, two sets of level
2 (L2) cache, a System Request Interface (SRI), a crossbar switch, a memory controller, and
HyperTransport technology. One of the key architectural differences between the Opteron and other
designs is AMD’s Direct Connect Architecture (DCA) with HyperTransport technology. The Direct
Connect Architecture determines how the CPUs communicate with memory and other I/O devices.

To understand the value of AMD'’s approach to subsystem communication, it’s important to remember
what part bus technology plays in the processor architecture. See the section “The Bus Connection” in
Chapter 1 for more information on bus technology.

Opteron’s Direct Connect and HyperTransport

The Opteron processor moves away from this bus-based architecture. It uses a Direct Connect
Architecture (DCA) in conjunction with HyperTransport (HT) technology to avoid some of the
performance bottlenecks of the basic Front Side Bus (FSB), Back Side Bus (BSB), and Peripheral
Component Interconnect (PCI) configurations.

The Direct Connect Architecture

The DCA is a point-to-point connection scheme. It does not use the FSB. Instead the processors, memory
controller, and I/O are directly connected to the CPU. This dedicated link approach avoids the potential
performance problems of the bus-based communication between the CPU and the memory controller.
Also because the links are dedicated — that is, each core is directly connected to its own memory
controller and has direct links to the I/O memory controller — contention issues are bypassed.
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HyperTransport Technology

The HyperTransport Consortium defines HyperTransport as a high-speed, low-latency, point-to-point
link designed to increase the communication speed between integrated circuits in computers, servers,
embedded systems, and networking and telecommunications equipment. According to the
HyperTransport Consortium, HT is designed to:

Q  Provide significantly more bandwidth
Q  Use low-latency responses and low pin counts

Q  Maintain compatibility with legacy buses while being extensible to new network architecture
buses

Q  Appear transparent to operating systems and have little impact on peripheral drivers

The Opteron uses HT as a chip-to-chip interconnection between CPU and the I/O. The components
connected with HT are connected in a peer-to-peer fashion and are, therefore, able to communicate with
each other directly without the need of data buses. At peak throughput the HT provides 12.8 GB/s per
link. The Opteron configuration comes configured with up four HT Links. I/O devices and buses such as
PCI-E, AGP, PCI-X, and PCI connect to the system over HT Links. The PClIs are I/O buses, and the AGP
is a direct graphics connection. The PCI, PCI-E, and AGP are used to connect the system to peripheral
devices. Besides improving the connections between the processors and I/O, HT is also used to facilitate
a direct connection between the processors on the Opteron. Multicore communication on the Opteron is
enhanced by using HT.

System Request Interface and Crossbar

The System Request Interface (SRI) contains the system address map and maps memory ranges to nodes.
If the memory access is to local memory, then a map lookup in the SRI sends it to the memory controller
for the appropriate processor. If the memory access is not local (off chip), then a routing table lookup sends
it to a HT port. For more see [Hughes, Conway, 2007 IEEE]. Figure 2-2 shows a logic layout of the crossbar.

LOGICAL COMMAND CROSSBAR

LOGICAL DATA CROSSBAR
SYSTEM

HT 0 HT 1 HT 2 (’:ﬂgm%{mn REQUEST
INTERFACE

Figure 2-2

The crossbar has five ports: memory controller, SRI, and three HTs. The crossbar switch processing is
logically separated into command header packet processing and data header packet processing.
Logically, part of the crossbar is dedicated to command packet routing, and the other part is dedicated to
data packet routing.
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The Opteron Is NUMA

Opteron has a Non-Uniform Memory Access (NUMA) architecture. In this architecture, each processor
has access to its own fast local memory through the processor’s on-chip memory controller. NUMA
architecture has a distributed but shared memory architecture. This is in contrast to the Uniform
Memory Access (UMA) architecture. Figure 2-3 shows a simplified overview of a UMA architecture.

CPUO CPU 1
L1 CACHE L1 CACHE
L2 CACHE L2 CACHE

SYSTEM MAIN MEMORY

Figure 2-3

Notice in Figure 2-3 that the processors share a single memory. Each of the access times for each
processor is symmetric with the other. The processor configuration in Figure 2-3 is often called a
symmetric (shared-memory) multiprocessor (SMP). This arises from the fact that all processors have a
uniform latency from memory even if the memory is organized into multiple banks [Hennessy,
Patterson, 2007]. The single main memory and the uniform access time in the SMP makes it easier to
implement than it NUMA counterpart. Also the notion of a shared address space is more straightforward
in the UMA architecture because there is only one main system memory to consider.

In contrast, Figure 2-4 shows a simplified overview of a NUMA architecture.

CPUO CPU 1
=
o
I = I
(]
[NE)
=R
L2 CACHE o L2 CACHE
22
[NN)
=
| =4
MEMORY MEMORY
Figure 2-4
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The NUMA is a distributed shared memory (DSM) architecture. Notice in Figure 2-4 that each processor
has its own block memory, but each block of memory shares a single address space. That is, the same
physical address on two processors refers to the same location in memory [Hennessy, Patterson, 2007]. In
both cases, the UMA and the NUMA configurations, the processors share address space. However, in the
NUMA architecture the address space is shared from a logical viewpoint, and in the UMA configuration
the processors physically share the same block of memory. The SMP architecture is satisfactory for
smaller configurations, but once the number of processors starts to increase, the single memory
controller can become a bottleneck and, therefore, degrade overall system performance. The NUMA
architecture, on the other hand, scales nicely because each processor has its own memory controller.

If you look at the configuration in Figure 2-4 as a simplified Opteron configuration, then the network
interconnection is accomplished by the Opteron HyperTransport technology. Using the HyperTransport
technology, the CPUs are directly connected to each other and the I/0O is directly connected to the CPU.
This ultimately gives you a performance gain over the SMP configuration.

Cache and the Multiprocessor Opteron

The dual core Opteron supports two levels of cache. L1 cache can be logically divided between I-Cache
(for instructions) and D-Cache (for data). Each core has its own L1 cache. Each core in the Opteron also
has its own 1MB L2 cache between the processor and main system memory.

The Sun UltraSparc T1 Multiprocessor

The UltraSparc T1 is an eight-core CMP and has support for chip-level multithreading (CMT). Each core
is capable of running four threads. This is also sometimes referred to as hyperthreaded. The CMT of the
UltraSparc T1 means that the T1 can handle up to 32 hardware threads. What does this mean for the
software developer? Eight cores with four threads presents itself to an application as 32 logical
processors. Listing 2-1 contains code that can be used to see how many processors are apparently
available to the operating system (without special compilers and so on).

Listing 2-1

// Listing 2-1
// uses sysconf () function to determine how many
// processors are available to the 0S.

using namespace std;
#include <unistd.h>
#include <iostream>

int main(int argc,char *argv[])

{
cout < < sysconf (_SC_NPROCESSORS_CONF) < < endl;
return(0) ;
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When appropriate, in this book listings are accompanied by a program profile stating the environment
platform for the program. Anyone wishing to run code for a noncompliant OS needs to use the
POSIX-compliant features for that OS.

Program Profile 2-1

Program Name:

program2-1.cc

Description:

This program uses sysconf () function to determine how many processors are available to the operating
system.

Libraries Required:

None

Headers Required:

<unistd.h> <iostream>

Compile and Link Instructions:

g++ -0 program2-1 program2-1.cc

Test Environment:
SuSE Linux 10, gcc 3.4.3

Hardware:
AMD Opteron Core 2, UltraSparc T1, CBE

Execution Instructions:
. /program2-1

Notes:

None

When this program is executed on a T1, it prints 32. The sysconf () function provides a method for an
application to get values for system limits or variables. In this case the _SC_NPROCESSORS_CONF
argument asks for the number of processors configured. The _SC NPROCESSORS_MAX argument can be
used to get the maximum number of processors supported. The UltraSparc T1 offers the most on-chip
threads of the architectures that we discuss in the book. Each of the eight cores equates to a 64-bit
execution pipeline capable of running four threads. Figure 2-5 contains a functional overview of an
UltraSparc T1 multiprocessor.
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ULTRASPARC T1 MULTICORE PROCESSOR

SPARC V9
SPARC SPARC SPARC SPARC CORE
CORE CORE CORE CORE L1 CACHE

I (16k)

SPARC SPARC SPARC SPARC
CORE CORE CORE CORE

L1 CACHE

D (8k)

CROSSBAR INTERCONNECT FOR ON-CHIP COMMUNICATION (132 GB/s)

SHARED L2 CACHE (3 MB)

MEMORY MEMORY MEMORY MEMORY
CONTROLLER 1 CONTROLLER 2 CONTROLLER 3 CONTROLLER 4
FPU
Figure 2-5

UltraSparc T1 Cores

The T1 consists of eight Sparc V9 cores. The V9 cores are 64-bit technology. Each core has L1 cache.
Notice in Figure 2-5 that there is a 16K L1 instruction cache and an 8K L1 data cache. The eight cores all
share a single floating-point unit (FPU). Figure 2-5 shows the access path of the L2 cache and the eight
cores. The four threads share L2 cache. Each core has a six-stage pipeline:

Q  Fetch

Thread selection
Decode

Execute

Memory access

Write back

U 00U U

Cross Talk and The Crossbar

Notice in Figure 2-5 that the cores and the L2 cache are connected through the cross-switch or crossbar.
The crossbar has 132 GB/s bandwidth for on chip communications. The crossbar has been optimized for
L2 cache-to-core communication and for core-to-L2 cache communication. The FPU, the four banks of L2
cache, the I/O bridges, and the cores all communicate through the crossbar. Basically the crossbar acts as
the mediator, allowing the components of the T1 to communicate to each other.
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DDRAM Controller and L2 Cache

The UltraSparc T1 has four separate memory controllers. Each controller is connected to one bank of L2
cache. The L2 cache is divided on the T1 into four banks. The T1 can support up to 128GB of RAM.

UltraSparc T1 and the Sun and GNU gcc Compilers

We introduce the architecture of the UltraSparc T1 to contrast it with that of the AMD Opteron, IBM Cell
Broadband architecture, and the Intel Core 2 Duo. While each of these architectures is multicore, the
different implementations are dramatic. From the highest level, an application designed to take
advantage of multicore will see them all as a collection of two or more processors. However, from an
optimization point of view, there is much more to take into consideration. Two of the most commonly
used compilers for the UltraSparc T1 are the Sun C/C++ compiler (part of Sun Studio) and the GNU gcc,
the standard open source C/C++ compiler. While Sun’s compilers obviously have the best support for
their processors, GNU gcc has a great deal of support for T1, with options that take advantage of threads,
loop unrolling, vector operations, branch prediction, and Sparc-specific platform options. Virtually all of
the program examples in this book have been compiled and executed on a SunFire 2000 with an eight-
core T1 processor. Look at the program profiles for the program listings, and you will see which compiler
switches we explored for the T1.

The IBM Cell Broadband Engine

The CBE is a heterogeneous multicore chip. It is a heterogeneous architecture because it consists of two
different types of processors: PowerPC Processing Element (PPE) and Synergistic Processor Element
(SPE). The CBE has one PPE and eight SPEs, one high-speed memory controller, one high-bandwidth
element interconnect bus, high-speed memory, and I/0O interfaces all integrated on-chip. This makes it a
kind of hybird nine-core processor. Figure 2-6 shows an overview of the CBE processor.

SPEO SPE 1 SPE 2 SPE 3
INTERRUPT MEMORY
CONTROLLER local store local store local store local store L"J;r;gffm
64 bit (256 KB) (256 KB) (256 KB) (256 KB)

2 thread SMT | | | |

VMX

| ELEMENT INTERCONNECT BUS (EIB) |

1/0
L2 CACHE SPE4 SPE5 SPE6 SPE7 BUS DEVICES
]
(512 KB) local store local store local store local store INTERFACE T
(256 KB) (256 KB) (256 KB) (256 KB) CONTROLLER

i i

DEVICES

Figure 2-6
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Most of the common CMPs have homogeneous processors, that is, ones with the same instruction set.
The processors on the CBE have two different instruction sets. Although each of the processor elements
has been optimized for certain types of operations, both types of elements can be used for general-
purpose computing.

O  The first element in the Cell processor is a 64-bit PowerPC processor. This element complies
fully with the 64-bit PowerPC architecture and can execute either 32-bit or 64-bit operating
systems and applications.

Q  The second type of processor element is the SPE. The SPEs have been optimized for running
Single Instruction Multiple Data (SIMD) applications.

Although there are several commercial scientific uses of the CBE, its most common use is as the
processor for Sony’s Playstation 3.

CBE and Linux

We selected the CBE as one of our four effective multicore architecture designs because it is able to
deliver so much performance in a Linux environment. The Playstation 3 is a flexible device and comes
with ready-to-install Linux. Currently, there is a Fedora and a Yellow Dog distribution of Linux for the
CBE. The low cost of the Playstation 3 (PS3) brings heterogeneous multicore application development
into reach of virtually any software developer. The PPE element and the SPEs can be programmed using
the standard GNU gcc compiler. There is a CBE SDK available for downloading from IBM that includes
tools necessary to compile the SPE code. Basically, the SPE code is compiled separately and then linked
with the PPE code to form a single execution unit. The PPE and SPEs act cooperatively, with both
bringing specialties to the table. Typically, the SPEs use the PPE to run the operating system code and in
most applications the main or top-level thread. The PPE (the general purpose processor) uses the SPEs as
the application’s high-performance workhorse. The SPEs have good support for SIMD operations,
computer-intensive applications, and vector type operations. When you execute the code from Listing
2-1 on the CBE, the number printed to the console is 2. This is because the SPEs are directly accessible.
The 2 represents the fact that the PPE is a CMT; it is a dual thread processor. So in the right configuration,
you can have multiple logical processors (including the SPEs) available in a CBE configuration. The
heterogeneous architecture also makes for some interesting design choices.

While standard POSIX threads (pthreads) and process management can be used with the PPE element,
the SPE has to be programmed using the thread library that’s available as part of the CBE SDK. The good
news is the SPE thread calls are designed to be compatible with pthreads and require no learning curve
for developers who are familiar with the pthread library.

CBE Memory Models

The PPE accesses memory differently than the SPEs. Although there is only a single memory flow
controller, the CBE avoids the normal single bus bottleneck potentials because the SPEs each have their
own local memory. Figure 2-7 shows the memory configurations for the PPE and the SPE.
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Figure 2-7

The SPE configuration is where most of the savings come in. The SPE has a three-level memory access.
It uses its local store, register files, and direct memory access (DMA) transfers to main memory. This
three-tier memory architecture allows programmers to schedule simultaneous data and code transfers.
The CBE processor can support up to 128 simultaneous transfers between the SPE local stores and main
storage. Although the SPE is optimized for SIMD type operations, the PPE has support for parallel
vector /SIMD operations as well.

Hidden from the Operating System

30

The CBE is a good example of a multicore that must be directly addressed to get the maximum
performance from it. The standard Linux system calls can see the dual threads of the PPE but are not
fully aware of the SPEs. The developer must explicitly develop and compile code that works with the
SPEs, and then that code must be linked with the code from the PPE. At that point Linux knows how to
handle the eight SPE processors. The heterogeneous architecture of the CBE also provides exciting
design choices for the developer who is willing to dig a little deeper into the possibilities.
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Synergistic Processor Unit

An SPE comprises a synergistic processor unit (SPU) designed to accelerate a wide range of

workloads, providing an efficient data-parallel architecture, and the synergistic memory flow controller
(MFC), providing coherent data transfers to and from system memory [Gschwind, Erb, Manning, and
Nutter, 2007]. The SPU does not access main memory directly but rather must issue DMA commands to
the MFC. The communication between the SPU and the PPU is through the interconnect bus (EIB). Since
each SPE has its own memory management unit (MMU), this means that it can execute independently
from the PPE. But that independence has limits. The SPUs are primarily optimized for data manipulation
and calculation.

Intel Core 2 Duo Processor

Intel’s Core 2 Duo is only one of Intel’s series of multicore processors. Some have dual cores and others
have quad cores. Some multicore processors are enhanced with hyperthreading, giving each core two
logical processors. The first of Intel’s multicore processors was the Intel Pentium Extreme Edition
introduced in 2005. It had dual cores and supported hyperthreading, giving the system eight logical
cores. The Core Duo multicore processor was introduced in 2006 and offered not only multiple cores but
also multiple cores with a lower power consumption. Core 2 Duo, also introduced in 2006, has dual
cores; it has no hyperthreading but supports a 64 bit architecture.

Figure 2-8 shows a block diagram of Intel’s Core 2 Duo’s motherboard. The Core 2 Duo processor has
two 64-bit cores and 2 64K level 1 caches, one for each core. Level 2 cache is shared between cores.

Level 2 cache can be up to 4MB. Either core can utilize up to 100 percent of the available L2 cache. This
means that when the other core is underutilized and is, therefore, not requiring much L2 cache, the more
active core can increase its usage of L2.
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Figure 2-8
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Northbridge and Southbridge

Besides the CPUs, the next most important component of the motherboard is the chipset. The chipset,
shown in Figure 2-8, is a group of integrated circuits designed to work together that connects the CPUs
to the rest of the components on the motherboard. It is an integrated part of the motherboard and,
therefore, cannot be removed or upgraded. It is manufactured to work with a specific class or series of
CPUs in order to optimize its performance and the performance of the system in general. The chipset
moves data back and forth from CPU to the various components of the motherboard, including memory,
graphics card, and I/O devices, as diagrammed in Figure 2-8. All communication to the CPU is routed
through the chipset.

The chipset comprises two chips: Northbridge and Southbridge. These names were adopted because of the
locations of the chips on the motherboard and the purposes they serve. The Northbridge is located in

the northern region, north of many the components on the motherboard, and the Southbridge is located in the
southern region, south of some components on the motherboard. Both serve as bridges or connections
between devices; they bridge components to make sure that data goes where it is supposed to go.

Q  The Northbridge, also called the memory controller hub, communicates directly with the CPU
via the Front Side Bus. It connects the CPUs with high-speed devices such as main memory. It
also connects the CPUs with Peripheral Component Interconnect Express (PCI-E) slots and the
Southbridge via an internal bus. Data is routed through the Northbridge first before it reaches
the Southbridge.

Q  The Southbridge, also called the I/O controller, is a slower than the Northbridge. Because it is
not directly connected to the CPUs, it is responsible for the slower capabilities of the
motherboard like the I/O devices such as audio, disk interfaces, and so on. The Southbridge is
connected to BIOS support via the Serial Peripheral Interface (SPI), six PCI-E slots, and other
I/0O devices not shown on the diagram. SPI enables the exchange of data (1 bit at a time)
between the Southbridge and the BIOS support using a master-slave configuration. It also
operates with a full duplex, meaning that data can be transferred in both directions.

Intel’s PCI Express

PCI-E or PCI Express is a computer expansion card interface. The slot serves as a serial connection for
sound, video, and network cards on the motherboard. Serial connections can be slow, sending data 1 bit
at a time. The PCI-E is a high-speed serial connection, which works more like a network than a bus. It
uses a switch that controls many point-to-point full-duplex (simultaneous communication in both
directions) serial connections called lanes. There can be 4, 8, of 16 lanes per slot. Each lane has two pairs
of wires from the switch to the device — one pair sends data, and the other pair receives data. This
determines the transfer rate of the data. These lanes fan out from the switch directly to the devices where
the data is to go. The PCI-E is a replacement of the PCI and provides more bandwidth. Devices do not
share bandwidth. The Accelerated Graphics Port (AGP) is replaced with a PCI-E x16 (16 lanes) slot that
accommodates more data transferred per second (8 GB/s).

Core 2 Duo’s Instruction Set
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The Core 2 Duo has increased performance of its processor by supporting Streaming SIMD Extensions
(SSE) and special registers to perform vectorizable instructions. SSE3 provides a set of 13 instructions
that are used to perform SIMD operations on packed integers and floating-point data elements. This
speeds up applications that utilize SIMD operations such as highly intensive graphics, encryption,
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and mathematical applications. The processor has 16 registers used to execute SIMD instructions: 8
MMX and 8 XMM registers. The MMX registers support SIMD operations on 64-bit packed byte, word,
and doubleword integers. The XMM data registers and the MXCSR registers support execution of SIMD
operations on 128-bit packed single-precision and double-precision floating-point values and 128-bit
packed byte, word, doubleword, and quadword integers. Table 2-3 gives a brief description of the three
registers, XMM, MMX, MXCSR, involved in executing SIMD operations.

Table 2-3

Register Set Description

MMX Set of eight registers used to perform operations on 64-bit packed integer data types

XMM Set of eight registers used to perform operations on 128-bit packed single- and
double-precision floating-point numbers

MXCSR Register used with XMM registers for state management instructions

There are many compiler switches that can be used to activate various capabilities of the multicore
processors. For the Intel C\C++ compiler, there are compiler switches that activate vectorization options
to utilize the SIMD instructions, auto parallelization options, loop unrolling, and code generation
optimized for a particular processor.

You might recall that Chapter 1, Table 1-1 lists the categories of compiler switches that interface with
the CPU and instruction set that affect how your program or application performs and utilizes core
resources.

Summary

Although one of the primary jobs of the operating system is to encapsulate the details of the hardware
and provide a hardware-independent interface, certain types of developers need to be aware of
hardware specifics. These include library developers, compiler designers, system programmers, kernel
programmers, server developers, game designers and developers, and others who have maximum
system performance as a primary design goal. Four effective yet different designs for multicore
architectures are the

QO  Opteron

Q  UltraSparc T1

Q  Cell Broadband Engine
Q  Core2Duo

As we have shown, each of these designs has unique features that you as a developer can leverage when
you consider programming from a multicore perspective. The C/C++ compiler is the first-level interface
to these designs. Homogeneous CMP designs have identical cores. Heterogeneous designs have cores
with different instruction sets and architectures. The CBE is a good example of a heterogeneous CMP.
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This chapter has now introduced the four architectures that we shall reference throughout this book. All
of the code examples have been compiled and tested in one or more of these architectures. Most of the
examples have been compiled and tested in all these environments. The program profiles for the
program listings contain specific compiler switches and linking options when required. Although each of
these architectures is different, we demonstrate methods for dealing with them all in a standard fashion.
We want you to be able to take advantage of hardware specifics in the most general way if it’s possible.
For many software applications, the differences between hardware implementations are hidden because
one of the primary design goals is to make the software compatible with as many different hardware
platforms as possible. So there is an effort to avoid platform-specific features, as that is one of the
primary jobs of the operating system. But with some applications you need to know the specifics of the
hardware implementation so that you can optimize the code. Optimization for these applications
becomes more important than compatibility. These applications include high-transaction database
servers, web servers, application servers, hardware-intensive game engines, compilers, operating system
kernels, device drivers, and high-performance scientific modeling and visualization software.
Developers of these applications are practically forced to look for and exploit platform features that
make their applications acceptable to the end user. So if you are this class of developer, familiarity with a
specific processor or family of processors is a prerequisite for effective software development.

In Chapter 3 we turn to the challenges of multicore programming.



The Challenges of Multicore
Programming

Assume we’re facing multiple enemies and disperse the sets . . . Split up into four
groups and activate the threshold triggers!

— Shirow Masamune, Ghost in the Shell

Until recently, the most accessible tools and techniques used for software development were
centered on notions from the sequential model of computer program execution. The basic (and
often unstated) assumption in Information Technology (IT) and Computer Science programs at
universities, colleges, and technical schools was that the software developer would be working in
the context of single processor computers. This is evidenced by the fact that until recently
educational institutions placed very little emphasis on the ideas of parallel programming. Two of
the primary reasons for the lack of focus on parallel programming were cost and tradition.

Q  Cost: First, single processor computers were considerably cheaper and enjoyed a much
wider availability than multiple-processor computers. Cost and availability made single
processor computers the configuration of choice for most businesses, academic
institutions, and government agencies.

Q  Tradition: Second, the fundamental ideas behind software development and computer
programming were worked out decades ago within the constraints of single processor
environments. Basic algorithms for searching, sorting, counting, parsing, and retrieving
were developed, refined, and perfected under a sequential programming model. These
same basic algorithms, data structures, programming models, and software engineering
methodologies form the basis of most software development approaches in use today.
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Sequential programming techniques are important and will always have their place. However,
multiprocessor computer configurations are now widely available. This opens up a host of very different
approaches to program decomposition and software organization. Software architectures that include a
mix of sequential programming, multiprocessing, and multithreading will become common place. For
the majority of developers these hybrid software architectures will be uncharted waters. The trend is that
multiprocessor computers will in most cases replace single processor configurations in business,
academia, and government. To take advantage of the multiprocessor environments, you as a software
developer must add a new set of tools and techniques to your repertoire. Software projects that require
multicore or parallel programming present unique challenges to software developers who are only
accustomed to the sequential programming model, and this chapter addresses the challenges that
developers face as they move into projects requiring multicore or parallel programming. We discuss the
Software Development Life Cycle (SDLC) and methodologies as they apply to the concurrency model.
Also, we discuss decomposing a problem as well as a solution, and procedural and declarative models.

What Is the Sequential Model?
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In the basic sequential model of programming, a computer program’s instructions are executed one at a
time. The program is viewed as a recipe, and each step is to be performed by the computer in the order
and amount specified. The designer of the program breaks up the software into a collection of tasks.
Each task is performed in a specified order, and each task stands in line and must wait its turn. In the
sequential model computer programs are set up in almost story form. The programs have a clear
beginning, middle, and end. The designer or developer envisions each program as a simple linear
progression of tasks. Not only must the tasks march in single file, but the tasks are related in such a way
that if the first task cannot complete its work for some reason, then the second task may never start. Each
task is made to wait on the result of previous task’s work before it can execute. In the sequential

model, tasks are often serially interdependent. This means that A needs something from B, and B needs
something from C, and C needs something from D and so on. If B fails for some reason, then C and D
will never execute. In a sequential world, the developer is accustomed to designing the software to
perform step 1 first, then step 2, and then step 3. This “one -at-time” model is so entrenched in the
software design and development process that many programmers find it hard to see things any other
way. The solution to every problem, the design of every algorithm, the layout of every data structure —
all rely on the computer accessing each instruction or piece of data one at a time.

This all changes when the software requirements include multithreading or multiprocessing

components. When parallel processing is called for, virtually every aspect of the software design and

implementation is affected. The developer is faced with what we call the 10 challenges of concurrency:
1. Software decomposition into instructions or sets of tasks that need to execute simultaneously

Communication between two or more tasks that are executing in parallel

Concurrently accessing or updating data by two or more instructions or tasks

Identifying the relationships between concurrently executing pieces of tasks

Controlling resource contention when there is a many-to-one ratio between tasks and resource

Determining an optimum or acceptable number of units that need to execute in parallel

NooareN

Creating a test environment that simulates the parallel processing requirements and conditions
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8.  Recreating a software exception or error in order to remove a software defect

9. Documenting and communicating a software design that contains multiprocessing and
multithreading

10. Implementing the operating system and compiler interface for components involved in
multiprocessing and multithreading

What Is Concurrency?

Two events are said to be concurrent if they occur within the same time interval. Two or more tasks
executing over the same time interval are said to execute concurrently. For our purposes, concurrent
doesn’t necessarily mean at the same exact instant. For example two tasks may execute concurrently
within the same second but with each task executing within different fractions of the second. The first
task may execute for the first tenth of the second and pause. The second task may execute for the next
tenth of the second and pause. The first task may start again executing in the third tenth of a second and
so on. Each task may alternate executing. However, the length of a second is so short that it appears that
both tasks are executing simultaneously.

We may extend this notion to longer time intervals. Two programs performing some task within the
same hour continuously make progress on the task during that hour. They may or may not be executing
at the same exact instant. We say that the two programs are executing concurrently for that hour. Tasks
that exist at the same time and perform in the same time period are concurrent. They may or may not
perform at the same exact instant. Concurrent tasks can execute in a single- or multiprocessing
environment. In a single-processing environment, concurrent tasks exist at the same time and execute
within the same time period by context switching. In a multiprocessor environment, if enough
processors are free, concurrent tasks may execute at the same instant over the same time period. The
determining factor for what makes an acceptable time period for concurrency is relative to the
application. In this book, we will deal with the challenges of concurrency in terms of three categories:

Q  Software development
Q  Software deployment
Q  Software maintenance
While there are many other ways to think about and group the issues related to multiprocessing and

parallel programming, we chose these categories because in our experience most of the heavy lifting
involved in multicore programming falls into at least one of these categories.

In this chapter, we primarily discuss software development. In Chapter 10, we discuss maintenance and
deployment.

Software Development

The software development effort comes in all shapes and sizes, from device driver development to the
construction of large-scale N tier enterprise applications. Although the software development techniques
involved vary with the size and scope of the application, there is a set of challenges that any application
that uses multiprocessing, or multithreading, have in common. These challenges present themselves in
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every phase of the SDLC. It is important for you to understand the connection between multicore
programming and the SDLC well. This is because the easiest way to deal with the complexity, demands,
and potential pitfalls of multicore programming is to tackle the issues during the appropriate stage in the
SDLC. The SDLC describes the necessary activities that designers and developers perform in the process
of producing high-quality software. Since the act of creating good software is part art, part engineering,
and part science, there are competing theories for exactly what makes up the SDLC. Table 3-1 lists the
major activities that are found in most versions of the SDLC.

Table 3-1

Major SDLC Activities Description

Specifications Documents the agreement between the developer and the client by
specifying what the software must do and the constraints of the
software.

Design Specifies how the software will fulfill what has been stated in
the specifications. The design determines the internal structure of the
software. The design can be broken down into two approaches:
architectural design (system broken down into modules) and detailed
design (description of the modules).

Implementation The translation of the detailed design into code.

Testing and evaluation The process of exercising the software in order to judge its quality by
determining how well the software has met the fulfillment of the
specified requirement.

Maintenance The modification of a software product after delivery in order to correct

faults, improve performance, improve attributes, or adapt the software
to a changed environment.
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There are many ways to think about and organize the activities in Table 3-1. Further, the activities listed
in Table 3-1 are just the core activities that most versions of the SDLC have in common. Each approach to
organizing the activities in the SDLC has spawned its own software development methodology. Once a
software development methodology has been established, tool sets, languages, and software libraries are
created to support that methodology. For example the object-oriented software revolution spawned the
notions of:

Q  Object-Oriented Software Engineering (OOSE)
Q  Object-Oriented Analysis (OOA)

Q  Object-Oriented Design (OOD)

QO  Object-Oriented Programming (OOP)
a

Object-Oriented Database Management Systems (OODBMS), and so on
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These software development methodologies have dedicated languages such as Eiffel, Smalltalk, C++,
Objective C, Java, Python, and CLOS. From these languages and methodologies have sprung libraries and
tools, such as the Standard Template Library (STL), Unified Modeling Language (UML), Common Object
Request Broker Architecture (CORBA), Rational Rose, Together, and Eclipse. These languages, libraries,
and tools sets are very different from those used in logic programming or software development using
structured programming techniques. Table 3-2 lists some commonly used software development

methodologies.
Table 3-2
Software Development
Methodologies Description Activities/Phases
Agile Software is developed in short time ¢ Planning
intervals. Each interval or iteration is a * Requirement analysis
miniature development project that * Design
delivers some part of the functionality of ¢ Coding
the software. ¢ Testing
* Documentation
Build and fix Software is developed and built and then e Build first version

Extreme programming

Incremental

Object-oriented

reworked as many times as necessary until
the client is satisfied with the product.

Model based on the incremental model;
the developer informs the client how long
it will take to implement and the cost of
each feature, and the client selects which
features are to be included in each
successive build.

The software is built in increments or
steps; the software is designed,
implemented, and integrated module by
module. For each build the modules are
assembled to fulfill a specified
functionality.

Software development based on the
identification of the objects in the system; a
bottom-up approach.

* Modify until client is
satisfied

® Maintenance phase

e Retirement

® Specifications

¢ Design

¢ Implementation/
integration

® Delivery

Requirements
Specification
Architectural design
Build loop
Maintenance
Retirement

Requirements
OO analysis

OO design
Implementation/
integration
Operations mode
* Maintenance

Table continued on following page
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Software Development

Methodologies Description Activities/Phases

Rapid prototyping With the model a prototype is created of ¢ Rapid prototype
the system. After that the SDLC continues * Specification
based on the acceptance of the prototype. * Design
At each phase, there is interaction with the ¢ Implementation
client to either test or verify the ¢ Integration
progression of the product. ¢ Maintenance

® Retirement

Spiral The spiral model is similar to the ¢ Planning
incremental model with an emphasis on ¢ Risk analysis
risk analysis and verification in each ¢ Evaluation
phase. Each pass through these phases ¢ Engineering
occurs iteratively (called spirals).

Structured A top-down approach to software * Requirements
development in which the system is * Design
iteratively decomposed by functionality, ¢ Implementation
starting from the highest levels of ¢ Testing
abstractions into its lowest functionality. ¢ Deployment

Waterfall Most common and classic of the models. ¢ Requirements
Also called the linear-sequential model. * Specifications
With this model, each phase must be ¢ Design
completed in its entirety before moving to ¢ Implementation
the next phase. ¢ Integration

¢ Maintenance
¢ Retirement
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Selecting a software development methodology is a challenge in itself, and once a methodology is
selected, the possible tool sets and techniques come along by default. The choice of methodology has
critical implications for how multiprocessing and multithreading are implemented in a piece of software.
The developer who has multicore programming requirements needs to proceed with caution when
selecting a particular approach because the tool sets and techniques of that methodology might restrict
the developer to awkward and error prone implementations of multiprocessing or multithreading.
Software approaches that are procedure driven handle multithreading and multiprocessing very
differently from methodologies that are object or data driven. Object-Oriented Programming approaches
present a very different set of options to the developer than what is available in logic programming. It is
also the case that once the software development effort has begun and human resources and tools are in
place, it is difficult to change paradigms in midstream or after the software has been deployed. In some
software development efforts, tools sets, languages, and libraries are selected even before software
requirements or specifications are understood. This is unfortunate because this often leads to a software
implementation that is forced into the selected languages and tool sets whether it fits or not. Again,
understanding the relationship between the various activities in the SDLC and multicore programming
is important, and we emphasize this relationship throughout this book.




Chapter 3: The Challenges of Multicore Programming

Although there can be (and are!) disagreements about which is the best direction to take, there are basic
activities that are common to all of the approaches. These activities are present in one form or another in
every software development effort regardless of size. For example, every approach has some process for
getting the requirements and specifications for a project. Every approach has activities centered on
designing a solution prior to actually coding the finished product. Another example of a basic activity is
the testing of software prior to its release. These type of common activities may occur in different places
and amounts among the various software development methods, but they are present in each. If you
deal with the 10 challenges of concurrency during the appropriate activities in the SDLC, the chances of
producing correct and reliable programs are greatly increased. If the software you have to develop
requires some kind of concurrency, then some portion of every activity in Table 3-1 is affected. We focus
on the SDLC here because we advocate a software engineering approach to multicore application
development as opposed to some trial and error, ad hoc plug-in methods that are being used to get
“multicore-aware” applications to market quickly. While there are ways to hide and abstract away some
complexity of parallel programming and multithreading, there are no real shortcuts. The deployment of
robust, correct, and scalable software applications that can take advantage of Chip Multiprocessors
(CMPs) requires sound software engineering and an effective solid understanding of the SDLC.

Determining when, where, and how to incorporate multiprocessing and multithreading into the
software development effort is the major theme of this book — which brings us to two of the primary
questions that we will answer:

1. How do you know when your software application needs multicore programming?
2. How do you know where to put the multicore programming in your piece of software?

These questions are related to the first challenge in our list of 10 challenges presented earlier in this
chapter. Both questions are central to the challenge of software decomposition.

Challenge #1: Software Decomposition

The need or opportunity for multithreading or multiprocessing is most often discovered during the
decomposition activity. For our purposes, decomposition is the process of breaking down a problem or
solution into its fundamental parts. Sometimes the parts are grouped into logical areas (that is, searching
sorting, calculating, input, output, and so on). In other situations, the parts are grouped by logical
resource (processor, database, communication, and so on). The decomposition of the software solution
amounts to the Work Breakdown Structure (WBS) or its Architectural Artifacts (AAs).

Q  The WBS determines which piece of software does what.
Q  The AA determines what concepts or things a software solution is divided into.
The WBS typically reflects a procedural decomposition, whereas the AA represents an object-oriented

decomposition. Unfortunately, there is no cookbook approach to identifying the WBS or the AA of a
software solution.

We can say that model-driven decomposition is one of the most practical approaches, and we will have
much to say about models throughout this book.

You cannot talk about where to use threads or whether to use simultaneously executing processes in the

software solution until you have decomposed both the problem and the solution. Problem and solution
decompositions are typically performed during the analysis and design activities in the SDLC.
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A successful decomposition is one of the primary ingredients of a successful software development
effort. On the other hand, a poor or inappropriate problem and solution breakdown almost certainly
leads to failed software.

An Example of Decomposition

To show you what we mean by decomposition, we take as a simple example the problem of painting the
house before the guests arrive for the holidays. Of course, we will take this opportunity to use the latest
craze — software-automated painters. Take a look at how you might decompose the problem of painting
the house, as well as the solution.

Decomposition #1

The problem could be broken down into:

Q  Deciding paint color and type

Acquiring paint and painters tools

Determining which rooms to paint first

Identifying which type of automated painter to use

Choosing which days of the week to paint

0O 00U oo

Figuring out when to start painting
This is one decomposition of the problem of painting the house.
A decomposition of the solution might look like this:

Q  Select and purchase the paint that matches the furniture.
Q  Use the neighbor’s software-automated painter.

QO  Have the automated painter start at the front of the house and work to the back.

Q  Only paint during the hours of 6:00 A.m. to 1:00 r.m. on weekdays.

Q  Start the painting on the next available weekday.

You can quickly see part of the challenge of decomposition. The first thing you might notice is that there
is typically more than one way to decompose the problem. As you look at the problem and solution

breakdown, you may have had a very different set of steps in mind. In fact you could have chosen an
entirely different approach to the problem of painting the house before the guests arrive for the holidays:

Decomposition #2

Consider the following alternate problem decomposition:

Identifying rooms that would be better off with wallpaper
Finding walls where windows could be added to reduce wall surface area

Verifying if cleaning the walls could be a substitute for paint

0O 0 0O O

Determining how much paint the neighbors have to donate
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Q  Figuring out which walls can be removed instead of painted
Q  Obtaining the travel plans of the guests

Q  Acquiring demo software-automated painters for a free 30-day trial

You might use the solution decomposition from the first approach, or you could choose an entirely
different solution decomposition:
Q  Strategically use lighting to showcase the best-looking walls.
Where lighting is not appropriate, the judicious use of mirrors is acceptable.
Add windows to external walls.
In the event that mirrors are inconvenient, use wallpaper.

Use as many demo painters as can be obtained.

U 000U

Delay guests’ arrival until software-automated painters are done.

The second observation you can make is that a decomposition might be incomplete or inappropriate!
Ideally, the fundamental parts of a decomposition should collectively represent the initial problem or
solution. It’s like putting the pieces of a puzzle back together again. If the pieces don’t collectively
represent the whole, then the decomposition is incomplete. This means you haven’t captured the entire
problem, and you won't have the entire solution. In the painting the house problem, was identifying the
amount or cost of the paint part of the original problem? You can’t tell from the statement of the
problem. So you don’t know if Decomposition #1 or #2 is incomplete. On the other hand, clearly you
need to paint the house before the guests arrive. The problem and solution in Decomposition #1 do not
address the guests’ arrival at all. So it is not clear whether the solution in Decomposition #1 will be
acceptable. While Decomposition #2 does attempt to address the arrival of the guests, the problem and
solution are geared toward finding ways not to paint the house at all or to paint as few walls as possible.
This decomposition may be inappropriate. It might reflect a poor understanding of the intent of the
initial problem.

You can also see that in the solution for Decomposition #1, a single software-automated painter is
suggested, and in Decomposition #2 multiple software-automated painters were chosen. So not only
does Decomposition #2 seek to minimize the number of walls to be painted, but it also attempts to do so
as fast as possible. Appropriate decomposition is a primary challenge for applications based on the
sequential model. It is even more of an issue where parallel processing is called for. There are software
tools and libraries that can help the developer with implementing a decomposition; however, the process
itself remains part of the problem solving and design activity. Until you get the problem and solution
breakdown right, the application of multithreading or multiprocessing will be murky.

Earlier, we defined decomposition as the process of breaking down a problem or solution into its
fundamental parts. But what are the fundamental parts of a problem or solution? The answer depends
on what model you use to represent the problem and the solution. One of the challenges of software
decomposition is that there are multiple ways to represent a problem and its solution. It could also be
reasonably argued that there is no one right way to decompose a problem or a solution. So which
decomposition should you choose? Another challenge is making sure that the decomposition is
complete, appropriate, and correct. But how will you know if the breakdown is right? In some cases, it’s
not a matter of choosing between multiple and possibly conflicting WBSs; it is a matter of coming up
with any decomposition at all. This might be due to the complexity of the original problem.
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The decomposition issue is front and center in any software development effort. It’s especially important
where parallel processing tools or techniques will be deployed. But the WBS or AA chosen rely on the
idea of models. Wherever decomposition takes place, there is always one or more models in the vicinity.
Hiding beneath the surface of the choices in Decomposition #1 and #2 is an assumed and shared model.

Finding the Right Model

Models are the stuff decomposition is made of! Complicating the challenges of decomposition is the
selection of a suitable model that appropriately represents problem, task, or solution.

What Is a Model?
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Software development is the process of translating concepts, ideas, patterns of work, rules, algorithms,
or formulas into sets of instructions and data that can be executed or manipulated by a computer. It is a
process that relies heavily on the use of models. For our purposes a model is a scaled artificial
representation of some real process, thing, concept, or idea. The scaled representation is some smaller,
simpler, or easier to deal with approximation of the process, thing, concept, or idea.

The primary function of the model is to imitate, describe, or duplicate the behavior and characteristics of
some real-world entity. The model is to be a stand-in containing enough information to allow analysis
and decision making. The better the model represents the real-world entities, the more natural the
decomposition, WBS, or Architectual Artifacts will be.

One of the challenges to multicore programming is to select the appropriate model of the problem and
solution. In terms of parallel programming, multiprocessing, and multithreading, you succeed when the
appropriate model is used and fail when the wrong model is selected. The question of how to break up
an application into concurrently executing parts can often be answered during an analysis of the solution
model or the problem model. The selected model affects what decomposition choices are available.

For example, in the house-painting problem we assumed one familiar model of a house:

QO  Model #1: The house as something that has walls, rooms, and support for windows. You should
add to this model ceilings, doors, archways, floors, banisters, a roof, and so on.

This is probably one of the models that immediately comes to mind when you are thinking about the
house-painting problem. But as was the case with decomposition, there is more than one model for a
given problem or solution. You could have selected a totally different model for the house:

QO  Model #2: The house as a dwelling measured in square feet, having an entry and an exit, having
reasonable space for a family of two or more, providing protection from the weather, offering a
modicum of privacy, and having a place to rest for all inhabitants.

While Model #2 might be good for certain scenarios (for example, igloo selection), Model #1 appears to
be more helpful for the house-painting problem.

What this shows is that the notion of decomposition is closely related to models. In fact, the decomposition
follows the parts, processes, and structure of the model used. Specifically, the decomposition is limited by
the underlying model of the problem and solution. So part of the challenge of decomposition is the
challenge of model selection.
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Procedural Models or Declarative Models?

Earlier in the chapter we introduced the idea of a Work Breakdown Structure (WBS) and Architectural
Artifacts (AAs) of a solution. The WBS breaks a problem or solution down into the tasks that need to be
performed or the work that needs to be done. On the other hand, the AA divide a problem or solution into a
set of persons, places, things, or ideas. Table 3-3 shows the differences between the WBS and AA approaches.

Table 3-3

Attributes WBS AA

Definition Breaks a problem or solution down  Divides a problem or solution into a
into the tasks that need to be set of persons, places, things, or ideas
performed or the work that needs
to be done

Model used Uses task-driven models Uses object-oriented or relational-

driven models

Decomposition model Uses procedural models Uses declarative models

Scalability /complexity ~ Does not scale well; difficulty with ~ Can scale well; works best with
very complex system complex system

As you can see, whereas WBS decomposes the problem and solution into a set of actions, AAs break
down problems and solutions into a set of things. Whereas the WBS uses task-driven models, AAs use
object-oriented or relational-driven models. And most significant, whereas WBS decompositions follow
from procedural models, AA follows from declarative models.

Perhaps the most important and critical decision that can be made for a software design that will include
multiprocessing or parallel programming is whether to use procedural models or declarative models or
some combination of the two. The fundamental differences in approach, technique, design, and
implementation between procedural models and declarative models are so dramatic that they require
radically different paradigms of computer programming [Saraswat, 1993]. In some cases, these paradigms
are supported by very different languages. In other cases, the paradigms are supported by using familiar
languages in extremely different ways. As the trend moves toward more processors on a single chip,
toward single-chip massive multiprocessors (with 100s or 1000s) of processors on a chip, procedural
models and their corresponding WBS will not be able to scale. They will collapse under the complexities
of synchronization and communication. Declarative models and decompositions will have to be used.

The transition to declarative models is a major challenge because the procedural model and its WBS are
based in the traditional sequential approach to programming discussed in the “What Is the Sequential
Model?” section earlier in this chapter. The sequential model of computation currently has the most
commonly used languages, tools, and techniques. Until very recently, the sequential model of
computation was also the most frequently taught model in universities, colleges, trade schools, and so
on. Although the declarative models have been with us for some time, they are not as widely used or
taught (with the exception of OOP). Table 3-4 shows a list of declarative programming paradigms and
some commonly used languages in that paradigm.
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Table 3-4

Declarative Programming Paradigms Commonly Used Languages

Object-oriented C++
Java
Eiffel
SmallTalk
Python

Functional C++
Haskell
Lisp
ML
Scheme

Concurrent constraint C++
Prolog
Prolog-based languages

Constraint Prolog
Prolog-based languages

One of the advantages that the C++ programmer has in the new world of CMPs is the fact that C++
supports multiparadigm development. That is, unlike languages like Java where everything must be an
object, C++ supports object-oriented, parameterized, and imperative (procedural) programming.
Because of C++’s power of expressiveness and flexibility, it can be used to implement ideas from all of
the programming paradigms listed in Table 3-4. We will have much to say about declarative approaches
to parallelism versus procedural approaches to parallelism throughout this book. As with most problems
and solutions, the challenge is learning to use the right tool for the job.

One Room at a Time or All at Once?
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Earlier in the chapter for the problem of painting the house before the guests arrive for the holidays, you
saw two problem and solution WBS. Decomposition #1 chose to use a single software-automated painter,
and Decomposition #2 chose to use as many software-automated painters as possible. Note that the
solution in Decomposition #1 specified that the software-automated painter start at the front of the house
and work to the back. However, Decomposition #2 does not mention how the multiple software-
automated painters should proceed.

Does it make sense to paint the house one room at a time? Or is it best to paint as many rooms
simultaneously as possible? If you do attempt to paint more than one room at a time, will you need
multiple paint brushes? Will each of the software-automated painters share a brush, or a bucket, or an
elevation device? How many automated painters are enough — one for each room? One for each wall?
Do the automated painters need to communicate with each other? What if some are done before others,
should they proceed to help any painter that is not yet finished? What if some but not all rooms can be
painted simultaneously? What if the rooms that can be painted simultaneously change from day to day?
How is this communicated and coordinated with the software-automated painters? What if there is so
much time between the recognition that the house needs painting and guests arriving for the holidays
that a single automated painter can easily get the job done satisfactorily? Do you use multiple painters
anyway? So, how do you perform a declarative decomposition for the house-painting problem? These
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are the types of problems that you run into during problem and solution decomposition. And as you will
soon see, the decomposition problems lead to other challenges.

It is one thing for a software solution or architecture to require multiprocessing or multithreading as a
result of design decisions or user specifications. That's different from the case where insightful analysis
of an existing piece of software or software design reveals opportunities to exploit multiprocessing where
it was otherwise not required or included. In this book, we focus our attention on software solutions or
architectures that require multiprocessing as result of design decisions or user specifications.

Challenge #2: Task-to-Task Communication

If you have two tasks, A and B, that are concurrently executing and one of the tasks is dependent on the
other for information, then the tasks need to have some way to communicate the information. If the tasks
need to share some resource (that is, file, memory, object, a device, or so on) and that resource supports
only one at a time access, then the tasks need to have some way to pass on information that the resource
is available or that the resource is requested. If the tasks involved are separate operating system
processes, the communication between the tasks is called Interprocess Communication (IPC).

Processes have separate address spaces. These separate address spaces serve to isolate processes from
each other. This isolation is a useful protection mechanism, and this protection is sometimes a reason to
choose multiprocessing over multithreading. The operating system keeps the resources of processes
separate. This means that if you have two processes, A and B, then the data declared in process A is not
visible to process B. Furthermore, the events that happen in process A are unknown by process B, and
vice versa. If process A and B are working together to accomplish some task, information and events
must be explicitly communicated between the two processes. The data and events for each process are
local to process. In Chapter 5, we discuss the anatomy of a process in more detail, but for now we use
Figure 3-1 to show the basic layout of two processes and their resources.

PROCESS A’S ADDRESS SPACE

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT
LOCAL VARIABLES Phrase string Phrase("Hello");
Process A's GLOBAL VARIABLES void main() {
stack write(fd[WRITE], Phrase,...);

shared :

PROCESS B’S ADDRESS SPACE

STACK SEGMENT FREE STORE DATA SEGMENT 1 TEXT SEGMENT
s | oL,
| CONSTANTS oid main() {

STATIC VARIABLES

read(fd[READ], Msg,...);
Word Msg string Word = new string(Msg);

Process B's )
stack

Figure 3-1

47



Chapter 3: The Challenges of Multicore Programming

Note that in Figure 3-1 the resources of process A are isolated from the resources of process B. The
processes have a text, data, and stack segment. Processes may also have other memory allocated from
the free store. The data that a process owns is generally in the data segment, the stack segment, or the
process’s own dynamically allocated memory. This data is protected from other processes by the
operating system. In order for one process to have access to another process’s data, special IPC
mechanisms must be used. Likewise, in order for one process to be made aware of what happens within
the text segment of another process, a means of communication must be established between the
processes. This also requires the assistance of operating-system-level IPCs. One of the primary
challenges for the multiprocessing program is the management of IPC. The number of IPC mechanisms
increases as the number of the number of processes involved in a single application increases. More
processes almost always mean more IPC mechanisms and usage. In many instances, coordinating the
communications among multiple processors is the real challenge.

Managing IPC Mechanisms

The POSIX specification supports six basic mechanisms used to accomplish communication between
processes:

0  Files with lock and unlock facilities
U Pipes (unnamed, named also called FIFOs — First-In, First-Out)
Q  Shared memory

0  POSIX message queues

Q  Sockets

Q  Semaphores

Table 3-5 contains simple descriptions of the POSIX IPC mechanisms for processes.

Table 3-5

POSIX Interprocess Communication Description

Command-line arguments Can be passed to the child process during the invocation
of the exec or spawn functions.

Environment variables/file descriptors Child processes can receive a copy of the parent’s
environment data and file descriptors. The parent
process can set the variables, and the child process can
read those values. The parent process can open files and
advance the location of the file pointers, and the child
process can access the file using the same offset.

Files with locking facilities Used to transfer data between two processes. Locking
facilities are used to synchronize access to the file
between the processes.
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POSIX Interprocess Communication Description

Pipes

A form of communication channel between related or
unrelated processes. Normally accessed with file read
and write facilities.

Shared memory Ablock of memory accessed by processes that resides

outside of their address space.

Message queues Alinked list of messages that can be shared between
processes.
Semaphores A variable used to synchronize access between threads

Oor processes of a resource.

Sockets A bidirectional communication link between processes

that utilizes ports and IP addresses.

Each of these IPC mechanisms has strengths, weaknesses, traps, and pitfalls that the software designer
and developer must manage in order to facilitate reliable and efficient communication between two or
more processes. We cover these in detail in Chapter 5, but we want to mention here some of the primary
challenges of using these IPC mechanisms:

I T N T N I I N

They must be correctly created or the application will fail.

They require the proper user permissions for use.

They require the proper file permissions for use.

In some cases they have stringent naming conventions.

They are not object-friendly (that is, they use low-level character representations).
They must be properly released or they’ll cause lockups and resource leaks.
Source and destination processes are not easily identified in their use.

Initial deployments of the software can be tricky because all environments are not compliant.
Mechanisms are very sensitive to correct size of data sent and received.

Wrong data type or size can cause lockups and failures.

Flushing the mechanisms is not always straightforward.

Some of the mechanisms are not visible use user utilities.

Depending on type, the number of IPCs that a process can access may be limited.

These IPC mechanisms can be used as bridges between concurrently executing processes. Sometimes the
bridge is a two-way bridge, sometimes it’s not. For instance, a POSIX message queue might be created
with the permission allowing processes to read messages and to write messages. Some processes might
open the queue up for reading, some for writing, and some for both. The software developer has to keep
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track of which process opens up which queue for what. If a process opens up the queue for read-only
access, then later tries to write the queue, it can cause problems. If the number of concurrently executing
tasks involved is small, this can be readily managed. However, once you move beyond a dozen or so
concurrently executing processes, then managing the IPC mechanisms become a challenge. This is
especially true for the procedural models of decomposition mentioned earlier in the chapter. Even when
the two-way or one-way traffic requirements are properly managed, you face issues of the integrity of
the information transmitted between two or more processes. The message passing scheme might
encounter issues such as interrupted transmissions (partial execution), garbled messages, lost messages,
Wrong messages, wrong recipients, wrong senders, messages that are too long, messages that are too
short, late messages, early messages, and so on.

It is important to note that these particular communication challenges are unique to processes and don’t
apply to threads. This is because each process has its own address space and the IPC mechanisms are
used as a communication bridge between processes. Threads, on the other hand, share the same address
space. Simultaneously executing threads share the same data, stack and text segments. Figure 3-2 shows
a simple overview of the anatomy of a thread in comparison to that of a process.

PROCESS A’S ADDRESS SPACE

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT
LOCAL VARIABLES LOCAL VARIABLES GLOBAL DATA STRUCTURES main(){...}
GLOBAL VARIABLES GLOBAL VARIABLES
CONSTANTS
STATIC VARIABLES
shared )
..messages .fllES . IPC
emony - pipe MECHANISMS
STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT
______ GLOBAL DATA STRUCTURES
LOCAL VARIABLES LOCAL VARIABLES i
GLOBAL VARIABLES SO ET AN reABLES T oate ThreadA
STATIC VARIABLES Ifereate ThreadB
g /lexecuted by ThreadA
Thread A's ITC MECHANISMS

stack task1(...) { ...}

—

/7
________ GLOBAL DATA . _— _ _ _— _— _— |

GLOBAL
Thread B's VARIABLES /lexecuted by ThreadB
e PARAMETERS o task2(...) ...

Main
Thread’s
stack

Figure 3-2
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Communication between two or more threads (sometimes called lightweight processes) is easier because
threads don’t have to worry about address space boundaries. This means that each thread in the
program can easily pass parameters, get return values from functions, and access global data. As you see
in Figure 3-2, threads of the same process access the global variables of its process stored in the data
segment. Here we highlight the basic difference between Interprocess Communication (IPC) and
Interthread Communication (ITC) mechanisms: IPC mechanisms reside outside the address space of
processes, whereas ITC mechanisms reside within the address space of a process. That’s not to say that
threads don’t have their own challenges; it’s just that they are immune from the problems of having to
cross address spaces.

How Will the Painters Communicate?

Earlier in the chapter, in the example problem of painting the house before the guests arrive for the
holidays, Decomposition #2 used as many software-automated painters as possible in its approach. But if
the painters are in different rooms how will they communicate with each other? Do they need to
communicate with each other? What if they are sharing a single bucket — how many painters can access
it simultaneously? What happens when it needs to be refilled? Do the painters wait until the bucket is
filled or do other work while the bucket is being refilled? What happens when multiple painters need
the elevation device at the same time? Should you add more elevation devices? How many devices are
enough? How does one painter let another painter knows that an elevation device is available? These
kinds of questions plague multiprocessing and multithreading efforts. If they are not dealt with during
the appropriate stages in the SDLC, then an application that requires multiprocessing or multithreading
is in jeopardy before it is even installed. If the communication is not appropriately designed, then
deadlock, indefinite postponement, and other data race conditions can easily occur. Data race, deadlock,
and indefinite postponement are among the most notorious issues that multithreading or
multiprocessing face, and they are the problems at the core of Challenge #3.

Challenge #3: Concurrent Access to Data or
Resources by Multiple Tasks or Agents

Three common problems appear when concurrently executing instructions, tasks, or applications have
been required to share data, devices, or other resources. These problems can result in the corruption of
the data, the stalling of the task, or the freezing of the agent. The three problems are:

d  Datarace
d  Deadlock

Q  Indefinite postponement
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Problem #1: Data Race

52

If two or more tasks attempt to change a shared piece of data at the same time and the final value of the
data depends simply on which tasks get there first, then a race condition has occurred. When two or
more tasks are attempting to update the same data resource at the same time, the race condition is called
a data race. Information that is subject to race conditions is not reliable. This goes for input values as well
as output values. The status of the paint bucket in the house-painting problem using Decomposition #2
is a candidate for data race.

Consider the following description of the update process for the paint bucket: Each painter’s bucket
routines include a get instruction for getting 1 or more gallons from the bucket. A read instruction for
reading the status of the bucket and a write instruction for updating the status of the bucket after gallons
have been removed. So a bucket process for a painter might look like this:

Read Bucket Status into Total
If N is <= Total

Get N Gallons of Paint

Total = Total - N

Write Total to Bucket Status
end if

In this process, each painter once it removes paint from the bucket records how much paint is left based
on the bucket’s previous paint status. Say that two of the painters, Painter A and Painter B, get to the
bucket at the same time, and Painter A starts the bucket routines and removes 20 gallons of paint. Before
Painter A can update the status of the bucket, Painter B removes 10 gallons of paint from the bucket and
updates the status first. It's possible since Painter B’s paint requirement was smaller than Painter A’s that
Painter B finished first and, therefore, updated the Bucket Status first. Painter B has updated the
status of the paint bucket with an incorrect amount. This is because, although Painter A removed 20
gallons of paint first, the update status had not yet been stored. In addition to this, Painter B has already
read the value in Bucket Status prior to Painter A’s update. Further, the monitor for the software-
automated painters that is responsible for filling the bucket based on the Bucket Status happens to
look at the status before Painter A has updated the status but after Painter B’s update. Any decisions that
the monitor makes based on bucket status will be incorrect. Painter A is totally unaware of Painter B’s
activity and updates the Bucket Status with a value of 10 gallons. At this point as a result of Painter
A’s paint removal and Painter B’s paint removal, the bucket is actually empty, but the Bucket Status
variable reads 10. Figure 3-3 shows the data race scenario for Painter A and Painter B.
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PAINTER A

N
Total
30 10

Read Bucket Status into Total

BUCKET

Status

PAINTER B

N
Total

L

Read Bucket Status into Total

If N is <= Total If N is <= Total
Get N Gallons of Paint Get N Gallons of Paint
> Total = Total - N Total = Total - N
Write Total to Bucket Status Write Total to Bucket Status
end if end if
PAINTER A PAINTER B

N
Total
30 10

Read Bucket Status into Total

BUCKET

Status

N
Total

Read Bucket Status into Total

If N is <= Total If N is <= Total
Get N Gallons of Paint Get N Gallons of Paint
Total = Total - N Total = Total - N
Write Total to Bucket Status > Write Total to Bucket Status
end if end if
PAINTER A PAINTER B
N BUCKET N
Status
Total 36 20- 10 Total
30 10 |— | 30 20

Read Bucket Status into Total
If N is <= Total
Get N Gallons of Paint
Total = Total - N
» Write Total to Bucket Status
end if

Read Bucket Status into Total
If N is <= Total

Get N Gallons of Paint

Total = Total - N

Write Total to Bucket Status
end if

Figure 3-3
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In a multithreading or multiprocessing environment, this is entirely possible because of the way that the
operating system schedules threads and processes. It can all boil down to clock cycles. Since in this scenario
the process of taking paint out of the bucket is separate from the process of updating the bucket status, the
events can be separated by the operating system schedule. The painter that gets to the bucket status first
turns out to be a matter of operating system scheduling, processor states, latency, and chance. This situation
creates a race condition. Under these circumstances what will be the real status of the paint bucket?

Distinguishing shared modifiable resources from read-only resources is important. If multiple threads or
processes are attempting to simultaneously access a resource that cannot be modified (that is, read-only
memory or const objects), then data race is not a concern. Likewise, if multiple threads or processes are
simply attempting to read a block of data simultaneously, data race does not occur. In order for a race
condition to exist, the resource under consideration must be modifiable, and multiple threads or processes
must be trying to simultaneously access the resource with at least one of the threads or processes
attempting to modify the resource.

Whenever tasks concurrently share a modifiable resource, rules, and policies have to be applied to the
task’s access. For instance, for the bucket routine you may have to deploy Exclusive Read Exclusive
Write (EREW) policies so that when one painter starts other painters have to wait until the entire routine
is completed. Or you might have to set up a painter whose only job is to update the bucket status. If
more than one painter needs the bucket at the same time, then the requests must be held and organized
according to some rule and then the painters must be granted access one at a time. But if you set up the
bucket status so that only one painter at a time can access it, then aren’t you defeating the purpose of
having multiple threads or processes? Will not the shared bucket status become a performance
bottleneck? Identifying data race conditions can be tricky because the precise order in which the
concurrently running processes or threads can execute is determined by what else the operating system
is doing at the point. It depends on the other potentially unrelated processes or threads that are
executing. Even computers with multiprocessors will be reduced to multiprogramming if the number of
threads or processes that the operating system is managing is greater than the number of available
processors. This means that the operating system will suspend and resume threads or processes as
necessary. And, what to suspend and when to suspend it is typically up to the operating system.

This introduces a degree of uncertainty when a collection of processes or threads are executing.

We will have more to say about this in Chapters 5, 6, and 7. Here, we just want to bring your attention
to the fact that a data race is one of the potential pitfalls of multicore programming.

Problem #2: Deadlock
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Deadlock is another waiting-type pitfall. To illustrate an example of deadlock, assume that the three
painters (A, B, C) in the house-painting problem are working with two buckets (1, 2) of paint (different
colors) instead of one. Painter A is responsible for updating the bucket statuses for both buckets of paint.
Painter A, B, and C can perform their work concurrently. However, Painters B and C may only use one
bucket of paint at a time. Painter A grants bucket status update access on a first come, first serve basis.
Say that Painter B has exclusive access to Bucket 1, and Painter C has exclusive access to Bucket 2.
However, Painter B needs access to Bucket 2 to complete its painting, and Painter C needs access to
Bucket 1 to complete its processing. Painter B decides to hold on to Bucket 1 waiting for Painter C to
release Bucket 2, and Painter C decides to hold on to Bucket 2 waiting for Painter B to release Bucket 1.
Painter B and Painter C are engaged in a deadly standoff also known as a deadlock. Figure 3-4 shows the
deadlock situation between Painter B and Painter C.
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PAINTER C REQUESTS
PAINTER B EXCLUSIVE ACCESS to BUCKET 1

ACCESS to BUCKET 1

/ \
PAINTER B PAINTER C

PAINTER B REQUESTS
ACCESS to BUCKET 2

PAINTER C EXCLUSIVE
ACCESS to BUCKET 2

Figure 3-4

The form of deadlock shown in Figure 3-4 requires concurrently executing tasks that have access to some
shared modifiable resource, which they must wait for each other to finish using before they can access.
In Figure 3-4, the shared resources are Bucket 1 and Bucket 2. Both Painters have access to these buckets.
It happens that instead of one Painter getting access to both buckets at the same time, by the luck of the
draw each Painter got access to one of the buckets. Since Painter B can’t release Bucket 1 until it gets
Bucket 2, and Painter C can’t release Bucket 2 until it gets Bucket 1, the software-automated painting
process is locked. Notice that Painter B and C can drive another task(s) into indefinite postponement
(which is discussed in more detail in the next section). For example, Painter A, who is responsible for
updating the bucket status, is also waiting for Painter B or Painter C to issue a write or read request. If
other tasks are waiting for access to Bucket 1 or Bucket 2 and Painter B and Painter C are engaged in a
deadlock, then those tasks are waiting for a condition that will never happen.

In your attempts to coordinate concurrently executing tasks, deadlock and indefinite postponement are
two of the ugliest obstacles that you must overcome. To make matters worse, it’s not always clear when
it has occurred. The tasks involved may be waiting for legitimate events to happen. It could also be the
case that Task A is simply taking a little longer than expected. So identifying legitimate deadlocks also
poses another challenge on the road to multicore programming. The steps involved in identifying
deadlocks (deadlock detection), preventing deadlocks, and avoiding deadlocks are critical to
applications that use multiprocessing or multithreading.

We discuss techniques for deadlock detection, prevention, and avoidance in Chapter 7.
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Problem #3: Indefinite Postponement

Scheduling one or more tasks to wait until some event or condition occurs can be tricky. First, the event
or condition must take place in a timely fashion. Second, it requires carefully placed communications
between tasks. If one or more tasks are waiting for a piece of communication before they execute and
that communication either never comes, comes too late, or is incomplete, then the tasks may never
execute. Likewise, if the event or condition that you assumed would eventually happen actually never
occurs, then the tasks that you have suspended will wait for ever. If one or more tasks are suspended,
waiting for some condition or event that never occurs, this is known as indefinite postponement. In the
software-automated painting solution, if Painter B does not release Bucket 1 until it has Bucket 2, Painter
C does not release Bucket 2 until it has Bucket 1, Painter B and Painter C both do not request a Bucket
Status update until they are finished, and Painter A waits for Painter B and C, then the work of all the
involved painters is headed for indefinite postponement.

Data race, deadlock, and indefinite postponement are examples of synchronization problems. These
types of problems take the form of competition for the same resource by two or more tasks at the same
time. Resources can be software or hardware.

Q  Software resources include files, records within files, fields within records, shared memory,
program variables, pipes, sockets, and functions.

QO  Hardware resources include interrupts, physical ports, and peripherals such as printers,
modems, displays, storage, and multimedia devices.

Some of these resources are easily sharable such as disks or files. Other resources require that access be
carefully managed as in the case of interrupts. When two or more tasks attempt to change the state of the
same resource at the same time, there is the possibility of data loss, incorrect program results, system
failure, and in some cases, device damage.

Challenge #4: Identifying the Relationships between
Concurrently Executing Tasks

The synchronization problems of data race, deadlock, and indefinite postponement are sometimes
magnified by the challenges involved in setting up the right execution relationships between threads or
processes.

The Basic Synchronization Relationships
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There are four basic synchronization relationships between any two threads in a single process or any
two processes in a single application. Table 3-6 lists the four basic synchronization relationships and their
descriptions.
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Table 3-6
Synchronization Relationship Description
Start-to-start (SS) One task cannot start until another task starts.
Finish-to-start (FS) One task cannot finish until another starts.
Start-to-finish (SF) One task cannot start until another task finishes.
Finish-to-finish (FF) One task cannot finish until another task finishes.

So, if you have two tasks, A and B:

a

Qa

In a start-to-start (SS) relationship, Task A cannot start until Task B starts. Task B may start at the
same time that Task A starts or after A starts, but never before Task A starts.

In a finish-to-start (FS) relationship Task B cannot start until Task A finishes or completes a
certain operation. For example, if Task B is reading from the POSIX message queue that Task A
is writing to, Task A needs to write at least one element in the queue before Task B can process it.
Again if Task B needs to perform a binary search on a list that Task A has to sort, Task B should
be synchronized with Task A so that Task B does not start the search until Task A has finished
the sort. Finish-to-start relationships normally suggest information dependencies.

The start-to-finish (SF) synchronization relationship says that Task A cannot start until Task B
finishes. This kind of relationship is common in situations where a parent process requires IPC
from a child process to complete, or when a process or thread recursively calls itself after it has
supplied the parent with the information or event needed.

Finally, you have the finish-to-finish (FF) synchronization relationship, which says that Task A
cannot finish until Task B finishes. Whereas Task A may finish after Task B finishes, Task A is not
allowed to finish before Task B.

Figure 3-5 shows the four synchronization relationships. The SS, FS, SE, and FF synchronization
relationships are present in multithreaded or multiprocessing applications. Sometimes these
relationships are very subtle, and discovering all of the variations of them during the various activities in
SDLC can be perplexing. Some of the relationships between tasks are obvious, while others are only
implied and require careful examination. There are timing considerations in addition to the
synchronization relationships.
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Figure 3-5

Timing Considerations
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If you have more than one of the software-automated painters in the room, should the ceiling painter
start first? Should the wall painters wait until the ceiling painters are finished? Should both start at
the same time? Or are you happy as long as they all finish at the same time? Perhaps the wall painters
should wait 15 minutes before starting. It’s not just a matter having as many automated painters as
possible; there has to be some kind of synchronization relationship among the painters.

Sometimes the synchronization relationships need to be augmented with timing-specific information.
This means that in designing the synchronization relationship, time and events need to be considered.
For example, if you have Task A and Task B executing concurrently, where Task A is performing a
communication task and Task B is a monitor watching for a timeout, Task A and Task B might be
synchronized with a start-to-start relationship. There is no need for Task B to begin checking for a
timeout condition until Task A has started a communication task. However, once Task A starts its
communication task and continues for so many milliseconds without any activity, Task B might issue a
timeout message. In this case, Task B is using a lag time before it issues a timeout message. A lag time is
used to define a synchronization relationship further. Lag times require that an element of time be added to
the specification of a synchronization relationship. For instance, you might say that Task A and Task B have
a start-to-start synchronization with the additional requirement that Task B has to wait 10 nanoseconds
after Task A starts before starting.
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These types of timing considerations are another major reason to give close attention to multiprocessing
or multithreading requirements during the appropriate activities in the SDLC. Also, the implementation
of the synchronization relationships and timing considerations are dramatically impacted by whether a
procedural model or declarative model of decomposition is chosen.

Challenge #5: Controlling Resource Contention
Between Tasks

Resource contention occurs when multiple tasks compete for the use of the same resource. This topic is
covered in Chapter 7.

Challenge #6: How Many Processes or Threads
Are Enough?

There is a point where the overhead in managing multiple processors outweighs the speed improvement
and other advantages gained from parallelization. The old adage “you can never have enough
processors” is simply not true. Communication between threads or synchronization between processors
comes at a cost. The complexity of the synchronization or the amount of communication between
processors can require so much computation that the performance of the tasks that are doing the work
can be negatively impacted. In these cases, it's more effective to write a program based on a sequential
model. For example, if you want to sort a list of 100 numbers, you could attempt to divide up the list of
100 into groups of 10, sort each group in parallel, and then merge the groups of 10 into one sorted list. But
the time it would take to divide the list into groups of 10, then communicate that list to each group, and
then merge the results into a single group all while trying to avoid a data race requires more effort

and time than it would take to simple sort the numbers using a sequential method. On the other hand,

if you have a few terabytes of numbers, the parallel approach could be more productive.

The question is how many processes, tasks, or threads should a program be divided into? Is there an
optimal number of processors for any given parallel program? At what point does adding more
processors or computers to the computation pool slow things down instead of speeding them up? It
turns out that the numbers change depending on the program. Some scientific simulations may max out
at several thousand processors, while for some business applications several hundred might be
sufficient. For some client server configurations, eight processors are optimal and nine processors would
cause the server to perform poorly.

The limit of software processes might be reached before you've reached the optimum number of
processors or computers. Likewise, you might see diminishing returns in the hardware before you've
reached the optimum number of concurrently executing tasks.

Ideally, something in the model decomposition of the problem or the model decomposition of the
solution can help determine how many threads or processes are necessary. However, the actual
implementation of the model can introduce so much complexity and overhead that a new model may
have to be selected. Remember some of the challenges of IPC mechanisms between processes mentioned
earlier in the chapter. These IPC mechanisms have to be synchronized. If the communication between
two or more tasks is not properly synchronized, then data race conditions, deadlock, or indefinite
postponement can be introduced into a piece of software.
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While we are strong advocates for the notion that the techniques, tools, languages, and software libraries
should follow the decomposition model and not the other way around; the complexity of implementing
the solution decomposition model has to be considered. You also can face many varieties of halting
problems in applications that include multithreading and multiprocessing. As the number of cooperating
tasks in an application increases, the complexity of the interdependencies increases as well. This can lead
to very fickle and brittle software implementations. When multiple tasks are cooperating to provide the
solution to some problem, what happens if one or more of the tasks fail. Should the program halt or
should the work be redistributed somehow? This is a problem if you have only two concurrently
executing tasks. The difficulty in resolving possible task failures rise exponentially as the number and
interdependencies of threads or processes in a single application increase.

Challenges #7 and #8: Finding Reliable and Reproducible
Debugging and Testing
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When you test a sequential program, you can trace the logic of a program in a step-by-step manner.

If you start with the same data and make sure that the system is in the same state, then the outcome

or flow of the logic is predictable. You can find bugs in the software by starting the program in the
necessary state, using the appropriate input, and then tracing through the logic step by step. Testing and
debugging in the sequential model depends on the predictability of program’s initial state and current
state, given the specified input.

This changes in multiprocessing and multithreaded environments. It is difficult to reproduce the exact
context of parallel or concurrent tasks because of operating system scheduling policies, dynamic workloads
on the computer, processor time slices, process and thread priorities, communication latency, execution
latency, and the random chance involved in parallel contexts. Add to the workloads the issue of the tasks
working with different data sets and the changing semantics of data as it is processed by the tasks.

To reproduce the exact state of the environment during testing and debugging requires that every task the
operating system was working on be recreated. The processor scheduling state must be known. The status
of virtual memory and context switching must be reproduced exactly. Interrupt and signal conditions must
be recreated. In some cases, even networking traffic would have to be recreated! Data must be set and reset
to its original values and states. Even the testing and debugging tools impact the exact environment. This
creates a debugging or testing atmosphere of nondeterminism. A situation is nondeterministic if for some
initial state, the final state is not unambiguously determined [Gries, Scheider, 1993].

In our experience, all but the most trivial multiprocessing and multithreaded applications have the look
and feel of nondeterminism. This means that recreating the same sequence of events in order to test or
debug a program is often out of the question. The reason that these things would have to be recreated is
that they can all help to determine which process or thread can execute and on which processor they can
execute. And it is the particular mix of executing processes and threads that could be the reason for a
deadlock, indefinite postponement, data race, or other problem. Although some of these issues also
affect sequential programming, they don’t disrupt the assumptions of the sequential model. The kind of
predictability that is present in the sequential model is simply not available in concurrent programming.
This forces the developer to acquire new tactics for testing and debugging programs. It also requires that
the developer find new ways to prove program correctness. Again, the issues involved with testing and
debugging are viewed through very different prisms when declarative models are chosen over
procedural models. Program correctness can be a very elusive concept for programs that involve
complex parallel-processing schemes.
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This nondeterminism also has consequences for cross-platform development. The operating system
treatment of processes and threads in different operating system environments such as Linux, Solaris,
Darwin, and so on can vary. Some systems have threads that are have high-, medium-, and low-priority
options. Some systems have user-defined priority levels. Some systems have mission critical priorities,
real-time priorities, normal priorities, background priorities, and so on. Operating systems can have
different types of schedulers, different implementations of IPC mechanisms, and different
implementations of kernel threads versus user threads.

Finding the Right Debugger and Profiler

Many debuggers and profilers that are commonly in use were developed under the assumption of single
processor computers. Multicore application development requires debuggers and profilers that can see
all of the physical and logical processors that are available. You need the debugger to be as intrusive as
possible to the operating system workload. Debuggers need to have a clear window into kernel
processes and system calls. The debugger needs to be able attach or detach a process or thread. It needs
to be able to see all of the processor states or thread states that the operating system may put a process or
thread in. A good debugger for multithreaded or multiprocessing applications should be able to start
and stop threads and processes. It should be able to examine the thread stacks and free store.

Challenge #9: Communicating a Design That Has
Multiprocessing Components

You also face the challenge of how to accurately capture a parallel design in documentation. You must be able
to describe the WBS as well as the synchronization and communication between tasks, objects, processes, and
threads. Designers must be able to effectively communicate to developers. Developers must be able to
communicate with those who must maintain and administer the system. Ideally, this should be done using a
standard notation and representation that is readily available to all concerned. However, finding a single
documentation language that is broadly understood and can clearly represent the multiparadigm nature of
some of these systems is elusive. We have chosen the Unified Modeling Language (UML) for this purpose.
Table 3-7 lists the UML diagrams that are helpful for multithreaded and parallel programs.

Table 3-7

UML Diagrams Descriptions

Structural/Architectural Diagrams

Component diagram A diagram that shows the dependencies and organization
among a set of physical modules of code (packages) in a
system.

Deployment diagram A diagram that shows the runtime configuration of processing

nodes, hardware, and software components in a system.

Table continued on following page
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UML Diagrams Descriptions

Behavioral Diagrams

State/Concurrent State diagram A diagram that shows the sequence of an object’s
transformation as it responds to events in the system. With a
concurrent state diagram, these transformations can occur
during the same time interval.

Sequence diagram An interaction diagram that shows the organization of the
structure of objects that sends and receives messages.

Collaboration diagram An interaction diagram that shows the time ordering of
messages.
Activity diagram A diagram that shows the flow from one activity to another;

similar to a flowchart but can show the activities of several
objects and the flow of several parallel activities.

The diagrams in Table 3-7 are only a subset of the diagram types available in the UML. But these diagrams
are immediately applicable to what you want to capture in currency designs. In particular, the UML'’s
Activity, Deployment, and State diagrams are very useful in communicating parallel-processing behavior.

Since the UML is the de facto standard for communicating object-oriented and agent-oriented designs,
we rely upon its use in this book. Appendix A contains a description and explanation for the notation
and symbols used in these diagrams.

Challenge #10: Implementing Multiprocessing
and Multithreading in C++
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How can software developers that use C++ take advantage of the new CMPs? How can you implement
multiprocessing in C++? The C++ language does not include any keyword primitives for parallelism.
The C++ ISO standard is for all intents and purposes mute on the topic of multithreading. There is no
way within the language to specify that two or more statements should be executed in parallel. Other
languages use built-in parallelism as a selling feature. Bjarne Stroustrup, the inventor of the C++
language, had something else in mind. In Stroustrup’s opinion:

It is possible to design concurrency support libraries that approach built-in concurrency support
both in convenience and efficiency. By relying on libraries, you can support a variety of
concurrency models, though, and thus serve the users that need those different models better
than can be done by a single built-in concurrency model. I expect this will be the direction taken
by most people and that the portability problems that arise when several concurrency-support
libraries are used within the community can be dealt with by a thin layer of interface classes.
[Stroustrup, 1994]
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Further, Stroustrup says, “I recommend parallelism be represented by libraries within C++ rather than as
a general language feature.” We have found Stroustrup’s position and recommendation on parallelism
as a library the most practical option. This book is only made possible because of the availability of high-
quality libraries that can be used for parallel and distributed programming. The libraries that we use to
enhance C++ implement national and international standards for parallelism and distributed
programming and are used by thousands of C++ programmers worldwide.

C++ Developers Have to Learn
New Libraries

Although there are special versions of C++ that implement parallelism, we present methods on how
parallelism can be implemented using the ISO (International Organization for Standardization) standard
for C++. As we implied at the end of the previous section, the library approach to parallelism is the most
flexible. System libraries and user-level libraries can be used to support parallelism in C++. System
libraries are those libraries provided by the operating system environment. For example, the POSIX
threads library is a set of system calls that can be used in conjunction with C++ to support parallelism.
The Portable Operating System Interface (POSIX) threads are part of the new Single Unix Specification. The
POSIX threads are included in the IEEE Std. 1003.1-2001. The Single Unix Specification is sponsored by
the Open Group and developed by the Austin Common Standards Revision Group. According to the
Open Group, the Single Unix Specification:

Q  Is designed to give software developers a single set of APIs to be supported be every Unix
System

Q  Shifts the focus from incompatible Unix system product implementations to compliance to a
single set of APIs

Q  Is the codification and dejure standardization of the common core of Unix system practice

Q  Has the basic objective of portability for both programmers and application source code
The Single Unix Specification Version 3 includes the IEEE Std. 1003.1-2001 and the Open Group Base
Specifications Issue 6. The IEEE POSIX standards are now a formal part of the Single Unix Specification
and vice versa. There is now a single international standard for a portable operating system interface.
C++ developers benefit because this standard contains APIs for creating threads and processes. Excluding
instruction-level parallelism, dividing a program up into either threads or processes is the only way to
achieve parallelism with C++. The new standard provides the tools to do this. The developer can use:

Q  POSIX threads (also referred to as pthreads)

Q  POSIX spawn function

Q  The exec () family of functions

63



Chapter 3: The Challenges of Multicore Programming

These are all supported by system API calls and system libraries. If an operation system complies with
the Single UNIX Specification Version 3, then these APIs will be available to the C++ developer.

These APIs are discussed in Chapter 5, 6, and 7. They are used in many examples in this book. In addition,
the relevant portions of the POSIX standard are included in Appendixes C and D.

Processor Architecture Challenges

We looked at four effective multicore architectures in Chapter 2. They were the Opteron, the Cell, the
UltraSparc T1, and the Intel Core 2. While these processors each offer multicore capabilities, they have
different architectures. These different architectures translate to difference sets of compiler switches, and
directives. To get the most out of those different architectures, the developer has to be familiar with
compiler- and linker-specific features. In this book, we look at the compiler multicore support in the
GNU C++ compiler, Intel C/C++ compiler, and the Sun C/C++ compiler. Each has its own set of
switches and directives that supports multithreading and multiprocessing. In some cases (for example,
the Cell processor), multiple types of compilers are needed to generate a single executable program. The
danger is that taking advantage of a particular architecture can make the software nonportable. While
portability is not an issue for all applications, it is for many. How can you take the most advantage of
some multicore architecture without using features that will hurt portability? That is another key
question you have to answer as you develop multicore applications.

Summary

Parallel and distributed programming present challenges in several areas. New approaches to software
design and architectures must be adopted. Many of the fundamentals assumptions that are held in the
sequential model of programming don’t apply in the realm of parallel. The developer is faced with a number
of challenges of concurrency that we outlined in this chapter. Some of the keys points covered include:

Q  Four primary coordination problems — data race, indefinite postponement, deadlock, and
communication synchronization — are among the major obstacles to programs that require
concurrency.

Q  Every aspect of the Software Development Life Cycle (SDLC) is impacted when the
requirements include parallelism or distribution — from the initial design down to the testing
and documentation. Opportunities for parallelism and multiprocessing will be identified during
various activities in the SDLC. It is important that the software developer understand the
relationship between multicore programming and the SDLC.

Q  Perhaps the most important and critical decision that can be made for a software design that will
include multiprocessing or parallel programming is whether to use procedural models or
declarative models. The fundamental differences in approach, technique, design, and
implementation between procedural models and declarative models are so dramatic that they
require radically different paradigms of computer programming.

In this book, we present architectural approaches to many of these problems. In addition to the

architectural approach, we take advantage of the multiparadigm capabilities of C++ to provide
techniques for managing the complexity of parallel and distributed programs.
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The trend is that multiprocessor computers will in most cases replace single processor configurations in
business, academia, and government. As we have shown you in this chapter, to take advantage of the
multiprocessor environments, you as a software developer must expand on the tools and techniques you
already possess. Software projects that require multicore or parallel programming present unique
challenges to those who are only accustomed to the sequential programming model. While hiding and
abstracting away some of the complexity of parallel programming and multithreading, you have no real
shortcuts around this idea. The deployment of robust, correct, and scalable software applications that
can take advantage of CMPs requires sound software engineering and an effective a solid understanding
of the SDLC. The chapters that follow will take on the challenges laid out in this chapter and show you
what you, as the software developer, can do to overcome them.
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The Operating System’s Role

Functional Simplicity, Structural Complexity; The Best Life for All. That’s the maxim . . .

— Shirow Masamune, Appleseed: The Promethean Challenge

So far we’ve described some of the primary challenges of multicore programming. We’ve briefly
covered some of the notions of multithreading, multiprocessing, and multiprogramming. In
Chapter 2, we introduced the Multicore Opteron, Cell, Duo Core 2, and UltraSparc T1. These chips
represent four effective but very different approaches to multicore architectures. We explained
how hardware-specific compiler switches are sometimes necessary to get to certain specific
features of a Chip Multiprocessor (CMP). But we’ve said very little about the operating system’s
role in the design, development, and execution of multicore programs and applications. This
chapter now turns to that topic. In this chapter we:

Q  Provide an overview of the operating system

0  Discuss the developer’s interface to the multiprocessor

Q  Explore how threads, processes, and processors are connected through the operating
system

0  Examine how the operating system Application Program Interfaces (APIs) and system
calls are used in conjunction with C++ for multicore programming and application
development

0  Explain how the operating system functions as the gatekeeper of the multiprocessor

Q  Discuss how to use the Portable Operating System Interface (POSIX) standard to design
and implement multicore applications that work on all major hardware and operating
system platforms
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What Part Does the Operating System Play?

Our focus on the operating system is the role it plays as a development tool. In this book, we discuss
multicore programming from both the system programmer’s and the application programmer’s point of
view. From these viewpoints, the operating system’s role can be divided into two primary functions:

O  Software interface: Providing a consistent and well-defined interface to the hardware resources
of the computer

0O  Resource management: Managing the hardware resources and other executing software
applications, jobs, and programs

Providing a Consistent Interface

Prior to the advent of operating systems, programmers had to be familiar with the particular instruction
sets and idiosyncrasies of each device. Video adapters, disk drives, printers, keyboards — all have
specific and different instruction sets and command sets. Not only is the access to each device different;
the same kinds of devices made by different manufacturers have different instructions sets and
peculiarities. This led to programmers constantly having to rewrite the same functionality using different
instruction sets. For example, if a developer had written a program that sorted a file to disk, that program
could not be reused on another manufacturer’s disk until the device id, instruction set, device modes,
and so on were all updated to reflect those from the new manufacturer’s device! In addition to unique
instruction sets, each device connected to the computer had a specific address, port, or interrupt. Prior to
the advent of operating systems, the programmer would have to know a device’s physical address, port,
or interrupt before the device could be accessed. So, programs contained device ids, hardware addresses,
port numbers, and interrupts. The programmer had to virtually write a device driver for each piece of
hardware the program accessed. Program and software portability were out of the question!

The notion of the operating system changed all of this. Operating systems provided the programmer
with common interfaces to similar devices. The operating system encapsulated internal structures for
devices, like video adapters, sound cards, keyboards, monitors, disk drives, printers, and so on. Instead
of forcing the programmer to use peculiar device specific instructions, the operating system provided the
programmer with a couple of layers of software between the developer’s program and the hardware
resources connected to the computer. These layers are called the Application Program Interface (API) and
the System Program Interface (SPI). It became the operating system’s job to directly address hardware
resources and all of their peculiarities. So, now the programmer only has to use the simplified API and
SPI, and the operating system deals with all of the device-specific translation.

Managing Hardware Resources and
Other Software Applications
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In addition to providing an API and SPI to the developer, the operating system negotiates the access to
processors, memory, I/O ports, interrupts, and storage on behalf of a program’s processes or threads. In
most workstation environments and server environments, there are multiple programs being executed
or waiting for execution at any one instant. Since the number of processors and amount of memory are
limited, it’s the operating system’s job to decide which programs get access to which processor, for how
long, and when. The operating system determines how much memory a process or collection of
processes is allowed to hold and for how long. For programs that are too large to fit in main storage, the
operating system manages the process of switching in pieces of the software for execution. The operating
system assigns hardware resources to processes. The operating system then protects one processor’s



Chapter 4: The Operating System’s Role

resources from access or violation by another process. In general, the operating system manages all of
the hardware resources in a computer. In addition to managing hardware resources it also schedules and
manages processes and threads.

The Developer’s Interaction with the Operating System

Regardless of whether you use class libraries, high-level function libraries, or application frameworks for
your multicore development, the operating system still plays the role of gatekeeper to the processors,
memory, filesystems, and so on connected to the computer. This means that the multithreading or
multiprocessing functionality that is contained in class libraries, high-level function libraries, or
application frameworks still needs to pass through operating system APIs or SPIs. Figure 4-1 shows the
developer’s view of the software layers and the operating system.

Developer’s application with multithreading or multiprocessing requirements

A

Application framework for parallel programming
(for example, STAPL)

A A
“ Class libraries & object-oriented components for
S multiprocessing and multithreaded libraries
et (for example, TBB)
A
o
o Thread function libraries
E (for example, POSIX spawn and threads)
o .
< Operating system, system calls, IPCs
i
—
CORE 0 CORE 1 CORE 2 CORE 3 —] MaN
MEMORY
Figure 4-1

Figure 4-1 shows the software layers that can be used to provide multithreading or multiprocessing
functionality to a software application. Notice the levels for each software layer in Figure 4-1. In Figure
4-1, the lower the level, the more details of the parallel programming mechanisms the developer has
control over, has responsibility for using correctly, and has to have knowledge of. The lower the level, the
more design and programming skill required to implement the software correctly.
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O  Level 4 is the highest level. This level provides the most insulation from the details of parallel
programming for the developer. The Standard Template Adaptive Parallel Library (STAPL) is an
example of this kind of application framework. STAPL is a framework for developing parallel
programs in C++. The goal of a framework like STAPL is to allow the developer to provide
parallelism in a software application while not having to worry about all of the specific
implementation-related issues that are involved with parallel programming.

We take a closer look at STAPL in Chapter 8.

Q  Level 3 in Figure 4-1 is represented by template or class libraries like Intel Threading Building
Blocks (TBB) library. The Intel Threading Building Block library is a set of high-level generic
components that also encapsulate much of the detail of multiprocessing and multithreading.
Developers using the TBB invoke high-level algorithm templates and synchronization objects
that do the low-level work.

We also take a look at TBB in Chapter 8.

QO  Both STAPL and the TBB library allow the programmer to focus more on the software solution
that is being implemented rather than on how the parallelism for the solution is implemented.
Keep in mind that while this type of abstraction and information hiding is good for certain types
of application developers, it may not be desirable for certain classes of system programmers,
library developers, or server development. In Chapter 3 we stressed the fact that modeling and
the Software Development Lifecycle (SDLC) are critical in determining where, when, or if
multithreading or multiprocessing is needed. High-level application frameworks and thread
building block libraries do not change this fact. They do not replace the job of modeling or any of
the steps in the SDLC. However, if used correctly, they can make modeling and some of the steps
in the SDLC easier to implement. We cannot stress enough the fact that parallel programming
techniques and tools should come after problem and solution decomposition and modeling.

Q  Level 2 in Figure 4-1 includes thread and process APIs provided by the operating system
environment. In this book, we use POSIX APIs to interact with the OS for process management and
thread management. Level 2 provides the application and system programmer with the most
flexibility, but that flexibility comes at a cost. Working with multithreading and multiprocessing at
level 2 requires detailed knowledge of process and thread management, Interprocess
Communication, and a command of synchronization techniques. It requires intimate knowledge of
operating system APIs related to process and thread management. It requires specific knowledge of
the implementation of parallel algorithms. It requires knowledge of the specific compiler and linker
directives that relate to multiprocessing and multithreading. In some cases, the control and flexibility
of programming at level 2 is an acceptable tradeoff for the additional skill and effort required.

Q  The programming at level 1 in Figure 4-1 requires the most knowledge of operating system
internals, hardware interfaces, and kernel-level interfaces. Level 1 programming directly
accesses the hardware with few or no software barriers. Programming at level 1 is in the domain
of system programming.

Regardless of whether your application has been developed with tools and techniques from level 4 or from
level 3, the frameworks, templates, and class libraries ultimately have to call APIs that exist at level 2 and
level 1. Levels 1 and 2 provide the SPI and API gateways to the operating system, and at the end of the day,
it’s the operating system that controls access to the multiple cores that we are interested in exploiting.

While not every developer that is writing software to take advantage of multicore computers will or
should work with level 1 and 2, a fundamental understanding of how things work at this level is very
important during the SDLC. It's important to understand the fundamentals because no single library,
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framework, or tool provides all of the services that most applications need. Further, many of these tools
have to be mixed and matched. Virtually all medium- and large-scale software applications are built
using a combination of libraries. These libraries are not always thread safe or multicore-aware. When there
is a problem, the software developer needs to understand at least the basics of what is going on with
process and thread management. The high-level tools used in level 3 and 4 from Figure 4-1 have to be
configured. Configuration requires a basic understanding of how things work. In some cases, the mixing
and matching causes conflicts that need to be resolved.

In addition to this, not all high-level tools run in every environment. For instance, the TBB runs on many
Intel-based processors but is not yet available on all other major non-Intel processors. To make it
available for or completely compatible with your platform might require porting and so on. The nature
of multithreaded and multiprocessing application requires that the developer understand the
fundamental relationship between the software, the operating system, and the processors and memory.
This is absolutely necessary to effectively deal with the debugging process, the testing process, and the
final software deployment. High-quality, correct, reliable multiprocessing and multithreading
applications require that the developer have a clear understanding of the operating system’s role.

Core Operating System Services

The operating system’s core services can be divided into:

O  Process management

0  Memory management
Q  Filesystem management
Q  I/O management

Q  Interprocess Communication Manager

Table 4-1 shows a brief description of these core services.

Table 4-1

Operating System’s Core

Services Description

Process management Manages the behavior and resources of a process. This includes
process execution, resource allocation and protection, and
synchronization.

Memory management Manages memory allocation for processes, which includes how
memory is allocated to a process and what to do when memory is
fully utilized.

Filesystem management Organizes collections of data on storage devices and provides an

interface for accessing the data on those devices.
I/0O management Manages the input and output requests from and to hardware devices.

Interprocess Manages the communication between processes.
Communication Manager
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While these services are of concern to all application developers, they are far more visible for developers
of multithreaded or multiprocessing applications. This is because functions like process scheduling or
Interprocess Communication tend to be transparent to sequential processing applications. For example,
in a sequential processing application, the operating system simply loads the developer’ s program. The
developer is usually not concerned with how the operating system breaks the application down into
processes, how the processes are scheduled, or what priority the scheduled processes have. There is no
worry about shared memory violations; as long as the operating system gives the application enough
memory, everybody is happy. Since there are no concurrently executing substasks in a sequential
processing application, Intertask Communication and synchronization are not issues. It is a very
different picture for multiprocessing and multithreaded applications. In Chapter 3, we discussed the
challenges that the developer faces for these types of applications. Some of the challenges that relate
specifically to the operating system services from Chapter 3 are:

Q  Software decomposition into instructions or sets of tasks that need to execute simultaneously
Communication between two or more tasks that are executing in parallel

Concurrently accessing or updating data by two or more instructions or tasks

Identifying the relationships between concurrently executing pieces of tasks

Controlling resource contention when there is a many-to-one ratio between tasks and resource

Determining an optimum or acceptable number of units that need to execute in parallel

0O 000U oo

Documenting and communicating a software design that contains multiprocessing and
multithreading

(]

Creating a test environment that simulates the parallel processing requirements and conditions

(]

Recreating a software exception or error in order to remove a software defect

Q  Involving the operating system and compiler interface components of multithreading and
multiprocessing

Once the software design process determines that the application is best divided into two or more
concurrently executing tasks, the transparency of the operating system is immediately brought into question.
This is because automatic task decomposition is not a feature of the operating system, but process and thread
creation and management are responsibilities of the operating system. Ultimately, the concurrently executing
tasks have to be mapped to either processes, threads, or both. Today’s operating systems and compilers are
not capable of automatically doing this mapping. Someone has to be the liaison between the application’s
requirements for concurrency and the operating system’s APIs and SPIs that support multiprocessing and
multithreading. If you are working with tools and techniques taken from level 3 and 4 from Figure 4-1, then
the operating system’s role for the most part is transparent (but definitely present). If you are working at level
1 or 2 as shown in Figure 4-1, then specific knowledge of the operating system’s APIs and SPIs is required.

To get a closer view of the operating system’s role in deploying tasks that must execute concurrently, you
can take a look at an application that has been decomposed into four simultaneously executing tasks.
The C++ developer using any of today’s modern operating systems has three basic choices for
implementing the tasks. The tasks can be implemented as:

a Processes
O  Threads

QO A combination of processes and threads
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Figure 4-2 shows a block diagram of the basic decomposition choices for the example four-task
application.

CASE 1: CASE 2:
Application with 4 concurrently executing tasks and decomposed Application with 4 concurrently executing tasks made into 1
into 3 processes. process decomposed into 3 user threads.
’ TASK 1 ‘ ’ TASK 2 ‘ ’ TASK 3 ‘ ’ TASK 4 ‘ ’ TASK 1 ‘ ’ TASK 2 ‘ ’ TASK 3 ‘ ’TASK4 ‘

PROCESS A PROCESS A PROCESS A PROCESS A
IPC IPC
SINGLE KERNEL SINGLE KERNEL SINGLE KERNEL USER THREAD A USER THREAD B USER THREAD C
THREAD THREAD THREAD
KERNEL KERNEL
THREAD 1 THREAD 2
v v v v

Operating system, system calls, IPCs

A

MAIN
CORED CORE 1 CORE 2 CORE 3 MEMORY

Figure 4-2

In Case 1 in Figure 4-2 the application is divided into four tasks. These four tasks are implemented by
three operating system processes. Figure 4-2 shows that the application will be deployed on a quad core
computer. The fact that the four tasks are implemented by three processes means that it is possible for
three of the tasks to be actually executing on three separate processors simultaneously or
multiprogrammed on any number of processors. In multiprogramming, the operating system rapidly
switches between processes, thus allowing multiple processes to accomplish work concurrently in a
given time interval. Although only one process is actually using the processor at a time, the switching
between processes is so fast that within, say, one second, two or more processes have been placed on the
processor and performed work. Although we have a quad core computer in Figure 4-2, we can actually
execute only three tasks simultaneously. This is because the four user tasks have been mapped to three
processes. The operating system can only schedule processes or kernel threads (lightweight processes) to
execute on the processor. It cannot schedule logical tasks unless they have been mapped to processes or
kernel threads. Even if all four cores were free, in Case 1 only three cores would be used by the
application simultaneously. Tasks 3 and 4 share a single process. Case 1 is using multiprocessing because
it takes advantage of the operating system’s multiprocessors by assigning its tasks to operating system
processes. The system assigns processes to any free cores that it might have. So if the application is
divided into processes, it can exploit the fact that the system can run as many processes in parallel as it
has processors.
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How Do You Get from Tasks to Processes?

Us

74

To map a user task to a system process, you use an operating system API. In this case you use the
posix_spawn () function. posix_spawn () is used to create a new operating system process. posix_
spawn () is part of the operating system’s process management APIL You pass the task that you want to
associate with an operating system process to posix_spawn (). Any task associated to a process through
posix_spawn () can be scheduled by the operating system to run in parallel with other processes.
Notice in Case 1 that Task 1 needs one-way communication with Tasks 3 and 4, and Tasks 3 and 4 need
two-way communication with Task 2. This brings up another question about interaction with the
operating system. How can you pass information between concurrently executing processes? There are
many ways to do this, but all of them require some kind of interaction with an operating system API. In
this case, you can use a POSIX message queue. Table 4-2 contains brief descriptions for the POSIX
message queue functions. These are examples of some of the POSIX API functions that allow
concurrently executing processes to pass information.

Table 4-2
POSIX Message
Queue Functions Description
mg_open () Establishes the connection between a process and a message queue with a
message queue descriptor
mg_close () Removes the association between the message queue descriptor and its
message queue
mg_send () Adds the message pointed to the message queue specified
mg_receive () Receives the oldest of the highest priority message(s) from the message queue
specified
mg_notify() Registers the calling process to be notified of a message arriving at an empty
message queue that is associated with the specified message queue descriptor
mg_getattr () Obtains the status information and attributes of the message queue and the
open message queue description associated with the message queue
descriptor
mg_setattr() Sets the status information and attributes of the message queue
ing the Thread Approach

The decomposition in Case 1 in Figure 4-2 uses the process as the unit of decomposition. Case 2 uses the
thread as the unit of decomposition. Whereas the application spawns three processes in Case 1, the
application has only one process in Case 2. However, that one process is divided into three user threads
that can execute concurrently. In this scenario, the four concurrent tasks requirement has been
implemented using three threads. Threads A, B, and C are each assigned tasks. This means that the four
tasks have to be distributed among three threads. It is important to notice that Case 2 has only two
kernel threads. Since the operating system schedules processes or kernel threads for processors, this
means that the single process in Case 2 could be scheduled to a single processor or the two kernel
threads could be scheduled to separate processors. Thus, if all four cores were free, at most two tasks
would be executing simultaneously.
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In Case 2 Threads A, B, and C are user threads. User threads can be bound to kernel threads in some
cases and unbound in others (as we discuss later in the book). In Case 2 the user threads have to be
associated with kernel threads before they are actually executed. So, you can see that in our thread
approach we map the software tasks to user threads, and then the user threads are mapped to kernel
threads or lightweight processes (Iwp).

We explain the differences between user threads and kernel threads in Chapter 6.

How Do You Get from Tasks to Threads?

The pthread_create () operating system API is used to associate a software task with a thread. This
function also falls under the process management duties of the operating system. We take a close look at
POSIX thread API in Chapter 6. Unless you are working with tools and techniques from level 3 or 4 (as shown
Figure 4-1), associating software tasks with threads requires an understanding of how to use the POSIX thread
API. Notice in Figure 4-2 that the communication requirements for the tasks do not require special operating
system intervention when using the thread approach for decomposition. This is because the threads share the
same address space and therefore can share data structures that are kept in the data segment of the process.

The Application Programmer’s Interface

It is important to note that, in both Case 1 and Case 2 in Figure 4-2, the software tasks had to be mapped
to entities that the operating system could manage and schedule. The programmer cannot simply assign a
processor to each task that must be performed. This can be done only by the operating system. The
programmer has to make the software tasks comprehensible to the operating system by using execution
units that the operating system can understand. The operating system is the layer of software between the
developer’s software and the multiple cores. The operating system provides a set of interfaces (APIs) that
make hardware resources and OS services available to the application developer. To take advantage of
any operating system services the developer must use an API. The problem is which OS API to use? Each
operating system vendor provides its own unique API. While the functionality of these APIs is basically
the same, they are not portable to different platforms. That is, software that has been developed using the
Mac OS X (Darwin) API cannot be directly compiled and executed on Solaris, the Solaris API cannot be
directly compiled and executed in a Windows environment, and so forth. So, programs that need to use
the operating system API in order to gain full access to the multiple cores will not be portable if they use
system-specific APIs. This means that applications would have to be rewritten in order to be used in a
new environment. In most cases, this is not acceptable. That’s why in this book we use the POSIX APL

What Is POSIX and Why Use It?

Portable Operating System Interface (POSIX) is a standard that defines a standard operating system
interface and environment, including a command interpreter (or “shell”) and common utility programs to
support applications portability at the source code level. The standard is intended be used by both
applications developers and system implementors. To make this book accessible to the broadest possible
audience of system and application developers we choose to present OS API material using the POSIX
standard. The major operating system environments — ZOS, Solaris, AIX, Windows, Mac OS X, Linux, HP-
UX, IRIX — all claim basic support for the POSIX standard. While each of these environments has its own
proprietary APIs, each also has support for the POSIX standard. Since the concepts, examples, and
programs we discuss are based on the POSIX standard, you can try them out in virtually any environment.
The POSIX standard plays the role of a cross-platform pseudocode that allows us to cover the main concepts
of multicore programming in a language that can be implemented in all of the major environments. Further,
POSIX implements a kind of “common denominator” OS interface. This means that, in most cases, it is
straightforward to translate concepts, rationale, and functions calls to the proprietary OS APIs if necessary.
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Because the POSIX standard aims to provide portability at the source code level, we can build class
libraries, template libraries, and application frameworks on top of POSIX components that can then be
compiled and used in all of the major operating system environments. Obviously, this is not the case for
platform-specific OS APIs. In particular, the developers working at level 3 and 4 as shown in Figure 4-1
can benefit from this type of portability. Application frameworks for parallel processing, such as STAPL,
and the template or class libraries such as TBB can be made portable by using the POSIX APIs for
processes and threads for their low-level implementations. Further, mixing and matching high-level
application frameworks and building block libraries in multiple environments is made practical if the
POSIX APIs are used. Developers working at level 1 and 2 using POSIX APIs can write once and compile
everywhere. Since large-scale computer configurations such as clusters, enterprise-class servers
(mainframes), and even supercomputers have POSIX-compatible operating environments, the developer
has the complete range of hardware support when scalability is a serious issue. While multicore
processors are just now becoming commonplace for desktop computers, developer workstations, and
small servers, they have been widely available for large-scale computer configurations for more than a
decade. Therefore, when you invest in learning the POSIX AP], it is applicable from small business
application servers to the largest cluster-based configurations.

The POSIX standard allows us to talk about the intersection between multicore programming and core
operating system services listed in Table 4-1 in a cross-platform fashion. All of the examples and programs
in this book have been written and compiled in POSIX-compatible environments, and two of the
appendices of this book contain POSIX reference material on process management and thread management.

Process Management
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The process lifecycle is one of the important aspects of process management that we revisit throughout
this book. For our purposes, the process lifecycle is summarized as:

O  Process creation
Q  Process scheduling/execution

O Process termination

The standard C++ library does not provide any services that deal with the major activities in the process
lifecycle. So you need to look to the OS API when you need to do programming that requires processes.
Even in a CMP there are not enough processors to run all processes simultaneously. The operating system
has to multitask the processes. Multitasking allows more than one process to execute at the same time,
whereas multithreading allows a single process to perform more than one task at the same time. When the
operating system uses a scheduling policy to allow two or more processes to share a CPU concurrently, this
is called multitasking. Each process executes until some designated amount of time has expired or until some
event has occurred. The interval of time a process is given to execute on a core is called a quantum. Then the
operating system switches to another process. This switching happens rapidly, giving the illusion that
processes are being executed simultaneously, where in fact only one process is active at a time on a core.
This switching between processes occurs until each process has completed. The scheduling policy in effect
determines when a process should be switched. The scheduling policy also controls what happens when:

Q  Aprocess or thread is a running thread, and it becomes a blocked thread.

Q  Aprocess or thread is a running thread, and it becomes a preempted thread.
Q  Aprocess or thread is a blocked thread, and it becomes a runnable thread.
a

A running thread calls a function that can change the priority or scheduling policy of a process
or thread.
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In this book, we assume that your environment supports the four basic scheduling policies supported by
the POSIX standard:

SCHED_FIFO
SCHED_RR
SCHED_SPORADIC
SCHED_OTHER

Table 4-3 contains a description for each of the basic scheduling policies that you can use.

Table 4-3

POSIX Scheduling

Policies Description

SCHED_FIFO When the quantum expires, the thread is placed at the head of the queue
of its priority level.

SCHED_RR When the quantum expires, the thread is placed at the end of the queue of
its priority level.

SCHED_SPORADIC Sporadic server scheduling policy.

SCHED_OTHER Implementation defined; the most effective scheduling policy for general
use.

Each process is controlled by an associated scheduling policy and priority. Associated with each policy is
a priority range. Each policy definition specifies the minimum priority range for that policy. The priority
ranges for each policy may overlap the priority ranges of other policies.

The operating system is also the transport for signals between processes. When Process A has to signal a
termination to Process B, the operating system transports the signal. Each of the primary steps in the
process lifecycle is in the domain of the operating system, and you have to use POSIX APIs to access
these services. Keep in mind that software or programs stored on disk are not processes or threads. A
process is a program that is in execution, that has a process control block and process table, and that is
being scheduled by the operating system. Threads are parts of processes. Software and programs have to
be loaded by the OS before any processes are created. Processes or lightweight processes have to be
created before threads can be created.

Process Management Example: The Game Scenario

To illustrate how all this works, we are going to take a look at a classic game. I'm thinking of a six-
character code. My code can contain any character more than once. However, my code can only contain
any characters from the numbers 0-9 or characters a—z. Your job is to guess what code I have in mind. In
the game the buzzer is set to go off after 5 minutes. If you guess what I'm thinking in 5 minutes, you
win. You take out paper and pencil and with a little addition and a little subtraction you quickly realize
that there are over 4,496,388 possibilities. So, in 2 of your 5 minutes you run through the entire SDLC and
come up with the following strategy. First, as luck would have it, you just happen to have a file that
contains the 4,496,388 possibilities. So, you simply write a C++ program that does something like the one
in Example 4-1.
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Example 4-1
Example 4-1
/...
bool Found = false;

ifstream Fin(Possibilities)
while(!Fin.eof () && !Fin.fail() && !Found)

{
getline(Fin, Guess) ;
if (Guess == MagicCode) {
Found = true;
}
}
/] ...

The problem is that you don’t know where in the file of 4,496,388 possibilities the six-character code I'm
thinking of occurs. Depending on where my code is in the file, it might take longer than 5 minutes to find.
Sorting the file does not help because you don’t know anything other than the length of my code and the
possible characters that it can contain, so convenient techniques like the binary search can’t be used.

However, say that in your case you just happen to have access to a dual core CMP. So, the strategy then is
to divide the big file containing over four million possibilities into two files containing two million
possibilities. So you develop the program called £ind_code. The £ind_code program takes as input a file
containing codes, and it performs a brute-force (exhaustive/sequential) search looking for the code. The trick
is that you need the OS to help you use both of the cores in the search. Ideally, you would have the two cores
each searching through one of the files simultaneously. Your theory is that two heads are better than one,
and if you divide the list in half, it should take half the time to find the code. So, you want the OS to run
two versions of the £ind_code program simultaneously, with each version searching through half the
original file. You use a posix_spawn () call to launch the program, as shown in Listing 4-1.

Listing 4-1

//Listing 4-1 Program (guess_it) used to launch find_code.

1 wusing namespace std;

2 #include <iostream>

3  #include <string>

4 #include <spawn.h>

5 #include <sys/wait.h>

6

7 int main(int argc,char *argv[],char *envpl[])
8 {

9
10 pid_t ChildProcess;
11 pid_t ChildProcess2;
12 int RetCodel;
13 int RetCode2;
14 int Value;
15 RetCodel = posix_spawn (&ChildProcess, "find_code",NULL,
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16 NULL, argv, envp) ;

17 RetCode2 = posix_spawn (&ChildProcess2, "find_code",NULL,
18 NULL, argv, envp) ;

19 wailt (&Value) ;

20 wait (&Value) ;

21 return(0) ;

22}

The posix_spawn () call on lines #15 and #17 launches the program named £ind_code. For this to
work, the program find_code has to be a binary executable program that the OS can locate on your
computer. In this case £ind_code is a standalone program that implements the basic idea from Example
4-1. When the program in Listing 4-1 is executed, it causes the operating system to generate three
processes. Recall that it is the operating system not programs that assigns processes to execute on cores
and CPUs. The processes can execute simultaneously. Two processes are associated with the £ind_code
program, and the third process is the process called posix_spawn () in the first place. The processes that
are created as a result of calling posix_spawn are referred to as child processes.

We take a closer look at posix_spawn () in Chapter 5.

Program Profile 4-1
Program Name:
guess_it.cc (Listing 4-1)

Description:

posix_spawn () launches the program named find_code. £ind_code is a standalone program that
implements the basic idea from Example 4-1. The program causes the operating system to generate three
simultaneously executing processes. Two processes execute the £ind_code program, and the third
process executes posix_spawn ().

Libraries Required:

None

User-Defined Headers Required:

None

Compile and Link Instructions:

c++ -0 guess_it guess_it.cc

Test Environment:

Linux Kernel 2.6

Solaris 10, gce 3.4.3 and 3.4.6

Processors:
Multicore Opteron, UltraSparc T1, Cell Processor
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Notes:
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None

It is important to note that the child processes that are spawned by posix_spawn are always binary
executables that exist outside of the calling program. Unlike pthread_create (), which calls a routine
in the program, posix_spawn () uses code that exists outside of the calling program.

Each operating system environment has its own unique method of spawning child processes. The
posix_spawn () method works in any operating environment that has the proper POSIX compliance.
So, you can build cross-platform components that can be used for process creation.

The process that calls posix_spawn () is referred to as the parent process. So, the OS creates two

child processes and a parent process. If the two cores are free, the operating system can assign two of the
three processes to be executed simultaneously. Now you realize that, although you have divided the list
in half and you have two simultaneous searches going on, you are not certain to find the code in the

two million possibilities in time, so you need to divide the list in half once more. This gives four lists of
one million codes, give or take a few that can be searched concurrently. Certainly, you can find the
mystery code in a list of one million possibilities in 5 minutes. To generate four searches, you divide the
find_code program into two threads of execution. So, the main program named guess_it in Listing 4-
1, spawns two child_processes that execute the program find_code. The program find_code
creates two threads called Taskl and Task2. Listing 4-2 is the new multithreaded version of £ind_code.

Listing 4-2

//Listing 4-2 A multithreaded version of the find_code program.

1 #include <pthread.h>

2 using namespace std;

3 #include <iostream>

4 #include <fstream>

5 #include "posix_gueue.h"

6 string MagicCode("yyzzz");
7 ofstream Foutl;

8 ofstream Fout2;

9 Dbool Found = false;

10 bool magicCode(string X)
11 {

12 /] ...

13

14 return (X == MagicCode) ;
15 1}

16

17

18

19 wvoid *taskl(void *X)
20 {
21 posix_queue PosixQueue;
22 string FileName;
23 string Value;
24 if (PosixQueue.open()) {
25 PosixQueue.receive (FileName) ;
26 ifstream Fin(FileName.c_str());
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

string FileOut (FileName) ;
FileOut.append(".out");
Foutl.open(FileOut.c_str());
while(!Fin.eof () && !Fin.fail()

{

getline(Fin,Value) ;
if (!Fin.eof () && !Fin.fail()
if (magicCode (Value)) {
Found = true;

}
}
}
Fin.close();
Foutl.close()
}
return (NULL) ;

i

void *task2 (void *X)

if(!Fin.eof () && !Fin.fail()

{

posix_queue PosixQueue;

string FileName;

string Value;

if (PosixQueue.open()) {
PosixQueue.receive (FileName) ;
ifstream Fin(FileName.c_str());
string FileOut (FileName) ;
FileOut.append(".out");
Fout2.open(FileOut.c_str());
while(!Fin.eof () && !'Fin.fail()
{

getline(Fin,Value) ;
if (magicCode (Value)) {
Found = true;
}
}

}
Fin.close();
Fout2.close();

}

return (NULL) ;

}

int main(int argc,

{

char *argvl])

&&

&&

&&

&&

!Found)

!Found) {

Found)

Found) {

(continued)
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Listing 4-2 (continued)

81 pthread_t ThreadA, ThreadB;

82 pthread_create (&ThreadA,NULL, taskl,NULL) ;
83 pthread_create (&ThreadB, NULL, task2,NULL) ;
84 pthread_join (ThreadA, NULL) ;

85 pthread_join (ThreadB, NULL) ;

86 return(0) ;

87

88 }

The pthread_create () functions on Lines 82 and 83 are used to create the threads for taskl and task2.
(We take a closer look at the POSIX pthread functionality in Chapter 6.) The program in Listing 4-2 is for
expositional purposes only. It does not contain any synchronization, exception handling, signal handling,
or the like. We include it here so that you have a clear picture of the anatomy the guess_it program that
we introduced in Example 4-1. Notice that task1 Line 19, and task2 Line 47 are normal C++ functions.
They just happen to be used as the main routine for Threada and Threads. Also notice on Lines 24 and
53 that each thread accesses a PosixQueue. This is a user-defined object, and it contains the name of a
different file that each thread will search.

So, the program in Listing 4-1 spawns two child processes. Each process executes £ind_code, which in
turn creates two threads. This gives a total of four threads. Each thread reads a filename from the
PosixQueue object. So, rather than having a one big file of 4,496,388 possibilities, you now have four
smaller files containing a little more than one million possibilities. Now you use a simple brute-force
search by each thread. One of the threads will find the MagicCode I was thinking about. Because of the
Found variable declared on Line 9 in Listing 4-2, the file scope or global scope for Threada and ThreadB
can be used as a control variable that causes both threads to stop. But what about the other two threads
in the second process? You used the PosixQueue to communicate the filenames to both processes and all
four threads. Is there a way that you can use a queue to let the three processes and four threads know
that it is time to stop once one of the threads finds the MagicCode?

Program Profile 4-2
Program Name:

find_code.cc (Listing 4-2)

Description:

The program f£ind_code creates two threads called Taskl and Task2. Each thread accesses a
pPosixQueue. This is a user-defined object, and it contains the name of a different file that each thread
will search for the code.

Libraries Required:

82
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User-Defined Headers Required:

posix_queue.h

Compile and Link Instructions:

c++ -o find_code find_code.cc posix_queue.cc -lpthread -1rt

Test Environment:

Linux Kernel 2.6

Solaris 10, gce 3.4.3 and 3.4.6

Processors:
Multicore Opteron, UltraSparc T1, Cell Processor

Notes:

None

Decomposition and the Operating
System’s Role

Decomposition is a theme that we revisit many times in this book for two reasons:

Q  The fundamental activity of software design is breaking down the problem and the solution in a
way that allows the solution (and sometimes the problem) to be implemented in software.

Q  Parallel programming, multithreading, and multiprocessing all require that software be broken
down into execution units that can be scheduled by the operating system for concurrent
processing.

This makes decomposition front and center for multicore programming. Notice that, in the classic game
example used in the preceding section, there is no mention of parallel programming, multithreading,
operating systems, or so on. There is just a simple statement of a problem. Guess what six-character code
I'm thinking of in 5 minutes or less. We started with a simple plain English description of a problem, and
somehow we ended up with a multiprocessing, multithreaded program that required Interprocess
Communication and operating system intervention and assistance. One of the primary links between the
simple plain English description and the simultaneously executing operating system threads is the
process of decomposition. Consider the example from the point of view a logical breakdown and a
physical breakdown. Figure 4-3 contains a functional (logical) breakdown of the operating system
components from the guess_it program taken from Listing 4-1 and Listing 4-2.
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Guess my 6-character code

in 5 minutes. The only hint you
have is it can contain the characters
a-z, 0-9.

A 4

guess_it program
with search function

POSIX APl OPERATING SYSTEM INTERFACE

CHILD PROCESS 1 find_code CHILD PROCESS 2 find_code
THREAD A THREAD B THREAD A THREAD B
task1 task2 task1 task2
SEARCH SEARCH SEARCH SEARCH
I |
T T2 T3 T4 [ SCHEDULER
MULTICORE (CMP) 1
CORE 0 CORE 1 CORE 2 CORE 3
Figure 4-3

As you can see in Figure 4-3, we had six units of execution that the operating system was responsible for,
two processes and four threads. Recall from Example 4-1 that we started out initially with a single
program that searched a file. We used the OS API to spawn two instances of the program so that we
could search two files simultaneously. Notice in Figure 4-3 that the £ind_code is then divided into two
threads. So, the actual work components are easily visible in Figure 4-3. Missing from Figure 4-3 is the
decomposition of the single data file containing the over four million possibilities into four smaller files
containing one million+ possibilities. Each of the threads in Figure 4-3 worked on its own unique file. So,
we had a data decomposition in addition to our work decomposition. The decomposition of our guess_
it program is an example of the Single Instruction Multiple Data (SIMD) concurrency model. Recall that
in this concurrency model multiple tasks execute the same sequence of instructions over different
datasets. We had four threads each executing the same code (single instruction) on four different sets of
data. Even if we had the benefit of the tools like STAPL or TBB, we would ultimately need to interface
with the operating system to actually implement this SIMD model. This type of decomposition and OS
interface is the kind of programming shown at level 1 and 2 in Figure 4-1. Although developers working
atlevel 3 and 4 (as shown in Figure 4-1) are generally free from this level of interaction, the operating
system’s role should be clear.
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In addition to a breakdown of the logical units that involve the OS, you also have physical units. Figure
4-4 shows a UML deployment diagram for the programs in Listing 4-1 and 4-2.

message_queue

bol x
/ AN
/ AN
/ N
/ AN

guess_it.cc find_code.cc

EB

Figure 4-4

This diagram shows the physical pieces of the simple guess_it program. We have two primary
executables:

Q  guess_it (Listing 4-1)
Q  find_code (Listing 4-2)

There are four files that contain the possible choices and several source files containing our simple brute-
force solution to our guess my code game and a message queue. The path to all binary files must be
known to the operating system at runtime. If the posix_spawn () calls on Lines 15 and 16 in Listing 4-1
can’t locate the £ind_code programs, the guess_it program in Listing 4-2 will not work. The operating
system’s role of finding and loading code to be executed is one of the roles that is often overlooked and
resurfaces in the form of “gotchas” when deploying multiprocessing and parallel processing
applications. You can use deployment diagrams to help keep an audit trail of the physical decomposition
of applications. Considering the decompositions in Figure 4-3 and Figure 4-4 along with the original
statement of the problem and the first try at its solution, you can begin to see how the SDLC plays a
major role in multicore application design and implementation. From the initial problem statement of
“Guess what six-character code I'm thinking of in 5 minutes,” we devised a solution that involved
searching a list of possibilities. But since the list was sufficiently large and we were under a time
constraint, we came up with a strategy that required dividing the list of possibilities up into smaller lists
with the notion of searching the smaller lists simultaneously for the MagicCode.

This strategy is an example of the design activity that is part of the SDLC. The original statement of the
problem is an example of requirements definitions that is part of SDLC. The implementation of the
strategy using posix_spawn (), pthread_create (), and PosixQueue is part of the coding activity
from the SDLC. While the operating system is not necessarily a consideration during the requirements or
design activities of the SDLC, it is present for the coding, deployment, and maintenance activities of the
SDLC. Our goal here is to make its function clear in terms of where it fits for applications that need to
exploit multicore CMPs. In Chapters 5 and 6, we take a much closer look at processes and threads as
units of execution that can be scheduled to execute simultaneously by the operating system.
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H

iding the Operating System’s Role

The real goal is to understand the part the operating system plays in executing multithreaded and
multiprocessing programs without having your software designs bogged down with the details of thread
and process implementation. One of the primary reasons that you ultimately want to get away from the
details of thread and process implementation is because the trend is that CMPs are moving toward more
cores on a single chip with the ultimate goal of massive parallelism (100s or 1000s ) of cores on a single
chip. It will be important to know the operating system’s role, but you will not want to expose it in your
designs. This was the case with the solution in Listings 4-1 and 4-2. As the trend moves toward more
cores and more parallelism, you need to pursue two important objectives for software development:

1. Taking advantage of the operating system while making it transparent to software designs

2. Moving from procedural paradigms of parallel programming to declarative paradigms

Taking Advantage of C++ Power of
Abstraction and Encapsulation

Fortunately C++’s support for Object Orientation, genericity, predicates, and multiparadigm
programming give a bridge to and a way to see the future of software design and development. Object-
Oriented Programming (OOP) is part of the declarative paradigms of software development [Meyer,
1988] and [Stroustrup, 1997]. As you will see in the next section, the notions of encapsulation supported
by C++ aid in making the operating system level transparent to software designs. Templates can be used
to implement genericity techniques found in higher-order declarative approaches to parallel
programming, and ideas of classes, predicates, and assertions in C++ can be used to move toward
declarative programming techniques that support massive and complex parallel programming
techniques. Class and template libraries such as STAPL and the TBB are the initial components that
support the move to massive parallelism on CMPs. The idea is to build classes that encapsulate lower-
level procedural-driven functionality of the operating system APIs while providing higher-level
declarative interfaces. C++ interface classes are ideal for providing wrappers for low-level OS APIs,
synchronization mechanisms, and communication components [Stroustrup, 1997]. Also, you want to use
C++ templates to capture patterns of parallelization, implementing the details while the user accesses a
higher, more functional interface. You then want to build from the C++ components application
frameworks that capture architectures that support parallelism. Using higher-level components,
frameworks, and architectures, you can then directly implement the models that produced in the design
and specification activities of the SDLC.

Interface Classes for the POSIX APIs
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The easiest approach to making the POSIX APIs transparent is to provide C++ interface classes. Interface
classes are classes that provide a wrapper for functions, data, or other classes. The interface class acts as a
kind of costume that allows something to appear differently than it does normally. An interface class
puts a different face on a function, piece of data, or another class. Interface classes are also called adaptor
classes. The new interface provided by an interface class is designed to make the class easier to use, more
functional, safer, or semantically correct. Take, for example, the POSIX thread functions shown in Lines
81-85 in Listing 4-2. We want the main line of this program to not expose operating system calls and
want to add a more C++ Object-Oriented flavor to the guess_it program. Listing 4-3 contains a new
format for the £ind_code program from Listing 4-2.
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Listing 4-3
//Listing 4-3 A more object-oriented find_code: ofind_code.

#include "thread_object.h"

1
2
3
4 int main(int argc, char *argvl[])
5 {

6

7

8

9 user_thread Thread[2];

10 Thread[0] .name ("ThreadA") ;
11 Thread[1l] .name ("ThreadB") ;
12 for(int N = 0; N < 2;N++)
13 {

14 Thread[N] .run() ;

15 Thread[N].join();

16 }

17 return(0) ;

18

19 1}

The code in Listing 4-3 replaces Lines 78-88 in Listing 4-2. While we haven't really saved any lines of
code, we have changed the interface of the thread creation and execution process. We now have a user_
thread class that encapsulates the pthread_t thread id and some other pthread functions. Now we're
declaring objects and invoking methods as opposed to calling POSIX API functions. The program in
Listing 4-3 creates and executes two threads. It then joins with the threads prior to exiting. While we can
see a little easier what the thread was supposed to do in Listing 4-2, it is not apparent in Listing 4-3 what
the thread is executing. In Listing 4-2 Lines 82 and 83 call pthread_create and pass it the names of the
functions taskl and task2 that will be executed by Threada and Threads. In Listing 4-3, because of
encapsulation, its not apparent that Threada and Threads will execute. We can see only that the run ()
method has been invoked. To get a better picture of how Listing 4-3 replaces Listing 4-2, take a look at
the declarations in thread_object.h from Line 1 of Listing 4-3. thread_object.h contains an abstract
class named thread_object. We know this class is abstract because of the abstract virtual method
declared on Line 14 in Listing 4-4.

Program Profile 4-3
Program Name:

ofind_code. cc (Listing 4-3)

Description:

The program in Listing 4-3 creates and executes two threads. It then joins with the threads prior to
exiting. The run () method invokes the tasks to execute. Listing 4-3 replaces Listing 4-2; look at the
declarations in thread_object.h.

Libraries Required:

rt, pthread
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Additional Source Files Needed:
thread_object2.cc (Listing 4-5), user_thread. cc (Listing 4-6)

User-Defined Headers Required:

thread_object.h (Listing 4-4), posix_queue.h

Compile and Link Instructions:

c++ -0 ofind_code ofind_code.cc user_thread.cc thread_object.cc posix_queue.cc
-1lrt -lpthread

Test Environment:
Linux Kernel 2.6

Solaris 10, gcc 3.4.3 and 3.4.6

Processors:
Multicore Opteron, UltraSparc T1, Cell Processor

Notes:

None

Listing 4-4

//Listing 4-4 A declaration of a simple thread_object.

1 #ifndef _ THREAD_OBJECT_H
2 #define _ THREAD_OBJECT_H
3

4 using namespace std;

5 #include <iostream>

6 #include <pthread.h>

7 #include <string>

8 #include "posix_queue.h"
9

10 class thread_object{

11 pthread_t Tid;

12 string Name;

13 protected:

14 virtual void do_something(void) = 0;
15 public:

16 thread_object (void) ;
17 ~thread_object (void) ;
18 void name (string X);
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19 string name (void) ;
20 void run(void);
21 void join(void) ;
22 friend void *thread(void *X);
23 };
24
25
26
27 class user_thread : public thread_object(
28 private:
29 posix_queue *PosixQueue;
30 protected:
31 virtual void do_something (void) ;
32 public:
33 user_thread(void) ;
34 ~user_thread(void) ;
35 };
36
37
38 #endif
The do_something () = 0 method prevents the user from simply declaring an object of the

thread_object. Instead, to use the thread_object class, the user has to supply functionality for
do_something () by using inheritance with thread_object and supplying an implementation

for do_something (). In the context of the program of Listing 4-2, the do_something method will have
equivalent functionality to taskl and task2 from Lines 19 and 47 in Listing 4-2. The do_something
method searches a file looking for the MagicCode. Also notice Line 22 in Listing 4-4; the friend function
is also used in conjunction with the do_something () method to provide a wrapper for the pthread_
create () functionality. The class user_thread inherits the thread_object class and provides a
definition for the do_something () method. Notice in Listing 4-4 that the user_thread class also has
posix_gueue data member. This was the PosixQueue that was used in Listing 4-2 on Lines 25 and 53.
This simple example of a thread_object demonstrates a slight but real Object-Oriented departure from
the procedural only approach in Listing 4-2.

Figure 4-5 shows a UML class relationship diagram for the user_thread class.

thread_object

Qﬁ pthread_t

user_thread

Figure 4-5
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20

The thread_object class is just a simple skeleton class so far. We will fill this class’s definition in as we
go along. The thread_object class is an interface class. Its purpose is to encapsulate the POSIX thread
interface and to supply Object-Oriented semantics and components so that we can implement the
models we produce in the SDLC more easily. Compare the logical breakdown of the components in
Figure 4-3 and Figure 4-5. The focus in Figure 4-5 is obviously different because we are doing an Object-
Oriented decomposition of the £ind_code program. The user_object defines the find_code function
that inherits the thread_object. The Object-Oriented approach hides the implementation details shown
in Figure 4-3. Listing 4-5 contains some of the implementation for the simple thread_object class.

Listing 4-5
// Listing 4-5 A definition of a simple thread_object.

#include "thread_object.h"

1
2
3
4 thread_object::thread_object (void)
5 {

6

7

8

9 1}
10 thread_object::~thread_object (void)
11 {
12 pthread_join(Tid, NULL) ;
13}
14
15
16 void thread_object: :run(void)
17 {
18 pthread_create (&Tid,NULL, thread, this) ;
19 1}
20
21 wvoid thread_object::join(void)
22 {
23 pthread_join(Tid, NULL) ;
24 }
25
26
27 wvoid thread_object::name(string X)
28 {
29 Name = X;
30 %
31
32 string thread_object: :name(void)
33 {
34 return (Name) ;
35 %}
36
37
38 wvoid * thread (void * X)
39 {
40
41 thread_object *Thread;
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42 Thread = static_cast<thread_object *>(X);
43 Thread->do_something () ;

44 return (NULL) ;

45

46

47 '}

Now you can see how the run () and thread () methods together can begin to provide the functionality
of the pthread_create () calls. This is just a start; we can do better. Notice that there is no
implementation for the do_something () method declared in the thread_object class. This is the
method that will be supplied by the user when the thread_object class is subclassed. The Thread-
>do_something () on Line 43 in Listing 4-5 calls the method that will be provided by a descendant
class. In our case, this is defined by the definitions in Listing 4-6.

Listing 4-6

//Listing 4-6 The definition for the user_thread class.

1 #include "thread_object.h"

2 #include <iostream>

3 #include <fstream>

4

5 bool Found = false;

6

7

8 user_thread: :user_thread (void)

9

10

11 PosixQueue = new posix_gueue ("queue_name") ;
12 PosixQueue->queueFlags (O_RDONLY) ;
13 PosixQueue->messageSize(14) ;

14 PosixQueue->maxMessages (4) ;

15

16}

17

18

19 user_thread: :~user_thread(void)
20 {
21
22 delete PosixQueue;
23
24 }
25
26
27 wvoid user_thread: :do_something (void)
28 |
29 ofstream Fout;

30 string FileName;

31 string Value;

32

33 if (PosixQueue->open()) {

34 PosixQueue->receive (FileName) ;
35 ifstream Fin(FileName.c_str());

(continued)
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Listing 4-6 (continued)

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

The main work in the user_thread class is performed by the do_something () method. By overriding
the do_something () method, we can use this user_thread class to do any kind of work that can be
done with the pthread_create functionality. In this case, the do_something () method performs the
file search. The run () methods from the threads invoked by the user_thread object in Listing 4-3
ultimately execute the do_something () method. Since the Found variable defined on Line 5 is global
and has file scope, we can use it to stop the threads from searching once the value is located.

}

string FileOut (FileName) ;
FileOut.append(".out");
Fout.open(FileOut.c_str());

while(!Fin.eof () && !Fin.fail() && !Found)
{
getline(Fin,Value) ;
if(!Fin.eof () && !Fin.fail() && !Found) {
if (Value == MagicCode) {

Found = true;

}
}
Fin.close();
Fout.close();

Program Profile 4-4

Program Name:

user_thread. cc (Listing 4-6)

Description:

The user_thread class is performed by the do_something () method that does any kind of work that
can be done with the pthread_create functionality. The do_something () method performs the file
search. The run () methods from the threads invoked by the user_thread object execute the do_
something () method. Since the Found variable is global and has file scope, it can stop the threads from

searching once the value is located.

Libraries Required:

pthread

Additional Source Files Needed:

thread_object2.cc (Listing 4-6)
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User-Defined Headers Required:
thread_object.h (Listing 4-4)

Compile Instructions:

cc++ -c¢ user_thread.cc

Test Environment:

Linux Kernel 2.6

Solaris 10, gce 3.4.3 and 3.4.6

Processors:
Multicore Opteron, UltraSparc T1, Cell Processor

Notes:

None

Using interface classes in conjunction with POSIX can allow you to build cross-platform components
that can help with the implementation of cross-platform multithreaded or multiprocessing applications.
Certainly, the thread_object interface class declared in Listing 4-4 has to be fleshed out considerably
before it can be used in production environments, but you can see the point we are making. The C++
interface class is heavily used in high-level component libraries and application frameworks like STAPL
and TBB. If you understand how interface classes are used in conjunction with operating system APIs,
the relationship between TBB, STAPL, and the operating system APIs will be more apparent. Interface
classes can be used to add your own building blocks to TBB, STAPL, and other high-level libraries used
for parallel processing and multithreading.

Summary

Both application developers and system developers need to have a clear understanding of the role that
the operating system plays in regard to multiprocessor systems. Ideally, application programmers will
not have to work directly with operating system primitives. But they still should have a grasp of the
fundamentals because of the challenges that rise during testing, debugging, and software deployment.
This chapter discussed the operating system’s role in multicore programming. Some key points
addressed include:

Q  The operating system is the gatekeeper of the CMP. Any software that wants to take advantage
of multiple processors has to negotiate with the operating system. Since the C++ standard does
not have direct support for process or thread management, you can use the POSIX API to access
operating system services related to process and thread management.

Q  The operating system’s role can be divided into two primary functions:

U Software interface: Providing a consistent and well-defined interface to the hardware re-
sources of the computer
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O  Resource management: Managing the hardware resources and other executing software
applications, jobs, and programs

Q  Instead of forcing the programmer to use particular device-specific instructions, the operating
system provides the programmer with a couple of layers of software (the API and SPI) between
the developer’s program and the hardware resources connected to the computer.

Q  The operating system’s core services can be divided into:
Process management

Memory management

Qa
a
Q  Filesystem management
Q  I/O management

a

Interprocess Communication Manager

Q  The goal of a framework like STAPL is to allow the developer to provide parallelism in a
software application while not having to worry about all of the specific implementation related
issues that are involved with parallel programming. A library like the TBB is a set of high-level
generic components that also encapsulates much of the detail of multiprocessing and
multithreading.

O  Once the software design process determines that the application is best divided into two or
more concurrently executing tasks, the transparency of the operating system becomes an issue.
The idea is to build classes that encapsulate lower-level procedural-driven functionality of the
operating system APIs, while providing a higher-level declarative interface to the application
developer.

0O  Asyoumove toward more cores and more parallelism, you need to pursue two important steps
to make software development for massive parallel CMPs practical:

Q  Take advantage of the operating system, while making it transparent to software designs
Q  Move from procedural paradigms of parallel programming to declarative paradigms

Q  Encapsulate operating system process and thread management services in C++ components.
Then, from the C++ components, build application frameworks that capture architectures that
support parallelism.

Ultimately, the multithreading or multiprocessing functionality contained in class libraries, high-level
function libraries, or application frameworks still needs to pass through operating system APIs or SPIs.
In the next two chapters, we go into more detail on the use of processes and threads in multicore
programming.



Processes, C++ Interface
Classes, and Predicates

As long as I held the Divine Spear, I had to accept debugging as my primary duty.

— Tatsuya Hamazaki, .hack//AI Buster 2

In Chapter 4, we looked at the operating system’s role as a development tool for applications that
required parallel programming. We provided a brief overview of the part that the operating
system plays in process management and thread management. We introduced the reader to the
notion of operating system Application Program Interfaces (APIs) and System Program Interfaces
(SPIs), and in particular we introduced the POSIX API. In this chapter we are going to take a closer
look at:

Q  Where the process fits in with C++ programming and multicore computers

Q  The POSIX API for process management

Q  Process scheduling and priorities

O  Building C++ interface components that can be used to simplify part of the POSIX API for

process management

Basically, a program can be divided into processes and/or threads in order to achieve concurrency
and take advantage of multicore processors. In this chapter, we cover how the operating system
identifies processes and how an application can utilize multiple processes.
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We Say Multicore, We Mean Multiprocessor

Keep in mind that the name multicore is a popular substitution for single chip multiprocessor or CMP.
Multiprocessors are computers that have more than two or more CPUs or processors. Although
multiprocessor computers have been around for some time now, the wide availability and low cost of the
CMP has brought multiprocessor capabilities within the reach of virtually all software developers. This
raises a series of questions: How do single applications take advantage of CMPs? How do single user
versus multiple user applications take advantage of CMPs? Using C++ how do you take advantage of
the operating system’s multiprocessing and multiprogramming capabilities? Once you have a software
design that includes a requirement for some tasks to execute concurrently, how do you map those tasks
to the multiple processors available in your multicore computers?

Recall from Chapter 4 that the operating system schedules execution units that it can understand. If your
software design consists of some tasks that can be executed in parallel, you will have to find a way to
relate those tasks to execution units the operating system can understand. Association of your tasks with
operating system execution units is part of a four-stage process involving three transformations.

Each transformation in Figure 5-1 changes the view of the model, but the meaning of the model should
remain intact. That is, the implementation of the application frameworks, class libraries, and templates
as processes and threads should not change the meaning or semantics of what those components are
doing. The execution units in stage four are what the operating system deals with directly. The execution
units shown in stage four of Figure 5-1 are the only things that can be assigned directly to the cores.
From the operating system’s viewpoint your application is a collection of one or more processes.
Concurrency in a C++ application is ultimately accomplished by factoring your program into either
multiple processes or multiple threads. While there are variations on how the logic for a C++ program
can be organized (for example, within objects, predicates, functions, or generic templates), the options
for parallelization (with the exception of instruction level) are accounted for through the use of multiple
processes and threads.

§ General statement of some problem, service, or system
&%
TRANSFORMATION #1
A
o
w Solution model or system model that might contain a Models at this stage will contain
E requirement for concurrently executing tasks concurrency requirements if there are any.
TRANSFORMATION #2
\4
)
w C++ application frameworks, templates, class libraries,
= algorithms
o
TRANSFORMATION #

SFO ON #3 If parallelism is introduced here that is not present
< in stage 2, then this parallelism is not allowed to
w Operating system execution units (process, LWPs, change the semantics of the models from stage 2.
= kernel threads) Otherwise, the models have to be reworked.

o This will be necessary for software maintenance
and change management.
Figure 5-1
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This chapter focuses on the notion of a process and how C++ applications and programs can be divided
into multiple processes using the POSIX API process management services.

What Is a Process?

A process is a unit of work created by the operating system. It is important to note that processes and
programs are not necessarily equivalent. A program may consist of multiple tasks, and each task can be
associated with one or more processes. Processes are artifacts of the operating system, and programs are
artifacts of the developer. Current operating systems are capable of managing hundreds even thousands
of concurrently loaded processes. In order for a unit of work to be called a process, it must have an
address space assigned to it by the operating system. It must have a process id. It must have a state and
an entry in the process table. According to the POSIX standard, it must have one or more flows of
controls executing within that address space and the required system resources for those flows of
control. A process has a set of executing instructions that resides in the address space of that process.
Space is allocated for the instructions, any data that belongs to the process, and stacks for functions calls
and local variables. One of the important differences between a process and a thread is the fact that each
process has its own address space, whereas threads share the address space of the processes that created
them. A program can be broken down into one or more processes.

Why Processes and Not Threads?

When you are mapping C++ tasks to execution units that the operating system can understand, threads
turn out to be easier to program. This is because threads share the same address space. This makes
communication and synchronization between threads much easier. It takes the operating system less
work to create a thread or to terminate a thread than it takes for processes. In general, you can create
more threads within the context of a single computer than processes. The starting and stopping of
threads is typically faster than processes.

So why use processes at all? First, processes have their own address space. This is important because
separate address spaces provide a certain amount security and isolation from rogue or poorly designed
processes. Second, the number of open files that threads may use is limited to how many open files a
single process can have. Dividing your C++ application up into multiple processes instead of or in
conjunction with multithreading provides access to more open file resources. For multiuser applications,
you want each user’s process to be isolated. If one user’s process fails, the other users can continue to
perform work. If you use some threading approach for multiuser applications, a single errant thread can
disrupt all the users. Operating system resources are assigned primarily to processes and then shared by
threads. So, in general, threads are limited to the number of resources that a single process can have.
Thus, when isolation security, address space isolation, and maximum number of resources that
concurrently executing tasks may have are major concerns, it is better to use processes than threads.
Communication between processes and startup time are the primary tradeoffs.

The functions listed in Table 5-1 are declared in spawn.h. This header contains the POSIX functions used
to spawn and manage processes.
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Using posix_spawn()

Similarly to the fork-exec () and system() methods of process creation, the posix_spawn ()

functions create new child processes from specified process images. But the posix_spawn () functions
create child processes with more fine-grained control during creation. While the POSIX API also
supports the fork-exec () class of functions, we focus on the posix_spawn functions for process
creation to achieve greater cross-platform compatibility. Some platforms may have trouble implementing
fork (), so the posix_spawn () functions can be used as substitution. These functions control the
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Table 5-1

Types of POSIX Functions

POSIX Functions

Creating processes

Initializing attributes
Destroying attributes

Setting and retrieving attribute
values

Process scheduling

Adding file actions

posix_spawn ()
posix_spawnp ()

posix_spawnattr_init ()
posix_spawnattr_destroy ()

posix_spawnattr_setsigdefault ()
posix_spawnattr_getsigdefault ()
posix_spawnattr_setsigmask ()
posix_spawnattr_getsigmask()
posix_spawnattr_setflags()
posix_spawnattr_getflags()
posix_spawnattr_setpgroup ()
posix_spawnattr_getpgroup ()

posix_spawnattr_setschedparam/()
posix_spawnattr_setschedpolicy ()
posix_spawnattr_getschedparam/()
posix_spawnattr_getschedpolicy ()
sched_setscheduler ()
sched_setparm()

posix_spawn_file_actions_addclose()
posix_spawn_file_actions_adddup?2 ()
posix_spawn_file_actions_addopen ()
posix_spawn_file_actions_destroy ()
posix_spawn_file_actions_init ()

attributes that the child process inherits from the parent process, including:

File descriptors
Scheduling policy
Process group id

User and group id

O 00 o o

Signal mask
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They also control whether signals ignored by the parent are ignored by the child or reset to some default
action. Controlling file descriptors allow the child process independent access to the data stream opened
by the parent. Being able to set the child’s process group id affects how the child’s job control relates to
that of the parent. The child’s scheduling policy can be set to be different from the scheduling policy of
the parent.

Synopsis

#include <spawn.h>

int posix_spawn (pid_t *restrict pid, const char *restrict path,
const posix_spawn_file _actions_t *file_actions,
const posix_spawnattr_ t *restrict attrp,
char *const argv[restrict],
char *const envplrestrictl]);

int posix_spawnp (pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict],
char *const envp|[restrict]);

The difference between these two functions is that posix_spawn () has a path parameter and
posix_spawnp () has a f£ile parameter. The path parameter in the posix_spawn () function is the
absolute or relative pathname to the executable program file. file in posix_spawnp () is the name of
the executable program. If the parameter contains a slash, then file is used as a pathname. If not, the
path to the executable is determined by PATH environment variable.

The file_actions Parameter

The file_actions parameter is a pointer to a posix_spawn_file_actions_t structure:

struct posix_spawn_file_actions_t{
{
int _ _allocated;
int __used;
struct _ spawn_action *actions;
int __pad[1l6];
}i

posix_spawn_file_actions_t is a data structure that contains information about the actions to be
performed in the new process with respect to file descriptors. £ile_actions is used to modify the
parent’s set of open file descriptors to a set file descriptors for the spawned child process. This structure
can contain several file action operations to be performed in the sequence in which they were added to
the spawn file action object. These file action operations are performed on the open file descriptors of
the parent process. These operations can duplicate, duplicate and reset, add, delete, or close a specified
file descriptor on behalf of the child process even before it’s spawned. If file_actions isanull
pointer, then the file descriptors opened by the parent process remain open for the child process
without any modifications. Table 5-2 lists the functions used to add file actions to the
posix_spawn_file_actions object.
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Table 5-2

File Action Attribute Functions

Descriptions

int

posix_spawn_file_actions_addclose
(posix_spawn_file_actions_t
*file_actions, int fildes);

int
posix_spawn_file_actions_addopen
(posix_spawn_file_actions_t
*file_actions, int fildes,
const char *restrict path,
int oflag, mode_t mode) ;

int

posix_spawn_file_actions_adddup2
(posix_spawn_file_actions_t
*file_actions, int fildes,

int newfildes) ;

int
posix_spawn_file_actions_destroy
(posix_spawn_file_actions_t
*file_actions);

int

posix_spawn_file_actions_init
(posix_spawn_file_actions_t
*file_actions) ;

Adds a close () action to a spawn file action object
specified by file_actions. This causes the file
descriptor £ildes to be closed when the new process is
spawned using this file action object.

Adds an open () action to a spawn file action object
specified by file_actions. This causes the file named
path with the returned file descriptor £ildes to be
opened when the new process is spawned using this
file action object.

Adds a dup2 () action to a spawn file action object
specified by file_actions. This causes the file
descriptor £ildes to be duplicated with the file
descriptor newfildes when the new process is
spawned using this file action object.

Destroys the specified file_actions object. This
causes the object to be uninitialized. The object can then
be reinitialized using posix_spawn_file_actions_
init ().

Initializes the specified file_actions object. Once
initialized, it contains no file actions to be performed.

The attrp Parameter

The attrp parameter points to a posix_spawnattr_t structure:

struct posix_spawnattr_t
{
short int __flags;
pid_t _ pgrp;
sigset_t _ sd;
sigset_t __ss;
struct sched_param __sp;
int _ policy;
int _ pad[16];

This structure contains information about the scheduling policy, process group, signals, and flags for the
new process. The description of individual attributes is as follows:
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Q _ flags: Used to indicate which process attributes are to be modified in the spawned process.
They are bitwise-inclusive OR of 0 or more of the following;:

a
a
a
a
a
a

POSIX_SPAWN_RESETIDS
POSIX_SPAWN_SETPGROUP
POSIX_SPAWN_SETSIGDEF
POSIX_SPAWN_SETSIGMASK
POSIX_SPAWN_SETSCHEDPARAM

POSIX_SPAWN_SETSCHEDULER

Q  _ pgrp: The id of the process group to be joined by the new process.

Q  __sad: Represents the set of signals to be forced to use default signal handling by the new
process.

O  __ss: Represents the signal mask to be used by the new process.

0  __sp: Represents the scheduling parameter to be assigned to the new process.

Q _ policy: Represents the scheduling policy to be used by the new process.

Table 5-3 lists the functions used to set and retrieve the individual attributes contained in the
posix_spawnattr_t structure.

Table 5-3
Spawn Process Attributes Functions Descriptions
int posix_spawnattr_getflags Returns the value of the __flags attribute stored
(const posix_spawnattr_t *restrict in the specified attr Object.

attr, short *restrict flags);

int posix_spawnattr_setflags Sets the value of the __flags attribute stored in the
(posix_spawnattr_t *attr, specified attr object to flags.

short flags);
int posix_spawnattr_getpgroup Returns the value of the __pgroup attribute stored
(const posix_spawnattr_t *restrict in the specified attr object and stores it in pgroup.

attr, pid_t *restrict pgroup) ;

int posix_spawnattr_setpgroup Sets the value of the __pgroup attribute stored in
(posix_spawnattr_t *attr, the specified attr object to pgroup if POSIX_
pid_t pgroup); SPAWN_SETPGROUP is set in the __ flags attribute.

Table continued on following page
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Spawn Process Attributes Functions

Descriptions

int posix_spawnattr_getschedparam
(const posix_spawnattr_t

*restrict attr, struct sched_param
*restrict schedparam) ;

int posix_spawnattr_setschedparam
(posix_spawnattr_t *attr,

const struct sched_param *restrict
schedparam) ;

int posix_spawnattr_getpschedpolicy
(const posix_spawnattr_t *restrict
attr, int *restrict schedpolicy);

int posix_spawnattr_setpschedpolicy
(posix_spawnattr_t *attr,
int schedpolicy);

int posix_spawnattr_getsigdefault
(const posix_spawnattr_t *restrict
attr, sigset_t *restrict
sigdefault) ;

int posix_spawnattr_setsigdefault
(posix_spawnattr_t *attr,

const sigset_t *restrict
sigdefault) ;

int posix_spawnattr_getsigmask
(const posix_spawnattr_t *restrict
attr, sigset_t *restrict sigmask);

int posix_spawnattr_setsigmask
(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

int posix_spawnattr_destroy
(posix_spawnattr_t *attr);

int posix_spawnattr_init
(posix_spawnattr_t *attr);

Returns the value of the __sp attribute stored in the
specified attr object and stores it in schedparam.

Sets the value of the __sp attribute stored in the
specified attr object to schedparam if POSIX_
SPAWN_SETSCHEDPARAM is set in the __flags
attribute.

Returns the value of the __policy attribute stored
in the specified attr object and stores it in
schedpolicy.

Sets the value of the __policy attribute stored in
the specified attr object to schedpolicy if
POSIX_SPAWN_SETSCHEDULER is setin the __
flags attribute.

Returns the value of the ___sd attribute stored in the
specified attr object and stores it in sigdefault.

Sets the value of the __sd attribute stored in the
specified attr object to sigdefault if POSIX_
SPAWN_SETSIGDEF is set in the _ flags attribute.

Returns the value of the __ss attribute stored in the
specified attr object and stores it in sigmask.

Sets the value of the __ss attribute stored in the
specified attr object to sigmask if POSIX_SPAWN_
SETSIGMASK is set in the __ flags attribute.

Destroys the specified attr object. The object can
then become reinitialized using posix_
spawnattr_init ().

Initializes the specified attr object with default
values for all of the attributes contained in the
structure.
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A Simple posix_spawn() Example

Example 5-1 shows how the posix_spawn () function can be used to create a process.

Example 5-1

// Example 5-1 Spawns a process, using the posix_spawn ()
// function that calls the ps utility.

#include <spawn.h>

#include <stdio.h>

#include <errno.h>

#include <iostream>

{
/] ...
posix_spawnattr_t X;
posix_spawn_file_actions_t Y;

pid_t Pid;
char * argv[] = {"/bin/ps","-1f",NULL};
char * envp[] = {"PROCESSES=2"};

posix_spawnattr_init (&X) ;
posix_spawn_file_actions_init (&Y);
posix_spawn (&Pid, "/bin/ps", &Y, &X,argv, envp) ;
perror ("posix_spawn") ;

cout << "spawned PID: " << Pid << endl;
/...

return(0) ;

In Example 5-1, posix_spawnattr_t and posix_spawn_file_actions_t objects are initialized
posix_spawn () is called with the arguments PID; path; Y; X; argv, which contains the command as the
first element and the argument as the second; and envp, the environment list. If posix_spawn () is
successful, then the value stored in Pid will be the PID of the spawned process. perror displayed:

posix_spawn: Success
and the Pid is sent to output. The spawned process, in this case, executes:

/bin/ps -1f
These functions return the process id of the child process to the parent process in the pid parameter and
return 0 as the return value. If the function is unsuccessful, no child process is created; thus, no pid is

returned, and an error value is returned as the return value of the function. Errors can occur on three
levels when using the spawn functions.
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Q  Anerror can occur if the file_actions or attr objects are invalid. If this occurs after the
function has successfully returned (the child process was spawned), then the child process may
have an exit status of 127.

Q  If the spawn attribute functions cause an error, then the error produced for that particular
function (listed in Tables 5-2 and 5-3) is returned. If the spawn function has already successfully
returned, then the child process may have an exit status of 127.

Q  Errors can also occur when you are attempting to spawn the child process. These errors would
be the same errors produced by fork () or exec () functions. If they occur, they will be the
return values for the spawn functions.

If the child process produces an error, it is not returned to the parent process. For the parent process to be
aware that the child has produced an error, you have to use other mechanisms since the error will not be
stored in the child’s exit status. You can use Interprocess Communication, or the child can set some flag
visible to the parent.

The guess_it Program Using posix_spawn

Listing 5-1 recalls the “guess the mystery code” program from Chapter 4, Listing 4-1, that spawned two
child processes.

Listing 5-1

// Listing 5-1 Program used to launch ofind_code.

1 using namespace std;
2 #include <iostream>
3 #include <string>
4 #include <spawn.h>
5 #include <sys/wait.h>
6
7 int main(int argc,char *argv[],char *envpl])
8
9
10 pid_t ChildProcess;
11 pid_t ChildProcess2;
12 int RetCodel;
13 int RetCode2;
14 int Value;
15 RetCodel = posix_spawn (&ChildProcess, "find_code",NULL,
16 NULL, argv, envp) ;
17 RetCode2 = posix_spawn (&ChildProcess2, "find_code",NULL,
18 NULL, argv, envp) ;
19 wait (&Value) ;
20 wait (&Value) ;
21 return(0) ;
22}
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In Example 5-1, we used posix_spawn to launch the ps shell utility. Here in Listing 5-1, we use posix_
spawn to launch the ofind_code program. This illustrates an important feature of posix_spawn (); it is
used to launch programs external to the calling program. Any programs that are located on the local
computer can be easily launched with posix_spawn (). The posix_spawn () calls in Listing 5-1, lines 15
and16 have a terse interface. In Chapter 4, we introduced the notion of interface classes, which can start
you on the road to a more declarative style multicore programming. Interface classes are easy to
implement. Listing 5-2 shows a simple interface class that you can use to encapsulate the basics of the
posix_spawn () functions.

Listing 5-2

//Listing 5-2 An initial interface class for a posix process.

1 #ifndef _ POSIX_ PROCESS_H
2 #define _ POSIX_PROCESS_H
3 using namespace std;

4

5 #include <spawn.h>

6 #include <errno.h>

7 #include <iostream>

8 #include <string>

9
10

11 class posix_process({
12 protected:

13 pid_t Pid;

14 posix_spawnattr_t SpawnAttr;

15 posix_spawn_file_actions_t FileActions;

16 char **argv;

17 char **envp;

18 string ProgramPath;

19 public:

20 posix_process (string Path,char **av,char **env);

21 posix_process (string Path,char **av,char **env, posix_spawnattr_t X,
posix_spawn_file_actions_t Y);

22 void run(void) ;

23 void pwait (int &X);

24 };

25

26

27 #endif

28

This simple interface class can be used to add a more object-oriented approach to process management.
It makes it easier to move from models shown in Stage 2 in Figure 5-1 to the execution units in Stage 4.
It also makes the OS API calls transparent to the user. For example, the guess_it program shown in
Listing 5-1 can be restated as shown in Listing 5-3.
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Listing 5-3

//Listing 5-3 Our guess_it program using an interface class for the posix_spawn
capability.

1 #include "posix_process.h"

2

3 int main(int argc,char *argv[],char *envpl[])

4 |

5 int Value;

6 posix_process Childl("ofind_code",argv,envp);
7 posix_process Child2("ofind_code",argv,envp) ;
8 Childl.run();

9 Child2.run();

10 Childl.pwait (&Value) ;

11 Child2.pwait (&Value) ;

12 return(0) ;

13}

14

Recall from Chapter 4 that the guess_it program spawns two child processes. Each child process in
turn spawns two threads. The resulting four threads are used to search files. The value of the interface
class as a tool for converting procedural paradigms into Object-Oriented declarative approaches cannot
be overstated. Once you have a posix_process class, it can be used like a datatype with the container
classes. This means that you can have:

vector<posix_process>
list<posix_process>
multiset<posix_process>
etc...

thinking about processes and threads as objects as opposed to sequences of actions, which is a big step in
the direction of the declarative models of parallel programming. Listing 5-4 shows the initial method
definitions for the posix_process interface class.

Listing 5-4
// Listing 5-4 The initial method definitions for the posix_process interface class.

#include "posix_process.h"
#include <sys/wait.h>

1
2
3
4
5 ©posix_process::posix_process(string Path,char **av,char **env)
6 {

7

8

argv = av;

9 envp = env;

10 ProgramPath = Path;

11 posix_spawnattr_init (&SpawnAttr) ;

12 posix_spawn_file_actions_init (&FileActions) ;
13

14
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15 1}

16

17 posix_process::posix_process(string Path,char **av,char **env,
posix_spawnattr_t X, posix_spawn_file_actions_t Y)

18 {

19 argv = av;

20 envp = env;

21 ProgramPath = Path;

22 SpawnAttr = X;

23 FileActions = Y;

24 posix_spawnattr_init (&SpawnAttr) ;

25 posix_spawn_file_actions_init (&FileActions) ;

26

27

28

29 1}

30

31 void posix_process::run(void)

32 {

33

34 posix_spawn (&Pid, ProgramPath.c_str(),&FileActions,
&SpawnAttr,argv, envp) ;

35

36

37 1}

38

39 void posix_process::pwait (int &X)

40 {

41

42 wait (&X) ;

43}

The run () method defined on Line 31 in Listing 5-4 adapts the interface to the posix_spawn ()
function. You can build on these declarations by adding methods that adapt the interface of all of the

functions listed in Table 5-2 and Table 5-3. Once completed, you can add process building blocks to your
object-oriented toolkit.

Who Is the Parent? Who Is the Child?

There are two functions that return the process id (PID) of the process and parent process:

0  getpid() returns the process id of the calling process.

Q  getppid() returns the parent id of the calling process.

These functions are always successful; therefore no errors are defined.

Synopsis

#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void) ;
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Processes: A Closer Look

When a process executes, the operating system assigns the process to a processor. The process executes
its instructions for a quantum. The process is preempted, so another process can be assigned the
processor. The operating system scheduler switches between the code of one process, user, or system to
the code of another process, giving each process a chance to execute its instructions. There are system
and user processes.

Q  Processes that execute system code are called system processes, also sometimes referred to as
kernel processes. System processes administer the whole system. They perform housekeeping
tasks such as allocating memory, swapping pages of memory between internal and secondary
storage, checking devices, and so on. They also perform tasks on behalf of the user processes
such as filling I/O requests, allocating memory, and so forth.

0  User processes execute their own code, and sometimes they make system function calls. When a
user process executes its own code, it is in user mode. In user mode, the process cannot execute
certain privileged machine instructions. When a user process makes a system function call
(for example, read (), write (), or open()), it is executing operating system instructions. What
occurs is the user process is put on hold until the system call has completed. The processor is
given to the kernel to complete the system call. At that time the user process is said to be in
kernel mode and cannot be preempted by any user processes.

Process Control Block

Processes have characteristics that identify them and determine their behavior during execution. The
kernel maintains data structures and provides system functions that allow the user to have access to this
information. Some information is stored in the process control block (PCB). The information stored in the
PCB describes the process to the operating system. This PCB is part of the heavy weight of the process.
This information is needed for the operating system to manage each process. When the operating system
switches between a process utilizing the CPU to another process, it saves the current state of the
executing process and its context to the PCB save area in order to restart the process the next time it is
assigned to the CPU. The PCB is read and changed by various modules of the operating system.
Modules concerned with the monitoring the operating system’s performance, scheduling, allocation of
resources, and interrupt processing all will access and /or modify the PCB. The PCB is what makes the
process visible to the operating system and entities like user threads invisible to the operating system.

PCB information includes:

Q  Current state and priority of the process

Process, parent, and child identifiers

Pointers to allocated resources

Pointers to location of the process’s memory
Pointer to the process’s parent and child processes
Processor utilized by process

Control and status registers

O 000000

Stack pointers
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The information stored in the PCB can be organized as follows:

Q  Information concerned with process control, such as the current state and priority of the
process, pointers to parent/child PCB’s, allocated resources, and memory. This also includes any
scheduling related information, process privileges, flags, messages, and signals that have to do
with communication between processes (IPC — Interprocess Communication). The process
control information is required by the operating system in order to coordinate the concurrently
active processes.

Q  The content of user, control, and status registers and stack pointers are all types of information
concerned with the state of the processor. When a process is running, information is placed in
the registers of the CPU. Once the operating system decides to switch to another process, all the
information in those registers has to be saved. When the process gains the use of the CPU again,
this information can be restored.

Q  Other information has to do with process identification. This is the process id, PID, and the
parent process id, PPID. These identification numbers are unique for each process. They are
positive, nonzero integers.

Anatomy of a Process

The address space of a process is divided into three logical segments: text (program code), data, and stack
segments. Figure 5-2 shows the logical layout of a process. The text segment is at the bottom of the
address space. The text segment contains the instructions to be executed called the program code. The data
segment above it contains the initialized global, external, and static variables for the process. The

stack segment contains locally allocated variables and parameters passed to functions. Because a process
can make system function calls as well as user-defined function calls, two stacks are maintained in the
stack segment, the user stack and the kernel stack. When a function call is made, a stack-frame is
constructed and pushed onto either the user or kernel stack, depending on whether the process is in user
or kernel mode. The stack segment grows downward toward the data segment. The stack frame is
popped from the stack when the function returns. The text, data, and stack segments and the process
control block are part of what forms the process image.

PROCESS IDENTIFICATION

PROCESS STATE INFO. PCB
PROCESS CONTROL INFO.

STACK SEGMENT
KERNEL STACK

USER STACK

PROCESS _|
IMAGE DATA SEGMENT

< initialized global variables
« external variables
« static variables

TEXT SEGMENT

 program code

Figure 5-2
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The address space of a process is virtual. Virtual storage dissociates the addresses referenced in an
executing process from the addresses actually available in internal memory. This allows the addressing
of storage space much larger than what is available. The segments of the process’s virtual address space
are contiguous blocks of memory. Each segment and physical address space are broken up into chunks
called pages. Each page has a unique page frame number. The virtual page frame number (VPFN) is used
as an index into the process’s page tables. The page tables entries contain a physical page frame number
(PEN), thus mapping the virtual page frames to physical page frames. This is depicted in Figure 5-3. As
illustrated, virtual address space is contiguous but it is mapped to physical pages in any order.

PROCESS B’S
VIRTUAL ADDRESS
SPACE
VPFN 8
PROCESS B’S VPFN 7 - STACK SEGMENT
PAGE TABLES VPFN G
=.| i
PFN 35 VPFN 5 1
PFN 18 VPFN 4 - DATA SEGMENT
PFN 13 VPFN 3 |
PFN'5 < VPFN 2 1
PEN 11 VPFN 1 - TEXT SEGMENT
VPFN 0 |
PHYSICAL MEMORY
PFN3 | PFN4 | PFN5 | PFNG | PFN7 | PFN8 | PFNO
VPFN 8 J
VPFN 7 »  PFN5 W
VPFN 6 PFN 16
VPFN 5 PFN 3
VPFN 4 PFN 26
VPFN 3 PFN 1
VPFN 2 PROCESS A’S
PAGE TABLES
VPFN 1
VPFN 0
PROCESS A’S
VIRTUAL ADDRESS
SPACE
Figure 5-3
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Even though the virtual address space of each process is protected to prevent another process from
accessing it, the text segment of a process can be shared among several processes. Figure 5-3 also shows
how two processes can share the same program code. The same physical page frame number is stored in
the page table entries of both processes’ page tables. As illustrated in Figure 5-3, process A’s virtual page
frame 0 is mapped to physical page frame 5, as is process B’s virtual page frame 2.

For the operating system to manage all the processes stored in internal memory, it creates and maintains
process tables. Actually, the operating system has a table for all of the entities that it manages. Keep in
mind that the operating system manages not only processes but all the resources of the computer
including devices, memory, and files. Some of the memory, devices, and files are managed on the behalf
of the user processes. This information is referenced in the PCB as resources allocated to the process. The
process table has an entry for each process image in memory. This is depicted in Figure 5-4. Each entry
contains the process and parent process id; the real and effective user id and group id; a list of pending
signals; the location of the text, data, and stack segments; and the current state of the process. When

the operating system needs to access a process, the process is looked up in the process table, and then the
process image is located in memory.

MEMORY TABLES | N e
" image
MEMORY I-»{ FILE TABLES |
FILES 4
DEVICES «—>| 1/0 TABLES | > 5#294853
PROCESSES
PID PPID STAT
196 |0 .
5 | o | s .
12|15 | R
0| 9 | s
free entry PID 42's
42 | 30 | S | |.__| "l image
PROCESS TABLES
Figure 5-4

Process States

During a process’s execution, it changes its state. The state of the process is the current condition or
status of the process. In a POSIX-compliant environment, a process can be in the following states:

O  Running
QO  Runnable (ready)
0  Zombied
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Q  Waiting (blocked)
Q  Stopped

The current condition of the process depends upon the circumstances created by the process or by the
operating system. When certain circumstances exist, the process will change its state. State transition is
the circumstance that causes the process to change its state. Figure 5-5 is the state diagram for the
processes. The state diagram has nodes and directed edges between the nodes. Each node represents the
state of the process. The directed edges between the nodes are state transitions. Table 5-4 lists the state
transitions with a brief description. As Figure 5-5 and Table 5-4 show, only certain transitions are allowed
between states. For example, there is a transition, an edge, between ready and running, but there is no
transition, no edge, between sleeping and running. Meaning, there are circumstances that causes a
process to move from the ready state to the running state, but there are no circumstances that cause

a process to move from the sleeping state to a running state.

STOPPED

signaled signaled

preempt

exit
system

enters
system

dispatch

READY
(runnable)

v

RUNNING

timer runout

event occurs
or 1/0 complete

wait on event

or1/0 terminated

ZOMBIED

Figure 5-5
Table 5-4
State Transitions Descriptions
READY->RUNNING The process is assigned to the processor.
(dispatch)
RUNNING-> The time slice the process assigned to the processor has run out. The
READY (timer process is placed back in the ready queue.
runout) The process has been preempted before the time slice ran out. This can
RUNNING-> occur if a process with a higher priority is runnable. The process is placed
READY (preempt) back in the ready queue.
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State Transitions

Descriptions

RUNNING->
SLEEPING (block)

SLEEPING->READY
(unblock)

RUNNING->
STOPPED
STOPPED->READY

RUNNING->

The process gives up the processor before the time slice has run out. The
process may need to wait for an event or has made a system call, for
example, a request for I/O. The process is placed in a queue with other
sleeping processes.

The event the process was waiting for has occurred, or the system call
has completed. For example, the I/O request is filled. The process is
placed back in the ready queue.

The process gives up the processor because it has received a signal to
stop.

The process has received the signal to continue and is placed back in the
ready queue.

The process has been terminated and awaits the parent to retrieve its exit

ZOMBIED
ZOMBIED->EXIT

status from the process table.

The parent process has retrieved the exit status, and the process exits the
system.

RUNNING->EXIT The process has terminated, the parent has retrieved the exit status, and

the process exits the system.

When a process is created, it is ready to execute its instructions but must first wait until the processor is
available. Each process is allowed to use the processor only for a discrete interval called a time slice.
Processes waiting to use the processor are placed in ready queues. Only processes in the ready queues
are selected (by the scheduler) to use the processor. Processes in the ready queues are runnable. When the
processor is available, a runnable process is assigned the processor by the dispatcher. When the time
slice has expired, the process is removed from the processor, whether it has finished executing all its
instructions or not. The process is placed back in the ready queue to wait for its next turn to use the
processor. A new process is selected from a ready queue and is given its time slice to execute. System
processes are not preempted. When they are given the processor, they run until completion. If the time
slice has not expired, a process may voluntarily give up the processor if it cannot continue to execute
because it must wait for an event to occur. The process may have made a request to access an 1/O device
by making a system call, or it may need to wait on a synchronization variable to be released. Processes
that cannot continue to execute because they are waiting for an event to occur are in a sleeping state. They
are placed in a queue with other sleeping processes. They are removed from that queue and placed back
in the ready queue when the event has occurred. The processor may be taken away from a process before
its time slice has run out. This may occur if a process with a higher priority, like a system process, is
runnable. The preempted process is still runnable and, therefore, is placed back in the ready queue.

A running process can receive a signal to stop. The stopped state is different from a sleeping state. The
process’s time slice has not expired nor has the process made any request of the system. The process may
receive a signal to stop because it is being debugged or some situation has occurred in the system. The
process has made a transition from running to stopped state. Later the process may be awakened, or it
may be destroyed.
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When a process has executed all its instructions, it exits the system. The process is removed from the
process table, the PCB is destroyed, and all of its resources are deallocated and returned to the system
pool of available resources. A process that is unable to continue executing but cannot exit the system is in
a zombied state. A zombied process does not use any system resources, but it still maintains an entry in
the process table. When the process table contains too many zombied processes, this can affect the
performance of the system, possibly causing the system to reboot.

How Are Processes Scheduled?

When a ready queue contains several processes, the scheduler must determine which process should be
assigned to a processor first. The scheduler maintains data structures that allow it to schedule the
processes in an efficient manner. Each process is given a priority class and placed in a priority queue
with other runnable processes with the same priority class. There are multiple priority queues, each
representing a different priority class used by the system. These priority queues are stratified and placed
in a dispatch array called the multilevel priority queue. Figure 5-6 depicts the multilevel priority queue.
Each element in the array points to a priority queue. The scheduler assigns the process at the head of the
nonempty highest priority queue to the processor.

6 » PID12 | PID17
CORE 0 CORE 1 5
| PID 71 | | PID 35 |
running running 4 » PID90 | PID43 | PID10 | PID 50

I/’ 3
DISPATCHER r

SCHEDULER | —

Figure 5-6

Priorities can be dynamic or static. Once a static priority of a process is set, it cannot be changed. Dynamic
priorities can be changed. Processes with the highest priority can monopolize the use of the processor. If
the priority of a process is dynamic, the initial priority can be adjusted to a more appropriate value. The
process is placed in a priority queue that has a higher priority. A process monopolizing the processor can
also be given a lower priority, or other processes can be given a higher priority than that process has.
When you are assigning priority to a user process, consider what the process spends most of its time
doing. Some processes are CPU-intensive. CPU-intensive processes use the processor for the whole time
slice. Some processes spend most of its time waiting for I/O or some other event to occur. When such a
process is ready to use the processor, it should be given the processor immediately so it can make its next
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request for I/O. Processes that are interactive may require a high priority to assure good response time.
System processes have a higher priority than user processes.

The processes are placed in a priority queue according to a scheduling policy. Two of the primary
scheduling policies used in the POSIX API are the First-In, First-Out (FIFO) and round robin (RR)
policies.

Q  Figure 5-7 (a) shows the FIFO scheduling policy. With a FIFO scheduling policy, processes are
assigned the processor according to the arrival time in the queue. When a running process time
slice has expired, it is placed at the head of its priority queue. When a sleeping process becomes
runnable, the process is placed at the end of its priority queue. A process can make a system call
and give up the processor to another process with the same priority level. The process is then
placed at the end of its priority queue.

Q  Inround robin scheduling policy, all processes are considered equal. Figure 5-7 (b) depicts the
RR scheduling policy. RR scheduling is the same as FIFO scheduling with one exception: When
the time slice expires, the process is placed at the back of the queue and the next process in the
queue is assigned the processor.

(a) FIFO SCHEDULING

READY QUEUE
1st to arrive last to arrive
exit CORE 0 CORE 1 assigned |~ -
t CPU
kil PID 71 PID35 | | «—— PID 71 : PID35 | PID 63 | PID 50
running running — _?_ 4 A
1 |
timer runout
-
» PID90 | PID43 | PID10 | PID 50 —
1/0 request I 1/0 complete
SLEEPING PROCESSES IN A QUEUE
(b) RR SCHEDULING
READY QUEUE
1st to arrive last to arrive
exit CORED CORE 1 assigned [ T T T
CPU
System PID 71 PID35 | | «— PID71 : PID35 | PID 63 | PID 50
running running I_ e Al -; A
. _tmermeow_ _ _____ J
-
» PID90 | PID43 | PID10 | PID 50 —
1/0 request I 1/0 complete
SLEEPING PROCESSES IN A QUEUE
Figure 5-7
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Figure 5-7 shows the behavior of the FIFO and RR scheduling policies. The FIFO scheduling policy
assigns processes to the processor according to its arrival time in the queue. The process runs until
completion. RR scheduling policy assigns processes using FIFO scheduling, but when the time slice runs

out, the process is placed at the back of the ready queue.

Monitoring Processes with the ps Utility

The ps utility generates a report that summarizes execution statistics for the current processes. This
information can be used to monitor the status of current processes. Table 5-5 lists the common headers
and the meaning of the output for the ps utility for the Solaris/Linux environments.

Table 5-5

Headers Description Headers Description

USER, UID Username of process owner T, TTY Process’s controlling terminal

PID Process ID S, STAT Current state of the process

PPID Parent process ID

PGID ID of process group leader TIME Total CPU time used by the

SID ID of session leader process (HH:MM:SS)

$CPU Percentage of CPU time used by STIME, Time or date the process
the process in the last minute START started

RSS Amount of real RAM currently NI Nice value of the process
used by the process in k

SMEM Percentage of real RAM used by PRI Priority of the process
the process in the last minute

SZ Size of virtual memory of the c, Cp Short term CPU-use factor
process’s data and stack in k or used by scheduler to compute
pages PRI

WCHAN Address of an event for which a ADDR Memory address of a process
process is sleeping

COMMAND Command name and arguments LWP ID of the Iwp (thread)

CMD NLWP The number of Iwps

In a multiprocessor environment, the ps utility is useful to monitor the state, CPU and memory usage,
processor utilized, priority, and start time of the current processes executing. Command options control
which processes are listed and what information is displayed about each process. In the Solaris
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environment, by default (meaning no command options are used), information about processes with

the same effective user id and controlling terminal of the calling invoker is displayed. In the

Linux environment, by default, the processes with the same user id as the invoker are displayed. In both
environments, the only information that is displayed is PID, TTY, TIME, and COMMAND. These are some of
the options that control which processes are displayed:

O -t term: List the processes associated with the terminal specified by term

Q  -e: All current processes

Q  -a:(Linux) All processes with tty terminal except the session leaders

Q  (Solaris) Most frequently requested processes except group leaders and processes not associated

with a terminal

Q  -a: All current processes except session leaders
Q  T: (Linux) All processes in this terminal
Q  a:(Linux) All processes including those of other users
Q  r:(Linux) Only running processes
Synopsis

(Linux)

ps -[Unix98 options]
[BSD-style options]
--[GNU-style long options

(Solaris)
ps [-aAdeflcjLPy][-o format][-t termlist][-u userlist]
[-G grouplist][-p proclist][-g pgrplist][-s sidlist]

The following lists some of the command options used to control the information displayed about the
processes:

Q  -£:Full listings
a -1: Long format

Q  -j:Jobs format
This is an example of using the ps utility in Solaris/Linux environments:

ps -f
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This displays information about the default processes in each environment. Figure 5-8 shows the output
in the Solaris environment. The command options can also be used in tandem. Figure 5-8 also shows the
output of using -1 and - f together in the Solaris environment:

ps -1f
//SOLARIS
$ ps -f

UID PID PPID C STIME TTY TIME
cameron 2214 2212 0 21:03:35 pts/12 0:00
cameron 2396 2214 2 11:55:49 pts/12 0:01
S ps -1f
F S UID PID PPID C PRI NI ADDR SZ
8 S cameron 2214 2212 0 51 20 70e80£00 230
8 S cameron 2396 2214 1 53 24 70d747b8 843

Figure 5-8

CMD
-ksh
nedit

WCHAN STIME TTY TIME CMD
70e80f6c 21:03:35 pts/lZ 0:00 -ksh
70152aba 11:55:49 pts/12 0:01 nedit

The -1 command option shows the additional headers F, S, PRI, NI, ADDR, SZ, and WCHAN.

The p command option displays the PSR header. Under this header is the number of the processor to
which the process is assigned or bound.

Figure 5-9 shows the output of the ps utility using the Tux command options in the Linux environment.

//Linux

[tdhughes@colony] $ ps Tux
$MEM

USER

tdhughes
tdhughes
tdhughes
tdhughes
tdhughes
tdhughes
tdhughes
tdhughes

Figure 59

PID
19259
19334
19336
19337
19338
19341
19400
19401

sCPU
0.
0.
0.
18.
18.
17.
0.
0.

0

[eNeRNeNeNeoNe]

0.

OO NMNNMDNOO

1

HOWwWWwWd oo

VSZ
2448
1732
1928

26872
26872
26872
2544
2448

RSS
1356
860
780
24856
24696
24556
692
1356

TTY STAT START TIME COMMAND
pts/4 S 20:29 0:00 -bash
pts/4 S 20:33 0:00 /home/tdhughes/pv
pts/4 IS 20:33 0:00 /home/tdhughes/pv
pts/4 R 20:33 0:47 /home/tdhughes/pv
pts/4 R 20:33 0:47 /home/tdhughes/pv
pts/4 R 20:33 0:47 /home/tdhughes/pv
pts/4 R 20:38 0:00 ps Tux
pts/4 R 20:38 0:00 -bash

The $CpPU, $MEM, and STAT information is displayed for the processes. In a multiprocessor environment,
this information can be used to monitor which processes are dominating CPU and memory usage. The
STAT header shows the state or status of the process. Table 5-6 lists how the status is encoded and their
meanings.
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Table 5-6
Status of Process Description
D Uninterruptible sleep (usually I/O)
R Running or runnable (on run queue)
S Interruptible sleep (waiting for an event to complete)
T Stopped either by a job control signal or because it is being traced
Z “Zombie” process, terminated with no parent

The sTAT header can reveal additional information about the status of the process:

Q b: (BSD) Disk wait

Q  p:(BSD) Page wait
X: (System V) Growing: waiting for memory
w: (BSD) Swapped out
K: (AIX) Available kernel process

Q
H]
Qa
Q  x: (BSD) Niced: execution priority lowered
Q  >:(BSD) Niced: execution priority artificially raised
0 < (Linux) High-priority process

Q

L: (Linux) Pages are locked in memory

These codes precede the status codes. If an N precedes the status, this means that the process is running
at a lower priority level. If a process has a status S<W, this means the process is sleeping, swapped out,
and has a high priority level.

Setting and Getting Process Priorities

The priority level of a process can be changed by using the nice () function. Each process has a nice
value that is used to calculate the priority level of the calling process. A process inherits the priority of
the process that created it. But the priority of a process can be lowered by raising its nice value. Only
superuser and kernel processes can raise priority levels.

Synopsis

#include <unistd.h>

int nice(int incr);
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Alow nice value raises the priority level of the process. The incr parameter is the value added to the
current nice value of the calling process. The incr can be negative or positive. The nice value is a non-
negative number. A positive incr value raises the nice value, thus lowering the priority level. A negative
incr value lowers the nice value, thus raising the priority level. If the incr value raises the nice value
above or below its limits, the nice value of the process is set to the highest or lowest limit accordingly. If
successful, the nice () function returns the new nice value of the process. If unsuccessful, the function
returns -1, and the nice value is not changed.

Synopsis
#include <sys/resource.h>

int getpriority(int which, id_t who) ;
int setpriority(int which, id_t who, int value);

setpriority () sets the nice value for a process, process group, or user. getpriority () returns the
priority of a process, process group, or user. Example 5-2 shows the syntax for the functions
setpriority () and getpriority () to set and return the nice value of the current process.

Example 5-2

//Example 5-2 shows how setpriority() and getpriority() can be used.
#include <sys/resource.h>

/] ...

id_t pid = 0;
int which = PRIO_PROCESS;
int value = 10;

int nice_value;

int ret;

nice_value = getpriority(which,pid);
if (nice_value < value) {

ret = setpriority(which,pid,value);
}
/] ...

In Example 5-2, the priority of the calling process is being returned and set. If the calling process’s nice
value is < 10, the nice value of the process is set to 10. The target process is determined by the values
stored in the which and who parameters. The which parameter can specify a process, process group, or a
user. It can have the following values:

U  PRIO_PROCESS: Indicates a process

0 PRIO_PGRP: Indicates a process group

Q  PRIO_USER: Indicates a user
Depending on the value of which, the who parameter is the id number of a process, process group, or
effective user. In Example 5-2, which is assigned PRIO_PROCESS. A 0 value for who indicates the current

process, process group, or user. In Example 5-2, who is set to 0, indicating that the current process value
for setpriority () will be the new nice value for the specified process, process group, or user.
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The range of nice value in the Linux environment is -20 to 19. In Example 5-2, the value of nice is set to 10 if
the current nice value is less than 10. In contrast to how things worked with the function nice (), the value
passed to setpriority () is the actual value of nice, not an offset to be added to the current nice value. In
a process with multiple threads, the modification of the priority affects the priority of all the threads in that
process. If successful, getpriority () returns the nice value of the specified process. If successful,
setpriority () returns 0. If unsuccessful, both functions return -1. The return value -1 is a legitimate

nice value for a process. To determine if an error has occurred, check the external variable errno.

What Is a Context Switch?

A context switch occurs when the use of the processor is switched from one process to another process.
When a context switch occurs, the system saves the context of the current running process and restores
the context of the next process selected to use the processor. The PCB of the preempted process is
updated. The process state field is changed from the running to the appropriate state (runnable, blocked,
zombied, or so forth). The contents of the processor’s registers, state of the stack, user and process
identification and privileges, and scheduling and accounting information are saved and updated.

The system must keep track of the status of the process’s I/O and other resources, and any memory
management data structures. The preempted process is placed in the appropriate queue.

A context switch occurs when a:

Q  Process is preempted

O  Process voluntarily gives up the processor

Q  Process makes an I/O request or needs to wait for an event
a

Process switches from user mode to kernel mode

When the preempted process is selected to use the processor again, its context is restored, and execution
continues where it left off.

The Activities in Process Creation

To run any program, the operating system must first create a process. When a new process is created, a
new entry is placed in the main process table. A new PCB is created and initialized. The process
identification portion of the PCB contains a unique process id number and the parent process id. The
program counter is set to point to the program entry point, and the system stack pointers are set to
define the stack boundaries for the process. The process is initialized with any of the attributes
requested. If the process is not given a priority value, it is given the lowest-priority value by default. The
process initially does not own any resources unless there is an explicit request for resources or they have
been inherited from the creator process. The state of the process is runnable, and it is placed in the
runnable or ready queue. Address space is allocated for the process. How much space to be set aside can
be determined by default, based on the type of process. The size can also be set as a request by the
creator of the process. The creator process can pass the size of the address space to the system at the time
the process is created.
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Using the fork() Function Call

In addition to posix_spawn (), for creating processes the POSIX API also supports the fork/exec
functions. These functions are available in all Unix/Linux derivatives. The fork () call creates a new
process that is a duplication of the calling process, the parent. The fork () returns two values if it
succeeds, one to the parent and one to the child process. It returns 0 to the child process and returns the
PID of the child to the parent process. The parent and child processes continue to execute from the
instruction immediately following the fork () call. If not successful, meaning that no child process was
created, -1 is returned to the parent process.

Synopsis

#include <unistd.h>
pid_t fork(void) ;

The fork () fails if the system does not have the resources to create another process. If there is a limit to
the number of child processes the parent can spawn or the number of systemwide executing processes
and that limit has been exceeded, the fork () fails. In that case, errno is set to indicate the error.

Using the exec() Family of System Calls

The exec family of functions replaces the calling process image with a new process image. The fork ()
call creates a new process that is a duplication of the parent process, whereas the exec function replaces
the duplicate process image with a new one. The new process image is a regular executable file and is
immediately executed. The executable can be specified as a path or a filename. These functions can pass
command-line arguments to the new process. Environment variables can also be specified. There is no
return value if the function is not successful, because the process image that contained the call to the
exec is overwritten. If the function is unsuccessful, -1 is returned to the calling process.

All of the exec () functions can fail under these conditions:

U  Permissions are denied.
Q  Search permission is denied for the executable’s file directory.
Q  Execution permission is denied for the executable file.
Q  Files do not exist.
Q  Executable file does not exist.
Q  Directory does not exist.
Q  File is not executable.
Q  File is not executable because it is open for writing by another process.

Q  File is not an executable file.
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QO  Problems with symbolic links.
Q  Loop exists when symbolic links are encountered while resolving the pathname to the
executable.
Q  Symbolic links cause the pathname to the executable to be too long.
The exec functions are used with the fork (). The fork() creates and initializes the child process with

the duplicate of the parent. The child process then replaces its process image by calling an exec ().
Example 5-3 shows an example of the fork-exec usage.

Example 5-3
// Example 5-3 Using the fork-exec system calls.

/] ...
RtValue = fork();
if (Rtvalue == 0){
execl ("/home/user/direct", "direct",".");
}

In Example 5-3, the fork () function is called and the return value is stored in Rtvalue. If RtValueis 0,
then it is the child process. The execl () function is called. The first parameter is the path to the
executable module, the second parameter is the execution statement, and the third parameter is the
argument. direct is a utility that lists all the directories and subdirectories from a given directory,
which, in this case, is the current directory. There are six versions of the exec functions, each having
different calling conventions and uses; those are discussed in the next sections.

The execl() Functions

The execl (), execle(), and execlp () functions pass the command-line arguments as a list. The
number of command-line arguments should be known at compile time in order for these functions
to be useful.

] int execl (const char *path,const char *arg0,.../*, (char *)0 */);

The path parameter is the pathname to the program executable. It can be specified as an
absolute pathname or a relative pathname from the current directory. The next arguments are
the list of command-line arguments, from arg0 to argn. There can be n number of arguments.
The list is to be followed by a NULL pointer.

4 int execle(const char *path,const char *arg0,.../*, (char *)0 *, char *const
envp[]*/);

This function is identical to execl () except that it has an additional parameter, envp []. This
parameter contains the new environment for the new process. envp[] is a pointer to a null-ter-
minated array of null-terminated strings. Each string has the form:

name=value

where name is the name of the environment variable, and value is the string to be stored.
envp[] can be assigned in this manner:

char *const envp[] = {"PATH=/opt/kde5:/sbin", "HOME=/home",6 NULL};
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PATH and HOME are the environment variables in this case.
a int execlp(const char *file,const char *arg0O,.../*, (char *)0 */);
file is the name of the program executable. It uses the PATH environment variable to locate the

executables. The remaining arguments are the list of command-line arguments as explained for
execl () function.

These are examples of the syntax of the execl () functions using these arguments:

char *const args[] = {"direct",".",NULL};

char *const envp[] = {"files=50",NULL};

execl ("/home/tracey/direct", "direct",".",NULL) ;
execle (" /home/tracey/direct", "direct",".",NULL, envp) ;
execlp("direct", "direct",".",NULL) ;

Each shows the syntax of how the execl () function creates a process that executes the direct program.

Synopsis

#include <unistd.h>

int execl (const char *path,const char *arg0O,.../*, (char *)0 */);
int execle(const char *path,const char *arg0O,.../*,

(char *)0 *,char *const envp[]*/);
int execv(const char *path,char *const argl]);
int execlp(const char *file,const char *arg0,.../*, (char *)0 */);
int execve (const char *path,char *const argl[],
char *const envpl[]);
int execvp(const char *file,char *const argl]);

The execv() Functions
The execv (), execve (), and execvp () functions pass the command-line arguments in a vector of
pointers to null-terminated strings. The number of command-line arguments should be known at
compile time in order for these functions to be useful. argv[0] is usually the execution statement.

[l int execv(const char *path,char *const argl]);

The path parameter is the pathname to the program executable. It can be specified as an
absolute pathname or relative pathname to the current directory. The next argument is the
null-terminated vector that contains the command-line arguments as null-terminated strings.
There can be n number of arguments. The vector is to be followed by a NULL pointer.

arg[] can be assigned in this manner:

char *const arg[] = {"traverse",".", ">","1000",NULL};
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This is an example of a function call:

execv ("traverse",arg) ;

In this case, the traverse utility lists all files in the current directory larger than 1000 bytes.
4 int execve(const char *path,char *const arg[],char *const envpl[]);

This function is identical to execv () except that it has the additional parameter envp|[]
described earlier.

a int execvp (const char *file,char *const argll);
file is the name of the program executable. The next argument is the null-terminated vector

that contains the command-line arguments as null-terminated strings. There can be n number of
arguments. The vector is to be followed by a NULL pointer.

These are examples of the syntax of the execv () functions using these arguments:

char *const arg[] = {"traverse",".", ">","1000",NULL};
char *const envp[] = {"files=50",NULL};

execv (" /home/tracey/traverse", arqg) ;
execve (" /home/tracey/traverse",arg, envp) ;
execvp ("traverse",arg) ;

Each shows the syntax of how each execv () function creates a process that executes the traverse
program.

Determining the Restrictions of exec() Functions

There is a limit on the size that argv[] and envp [] can be when passed to the exec () functions. The
sysconf () can be used to determine the maximum size of the command-line arguments plus the size of
environment variables for the functions that accept envp [ 1, which can be passed to the exec ()
functions. To return the size, name should have the value _SC_ARG_MAX.

Synopsis
#include <unistd.h>

long sysconf (int name) ;

Another restriction when you are using exec () and the other functions used to create processes is the
maximum number of simultaneous processes allowed per user id. To return this number, name should
have the value _SC_CHILD_MAX.
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Working with Process Environment
Variables

Environment variables are null-terminated strings that store system-dependent information such as
paths to directories that contain commands, libraries, functions, and procedures used by a process. They
can also be used to transmit any useful user-defined information between the parent and the child
processes. They are a mechanism for providing specific information to a process without having it
hardcoded in the program code. System environment variables are predefined and common to all shells
and processes in that system. The variables are initialized by startup files. These are the common system
variables:

Q  $HOME: The absolute pathname of your home directory
$PATH: A list of directories to search for commands
$MAIL: The absolute pathname of your mailbox
$USER: Your user id

$SHELL: The absolute pathname of your login shell

O 00 oo

$TERM: Your terminal type

They can be stored in a file or in an environment list. The environment list contains pointers to null-
terminated strings. The variable:

extern char **environ
points to the environment list when the process begins to execute. These strings have the form:
name=value

as explained earlier. Processes initialized with the functions execl (), execlp (), execv (), and
execvp () inherit the environment of the parent process. Processes initialized with the functions
execve () and execle () set the environment for the new process.

There are functions and utilities that can be called to examine, add, or modify environment variables.
getenv () is used to determine whether a specific variable has been set. The parameter name is the
environment variable in question. The function returns NULL if the specified variable has not been set.
If the variable has been set, the function returns a pointer to a string containing the value.

Synopsis
#include <stdlib.h>
char *getenv(const char *name);

int setenv(const char *name, const char *value, int overwrite);
void unsetenv(const char *name) ;
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For example:
string Path;
Path = getenv("PATH");
the string Path is assigned the value contained in the predefined environment PATH.

setenv ()is used to change or add an environment variable. The parameter name contains the name
of the environment variable added with the value stored in value. If the name variable already exists,
then the value is changed to value if the overwrite parameter is non-zero. If overwrite is 0, the
content of the specified environment variable is not modified. setenv () returns 0 if it is successful
and -1 if it is unsuccessful. The unsetenv () removes the environment variable specified by name.

Using system() to Spawn Processes

system () is another function that is used to execute a command or executable program. system()
causes the execution of fork (), exec (), and a shell. The system () function executes a fork (), and the
child process calls an exec () with a shell that executes the given command or program.

Synopsis
#include <stdlib.h>

int system(const char *string);

The string parameter can be a system command or the name of an executable file. If successful, the
function returns the termination status of the command or return value (if any) of the program. Errors
can happen at several levels; the fork () or exec () may fail, or the shell may not be able to execute the
command or program.

The function returns a value to the parent process. The function returns 127 if the exec () fails and -1 if
some other error occurs. The return code of the command is returned if the function succeeds. This
function does not affect the wait status of any of the child processes.

Killing a Process

When a process is terminated, the PCB is erased, and the address space and resources used by the
terminated process are deallocated. An exit code is placed in its entry in the main process table. The
entry is removed once the parent has accepted the exit code. The termination of the process can occur
under several conditions:

Q  Allinstructions have executed. The process makes an explicit return or makes a system call that
terminates the process. The child processes may automatically terminate when the parent has
terminated.

Q  The parent sends a signal to terminate its child processes.
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Abnormal termination of a process can occur when the process itself does something that it shouldn’t:

Q  The process requires more memory than the system can provide it.

Q  The process attempts to access resources it is not allowed to access. The process attempts to
perform an invalid instruction or a prohibited computation.

The termination of a process can also be initiated by a user when the process is interactive.

The parent process is responsible for the termination/deallocation of its children. The parent process
should wait until all its child processes have terminated. When a parent process retrieves a child
process’s exit code, the child process exits the system normally. The process is in a zombied state until
the parent accepts the signal. If the parent never accepts the signal because it has already terminated and
exited the system or because it is not waiting for the child process, the child remains in the zombied state
until the init process (the original system process) accepts its exit code. Many zombied processes can
negatively affect the performance of the system.

The exit(), and abort() Calls

There are two functions a process can call for self-termination, exit () and abort (). The exit ()
function causes a normal termination of the calling process. All open file descriptors associated with the
process will be closed. The function flushes all open streams that contain unwritten buffered data then
the open streams are closed. The status parameter is the process’s exit status. It is returned to the
waiting parent process that is then restarted. The value of status may be 0, EXIT_FAILURE, or EXIT_
succEessS. The 0 value means that the process has terminated successfully. The waiting parent process
only has access to the lower 8 bits of status. If the parent process is not waiting for the process to
terminate, the zombied process is adopted by the init process. The abort () function causes an
abnormal termination of the calling process. An abnormal termination of the process causes the same
effect as fclose () on all open streams. A waiting parent process receives a signal that the child process
aborted. A process should only abort when it encounters an error that it cannot deal with
programmatically.

Synopsis
#include <stdlib.h>

void exit (int status);
void abort (void) ;

The kill() Function

The kill () function can be used to cause the termination of another process. The kill () function
sends a signal to the process or processes specified or indicated by the parameter pid. The parameter
sig is the signal to be sent to the specified process. The signals are listed in the header <signal.h>.

To kill a process, sig has the value SIGKILL. The calling process must have the appropriate privileges to
send a signal to the process, or it has to have a real or an effective user id that matches the real or saved
set-user-1ID of the process that receives the signal. The calling process may have permission to send
only certain signals to processes and not others. If the function successfully sends the signal, 0 is
returned to the calling process. If it fails, -1 is returned.
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The calling process can send the signal to one or several processes under these conditions:

Q  pid> 0: The signal is sent to the process whose PID is equal to the pid.

Q  pid=0: The signal is sent to all the processes whose process group id is the same as the calling
process.

QO  pid=-1:The signal is sent to all processes for which the calling process has permission to send
that signal.

Q  pid<-1: The signal is sent to all processes whose process id group is equal to the absolute
value of pid and for which the calling process has permission to send that signal.

Synopsis

#include <signal.h>

int kill(pid_t pid, int sig);

Process Resources

In order for a process to perform whatever task it is instructed to perform, it may need to write data to a
file, send data to a printer, or display data to the screen. A process may need input from the user via the
keyboard or input from a file. Processes can also use other processes such as a subroutine as a resource.
Subroutines, files, semaphores, mutexes, keyboards, and display screens are all examples of resources
that can be utilized by a process. A resource is anything used by the process at any given time as a source
of data, as a means to process or compute, or as the means by which the data or information is displayed.

For a process to access a resource, it must first make a request to the operating system. If the resource is
available, the operating system allows the process to use the resource. The process uses the resource then
releases it so that it will be available to other processes. If the resource is not available, the request is
denied, and the process must wait. When the resource becomes available, the process is awakened. This
is the basic format of resource allocation. Figure 5-10 shows a resource allocation graph. The resource
allocation graph shows which processes hold resources and which processes are requesting resources.

In Figure 5-10, Process B makes a request for resource 2, which is held by Process C. Process C makes a
request for resource 3, which is held by Process D.
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Figure 5-10
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When more than one request to access a resource is granted, the resource is sharable. This is shown in
Figure 5-10 as well. Process A shares resource 1 with Process D. A resource may allow many processes
concurrent access or may allow one process only limited time before allowing another process access.
An example of this type of shared resource is the processor. A process is assigned a processor for a short
interval and then another process is assigned the processor. When only one request to access a

resource is granted at a time and that occurs after the resource has been released by another process,

the resource is unshared, and the process has exclusive access to the resource. In a multiprocessor
environment, it is important to know whether a shared resource can be accessed simultaneously or only
by one process at a time, in order to avoid some of the pitfalls inherent in concurrency.

Some resources can be changed or modified by a process. Other resources do not allow a process to change
it. The behavior of shared modifiable or unmodifiable resources is determined by the resource type.

Types of Resources

There are three basic types of resources:

O  Hardware
4 Data

O  Software

Hardware resources are physical devices connected to the computer. Examples of hardware resources are
processors, main memory, and all other I/O devices including printers; hard disk, tape, and zip drives;
monitors; keyboards; sound, network, and graphic cards; and modems. All these devices can be shared
by several processes.

Some hardware resources are preempted to allow different processes access. For example, a processor is
preempted to allow different processes time to run. RAM is another example of a shared preemptible
resource. When a process is not in use, some of the physical page frames it occupies may be swapped out
to secondary storage in order for another process to be swapped in to occupy those now available page
frames. A range of memory can be occupied only by the page frames of one process at any given time.
An example of a nonpreemptible shared resource is a printer. When a printer is shared, the jobs sent to
the printer by each process are stored in a queue. Each job is printed to completion before another job
starts. The printer is not preempted by any waiting printer jobs unless the current job is canceled.

Data resources such as objects; system data such as environment variables, files, and handles; globally
defined variables such as semaphores; and mutexes are all resources shared and modified by processes.
Regular files and files associated with physical devices such as the printer can be opened, restricting the
type of access processes has to that file. Processes may be granted only read or write access, or read/
write access. For processes with parent-child relationships, the child process inherits the parent process’s
resources and access rights to those resources existing at the time of the child’s creation. The child
process can advance the file pointer or close, modify, or overwrite the contents of a file opened by the
parent. Shared memory and files with write permission require their access to be synchronized. Shared
data such as semaphores or mutexes can be used to synchronize access to other shared data resources.

Shared libraries are examples of software resources. Shared libraries provide a common set of services or
functions to processes. Processes can also share applications, programs, and utilities. In such a case, only one
copy of the program(s) code is brought into memory. However, there are separate copies of the data, one for
each user (process). Program code that is not changed (also called reentrant) can be accessed by several
processes simultaneously.
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POSIX Functions to Set Resource Limits

POSIX defines functions that restrict a process’s ability to use certain resources. The operating system
sets limitations on a process’s ability to utilize system resources. These resource limits affect the
following:

Q  Size of the process’s stack

Q  Size of file and core file creation

0  Amount of CPU usage (size of time slice)

Q  Amount of memory usage

Q  Number of open file descriptors
The operating system sets a hard limit on resource usage by a process. The process can set or change the
soft limit of its resources. Its value should not exceed the hard limit set by the operating system. A
process can lower its hard limit. This value should be greater than or equal to the soft limit. When

a process lowers its hard limit, it is irreversible. Only processes with special privileges can raise their
hard limit.

Synopsis

#include <sys/resource.h>

int setrlimit(int resource, const struct rlimit *rlp);
int getrlimit(int resource, struct rlimit *rlp);
int getrusage(int who, struct rusage *r_usage);

The setrlimit () function is used to set limits on the consumption of specified resources. This function
can set both hard and soft limits. The parameter resource represents the resource type. Table 5-7 lists
the values for resource with a brief description. The soft and hard limits of the specified resource are
represented by the r1p paramater. The r1p parameter points to a struct rlimit that contains two
objects of type rlim_t:

struct rlimit

{
rlim t rlim_ cur;
rlim t rlim max;

rlim_t is an unsigned integer type. r1im_cur contains the current or soft limit. r1im_max contains the
maximum or hard limit. r1im cur and rlim_max can be assigned any value. They can also be assigned
these symbolic constants defined in the header <sys/resource.h>:

Q RLIM_INFINITY:Indicates no limit
0  RLIM_SAVED_MAX: Indicates an unrepresentable saved hard limit

0  RLIM_SAVED_CUR: Indicates an unrepresentable saved soft limit

The soft or hard limit can be set to RLIM_INFINITY, which means that the resource is unlimited.
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Table 5-7
Resource Definitions Descriptions
RLIMIT_CORE Maximum size of a core file in bytes that may be created by a process
RLIMIT_CPU Maximum amount of CPU time in seconds that may be used by a process
RLIMIT_DATA Maximum size of a process’s data segment in bytes
RLIMIT_FSIZE Maximum size of a file in bytes that may be created by a process
RLIMIT_NOFILE A number one greater than the maximum value that the system may

assign to newly created file descriptor

RLIMIT_STACK Maximum size of a process’s stack in bytes
RLIMIT_AS Maximum size of a process’s total available memory in bytes

The getrlimit () returns the soft and hard limit of the specified resource in the r1p object. Both the
getrlimit () and setrlimit () functions return 0 if successful and -1 if unsuccessful. Example 5-4
contains an example of a process setting the soft limit for file size in bytes.

Example 5-4
//Example 5-4 Using setrlimit() to set the soft limit for file size.
#include <sys/resource.h>

/...
struct rlimit R_limit;
struct rlimit R_limit_values;

/]

R_limit.rlim_cur = 2000;

R_limit.rlim_max = RLIM_SAVED_MAX;

setrlimit (RLIMIT_FSIZE,&R_limit) ;

getrlimit (RLIMIT FSIZE,&R_limit_values);

cout << "file size soft limit: " << R_limit_values.rlim_cur << endl;

/...

In Example 5-4, the file size soft limit is set to 2000 bytes, and the hard limit is set to hard limit
maximum. R_1imit and RLIMIT_FSIZE are passed to setrlimit ().getrlimit () is passed
RLIMIT _FSIZEand R_limit_values. The soft value is sent to cout.

getrusage () returns information about the measures of resources used by the calling process. It also
returns information about the terminated child process the calling process is waiting for. The parameter
who can have these values:

U RUSAGE_SELF

a RUSAGE_CHILDREN
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If the value for who is RUSAGE_SELF, then the information returned pertains to the calling process. If the
value for who is RUSAGE_CHILDREN, then the information returned is pertaining to the calling process’s
children. If the calling process did not wait for its children, then the information pertaining to

the children processes is discarded. The information is returned in r_usage. r_usage points to a struct
rusage that contains information listed and described in Table 5-8. If the function is successful, it returns
0; if unsuccessful, it returns —1.

Table 5-8
struct rusage Attributes Description
struct timeval ru_utime User time used
struct timeval ru_sutime Sys&qnthnetmed

long ru_maxrss

long ru_maxixrss
long ru_maxidrss
long ru_maxisrss

long ru_minflt
long ru_majflt

long ru_nswap

long ru_inblock
long ru_oublock

Maximum resident set size
Shared memory size
Unshared data size
Unshared stack size

Number of page claims
Number of page faults

Number of page swaps

Block input operations
Block output operations

long ru_msgsnd Number of messages sent

long ru_msgrcv Number of messages received

long ru_nsignals Number of signals received

long ru_nvcsw
long ru_nivcsw

Number of voluntary context switches
Number of involuntary context
switches

What Are Asynchronous and
Synchronous Processes

Asynchronous processes execute independent of each other. Process A runs until completion without any
regard to process B. Asynchronous processes may or may not have a parent-child relationship. If process
A creates process B, they can both execute independently, but at some point the parent retrieves the exit
status of the child. If the processes do not have a parent-child relationship, they may share the same
parent.

Asynchronous processes may execute serially or simultaneously or their execution may overlap. These
scenarios are depicted in Figure 5-11.

In Case 1, process A runs until completion, then process B runs until completion, and then process C
runs until completion. This is serial execution of these processes.
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Case 2 depicts simultaneous execution of processes. Process A and B are active processes. While process
A is running, process B is sleeping. At some point both processes are sleeping. Process B awakens before
process A. Then process A awakens, and now both processes are running at the same time. This shows
that asynchronous processes may execute simultaneously only during certain intervals of their
execution.

In Case 3, the execution of process A and the execution of process B overlap.

ASYNCHRONOUS PROCESSES

Case 1:
running
PROCESS A ——
running
PROCESS B -
running
PROCESS C
Case 2:
runnin ) runnin
PROCESS A _g sleeping Y
sleeping running
PROCESS B
Case 3:
running
PROCESS A S
i runnin
PROCESS B sleeping g
SYNCHRONOQUS PROCESSES
Case 4:
running sleeping running
PROCESS A —
| |
fork () : |
| running I'return exit code
PROCESS B
Figure 5-11
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Asynchronous processes may share resources like a file or memory. This may or may not require
synchronization or cooperation of the use of the resource. If the processes are executing serially (Case 1),
then they will not require any synchronization. For example, all three processes, A, B, and C, may share a
global variable. Process A writes to the variable before it terminates. Then, when process B runs, it reads
the data stored in the variable, and before it terminates it writes to the variable. When Process C runs, it
reads data from the variable. But in Case 2 and 3, the processes may attempt to modify the variable at the
same time, thus requiring synchronization of its use.

For our purposes, we define synchronous processes as processes with interleaved execution; one process
suspends its execution until another process finishes. For example, process A, the parent process,
executes and creates process B, the child process. Process A suspends its execution until process B runs to
completion. When process B terminates, its exit code is placed in the process table. Process A is informed
process B has terminated. Process A can resume additional processing and then terminate, or it can
immediately terminate. Process A and process B are synchronous processes. Figure 5-11 contrasts
synchronous and asynchronous execution of processes A and B.

Synchronous vs. Asynchronous Processes for fork(),
posix_spawn(), system(), and exec()

Processes created by the fork (), fork-exec (), and posix_spawn () functions create

asynchronous processes. When you are using fork (), the parent process image is duplicated. Once
the child process has been created, the function returns to the parent both the child’s PID and a return
value of 0, indicating process creation was successful. The parent does not suspend execution; both
processes continue to execute independently from the statement immediately preceding the fork().

Child processes created using the fork-exec () combination initialize the child’s process image with a
new process image. The exec () functions do not return to the parent process unless the initialization
was not successful.

The posix_spawn () functions create the child process image and initialize it within one function call.
The PID is returned to the posix_spawn () as well as a return value, indicating if the process was
spawned successfully. After posix_spawn () returns, both processes are executing at the same time.

Processes created by the system() function create synchronous processes. A shell is created that
executes the system command or executable file. The parent process is suspended until the child process
terminates and the system () call returns.

The wait() Function Call

Asynchronous processes can suspend execution until a child process terminates by executing wait ()
system call. After the child process terminates, a waiting parent process collects the child’s exit status
that prevents zombied processes. The wait () function obtains the exit status from the process table.
The status parameter points to a location that contains the exit status of the child process. If the parent
process has more than one child process and several of them have terminated, the wait () function
retrieves the exit status for only one child process from the process table. If the status information is
available before the execution of the wait () function, the function returns immediately. If the parent
process does not have any children, the function returns with an error code. The wait () function can
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also be called when the calling process is to wait until a signal is delivered and then perform some
signal-handling action.

Synopsis

#include <sys/wait.h>

pid_t wait (int *status);
pid_t waitpid(pid_t pid, int *status, int options);

The waitpid() function is the same as wait (), except that it takes an additional parameter, pid. The
pid parameter specifies a set of child processes for which the exit status is retrieved. Which processes are
in the set is determined by the value of pid:

Q  pid> 0: Asingle child process

Q  pid=0: Any child process whose group id is the same as the calling process

QO  pid < -1: Any child processes whose group id is equal to the absolute value of pid
QO  pid=-1: Any child processes

The options parameter determines how the wait should behave and can have the value of the following
constants defined in the header <sys/wait.h>:

0  WCONTINUED: Reports the exit status of any continued child process (specified by pid) whose
status has not been reported since it continued.

0  WUNTRACED: Reports the exit status of any child process (specified by pid) that has stopped
whose status has not been reported since it stopped.

0O  wNOHANG: The calling process is not suspended if the exit status for the specified child process is
not available.

These constants can be logically ORRED and passed as the options parameter (for example:
WCONTINUED | WUNTRACED).

Both the wait () and waitpid () functions return the PID of the child process whose exit status was
obtained. If the value stored in status is 0, then the child process has terminated under these conditions:

Q  The process returned 0 from the function main ().
Q  The process called some version of exit () with a 0 argument.

Q  The process was terminated because the last thread of the process terminated.

Table 5-9 lists the macros in which the value of the exit status can be evaluated.
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Table 5-9

Macros for

Evaluating status Description

WIFEXITED Evaluates to nonzero if status was returned by a normally terminated
child process.

WEXITSTATUS If WIFEXITED is nonzero, this evaluates to the low-order 8 bits of the
status argument the terminated child process passed to _exit (),
exit (), or the value returned frommain ().

WIFSIGNALED Evaluates to nonzero if status was returned from a child process that
terminated because it was sent a signal that was not caught.

WTERMSIG If WIFSIGNALED is nonzero, this evaluates to the number of the signal
that caused the child to terminate.

WIFSTOPPED Evaluates to nonzero if status was returned from a child process that
currently stopped.

WSTOPSIG If WIFSTOPPED is nonzero, this evaluates to the number of the signal
that caused the child process to stop.

WIFCONTINUED Evaluates to nonzero if status was returned from a child process that
has continued from a job control stop.

Predicates, Processes, and
Interface Classes

Recall that a predicate in C++ is a function object that returns a bool [Stroustrup, 1997]. One thing that’s
often overlooked in this definition is the word object . A predicate is not simply a function. It has object
semantics. Predicates give a declarative interpretation to a sequence of actions. A predicate is a statement
that can be evaluated to true or false. In a shift toward a more declarative approach to parallelism, you
will find that is sometimes convenient to encapsulate a process or a thread as a C++ predicate.
Enapsulating the process or thread within a predicate allows you to thread them as objects for use with
containers and algorithms. This subtle use of the notion of a predicate in C++ allows you to take a big
step away from the procedural approach to parallelism and toward a declarative approach.

Take, for example, the guess_it program from Listing 5-3 earlier in the chapter. Although we used an
interface class to provide a more declarative interface for the posix_spawn function, we can do better. In
other words, Listing 5-3 is a more declarative version of the guess_it program from Chapter 4, and
now Listing 5-5 is a more declarative form of the program in Listing 5-3.
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Listing 5-5

// Listing 5-5 A restatement of the guess_it program from Chapter 4.

1 #include "posix_process.h"

2 #include "posix_queue.h"

3 #include "valid_code.h"

4

5

6 char **av;

7 char **env;

8

9
10 int main(int argc,char *argv[],char *envpl])
11 {
12
13 valid_code ValidCode;
14 ValidCode.determination("ofind_code") ;
15 cout << (ValidCode() ? "you win" : "you lose");
16 return(0) ;
17 1}

Here, we have decided to model the code from our game as a C++ class named valid_code. We have
decided to encapsulate the invocation of the posix_process.run () method within a C++ predicate.
Line 15 of Listing 5-5 contains the validCode () predicate. If the predicate validCode () is true, then
the user has guessed the right six-character code within the 5-minute time constraint. The program in
Listing 5-5 spawns two processes using the posix_process class and four threads using the user_
thread class from Chapter 4. Both the posix_process class and the user_thread class are interface
classes that adapt the interface to posix_spawn () and pthread_create().

Program Profile 5-1

Program Name:

oguess_it.cc (Listing 5-5)

Description:

The program oguess_it is a more declarative form of the program in Listing 5-3. The invocation of
posix_process.run () method is encapsulated within a C++ predicate. If the predicate validCode ()
is true, then the user has guessed the right six-character code within the 5-minute time constraint. The
program spawns two processes using the posix_process class and four threads using the
user_thread.

Libraries Required:
pthread, rt

Additional Source Files Needed:

oguess_it.cc (Listing 5-5), posix_process. cc (Listing 5-4)
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User-Defined Headers Required:
posix_process.h (Listing 5-2)

Compile and Link Instructions:

c++ -0 oguess_it oguess_it.cc posix_process.cc -1lrt

Test Environment:
Linux Kernel 2.6

Solaris 10, gcc 3.4.3 and 3.4.6

Processors:
Multicore Opteron, UltraSparc T1, Cell Processor

Notes:

None

We take the declarative interpretation further by encapsulating the Process.run() invocation as a C++
predicate. Listing 5-6 is a declaration of the valid_code predicate class.

Listing 5-6

//Listing 5-6 Declaration of our valid_code predicate class.

0o ~J O Ul i W N

o)

10
11
12
13
14
15
16
17

#ifndef _ VALID_CODE_H
#define _ VALID_CODE_H
using namespace std;

#include <string>
class valid_code{
private:
string Code;
float TimeFrame;
string Determination;
bool InTime;
public:
bool operator () (void) ;
void determination(string X);

Y

#endif

We designate this as a predicate class because we have overloaded the operator () on Line 13. Notice
that operator () returns a bool. This is what distinguishes the predicate from the function object.
Because valid_code is a class, it has the declarative semantics that we need to build on. Because
valid_code is a class, it can be used with container classes and algorithms. This use of the predicate
notion for processes and threads opens up new ways of thinking about parallel programming.

Listing 5-7 contains the definitions for the valid_code class.
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Listing 5-7

//Listing 5-7 Definition of our valid_code predicate class.

1 #include "valid_code.h"

2 #include "posix_process.h"

3 #include "posix_gueue.h"

4

5 extern char **av;

6 extern char **env;

7

8

9 Dbool valid_code: :operator () (void)
10 {

11 int Status;

12 int N;

13 string Result;

14 posix_process Child[2];

15 for(N = 0; N < 2; N++)

16 {

17 Child[N] .binary (Determination) ;
18 Child[N] .arguments (av) ;

19 Child[N] .environment (env) ;
20 Child[N].run() ;
21 Child[N] .pwait (Status) ;
22 }
23 posix_queue PosixQueue ("queue_name") ;
24 PosixQueue.receive (Result) ;
25 if ((Result == Code) && InTime) {
26 return (true) ;
27 }
28 return(false);
29 1}
30
31
32 wvoid valid_code: :determination(string X)
33 {
34 Determination = X;
35 %}
36

The definition of the predicate defined by the operator () begins on Line 9 of Listing 5-7. Notice on
Line 25 that if the Result is correct and Intime, then this predicate returns true; otherwise, it returns
false. Lines 16-21 cause two processes to be spawned. Line 14 from Listing 5-5 has the determination
that is the name of the binary (ofind_code) that is associated with the two processes that have been
spawned. In this case, each instance of ofind_code creates two threads to perform the search, causing
us to have a total of four threads. But all of this talk of processes and threads is totally transparent to the
program in Listing 5-5. The program in Listing 5-5 is concerned with something called validcode and
only concerned whether the validcode () predicate is true or false.

You can extend the number of processes and threads without changing the declarative interpretation of

the parallelism. We stress declarative semantics here because as you scale to more cores on a CMP, it gets
increasingly challenging to think procedurally. You can use declarative models to help you cope with the
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complexity of parallel programming. Using C++ interface classes in conjunction with C++ predicates to
encapsulate processes, threads, and POSIX APIs is a step in the right direction.

Summary

The bulk of this chapter has dealt with processes and how you can leverage them to aid your multicore
programming. Some of the key points covered include:

a

Concurrency in a C++ program is accomplished by factoring your program into either multiple
processes or multiple threads. When isolation, security, address space, and maximum number of
resources that concurrently executing tasks may have are major concerns, it is better to use
processes than threads. Communication between processes and startup time are two of the
primary tradeoffs when you decide to use processes rather than threads.

The primary characteristics and attributes of a process are stored in the process control block
(PCB) used by the operating system to identify the process. This information is needed by the
operating system to manage each process. The PCB is one of the structures that makes processes
heavier or more expense to use than threads.

Processes that create other processes have a parent-child relationship with the created process.
The creator of the process is the parent, and the created process is the child process. Child
processes inherit many attributes from the parent. The parent’s key responsibility is to wait for
the child process so the parent can exit the system.

There are several system calls that can be used to create processes: fork (), fork-exec (),
system (), and posix_spawn (). The fork (), fork-exec (), and posix_spawn () functions
create processes that are asynchronous to the parent process, whereas system () creates a child
process that is synchronous to the parent process. Some platforms may have trouble
implementing fork (), so the posix_spawn () functions can be used instead.

Use interface classes, such as the posix_process class from this chapter, to build declarative
interfaces for POSIX API functions that are used for processes management. If you build
interface classes for processes as well as threads, then you can begin to implement your current
tasks from the Object-Oriented point of view rather than the procedural viewpoint.

In the shift toward a more declarative approach to parallelism, you can also find it sometimes
useful to encapsulate a process or a thread as a C++ predicate. Encapsulating the process or
thread within a predicate allows you to thread them as objects for use with containers and
algorithms. This subtle use of the notion of a predicate in C++ allows you to take a big step
away from the procedural approach to parallelism and toward a declarative approach.

In the next chapter, we discuss multithreading. A thread is a sequence of executable code within a
process that is scheduled for execution by the operating system on a processor or core. The use of
threads for parallel programming on multicore processors has a number of advantages over multiple
processes. In the next chapter, we discuss those advantages and some of the pitfalls. We discuss POSIX
APIs functions for creating and managing threads and show how that functionality can be encapsulated
in a thread class first introduced in Chapter 4.
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They come from a much older version of the matrix, but like so many back then, they
caused more problems than they solved.

—Persephone, Matrix Reloaded

In Chapter 5, we examined how concurrency in a C++ program can be accomplished by
decomposing your program into either multiple processes or multiple threads. We discussed a
process, which is a unit of work created by the operating system. We explained the POSIX API

for process management and the several system calls that can be used to create processes: fork (),
fork-exec (), system(), and posix_spawn (). We showed you how to build C++ interface
components, interface classes, and declarative interfaces that can be used to simplify part of the
POSIX API for process management. In the chapter we cover:

0O  What is a thread?
O  The pthread API for thread management

O Thread scheduling and priorities

0  Thread contention scope

0 Extending the thread_object to encapsulate thread attribute functionality

What Is a Thread?

A thread is a sequence or stream of executable code within a process that is scheduled for
execution by the operating system on a processor or core. All processes have a primary thread.
The primary thread is a process’s flow of control or thread of execution. A process with multiple
threads has as many flows of controls as there are threads. Each thread executes independently
and concurrently with its own sequence of instructions. A process with multiple threads is
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multithreaded. There are user-level threads and kernel-level threads. Kernel-level threads are a lighter
burden to create, maintain, and manage on the operating system as compared to a process because very
little information is associated with a thread. A kernel thread is called a lightweight process because it has
less overhead than a process.

Threads execute independent concurrent tasks of a program. Threads can be used to simplify the
program structure of an application with inherent concurrency in the same way that functions and
procedures make an application’s structure simpler by encapsulating functionality. Threads can
encapsulate concurrent functionality. Threads use minimal resources shared in the address space of a
single process as compared to an application, which uses multiple processes. This contributes to an
overall simpler program structure being seen by the operating system. Threads can improve the
throughput and performance of the application if used correctly, by utilizing multicore processors
concurrently. Each thread is assigned a subtask for which it is responsible, and the thread independently
manages the execution of the subtask. Each thread can be assigned a priority reflecting the importance of
the subtask it is executing.

User- and Kernel-Level Threads

There are three implementation models for threads:

Q  User- or application-level threads
Q  Kernel-level threads
Q  Hybrid of user- and kernel-level threads
Figure 6-1 shows a diagram of the three thread implementation models. Figure 6-1 (a) shows user-level

threads, Figure 6-1 (b) shows kernel-level threads, and Figure 6-1 (c) shows the hybrid of user and
kernel threads.
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(B) KERNEL-LEVEL THREADS
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One of the big differences between these implementations is the mode they exist in and the ability of the
threads to be assigned to a processor. These threads run in user or kernel space or mode.

Q  Inuser mode, a process or thread is executing instructions in the program or linked library.
They are not making any calls to the operating system kernel.

O  Inkernel mode, the process or thread is making system calls such as accessing resources or
throwing exceptions. Also, in kernel mode, the process or thread can access objects that are
defined in kernel space.

User-level threads reside in user space or mode. The runtime library, also in user space, manages these
threads. They are not visible to the operating system and, therefore, cannot be scheduled to a processor
core. Each thread does not have its own thread context. So, as far as simultaneous execution of threads,
there is only one thread per process that will be running at any given time and only a single processor
core allocated to that process. There may be thousands or tens of thousands user-level threads for a
single process, but they have no impact on the system resources. The runtime library schedules and
dispatches these threads. As you can see in Figure 6-1 (a), the library scheduler chooses a thread from the
multiple threads of a process, and that thread is associated with the one kernel thread allowed for that
process. That kernel thread will be assigned to a processor core by the operating system scheduler. User-
level threads are considered a “many-to-one” thread mapping.

Kernel-level threads reside in kernel space and are kernel objects. With kernel threads, each user thread
is mapped to or bound to a kernel thread. The user thread is bound to that kernel thread for the life of the
user thread. Once the user thread terminates, both threads leave the system. This is called a “one-to-one”
thread mapping and is depicted in Figure 6-1 (b). The operating system scheduler manages, schedules,
and dispatches these threads. The runtime library requests a kernel-level thread for each of the user-level
threads. The operating system’s memory management and scheduling subsystem must be considered
for very large numbers of user-level threads. You have to know what the allowable number of threads
per process is. The operating system creates a context for each thread. The context for a thread is
discussed in the next section of this chapter. Each of the threads from a process can be assigned to a
processor core as the resources become available.

A hybrid thread implementation is a cross between user and kernel threads and allows both the library
and the operating system to manage the threads. User threads are managed by the runtime library
scheduler, and the kernel threads are managed by the operating system scheduler. With this
implementation, a process has its own pool of kernel threads. The user threads that are runnable are
dispatched by the runtime library and are marked as available threads ready for execution. The
operating system selects a user thread and maps it to one of the available kernel threads in the pool.
More than one user thread may be assigned to the same kernel thread. In Figure 6-1 (c) process A has
two kernel threads in its pool, whereas process B has three. Process A’s user threads 2 and 3 are mapped
to kernel thread 2. Process B has five threads; user threads 1 and 2 are mapped to a single kernel thread
(3), and user threads 4 and 5 are mapped to a single kernel thread (5). When a new user thread is created,
it is simply mapped to one of the existing kernel threads in the pool. This implementation uses a “many-
to-many” thread mapping. A many-to-one mapping is suggested by some for this approach. Many user
threads would be mapped to one kernel thread, as you saw in the preceding example. So, the requests
for kernel threads would be less than the number of user threads.
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The pool of kernel threads is not destroyed and re-created. These threads are always in the system. They
are allocated to different user-level threads when necessary as opposed to creating a new kernel thread
whenever a new user-level thread is created, as it is with pure kernel-level threads. A context is created
only for each of the threads in the pool. With the kernel and hybrid threads, the operating system
allocates a group of processor cores that the process’s threads are allowed to run on. The threads can
execute only on those processor cores assigned to their process.

User- and kernel-level threads also become important when determining a thread’s scheduling model
and contention scope. Contention scope determines which threads a given thread contends with for
processor usage, and it also becomes very important in relation to the operating system’s memory
management for large numbers of threads.

Thread Context

The operating system manages the execution of many processes. Some of the processes are single
processes that come from various programs, systems, and application programs, and some of the
processes come from a single application or program that has been decomposed into many processes.
When one process is removed from a core and another process becomes active, a context switch takes
place between those processes. The operating system must keep track of all the information that is
needed to restart that process and start the new process in order for it to become active. This information
is called the context and describes the present state of the process. When the process becomes active, it
can continue execution right where it was preempted. The information or context of the process includes:

O  Processid
Pointer to executable
The stack

]
a
Q  Memory for static and dynamically allocated variables
]

Processor registers

Most of the information for the context of a process has to do with describing the address space. The
context of a process uses many system resources, and it takes some time to switch from the context of
one process to that of another. Threads also have a context. Table 6-1 contrasts the process context, as
discussed in Chapter 5, with the thread context. When a thread is preempted, a context switch between
threads takes place. If the threads belong to the same process, they share the same address space because
the threads are contained in the address of the process to which they belong. So, most of the information
needed to reinstate a process is not needed for a thread. Although the process shares much with its
threads, most importantly its address space and resources, some information is local or unique to

the thread, while other aspects of the thread are contained within the various segments of the process.
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Table 6-1
Content of Context Process Thread
Pointer to executable X
Stack X X
Memory (data segment and heap) X
State X X
Priority X X
Status of program I/O X
Granted privileges X
Scheduling information X
Accounting information X
Information pertaining to resources X
e File descriptors
® Read/write pointers
Information pertaining to events and signals X
Register set X X
® Stack pointer
¢ Instruction counter
e Andsoon

The information unique or local to a thread comprises the thread id, processor registers (what the state of
registers is when the thread is executing, including the program counter and stack pointer), the state and
priority of the thread, and thread-specific data (TSD). The thread id is assigned to the thread when it is
created. Threads have access to the data segment of their process; therefore, threads can read or write to
the globally declared data of their process. Any modification by one thread in the process is accessible by
all threads in that process as well as by the main thread. In most cases, this requires some type of
synchronization in order to prevent inadvertent updates. A thread’s locally declared variables should not
be accessed by any of its peer threads. They are placed in the stack of the thread, and when the thread

has completed, they are removed from the stack.
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The TSD is a structure that contains data and information private to a thread. TSD can contain private
copies of a process’s global data. It can also contain signal masks for a thread. Signal masks are used to
identify signals of a specific type that will not be received by the thread when sent to its process.
Otherwise, if a process is sent a signal by the operating system, all threads in its address space also
receive that signal. The thread receives all signal types that are not masked.

A thread shares text and stack segment with its process. Its instruction pointer points to some location
within the process’s text segment to the next executable thread instruction, and the stack pointer points
to the location in the process stack where the top of the thread’s stack begins. Threads can also access any
environment variables. All of the resources of the process, such as file descriptors, are shared with its
threads.

Hardware Threads and Software Threads

Threads can be implemented in hardware as well as software. Chip manufacturers implement cores that
have multiple hardware threads that serve as logical cores. Cores with multiple hardware threads are
called simultaneous multithreaded (SMT) cores. SMT brings to hardware the concept of multithreading,
in similar way to software threads. SMT-enabled processors execute many software threads or processes
simultaneously within the processor cores. Having software threads executing simultaneously within a
single processor core increases a core’s efficiency because wait time from elements such as I/O latencies
is minimized. The logical cores are treated as unique processor cores by the operating system. They
require some duplicate hardware that stores information for the context of the thread such as instruction
counters and register sets. Other hardware or structures are duplicated or are shared among the threads’
contexts, depending on the processor core.

Sun’s UltraSparc T1, IBM’s Cell Broadband Engine CBE, and various Intel multicore processors utilize
SMT or chip-level multithreading (CMT), implementing from two to eight threads per core.
Hyperthreading is Intel’s implementation of SMT in which its primary purpose is to improve support for
multithreaded code. Hyperthreading or SMT technology provides an efficient use of CPU resources
under certain workloads by executing threads in parallel on a single processor core.

Thread Resources

Threads share most of their resources with other threads of the same process. Threads own resources
that define their context. Threads must share other resources such as processors, memory, and file
descriptors. File descriptors are allocated to each process separately, and threads of the same process
compete for access to these descriptors. A thread can allocate additional resources such as files or
mutexes, but they are accessible to all the threads of the process.

There are limits on the resources that can be consumed by a single process. Therefore, all the resources of
peer threads in combination must not exceed the resource limit of the process. If a thread attempts to
consume more resources than the soft resource limit defines, it is sent a signal that the process’s resource
limit has been reached.
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When threads are utilizing their resources, they must be careful not to leave them in an unstable

state when they are canceled. A terminated thread that has left a file open may cause damage to the file
or cause data loss once the application has terminated. Before it terminates, a thread should perform
some cleanup, preventing these unwanted situations from occurring.

Comparing Threads to Processes

Both threads and processes can provide concurrent program execution. The use of system resources
needed for context switching, throughput, communication between entities, and program simplification
is an issue that you need to consider when deciding whether to use multiple processes or threads.

Context Switching

When you are creating a process, the main thread may be the only thread needed to carry out the
function of the process. In a process with many concurrent subtasks, multiple threads can provide
asynchronous execution of the subtasks with less overhead for context switching. With low processor
availability or a single core, however, concurrently executing processes involve heavy overhead because
of the context switching required. Under the same condition using threads, a process context switch
would occur only when a thread from a different process was the next thread to be assigned the
processor. Less overhead means fewer system resources used and less time taken for context switching.
Of course, if there are enough processors to go around, then context switching is not an issue.

Throughput

The throughput of an application can increase with multiple threads. With one thread, an I/O request
would halt the entire process. With multiple threads, as one thread waits for an I/O request, the
application continues to execute. As one thread is blocked, another can execute. The entire application
does not wait for each I/O request to be filled; other tasks can be performed that do not depend on the
blocked thread.

Communicating between Entities

Threads also do not require special mechanisms for communication with other threads of the process
called peer threads. Threads can directly pass and receive data from other peer threads. This saves system
resources that would have to be used in the setup and maintenance of special communication
mechanisms if multiple processes were used. Threads communicate by using the memory shared within
the address space of the process. For example, if a queue is globally declared by a process, Thread A

of the process can store the name of a file that peer thread Thread B is to process. Thread B can read the
name from the queue and process the data.
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Processes can also communicate by shared memory, but processes have separate address spaces and,
therefore, the shared memory exists outside the address space of both processes. If you have a process
that also wants to communicate the names of files it has processed to other processes, you can use a
message queue. It is set up outside the address space of the processes involved and generally requires a
lot of setup to work properly. This increases the time and space used to maintain and access the shared
memory.

Corrupting Process Data

Threads can easily corrupt the data of a process. Without synchronization, threads” write access to the
same piece of data can cause data race. This is not so with processes. Each process has its own data, and
other processes don’t have access unless special communication is set up. The separate address spaces of
processes protect the data from possible inadvertent corruption by other processes. The fact that threads
share the same address space exposes the data to corruption if synchronization is not used. For example,
assume that a process has three threads: Thread A, Thread B, and Thread C. Threads A and B update a
counter, and Thread C is to read each update and then use that value in a calculation. Thread A and B
both attempt to write to the memory location concurrently. Thread B overwrites the data written by
Thread A before Thread C reads it. Synchronization should have been used to ensure that the counter is
not updated until Thread C has read the data.

The issues of synchronization between threads and processes will be discussed in Chapter 7.

Killing the Entire Process

If a thread causes a fatal access violation, this may result in the termination of the entire process. The
access violation is not isolated to the thread because it occurs in the address space of the process. Errors
caused by a thread are more costly than errors caused by processes. Threads can create data errors that
affect the entire memory space of all the threads. Threads are not isolated, whereas processes are
isolated. A process can have an access violation that causes the process to terminate, but all of the

other processes continue executing if the violation isn’t too bad. Data errors can be restricted to a single
process. Processes can protect resources from indiscriminate access by other processes. Threads share
resources with all the other threads in the process. A thread that damages a resource affects the whole
process or program.

Reuse by Other Programs

Threads are dependent and cannot be separated from their process. Processes are more independent
than threads. An application can divide tasks among many processes, and those processes can be
packaged as modules that can be used in other applications. Threads cannot exist outside the process
that created them and, therefore, are not reusable.

151



Chapter 6: Multithreading

Key Similarities and Differences between
Threads and Processes

There are many similarities and significant differences between threads and processes. Threads and
processes have an id, a set of registers, a state, and a priority, and both adhere to a scheduling policy.
Like a process, threads have an environment that describes the entity to the operating system—the
process or thread context. This context is used to reconstruct the preempted process or thread. Although
the information needed for the process is much more than that needed for the thread, they serve the
same purpose.

Threads and child processes share the resources of their parent process without requiring additional
initialization or preparation. The resources opened by the process are immediately accessible to the threads
or child processes of the parent process. As kernel entities, threads and child processes compete for processor
usage. The parent process has some control over the child process or thread. The parent process can:

Q  Cancel
Q  Suspend
0 Resume

Q  Change the priority

of the child process or thread. A thread or process can alter its attributes and create new resources, but it
cannot access the resources belonging to other processes.

As we have indicated, the most significant difference between threads and processes is that each process
has its own address space, and threads are contained in the address space of their process. This is why
threads share resources so easily, and Interthread Communication is so simple. Child processes have
their own address space and a copy of the data segment of its parent, so when a child modifies its data, it
does not affect the data of its parent. A shared memory area has to be created in order for parent and
child processes to share data. Shared memory is a type of Interprocess Communication (IPC) mechanism,
which includes such things as pipes and First-In, First-Out (FIFO) scheduling policies. They are used to
communicate or pass data between processes.

Interprocess Communication is discussed in Chapter 7.

Whereas processes can exercise control over other processes with which they have a parent-child
relationship, peer threads are on an equal level regardless of who created them. Any thread that has
access to the thread id of another peer thread can cancel, suspend, resume, or change the priority of that
thread. In fact, any thread within a process can kill the process by canceling the primary thread,
terminating all the threads of the process. Any changes to the main thread may affect all the threads

of the process. If the priority of the main thread is changed, all the threads within the process that
inherited that priority are also altered.

Table 6-2 summarizes the key similarities and differences between threads and processes.
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Table 6-2

Similarities between Threads and Processes

Differences between Threads and Processes

Both have an id, set of registers, state, priority,
and scheduling policy.

Both have attributes that describe the entity to
the OS.

Both have an information block.

Both share resources with the parent process.
Both function as independent entities from the
parent process.

The creator can exercise some control over the

thread or process.

Both can change their attributes.

Both can create new resources.

Neither can access the resources of another
process.

Threads share the address space of the process
that created it; processes have their own address.

Threads have direct access to the data segment
of their process; processes have their own copy of
the data segment of the parent process.

Threads can directly communicate with

other threads of their process; processes must use
Interprocess Communication to communicate
with sibling processes.

Threads have almost no overhead; processes
have considerable overhead.

New threads are easily created; new processes
require duplication of the parent process.

Threads can exercise considerable control over
threads of the same process; processes can
exercise control only over child processes.

Changes to the main thread (cancellation, priority
change, and so on) may affect the behavior of the
other threads of the process; changes to the
parent process do not affect child processes.

Setting Thread Attributes

There is information about the thread used to determine the context of the thread. This information is
used to reconstruct the thread’s environment. What makes peer threads unique from one another is the
id, the set of registers that defines the state of the thread, its priority, and its stack. These attributes are

what give each thread its identity.
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The POSIX thread library defines a thread attribute object that encapsulates a subset of the properties
of the thread. These attributes are accessible and modifiable by the creator of the thread. These are the
thread attributes that are modifiable:

QO  Contention scope
Stack size
Stack address

a
a
Q  Detached state
a

Priority
Q  Scheduling policy and parameters

A thread attribute object can be associated with one or multiple threads. An attribute object is a profile
that defines the behavior of a thread or group of threads. Once the object is created and initialized, it can
be referenced repeatedly in calls to the thread creation function. If used repeatedly, a group of threads
with the same attributes are created. All the threads that use the attribute object inherit all the property
values. Once a thread has been created using a thread attribute object, most attributes cannot be changed
while the thread is in use.

The scope attribute describes which threads a particular thread competes with for resources. Threads
contend for resources within two contention scopes:

O  Process scope

QO  System scope

Threads compete with other threads for processor usage according to the contention scope and the
allocation domains (the set of processors to which it is assigned). Threads with process scope compete
with threads within the same process, while threads with systemwide contention scope compete for
resources with threads of other processes allocated across the system. A thread that has system scope is
prioritized and scheduled with respect to all of the systemwide threads.

The thread’s stack size and location are set when the thread is created. If the size and location of the
thread’s stack are not specified during creation, a default stack size and location are assigned by the
system. The default size is system dependent and is determined by the maximum number of threads
allowed for a process, the allotted size of a process’s address space, and the space used by system
resources. The thread’s stack size must be large enough for any function calls; for any code external to
the process, such as library code, called by the thread; and for local variable storage. A process with
multiple threads should have a stack segment large enough for all of its thread’s stacks. The address
space allocated to the process limits the stack size, thus limiting the size of each of the thread’s stacks.
The thread’s stack address may be of some importance to an application that accesses memory areas that
have diverse properties. The important things to remember when you specify the location of a stack is
how much space the thread requires and to ensure that the location does not overlap other peer
threads’ stacks.
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Detached threads are threads that have become detached from their creator. They are not synchronized
with other peer threads or the primary thread when it terminates or exits. They still share the address
space with their process, but because they are detached, the process or thread that created them
relinquishes any control over them. When a thread terminates, the id and the status of the terminated
thread are saved by the system. By default, once the thread is terminated, the creator is notified.

The thread id and the status are returned to the creator. If the thread is detached, once the thread is
terminated, no resources are used to save the status or thread id. These resources are immediately
available for reuse by the system. If it is not necessary for the creator of the thread to wait until a thread
terminates before continuing processing or if a thread does not require any type of synchronization with
other peer threads once terminated, that thread may be a detached thread.

The threads inherit scheduling attributes from the process. Threads have a priority, and the thread

with the highest priority is executed before threads with lower priority. By prioritizing threads, tasks that
require immediate execution or response from the system are allotted the processor for a time slice.
Executing threads are preempted if a thread of higher priority is available. A thread’s priority can be
lowered or raised. The scheduling policy also determines when a thread is assigned the processor. FIFO,
round robin (RR), and other scheduling policies are available. In general, it is not necessary to change the
scheduling attributes of the thread during process execution. It may be necessary to make changes

to scheduling if changes in the process environment occur that change the time constraints, causing you to
need to improve the process’s performance. But take into consideration that changing the scheduling
attributes of specific processes within an application can have a negative impact on the overall
performance of the application.

The Architecture of a Thread

We have discussed the process and the thread’s relationship with its process. Figure 6-2 shows the
architecture of a process that contains multiple threads. Both have context and attributes that make a
process unique from other processes in the system and attributes that makes a thread unique from its
peer threads. A process has a text (code), data, and stack segment. The threads share their text and stack
segment with the process. A process’s stack normally starts in high memory and works its way down.
The thread’s stack is bounded by the start of the next thread’s stack. As you can see, the thread’s stack
contains its local variables. The process’s global variables are located in the data segment. The context for
Threads A and B has thread ids, state, priority, the processor registers, and so on. The program counter
(PC) points to the next executable instruction in function taskl and task2 in the code segment. The
stack pointer (SP) points to the top of their respective stacks. The thread attribute object is associated
with a thread or group of threads. In this case, both threads use the same thread attribute.
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{
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pthread_attr_t Attr;
pthread_t ThreadA, ThreadB;

pthread_attr_init(&AttrObj);
pthread_create(&ThreadA, &Attr,task1,NULL);
?/thread,create(&ThreadB,&Attr,taskZ,NULL);

pthread_join(ThreadA NULL);
pthread_join(ThreadB,NULL);

}
void task1(...)

/...

»  CountA=10;
/...

}

ind task2(...)

/...
»  CountB = 100;
) /...

Figure 6-2

Thread States

The thread is the unit of execution when a process is scheduled to be executed. If the process has only
one thread, it is the primary thread that is assigned to a processor core. If a process has multiple threads
and there are multiple processors available to the process, all of the threads are assigned to processors.
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When a thread is scheduled to execute on a processor core, it changes its state. A thread state is the mode
or condition that a thread is in at any given time. Threads have the same states and transitions
mentioned in Chapter 5 for processes. There are four commonly implemented states:

QO  Runnable
QO  Running (active)
Q  Stopped

Q  Sleeping (blocked)

There are several transitions:

QO  Preempt
Q  Signaled
Q  Dispatch
a

Timer runout

The primary thread can determine the state of an entire process. The state of the primary thread is that
same as the state of the process, if it’s the only thread. If the primary thread is sleeping, the process is
sleeping. If the primary thread is running, the process is running. For a process that has multiple threads,
all threads of the process have to be in a sleeping or stopped state in order for the whole process to be
considered sleeping or stopped. On the other hand, if one thread is active (runnable or running), then the
process is considered active.

Scheduling and Thread Contention Scope

There are two types of contention scopes for threads:

(] Process contention

0  System contention

Threads with process contention scope contend with threads of the same process. These are hybrid threads
(user- and kernel-level threads), whereby the system creates a pool of kernel-level threads, and user-level
threads are mapped to them. These kernel-level threads are unbound and can be mapped to one thread or
mapped to many threads. The kernel then schedules the kernel threads onto processors according to their
scheduling attributes.

Threads with system contention scope contend with threads of processes systemwide. This model consists of
one user-level thread per kernel-level thread. The user thread is bound to a kernel-level thread throughout
the lifetime of the thread. The kernel threads are solely responsible for scheduling thread execution on one or
more processors. This model schedules all threads against all other threads in the system, using the
scheduling attributes of the thread. The default contention scope of a thread is implementation defined. For
example, for Solaris 10, the default contention scope is process, but for SuSe Linux 2.6.13, the default is
system scope. As a matter of fact for SuSe Linux 2.6.13, process contention scope is not supported at all.

Figure 6-3 shows the differences between process and system thread contention scopes. There are two

processes in a multicore environment of eight cores. Process A has four threads, and process B has two
threads. Process A has three threads that have process scope and one thread with system scope. Process
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B has two threads, one with process scope and one thread with system scope. Process A’s threads

with process scope compete for core 0 and core 1, and process B’s thread with process scope will utilize
core 2. Process A and B’s threads with system scope compete for cores 4 and 5. The threads with process
scope are mapped to a pool of threads. Process A has a pool of three kernel-level threads and process B
has a pool of two kernel-level threads.

PROCESS A EIGHT CORE PROCESSOR
USER KERNEL
THREAD 1 THREAD 1 )
PROCESS SCOPE
USER KERNEL KT1 L 4 . CORE D CORE 1
THREAD 2 THREAD 2 < »
KT1 KT2
USER KERNEL K13 [KT2 |t 3 » running running
THREAD 3 THREAD 3 < »
USER
THREAD 4
1
KERNEL
THREAD 4 SYSTEN SCOPE CORE 4 CORE 5
KT5 |KT4 | 0 > KT4 KT5
KERNEL
PROCESS B
2
USER
THREAD 5 ﬁgggh 6 PROGESS SCOPE CORE 2 CORE 3
KT7 |« 1 D KT7
USER ERNEL :
THREAD 6 THREAD 7 running
CORE 5 CORE 6

Figure 6-3
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Contention scope can potentially impact on the performance of your application. The process scheduling
model potentially provides lower overhead for making scheduling decisions, since there are only threads
of a single process that need to be scheduled.

Scheduling Policy and Priority

The scheduling policy and priority of the process belong to the primary thread. Each thread can have its
own scheduling policy and priority separate from the primary thread. The priority value is an integer
that has a maximum and minimum value. When threads are prioritized, tasks that require immediate
execution or response from the system are favored. In a preemptive operating system, executing threads
are preempted if a thread of higher priority (the lower the number, the higher the priority) and the same
contention scope is available.

For example, in Figure 6-3, process A has two threads (2, 3) with priority 3 and one thread (1) with priority
4. They are assigned to processor cores 0 and 1. The threads with priority 4 and 3 are runnable, and each is
assigned to a processor. Once thread 3 with priority 3 becomes active, thread 1 is preempted and thread 3
is assigned the processor. In process B, there is one thread with process scope, and it has a priority 1.

There is only one available processor for process B. The threads with system scope are not preempted by
any of the threads of process A or B with process scope. They compete for processor usage only with other
threads that have system scope.

The ready queues are organized as sorted lists in which each element is a priority level. This was
discussed in Chapter 5 as well. In Chapter 5, Figure 5-6 shows ready queues. Each priority level in the
list is a queue of threads with the same priority level. All threads of the same priority level are assigned
to the processor using a scheduling policy: FIFO, RR, or another.

0  Around-robin scheduling policy considers all threads to be of equal priority, and each thread
is given the processor for only a time slice. Task executions are interweaved. For example, a
program that filters characters from a text file is divided into three threads. Thread 1, the
primary thread, reads in each line from the file and writes each to a vector as a string. Then
the primary thread creates three more threads and waits for the threads to return. Each thread has
its own set of characters that it is to remove from the strings. Each thread utilizes two queues,
and one queue contains the strings that have been previously filtered by another thread. Once
the thread has filtered a string, it is written to the second queue. The queues are global data. The
primary thread is in a ready queue running preemptively until it creates the other threads; then
it sleeps until all its threads return. The other threads have equal priority using a round-robin
scheduling policy. A thread cannot filter a string that has not been written to a queue, so
synchronized access to the source queue is required. The thread tests the mutex. If the mutex is
locked, then there are no strings available, or the source queue is in use. The thread has to wait
until the mutex is unlocked. If the mutex is available, then there are strings in the source queue,
and the source queue is not in use. A string is read from the queue; the thread filters the
string and then writes it to the output queue. The output queue serves as the source queue for
another thread. At some point, Thread 2 is assigned the processor. Its source is the vector that
contains all the strings to be filtered. The thread has to filter the string and then write the filtered
string to its output queue so that thread 2 has something to process, then thread 3, and so on.
The RR scheduling affects the execution of the threads with two processor cores. This scheduling
policy inhibits the proper execution of this program. We discuss using the correct concurrency
models later in this chapter.
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Q  With FIFO scheduling and a high priority, there is no interweaving of the execution of these
tasks. A thread assigned to a processor dominates the processor until it completes execution.
This scheduling policy can be used for applications where a set of threads needs to complete as
soon as possible.

Q  The “other” scheduling policy can be a customization of a scheduling policy. For example, a
FIFO scheduling policy can be customized to allow random unblocking of threads, or you can
use a policy with the appropriate scheduling that advances thread execution.

Scheduling Allocation Domains

The FIFO and RR scheduling policies take on different characteristics on a multiple processors. The
scheduling allocation domain determines the set of processors on which the threads of a process or
application may run. Scheduling policies can be affected by the number of processor cores and the
number of threads in a process. As with the example of threads filtering characters from a string, if there
are the same number of cores as threads, using an RR scheduling policy may result in better throughput.
But it is not always possible to have same number of threads as cores. There may be more threads than
cores. In general, relying on the number of cores to significantly impact the performance of your
application is not the best approach.

A Simple Threaded Program

Here is an example of a simple threaded program. This simple multithreaded program has a main thread
and the functions that the threads will execute. The concurrency model determines the manner in which
the threads are created and managed. We will discuss concurrency models in the next chapter. Threads
can be created all at once or under certain conditions. In Example 6-1 the delegation model is used to
show the simple multithreaded program.

Example 6-1
// Example 6-1 Using the delegation model in a simple threaded program.

using namspace std;
#include <iostream>
#include <pthread.h>

void *taskl(void *X) //define task to be executed by ThreadA
{

cout << "Thread A complete" << endl;
return (NULL) ;
}

void *task2(void *X) //define task to be executed by ThreadB

{
cout << "Thread B complete" << endl;
return (NULL) ;

}

int main(int argc, char *argv[])
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pthread_t ThreadA, ThreadB; // declare threads

pthread_create (&ThreadA,NULL, taskl,NULL); // create threads
pthread_create (&ThreadB, NULL, task2,NULL) ;

// additional processing

pthread_join(ThreadA,NULL); // wait for threads
pthread_join (ThreadB, NULL) ;

return (0);

In Example 6-1, the primary thread is the boss thread. The boss thread declares two threads, Threada
and ThreadB. pthread_create () creates the threads and associates them with the tasks they are to
execute. The two tasks, taskl and task2, each send a message to the standard out. pthread_create ()
causes the threads to immediately execute their assigned tasks. The pthread_join function works the
same way as wait () does for processes. The primary thread waits until both threads return. Figure 6-4
contains the sequence diagram showing the flow of control for Example 6-1. In Figure 6-4, pthread_
create () causes a fork in the flow of control in the primary thread. Two additional flows of control,
ThreadA and ThreadB, execute concurrently. pthread_create () returns immediately after the threads
are created because it is an asynchronous function. As each thread executes its set of instructions,
pthread_join() causes the primary thread to wait until the thread terminates and rejoins the main
flow of control.

Main Thread

1

<< create >>

v ThreadA
flow of control —»
<< create >> l‘
> ThreadB
T« join >>
A «— exits
waiting to join —» |
<< join >>

~

Figure 6-4
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Compiling and Linking Threaded Programs

All multithreaded programs using the POSIX thread library must include this header:
<pthread.h>

In order to compile and link multithreaded applications in the Unix or Linux environments using the
g++ or gcc command line compilers, be sure to link the pthread library to your application using the -1
compiler switch. This switch is immediately followed by the name of the library:

-lpthread

This causes your application to link to the library that is compliant with the multithreading interface
defined by POSIX 1003.1c standard. The pthread library, 1ibpthread. so, should be located in the directory
where the system stores its standard library, usually /usr/1ib. If it is located in that standard directory,
then your compile line would look like this:

g++ -0 a.out test_thread.cpp -lpthread

If it is not located in a standard location, use the -L option to make the compiler look in a particular
directory before searching the standard locations:

g++ -0 a.out -L /src/local/lib test_thread.cpp -lpthread

This tells the compiler to look in the /src/local/1ib directory for the pthread library before searching
in the standard locations.

As you will see later in this chapter, the complete programs in this book are accompanied by a program

profile. The program profile contains implementation specifics such as headers and libraries required and
compile and link instructions. The profile also includes a note section that contains any special consider-
ations that need to be followed when executing the program. There are no program profiles for examples.

Creating Threads

The pthreads library can be used to create, maintain, and manage the threads of multithreaded programs
and applications. When you are creating a multithreaded program, threads can be created any time
during the execution of a process because they are dynamic. pthread_create () creates a new thread in
the address space of a process.

Synopsis

#include <pthread.h>

int pthread_create(pthread_t *restrict thread, const pthread_attr_t *restrict attr,
void *(*start_routine) (void*), void *restrict arg);
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The thread parameter points to a thread handle or thread id of the thread to be created. The new thread
has the attributes specified by the attribute object attr. The thread parameter immediately executes the
instructions in start_routine with the arguments specified by arg. If the function successfully creates
the thread, it returns the thread id and stores the value in thread. The restrict keyword is added for
alignment with a previous IEEE standard. Here is the call to pthread_create () from Example 6-1:

pthread_create (&ThreadA,NULL, taskl,NULL) ;

Here, attr is NULL; the default thread attributes will be used by the new thread Threada. There are no
specified arguments. For new attributes for the thread, a pthread_attr_t object is created and
initialized and then passed to the pthread_create (). The new thread then takes on the attributes of
attr when it is created. If at tr is changed after the thread has been created, it does not affect any of the
thread’s attributes. If start_routine returns, the thread returns as if pthread_exit () was called
using the return value of start_routine as its exit status.

If successful, the function returns 0. If the function is not successful, no new thread is created, and the
function returns an error number. If the system does not have the resources to create the thread or if the
thread limit for the process has been reached, the function fails. The function also fails if the thread
attribute is invalid or if the caller thread does not have permission to set the necessary thread attributes.

Passing Arguments to a Thread

Listing 6-1 shows a primary thread passing an argument from the command line to the functions executed
by the threads. The command-line argument is also used to determine the number of threads to be created.

Listing 6-1
//Listing 6-1 Passing arguments to a thread from the command line.
using namespace std;
#include <iostream>

1
2
3
4 #include <pthread.h>
5
6
7
8

void *taskl (void *X)
{

9 int *Temp;

10 Temp = static_cast<int *>(X);

11

12 for (int Count = 0;Count < *Temp;Count++)
13 {

14 cout << "work from thread: " << Count << endl;
15 }

16 cout << "Thread complete" << endl;

17 return (NULL) ;

18 1}

19

20

21

22 int main(int argc, char *argv[])
(continued)
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Listing 6-1 (continued)

23 {

24 int N;

25

26 pthread_t MyThreads[10];

27

28 if (arge !'= 2){

29 cout << "error" << endl;

30 exit (1);

31 }

32

33 N = atoi(argvI[l]);

34

35 if(N > 10) ¢

36 N = 10;

37 }

38

39 for (int Count = 0;Count < N;Count++)
40 {

41 pthread_create (&MyThreads [Count],NULL, taskl, &N) ;
42

43 }

44

45

46 for (int Count = 0;Count < N;Count++)
47 {

48 pthread_join (MyThreads [Count] ,NULL) ;
49

50 }

51 return(0) ;

52

53

54 }

55

56

At Line 27, an array of 10 pthread_t MyThread types is declared. N holds the command-line argument. At
Line 43, N MyThreads types are created. Each thread is passed N as an argument as a void *.In the
function taskl, the argument is cast from a void * toan int *, as follows:

10 Temp = static_cast<int *>(X);

The function executes a loop that is iterated the number of times indicated by the value passed to the
function. The function sends its message to standard out. Each thread created executes this function. The
instructions for compiling and executing Listing 6-1 are contained in Program Profile 6-1, which follows
shortly.

This is an example of passing a command-line argument to the thread function and using the command-
line argument to determine the number of threads to create. If it is necessary to pass multiple arguments
to the thread function, you can create a struct or container with all the required arguments and pass a
pointer to that structure to the thread function. But we show an easier way to achieve this by creating a
thread object later in this chapter.
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Program Profile 6-1
Program Name:

program6-1.cc (Listing 6-1)

Description:

Accepts an integer from the command line and passes the value to the thread function. The thread
function executes a loop that then sends a message to standard out. The argument is used as the
stopping case for the loop invariant. The argument also determines the number of threads to be created.
Each thread executes the same function.

Libraries Required:
libpthread

Headers Required:

<pthread.h> <iostream>

Compile and Link Instructions:

c++ -0 program6-1 programé6-1.cc -lpthread

Test Environment:
Solaris 10, gcc 3.4.3 and 3.4.6

Processors:
Opteron, UltraSparc T1

Execution Instructions:
./program6-1 5

Notes:

This program requires a command-line argument.

Joining Threads

pthread_join() is used to join or rejoin flows of control in a process. pthread_join () causes the
calling thread to suspend its execution until the target thread has terminated. It is similar to the wait ()
function used by processes. This function is called by the creator of a thread who waits for the new
thread to terminate and return, thus rejoining the calling thread’s flow of control. The pthread_join ()
can also be called by peer threads if the thread handle is global. This allows any thread to join flows of
control with any other thread in the process. If the calling thread is canceled before the target thread
returns, this causes the target thread to become zombied. Detached threads are discussed later in the
chapter. Behavior is undefined if different peer threads simultaneously call the pthread_join ()
function on the same thread.
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Synopsis

#include <pthread.h>

int pthread_join(pthread_t thread, void **value_ptr);

The thread parameter is the target thread the calling thread is waiting on. If the target thread returns
successfully, its exit status is stored in value_ptr. The function fails if the target thread is not a joinable
thread or, in other words, if it is created as a detached thread. The function also fails if the specified thread
thread does not exist.

There should be a pthread_join () function called for all joinable threads. Once the thread is joined, this
allows the operating system to reclaim storage used by the thread. If a joinable thread is not joined to any
thread or if the thread that calls the join function is canceled, then the target thread continues to utilize
storage. This is a state similar to that of a zombied process when the parent process has not accepted the
exit status of a child process. The child process continues to occupy an entry in the process table.

Getting the Thread Id

As mentioned earlier in this chapter, the process shares its resources with the threads in its address
space. Threads have very few of their own resources, but the thread id is one of the resources unique to a
thread. The pthread_self () function returns the thread id of the calling thread.

Synopsis

#include <pthread.h>

pthread_t pthread_self (void) ;

When a thread is created, the thread id is returned to the calling thread. Once the thread has its own id, it
can be passed to other threads in the process. This function returns the thread id with no errors defined.

Here is an example of calling this function:

pthread_t ThreadId;
ThreadId = pthread_self();

A thread calls this function, and the function returns the thread id assigned to the variable Thread1d of
type pthread_t.

The thread id is also returned to the calling thread of pthread_create (). If the thread is successfully
created, the thread id is stored in pthread_t.

Comparing Thread Ids

You can treat thread ids as opaque types. Thread ids can be compared but not by using the normal
comparison operators. You can determine whether two thread ids are equivalent by calling
pthread_equal ():
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Synopsis

#include <pthread.h>

int pthread_equal (pthread_t tidl, pthread_t tid2);

pthread_equal () returns a nonzero value if the two thread ids reference the same thread. If they
reference different threads, it returns zero.

Using the Pthread Attribute Object

Threads have a set of attributes that can be specified at the time that the thread is created. The set of
attributes is encapsulated in an object, and the object can be used to set the attributes of a thread or
group of threads. The thread attribute object is of type pthread_attr_t. This structure can be used to
set these thread attributes:

Q  Size of the thread’s stack
Q  Location of the thread’s stack

Q  Scheduling inheritance, policy, and parameters
Q  Whether the thread is detached or joinable

Q  Scope of the thread

The pthread_attr_t has several methods to set and retrieve these attributes. Table 6-3 lists the
methods used to set the attributes.

Table 6-3

Types of Attribute Functions pthread Attribute Functions

Initialization pthread_attr_init ()
pthread_attr_destroy ()

Stack management pthread_attr_setstacksize(
pthread_attr_getstacksize(
pthread_attr_setguardsize (
pthread_attr_getguardsize (
pthread_attr_setstack()
pthread_attr_getstack()
pthread_attr_setstackaddr ()
pthread_attr_getstackaddr ()

)
)
)
)

Detach state pthread_attr_setdetachstate()
pthread_attr_getdetachstate()

Table continued on following page
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Types of Attribute Functions

pthread Attribute Functions

Contention scope

Scheduling inheritance

Scheduling policy

Scheduling parameters

pthread_attr_setscope ()
pthread_attr_getscope ()

pthread_attr_setinheritsched()
pthread_attr_getinheritsched()

pthread_attr_setschedpolicy ()
pthread_attr_getschedpolicy ()

pthread_attr_setschedparam/()
pthread_attr_getschedparam/()

The pthread_attr_init () and pthread_attr_destroy () functions are used to initialize and

destroy thread attribute objects.

Synopsis

#include <pthread.h>

int pthread_attr_init (pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);

pthread_attr_init () initializes a thread attribute object with the default values for all the attributes.
attr isa pointer to a pthread_attr_t object. Once attr has been initialized, its attribute values can be
changed by using the pthread_attr_set functions listed in Table 6-3. Once the attributes have been
appropriately modified, attr can be used as a parameter in any call to the pthread_create () function.
If this is successful, the function returns 0. If it is not successful, the function returns an error number.

The pthread_attr_init () function fails if there is not enough memory to create the object.

The pthread_attr_destroy () function can be used to destroy a pthread_attr_t object specified by
attr. A call to this function deletes any hidden storage associated with the thread attribute object. If it is

successful, the function returns 0. If it is not successful, the function returns an error number.

Default Values for the Attribute Object

The attribute object is first initialized with the default values for all of the individual attributes used by a
given implementation. Some implementations do not support the possible values for an attribute. Upon
successful completion, pthread_attr_init () returns a value of 0. If an error number is returned, this
may indicate that the value is not supported. For example, for the contention scope, PTHREAD_SCOPE_

PROCESS is not supported by the Linux environment. Calling:

int pthread_attr_setscope (pthread_attr_t *attr, int contentionscope) ;

returns an error code. Table 6-4 lists the default values for Linux and Solaris environment.
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Table 6-4
SuSE Linux 2.6.13 Default
pthread Attribute Functions Values Solaris 10 Default Values
pthread_attr_ PTHREAD_CREATE_JOINABLE PTHREAD_CREATE_JOINABLE
setdetachstate ()
pthread_attr_setscope() PTHREAD_SCOPE_SYSTEM PTHREAD_SCOPE_PROCESS
(PTHREAD_SCOPE_PROCESS
is not supported)
pthread_attr_ PTHREAD_EXPLICIT_SCHED PTHREAD_ EXPLICIT_SCHED
setinheritsched()
pthread_attr_ SCHED_OTHER SCHED_OTHER
setschedpolicy ()
pthread_attr_setschedparam/() sched_priority = 0 sched_priority = 0
pthread_attr_setstacksize() not specified NULL
allocated by system
pthread_attr_setstackaddr () not specified NULL
1-2 MB
pthread_attr_setguardsize() not specified PAGESIZE

Creating Detached Threads Using the Pthread Attribute Object

By default, when a thread exits, the thread system stores the thread’s completion status and thread id
when the thread is joined with another thread. If an exiting thread is not joined with another thread,

the exiting thread is said to be detached. The completion status and thread id are not stored in this case.
Apthread_join () cannot be used on a detached thread. If it is used, pthread_join () returns an error.

Synopsis

#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr,
int *detachstate) ;

int pthread_attr_getdetachstate(const pthread_attr_t *attr,
int *detachstate);

The pthread_attr_setdetachstate () function can be used to set the detachstate attribute of the
attribute object. The detachstate parameter describes the thread as detached or joinable. The

detachstate can have one of these values:

] PTHREAD_CREATE_DETACHED

] PTHREAD_CREATE_JOINABLE
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The PTHREAD_CREATE_DETACHED value causes all the threads that use this attribute object to be created
as detached threads. The PTHREAD_CREATE_JOINABLE value causes all the threads that use this attribute
object to be joinable. The default value of detachstate is PTHREAD_CREATE_JOINABLE. If it is
successful, the function returns 0. If it is not successful, the function returns an error number. The
pthread_attr_setdetachstate () function fails if the value of detachstate is not valid.

The pthread_attr_getdetachstate () function returns the detachstate of the attribute object. If it
is successful, the function returns the value of detachstate to the detachstate parameter and 0 as the
return value. If it is not successful, the function returns an error number.

Threads that are already running can become detached. For example, a thread may no longer be

interested in the results of the target thread. The thread may detach to allow its resources to be reclaimed
once the thread exits.

Synopsis

int pthread_detach (pthread_t tid);

In Example 6-2, the Threada is created as a detached thread using an attribute object. Threads is
detached after it has been created.

Example 6-2

// Example 6-2 Using an attribute object to create a detached thread and changing
// a joinable thread to a detached thread.

/]

int main(int argc, char *argvl[])

{

pthread_t ThreadA, ThreadB;
pthread_attr_t DetachedAttr;

pthread_attr_init (&DetachedAttr) ;
pthread_attr_setdetachstate (&DetachedAttr, PTHREAD_ CREATE_DETACHED) ;
pthread create(&ThreadA, &DetachedAttr, taskl, NULL) ;
pthread_create (&ThreadB, NULL, task2,NULL) ;

/] ..

pthread_detach(pthread_t ThreadB);

//pthread_join(ThreadB,NULL); cannot call once detached
return (0);
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Example 6-2 declares an attribute object Detachedattr. The pthread_attr_init () function is used to
initialize the attribute object. Threada is created with the DetachedAttr attribute object. This attribute
object has set detachstate to PTHREAD_CREATE_DETACHED. ThreadB is created with the default value
for detachstate, PTHREAD_CREATE_JOINABLE. Once it is created, pthread_detach() is called. Now
that ThreadB is detached, pthread_join () cannot be called for this thread.

Managing Threads

So far we have talked about creating threads, using thread attribute objects, creating joinable and
detached threads, and returning thread ids. Now we discuss managing the threads. When you create
applications with multiple threads, there are several ways to control how threads behave and how they
use and compete for resources. Part of managing threads is setting the scheduling policy, the priority of
the threads, and so on. This contributes to the performance of the threads and, therefore, to the
performance of the application. Thread performance is also determined by how the threads compete for
resources, either on a process or system scope. The scheduling, priority, and scope of the thread can be
set by using a thread attribute object. Because threads share resources, access to resources has to be
synchronized. Thread synchronization also includes when and how threads are terminated and canceled.

Terminating Threads

A thread terminates when it comes to the end of the instructions of its routine. When the thread
terminates, the pthread library reclaims the system resources the thread was using and stores its exit
status. A thread can also be terminated by another peer thread prematurely before it has executed all its
instructions. The thread may have corrupted some process data and may have to be terminated.

A thread’s execution can be discontinued by several means:

Q By returning from the execution of its assigned task with or without an exit status or
return value

Q By explicitly terminating itself and supplying an exit status

Q By being canceled by another thread in the same address space.

Self-Termination

A thread can self-terminate by calling pthread_exit ().

Synopsis

#include <pthread.h>

int pthread_exit (void *value_ptr) ;

When a joinable thread function has completed executing, it returns to the thread calling pthread_join()
for which it was the target thread. When the terminating thread calls pthread_exit (), it is passed the exit
status in value_ptr. The exit status is returned to pthread_join (). Cancellation cleanup handler tasks
that have not executed execute along with the destructors for any thread-specific data.
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When this function is called, no resources used by the thread are released. No application visible process
resources, including mutexes and file descriptors, are released. No process-level cleanup actions are
performed. When the last thread of a process exits, the process has terminated with an exit status of 0.
This function cannot return to the calling thread, and there are no errors defined for it.

Terminating Peer Threads

It may be necessary for one thread to terminate a peer thread. pthread_cancel () is used to terminate
peer threads. The thread parameter is the thread to be canceled. The function returns 0 if successful and
an error if not successful. The pthread_cancel () function fails if the thread parameter does not
correspond to an existing thread.

Synopsis

#include <pthread.h>

int pthread_cancel (pthread_t thread) ;

An application may have a thread that monitors the work of other threads. If a thread performs poorly
or is no longer needed, in order to save system resources it may be necessary to terminate that thread. A
user may desire to cancel an executing operation. Multiple threads may be used to solve a problem, but
once the solution is obtained by a thread, all of the other threads can be canceled by the monitor or the
thread that obtained the solution.

A call to pthread_cancel () is a request to cancel a peer thread. The request can be granted
immediately, granted at a later time, or even ignored. The target thread may terminate immediately or
defer termination until a logical point in its execution. The thread may have to perform some cleanup
tasks before it terminates. The thread also has the option to refuse termination.

Understanding the Cancellation Process

There is a cancellation process that occurs asynchronously to the returning of the pthread_

cancel () when a request to cancel a peer thread is granted. The cancel type and cancel state of the target
thread determines when cancellation actually takes place. The cancelability state describes the cancel
condition of a thread as being cancelable or uncancelable. A thread’s cancelability type determines the
thread’s ability to continue after a cancel request. The cancelability state and type are dynamically set by
the thread itself.

pthread_setcancelstate() and pthread_setcanceltype () are used to set the cancelability state
and type of the calling thread. pthread_setcancelstate () sets the calling thread to the cancelability

state specified by state and returns the previous state in oldstate. pthread_setcanceltype () sets
the calling thread to the cancelability type specified by type and returns the previous state in oldtype.

Synopsis

#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype (int type, int *oldtype) ;
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The values for state and oldstate for setting the cancel state of a thread are:

a PTHREAD_CANCEL_DISABLE

a PTHREAD_CANCEL_ENABLE

PTHREAD_CANCEL_DISABLE causes the thread to ignore a cancel request. PTHREAD_CANCEL_ENABLE
causes the thread to concede to a cancel request. This is the default state of any newly created thread. If
successful, the function returns 0. If not successful, the function returns an error number. The pthread_
setcancelstate () may fail if not passed a valid state value.

pthread_setcanceltype () sets the calling thread to the cancelability type specified by type and
returns the previous state in o1dtype. The values for type and oldtype are:

d PTHREAD_CANCEL_DEFFERED

a PTHREAD_CANCEL_ASYNCHRONOUS

PTHREAD_CANCEL_DEFFERED causes the thread to put off termination until it reaches its cancellation
point. This is the default cancelability type for any newly created threads. PTHREAD_CANCEL_
ASYNCHRONOUS causes the thread to terminate immediately. If successful, the function returns 0. If not
successful, the function returns an error number. The pthread_setcanceltype () may fail if not passed
a valid type value.

The pthread_setcancelstate () and pthread_setcanceltype () are used together to establish the

cancelability of a thread. Table 6-5 list combinations of state and type and a description of what occurs
for each combination.

Table 6-5

Cancelability State Cancelability Type Description

PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_DEFERRED Deferred cancellation. The
default cancellation state and
type of a thread. Thread
cancellation takes places when
it enters a cancellation point or
when the programmer defines
a cancellation point with a call
to pthread_testcancel ().

PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_ASYNCHRONOUS  Asynchronous cancellation.
Thread cancellation takes place
immediately.

PTHREAD_CANCEL_DISABLE Ignored Disabled cancellation. Thread
cancellation does not take
place.
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Take a look at the Example 6-3.

Example 6-3

// Example 6-3 task3 thread sets its cancelability state to allow thread
// to be canceled immediately.

void *task3(void *X)
{
int 0ldState,0ldType;

// enable immediate cancelability

pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, &01dState) ;
pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, &01dType) ;

ofstream Outfile("out3.txt");
for(int Count = 1;Count < 100;Count++)

{

Outfile << "thread C is working: " << Count << endl;

}
Outfile.close();
return (NULL) ;

In Example 6-3, cancellation is set to take place immediately. This means that a request to cancel the
thread can take place at any point of execution in the thread’s function. So, the thread can open the file
and be canceled while it is writing to the file.

Cancellation of a peer thread should not be taken lightly. Some threads are of such a sensitive nature that
they may require safeguards against untimely cancellation. Installing safeguards in a thread’s function
may prevent undesirable situations. For example, consider threads that share data. Depending on the
thread model used, one thread may be processing data that is to be passed to another thread for
processing. While the thread is processing data, it has sole possession of the data by locking a mutex. If a
thread is canceled before the mutex is released, this will cause deadlock. The data may be required to be
in some state before it can be used again. If a thread is canceled before this is done, an undesirable
condition may occur. Depending on the type of processing that a thread is performing, thread
cancellation should be performed only when it is safe.

A vital thread may prevent cancellation entirely. Therefore, thread cancellation should be restricted to
threads that are not vital, points of execution that do not have locks on resources or are in the process of
executing vital code. Set the cancelability of the thread to the appropriate state and type. Cancellations
should be postponed until all vital cleanups have taken place, such as releasing mutexes, closing files,
and so on. If the thread has cancellation cleanup handler tasks, they are performed before cancellation.
When the last handler returns, the destructors for thread-specific data, if any, are called, and the thread is
terminated.
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Using Cancellation Points

When a cancel request is deferred, the termination of the thread is postponed until later in the execution
of the thread’s function. When it occurs, it should be safe to cancel the thread because it is not in the
middle of locking a mutex, executing critical code, or leaving data in some unusable state. These safe
locations in the code’s execution are good locations for cancellation points. A cancellation point is a
checkpoint where a thread checks if there are any cancellation requests pending and, if so, concedes to
termination.

Cancellation points are marked by a call to pthread_testcancel (). This function checks for any
pending cancellation request. If a request is pending, it causes the cancellation process to occur at the
location this function is called. If there are no cancellations pending, then the function continues to
execute with no repercussions. This function call should be placed at any location in the code where it is
considered safe to terminate the thread.

Synopsis

#include <pthread.h>

void pthread_testcancel (void) ;

In Example 6-3, the cancelability of the thread was set for immediate cancelability. Example 6-4 uses a
deferred cancelability, the default setting. A call to pthread_testcancel () marks where it is safe for
the thread to be canceled, before the file is opened or after the thread has closed the file.

Example 6-4

// Example 6-4 taskl thread sets its cancelability state to be deferred.

void *taskl (void *X)
{
int 0ldState,0l1dType;

//not needed default settings for cancelability
pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, &0l1dState) ;
pthread_setcanceltype (PTHREAD_CANCEL_DEFERRED, &01dType) ;

pthread_testcancel();

ofstream Outfile("outl.txt");
for (int Count = 1;Count < 1000;Count++)

{
Outfile << "thread 1 is working: " << Count << endl;

}
Outfile.close();

pthread testcancel();return (NULL);
}
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In Example 6-5, two threads are created and then canceled.

Example 6-5

//Example 6-5 shows two threads being canceled.

/...
int main(int argc, char *argvl[])
{
pthread_t Threads[2];
void *Status;

pthread_create (& (Threads[0]),NULL, taskl,NULL) ;
pthread_create (& (Threads[1]),NULL, task3,NULL) ;

/7

pthread_cancel (Threads([0]) ;
pthread_cancel (Threads[1]);

for (int Count = 0;Count < 2;Count++)
{
pthread_join(Threads[Count], &Status) ;
if (Status == PTHREAD_CANCELED) {
cout << "thread" << Count << " has been canceled" << endl;

}

else{
cout << "thread" << Count << " has survived" << endl;
}
}
return (0);

}

In Example 6-5, the primary thread creates two threads. Then it issues a cancellation request for each
thread. The main thread calls the pthread_join () function for each thread. The pthread_join ()
function does not fail if it attempts to join with a thread that has already been terminated. The join function
just retrieves the exit status of the terminated thread. This is good because the thread that issues the
cancellation request may be a different thread than the thread that calls pthread_join (). Monitoring the
work of all the worker threads may be the sole task of a single thread that also cancels threads. Another
thread may examine the exit status of threads by calling the pthread_join () function. This type of
information can be used to statistically evaluate which threads have the best performance. In this example,
the main thread joins and examines each thread’s exit status in a loop. A canceled thread may return an
exit status PTHREAD_CANCELED.
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Taking Advantage of Cancellation-Safe Library Functions and System Calls

In these examples, cancellation points marked by a call to pthread_testcancel () are placed in user-
defined functions. When you are calling library functions from the thread function that uses
asynchronous cancellation, is it safe for the thread to be canceled?

The pthread library defines functions that can serve as cancellation points and are considered
asynchronous cancellation-safe functions. These functions block the calling thread, and while the calling
thread is blocked, it is safe to cancel the thread. These are the pthread library functions that act as
cancellation points:

] pthread_testcanel ()
a pthread_cond_wait ()
] pthread_timedwait
a

pthread_join()

If a thread with a deferred cancelability state has a cancellation request pending when making a call to
one of these pthread library functions, the cancellation process is initiated.

Table 6-6 lists some of the POSIX system calls that are required to be cancellation points. These pthread
and POSIX functions are safe to be used as deferred cancellation points, but they may not be safe for
asynchronous cancellation. A library call that is not asynchronously safe that is canceled during
execution can cause library data to be left in an incompatible state. The library may have allocated
memory on the behalf of the thread and, when the thread is canceled, may still have a hold on

that memory. In this case, before making such library calls from a thread that has asynchronous
cancelability, it may be necessary to change the cancelability state before the call and then change it back
after the function returns.

Table 6-6
POSIX System Calls (Cancellation Points)
accept () nanosleep () sem_wait ()
aio_suspend() open () send ()
clock_nanosleep () pause () sendmsg ()
close() poll () sendto ()
connect () pread () sigpause ()
creat () pthread_cond_timedwait () sigsuspend/()
fentl () pthread_cond_wait () sigtimedwait ()
fsync () pthread_join() sigwait ()
getmsg () putmsg () sigwaitinfo ()

Table continued on following page
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POSIX System Calls (Cancellation Points)

lockf () putpmsg () sleep()
mg_receive () pwrite() system()
mg_send () read () usleep()
mg_timedreceive () readv () wait ()
mg_timedsend () recvfrom() waitpid()
msgrcv () recvmsg () write()
msgsnd () select () writev ()
msync () sem_timedwait ()

For other library and systems functions that are not cancellation safe (asynchronously or deferred), it
may be necessary to write code preventing a thread from terminating by disabling cancellation or
deferring cancellation until after the function call has returned.

Example 6-6 is a wrapper for the library or system call. The wrapper changes the cancelability to
deferred, makes the function or system call, and then resets cancelability to previous type. Now it would
be safe to call pthread_testcancel ().

Example 6-6
//Example 6-6 shows a wrapper for system functions.

int 0ldType;
pthread_setcanceltype (PTHREAD_ CANCEL_DEFERRED, &01dType) ;
system_call(); //some library of system call
pthread_setcanceltype (01dType, NULL) ;
pthread_testcancel();

/...

Cleaning Up before Termination

We mentioned earlier that a thread may need to perform some final processing before it is terminated,
such as closing files, resetting shared resources to a consistent state, releasing locks, or deallocating
resources. The pthread library defines a mechanism for each thread to perform last minute tasks before
terminating. A cleanup stack is associated with every thread. The cleanup stack contains pointers to
routines that are to be executed during the cancellation process. The pthread_cleanup_push ()
function pushes a pointer to the routine to the cleanup stack.
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Synopsis

#include <pthread.h>

void pthread_cleanup_push(void (*routine) (void *), void *arg);
void pthread_cleanup_pop (int execute) ;

The routine parameter is a pointer to the function to be pushed to the stack. The arg parameter is
passed to the function. The function routine is called with the arg parameter when the thread exits
under these circumstances:

QO  When calling pthread_exit ()
QO  When the thread concedes to a termination request

Q  When the thread explicitly calls pthread_cleanup_pop () with a nonzero value for execute
The function does not return.

The pthread_cleanup_pop () removes routine’s pointer from the top of the calling thread’s cleanup
stack. The execute parameter can have a value of 1 or 0. If 1, the thread executes routine even if it is
not being terminated. The thread continues execution from the point after the call to this function. If the
value is 0, the pointer is removed from the top of the stack without executing.

For each push, there needs to be a pop within the same lexical scope. For example, task4 () requires a
cleanup handler to be executed when the function exits or canceled.

In Example 6-7, task4 () pushes the cleanup handler cleanup_task4 () to the cleanup stack by calling
the pthread_cleanup_push () function. The pthread_cleanup_pop () function is required for each
call to the pthread_cleanup_push () function. The pop function is passed 0, which means the handler
is removed from the cleanup stack but is not executed at this point. The handler is executed if the thread
that executes task4 () is canceled.

Example 6-7

//Example 6-7 task4 () pushes cleanup handler cleanup_task4 () onto cleanup stack.

void *task4 (void *X)
{
int *Tid;
Tid = new int;
// do some work
//...
pthread_cleanup_push(cleanup_task4,Tid) ;
// do some more work
//...
pthread_cleanup_pop (0) ;
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In Example 6-8, task5 () pushes cleanup handler cleanup_task5 () onto the cleanup stack. The
difference in this case is pthread_cleanup_pop () is passed 1, which means that the handler is
removed from the cleanup stack but executes at this point. The handler is executed regardless of whether
the thread that executes task5 () is canceled or not. The cleanup handlers, cleanup_task4 () and
cleanup_task5 () are regular functions that can be used to close files, release resources, unlock mutexes,
and so forth.

Example 6-8

//Example 6-8 task5 () pushes cleanup handler cleanup_task5 () onto cleanup stack.

void *task5(void *X)
{
int *Tid;
Tid = new int;
// do some work
/] ...
pthread_cleanup_push(cleanup_task5,Tid) ;
// do some more work
/] ..
pthread_cleanup_pop (1) ;

Managing the Thread’s Stack

Managing the thread’s stack includes setting the size of the stack and determining its location. The
thread’s stack is usually automatically managed by the system. But you should be aware of the system-
specific limitations that are imposed by the default stack management system. They might be too
restrictive, and that’s when it may be necessary to do some stack management. If your application has a
large number of threads, you may have to increase the upper limit of the stack established by the default
stack size. If an application utilizes recursion or calls to several functions, many stack frames are
required. Some applications require exact control over the address space. For example, an application
that has garbage collection must keep track of allocation of memory.

The address space of a process is divided into the text and static data segments, free store, and the stack
segment. The location and size of the thread’s stacks are carved out of the stack segment of its process.

A thread’s stack stores a stack frame for each routine it has called but that has not exited. The stack frame
contains temporary variables, local variables, return addresses, and any other additional information the
thread needs to finds its way back to previously executing routines. Once the routine has exited, the
stack frame for that routine is removed from the stack. Figure 6-5 shows how stack frames are generated
and placed onto a stack.
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PROCESS’S ADDRESS SPACE
STACK SEGMENT
}askS()
/...
_____________ |
mFe=m=e======= }ast()
) int A, B;
task2) "
B ] task3();
task1()
Y task1()
ThreadA’s stack }?tx v
task2();
}
Figure 6-5

In Figure 6-5, Threada executes taskl. taskl creates some local variables, does some processing, and
then calls task2. A stack frame is created for taskl and placed on the stack. task2 creates local
variables, and then calls task3. A stack frame for task?2 is placed on the stack. After task3 () has been
completed, flow of control returns to task2 (), which is popped from the stack. After task2 () has
executed, flow of control is returned to taskl (), which is popped from the stack. Each stack must be
large enough to accommodate the execution of all peer threads’ functions along with the chain of
routines that will be called. The size and location of a thread’s stack can be set or examined by several
methods defined by the attribute object.

Setting the Size of the Stack

There are two attribute methods concerned with the size of the thread’s stack.
Synopsis

#include <pthread.h>
int pthread_attr_getstacksize (const pthread_attr_t *restrict attr,

size_t *restrict stacksize);
int pthread_attr_setstacksize (pthread_attr_t *attr, size_t *stacksize);
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The pthread_attr_getstacksize () returns the default stack size minimum. The attr is the thread
attribute object from which the default stack size is extracted. When the function returns, the default

stack size in bytes is stored in stacksize and the return value is 0. If not successful, the function returns
an error number.

The pthread_attr_setstacksize () sets the stack size minimum. The attr is the thread attribute
object for which the stack size is set. The stacksize is the minimum size of the stack in bytes. If the
function is successful, the return value is 0. If not successful, the function returns an error number.

The function fails if stacksize is less than PTHREAD_MIN_STACK or exceeds the system minimum. The
PTHREAD_STACK_MIN will probably be a lower minimum than the default stack minimum returned

by pthread_attr_getstacksize (). Consider the value returned by the pthread_attr_
getstacksize () before raising the minimum size of a thread’s stack.

In Example 6-9, the stack size of a thread is changed by using a thread attribute object. It retrieves the
default size from the attribute object and then determines whether the default size is less than

the minimum stack size desired. If so, the offset is added to the default stack size. This becomes the
new minimum stack size for this thread.

Example 6-9
// Example 6-9 Changing the stack size of a thread using an offset.

#include <limits.h>
/...

pthread_attr_getstacksize (&SchedAttr, &DefaultSize);
if (DefaultSize < PTHREAD_STACK_MIN) {
SizeOffset = PTHREAD_STACK_MIN - DefaultSize;
NewSize = DefaultSize + SizeOffset;
pthread_attr_setstacksize (&Attrl, (size_t)NewSize) ;
}

There is a tradeoff in setting the size. The stack size is fixed. A large stack means there is less of a
probability there will be stack overflow. But on the other hand a large stack means more expense in
terms of swap space and real memory for the stack.

Setting the stack size and stack location may make your program unportable. The stack size and location
you set for your program on one platform may not match the stack size and location of another platform.

Setting the Location of the Thread’s Stack

Once you decide to manage the thread’s stack, you can retrieve and then set the location of the stack by
using these attribute object methods:

Synopsis

#include <pthread.h>
int pthread_attr_setstackaddr (pthread_attr_t *attr, void *stackaddr) ;

int pthread_attr_getstackaddr (const pthread_attr_t *restrict attr,
void **restrict stackaddr) ;
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The pthread_attr_setstackaddr () sets the base location of the stack to the address specified by
stackattr for the thread created with the thread attribute object attr. This address addr should be
within the virtual address space of the process. The size of the stack will be at least equal to the
minimum stack size specified by PTHREAD_STACK_MIN. If successful, the function returns 0. If not
successful, the function returns an error number.

pthread_attr_getstackaddr () retrieves the base location of the stack address for the thread created
with the thread attribute object specified by the attr. The address is returned and stored in the
stackaddr. If it is successful, the function returns 0. If not successful, the function returns an error
number.

Setting Stack Size and Location with One Function

The stack attributes (size and location) can be set by using a single function.
Synopsis

#include <pthread.h>

int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
size_t stacksize);
int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr, size_t *restrict stacksize);

pthread_attr_setstack() sets both the stack size and location of a thread created using the specified
attribute object attr. The base location of the stack is set to the stackaddr, and the size of the stack is
set to the stacksize. pthread_attr_getstack () retrieves the stack size and location of a thread
created using the specified attribute object attr. If this is successful, the stack location is stored in
stackaddr, and the stack size is stored in stacksize. If successful, these functions return 0. If not
successful, an error number is returned. The pthread_setstack () fails if the stacksize is less than
PTHREAD_STACK_MIN or exceeds some implementation-defined limit.

Setting Thread Scheduling and Priorities

Threads execute independently. They are assigned to a processor core and execute the task they have
been given. Each thread is given a scheduling policy and priority that dictates how and when it is
assigned to a processor. The scheduling policy of a thread or group of threads can be set by an attribute
object using these functions:

Synopsis

#include <pthread.h>
#include <sched.h>

int pthread_attr_setinheritsched (pthread_attr_t *attr, int inheritsched);
void pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_setschedparam(pthread_attr_t *restrict attr,

const struct sched_param *restrict param) ;
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pthread_attr_setinheritsched() is used to determine how the thread’s scheduling attributes are
set, by inheriting the scheduling attributes either from the creator thread or from an attribute object.
inheritsched can have one of these values:

Q  PTHREAD_INHERIT_SCHED: Thread scheduling attributes are inherited from the creator thread,
and any scheduling attributes of the attr are ignored.

Q  pTHREAD_EXPLICIT_SCHED:Thread scheduling attributes are set to the scheduling attributes of
the attribute object attr.

If inheritsched value is PTHREAD_EXPLICIT_SCHED, then pthread_attr_setschedpolicy () is
used to set the scheduling policy and pthread_attr_setschedparam() is used to set the priority.

The pthread_attr_setschedpolicy () sets the scheduling policy of the thread attribute object attr
. policy values can be one of the following defined in the <sched.h> header:

Q  ScHED_FIFO: First-In, First-Out scheduling policy whereby the executing thread runs to
completion.

0  ScHED_RR: Round robin scheduling policy whereby each thread is assigned to processor only for
a time slice.

O  SCHED_OTHER: Another scheduling policy (implementation-defined). By default, this is the
scheduling policy of any newly created thread.

Use pthread_attr_setschedparam() to set the scheduling parameters of the attribute object attr
used by the scheduling policy. param is a structure that contains the parameters. The sched_param
structure has at least this data member defined:

struct sched_param {
int sched_priority;
//...

Y

It may also have additional data members, along with several functions that return and set the priority
minimum, maximum, scheduler, parameters, and so on. If the scheduling policy is either SCHED_FIFO or
SCHED_RR, then the only member required to have a value is sched_priority.

Use sched_get_priority_max() and sched_get_priority max (), as follows, to obtain the
maximum and minimum priority values.

Synopsis

#include <sched.h>

int sched_get_priority max(int policy) ;
int sched_get_priority min(int policy);
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Both functions are passed the scheduling policy policy for which the priority values are requested, and
both return either the maximum or minimum priority values for the scheduling policy.

Example 6-10 shows how to set the scheduling policy and priority of a thread by using the thread
attribute object.

Example 6-10

// Example 6-10 Using the thread attribute object to set scheduling
// policy and priority of a thread.

#include <pthread.h>
#include <sched.h>

/..

pthread_t Threada;

pthread_attr_t SchedAttr;

sched_param SchedParam;

int MidPriority,MaxPriority,MinPriority;

int main(int argc, char *argvl[])

{

/...

// Step 1l: initialize attribute object
pthread_attr_init (&SchedAttr) ;

// Step 2: retrieve min and max priority values for scheduling policy
MinPriority = sched_get_priority max (SCHED_RR) ;
MaxPriority = sched_get_priority_min(SCHED_RR);

// Step 3: calculate priority value
MidPriority = (MaxPriority + MinPriority)/2;

// Step 4: assign priority value to sched_param structure
SchedParam.sched_priority = MidPriority;

// Step 5: set attribute object with scheduling parameter
pthread_attr_setschedparam(&SchedAttr, &SchedParam) ;

// Step 6: set scheduling attributes to be determined by attribute object
pthread_attr_setinheritsched (&SchedAttr, PTHREAD_EXPLICIT_SCHED) ;

// Step 7: set scheduling policy
pthread_attr_setschedpolicy (&SchedAttr, SCHED_RR) ;

// Step 8: create thread with scheduling attribute object
pthread_create (&ThreadA, &SchedAttr, taskl,NULL) ;

/]
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In Example 6-10, the scheduling policy and priority of Threada is set using the thread attribute object
Schedattr. This is done in eight steps:

1. Initialize attribute object.

Retrieve min and max priority values for scheduling policy.
Calculate priority value.

Assign priority value to the sched_param structure.

Set the attribute object with a scheduling parameter.

Set scheduling attributes to be determined by attribute object.

N ook eDd

Set the scheduling policy.
8. Create a thread with the scheduling attribute object.

In Example 6-10, we set the priority to be an average value. But the priority can be set to be any value

between the maximum and minimum priority values allowed by the scheduling policy for the thread.
With these methods, the scheduling policy and priority are set in the thread attribute object before the
thread is created or running. To dynamically change the scheduling policy and priority, use pthread_
setschedparam () and pthread_setschedprio ().

Synopsis

#include <pthread.h>

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param) ;
int pthread_getschedparam(pthread t thread, int *restrict policy,
struct sched_param *restrict param);
int pthread_setschedprio(pthread_t thread, int prio);

pthread_setschedparam() sets both the scheduling policy and priority of a thread directly without
the use of an attribute object. thread is the id of the thread, policy is the new scheduling policy, and
param contains the scheduling priority. The pthread_getschedparam () returns the scheduling policy
and scheduling parameters and stores their values in policy and param parameters, respectively, if
successful. If successful, both functions return 0. If not successful, both functions return an error number.
Table 6-7 lists the conditions in which these functions may fail.

The pthread_setschedprio () is used to set the scheduling priority of an executing thread whose
thread id is specified by the thread. prio specifies the new scheduling priority of the thread. If the
function fails, the priority of the thread is not changed, and an error number is returned. If it is
successful, the function returns 0. The conditions under which this function fails are listed in Table 6-7.
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Table 6-7
pthread Scheduling and Priority
Functions Failure Conditions
int pthread_getschedparam The thread parameter does not refer to an existing thread.

(pthread_t thread,
int *restrict policy,
struct sched_param
*restrict param) ;

int pthread_setschedparam The policy parameter or one of the scheduling
(pthread_t thread, parameters associated with policy parameter is invalid.
int *policy,
const struct The policy parameter or one of the scheduling
sched_param *param) ; parameters has a value that is not supported.

The calling thread does not have the appropriate
permission to set the scheduling parameters or policy
of the specified thread.

The thread parameter does not refer to an existing thread.

The implementation does not allow the application to
change one of the parameters to the specified value.

int pthread_setschedprio The prio parameter is invalid for the scheduling policy
(pthread_t thread, of the specified thread.
int prio);

The prio parameter has a value that is not supported.

The calling thread does not have the appropriate
permission to set the scheduling priority of the specified
thread.

The thread parameter does not refer to an existing thread.

The implementation does not allow the application to
change the priority to the specified value.

Remember to carefully consider why it is necessary to change the scheduling policy or priority of a
running thread. This may diversely affect the overall performance of your application. Threads with
higher priority preempt running threads with lower priority. This may lead to starvation, a thread
constantly being preempted and, therefore, not able to complete execution.

Setting Contention Scope of a Thread

The contention scope of the thread determines which set of threads a thread competes with for processor
usage. The contention scope of a thread is set by the thread attribute object.
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Synopsis

#include <pthread.h>

int pthread_attr_setscope (pthread attr_t *attr, int contentionscope) ;
int pthread_attr_getscope(const pthread_attr_t *restrict attr,
int *restrict contentionscope) ;

The pthread_attr_setscope () sets the contention scope property of the thread attribute object
specified by attr. The contention scope of the thread attribute object will be set to the value stored in
the contentionscope. contentionscope can have these values:

0  PTHREAD_SCOPE_SYSTEM: System scheduling contention scope

0  PTHREAD_SCOPE_PROCESS: Process scheduling contention scope

System contention scope means the thread contends with others threads of other processes systemwide.
pthread_attr_getscope () returns the contention scope attribute from the thread attribute object
specified by the attr. If it is successful, the contention scope of the thread attribute object is returned
and stored in the contentionscope. Both functions return 0 if successful and an error number
otherwise.

Using sysconf()

Knowing the thread resource limits of your system is a key to having your application appropriately
manage them. Examples of utilizing the system resources have been discussed in previous section. When
setting the stack size of a thread, PTHREAD_MIN_STACK is the lower minimum. The stack size should not
be below the value of the default stack minimum returned by pthread_attr_getstacksize (). The
maximum number of threads per process places an upper bound on the number of worker threads that
can be created for a process. sysconf () is used to return the current value of configurable system limits
or options. Your system defines several variables and constant counterparts concerned with threads,
processes, and semaphores. In Table 6-8, we list some of them to give you an idea to what is available.

Table 6-8

Variable Name Value Description

_SC_THREADS _POSIX_THREADS Supports threads

_SC_THREAD_ATTR_ _POSIX_THREAD_ATTR_ Supports thread stack address

STACKADDR STACKADDR attribute

_SC_THREAD_ATTR_ _POSIX_THREAD_ATTR_ Supports thread stack size

STACKSIZE STACKSIZE attribute

_SC_THREAD_STACK_MIN PTHREAD_STACK_MIN Minimum size of thread stack
storage in bytes

_SC_THREAD_THREADS_MAX PTHREAD_THREADS_MAX Maximum number of threads
per process
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Variable

Name Value

Description

_SC_THREAD_KEYS_MAX

_SC_THREAD_PRIO_INHERIT

_SC_THREAD_PRIO

_SC_THREAD_PRIORITY_
SCHEDULING

_SC_THREAD_PROCESS__
SHARED

_SC_THREAD_SAFE_
FUNCTIONS

_SC_THREAD_DESTRUCTOR_
ITERATIONS

_SC_CHILD_MAX

_SC_PRIORITY_SCHEDULING

_SC_REALTIME_SIGNALS

_SC_XOPEN_REALTIME__
THREADS

_SC_STREAM_MAX

_SC_SEMAPHORES

_SC_SEM_NSEMS_MAX

_SC_SEM_VALUE_MAX

_SC_SHARED_MEMORY__
OBJECTS

PTHREAD_KEYS_MAX

_POSIX THREAD_PRIO_
INHERIT

_POSIX THREAD_PRIO_

_POSIX THREAD_PRIORITY_

SCHEDULING

_POSIX_ THREAD_PROCESS_
SHARED

_POSIX THREAD_SAFE_
FUNCTIONS

_PTHREAD_THREAD_
DESTRUCTOR_ITERATIONS

CHILD_MAX
_POSIX PRIORITY__
SCHEDULING

_POSIX REALTIME_SIGNALS

_XOPEN_REALTIME_THREADS

STREAM_MAX

_POSIX_ SEMAPHORES

SEM_NSEMS_MAX

SEM_VALUE_MAX

_POSIX SHARED_MEMORY_
OBJECTS

Maximum number of keys per
process

Supports priority inheritance
option

Supports thread priority
option

Supports thread priority
scheduling option

Supports process-shared
synchronization

Supports thread safe functions

Determines the number of
attempts made to destroy
thread-specific data on thread
exit

Maximum number of
processes allowed to a UID

Supports process scheduling

Supports real-time signals

Supports X/Open POSIX real-
time threads feature group

Determines the number of
streams one process can have
open at a time

Supports semaphores

Determines the maximum
number of semaphores a
process may have

Determines the maximum
value a semaphore may have

Supports shared memory
objects
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Here is an example of a call to sysconf ():

if (PTHREAD_STACK_MIN == (sysconf (_SC_THREAD_STACK_MIN))) {
//. ..
}

The constant value of PTHREAD_STACK_MIN is compared to the _SC_THREAD_STACK_MIN value returned
by the sysconf ().

Thread Safety and Libraries

Alibrary is thread safe or reentrant when its functions may be called by more than one thread at a time
without requiring any other action on the caller’s part. When designing a multithread application, you
must be careful to ensure that concurrently executing functions are thread safe. We have already
discussed making user-defined functions thread safe, but an application often calls functions defined by
the system or a third-party supplied library. We have discussed system functions that are safe as
cancellation points, but some of these functions and/or libraries are thread safe, while others are not. If
the functions are not thread safe, then this means the functions:

Q  Contain static variables
Q  Access global data

O  Are not reentrant

If the function contains static variables, then those variables maintain their values between invocations
of the function. The function requires the value of the static variable in order to operate correctly. When
concurrent multiple threads invoke this function, a race condition occurs.

If the function modifies a global variable, then multiple threads invoking that function may each attempt
to modify that global variable. If concurrent multiple accesses to the global variable are not
synchronized, then a race condition can occur here as well. Consider concurrent multiple threads
executing functions that set errno. With some of the threads, the function fails, and errno is set to an
error message. Meanwhile, other threads execute successfully. Depending on the compiler
implementation, errno is thread safe, but if it’s not, when a thread checks the state of errno, which
message does it report?

Reentrant code is a block of code that cannot be changed while it is in use. Reentrant code avoids race
conditions by removing references to global variables and modifiable static data. The code can be shared
by multiple concurrent threads or processes without a race condition occurring. The POSIX standard
defines several functions as reentrant. They are easily identified by a _r attached to the function name of
the nonreentrant counterpart. Some are:
a getgrgid_r ()
a getgrnam_r ()
4 getpwuid_xr ()
4 sterror_r()
[l strtok_r()
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4 readdir_r()
4 rand_r ()

] ttyname_x ()

If the function accesses unprotected global variables, contains static modifiable variables, or is not
reentrant, then the function is considered thread unsafe.

Using Multithreaded Versions of Libraries and Functions

System- and third-party-supplied libraries may have two different versions of their standard libraries,
one version for single-threaded applications and the other version for multithreaded applications.
Whenever a multithreaded environment is anticipated, link to the multithreaded versions of the library.
Other environments do not require multithreaded applications to be linked to the multithreaded version
of the library but only require macros to be defined for reentrant versions of functions to be declared.
The application can then be compiled as thread safe.

It is not always possible to use multithreaded versions of functions. In some instances, multithreaded
versions of particular functions are not available for a given compiler or environment. Some functions’
interfaces cannot be made thread safe simply. In addition, you may be faced with adding threads to an
environment that uses functions that were only meant to be used in a single-threaded environment.
Under these conditions, mutexes can be used to wrap all such functions within the program.

For example, a program has three concurrently executing threads. Two of the threads, Threada and
ThreadB, both concurrently execute taskl (), which is not thread safe. The third thread, Threadc,
executes task2 (). To solve the problem of taskl (), the solution may be to simply wrap access to
taskl () by Threada and ThreadB with a mutex:

ThreadA

{
lock ()
taskl ()
unlock ()

}

ThreadB

{
lock()
taskl ()
unlock ()

}

ThreadC

{
task2 ()

}

If this is done, then only one thread accesses taskl () at a time. But what if taskl () and task2 () both
modify the same global or static variable? Although Threada and ThreadB are using mutexes with
taskl (), ThreadC executes task2 () concurrently with either of these threads. In this situation, a race
condition occurs. Avoiding race conditions requires synchronized access to the global data. We discuss
this topic in Chapter 7.
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Thread Safe Standard Out

To illustrate another type of race condition when dealing with iostream library, say that you have two
threads, Thread A and Thread B, sending output to the standard output stream, cout. cout is an
object of type ostream. Using inserters (>>) and extractors (<<) invokes the methods of the cout object.
Are these methods thread safe? If Threada is sending the message:

Global warming is a real problem.

to stdout and Thread B is sending the message:

Global warming is not a real problem.

will the output be interleaved and produce the following message?
Global warming is a Global warming is not a real problem real problem.

In some cases, thread-safe functions are implemented as atomic functions. Atomic functions are functions
that cannot be interrupted once they begin to execute. In the case of cout, if the inserter operation is
implemented as atomic, then this interweaving cannot take place. When you have multiple calls to the
inserter operation, they are executed as if they were in serial order. Threada’s message will be displayed,
then Threads’s, or vice versa. This is an example of serializing a function or operation in order to make
it thread safe.

This may not be the only way to make a function thread safe. A function may interweave operations if it
has no adverse effect. For example, if a method adds or removes elements to or from a structure that is
not sorted and two different threads invoke that method, interweaving their operations will not have an
adverse effect.

If it is not known which functions from a library are thread safe and which are not, you have three
choices:

Q  Restrict use of all thread-unsafe functions to a single thread
QO Do not use any of the thread unsafe functions

Q  Wrap all potential thread unsafe functions within a single set of synchronization mechanisms

To extend the last option, you can create interface classes for all thread unsafe functions that will be used
in a multithreaded application. The idea of a wrapper was illustrated when making a cancellation point
for system calls earlier in this chapter. The unsafe functions are encapsulated within an interface class.
That class can be combined with the appropriate synchronization objects and can be used by the host
class through inheritance or composition. This approach reduces the possibility of race conditions and is
discussed in Chapter 7. However, first we want to discuss the thread_object interface class introduced
in Chapter 4 and extend it to encapsulate the thread attribute object.
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Extending the Thread Interface Class

A thread interface class was introduced in Chapter 4. The interface class acts as a wrapper that allows
something to appear differently than it does normally. The new interface provided by an interface class
is designed to make the class easier to use, more functional, safer, or more semantically correct. In this
chapter, we have introduced a number of pthread functions used to manage a thread, including the
creation and usage of the thread attribute object. The thread_object class was a simple skeleton class.
Its purpose was to encapsulate the pthread thread interface and to supply object-oriented semantics and
components so that you can implement the models you produce in the SDLC more easily. Now it’s time
to expand the thread_object class to encapsulate some of the functionality of the thread attribute
object. Listing 6-2 shows the declaration of the new thread_object and user_thread classes.

Listing 6-2

//Listing 6-2 Declaration of the new thread_object and user_thread.

1 #ifndef _ THREAD_OBJECT_H

2 #define _ THREAD_OBJECT_H

3

4 using namespace std;

5 #include <iostream>

6 #include <pthread.h>

7 #include <string>

8

9 class thread_object{

10 pthread_t Tid;

11

12 protected:

13 virtual void do_something(void) = 0;
14 pthread_attr_t SchedAttr;

15 struct sched_param SchedParam;
16 string Name;

17 int NewPolicy;

18 int NewState;

19 int NewScope;

20 public:

21 thread_object (void) ;

22 ~thread_object (void) ;

23 void setPriority(int Priority);
24 void setSchedPolicy(int Policy);
25 void setContentionScope(int Scope) ;
26 void setDetached(void) ;

27 void setJoinable(void) ;

28

29 void name(string X);

30 void run(void) ;

31 void join(void);

32 friend void *thread(void *X);
33}

34

35

36 class filter_thread : public thread_object{
(continued)
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Listing 6-2 (continued)

37
38
39
40
41
42
43
44
45
46

protected:

void do_something(void) ;

public:

Y

filter_thread(void);
~filter_thread(void) ;

#endif

For the thread_object we have included methods that set:

a
a
a
]

scheduling policies

priority

state

contention scope

of the thread_object. Instead of a user_thread, we are defining a filter_thread that defines the
do_something () method. This class is used in the next chapter on synchronization.

Listing 6-3 is the class definition of the new thread_object class.

Listing 6-3

//Listing 6-3 A definition of the new thread_object class.

0 ~J oUW N

e e N e Y = )
0 JoU WM RO

19
20
21
22
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#include "thread_object.h"

thread_object: :thread_object (void)

{

}

pthread_attr_init (&SchedAttr) ;
pthread_attr_setinheritsched(&SchedAttr, PTHREAD_EXPLICIT_SCHED) ;
NewState = PTHREAD_CREATE_JOINABLE;

NewScope = PTHREAD_SCOPE_PROCESS;

NewPolicy = SCHED_OTHER;

thread_object: :~thread_object (void)

{

}

void thread_object::join(void)

{

if (NewState == PTHREAD_CREATE_JOINABLE) {
pthread_join(Tid, NULL) ;
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

void thread_object::setPriority(int Priority)
{

int Policy;

struct sched_param Param;

Param.sched_priority = Priority;
pthread_attr_setschedparam(&SchedAttr, &Param) ;

void thread_object::setSchedPolicy (int Policy)
{
if (Policy == 1){
pthread_attr_setschedpolicy (&SchedAttr, SCHED_RR) ;
pthread_attr_getschedpolicy (&SchedAttr, &NewPolicy) ;

if(Policy == 2){
pthread_attr_setschedpolicy (&SchedAttr, SCHED_FIFO) ;
pthread_attr_getschedpolicy (&SchedAttr, &NewPolicy) ;

void thread_object::setContentionScope (int Scope)
{
if (Scope == 1){
pthread_attr_setscope (&SchedAttr, PTHREAD_SCOPE_SYSTEM) ;
pthread_attr_getscope (&SchedAttr, &NewScope) ;
}

if (Scope == 2){
pthread_attr_setscope (&SchedAttr, PTHREAD_SCOPE_PROCESS) ;
pthread_attr_getscope (&SchedAttr, &NewScope) ;

void thread_object::setDetached(void)

{
pthread_attr_setdetachstate (&SchedAttr, PTHREAD CREATE_DETACHED) ;
pthread_attr_getdetachstate (&SchedAttr, &NewState) ;

}
void thread_object::setJoinable(void)
{

pthread_attr_setdetachstate (&SchedAttr, PTHREAD CREATE_JOINABLE) ;
pthread_attr_getdetachstate (&SchedAttr, &NewState) ;

(continued)
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Listing 6-3 (continued)

76 void thread_object::run(void)

77 |

78 pthread_create (&Tid, &SchedAttr, thread, this) ;
79 %}

80

81

82 wvoid thread_object: :name(string X)

83 {

84 Name = X;

85 '}

86

87

88 wvoid * thread (void * X)

89 {

90 thread_object *Thread;

91 Thread = static_cast<thread_object *>(X);
92 Thread->do_something () ;

93 return (NULL) ;

94 }

In Listing 6-3, the constructor defined at Lines 3-10 initializes a thread attribute object for this class
SchedAttr. It sets the inheritsched attribute to PTHREAD_EXPLICIT_SCHED so that the thread that is
created uses the attribute’s object to define its scheduling and priorities instead of inheriting them from
its creator thread. By default, the thread’s state is JOINABLE. The other methods are self-explanatory:

setPriority(int Priority)
setSchedPolicy (int Policy)
setContentionscope (int Scope)
setDetached ()

setJoinable ()

The join () checks to see if the thread is joinable before it calls pthread_join () in Line 20. Now when
the thread is created in Line 78, the pthread_create () uses the SchedAttr object:

pthread_create (&Tid, &SchedAttr, thread, this) ;

Listing 6-4 shows the definition for the filter_thread.

Listing 6-4

//Listing 6-4 A definition of the filter_thread class.

1 #include "thread_object.h"

2

3

4 filter thread::filter thread(void)
5 {

6 pthread_attr_init (&SchedAttr) ;
7

8

9 }

10
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

filter_thread::~filter_thread(void)
{

}

void filter_thread: :do_something(void)
{
struct sched_param Param;
int Policy;
pthread_t thread_id = pthread_self();
string Schedule;
string State;
string Scope;

pthread_getschedparam(thread_id, &Policy, &Param) ;

if (NewPolicy == SCHED_RR) {Schedule.assign("RR");}

if (NewPolicy == SCHED_FIFO) {Schedule.assign("FIFO");}
if (NewPolicy == SCHED_OTHER) {Schedule.assign("OTHER") ;}

if (NewState == PTHREAD_CREATE_DETACHED) {State.assign ("DETACHED") ;}
if (NewState == PTHREAD_CREATE_JOINABLE) {State.assign("JOINABLE") ;}
if (NewScope == PTHREAD_SCOPE_PROCESS) {Scope.assign ("PROCESS") ;}

if (NewScope == PTHREAD_SCOPE_SYSTEM) {Scope.assign("SYSTEM") ;}

cout << Name << ":" << thread_id << endl
< Moo " << endl
<< " priority: "<< Param.sched_priority << endl
<< " policy: "<< Schedule << endl
<< " state: "<< State << endl
<< " scope: "<< Scope << endl << endl;

In Listing 6-4, the filter_thread constructor in Lines 4-9 initializes with the thread attribute object
Schedattr. The do_something () method is defined. In filter_thread, this method simply sends to
cout thread information:

Qa

o 0 U u o

Name of the thread
Thread id

Priority
Scheduling policy
State

Scope

Some values may not be initialized because they were not set in the attribute object. This method will be
redefined in the next chapter.

Now, multiple £ilter_thread objects can be created, and each can set the attributes of the thread.
Listing 6-5 shows how multiple filter_thread objects are created.
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Listing 6-5

//Listing 6-5 is main line to create multiple filter_thread objects.

1 #include "thread_object.h"

2 #include <unistd.h>

3

4

5 1int main(int argc,char *argv[])

6 |

7 filter_thread MyThread[4];

8

9 MyThread[0] .name ("Proteus") ;

10 MyThread[0] .setSchedPolicy(2) ;
11 MyThread[0] .setPriority(7);

12 MyThread[0] .setDetached() ;

13

14 MyThread[1l] .name("Stand Alone Complex") ;
15 MyThread[1l] .setContentionScope (1) ;
16 MyThread[l].setPriority(5);

17 MyThread[l].setSchedPolicy(2) ;
18

19 MyThread[2] .name("Krell Space");
20 MyThread[2].setPriority(3);
21
22 MyThread[3] .name("Cylon Space");
23 MyThread[3].setPriority(2);
24 MyThread[3].setSchedPolicy(2) ;
25
26 for(int N = 0;N < 4;N++)
27 {
28 MyThread[N].run() ;
29 MyThread[N].join() ;
30 }
31 return (0);
32}

In Listing 6-5, four filter_threads were created. This is the output for Listing 6-5:

Proteus:Stand Alone Complex:32

policy: FIFO priority:5

state: policy: DETACHEDFIFO
scope: state: PROCESSJOINABLE
scope: SYSTEM
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Krell Space:4

priority: 3

policy: OTHER
state: JOINABLE
scope: PROCESS

Cylon Space:5

priority: 2

policy: FIFO
state: JOINABLE
scope: PROCESS

The main thread does not wait for a detached thread (Proteus), and the output is a little messed up.
Proteus starts its output, and then it is interrupted with output from Sstand Alone Complex.As
mentioned earlier, standard cout is not thread safe. If all the threads are joinable, then the output would
be as you would expect:

Proteus:2

priority: 7

policy: FIFO
state: JOINABLE
scope: PROCESS

Stand Alone Complex:3

priority: 5

policy: FIFO
state: JOINABLE
scope: SYSTEM

Krell Space:4

priority: 3

policy: OTHER
state: JOINABLE
scope: PROCESS

Cylon Space:5

priority: 2

policy: FIFO
state: JOINABLE
scope: PROCESS
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Program Profile 6-2

Program Name:

program6-2.cc

Description:

Demonstrates the use of filter_thread class. Four threads are created; each is assigned a name. Each
invokes the methods that modify some of the attributes of the thread that will be created.

Libraries Required:
libpthread

Headers Required:
thread_object.h

Compile & Link Instructions:

c++ -0 program6-2 program6-2.cc thread_object.cc filter_thread.cc -lpthread

Test Environment:
Solaris 10, gce 3.4.3 and 3.4.6

Processors:
AMD Opteron, UltraSparc T1

Execution Instructions:

. /programb6-2

The thread_object class encapsulates some of the functionality of the thread attribute object. The
filter_ thread is the user thread. It inherits the thread_object and defines the do_something (), the
function that is executed by the thread. The functionality of this class will be extended again to form the
assertion class that is used as part of a pipeline model executed in Chapter 7.

Summary

A thread is a sequence or stream of executable code within a process that is scheduled for execution by
the operating system on a processor or core. This chapter has been all about dealing with multithreading.
The key things you can take away from this discussion of multithreading are as follows:

Q  All processes have a primary thread that is the process’s flow of control. A process with multiple
threads has as many flows of controls in which each executes independently and concurrently.
A process with multiple threads is multithreaded.

Q  Kernel-level threads or lightweight processes are a lighter burden on the operating system as
compared to a process to create, maintain, and manage because very little information is
associated with a thread. Kernel threads are executed on the processor. They are created and
managed by the system. User-level threads are created and managed by a runtime library.
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Q  Threads can be used to simplify the program’s structure, model the inherent concurrency using
minimal resources, or execute independent concurrent tasks of a program. Threads can improve
the throughput and performance of the application.

Q  Threads and processes both have an id, a set of registers, a state, and a priority, and both adhere
to a scheduling policy. Both have a context used to reconstruct the preempted process or thread.
Threads and child processes share the resources of their parent process and compete for
processor usage. The parent process has some control over the child process or thread. A thread
or process can alter its attributes and create new resources, but cannot access the resources
belonging to other processes. The most significant difference between threads and processes is
each process has its own address space and threads are contained in the address space of its
process.

Q  The POSIX thread library defines a thread attribute object that encapsulates a subset of the
properties of the thread. These attributes are accessible and modifiable. The thread attribute is of
type pthread_attr_t. pthread_attr_init () initializes a thread attribute object with the
default values. Once the attributes have been appropriately modified, the attribute object can be
used as a parameter in any call to the pthread_create () function.

Q  The thread_object interface class acts as a wrapper that allows something to appear
differently than it does normally. The new interface is designed to make the class easier to use,
more functional, safer, or more semantically correct. The thread_object can be extended to
encapsulate the attribute object.

In Chapter 7, we will discuss communication and synchronization between processes and threads.
Concurrent tasks may be required to communicate between them to synchronize work or access to
shared global data.130+ Very superior about 2% of the population

120-129 Superior about 7% of the population

110-119 High average about 16% of the population

90-109 Average about 50% of the population

80-89 Low average about 16% of the population
70-79 Borderline about 7% of the population
Below 69 Mentally retarded about 2% of the population
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Communication and
Synchronization of
Concurrent Tasks

There is only one constant, one universal. It is the only real truth; causality. Action,
reaction. Cause and effect.

— Merovingian, Matrix Reloaded

In Chapter 6, we discussed the similarities and differences between processes and threads. The
most significant difference between threads and processes is that each process has its own address
space and threads are contained in the address space of their process. We discussed how threads
and processes have an id, a set of registers, a state, and a priority, and adhere to a scheduling
policy. We explained how threads are created and managed. We also created a thread class.

In this chapter, we take the next step and discuss communication and cooperation between threads
and processes. We cover among other topics:

O  Communication and cooperation dependencies.
Q  Interprocess and Interthread Communication.

Q  The PRAM model and concurrency models.
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Q  Order of execution models.
Q  Object-oriented message queues and mutexes.

QO  Asimple agent model for a pipeline.

Communication and Synchronization

In Chapter 3, we discussed the challenges of coordinating the execution of concurrent tasks. The example
used was software-automated painters who were to paint the house before guests arrived for the
holidays. A number of issues were outlined while decomposing of the problem and solution for the
purpose of determining what would be the best approach to painting the house. Some of those issues
had to deal with communication and the synchronization resource usage.

Q  Did the painters have to communicate with each other?

Q  Should the painters communicate when they had completed a task or when they required some
resource like a brush or paint?

Q  Should painters communicate directly with each other or should there be a central painter
through which all communications are routed?

QO  Would it be better if only painters in one room communicated or if painters of different rooms
communicated?

O  Asfar as sharing resources, can multiple painters share a resource or will usage have to be
serialized?

These issues are concerned with coordinating communication and synchronization between these
concurrent tasks. If communication between dependent tasks is not appropriately designed, then data
race conditions can occur. Determining the proper coordination of communication and synchronization
between tasks requires matching the appropriate concurrency models during problem and solution
decomposition. Concurrency models dictate how and when communication occurs and the manner in
which work is executed. For example, for our software-automated painters a boss-worker model (which
we discuss later in this chapter) could be used. A single boss painter can delegate work or direct painters
as to which rooms to paint at a particular time. The boss painter can also manage the use of resources.
All painters then communicate what resources they need in order to complete their tasks to the boss who
then determines when resources are delegated to painters. Dependency relationships can be used to
examine which tasks are dependent on other tasks for communication or cooperation.
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Dependency Relationships

When processes or threads require communication or cooperation among each other to accomplish a
common goal, they have a dependency relationship. Task A depends on Task B to supply a value for a
calculation, to give the name of the file to be processed, or to release a resource. Task A may depend on
Task B, but Task B may not have a dependency on Task A. Given any two tasks, there are exactly four
dependency relationships that can exist between them:

QO A — B:Task A depends on Task B.

Q A « B:Task B depends on Task A.

QO A & B: Task A depends on Task B, and Task B depends on Task A.
Q A NULL B: There are no dependencies between Task A and Task B.

In the first and second cases the dependency is a one-way unidirectional dependency. In the third case,
there is a two-way bidirectional dependency; A and B are mutually dependent on each other. In the
fourth case, there is a NULL dependency between Task A and B; no dependency exists.

Communication Dependencies

When Task A requires data from Task B in order for it to execute its work, then there is a dependency
relationship between Task A and Task B. A software-automated painter can be designated to fill all
buckets running low on paint with paint at the behest of the boss painter. That would mean all painters
(that are actually painting) would have to communicate with the boss painter that they were low on
paint. The boss painter would then inform the refill painter that there were buckets of paint to be filled.
This would mean that the worker painters have a communication dependency with the boss painter. The
refill painter also had a communication dependency with the boss painter.

In Chapter 5, a posix_gueue object was used to communicate between processes. The posix_queue is
an interface to the POSIX message queue, a linked list of strings. The posix_gueue object contains the
names of the files that the worker processes are to search to find the code. A worker process can read

the name of the file from posix_queue. posix_queue is a data structure that resides outside the address
space of all processes. On the other hand, threads can also communicate with other threads within the
address space of their process by using global variables and data structures. If two threads wanted to
pass data between them, thread A would write the name of the file to a global variable, and thread B
would simply read that variable. These are examples of unidirectional communication dependencies
where only one task depends on another task. Figure 7-1 shows two examples of unidirectional
communication dependencies: the posix_queue used by processes and the global variables used to hold
the name of a file for threads A and B.
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PROCESS A’s ADDRESS SPACE PROCESS B’s ADDRESS SPACE
DATA SEGMENT DATA SEGMENT
Filename

- | 2. {XT"

TEXT SEGMENT
threadA()
m Filename = "in2.txt";
threadB()
Infile.open(Filename,...);
PosixQueue
PosixQueue.push ("in.txt") [0] in.txt Filename = PosixQueue.front()

[1]
[2]

Figure 7-1

An example of a bidirectional dependency is two First-In, First-Out (FIFO) pipes. A pipe is a data
structure that forms a communication channel between two processes. Process A will use pipe 1’s input
end to send the name of the file that process B has to process. Process B will read the name of the file
from the output end of pipe 1. After it has processed the contents of the file, the result is written to a new
file. The name of the new file will be written to the input end of pipe 2. Process A will read the name of
the file from the output end of pipe 2. This is bidirectional communication dependency. Process B
depends on process A to communicate the name of the file, and process A depends on process B to
communicate the name of the new file. Thread A and thread B can use two global data structures like
queues; one would contain the names of source files, and the other would be used to contain the names
of resultant files. Figure 7-2 shows two examples of bidirectional communication dependencies between
processes A and B and threads A and B.
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PROCESS A’s ADDRESS SPACE PROCESS B’s ADDRESS SPACE
DATA SEGMENT DATA SEGMENT

InputQueue

. [ [0] in. txt
1]
[2]

OutputQueue
[0] out.txt
[1]

[2]

TEXT SEGMENT
M threadA()

InputQueue.push(‘in.txt")

Outfile = OutputQueue.front()

threadB()

Infile = InputQueue.front()

OutputQueue.push(‘out.txt’) el

write (Pipe1,"out.txt",...) . Pipe1 . Filename = read(Pipe1)
Filename = read(Pipe2) . Pipe2 . write(Pipe2, Filename)
Figure 7-2

Cooperation Dependencies

When Task A requires a resource that Task B owns and Task B must release the resource before Task A
can use it, this is a cooperation dependency. When two tasks are executing concurrently, and both are
attempting to utilize the same resource, cooperation is required before either can successfully use the
resource. Assume that there are multiple software-automated painters in a single room, and they are
sharing a single paint bucket. They all try to access the paint bucket at the same time. Considering that
the bucket cannot be accessed simultaneously by painters (it’s not thread safe to do so), access has to be
synchronized, and this requires cooperation.

Another example of cooperation dependency is write access to the posix_gueue. If multiple processes
were to write the names of the files where the code was located to the posix_gueue, this would require
that only one process at a time be able write to the posix_queue. Write access would have to be
synchronized.
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Counting Tasks Dependencies

You can understand the overall task relationships between the threads or processes in an application by
enumerating the number of possible dependencies that exist. Once you have enumerated the possible
dependencies and then their relationships, you can determine which threads you must code for
communication and synchronization. This is similar to truth tables used to determine possible branches
of decision in a program or application. Once the dependency relationships among threads are
enumerated, the overall thread structure of the process is available.

For example, if there are three threads A, B, and C (three threads from one process or one thread from
three processes), you can examine the possible dependencies that exist among the threads. If there are
two threads involved in a dependency, use combination to calculate the possible threads involved in the
dependency from the three threads: C(n,k) where 7 is the number of threads and k is the number of
threads involved in the dependency. So, for the example C(3,2), the answer is 3; there are three possible
combinations of threads: A and B, A and C, B and C.

Now if you consider each combination as a graph (with two nodes and one edge between them), a
simple graph, meaning that there are no self-loops and no parallel edges (no two edges will have the
same endpoints), then the number of edges in a graph is n(n—1)/2. So, for the two-node simple graph,
there are 2(2 — 1)/2, which is 1. There is one edge for each graph. Now each edge can have a possible
four possible dependency relationships as discussed earlier:

QO A — B:Task A depends on Task B.

QO A« B:Task B depends on Task A.

O A & B: Task A depends on Task B, and Task B depends on Task A.
QO A NULL B: There are no dependencies between Task A and Task B.

So, each individual graph has four possible relationships. If you count the number of possible
dependency relationships among three threads in which two are involved in the relationship, there are
12 possible relationships.

An adjacency matrix can be used to enumerate the actual dependency relationships for two-thread
combinations. An adjacency matrix is a graph G = (V,E) in which V is the set of vertices or nodes of the
graph and E is the set of edges such that:

A(ij) = 1if (i,j) is an element of E
= 0 otherwise
A(i) <> A(j0)

where i denotes a row and j denotes a column. The size of the matrix is # x 1, where # is the total number
of threads. Figure 7-3(A) shows the adjacency matrix for three threads. The 0 indicates that there is no
dependency, and the 1 indicates that there is a dependency. An adjacency matrix can be used to
demarcate all of the dependency relationships between any two threads. On a diagonal, there are all Os
because there are no self-dependencies.
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QO  A(1,2) =1 means for A— B, A depends on B.

QO  A(1,3) = 0 means for A — C, A does not depend on C.

Q A(2,1) =0means for B— A, B does not depend on A.

Q A(23)=1means for B— C, B depends on C.

Q A@(3,1) =1means for C — A, C depends on A.

Q  A(3,2) = 0means for C — B, C does not depends on B.

A) ADJACENCY MATRIX
A B C

B) DEPENDENCY MATRIX

A B C
A S,Co
B S,C
C |SC
Figure 7-3

A dependency graph is useful for documenting the type of dependency relationship, for example, C for
communication or Co for cooperation. S is for synchronization if the communication or cooperation
dependency requires synchronization. The dependency graph can be used during the design or testing
phase of the Software Development Life Cycle (SDLC). To construct the dependency graph, the
adjacency matrix is used. Where there is a 1 in a row column position, it is replaced by the type of
relationship. Figure 7-3(B) shows the dependency graph for the three threads. The Os and 1s have been
replaced by C or Co. Where there was a 0, no relationship exists; the space is left blank. For A(1,2), A
depends on B for synchronized cooperation, A(2,3) B depends on C for synchronized communication,
and A(3,2) C depends on A for synchronized communication. Bidirectional relationships like A <> B can
also be represented, but there are none in this example. So, as you can see, all of the relationships can be
represented in the matrix. For a NULL relationship a 0 is used in the adjacency matrix, and in the
dependency matrix that position will be left blank. Figure 7-4 shows the Unified Modeling Language
(UML) dependency for these three threads.
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TASKA [ TASK B
N \
‘ ‘ <<depends>>
| <<depends>> |
\ \/
\
QN —— TASK C
Figure 7-4

These tools and approaches are very useful. Knowing the number of possible relationships and
identifying what those relationships are helps in establishing the overall thread structure of processes
and the application. We have used them for small numbers of threads. The matrix is only useful when
two threads are involved in the dependency. For large numbers of threads, the matrix approach cannot
be used (unless it is multidimensional.) But having to enumerate each relationship for even a moderate
number of threads would be unwieldy. This is why the declarative approach is very useful.

What Is Interprocess Communication?

Processes have their own address space. Data that is declared in one process is not available in

another process. Events that happen in one process are not known to another process. If process A and
process B are working together to perform a task such as filtering out special characters in a file or
searching files for a code, there must be methods for communicating and coordinating events between
the two processes. In Chapter 5, the layout of a process was described. A process has a text, data, and
stack segment. Processes may also have other memory allocated in the free store. The data that the
process owns is generally in the stack and data segments or is dynamically allocated in memory
protected from other processes. For one process to be made aware of another process’s data or events,
you use operating system Application Program Interfaces (APIs) to create a means of communication.
When a process sends data to another process or makes another process aware of an event by means of
operating system APISs, this is called Interprocess Communication (IPC). IPC deals with the techniques and
mechanisms that facilitate communication between processes. The operating system’s kernel acts as the
communication channel between the processes. The posix_gueue is an example of IPC. Files can also be
used to communicate between related or unrelated processes.

The process resides in user mode or space. IPC mechanisms can reside in kernel or user space. Files used
for communication reside in the filesystem outside of both user and kernel space. Processes sharing
information by utilizing files have to go through the kernel using system calls such as read, write, and
1seek or by using iostreams. Some type of synchronization is required when the file is being updated by
two processes simultaneously. Shared information between processes resides in kernel space. The
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operations used to access the shared information will involve a system call into the kernel. An IPC
mechanism that does reside in user space is shared memory. Shared memory is a region of memory that
each process can reference. With shared memory, processes can access the data in this shared region
without making calls to the kernel. This also requires synchronization.

Persistence of IPC

The persistence of an object refers to the existence of an object during or beyond the execution of the
program, process, or thread that created it. A storage class specifies how long an object exists during the
execution of a program. An object can have a declared storage class of automatic, static, or dynamic.

0  Automatic objects exist during the invocation of a block of code. The space and values an object
is given exist only within the block. When the flow of control leaves the block, the object goes
out of existence and cannot be referred to without an error.

Q A static object exists and retains values throughout the execution of the program.

Q  An object that was dynamically allocated can have no more than static storage but can have less
than automatic storage. Programmers determine when an object is dynamically declared during
runtime, and that object will exist for the entire execution of the program.

Persistence of an object is not necessarily synonymous with the storage of the object on a storage device.
For example, automatic or static objects may be stored in external storage that is used as virtual memory
during program execution, but the object will be destroyed after the program is over.

IPC entities reside in the filesystem, in kernel space, or in user space, and persistence is also defined the
same way: filesystem, kernel, and process persistence.

Q  AnIPC object with filesystem persistence exists until the object is deleted explicitly. If the
kernel is rebooted, the object will keep its value.

Q  Kernel persistence defines IPC objects that remain in existence until the kernel is rebooted or
the object is deleted explicitly.

0  AnIPC object with process persistence exists until the process that created the object closes it.

There are several types of IPCs, and they are listed in Table 7-1. Most of the IPCs work with related
processes — child and parent processes. For processes that are not related and require Interprocess
Communication, the IPC object has a name associated with it so that the server process that created it
and the client processes can refer to the same object. Pipes are not named; therefore, they are used only
between related processes. FIFO or named pipes can be used between unrelated processes. A pathname
in the filesystem is used as the identifier for a FIFO IPC mechanism. A name space is the set of all
possible names for a specified type of IPC mechanism. For IPCs that require a POSIX IPC name, that
name must begin with a slash and contain no other slashes. To create the IPC, one must have write
permissions for the directory.
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Table 7-1
Type of IPC Name space Persistence Process
Pipe unnamed process Related
FIFO pathname process Both
Mutex unnamed process Related
Condition variable unnamed process Related
Read-write locks unnamed process Related
Message queue Posix IPC name kernel Both
Semaphore (memory-based) unnamed process Related
Semaphore (named) Posix IPC name kernel Both
Shared memory Posix IPC name kernel Both

Table 7-1 also shows that each type of IPC (FIFO and pipes) has process persistence. Message queues and
shared memory mst have kernel persistence, but may also use filesystem persistence. When message
queues and shared memory utilize filesystem persistence, they are implemented by using a mapping a
file to internal memory. This is called mapped files or memory mapped files. Once the file is mapped to
memory that is shared between processes, the contents of the files are modified and read by using a
memory location.

Environment Variables and Command-Line Arguments

Parent processes share their resources with child processes. By using posix_spawn, or the exec
functions, the parent process can create the child process with exact copies of its environment variables
or initialize them with new values. Environment variables store system-dependent information such as
paths to directories that contain commands, libraries, functions, and procedures used by a process. They
can be used to transmit useful user-defined information between the parent and the child processes.
They provide a mechanism to pass specific information to a related process without having it hardcoded
in the program code. System environment variables are common and predefined to all shells and
processes in that system. The variables are initialized by startup files.

The common environment variables are listed in Chapter 5.

Environment variables and command-line argument can also be passed to newly initialized processes.

int posix_spawn(pid_t *restrict pid, const char *restrict path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envplrestrict]);
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argv[] and envp[] are used to pass a list of command-line argument and environment variables to the
new process. This is one-way, one-time communication. Once the child process has been created, any
changes to those variables by the child will not be reflected in the parent’s data, and the parent cannot
make any changes to the variables that are seen by its child processes.

Files

Using files to transfer data between processes is one of the simplest and most flexible means of
transferring or sharing data. Files can be used to transfer data between processes that are related or
unrelated. They can allow processes that were not designed to work together to do so. Of course, files
have filesystem persistence; in this case, the persistence can survive a system reboot.

When you use files to communicate between processes, you follow seven basic steps in the file-
transferring process:

1. The name of the file has to be communicated.

You must verify the existence of the file.

Be sure that the correct permission are granted to access to the file.
Open the file.

Synchronize access to the file.

o0 ks WD

While reading/writing to the file, check to see if the stream is good and that it’s not at the end of
the file.

7. Close the file.

First, the name of the file has to be communicated between the processes. You might recall from
Chapters 4 and 5 that files stored the work that had to be processed by the workers. Each file contained
over a million strings. The posix_queue contained the names of the files. Filenames can also be passed
to child processes by means of other IPC-like pipes.

When the process is accessing the file, if more than one process can also access the same file, you need
synchronization. You might recall in Chapter 4 in Listing 4-2, that a file was broken up into smaller files,
and each process had exclusive access to the file. However, if there was just one file, the access to the file
would have to be synchronized. One process at a time would have exclusive read capability and would
read a string from the file, advancing the read pointer. We discuss read /write locks and other types of
synchronization later in the chapter.

Leaving the file open can lead to data corruption and can prevent other processes from accessing the file.
The processes that read or write to or from the file should know the file’s file format in order to correctly
process the file. The file’s format refers to the file type and the file’s organization. The file’s type also
implies the type of data in the file. Is it a text file or a binary file? The processes should also know the file
layout or how the data is organized in the file.

File Descriptors

File descriptors are unsigned integers used by a process to identify an open file. They are shared between
parent and child processes. They are indexes to the file descriptor table, a block maintained by the kernel
for each process. When a child process is created, the descriptor table is copied for the child process,
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which allows the child process to have equal access to the files used by the parent. The number of file
descriptors that can be allocated to a process is governed by a resource limit. The limit can be changed
by setrlimit (). The file descriptor is returned by the open (). File descriptors are frequently used by
other IPCs.

Shared Memory

Ablock of shared memory can be used to transfer information between processes. The block of memory
does not belong to any of the processes that are sharing the memory. Each process has its own address
space; the block of memory is separate from the address space of the processes. A process gains access
to the shared memory by temporarily connecting the shared memory block to its own memory block.
Once the piece of memory is attached, it can be used like any other pointer to a block of memory. Like
other data transfer mechanisms, shared memory is also set up with the appropriate access permission.
It is almost as flexible as using a file to transfer data. If Processes A, B, and C were using a shared
memory block, any modifications by any of the processes are visible to all the other processes.

This is not a one-time, one-way communication mechanism.

Pipes require that at least two processes be connected before they can be used; shared memory can be
written to and read by a single process and held open by that process. Other processes can attach to and
detach from the shared memory as needed. This allows much larger blocks of data to be transferred
faster than when you use pipes and FIFOs. However, it is important to consider how much memory to
allocate to the shared region.

When you are accessing the data contained in the shared memory, synchronization is required. In the
same way that file locking is necessary for multiple processes to attempt read /write access for the same
file at the same time, access to shared memory must be regulated. Semaphores are the standard
technique used for controlling access to shared memory. Controlled access is necessary because a data
race can occur when two processes attempt to update the same piece of memory (or file for that matter)
at the same time.

Using POSIX Shared Memory

The shared memory maps:

Q afile

Q  internal memory

to the shared memory region:

Synopsis

#include <sys/mman.h>

void “*mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
int mumap (void *addr, size_t len);

The function maps len bytes starting at offset of £set from the file or other object specified by the file
descriptor £d into memory, preferably at address addr, which is usually specified as 0. The actual place
where the object is mapped in memory is returned and is never 0. It is a void *.prot describes the
desired memory protection. It must not conflict with the open mode of the file. f1ags specifies the type
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of mapped object. It can also specify mapping options and whether modifications made to the mapped

copy of the page are private to the process or are to be shared with other references. Table 7-2 shows the
possible values for prot and flags with a brief description. To remove the memory mapping from the

address space of a process, use mumap () .

Table 7-2
Flag Arguments for mmap Description
prot Describes the protection of the memory-based region.
PROT_READ Data can be read.
PROT_WRITE Data can be written.
PROT_EXEC Data can be executed.
PROT_NONE Data is inaccessible.
flags Describes how the data can be used.
MAP_SHARED Changes are shared.
MAP_PRIVATE Changes are private.
MAP_FIXED addr is interpreted exactly.

To create a shared memory, open a file and store the file descriptor; then call mmap () with the
appropriate arguments and store the returning void *.Use a semaphore when accessing the variable.
The void * may have to be type cast. depending on the data you are trying to manipulate:

fd = open(file name, O_RDWR) ;
ptr = casting<type> (mmap (NULL, sizeof (type), PROT_READ,MAP_SHARED, £4,0));

This is an example of memory mapping with a file. When using shared memory with internal memory, a
function that creates a shared memory object is used instead of a function that opens a file:

Synopsis

#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode) ;
int shm unlink(const char *name);

The shm_open () creates and opens a new or opens an existing POSIX shared memory object. The
function is very similar to open () . name specifies the shared memory object created and/or opened. To
ensure the portability of name use an initial slash (/) and don’t use embedded slashes. of1ag is a bit mask
created by ORing together one of these flags: 0_RDONLY or O_RDWR and any of the other flags listed in
Table 7-3, along with the possible values for mode with a brief description. shm_open () returns a new file
descriptor referring to the shared memory object. The file descriptor is used in the function call to mmap ().

fd = sh_open (memory name,O_RDWR, MODE) ;
ptr = casting<type> (mmap (NULL, sizeof (type), PROT_READ,MAP_SHARED, fd,0));
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Now ptr can be used like any other pointer to data. Be sure to use semaphores between processes:

sem_walt (sem) ;
*ptr;
sem_post (sem) ;

Table 7-3

Shared Memory Arguments Description

oflag Describes how the shared memory will be opened.

O_RDWR Opens the object for read or write access.

O_RDONLY Opens the object for read-only access.

O_CREAT Creates the shared memory if it does not exist.

O_EXCL Checks for the existence and creation of the object. If O_CREAT is
specified and the object exists with the specified name, then returns
an error.

O_TRUNC If the shared memory object exists, then truncates it to zero bytes.

mode Specifies the permission.

S_IRUSR User has read permission.

S_IWUSR User has write permission.

S_IRGRP Group has read permission.

S_IWGRP Group has write permission.

S_IROTH Others have read permission.

S_IWOTH Others have write permission.

Pipes

Pipes are communication channels used to transfer data between processes. Whereas data transfer using
files generally does not require the sending and receiving of data to be active at the same time, data
transfer using pipes includes processes that are active at the same time. Although there are exceptions,
the general rule is that pipes are used between two or more active processes. One process (the writer)
opens or creates the pipe and then blocks until another process (the reader) opens the same pipe for
reading and writing.

There are two kinds of pipes:

a Anonymous

0  Named (also called FIFO)
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Anonymous pipes are used to transfer data between related processes (child and parent). Named pipes
are used for communication between related or unrelated processes. Related processes created using
fork () can use the anonymous pipes. Processes created using posix_spawn () use named pipes.
Unrelated processes are created separately by programs. Unrelated processes can be logically related and
work together to perform some task, but they are still unrelated. Named pipes are used by unrelated
processes and related processes that refer to the pipe by the name associated with it. Named pipes are
kernel objects. So, they reside in kernel space with kernel persistence (as far as the data), but the file
structure has filesystem persistence until it is explicitly removed from the filesystem.

Pipes are created from one process, but they are rarely used in a single process. A pipe is a communication
channel to a different process that is related or unrelated. Pipes create a flow of data from one end in one
process (input end) to the other end that is in another process (output end). The data becomes a stream

of bytes that flows in one direction through the pipe. Two pipes can be used to create bidirectional flow of
communication between the processes. Figure 7-5 shows the various uses of pipes from a single process,
from to two processes using a single pipe with a one direction flow of data from Process A to Process B,
and then with a bidirectional flow of data between two processes that use two pipes.

A) UNIDIRECTIONAL DATA FLOW (ONE PROCESS ONE PIPE)

PROCESS A PIPE
read (Pipe[0]) C— | (0] read  [0]
write (Pipe[1]) 1] write [1] e

B) UNIDIRECTIONAL DATA FLOW (TWO PROCESSES ONE PIPE)

PROCESS A PIPE PROCESS B
read (Pipe[0]) pa— [0] read [0] close (Pipe[0])
close (Pipe[1]) 1] wite [1] L write (Pipe[1])

B) BIDIRECTIONAL DATA FLOW (TWO PROCESSES TWO PIPES)

PIPE1
e | [0]  read  [0]
PROCESS A PROCESS B
read (Pipe1io]) ) 1]  write [1] G——— \tite (Pipe1[1])
write (Pipe2[1]) PIPE2 o read (Pipez(01)
0] read [0] |
b | [1] write  [1]

Figure 7-5
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Two pipes are used to create a bidirectional flow of data because of the way that pipes are set up. Each
pipe has two ends, and each pipe has a one-way flow of data. So, one process uses the pipe as an input
end (write data to pipe), and the other process uses the same pipe but uses the output end (read data
from the pipe). Each process closes the end of the process it does not access, as shown in Figure 7-5.

Anonymous pipes are temporary and exist only while the process that created them has not terminated.
Named pipes are special types of files and exist in the filesystem. They can remain after the process that
created it has terminated unless the process explicitly removes them from the filesystem. A program
that creates a named pipe can finish executing and leave the named pipe in the filesystem, but the

data that was placed in the pipe will not be present. Future programs and processes can then access the
named pipe later, writing new data to the pipe. In this way, a named pipe can be set up as a kind of
permanent channel of communication. Named pipes have file permission settings associated with them,
and anonymous pipes do not.

Using Named Pipes (FIFO)

Names pipes are created with mkfifo():

Synposis

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode) ;
int unlink (const char *pathname) ;

mkfifo ()creates a named pipe using pathname as the name of the FIFO with permission specified by
mode. mode comprises the file permission bits. They are as listed previously in Table 7-3.

mkfifo () is created with O_CREAT | O_EXCL flags, which means it creates a new named pipe with the
name specified if it does not exist. If is does exist, an error EEXIST is returned. So, if you want to open an
already existing named pipe, call the function, and check for this error. If the error occurs then use

open () instead of mkfifo ().

The unlink () removes the filename pathname from the filesystem. The program in Listing 7-1 creates a
named pipe with mkfifo.

Listings 7-1 and 7-2 are listings of programs that demonstrate how a named pipe can be used the transfer
data from one process to another unrelated process. Listing 7-1 contains the program of the writer, and
Listing 7-2 contains the program for the reader.

Listing 7-1
// Listing 7-1 A program that creates a named pipe with mkfifo().

using namespace std;
#include <iostream>
#include <fstream>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/stat.h>

~N oUW N
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8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

int main(int argc,char *argv[],char *envp[])

{

fstream Pipe;

if (mkfifo ("Channel-one",S_IRUSR | S_IWUSR

| S_IRGRP
| S_IWGRP)

cerr << "could not make fifo" << endl;

}

Pipe.open("Channel-one",ios::out) ;
if (Pipe.bad()){

cerr << "could not open fifo" << endl;
}
else{
Pipe << "2 3456 7 " << endl;
}
return (0) ;

}

The program in Listing 7-1 creates a named pipe with the mkfifo () system call. The program then
opens the pipe with an fstream object called Pipe in Line 19. Notice that Pipe has been opened for
output using the ios: :out flag. If the Pipe is not in a bad () state after the call to open, then the Pipe is
ready for writing data to Channel-one. Although Pipe is ready for input, it blocks (waits) until another
process has opened Channel-one for reading. When using the iostreams with pipes, it is important to
remember that either the writer or reader must be opened for both input and output using ios::in |
ios: :out. Opening either the reader or the writer in this manner will prevent deadlock. In this case, we
open the reader (Listing 7-2) for both. The program in this listing is called a reader because it reads the
information from the pipe. The writer then writes a line of input to Pipe.

Listing 7-2 A program that reads from a named pipe.

using namespace std;

<iostream>
<fstream>
<string>
<sys/wait.h>
<sys/types.h>
<sys/stat.h>

int main(int argc, char *argv[])

int type;
fstream NamedPipe;
string Input;

Listing 7-2

//

1

2  #include
3  #include
4  #include
5 #include
6 #include
7 #include
8

9
10
11 {
12
13
14
15
16

NamedPipe.open ("Channel-one",ios: :in ios

::out) ;
(continued)

219



Chapter 7: Communication and Synchronization of Concurrent Tasks

Listing 7-2 (continued)

17

18 if (NamedPipe.bad()) {

19 cerr << "could not open Channel-one" << endl;
20 }

21

22 while (!NamedPipe.eof () && NamedPipe.good()) {
23

24 getline (NamedPipe, Input) ;

25 cout << Input << endl;

26 }

27 NamedPipe.close() ;

28 unlink ("Channel-one") ;

29 return(0) ;

30

31}

The program in Listing 7-1 uses the << operator to write data into the pipe. Here the reader also has to
open the pipe by using an fstream open, using the name of the named pipe Channel-one, and opening
the pipe for input and output in Line 16. If the NamedPipe is not in a bad state after opening, then the
data is read from the NamedPipe while NamedPipe is not eof () and is still good. The data is read from
the pipe and stored in a string Input that is sent to cout. NamedPiped is then closed and the pipe is
unlinked. These are unrelated processes. To run, each is launched separately.

Here is Program Profile 7-1 for Listings 7-1 and 7-2.

Program Profile 7-1
Program Name:
program7-1.cc (Listing 7-1)
program7-2.cc (Listing 7-2)
Description:
Listing 7-1 creates a pipe and opens the pipe with a £stream object. Before it writes a string to the pipe, it
waits until another process opens the pipe for reading (Listing 7-2). Once the reader process opens the pipe
for reading, the writer program writes a string to the pipe, closes the pipe, and then exits. The reader pipe
reads the string from the pipe and displays the string to standard out. Run the reader and then the writer.
Libraries Required:

None

Headers Required:

<iostream> <fstream> <string> <sys/stat.h>

Compile and Link Instructions:

c++ -0 program7-1 program7-1.cc program7-2.cc

Test Environment:
Solaris 10, gce 3.4.3 and 3.4.6
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Processors:
Opteron, UltraSparc T1

Execution Instructions:

. /program7-1
. /program7-2

Notes:

Run each program in separate terminals.

The use of fstream simplifies the IPC making the named pipe easier to access. All of the functionality of
streams comes into play for this example:

mkfifo("Channel-one",...);

vector<int> X( 2,3,4,5,6,7);

ofstream OPipe ("Channel-one",ios::out);
ostream_iterator<int> Optr (OPipe, "\n");
copy (X.begin(),X.end(),Optr) ;

Here a vector is used to hold all the data. An ofstream object is used this time instead of an fstream
object to open the named pipe. An ostream iterator is declared and points to the named pipe (Channel-
one). Now instead of successive insertion in a loop, the copy algorithm can copy all the data to the pipe.
This is a convenience if have hundreds, thousands, or even more numbers to write to the pipe.

FIFO Interface Class

Besides simplifying the use of IPC mechanisms by using iostreams, iterators, and algorithm, you can also
simplify use by encapsulating the FIFO into an FIFO interface class. Remember that in doing so you are
modeling a FIFO structure. The FIFO class is a model for the communication between two or more
processes. It transmits some form of information between them. The information is translated into a
sequence of data, inserted into the pipe, and then retrieved by a process on the other side of the pipe.
The data is then reassembled by the retrieving process. There must be somewhere for the data to be
stored while it is in transit from process A to process B. This storage area for the data is called a buffer.
Insertion and extraction operations are used to place the data into or extract the data from this buffer.
Before performing insertions or extractions into or from the data buffer, the data buffer must exist. Once
communication has been completed, the data buffer is no longer needed. So, your model must be able to
remove the data buffer when it is no longer necessary. As indicated, a pipe has two ends, one end for
inserting data and the other end for extracting data, and these ends can be accessed from different
processes. Therefore the model should also include an input port and an output port that can be
connected to separate processes. Here are the basic components of the FIFO model:

Q  Input/output port

Q  Insertion and extraction operation
Q  Creation/initialization operation
Q

Bulffer creation, insertion, extraction, destruction
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For this example, there are only two processes involved in communication. But if there are multiple
processes that can read /write to/ from the named pipe stream, synchronization is required. So, this class
also requires a mutex object. Example 7-1 shows the beginnings of the FIFO class:

Example 7-1
// Example 7-1 Declaration of fifo class.

class fifo{
mutex Mutex;
/] ...

protected:
string Name;

public:
fifo &operator<<(fifo &In, int X);
fifo &operator<<(fifo &In, char X);
fifo &operator>>(fifo &Out, float X);
/]

Y

Using this technique, you can easily create £ifos in the constructor. You can pass them easily as
parameters and return values. You can use them in conjunction with the standard container classes and
so on. The construction of such a component greatly reduces the amount of code needed to use FIFOs,
provides opportunities for type safety, and generally allows the programmer to work at a higher level.

Message Queue

A message queue is a linked list of strings or messages. This IPC mechanism allows processes with the
adequate permissions to the queue to write or remove messages. The sender of the message assigns a
priority to it. Message queues do not require more than one process to be used. With a FIFO, the writer
process blocks and cannot write to the pipe until there is a process that opens it for reading. With a
message queue, a writer process can write to the message queue and then terminate. The data is retained
in the queue. Some other process later can read or write to it. The message queue has kernel persistence.
When reading a message from the queue, the oldest message with the highest priority is returned. Each
message in the queue has these attributes:

O  Apriority
Q  The length of the message

Q  The message or data

With a linked list the head of the list has the maximum number of messages allowed in the queue and
the maximum size allowed for a message.

Using a Message Queue

The message queue is created with mg_open ():
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Synopsis

#include <mgueue.h>

mgd_t mg open (const char *name, int oflag,mode_t mode,
struct mg_attr *attr);

int mg close(mgd_t mgdes) ;

int mg_unlink(const char *name) ;

mg_open () creates a message queue with the specified name. The message queue uses oflag with these
possible values to specify the access modes:

0O  O_RDONLY: Open to receive messages
O  0_WRONLY: Open to send messages

0  o_rDwR: Open to send or received messages
These flags can be ORred with the following:

0  o_CREAT: Create a message queue.
Q  o_excL: If ORred with previous flag, function fails if the pathname already exists.

Q  0_NONBLOCK: Determines if queue waits for resources or messages that are not currently
available.

The function returns a message queue descriptor of type mq_dt.

The last parameter is a struct mg_attr *attr. This is an attribute structure that describes the
properties of the message queue:

struct mg attr {

long mg_flags; //flags

long mg_maxmsg; //maximum number of messages allowed
long mg msgsize; //maximum size of message

long mg_curmsgs; //number of messages currently in queue

mg_close () closes the message queue, but the message queue still exists in the kernel. However, the
calling function can no longer use the descriptor. If the process terminates, all message queues associated
with the process also close. The data is still retained in the queue.

unlink () removes the message queue specified by name from the system. The number of references to
the message queue is tracked, but the queue name can still be removed from the system even if the count
is greater than 0. The queue is not destroyed until all processes that utilized the queue have closed or
called mg_close().
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There are two functions to set and return the attribute object, as shown in the following code synopsis:

Synopsis

#include <mgueue.h>

int mg getattr (mgd_t mgdes, struct mg attr *attr);
int mg_setattr(mgd_t mgdes, struct mg attr *attr,struct mg attr *oattr);

When you are setting the attribute with mq_setattr, only the mg_flags are set in the attr structure.
Other attributes are not affected. mg_maxmsg and mq_msgsize are set when the message queue is
created. mg_curmsg can be returned and not set. oattr contains the previous values for the attributes.

To send or write a message to the queue, use these functions:

Synopsis

#include <mgueue.h>

int mg _send(mgd_t mgdes, const char *ptr, size_t len,
unsigned int prio);

ssize_t mg receive(mgd_t mgdes, const char *ptr, size_t len,
unsigned int priop);

Formg_receive (), the 1en must be at least the maximum size of the message. The returned message is
stored in *ptr.

posix_queue: The Message Queue Interface Class

posix_gueue is a simple class that models some of the functionality of a message queue. It encapsulates
the basic functions and the message queue attributes. Listing 7-3 shows the declaration of the posix_
queue class.

Listing 7-3
// Listing 7-3 Declaration of the posix_queue class.

#ifndef _ POSIX_ QUEUE
#define _ POSIX_QUEUE
using namespace std;
#include <string>
#include <mgueue.h>
#include <errno.h>
#include <iostream>
#include <sstream>

00 ~J o Ul WN
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9 #include <sys/stat.h>
10

11

12 class posix_gueue{

13 protected:

14 mgd_t PosixQueue;

15 mode_t OMode;

16 int QueueFlags;

17 string QueueName;

18 struct mg attr QueueAttr;
19 int QueuePriority;

20 int MaximumNoMessages;

21 int MessageSize;

22 int ReceivedBytes;

23 void setQueueAttr (void) ;
24 public:

25 posix_queue (void) ;

26 posix_queue (string QName) ;
27 posix_queue (string QName, int MaxMsg, int MsgSize);
28 ~posix_queue (void) ;

29

30 mode_t openMode (void) ;

31 void openMode (mode_t OPmode) ;
32

33 int queueFlags(void);

34 void queueFlags (int X);

35

36 int queuePriority(void);
37 void queuePriority(int X);
38

39 int maxMessages (void) ;

40 void maxMessages (int X);
41 int messageSize(void);

42 void messageSize(int X);
43

44 void queueName (string X);
45 string queueName (void) ;

46

47 bool open (void) ;

48 int send(string Msg) ;

49 int receive(string &Msg) ;
50 int remove (void) ;

51 int close(void);

52

53

54 };

55

#endif
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The basic functions performed by a message queue are encapsulated in the posix_gueue class:

47 bool open(void) ;

48 int send(string Msg) ;

49 int receive(string &Msg);
50 int remove (void) ;

51 int close(void);

We have discussed what each these functions does already. Examples 7-2 through 7-6 show the
definitions of these methods. Example 7-2 is the definition of open ():

Example 7-2
// Example 7-2 The definition of openf().

122 Dbool posix_qgueue: :open(void)

123 {

124 bool Success = true;

125 int RetCode;

126 PosixQueue = mg open(QueueName.c_str(),QueueFlags,OMode, &QueueAttr) ;
127 if (errno == EACCES) {

128 cerr << "Permission denied to created " << QueueName << endl;
129 Success = false;

130 }

131 RetCode = mg getattr(PosixQueue, &QueueAttr);

132 if (errno == EBADF) {

133 cerr << "PosixQueue is not a valid message descriptor" << endl;
134 Success = false;

135 close() ;

136

137 }

138 if (RetCode == -1){

139 cerr << "unknown error in mg getattr() " << endl;

140 Success = false;

141 close() ;

142 }

143 return(Success) ;

144 '}

After the call to mg_open () is made in Line #126, errno is checked to see if message queue failed to
open because a message queue by the name QueueName. c_str () already exists. If it does, then the call
is not successful. bool Success is returned with a value of false.

In Line 131, the queue attribute structure is returned by mg_getattr (). To ensure that the message
queue was opened and successfully initialized its attribute, errno is checked again in Line 132. EBADF

means the descriptor was not a valid message queue descriptor. The return code is checked in Line 138.

Example 7-3 is the definition of send ().
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Example 7-3

// Example 7-3 The definition of send().

146
147
148
149

150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165

166

167
168
169
170
171

172
173
174
175
176

177
178
179
180
181
182
183
184

int posix_queue::send(string Msg)

{

}

int StatusCode = 0;
if (Msg.size() > QueueAttr.mqg msgsize) {
cerr << "message to be sent is larger than max queue
message size " << endl;
StatusCode = -1;
}
StatusCode = mg send(PosixQueue,Msg.c_str(),Msg.size(),0);
if (errno == EAGAIN) {
StatusCode = errno;
cerr << "O_NONBLOCK not set and the queue is full " << endl;
}
if (errno == EBADF) {
StatusCode = errno;
cerr << "PosixQueue is not a valid descriptor open for
writing" << endl;
}
if (errno == EINVAL) {
StatusCode = errno;
cerr << "msgprio is out side of the priority range for the
message queue or " << endl;
cerr << "Thread my block causing a timing conflict with
time out" << endl;

}

if (errno == EMSGSIZE) {
StatusCode = errno;
cerr << "message size exceeds maximum size of message
parameter on message queue" << endl;

}
if (errno == ETIMEDOUT) {

StatusCode = errno;

cerr << "The O_NONBlock flag was not set, but the time expired

before the message " << endl;

cerr << "could be added to the queue " << endl;
}
if (StatusCode == -1){

cerr << "unknown error in mg send() " << endl;
}
return (StatusCode) ;

In Line 150, the message is checked to ensure that its size does not exceed the allowable size for a
message. In Line 154 the call to mg_send () is made. All other code checks for errors.

Example 7-4 is the definition of receive ().
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Example 7-4
//Example 7-4 The definition of receive().

187 int posix_queue: :receive(string &Msg)

188 {

189

190 int StatusCode = 0;

191 char QueueBuffer[QueueAttr.mqgq msgsizel];

192 ReceivedBytes = mg receive (PosixQueue, QueueBuffer,

QueueAttr.mq msgsize,NULL) ;

193 if (errno == EAGAIN) {

194 StatusCode = errno;

195 cerr << "O_NONBLOCK not set and the queue is full " << endl;

196

197 }

198 if (errno == EBADF) {

199 StatusCode = errno;

200 cerr << "PosixQueue is not a valid descriptor open for writing"

<< endl;

201

202 if (errno == EINVAL) {

203 StatusCode = errno;

204 cerr << "msgprio is out side of the priority range for the message
queue or " << endl;

205 cerr << "Thread my block causing a timing conflict with time out"

<< endl;

206

207 if (errno == EMSGSIZE) {

208 StatusCode = errno;

209 cerr << "message size exceeds maximum size of message parameter on
message queue" << endl;

210 }

211 if (errno == ETIMEDOUT) {

212 StatusCode = errno;

213 cerr << "The O_NONBlock flag was not set, but the time expired
before the message " << endl;

214 cerr << "could be added to the gqueue " << endl;

215 }

216 string XMessage (QueueBuffer,QueueAttr.mg msgsize);

217 Msg = XMessage;

218 return (StatusCode) ;

219

220 }

In Line 191, a buffer QueueBuffer with the maximum size of a message is created. mgq_receive() is
called. The message returned is stored in QueueBuffer, and the number of bytes is returned and
stored in ReceivedBytes. In Line 216, the message is extracted from QueueBuffer and assigned

to the string in Line 217.

In Example 7-5 is the definition for remove ().
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Example 7-5

//Example 7-5 The definition for remove().

221
222
223

224

225
226
227
228
229
230

int posix_queue: :remove (void)
{
int StatusCode = 0;
StatusCode = mg unlink(QueueName.c_str());
if (StatusCode !'= 0){
cerr << "Did not unlink " << QueueName << endl;

}

return (StatusCode) ;

In Line 224, mgq_unlink () is called to remove the message queue from the system.

Example 7-6 provides the definition for close ().

Example 7-6

//Example 7-6 The definition for close().

231
232
233
234
235

236
237
238

239
240
241
242
243
244
245

int posix_queue::close(void)

{

int StatusCode = 0;

StatusCode = mg close(PosixQueue);

if (errno == EBADF) {
StatusCode = errno;
cerr << "PosixQueue is not a valid descriptor open for

writing" << endl;
}

if (StatusCode == -1){
cerr << "unknown error in mg _close() " << endl;

}

return (StatusCode) ;

}

In Line 235, mg_close () is called to close the message queue.

Return briefly to Listing 7-3, notice that the bolded methods from Examples 7-2 through 7-6 encapsulate
the message queue’s attributes to set and return the properties of the message queue:

33
34
35
36
37
38

int queueFlags(void) ;
void queueFlags (int X);

int queuePriority(void);
void queuePriority(int X);

(continued)
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(continued)
39 int maxMessages (void) ;
40 void maxMessages (int X);
41 int messageSize(void);
42 void messageSize(int X);

Some of these attributes are can also be set in the constructor. There are three constructors in Listing 7-3:
25 posix_queue(void) ;
26 posix_qgueue(string QName) ;

27 posix_queue(string QName, int MaxMsg, int MsgSize);

At Line 25 is the default constructor. Example 7-7 shows the definition.

Example 7-7

// Example 7-7 The definition of the default constructor.

4 posix_queue: :posix_queue (void)
5

6

7

8 QueueFlags = O_RDWR | O_CREAT | O_EXCL;
9 OMode = S_IRUSR | S_IWUSR;
10 QueueName.assign("none") ;
11 QueuePriority = 0;

12 MaximumNoMessages = 10;

13 MessageSize = 8192;

14 ReceivedBytes = 0;

15 setQueueAttr () ;

16

17

18 '}

This posix_gueue class is a simple model of the message queue. All functionality has not been included
here, but you can see a message queue class makes the message queue easier to use. The posix_queue
class performs error checking for all of the major functions of the IPC mechanism. What should be added
is the mg_notify function. With notification signaling, a process is signaled when the empty message
queue has a message. This class does not have synchronization capabilities. If multiple processes want to
use the posix_queue to write to it, a built-in mutex should be implemented and used when messages
are sent or received.

What Are Interthread Communications?

We have discussed the different mechanisms defined by POSIX to perform communication between
processes, related and unrelated. We have discussed where those IPC reside and their persistence.
Because threads reside in the address space of their process, it is safe and logical to assume that
communication between threads would not be difficult or require the use of special mechanisms
just for communication. That is true. The most important issue that has to be dealt with when peer
threads require communication with each other is synchronization. Data races and indefinite
postponement are likely when performing Interthread Communication (ITC).
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Communication between threads is used to:

Q  Share data

QO  Send a message

Multiple threads share data in order to streamline processing performed concurrently. Each thread can
perform different processing or the same processing on data streams. The data can be modified, or new
data can be created as a result, which in turn is shared. Messages can also be communicated. For
example, if an event happens in one thread, this could trigger another event in another thread. Threads
may communicate a signal to other peer threads, or the main thread may signal the worker threads.

When two processes need to communicate, they use a structure that is external to both processes. When
two threads communicate, they typically use structures that are part of the same process to which they
both or all belong. Threads cannot communicate with threads outside their process unless you are
referring to primary threads of processes. In that case, you refer to them as two processes. Threads
within a process can pass values from the data segment of the process or stack segments of each thread.

In most cases, the cost of Interprocess Communication is higher than Interthread Communication. The
external structures that must be created by the operating system during IPC require more system
processing than the structures involved in ITC. The efficiency of ITC mechanisms makes threads a more
attractive alternative in many, but not all programming scenarios that require concurrency.

We discussed some of the issues and drawbacks of using threads as compared to processes in Chapter 5.

Table 7-4 lists the basic Interthread Communications with a brief description.

Table 7-4

Types of ITC Description

Global data, variables, and data Declared outside of the main function or have global scope. Any

structures modifications to the data are instantly accessible to all peer
threads.

Parameters Parameters passed to threads during creation. The generic
pointer can be converted any data type.

File handles Files shared between threads. These threads share the same read-

write pointer and offset of the file.

Global Data, Variables, and Data Structures

An important advantage that threads have over processes is that threads can share global data, variables,
and data structures. All threads in the process can access them equally. If any thread changes the data,
the change is instantly available to all peer threads. For example, take three threads, Threada, ThreadB,
and ThreadC. Threada makes a calculation and stores the results in a global variable Answer. ThreadB
reads Answer, performs its calculation on it, and then stores its results in Answer. Then Thread C does
the same thing. The final answer is to be displayed by the main thread. This example is shown in
Listings 7-4, 7-5, and 7-6.
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Listing 7-4
// Listing 7-4 thread_tasks.h.
void *taskl (void *X);

void *task2(void *X);
void *task3(void *X);

U W N

Listing 7-5

// Listing 7-5 thread_tasks.cc.

1 extern int Answer;

2

3 void *taskl(void *X)

4 |

5 Answer = Answer * 32;
6 1}

7

8 wvoid *task2(void *X)

9 |
10 Answer = Answer / 2;
11 3}
12
13 void *task3(void *X)
14
15 Answer = Answer + 5;
16 }

Listing 7-6

// Listing 7-6 main thread.

1 wusing namespace std;

2  #include <iostream>

3 #include <pthread.h>

4 #include "thread_tasks.h"

5

6 1int Answer = 10;

7

8

9 int main(int argc, char *argvl[])

10 ¢

11

12 pthread_t ThreadA, ThreadB, ThreadC;

13

14 cout << "Answer = " << Answer << endl;
15
16 pthread_create (&ThreadA, NULL, taskl,NULL) ;
17 pthread_create (&ThreadB, NULL, task2,NULL) ;
18 pthread_create (&ThreadC,NULL, task3,NULL) ;
19
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20 pthread_join (ThreadA,NULL) ;

21 pthread_join (ThreadB,NULL) ;

22 pthread_join(ThreadC,NULL) ;

23

24 cout << "Answer = " << Answer << endl;
25

26 return(0) ;

27

28 %}

In these listings, the tasks that the threads will execute are defined in a separate file. Answer is the global
data declared in the main line in the file program7-6. cc. It is out of scope for use by the tasks that are in
defined in thread_tasks. cc. It is declared as extern, so it can have global scope. If the threads are to
process the data in the way described earlier — Threada, Threads, and then ThreadcC perform their
calculations — it requires synchronization. It is not guaranteed that the correct answer, 165, will be
returned if Threada and ThreadB have other work they have to do first. The threads are transferring
data from one thread to another. With, say, two multicores, Threada and ThreadB can be executing.
ThreadA works for a time slice, and then Threadc is given the processor. When Threada is preempted,
it may still not execute its calculation on Answer. If Threadc finished when it was preempted, the value
of Answer would be 15. Then Threads finishes; the Answer is 7. Then Threada does its calculation;
Answer is 224 not 165. Although a pipeline model of data communication is what was desired, there is
no synchronization in place for it to be executed.

Threads can also share data structures in the same way that the variable was used. IPC supports only a
limited set of data structures that can be used (for example, a message queue); in contrast, any type of
global set, map, or so forth or any other collection or container class can be used to accomplish ITC. For
example, threads can share a set. With a set, membership, intersection, union, and so forth, operations
can be performed by different threads using Multiple Instruction Single Data (MISD) or Single
Instruction Single Data (SISD) memory access models. The coding that it would take to implement a set
container that could be used as an IPC mechanism is prohibitive.

Here is Program Profile 7-2 for Listings 7-4, 7-5, and 7-6.

Program Profile 7-2
Program Name:

program7-6.cc (Listing 7-6)

Description:

For this program, there is a global variable Answer declared in the main line in the file program7-6.cc.
It is declared as extern, so it can have global scope in thread_tasks.cc. Answer is to be processed by
ThreadA, ThreadB, and then Threadc. They are to perform their calculations, which requires
synchronization. The correct answer is 165. Although a pipeline model of data communication is what
was desired, there is no synchronization in place for it to be executed.

Libraries Required:

libpthread
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Headers Required:

<iostream> <pthread.h> "thread_tasks.h"

Compile and Link Instructions:

c++ -0 program7-6 program7-6.cc thread_tasks.cc -lpthread

Test Environment:
Solaris 10, gcc 3.4.3 and 3.4.6

Processors:
Opteron, UltraSparc T1

Execution Instructions:
. /program7-6

Notes:

None

Parameters for Interthread Communication

Parameters to threads can be used for communication between threads or between the primary thread
and peer threads. The thread creation API supports thread parameters. The parameter is in the form of a
void pointer:

int pthread_create(pthread_t *threadID,const pthread_attr_t *attr,
void * (*start_routine) (void*),
void *restrict parameter);

The void pointer in C++ is a generic pointer and can be used to point to any data type. The value of
parameter passes values as simple as a char * or a complex as a pointer to a container or user-defined
object. In the program in Listing 7-7 and Listing 7-8, we use two queues of strings as global data
structures. One thread uses the queue as an output queue, and another thread uses that same queue as a
data stream for input and then writes to the second global queue of strings.

Listing 7-7
// Listing 7-7 Thread tasks that use two global data structures.

using namespace std;
#include <queue>
#include <string>
#include <iostream>

extern queue<string> SourceText;
extern queue<string> FilteredText;

W o ~Jo Ul i WN

void *taskl (void *X)
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10 {

11 char Token = '?';

12

13 queue<string> *Input;

14

15

16 Input = static_cast<queue<string> *>(X);
17 string Str;

18 string FilteredString;

19 string::iterator NewEnd;

20

21 for (int Count = 0;Count < 16;Count++)

22 {

23 Str = Input->front();

24 Input->pop () ;

25 NewEnd = remove (Str.begin(),Str.end(), Token) ;
26 FilteredString.assign(Str.begin(),NewEnd) ;
27 SourceText.push (FilteredString) ;

28

29 }

30

31

32}

33

34

35 wvoid *task2(void *X)

36 {

37 char Token = '.';

38

39 string Str;

40 string FilteredString;

41 string::iterator NewEnd;

42

43 for(int Count = 0;Count < 16;Count++)

44 {

45 Str = SourceText.front();

46 SourceText.pop () ;

47 NewEnd = remove (Str.begin(),Str.end(), Token) ;
48 FilteredString.assign(Str.begin(),NewEnd) ;
49 FilteredText.push(FilteredString) ;

50

51

52 }

53

54 }

These tasks filter a string of text. taskl removes the (?) from a string and task2 removes a (.) from a
string. taskl accepts a queue that serves as the container of strings to be filtered. The void * is type
cast to a pointer to a queue of strings in Line #16. task2 does not require a queue for input. It uses the
global queue SourceText that is populated by task1. Inside their loops, a string is removed from the
queue, the token is removed, and the new string is pushed onto the global queues. For task1l the queue
string is SourceText and for task2, the queue string is FilteredText. Both queues are declared
externin Lines 6 and 7.
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Listing 7-8

// Listing 7-8 Main thread declares two global data structures.

1 using namespace std;
2 #include <iostream>
3 #include <pthread.h>
4 #include "thread_tasks.h"
5 #include <queue>
6 #include <fstream>
7 #include <string>
8
9
10
11
12 queue<string> FilteredText;
13 queue<string> SourceText;
14
15 int main(int argc, char *argvl[])
16 {
17
18 ifstream Infile;
19 queue<string> QText;
20 string Str;
21 int Size = 0;
22
23
24 pthread_t ThreadA, ThreadB;
25
26 Infile.open("book_text.txt");
27 for (int Count = 0;Count < 16;Count++)
28 {
29 getline(Infile, Str);
30 QText.push(Str) ;
31
32 }
33
34 pthread_create (&ThreadA,NULL, taskl, &QText) ;
35 pthread_join (ThreadA, NULL) ;
36
37 pthread_create (&ThreadB, NULL, task2,NULL) ;
38 pthread_join (ThreadB, NULL) ;
39
40 Size = FilteredText.size();
41
42 for (int Count = 0;Count < Size ;Count++)
43 {
44 cout << FilteredText.front() << endl;
45 FilteredText.pop();
46
47 }
48
49 Infile.close();
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50

51 return(0) ;
52

53 }

The program in Listing 7-8 shows the code for the main thread. It declares the two global queues on Line
12 and Line 13. The strings are read in from a file into string queue QText. This is the data source queue
for Threada in Line 34. The main thread then calls a join on Threada and waits for it to return. When
ThreadA returns, ThreadB uses the global queue SourceText just populated by taskl. When ThreadB
returns, the strings in the global queue FilteredText are sent to cout by the main thread. By the main
thread calling join in this way these threads are not executed concurrently. The main thread does not
create ThreadB until Threada returns. If the threads were created one after the other, they would be
executed concurrently. The threat of a core dump looms. If ThreadB starts its execution before Threada
populates its source queue, then ThreadB attempts to pop an empty queue. The size of the queue could
be checked before attempting to read it. But you want to take advantage of the multicore in doing this
processing. Here you have a few strings in a queue and all you want to do is remove a single token. But
if you scale this problem to thousands of string and many tokens to be removed, you realize that another
approach has to exist. Again, you do not want to go to a serial solution. Access to the queue can be
synchronized but filtering all the strings at once can also be parallelized. We will revisit the problem and
present a better solution later in this chapter.

Here is Program Profile 7-3 for Listings 7-7 and 7-8.

Program Profile 7-3
Program Name:
program7-8.cc (Listing 7-8)

Description:

The program in Listing 7-8 shows the code for the main thread. It declares the two global queues used
for input and output. The strings are read in from a file into string queue QText, the data source
queue for ThreadA. The main thread then calls a join on Threada and waits for it to return. When
ThreadA returns, ThreadB uses the global queue SourceText just populated by Threada.

When ThreadB returns, the strings in the global queue FilteredText are sent to cout

by the main thread.

Libraries Required:
libpthread

Headers Required:

<iostream> <pthread.h> <fstream> <queue> <string> "thread_tasks.h"

Compile and Link Instructions:

c++ -0 program7-8 program7-8.cc thread_tasks.cc -lpthread

Test Environment:
Solaris 10, gce 3.4.3 and 3.4.6
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Processors:
Opteron, UltraSparc T1

Execution Instructions:
. /program7-8

Notes:

None

With processes, command-line arguments are passed by using the exec family of functions or posix_
spawn, as discussed in Chapter 5. The command-line arguments are restricted to simple data types such
as numbers and characters. The parameters passed to processes are one-way communication. The child
process simply copies the parameter values. Any modifications made to the data will not be reflected in
the parent. With threads, the parameter is not a copy but an address to some data location. Any
modification made by the thread to that data can be seen by any thread that uses it.

But this type of transparency may not be what you desire. A thread can keep its own copy of data passed
to it. It can copy it to its stack, but what’s on its stack will come and go. A thread can be called several
times performing the same task over and over again. By using thread-specific data, data can be
associated with a thread and made private and persistent.

File Handles for Interthread Communication

Sharing files between multiple threads as a form of ITC requires the same caution as using global
variables. If Thread A moves the file pointer, then Thread B accesses the file at that location. What if one
thread closes the files and another thread attempts to write to the file — what happens? Can a thread
read from the file while another thread writes to it? Can multiple threads write to the file? Care must be
taken to serialize or synchronize access to files within a multithreaded environment. Since threads can
share actual read-write pointers, cooperation techniques must be used.

Synchronizing Concurrency

In any computer system, the resources are limited. There is only so much memory, and there are only so
many I/O devices and ports, hardware interrupts, and, yes, even processors cores to go around. The
number of I/O devices is usually restricted by the number of I/O ports and the hardware interrupts that
a system has. In an environment of limited hardware resources, an application consisting of multiple
processes and threads must compete for memory locations, peripheral devices, and processor time. Some
threads and processes will be working together intimately using the system’s limited sharable resources
to perform a task and achieve a goal while other threads and processes work asynchronously and
independently competing for those same sharable resources. It is the operating system’s job to determine
when the process or thread utilizes system resources and for how long. With preemptive scheduling, the
operating system can interrupt the process or thread in order to accommodate all the processes and
threads competing for the system resources. There are software resources and hardware resources. An
example of software resources is a shared library that provides a common set of services or functions to
processes and threads. Other sharable software resources are:
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QO  Applications
Q  Programs

Q  Utilities

To share software resources requires only one copy of the program(s) code to be brought into memory.
Data resources are objects, system data files (for example, environment variables), globally defined
variables, and data structures. In the last section, we discussed data resources that are used for data
communication. It is possible for processes and threads to have their own copy of shared data resources.
In other cases, it is desirable, and maybe necessary, that data is shared. Sharing data can be tricky and
may lead to race conditions (modifying data simultaneously) or data not being where it should when it
is needed. Even attempting to synchronize access to resources can cause problems if this is not properly
executed or if the wrong IPC or ITC mechanism is used. This can cause indefinite postponement or
deadlock. Synchronization allows multiple threads and processes to be active at the same time while
sharing resources without interfering with each other’s operation. The synchronization process
temporarily serializes (in some cases) execution of the multiple tasks to prevent problems. Serialization
occurs if one-at-a-time access has to be granted to hardware or software resources. But too much
serialization defeats the advantages of concurrency and parallelism. Then cores sit idle. Serialization is
used as the last approach if nothing else can be done. Coordination is the key.

Types of Synchronization

We talked about the resources of the system that are shared, hardware and software resources. These are
the entities in a system that require synchronization. What also should be included are tasks, which
should also be synchronized. You saw evidence of this in the program in Listing 7-7 and 7-8. task1 had
to execute and complete before task2 could begin. Therefore, there are three major categories of

synchronization:
QO  Data
QO  Hardware
Q Task

Table 7-5 summarizes each type of synchronization.

Table 7-5

Types of

synchronization Description

Data Necessary to prevent race conditions. It allows concurrent threads/
processes to access a block of memory safely.

Hardware Necessary when several hardware devices are needed to perform a task
or group of tasks. It requires communication between tasks and tight
control over real-time performance and priority settings.

Task Necessary to prevent race conditions. It enforces preconditions and
postconditions of logical processes.
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Synchronizing Access to Data

In this chapter thus far, we have discussed IPC and ITC. As we have discussed, the difference between
data shared between processes and data shared between threads is that threads share the same address
space and processes have separate address spaces. IPC exists outside the address space of the processes
involved in the communication, in the kernel space or in the filesystem. Shared memory maps

a structure to a block of memory that is accessible to the processes. ITC are global variables and data
structures. It is the IPC and ITC mechanisms that require synchronization. Figure 7-6 shows where the
IPC and ITC mechanisms exist in the layout of a process.

PROCESS A’S ADDRESS SPACE

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT
global data structures
local variables global variables

local variables global variables -

static variables

e O Firosiipes IPC MECHANISMS

PROCESS B’S ADDRESS SPACE

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT
| global data structures
: local variables global variables
local variables global variables constants
static variables
thread A’s stack * trees <—— thread A’s code
 graphs
_______ * queues - — — — =
thread B's stack estacks  <——— thread B’s code
ITC MECHANISMS

Figure 7-6

Data synchronization is needed in order to control race conditions and allow concurrent threads or
processes to safely access a block of memory. Data synchronization controls when a block of memory can
be read or modified. Concurrent access to shared memory, global variables, and files must be
synchronized in a multithreaded environment. Data synchronization is needed at the location in a task’s
code when it attempts to access the block of memory, global variable, or file shared with other
concurrently executing processes or threads. This is called the critical section. The critical section can be
any block of code that changes the writes or reads to/from a file, closes a file, reads or writes global
variables or data structures.
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Critical Sections

Critical sections are an area or block of code that accesses a shared resource that must be controlled
because the resource is being shared by multiple concurrent tasks. Critical sections are marked by an
entry point and an exit point. The actual code in the critical section can be one line of code where the
thread /process is reading or writing to memory or a file. It can also be several lines of code where
processing and calls to other methods involve the shared data. The entry point marks your entering the
critical section and an exit point marks your leaving the critical section.

entry point (synchronization starts here)

access file, variable or other resource

exit point (synchronization ends here)

In order to solve the problems caused by multiple concurrent tasks sharing a resource, three conditions
should be met:

1. Ifataskisin its critical section, other tasks sharing the resource cannot be executing in their
critical section. They are blocked. This is called mutual exclusion.

2. Ifno tasks are in their critical section, then any blocked tasks can now enter their critical section.
This is called progress.

3. There should be a bounded wait as to the number of times that a task is allowed to reenter its criti-
cal sections. A task that keeps entering its critical sections may prevent other tasks from attempt-
ing to enter theirs. A task cannot reenter its critical sections if other tasks are waiting in a queue.

These synchronization techniques are what are used to manage critical sections. It is important to
determine the how these concurrently executing tasks are using the shared data. Are they writing to the
data while others are reading? Are all reading from it? Are all writing to it? How they are sharing the
shared data helps determine what type of synchronization is needed and how it should be implemented.
Remember applying synchronization incorrectly can also cause problems like deadlock, data race
conditions, and so forth.
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PRAM Model

The Parallel Random-Access Machine (PRAM) is a simplified theoretical model in which there are N
processors labeled P1, P2, P3, . .. PN that share one global memory. All the processors have simultaneous
read and write access to shared global memory. Each of these theoretical processors can access the global
shared memory in one uninterruptible unit of time. The PRAM model has four algorithms that can be
used to access the shared global memory, concurrent read and write algorithms, and exclusive read and
write algorithms that work like this:

1. Concurrent read algorithms are allowed to read the same piece of memory simultaneously with
no data corruption.

2. Concurrent write algorithms allow multiple processors to write to the shared memory.

3.  Exclusive read algorithms are used to ensure that no two processors ever read the same memory
location at the same time.

4. Exclusive write ensures that no two processors write to the same memory at the same time.

Now this PRAM model can be used to characterize concurrent access to shared memory by multiple
tasks.

Concurrent and Exclusive Memory Access

The concurrent and exclusive read-write algorithms can be combined into the following types of
algorithm combinations that are possible for read-write access:

Q  Exclusive Read and Exclusive Write (EREW)

O  Concurrent Read and Exclusive Write (CREW)
Q  Exclusive Read and Concurrent Write (ERCW)
Q  Concurrent Read and Concurrent Write (CRCW)

These algorithms can be viewed as access policies implemented by the tasks sharing the data. Figure 7-7
shows these access policies. EREW means access to the shared memory is serialized where only one task
at a time is given access to the shared memory whether it is access to write or to read. An example of
EREW access policy is the producer-consumer. The program in Chapter 5 in Listing 5-7 has an EREW
access policy with the shared posix_queue between processes. One process writes the name of a file
another process is to search for the code in. Access to the queue that contained the filenames was
restricted to exclusive write by the producer and exclusive read by the consumer. Only one task was
allowed access to the queue at any given time.

CREW access policy allows multiple reads of the shared memory and exclusive writes. There are no
restrictions on how many tasks can read the shared memory concurrently, but only one task can write to
the shared memory. Concurrent reads can occur while an exclusive write is taking place. With this access
policy, each reading task may read a different value while other task is writing. The next task that reads
the shared memory will see different data than some other task. This may be intended, but it also may
not. ERCW access policy is direct reverse of CREW. Only one task can read the shared data, but
concurrent writes are allowed. CRCW access policy allows concurrent reads and concurrent writes.
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EREW Exclusive Read Exclusive Write

blocks
Thread A write . shared read Thread B
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Figure 7-7

Each of these four algorithm types requires different levels and types of synchronization. They can be
analyzed on a continuum with the access policy that requires the least amount of synchronization to
implement on one end and the access policy that requires the most amount of synchronization at the
other end. EREW is the policy that is the simplest to implement because EREW essentially forces
sequential processing. You may think that CRCW is the simplest, but it presents the most challenges. It
may appear that memory can be accessed without restriction. But this is the most difficult to implement
and requires the most synchronization in order to meet the goal to implement a synchronization process
that maintains data integrity and satisfactory system performance.
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Concurrent Tasks: Coordinating Order of Execution

Synchronization is also needed to coordinate the order of execution of concurrent tasks. Order of
execution was important in the program in Listings 7-5 and 7-6. If the tasks were executed out of order,
the final value for Answer would be wrong. In the program in Listings 7-7 and 7-8, if taskl did not
complete, task2 would attempt to read from an empty queue. Synchronization is required to coordinate
these tasks so that work can progress or so that the correct results can be produced. Data synchronization
(access synchronization) and task synchronization (sequence synchronization) are two types of
synchronization required when executing multiple concurrent tasks. Task synchronization enforces
preconditions and postconditions of logical processes.

Relationships between Cooperating Tasks

There are four basic synchronization relationships between any two tasks in a single process or between
any two processes within a single application:

Q  Start-to-start (SS)

Q  Finish-to-start (FS)
O  Start-to-finish (SF)
Q  Finish-to-finish (FF)

These four basic relationships characterize the coordination of work between threads and processes.
Figure 7-8 shows activity diagrams for each synchronization relationship.

START-TO-START FINISH-TO-FINISH
Thread A Thread B Thread A Thread B
T I T I
<< signal >> | ThreadB blocks
'|-|J IThreadA blocks
| << signal >>
| ) L
FINISH-TO-START START-TO-FINISH
Thread A Thread B Thread A Thread B
T I I T
| |
| ThreadB blocks | ThreadA blocks
| | << signal >>
<< signal >> | M il
|
|

! I |

Figure 7-8
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Start-to-Start (SS) Relationship

In a start-to-start synchronization, one task cannot start until another task starts. One task may start
before the other but never after. For example, say that you have a program that implements an
Embedded Conversational Agent (ECA). The ECA is a computer-generated talking head, which provides
a kind of personality for software. The program that implements the ECA has several threads. Here, the
focus is on the threads that controls the animation of the eyes (ECA does not have a mouth, the eyes
animate) and the thread that controls the sound or voice. You want to give the illusion that the sound
and eyes animation are synchronized. Ideally, they should execute at precisely the same moment. With
multiple processor cores, both threads may start simultaneously. The threads have a start-to-start
relationship. Because of timing conditions, the thread that produces the audio (Thread A) is allowed to
start slightly before the thread that starts the animation (Thread B), but not much before for the illusion’s
sake. It takes a little longer for the audio to initialize, so it can start a bit early. Graphics load much faster.
Figure 7-9 shows images of our ECA.

1) ECA IMAGE 1 2) ECA IMAGE 2

3) ECA IMAGE 3 4) ECA IMAGE 4
Figure 7-9

Finish-to-Start (FS) Relationship

In a finish-to-start synchronization, Task A cannot finish until Task B starts. This type of relationship is
common with parent-child processes. The parent process cannot complete execution of some operation
until it spawns a child process or it receives a communication from the child process that it has started its
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operation. The child process continues to execute once it has signaled the parent or supplied the needed
information. The parent process is then free to complete its operation.

Start-to-Finish Relationship

A start-to-finish synchronization relationship is the reverse of the finish-to-start relationship. In a start-to-
finish synchronization relationship, one task cannot start until another task finishes. Task A cannot start
execution until Task B finishes executing or completes a certain operation. The program in Listing 7-7
and 7-8 had a start-to-finish synchronization. task2 could not start until taskl completed. The main
thread used a join for synchronization. The main thread blocked until task1l returned then it created

a thread that executed task2.

If process A is reading from a pipe connected to process B, process B must first write to the pipe before
process A reads from it. Process B must complete at least one operation — write a single element to the
pipe — before process A starts. With the pipe, there is limited synchronization built in by using blocking.
But if there are multiple readers and writers, then more elaborate synchronization is required.

Finish-to-Finish Relationship

A finish-to-finish synchronization relationship means one task cannot finish until another task finishes.
Task A cannot finish until Task B finishes. This again can describe the relationship between parent and
child processes. The parent process must wait until all its child processes have terminated before it is
allowed to terminate. If the parent process terminates before its child processes, those terminated child
processes become zombied. The parent process calls await () for each of its child processes (like join
for threads) or waits for a mutex or condition variable that is broadcast by child threads.

Another example of a finish-to-finish relationship is the boss-worker concurrency model. It is the boss’s
job to delegate work to the workers. It would be undesirable for the boss to terminate before the worker.
New requests to the system would not be processed, existing threads would have no work to perform,
and no new threads would be created. If the boss were a primary thread and it terminated, the process
would terminate along with all the worker threads. In a peer-to-peer model, if thread A dynamically
allocates an object passed to thread B and thread A terminates, the object is destroyed along with thread
A. If this is done before thread B has a chance to use it, a segmentation fault or data access violation
occurs. In order to prevent these kinds of errors with threads, termination of threads is synchronized by
using the pthread_join (). This creates a finish-to-finish synchronization.

Synchronization Mechanisms

The synchronization mechanisms we discuss in this section cover mechanisms for both processes

and threads. These mechanisms can be used to prevent race conditions and deadlocks between multiple
tasks by implementing the synchronization access policies we have mentioned and managing critical
sections of tasks. In this section, we introduce:

Q  Semaphores and mutexes
Q  Read-write locks

A  Condition variables
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Semaphores

A semaphore is a synchronization mechanism that is used to manage synchronization relationships and
implement access policies. A semaphore is a special kind of variable that can be accessed only by very
specific operations. It helps threads and processes synchronize access to shared modifiable memory or
manage access to a device or other resource. The semaphore is like a key that grants access the resource.
This key can be owned by only one process or thread at a time. Whichever task owns the key or
semaphore locks the resource for its exclusive use. Locking the resource causes any other task that
wishes to access the resource to wait until the resource has been unlocked. When the semaphore is
unlocked, the next task waiting in the queue for the semaphore is given it, thus accessing the resource.
The next task is determined by the scheduling policy used by the thread or process. Figure 7-10 shows the
basic concept of a semaphore as described.

SHARED MEMORY

TASK A lock

semaphore SHARED
MEMORY
lock |
TASK B >

Figure 7-10

Basic Semaphore Operations

A semaphore can be accessed only by specific operations. There are two operations that can be
performed on a semaphore: P () and v () operations. The P () operation decrements the semaphore and
the v () operation increments the semaphore:

P (Mutex)
if (Mutex > 0){
Mutex--;

}
else {

Block on Mutex;
}

V(Mutex)

if (Blocked on Mutex N processes) {
pass on Mutex;
}
elsef
Mutex++;

}
Here Mutex is the semaphore. The actual implementation will be system dependent. These operations

are indivisible. This means that once the operation is in progress, it cannot be preempted. If several tasks
attempt to make a call to the P () operation, only one task is allowed to proceed. If Mutex has already
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been decremented, then the task blocks and is placed in a queue. The V() operation is called by the task
that owns Mutex. If there are other tasks waiting on Mutex, it is given to the next task in the queue
according the scheduling policy. If no tasks are waiting, then Mutex is incremented.

Semaphore operations can go by other names such as:

P() operation
lock()

wait ()

own ()

V() operation
unlock ()

post ()

unown ()

The value of the semaphore depends on the type of semaphore it is. There are several types of

semaphores. For example:

QO  Abinary semaphore has the value 0 or 1. The semaphore is available when its value is 1 and not
available when it is 0. When a process or thread obtains the binary semaphore, the value is
decremented to 0. So, if another process or thread tests its value, it will not be available. Once
the process or thread is done, the semaphore is incremented.

Q A counting semaphore has some non-negative integer value. Its initial value represents the
number of resources available.

The POSIX standard defines several types of semaphores. Some of these semaphores are used by threads
only, and others can be used by processes or threads. Any operating system that is compliant with the
Single Unix Specification or POSIX standard can supply an implementation of these semaphores. They
are apart of the 1ibpthread library, and the functions are declared in the pthread.h header.

Posix Semaphores

The POSIX semaphore defines a named binary semaphore. The name corresponds to a pathname in the
filesystem. Table 7-6 lists the basic functions for using a semaphore along with a brief description.

Table 7-6
Basic Semaphore
Operations Description
Initialization Allocates memory required to hold the semaphore and give memory initial

Request ownership

values. Also determines whether the semaphore is private, sharable, owned,
or unowned.

Makes a request to own the semaphore. If the semaphore is owned by a
thread, then the thread blocks.
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Basic Semaphore

Operations Description
Release ownership Releases the semaphore so it is accessible to blocked threads.
Try ownership Tests the ownership of the semaphore. If the semaphore is owned, the

requester does not block but continues executing. Can wait for a period of
time before continuing.

Destruction Frees the memory associated with the mutex. The memory cannot be

destroyed or closed if it is owned or others are still waiting.

Listing 7-9 shows how semaphores can be used between multiple processes.

Listing 7-9

// Listing 7-9 A process using a semaphore on an output file.

0 ~J O Ul i W N
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using namespace std;
#include <semaphore.h>
#include <iostream>
#include <fstream>

int main(int argc, char *argv[])

{

int Loop, PN;

sem_t *Sem;

const char *Name;

ofstream Outfile("out_text.txt",ios::app);

PN = atoi(argv[l]);
Loop = atoi(argv[2]);
Name = argv[3];

Sem = sem_open (Name, O_CREAT,O_RDWR, 1) ;
sem_unlink (Name) ;

for (int Count = 1; Count < Loop; ++Count) {
sem_walt (Sem) ;
Outfile << "Process:" << PN << " counting " << Count << endl;
sem_post (Sem) ;

}
Outfile.close();

exit (0);
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The program in Listing 7-9 opens a semaphore of type sem_t in Line 11. The named semaphore Sem is
opened with Name typed in as the third argument on the command line. 0_CREATE and O_RDuR are flags
that specify how the semaphore is opened. In this case, the semaphore is opened only if is does not exist.
With the 0_RDWR flag set, the semaphore is opened with read and write permissions. Sem is initialized
with a value of 1. The sem_wait and sem_post operations encapsulate the access to outfile. During
the execution of Line 25, no other processes should access the file. All processes that use this file for input
or output should use the same semaphore. In Listing 7-10, a process that reads the file also uses the
semaphore.

Listing 7-10

// Listing 7-10 A process using a semaphore on an input file.

1 wusing namespace std;
2 #include <semaphore.h>
3 #include <iostream>
4 #include <fstream>
5 #include <string>
6
7
8 int main(int argc, char *argvl[])
9 {
10
11 string Str;
12 const char *Name;
13 sem_t *Sem;
14 ifstream Infile("out_text.txt");
15
16 if(Infile.is_open()) {
17 Name = argv[1l];
18 Sem = sem_open (Name, O_CREAT,O_RDWR, 1) ;
19 sem_unlink (Name) ;
20
21 while(!Infile.eof() && Infile.good()){
22 sem_walt (Sem) ;
23 getline(Infile, Str);
24 cout << Str << endl;
25 sem_post (Sem) ;
26
27 }
28 cout << Mommmmmm— oo " << endl;
29
30 Infile.close();
31
32 }
33
34 exit (0);
35
36
37
38 %}
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The program in Listing 7-10 the named semaphore Sem is opened with Name typed in as the first
argument on the command line. 0_CREATE and O_RDWR are flags that specify how the semaphore is
opened, as in Listing 7-9. The sem_wait and sem_post operations encapsulate the access to Infile.
During the execution of Line 23, the process in Listing 7-9 cannot write to the file.

Here is Program Profile 7-4 for Listings 7-9 and 7-10.

Program Profile 7-4
Program Name:

program7-9.cc (Listing 7-9)
program7-10.cc (Listing 7-10)

Description:

The program7-9 in Listing 7-9 opens a semaphore of type sem_t named semaphore Sem. It is opened
with Name typed in as the third argument on the command line. Sem is initialized with a value of 1. The
sem_wait and sem_post operations encapsulate the access to out file. During the execution no other
processes should access the file. All processes that use this file for input or output should use the same
semaphore. In Listing 7-10, a process that reads the file also uses the semaphore. From the command line
the program looks for the process number, a loop invariant, and the name of the semaphore. The
program writes process, process number, and the loop iteration number to the file.

In program7-10 in Listing 7-10 the named semaphore Sem is opened with Name typed in as the first
argument on the command line. It should have the same name as the semaphore in program7-9 in order
to coordinate access to out_text.txt. The sem_wait and sem_post operations encapsulate the access
to Infile. During the execution program7-9 cannot write to the file. The program requires the name of
the semaphore as a command-line argument. It uses the named semaphore. It opens the file out_text.
txt and writes its contents to stout.

Libraries Required:
librt

Headers Required:

<semaphore.h> <iostream> <fstream> <string> <fcntl.h>

Compile and Link Instructions:

c++ -0 program7-9 program7-9.cc -1rt
c++ -0 program7-10 program7-10.cc -1rt

Test Environment:
Solaris 10, gce 3.4.3 and 3.4.6
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Processors:
Opteron, UltraSparc T1

Execution Instructions:

These programs require command-line arguments. For program7-9, the first argument is the process
number, the second argument is the loop invariant, and the third argument is the name of the
semaphore. program7-10 requires the name of the semaphore.

./program7-9 3 4 /sugi & ./program7-10 /sugi
Notes:

Make sure that the name of the semaphore contains a “/”. These programs are to execute at the same
time.

Mutex Semaphores

The POSIX standard defines a mutex semaphore of type pthread_mutex_t that can be used by threads
and processes. Mutex means mutual exclusion. A mutex is a type semaphore, but there is a difference
between them. A mutex must always be unlocked by the thread that locked it. With a semaphore, a post
(or unlock) can be performed by a thread other than the thread that performed the wait (or unlock). So,
one thread or process can call wait () and another process/thread can call post () on the same
semaphore.

pthread_mutex_t provides the basic operations necessary to make it a practical synchronization
mechanism:

Q  Initialization

QO  Request ownership
QO  Release ownership
Q  Try ownership

a Destruction

Table 7-7 lists the pthread_mutex_t functions that are used to perform these basic operations. The
initialization allocates memory required to hold the mutex semaphore and to give the memory some
initial values. A binary semaphore has an initial value of 0 or 1. A counting semaphore has a value that
represents the number of resources the semaphore is to track. It can represent the request limit a program
is capable of processing in a single session. In contrast to regular variables, there is no guarantee that the
initialization operation of a mutex will occur. Be sure to take precautions to ensure that the mutex was
initialized by checking the return value or checking the errno value. The system fails to create the
mutex if the space set aside for mutexes has been used, the number of allowable semaphores has been
exceeded, the named semaphore already exists, or there is some other memory allocation problem.
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Table 7-7
Mutex Operations Function Prototypes/Macros #include <pthread.h>
Initialization int pthread_mutex_init (pthread_mutex_t *restrict
mutex, const pthread _mutexattr_t *restrict attr);
pthread_mutex_t mutex = PTHREAD_MUTEX_ INITIALIZER;
Request ownership <time.h>
int pthread_mutex_lock(pthread_mutex_t *mutex) ;
int pthread_mutex_timedlock (pthread_mutex_t *restrict
mutex, const struct timespec *restrict abs_timeout) ;
Release ownership int pthread_mutex_unlock (pthread mutex t *mutex);
Try ownership int pthread_mutex_trylock (pthread _mutex_t *mutex) ;
Destruction int pthread_mutex_destroy (pthread_mutex_t *mutex);

The pthread mutex has an attribute object that encapsulates all the attributes of the mutex. This attribute
object is used similarly to the attribute object for a thread. This difference is that whereas the attribute
object of a thread is set, the attribute for a mutex has no set group of properties associated with it. We
will discuss this later in the chapter. What is important to understand for now is that the attribute object
can be passed to the initialization function creating a mutex with attributes of those set in the object. If no
attribute object is used, the mutex is initialized with default values. The pthread_mutex_t is initially
unlocked and private. A private mutex is shared between threads of the same process, whereas a shared
muteXx is shared between threads of multiple processes. If default attributes are to be used, the mutex can
be initialized statically by using the macro:

pthread_mutext Mutex = PTHREAD_MUTEX_INITIALIZER;

This creates a statically allocated mutex object. This method uses less overhead but performs no error
checking.

The request ownership operation grants ownership of the mutex to the calling process or thread. The
mutex is either owned or unowned. Once owned, the thread or process owning it has exclusive access to
the resource. If there is any attempt to own the mutex (by calling this operation) by any other processes
or threads, they are blocked until the mutex is made available. When the mutex is released, this causes
the next process or thread that has blocked to unblock and obtain ownership of the mutex. With the
pthread_mutex_lock () the thread granted ownership of a given mutex is the only thread that can
release the mutex.

The try ownership operation tests the mutex to see if it is already owned. The function returns some
value if it is owned. The advantage of this operation is the thread or process does not block. It can

continue executing code. If the mutex is not owned, then ownership is granted.

The destruction operation frees the memory associated with the mutex. The memory cannot be destroyed
or closed if it is owned or a thread or process is waiting for the mutex.
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Using the Mutex Attribute Object

The pthread_mutex_t has an attribute object used in a similar way as the thread attribute. As

previously indicated, the attribute object encapsulates the attributes of a mutex object. Once initialized, it

can be used by multiple mutex objects when passed to pthread mutex_init (). Also, as previously
indicated, in contrast to the thread attribute function, there are no mandatory attributes associated with
the object. The functions that can be used to set the mutex attributes have to do with the following:

Q  Priority ceiling
Protocol

a
Q  Shared
Q  Type

These functions are listed in Table 7-8 with a brief description.

Table 7-8

Function Prototypes
#include <pthread.h>

pthread_mutex_t Attribute Object

Description

Creation/Destruction

int pthread_mutexattr_
init (pthread_mutexattr_t *
attr) ;

int pthread_mutexattr_
attr) ;
Priority Ceiling

int

pthread_mutexattr_
setprioceiling (pthread_
mutexattr_t * attr, int
prioceiling) ;

int

pthread_mutexattr_

*restrict prioceiling);

Protocol

destroy (pthread_mutexattr_t *

getprioceiling (const pthread_
mutexattr_t*restrict attr,int

Initializes a mutex attribute object specified by the
parameter attr with default values for all of the
attributes defined by the implementation.

Destroys a mutex attribute object specified by the attr,
which causes the mutex attribute object to become
uninitialized. Can be reinitialized by calling the
pthread_mutexattr_init () function.

Defines the minimum priority level of the mutex.

Sets and returns the priority ceiling attribute of the mutex
specified by attr. prioceiling contains the priority
ceiling of the mutex. The values are within the maximum
range of priorities defined by SCHED_FIFO.

Defines how the scheduling and priority of the mutex is
utilized.
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pthread_mutex_t Attribute Object
Function Prototypes
#include <pthread.h>

Description

int

pthread_mutexattr_
setprotocol (pthread_
mutexattr_t * attr,int
protocol) ;

int

pthread_mutexattr_
getprotocol (const pthread_
mutexattr_t *restrict attr,
int *restrict protocol);

Shared

int pthread_mutexattr_
setpshared (pthread_mutexattr_
t * attr,int pshared);

int pthread_mutexattr_
getpshared(const pthread_
mutexattr_t *restrict
attr,int *restrict pshared);

Type

int pthread_mutexattr_
settype (pthread_mutexattr_t *
attr,int type);

int pthread_mutexattr_
gettype (const pthread_
mutexattr_t *restrict
attr,int *restrict type);

Sets and returns the protocol of the mutex attrbute
specified by the attr. protocol contains the value of the
protocol attribute:

PTHREAD_PRIO_NONE

The priority and scheduling of the thread is not affected
by the ownership of the mutex.

PTHREAD_PRIO_INHERIT

Thread blocking other threads of higher priority due to
ownership of such a mutex execute at the highest
priority of any of the threads waiting on any of the
mutexes owned by this thread with such a protocol.

PTHREAD_PRIO_PROTECT

Threads owning such a mutex execute at the highest
priority ceilings of all mutexes owned by this thread with
such a protocol regardless of whether other threads are
blocked on any of these mutexes.

Determines whether the mutex is for processes.

Sets or returns the shared attribute of the mutex attribute
object specified by the attr. pshared contains a value:

PTHREAD_PROCESS_SHARED

Permits a mutex to be shared by any threads that have
access to the allocated memory of the mutex even if the
threads are in different processes.

PTHREAD_PROCESS_PRIVATE

Mutex is shared between threads of the same process as
the initialized mutex.

Describes the behavior of the mutexes; determines
whether deadlock is determined, error checking
performed, and so on.

Sets and returns the type mutex attribute specified by the
attr. type contains a value:

PTHREAD_MUTEX_DEFAULT
PTHREAD_MUTEX_ RECURSIVE
PTHREAD_MUTEX_ERRORCHECK

PTHREAD_MUTEX_NORMAL
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To use a phtread mutex between threads of different processes requires the shared attribute. This
attribute determines if the mutex is private or shared. Private mutexes are shared only among threads of
the same process. They can be declared as global or a handle can be passed between threads. Shared
mutexes, however, are used by any thread that has access to the mutex memory, and this includes
threads of different processes. To do this, use pthread_mutexattr_setshared() and set the attribute
to PTHREAD_PROCESS_SHARED as follows:

pthread_mutexattr_setpshared (&MutexAttr, PTHREAD_PROCESS_SHARED) ;
This allows Mutex to be shared by threads of different processes.
Figure 7-11 contrasts the idea of private and shared mutexes. If threads of different processes are to share
a mutex, that mutex must be allocated in memory shared between processes. We discussed shared

memory earlier in this chapter. Mutexes between processes can be used to protect critical sections that
access files, pipes, shared memory, and devices.

PROCESS A’S ADDRESS SPACE

Thread A rite
shared
private
mutex
Thread C e
PROCESS A’S PROCESS B'S
ADDRESS SPACE ADDRESS SPACE
Thread A e i 230 s Thread A
shared
mutex
Thread C il 230 Thread C
Figure 7-11
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Using Mutex Semaphores to Manage Critical Sections

Mutexes can be used to manage critical sections of processes and threads in order to control race
conditions. Mutexes avoid race conditions by serializing access to the critical section. Example 7-8 shows
code for the new tasks defined in Listing 7-5. Mutexes are used to protect their critical sections.

Example 7-8

// Example 7-8 New code for tasks in Listing 7-5.

3 wvoid *taskl (void *X)

4 |

5 pthread_mutex_lock (&Mutex) ;

6 Answer = Answer * 32; //critical section

7 pthread_mutex_unlock (&Mutex) ;

8 cout << "thread A Answer = " << Answer << endl;
9
10 3}

In Example 7-8, taskl now uses a mutex when it modifies the global variable Answer. In Line 8 the task
sends the new value of Answer to cout. This is the critical section for the task. Now you can have each
task execute the same code except each task sends to stout its thread name. So, now this is the output:

Before threads Answer = 10
thread 1 Answer = 320
thread 2 Answer = 160
thread 3 Answer = 165
After threads Answer = 165

Read-Write Locks

Mutex semaphores serialize the critical section. Only threads or processes that use the shared data are
permitted to enter the critical section. With read-write locks, multiple threads are allowed to enter the
critical section if they are to read the shared memory only. Therefore, any number of threads can own a
read-write lock for reading, but if multiple threads are to write or modify the shared memory, only one
thread is given access. No other threads are allowed to enter the critical section if one thread is given
write access to the shared memory. If the application has multiple threads, mutex exclusion can be
extreme. The performance of the application can benefit by allowing multiple reads. The POSIX standard
defines a read-write lock of type pthread_rwlock_t. Similar to mutex semaphores, the read-write locks
have the same operations. Table 7-9 lists the read-write lock operations.
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Table 7-9
Read-Write Lock Function Prototypes #include <pthread.h>
Operations
Initialization int pthread_rwlock_init (pthread_rwlock_t *restrictrwlock,
const pthread_rwlockattr_t *restrict attr);
Request ownership #include <time.h>
int pthread_rwlock_rdlock (pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock (pthread_rwlock_t *rwlock);
int pthread_rwlock_timedrdlock (pthread_rwlock_t *restrict
rwlock, const struct timespec *restrict abs_timeout) ;
int pthread_rwlock_timedwrlock (pthread_rwlock_t *restrict
rwlock, const struct timespec *restrict abs_timeout) ;
Release ownership int pthread_rwlock_unlock (pthread_rwlock_t *rwlock);
TYy(NNnerﬂﬁp int pthread_rwlock_tryrdlock (pthread_rwlock_t *rwlock) ;
int pthread_rwlock_trywrlock (pthread_rwlock_ t *rwlock);
Destruction int pthread_rwlock_destroy (pthread_rwlock_t *rwlock);

The difference between regular mutexes and read-write mutexes is their locking request operations.
Instead of one locking operation there are two:

pthread_rwlock_rdlock()
pthread_rwlock_wrlock()

pthread_rwlock_rdlock () obtains a read-lock and pthread_rwlock_wrlock () obtains a write lock.
If a thread requests a read-lock, it is granted the lock as long as there are no threads that hold a write
lock. If so, the calling thread is blocked. If a thread requests a write lock, it is granted as long as there are
no threads that hold a read lock or a write lock. If so, the calling thread is blocked.

The read-write lock is of type pthread_rwlock_t. This type also has an attribute object that
encapsulates its attributes. The attribute functions are listed in Table 7-10.
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Table 7-10

pthread_rwlock_t Attribute Object Function
Prototypes #include <pthread.h>

Description

int pthread_rwlockattr_init (pthread_
rwlockattr_t * attr);

int
pthread_rwlockattr_destroy (pthread_
rwlockattr_t * attr);

int pthread_rwlockattr_setpshared
(pthread_rwlockattr_t * attr,
int pshared) ;

pthread_rwlockattr_t *

restrict attr,int *restrict pshared);

int pthread_rwlockattr_getpshared(const

Initializes a read-write lock attribute object
specified by attr with default values for all of
the attributes defined by the implementation.

Destroys a read-write lock attribute object
specified by attr. Can be reinitialized by calling
pthread_rwlockattr_init().

Sets or returns the process shared attribute of the
read-write lock attribute object specified by attr.
The pshared parameter contains a value:

PTHREAD_PROCESS_SHARED

Permits a read-write lock to be shared by any
threads that have access to the allocated memory
of the read-write lock even if the threads are in
different processes.

PTHREAD_PROCESS_PRIVATE

The read-write lock is shared between threads
of the same process as the initialized rwlock.

The pthread_rwlock_t can be private between threads or shared between threads of different

processes.

Using Read-Write Locks to Implement Access Policy

Read-write locks can be used to implement a CREW access policy. Several tasks can be granted
concurrent reads, but only one task is granted write access. Using read-write locks can keep concurrent
reads from occurring with the exclusive write. Example 7-9 contains tasks using read-write locks to

protect critical sections.

Example 7-9

// Example 7-9 Threads using read-write locks.

/...

pthread_t ThreadA, ThreadB, ThreadC, ThreadD;

pthread_rwlock_t RWLock;

void producerl (void *X)

{
pthread_rwlock_wrlock (&RWLock) ;

(continued)

259




Chapter 7: Communication and Synchronization of Concurrent Tasks

Example 7-9 (continued)

//critical section
pthread_rwlock_unlock (&RWLock) ;

void producer2 (void *X)
{
pthread_rwlock_wrlock (&RWLock) ;
//critical section
pthread_rwlock_unlock (&RWLock) ;
}

void consumerl (void *X)
{
pthread_rwlock_ rdlock (&RWLock) ;
//critical section
pthread_rwlock_unlock (&RWLock) ;
}

void consumer2 (void *X)
{
pthread_rwlock_rdlock (&RWLock) ;
//critical section

pthread_rwlock_unlock (&RWLock) ;
}

int main(void)

{

pthread_rwlock_init (&RWLock,NULL) ;

//set mutex attributes
pthread_create (&ThreadA, NULL, producerl, NULL) ;
pthread_create (&ThreadB, NULL, consumerl, NULL) ;
pthread_create (&ThreadC, NULL, producer2, NULL)
pthread_create (&ThreadD, NULL, consumer2 , NULL)
/...

return(0) ;

’

’

}

In Example 7-9 four threads are created. Two threads are producers, Threada and Threadc, and two
threads are consumers, ThreadB and Threadb. All the threads have a critical section protected by the
read-write lock, RiWLock. ThreadB and ThreadD can enter their critical sections concurrently or serially,
but neither thread can enter its critical section if either Threada or Threadc is in its. Threada and
ThreadC cannot enter their critical sections concurrently. Table 7-11 shows part of the decision table for
this program.
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Table 7-11
Thread A (writer) ThreadB (reader) ThreadC (writer) ThreadD (reader)
N N N Y
N N Y N
N Y N N
N Y N Y
Y N N N

Object-Oriented Mutex Class

Listing 7-11 is the declaration of an object-oriented mutex class.

Listing 7-11

// Listing 7-11 Declaration of an object-oriented mutex class.

0 ~J O Ul i W N

18

#ifndef _PERMIT H
#define_ PERMIT H
#include <pthread.h>
#include <time.h>
class permit{
protected:
pthread_mutex_t Permit;
pthread_mutexattr_t PermitAttr;
public:
permit (void) ;
bool available(void);
bool not_in_use(void) ;
bool checkAvailability(void) ;
bool availableFor(int secs,int nanosecs) ;

}i

#endif/* _PERMIT H */

The permit class provides the basic operations for a mutex class. Listing 7-12 contains the definition
of the permit class.
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Listing 7-12
// Listing 7-12 Definition of the permit class.

#include "permit.h"

{
int AvValue,MValue;
AValue = pthread_mutexattr_init (&PermitAttr);

1

2

3

4 permit:: permit(void)

5

6

7

8 MValue = pthread_mutex_init (&Permit, &PermitAttr) ;

9 1}
10 bool permit::available(void)
11 {
12 int RC;
13 RC = pthread_mutex_lock (&Permit) ;
14 return(true) ;
15
16 }
17 bool permit::not_in_use(void)
18 {
19 int RC;
20 RC = pthread_mutex_unlock (&Permit) ;
21 return(true) ;
22
23}
24 bool permit::checkAvailability(void)
25 {
26 int RC;
27 RC = pthread_mutex_trylock (&Permit) ;
28 return(true) ;
29 1}
30 bool permit::availableFor (int secs,int nanosecs)
31 {
32 /]
33 struct timespec Time;
34 return(true) ;
35
36}

Listing 7-12 shows only the basic operations. For the class to be a fully viable mutex class, error checking
would have to be added, as was the case in the posix_queue class in Example 7-3 earlier in the chapter.

Here is Program Profile 7-5 for Listings 7-11 and 7-12.

Program Profile 7-5
Program Name:

permit.h (Listing 7-11)
permit.cc (Listing 7-12)
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Description:

Listing 7-11 contains the header for permit .h, and Listing 7-12 contains permit. cc.

Libraries Required:
libpthread

Headers Required:
<pthread.h> <time.h> "permit.h"

Compile and Link Instructions:

c++ -C permit.cc

Test Environment:
Solaris 10, gce 3.4.3 and 3.4.6

Processors:
Opteron, UltraSparc T1

Execution Instructions:

N/A

Notes:

None

Condition Variables

A mutex allows tasks to synchronize by controlling access to the shared data. A condition variable allows
tasks to synchronize on the value of the data. Condition variables are semaphores that signal when an
event has occurred. There can be multiple processes or threads waiting for the signal once the event has
taken place. Condition variables are typically used to synchronize the sequence of operations.

The condition variable is of type pthread_cond_t. These are the types of operations it can perform:

Q

U 00U o

Initialize
Destroy
Wait
Timed wait
Signal

Broadcast

The initialize and destroy operations work in a similar manner to the other mutexes. The wait and timed
wait operations suspend the caller until another process/thread signals on the condition variable. The
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timed wait allows you to specify a period of time the thread waits. If the condition is not signaled within
the specified time, the thread is released. Condition variables are used with mutexes. If a thread or
process attempts to lock a mutex, you know that it blocks until the mutex is released. Once unblocked, it
obtains the mutex and then continues. If a condition variable is used, it must be associated with a mutex.
A task waits for the signal, and another task signals or broadcasts that the signal has happened. Table 7-12
lists the basic operations defined for a condition variable.

Table 7-12
Condition Variables
Operations Function Prototypes/Macros#include <pthread.h>
Initialization int pthread_cond_init (pthread_cond_t
*restrictcond,

const pthread_condattr_t *restrict attr);

pthread_cond_t cond =
PTHREAD_COND_INITIALIZER;

Signaling int pthread_cond_signal (pthread_cond_t
*cond) ;

int pthread_cond_broadcast (pthread_cond_t *cond) ;

Destruction int pthread_cond_destroy (pthread_cond_t *cond) ;

A task attempts to lock a mutex. If the mutex is already locked, then the task blocks. Once unblocked, the
task releases the mutex while it waits on the signal for the condition variable. If the mutex is not locked,
it releases the mutex and waits, indefinitely. With a timed wait, the task waits only for a specified period
of time. If the time expires before the task is signaled, the function returns an error. It then acquires the
mutex.

The signaling operation causes a task to signal to another thread or process that an event has occurred. If
a task is waiting for a condition variable, it is unblocked and given the mutex. If there are several tasks
waiting for the condition variable, only one is unblocked. The tasks wait in a queue and unblock
according to the scheduling policy. The broadcast operation signals all the tasks waiting for the condition
variable. If multiple tasks are unblocked, the tasks compete for the ownership of the mutex according to
a scheduling policy. In contrast to the waiting operation, the signaling task is not required to own the
mutex, although it is recommended.

The condition variable also has an attribute object. Table 7-13 lists the functions of the attribute object
with a brief description.
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Table 7-13

pthread_cond_t Attribute
ObjectFunction Prototypes #include
<pthread.h>

Description

int pthread_condattr_
init (pthread_condattr_t * attr);

int pthread_condattr_
destroy (pthread_condattr_t *
attr) ;

int

pthread_condattr_

setpshared (pthread_condattr_t *
attr,int pshared) ;

int

pthread_condattr_
getpshared(const pthread_
condattr_t * restrict attr,int
*restrict pshared) ;

int

pthread_condattr_

setclock (pthread_condattr_t *
attr,clockid_t clock_id);

int
pthread_condattr_getclock (const
pthread_condattr_t * restrict
attr,clockid_t *restrict clock_
id);

Initializes a condition variable attribute object
specified by attr with default values for all of the
attributes defined by the implementation.

Destroys a condition variable attribute object
specified by attr. Can be reinitialized by calling the
pthread_condattr_init().

Sets or returns the process shared attribute of the
condition variable attribute object specified by attr
. pshared contains a value:

PTHREAD_PROCESS_SHARED

Permits a read-write lock to be shared by any threads
that have access to the allocated memory of the
condition variable even if the threads are in different
processes.

PTHREAD_PROCESS_PRIVATE

The condition variable is shared between threads of
the same process as the initialized cond.

Sets and returns the clock attribute for the condition
variable attribute object specified by attr. c1lock is the
clock id of the clock used to measure the timeout
service of the pthread_cond_timedwait () function.
The default value of clock is the system clock.

Using Condition Variables to Manage Synchronization Relationships

The condition variable and the mutex can be used to implement the synchronization relationships
mentioned earlier in the chapter:

Start-to-start (SS)

Finish-to-start (FS)

Start-to-finish (SF)

Finish-to-finish (FF)

U 0 0 U
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These relationships can exist between threads of the same processes or different processes. Listing 7-13
contains a program demonstrating how to implement SF synchronization relationship. There are two
mutexes used in each example. One mutex is used to synchronize access to the shared data, and the
other mutex is used with the condition variable.

Listing 7-13

// Listing 7-13 SF synchronization relationship implemented with
// condition variables and mutexes.

1 wusing namespace std;
2  #include <iostream>
3 #include <pthread.h>
4
5 int Number;
6 pthread_t ThreadA, ThreadB;
7 pthread_mutex_t Mutex, EventMutex;
8 pthread_cond_t Event;
9
10 wvoid *workerl (void *X)
11
12 for (int Count = 1;Count < 10;Count++) {
13 pthread_mutex_lock (&Mutex) ;
14 Number++;
15 pthread_mutex_unlock (&Mutex) ;
16 cout << "workerl: Number = " << Number << endl;
17 1f (Number == 7){
18 pthread_cond_signal (&Event) ;
19 }
20 }
21
22 return(0) ;
23}
24
25 wvoid *worker2 (void *X)
26 {
27 pthread_mutex_lock (&EventMutex) ;
28 pthread_cond_wait (&Event, &EventMutex) ;
29 pthread_mutex_unlock (&EventMutex) ;
30 for(int Count = 1;Count < 10;Count++) {
31 pthread_mutex_lock (&Mutex) ;
32 Number = Number + 20;
33 cout << "worker2: Number = " << Number << endl;
34 pthread_mutex_unlock (&Mutex) ;
35
36 }
37
38 return(0) ;
39 %}
40
41
42 int main(int argc, char *argv[])
43 {
44 pthread_mutex_init (&Mutex,NULL) ;
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45 pthread_mutex_init (&EventMutex,NULL) ;

46 pthread_cond_init (&Event,NULL) ;

47 pthread_create (&ThreadA, NULL,workerl, NULL) ;
48 pthread_create (&ThreadB, NULL, worker2,NULL) ;
49

50 pthread_join(ThreadaA,NULL) ;

51 pthread_join (ThreadB, NULL) ;

52

53 return (0);

54 }

In Listing 7-13, the SF synchronization relationship is implemented. ThreadB cannot start until Threada
finishes. Threada signals to ThreadB once Number has a value of 7. It can then continue execution

until finished. ThreadB cannot start its computation until it gets a signal from Threada. Both use the
EventMutex with the condition variable Event. Mutex is used to synchronize write access to the shared
data Number. A task can use several mutexes to synchronize different critical sections and synchronize
different events. These techniques can easily be used to synchronize order of execution between
processes.

Here is Program Profile 7-6 for Listing 7-13.

Program Profile 7-6
Program Name:

program7-13.cc. (Listing 7-13)

Description:

program7-13.cc (Listing 7-13) has a SF synchronization relationship. ThreadB cannot start until
ThreadA finishes. ThreadA signals to ThreadB once Number has a value of 7. It can then continue
execution until finished. ThreadB cannot start its computation until it gets a signal from Threada. Both
use the EventMutex with the condition variable Event. Mutex is used to synchronize write access to the
shared data Number. Threada and ThreadB send Number to stout. Threada adds 1 to the value of
Number and ThreadB adds 20 to Number at each iteration through the loop.

Libraries Required:

libpthread

Headers Required:

<iostream> <pthread.h>

Compile and Link Instructions:

c++ -0 program7-13 program7-13.cc -lpthread

Test Environment:

Solaris 10, gcc 3.4.3 and 3.4.6
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Processors:
Opteron, UltraSparc T1

Execution Instructions:
./program7-13

Notes:

None

Thread-Safe Data Structures

With the synchronization primitives discussed in this chapter, it is possible to build complex data
structures that are safe for concurrent use by multiple threads. A data structure can contain a mutex class
used to protect access to the internal data.

Thread Strategy Approaches

The thread strategies determine the approach that can be employed when threading your
application. The approach determines how the threaded application delegates its works to the
tasks and how communication is performed. A strategy supplies a structure and approach

to threading and helps in determining the access policies.

The purpose of a thread is to perform work on behalf of the process. If a process has multiple threads,
each thread performs some subtask as part of what the application is to do. Threads are given work
according to a specific strategy or approach. If the application models some procedure or entity, then the
approach selected should reflect that model.

The common models are as follows:

Q  Delegation (boss-worker)
QO  Peer-to-peer
Q  Pipeline
Q  Producer-consumer
Each model has its own Work Breakdown Structure (WBS). WBS determines which piece of software

does what, for example, who is responsible for thread creation and under what conditions threads are
created.

WABS is discussed in more detail in Chapter 3.
With a centralized approach there is a single process/thread that creates other processes/threads and
delegates work to each. An assembly line approach performs work at different stages on the same data.

Once these processes/threads are created, they can perform the same task on different data sets, different
tasks on the same data set, or different tasks on different data sets. Threads can be categorized to
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perform only certain types of tasks. There can be a group of threads that only perform computations
while others perform process input or produce output.

It is also important to remember that what is to be modeled may not be homogeneous throughout the
application or the process. Therefore, it may be necessary to mix models. One model may be embedded
in another model. With the pipeline model, a thread or process may create other threads or processes
and utilize a delegation model locally in order to process the data at that stage.

Delegation Model

In the delegation model, a single thread (boss) creates other threads (workers) and assigns each a task. It
may be necessary for the boss thread to wait until each worker thread completes its task before it can
continue its executing its code. Its code may be based on the results of the worker thread. The boss
thread delegates the task each worker thread is to perform by specifying a function. As each worker is
assigned its task, it is the responsibility of each worker thread to perform that task and produce output
or synchronize with the boss or other thread to produce output.

The boss thread can create threads as a result of requests made to the system. The processing of each
type of request can be delegated to a thread worker. The boss thread executes an event loop. As events
occur, thread workers are created and assigned their duties. A new thread is created for every new
request that enters the system. Using this approach may cause the process to exceed its resources or
thread limits. A different approach is to have a boss thread create a pool of threads that are reassigned
new requests. The boss thread creates a number of threads during initialization, and then each thread is
suspended until a request is added to their queue. As requests are placed in the queue, the boss thread
signals a worker thread to process the request. When the thread completes, it dequeues the next request.
If none are available, the thread suspends itself until the boss signals to the thread more work is available
in the queue. If all the worker threads are to share a single queue, then the threads process only certain
types of request. The results from each thread are placed in another queue. The primary purpose of the
boss thread is to:

1. Create all the threads
2. Place work in the queue

3.  Awaken worker threads when work is available
The worker threads:

1. Check the request in the queue
2. Perform the assigned task

3. Suspend itself if no work is available

All the workers and the boss are executing concurrently. Example 7-10 contains pseudocode for the event
loop for the delegation model for this approach.
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Example 7-10

// Example 7-10 Skeleton program for delegation model where boss creates a
// pool of threads.

pthread_t Thread[N]

// boss thread
{

pthread_create (& (Thread[1l]...taskX...);
pthread_create (& (Thread[2]...taskY...);
pthread_create (& (Thread[3]...taskZ...);
/]

pthread_create (& (Thread[N]...?...);

loop while(Request Queue is not empty
get request
classify request
switch(request type)
{

case X :
enqueue request to XQueue
broadcast to thread XQueue request available
case Y :
enqueue request to YQueue
broadcast to thread YQueue request available
case Z
enqueue request to ZQueue
broadcast to thread ZQueue request available
//...
}
end loop

}

void *taskX(void *X)
{
loop
waiting for signal
when signaled
loop while XQueue is not empty
lock mutex
dequeue request
release mutex
process request
set mutex
enqueue results
release queue
end loop
until done
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void *taskY(void *X)
{
loop
waiting for signal
when signaled
loop while YQueue is not empty
lock mutex
dequeue request
release mutex
process request
set mutex
enqueue results
release queue
end loop
until done

}

void *taskZ(void *X)
{
loop
waiting for signal
when signaled
loop while ZQueue is not empty
lock mutex
dequeue request
release mutex
process request
set mutex
enqueue results
release queue
end loop
until done

}
/...

In Example 7-10, the boss thread creates N number of threads. Each task is associated with processing a
request type denoted by taskX, tasky, and taskz. In the event loop, the boss thread dequeues a request
from the request queue, determines the request type, and then enqueues the request to the appropriate
request queue. It broadcasts to the threads a request is available in a particular queue. The functions also
contain an event loop. The thread is suspended until it receives a signal from the boss that there is a
request in its queue. Once awakened, in the inner loop, the thread processes all the requests in the queue
until it is empty. It removes a request from the queue, processes it, and then places the results in the
result queue. A mutex is used for the input and output queues.

Peer-to-Peer Model

Whereas the delegation model has a boss thread that delegates tasks to worker threads, in the peer-to-peer
model all the threads have an equal working status. There is a single thread that initially creates all the
threads needed to perform all the tasks, but that thread is still considered a worker thread. It does no
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delegation of work. The worker (peers) threads have more local responsibility. The peer threads can
process requests from a single input stream shared by all the threads, or each thread may have its own
input stream for which it is responsible. The input can also be stored in a file or database. The peer
threads may have to communicate and share resources. Example 7-11 contains the pseudocode for the
peer-to-peer model.

Example 7-11

// Example 7-11 Skeleton program using the peer-to-peer model.
/...
pthread_t Thread[N]

// initial thread
{

pthread_create (& (Thread[1l]...taskX...);
pthread_create (& (Thread[2]...taskY...);
pthread_create (& (Thread[3]...taskZ...);
//...
pthread_create (& (Thread[N]...?...);

}

void *taskX(void *X)
{
loop while (Type XRequests are available)
set mutex
extract Request
unlock mutex
process request
lock mutex
enqueue results
unlock mutex
end loop
return (NULL)
}

/]

Producer-Consumer Model

In the producer-consumer model, there is a producer thread that produces data to be consumed by the consumer
thread. The data is stored in a block of memory shared between the producer and consumer threads. The
producer thread must produce data; then the consumer threads retrieve it. If the producer thread deposits
data at a much faster rate than the consumer thread consumes it, then the producer thread may at several
times overwrite previous results before the consumer thread retrieves it. On the other hand, if the consumer
thread retrieves data at a much faster rate than the producer deposits data then the consumer thread may
retrieve identical data or attempt to retrieve data not yet deposited. This process, like the others, requires
synchronization. We discussed read-write locks earlier in this chapter and included an example of producers
that write and consumers that read. Example 7-12 contains the pseudocode for the producer-consumer
model. The producer-consumer model is also called the client-server model for large-scale programs and
applications.
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Example 7-12
// Example 7-12 Skeleton program using the producer-consumer model.
/...

// initial thread
{

pthread_create (& (Thread[1l]...producer...);
pthread_create(&(Thread[2]...consumer...);
/],

void *producer (void *X)
{
loop
perform work
lock mutex
enqueue data
unlock mutex
signal consumer
/...
until done

}

void *consumer (void *X)
{
loop
suspend until signaled
loop while(Data Queue not empty)
lock mutex
dequeue data
unlock mutex
perform work
lock mutex
enqueue results
unlock mutex
end loop
until done

Pipeline Model

The pipeline model is characterized by an assembly-line approach in which a stream of items is processed
in stages. At each stage, work is performed on a unit of input by a thread. When the unit has been
through all the stages in the pipeline, then the processing of the input has been completed and exits the
system. This approach allows multiple inputs to be processed simultaneously. Once data has been
processed at a certain stage, it is ready to process the next data in the stream. Each thread is responsible
for producing its interim results or output and making them available to the next stage in the pipeline.
The last stage or thread produces the result of the pipeline.

273



Chapter 7: Communication and Synchronization of Concurrent Tasks

As the input moves down the pipeline, it may be necessary to buffer units of input at certain stages as
threads process previous input. This may cause a slowdown in the pipeline if a particular stage’s
processing is slower than other stages. This may cause a backlog. To prevent backlog, it may be
necessary for that stage to create additional threads to process incoming input. This is a case of mixed
models. At this stage in the pipeline, the thread may create a delegation model to process its input and
prevent backlogs.

The stages of work in a pipeline should be balanced so that one stage does not take more time than the
other stages. Work should be evenly distributed throughout the pipeline. More stages and therefore
more threads may also be added to the pipeline. This also prevents backlog. Example 7-13 contains the
pseudocode for the pipeline model.

Example 7-13

// Example 7-13 Skeleton program using the pipeline model.
/...

pthread_t Thread[N]
Queues [N]

// initial thread

{
place all input into stagel's queue
pthread_create (& (Thread[1l]...stagel...);

pthread_create (& (Thread[2]...stage2...);
pthread_create (& (Thread[3]...stage3...);
//...

}

void *stageX(void *X)
{
loop
suspend until input unit is in queue
loop while XQueue is not empty
lock mutex
dequeue input unit
unlock mutex
perform stage X processing
engueue input unit into next stage's queue
end loop
until done
return (NULL)
}

/]

SPMD and MPMD for Threads

In concurrency models, the threads may be performing the same task over and over again on different
data sets or may be assigned different tasks to be performed on different data sets. Figure 7-12 shows the
different models of parallelism. Concurrency models utilize Single Instruction Multiple Data (SIMD) or
Multiple Programs Multiple Data (MPMD). These are two models of parallelism that classify programs by
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instruction and data streams. They can be used to describe the type of work that the thread models are
implementing in parallel. For purposes of this discussion, MPMD is better defined as Multiple Threads
Multiple Data (MTMD). This model describes a system that executes different threads processing
different sets of data or data streams. In Figure 7-12 (a) you can see that thread 1 processes dataset 1, and
thread 2 processes dataset 2. Likewise, SIMD (also known as Single Program Multiple Data or SIMD) for
purposes of this discussion is better redefined as Single Thread Multiple Data (STMD). This model
describes a system that executes a single thread that processes different sets of data or data streams. In
Figure 7-12 (b), thread 1 executes routine A and processes dataset 1 and thread 2 also executes routine A
but processes dataset 2. This means several identical threads executing the same routine are given
different sets of data to process. Multiple Threads Single Data (MTSD) describes a system where different
instructions are applied to the same dataset. In Figure 7-12 (c), thread 1, which executes routine A, and
thread 2, which executes routine B, both process the same dataset, dataset 1. Single Instruction Single Data
(SISD) describes a system in which a single instruction processes a single dataset. In Figure 7-12 (d),
thread 1 executes routine A, which sequentially processes datasets.

MTMD (a) STMD (b)
Dataset 1 Dataset 2 Dataset 1 Dataset 2

THREAD 1 THREAD 2 THREAD 1 THREAD 2
— COMMUNICATE — E— COMMUNICATE E—
executes executes executes executes

Routine A Routine B Routine A Routine A

I T

Dataset 2
| Dataset 1 |
Dataset 1
THREAD 1
THREAD 1 THREAD 2 E—
E— COMMUNICATE — executes
executes executes Routine A
Routine A Routine B processes datasets
sequentially
Figure 7-12

The delegation and peer-to-peer models can both use STMD or MTMD models of parallelism. As
described, the pool of threads can execute different routines processing different sets of data. This
approach utilizes the MTMD model. The pool of threads can also be given the same routine to execute.
The requests or jobs submitted to the system could be different sets of data instead of different tasks. In
this case, there would be a set of threads implementing the same instructions but on different sets of
data, thus utilizing STMD. The peer-to-peer model can be threads executing the same or different tasks.
Each thread can have its own data stream or several files of data that each thread is to process. The
pipeline model uses the MTMD model of parallelism. At each stage, different processing is performed,
so multiple input units are at different stages of completion. The pipeline metaphor would be useless if
at each stage the same processing was performed.
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Decomposition and Encapsulation of Work

Now we have discussed communication and cooperation between concurrently executing tasks, whether
they are processes or threads. We have discussed communication relationships and the mechanisms of
communication with IPC and ITC. We have also covered task cooperation, memory access models, and
synchronization relationships. Data and communication synchronization was also covered along with
the many techniques that can be used to avoid race conditions. Concurrency models can be used to
layout an approach for communication and delegation of work. Now we want to use these techniques
and models to do some work.

Problem Statement

We have a multitude of text files that requires filtering. The text files have to be filtered in order to be
used in our Natural Language Processing (NLP) system. We want to remove a specified group of tokens
or characters from multiple text files, characters such as [, . ? ! ], and we want this done in real time.

The objects that can be immediately identified are:

O Text files
O  The characters to be removed

Q  The resulting filtered files

Strategy

We have over 70 files to process. Each file can contains hundreds or thousands of lines of text. To
simplify this, we have a set of characters we want to remove. We want to be able specify the name of the
file, have the program filter out all the unwanted characters, have it create the new filtered file, and then
be able to give the program the next file. With the guess_it example we used earlier in the book, an
approach to break down the problem into smaller tasks was used. The task was to search a file for a
code. The file was very large with over four million codes to search. So the file was broken down into
smaller files and the search was performed on the smaller files. Since there was a time constraint, the
searches had to be performed in parallel.

Here with this problem the filtered files have to be the same as the original files with the unwanted
characters removed. The text cannot be altered in anyway. Although deconstructing the files into smaller
files can be done, reconstructing them is not something we want to do. So what approach should we
take? Keep in mind these are the goals:

1. Removing all the unwanted characters has to be performed
2. Having the work done in real-time

3.  Keeping the integrity of the contents of each file

We can remove characters from the whole file or remove characters from each line at a time. Here are the
possibilities:
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Q  Approach 1: Search the file for a character. When it is, found remove it, and then search for the
next occurrence of the character. When all of those characters have been removed, search the file
again for the next unwanted character. Repeat this for each file. The postcondition is met
because we are working on the original file and removing the unwanted characters from it.

Q  Approach 2: Remove all occurrences of a single character from each file then repeat this process
for each unwanted character. The postcondition is met in the same way as in Approach 1.

Q  Approach 3: Read in a single line of text, remove an unwanted character. Go through the same
line of text and remove the next unwanted character, and so on. When all characters have been
removed from the line of text, write the filtered line of text to the new file. This is done for each
file. The postcondition is met because we are restructuring a new file as we go. As a line is
processed, it is written to the new file.

Q  Approach 4: Same as Approach 3, but we remove only a single unwanted character from a line
of text and then write it to a file or container. Once the whole file has been processed, it is
reprocessed for the next character. When the last character has been removed, the file has been
filtered. If the text is in a container, it can now be written to a file. This is repeated for each file.
The container becomes important in restructuring the file.

Observation

When considering each approach, we see there are a number of passes through a file or through a single
line of text. This is what has to be looked at to see how it affects performance. This filtering has to be
done in real time. For Approaches 1 and 2, the file is reentered for every occurrence of the character.
There is a pass through the file for each unwanted character. There are four unwanted characters. An
interim result is a whole file in which a single character has been removed, then two, and so on. With
Approaches 3 and 4, a single line of text is filtered. So, the interim results are a single line of text.

In Approach 3, a single line of text can be completed quickly. Depending of what type of processing

is to be performed, a single line of text may be useful or it may not be. Waiting for a whole file is a longer
wait. What is also obvious in each approach is that, whether it is a file or a single line of text you are
dealing with, they are not dependent tasks; a file can be processed independently from other files. This is
also true for a single line of text. But with a single line of text (remembering that the integrity of the file
has to be maintained), it has to be performed in the order in which the line appears in the file. So, the
lines of text have to be filtered in order: line 1, line 2, line 3, and so forth.

Problem and Solution

We will use Approach 3. Based on the observations stated, we have concluded that this approach will give
us results more quickly, even for large sets of data, and produce interim results. Now we can consider the
concurrency model. The model helps determine the communication and type of cooperation to be used to
solve this problem. A single line should start being processed before another line is attempted. This
suggests a pipeline model. At each stage, the same single line of text and a single unwanted character are
to be removed. At the end of the stages, a single line of text is completely filtered. It can then be written to
a file. This is to be done very quickly, and the file keeps its integrity. Queues should be used because they
have First-In, First-Out access. This ensures that the lines of text stay in order.

Each stage has an input queue and an output queue. The input queue is the output queue of the previous
stage. Once the text has been processed, it is written to a queue, and the next stage retrieves the line of text
from the queue. Of course, this requires synchronization. A task retrieves the text from the queue after the
previous stage has placed the text in the queue. Since there are only two tasks involved in sharing any queue,
a mutex (mutual exclusion) works fine. We can use the permit class from Listing 7-10 and Listing 7-11.
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What are the communication and cooperation requirements in this solution:

Q  Queues require synchronization.

QO  EREW access policy is needed.

QO  Main agent populates the first queue and then creates the threads (one for each stage).
Q

The input and output queues and a mutex are passed to the stages.

Simple Agent Model Example of a Pipeline

We can discuss the solution of this problem as an agent model. Each stage is going to be managed by an
agent. The queues are lists that contain lines of text from a file. For each list, the agent is given a permit
to access the list. The new objects in this solution are now agents, lists, and permits. Figure 7-13 shows

the class relationship diagram for this solution.

assertion . clear_text
pthread_t
Name : string TextString : string
Sound : bool TextFile: string
UnWantedChars: string
assertion( ) i
~assertion( ) permit < _i cleartext(string InputStrng, string RemChar
name(string X) : void clear_text(string TFile)
name( ) : string {isQuery} | getTextString(string &X)
operator( ) : bool | changedSaved(void):void
wait () : void char_assertion — operator( ) () : bool
sound( ) : bool |
some_assertion( void *) : void Responsibilites
Responsibilites | - manages the pipeline
- provides the thread and its basic . _I - creates the agents .
functionality queue<string> < - sends queues and permits to agents
- saves results in a file

char_assertion

B _I_ 3 queue<string> permit
RemovedCharacter : char |
StringToken : string |
char_assertion( ) C )
char_assertion(char C) permit _
~char_assertion( ) perm|t§ )
~permit( )

assert( ) : bool

setTokenString(string X) : void

getTokenString(string X) : void
setUnWantedChar(char C) : void
getinList(queue<string> &List, permit &Permit) : void
getOutList(queue<string> &List, permit &Permit) : votid

pthread_mutex_t £ =

available( ) : bool
not_in_use( ) : bool
| checkAvailable( ) : bool

availableFor(int secs, int nanosecs) : bool

Responsibilites

- provides the functionality for the agent
- defines assert that performs the work for the agent

pthread_
mutexattr_t

Responsibilites
- provides the mutex functionality

Figure 7-13
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Example 7-14 is the main line for the simple agent solution.

Example 7-14

//Example 7-14 The main line for character removal agent.

1 #include "clear_text.h"

2 #include <iostream>

3

4

5 int main(int argc, char** argv) {

6

7 if (argc !'= 2){

8 cerr << "usage: characters_removed FileName:" << endl;
9 exit (0);

10 }

11 clear_text CharactersRemoved(argv[l]);
12 if (CharactersRemoved()) {

13 CharactersRemoved.changesSaved () ;

14 return (1);

15 }

16 return(0) ;

17 }

18

The CharactersRemoved object of type clear_text is the main agent. It manages the pipeline. The name of
the file to be filtered is the second command-line argument. CharactersRemoved () executes the pipeline. If
it returns false, this means that one of the agents failed, and the unwanted character that was to be removed
by the agent may not have been removed from the file or some of the lines of text. changesSaved () gets the
results from the last lists (which contains all the filtered lines of text) and writes them to a file.

Example 7-15 contains the operator () method.

Example 7-15

//Example 7-15 The pipeline method for the clear_text object.

1 bool clear_text::operator() (void)

2 A

3 bool Sound = true;

4 char_assertion CharacterRemoved[4];

5 CharacterRemoved[0] .setUnWantedChar (', ") ;

6 CharacterRemoved[1l].setUnWantedChar('.");

7 CharacterRemoved[2] .setUnWantedChar('?"') ;

8 CharacterRemoved[3].setUnWantedChar ('\"'"');

9
10 for(int N = 0; N < 3;N++)
11 {
12 CharacterRemoved[N] .getInList (TextQ[N], Permit [N]) ;
13 CharacterRemoved[N] .getOutList (TextQ[N+1], Permit [N+1]) ;
14 }
15

(continued)
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Example 7-15 (continued)

16 for(int N = 0; N < 4; N++)
17 {

18 CharacterRemoved[N] () ;
19 }

20

21 CharacterRemoved[3] .wait () ;
22 CharacterRemoved[0] .wait () ;
23 CharacterRemoved[1l] .wait () ;
24 CharacterRemoved[2] .wait () ;
25

26 for(int N = 0; N < 4;N++)
27 {

28 Sound = Sound * CharacterRemoved[N].sound() ;
29 }

30 return (Sound) ;

31

32}

In Example 7-15, in Line #4 four char_assertion agents are declared. Each is passed the unwanted
character it is to remove from the file. In Lines 10-14, the for loop passes to each agent the source list and its
permit and the output list with its permit. The for loop in Lines 16-19 actually starts the agents working.

operator () is defined in the base class assertion as well aswait ()and sound (). Example 7-16
contains operator (), wait (), and sound () as defined in the assertion class.

Example 7-16

//Example 7-16 The methods defined in the base class assertion.

1 Dbool assertion::operator() (void)
2 A

3 pthread_create (&Tid,NULL, some_assertion, this);
4 return (Sound) ;

5 1}

6

7 wvoid assertion::wait (void)

8 {

9 pthread_join(Tid, NULL) ;

10 }

11

12

13 Dbool assertion::sound(void)

14 {

15 return (Sound) ;

16 }

In Example 7-16, you see that the assertion class creates the threads for the char_assertion agents in
Line 3. The threads/agents are to execute the some_assertion function. The assertion class is an improved
version of the user_thread class in Chapter 6 and some_assertion is the do_something method.

Example 7-17 contains the some_assertion method from the assertion class and Example 7-18
contains the assert method from the char_assertion class.
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Example 7-17

//Example 7-17 The some_assertion method defined in the base class assertion.

W ~J O Ul i W DN

X}

10
11
12
13
14
15

{

}

void * some_assertion (void * X)

assertion *Assertion;
Assertion = static_cast<assertion *>(X);
if (Assertion->assert()) {
Assertion->Sound = true;
}
else(
Assertion->Sound = false;
}
return (NULL) ;

Example 7-18

//Example 7-18 The assert method defined in the class char_assertion.

0 ~J o Ul i W N

X}

10
11
12
13
14
15
16
17

{

}

bool char_assertion::assert (void)

if (PermitIn.available()) {
TokenString = ListIn.front();
ListIn.pop();
remove (TokenString.begin (), TokenString.end (), RemovedCharacter) ;
PermitIn.not_in_use();

}

if (PermitOut.available()) {
ListOut.push(TokenString) ;
PermitOut.not_in_use() ;

}

return(true) ;

In Example 7-17, on Line 6, assert () is called. This method is where the agent does the work of its
stage in the pipeline. Example 7-18 contains the definition for assert (), the work of the agent. If
PermitIn is available for ListIn list, which is the source of strings of text, the string is popped, the
unwanted character is removed in Line 8, and PermitIn is released. Now the new string is to be pushed
on ListOut if PermitoOut is available.

This example shows the use of a concurrency model (namely a pipeline) utilizing a MTSD. A single
string of text is processed at each stage of the pipeline where a single unwanted character is removed
from the string. Each thread at a stage can be assigned to its own processor core. This is a simple process,
removing a single character from a string, but the process described (from determining the problem,
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decomposition of the problem, and determining an approach) can be used to solve problems on a larger
scale. But we can do better. Here we have described a task-oriented software decomposition to multicore
programming. In Chapter 8, we discuss a declarative and predicate-oriented decomposition for
problems on a larger scale with massive cores to manage.

Summary

In this chapter, we discussed managing synchronized communication between concurrent tasks as well
as synchronizing access to global data, resources, and task execution. We also discussed concurrency
models that can be used to delegate the work and communication between concurrently executing tasks
running on multiple processor cores. This chapter discussed the following points:

0  Dependency relationships can be used to examine which tasks are dependent on other tasks
for communication or cooperation. Dependency relationships are concerned with coordinating
communication and synchronization between these concurrent tasks. If communication between
dependent tasks is not appropriately designed, then data race conditions can occur.

Q  Interprocess Communications (IPC) are techniques and mechanisms that facilitate
communication between processes. When a process sends data to another process or makes
another process aware of an event by means of operating system APISs, it requires IPC. The
POSIX queue, shared memory, pipes, mutexes/semaphores, and condition variables are
examples of IPC.

Q  Interthread Communications (ITC) are techniques that facilitate communication between
threads that reside in the same address space of their process, The most important issues that
have to be dealt with concerning ITC are data races and indefinite postponement.

0  You can synchronize access to data and resources and task execution. Task synchronization is
required when a thread is in its critical sections. Critical sections can be managed by PRAM
models such as EREW and CREW. There are four basic synchronization relationships between
any two tasks in a single process or between any two processes within a single application.

Q  Synchronization mechanisms are used for both processes and threads. These mechanisms can be
used to prevent race conditions and deadlocks between multiple tasks by implementing the
synchronization access policies using semaphores and mutexes, read-write locks, and condition
variables.

Q  The thread strategies determine the approach that can be employed when threading your
application. The approach determines how the threaded application delegates its work to the
tasks and how communication is performed. A strategy supplies a structure and approach to
threading and helps in determining the access policies.

In the next chapter, we discuss the Parallel Application Design Layers (PADL). PADL is a five-layer
analysis model used in the design of software that requires some parallel programming. It is used to help
organize the software decomposition effort. PADL is meant to be used during the requirements analysis
and software design activities of the Software Development Life Cycle (SDLC), which is also covered in
Chapter 8.
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Even if parallel processing is done on a project, there really isn’t much change in
actual processing efficiency — there’s just a diversity of output.

—Shirow Masamune, Ghost in the Shell: Man-Machine Interface

Chapter 4 illustrated the role the operating system plays for applications that have a requirement
for parallelism or multicore support. In it, we explained how the processes and kernel threads are
the only execution units that the operating system schedules for processor execution. In Chapters 5
and 6, we explained how processes and threads are created and are used to gain access to Chip
Multiprocessors (CMPs), but processes and threads are relatively low-level constructs. The
question remains, “How do you approach application design when there is a concurrency
requirement or when the design model has components that can operate in parallel?” In Chapter 7,
we explored mechanisms that support Interprocess Communication (IPC): mutexes, semaphores,
and synchronization. These are also low-level constructs that require intimate knowledge of
operating-system-level Application Program Interfaces (APIs) and System Program Interfaces
(SPIs) in order to program correctly.

So far we have discussed only scenarios that involved dual or quad core processors. But the trend
in CMP production will soon replace dual and quad core processors. The UltraSparc T1, which we
introduced in Chapter 2, has eight cores on a single chip with four hardware threads for each core.
This makes it possible to have 32 processes or threads executing concurrently. Currently dual and
quad core CMPs are the most commonly found configurations. However, dual and quad core
configurations will soon be replaced by octa-core CMPs like the UltraSparc T1. So, how do you
think about application design when 32 hardware threads are available? What if there are 64, 128,
or 256 processors on a single CMP? How do you think about software decomposition as the
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numbers of available hardware threads approach the hundreds? This chapter turns to those questions by

discussing:

Q  Adesign approach for applications to run on multiple processor cores

a
a
a
a

Designing Applications for Massive
Multicore Processors

The PADL and PBS approach to application design

Knowledge sources and multiagent architectures

Task-oriented software decompositions and declarative and predicate-oriented decompositions

Intel Thread Building Blocks (TBB) and the new C++ standard that supports concurrency

So, how do you approach process management or IPC in application design if you can have 100s or 1000s
of concurrently executing processes or threads? Considerations of large numbers of concurrently executing
tasks during application design can be daunting. And we use the term application design here loosely. It is a
loaded term that means different things to different types and levels of software developers. It means one
thing for system-level programmers and another for application-level programmers. Further, there are all
sorts of classifications for software and computer applications. Consider a small excerpt taken from The
Association of Computing Machinery (ACM) Computing Classification System (CCS) in Table 8-1

Table 8-1
ACM
Classification # Software Multiuser Single User
H41 Office automation Groupware Word processing
Project management Spreadsheets
Time management
H4.3 Communication Teleconferencing Electronic mail
applications Videoconferencing Information browser
Computer conferencing
D.2.2 Software Software libraries Editors
development tools Source code maintenance Compilers
D23 Coding tools and Linkers
techniques
D.24 Software reliability
verification
1.3.3 Picture/image Advance visualization Digitizing and scanning
generation Virtual environments Graphics packages
134 Graphics utilities Virtual reality systems Animation
135 3D graphics 3D rendering
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This classification breakdown looks at software categories from Sections H and D from the ACM’s CCS.
These categories are then further grouped by multiuser and single user. In multiuser applications, two or
more users can access some feature(s) of a software application simultaneously. As can be seen from
Table 8-1, multiuser applications come in all shapes and sizes ranging from intranet videoconferencing to
Internet-based source code management applications. Many database servers, web servers, e-mail
servers, and so on are good examples of multiuser applications. Further, while a single-user application
doesn’t have to worry about multiple users accessing some feature, the single-user application might be
required to perform multiple tasks concurrently. Single-user multimedia applications that require
synchronization of audio and video are good examples.

Also, look at the diversity of the applications in Table 8-1. Software developers in each of these domains
may approach application design differently. One thing that most of the application classifications in
Table 8-1 will definitely have in common in the future is that they will be running on medium- to
large-scale CMPs. The classification in Table 8-1 is a small excerpt from a large taxonomy that the ACM
has on software and computing classifications. In addition to being only a small excerpt, it is only a
single view from the multiple views that can be found in the ACM CCS. Table 8-2 contains the CCS
breakdown of computer applications by area. This breakdown is taken from Section J of the CCS.

Table 8-2

(J.1) Administrative Data Processing

(J.2) Physical Sciences and Engineering

1. Business

2. Education

3. Financial

4. Government

5. Law

6. Manufacturing
7. Marketing

8. Military

(J.3) Life and Medical Sciences

1. Biology and genetics
2. Health

3. Medical information systems

1. Aerospace

2. Archaeology

3. Astronomy

4. Chemistry

5. Earth and atmospheric sciences
6. Electronics

7. Engineering

8. Mathematics and statistics

9. Physics

(J.4) Social and Behavioral Sciences

1. Economics
2. Psychology
3. Sociology

(Continued)

285



Chapter 8: PADL and PBS: Approaches to Application Design

(J.5) Arts and Humanities (J.6) Computer-Aided Engineering
1. Architecture 1. Computer-aided design

2. Arts, fine and performing 2. Computer-aided manufacturing
3. Fine arts

4. Language translation
5. Linguistics

6. Literature

7. Music

8. Performing arts

As you consider software development approaches from the various areas shown in Table 8-2, it is clear
that the phrase application design summons very different notions for different groups. If you add to the
discussion multiprocessor computers and parallel programming techniques, then you have clarified at
least the problem of which approach to take toward application design.

So, as you look at the applications in Table 8-1, it might be easier to visualize how to break up multiuser
applications than it is to decompose single-user applications. However, decomposition complexity and
task management are still issues once the number of available cores passes a certain threshold.
Procedural bottom-up approaches to threading and multiprocessing become increasingly difficult as the
number of available cores increases. As a developer, you will soon have cheap and widely available
CMPs that can support any level of parallelism that you may need. But the question remains, “How do
you approach multicore application design without getting overwhelmed by the available parallelism?”

It should be clear from the excerpt of classifications shown in Table 8-1 and the diversity of computer
applications shown in Table 8-2 that there is no single tool, library, vendor solution, product, or
cookbook recipe that will serve as the answer to that question. Instead, we share with you some of the
approaches that we use as working software engineers. While our approaches are not meant to be
one-size-fit-all, they are generic enough to be applied to many of the areas shown in Tables 8-1 and 8-2.
They are for the most part platform- and vendor-neutral, or at the very least they assume ISO standard
C++ implementations and POSIX-compliant operating environments. The techniques given in this
chapter are not product or vendor driven. One reason for this is that no single vendor or product has
produced a magic bullet solution, allowing all applications to exploit single chip multiprocessors.

Instead, as you have noticed, we focus on a paradigm shift for parallel programming that involves
movement away from imperative task-oriented software decompositions to declarative and predicate-
oriented decompositions. Our advice to you comes from a combination of our experience as software
engineers and from many basic notions found in Object-Oriented software engineering and logic
programming. You might be interested to know that the techniques, models, and approaches that we
present in this chapter rely on the foundations of modal logic, its extensions and on situational calculus
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[Fagin et al., 1995]. Chapters 5, 6, and 7 include a discussion of low-level operating system primitives
and POSIX APIs that are primarily used in conjunction with imperative approaches to parallel
programming. Our intention is to show that these same low-level primitives can (and ultimately must)
be used with declarative approaches to parallel programming.

Now, in this chapter, we explain how to approach the process of application design when there is a
concurrency requirement in the original software development request or when parallelism is explicitly
called for or implied by the solution decomposition. We introduce Parallel Application Design Layers
(PADL). PADL is a five-layer analysis model that we use at CTEST Laboratories during the requirements
analysis, software design, and decomposition activities of the Software Development Life Cycle (SDLC).
We use PADL to place concurrency and parallelism considerations in the proper context. PADL is used
during the initial problem and solution decomposition. We also use the PADL model to circumvent
much of the complexity that results from bottom-up approaches to parallel programming. In this
chapter, we present an architectural approach to parallelism rather than a task-oriented procedural
approach. Although concurrently executing tasks represent the basic unit of work in applications that
take advantage of CMPs, we place those tasks within declarative architectures and predicate-based
software models. In this chapter, we approach application design with the fundamentals of the SDLC
front and center.

We also briefly introduce Predicate Breakdown Structure (PBS) decomposition. The PBS of a software
design presents a view of the software as a collection of assertions, propositions, and logical predicates.
The PBS gives the declarative or predicate-based view of a software design. At CTEST Laboratories we
use PADL and PBS as fundamental tools for application design when multithreading, multiprocessing,
or parallel programming will be used. PADL and PBS are departures from procedural and bottom-up
task-oriented methods, but they are tools that can be used in conjunction with interface classes,
application frameworks, predicates, and algorithm templates to move the process of application design
in a direction that will be able to exploit the availability of medium- and large-scale single chip
multiprocessors.

What Is PADL?

As already noted, Parallel Application Design Layers (PADL) is a five-layer analysis model used in the
design of software that requires some parallel programming. PADL is used to help organize the software
decomposition effort. The PADL model is a refinement model. Starting with the top layer, each lower
layer contains more detail and is one step closer to operating system and compiler primitives. PADL is
meant to be used during the requirements analysis and software design activities of the SDLC. The
industry standard description for an SDLC is contained in the IEEE Std 1074, Guide for Developing
Software Life Cycle Processes. IEEE Std 1074 helps clarify what the minimum set of activities are.

Table 3-1 in Chapter 3 shows some of the common activities found in the SDLC, but it is not exhaustive.
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The PADL model is used to help design or decompose patterns of work before the software is written.
That’s why we place an emphasis on its use during design and analysis activities of the SDLC. Figure 8-1
shows the five layers of PADL.

PADL (PARALLEL APPLICATION DESIGN LAYERS)

APPLICATION MODELS (blackboards, agents, etc.)

LEVEL 5

CONCURRENCY MODELS
(pipeline, delegation, peer-to-peer, etc.)

APPLICATION FRAMEWORKS
(class libraries, pattern classes, algorithm templates,
and predicates),

POSIX APIs (spawn, mutexes, threads, etc.)

OPERATING SYSTEM (system calls, IPCs, etc.)

™
-
w
=
w
-
o~
-
w
=
w
-
-
-
w
—
w
-

Figure 8-1

Q  Layer 5 deals with application architecture selection. Selection of the application architecture is
one of the most critical decisions because everything else follows the architecture, and once it is
in place, it is expensive to change. The architecture allows certain functionality and features
while preventing others. The architecture provides the basic infrastructure of the application.

Q  Layer 4 in Figure 8-1 identifies concurrency models that will be used for the application. The
architecture should be flexible enough to use the concurrency models that are needed, and the
concurrency models should be flexible enough to support the architecture selected. Table 8-3
reviews the basic concurrency models and their definitions.
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Table 8-3

Thread Models Description

Boss-worker model A central process/thread (boss) creates the processes/threads

Peer-to-peer model All the processes/threads have an equal working status; there are no

Pipeline An assembly line approach to processing a stream of input in stages.

Producer-consumer model A producer produces data to be consumed by the consumer thread.

(workers) and assigns each worker a task. The boss may wait until
each worker completes its task.

leaders. A peer creates all the workers needed to perform the tasks
but performs no delegation responsibilities. The peer can process
requests from a single input stream shared by all the threads, or each
thread may have its own input stream.

Each stage is a thread that performs work on a unit of input. When
the unit of input has been through all the stages, then the processing
of the input has been completed.

The data is stored in a block of memory shared by the producer and
consumer threads.

The pattern of work is initially expressed within the context of the architecture chosen in Layer 5. We
discuss this shortly. The architecture is then fleshed out by one or more concurrency models in Layer 4.

It is important to note that Layer 4 and Layer 5 in Figure 8-1 are strictly conceptual models. Their
primary purpose is to help describe and identify the concurrency structure a software application will have.

Q

Layer 3 of the PADL starts to identify application frameworks, pattern class hierarchies,
component/predicate libraries, and algorithm templates that are used to implement the
concurrency models identified at Layer 4 of the analysis. Layer 3 introduces tangible software
into the PADL model. Software libraries such at the Thread Building Blocks (TBB) library or
STAPL would be identified in Layer 3.

Layer 2 represents the application’s program interface to operating system. The components in
Layer 3 ultimately talk to and cooperate with the OS APL. In our case the POSIX API is used for
the greatest cross-platform compatibility. Many of the components in Layer 3 are interface
classes or wrappers for functionality found in Layer 2.

Finally, Layer 1 is the lowest level of detail that the software application can be decomposed
into. At Layer 1 you are dealing with kernel execution units, signals, device drivers, and so on.
The software at Layer 1 performs the actual work of the application interfaces presented in
Layer 2. Layer 1 decomposition also encompasses compiler and linker switches.

Layers 4 and 5 are considered design layers. Layers 1-3 are the implementation layers. Layer 3 is usually
reserved for application-level software development. Layers 1 and 2 are usually reserved system-level
software development. Obviously, the barrier between Layer 2 and 3 can be (and often is) easily crossed.
Once a PADL model analysis has been performed, the picture of the concurrency structure of an
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application is clear to all of those involved in the software development effort. The PADL analysis of

an application provides the framework for the testing activities of the SDLC. The PADL analysis provides
the necessary implementation and deployment targets of the SDLC for the application. At the top layers
of the PADL are design concepts and models. At the lowest level of the PADL are operating system
primitives. So, you have a complete picture of the concurrency of an application through the PADL
model. The PADL model is meant to drive a declarative decomposition of the application because you
proceed from architectures to operating system primitives not from the primitives to the architectures!
But in order for PADL to ensure a declarative decomposition, it must restrict the architectures to software
blueprints that have declarative, goal-oriented, or predicate-based semantics. The next sections take a
closer look at how the PADL model moves you toward declarative approaches to parallel programming.

Layer 5: Application Architecture Selection

Consideration of the numbers of cores, threads, and processes is not part of the analysis in Layer 5. In
fact, computers are not even visible at Layer 5. The application architectures considered in Layer 5
represent conceptual or logical structures that are platform, operating system, and computer
independent. The value of these architectures is that they are known to support certain patterns of work.
In the PADL model, we use two primary architectures:

QO  Multiagent architectures

Q  Blackboard architectures

It is important to note that here we are referring to the problem-solving structures and patterns of work
as opposed to any specific tools or vendor products that are based on some of the ideas of multiagents
and Blackboards. Our use of the terms agent and Blackboard is not to be confused with the many
gimmicks that claim agent or Blackboard functionality. We use agents and Blackboards in their more
formal sense. Multiagent architectures are classified in section 1.2.11 of the ACM CCS, and Blackboard
architectures are classified in D.2.11 of the ACM CCS. Both architectures are able to support a wide
variety of concurrency models. They are well defined and well understood. Both architectures support
the notion of PBS. We have chosen to use multiagent architectures to capture goal-oriented patterns of
work and Blackboard architectures to capture state-oriented patterns of work. Although goals and states
are sometimes used interchangeably and sometimes the goal is to reach a certain state, we differentiate
between the two when using concurrency models. Goal-based decompositions and state transitions can
help you in the direction of declarative models of parallel programming, and declarative models of
parallel programming can help you cope with the transition to massively parallel chip multiprocessors.
Multiagent architectures and Blackboard architectures can be understood using declarative semantics.

What Are Agents?

There was a lot of controversy over what constituted an object when object programming was initially
introduced. There is a similar controversy over exactly what constitutes an agent. Many proponents
define agents as autonomous continuously executing programs that act on behalf of a user. However,
this definition can be applied to some Unix daemons or even some device drivers. Others add the
requirements that the agent must have special knowledge of the user, must execute in an environment
inhabited by other agents, and must function only within the specified environment. These requirements
would exclude other programs considered to be agents by some. For instance, many e-mail agents act
alone and may function in multiple environments. In addition to agent requirements, various groups in
the agent community have introduced terms like softbot, knowbot, software broker, and smart object to describe
agents. One commonly found definition defines an agent as “an entity that functions continuously and
autonomously in an environment in which other processes take place and other agents exist.”
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Although it is tempting to accept this definition and move on, we cannot because it too easily describes
other kinds of software constructions. A more formal source, the Foundation for Intelligent Physical
Agents (FIFA) specification, defines the term agent as follows: “An Agent is the fundamental actor in a
domain. It combines one or more service capabilities into a unified and integrated execution model
which can include access to external software, human users and communication facilities.”

While this definition has a more structured feel, it also needs further clarification because many servers
(some Object-Oriented and some that are not) fit this definition. This definition as is would include too
many types of programs and software constructs to be useful. In our PADL model we use the five-part

definition of agents as stated by [Luger, 2002]:

1. Agents are autonomous or semi-autonomous. That is, each agent has certain responsibilities in
problem solving with little or no knowledge either what other agents do or how they do it. Each
agent does its own independent piece of the problem solving and either produces a result itself
(does something) or reports its result back to others in the community of agents.

2.  Agents are situated. Each agent is sensitive to its own surrounding environment and (usually)
has no knowledge of the full domain of all agents.

3.  Agents are interactional. That is, they form a collection of individuals that cooperate on a
particular task. In this sense, they may be seen as a “society.”

4. The society of agents is structured. In most views of agent-oriented problem solving, each
individual, although having its own unique environment and skill set, will coordinate with
other agents in the overall problem solving. Thus, a final solution will not only be seen as
collective but also cooperative.

5.  Although individual agents are seen as possessing sets of skills responsibilities, the overall
cooperative result of the society of agents can be viewed as greater than the sum of its
individual contributors.

What Is a Multiagent Architecture?

We use the term multiagent architecture when referring to an agent-based architecture that consists of two
or more agents that can execute concurrently if necessary. It should be clear from Luger’s definition of
agents that multiagent architecture can be used as an extremely flexible approach to patterns of work
that require or can benefit from concurrency. Notice in this definition of agents that there is no mention
of particular computer capabilities, numbers of processors, thread management, or so forth. There is also
no limit on the number of agents involved. There are no complexity constraints on the patterns of work
that a collection of agents can perform. If you begin with the blueprint that is consistent with a
multiagent architecture, you should be able to handle concurrency of any size.

From Problem Statements to Multiagent Architectures

Decomposition is one of the primary challenges in software development. It is more of a challenge when
the software development requires parallel programming. Our approach to this challenge is to find

an appropriate model of the problem and appropriate solution model. Using PADL analysis, we select an
application architecture based on the solution model. To see how this works, consider again the guess-
what-code-I'm-thinking problem from Chapter 4.
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Recall the game scenario from Chapter 4 goes as follows: I'm thinking of a six-character code. My code
can contain any character more than once. However, my code can only contain any characters from the
numbers 0-9 or characters a-z. Your job is to guess what code I have in mind. In the game the buzzer is
set to go off after 5 minutes. If you guess what I'm thinking in 5 minutes you win. In that chapter, we
determined that you have 4,496,388 possible codes to choose from.

Now, in this simple example, we want to make the game a little more challenging. You now have only 2
minutes to guess. In addition to this, instead of making up a code, I am handed the initial code by my
trusted assistant. If my assistant determines that you have made more than N incorrect guesses within a
15-second interval, my assistant hands me a new code, and the new code is guaranteed to be among the
guesses that you have already made.

The Strategy

Recall from Chapter 4 that you happened to have a file that contained all of the possible six-character
codes. The total number of codes is determined by samples of size r that can be selected out of 1 objects.
The formula that calculates the possibilities is as follows:

(n -1+ r)! / (n-1)!'r!

In this case 7 is 36 counting (0-9, a-z) and r = 6. The original strategy was to the divide the file into four
parts and have the parts searched in parallel. The thinking was that the longest search would be only the
length of the time it took to search one-quarter of the file. But because you are given a new time
constraint of 2 minutes, you now have to modify your strategy to divide the original file into eight parts
and have the parts searched concurrently. Therefore, you should be able to guess correctly in the time
that it takes to search one-eighth of the file. But you also make one other provision. If you are able to
search all eight files, and still do not guess correctly and are not out of time, you divide the files into 64
and try again. If you fail and still have time, you divide the file into 128 and try again and so on.

An Observation

If you carefully look at the code to be guessed, you see that if the assistant determines that some unusual
number of guesses are being made within a 15-second interval, then the assistant changes the code to
one that has already been guessed. It is not specified what the unusual number. So, your strategy is to try
to make more guesses in a shorter period of time because the time constraint is tighter. Further, if you are
able to go through all of the possibilities and still do not have the correct code, you assume that the code
is being changed during the 2-minute interval, and, therefore, you attempt to increase the guesses at a
rate faster than that at which the code can be changed.

Problem and Solution Model as Multiagents

You can easily see from the statement of the problem that you are initially dealing with three agents.

If you recast the game in terms of agents you have the following: Agent A gives the code to Agent B.
Agent C tries to guess Agent B’s code. If Agent C comes up with too many guesses in a 15-second
interval, Agent A will give Agent B a new code that is guaranteed to be a code that Agent C has already
presented. If Agent C is able to go through all of the possibilities and is still not declared the winner and
if Agent C has more time left, that agent will make the same guesses only faster. Agent C realizes that in
order to generate enough guesses to guarantee success within the given time limit will require help.

So, Agent C recruits a team of agents to help him come up with guesses. For each pass through the total
possibilities, Agent C recruits a bigger team of agents to help with the guesses.
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Obviously, you could now start thinking in terms of agents mapped to either threads or processes. But
we will resist this temptation. You do not want to think in terms of threads and processes at this level. In
the PADL model approach, you work out a complete and correct logical statement of the application in
Layers 5 and 4. So, before proceeding to Layer 4, if you are applying the PADL model to the game
scenario, you refine the relationships and interactions of all of the agents involved. The assumption and
conditions that the agents operated under would all be made clear. A complete picture of the multiagent
interaction would be given. Figure 8-2 is a UML activity diagram that captures the interaction of the
micro-multiagent society.

Agent A Agent B Agent C
ﬁ\) ®

i get code

[guessed code] [time is not up]

give Agent B
the code

[did not guess code] [time is up]

[time is up] )
game over declared winner

[15 sec interval up] [time is not up] Cg

[more guesses]

[made too many [no more guesses]
guesses]

give Agent B
the new code

create more agents

Figure 8-2

Blackboard Architectures

The Blackboard model is an approach to collaborative problem solving. The Blackboard is used to
record, coordinate, and communicate the efforts of two or more software-based problem solvers. There
are two primary types of components in the Blackboard model.

Q  The Blackboard
Q  The problem solvers
The Blackboard is a centralized object that each of the problem solvers has access to. The problem solvers

may read the Blackboard and change the contents of the Blackboard. The contents of the Blackboard at
any given time will vary. The initial content of the Blackboard will include the problem to be solved.
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In addition to the problem to be solved, other information representing the initial state of the problem,
problem constraints, goals, and objectives may be contained on the Blackboard. As the problem solvers
are working toward the solution, intermediate results, hypotheses, and conclusions are recorded on the
Blackboard. The intermediate results written by one problem solver on the Blackboard may act as
catalyst for other problem solvers reading the Blackboard. Tentative solutions are posted to the
Blackboard. If the solutions are determined not to be sufficient, these solutions are erased, and other
solutions are pursued. The problem solvers use the Blackboard as opposed to direct communication to
pass partial results and findings to each other. In some configurations, the Blackboard acts as a referee,
informing the problem solvers when a solution has been reached or when to start work or stop work.
The Blackboard is an active object, not simply a storage location. In some cases, the Blackboard
determines which problem solvers to involve and what content to accept or reject. The Blackboard may
also organize the incremental or intermediate results of the problem solvers. The Blackboard may
translate or interpret the work from one set of problem solvers so that it can be used by another set of
problem solvers.

The problem solver is a piece of software that typically has specialized knowledge or processing
capabilities within some area or problem domain. The problem solver can be as simple a routine that
converts from Celsius to Fahrenheit or as complex as a smart agent that handles medical diagnosis. In
the Blackboard model, these problem solvers are called knowledge sources (KS). To solve a problem using
Blackboards, you need two or more knowledge sources, and each knowledge source usually has a
specific area of focus or specialty. The Blackboard is a natural fit for problems that can be divided into
separate tasks that can be solved independently or semi-independently. In the basic Blackboard
configuration each problem solver tackles a different part of the problem. Each problem solver only sees
the part of the problem that it is familiar with. If the solutions to any parts of the problem are dependent
on the solutions or partial solutions to other parts of the problem, then the Blackboard is used to
coordinate the problem solvers and the integration of the partial solutions.

A Blackboard’s problem solvers need not be homogeneous. Each problem solver may be implemented
using different techniques. For instance, some problem solvers might be implemented using Object-
Oriented techniques, while other solvers might be implemented as functions. Further the problem
solvers may employ completely different problem-solving paradigms. For example, solver A might use a
backward chaining approach to solving its problem, while solver B might use a counterpropagation
approach. There is no requirement that the Blackboard’s problem solvers be implemented using the
same programming language.

The Blackboard model does not specify any particular structure or layout for the Blackboard. Neither
does it suggest how the knowledge sources should be structured. In practice, the structure of a
Blackboard is problem dependent. The implementation of the knowledge sources is also specific to the
problem being solved. The Blackboard framework is a conceptual model describing relationships
without describing the structures of the Blackboard and knowledge sources. The Blackboard model does
not dictate the number or purpose of the knowledge sources. The Blackboard may be a single global
object or a distributed object with components on multiple computers. Blackboard systems may even
consist of multiple Blackboards, with each Blackboard dedicated to a part of the original problem. This
makes the Blackboard an extremely flexible model for problem solving. The Blackboard model supports
parallel programming and many of the concurrency models. The Blackboard can be segmented into
separate parts, allowing concurrent access by multiple knowledge sources. The Blackboard easily
supports Concurrent Read Exclusive Write (CREW), Exclusive Read Exclusive Write (EREW), and
Multiple Instruction, Multiple Data (MIMD). The knowledge sources may execute simultaneously with
each knowledge source working on its part of the problem.
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Figure 8-3 shows two memory configurations for the Blackboard.

BLACKBOARD MEMORY CONFIGURATION 1:

Knowledge sources are in different address spaces.

blackboard

<< process >>

KS,

<< process >>
KS,

<< process >>
KSs3

BLACKBOARD MEMORY CONFIGURATION 2:

Knowledge sources share the same address space.

PROCESS 1

Address Space

<< global object >>
blackboard

<< thread >>

KS,

<< thread >>

KS,

<< thread >>

KS,

Figure 8-3

In both the cases in Figure 8-3, all knowledge sources have access to the Blackboard. This configuration
provides for an extremely flexible model of problem solving.

Approaches to Structuring the Blackboard

As we have indicated, there is no one way to structure a Blackboard. However, most Blackboards have

certain characteristics and attributes in common. The original contents of the Blackboard typically

contain some kind of partitioning of the solution space for the problem that is to be solved. The solution
space contains all the partial solutions and full solutions to a problem.
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A “Question and Answer Browser” Blackboard Example

Say that you need a domain-specific information browser, that is, one that allows the user to search for
information only on a narrow topic or range of specified topics (for example, anime, robots, YouTube, or so
on). The user should be able to browse through the available information using a graphical interface or
choose advanced search features. The advance search features should allow the user to simply type a
question (as long as it pertains to the topic), and the browser should return a complete answer based on the
information it has access to. It is assumed that most users will prefer the advanced search because it’s faster.

Where’s the Parallelism? Where’s the Blackboard?

In the innocent browser request above you see no mention made of multiple cores, concurrency threads,
or processes. There is simply the assumption that the browser will have what the user perceives as an
acceptable performance. You are immediately faced with, among other things, one of the primary
challenges of software development (especially challenging for CMP deployments): deconnposition.
Decomposition begins with understanding the problem and then devising a solution that addresses the
problem. In this case, browsing information using a graphical user interface is fairly well understood. On
the other hand, allowing the user to type in a question and having software that can understand the
user’s question, search through information, find an appropriate answer, and then present it in a form
that is acceptable is another challenge altogether. This problem involves determining what language

the question is being asked in (perhaps, you can assume the local language). So, a quick run through

of the problem yields the following challenges:

Is the question in a language that is known to the software?

Is the question concerning a topic that is available in the software’s information?

Is the question clear and unambiguously stated?

Are there any unknown or misspelled words in the question? (How can it answer if s0?)

How will the software deal with meaning in the question?

O 000U oo

What about language grammar (syntax, semantics, morphology, pragmatics)?

After a moment of internal deliberation, you realize that to accept, understand, and appropriately
respond in a timely manner (in a second or so) to a random question typed into an information browser
is a challenging problem! With a little research you find out that natural language processing techniques
are required. You stumble across partial solutions in computational linguistics and computational
semantics. You now have a rough but somewhat complete picture of the problem.

Components of the Solution

To provide a solution to the problem, you realize that you need software components that include
parsers, word experts, grammar analysis for syntax, semantics, pragmatics, and so on. As it turns out,
the user’s original question can be analyzed at several levels simultaneously. Determination of what
language the question is asked in can be done at the same time as identification of unknown words or
misspelled words. The syntax analysis that breaks down the question into its parts of speech can also be
done at the same time. You also determine that once part of the syntax is figured out, the semantic
analysis process can start. Likewise, once part of the question’s semantics has been identified,
identification of the pragmatics (context and meaning) can begin. You have now identified the parts.
While there are some partial dependencies (for example, between syntax and semantics, and semantics
and pragmatics), you can do most of the analysis of the user’s question concurrently.
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Looking at the PADL analysis model at Layer 5, it is clear that you can use both the multiagent and
Blackboard architecture for the solution model. You choose the Blackboard architecture here because the
semantic and pragmatic analysis can begin work with only partial solutions, and the Blackboard
architecture is a good fit for incremental problem solving.

Knowledge Sources for the Browser Program

So, you place the original user’s question on the Blackboard, and each of your knowledge sources has its
specialties:

Q  Checking a dictionary for unknown or misspelled words
Breaking down the question into parts of speech (nouns, verbs, interrogatives, and so on)
Understanding the morphology, that is, word forms (plural, present, past)

a
]
Q  Semantic understanding of the meaning and use of words
]

Pragmatic analysis (the use of words in context)

The knowledge source that simply checks the question for unknown or misspelled words places its
candidates on the Blackboard. As they arrive, the morphology knowledge sources make any corrections
that could be due to plural forms, past tense, or abbreviations. They then place corrected words back on
the Blackboard. While this is happening the syntax knowledge sources are breaking down the question
with the corrected words into parts of speech and are placing phrases back up on the Blackboard as it
goes. As soon as there is something that the semantics and pragmatics knowledge sources can work
with, they read the Blackboard as well and begin to put up a potential meaning of the user’s original
question in a form that the search engine can use.

This is a cooperative kind of concurrent processing because the partial solutions can be used and
interpreted on many levels by different knowledge sources. Each knowledge source writes a tentative
hypothesis for what it is currently dealing with on the Blackboard. Something that the semantic
knowledge source uncovers may help the syntax parser refine its work. Something that the syntax parser
refines may clarify something for the pragmatics knowledge source and so on. The Blackboard
represents a solution space that is divided into a hierarchy of partial solutions with proper forms of
questions and answers at the highest level and parts of speech and word forms at the lowest level. If
some part of the solution space matches something in the rules of grammar or usage of language, that
piece of the solution is written to another part of the Blackboard as a partial solution. One KS might put
a verb phrase on the Blackboard. Another may put a choice of contexts on the Blackboard. Once these
two pieces of information have been put on the Blackboard, another KS may uses this information to
aide in identifying the real subject or object of the question. All of this has to take place within the space
of a few seconds.

Is a Blackboard a Good Fit?

From the original naive statement of the question and answer browser request that did not really hint at
concurrency, you have now produced a solution that needs to use parallel models of work in order to
meet the assumed speed requirements. The Blackboard solution is well suited to concurrency with
knowledge sources working with incomplete or staged information. Again, it is important to note that at
this level you are not concerned with threads, numbers of cores, or processes.
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The Blackboard as an Iterative Shared Solution Space

The solution space is sometimes organized in a hierarchy. In the case of the question and answer
processing example, valid question classifications would be at the top of the hierarchy, and the next level
might consist of various views of the classifications. For example, with different forms for who, what,
where, and when questions, each level describes a smaller perhaps less obvious aspect of a question
classification (for example, is the verb transitive?). The knowledge sources may work on multiple levels
within the hierarchy simultaneously. The solution space may also be organized as a graph where each
node represents some part of the solution, and each edge represents the relationships between two
partial solutions. The solution space may be represented as one or more matrices with each element of
the matrix or matrices containing a solution or partial solution. The solution space representation is an
important component of the Blackboard architecture. The nature of the problem will often determine
how the solution space should be partitioned. This feature is critical in the PADL model because we use
Layer 5 to describe the application architecture and the application architecture has to be flexible enough
to map to the solution model. The structure of the Blackboard supports this flexibility.

In addition to a solution space component, Blackboards typically have one or more rule (heuristic)
components. The rule component is used to determine which knowledge sources to deploy, and what
solutions to accept or reject. The rule component can also be used to translate partial solutions from one
level in the solution space hierarchy to another level. The rule component may also be used to prioritize
the knowledge source approaches. The rule component supports concurrently among knowledge
sources. This is the level where concurrency needs to be dealt with by using a declarative interpretation
of parallel processing. Some knowledge sources might be going down blind alleys. The Blackboard
deselects one set of knowledge sources in favor of another set. The Blackboard may use the rule
component to suggest to the knowledge sources a more appropriate potential hypothesis based on the
partial hypothesis already generated.

In addition to the solution space and rule component, the Blackboard often contains initial values,
constraints values, and ancillary goals. In some cases, the Blackboard contains one or more event queues
that are used to capture input from either the problem space or the knowledge sources. Figure 8-4 shows
a logical layout for a basic Blackboard architecture.

BASIC BLACKBOARD ARCHITECTURE

<< process/thread >>

knowledge source

« directives * search space :

e goals * knowledge base conditions
* objectives

« inference methods
« search methods

« problem-solving strategies aElons

Figure 8-4
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Figure 8-4 shows that the Blackboard has a number of segments. Each segment in Figure 8-4 has a
variety of implementations. This suggests that Blackboards are more than global pieces of memory or
traditional databases. While Figure 8-4 shows the common core components that most Blackboards have,
the Blackboard architecture is not limited to these components. Other useful components for Blackboards
include context models of the problem and domain models that can be used to aid the problem solvers
(KS) with navigation through the solution space. The support that C++ has for Object-Oriented Design
and Programming fits nicely with the flexibility requirements of the Blackboard model. Most Blackboard
architectures can be modeled using classes in C++. Recall that classes can be used to model some person,
place, thing, or idea. Blackboards are used to solve problems that involve persons, places, things, or
ideas. So, using C++ classes to model the objects that Blackboards contain or the actual Blackboards is a
natural fit. We take advantage of C++ container classes and the standard algorithms in our
implementations of the Blackboard model.

The Anatomy of a Knowledge Source

Knowledge sources are represented as objects, procedures, sets of rules, logic assertions, and in some
cases entire programs. Knowledge sources have a condition part and an action part. When the
Blackboard contains some information that satisfies the condition part of some knowledge source,

the action part of the knowledge source is activated. Robert Englemore and Tony Morgan clearly state the
responsibilities of a knowledge source in their work Blackboard Systems:

Each knowledge source is responsible for knowing the conditions under which it can contribute to a
solution. Each knowledge source has preconditions that indicate the condition on the Blackboard that
must exist before the body of the knowledge source is activated. One can view a knowledge source as
a large rule. The major difference between a rule and a knowledge source is the grain size of the
knowledge each holds. The condition part of this large rule is called the knowledge source
precondition, and the action part is called the knowledge source body. [Englemore, Morgan, 1998]

Here, Englemore and Morgan don’t specify any of the details of the condition part or the action part of a
knowledge source. They are logical constructs. The condition part could be as simple as the value of
some boolean flag on the Blackboard or as complex as a specific sequence of events arriving in an event
queue within a certain period of time. Likewise, the action part of a knowledge source can be a simple as
a single statement performing an expression assignment or as involved as forward chain in an expert
system. Again, this is a statement of how flexible the Blackboard model can be. The C++ class construct
and the notion of an object are sufficient for our purposes. Each knowledge source will be an object (for
sophisticated uses an object hierarchy). The action part of the knowledge source will be implemented by
the object’s methods. The condition part of the knowledge source will be captured as data members

of the object. Once the object is in a certain state then the action parts of that object will be activated.

An important attribute of the knowledge source is its autonomy. Each knowledge source is a specialist
and is largely independent from the other problem solvers. This presents one of the desired qualities

for a parallel program. Ideally the tasks in a parallel program can operate concurrently without much
interaction with other tasks. This is exactly the case in the Blackboard model. The knowledge sources act
independently, and any major interaction is through the Blackboard. So, from the knowledge source’s
point of view, it is acting alone, getting additional information from the Blackboard, and recording its
findings on the Blackboard. The activities of the other knowledge sources, their strategies, and structures
are unknown. In the Blackboard model, the problem is partitioned into a number of autonomous or
semi-autonomous program solvers. This is the advantage of the Blackboard model over other
concurrency models. In the most flexible configuration, the knowledge sources are rational agents,
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meaning the agent is completely self-sufficient and able to act on its own with minimum interaction with
the Blackboard. Rational agents in conjunction with Blackboards present the greatest opportunity for
large scale parallelism or massively parallel CMPs. This use of rational agents as knowledge sources
combines the two primary architectures from Layer 5 of PADL: multiagent architectures and Blackboard
architectures. A full discussion of rational agents takes us beyond the scope of this book. However, we
can say that rational agents fit into the category of agents that we discussed earlier in the chapter in the
section “What Are Agents?” When knowledge sources are implemented as rational agents in large-scale
systems, the rule and action components of the knowledge sources are learned using Inductive Logic
Programming (ILP) techniques [Bergadano, Gunetti, 1996]. The ILP techniques provide a gateway to
bottom-up declarative programming.

We move away from bottom-up procedural programming techniques and toward PADL in order to cope
with complexity as the scale of available cores on CMP increases. However, bottom-up declarative
programming using ILP or evolutionary programming techniques [Goertzel, Pennachin, 2007] is a
legitimate part of the PADL analysis model. These approaches are used in Layer 3 where we are
concerned with the availability and implementation of application frameworks, class libraries, algorithm
templates, and so on.

Concurrency Flexibility of the Application Architecture

Although there are many different types of software architectures that support parallelism, we use
multiagent and Blackboard architectures in Layer 5 of PADL because of their general purpose nature and
the range of concurrency models they support. Many different types of solutions that require
concurrency can be expressed using multiagent or Blackboard architectures. Multiagent architectures
and Blackboards are domain independent. They can be used in many different areas. Further, these
architectures can be used for solutions of all sizes from small programs to large-scale, enterprise-wide
solutions. While these architectures might be new to developers who are in the process of learning
parallel or multithreaded programming techniques, they are well defined, and many useful resources
that introduce the basic ideas of agents and Blackboards are available, see [Russell, Norvig, 2003],
[Englemore, Morgan, 1988], [Goertzel, Pennachin, 2007], and [Fagin et al., 1996]. You will see that

the selection of the architecture impacts software maintenance, testing, and debugging. Most successful
software undergoes constant change. If that software has components that require concurrency and
synchronization, then the natural evolution of the software can be extremely challenging if an
appropriate application architecture was not selected from the start. The PADL analysis model presents
two well-known and well-understood architectures that perform well under the conditions of software
evolution. Ultimately, the concurrency of an application is going to be implemented by low-level
operating system primitives like threads and processes. If the application architecture is clean, modular,
scalable, and well understood, then the translation into manageable operating system primitives has a
chance to succeed. On the other hand, selection of the wrong or a poor application architecture leads to
brittle, error-prone software that cannot be readily changed, maintained, or evolved. While this is true of
any kind of computer application, it is magnified when that software involves parallel programming,
multithreading, or multiprocessing.

Layer 4: Concurrency Models in PADL

The applications architectures selected in Layer 5 have to flexible enough to support concurrency models
selected in Layer 4. There can be more than one concurrency model needed in the application, so the
architecture chosen should be able to accommodate multiple models. Layer 4 is also a design layer.

We are not necessarily thinking in terms of threads or processes when we select concurrency models in
Layer 4.
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Whereas the architecture focuses on the language and concepts in the application domain, the
concurrency model layer is concerned with picking known models of parallelism that will work. In the
browser example used in the chapter so far, we have several highly specialized knowledge sources that
are concurrently working on different parts of the user’s question. This particular example uses a
variation of the MIMD model of parallelism in combination with a peer-to-peer model. In this case, the
peers communicated and cooperated through a shared Blackboard. Since each knowledge source has its
own specialty and works on a different aspect of the question, we select the Multiple Instruction,
Multiple Data (MIMD) concurrency model. In Chapter 7, we explained the Paralle] Random-Access
Machine (PRAM) and the Exclusive Read Exclusive Write (EREW), Concurrent Read Exclusive Write
(CREW), Exclusive Read Concurrent Write (ERCW), and Concurrent Read Concurrent Write (CRCW)
models for memory or critical section access. It is clear that in the example of the question and answer
browser that you have either a CREW or CRCW requirement for the Blackboard.

The identification or selection of a MIMD/peer-to-peer model in conjunction with CREW /CRCW critical
section access is important at this stage because it shapes and molds the use of threads and processes in
Layers 2 and 3. This emphasizes the fact that the parallelism in the implementation model should
naturally follow the concurrency in the solution model. If you allow implementation model and the
solution model to drift or diverge too much, then you will not be able to guarantee that the software is
correct. The simple game example discussed earlier in this chapter uses a multiagent application
architecture. It uses the classic boss-worker concurrency model with a Single Instruction Multiple Data
(SIMD) PRAM architecture and EREW access for the critical section. In the case of the game, the critical
section is a shared queue that all of the agents used to get the names of the partial files to search.

A shared queue was also used by the agents to report back to the main agent when a correct code was
found. Table 8-4 shows the PADL analysis as it applies at this point to the two examples.

Table 8-4
Concurrency
Architecture Model PRAM Model SIMD/MIMD
Guess-My-Code Multiagent Peer-to-peer CRCW or CREW  MIMD
Agents
Question and Blackboard Boss-worker EREW SIMD
Answer Browser

While Table 8-4 does present a simplification of concurrency design choices for the two examples, it
nevertheless gives a high-level evaluation of the concurrency infrastructure of the software. Once you've
identified the concurrency models, you can plan for their strengths and weaknesses. For example, if you
know that you are dealing with SIMD model, then vector optimization, loop unrolling, and pipelining all
become serious contenders for implementation. You can take advantage of their strengths and plan for
their weaknesses. On the other hand, if you know you're dealing with EREW critical sections, then you
know ahead of time that you have potential bottleneck issues or indefinite postponement issues. One of
the advantages of selecting well-known models is that you know what you're getting into before you
start implementing the applications. Figure 8-5 shows a block diagram of the concurrency infrastructure
of the two examples.
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Figure 8-5 clarifies where the concurrency is in the applications. One of the major benefits of using a PADL
model analysis is to identify the nature and location of concurrency in an application. Again, it is important
to note that Layer 4 and 5 are conceptual design layers. We are not really concerned with threads, or
processes in these layers. These layers function as a blueprint that specifies the concurrency architecture
and infrastructure of the application. Layers 4 and 5 identify the primary agents, objects, components, and
processes that will be involved in concurrency and where in the application the concurrency takes place.
Layers 4 and 5 specify how the agents, objects, components, and processes are related in terms of
concurrency models such as boss-worker, pipeline, SIMD, MIMD, and so on. After you have done the
decomposition in Layers 4 and 5, you can begin to think about the implementation models in Layer 3.
Figure 8-6 contains a general overview of how the PADL analysis is applied during decomposition.

PADL MODEL
OPERATING SYSTEM SDLC EXCERPTS
Design layer Requirements gathering activities,
POSIX API prototyping, etc.
:I'l“n':zl'"’"“““" APPLICATION FRAMEWORKS »| Analysis activities
CONCURRENCY MODELS Implementation Design activities of SDLC
layer
APPLICATION MODELS

7 steps using PADL model for designing software with concurrency requirements

214205 Problem/service analysis.

114274 | Generate solution/service models.

112250 Map solution models to application architecture.

211405 Map application architectures to known concurrency models.

Select application frameworks, class libraries, template algorithms,
5112240 predicates to implement the agents, objects, components, and processes
from Step 3 using the relationships from Step 4.

112200 Fill in gaps left in Step 5 with POSIX API integration.

21227/ | Compiler and operating system optimizations.

Steps 2 & 3 include g ing PBS (Predi Breakdown Structure)
of assumptions, assertions, rules, and constraints of application.

Figure 8-6

The concurrency infrastructure is identified from steps 1 through 4, as shown in the figure. Notice again
that Layers 4 and 5 are design layers and that Layer 3 contains the implementation model for your
application. Layer 3 plays a dual role because it is part of the design layer and the implementation layer.
This is because application frameworks, pattern classes, class hierarchies, and template algorithms are
useful during the design and are directly deployed at implementation. Once Layer 3 analysis is done, the
application’s concurrency infrastructure has a specific set of classes and template algorithms. We turn
our attention to Layer 3 next.
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Layer 3: The Implementation Model of PADL

Layer 3 analysis consists of selecting the application frameworks, pattern classes, class libraries, class
hierarchies, algorithm templates, predicates, and container classes that are necessary to implement the
agents, objects, components, predicates, and processes identified during the solution model
decomposition, the application architecture selection and the concurrency model(s) identification.
During Layer 3 analysis all of the primary design artifacts from Layers 4 and 5 are associated with
specific Object-Oriented components, algorithms, and predicates. Once Layer 3 analysis is done, we have
the clearest picture of the concurrency infrastructure and the concurrency implementation model of the
application. Notice in Figure 8-6 that the items in Layer 3 are traceable back to the original statement of
the problem. Since the entire PADL analysis takes place in the context of a well structured SDLC, the
application that you deliver will be sound, scalable and maintainable by a software development group.

We mention development group here because the software development enterprise is a group effort.
Useful software evolves over time and is changed and maintained by different individuals. Ad hoc
approaches to parallel programming or multithreading hacks are virtually impossible to maintain in the
long run. The work accomplished in Layers 3, 4, and 5 of the PADL analysis is the difference between
software that has concurrency, allowing developers to actually manage and cope with the complexity,
and software that just grows more complex and unmanageable and is finally decommissioned as the
development group and the end users collapse under the strain.

C++ Components to the Rescue

Fortunately, the C++ environment has an impressive set of features, libraries, and techniques that can be
deployed for model implementation. We emphasize the word model here because parallelism and
concurrency are best managed in the context of models. The seven steps shown in Figure 8-6 move from
models of the problem to models of the solution and finally to implementation models. If you use
declarative models in your solutions, then you can reliably develop software that takes advantage of
medium- to large-scale CMPs or massively parallel multicores. Although C++ does not have concurrency
constructs, C++ does have excellent support for many categories of library. So, you can add support for
parallel programming and multithreading to C++ through the use of libraries. There are three very
important C++ component libraries that support parallel programming that we introduce in this chapter:
the Parallel STL Library (STAPL), Intel Thread Building Blocks (TBB), and the new C++0x standard.
Although there are many different efforts that have generated concurrency support using C++, we
introduce these three because they will be soon be the most widely available and easily accessible C++
components that support concurrency, parallel programming, and multithreading.

The C++0x or C++09 Standard

As of this writing the new, standard for C++0x is on the verge of being adopted. The standard will
probably be adopted in 2009, and the C++0x designation will become The C++09 Standard. C++03
adopted in 2003 is the current C++ standard. The C++0x standard includes some exciting updates to the
language. Most of the improvements come in the form of new classes and libraries. The new C++
standard will have more support for parallel programming and multithreading through the addition of a
concurrent programming library. This is very good news for C++ developers because prior to the

new standard there was no guaranteed parallel programming facility in every C++ environment.

The new standard will change this. Table 8-5 lists some of the new libraries that C++0x (C++09) will
support.
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Table 8-5

New Class

Libraries in C++0x Standard Description

MPI Message Passing Interface (MPI) library for use in distributed-
memory and parallel application programming.

Interprocess Includes interprocess mechanisms such as shared memory,
memory mapped files, process shared mutexes, and condition
variables. Also includes containers and allocators for processes.

-asio A portable networking library that includes sockets, timers, and

hostname resolution socket iostreams.

The libraries in Table 8-5 contain some of the functionality that we discussed in Chapters 4, 5, 6, and 7,
including threads, mutexes, condition variables, and Interprocess Communication (IPC) capabilities. The
class libraries are essentially interface classes that wrap operating system APIs. They will be compatible
with the POSIX thread management and process management facilities. Whereas the new standard
provides an interface to most of the features in POSIX API, the holes can be filled by using other
libraries, or providing your own interface classes to the POSIX APL Listing 8-1 shows a small part of the
Boost C++ Libraries implementation of the new standard C++ thread class and some of the services that
it offers developers. Boost has provided free peer-reviewed portable C++ source libraries that are
compliant to the C++ Standard Library. Currently 10 of their libraries have been included in the C++
Standards Committee’s Library Technical Report (TR1) and will become a part of future C++ Standards.

Listing 8-1

//Listing 8-1 An implementation of the new C++0x thread class.

#ifndef BOOST_ THREAD_THREAD_PTHREAD_HPP

#define BOOST_THREAD_THREAD_ PTHREAD_HPP

// Copyright (C) 2001-2003

// William E. Kempf

// Copyright (C) 2007 Anthony Williams

//

// Distributed under the Boost Software License,

// Version 1.0. (See accompanying

8 // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

~N oUW N

10 #include <boost/thread/detail/config.hpp>

11

12 #include <boost/utility.hpp>

13  #include <boost/function.hpp>

14 #include <boost/thread/mutex.hpp>

15 #include <boost/thread/condition_variable.hpp>
16 #include <list>

17 #include <memory>

18

(continued)
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Listing 8-1 (continued)

306

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

#include <pthread.h>

#include <boost/optional.hpp>

#include <boost/thread/detail/move.hpp>
#include <boost/shared_ptr.hpp>
#include "thread_data.hpp"

#include <stdlib.h>

#ifdef BOOST _MSVC

#pragma warning (push)

#pragma warning(disable:4251)
#endif

namespace boost
{

class thread;

namespace detail

{
class thread_id;

}

namespace this_thread

{

BOOST_THREAD_DECL detail::thread_id get_

}

namespace detail
{
class thread_id
{
private:
detail::thread_data_ptr thread_data;

id();

thread_id(detail::thread_data_ptr thread_data_):

thread_data (thread_data_)
{}
friend class boost::thread;

friend thread_id this_thread::get_id();

public:
thread_id() :
thread_data()
{}

bool operator==(const thread_id& vy)

{

const

return thread_data==y.thread_data;

}

bool operator!=(const thread_id& vy)

const
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68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Y
}

return thread_data!=y.thread_data;
}

bool operator<(const thread_id& y) const

{
return thread_data<y.thread_data;

}

bool operator>(const thread_id& y) const

{
return y.thread_data<thread_data;

}

bool operator<=(const thread_id& y) const
{

return ! (y.thread_data<thread_data) ;
}

bool operator>=(const thread_id& y) const

{
return ! (thread_data<y.thread_data);

template<class charT, class traits>
friend std::basic_ostream<charT, traits>&
operator<<(std: :basic_ostream<charT, traits>& os,
const thread_id& x)

{

if (x.thread_data)

{

return os<<x.thread_data;

}

else

{

return os<<"{Not-any-thread}";

struct xtime;
class BOOST_THREAD_DECL thread

{

private:

thread(thread&) ;
thread& operator=(thread&) ;

template<typename F>
struct thread_data:

{

detail: :thread_data_base
F £;

(continued)
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Listing 8-1 (continued)

121 thread_data(F f_):

122 f(f_)

123 {1}

124 thread_data(detail: :thread_move_t<F> f_):
125 £(£)

126 {}

127

128 void run()

129 {

130 £0);

131 }

132 }s

133

134 mutable boost::mutex thread_info_mutex;
135 detail::thread_data_ptr thread_info;

136

137 void start_thread();

138

139 explicit thread(detail::thread_data_ptr data);
140

141 detail::thread_data_ptr get_thread_info() const;
142

143 public:

144 thread() ;

145 ~thread() ;

146

147 template <class F>

148 explicit thread(F f):

149 thread_info (new thread_data<F>(f))
150 {

151 start_thread() ;

152 }

153 template <class F>

154 thread(detail: :thread_move_t<F> f):

155 thread_info (new thread_data<F>(f))
156 {

157 start_thread() ;

158 }

159

160 thread(detail: :thread_move_t<thread> x);
161 thread& operator=(detail::thread_move_t<thread> x);
162 operator detail::thread_move_t<thread>();
163 detail::thread_move_t<thread> move() ;

164

165 void swap (thread& x);

166

167 typedef detail::thread_id id;

168

169 id get_id() const;

170

171 bool joinable() const;

172 void join();

173 bool timed_join(const system_time& wait_until);
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174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

template<typename TimeDuration>
inline bool timed_join(TimeDuration const& rel_time)
{
return timed_join(get_system_time()+rel_time);
}
void detach();

static unsigned hardware_concurrency () ;

// backwards compatibility
bool operator==(const thread& other) const;
bool operator!=(const thread& other) const;

static void sleep(const system_time& xt);
static void yield();

// extensions
void interrupt();
bool interruption_requested() const;

Y

inline detail::thread_move_t<thread> move (thread& x)

{

return x.move() ;

}

inline detail::thread_move_t<thread>
move (detail: :thread _move_t<thread> x)
{

return x;

template<typename F>

struct thread::thread_data<boost::reference_wrapper<F> >:
detail::thread_data_base

{
F& f;

thread_data (boost: :reference_wrapper<F> f_):
£(£)
{}

void run()
{
£();

Y
namespace this_thread

{
class BOOST_THREAD_DECL disable_interruption

(continued)
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Listing 8-1 (continued)

310

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

disable_interruption(const disable_interruption&) ;
disable_interruption& operator=(const disable_interruption&) ;

bool interruption_was_enabled;

friend class restore_interruption;
public:

disable_interruption() ;

~disable_interruption();

}i

class BOOST_THREAD_DECL restore_interruption
{
restore_interruption(const restore_interruption&) ;
restore_interruption& operator=(const restore_interruption&);
public:
explicit restore_interruption(disable_interruption& d);
~restore_interruption() ;
Y

BOOST_THREAD_DECL thread::id get_id();

BOOST_THREAD_DECL void interruption_point();
BOOST_THREAD_DECL bool interruption_enabled();
BOOST_THREAD_DECL bool interruption_requested();

inline void yield()
{

thread: :yield();
}

template<typename TimeDuration>
inline void sleep(TimeDuration const& rel_time)
{

thread: :sleep(get_system_time()+rel_time);

namespace detail

struct thread_exit_function_base

{
virtual ~thread_exit_function_base ()
{}
virtual void operator() () const=0;
}i

template<typename F>
struct thread_exit_function:
thread_exit_function_base
{
F £;
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278
279
280
281
282
283
284
285
286
287
288
289

290
291
292
293
294
295
296
297

298
299
300
301

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

thread_exit_function(F f_):
£(£_)
{}

void operator () () const
{
£0);

Y

BOOST_THREAD_DECL void
add_thread_exit_function(thread_exit_function_base*) ;

namespace this_thread
{
template<typename F>
inline void at_thread_exit (F f)
{
detail::thread_exit_function_base*
const thread_exit_func=new detail::thread_exit_function<F>(f);
detail::add_thread_exit_function(thread_exit_func) ;

class BOOST THREAD DECL thread_group
{
public:

thread_group();

~thread_group() ;

thread* create_thread(const functionO<void>& threadfunc);
void add_thread(thread* thrd);

void remove_thread(thread* thrd);

void join_all():;

void interrupt_all();

size_t size() const;

private:
thread_group (thread_group&) ;
void operator=(thread_group&);

std::list<thread*> m threads;
mutex m_mutex;
}:
} // namespace boost

#ifdef BOOST_MSVC
#pragma warning (pop)
#endif

#endif
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Notice on Line 302 of Listing 8-1 that the new thread class also supports thread groups. This provides
much of the functionality of the POSIX pthread API Notice on Line 19 that this implementation includes
pthread.h. We covered the role of the operating system in Chapter 4 and explained that the operating
system is the gatekeeper of the hardware and the multicores. Any class hierarchies, application
frameworks, or pattern classes that present multithreading or multiprocessing capabilities are essentially
providing interface classes to the operating system API. So, this is a welcome interface class because
with standard C++ classes like the thread class shown in Listing 8-1 you get to move one step closer

to declarative interpretations of parallel programming. These kinds of interface classes not only add
declarative or Object-Oriented flavor to low-level operating system primitives, but they also simplify the
interface. Consider Lines 308-311 and their POSIX API pthread counterparts. These methods replace
direct calls to pthread calls such as pthread_create (), pthread_join (), using the attribute object to
detach threads, thread cancellation functions, and so on. Interface classes as implemented in this type of
library allow developers to maintain their Object-Oriented or declarative approach to application
development.

A C++0x (C++09) Mutex Interface Class

In addition to thread interface classes, the C++0x standard will include mutex interface classes.

We explained the POSIX pthread_mutex () and its use in dealing with one of the primary
synchronization challenges of multithreading. But pthread_mutex () is in Layer 2 of the PADL analysis.
Ideally, you do not want to do most of the synchronization at Layer 2, and the important reason that you
don’t want to do the majority of your synchronization at Layer 2 is because the POSIX API has
procedural semantics. To take advantage of the POSIX API services, you would have to provide interface
classes. The new C++ standard comes to the rescue here by providing standard mutex classes. Listing 8-2
is Anthony William’s implementation of the standard C++ mutex class. As you can see, the basic pthread
mutex functionality of lock, unlock, destroy, timed lock, and so forth is encapsulated in the mutex class.
Also, a timed mutex class is defined that encapsulates some of the functionality of a condition variable.

Listing 8-2

//Listing 8-2 An implementation of the new standard C++0x mutex class.

1 #ifndef BOOST_THREAD_PTHREAD MUTEX_HPP

2 #define BOOST_THREAD_PTHREAD_MUTEX_HPP

3 // (C) Copyright 2007 Anthony Williams

4 // Distributed under the Boost Software License, Version 1.0. (See
5 // accompanying file LICENSE_1_0.txt or copy at
6 // http://www.boost.org/LICENSE_1_0.txt)

7

8 #include <pthread.h>

9 #include <boost/utility.hpp>

10 #include <boost/thread/exceptions.hpp>
11 #include <boost/thread/locks.hpp>
12 #include <boost/thread/thread_time.hpp>
13 #include <boost/assert.hpp>
14 #ifndef WIN32
15 #include <unistd.h>
16 #endif
17 #include <errno.h>
18 #include "timespec.hpp"
19 #include "pthread_mutex_scoped_lock.hpp"
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20
21 #ifdef _POSIX_ TIMEOUTS
22 #if _POSIX_TIMEOUTS >= 0
23 #define BOOST_PTHREAD_HAS_TIMEDLOCK
24 #endif
25 #endif
26
27 namespace boost
28 {
29 class mutex:
30 boost: :noncopyable3l {
32 private:
33 pthread_mutex t m;
34 public:
35 mutex()
36 {
37 int const res=pthread_mutex init (&m,NULL);
38 if (res)
39 {
40 throw thread resource_error();
41 }
42 }
43 ~mutex ()
44 {
45 BOOST VERIFY(!pthread mutex destroy(&m));
46 }
47
48 void lock()
49 {
50 BOOST_VERIFY (!pthread _mutex lock(&m));
51 }
52
53 void unlock()
54 {
55 BOOST VERIFY(!pthread mutex_unlock(&m));
56 }
57
58 bool try lock()
59 {
60 int const res=pthread_mutex trylock(&m);
61 BOOST ASSERT(!res || res==EBUSY);
62 return !res;
63 }
64
65 typedef pthread mutex t* native_handle_type;
66 native handle_ type native_handle()
67 {
68 return &m;
69 }
70
71 typedef unique_lock<mutex> scoped_lock;
72 typedef scoped lock scoped_try lock;
73 }:

(continued)
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Listing 8-2 (continued)

74

75 typedef mutex try mutex;

76

77 class timed_mutex:

78 boost: :noncopyable

79 {

80 private:

81 pthread_mutex_t m;

82 #ifndef BOOST_PTHREAD_HAS_TIMEDLOCK

83 pthread_cond_t cond;

84 bool is_locked;

85 #endif

86 public:

87 timed_mutex ()

88 {

89 int const res=pthread_mutex_init (&m, NULL) ;
90 if (res)

91 {

92 throw thread_resource_error();

93 }

94 #ifndef BOOST_PTHREAD_HAS_TIMEDLOCK

95 int const res2=pthread_cond_init (&cond, NULL) ;
96 if (res2)

97 {

98 BOOST_VERIFY (!pthread_mutex_destroy (&m)) ;
99 throw thread_resource_error();

100 }

101 is_locked=false;

102 #endif

103 }

104 ~timed_mutex ()

105 {

106 BOOST_VERIFY (!pthread _mutex_destroy (&m)) ;
107 #ifndef BOOST_PTHREAD_HAS_TIMEDLOCK

108 BOOST_VERIFY (!pthread_cond_destroy (&cond) ) ;
109 #endif

110 }

111

112 template<typename TimeDuration>

113 bool timed_lock (TimeDuration const & relative_time)
114 {

115 return timed_lock(get_system_time()+relative_time) ;
116 }

117

118 #ifdef BOOST_PTHREAD_HAS_TIMEDLOCK

119 void lock()

120 {

121 BOOST_VERIFY (!pthread_mutex_lock (&m)) ;

122 }

123
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124 void unlock()

125 {

126 BOOST_VERIFY (!pthread_mutex_unlock (&m)) ;

127 }

128

129 bool try_lock()

130 {

131 int const res=pthread_mutex_trylock (&m) ;

132 BOOST_ASSERT (!res || res==EBUSY);

133 return !res;

134 }

135 bool timed_lock(system_time const & abs_time)

136 {

137 struct timespec const timeout=detail::get_timespec (abs_time) ;
138 int const res=pthread_mutex_timedlock (&m, &timeout) ;

139 BOOST_ASSERT (!res || res==EBUSY);

140 return !res;

141 }

142 #else

143 void lock()

144 {

145 boost: :pthread: :pthread_mutex_scoped_lock const local_lock(&m) ;
146 while(is_locked)

147 {

148 BOOST_VERIFY ( !pthread_cond_wait (&cond, &m) ) ;

149 }

150 is_locked=true;

151 }

152

153 void unlock()

154 {

155 boost: :pthread: :pthread_mutex_scoped_lock const local_lock (&m) ;
156 is_locked=false;

157 BOOST_VERIFY (!pthread_cond_signal (&cond)) ;

158 }

159

160 bool try_lock()

161 {

162 boost: :pthread: :pthread_mutex_scoped_lock const local_lock (&m) ;
163 if(is_locked)

164 {

165 return false;

166 }

167 is_locked=true;

168 return true;

169 }

170

171 bool timed_lock(system_time const & abs_time)

172 {

173 struct timespec const timeout=detail::get_timespec (abs_time) ;
174 boost: :pthread: :pthread_mutex_scoped_lock const local_lock (&m) ;
175 while(is_locked)

(continued)
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Listing 8-2 (continued)

176 {

177 int const cond_res=pthread_cond_timedwait (&cond, &m, &timeout) ;
178 if (cond_res==ETIMEDOUT)

179 {

180 return false;

181 }

182 BOOST_ASSERT (!cond_res) ;

183 }

184 is_locked=true;

185 return true;

186 }

187 #endif

188

189 typedef unique_lock<timed_mutex> scoped_timed_lock;
190 typedef scoped_timed_lock scoped_try_lock;
191 typedef scoped_timed_lock scoped_lock;

192 };

193

194 }

195

196

197 #endif

If you look at Lines 77-110, you can see how the services that POSIX API functions such as pthread_
mutex_init (), pthread_cond_init (), pthread_cond_destroy(),and pthread_mutex_
destroy () are adapted in a timed_mutex interface class. We explained in Chapter 4 the importance of
understanding the operating system’s role even though the goal is to program at higher level. This
implementation of a mutex class that will be available in the new C++ standard can serve to illustrate
that point. This class does not perform all of the functionality that you might want in a mutex class.
Further, this mutex class might be used in conjunction with other thread libraries such as the TBB.

If there are any problems at runtime, you have to have some idea of where these classes intersect with
the operating system. Both the C++ thread class and the TBB threading facilities may use the POSIX
pthreads differently in subtle ways. So, you deploy higher-level classes in Layer 3 of the PADL model,
but you must keep in mind that those classes are ultimately mapped to operating system APlIs, in our
case, the POSIX APIL.

Obtaining Early Implementations of the C++0x Concurrent Programming Libraries

The thread class in Listing 8-1 and the mutex class in Listing 8-2 are taken from the Boost C++ libraries
found at www.boost . org. Boost provides free peer-reviewed portable C++ source libraries. The Boost
group emphasizes libraries that work well with the C++ standard Library. Boost libraries are intended to
be widely usable across a broad spectrum of applications. The Boost group aims to establish “existing
practice” and provide reference implementations so that Boost libraries are suitable for eventual
standardization. The concurrent programming libraries that we introduced in this chapter have Boost
reference implementations and can be freely downloaded.
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The Intel Threading Building Blocks

Another important component that can be used in level 3 PADL analysis is the Intel Threading Building
Blocks (TBB). The TBB is a set of C++ components consisting of generic algorithm templates, container
classes, and Object-Oriented synchronization components, as well as other miscellaneous components
that are very useful in multithreaded programming. The TBB is a runtime-based parallel programming
model for C++ code that uses threads. It is designed primary to write scalable applications that:

O  Specify tasks instead of threads
Q  Emphasize data parallel programming

Q  Take advantage of concurrent collections

Table 8-6 lists some of the primary template algorithms and containers that are available in the TBB
library.

Table 8-6
TBB Generic Parallel Algorithms TBB Containers with Concurrency Support
parallel_for concurrent_qgueue
parallel_scan concurrent_vector
parallel_reduce concurrent_hash_map

parallel_while
pipeline
parallel_sort

While the TBB intersects in a few areas (for example, mutexes), with the new concurrent programming
library in the new C++ standard, it is largely complementary and provides a set of tools that can be used
in the implementation Layer of PADL. Recall the seven steps from Figure 8-6. In Layer 4, we identified
concurrency models. Layer 4 does not determine whether those concurrency models will be
implemented by threads or processes. In fact, the concurrency models in Layer 4 can be implemented by
clusters or other distributed computing models. The question and answer example that uses the
Blackboard architecture does not indicate whether the knowledge sources should be implemented as
threads or as processes. It also may be the case that one knowledge source may be implemented by a
multiple threads or processes or even a combination of threads and processes. This can be necessary in
order to meet the logical requirements of the knowledge source. To see how you might get to Layer 3

in the Blackboard example, you can take a closer look at the control strategies in the Blackboard
architecture.

Blackboard: A Critical Section

There are several layers of control in a Blackboard implementation where the knowledge sources may be
activated concurrently. At the lowest layer, there are synchronization schemes that must protect the
integrity of the Blackboard. Although the Blackboard is an application architecture from Layer 5 of PADL
and the discussion at that level is conceptual, you can state that the Blackboard is a critical section
because ultimately it is a shared modifiable resource. In fact Table 8-4 shows that CRCW or CREW
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concurrency models are called for in the use of the Blackboard applied to knowledge sources. In a
parallel environment, the knowledge sources’ read and write access must be coordinated and
synchronized. This coordination and synchronization can involve file locking, semaphores, mutexes,
and so on. This layer of control is not directly involved in the solution that the knowledge sources are
working toward. This is a utility layer of control and should be independent of the problem to be solved
by the Blackboard. In the architectural approach for this chapter’s example, this layer of control will be
implemented by interface classes like the mutex and semaphore classes that we introduced in Chapter 7.
You can also take advantage of the concurrent containers that the TBB has to offer to partially meet your
needs for CRCW or CREW. Parts of the Blackboard could be implemented using the concurrent_
vector class from the TBB. The concurrent_vector allows safe simultaneous access, and it is easy to
use and easily works with components from the standard C++ library. Listing 8-3 is an excerpt from the
question and answer Blackboard example.

Listing 8-3

//Listing 8-3 A Program that uses concurrent_vector and parallel_ for from TBB.

1 using namespace std;

2 #include <iostream>

3  #include <vector>

4 #include <stdlib.h>

5 #include <ctype.h>

6 #include <algorithm>

7 #include <iterator>

8 #include <string>

9 #include "tbb/blocked_range.h"

10 #include "tbb/parallel_for.h"

11 #include "tbb/task_scheduler_init.h"
12 #include "tbb/concurrent_vector.h"
13 #include <sstream>

14 #include <fstream>

15

16 using namespace tbb;

17 concurrent_vector<string> Terms;
18 concurrent_vector<string> Question;
19
20
21 class lower_case{
22
23 public:
24 char operator () (char X) {
25
26 return (tolower (X)) ;
27 }
28
29 };
30
31
32
33 void changelIt(string &X)
34 |
35 transform(X.begin(),X.end(),X.begin(),lower_case());
36}
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37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
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71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

void tokenize(string &X)
{
stringstream Sin(X);
string Token;
while(!Sin.fail() && Sin.good())
{

Sin >> Token;
Terms.push_back (Token) ;

class parallel_ lower_case{
public:

void operator() (const blocked_range<int> &X) const
{

for(int I = X.begin(); I != X.end(); I++)

{

changelIt (Terms[I]);

}i

class valid_tokens{
public:
void operator() (const blocked range<int> &X) const
{
for(int I = X.begin(); I != X.end(); I++)
{

tokenize (Question([I]);

int main(int argc,char *argvl[])

{

task_scheduler_init Init;
ifstream Fin("question.txt");

(continued)
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Listing 8-3 (continued)

91 istream_iterator<string> Ftr(Fin);

92 istream_iterator<string> Eof;

93 copy (Ftr,Eof,back_inserter (Question)) ;

94 Fin.close();

95 parallel_lower_case Lower;

96 valid_tokens Token;

97 parallel_for (blocked_range<int>(0,Question.size(),
(Question.size() /2)) ,Token);

98 parallel_for (blocked_range<int>(0,Terms.size(),
(Terms.size() /2)),Lower);

99 ostream_iterator<string> Out (cout,"\n");

100 copy (Terms.begin (), Terms.end(),Out) ;

101

102

103 1}

Part of the processing of our knowledge sources required that the individual words in a question be
tagged with their part of speech or flagged as unknown, misspelled, or so forth. The program in
Listing 8-3 is for exposition only. We include it here to demonstrate how TBB components can be easily
mapped from Layers 4 and 5 of the PADL. The Terms component declared on Line 17 is a TBB
concurrent_vector<T>. This vector permits concurrent read access by multiple knowledge sources.
This satisfies part of the CREW concurrency model. Likewise, part of the processing requires that the
questions be broken up into individual words or tokens and that the tokens be converted to lowercase.
The call to the TBB parallel_for algorithm on Line 97 breaks up each Question that is stored in the
Question vector into individual tokens. This is done on Lines 40-49. The parallel_for () algorithm
on Line 97 takes Token as a C++ function object. The parallel_for () on Line 98 converts the tokens in
the Terms vector to lowercase. The parallel_for algorithm does a high-level loop unrolling. It can
execute components of its function object in parallel. In this example, the function calls on Lines 61 and
75 are executed in parallel. Notice on Lines 93 and 100 that the TBB concurrent_vector<T> is used
with ostream_iterator<string>, istream_iterator<string>, and the standard C++ copy ()
algorithm.

Here is Program Profile 8-1 for Listing 8-3.

Program Profile 8-1
Program Name:

convert_it.cc (Listing 8-3)

Description:

The program in Listing 8-3 demonstrates how TBB components can be mapped from Layers 4 and 5

of the PADL. The Terms component is a TBB concurrent_vector<T>. This vector permits concurrent
read access by multiple knowledge sources. The TBB parallel_for algorithm is used to break up each
Question stored in the Question vector into individual tokens, takes Token as a C++ function object,
and converts the tokens in the Terms vector to lowercase. The TBB concurrent_vector<T> is used
with ostream_iterator<string>, istream_iterator<string>, and the standard C++ copy ()
algorithm.
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Libraries Required:
tbb (Intel Thread Building Blocks)

Additional Source Files Needed:

None

User-Defined Headers Required:

None
Compile and Link Instructions:
c++ -0 convert_it -I TBBIncludePath convert_it.cc -L TBBLibraryPath -1tbb

Test Environment:

Linux Kernel 2.6

Processors:
Core 2 Duo

Notes:

None

Obtaining the TBB library

The TBB library is open source and can be obtained from www. threadingbuildingblocks.org. Itis
available for the Intel platforms and Intel-based Macs. As of this writing, it has not been ported to
Solaris, HP-UX, or AIX. It does work in Linux environments.

The Parallel STL Library

As noted, concurrent programming library facilities will appear in the new C++ standard, including a
long awaited thread library and synchronization components. However, another important set of C++
components that will support parallel programming is the Standard Template Adaptive Parallel Library
(STAPL). Whereas TBB and the upcoming concurrent programming library in C++ are designed to work
with multicore and parallel computers, STAPL is designed to work on both shared and distributed
memory parallel computers. The STAPL library design goals are consistent with our PADL analysis
approach to designing parallel programs. STAPL is designed to allow developers to work at a high level
of abstraction. It provides interface classes and interface algorithms that hide many of the details specific
to parallel programming. Throughout this book, we have made a distinction between application-level
developers and system-level developers. System-level development tends to work closer to the operating
system APIs and SPIs. STAPL users are divided into three groups:

Q  Users: These are the application developers who primarily use the STAPL components without
having to do much extending or redefining.

Q  Developers: These developers extend the toolset of STAPL usually within the context of specific
domains or applications through adding new data structures and algorithms for the users.

O  Specialists: This group provides the users and the developers with additional programming
frameworks for developing algorithms and applications.
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Bjarne Stroustrup, the inventor of C++, is involved with the development of STAPL. This means that you
can count on STAPL to be consistent with the philosophy of the C++ standard. STAPL consists of these
primary components:
QO  pContainers: Containers that support concurrency.
Views: Support the notion of iteration and object visitation for the pContainers.

Q
Q  pAlgorithms: Standard Template Library (STL) algorithms that support parallelism.
Q

pRange: The pAlgorithms are executed over a range. The pRange allows for the Work
Breakdown Structure (WBS) of the algorithm to be stated in a Task Dependency Graph.

0O  Runtime: Runtime system that provides performance monitoring, communication primitives,
scheduling for the subviews or tasks of the pRanges, and so on.

Figure 8-7 shows a block diagram of the structure of the STAPL library.

User Application Code

. Views
pAlgorithms 1« | pContainers
| A_da[;iv; B _]
prande |_Frameworks |
Adaptive
Frameworks

Runtime System
ARMI Communication Performance
Library Monitor

pthreads, OpenMp, MPI,
Native ...

Figure 8-7

The standard C++ concurrent programming library will be complementary and compatible with STAPL.
The TBB is in part inspired by design concepts in STAPL, but STAPL is a higher-level framework that

extends both the STL and TBB. Also notice in Figure 8-7 that the Runtime system can and will interface
with the POSIX pthread API as well as with other operating thread and process APIs. You can see from
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looking at the structures of the new concurrent programming class library that will be part of C++0x,
TBB, and STAPL that using interface classes and components that wrap lower-level operating system
primitives is the most practical way to provide concurrency support to the C++ developer. Notice in
Figure 8-7 that the user application code is at least two layers above the POSIX threads. If you look back
at Figure 4-1 in Chapter 4, it shows the relationships for the developer’s view of the operating system
and frameworks such as STAPL. The complexity and special challenges of parallel programming as
discussed in Chapter 3 require that the software developer have a clear understanding of the integration
between class libraries, application frameworks, pattern classes, algorithm templates, and the
concurrency and synchronization services that the operating system provides. PADL and PBS analysis
(which is discussed later in the chapter) are performed in the context of a solid understanding of the
relationships of all of the pieces involved.

More information about the STAPL library can be found at http: //parasol.tamu.edu/stapl.

The new standard C++ concurrent programming class libraries, TBB, and STAPL provide the bulk of the
implementation domain independent components that you need in Layer 3 of the PADL analysis. Keep
in mind that Layer 3 components consist of domain-specific application frameworks, class libraries, and
so forth as well as domain-independent components.

The “Implementation Layer” Mapping

If you look at the Blackboard example, the segmentation of the Blackboard into parts determines
whether CREW or CRCW concurrency (determined in Layer 2 of PADL) is appropriate. The most
flexible model of critical section access is CRCW. CRCW can be achieved depending on the structure of
the Blackboard. For instance, if 16 knowledge sources are involved in a collaborative effort and each
knowledge source accesses its own segment of the Blackboard, then these knowledge sources can
concurrently read and write the Blackboard without data race problems. Looking at the communication
model can also help determine what Layer 3 components will be used. Obviously, containers that
support concurrency such as the TBB concurrent_vector<T> or concurrent_queue<T> Or
pContainers from STAPL can be used to implement some portions of the Blackboard that require
CREW. With a little planning, these structures can also support CRCW.

PADL: Layer 3 Type Control Strategies

One of the major reasons that we choose multiagent architectures and Blackboard architectures as our
two fundamental application architectures for Layer 5 in PADL is that the patterns of work that can be
captured by these architectures are extremely flexible and well understood. Here is an important point.

Before putting effort into the coordination and synchronization of concurrent threads or processes in your
application, it is better to have a solid handle on the pattern of work at the domain and application level.

STAPL supports work at a higher level. The TBB is best used when the developer thinks in terms of tasks
not threads. Here, we go a step further; think about the “story” of your application, how the actors and
objects naturally interface. Work out the pattern of work at the model level in Layers 4 and 5.
Understand the parallelism or concurrency in terms of a well-known architecture that supports
concurrency (for example, Blackboards, multiagents).
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To examine this further, take a closer look closer at the Blackboard control strategy for the example used
in this chapter.

The layer of control in a Blackboard involves the selection of which knowledge sources to involve in the
search for the solution and which aspects of the problem to focus on. This is a focus or attention layer. This
layer of control focuses on a certain area of the problem and selects knowledge sources accordingly.
Major issues to tackle in any kind of problem solving are where to start and what kind of information is
needed to solve the problem. The focus/attention layer evaluates the initial conditions of the problem
and then controls which knowledge sources to use and where they start. The available knowledge sources
are known to the Blackboard, and typically the knowledge source accepts messages or parameters that
dictate how it should proceed or where in the solution space it should begin the search. For parallel
implementations, this layer determines the basic concurrency model for Layer 4 in PADL. Usually for
Blackboards, this is the Multiple Programs Multiple Data (MPMD — a.k.a. MIMD) model because each
knowledge source/problem solver has its own area of specialty. However, the nature of the problem
might warrant the popular Single Program Multiple Data (SPMD or SIMD) model. If this model is used,
the control layer spawns N number of the same knowledge source but pass different parameters to each.

The next layer of control involves determining what to do with the solution or partial solutions that are
written to the Blackboard. This layer of control will determine whether the knowledge sources can stop
work or whether the solution that was generated is acceptable, unacceptable, partially acceptable, and so
on. This layer of control has complete visibility of the Blackboard and all the partial or tentative
solutions. It guides the overall problem-solving strategies of the collective. As with the layout of the
Blackboard and the structure of the knowledge sources, the Blackboard model suggests the existence of a
control component but does not specify how it should be structured. Sometimes the control component
is part of the Blackboard. Sometimes the control component is implemented by the knowledge sources.
In some cases, the control component is implemented by modules external to the Blackboard. The
control component can also be implemented by any combination of these. The knowledge sources
collectively search for a solution to some problem. We want to emphasize a solution because many
problems have more than one solution. Some of the solutions may be deeper in the search space than
others. Some solutions may cost more to find than others. Some solutions may be deemed not good
enough. The control component helps to manage the collective search strategies of the knowledge
sources. The control component monitors the tentative or partial solutions to make sure that the
knowledge sources are not pursuing an impractical search strategy. The control component looks out for
any infinite loops, blind alleys, or recursive regression. Further, the control component is involved in
selecting the best or the most appropriate knowledge sources for the problem. As the knowledge sources
make progress toward a solution, the control component may relieve some knowledge sources while
assigning others. The control strategy will be closely related to the search strategies used by the
knowledge sources. It is important to remember that the knowledge sources may each use different
search strategies and problem-solving techniques. Although they work with a common Blackboard, the
knowledge sources or problem solvers are essentially autonomous and self-contained. Therefore, this
layer of control has a two-way communication with the knowledge sources. Figure 8-8 shows possible
control configurations and their layers in a Blackboard architecture.
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Notice the relationships between the Blackboard and the knowledge sources in Figure 8-8. If this
interface is properly and completely worked out at the design level, then mapping knowledge sources or
agents to tasks, threads, or processes is easier. It is not practical to attempt to optimize threads or
processes and coordinate communication or synchronization at the implementation level if things are
murky at the design and domain level. On the other hand, if all of the relationships are completely clear
at the design level, if the patterns of work are well understood, and if the details of actor/object
interaction have been worked out, then mapping to threads or processes is straightforward.

The chances for a successful software deployment are greatly increased. The “story” of the application,
that is, its beginning, middle, and ending, has to be clear to all the developers involved. This
understanding starts with a PADL analysis and PBS of your software application.

The Predicate Breakdown Structure (PBS)

A predicate is statement that is either true or false. A predicate makes a statement about some
relationship between some person, place, thing, or idea. The Predicate Breakdown Structure (PBS) of an
application breaks the application down into a set of statements that describe assertions and patterns of
work of an application. The PBS of an application contains the rules, constraints, assertions, predicates,
propositions, and axioms that apply to the agents, actors, and objects and their relationships within an
application. The PBS captures the most declarative structure of an application or piece of software. This
declarative structure is critical for software that has parallel programming or concurrency requirements.
When it comes to parallel programming the old adage “Make it work, then make it fast” is a requirement
for survival. The PBS helps you to understand what it truly means when you say the application works
or that it’s correct.

Throughout this book we’ve explained why if you think of multithreaded or multiprocessing programs
from the bottom up as sequences of parallel instructions or parallel procedures, you will soon reach a
limit because of the complexity of interactions between the instructions and procedures and the sheer
number of cores that will eventually become available (that is, massively parallel CMPS). We have
suggested that you need to begin the move away from thinking about parallel programming
procedurally and move toward declarative programming techniques. There are many reasons why
declarative interpretations of parallelism are beneficial. Today’s systems are growing larger, more
complex, and more integrated. Now adding to this mix are multicore capabilities of computers at the
client side and server side. Imperative programming techniques buckle under this level of complexity.
On the other hand, declarative techniques are scalable and have models that are designed to deal with
complexity (for example, First-Order Logic analysis, model checking, Boolean algebra, and so on).
Declarative interpretations describe what software systems are and what they mean as opposed to what
they do and how it is done. Once you start thinking about hundreds or thousands of concurrently
executing threads or processes, it is difficult to keep in mind what is going on in the system. This can
make maintenance, testing, and debugging treacherous. Declarative interpretations make you consider
what is true about the relationships between agents, actors, and objects in the system at any given time.
Imperative approaches focus on what to do and when to do it. Declarative approaches focus on what is
true or false and what conditions are necessary to cause some statement or predicate in the application to
be true or false at any instant.
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The PBS structure helps you capture the “meaning” of an application or piece of software. The meaning
of a piece of software is important because if you understand the software, then you know how it can be
scaled and evolved while at the same time keeping it reliable and correct. If you do not understand the
software’s meaning, then software maintenance and software evolution is hopeless. This is especially
true for software that involves parallel programming. PADL analysis and PBS can be used to help make
the shift away from imperative and sequential models of programming and toward declarative semantic
design models.

An Example: PBS for the “Guess-My-Code” Game

You were able to write a guess-it application that used concurrently executing processes that were then
broken down into currently executing threads in order to take enough guesses in the time limit to win
the game. You could think about how many parallel threads or processes you would need to plow
through 4 million codes in 2 minutes. You could also focus on what action the threads or processes
would have to take. However, this would be more of an empirical approach to the problem. A PBS
breakdown of the guess-what-code-I'm-thinking-of game would have a more goal look-and-feel.
Example 8-1 is one PBS breakdown of the game.

Example 8-1: A PBS Breakdown of the Guess-What-Code Game

Breakdown 1: You've won the game if your guess is correct and in time.

Breakdown 2: Your guess is correct if it consists of a six-character code that contains only combi-
nations of the characters (a—z, 0-9), considering duplication is allowed, and that code is the one
my agent has handed me.

Breakdown 3: Your guess is in time if it is correct and it occurs within 2 minutes.

Breakdown 4: A brute force search through the codes will be successful if there are enough
agents searching.

Breakdown 5: N agents are enough find the correct code from a sample of 4 million codes in 2
minutes.

Breakdown 6: 4 times N agents are required to find the correct code from a sample of 4 million
codes in 2 minutes if the code is being changed every 15 seconds.

The PBS in Example 8-1 consists of the rules, statements, or predicates that make up the application.

These statements are either true or false. If you design code that correctly represents these statements,
then the application will be correct and will work if the original statements are correct. On the other
hand, if one or more of the statements are false, then the underlying code will also be in error. For
example, Breakdown 5 states that N agents are enough. How do you know that N agents are enough?

If you do your homework at this level, then later translations into concurrently executing instructions or
threads are more productive and correct. How big should N be is the kind of information you want to
discover during PADL analysis and the design activities of the SDLC. It should not be part of some trial-
and-error process handled at the thread management level. Although the PBS presented in Example 8-1
is a simplification, it serves as a complete example of what we mean by PBS. Notice that Breakdown 6
deals with dynamically changing code and resubmission of the entire guess data set.
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Connecting PBS, PADL, and the SDLC

Once the PBS is complete and the development group is satisfied with the PBS of the application, then
the PBS is used to help with the application architecture selection that is done in Layer 5 and the
concurrency model identification that is done in Layer 4 of the PADL. In terms of the SDLC, the PBS is
done during the requirements gathering, analysis, and design activities. Ideally, it is done before Layer 5
in PADL, but sometimes it is performed concurrently with Layer 5 analysis. In an actual PBS breakdown,
the statements are refined and clarified until there is no ambiguity left in the statement of the
applications solution or services. Further, because the PBS consists of propositions, predicates, and
statements, theorem-proving approaches and model-checking techniques can be used to determine the
correctness of the application prior to any code that is developed. This ability to check for correctness,
meaning, and declarative semantics prior to code implementation becomes more critical as you move
toward more complex systems and massively parallel multicore computers.

Coding the PBS

Domain components, that is, the agents, actors, and objects of the application domain, should be
associated with C++ application frameworks, class hierarchies, domain classes, and so on at Layer 3 in
the PADL model.

For every person, place, thing, or idea mentioned in the PBS, there should be a corresponding

C++ component(s) that implements the concept and the relationships between the concepts. These
components will be the domain components, and they will be directly visible in the application
architecture. That’s because the application architecture is primarily chosen because of its fit with the
PBS. The correctness and completeness of the application can be seen and proved at this level. Once the
domain classes are provided, they can be supported by components from the TBB, the C++ concurrent
programming library, or frameworks such as STAPL. Using PADL and PBS helps produce applications
that are correct, that can evolve and that can be maintained in an efficient manner.

Summary

In this chapter, we explained how to approach the process of application design when there is a
concurrency requirement in the original software development request or when parallelism is explicitly
called for or implied by the solution decomposition. We discussed two main approaches:

Q  First, we introduced Parallel Application Design Layers (PADL), a five-layer analysis model that
we use at CTEST Laboratories during the requirements analysis, software design, and
decomposition activities of SDLC. We also use the PADL model to circumvent much of the
complexity that results from bottom up approaches to parallel programming. Also in this
chapter we presented a top-down architectural approach to parallelism rather than a bottom-up,
task-oriented imperative approach. We also presented multiagent architectures and Blackboard
architectures as two of the main and well understood paradigms for parallel programming at
the application level. Most successful software undergoes constant change. If that software has
components that require concurrency and synchronization, then the natural evolution of the
software can be extremely challenging if an appropriate application architecture is not selected
from the start. The PADL analysis model identifies multiagent and Blackboard architectures as
two well-known and well-understood architectures that perform well under the conditions of

328



Chapter 8: PADL and PBS: Approaches to Application Design

software evolution. Ultimately, the concurrency of an application is going to be implemented by
low-level operating system primitives like threads and processes. If the application architecture
is clean, modular, scalable, and well understood, then the translation into manageable operating
system primitives has a chance to succeed. On the other hand, selection of the wrong or a poor
application architecture can lead to brittle, error-prone software that cannot be readily changed,
maintained, or evolved. While this is true of any kind of computer application, it is magnified
when that software involves parallel programming, multithreading, or multiprocessing.

Q  We also introduced the notion of a Predicate Breakdown Structure (PBS) of an application idea.
The PBS of an application breaks the application down into a set of statements that describe
assertions and patterns of work of an application. The PBS of an application contains the rules,
constraints, assertions, predicates, propositions, and axioms that apply to the agents, actors, and
objects and their relationships within an application. The PBS captures the most declarative
structure of an application or piece of software. This declarative structure is critical for software
that has parallel programming or concurrency requirements. The PBS structure helps capture
the “meaning” of an application or piece of software. The meaning of a piece of software is
important because if you understand the software, then you know how it can be scaled and
evolved, while at the same time keeping it reliable and correct. If you do not understand the
software’s meaning, then software maintenance and software evolution are impossible.

Today’s systems are growing larger and more complex and more integrated. We are now adding to this
mix multicore capabilities of computers at the client side and server side. Imperative programming
techniques buckle under this level of complexity. On the other hand, declarative techniques are scalable
and have models that are designed to deal with complexity Declarative interpretations describe what
software systems are and what they mean as opposed to what they do and how it is done. They make
you consider what is true about the relationships between agents, actors, and objects in the system at any
given time. It is not practical to attempt to optimize thread or processes and coordinate communication
or synchronization at the implementation level if things are murky at the design and domain level. On
the other hand, if all of the relationships are completely clear at the design level and the patterns of work
are well understood at the design level and the details of actor/object interaction has been worked out,
then mapping to threads or processes will be straightforward. The chances for a successful software
deployment are greatly increased. The story of the application has to be clear to all the developers
involved. This understanding starts with a PADL analysis and PBS of your software application.

In the next chapter, we discuss modeling and documenting applications using UML notation for
concurrent behavior. We have used UML class, sequence, and activity diagrams in the book so far. In the
next chapter, we discuss some basic UML diagramming techniques for modeling classes, gradually
covering concurrent notation and behavior between classes and ultimately the architecture of systems
with parallelism.
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Modeling Software Systems
That Require Concurrency

The topology of perceived interconnected cyberspaces need not have any direct
connection to that of the array of support computers, since the cyberspaces are
perceived, not actual spaces.

— Marcus Novak, Liquid Architectures in Cyberspaces

A model of a system is the body of information gathered for the purpose of studying the system so
that it can be better understood by the developers and maintainers of the system. When a system is
modeled, the boundaries and identification of the entities, attributes, and activities performed by
the system can be determined. Modeling is an important tool in the design process of any system.
It is essential that developers fully understand the system they are developing. Modeling can
reveal the hidden concurrency and opportunities where parallelism can be exploited.

In this chapter, we show you how to visualize and model your concurrent system using the UML.
We will discuss diagraming techniques used to visualize and model concurrent systems from three
perspectives:

Q  The structural perspective

Q  The behavioral perspective

Q  The architectural perspective

The classes, objects, processes, threads, and systems used as examples in this chapter are used for
exposition purposes and may or may not necessarily reflect actual classes, objects, or structures
used in an actual system. This chapter should not be considered a primer for UML but rather an
introduction to the diagrams used in this book focused on the UML notation used to design and
document systems that utilize concurrency.
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What Is UML?

Unified Modeling Language (UML) is a graphical language used for modeling, visualizing, designing
and documenting the artifacts of a system. It is the standardized specification language used to
communicate and model different system paradigms such as Object-Oriented, agent-oriented, and event-
driven systems. It uses symbols and notations to represent the components from different views and
perspectives of the system.

The UML is called “unified” because it brought three of the most prominent modeling languages (Grady
Booch’s Approach, Ivar Jacobson’s Object-Oriented Software Engineering (OOSE), and James
Rumbaugh’s Object Modeling Technique(OMT)). Although each was a complete systems, each had a
particular focus. Each also had a weakness — they were not able to be a general-purpose modeling
language for complex systems. Table 9-1 gives a brief definition of each of these modeling approaches
and what their main contribution was to the UML standard. The purpose of the UML was to unify these
methods into a definition that would provide to users a modeling system that was capable of capturing:

Q  Conceptual to executable components of a software system utilizing object-oriented techniques

Q  Simple to complicated mission-critical systems

This was true whether those users were people or machines. The first draft of the UML was released in
early 1995, and a new version was released later that year. In 1997, the Object Management Group
(OMQG), an international consortium of companies active in the development of the Object-Oriented
paradigm, made a request for proposal for a standard modeling language, and UML 1.0 was offered.
Since then UML has become the de facto international standard modeling language revised and
extended by OMG. Many interests over the years have contributed to the standard, and it has now been
adopted for modeling not only Object-Oriented (OO) software systems but concurrent and distributed
systems, engineering problems, and business structures and processes. OMG released version 2.0

in 2007.

Table 9-1
UML Language
Primitives Types Description
Things Structural Nouns of the model
* class The static parts of the model representing
e interface elements that are conceptual or physical.

¢ collaborations
*® use cases
e active class

® component

* node

Behavioral Verbs of the model

¢ interaction Dynamic parts of the model representing
e state behavior over time.
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UML Language
Primitives Types Description
Grouping Organizations parts of the model
* package These are highest level of the model
where decomposition can occur.
Annotational Explanatory parts of the model
Used for comments that describe element
in the model.
Relationships Dependency Change to one element may affect the
other.
Association A structural connection between
elements (whole-part).
Generalization The child element is a specialization of
the parent element.
Realization One element fulfills the contract of
another element.
Diagrams * class
® object
® use case
® sequence
e collaboration
e statechart
e activity
® component
e deployment

The UML grammar is based on three language primitives:

Q  Things: The most basic components in a model

0  Relationships: Relate things with other things

Q  Diagrams: Define a collection of things and their relationships
Table 9-1 shows how each of the three language primitives is broken down into its various components
and types. As you can see, UML is a comprehensive language with many ways for representing a

system. What we focus on in this chapter are the notations and diagrams of the language that you utilize
when modeling a system with concurrent behavior.
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Modeling the Structure of a System

When you are modeling the structure of a system, the focus will be on the static parts of a system such as
objects, classes, and their attributes, services, organization, and composition, along with relationships
those parts of the system will have with other entities in the system.

The Class Model

The class is the basic software component of an Object-Oriented system. A class is a model of a
construct that includes its attributes and behaviors. It serves as a definition of a group or set of things
that all share the same attributes and behaviors. A class can model something conceptual, a real-world
physical entity, or a software construct.

Q

A class modeling something conceptual is a scaled representation of a process, concept, or an
idea for the purpose of analysis or experimentation. It is a scaled representation because a full
model would be too difficult to create or not desirable. The nature of the analysis may be
focused in a specific area, and therefore, a full-scale model is not necessary. An example of a
class is a model of a molecule. The structure of a molecule and the distances and angles of
chemical bonds are attributes of the class, and the chemical reactions and processes are the
behaviors of the model. This molecule class simulates the characteristics of the real-world
counterpart for the purpose of predicting and analyzing its behavior.

A class can model a real-world physical entity, process, task, or idea for the purpose of
replacing it. In this, the model is not a scaled representation but duplicates all the functionality
of the existing entity. This type of class models the real-world counterpart because the software
model may be more efficient, accessible, or effective. For example, a class can model an
accounting system or a calculator. A calcular class would have a display, a calculation, and an
input mechanism for attributes. The calculator class would have to be able to parse the input,
validate the input, perform the desired arithmetic operations, and then display the results.

A class can model software constructs. In this case, the model only has meaning within a
software system. An example of modeling a software construct is a bitmapped image class.

A bitmapped image class would have a header, number of bit planes, size, and vector of bits that
represents each pixel of the image. The class would have to be able to display, read, and resize
the image. Other software constructs that are modeled are datatypes. Datatypes such as floats,
integers, and booleans have both attributes and a set of operations. These software constructs
are used as utility and support classes for modeling a larger system such as an accounting
system or a simple calculator. They can be used in any system regardless of the domain.

So, as you can see, classes can be used to model various types of entities in a software system. When you
are modeling, it is important to be able to identify the constructs based on the structural, behavioral, or
architectural view of the system. It is even necessary to model types of classes based on how they are
used in the system. Some classes are useful when used as a blueprint that provides an interface policy
for other classes, whereas other classes are useful as a base or ancestor class or a class just for a particular
domain. Table 9-2 lists commonly found class types.
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Table 9-2

Class Description

Abstract A base class that defines the blueprint for all its descendants; an object
cannot be declared of this type.

Concrete A standalone class that represents the end of an ancestor-descendant
lineage.

Interface A class that modifies or enhances the interface of another class or set of
classes.

Node A class that supplies the foundation for inheritance and polymorphism
and contains no pure virtual functions.

Domain A class created to simulate reality or some entity within a domain.

Support/Utility Useful programs for applications regardless of domain.

Collection and Containers

Template

Datatypes

Generic holder of a set of objects with a defined set of operations to
access them.

A class in which the type is parameterized with a defined set of
operations to access and manipulate the objects.

A type and its operations.

For instance, say that you are modeling a subsystem that identifies unrecognized words in a text file. The
subsystem extracts words from a text file, determines if a word cannot be recognized, and then stores
that word in a global container. Some classes in this subsystem are:

QO  Word expert: Determines if a word is recognized, if not writes the word to a container

U 00U u o

Unrecognized words list: Removes a given set of characters from a file
Dictionary lexicon: Contains all the recognized words

Text file: Contains the words to be recognized

Main agent: Creates word experts

Unrecognized word container: Contains all the unrecognized words

Misspelled and morphology agents: Agents that filter misspelled or word forms from the

unrecognized words list

Each of these classes can be identified as a type of class:

Q  Utility and support classes: Filtering agents, text file

QO  Domain classes: Dictionary lexicon, word expert

Q  Container classes: Unrecognized word container
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Visualizing Classes

The UML provides a graphical representation of a class. The representation of the class, or class icon, can
show the attributes, services, and semantics of the class. The UML also provides a representation of types
of classes such as datatypes, interface, template, and node classes. The simplest representation of a class
is a rectangular box containing the name of the class. The simple name is the name of the class alone; a
pathname is the name of the class with the name of the package where the class is contained prefixed to
the name. The class name is text containing any number of letters and numbers. Punctuation can be used
except for a colon that is used to separate the package from the class name. Class names are usually
nouns or noun phrases taken from the vocabulary of the system that is being modeled. Class name
should have the first letter of every word capitalized:

U  DictionaryLexicon

U  WordExpertAgent

a Filter: :MorphologyAgent

Visualizing Class Attributes, Services, and Responsibilities
The class icon can be divided into three horizontal compartments. The top compartment contains the
class name. The next two contain the attributes and services provided to the user of the class. An
additional compartment at the bottom can describe the responsibility of the class. The responsibilities of the
class are the obligations of the class stated in a few short sentences. For example, here are the basic
responsibilities of the WordExpertAgent, UnrecognizedWords, and DictionaryLexicon classes:
0  wWordExpertAgent
QO  Determines if a word is recognized
O Writes the unrecognized words to a global container

a UnrecognizedWords

0  Determines if unrecognized words are word forms or misspellings of recognized words by
using MorphologyAgent and MisspelledAgent

a DictionaryLexicon
QO  Contains all the recognized words
O  Contains the part of speech, synonyms, and word forms for each word

O When given a word, returns TRUE if the word is in the lexicon
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These responsibilities can be transformed into the attributes and services of the class. The attributes are
the named properties of the class, and the services or operations describe the behaviors of the class.
Figure 9-1 shows how the responsibilities of the DictionaryLexicon were used to create some of the
attributes and services of the class. The attributes are then transformed into datatypes and data
structures, and services are transformed into methods. Attributes and service names use a lowercase for
the first letter of the first word and uppercase for the first letter of any additional words.

DictionaryLexicon

m contains all the recognized words

m contains synonyms, parts of speech, and
word forms for each word

m when given a word, will return TRUE if the word
is in the lexicon

Figure 9-1

—

DictionaryLexicon

ATTRIBUTES
recognizedWords
synonyms
partOfSpeech
plurals
wordForms
lexicon

SERVICES
recognizedWords()
synonyms()
plurals()
wordForms()
validateWord()

—

DictionaryLexicon

ATTRIBUTES

recognizedWords: list<string>

synonyms: list<string>

partOfSpeech: string

plurals: list<string>

wordForms: list <string>

lexicon: map < string, vector <WordInfo> >

SERVICES

recognizedWords(): list <string>
synonyms(Word: string) : list <string>
recognizedWords(Word: string) : list <string>
synonyms(Word: string): list <string>
plurals(Word: string): list <string >
wordForms(Word: string): list <string >
validateWord(Word: string): Boolean

The attributes, services, and responsibilities compartments can be labeled attributes, services, and
responsibilities, respectively, to identify each compartment. If the attributes or services are not shown,
then the compartment is displayed as empty. Figure 9-2 shows the various ways that a class can be
represented, using the DictionaryLexicon class as an example.
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(@) Simplest class representation (b) Class representation showing
attributes and services.

DictionaryLexicon

ATTRIBUTES

recognizedWords: list<string>

synonyms: list<string>

partOfSpeech: string
DictionaryLexicon plurals: list<string>

wordForms: list <string>

lexicon: map < string, vector<WordInfo> >

SERVICES

recognizedWords(): list <string>
synonyms(Word: string) : list <string>
plurals(Word: string): list <string >
wordForms(Word: string): list <string >
validateWord(Word: string): Boolean
addWord(WordlInfo: struct)
removeWord(Word: string)
checkWord(Word: string): Boolean

(c) Class representation showing (d) Class representation showing
empty attributes compartment and empty attributes and services
services. compartment and responsibilities.

DictionaryLexicon DictionaryLexicon
SERVICES

Responsibilities

recognizedWords(): list <string> . )
-- contains the recognized words

synonyms(Word: string) : list <string>

plurals(Word: string): list <string >
wordForms(Word: string): list <string >
validateWord(Word: string): Boolean
addWord(WordlInfo: struct)
removeWord(Word: string)
checkWord(Word: string): Boolean

Figure 9-2

In Figure 9-2:
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(a) shows the class in its simplest representation.

-- contains the part of speech, synonyms,
and word forms for each word

-- when given a word, will return TRUE if
word is a recognized word

(b) shows the class name and its attributes and services.

(c) shows the class name and its services; the attributes compartment is empty to show that there

are attributes but not shown.

(d) lists the responsibilities of the class.
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The attributes compartment can specify the datatype and/or default value (if there is one) of the
attributes for objects:

word : string
Word : string = "Car"

The datatypes and data structures for the attributes of the WordExpertagent and DictionaryLexicon
classes can be displayed:

synonyms : map <string,vector<string> >
synonymIterator : map <string,vector<string> >::iterator

Methods can be shown with parameters and return type:

synonym (&X : map <string,vector<string> >) : void
partOfSpeech(string &X) : string

The synonym () method returns the synonyms of the word. DictionaryLexicon is a class that models a
dictionary for a single domain. The synonyms for each word are stored in a vector. The map container
maps a string (recognized word) with the vector of synonyms. The synonym () method returns void,
whereas the partofSpeech () method returns the part of speech of a word as a string.

Using Attribute and Operation Properties

You can use properties to describe attributes and methods. These properties help describe how an
attribute or method can be used. Properties for attributes can be constant or modifiable:

] changeable
Q  addonly

U frozen
There are four properties used to defined methods:

4 isQuery
a sequential
4 guarded
a

concurrent

These properties are listed in Table 9-3, along with a brief description of each.
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Table 9-3

Properties for Attributes Description

{changeable} No restrictions on modifying the values of this type of attribute.

{addonly} For attributes with multiplicity > 1, additional values can be added;
once created a value cannot be removed or changed.

{frozen} Attribute’s value cannot be changed once the object has been initialized.

Properties for Services Description

{isQuery} Execution leaves the state of the object unchanged; returns a value.

{sequential} Uses synchronization to ensure sequential access to this method;
multiple concurrent access to this method jeopardizes the integrity of
the object.

{guarded} Synchronized sequential access to this method is built into the object;
integrity of the object is guaranteed.

{concurrent} Multiple concurrent access is permitted; integrity of the object is
guaranteed.

The sequential, guarded, and concurrent properties are concerned with methods involved with
concurrency. For example, multiple WordExpertAgent objects can be created then passed individually
to threads. Each WordExpertAgent object’s method writes the unrecognized words to a shared
container. The method that writes to the shared container has a critical section. Critical sections are
regions of code where the code is accessing a shared modifiable object. When one method is in its critical
section, other methods accessing that same object should not be in theirs. These properties (sequential,
guarded, and concurrent) mark and manage methods that have or are critical sections by delineating
whose responsible for synchronization.

O  The sequential property describes concurrent access where synchronization is the
responsibility of the callers of the method. To synchronize access to the shared object, the mutex
is tested by the calling objects. If the mutex is in use, then the calling object must wait until it is
available. Once it is available, the mutex is set, and the operation that modifies the object can be
performed. Once the operation is completed, the mutex is reset. The sequential operations do
not guarantee the integrity of the object.

QO  The guarded property describes a concurrent access where synchronization is built into the
shared object; access is sequential.

Q  The concurrent property describes a method that permits simultaneous use.
Methods that are guarded and concurrent guarantee the integrity of the shared modifiable object or

data. Figure 9-3 shows where the synchronization occurs for sequential, guarded, and concurrent
methods.
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CALLING OBJECT 1: SEQUENTIAL METHOD

void WordSearchAgent::addWord(string W)

test mutex
/ set mutex

X.addWord(W)

SHARED MODIFIABLE OBJECT X \

reset mutex

Ve
e

?ool UnrecognizedWords::addWord(string X)

must wait \

\

wordList.push_back(W) Pl camcar . GALLING OBJECT 2: SEQUENTIAL METHOD

SECTIONS

e

void WordSearchAgent::addWord(string W)

test mutex
set mutex

X.addWord(W)

reset mutex

CALLING OBJECT 1: GUARDED METHOD

zloid WordSearchAgent::addWord(string W)

not allowed _| — X.addWord(W)
SHARED MODIFIABLE OBJECT X -

E)ool UnrecognizedWords::addWord(string X) ol

test mutex

set mutex

wordList.push_back(W) N CALLING OBJECT 2: GUARDED METHOD

void WordSearchAgent::addWord(string W)
|

}

X.addWord (W)

Figure 9-3 (Continued)
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CALLING OBJECT 1: CONCURRENT METHOD

YOid WordSearchAgent::addWord(string W)

| — W =X.nextWord()

allowed
SHARED MODIFIABLE OBJECT X /

(string UnrecognizedWords::nextWord(void)

allowed }

wordList.pop_back() CALLING OBJECT 2: CONCURRENT METHOD

\{/oid WordSearchAgent::addWord(string W)

W = X.nextWord()

Figure 9-3

Here are examples of attributes and methods labeled with properties:

attributes

wordList : vector<string> {changeable}

operations
addwWord (word : string) : boolean {guarded}
nextWord (void) : string {isQuery, concurrent}

The attributes and operations in this example are defined by the Unrecognizedwords class that contains
all the unrecognizable words. WordSearchAgent objects pass a word to addword (), which adds the
word to the list and returns TRUE. addword () changes the state of the object. Unrecognizedwords
objects are shared between all the WordSearchAgent objects. So, the addiord () is guarded.
Synchronization is built into the object by using mutexes. nextword (), on the other hand, returns

the next word in the list. Calling this method does not change the state of the object; thus, it can use the
isQuery, concurrent properties because this operation does not change the state of the object.
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Another important property you can show is the visibility of attributes and operations. The visibility
property describes who can access the attribute or invoke the operation. A character or symbol is used to
represent the level of visibility. Visibility maps to the access specifiers of C++ and other languages.
Access specifiers and visibility symbols are listed in Table 9-4.

Table 9-4
Access Specifiers Visibility Symbols
public (+) Anyone has access.
protected (#) The class itself and its descendants have access.
private (-) Only the class itself has access.

The symbol is prepended to the service, method, or attribute name.

Ordering the Attributes and Services

Some classes have many attributes and operations, so it may be best to organize them within their
compartments. Ordering helps identify and navigate through the attributes and operations. The
organization can be:

0 By access

Q By category
Ordering by access can be very useful to users. It communicates which attributes and operations are
publicly accessible. Knowing which members are protected assists users who need to extend or

specialize the class through inheritance. Visibility symbols or access specifiers can be used to organize
attributes and services/methods by access.

Ordering attributes and operations based on the category helps in the modeling of the class. Organizing
by category helps you determine what the basic operations of the class will be. Are you modeling a nice
class? A nice class provides regular functionality to the class. This is the functionality that should be
defined for a nice class:

Default constructor

Copy constructor

Assignment operator

Equality operator

U 0 U oo

Destructor
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The copy constructor, assignment operator, and destructor can be generated by the compiler for classes
that need them, but do not define them. Some software designers believe that classes that are not nice
classes have severely restricted behavior. Reusuable classes should have a nice interface when possible.
The minimal standard interface defines categories that not only have the nice interface but also have these
additional operations:

O  Input and output

Q  Hash function

O Query

Q  Shallow and deep copy operations

Still, an argument can be made against a “minimal standard interface” or even a nice class. For example,
a class may model an object that does not require any input or output operations.

Attributes and services can be categorized according to the language of the domain. If you are modeling
a class, the attributes and services are dictated by what is being modeled. For example, the
DictionaryLexicon class might have categories based on services concerned with vocabulary, word
forms, synonyms, and so on. Using these categories is very useful when you are starting to determine
what attributes and operations a class requires. Other categories may be based on other properties of the
methods or attributes such as:

attributes

static
const

operations

virtual

pure virtual
friend
query
concurrent
guarded

To show category names, you place them within left and right double angle brackets, (<<. . .>>).

Figure 9-4 shows examples of the different ways operations can be organized for the
DictionaryLexicon class using the visibility symbols for the attributes and minimal standard interface,
or domain categories for operations/services. In 9-4 (a) services are categorized by the function they
fulfill for the class. In 9-4(b) services are categorized by the domain language of the class. All attributes
have private visibility.
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(a) Attributes categorized by visibility and services
categorized functionality.

(b) Attributes categorized by visibility and services
categorized by domain language.

DictionaryLexicon

DictionaryLexicon

ATTRIBUTES

- recognizedWords: list<string> {changeable}

- synonyms: list<string> {changeable}

- partOfSpeech: string {changeable}

- plurals: list<string> {changeable}

- wordForms: list <string> {changeable}

- lexicon: map < string, vector<WordInfo> > {changeable}

ATTRIBUTES

- recognizedWords: list<string> {changeable}

- synonyms: list<string> {changeable}

- partOfSpeech: string {changeable}

- plurals: list<string> {changeable}

- wordForms: list <string> {changeable}

- lexicon: map < string, vector<WordInfo> > {changeable}

<<constructor>>
dictionaryLexicon()
dictionaryLexicon(lexicon: map <string, vector<Wordinfo> >

<<query>>
synonyms(Word: string) : list <string>
plurals(Word: string): list <string >
wordForms(Word: string): list <string >
recognizedWords(): list <string>
partOfSpeech(Word: string): string

<<assignment>>

addWord(Wordlnfo: struct)
synonyms(Word: string, s: list <string>)
plurals(Word: string, p: list <string>
partofSpeech(Word: string, p: string)

<<validation>>
validateWord(Word: string): Boolean
checkWord(Word: string): Boolean

<<constructor>>
dictionaryLexicon()
dictionaryLexicon(lexicon: map <string, vector<Wordinfo> >

<<vocabulary>>

recognizedWords(): list <string>
addWord(Wordlnfo: struct)
validateWord(Word: string): Boolean
checkWord(Word: string) Boolean

<<word forms>>

synonyms(Word: string, s: list <string>)
synonyms(Word: string): list <string>
plurals(Word: string, p: list <string>
wordForms(Word: string): list <string>

<<part of speech>>
partOfSpeech(Word: string): string
partOfSpeech(Word: string, p: string)

Figure 9-4

Visualizing Instances of a Class

An object is an instantiation of a class. The object has an identity and gives values to attributes; this can
be depicted using UML notation. The simplest representation of an object, an instance of a class, is a
rectangle containing the name of the object underlined. This is called a named instance of a class. A named
instance of a class can be shown with or without its class name:

myWordSearch Named instance

myWordSearch:WordSearchAgent Named instance with class name
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Since the actual name of the object may be known only to the program that declares it, you may want to
represent anonymous instances of classes in your system documentation, with or without the pathnames.
An orphan instance does not show the class name:

:WordSearchAgent Anonymous instance

myWordSearch: Orphan instance

Instances of a class may also show their current state, the static properties, and the dynamic ones in their
own compartments. When the object changes dynamically, the object displays the new value of its
properties. For example, Figure 9-5 shows the myWordSearch:WordSearchAgent object’s attributes
changing. To show the active or current object, a heavier line is used. More specifically, Figure 9-5 shows
several versions of the myWordSearch object:

Q  (a) shows the various notations for an instance.

Q  (b) shows the instance’s attributes changing but only one is the active object.

0 (c) denotes a collection of unintialized instances of the class called multiobjects.

(a) Notations for instances of a class.

myWordSearch: WordSearchAgent myWordSearch
Named instance with class name Named instance

:‘WordSearchAgent myWordSearch:
Anonymous instance Orphan instance

(b) Instance's attributes change and an active object.

myWordSearch > myWordSearch myWordSearch
currentWord = "execute" currentWord = "problem" currentWord = "comon”
unrecognizedWord = TRUE unrecognizedWord = TRUE unrecognizedWord = FALSE
Dynamic attributes of the Instance Active Instance

(c) Multiobjects.

myWordSearch

Figure 9-5
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Multiobjects are a way to show multiple instances of a class exist. Depending upon the nature of

the class or the relationship between two classes, you may want to restrict the number of instances of a
class. Multiplicity is a specification that shows the allowable range of possible instances of a class. The
multiplicity of a class can be noted on the class icon or an object. The multiplicity is placed in the upper-
right corner of the icon. A class may have zero to an infinite number of instances. For example, a class
with 0 instances is a pure abstract class. It cannot have any objects explicitly declared of its type. The
number of instances may have an upper or lower bound. This may also be expressed in the diagram of a
class. Figure 9-6 shows how multiplicity of a class can be represented (and how it can be represented
between associated classes as well).

Multiplicity of classes.

1 1..n

DictionaryLexicon WordSearchAgent

Multiplicity between associated classes.

DictionaryLexicon 1 . WordSearchAgent

Figure 9-6

In Figure 9-6, the multiplicity of the WordSearchAgent class is 1. .n, meaning that the least number

of WordSearchAgent objects in a system is 1 and the most that can exist is n (depending on the

amount of space available), each containing a different set of words. The DictionaryLexicon hasa
multiplicity of one. It is a singleton class meaning only one exists in the system. Here are more examples
of multiplicity notation and their meanings:

1 One instance

l..n One to a specified number n
1..% One to an infinite number
0..1 Oto1l

0..* 0 to an infinite number

* An infinite number

Multiplicity can be shown between classes with association relationships. In Figure 9-6, there is one
DictionaryLexicon to 1 to many instances of WordSearchagents. This means there can be many
WordSearchAgents performing searches on a DictionaryLexicon.
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Visualizing Template Classes

A template class is a mechanism that allows a type to be a parameter in the definition of the class. The
template defines services that manipulate the datatype passed to it. The parameterized class is created in
C++ by using the template keyword:

template <class Type > classname {...};

The Type parameter represents any type passed to the template. Type can be a built-in datatype or a
user-defined class. When Type is declared, the template is bound by the element passed to it as the
parameterized type. For example, the Synonym is a map container that contains vectors of string
objects. The map and the vector are template classes:

map <string,vector<string> > Synonym;

The map container has string as a key and vector of strings as the value. The vector container
contains string objects. The map container can map any datatype to any other datatype, and vector
containers can contain any datatype:

map <int, vector <string> > // maps a number to a vector of strings

map <int, string> > // maps a number to a string

vector <DictionaryLexicon> // a vector of dictionary objects

vector <map <int,string> > // a vector of maps that maps a number to
// string

Template classes are represented as rectangular boxes like any other class. There is an added notation of
a parameterized type. It is represented as a dashed box displayed in the upper-right corner of the class
icon. The template class can be unbound or bound to a type. The notation for representing an unbound
template class is a dashed box displaying a capital T to represent the unbound parameterized type.

A bound template class can be represented with implicit binding, the C++ syntax for declaring and
binding a template class. For example, the template vector is implicitly bound with a string object:

vector <string>

This can be displayed in the class icon or <string> can be placed in the dashed box as the type for

the template. Another approach is to use the dependency stereotype bind and a template object. The
stereotype specifies the source that instantiates the template class by using the actual named
parameterized type. This is called explicit binding. The stereotype indicator <<bind>> refines the
template class by instantiating the parameterized type. Refinement is a general term to indicate a
greater level of detail of something that already exists. Next to the stereotype indicator are the actual
named parameters supplied by the template object. The template object has a dependency relationship
with the template class. The template object can also be considered as a refinement of the template class.
Figure 9-7 depicts the ways a template class can be represented, unbound and bound, for a map
container.
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(a) unbound map (b) bound maps
- T |
—_— .
| T | L Vector<string> > JI
map B map <string, vector<string> > map
—————— ] <<bind>> (actual parameters)
string
—_— .
L vector<string> > JI
map map —‘ Synonyms
Figure 9-7

Showing the Relationship between Classes and Objects

The UML provides three classifications of relationships between classes:

Q

a

Dependencies: A dependency relationship between two classes means that a change to the
independent class may affect the dependent class.

Generalizations: A generalization relationship between two classes means that one is a general
construct of a more specific type. The general construct is considered the parent or superclass, and
the more specific construct is the child or subclass. The child inherits the properties, attributes,
and operations of the parent but may define other attributes and operations of its own. The child
is derived from the parent and can be used as a substitute for the parent class. A root or base

class is a class with no parent.

Associations: An association is a structural relationship that specifies that objects are connected
to other objects. Associations between objects can unidirectional or bidirectional. When objects
have bidrectional associations, this means that object 1 is associated with object 2 and object 2 is
associated with object 1. When objects have unidirectional associations, this means that object 1
is associated with object 2 but object 2 is not associated with object 1. An association between
two elements (classes and so on) is called a binary association where an association between n
elements is called an n-ary association.

Table 9-5 shows the various stereotypes that can be used for the dependency relationships.
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Table 9-5

Dependency ‘

Stereotypes | SOURCE +>‘ TARGET Description

<<bind>> The source instantiates the template target using the actual
parameters.

<<friend>> The source has visibility into the target.

<<instanceof>> The source is an instance of the target. The dependency is used
to define relationships between classes and objects.

<<instantiate>> The source creates instances of the target. This dependency is
used to define relationships between classes and objects.

<<refine>> The source has a greater level of detail than the target. This
dependency is used to define relationships between base class
and the derived class.

<<use>> The source depends on the public interface of the target.

<<become>> The target is the same object as the source but at a later time in
the lifetime of the source object. The target may be in a different
state than the source.

<<call>> The source invokes method of the target.

<<copy>> The source is an exact but independent copy of the target.

<<access>> The source package is given the right to reference the elements
of the target package.

<<extend>> The target use case extends the behavior of the source use case.

<<include>> The source use case can include the behavior of the target use

case at a location named by the source use case.

Many types of dependencies, generalizations, and associations exist. Each relationship classification has
its own notation. The relationship notation is a solid or dashed line segment between the elements and
may be accompanied with some type of arrowhead. To further define the relationship, stereotypes or

adornments are used.

These stereotypes are labels that further describe the nature of the relationship. They are rendered as a
named enclosed by guillemets and placed above or next to the element. For example, in Figure 9-8,

which appears shortly:

<<bind>>
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is placed next to the arrow depicting a dependency of the template object to the bound template class
list. The <<bind>> dependency means the StrList is a 1ist type supplying the parameter to the
template string. Unrecognizediiords has a dependency with StrList in which it is an
<<instanceOf>> of this type. WordSearchaAgent <<use>> the UnrecognizedWords as a container of
the words that it cannot recognize.

Adornments are textual or graphical items added to an element’s basic representation. They are used to
document details about that element’s specifications. For example:

Qa

Q

An association is depicted as a solid line connecting the same or different constructs. Use an
association relationship when one construct is structurally related to another.

Navigation is a type of association. To depict navigation, the line between the elements becomes
a dashed line with an arrow pointing to one of the elements in the association.

Dependency is represented as dashed directed line (with an arrow) between two elements, from
the source pointing to the element it depends on, the target. Use a dependency relationship
when one construct uses another.

A generalization relationship is rendered as a solid directed line with a large open arrowhead
pointing to the parent or superclass. Use a generalization relationship when one construct
inherits the behaviors and attributes from another construct. The child may change or modify
the behaviors and attributes.

Table 9-6 and Table 9-7 list the stereotypes, constraints, and properties that can be applied to
generalizations and associations, respectively.

Table 9-6

Generalization Description

stereotype

<<implementation>> Child inherits the implementation of the parent but does not make public
nor support the interface of the parent.

constraints

{complete} All children of the parent have been named and no more additional
children can be derived.

{incomplete} All children of the parent have not been named; additional children can
be derived.

{disjoint} The parent’s objects may have no more than one of its children as a type.

{overlapping} The parent’s objects may have more than one of its children as a type.
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Table 9-7

Association Description

type

‘ OBJECTL %”%{ OBJECT2 Unidirectional association where object] is associated with object2, but
object? is not associated with object1. Without the arrow, the association is

navigation bidirectional.

‘ PART WHOLE ‘ A containment (wl}ole.—pa.rt relationship) where part is not associated with
just one whole for its lifetime.

aggregation

‘ PART WHOLE ‘ A containment. (whol?-part relationship) where part is associated with just
one whole for its lifetime.

composition

constraints

{implicit} The relationship is conceptual.

{ordered} The objects at one end of the association have an order.

property

{changeable} Describes what can be added, deleted and changed between two objects.

{addonly} Describes new links that can be added to an object on the opposite end of
the association.

{frozen} Describes a link that once added to an object on the opposite end of the
association cannot be changed or deleted.

Associations have another level of detail that can be applied to a general association or stereotype listed

in Table 9-7:

0O  Name: An association can have a name that is used to describe the nature of the relationship.
A directional triangle can be added to the name to assure its meaning. The triangle points in the
direction the name is intended to be read.

0  Role: A role is the face the class at the near end of the association presents to the class at the
other end the association.

Q  Multiplicity: Multiplicity notation can be used to state how many objects may be connected
across an association. Multiplicity can be shown at both ends of the association.

Figure 9-8 also shows examples of association relationships between classes. DictionaryLexicon
and WordSeacrchagent have a multiplcity association of 1 to 1... n. This means there is only one
DictionaryLexicon to 1 or many WordSearchAgents. The DictionaryLexicon can be searched
by many WordSearchAgents. The LexicalEntry is the name of the association between
DictionaryLexicon and Word. In this case, the named association LexicalEntry is also a class

with attributes.
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Dependency relationships -1
| string |

[ -
WordSearchAgent — — — —> UnrecognizedWords — — — — > StrList = — — list
<<use>> <<instance0f>> <<bind>>

Associated relationship

-
=y
=

DictionaryLexicon 1 WordSearchAgent

DictionaryLexicon 1 : Word

LexicalEntry
PartOfSpeech
Synonym
Antonym

Figure 9-8

Visualizing Interface Classes

The interface of a class defines the outside world’s interaction with an object through the methods and
attributes that are exposed. Once a class has been designed, implemeted, and is in use, it may be
necessary to change the interface of the class to accomodate a user. It may not be practical to actually
change the existing interface of the class because it is already in use and will break existing code. An
interface class is used to modify the interface of another existing class or set of classes. The modification
makes the class easier to use, more functional, safer, or more semantically correct for a set of users. An
example of an interface class are the container adaptors that are part of the Standard Template Library.
The adaptors provide a new public interface for the deque, vector, and 1ist containers. Example 9-1
shows the stack class. It is used as an interface class to modify a vector class.

Example 9-1
//Example 9-1 Using the stack class as an interface class.

template < class Container >
class stack{
/] ...
public:
typedef Container::value_type value_type;
typedef Container::size_type size_type;
(continued)
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Example 9-1 (continued)

protected:
Container c;

public:
bool empty(void) const {return c.empty();}
size_type size(void) const {return c.size(); }
value_type& top(void) {return c.back(); }
const value_type& top const {return c.back(); }

void push(const value_type& x) {c.push.back(x); }
void pop(void) {c.pop.back(); }
Y

The stack is declared by specifying the Container type:
stack < vector< T> > Stack;

In this case, the Container is a vector, but any container, such as a deque and 1ist, that defines these
operations:

empty ()
size()
back ()
push.back ()
pop.back ()

can be used as the implementation class for the stack interface class:

stack < list< T> > Stack;
stack < deque< T> > Stack;

The stack class supplies the semantically correct interface traditionally accepted for stacks:

push ()
pop ()
top ()

Multiple notations can be used to represent an interface class, each showing various levels of detail.
Figure 9-9 shows the multiple notations for interface classes:

Q  (a) shows the stack as an interface class.

Q  (b) shows the stereotype indicator <<interface>> displayed in the class symbol above the
name of the class to denote that this is an interface class. This example shows the attributes and
methods of the class. The letter I can be prepended to the name of the interface class and all of
its operations to further distinguish it from other classes.

O  (c) shows the realization of a template class. It is read as “the stack class is realized by the vector
class.” Realization can be used to show the relationship between the stack and the class with
which it interfaces. Realization is a semantic relationship between classes in which one specifies
a contract (interface class) and the other class carries it out (implementation class). Here, the
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stack class specifies the contract, and the vector class carries it out. A realization relationship
is depicted as a dashed line between the two classes with a large open arrowhead pointing to
the interface class or the class that specifies the contract.

(d) showsthe relationship between the interface class and its implementer depicted with the
interface lollipop notation.

Qi (a) stack class as an interface class

stack

<< interface >> (b) using << interface >> stereotype
stack

value_type : Container::value_type
size_type : Container::size_type
Container

empty(void) : bool {const}
size(void) : size_type {const}
top(void) : value_type &

top : const value_type & {const}
push(const value_type& x) : void
pop(void) : void

<< interface >> (c) stack class is realized by the vector class

stack

value_type : Container::value_type
size_type : Container::size_type <]- ——— vector
Container

empty(void) : bool {const}
size(void) : size_type {const}
top(void) : value_type &

top : const value_type & {const}
push(const value_type& x) : void
pop(void) : void

(d) using interface lollipop to realize stack class

O

empty() stack
size()

back()
push.back()
pop.back()

vector

Figure 9-9
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The Organization of Interactive Objects

As you can see, classes and interfaces can be used as building blocks to create more complex classes and
interfaces. In a parallel system, you may have many large and complex structures collaborating with
other structures thus creating a society of classes and interfaces working together to accomplish the goals
of the system. The collection of elements together with their interactions form a collaboration. These
building blocks can include the structural and behavioral elements of the system. A request from a user
to perform a particular task may involve many objects working together. Other tasks can be
accomplished by those same objects working with other elements. Understanding that certainly makes
apparent the benefits of well-defined resuable classes that can be used in different ways in the same
system or in completely different systems. The collaboration has two parts:

Q A structural part that focuses on the way the collaborating elements are organized and
constructed

QO  Abehavioral part that focuses on the interaction between the elements

Figure 9-10 shows an example of the structural part of the agent-based Lexicon system. In this
colloboration, all of the classes used have some type of dependency relationship. For example,
MorphologyAgent and MisspelledAgent call methods in UnrecognizedWords, Lexicon binds the
template map, and Unrecognizedwords contains a word list that binds the 1ist template. The
WordSearchAgent has a 1. . nrelationship with Unrecognizedwords. The structural part of a
collaboration consists of any combination of classes and interfaces, components and nodes. As you can
see in Figure 9-10, a system may contain many collaborations. A single collaboration is unique in the
system, but the elements of a collaboration are not. The elements of one collaboration may be used in
another collaboration using a different organization and performing a different functions. In this
particular collaboration, WordSearchAgent is used to find unrecognized words in a list. It could also be
used to find words of a particular domain if it were to use a different Lexicon.

<<call>>
MorphologyAgent T T T T T
A\
1 1.n 1.n 1
UnrecognizedWords K — — - WordSearchAgent — — — >  DictionaryLexicon
- — = >
; <<call>> ! |
MisspelledAgent ! cuse>s | <<use>>
N v
WordList Lexicon
T T
: <<bind>> : <<bind>>
N |
. . vector<WordProfile>>
list <string> map <string,

Figure 9-10
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Depicting the behavioral part of a collaboration is accomplished by using interaction diagrams such as
sequence or activity diagrams. Those are discussed in the next section.

UML and Concurrent Behavior

The behavioral view of a system focuses on the dynamic aspects of that system. This view examines
how the elements in the system behave as it interacts with other elements of the system. Here is where
concurrency emerges as elements interact with other elements. The diagramming techniques discussed
in this section are the ones used to model:

The lifetime of the behavior of an object

Behavior of objects that work together for a particular purpose

Flows of control focusing on an action or a sequence of actions

U 0 0 U

Synchronization and communication between elements

Collaborating Objects

Collaborating objects are objects involved with each other to perform some specific task. They do not
form a permanent relationship. The same objects can be involved with other objects working together to
perform other tasks. Collaborating objects can be represented in a collaboration diagram. Collaboration
diagrams have a structural part and an interactive part. The structural part has already been discussed.
The interaction part is a graph where all of the participating objects are vertices. The connections
between the objects are the arcs. The arcs can be adorned with messages passed between the objects,
method invocations, and stereotype indicators that express more details about the nature of the
connection.

The connection between two objects is a link. A link is a type of association. When two objects are linked,
actions can be performed between them. The action may result in a change of the state of one or both
objects. The following table shows examples of the types of actions that can take place.

create An object can be created.

destroy An object can be destroyed.

call An operation of an object can be invoked by another object or itself.
return A value is returned to an object.

send A signal may be sent to an object.

When any method is invoked, the parameters and the return value can be expressed. Other actions can
take place if specified.

The following actions can take place if the receiving object is visible to the calling object. Stereotypes can
be used to specify why the object is visible.
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association The object is visible because an association exists (very general).
parameter The object is visible because it is a parameter to the calling object.
local The object is visible because it is has local scope to the calling object.
global The object is visible because it has global scope to the calling object.
self The object calls its own method.

Other stereotypes and adornments appropriate for associations can be expressed.

When a method is invoked, this may cause a number of other methods to be invoked by other objects.
The sequence in which the operations are performed can be shown by using a sequence number
combination and a colon separator prepended to the method. The sequence number combination
expresses what sequence the method is associated with and the time order number in which the
operation takes place. For example, Figure 9-11 shows a collaboration diagram that uses the sequence

numbers.
1.1 initialize()
1: << create >> {self}
2: Value := performAction
(ObjectD) {local} 1.1.1: initializeB() ~ {local} .
MainObject > ObjectA —— ObjectB
2.1: Value := doAction()
{parameter} 1.1.2: initializeC()  {local}
ObjectC
ObjectD
Figure 9-11

In Figure 9-11, MainObject performs two operations in sequence:

1: <<create>>
2: Value := performAction (ObjectF)

In operation 1, MainObject creates ObjectA. ObjectA is local to the MainObject by containment. This
initiates the first sequence of operations in a nested flow of control. All operations that are a part of
this sequence use the number 1 followed by the time order number in which the operation takes place.

The first operation of sequence 1 is:

1.1: initialize()
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Objecta invokes its own operation. This is expressed by linking the object to itself and by using the
{self} stereotype indicator. The ObjectA: :initialize () operation also causes the beginning of
another sequence of actions:

1.1.1: initializeB()
1.1.2: initializeC()

in which two other objects local to Objecta initialize methods are called. The operation:
2: performAction (ObjectD)

is the beginning of another nested sequence. ObjectA invokes ObjectD’s operation:
2.1: doAction()

ObjectA can invoke this operation because ObjectD is a parameter (passed by MainObject) as the
stereotype {parameter} indicates. A value is returned to Objecta, and a value is returned to
MainObject. Besides sequence number combinations, these nested flows of controls are further
enhanced by using a line with a solid arrowhead pointing in the direction of the flow of the sequence.

Multitasking and Multithreading with
Processes and Threads

Concurrency within an application can be implemented by using multitasking or multithreading.
Multitasking allows more than one process to execute at the same time, whereas multithreading allows

a single process to perform more than one task at the same time using multiple threads. When a

process is divided into multiple tasks and each task is executed by a thread, the process is said to be
multithreaded. The thread is a flow of control executing within the process’s address space. Each process
has at least one thread, the main thread.

Diagramming Active Objects

When using the UML, each independent flow of control is considered an active object. An active object is
an object that owns a process or thread. Each active object can initiate control activity. An active class is a
class whose objects are active. Active classes can be used to model a group of processes or threads that
share the same data members and methods. The objects of your system may not have a one-to-one
correlation with active objects. When dividing your program up into processes and threads along object
lines, an object’s methods may execute in a separate process or execute on separate threads. Therefore,
when modeling such an object, it may be represented by several active objects. This relationship between
static and active objects can be represented by using an interaction diagram. Threads and processes can
be represented directly as active objects.

The UML represents an active object or class the same way a static object is represented except it has a
heavier line tracing the perimeter of the rectangle. Two stereotypes can also be used:

QO  process

a  thread
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These stereotype indicators can be displayed to show the distinction between the two types of active
objects. Figure 9-12 shows two active objects, both are threads. Each thread executes methods of
unrecognizediWords and wordSearchAgent?2.

<<thread>> <<thread>>
unrecognizedWords: UnrecognizedWords wordSearchAgent2: WordSearchAgent
addWord(string) {guarded} checkValidateWord(string) {concurrent}
removeWord(string) {guarded}

Figure 9-12

Showing the Multiple Flows of Control and Communication

In a concurrent system, you have multiple flows of control. Each flow of control is based on a process or
a thread controlling the activity. These processes and threads may be executing on a single computer
system with multiple processors. An active object or class is used to represent each flow of control.
When the active object is created, an independent flow of control is initiated. When the active object is
destroyed, the flow of control is terminated. Modeling the multiple flows of control in your system helps
you with the management, synchronization, and communication among them.

In a collaboration diagram, sequence numbers and solid arrows are used to identify flows of

controls. In a collaboration diagram that consists of active objects in a concurrent system, the name

of the active object is preprended to the sequence numbers of the operations peformed by the active
object. Active objects can invoke methods in other objects and suspend execution until the function
returns or can continue to execute. Arrows are used not to show just the direction of the flow of control
but also the nature of it. A solid arrowhead is used to represent a synchronous call and a half-stick
arrowhead is used to represent an asynchronous call. Since more than one active object can invoke the
operation of a single object, the method properties:

a sequential
a guarded

d  concurrent
can be used to describe the synchronization property of that method.
Figure 9-13 shows a collaboration of several active objects. In this diagram, these objects are working

together to produce a list of unknown words. The mainAgent is used to record and coordinate the
preliminary work and resulting list of unknown words produced by the active object problem solvers.
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1: << create >> <<thread>> L
(Agent)  {iocal)_|wordSearchAgentt 1.2: if (! f) = TRUE addWord(word)
R —
l 1.1: f = checkValidateWord(word) l
<<process>>
mainAgent myLexicon unrecognizedWords
T 2.1: f = checkValidateWord(word) I
2: << create >> <<thread>>
local
(Agent2) {local} wordSearchAgent2
—> 2.2:if (! f) = TRUE addWord(word)

Figure 9-13

The myLexicon and unrecognizedWords objects are accessed concurrently by two agents. Both objects
are visible to all the agents in this collaboration. The wordsearchagents invoke the methods of the
unrecognizedWords object:

wordSearchAgentl:unrecognizedWords.addWord (string word)
WordSearchAgent2:unrecognizedWords .addWord (string word)

The wordsearchAgents also invoke the methods of the myLexicon object:

wordSearchAgentl :myLexicon.validateWord (string &X)
WordSearchAgent2:myLexicon.validateWord (string &X)

The WordsSearchAgents are concurrently invoking unrecognizediWords object’s operation.
unrecognizedWords addwWord () has a guarded property and, therefore, is safe to call simultaneously.
myLexicon.validateWord () does not modify the object and is also safe to call simultaneously.

Message Sequences between Objects

Whereas a collaboration diagram focuses on the structural organization and interaction of objects
working together to perform a task or operation or to realize a use case, a sequence diagram focuses on the
time ordering of method invocation or procedures involved in a particular task, operation, or use case. In
a sequence diagram, the name of each object or construct involved is displayed in its own rectangular
box. The boxes are placed at the top along the x-axis of the diagram. You should only include the major
players involved and the most important function calls because the diagram can quickly become too
complicated. The objects are ordered from left to right starting from the object or procedure that initiates
the action to the most subordinate objects or procedures. The calls are placed along the y-axis from top to
bottom in time order. Vertical lines are placed under each box representing the lifeline of the object. Solid
arrowhead lines are drawn from the lifeline of one object to the lifeline of another representing a function
call or method invocation from the caller to the receiver. Stick arrowhead lines are drawn from the
receiver back to the caller representing a return from a function or method. Each function call is labeled
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at the minimum with the function or method name. The arguments and control information, like the
condition in which the method is invoked can also be displayed. For example:

if (!Unrecognized)
checkTransposes ()

The function or method will not be performed unless the condition is true. Methods that are to be
invoked several times on an object, like reading values from a structure, are preceded by an iteration
marker (*).

Figure 9-14 shows a sequence diagram of some of the objects involved in the Lexicon system. Only some
of the objects are shown to avoid a complicated diagram. When you are using the sequence diagram for
concurrent objects or procedures, activation symbols are used. An activation symbol is a rectangle that
appears on the object’s lifeline. This indicates the object or procedure is active. These are used when an
object makes a call to another object or procedure and does not block. This shows that the object or
procedure is continuing to execute or be active. If an object is not active, a dashed line is used. In Figure
9-14, the misspelledAgent object is always active whereas the mainAgent becomes inactive after it has
created the misspelledAgent. Once unrecognizedilords and myLexicon have been created, they do
not become active until misspelledaAgent invokes nextWord () and removeWord ().

mainAgent:

unrecognizedWords: myLexicon:
[

<< create >>
misspelledAgent

|
|
" |
createTranspositions() |
nextWord() |
return ¢ [l

|
|
|
|
|
|
| checkTransposes()
|
|
|
|
|

checkWord(word)

return bool

)

|
|
|
|
I
removeWord(c)
return bool |
D— deletes itself

I
Figure 9-14
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To indicate an object has called one of its own methods, a self-delegation symbol is used. This is a
combination of an activation symbol and a call arrow. An activation symbol is overlapped on the existing
activation symbol. A line proceeds from the original activation symbol with an arrow pointing to the
added activation symbol. In Figure 9-14, self-delegation occurs for the misspelledagent when it call its
methods createTranspositions () and checkTransposes (). The checkTransposes method passes
a transposition of the original word to myLexicon, which checks to see if this word is in the list of
recognizable words. This method is called iteratively until Unrecognized is FALSE, which means the
transposed word has been identified as the correct spelling of the original word. If the transposed word
has been recognized, the original word is removed.

The Activities of Objects

The UML can be used to model the activities performed by objects involved in a specific operation or use
case. This is called an activity diagram. It is a flowchart showing the sequential and concurrent actions or
activities involved a specific task, step by step. The arrows trace the flow of the control for the activities
represented in the diagram. Collaboration diagrams emphasize the flow of control from object to object,
sequence diagrams emphasize the flow of control in time order, and the activity diagram emphasizes the
flow of control from one action or activity to another. The actions or activities change the state of the
object or return a value. The containment of the action or activity is called an action or activity state. They
represent the state of the object at a particular instant in the flow of control.

Actions and activities differ.

Q  Actions cannot logically be decomposed or interrupted by other actions or events. Examples of
actions are creating or destroying an object, invoking an object’s method, or calling a function in
a procedure.

0  An activity can be decomposed into other activities or even another activity diagram. An
example of an activity is a program, a use case, or a procedure. Activities can be interrupted by
an event or other activities or actions.

An activity diagram is a graph in which the nodes are actions or activities and the arcs are triggerless
transitions. Triggerless transitions require no event to cause the transition to occur. The transition occurs
when the previous action or activity has completed. The diagram comprises decision branches, starts,
stops, and synchronization bars that join or fork several actions or activities. Both action and activity
states are represented the same way. To represent an action or activity state, the UML uses the standard
flowchart symbol used to show the enter and exit point of the flowchart. This symbol is used regardless
of the type of action or activity occurring. However, we prefer to use the standard flowchart symbols
that distinguish input/output actions (parallelogram) from processing or transformation actions
(rectangle). The description of the action or activity as a function call, expression, phrase, use case, or
program name is displayed in the action symbol used. An activity state may in addition show the entry
and/or exit action. The entry action is the action that takes places when the activity state is entered. The
exit action is the action that takes places just before exiting the activity state. They are the first and last
actions to be executed in the activity state, respectively.

Once an action has completed, a transition occurs in which the next action takes place immediately. The
transition is represented as a directed line from one state with a stick arrow pointing to the next state.

A transition pointing to a state is inbound and a transition leading from a state is outbound. Before the
outbound transition occurs, the exit action, if it exists, executes. After an inbound transition, the entry
action for the state, if it exists, executes. The start of the flow of control is represented as a large solid dot.
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The first transition leads from the solid dot to the first state in the diagram. The stopping point or stop
state of the activity diagram is represented as a large solid dot inside a circle.

Activity diagrams, like flowcharts, have a decision symbol. The decision symbol is a diamond with one
inbound transition and two or more outbound transitions. The outbound transitions are guarded
conditions that determine the path of the flow of control. The guarded condition is a simple boolean
expression. All of the outbound transitions should cover all of the possible paths from the branch.
Figure 9-15 shows the decision symbol used in determining whether a knowledge source should be
constructed, in determining whether a word should be added to the unrecognized word list.

checkValidateWord()

[in Lexicon] process next word
in list

DECISION

[not in Lexicon]

add word to
unrecognized list

Figure 9-15

You may find that there exists more than one flow of a sequence of actions or activities occurring
concurrently after an action or activity has completed. In contrast to a flowchart, the UML defines a
symbol that can be used to represent the instant where multiple flows of controls occur concurrently.

A synchronization bar is used to show where single path branches off or forks into parallel paths and
where parallel paths join. It is a thick horizontal line in which there can be multiple outbound transitions
(forking) or multiple inbound transitions (joining). Each transition represents a different path. Outbound
transitions from a synchronization bar signify an action or activity state has caused multiple flows of
control to occur. Inbound transitions into a synchronization bar signify the multiple flows of control
need to be synchronized. A synchronization bar is used to show that the paths are waiting for all paths to
meet and join into a single flow or path.

In Figure 9-16, mainAgent creates two concurrent flows of control by creating two WordSearchAgents.
After these these agents have completed, they are joined again into a single flow of control, where the
mainAgent then creates a MorphologyAgent.

The diagram is divided into separate sections called swimlanes. In each swimlane, the actions or activities
of a particular object, component, or use case occur. Swimlanes are vertical lines that partition the
diagram into sections. A swimlane for a particular object, component, or use case specifies the focus of
activities. An action or activity can occur only in a single swimlane. Transitions and synchronization bars
can cross one or more swimlanes. Actions or activities in the same lane or different lanes but at the same
level are concurrent. Figure 9-16 shows the activity diagram with swimlanes.
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MainAgent WordSearchAgent MorphologyAgent

!

create WordSearch
Agents

1 1

process the next process the next
word word

| |

checkValidateWord() checkValidateWord()
[in Lexicon] l [in Lexicon] l
[not in Lexicon] [not in Lexicon]

add Word to add Word to
unrecognized Word unrecognized Word
List List

[more words] [more words] C
[no more words] l[no more words]

create Morphology process an unrecognized
Agents word from List

!

Figure 9-16

The purpose of this activity diagram is to model the sequence of actions involved in a mainAgent and
other objects involved in producing the unknown word list for the agent-based Lexicon system.
Concurrency occurs with the WordSearchagents. The synchronization bar is in WordSearchAgent’s
swimlane. When there are no more words to process, then the flow of control for these agents is
relinquished, and the flow of control returns back to the main thread, mainaAgent.

State Machines

State machines depict the behavior of a single construct, specifying the sequence of transformations
during its lifetime as it responds to internal and external events. The single construct can be a system, a
use case, or an object. State machines are used to model the behavior of a single entity. An entity can
respond to events such as procedures, functions, operations, and signals. An entity can also respond to
elapses in time. Whenever an event takes place, the entity responds by performing some activity or
taking some action resulting in a change of the state of the entity or the production of some artifact. The
action or activity performed depends upon the current state of the entity. A state is a condition the entity
is in during its lifetime as a result of performing some action or responding to some event.
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A state machine can be represented in a table or directed graph called a state diagram. Figure 9-17 shows a
UML state diagram for the state machine of a process.

STOPPED

signaled
to restart

signaled
to stop

exit
[execution complete]

dispatch

RUNNING

S

timer runout

wakeup block
[1/0 complete] [wait on 1/0]
Figure 9-17

Figure 9-17 shows the states some process progresses through while it is active in the system. The
process can have four states: ready, running, sleeping, and stopped. There are eight events that cause the
four states of the process. Three of the events occur only if a condition is met.

O  The block event occurs only if the process requests I/O or it is waiting for an event to occur.
If the block event occurs, it triggers the process to transform from a running state to a
sleeping state.

QO  The wakeup event occurs only if the event takes place or the I/O has been completed. If the
wakeup event occurs, it triggers the process to transform from a sleeping state (source state) to a
ready state (target state).

Q  The exit event occurs only if the process has executed all its instructions. If the exit event occurs,
it triggers the process to transform from a running state to a sleeping state.

The remaining events are external events and not under the control of the process. They occur for some
external reason, triggering the process to transform from a source to a target state.

The state diagrams are used to model the dynamic aspects of an object, use case, or system. The
sequence, activity, interactive collaboration diagrams, and now the state diagram are used to model the
behavior of the system or object when it is active. Structural collaboration and class diagrams are used to
model the structural organization of an object or system. State diagrams are good to use to describe the
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behavior of an object regardless of the use case. They should not be used to describe the behavior of
several interacting or collaborating objects. They should be used to describe the behavior of an object,
system, or use case that goes through a number of transformations and that on which more than one
event can cause a single transformation to occur. These are constructs that are very reactive to internal
and externals events.

In the state diagram, the nodes are states, and the arcs are transitions. The states are represented as
rounded-corner rectangles in which the name of the state is displayed. The transitions are lines
connecting the source and target states with a stick arrow pointing to the target state. There are initial
and final states.

Q  The initial state is the default starting point for the state machine. It is represented as a solid
black dot with a transition to the first state of the state machine.

Q  The final state is the ending state of the state machine, indicating it has completed or the
system, use case, or object has reached the end of its lifeline. It is represented as a solid dot
embedded in a circle.

Representing the Parts of a State

A state has several parts. Table 9-8 lists the parts of a state.

Table 9-8

Parts of a State Description

Name The unique name of the state that distinguishes it from other states; a state
may have no name.

Entry/exit actions Actions executed when entering the state (entry state) or executed when
exiting the state (exit action).

Substates A nested state; the substates are the disjoint states that can be activated
sequentially or concurrently. The composite or superstate is the state that
contains the substates.

Internal transitions Transitions that occur within the state that are handled without causing a
change in the state.

Self-transitions Transitions that occur within the state that are handled without causing a
change in the state but that cause the exit and then the entry actions to
execute.

Deferred events Alist of events that occur while the object is in that state but that is queued
and handled when the object is in another state.
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A state can be represented simply by displaying the name of the state at the center of the state symbol.

If other actions are to be shown inside the state symbol, the name of the state should appear at the top in
a separate compartment. The actions and activities are listed below this compartment and are displayed
in this format:

label [Guard] / action or activity

For example:
do / validate(data)

The do is the label used for an activity to be performed while the object is in this state. The
validate (data) function is called with data as the argument. If an action or activity is a call to a
function or method, the arguments can be displayed.

The Guard is an expression that evaluates to true or false. If a condition evaluates to true, the action or
activity takes place. For example:

exit [data valid] / send(data)

The exit action send (data) is guarded. The expression data validis evaluated to be true or false.
Upon exiting the state, if the expression is true, then the send (data) function is called. The Guard is
always optional.

Transitions occur when an event takes place. This causes the object, system, or use case to transform
from one state to another state. Two transitions can occur that do not cause a change in the state of the
object, system, or use case. They are:

Q  Self-transition: With a self-transition, when a particular event occurs, this triggers the object to
leave the current state. When exiting, it performs the exit action (if any) and then performs
whatever action is associated with the self-transition (if any). The object reenters the state, and
the entry action (if any) is performed.

O  Internal transition: With an internal transition, the object does not leave the state and therefore
no entry or exit actions are performed.

Figure 9-18 shows the general structure of a state with exit and entry actions and do activity along with
internal and self-transitions. A self-transition is represented as a directed line that points back to the
same state.

/ name of state \

entry/action or function

entry action

I
activity | do/activity
internal transition name/action or function
exit action \ exit/action or function

self-transition

Figure 9-18
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A transition between different states indicates that there is a relationship or path that exists between
them. From one state an event can occur or a condition can be met that causes the object to be
transformed from one state (source state) to another state (target state). The event triggers the transition
of the object. A transition may have several concurrently existing source states. If so they are joined
before the transition occurs. A transition may have several concurrently existing target states in which a
fork has occurred. Table 9-9 lists the parts of a transition. A transition is rendered as a directed line from
the source state pointing to the target state. The name of the event trigger is displayed next to the
transition. Like actions and activities, events for transitions can also be guarded. A transition can be
triggerless meaning no special event occurs that causes the transition to take place. Exiting the source
state, the object immediately makes the transition and enters the target state.

Table 9-9

Parts of a Transition Description

Target state The state the object enters after a transition occurs.

Source state The original state of the object; when a transition occurs, the object leaves
the source state.

Event trigger The event that causes the transition to occur. A transition may be
triggerless, in which the transition occurs as soon as the object has
completed all activities in the source state.

Guard condition Aboolean expression associated with an event trigger. When it evaluates to
True, the transitions occurs.

Action An action executed by the object that takes place during a transition; it may
be associated with an event trigger and/or guard condition.

Diagramming Concurrent Substates

A substate can be used to further simplify the depiction of modeling the behavior of a concurrent
system. A substate is a state contained inside another state called a superstate or composite state. This
representation means a state can be further broken down into one or more substates. These substates can
be sequential or concurrent. With concurrent substates, each state machine represented exists in parallel
as different but concurrently existing flows of control. Each substate is separated by a dashed line. This is
true for the WordSearchAgent objects in the example used throughout this chapter. Each object is
processing all the words in its local list. The states for these objects are in a superstate called "building
the unrecognized words list".

Each substate is contained in a separate compartment. The substates are synchronized and joined before
exiting the composite state. When one substate has reached its final state, it waits for the other state to
reach its final state, then the substates are joined back into one flow. Figure 9-19 shows a state diagram
for Lexicon agent-based system.
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Building local list

Building the Unrecognized Word List

Updating
Word List

Updating
Word List

no

[more Words]

Retrieving Searching
next Wxicon
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[in Lexicon] [more Words]

[more Words]

Retrieving Searching
next Wxicon

[in Lexicon]

[more Words]

[in Lexicon]

Filtering the Unrecognized Word List

Removing
misspelling

Removing
word forms

.

In Figure 9-19, there is another composite state called "Filtering the Unrecognized Word List".
The substates in this composite state are sequential; they are not executed concurrently. First, the
misspelled words are removed, and then the word forms of recognized words are removed.

Figure 9-19
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Visualizing the Whole System

A system is composed of many elements, including subsystems organized into a collaboration to
accomplish some purpose. It is an aggregation of constructs joined in some regular interaction. The
diagraming techniques discussed in this chapter allow the developer to model a single system from
different viewpoints, from different levels, and from different flows of control to assist in the design

and development of the system. In this section, we discuss modeling and documenting the system as

a whole, meaning that the major components or functional elements can be depicted at the highest
level. The diagraming techniques discussed in this section are the ones used to model the architecture of
the system.

Although this is the last section in this chapter, modeling and documenting the whole system would be
the first level of designing and developing a system.

When modeling and documenting the architecture of a system, the view of the system is the highest
level. Grady Booch, James Rumbaugh, and Ivar Jacobson define architecture as:

The set of significant decisions about the organization of a software system, the selection of the
structural elements and their interfaces by which the system is composed, together with their
behavior as specified in the collaboration among those elements, the composition of these structural
and behavioral elements into progressively larger subsystems, and the architectural style that guides
this organization — these elements and their interfaces, their collaborations, and their composition.
[Booch, Rumbaugh, and Jacobson, 1999]

Modeling and documenting the architecture captures the system’s logical and physical elements along
with the structure and behavior of the system at the highest level.

The architecture of the system is a description of the system from a distinct view that focuses on the
structure and organization of the system from that aspect. The views are as follows:
Q  Use case: Describes the behavior of the system presented to end users

Q  Process: Describes the processes and threads used in the system’s mechanisms of concurrency
and synchronization

Q  Design: Describes the services and functions provided to the end user

(]

Implementation: Describes the components used to create the physical system

Q  Deployment: Describes the software components and the nodes on which they are executing in
the delivered system

As you can see these views overlap and interact with each other. Use cases can be used in the design
view. Processes can show up as components in the implementation view. Software components are used
in both implementation and deployment views. When designing the architecture of the system,
diagrams that reflect each of these views should be constructed.

A system can be decomposed into subsystems and modules. The subsystems or modules will be further
broken down into components, nodes, classes, objects, and interfaces. In the UML, subsystems or
modules used at the architectural level of documentation are called packages. A package can be used to
organize elements into a group that describes the general purpose of those elements. A package is
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represented as a rectangle with a tab on the upper-left corner. The package symbol contains the name of
the package. The packages in the system can be connected by means of composition, aggregation,
dependency, and association relationships. Stereotype indicators can be used to distinguish one type of
package from another. Figure 9-20 shows the packages involved in the Lexicon system. The system
package uses a <<system>> indicator to distinguish it from the List Build and Filter subsystems, which
use the <<subsystem>> indicator. Because they are subsystems, they are related to the system by an
aggregation relationship.

1

<< system >>

Lexicon Agent-based

System
List Build Filter
<< subsystem >> << subsystem >>
<< thread >> Unrecognized << thread >> << thread >>
WordSearchAgent Words MorphologyAgent MorphologyAgent

Unrecognized
Words

DictionaryLexicon

DictionaryLexicon

Figure 9-20

Summary

As we noted earlier, this chapter has covered some of the basic UML diagramming and notation
techniques used to design and document the concurrent behavior in an application, but it is only an
introduction to a very complex topic. We covered the following key points:

QO A model of a system is the body of information gathered for the purpose of studying the system.
Documentation is a tool used in modeling a system. The UML, Unified Modeling Language, is a
graphical notation used to design, visualize, model, and document the artifacts of a software
system created by Grady Booch, James Rumbaugh, and Ivar Jacobson. It is the de facto standard
for communicating and modeling object-oriented systems. The UML can be used to model
concurrent from the structural and behavioral perspectives.
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Q  UML diagrams can be used to model to most basic units, the object, to the whole system.
An object is the basic unit used in many UML diagrams. Dependency, inheritance, aggregation,
and composition are some of the relationships that can exist between objects. Interaction
diagrams are used to show the behavior of an object and identify concurrency in the system.
Objects can interact with other objects by communicating and invoking methods. Collaborations
diagrams depict the interactions between objects working together to perform some particular
task. Sequence diagrams are used to represent the interactions between object in time sequence.
Statecharts are used to depicts the actions of a single object over its lifetime.

QO  When modeling the whole system, the basic unit is a package. A package can be used to
represent systems and subsystems. Packages can have relationships with other packages such as
composition or some type of association.

For a more comprehensive treatment on these techniques, we recommend the book Designing Concurrent,
Distributed, and Real-Time Applications with UML by Hassan Gomaa (Addison-Wesley, 2000).

In the next chapter, we turn our attention to one last area of concern for multicore programming: testing
and logical fault tolerance.
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10

Testing and Logical Fault
Tolerance for Parallel
Programs

Those are places that can’t be accessed from a Chaos Gate. If you try to enter, you
show up, see a warning indicator, and then you're warped back to town.

— Miu Kawasaki, .hack// Another Birth

In Chapter 8, we introduced the Predicate Breakdown Structure (PBS) of an application and the
Parallel Application Design Layers (PADL) analysis model. These are top-down approaches

to producing declarative architectures for applications that have a concurrency or parallel
programming requirements. One of the ultimate goals of PBS and PADL is to establish a chain

of possession or audit trail for the application concurrency requirements that lead from the
solution model to threads or processes at the operating system level. In this chapter, we connect
the PBS and PADL analysis to application software testing and exception handling. The PBS and
PADL tell you what you should be testing for and what constitutes an error or an exception. You
can use exception handling to provide a kind of logical fault-tolerance for declarative architectures.
That is, if your application for unknown and uncontrollable reasons violates statements, assertions,
rules, predicates, or constraints from the PBS, you want to throw an exception and gracefully exit
because once the predicates have been violated, then the correctness, reliability, and meaning of
the application has been compromised.

In this chapter, we also introduce the various types of testing that should be part of any Software
Development Life Cycle (SDLC), especially ones where parallel programming will be deployed.
We explain exception handling, the differences between error handling and exception handling,
some of the issues for multithreading and parallel programming. We also briefly introduce the
notion of model checking, the relevance of possible-world semantics to the declarative
interpretation of parallel programming, and how they are used for testing and exception handling.
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Specifically, in this chapter we will cover the following:

O  Connecting the PBS and PADL analysis to application software testing and exception handling
0  Explaining the various types of testing that should be part of any SDLC

Q  Defining exception handling and what the differences are between error handling and exception
handling

Q  Introducing to the notion of model checking and the relevance of possible-world semantics to
the declarative interpretation of parallel programming

Can You Just Skip the Testing?

The goal of testing software is to make sure that the software does what you want and you want what is
does. An application is often requested as a list of desired features. This list can be represented as a
formal specification consisting of hundreds of pages or can be as simple as verbal request from an
employer detailing a dozen or so requirements. Regardless of how the list of requirements for a piece of
software is generated, the testing process must make sure that the software meets those requirements
and that the requirements meet the user’s expectations. In many cases where parallel computers or
multiprocessors are involved, the user’s expectations include performance speed up or a certain level of
high performance throughput. The kinds of software errors increase when multithreading or
multiprocessing is added in attempt to meet the user’s expectation. When the software does not perform
according to the specifications, the software is in error, even if the specification violation is that the
system performs too slowly. Software that requires parallel programming can be notoriously difficult to
test and debug. Testing and debugging are among the top 10 challenges to parallel programming
discussed in Chapter 3. Some of the main issues that are unique to testing and debugging multithreaded
or multiprocessing programs are:

Simulating minimum-to-maximum volume loads

Duplicating the exact flow of control during debugging

Duplicating race condition errors during debugging

Duplicating systemwide process and thread contention

Finding hidden unsafe thread functions

Testing and debugging nondeterministic algorithms

Proving there are no possibilities for deadlock or data race in the software
Simulating boundary and average workload mixes

Checking intermediate results when 100s or 1000s of threads and processes are in execution

O 000U 00000 O

Identifying the right number of threads or processes that will generate acceptable performance

The PADL and PBS analysis covered in Chapter 8 create the primary concurrency infrastructure and
implementation models that testing phases validate and verify. Declarative and predicate-based
approaches lend themselves to more automated forms of model checking and testing. Declarative
designs lead to declarative implementations. Declarative implementations bring the testing complexity
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of medium to large-scale parallel programs within reach of the software developer. Regardless of the
complexity of the testing or debugging process, the goal is to deploy software that is error free and fault
tolerant. The testing process must find each error and software defect and remove it.

A Public Service Announcement on Programmer Ethics
and Software Reliability

The code examples in this book contain little or no error and exception handling. This
is because the code examples are meant for exposition purposes only. We wanted to keep
the code examples short, and we did not want to distract the reader from the concepts
that were presented. However, real-world applications must be bulletproof. Because as
software developers, we produce applications in the fields of medicine, manufacturing,
homeland security, transportation, finance, education, scientific research, and all areas
of business, we have an ethical and moral responsibility to produce software that is
safe, correct, reliable, and fault tolerant. Anything less is malpractice.

Five Concurrency Challenges That Must Be
Checked during Testing

Some of the concurrency challenges in Chapter 3 have to be checked for in the testing phase and
accounted for in exception handlers. These challenges are:

1. Incorrect/inadequate communication between two or more tasks that are executing in parallel

Data corruption as a result of unsafe updating of data by two or more instructions or tasks

2
3. Resource contention when there is a many-to-one ratio between tasks and a resource
4 An unacceptable number of units that need to execute in parallel

5

Missing/incomplete documentation for communicating a software design that contains
multiprocessing and multithreading

In Chapter 7, we discussed the mechanisms that are used to enable and synchronize communication and
data or device access between concurrently executing threads or processes. For instance, mutexes and
semaphores are used to control and prevent errors that would occur from Challenge 2 in the preceding
list. Timed mutexes can be used to control and prevent errors that would result from the problems that
could occur from Challenge 3 in the preceding list. Documentation in so many cases receives the least
amount of attention and dedicated resources, but it is one of the most important components of a
software deployment. As with everything else with parallel programming and multithreading,
documentation is even more critical for these classes of application. The testing process should verify
and validate that the design documentation and the postproduction documentation match! Table 10-1
shows which mechanisms discussed in Chapter 7 can be used to prevent control and prevent some of the
five challenges shown in the preceding list.
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Table 10-1

Types of Semaphores Description

Mutex semaphores Mechanism used to implement mutual exclusion in a critical section
of code.

Read-write locks Mechanism used to implement read-write access policy between
tasks.

Condition variables Mechanism used to broadcast a signal between tasks that an event
has taken place.
When a task locks an event mutex, it blocks until it receives the
broadcast.

Multiple condition variable Same as an event mutex but includes multiple events or conditions.

The mechanisms listed in Table 10-1 are low-level mechanisms. Fortunately, using features of higher-
level component libraries, such as Threading Building Blocks (TBB) or the standard C++ concurrent
programming library, can take some of tedium away during the testing process. These issues are meant
to be dealt with in Layer 2 and 3 of the PADL analysis model discussed in Chapter 8.

However, first, we need to establish some definitions. There are several words that are used in
discussions on testing, error handling, and fault tolerance that are often used incorrectly or too loosely.
Table 10-2 contains the basic definitions for the terms that we will use in this chapter.

Table 10-2
Terms Definitions
Defect A flaw in any aspect of software or software requirements that contributes or
may potentially contribute to the occurrence of one or more failures
Error An inappropriate decision made by a software engineer/programmer that

leads to a defect in the software

Exception handling A mechanism for managing exceptions (unanticipated conditions during the
execution of a program) that changes the normal flow of the execution of a
program/software

Failure An unacceptable departure from the operation of a software element that
occurs as a consequence of a fault

Fault A defect in the software due to human error that when executed under
particular conditions causes failure

Fault tolerance A property that allows a piece of software to survive and recover from the
software failures caused by faults (defects) introduced into the software as a
result of human error

Reliability The ability of the software to perform a required function under specified
condition for a stated period of time
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Since some of the terms in Table 10-2 such as error, failure, and fault are commonly used in many different
ways, we have provided simple definitions for how they are used in this chapter. The extent to which
software is able to minimize the effects of failure is a measure of its fault tolerance. Achieving fault
tolerant software is one of the primary goals of any software engineering effort. However, the distinction
between fault-tolerant software and well-tested software is often misunderstood and blurred. Sometimes
the responsibilities and activities of software verification, software validation, and exception handling
are erroneously interchanged. To work toward the goal of using the C++ exception-handling mechanism
to help achieve logical fault-tolerant software, you must first be clear where exception handling fits in
the scheme of things.

Failure: The Result of Defects and Faults

Failures occur at runtime during software operation. Failures are the result of a defect in hardware,
software, or human operation. If the software is not running, then it cannot encounter defects. Although
this is an obvious statement it is important in understanding some of the distinctions between the
responsibilities and activities of the testing phase versus those of the exception handler. Ideally defects in
the software are removed during the testing stages. The same would be true for hardware. As for defects
in human operation, we would like to remove those defects through training and experience, but this is
easier said than done. To keep matters simple, we focus our discussion on defects in software.

Basic Testing Types

Table 10-3 describes the eight basic types of testing that should be performed on a piece of software prior
to its being put into operation.

Table 10-3

Types of Testing Description

Unit testing Requires that the software be tested one component or unit at a time. A unit
might be a software module, a collection of modules, a function, a
procedure, an object, an algorithm, or in some instances a computer
program.

Stress testing Designed to push a component or a system up to and sometimes beyond its
limits. Stress testing includes testing boundary conditions. When boundary
conditions are tested, it helps in determining what happens at the
boundaries the software component or system contains.

Integration testing Used to test the assembly of components. The components are combined
into logical groups, and each group is tested as a unit. The group can be
subjected to the same type of tests to which units are subjected. As each
component is added to the assembly, the number of elements that must be
tested grows combinatorially.

Regression testing Used to retest modules that have changed. Regression tests ensure that the
changes to the component do not cause it to lose any functionality.

Table continued on following page
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Types of Testing Description

Operational testing Used to test the system in its full operation. This test puts the software
component in a live environment to be tested under a complete system load.
The tests that the component undergoes during unit, integration, and stress
testing usually serve as operational tests as well. The operational tests also
serve to determine how the component will behave in a totally foreign
environment.

Specification testing Used as part of the software verification process. The component is audited
against the original specification. This specification dictates what
components are involved in a system and what the relationships are
between those components.

Acceptance testing Used by the end user of the module, component, or system to determine
performance. Acceptance testing is part of the software validation process.

As you perform the type of tests in Table 10-3 on a piece of software, you find defects and remove them
from the software. The more defects you find and remove during testing, the fewer defects your software
encounters during runtime. Defects encountered during runtime lead to failures in the software. Failures
in the software produce exceptional conditions for the software to operate under. The exceptional
conditions require exception handlers. So, the balancing act is between:

Q  Defect removal during the testing stages

Q  Defect survival during exception handling

Defect Removal versus Defect Survival

Although you can choose to favor defect survival over defect removal, the problem is that exception-
handling code can become so complex that it introduces defects into the software. So, instead of
providing a mechanism to help achieve fault tolerance, the exception handler becomes a source of
failure. Choosing defect survival over defect removal reduces the software’s chance to operate properly.
Extensive and thorough testing removes defects, which reduces the strain on the exception handlers. It is
also important to note that exception handlers do not occur as freestanding pieces of code. They occur
within the context of the overall software architecture. The journey toward fault tolerance in our
software begins by recognizing that:

QO  No amount of exception handling can rescue a flawed or inappropriate software architecture.

Q  The fault tolerance of a piece of software is directly related to the quality of its architecture.

Q  The exception-handling architecture cannot replace the testing stages.
To make this discussion about exception handling clear and meaningful, it is important to understand
that the exception-handling architecture occurs within the context of the software architecture as a
whole. This means that exceptions are identified by the PBS and PADL analysis. The solution model has

a PBS. When you have an unavoidable, uncontrollable, unexplainable deviation from the application
architecture’s PBS, then you have an exception. So, the exception is defined by clearly articulated
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architectures. If the software architecture is inappropriate, incomplete, or poorly thought out, then any
attempt at after-the-fact exception handling is highly questionable. Further, if shortcuts have been taken
during the testing stages (that is, incomplete stress testing, incomplete integration testing, incomplete
glass box testing, and so on), then the exception-handling code has to be perpetually added to and
becomes increasingly complex, ultimately detracting from the software’s fault tolerance and the
declarative architecture of the application. On the other hand, if the software architecture is sound and
the exception-handling architecture is compatible and consistent with the PBS and Layers 3, 4, and 5

of the PADL analysis, then a high degree of fault tolerance can be achieved for parallel programs. If you
approach the goal of context failure resilience with an understanding of the roles that software application
architecture and testing play, then it is obvious that you need to choose defect removal over defect
survival. Defect removal takes place during testing.

How Do You Approach Defect Removal for
Parallel Programs?

First, we should point out that testing should accompany every major activity in the SDLC from
requirements gathering activities to software maintenance activities. However, programs that involve
multithreading or multiprocessing require even more effort during the testing phase. So, you make use
of PADL analysis and PBS breakdown during you test plan. You break up the testing goals of parallel
programs into answering three fundamental questions:

1. Do the design models and PBS correctly and completely represent the solution model (assuming
that the solution model solves the original problem)?

2. Does the implementation model map correctly to the design models (Layer 4 and 5 from PADL)
and the PBS?

3. Have all of the challenges to concurrency in the implementation model been addressed?

Traditionally, most of the effort in testing parallel programs goes into answering the third question. This
is what typically happens in an imperative bottom-up approach to parallel programming. However, in a
declarative approach you answer Question 1 first. This is the most important test. If this test fails, there is
no reason to perform any further testing. We have presented simple versions of these models in Chapter
8, but in release code these models would contain a considerable amount of detail. If the design models
are sufficiently detailed and accurate, the PBS is complete, and they both accurately map to the original
solution problem, then you are in good shape. Opportunities for scalability or evolution of a software
application are determined by its application architecture and concurrency infrastructure. We test the
quality of both during the process of answering the first question. If the answer to the second question is
yes, then you have a solid application. So, answering Question 3, which has typically been thought of as
the most important, becomes secondary to answering Question 1 and Question 2. Standard software
engineering testing techniques are used to answer these questions. We simply use PADL and PBS to
formulate the three fundamental questions. Testing will verify that our application meets PADL and PBS.

To get some idea how this works, you can take a look at the flow of process that precedes the standard
testing phases.
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The Problem Statement

Recall from Chapter 8 the refinement of the game scenario: My trusted assistant has handed me a six-
character code. The code can contain any character more than once. However, the code can only contain
any characters from the numbers 0-9, or characters a-z. Your job is to guess what code the trusted
assistant has handed me. In the game the buzzer is set to go off after 2 minutes. If you guess what I'm
thinking in 2 minutes, you win. If my trusted assistant determines that you have made more than N
incorrect guesses within a 15-second interval, my assistant hands me a new code guaranteed to be
among the guesses that you have already made.

A Simple Strategy and Rough-Cut Solution Model

From the problem statement you devised the following simple strategy: You just happened to have all
4,496,388 possible codes to choose from in a file. You could simply perform an exhaustive search on the
file presenting each code as a guess. But since you are given a time constraint of 2 minutes, you aren’t
sure if you'll have enough time. So, your strategy is to find a way to search through multiple portions of
the file simultaneously. You decide to divide the original file into eight and have it searched concurrently.
Therefore, you should be able to guess correctly in the time that it takes to search one-eighth of the file.
But you also make one other provision. If you are able to search all 8 files, you still did not guess
correctly, and you are not out of time, you will divide the files into 64 and try again. If you fail and still
have time, you will divide the file into 128, try again, and so on.

A Revised Solution Model Using Layer 5 from PADL

Since you have determined that parallelism is useful in your solution model, you now include PADL
analysis as part of your SDLC. Layer 5 in PADL involves identifying an appropriate application
architecture for the problem and solution model. On first take, it appears that a multiagent architecture
best fits the solution model. So, you refine the solution model in the context of a multiagent application
architecture.

Revised Agent Model

You can easily see from the statement of the problem that you are initially dealing with three agents.

If you recast the game in terms of agents you have: Agent A gives the code to Agent B. Agent C tries to
guess Agent B’s code. If Agent C comes up with too many guesses in a 15-second interval, Agent A gives
Agent B a new code that is guaranteed to be a code that Agent C has already presented. If Agent C is
able to go through all of the possibilities and is still not declared the winner and if Agent C has more
time left, Agent C will make the same guesses only faster. Agent C realizes that generating enough
guesses to guarantee success within the given time limit requires help. So, Agent C recruits a team of
agents to help come up with guesses. For each pass through the total possibilities Agent C recruits a
bigger team of agents to help with the guesses.

The Concurrency Model for the Agents

From the revised agent model, you have identified that the concurrency models that you need to use are
the boss-worker model, peer-to-peer, Single Program Multiple Data (SPMD), Single Instruction Multiple
Data (SIMD), and Exclusive Read Exclusive Write (EREW). You use SPMD/SIMD here because the
agents use the same search techniques over different data sets. EREW covers the agents” communication
with the boss. The boss-worker model covers the relationship between guesser agent and its helpers. The
peer-to-peer model covers the relationship between the code owner and the trusted assistant.
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The PBS of the Agent Solution Model

Breakdown 1: You've won the game if your guess is correct and in time.

Breakdown 2: Your guess is correct if it consists of a six-character code that contains only
combinations of the characters (a—z, 0-9), considering that duplication is allowed and that
code is the one my agent has handed me.

Breakdown 3: Your guess is in time if it is correct and it occurs within 2 minutes.

Breakdown 4: A brute force search through the codes will be successful if there are enough
agents searching.

Breakdown 5: N agents are enough find the correct code from a sample of 4 million codes in
2 minutes.

Breakdown 6: 4 times N agents are required to find the correct code from a sample of 4 million
codes in 2 minutes if the code is being changed every 15 seconds.

Declarative Implementation of the PBS

Listing 10-1 follows the declarative semantics of the PBS.

Listing 10-1

// Listing 10-1 A declarative implementation of the guess_it program.
1 #include "posix_process.h"

2 #include "posix_gueue.h"

3 #include "valid_code.h"

4

5

6 char **av;

7 char **env;

8

9

10 int main(int argc,char *argv([],char *envpl[])

11 {
12
13 valid_code ValidCode;
14 ValidCode.determination("ofind_code") ;
15 cout << (ValidCode() ? "you win" : "you lose)";
16 }

So, you have a declaration of a ValidCode predicate in Line 13 and 14. This predicate is used to
represent the statement:

This is the code the trusted agent handed you.

On Line 14 you test this statement by invoking the predicate validcode (). The validCode () predicate
spawns four processes which in turn create two threads each. So, in fact the validCode predicate is
implemented using parallel programming. However, its implementation is encapsulated. Listing 10-2
shows the declaration of the valid_code predicate class.

383



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

Listing 10-2

//Listing 10-2 Declaration of the valid_code predicate class.

1 #ifndef _ VALID_ CODE_H

2 #define _ VALID_CODE_H

3 using namespace std;

4

5 #include <string>

6 class valid_code{

7 private:

8 string Code;

9 float TimeFrame;
10 string Determination;
11 bool InTime;
12 public:
13 bool operator () (void) ;
14 void determination(string X);
15 };
16
17 #endif

In C++ predicates are classes that have an operator () method that returns a boolean value. You use the
C++ predicate to approximate the notion of predicates from the PBS. Since a predicate is a C++ class, it
can be used in conjunction with containers and algorithms. Listing 10-3 shows the definition of the
predicate class.

Listing 10-3

// Listing 10-3 Definition of the valid_code predicate.

1 #include "valid_code.h"

2 #include "posix_process.h"
3 #include "posix_qgueue.h"

4

5 extern char **av;

6 extern char **env;

7

8

9 Dbool valid_code: :operator () (void)
10

11 int Status;

12 int N;

13 string Result;

14 posix_process Child[4];
15 for(N = 0; N < 2; N++)
16 {
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23 posix_queue PosixQueue ("queue_name") ;
24 PosixQueue.receive (Result) ;

25 if ((Result == Code) && InTime) {

26 return(true) ;

27 }

28 return(false);

29 1}

30

31

32 void valid_code: :determination(string X)
33 {

34 Determination = X;

35 }

Here is Program Profile 10-1 for Listings 10-1, 10-2, 10-3, and 10-4, which appears later in the chapter.

Program Profile 10-1

Program Name:
pguess_it (Listing 10-1)

Description:

This program is a “guess it” game. You win the game if your guess is correct in 2 minutes. Your guess is
correct if it consists of a six-character code that contains only combinations of the characters a-z, 0-9,
considering duplication is allowed.

The declaration of a validCode predicate is used to represent the statement:
This is the code the trusted agent handed you.

This statement is tested by invoking the predicate validcCode (). The validCode () predicate spawns
four processes, which in turn create two threads each. Its implementation is encapsulated.

Libraries Required:

rt

Additional Source Files Needed:
pguess_it.cc (Listing 10-1), posix_process.cc (Listing 10-4), valid_code. cc (Listing 10-3),

posix_dgueue.cc

Please note that because of its length posix_queue. cc is not listed in its entirety in the book.
However, you can download the full posix_queue. cc, along with the rest of the sample code from the
book, from www .wrox . com.

User-Defined Headers Required:
posix_process.h (Listing 5-3), valid_code.h (Listing 10-2), posix_queue.h (Listing 7-3).

Compile and Link Instructions:

c++ -0 pguess_it pguess_it.cc valid_code.cc posix_process.cc posix_queue.cc -lrt
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Test Environment:

Linux Kernel 2.6
Solaris 10, gcc 3.4.3 and 3.4.6

Processors:
Multicore Opteron, UltraSparc T1, Cell Processor

Notes:

None

How Do You Know This Code Works?

You use standard software engineering testing techniques but within the context of PADL, PBS and those
three fundamental questions mentioned earlier in the chapter. To answer this question, you see how far you
can get through standard software engineering tests with the PBS as the basic measuring stick of success.

What Are the Standard Software
Engineering Tests?

As we have previously noted, there are many types of software tests: tests done during the software
design as well as those done during implementation phases, installation and operational tests, usability
tests, and even acceptance tests done that determine whether a customer is satisfied with a delivered
system. Because of the complexity of today’s software systems, and their economic and social value,
software testing has become a highly specialized field. The Institute of Electrical and Electronics
Engineers (IEEE) publishes standards for the complete set of testing activities. IEEE, a nonprofit
organization, is the world’s leading professional association for the advancement of technology. Two
important testing standards documents published by the IEEE are:

Q  IEEE Std 1012, which provides guidelines for software verification and validation

Q  IEEE Std 1008, which covers unit testing

Every software development group should have these documents readily available. If you do not have
them, they can be downloaded from www . standards.ieee.org.

This chapter provides a brief overview of some of the issues covered in Std 1008 and Std 1012. Because
testing is one of the fundamental activities in any SDLC, Std 1008 and 1012 should be part of every SDLC.
If they are adhered to, the guidelines and recommendations presented in these standards considerably
enhance the quality of the software that is ultimately delivered to the user. The requirements and the
specifications you can glean from Std 1008 and Std 1012 help you answer two questions:

1. AmIbuilding the correct software?

2. AmIbuilding the software correctly?

The answers to these two questions deal with issues of software verification and validation.
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Software Verification and Validation

Software verification and validation perform are concerned with removing defects during each of the
types of testing mentioned in Table 10-3. When you engage in software validation, you are answering the
first question whereas verification answers the second question. Validation is an audit of the software
features against the software specification. According to IEEE Std 1012:

Software verification and validation (V&V) is a technical discipline of systems engineering. The
purpose of software V&V is to help the development organization build quality into the software
during the software life cycle. The software V&V processes determine if development products of a
given activity conform to the requirements of that activity, and if the software satisfies the intended
use and user needs. The determination includes assessment, analysis, evaluation, review, inspection,
and testing of software products and processes. The software V&V is performed in parallel with the
software development, not at the conclusion of the software development.

During the requirements and analysis activities of the SDLC, software specifications are generated. For
the purpose of the multicore application design that we are discussing in this book, the specifications
come from the design models and implementation models of the PADL analysis and the PBS. When you
perform software verification, you are examining whether the software meets these specifications. When
you engage in the process of determining whether the software actually performs the work the user
wants, you are answering the second question. Verification is implementing the software right and
validation is implementing the right software. Much of the software-testing process can be described as a
verification or validation process. Ultimately, all of the types of testing in Table 10-3 have to be
performed during the SDLC.

In addition to the seven types of software testing in Table 10-3, there are also six important types of
errors that you must keep in mind that relate to parallel programming. Table 10-4 lists the common
parallel programming errors and their descriptions.

Table 10-4
Common Parallel
Programming Errors Description
Deadlock A task is waiting for an event that will not occur
Priority inversion Occurs when a lower-priority task blocks the execution of a higher-priority

task when synchronization variables are being used or when they are
competing for resources

Performance Occurs when a system’s performance lowers or degrades in terms of
degradation responsiveness, execution time, calculation of results, and so on
Indefinite Occurs when a system indefinitely delays the scheduling of tasks while
postponement other tasks receive the attention and the allocation of resources

Mutex exhaustion Occurs when a system has reached its maximum number of mutexes that

can be created

Thread exhaustion Occurs when a system has reached its maximum number of threads that
can be allocated
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The Code Doesn’t Work — Now What?

For example, after performing the most basic unit tests, say you discover that the program from Listing
10-1 fails the unit tests. The program doesn’t work. What does it mean for the program not work? This
program fails because it does not meet the specifications of the PBS. This means that the program causes
one or more of the statements in the PBS to be false. Since the PBS is meant to capture the meaning of the
concurrency infrastructure, you know that the parallelism in this program will fail at some point because
it does not correctly implement the assertions, statements, and predicates in the PBS. In particular PBS #6
states:

Breakdown 6: 4 times N agents are required to find the correct code from a sample of 4 million codes in 2
minutes if the code is being changed every 15 seconds.

Recall the user-defined predicate valid_code () referenced on Lines 13-15 in Listing 10-1. It states
whether the search was successful or not. But in order for the search to be successful all of the assertions
in the PBS must be maintained. If you look a little closer at the definition of the predicate operator ()
for valid_code in Lines 9-30 in Listing 10-3, you can see that it spawns four posix_processes. Listing
10-4 shows the definition for the user-defined process_interface class.

Listing 10-4

// Listing 10-4 Definitions for user-defined posix_process interface class.

1 #include "posix_process.h"

2 #include <sys/wait.h>

3

4

5 posix_process::posix_process(string Path,char **av,char **env)
6 |

7

8 argv = av;

9 envp = env;
10 ProgramPath = Path;
11 posix_spawnattr_init (&SpawnAttr) ;
12 posix_spawn_file_actions_init (&FileActions) ;
13
14
15 '}
16

17 posix_process::posix_process (string Path,char **av,char **env,
posix_spawnattr_t X,
posix_spawn_file_actions_t Y)

18 {

19 argv = av;

20 envp = env;

21 ProgramPath = Path;

22 SpawnAttr = X;

23 FileActions = Y;

24 posix_spawnattr_init (&SpawnAttr) ;
25 posix_spawn_file_actions_init (&FileActions);
26

27

28

29 1}
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30

31 void posix_process::run(void)

32 {

33

34 posix_spawn (&Pid, ProgramPath.c_str(),&FileActions,
&SpawnAttr,argv, envp) ;

35

36

37 }

38

39 void posix_process::pwait(int &X)

40 {

41

42 walt (&X);

43}

The class in Listing 10-4 is an interface class that adapts the interface for the POSIX API

posix_spawn (). The posix_process class is used to spawn two copies of ofind_code. ofind_code
in turn spawns two threads. The problem is that you end up with only eight consecutive agents working
(four processes * two threads). So, the PBS #6 requirement that you quadruple the number of agents if
the code is being changed is not addressed by the valid_code predicate. In this case, you have a simple
mapping of one agent per thread. You should not get past unit tests if the predicates in the application
are not consistent with the PBS.

This matching of the PBS with C++ predicates is part of the fundamental shift to a declarative style of
parallel programming. This is a subtle but very powerful idea. You apply software verification and
validation (V&V) to the mapping of the PBS, and the C++ predicates extend the declarative style of
parallel programming to the V&V. Some of the other important objectives of V&V are:

Q  Facilitate early detection and correction of software errors
Q  Enhance management insight into process and product risk

Q  Support the software life cycle processes to ensure compliance with program performance,
schedule, and budget requirements

If you audit the predicates against the PBS, you can find the concurrency problems early and before the
software is deployed. In fact, one of the primary objectives of PADL and PBS is to deal with the full
complexity of the concurrency requirements prior to writing any code.

One of the consequences of the PADL and PBS is that they support declarative models of testing such
as model checking and possible-worlds analysis (which are briefly discussed later in the chapter).
These models can be deployed early in the SDLC. The complexity and integrity of multithreaded and
multiprocessing programs have to be managed at the beginning of the software development effort.
The testing process must mirror this. Consider the following from IEEE Std 1012:

Planning the V&V process, software integrity levels are generally assigned early in the development
process, preferably during the system requirements, analysis, and architecture design activities.

The software integrity level can be assigned to software requirements, functions, group of functions
or software components and subsystems. The assigned software integrity levels may vary as the
software evolves. Design, coding, procedural, and technology implementation features selected by
the development organization can raise or lower the software criticality and the associated software
integrity levels assigned to the software.
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The V&V at the unit test level is surprisingly effective (when used), as the example of the validCode ()
predicate failing at the unit test level demonstrates. The unit testing process is composed of three phases
that are partitioned into a total of eight basic activities:
1. Perform the test planning
a. Plan the general approach, resources, and schedule
b. Determine features to be tested
C. Refine the general plan
2.  Acquire the test set
a. Design the set of tests
b. Implement the refined plan and design
3. Measure the test unit
a. Execute the test procedures
b. Check for termination
C. Evaluate the test effort and unit
We suggest that you start to integrate these basic activities at end of the Layer 4 analysis from the PADL

model and after the PBS has been done. Other common types of errors that should be located in the
testing phase of your Layer 4 analysis are shown in Table 10-5.

Table 10-5

Categories of Errors Description

User interface errors Errors in the design, functionality, or performance of the user interface.
The user interface may fail in the areas of communication, command
structure, or output. The program may fail to do a task that is expected
by the user or it performs the task awkwardly.

Boundary related errors Aboundary of a program is anything that makes the program change
its behavior. Errors may be made by incorrectly describing the
boundary conditions or not detecting the limits of the program.

Calculation errors Errors that occur during calculations. These include errors of
misinterpretation of formulas or lost precision. This also includes
computational errors due to the use of incorrect algorithms.

Initial and later states Errors that occur during an initial use of a program. They occur each
time the program is restarted.

Race conditions Errors that occur when a thread or process executes before the expected
thread or process.

Control flow errors Errors that occur when the program performs the wrong thing next.
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Categories of Errors Description

Error handling Errors made when dealing with errors. The program may fail in
detecting or anticipating possible errors and fail in correcting those
errors reasonably.

Errors in handling Errors that occur when data is misinterpreted, corrupted, or lost when

or interpreting data passed back and forth between modules, programs, threads or
processes.

Load conditions Errors that occur when the program is overloaded. The program may

misbehave when performing a lot of work over long periods of time, or
a lot of work all at once. The program may fail when it runs out of
memory, or exhausts or shares its resources with other programs or
routines. How well does the program meet its limits, and how badly
does the program perform when its limits are surpassed?

Hardware Errors that occur when the program does not recognize or recover from
hardware failure. The program may fail to recognize error codes that
are returned from a device or it may try to access a device that is not
there or is already in use. The program may also send bad data to the
device.

Source and version control  Errors that occur when the incorrect version of the program is used. An
old version of a subroutine that contains errors may be linked to the
latest version of the program.

Documentation Errors that occur when bad documentation is being used.

Testing errors Errors that occur during the testing of the software.

Using the declarative architecture of the application in conjunction with mapping the PBS and PADL
early on in the unit testing phase will deal with the most significant challenges of a parallel
programming development effort. This technique is then supported by the application using C++
exception handling and what we call logical fault tolerance.

What Is Logical Fault Tolerance?

You can use the C++ exception handling facilities and the exception classes to enforce the semantics of
the PADL and PBS. By extending the exception and error classes through inheritance you aid the testing
process in catching non sequiturs that occur in the C++ predicate implementation of the application PBS.
We call this process adding logical fault tolerance to an application.

How the basics of the C++ exception-handling facility are used has at least two important implications
for the software architecture:

Q  The flow of control in the software architecture can be altered by the throw mechanism.

Q  The exception classes used introduce new types and each type has its own semantics.
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It is the transfer of control from the problem area to someplace that knows how to bring the system into
a consistent state and knows the semantics of the exception thrown that enables you to start to reach for
the goal of logical fault tolerance. The semantics of the exception thrown describes what the exceptional
condition is and suggests what should be done. The transfer of control takes you to code that
implements your exception strategy. The exception strategy is designed to make the software resilient to
defects and system failures. In C++, the catch () mechanism either implements the exception strategy
directly or creates objects and calls functions that implement the exception strategy:

catch (some_exception) {

//Execute exceptions strategy

}

The Exception Handler

The catch{} block is called the exception handler. A C++ program can contain multiple exception
handlers. Each exception handler is associated with one or more types (depending on the class hierarchy
of the exception). Three of the basic functions of an exception handler are:

O  Register the type of exception(s) that it can handle
Q  Record or in some way log what exception has occurred (sometimes this requires notification)
Q  Execute an appropriate exception-handling strategy
Exception-handling strategies come in many shapes and sizes. The primary purpose of the exception-
handling strategy in the termination model is to bring the software back to a consistent state so that the

software can continue to function at some acceptable level. Table 10-6 contains some of the commonly
used exception strategies.

Table 10-6
Exception Strategies Description
Resource reallocation Attempt to:

and deallocation
Reallocate memory

Close files

Release mutexes

Close semaphores

Release memory

Find files

Shut down processes

Change security of the offending process

Transaction or data Undoing steps of an incomplete transaction, rolling the data back to a check
rollback point where the data was valid
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Exception Strategies Description

Operation retry Retrying an operation:

¢ With the original resources

e With alternate resources

After a certain interval has passed

e After additional conditions have been met

Redundancy and Turning over processing to other threads or that are operating in parallel
failover with the current process

Notification for Requesting assistance from other software agents, human users, or other
outside assistance systems

The exception-handling strategy(ies) that are used will greatly impact the software architecture. This
means that the exception-handling strategy has to be included in the software design phase. In the
approach toward declarative interpretations of parallel programming, you are moving toward logical
models. Ultimately, you want nonlogical models or irrational program behavior to be considered an
exception. So the exception-handling strategy flows from Layer 5 of the PADL and the PBS. Itis a
fundamental part of the software architecture. If the overall software architecture is brittle, the exception-
handling strategy is doomed.

The semantics of the exception thrown is tied to the exception strategy implemented. Defining and
understanding the semantics of an exception in the context of the software architecture is as important as
deciding where to transfer control during the exception-handling process. The C++ standard defines
several built-in exception classes with their own semantics. Figure 10-1 shows the class relationship
diagram for the C++ exception classes.

underflow_error

overflow_error runtime_error

range_error

logic_error KF————  exception

I
| |

invalid_
argument

domain_error length_error out_of_range

Figure 10-1

These exception classes can be extended through inheritance. C++ also supports user-defined exception
classes.
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The standard C++ class library has nine exception classes divided into two basic groups: the runtime
error group and the logic error group. The runtime error group represents errors that are somewhat
difficult to prevent, whereas the logic error group represents errors that are theoretically preventable.

The runtime_error Classes

The runtime_error family of classes is derived from the exception class. Three classes are derived
from runtime_error: range_error, overflow_error, and underflow_error. The runtime_error
classes report internal computation or arithmetic errors. The runtime_error classes get their primary
functionality from the exception class ancestor. The what () method, assignment operator=(), and the
constructors for the exception-handling class provide the capability of the runtime_error classes. The
runtime_error classes provide an exception framework and architectural blueprint to build upon.

The logic_error Classes

The logic_error family of classes is derived from the exception class. In fact, most of the
functionality of the logic_error family of classes is also inherited from the exception class. The
exception class contains the what () method, used to report to the user a description for the error being
thrown. Each class in the logic_error family contains a constructor used to tailor a message specific to
that class.

Like the runtime_error classes, these classes are really designed to be specialized. Unless the user adds
some functionality to these classes, they cannot do anything other than report the error and the type. So,
the nine generic exception classes provide no corrective action or error handling. Take a look at how the
basic exception classes work with no specialization. Example 10-1 shows how an exception object and
a logic_error object can be thrown.

Example 10-1
// Example 10-1 Throwing an exception object and a logic_error object.

try{
exception X;
throw (X) ;

}

catch(const exception &X)
{
cout << X.what() << endl;

}

try{
logic_error Logic("Logic Mistake");
throw (Logic) ;

}

catch(const exception &X)
{

cout << X.what() << endl;
}
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The basic exception classes have only construction, destruction, assignment, copy, and simple reporting
capabilities. They do not contain the capability to correct a fault that has occurred. The error message
returned by the what () method of the exception classes will be determined by the string passed to

the constructor for the 1ogic_error object. In Example 10-1, the string "Logic Mistake" passed to the
constructor is returned by the what () message in the catch block().

Deriving New Exception Classes

The exception classes can be used as is, that is, they can be used simply to report an error message
describing the error that has occurred. However, this is virtually useless as an exception-handling
technique. Simply knowing what the exception was doesn’t do much to increase software reliability. The
real value of the exception class hierarchy is the architectural road map that it provides for the designer
and the developer. The exception classes provided basic error types that the developer can specialize.
Many of the exceptions that occur in a runtime environment can be placed into either the logic_error
or runtime_error family of classes. To see how to specialize an exception class, you can consider the
runtime_error class as an example. As already noted, the runtime_error class is a descendant of

the exception class. You can specialize the runtime_error class through inheritance. For example:

class concurrent_ file_access_exception : public runtime_error({
protected:
/] ...
int ErrorNumber;
string DetailedExplanation;
string FileName;
/] ...
public:
virtual int takeCorrectiveAction (void)
string detailedExplanation(void) ;
/],
Y

Here, the concurrent_file_access_exception inherits runtime_error and specializes it by adding
a number of data members and member functions. Specifically, the takeCorrectiveAction () method
is added. This method can be used to help the exception handler perform its recovery and correction
work. This file_access_exception object knows how to identify deadlock and how to break
deadlock. Recall that deadlock is one of the major challenges for parallel programming. It also has
specialized logic for dealing with viruses that can damage files. It also has specialized knowledge for
dealing with file transfers that get unexpectedly interrupted. Each of these situations can introduce
runtime exceptions. You can use the concurrent_file_access_exception objects with the throw,
catch, and try facilities of C++. For example:

try{
/...
fileProcessingOperation() ;
/...

}

catch(concurrent_file_access_exception &E)

{
cerr << E.what() << endl;
cerr << E.detailedExplanation() << endl;

(continued)
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(continued)

E.takeCorrectiveAction() ;
// Handler Take Additional Corrective Action
/...

Protecting the Exception Classes from Exceptions

The exception objects are thrown when some software component encounters a software or hardware
anomaly. But note, the exception objects themselves do not throw exceptions. This has many
implications. Special care should be taken when designing handlers in multithreaded or multiprocessing
environments. If the processing of the exception is complex enough to potentially cause another
exception to be generated, then the exception processing should be redesigned and simplified where
possible. The exception-handling mechanism is unnecessarily complicated when exception-handling
code can generate exceptions. Therefore, most of the methods in the exception classes contain the empty
throw () specification.

// Class declaration for exception class

class exception {
public:
exception() throw() {}
exception(const exception&) throw() {}
exception& operator=(const exception&) throw() {return *this;}
virtual ~exception() throw() {}
virtual const char* what() const throw();

Y

Note the throw () declarations with empty arguments. The empty argument shows that the method
cannot throw an exception. If the method attempts to throw an exception, a compile-time error message
is generated. If the base class cannot throw an exception, then the corresponding method in any derived
class cannot throw an exception.

A Simple Strategy for Implementing Logical Fault Tolerance

In its simplest form, the implementation model creates a C++ predicate for each of the predicates in the PBS
structure of the application. At that time, a predicate exception class (possibly derived from logic_error)
is created for each predicate. If for some unknown and uncontrollable reason assumptions, assertions, or
propositions concerning a predicate are contradicted, then that predicate’s exception class is thrown. In
most cases this means that the application will exit gracefully. It should exit at this point because once one
or more of the predicates from the PBS are contradicted; therefore, the application doesn’t have the same
meaning. The integrity of the concurrency infrastructure has been violated. The predicate exception class
acts as a logic-based invariant that guards the consistency of the PBS for the application. Obviously, the
predicate exception handler will know what to do when its exception is thrown.

For example, if the guess_it program determines that it does not have enough agents to generate
enough guesses in time to win, should it throw a valid_code exception? Or is the lack of enough agents
a normal software error, which, therefore, should be taken care of by error handling as opposed to
exception handling? The answer is a lack of enough agents in this case is not a normal software error
because the fundamental operation of the software is to acquire enough agents to guess the code in time.
If it cannot acquire enough agents, then it will fail its mission. The unit testing process should expose
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this, and the predicate exception handlers are used to aid the quality of unit testing. So, logical fault
tolerance serves two important roles in this example:

1. 1 brings the application to a graceful exit (or other acceptable state). For multiagent and
blackboard architectures this includes:

QO  Dismissing or retiring agents and knowledge sources
O Returning blackboard resources and communication lines

U Releasing reservations on any shared data, synchronization, or communication
components

2. It prevents the application from carrying on in an irrational state and thereby prevents the
application from committing further fallacies.

In particular, the second role logical fault tolerance plays here helps to build and enforce a declarative-
based architecture.

Testing and Logical Fault Tolerance

Typically, the exception-handling mechanism is used to keep the program from simply crashing. The
C++ exception-handling mechanism supports the termination model. A graceful exit is what is called for
in the termination model. However, you usually terminate an application when something catastrophic
has happened. Although it may be possible for a multithreaded or multiprocessing application to
continue if the PBS is not strictly adhered to, you should classify any departure from the PBS as
catastrophic because the logical consequence (or the meaning) of the application is the sum of is its
predicates, propositions, axioms, and statements. These predicates form the application’s logical
argument. If one of the assertions or predicates turns out to be false, then the application is irrational at
that point. You want to discover any irrational behavior during the testing phase, and you use logical
fault tolerance semantics to help you do this. This use of C++ predicates in conjunction with predicate
exceptions is an important part of achieving a declarative approach to parallel programming. While the
goal is to find all of the defects in the testing phases, it is not always possible. So, you add to the typical
uses for the C++ exception handling that of logical fault tolerance. The goal of logical fault tolerance is to
not allow the program to have any other consequences than the consequences that are present in the PBS.

Predicate Exceptions and Possible Worlds

You might recall from the guess_it game that the agent with the code would change the code only if
the number of guesses within a certain interval had been reached. In this scenario, the agent that
attempted to guess the code faced two possible worlds: one world in which the code had not been
changed and one where it had. The PBS had the following breakdowns for these situations:

Breakdown 5: N agents are enough find the correct code from a sample of 4 million codes in
2 minutes.
Breakdown 6: 4 times N agents are required to find the correct code from a sample of 4 million

codes in 2 minutes if the code is being changed every 15 seconds.

The validcCode () predicate failed the unit test because it did not provide for Breakdown 6. It is
important to note that if you were in a situation where the agent luckily guessed the code before the
15 seconds were up, it would appear that the program was in good working order. But when you are
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evaluating the application against the PBS, you have to have a test case for each predicate in the PBS.
Each predicate introduces one or more possible worlds. The notion of possible worlds is taken from field
of logic. A possible world is used to express what is necessarily true, possibly true, or contingently true.
The intuitive idea behind the possible-worlds model is that besides the true (or current) state of affairs,
there are a number of other possible states of affairs, or “worlds” [Fagin et al., 1995]. Possible worlds are
outcomes that an agent considers possible, in this case, the possibility of the code being changed

(world 1) or not changed (world 2). The PBS of an application clearly defines what the possible worlds
an agent or knowledge source will operate within. For every world that is possible for the agent, there is
a set of acceptable code that the agent or knowledge source can execute. On the other hand, for worlds
that are not possible (as far as the agent is concerned), there is no acceptable code that the agent can
execute. Impossible worlds generate predicate exceptions!

The predicates in the PBS introduce what possible worlds there are for an application or its agents to live
in. The predicate exception class represents scenarios where impossible worlds are encountered. For
example, the world where the code is changed every 15 seconds but no new agents are added to
accommodate that is an impossible world in the example PBS. It is exactly this problem that caused the
ValidCode () predicate to fail. You can use a form of model checking during your unit tests to uncover
these kinds of software defects in a parallel program.

What Is Model Checking?

Although a discussion of model checking is beyond the scope of this book, we introduce it here so that
once you're ready to deal with validation and verification of large and potentially complex parallel
programs or massively multithreaded applications, you have some idea of what tools are used. In this
book, we present a brief introduction to some of the more challenging issues with multicore and
multithreaded programming. But this book is just an introduction. We present declarative parallel
programming techniques that move in the direction of logical models of parallelism. Logical models will
ultimately help developers cope with massively parallel multicore computers. Model-checking
techniques can be used to automate some of the testing multithreaded or parallel programs that have
declarative architectures. Model checking is a technique for verifying finite-state concurrent systems
[Huth, Ryan, 2004]. Model checking is used to determine whether the model that is presented is the
model that is expected. The PBS approach used as an example in this chapter presents a logical model of
the application that can be formalized and used with model checking tools. You might be interested to
know that Kripke Structures are used in a formal presentation of possible worlds and model checking
[Meyer, Van der Hoek, 2004].

Summary

The goal of testing software is to make sure that the software does what you want, and that you want
what is does. An application is often requested as a list of desired features, and regardless to how the list
of requirements for a piece of software is generated, the testing process must make sure that the software
meets those requirements and that the requirements meet the user’s expectations.

In many cases where parallel computers or multiprocessors are involved, the user’s expectations include
performance speedup or a certain level of high-performance throughput, and often the kinds of software
errors you encounter increase when multithreading or multiprocessing is added in attempt to achieve
the user’s expectation. When the software does not perform according to the specifications, the software
is in error, even if the specification violation is that the system performs too slowly.
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Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

In this chapter, we discussed using exception handling to provide a kind of logical fault tolerance for
declarative architectures. That is, if an application for unknown and uncontrollable reasons violates
statements, assertions, rules, predicates, or constraints from the PBS, you want to throw an exception
and gracefully exit because once your predicates have been violated, then the correctness, reliability, and
meaning of the application has been compromised. The journey toward fault tolerance in your software
begins by recognizing that:

Q  No amount of exception handling can rescue a flawed or an inappropriate software architecture.
Q  The fault tolerance of a piece of software is directly related to the quality of its architecture.

Q  The exception-handling architecture cannot replace the testing stages.

In this approach toward declarative interpretations of parallel programming, we are moving you more
toward logical models. Ultimately, you want nonlogical models or irrational program behavior to be
considered an exception. So, the exception-handling strategy needs to flow from Layer 5 of the PADL
and the PBS and become a fundamental part of the software architecture. User-defined C++ predicates
form the application’s logical argument. If one of the assertions or predicates turns out to be false, then
the application is irrational at that point. The PBS of an application clearly defines what the possible
worlds an agent or knowledge source will operate within. For every world that is possible for the agent,
there is a piece of acceptable code that the agent or knowledge source can execute.

Software that requires parallel programming can be notoriously difficult to test and debug, which is why
testing and debugging represent key challenges for software that has a concurrency requirement. Ideally,
this chapter has given you a good foundation for how to approach some of those testing and debugging
challenges in your own parallel programming, just as this book has grounded you in the everyday
fundamentals of programming for multiprocessor and multithreaded architectures, the very kind of
application design and development that is now a mainstream concern. We wish you the best of luck
with your future multicore programming projects.

Finally, we want to leave you with a reiteration of a point we made toward the
beginning of this chapter: As software developers, we produce applications in the
fields of medicine, manufacturing, homeland security, transportation, finance,
education, scientific research, and all areas of business, we have an ethical and moral
responsibility to produce software that is safe, correct, reliable, and fault tolerant.
Anything less is malpractice.
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UML for Concurrent Design

This appendix provides a quick reference to the UML diagrams used throughout this book. The
Unified Modeling Language (UML) is a graphical notation used to design, visualize, model, and
document the artifacts of a software system. It is the de facto standard for communicating and
modeling object-oriented systems. The modeling language uses symbols and notations to
represent the artifacts of a software system from different views and with different focuses.
Although there are other graphical notations and artifacts used in this book, this appendix
provides a quick way the reader can become familiar with the basic UML notations and symbols
they may require in documenting their software systems.

The following web sites are online resources and quick reference PDFs for UML documentation:

d  www.uml.org

a www.acmesoffware.com/acme/default.asp
U www.oio.de/uml-1l-4-reference.htm
a

www . quantum-leaps.com/resources/UML_Reference.pdf

Class and Object Diagrams

Class and object diagrams are the most common diagrams used in modeling an object-oriented
system. Class diagrams can be use to represent each type of class in your system including;:

0O  Template classes

O  Interface classes

Class diagrams can include the details of the class (for example, attributes and services). Class and
object diagrams can show the data type, value of variables, and return types of functions. Object
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diagrams can show the object name. Both types of diagrams can depict the number of classes or objects
used in the system along with the relationships between classes and objects.

Figure A-1 illustrates the various ways to represent classes and objects, including active classes and

objects. Class diagrams can show as much detail as needed, including attributes, services, initial values,
return types, and visibility. Active classes or objects use a heavier line.

REPRESENTING A CLASS

class name
class name Attributes active class name
- private
# protected
+ public
| Services active class name
class name - private
attribute: Type = initial value # protected attribute: Type = initial value

+ public

service (argument list): N service (argument list):

return type Responsibilities return type

REPRESENTING AN OBJECT
object name: class name active object name:
class name

Figure A-1

Figure A-2 shows multiple instances of classes and objects. Multiple instances can be shown graphically
or by using multiplicity notation.

REPRESENTING MULTIPLE INSTANCES

class name 1.7

Attributes

- private
# protected
+ public

multiplicity notation

class name

multiple classes

= Services
- private

# protected

+ public

object name: class name

multiple objects

Responsibilities

Figure A-2
Figure A-3 illustrates the ways to represent bound or unbound templates or parameterized classes.
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(@) unbound map (b) bound maps
T [ parameterized
| types
L L - — 4

template class

: template cl
<parameterized types> empiate class

template class

N
_____ I <<bind>> (actual parameters)
[ ) 1
—_— parameterized | |
[ t_ypeﬁ —_——
template class template class template object

Figure A-3

Figure A-4 shows the ways to represent an interface class. An interface class can be represented using a
lollipop symbol or can be represented as a regular class displaying the <<interface>> stereotype. The
relationship between the interface class and the realization of the class can also be depicted.

REPRESENTING AN INTERFACE CLASS

Qﬁ (a) interface class lollipop

interface class

<<interface>> (b) using <<interface>> stereotype
class

Attributes

Services

<<interface>> (c) realization of an interface class
class

Attributes <P — — — realized class

Services

realized class

(d) realization of a class using interface lollipop

Attributes :

interface class

Services

Figure A-4
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Figure A-5 shows the ways to represent single and multiple inheritance. Two target styles can be used
when multiple classes are involved in a relationship: shared and separate.

Q  With the shared target style, multiple classes are tied to a single inheritance symbol that points
to the target class.

Q  With the separate target style, each class has its own inheritance symbol.

SINGLE INHERITANCE MULTIPLE INHERITANCE
base class base class base class
T«inherits» Zr <<inherits>> Zf
[
derived class derived class
base class base class
Arshared target style T ZFseparate target style
[ |
derived class derived class derived class derived class
Figure A-5

Figure A-6 shows examples of the multiple relationships that can be depicted in a class diagram.
Multiplicity notation can be used to show the number of instances between classes and objects.
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target class

whole M part
whole part
class A — — class B
role
name

source class

MULTIPLICY BETWEEN CLASSES

class B class A

class B : class A

class B 0.1 class A

class B m.0 class A
Figure A-6

Interaction Diagrams

Interaction diagrams show the interaction between objects. They consist of a set of objects, their
relationship, and the messages exchanged between them. Interaction diagrams include collaboration,
sequence, and activity diagrams.

Collaboration Diagrams

Aggregation

Composition

Dependency B depends on A

Navigability

A is always associated with one B.

A is always associated with zero or more Bs.

A is always associated with zero or one B.

A is always associated with m to n Bs.

Collaboration diagrams are used to show a set of objects working together to perform some work. The
collaboration in the system is a temporary cooperation between a set of objects. Collaboration diagrams
can depict the organization of the collaboration or can depict the structure of the collaboration. This
involves showing all the objects in the set, their links, and the messages sent and received between them.

Figure A-7 is a collaboration diagram showing the organization of collaborations within a system and
the structural relationship of objects within a collaboration.
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ORGANIZING COLLABORATIONS

7 Collaboration ™ _ _ " Collaboration ™, ;" Collaboration ™,
. A I(l \\ I(’_ - - ‘\ 1

class A E - - class B <1 S class E
¢
|
class C class D —O

IclassF
Figure A-7

Sequence Diagrams

Sequence diagrams are used to emphasize the time ordering of messages received and sent by objects in
a system.

In Figure A-8 a sequence diagram is used to emphasize the time ordering of messages passed between
objects. The active objects are placed at the top on the x-axis of the diagram. The messages passed
between the objects are placed on the y-axis of the diagram. The diagram can depict synchronous and
asynchronous messaging. The time ordering of messages is demonstrated by reading the messages from
top to bottom along the y-axis.

:0bject A
T

[j self delegation

<< create >>

:object B
(asynchronous)
|
message I:l
(synchronous) i
return |
kill
r X

>_< deletes itself
Figure A-8
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Activity Diagrams

Activity diagrams show the flow of control from one activity to another. Activities are actions performed
by objects. Actions include processing input/output, creating or destroying objects, or performing
computations. Activity diagrams are similar to flowcharts.

In Figure A-9 the activity diagram shows the actions of objects as it flows from the focus of control of one
object to another. It depicts the forking of multiple flows of control (concurrency) and joining of flows of
control with a synchronization bar. Swimlanes are used to show which object is performing the action.
Transitions may cut across swimlanes. A synchronization bar may also cut across swimlanes, indicating
that multiple flows of controls reside in different objects performing actions concurrently.

swimlane 1 swimlane 2
object A object B
START STATE I
DECISION [true condition]
processing 1
[false condition]
TRIGGERLESS
FORKING TRANSITION
input 1 input 2
SYNCHRONIZATION
JOINING BAR
processing 2
CONNECTOR

5

processing 3

START STATE é

Figure A-9
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State Diagrams

State diagrams are used to emphasize the state of objects and their transitions to those states. A state is a
condition that an object occupies at some point in its lifetime. An object can be transformed into many
different states in its lifetime. The object transform into a state if some condition is met, some action is
performed, or some event has taken place.

The Figure A-10 state diagrams show the states and transitions of an object during its lifetime. A state
diagram has an initial state and a final state. A state has several parts. States can also be a composite of
other states or even another state diagram. Substates that execute in parallel within a single entity are
called concurrent substates.

initial state
transition
state

ADVANCED STATES AND TRANSITIONS

@ final state

name of state

entry action ————  entry/action or function
activity ——>  do/activity
internal transition ————>  name/action or function
exit action K exit/action or function
COMPOSITE STATE
state B )
concurrent substate BT
Substates
Qﬁl state a H state b 'ﬁ@
substate B2
state ¢ >@
I\ J
Figure A-10
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Package Diagrams

Package diagrams are used to organize entities into groups.

Figure A-11 shows how package diagrams can be used to organize elements of a system. The stereotypes
<<system>> or <<subsystem>> can be used. The tab on the left can hold the name of the package if the
package contains other entities.

1 1 1
<< system >> << subsystem >>
package system subsystem

RELATIONSHIPS BETWEEN SYSTEMS

1
<< system >>

system 2

system 2 is composed of subsystem A
bsystem A contains sub: Al

subsystem A

<< subsystem >>

1

subsystem A1

|
| system 1 depends on subsystem A

|
<< system >>

system 1

Figure A-11
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Concurrency Models

This appendix provides a quick reference to the concurrency models used in this book.
Concurrency models determine how concurrent tasks delegate work to the tasks and how
communication is performed. The models can also supply a structure and approach that will assist
you in determining the access policies. Here, we compiled the concurrency models with a short
definition and diagram for each model.

Interprocess and Interthread
Communication

With Interprocess Communication (IPC), communication between processes is performed by
mechanisms that exist outside both address spaces of the processes.

With Interthread Communication (ITC), communication between threads occurs within the address
space of the process the communicating threads exist.

In Figure B-1, you see that the IPC resides outside the address space of both processes. IPC allows
for communication and the transference of data between related or unrelated processes. ITC
resides within the address space of a process. As you can see, ITC mechanisms allow threads of the
same process to access global data and variables, parameters, and file handles.

See Figure B-1 for an example of both.
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INTERPROCESS and INTERTHREAD COMMUNICATION:

PROCESS A’S ADDRESS SPACE

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT
LOCAL VARIABLES LOCAL VARIABLES GLOBAL DATA STRUCTURES main(){...}
GLOBAL VARIABLES GLOBAL VARIABLES
CONSTANTS
STATIC VARIABLES
PROCESS B’S ADDRESS SPACE
STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT
LOCAL VARIABLES LOCAL VARIABLES S 1 ROCTURES main() {
GLOBAL VARIABLES CONSTANTS /[create ThreadA
STATIC VARIABLES ffereate ThreadB
/lexecuted by ThreadA
VITGEE) (8 ITC MECHANISM
stack '_c _C_ _S _S . task1(...) { ...}
_______ | I | — — — — — — -
¥
GLOBAL | ThreadB
Thread B's : varsgies Ilexecuted by Thread
stack | PARAMETERS |<- - task2(...) {...}
________ FILE
. | HANDLES [
Main
Thread’s
stack
Figure B-1

Boss/Worker Approach 1 with Threads

The boss thread creates a new thread for each task. The threads can then execute their tasks

IPC
MECHANISMS

simultaneously. The threads are active. Interthread Communication (ITC) is used for communicating

between threads and synchronizing access to shared resources, data, and objects. See the top portion of
Figure B-2 for an example.

Boss/Worker Approach 1 with Processes

The boss process creates a new process for each task. The processes can then execute their tasks

simultaneously. The processes are active. Interprocess Communication (IPC) is used for communicating
between processes and synchronizing access to shared resources, data, and objects. See the bottom
portion of Figure B-2 for an example.
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BOSS/WORKER APPROACH 1 with THREADS:

<<Boss Thread>>

<<pthread_create>>

TASK _1

TASK 2 —_|

s

TASK _N

<<Thread 1>>

do
TASK_1

<<USes>>

T

<<Thread 2>>

do
TASK_2

SHARED

GLOBAL

DATA/OBJECT

VARIABLE

<<Thread 3>>
do

TASK_3

<<Thread N>>
do

TASK_N

BOSS/WORKER APPROACH 1 with PROCESSES:

<<Boss Thread>>

<<pthread_create>>

TASK _1

<<Process 1>>
do

TASK_1

TASK _2 —_|
TASK _3

/

<<Process 2>>
do

TASK_2

TASK _N

<<Process 3>>
do

<<Process N>>
do

TASK_N

Figure B-2

>
s |

<<uses>>

SHARED
DATA/OBJECT
ENVIRONMENT

VARIABLES

COMMAND-LINE
ARGUMENTS

SHARED

MEMORY
FILE
DESCRIPTORS

Boss/Worker Approach 2 with Threads

The boss thread creates a pool of threads in which each thread has its own queue of data. For shared data
or objects, ITC is used to synchronize access. See the top portion of Figure B-3 for an example.
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Boss/Worker Approach 3 with Threads

The boss thread creates a pool of threads that processes data from a shared queue of data. Each thread
will process a type of data. For shared data or objects, ITC (Interprocess Communication) is used to
synchronize access. See the bottom portion of Figure B-3 for an example.

BOSS/WORKER APPROACH 2 with THREADS:

<<Boss Thread>>

create pool of threads \‘/

<<Thread 1>>

woncs—(—— [ o [ g

WORK B I~
U

<<Thread 2>>
WORK C TASK_2 WORK B
VARIABLE

|

I

|
WORK D \
\ <<Thread 3>> ‘ |
! |

|

R
TASK_3 WORK B § BN HANDLES ‘

<<Thread N>>
Y

TASK_N WORK C

\

BOSS/WORKER APPROACH 3 with THREADS:

Boss Thread

create pool of threads \‘/
<<Thread 1>>
WORK A do
WORK B TASK_1 TYPEA <<uses>>
ITC
<<Thread 2>> —— — — — — =

WORK C

\\4 " oo §
WORKD NG ’—‘ ’—‘ ’—‘ TASK_2 TYPEB NN GlosA
W viRieie
|
I
|

WORK D ‘
<<Thread 3>> PARAMETERS |
TASK 3 TYPEC o AL -
<<Thread N>>
do
TASK_4
Figure B-3
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Peer-to-Peer Approach 1 with Threads

A peer thread creates a pool of peer threads in which each thread has its own queue of data. For shared
data or objects, ITC is used to synchronize access. See the top portion of Figure B-4 for an example.

Peer-to-Peer Approach 1 with Processes

A peer process spawns a pool of peer processes in which each has its own queue of data. For shared data
or objects, IPC is used to synchronize access. See the bottom portion of Figure B-4 for an example.

PEER-TO-PEER APPROACH 1 with THREADS:

<<Peer Thread 2>>
2 — e ]

TASK_1 WORK A

<<Peer Thread 1>>

create pool of threads 4
[ Jle e

TASK_1 WORK C

|

‘ GLOBAL

W VARiABLE
|

|

|

I

PARAMETERS |

FILE |
HANDLES

<<Peer Thread 3>>
2 — 1]

TASK_1

PEER-TO-PEER APPROACH 1 with PROCESSES:

<<Peer Thread 2>>
2 — e )]

TASK_1 WORK A

<<Peer Process 1>>

Spawn processe:
I N

TASK_1 WORK C

Figure B-4

IPC i

—

[l SEMAPHORES ‘

™ COMMAND-LINE |
[ ARGUMENTS

[ ENVIRONMENT !
W VARIABLES ‘
I SHARED ‘
| MEMORY I
| |
| |

<<Peer Thread 3>>
2 — L]

TASK_1
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Peer-to-Peer Approach 2 with Threads

A peer thread creates a pool of peer threads in which the threads share a queue of data. For shared data
or objects, ITC is used to synchronize access. See the top portion of Figure B-5 for an example.

Peer-to-Peer Approach 2 with Processes

A peer process spawns a pool of peer processes in which the processes share a queue of data. For shared
data or objects, IPC is used to synchronize access. See the bottom portion of Figure B-5 for an example.

PEER-TO-PEER APPROACH 2 with THREADS:

<<Peer Thread 2>>
do

TASK_1 WAIT

<<Peer Thread 1>>
GLOBAL

I
I
|:| create pool of threads +——| ‘ VARIABLE
I
do [l PARAMETERS |
|
|
|

TASK_1 WORK C

- — -

<<Peer Thread 3>>
do

TASK_1 WAIT

PEER-TO-PEER APPROACH 2 with PROCESSES:

<<Peer Thread 2>>
0

TASK_1 WAIT

e |
Csenmriores B
ARGUMENTS

|
| |
| |
BN ESCER =haaa f e |
do W VaRiABLES ‘
| |
| |
| |
| |

=Y

(]

<<Peer Process 1>>

TASK_1 WORK C SHARED
MEMORY
FILE
DESCRIPTORS

)

<<Peer Thread 3>>
do

TASK_1 WAIT

Figure B-5
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Workpile Approach 1

Workpile requires multiple workers to process data from the workpile (a shared data queue). The
controller creates a pool of workers and creates a workpile. The controller manages the workpile by
assigning work to the workers. The workers then store the results of their work in an output queue that
requires synchronization. See the top portion of Figure B-6 for an example.

Workpile Approach 2

With Workpile Approach 2, threads can also produce work that can be placed in the workpile. See the
bottom portion of Figure B-6 for an example.

WORKPILE APPROACH 1
PROCESS / PROGRAM

Workpile Controller
create pool of workers

create a workpile

. 4
WORK A ~_| assign work Worker 1

WORK B—| &

— I
WORKC/;| D, | G ][ B ][ A ] /I |:||:||:|

] Worker 2
WORK D do

Worker 3
do

TASK_3 WORK C

output of workers

WORKPILE APPROACH 2
PROCESS / PROGRAM

Workpile Controller
create pool of workers

create a workpile
Y

i k
WORK A ~_| assign wor Worker 1 output of workers
WORK B ~ - >
I
D || ¢ || By || Ay
O e ) ]
r
WORK D do
Worker 3
produce work D do
Figure B-6
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Pipeline Approach with Threads

Each thread in the pipeline performs work on input from the queue. Once a thread has performed the
work, it is passed to the next thread in the pipeline. Each thread represents a stage in the pipeline,
performing interim results. This allows multiple inputs to be processes simultaneously. The last thread
produces the final result of the pipeline. A buffer can be used between threads if one thread is slower
than the proceeding thread. See the top portion of Figure B-7 for an example.

Producer/Consumer Approach 1

with Threads

A producer thread produces data to be consumed by the consumer thread. The data is stored in a block
of memory shared between them. Storing the data in memory and retrieving the data from memory will
require synchronization. See the bottom portion of Figure B-7 for an example.

PIPELINE APPROACH with THREADS:

~ ‘ -
| Thread 1 | |

I:H:H:H:H . STAGE 1

|
| T |

Thread 2 }
STAGE 2
do C
\
[

:

BUFFER

-
Thread 3 }
STAGE 3 A
do
|

PRODUCER/CONSUMER APPROACH 1 with THREADS:

-
Producer Thread

|

|

| ,
o |

|

I

=

\
\
\
\
\

Figure B-7

ol =

BUFFER

Producer/Consumer Approach 2

with Threads

Multiple producer threads produce data to be consumed by one consumer thread. The data is stored in a
block of memory shared between them. Storing the data in memory and retrieving the data from
memory will require synchronization. See the top portion of Figure B-8 for an example.
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Producer/Consumer Approach 3
with Threads

Multiple producer threads produce data to be consumed by multiple consumer threads. The data is
stored in a block of memory shared between them. Storing the data in memory and retrieving the data
from memory will require synchronization. See the bottom portion of Figure B-8 for an example.

PRODUCER/CONSUMER APPROACH 2 with THREADS:

| Producer Thread |
: do |
' |
e __ e
———————— | Consumer Thread |
| Producer Thread | | |
B |
| do | I_’: do |
| CETT | c | |
|- ___ a | |
'________—I BUFFER
| Producer Thread |
| do |
' |
[ —— g
PRODUCER/CONSUMER APPROACH 3 with THREADS:
———————
| Producer Thread
| do | : Consumer Thread |
' | | '
J |
| do |
© producer Thread | ProduceA |
| Producer Thread | | Ll |
I do —R R
: | c | Consumer Thread |
________ |
|
Fo=——=== BUFFER ) '
| Producer Thread | | ® '
| | |
| | l_________I
' |
|- a
Figure B-8
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Monitor Approach

Monitor contains both data and methods needed to synchronize access to serially reusable shared
resources, data, or objects. The worker must enter the monitor and gain access to a condition variable in
order to access the shared resource. See Figure B-9 for an example.

MONITOR APPROACH:

Worker

create pool of workers l

Worker 1

WORK A ——:,_l Ds ,T'—"O

WORK B \MONITOR
WORK B Worker 2 _ |
I:I do [l resourceinuse : bool |
WORK C POl resourceisfree: condition |
X ; i
|

WORK D

Worker 3 [l if (resourceinuse) then

I:I do | wait(resourceisfree)
resourceinuse = true
TASK_3 WORK B —>] use resource

resourceinuse = false
signal(resourceisfree)

LN ] I
Worker N |

mCIef :

TASK_N WORK C

Figure B-9

Blackboard Approach with Threads

The Blackboard is a centralized object that each thread has access to. Access to the Blackboard has to be
synchronized. Each thread can post preliminary results or data. The threads can also process those
results or data in order to create partial solutions. See Figure B-10 for an example.
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BLACKBOARD APPROACH with THREADS:

BLACKBOARD

<< partial solutions >>

RESULTS ¢,
RESULTS D, BT |

: Thread 1 Thread 3 !

| do do |

| | | |

e S, Jd
Figure B-10

Data Level Parallelism: SIMD Approach

Single Instruction Multiple Data (SIMD) means a single instruction is performed on different data or sets
of data. One thread or process can perform the same task or different threads/processes can perform the
same task. See the top portion of Figure B-11 for an example.

Data Level Parallelism: MIMD Approach

Multiple Instruction Multiple Data (MIMD) means multiple instructions are performed on different data or
sets of data. Multiple threads or processes are used to execute the different tasks. See the bottom portion
of Figure B-11 for an example.
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DATA-LEVEL PARALLELISM: SIMD (SINGLE INSTRUCTION MULTIPLE DATA) APPROACH:

-
| Worker 1

|
|
|
D EI e
|

DATA SET 1 7 [ TASK_1 NEXT C

O — J

|
' |
|
(oo i
|
|

DATA SET 2

DATA-LEVEL PARALLELISM: MIMD (MULTIPLE INSTRUCTION MULTIPLE DATA) APPROACH:

Fm———————
| Worker 1 :
| |
|E3||Dz|c1|_:d° '
|
DATA SET 1 — Il JI
| Worker 2 :
| |
N N |
s e
DATA SET 2 — [ — JI
C egera |
| Worker 3 |
|

|
|p4||33||N2|M1Hdo I
|

[ TASK_3 NEXT N
DATA SET 3 — [ —— _!

Figure B-11
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PRAM Model

Parallel Random Access Machine (PRAM) is a theoretical model for multiple processors sharing one
global memory. All the processors have simultaneous read and write access to the shared global memory.
The PRAM model can be used for tasks that have simultaneous access to shared global memory. These
are the four algorithms that can be used to access the shared global memory:

1. Concurrent read algorithms are allowed to read the same piece of memory simultaneously with
no data corruption.

2. Concurrent write algorithms allow multiple processors to write to the shared memory.

3.  Exclusive read algorithms are used to ensure that no two processors ever read the same memory
location at the same time.

4. Exclusive write ensures that no two processors write to the same memory at the same time.

See the top portion of Figure B-12 for an example.

The PRAM model can be used to characterize concurrent access to shared memory by multiple
tasks. The next sections explain the concurrent and exclusive read-write algorithms combinations that
are possible for read-write access.

CRCW — Concurrent Read Concurrent Write

CRCW is the most difficult access policy to implement and requires the most synchronization. With this
access policy, unrestricted access is allowed but the integrity of the data and satisfactory system
performance still has to be maintained. See the bottom portion of Figure B-12.
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PRAM (PARALLEL RANDOM ACCESS MACHINE) MODEL:

Task A <

Task B < 5|  shared
memory

Task N

CRCW  Concurrent Read Concurrent Write

Task A write read Task B
shared
memory
Task C write read Task D
Figure B-12

EREW — Exclusive Read Exclusive Write

EREW means access to the shared memory is serialized where only one task at a time is given access to
the shared memory, whether it is access to write or to read. An example of EREW access policy is the
producer-consumer. This is the most restrictive access policy. See the top portion of Figure B-13.

ERCW — Exclusive Read Concurrent Write

ERCW access policy allows multiple writes to shared memory and exclusive reads. There are no
restrictions on how many tasks can write to the shared memory concurrently, but this policy allows only
one task to read the shared memory. This access policy is normally not implemented. See the middle
portion of Figure B-13.
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CREW — Concurrent Read Exclusive Write

CREW access policy allows multiple reads of the shared memory and exclusive writes. There are no
restrictions on how many tasks can read the shared memory concurrently, but the policy allows only one
task to write to the shared memory. Concurrent reads can occur while an exclusive write is taking place.
With this access policy, each reading task may read a different value while the other task is writing. The
next task that reads the shared memory will see different data than some other task sees. See the bottom
portion of Figure B-13.
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POSIX Standard
for Thread Management

This appendix contains sections from the POSIX Standard for Thread Management. Portable
Operating System Interface (POSIX) is the open operating system interface standard accepted
worldwide. It is produced by IEEE and recognized by ISO and ANSI. Support of POSIX standards
ensures code portability between systems and is increasingly mandated for commercial
applications and government contracts. The POSIX Standard is the most widely available method
for cross-platform multicore development. It is compatible with high-level thread libraries such as
Solaris Threads, Intel Thread Building Block, and the new Standard C++0x. The POSIX Standard is
voluminous, containing thousands of pages. Here, for your convenience, are sections from the
standard on thread management. The API functions contained in these sections are either covered
in this book or are of concern when developing multicore applications.

The following excerpts are reprinted with permission from IEEE Std. 1003.1-2001, IEEE Standard for
Information Technology - Portable Operating System Interface (POSIX), Copyright 2001, by IEEE. The
IEEE disclaims any responsibility or liability resulting from the placement and use in the described
manner.
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NAME

pthread_atfork — register fork handlers
SYNOPSIS
THR #include <pthread.h>

int pthread atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

DESCRIPTION
The pthread_atfork() function shall declare fork handlers to be called before and after fork(), in
the context of the thread that called fork(). The prepare fork handler shall be called before fork()
processing commences. The parent fork handle shall be called after fork() processing completes
in the parent process. The child fork handler shall be called after fork() processing completes in
the child process. If no handling is desired at one or more of these three points, the
corresponding fork handler address(es) may be set to NULL.

The order of calls to pthread_atfork() is significant. The parent and child fork handlers shall be
called in the order in which they were established by calls to pthread_atfork(). The prepare fork
handlers shall be called in the opposite order.

RETURN VALUE
Upon successful completion, pthread_atfork() shall return a value of zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_atfork() function shall fail if:

[ENOMEM] Insufficient table space exists to record the fork handler addresses.
The pthread_atfork() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE

There are at least two serious problems with the semantics of fork() in a multi-threaded
program. One problem has to do with state (for example, memory) covered by mutexes.
Consider the case where one thread has a mutex locked and the state covered by that mutex is
inconsistent while another thread calls fork(). In the child, the mutex is in the locked state
(locked by a nonexistent thread and thus can never be unlocked). Having the child simply
reinitialize the mutex is unsatisfactory since this approach does not resolve the question about
how to correct or otherwise deal with the inconsistent state in the child.

It is suggested that programs that use fork() call an exec function very soon afterwards in the
child process, thus resetting all states. In the meantime, only a short list of async-signal-safe
library routines are promised to be available.

Unfortunately, this solution does not address the needs of multi-threaded libraries. Application
programs may not be aware that a multi-threaded library is in use, and they feel free to call any
number of library routines between the fork() and exec calls, just as they always have. Indeed,
they may be extant single-threaded programs and cannot, therefore, be expected to obey new
restrictions imposed by the threads library.
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On the other hand, the multi-threaded library needs a way to protect its internal state during
fork() in case it is re-entered later in the child process. The problem arises especially in multi-
threaded 1/0O libraries, which are almost sure to be invoked between the fork() and exec calls to
effect 1/O redirection. The solution may require locking mutex variables during fork(), or it may
entail simply resetting the state in the child after the fork() processing completes.

The pthread_atfork() function provides multi-threaded libraries with a means to protect
themselves from innocent application programs that call fork(), and it provides multi-threaded
application programs with a standard mechanism for protecting themselves from fork() calls in
a library routine or the application itself.

The expected usage is that the prepare handler acquires all mutex locks and the other two fork
handlers release them.

For example, an application can supply a prepare routine that acquires the necessary mutexes the
library maintains and supply child and parent routines that release those mutexes, thus ensuring
that the child gets a consistent snapshot of the state of the library (and that no mutexes are left
stranded). Alternatively, some libraries might be able to supply just a child routine that
reinitializes the mutexes in the library and all associated states to some known value (for
example, what it was when the image was originally executed).

When fork( ) is called, only the calling thread is duplicated in the child process. Synchronization
variables remain in the same state in the child as they were in the parent at the time fork() was
called. Thus, for example, mutex locks may be held by threads that no longer exist in the child
process, and any associated states may be inconsistent. The parent process may avoid this by
explicit code that acquires and releases locks critical to the child via pthread_atfork(). In addition,
any critical threads need to be recreated and reinitialized to the proper state in the child (also via
pthread _atfork()).

A higher-level package may acquire locks on its own data structures before invoking lower-level
packages. Under this scenario, the order specified for fork handler calls allows a simple rule of
initialization for avoiding package deadlock: a package initializes all packages on which it
depends before it calls the pthiread_atfork() function for itself.

FUTURE DIRECTIONS
None.

SEE ALSO
atexit(), fork(), the Base Definitions volume of IEEE Std 1003.1-2001, <sys/types.h>

CHANGE HISTORY
First released in Issue 5. Derived from the POSIX Threads Extension.

IEEE PASC Interpretation 1003.1c #4 is applied.

Issue 6
The pthread_atfork() function is marked as part of the Threads option.

The <pthread.h> header is added to the SYNOPSIS.
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NAME
pthread_attr_destroy, pthread_attr_init — destroy and initialize the thread attributes object

SYNOPSIS
THR #include <pthread.h>

int pthread attr destroy(pthread attr t *attr);
int pthread attr init(pthread attr t *attr);

DESCRIPTION
The pthread_attr_destroy() function shall destroy a thread attributes object. An implementation
may cause pthread_attr_destroy() to set atfr to an implementation-defined invalid value. A
destroyed attr attributes object can be reinitialized using pthread_attr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined.

The pthread_attr_init() function shall initialize a thread attributes object attr with the default
value for all of the individual attributes used by a given implementation.

The resulting attributes object (possibly modified by setting individual attribute values) when
used by pthread_create( ) defines the attributes of the thread created. A single attributes object can
be used in multiple simultaneous calls to pthread_create(). Results are undefined if
pthread_attr_init() is called specifying an already initialized attr attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_destroy() and pthread_attr_init() shall return a value of
0; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the thread attributes object.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Attributes objects are provided for threads, mutexes, and condition variables as a mechanism to
support probable future standardization in these areas without requiring that the function itself
be changed.

Attributes objects provide clean isolation of the configurable aspects of threads. For example,
“stack size’’ is an important attribute of a thread, but it cannot be expressed portably. When
porting a threaded program, stack sizes often need to be adjusted. The use of attributes objects
can help by allowing the changes to be isolated in a single place, rather than being spread across
every instance of thread creation.

Attributes objects can be used to set up “classes’ of threads with similar attributes; for example,
“threads with large stacks and high priority’”" or “threads with minimal stacks”. These classes
can be defined in a single place and then referenced wherever threads need to be created.
Changes to ‘“class” decisions become straightforward, and detailed analysis of each
pthread_create() call is not required.

The attributes objects are defined as opaque types as an aid to extensibility. If these objects had
been specified as structures, adding new attributes would force recompilation of all multi-
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threaded programs when the attributes objects are extended; this might not be possible if
different program components were supplied by different vendors.

Additionally, opaque attributes objects present opportunities for improving performance.
Argument validity can be checked once when attributes are set, rather than each time a thread is
created. Implementations often need to cache kernel objects that are expensive to create.
Opagque attributes objects provide an efficient mechanism to detect when cached objects become
invalid due to attribute changes.

Since assignment is not necessarily defined on a given opaque type, implementation-defined
default values cannot be defined in a portable way. The solution to this problem is to allow
attributes objects to be initialized dynamically by attributes object initialization functions, so
that default values can be supplied automatically by the implementation.

The following proposal was provided as a suggested alternative to the supplied attributes:

1. Maintain the style of passing a parameter formed by the bitwise-inclusive OR of flags to
the initialization routines (pthread_create(), pthread_mutex_init(), pthread_cond_init()). The
parameter containing the flags should be an opaque type for extensibility. If no flags are
set in the parameter, then the objects are created with default characteristics. An
implementation may specify implementation-defined flag values and associated behavior.

2. If further specialization of mutexes and condition variables is necessary, implementations
may specify additional procedures that operate on the pthread mutex_t and
pthread_cond_t objects (instead of on attributes objects).

The difficulties with this solution are:

1. A bitmask is not opaque if bits have to be set into bitvector attributes objects using
explicitly-coded bitwise-inclusive OR operations. If the set of options exceeds an int,
application programmers need to know the location of each bit. If bits are set or read by
encapsulation (that is, get and set functions), then the bitmask is merely an
implementation of attributes objects as currently defined and should not be exposed to the
programmer.

2. Many attributes are not Boolean or very small integral values. For example, scheduling
policy may be placed in 3-bit or 4-bit, but priority requires 5-bit or more, thereby taking up
at least 8 bits out of a possible 16 bits on machines with 16-bit integers. Because of this, the
bitmask can only reasonably control whether particular attributes are set or not, and it
cannot serve as the repository of the value itself. The value needs to be specified as a
function parameter (which is non-extensible), or by setting a structure field (which is non-
opaque), or by get and set functions (making the bitmask a redundant addition to the
attributes objects).

Stack size is defined as an optional attribute because the very notion of a stack is inherently
machine-dependent. Some implementations may not be able to change the size of the stack, for
example, and others may not need to because stack pages may be discontiguous and can be
allocated and released on demand.

The attribute mechanism has been designed in large measure for extensibility. Future extensions
to the attribute mechanism or to any attributes object defined in this volume of
IEEE Std 1003.1-2001 has to be done with care so as not to affect binary-compatibility.

Attributes objects, even if allocated by means of dynamic allocation functions such as malloc(),
may have their size fixed at compile time. This means, for example, a pthread_create() in an
implementation with extensions to pthread_attr_t cannot look beyond the area that the binary
application assumes is valid. This suggests that implementations should maintain a size field in
the attributes object, as well as possibly version information, if extensions in different directions
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(possibly by different vendors) are to be accommodated.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_getstackaddr (), pthread_attr_getstacksize(), pthread_attr_getdetachstate(),
pthread_create(), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_destroy() and pthread_attr_init() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1 #107 is applied, noting that the effect of initializing an already
initialized thread attributes object is undefined.
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NAME

pthread_attr_getdetachstate, pthread_attr_setdetachstate — get and set the detachstate attribute
SYNOPSIS
THR #include <pthread.h>

int pthread attr getdetachstate(const pthread attr t *attr,

int *detachstate);
int pthread attr setdetachstate(pthread_attr t *attr, int detachstate);

DESCRIPTION
The detachstate attribute controls whether the thread is created in a detached state. If the thread
is created detached, then use of the ID of the newly created thread by the pthread_detach() or
pthread_join () function is an error.

The pthread_attr_getdetachstate() and pthread_attr_setdetachstate() functions, respectively, shall
get and set the defachstate attribute in the attr object.

For pthread_attr_getdetachstate(), detachstate shall be set to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

For  pthread_attr_setdetachstate(), the application shall set detachstate to  either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

A value of PTHREAD_CREATE_DETACHED shall cause all threads created with attr to be in
the detached state, whereas using a value of PTHREAD_CREATE_JOINABLE shall cause all
threads created with attr to be in the joinable state. The default value of the defachstate attribute
shall be PTHREAD_CREATE_JOINABLE.

RETURN VALUE
Upon successful completion, pthread_attr_getdetachstate() and pthread_attr_setdetachstate() shall
return a value of (; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getdetachstate() function stores the value of the detachstate attribute in detachstate
if successful.

ERRORS
The pthread_attr_setdetachstate() function shall fail if:
[EINVAL] The value of detachstate was not valid
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getstackaddr(), pthread_attr_getstacksize( ), pthread_create(), the
Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>
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CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are marked as part of
the Threads option.

The DESCRIPTION is updated to avoid use of the term “must” for application requirements.
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NAME
pthread_attr_getguardsize, pthread_attr_setguardsize — get and set the thread guardsize
attribute

SYNOPSIS
Xsl #include <pthread.h>

int pthread attr getguardsize(const pthread attr t *restrict attr,
size t *restrict guardsize);

int pthread_attr setguardsize(pthread attr t *attr,
size t guardsize);

DESCRIPTION
The pthread_attr_getquardsize() function shall get the guardsize attribute in the atfr object. This
attribute shall be returned in the guardsize parameter.

The pthread_attr_selguardsize() function shall set the guardsize attribute in the atfr object. The new
value of this attribute shall be obtained from the guardsize parameter. If guardsize is zero, a guard
area shall not be provided for threads created with attr. If guardsize is greater than zero, a guard
area of at least size guardsize bytes shall be provided for each thread created with attr.

The guardsize attribute controls the size of the guard area for the created thread’s stack. The
guardsize attribute provides protection against overflow of the stack pointer. If a thread’s stack is
created with guard protection, the implementation allocates extra memory at the overflow end
of the stack as a buffer against stack overflow of the stack pointer. If an application overflows
into this buffer an error shall result (possibly in a SIGSEGV signal being delivered to the thread).

A conforming implementation may round up the value contained in guardsize to a multiple of
the configurable system variable {PAGESIZE} (see <sys/mman.h>). If an implementation
rounds up the value of guardsize to a multiple of [PAGESIZE], a call to pthread_attr_getguardsize()
specifying attr shall store in the guardsize parameter the guard size specified by the previous
pthread_attr_setguardsize( ) function call.

The default value of the guardsize attribute is [PAGESIZE] bytes. The actual value of {[PAGESIZE]
is implementation-defined.

If the stackaddr or stack attribute has been set (that is, the caller is allocating and managing its
own thread stacks), the guardsize attribute shall be ignored and no protection shall be provided
by the implementation. It is the responsibility of the application to manage stack overflow along
with stack allocation and management in this case.

RETURN VALUE
If successful, the pthread_attr_getguardsize() and pthread_attr_setguardsize( ) functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_getgquardsize() and pthread_attr_selquardsize() functions shall fail if:
[EINVAL] The attribute attr is invalid.
[EINVAL] The parameter guardsize is invalid.

These functions shall not return an error code of [EINTR].
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EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An application
that creates a large number of threads, and which knows its threads never overflow their
stack, can save system resources by turning off guard areas.

2. When threads allocate large data structures on the stack, large guard areas may be needed
to detect stack overflow.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
In the ERRORS section, a third [EINVAL] error condition is removed as it is covered by the
second error condition.

The restrict keyword is added to the pthread_attr_getguardsize() prototype for alignment with the
ISO/1EC 9899: 1999 standard.
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NAME

pthread_attr_getinheritsched, pthread_attr_setinheritsched — get and set the inheritsched
attribute (REALTIME THREADS)

SYNOPSIS
THR Trs #include <pthread.h>

int pthread attr getinheritsched(const pthread attr t *restrict attr,
int *restrict inheritsched);

int pthread attr setinheritsched(pthread attr t *attr,
int inheritsched);

DESCRIPTION

The pthread_attr_getinheritsched(), and pthread_attr_setinheritsched () functions, respectively, shall
get and set the inheritsched attribute in the attr argument.

When the attributes objects are used by pthread_create(), the inheritsched attribute determines
how the other scheduling attributes of the created thread shall be set.

PTHREAD_INHERIT_SCHED
Specifies that the thread scheduling attributes shall be inherited from the creating thread,
and the scheduling attributes in this atfr argument shall be ignored.
PTHREAD_EXPLICIT_SCHED

Specifies that the thread scheduling attributes shall be set to the corresponding values from
this attributes object.

The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED are defined in
the <pthread.h> header.

The following thread scheduling attributes defined by IEEE Std 1003.1-2001 are affected by the
inheritsched attribute: scheduling policy (schedpolicy), scheduling parameters (schedparam), and
scheduling contention scope (contentionscope).

RETURN VALUE
If successful, the pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setinheritsched () function may fail if:
[EINVAL] The value of inheritsched is not valid.
[ENOTSUP] An attempt was made to set the attribute to an unsupported value.
These functions shall not return an error code of [EINTR].
EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

RATIONALE
None.
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FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy( ), pthread_attr_getscope(), pthread_attr_getschedpolicy(),
pthread_attr_getschedparam(), pthread_create( ), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are marked as part
of the Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The restrict keyword is added to the pthread_attr_getinheritsched() prototype for alignment with
the ISO/TEC 9899: 1999 standard.

438 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.



System Interfaces pthread_attr_getschedparam()

NAME

pthread_attr_getschedparam, pthread_attr_setschedparam — get and set the schedparam
attribute

SYNOPSIS
THR #include <pthread.h>

int pthread attr getschedparam(const pthread attr t *restrict attr,
struct sched param *restrict param);

int pthread attr setschedparam(pthread attr t *restrict attr,
const struct sched param *restrict param);

DESCRIPTION
The pthread_attr_getschedparam(), and pthread_attr_setschedparam() functions, respectively, shall
get and set the scheduling parameter attributes in the attr argument. The contents of the param
structure are defined in the <sched.h> header. For the SCHED_FIFO and SCHED_RR policies,
the only required member of param is sched_priority.

TSP For the SCHED_SPORADIC policy, the required members of the param structure are
sched_priority, sched_ss_low_priority, sched_ss_repl_period, sched_ss_init_budget, and
sched_ss_max_repl. The specified sched_ss_repl period must be greater than or equal to the
specified sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.
The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail.

RETURN VALUE
If successful, the pthread_attr_getschedparam() and pthread_attr_setschedparam() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setschedparam() function may fail if:
[EINVAL] The value of param is not valid.
[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy( ), pthread_attr_getscope(), pthread_attr_getinheritsched( ),
pthread_attr_getschedpolicy(), pthread_create(), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>, <sched.h>
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CHANGE HISTORY

Issue 6

440

First released in Issue 5. Included for alignment with the POSIX Threads Extension.

The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are marked as part
of the Threads option.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The  restricc keyword is added to the  pthread_atir_getschedparam()  and
pthread_attr_setschedparam() prototypes for alignment with the ISO/IEC 9899: 1999 standard.
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NAME
pthread_attr_getschedpolicy, pthread_attr_setschedpolicy — get and set the schedpolicy
attribute (REALTIME THREADS)

SYNOPSIS
THR Trs #include <pthread.h>

int pthread attr getschedpolicy(const pthread attr t *restrict attr,
int *restrict policy);
int pthread attr setschedpolicy(pthread attr t *attr, int policy);

DESCRIPTION
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions, respectively, shall
get and set the schedpolicy attribute in the atfr argument.

The supported values of policy shall include SCHED_FIFO, SCHED_RR, and SCHED_OTHER,
which are defined in the <sched.h> header. When threads executing with the scheduling policy

TSP SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC are waiting on a mutex, they shall acquire
the mutex in priority order when the mutex is unlocked.

RETURN VALUE
If successful, the pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setschedpolicy( ) function may fail if:
[EINVAL] The value of policy is not valid.
[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_atir_getinheritsched(),
pthread_attr_getschedparam( ), pthread_create( ), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.
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Issue 6

442

The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are marked as part of
the Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_attr_getschedpolicy() prototype for alignment with
the ISO/TEC 9899: 1999 standard.
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NAME
pthread_attr_getscope, pthread_attr_setscope — get and set the contentionscope attribute
(REALTIME THREADS)

SYNOPSIS
THR Trs #include <pthread.h>

int pthread attr getscope(const pthread attr t *restrict attr,
int *restrict contentionscope);
int pthread attr setscope(pthread attr t *attr, int contentionscope);

DESCRIPTION
The pthread_attr_getscope() and pthread_attr_setscope() functions, respectively, shall get and set
the contentionscope attribute in the atfr object.

The contentionscope attribute may have the values PTHREAD_SCOPE_SYSTEM, signifying
system scheduling contention scope, or PTHREAD_SCOPE_PROCESS, signifying process
scheduling  contention  scope.  The symbols PTHREAD_SCOPE_SYSTEM  and
PTHREAD_SCOPE_PROCESS are defined in the <pthread.h> header.

RETURN VALUE
If successful, the pthread_attr_getscope() and pthread_attr_setscope() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setscope( ) function may fail if:
[EINVAL] The value of contentionscope is not valid.
[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getinheritsched(), pthread_attr_getschedpolicy(),
pthread_attr_getschedparam(),  pthread_create(), the  Base  Definitions volume  of
IEEE Std 1003.1-2001, <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.
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Issue 6

444

The pthread_attr_getscope() and pthread_attr_setscope() functions are marked as part of the
Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The restrict keyword is added to the pthread_attr_getscope() prototype for alignment with the
ISO/IEC 9899: 1999 standard.
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NAME
pthread_attr_getstack, pthread_attr_setstack — get and set stack attributes
SYNOPSIS
THR #include <pthread.h>
TsA 155 int pthread attr getstack(const pthread attr t *restrict attr,
void **restrict stackaddr, size_t *restrict stacksize);
int pthread attr setstack(pthread attr t *attr, void *stackaddr,
size t stacksize);
DESCRIPTION
The pthread_attr_getstack() and pthread_attr_setstack() functions, respectively, shall get and set
the thread creation stack attributes sfackaddr and sfacksize in the aftr object.
The stack attributes specify the area of storage to be used for the created thread’s stack. The base
(lowest addressable byte) of the storage shall be sfackaddr, and the size of the storage shall be
stacksize bytes. The stacksize shall be at least [PTHREAD_STACK_MIN}. The stackaddr shall be
aligned appropriately to be used as a stack; for example, pthread_attr_setstack() may fail with
[EINVAL] if (stackaddr & 0x7) is not 0. All pages within the stack described by stackaddr and
stacksize shall be both readable and writable by the thread.
RETURN VALUE
Upon successful completion, these functions shall return a value of 0; otherwise, an error
number shall be returned to indicate the error.
The pthread_attr_getstack( ) function shall store the stack attribute values in stackaddr and stacksize
if successful.
ERRORS
The pthread_attr_setstack() function shall fail if:
[EINVAL] The value of stacksize is less than [PTHREAD_STACK_MIN| or exceeds an
implementation-defined limit.
The pthread_attr_setstack() function may fail if:
[EINVAL] The value of stackaddr does not have proper alignment to be used as a stack, or
if (stackaddr + stacksize) lacks proper alignment.
[EACCES] The stack page(s) described by stackaddr and stacksize are not both readable
and writable by the thread.
These functions shall not return an error code of [EINTR].
EXAMPLES

None.

APPLICATION USAGE

These functions are appropriate for use by applications in an environment where the stack for a
thread must be placed in some particular region of memory.

While it might seem that an application could detect stack overflow by providing a protected
page outside the specified stack region, this cannot be done portably. Implementations are free
to place the thread’s initial stack pointer anywhere within the specified region to accommodate
the machine’s stack pointer behavior and allocation requirements. Furthermore, on some
architectures, such as the IA-64, “overflow” might mean that two separate stack pointers
allocated within the region will overlap somewhere in the middle of the region.
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RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init(), pthread_attr_setdetachstate(), pthread_attr_setstacksize(), pthread_create(), the
Base Definitions volume of IEEE Std 1003.1-2001, <limits.h>, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Developed as an XSI extension and brought into the BASE by IEEE
PASC Interpretation 1003.1 #101.
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NAME
pthread_attr_getstackaddr, pthread_attr_setstackaddr — get and set the stackaddr attribute

SYNOPSIS
THR TsA #include <pthread.h>

OB int pthread attr getstackaddr(const pthread attr t *restrict attr,
void **restrict stackaddr);
int pthread attr setstackaddr(pthread attr t *attr, void *stackaddr);

DESCRIPTION
The pthread_attr_getstackaddr() and pthread_attr_setstackaddr() functions, respectively, shall get
and set the thread creation stackaddr attribute in the attr object.

The stackaddr attribute specifies the location of storage to be used for the created thread’s stack.
The size of the storage shall be at least [PTHREAD_STACK_MIN}.

RETURN VALUE
Upon successful completion, pthread_attr_getstackaddr() and pthread_attr_setstackaddr() shall
return a value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getstackaddr() function stores the stackaddr attribute value in stackaddr if
successful.

ERRORS
No errors are defined.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE

The specification of the stackaddr attribute presents several ambiguities that make portable use of
these interfaces impossible. The description of the single address parameter as a “stack’”” does
not specify a particular relationship between the address and the “stack’” implied by that
address. For example, the address may be taken as the low memory address of a buffer intended
for use as a stack, or it may be taken as the address to be used as the initial stack pointer register
value for the new thread. These two are not the same except for a machine on which the stack
grows “‘up” from low memory to high, and on which a ““push” operation first stores the value in
memory and then increments the stack pointer register. Further, on a machine where the stack
grows “down’ from high memory to low, interpretation of the address as the “low memory”
address requires a determination of the intended size of the stack. IEEE Std 1003.1-2001 has
introduced the new interfaces pthread_attr_setstack() and pthread_attr_getstack() to resolve these
ambiguities.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getdetachstate(), pthrend_attr_getstack(),
pthread_attr_getstacksize(), pthread_attr_setstack(), pthread_create( ), the Base Definitions volume
of IEEE Std 1003.1-2001, <limits.h>, <pthread.h>

System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 447



pthread_attr_getstackaddr()

System Interfaces

CHANGE HISTORY

Issue 6

448

First released in Issue 5. Included for alignment with the POSIX Threads Extension.
The pthread_attr_getstackaddr() and pthread_attr_setstackaddr() functions are marked as part of
the Threads and Thread Stack Address Attribute options.

The restrict keyword is added to the pthread_attr_getstackaddr() prototype for alignment with the
ISO/1EC 9899: 1999 standard.

These functions are marked obsolescent.
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NAME
pthread_attr_getstacksize, pthread_attr_setstacksize — get and set the stacksize attribute

SYNOPSIS
THR TsA #include <pthread.h>

int pthread attr getstacksize(const pthread attr t *restrict attr,
size t *restrict stacksize);
int pthread attr setstacksize(pthread attr t *attr, size t stacksize);

DESCRIPTION
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions, respectively, shall get
and set the thread creation stacksize attribute in the atfr object.

The stacksize attribute shall define the minimum stack size (in bytes) allocated for the created
threads stack.

RETURN VALUE
Upon successful completion, pthread_attr_getstacksize() and pthread_attr_setstacksize() shall
return a value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getstacksize() function stores the stacksize attribute value in stacksize if

successful.
ERRORS
The pthread_attr_setstacksize() function shall fail if:
[EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds a

system-imposed limit.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getstackaddr(), pthread_attr_getdetachstate(), pthread_create(),
the Base Definitions volume of IEEE Std 1003.1-2001, <limits.h>, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_getstacksize() and pthread_atfr_setstacksize() functions are marked as part of the
Threads and Thread Stack Address Attribute options.

The restrict keyword is added to the pthread_attr_getstacksize() prototype for alignment with the
ISO/IEC 9899:1999 standard.
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NAME

pthread_attr_init — initialize the thread attributes object
SYNOPSIS
THR #include <pthread.h>

int pthread attr init(pthread attr t *attr);

DESCRIPTION
Refer to pthread_attr_destroy().
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NAME
pthread_attr_setdetachstate — set the detachstate attribute
SYNOPSIS
THR #include <pthread.h>
int pthread attr setdetachstate(pthread attr t *attr, int detachstate);
DESCRIPTION

Refer to pthread_attr_getdetachstate().
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NAME
pthread_attr_setguardsize — set the thread guardsize attribute

SYNOPSIS
X5l #include <pthread.h>

int pthread attr setguardsize(pthread attr t *attr,
size t guardsize);

DESCRIPTION
Refer to pthread_attr_getguardsize().
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NAME
pthread_attr_setinheritsched — set the inheritsched attribute (REALTIME THREADS)

SYNOPSIS
THR Trs #include <pthread.h>

int pthread attr setinheritsched(pthread attr t *attr,
int inheritsched);

DESCRIPTION
Refer to pthread_attr_getinheritsched ().
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NAME
pthread_attr_setschedparam — set the schedparam attribute

SYNOPSIS
THR #include <pthread.h>

int pthread attr setschedparam(pthread attr t *restrict attr,
const struct sched param *restrict param);

DESCRIPTION
Refer to pthread_attr_getschedparam().
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NAME
pthread_attr_setschedpolicy — set the schedpolicy attribute (REALTIME THREADS)

SYNOPSIS
THR Trs #include <pthread.h>

int pthread attr setschedpolicy(pthread attr t *attr, int policy);

DESCRIPTION
Refer to pthread_attr_getschedpolicy().
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NAME
pthread_attr_setscope — set the contentionscope attribute (REALTIME THREADS)

SYNOPSIS
THR Trs #include <pthread.h>

int pthread attr setscope(pthread attr t *attr, int contentionscope);

DESCRIPTION
Refer to pthread_attr_getscope( ).

456 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.



System Interfaces pthread_attr_setstack()

NAME
pthread_attr_setstack — set the stack attribute

SYNOPSIS
X5l #include <pthread.h>

int pthread attr setstack(pthread attr t *attr, void *stackaddr,
size t stacksize);

DESCRIPTION
Refer to pthread_attr_getstack().
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NAME
pthread_attr_setstackaddr — set the stackaddr attribute

SYNOPSIS
THR TsA #include <pthread.h>

0B int pthread attr setstackaddr(pthread attr t *attr, void *stackaddr);

DESCRIPTION
Refer to pthread_attr_getstackaddr().

458 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.



System Interfaces pthread_attr_setstacksize()

NAME
pthread_attr_setstacksize — set the stacksize attribute

SYNOPSIS
THR TsA #include <pthread.h>

int pthread attr setstacksize(pthread attr t *attr, size t stacksize);

DESCRIPTION
Refer to pthread_attr_getstacksize().
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NAME

pthread_cancel — cancel execution of a thread
SYNOPSIS
THR #include <pthread.h>

int pthread cancel(pthread t thread);

DESCRIPTION
The pthread_cancel() function shall request that thread be canceled. The target thread's
cancelability state and type determines when the cancelation takes effect. When the cancelation
is acted on, the cancelation cleanup handlers for thread shall be called. When the last cancelation
cleanup handler returns, the thread-specific data destructor functions shall be called for thread.
When the last destructor function returns, thread shall be terminated.

The cancelation processing in the target thread shall run asynchronously with respect to the
calling thread returning from pthread_cancel().

RETURN VALUE
If successful, the pthread_cancel () function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_cancel () function may fail if:

[ESRCH] No thread could be found corresponding to that specified by the given thread
1D.

The pthread_cancel () function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Two alternative functions were considered for sending the cancelation notification to a thread.
One would be to define a new SIGCANCEL signal that had the cancelation semantics when
delivered; the other was to define the new pthread_cancel() function, which would trigger the
cancelation semantics.

The advantage of a new signal was that so much of the delivery criteria were identical to that
used when trying to deliver a signal that making cancelation notification a signal was seen as
consistent. Indeed, many implementations implement cancelation using a special signal. On the
other hand, there would be no signal functions that could be used with this signal except
pthread_kill(), and the behavior of the delivered cancelation signal would be unlike any
previously existing defined signal.

The benefits of a special function include the recognition that this signal would be defined
because of the similar delivery criteria and that this is the only common behavior between a
cancelation request and a signal. In addition, the cancelation delivery mechanism does not have
to be implemented as a signal. There are also strong, if not stronger, parallels with language
exception mechanisms than with signals that are potentially obscured if the delivery mechanism
is visibly closer to signals.

In the end, it was considered that as there were so many exceptions to the use of the new signal
with existing signals functions it would be misleading. A special function has resolved this
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problem. This function was carefully defined so that an implementation wishing to provide the
cancelation functions on top of signals could do so. The special function also means that
implementations are not obliged to implement cancelation with signals.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_exit (), pthread_cond_timedwait (), pthread_join (), pthread_setcancelstate( ), the Base
Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cancel() function is marked as part of the Threads option.
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NAME
pthread_cond_broadcast, pthread_cond_signal — broadcast or signal a condition
SYNOPSIS
THR #include <pthread.h>
int pthread cond broadcast(pthread cond t *cond);
int pthread cond signal(pthread cond t *cond);
DESCRIPTION

These functions shall unblock threads blocked on a condition variable.

The pthread_cond_broadcast() function shall unblock all threads currently blocked on the
specified condition variable cond.

The pthread_cond_signal() function shall unblock at least one of the threads that are blocked on
the specified condition variable cond (if any threads are blocked on cond).

If more than one thread is blocked on a condition variable, the scheduling policy shall determine
the order in which threads are unblocked. When each thread unblocked as a result of a
pthread_cond_broadcast() or pthread_cond_signal () returns from its call to pthread_cond_wait() or
pthread_cond_timedwait(), the thread shall own the mutex with which it called
pthread_cond_wait () or pthread_cond_timedwait (). The thread(s) that are unblocked shall contend
for the mutex according to the scheduling policy (if applicable), and as if each had called
pthread_mutex_lock().

The pthread_cond_broadcast() or pthread_cond_signal() functions may be called by a thread
whether or not it currently owns the mutex that threads calling pthread_cond_wait() or
pthread_cond_timedwait() have associated with the condition variable during their waits;
however, if predictable scheduling behavior is required, then that mutex shall be locked by the
thread calling pthread_cond_broadcast () or pthread_cond_signal ().

The pthread_cond_broadcast() and pthread_cond_signal () functions shall have no effect if there are
no threads currently blocked on cond.

RETURN VALUE
If successful, the pthread_cond_broadcast() and pthread_cond_signal () functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_cond_broadcast () and pthread_cond_signal () function may fail if:

[EINVAL] The value cond does not refer to an initialized condition variable.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_cond_broadcast() function is used whenever the shared-variable state has been
changed in a way that more than one thread can proceed with its task. Consider a single
producer/multiple consumer problem, where the producer can insert multiple items on a list
that is accessed one item at a time by the consumers. By calling the pthread_cond_broadcast()
function, the producer would notify all consumers that might be waiting, and thereby the
application would receive more throughput on a multi-processor. In addition,
pthread_cond_broadcast() makes it easier to implement a read-write lock. The
pthread_cond_broadcast() function is needed in order to wake up all waiting readers when a
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writer releases its lock. Finally, the two-phase commit algorithm can use this broadcast function
to notify all clients of an impending transaction commit.

It is not safe to use the pthread_cond_signal() function in a signal handler that is invoked
asynchronously. Even if it were safe, there would still be a race between the test of the Boolean
pthread_cond_wait() that could not be efficiently eliminated.

Mutexes and condition variables are thus not suitable for releasing a waiting thread by signaling
from code running in a signal handler.

RATIONALE

Multiple Awakenings by Condition Signal

On a multi-processor, it may be impossible for an implementation of pthread_cond_signal() to
avoid the unblocking of more than one thread blocked on a condition variable. For example,
consider the following partial implementation of pthread_cond_wait() and pthread_cond_signal(),
executed by two threads in the order given. One thread is trying to wait on the condition
variable, another is concurrently executing pthread_cond_signal(), while a third thread is already
waiting.

pthread cond wait(mutex, cond):
value = cond->value; /* 1 #*/
pthread mutex_unlock(mutex); /* 2 */
pthread_mutex_lock(cond->mutex); /* 10 */
if (value == cond->value) { /* 11 */
me->next_cond = cond->waiter;
cond->waiter = me;
pthread mutex unlock(cond->mutex);
unable to_run(me);
} else
pthread mutex_unlock(cond->mutex); /* 12 */
pthread mutex_ lock(mutex); /* 13 */

pthread cond signal(cond):

pthread mutex_lock(cond->mutex); /* 3 */

cond->value++; /* 4 */

if (cond->waiter) { /* 5 */
sleeper = cond->waiter; /* 6 */
cond->waiter = sleeper->next _cond; /* 7 */
able to run(sleeper); /* 8 */

}

pthread mutex_ unlock(cond->mutex); /* 9 */

The effect is that more than one thread can return from its call to pthread_cond_wait() or
pthread_cond_timedwait() as a result of one call to pthread_cond_signal(). This effect is called
“spurious wakeup”. Note that the situation is self-correcting in that the number of threads that
are so awakened is finite; for example, the next thread to call pthread_cond_wait() after the
sequence of events above blocks.

While this problem could be resolved, the loss of efficiency for a fringe condition that occurs
only rarely is unacceptable, especially given that one has to check the predicate associated with a
condition variable anyway. Correcting this problem would unnecessarily reduce the degree of
concurrency in this basic building block for all higher-level synchronization operations.

An added benefit of allowing spurious wakeups is that applications are forced to code a
predicate-testing-loop around the condition wait. This also makes the application tolerate
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superfluous condition broadcasts or signals on the same condition variable that may be coded in
some other part of the application. The resulting applications are thus more robust. Therefore,
IEEE Std 1003.1-2001 explicitly documents that spurious wakeups may occur.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(),  pthread_cond_timedwait(), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_broadcast() and pthread_cond_signal() functions are marked as part of the
Threads option.

The APPLICATION USAGE section is added.
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NAME

pthread_cond_destroy, pthread_cond_init — destroy and initialize condition variables

SYNOPSIS

THR

#include <pthread.h>

int pthread cond destroy(pthread cond t *cond);

int pthread cond init(pthread cond t *restrict cond,
const pthread condattr t *restrict attr);

pthread cond_t cond = PTHREAD COND INITIALIZER;

DESCRIPTION

The pthread_cond_destroy( ) function shall destroy the given condition variable specified by cond;
the object becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy()
to set the object referenced by cond to an invalid value. A destroyed condition variable object can
be reinitialized using pthread_cond_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

It shall be safe to destroy an initialized condition variable upon which no threads are currently
blocked. Attempting to destroy a condition variable upon which other threads are currently
blocked results in undefined behavior.

The pthread_cond_init() function shall initialize the condition variable referenced by cond with
attributes referenced by attr. If attr is NULL, the default condition variable attributes shall be
used; the effect is the same as passing the address of a default condition variable attributes
object. Upon successful initialization, the state of the condition variable shall become initialized.

Only cond itself may be used for performing synchronization. The result of referring to copies of
cond in calls to pthread_cond_wait(), pthread_cond_timedwait(), pthread_cond_signal(),
pthread_cond_broadcast (), and pthread_cond_destroy() is undefined.

Attempting to initialize an already initialized condition variable results in undefined behavior.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are statically
allocated. The effect shall be equivalent to dynamic initialization by a call to pthread_cond_init()
with parameter atfr specified as NULL, except that no error checks are performed.

RETURN VALUE

If successful, the pthread_cond_destroy() and pthread_cond_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

The [EBUSY] and [EINVAL] error checks, if implemented, shall act as if they were performed
immediately at the beginning of processing for the function and caused an error return prior to
modifying the state of the condition variable specified by cond.

ERRORS

The pthread_cond_destroy() function may fail if:

[EBUSY] The implementation has detected an attempt to destroy the object referenced
by cond while it is referenced (for example, while being used in a
pthread_cond_wait() or pthread_cond_timeduwait()) by another thread.

[EINVAL] The value specified by cond is invalid.
The pthread_cond_init() function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another condition variable.
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[ENOMEM] Insufficient memory exists to initialize the condition variable.

The pthread_cond_init() function may fail if:

[EBUSY] The implementation has detected an attempt to reinitialize the object
referenced by cond, a previously initialized, but not yet destroyed, condition
variable.

[EINVAL] The value specified by aftr is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES

A condition variable can be destroyed immediately after all the threads that are blocked on it are
awakened. For example, consider the following code:

struct list {
pthread mutex t 1m;

}
struct elt {

key k;

int busy;

pthread cond_t notbusy;
}

/* Find a list element and reserve it. */
struct elt *
list find(struct list *1p, key k)

{
struct elt *ep;
pthread mutex lock(&lp->1m);
while ((ep = find elt(l, k) != NULL) && ep->busy)
pthread cond wait(&ep->notbusy, &lp->1m);
if (ep != NULL)
ep->busy = 1;
pthread mutex unlock(&lp->1lm);
return(ep);
}
delete_elt(struct list *1p, struct elt *ep)
{

pthread mutex lock(&lp->1m);
assert (ep->busy);
... remove ep from list ...
ep->busy = 0; /* Paranoid. */

(A) pthread cond_broadcast(&ep->notbusy);
pthread mutex unlock(&lp->1m);

(B) pthread cond destroy(&rp->notbusy);
free(ep);

}

In this example, the condition variable and its list element may be freed (line B) immediately
after all threads waiting for it are awakened (line A), since the mutex and the code ensure that no
other thread can touch the element to be deleted.
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APPLICATION USAGE
None.

RATIONALE
See pthread_mutex_init(); a similar rationale applies to condition variables.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_broadcast(), pthread_cond_signal(), pthread_cond_timedwait(), the Base Definitions
volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_destroy() and pthread_cond_init() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION.

The restrict keyword is added to the pthread_cond_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.
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NAME
pthread_cond_signal — signal a condition

SYNOPSIS
THR #include <pthread.h>

int pthread cond signal(pthread cond t *cond);

DESCRIPTION
Refer to pthread_cond_broadcast().
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NAME
pthread_cond_timedwait, pthread_cond_wait — wait on a condition
SYNOPSIS
THR #include <pthread.h>
int pthread cond timedwait(pthread cond t *restrict cond,
pthread mutex t *restrict mutex,
const struct timespec *restrict abstime);
int pthread cond wait(pthread_cond_t *restrict cond,
pthread mutex t *restrict mutex);
DESCRIPTION

The pthread_cond_timedwait() and pthread_cond_wait() functions shall block on a condition
variable. They shall be called with mutex locked by the calling thread or undefined behavior
results.

These functions atomically release mutex and cause the calling thread to block on the condition
variable cond; atomically here means “atomically with respect to access by another thread to the
mutex and then the condition variable”. That is, if another thread is able to acquire the mutex
after the about-to-block thread has released it, then a subsequent call to pthread_cond_broadcast()
or pthread_cond_signal() in that thread shall behave as if it were issued after the about-to-block
thread has blocked.

Upon successful return, the mutex shall have been locked and shall be owned by the calling
thread.

When using condition variables there is always a Boolean predicate involving shared variables
associated with each condition wait that is true if the thread should proceed. Spurious wakeups
from the pthread_cond_timedwait () or pthread_cond_twait() functions may occur. Since the return
from pthread_cond_timedwait() or pthread_cond_waif() does not imply anything about the value
of this predicate, the predicate should be re-evaluated upon such return.

The effect of using more than one mutex for concurrent pthread_cond_timedwait() or
pthread_cond_wait() operations on the same condition variable is undefined; that is, a condition
variable becomes bound to a unique mutex when a thread waits on the condition variable, and
this (dynamic) binding shall end when the wait returns.

A condition wait (whether timed or not) is a cancelation point. When the cancelability enable
state of a thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a
cancelation request while in a condition wait is that the mutex is (in effect) re-acquired before
calling the first cancelation cleanup handler. The effect is as if the thread were unblocked,
allowed to execute up to the point of returning from the call to pthread_cond_timedwait() or
pthread_cond_wait( ), but at that point notices the cancelation request and instead of returning to
the caller of pthread_cond_timedwaif() or pthread_cond_wait(), starts the thread cancelation
activities, which includes calling cancelation cleanup handlers.

A thread that has been unblocked because it has been canceled while blocked in a call to
pthread_cond_timedwaif() or pthread_cond_wait() shall not consume any condition signal that
may be directed concurrently at the condition variable if there are other threads blocked on the
condition variable.

The pthread_cond_timedwait() function shall be equivalent to pthread_cond_twait (), except that an
error is returned if the absolute time specified by abstime passes (that is, system time equals or
exceeds abstime) before the condition cond is signaled or broadcasted, or if the absolute time
specified by abstime has already been passed at the time of the call.
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cs If the Clock Selection option is supported, the condition variable shall have a clock attribute
which specifies the clock that shall be used to measure the time specified by the abstine
argument. When such timeouts occur, pthread_cond_timedwait() shall nonetheless release and
re-acquire the mutex referenced by mutex. The pthread_cond_timedwait() function is also a
cancelation point.
If a signal is delivered to a thread waiting for a condition variable, upon return from the signal
handler the thread resumes waiting for the condition variable as if it was not interrupted, or it
shall return zero due to spurious wakeup.

RETURN VALUE
Except in the case of [ETIMEDOUT], all these error checks shall act as if they were performed
immediately at the beginning of processing for the function and shall cause an error return, in
effect, prior to modifying the state of the mutex specified by mufex or the condition variable
specified by cond.
Upon successful completion, a value of zero shall be returned; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_cond_timedwait () function shall fail if:
[ETIMEDOUT]  The time specified by abstime to pthread_cond_timedwait() has passed.
The pthread_cond_timedwait () and pthread_cond_twait () functions may fail if:
[EINVAL] The value specified by cond, mutex, or abstime is invalid.
[EINVAL] Different mutexes were supplied for concurrent pthread_cond_timedwait() or

pthread_cond_wait() operations on the same condition variable.

[EPERM] The mutex was not owned by the current thread at the time of the call.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE

470

Condition Wait Semantics

It is important to note that when pthread_cond_wait() and pthread_cond_timedwait() return
without error, the associated predicate may still be false. Similarly, when
pthread_cond_timedwait() returns with the timeout error, the associated predicate may be true
due to an unavoidable race between the expiration of the timeout and the predicate state change.

Some implementations, particularly on a multi-processor, may sometimes cause multiple
threads to wake up when the condition variable is signaled simultaneously on different
processors.

In general, whenever a condition wait returns, the thread has to re-evaluate the predicate
associated with the condition wait to determine whether it can safely proceed, should wait
again, or should declare a timeout. A return from the wait does not imply that the associated
predicate is either true or false.

It is thus recommended that a condition wait be enclosed in the equivalent of a “while loop”
that checks the predicate.
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Timed Wait Semantics

An absolute time measure was chosen for specifying the timeout parameter for two reasons.
First, a relative time measure can be easily implemented on top of a function that specifies
absolute time, but there is a race condition associated with specifying an absolute timeout on top
of a function that specifies relative timeouts. For example, assume that clock_gettime() returns
the current time and cond_relative_timed_wait () uses relative timeouts:

clock gettime(CLOCK_REALTIME, &now)
reltime = sleep til this absolute_time -now;
cond_relative_ timed wait(c, m, &reltime);

If the thread is preempted between the first statement and the last statement, the thread blocks
for too long. Blocking, however, is irrelevant if an absolute timeout is used. An absolute timeout
also need not be recomputed if it is used multiple times in a loop, such as that enclosing a
condition wait.

For cases when the system clock is advanced discontinuously by an operator, it is expected that
implementations process any timed wait expiring at an intervening time as if that time had
actually occurred.

Cancelation and Condition Wait

A condition wait, whether timed or not, is a cancelation point. That is, the functions
pthread_cond_wait() or pthread_cond_timedwait() are points where a pending (or concurrent)
cancelation request is noticed. The reason for this is that an indefinite wait is possible at these
points—whatever event is being waited for, even if the program is totally correct, might never
occur; for example, some input data being awaited might never be sent. By making condition
wait a cancelation point, the thread can be canceled and perform its cancelation cleanup handler
even though it may be stuck in some indefinite wait.

A side effect of acting on a cancelation request while a thread is blocked on a condition variable
is to re-acquire the mutex before calling any of the cancelation cleanup handlers. This is done in
order to ensure that the cancelation cleanup handler is executed in the same state as the critical
code that lies both before and after the call to the condition wait function. This rule is also
required when interfacing to POSIX threads from languages, such as Ada or C++, which may
choose to map cancelation onto a language exception; this rule ensures that each exception
handler guarding a critical section can always safely depend upon the fact that the associated
mutex has already been locked regardless of exactly where within the critical section the
exception was raised. Without this rule, there would not be a uniform rule that exception
handlers could follow regarding the lock, and so coding would become very cumbersome.

Therefore, since some statement has to be made regarding the state of the lock when a
cancelation is delivered during a wait, a definition has been chosen that makes application
coding most convenient and error free.

When acting on a cancelation request while a thread is blocked on a condition variable, the
implementation is required to ensure that the thread does not consume any condition signals
directed at that condition variable if there are any other threads waiting on that condition
variable. This rule is specified in order to avoid deadlock conditions that could occur if these two
independent requests (one acting on a thread and the other acting on the condition variable)
were not processed independently.
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Performance of Mutexes and Condition Variables

Mutexes are expected to be locked only for a few instructions. This practice is almost
automatically enforced by the desire of programmers to avoid long serial regions of execution
(which would reduce total effective parallelism).

When using mutexes and condition variables, one tries to ensure that the usual case is to lock the
mutex, access shared data, and unlock the mutex. Waiting on a condition variable should be a
relatively rare situation. For example, when implementing a read-write lock, code that acquires a
read-lock typically needs only to increment the count of readers (under mutual-exclusion) and
return. The calling thread would actually wait on the condition variable only when there is
already an active writer. So the efficiency of a synchronization operation is bounded by the cost
of mutex lock/unlock and not by condition wait. Note that in the usual case there is no context
switch.

This is not to say that the efficiency of condition waiting is unimportant. Since there needs to be
at least one context switch per Ada rendezvous, the efficiency of waiting on a condition variable
is important. The cost of waiting on a condition variable should be little more than the minimal
cost for a context switch plus the time to unlock and lock the mutex.

Features of Mutexes and Condition Variables

It had been suggested that the mutex acquisition and release be decoupled from condition wait.
This was rejected because it is the combined nature of the operation that, in fact, facilitates
realtime implementations. Those implementations can atomically move a high-priority thread
between the condition variable and the mutex in a manner that is transparent to the caller. This
can prevent extra context switches and provide more deterministic acquisition of a mutex when
the waiting thread is signaled. Thus, fairness and priority issues can be dealt with directly by the
scheduling discipline. Furthermore, the current condition wait operation matches existing
practice.

Scheduling Behavior of Mutexes and Condition Variables

Synchronization primitives that attempt to interfere with scheduling policy by specifying an
ordering rule are considered undesirable. Threads waiting on mutexes and condition variables
are selected to proceed in an order dependent upon the scheduling policy rather than in some
fixed order (for example, FIFO or priority). Thus, the scheduling policy determines which
thread(s) are awakened and allowed to proceed.

Timed Condition Wait

The pthread_cond_timedwait () function allows an application to give up waiting for a particular
condition after a given amount of time. An example of its use follows:

(void) pthread mutex lock(&t.mn);
t.waiters++;
clock gettime(CLOCK REALTIME, &ts);
ts.tv_sec += 5;
rc = 0;
while (! mypredicate(&t) && rc == 0)
rc = pthread cond timedwait(&t.cond, &t.mn, &ts);
t.waiters--;
if (rc == 0) setmystate(&t);
(void) pthread mutex_unlock(&t.mn);
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By making the timeout parameter absolute, it does not need to be recomputed each time the
program checks its blocking predicate. If the timeout was relative, it would have to be
recomputed before each call. This would be especially difficult since such code would need to
take into account the possibility of extra wakeups that result from extra broadcasts or signals on
the condition variable that occur before either the predicate is true or the timeout is due.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_signal(),  pthread_cond_broadcast(), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_timedwait() and pthread_cond_wait() functions are marked as part of the
Threads option.

The Open Group Corrigendum U021/9 is applied, correcting the prototype for the
pthread_cond_wait() function.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics for
the Clock Selection option.

The ERRORS section has an additional case for [EPERM] in response to IEEE PASC
Interpretation 1003.1c #28.

The restrict keyword is added to the pthread_cond_timedwait() and pthread_cond_twait()
prototypes for alignment with the ISO/IEC 9899: 1999 standard.
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NAME
pthread_condattr_destroy, pthread_condattr_init — destroy and initialize the condition variable
attributes object
SYNOPSIS
THR #include <pthread.h>
int pthread condattr destroy(pthread condattr t *attr);
int pthread condattr init(pthread condattr t *attr);
DESCRIPTION

The pthread_condattr_destroy() function shall destroy a condition variable attributes object; the
object becomes, in effect, uninitialized. An implementation may cause pthread_condattr_destroy()
to set the object referenced by atir to an invalid value. A destroyed attr attributes object can be
reinitialized using pthread_condattr_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

The pthread_condattr_init() function shall initialize a condition variable attributes object attr with
the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_condattr_init() is called specifying an already initialized aftr
attributes object.

After a condition variable attributes object has been used to initialize one or more condition
variables, any function affecting the attributes object (including destruction) shall not affect any
previously initialized condition variables.

This volume of IEEE Std 1003.1-2001 requires two attributes, the clock attribute and the process-
shared attribute.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

RETURN VALUE
If successful, the pthread_condattr_destroy() and pthread_condattr_init() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_condattr_destroy() function may fail if:
[EINVAL] The value specified by attr is invalid.

The pthread_condattr_init() function shall fail if:
[ENOMEM] Insufficient memory exists to initialize the condition variable attributes object.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See pthread_attr_init() and pthread_mutex_init().

A process-shared attribute has been defined for condition variables for the same reason it has been
defined for mutexes.

474 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.



pthread_condattr_destroy() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_cond_destroy(), pthread_condattr_getpshared(), pthread_create(),
pthread_mutex_destroy( ), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_condattr_destroy() and pthread_condattr_init() functions are marked as part of the
Threads option.

System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 475



System Interfaces pthread_condattr_getclock()

NAME
pthread_condattr_getclock, pthread_condattr_setclock — get and set the clock selection
condition variable attribute (ADVANCED REALTIME)

SYNOPSIS
THR ¢s #include <pthread.h>

int pthread condattr getclock(const pthread condattr t *restrict attr,
clockid _t *restrict clock id);

int pthread condattr setclock(pthread condattr t *attr,
clockid t clock id);

DESCRIPTION
The pthread_condattr_getclock() function shall obtain the value of the clock attribute from the
attributes object referenced by attr. The pthread_condattr_setclock() function shall set the clock
attribute in an initialized attributes object referenced by attr. If pthread_condattr_setclock() is
called with a clock_id argument that refers to a CPU-time clock, the call shall fail.

The clock attribute is the clock ID of the clock that shall be used to measure the timeout service of
pthread_cond_timedwait(). The default value of the clock attribute shall refer to the system clock.

RETURN VALUE
If successful, the pthread_condattr_getclock() function shall return zero and store the value of the
clock attribute of attr into the object referenced by the clock_id argument. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_condattr_setclock() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:
[EINVAL] The value specified by aftr is invalid.
The pthread_condattr_setclock() function may fail if:
[EINVAL] The value specified by clock_id does not refer to a known clock, or is a CPU-
time clock.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy (), pthread_cond_timedwait( ), pthread_condattr_destroy(),
pthread_condattr_getpshared() (on page 1041),1 pthread_condattr_init(),
pthread_condattr_selpshared() (on page 1045),1 pthread_create( ), pthread_mutex_init( ), the Base
Definitions volume of IEEE Std 1003.1-2001, <pthread.h>
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CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.
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NAME

pthread_condattr_getpshared, pthread_condattr_setpshared — get and set the process-shared
condition variable attributes

SYNOPSIS
THR TsH #include <pthread.h>

int pthread condattr getpshared(const pthread condattr t *restrict attr,
int *restrict pshared);

int pthread condattr setpshared(pthread condattr t *attr,
int pshared);

DESCRIPTION

The pthread_condattr_getpshared() function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr. The pthread_condattr_setpshared() function shall set
the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a condition
variable to be operated upon by any thread that has access to the memory where the condition
variable is allocated, even if the condition variable is allocated in memory that is shared by
multiple processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the
condition variable shall only be operated upon by threads created within the same process as the
thread that initialized the condition variable; if threads of differing processes attempt to operate
on such a condition variable, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

RETURN VALUE

If successful, the pthread_condattr_setpshared() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_condattr_getpshared() function shall return zero and store the value of
the process-shared attribute of aitr into the object referenced by the pshared parameter. Otherwise,
an error number shall be returned to indicate the error.

ERRORS

The pthread_condattr_getpshared () and pthread_condattr_setpshared () functions may fail if:
[EINVAL] The value specified by aftr is invalid.
The pthread_condattr_setpshared () function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

EXAMPLES

None.

APPLICATION USAGE

None.

RATIONALE
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None.
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FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_cond_destroy(), pthread_condattr_destroy(), pthread_mutex_destroy(), the
Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_condattr_getpshared () and pthread_condattr_setpshared () functions are marked as part
of the Threads and Thread Process-Shared Synchronization options.

The restrict keyword is added to the pthread_condatir_getpshared() prototype for alignment with
the ISO/IEC 9899: 1999 standard.
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NAME

pthread_condattr_init — initialize the condition variable attributes object
SYNOPSIS
THR #include <pthread.h>

int pthread condattr init(pthread condattr t *attr);

DESCRIPTION
Refer to pthread_condattr_destroy().
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NAME
pthread_condattr_setclock — set the clock selection condition variable attribute

SYNOPSIS
THR ¢s #include <pthread.h>

int pthread condattr setclock(pthread condattr t *attr,
clockid t clock id);

DESCRIPTION
Refer to pthread_condattr_getclock().
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NAME
pthread_condattr_setpshared — set the process-shared condition variable attribute

SYNOPSIS
THR TsH #include <pthread.h>

int pthread condattr setpshared(pthread condattr t *attr,
int pshared);

DESCRIPTION
Refer to pthread_condattr_getpshared().
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NAME
pthread_create — thread creation

SYNOPSIS
THR #include <pthread.h>

int pthread create(pthread t *restrict thread,
const pthread attr t *restrict attr,
void *(*start_ routine)(void*), void *restrict arg);

DESCRIPTION
The pthread_create() function shall create a new thread, with attributes specified by attr, within a
process. If attr is NULL, the default attributes shall be used. If the attributes specified by attr are
modified later, the thread’s attributes shall not be affected. Upon successful completion,
pthread_create() shall store the ID of the created thread in the location referenced by thread.

The thread is created executing start_routine with arg as its sole argument. If the sfart_routine
returns, the effect shall be as if there was an implicit call to pthread_exit () using the return value
of start_routine as the exit status. Note that the thread in which main() was originally invoked
differs from this. When it returns from main(), the effect shall be as if there was an implicit call
to exit() using the return value of main () as the exit status.

The signal state of the new thread shall be initialized as follows:
« The signal mask shall be inherited from the creating thread.
« The set of signals pending for the new thread shall be empty.
The floating-point environment shall be inherited from the creating thread.

If pthread_create() fails, no new thread is created and the contents of the location referenced by
thread are undefined.

TCT If POSIX_THREAD_CPUTIME is defined, the new thread shall have a CPU-time clock
accessible, and the initial value of this clock shall be set to zero.

RETURN VALUE
If successful, the pthread_create() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_create() function shall fail if:

[EAGAIN] The system lacked the necessary resources to create another thread, or the
system-imposed limit on the total number of threads in a process
[PTHREAD_THREADS_MAX]| would be exceeded.

[EINVAL] The value specified by attr is invalid.

[EPERM] The caller does not have appropriate permission to set the required
scheduling parameters or scheduling policy.

The pthread_create( ) function shall not return an error code of [EINTR].
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EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A suggested alternative to pthread_create() would be to define two separate operations: create
and start. Some applications would find such behavior more natural. Ada, in particular,
separates the “creation” of a task from its “activation”.

Splitting the operation was rejected by the standard developers for many reasons:

« The number of calls required to start a thread would increase from one to two and thus place
an additional burden on applications that do not require the additional synchronization. The
second call, however, could be avoided by the additional complication of a start-up state
attribute.

An extra state would be introduced: “created but not started”. This would require the
standard to specify the behavior of the thread operations when the target has not yet started
executing.

For those applications that require such behavior, it is possible to simulate the two separate
steps with the facilities that are currently provided. The start_routine() can synchronize by
waiting on a condition variable that is signaled by the start operation.

An Ada implementor can choose to create the thread at either of two points in the Ada program:
when the task object is created, or when the task is activated (generally at a “’begin”). If the first
approach is adopted, the start_routine() needs to wait on a condition variable to receive the
order to begin ““activation”. The second approach requires no such condition variable or extra
synchronization. In either approach, a separate Ada task control block would need to be created
when the task object is created to hold rendezvous queues, and so on.

An extension of the preceding model would be to allow the state of the thread to be modified
between the create and start. This would allow the thread attributes object to be eliminated. This
has been rejected because:

« All state in the thread attributes object has to be able to be set for the thread. This would
require the definition of functions to modify thread attributes. There would be no reduction
in the number of function calls required to set up the thread. In fact, for an application that
creates all threads using identical attributes, the number of function calls required to set up
the threads would be dramatically increased. Use of a thread attributes object permits the
application to make one set of attribute setting function calls. Otherwise, the set of attribute
setting function calls needs to be made for each thread creation.

Depending on the implementation architecture, functions to set thread state would require
kernel calls, or for other implementation reasons would not be able to be implemented as
macros, thereby increasing the cost of thread creation.

« The ability for applications to segregate threads by class would be lost.

Another suggested alternative uses a model similar to that for process creation, such as “'thread
fork”. The fork semantics would provide more flexibility and the “create’” function can be
implemented simply by doing a thread fork followed immediately by a call to the desired “start
routine” for the thread. This alternative has these problems:

« For many implementations, the entire stack of the calling thread would need to be
duplicated, since in many architectures there is no way to determine the size of the calling
frame.
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« Efficiency is reduced since at least some part of the stack has to be copied, even though in
most cases the thread never needs the copied context, since it merely calls the desired start
routine.

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), pthread_exit(), pthread_join(), the Base Definitions volume of IEEE Std 1003.1-2001,
<pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_create( ) function is marked as part of the Threads option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The [EPERM] mandatory error condition is added.
The thread CPU-time clock semantics are added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_create() prototype for alignment with the
1SO/IEC 9899: 1999 standard.

The DESCRIPTION is updated to make it explicit that the floating-point environment is
inherited from the creating thread.
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NAME
pthread_detach — detach a thread

SYNOPSIS
THR #include <pthread.h>

int pthread detach(pthread t thread);

DESCRIPTION
The pthread_detach() function shall indicate to the implementation that storage for the thread
thread can be reclaimed when that thread terminates. If thread has not terminated,
pthread_detach() shall not cause it to terminate. The effect of multiple pthread_detach() calls on
the same target thread is unspecified.

RETURN VALUE
If the call succeeds, pthread_detach() shall return 0; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_detach () function shall fail if:

[EINVAL] The implementation has detected that the value specified by thread does not
refer to a joinable thread.

[ESRCH] No thread could be found corresponding to that specified by the given thread
1D.

The pthread_detach() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_join () or pthread_detach() functions should eventually be called for every thread that
is created so that storage associated with the thread may be reclaimed.

It has been suggested that a “detach” function is not necessary; the defachstate thread creation
attribute is sufficient, since a thread need never be dynamically detached. However, need arises
in at least two cases:

1. Ina cancelation handler for a pthread_join () it is nearly essential to have a pthread_detach()
function in order to detach the thread on which pthread_join () was waiting. Without it, it
would be necessary to have the handler do another pthread_join () to attempt to detach the
thread, which would both delay the cancelation processing for an unbounded period and
introduce a new call to pthread_join (), which might itself need a cancelation handler. A
dynamic detach is nearly essential in this case.

2. Inorder to detach the “initial thread” (as may be desirable in processes that set up server
threads).

FUTURE DIRECTIONS
None.
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SEE ALSO
pthread_join (), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_detach() function is marked as part of the Threads option.
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NAME

pthread_equal — compare thread IDs
SYNOPSIS
THR #include <pthread.h>

int pthread equal(pthread t t1, pthread t t2);

DESCRIPTION
This function shall compare the thread IDs {1 and 2.

RETURN VALUE
The pthread_equal () function shall return a non-zero value if 1 and {2 are equal; otherwise, zero
shall be returned.

If either t1 or t2 are not valid thread 1Ds, the behavior is undefined.

ERRORS
No errors are defined.

The pthread_equal () function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Implementations may choose to define a thread ID as a structure. This allows additional
flexibility and robustness over using an int. For example, a thread ID could include a sequence
number that allows detection of “dangling IDs"”" (copies of a thread ID that has been detached).
Since the C language does not support comparison on structure types, the pthread_equal()
function is provided to compare thread IDs.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_self(), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_equal() function is marked as part of the Threads option.
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NAME

pthread_exit — thread termination
SYNOPSIS
THR #include <pthread.h>

void pthread exit(void *value ptr);

DESCRIPTION

The pthread_exit() function shall terminate the calling thread and make the value wvalue_ptr
available to any successful join with the terminating thread. Any cancelation cleanup handlers
that have been pushed and not yet popped shall be popped in the reverse order that they were
pushed and then executed. After all cancelation cleanup handlers have been executed, if the
thread has any thread-specific data, appropriate destructor functions shall be called in an
unspecified order. Thread termination does not release any application visible process resources,
including, but not limited to, mutexes and file descriptors, nor does it perform any process-level
cleanup actions, including, but not limited to, calling any afexit () routines that may exist.

An implicit call to pthread_exit() is made when a thread other than the thread in which main()
was first invoked returns from the start routine that was used to create it. The function’s return
value shall serve as the thread’s exit status.

The behavior of pthread_exit() is undefined if called from a cancelation cleanup handler or
destructor function that was invoked as a result of either an implicit or explicit call to
pthread_exit ().

After a thread has terminated, the result of access to local (auto) variables of the thread is
undefined. Thus, references to local variables of the exiting thread should not be used for the
pthread_exit() value_ptr parameter value.

The process shall exit with an exit status of 0 after the last thread has been terminated. The
behavior shall be as if the implementation called exit() with a zero argument at thread
termination time.

RETURN VALUE

The pthread_exit () function cannot return to its caller.

ERRORS

No errors are defined.

EXAMPLES

None.

APPLICATION USAGE

None.

RATIONALE

The normal mechanism by which a thread terminates is to return from the routine that was
specified in the pthread_create() call that started it. The pthread_exit() function provides the
capability for a thread to terminate without requiring a return from the start routine of that
thread, thereby providing a function analogous to exit().

Regardless of the method of thread termination, any cancelation cleanup handlers that have
been pushed and not yet popped are executed, and the destructors for any existing thread-
specific data are executed. This volume of IEEE Std 1003.1-2001 requires that cancelation
cleanup handlers be popped and called in order. After all cancelation cleanup handlers have
been executed, thread-specific data destructors are called, in an unspecified order, for each item
of thread-specific data that exists in the thread. This ordering is necessary because cancelation
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cleanup handlers may rely on thread-specific data.

As the meaning of the status is determined by the application (except when the thread has been
canceled, in which case it is PTHREAD_CANCELED), the implementation has no idea what an
illegal status value is, which is why no address error checking is done.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), pthread_create(), pthread_join(), the Base Definitions volume of IEEE Std 1003.1-2001,
<pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_exit () function is marked as part of the Threads option.
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NAME
pthread_getconcurrency, pthread_setconcurrency — get and set the level of concurrency

SYNOPSIS

X5l #include <pthread.h>
int pthread getconcurrency(void);
int pthread_setconcurrency(int new level);

DESCRIPTION
Unbound threads in a process may or may not be required to be simultaneously active. By
default, the threads implementation ensures that a sufficient number of threads are active so that
the process can continue to make progress. While this conserves system resources, it may not
produce the most effective level of concurrency.
The pthread_setconcurrency() function allows an application to inform the threads
implementation of its desired concurrency level, new_level. The actual level of concurrency
provided by the implementation as a result of this function call is unspecified.
If new_level is zero, it causes the implementation to maintain the concurrency level at its
discretion as if pthread_setconcurrency() had never been called.
The pthread_getconcurrency() function shall return the value set by a previous call to the
pthread_setconcurrency() function. If the pthread_setconcurrency() function was not previously
called, this function shall return zero to indicate that the implementation is maintaining the
concurrency level.
A call to pthread_setconcurrency() shall inform the implementation of its desired concurrency
level. The implementation shall use this as a hint, not a requirement.
If an implementation does not support multiplexing of user threads on top of several kernel-
scheduled entities, the pthread_setconcurrency() and pthread_getconcurrency() functions are
provided for source code compatibility but they shall have no effect when called. To maintain
the function semantics, the new_level parameter is saved when pthread_setconcurrency() is called
so that a subsequent call to pthread_getconcurrency( ) shall return the same value.

RETURN VALUE
If successful, the pthread_setconcurrency( ) function shall return zero; otherwise, an error number
shall be returned to indicate the error.
The pthread_getconcurrency() function shall always return the concurrency level set by a previous
call to pthread_setconcurrency(). If the pthread_setconcurrency() function has never been called,
pthread_getconcurrency() shall return zero.

ERRORS
The pthread_setconcurrency() function shall fail if:
[EINVAL] The value specified by new_level is negative.
[EAGAIN] The value specific by new_level would cause a system resource to be exceeded.

These functions shall not return an error code of [EINTR].
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EXAMPLES
None.

APPLICATION USAGE
Use of these functions changes the state of the underlying concurrency upon which the
application depends. Library developers are advised to not use the pthread_getconcurrency() and
pthread_setconcurrency() functions since their use may conflict with an applications use of these
functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5.
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NAME
pthread_getcpuclockid — access a thread CPU-time clock (ADVANCED REALTIME
THREADS)

SYNOPSIS
THR TCT #include <pthread.h>
#include <time.h>

int pthread getcpuclockid(pthread t thread id, clockid t *clock id);

DESCRIPTION
The pthread_getcpuclockid() function shall return in clock_id the clock ID of the CPU-time clock of
the thread specified by thread_id, if the thread specified by thread_id exists.

RETURN VALUE
Upon successful completion, pthread_getcpuclockid() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_getcpuclockid() function may fail if:

[ESRCH] The value specified by thread_id does not refer to an existing thread.

EXAMPLES
None.

APPLICATION USAGE
The pthread_getcpuclockid() function is part of the Thread CPU-Time Clocks option and need not
be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getcpuclockid(), clock_getres(), timer_create(), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from [EEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.
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NAME
pthread_getschedparam, pthread_setschedparam — dynamic thread scheduling parameters
access (REALTIME THREADS)

SYNOPSIS
THR Trs #include <pthread.h>

int pthread getschedparam(pthread t thread, int *restrict policy,
struct sched param *restrict param);

int pthread_setschedparam(pthread t thread, int policy,
const struct sched param *param);

DESCRIPTION
The pthread_getschedparam( ) and pthread_setschedparam () functions shall, respectively, get and set
the scheduling policy and parameters of individual threads within a multi-threaded process to
be retrieved and set. For SCHED_FIFO and SCHED_RR, the only required member of the
sched_param structure is the priority sched_priority. For SCHED_OTHER, the affected
scheduling parameters are implementation-defined.

The pthread_getschedparam() function shall retrieve the scheduling policy and scheduling
parameters for the thread whose thread ID is given by thread and shall store those values in
policy and param, respectively. The priority value returned from pthread_getschedparam() shall be
the value specified by the most recent pthread_setschedparam(), pthread_setschedprio(), or
pthread_create() call affecting the target thread. It shall not reflect any temporary adjustments to
its priority as a result of any priority inheritance or ceiling functions. The pthread_setschedparam())
function shall set the scheduling policy and associated scheduling parameters for the thread
whose thread ID is given by thread to the policy and associated parameters provided in policy
and param, respectively.

The policy parameter may have the value SCHED_OTHER, SCHED_FIFO, or SCHED_RR. The
scheduling parameters for the SCHED_OTHER policy are implementation-defined. The
SCHED_FIFO and SCHED_RR policies shall have a single scheduling parameter, priority.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, then the policy argument may have the
value SCHED_SPORADIC, with the exception for the pthread_setschedparam( ) function that if the
scheduling policy was not SCHED_SPORADIC at the time of the call, it is implementation-
defined whether the function is supported; in other words, the implementation need not allow
the application to dynamically change the scheduling policy to SCHED_SPORADIC. The
sporadic server scheduling policy has the associated parameters sched ss_low_priority,
sched_ss_repl_period, sched_ss_init_budget, sched_priority, and sched_ss_max_repl. The specified
sched_ss_repl_period shall be greater than or equal to the specified sched_ss_init_budget for the
function to succeed; if it is not, then the function shall fail. The value of sched_ss_max_repl shall
be within the inclusive range [1,{SS_REPL_MAX]] for the function to succeed; if not, the function
shall fail.

If the pthread_setschedparam() function fails, the scheduling parameters shall not be changed for
the target thread.

RETURN VALUE
If successful, the pthread_getschedparam() and pthread_setschedparam() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.
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ERRORS
The pthread_getschedparam() function may fail if:

[ESRCH] The value specified by thread does not refer to an existing thread.
The pthread_setschedparam () function may fail if:

[EINVAL] The value specified by policy or one of the scheduling parameters associated
with the scheduling policy policy is invalid.

[ENOTSUP] An attempt was made to set the policy or scheduling parameters to an
unsupported value.

TSP [ENOTSUP] An attempt was made to dynamically change the scheduling policy to
SCHED_SPORADIC, and the implementation does not support this change.

[EPERM] The caller does not have the appropriate permission to set either the
scheduling parameters or the scheduling policy of the specified thread.
[EPERM] The implementation does not allow the application to modify one of the
parameters to the value specified.
[ESRCH] The value specified by thread does not refer to a existing thread.
These functions shall not return an error code of [EINTR].
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO

pthread_setschedprio(), sched_getparam(), sched_getscheduler(), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_getschedparam() and pthread_setschedparam() functions are marked as part of the
Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The Open Group Corrigendum U026/2 is applied, correcting the prototype for the
pthread_setschedparam( ) function so that its second argument is of type int.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_getschedparam() prototype for alignment with the
ISO/IEC 9899:1999 standard.

The Open Group Corrigendum U047 /1 is applied.
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IEEE PASC Interpretation 1003.1 #96 is applied, noting that priority values can also be set by a
call to the pthread_setschedprio( ) function.
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NAME
pthread_getspecific, pthread_setspecific — thread-specific data management

SYNOPSIS

THR #include <pthread.h>
void *pthread getspecific(pthread key t key);
int pthread setspecific(pthread key t key, const void *value);

DESCRIPTION
The pthread_geispecific() function shall return the value currently bound to the specified key on
behalf of the calling thread.
The pthread_setspecific() function shall associate a thread-specific value with a key obtained via a
previous call to pthread_key_create(). Different threads may bind different values to the same
key. These values are typically pointers to blocks of dynamically allocated memory that have
been reserved for use by the calling thread.
The effect of calling pthread_getspecific() or pthread_setspecific() with a key value not obtained
from pthread_key_create() or after key has been deleted with pthread_key_delete( ) is undefined.
Both pthread_getspecific() and pthread_setspecific() may be called from a thread-specific data
destructor function. A call to pthread_getspecific() for the thread-specific data key being
destroyed shall return the value NULL, unless the value is changed (after the destructor starts)
by a call to pthread_setspecific(). Calling pthread_setspecific() from a thread-specific data
destructor  routine may  result either in lost storage (after at least
PTHREAD_DESTRUCTOR_ITERATIONS attempts at destruction) or in an infinite loop.
Both functions may be implemented as macros.

RETURN VALUE
The pthread_getspecific() function shall return the thread-specific data value associated with the
given key. If no thread-specific data value is associated with key, then the value NULL shall be
returned.
If successful, the pthread_setspecific () function shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS

No errors are returned from pthread_getspecific().

The pthread_setspecific( ) function shall fail if:

[ENOMEM] Insufficient memory exists to associate the value with the key.
The pthread_setspecific() function may fail if:

[EINVAL] The key value is invalid.

These functions shall not return an error code of [EINTR].
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EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Performance and ease-of-use of pthread_getspecific() are critical for functions that rely on
maintaining state in thread-specific data. Since no errors are required to be detected by it, and
since the only error that could be detected is the use of an invalid key, the function to
pthread_getspecific() has been designed to favor speed and simplicity over error reporting.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create( ), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_getspecific() and pthread_setspecific() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1c #3 (Part 6) is applied, updating the DESCRIPTION.
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NAME
pthread_join — wait for thread termination

SYNOPSIS
THR #include <pthread.h>

int pthread join(pthread t thread, void **value ptr);

DESCRIPTION

The pthread_join () function shall suspend execution of the calling thread until the target thread
terminates, unless the target thread has already terminated. On return from a successful
pthread_join () call with a non-NULL wvalue_ptr argument, the value passed to pthread_exit() by
the terminating thread shall be made available in the location referenced by value_ptr. When a
pthread_join () returns successfully, the target thread has been terminated. The results of multiple
simultaneous calls to pthread_join() specifying the same target thread are undefined. If the
thread calling pthread_join () is canceled, then the target thread shall not be detached.

It is unspecified whether a thread that has exited but remains unjoined counts against
{[PTHREAD_THREADS_MAX].

RETURN VALUE
If successful, the pthread_join () function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_join () function shall fail if:

[EINVAL] The implementation has detected that the value specified by thread does not
refer to a joinable thread.

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.

The pthread_join () function may fail if:
[EDEADLK] A deadlock was detected or the value of thread specifies the calling thread.
The pthread_join () function shall not return an error code of [EINTR].

EXAMPLES
An example of thread creation and deletion follows:

typedef struct {
int *ar;
long n;
} subarray;
void *
incer(void *arg)
{
long i;
for (i = 0; i < ((subarray *)arg)->n; i++)
((subarray *)arg)->ar[i]++;
}
int main(void)

{
int ar[1000000];
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pthread t thl, th2;
subarray sbl, sb2;

sbl.ar = &ar[0];
sbl.n = 500000;
(void) pthread create(&thl, NULL, incer, &sbl);

sb2.ar &ar[500000];
sb2.n = 500000;
(void) pthread create(&th2, NULL, incer, &sb2);

(void) pthread_join(thl, NULL);
(void) pthread join(th2, NULL);
return 0;

}

APPLICATION USAGE

None.

RATIONALE

The pthread_join() function is a convenience that has proven useful in multi-threaded
applications. It is true that a programmer could simulate this function if it were not provided by
passing extra state as part of the argument to the start_routine(). The terminating thread would
set a flag to indicate termination and broadcast a condition that is part of that state; a joining
thread would wait on that condition variable. While such a technique would allow a thread to
wait on more complex conditions (for example, waiting for multiple threads to terminate),
waiting on individual thread termination is considered widely useful. Also, including the
pthread_join() function in no way precludes a programmer from coding such complex waits.
Thus, while not a primitive, including pthread_join () in this volume of IEEE Std 1003.1-2001 was
considered valuable.

The pthread_join () function provides a simple mechanism allowing an application to wait for a
thread to terminate. After the thread terminates, the application may then choose to clean up
resources that were used by the thread. For instance, after pthread_join() returns, any
application-provided stack storage could be reclaimed.

The pthread_join () or pthread_detach() function should eventually be called for every thread that
is created with the detachstate attribute set to PTHREAD_CREATE_JOINABLE so that storage
associated with the thread may be reclaimed.

The interaction between pthread_join () and cancelation is well-defined for the following reasons:

« The pthread_join () function, like all other non-async-cancel-safe functions, can only be called
with deferred cancelability type.

« Cancelation cannot occur in the disabled cancelability state.

Thus, only the default cancelability state need be considered. As specified, either the
pthread_join() call is canceled, or it succeeds, but not both. The difference is obvious to the
application, since either a cancelation handler is run or pthread_join () returns. There are no race
conditions since pthread_join () was called in the deferred cancelability state.

FUTURE DIRECTIONS

500

None.
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SEE ALSO
pthread_create(), wait (), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_join () function is marked as part of the Threads option.
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NAME
pthread_kill — send a signal to a thread

SYNOPSIS
THR #include <signal.h>

int pthread kill (pthread t thread, int sig);

DESCRIPTION
The pthread_kill () function shall request that a signal be delivered to the specified thread.

As in kill (), if sig is zero, error checking shall be performed but no signal shall actually be sent.

RETURN VALUE
Upon successful completion, the function shall return a value of zero. Otherwise, the function
shall return an error number. If the pthread_kill () function fails, no signal shall be sent.

ERRORS
The pthread_kill () function shall fail if:

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.
[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

The pthread_kill () function shall not return an error code of [EINTR].
EXAMPLES
None.

APPLICATION USAGE
The pthread_kill () function provides a mechanism for asynchronously directing a signal at a
thread in the calling process. This could be used, for example, by one thread to affect broadcast
delivery of a signal to a set of threads.

Note that pthread_kill () only causes the signal to be handled in the context of the given thread;
the signal action (termination or stopping) affects the process as a whole.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Kill (), pthread_self (), raise (), the Base Definitions volume of IEEE Std 1003.1-2001, <signal.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_kill () function is marked as part of the Threads option.

The APPLICATION USAGE section is added.
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NAME

pthread_mutex_destroy, pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS

THR

#include <pthread.hs>

int pthread mutex destroy(pthread mutex t *mutex);

int pthread mutex init (pthread mutex t *restrict mutex,
const pthread mutexattr t *restrict attr);

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

DESCRIPTION

The pthread_mutex_destroy() function shall destroy the mutex object referenced by mutex; the
mutex object becomes, in effect, uninitialized. An implementation may cause
pthread_mutex_destroy() to set the object referenced by mutex to an invalid value. A destroyed
mutex object can be reinitialized using pthread_mutex_init(); the results of otherwise referencing
the object after it has been destroyed are undefined.

It shall be safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked
mutex results in undefined behavior.

The pthread_mutex_init () function shall initialize the mutex referenced by mutex with attributes
specified by attr. If attr is NULL, the default mutex attributes are used; the effect shall be the
same as passing the address of a default mutex attributes object. Upon successful initialization,
the state of the mutex becomes initialized and unlocked.

Only mutex itself may be used for performing synchronization. The result of referring to copies
of mutex in calls to pthread_mutex_lock(), pthread_mutex_trylock (), pthread_mutex_unlock(), and
pthread_mutex_destroy () is undefined.

Attempting to initialize an already initialized mutex results in undefined behavior.

In cases where default mutex  attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes that are statically allocated.
The effect shall be equivalent to dynamic initialization by a call to pthread_mutex_init() with
parameter attr specified as NULL, except that no error checks are performed.

RETURN VALUE

If successful, the pthread_mutex_destroy() and pthread_mutex_init () functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

The [EBUSY|] and [EINVAL| error checks, if implemented, act as if they were performed
immediately at the beginning of processing for the function and shall cause an error return prior
to modifying the state of the mutex specified by mutex.

ERRORS

The pthread_mutex_destroy () function may fail if:

[EBUSY] The implementation has detected an attempt to destroy the object referenced
by mutex while it is locked or referenced (for example, while being used in a
pthread_cond_timedwait () or pthread_cond_wait()) by another thread.

[EINVAL] The value specified by mutex is invalid.
The pthread_mutex_init () function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another mutex.
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[ENOMEM] Insufficient memory exists to initialize the mutex.
[EPERM] The caller does not have the privilege to perform the operation.

The pthread_mutex_init () function may fail if:

[EBUSY] The implementation has detected an attempt to reinitialize the object
referenced by mutex, a previously initialized, but not yet destroyed, mutex.
[EINVAL] The value specified by attr is invalid.
These functions shall not return an error code of [EINTR].
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE

Alternate Implementations Possible

This volume of IEEE Std 1003.1-2001 supports several alternative implementations of mutexes.
An implementation may store the lock directly in the object of type pthread_mutex_t.
Alternatively, an implementation may store the lock in the heap and merely store a pointer,
handle, or unique ID in the mutex object. Either implementation has advantages or may be
required on certain hardware configurations. So that portable code can be written that is
invariant to this choice, this volume of IEEE Std 1003.1-2001 does not define assignment or
equality for this type, and it uses the term “initialize’ to reinforce the (more restrictive) notion
that the lock may actually reside in the mutex object itself.

Note that this precludes an over-specification of the type of the mutex or condition variable and
motivates the opaqueness of the type.

An implementation is permitted, but not required, to have pthread_mutex_destroy() store an
illegal value into the mutex. This may help detect erroneous programs that try to lock (or
otherwise reference) a mutex that has already been destroyed.

Tradeoff Between Error Checks and Performance Supported

Many of the error checks were made optional in order to let implementations trade off
performance versus degree of error checking according to the needs of their specific applications
and execution environment. As a general rule, errors or conditions caused by the system (such as
insufficient memory) always need to be reported, but errors due to an erroneously coded
application (such as failing to provide adequate synchronization to prevent a mutex from being
deleted while in use) are made optional.

A wide range of implementations is thus made possible. For example, an implementation
intended for application debugging may implement all of the error checks, but an
implementation running a single, provably correct application under very tight performance
constraints in an embedded computer might implement minimal checks. An implementation
might even be provided in two versions, similar to the options that compilers provide: a full-
checking, but slower version; and a limited-checking, but faster version. To forbid this
optionality would be a disservice to users.

By carefully limiting the use of “undefined behavior” only to things that an erroneous (badly
coded) application might do, and by defining that resource-not-available errors are mandatory,
this volume of IEEE Std 1003.1-2001 ensures that a fully-conforming application is portable
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across the full range of implementations, while not forcing all implementations to add overhead
to check for numerous things that a correct program never does.

Why No Limits are Defined

Defining symbols for the maximum number of mutexes and condition variables was considered
but rejected because the number of these objects may change dynamically. Furthermore, many
implementations place these objects into application memory; thus, there is no explicit
maximum.

Static Initializers for Mutexes and Condition Variables

Providing for static initialization of statically allocated synchronization objects allows modules
with private static synchronization variables to avoid runtime initialization tests and overhead.
Furthermore, it simplifies the coding of self-initializing modules. Such modules are common in
C libraries, where for various reasons the design calls for self-initialization instead of requiring
an explicit module initialization function to be called. An example use of static initialization
follows.

Without static initialization, a self-initializing routine foo () might look as follows:

static pthread once t foo_once = PTHREAD ONCE_INIT;
static pthread mutex t foo mutex;

void foo_init ()

{
pthread mutex init (&foo mutex, NULL);
}
void fool)
{
pthread once(&foo once, foo_ init);
pthread mutex lock (&foo_mutex) ;
/* Do work. */
pthread mutex unlock (&foo mutex) ;
}

With static initialization, the same routine could be coded as follows:
static pthread mutex t foo_mutex = PTHREAD MUTEX_INITIALIZER;

void fool()

{
pthread _mutex lock (&foo_mutex) ;
/* Do work. */
pthread mutex_unlock (&foo_mutex) ;
}

Note that the static initialization both eliminates the need for the initialization test inside
pthread_once() and the fetch of &foo_mutex to learn the address to be passed to
pthread_mutex_lock () or pthread_mutex_unlock ().

Thus, the C code written to initialize static objects is simpler on all systems and is also faster on a
large class of systems; those where the (entire) synchronization object can be stored in
application memory.

Yet the locking performance question is likely to be raised for machines that require mutexes to
be allocated out of special memory. Such machines actually have to have mutexes and possibly
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condition variables contain pointers to the actual hardware locks. For static initialization to work
on such machines, pthread_mutex_lock() also has to test whether or not the pointer to the actual
lock has been allocated. If it has not, pthread_mutex_lock() has to initialize it before use. The
reservation of such resources can be made when the program is loaded, and hence return codes
have not been added to mutex locking and condition variable waiting to indicate failure to
complete initialization.

This runtime test in pthread_mutex_lock () would at first seem to be extra work; an extra test is
required to see whether the pointer has been initialized. On most machines this would actually
be implemented as a fetch of the pointer, testing the pointer against zero, and then using the
pointer if it has already been initialized. While the test might seem to add extra work, the extra
effort of testing a register is usually negligible since no extra memory references are actually
done. As more and more machines provide caches, the real expenses are memory references, not
instructions executed.

Alternatively, depending on the machine architecture, there are often ways to eliminate all
overhead in the most important case: on the lock operations that occur affer the lock has been
initialized. This can be done by shifting more overhead to the less frequent operation:
initialization. Since out-of-line mutex allocation also means that an address has to be
dereferenced to find the actual lock, one technique that is widely applicable is to have static
initialization store a bogus value for that address; in particular, an address that causes a machine
fault to occur. When such a fault occurs upon the first attempt to lock such a mutex, validity
checks can be done, and then the correct address for the actual lock can be filled in. Subsequent
lock operations incur no extra overhead since they do not “fault”. This is merely one technique
that can be used to support static initialization, while not adversely affecting the performance of
lock acquisition. No doubt there are other techniques that are highly machine-dependent.

The locking overhead for machines doing out-of-line mutex allocation is thus similar for
modules being implicitly initialized, where it is improved for those doing mutex allocation
entirely inline. The inline case is thus made much faster, and the out-of-line case is not
significantly worse.

Besides the issue of locking performance for such machines, a concern is raised that it is possible
that threads would serialize contending for initialization locks when attempting to finish
initializing statically allocated mutexes. (Such finishing would typically involve taking an
internal lock, allocating a structure, storing a pointer to the structure in the mutex, and releasing
the internal lock.) First, many implementations would reduce such serialization by hashing on
the mutex address. Second, such serialization can only occur a bounded number of times. In
particular, it can happen at most as many times as there are statically allocated synchronization
objects. Dynamically allocated objects would still be initialized via pthread_mutex_init() or
pthread_cond_init ().

Finally, if none of the above optimization techniques for out-of-line allocation yields sufficient
performance for an application on some implementation, the application can avoid static
initialization altogether by explicitly initializing all synchronization objects with the
corresponding pthread_*_init() functions, which are supported by all implementations. An
implementation can also document the tradeoffs and advise which initialization technique is
more efficient for that particular implementation.
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Destroying Mutexes

A mutex can be destroyed immediately after it is unlocked. For example, consider the following
code:

struct obj {

pthread mutex t om;
int refent;

}i

obj_done(struct obj *op)

{

pthread mutex lock (&op-s>om) ;

if (- -op->refent == 0) {

pthread mutex_unlock (&op->om) ;

(A) pthread mutex destroy (&op->om);
{B) free(op) ;

] else
(c) pthread mutex unlock (&op->om) ;
}

In this case obj is reference counted and obj_done () is called whenever a reference to the object is
dropped. Implementations are required to allow an object to be destroyed and freed and
potentially unmapped (for example, lines A and B) immediately after the object is unlocked (line
C).

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_getprioceiling (), pthread_mutex_lock (), pthread_mutex_timedlock (),
pthread_mutexattr_getpshared (), the Base Definitions volume of IEEE Std 1003.1-2001,
<pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutex_destroy() and pthread_mutex_init() functions are marked as part of the
Threads option.

The pthread_mutex_timedlock () function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION.

The restrict keyword is added to the pthread_mutex_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.
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NAME
pthread_mutex_getprioceiling, pthread_mutex_setprioceiling — get and set the priority ceiling
of a mutex (REALTIME THREADS)

SYNOPSIS

THR TP #include <pthread.h>

int pthread mutex getprioceiling(const pthread mutex t *restrict mutex,
int *restrict prioceiling);

int pthread mutex setprioceiling(pthread mutex t *restrict mutex,
int prioceiling, int *restrict old ceiling);

DESCRIPTION
The pthread_mutex_getprioceiling () function shall return the current priority ceiling of the mutex.

The pthread_mutex_setprioceiling () function shall either lock the mutex if it is unlocked, or block
until it can successfully lock the mutex, then it shall change the mutex's priority ceiling and
release the mutex. When the change is successful, the previous value of the priority ceiling shall
be returned in old_ceiling. The process of locking the mutex need not adhere to the priority
protect protocol.

If the pthread_mutex_setprioceiling() function fails, the mutex priority ceiling shall not be
changed.

RETURN VALUE
If successful, the pthread_mutex_getprioceiling () and pthread_mutex_setprioceiling () functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutex_getprioceiling () and pthread_mutex_setprioceiling () functions may fail if:

[EINVAL] The priority requested by prioceiling is out of range.
[EINVAL)] The value specified by mutex does not refer to a currently existing mutex.
[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

pthread_mutex_destroy(), pthread_mutex_lock(), pthread_mutex_timedlock(), the Base Definitions
volume of IEEE 5td 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.
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Issue 6

The pthread_mutex_getprioceiling () and pthread_mutex_setprioceiling () functions are marked as
part of the Threads and Thread Priority Protection options.

The [ENOSYS| error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Priority Protection option.

The [ENOSYS] error denoting non-support of the priority ceiling protocol for mutexes has been
removed. This is because if the implementation provides the functions (regardless of whether
_POSIX_PTHREAD_PRIO_PROTECT is defined), they must function as in the DESCRIPTION
and therefore the priority ceiling protocol for mutexes is supported.

The pthread_mutex_timedlock () function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

The  restrict keyword is added to the pthread_mutex_getprioceiling()  and
pthread_mutex_setprioceiling () prototypes for alignment with the ISO/IEC 9899: 1999 standard.
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NAME
pthread_mutex_init — initialize a mutex
SYNOPSIS
THR #include <pthread.h>
int pthread mutex init (pthread mutex_t *restrict mutex,
const pthread mutexattr t *restrict attr);
pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
DESCRIPTION

Refer to pthread_mutex_destroy ().
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NAME

pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a
mutex

SYNOPSIS

THR

#include <pthread.h>

int pthread mutex lock (pthread mutex t *mutex);
int pthread mutex trylock(pthread mutex t *mutex);
int pthread mutex unlock(pthread mutex t *mutex);

DESCRIPTION

X5l

X51

X5l

The mutex object referenced by mutex shall be locked by calling pthread_mutex_lock(). If the
mutex is already locked, the calling thread shall block until the mutex becomes available. This
operation shall return with the mutex object referenced by mutex in the locked state with the
calling thread as its owner.

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection shall not be provided.
Attempting to relock the mutex causes deadlock. If a thread attempts to unlock a mutex that it
has not locked or a mutex which is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking shall be provided.
If a thread attempts to relock a mutex that it has already locked, an error shall be returned. If a
thread attempts to unlock a mutex that it has not locked or a mutex which is unlocked, an error
shall be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex shall maintain the
concept of a lock count. When a thread successfully acquires a mutex for the first time, the lock
count shall be set to one. Every time a thread relocks this mutex, the lock count shall be
incremented by one. Each time the thread unlocks the mutex, the lock count shall be
decremented by one. When the lock count reaches zero, the mutex shall become available for
other threads to acquire. If a thread attempts to unlock a mutex that it has not locked or a mutex
which is unlocked, an error shall be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex
results in undefined behavior. Attempting to unlock the mutex if it was not locked by the calling
thread results in undefined behavior. Attempting to unlock the mutex if it is not locked results in
undefined behavior.

The pthread_mutex_trylock () function shall be equivalent to pthread_mutex_lock(), except that if
the mutex object referenced by mufex is currently locked (by any thread, including the current
thread), the call shall return immediately. If the mutex type is PTHREAD_MUTEX_RECURSIVE
and the mutex is currently owned by the calling thread, the mutex lock count shall be
incremented by one and the pthread_mutex_trylock () function shall immediately return success.

The pthread_mutex_unlock() function shall release the mutex object referenced by mutex. The
manner in which a mutex is released is dependent upon the mutex’s type attribute. If there are
threads blocked on the mutex object referenced by mutex when pthread_mutex_unlock() is called,
resulting in the mutex becoming available, the scheduling policy shall determine which thread
shall acquire the mutex.

(In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex shall become available

when the count reaches zero and the calling thread no longer has any locks on this mutex.)

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the
thread shall resume waiting for the mutex as if it was not interrupted.
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RETURN VALUE

If successful, the pthread_mutex_lock() and pthread_mutex_unlock() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

The pthread_mutex_trylock () function shall return zero if a lock on the mutex object referenced by
mutex is acquired. Otherwise, an error number is returned to indicate the error.

ERRORS

The pthread_mutex_lock () and pthread_mutex_trylock () functions shall fail if:

[EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex's current priority ceiling.

The pHrrmd_mufex_tryiock() function shall fail if:
[EBUSY] The mutex could not be acquired because it was already locked.

The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions may
fail if:

[EINVAL] The value specified by mutex does not refer to an initialized mutex object.
Xsl [EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.
The pthread_mutex_lock () function may fail if:
[EDEADLK] The current thread already owns the mutex.
The pthread_mutex_unlock () function may fail if:
[EPERM)] The current thread does not own the mutex.
These functions shall not return an error code of [EINTR].
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE

512

Mutex objects are intended to serve as a low-level primitive from which other thread
synchronization functions can be built. As such, the implementation of mutexes should be as
efficient as possible, and this has ramifications on the features available at the interface.

The mutex functions and the particular default settings of the mutex attributes have been
motivated by the desire to not preclude fast, inlined implementations of mutex locking and
unlocking.

For example, deadlocking on a double-lock is explicitly allowed behavior in order to avoid
requiring more overhead in the basic mechanism than is absolutely necessary. (More "' friendly’
mutexes that detect deadlock or that allow multiple locking by the same thread are easily
constructed by the user via the other mechanisms provided. For example, pthread_self() can be
used to record mutex ownership.) Implementations might also choose to provide such extended
features as options via special mutex attributes.

Since most attributes only need to be checked when a thread is going to be blocked, the use of
attributes does not slow the (common) mutex-locking case.
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Likewise, while being able to extract the thread ID of the owner of a mutex might be desirable, it
would require storing the current thread ID when each mutex is locked, and this could incur
unacceptable levels of overhead. Similar arguments apply to a mutex_tryunlock operation.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_destroy (),  pthread_mutex_timedlock(), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions are
marked as part of the Threads option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The behavior when attempting to relock a mutex is defined.

The pthread_mutex_timedlock () function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.
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NAME
pthread_mutex_setprioceiling — change the priority ceiling of a mutex (REALTIME
THREADS)

SYNOPSIS
THR TPP #include <pthread.h>

int pthread mutex setprioceiling(pthread mutex t *restrict mutex,
int prioceiling, int *restrict old ceiling);

DESCRIPTION
Refer to pthread_mutex_getprioceiling ().
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NAME

pthread_mutex_timedlock — lock a mutex (ADVANCED REALTIME)

SYNOPSIS
THR TMO #include <pthread.h>

#include <time.h>

int pthread mutex timedlock (pthread mutex t *restrict mutex,
const struct timespec *restrict abs timeout) ;

DESCRIPTION

The pthread_mutex_timedlock() function shall lock the mutex object referenced by mutex. If the
mutex is already locked, the calling thread shall block until the mutex becomes available as in
the pthread_mutex_lock() function. If the mutex cannot be locked without waiting for another
thread to unlock the mutex, this wait shall be terminated when the specified timeout expires.

The timeout shall expire when the absolute time specified by abs_timeout passes, as measured by
the clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abs_timeout), or if the absolute time specified by abs_timeout has already been passed at the time
of the call.

TMR If the Timers option is supported, the timeout shall be based on the CLOCK_REALTIME clock; if
the Timers option is not supported, the timeout shall be based on the system clock as returned
by the fime() function.

The resolution of the timeout shall be the resolution of the clock on which it is based. The
timespec data type is defined in the <time.h> header.

Under no circumstance shall the function fail with a timeout if the mutex can be locked
immediately. The validity of the abs_timeout parameter need not be checked if the mutex can be
locked immediately.

As a consequence of the priority inheritance rules (for mutexes initialized with the
PRIO_INHERIT protocol), if a timed mutex wait is terminated because its timeout expires, the
priority of the owner of the mutex shall be adjusted as necessary to reflect the fact that this
thread is no longer among the threads waiting for the mutex.

RETURN VALUE
If successful, the pthread_mutex_timedlock() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS

The pthread_mutex_timedlock () function shall fail if:

[EINVAL)] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’ current priority ceiling.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[ETIMEDOUT]  The mutex could not be locked before the specified timeout expired.
The pthread_mutex_timedlock () function may fail if:

[EINVAL] The value specified by mutex does not refer to an initialized mutex object.
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X1 [EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

[EDEADLK] The current thread already owns the mutex.
This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pHrrmd_mufa.‘{_fiumdfock() function is part of the Threads and Timeouts options and need
not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_destroy(), pthread_mutex_lock(), pthread_mutex_trylock(), time(), the Base
Definitions volume of IEEE Std 1003.1-2001, <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.
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NAME

pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a mutex
SYNOPSIS
THR #include <pthread.h>

int pthread mutex trylock(pthread mutex t *mutex);

int pthread mutex unlock(pthread mutex t *mutex);
DESCRIPTION

Refer to pthread_mutex_lock ().
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NAME
pthread_mutexattr_destroy, pthread_mutexattr_init — destroy and initialize the mutex
attributes object

SYNOPSIS

THR #include <pthread.h>

int pthread mutexattr destroy(pthread mutexattr t *attr);
int pthread mutexattr init (pthread mutexattr t *attr) ;

DESCRIPTION
The pthread_mutexattr_destroy() function shall destroy a mutex attributes object; the object
becomes, in effect, uninitialized. An implementation may cause pthread_mutexattr_destroy() to
set the object referenced by atir to an invalid value. A destroyed atfr attributes object can be
reinitialized using pthread_mutexattr_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

The pthread_mutexattr_init() function shall initialize a mutex attributes object attr with the
default value for all of the attributes defined by the implementation.

Results are undefined if pthread_mutexattr_init () is called specifying an already initialized aftr
attributes object.

After a mutex attributes object has been used to initialize one or more mutexes, any function
affecting the attributes object (including destruction) shall not affect any previously initialized
mutexes.

RETURN VALUE
Upon successful completion, pthread_mutexattr_destroy() and pthread_mutexattr_init() shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexatir_destroy () function may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_mutexattr_init () function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the mutex attributes object.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See pthread_attr_init() for a general explanation of attributes. Attributes objects allow
implementations to experiment with useful extensions and permit extension of this volume of
IEEE Std 1003.1-2001 without changing the existing functions. Thus, they provide for future
extensibility of this volume of IEEE Std 1003.1-2001 and reduce the temptation to standardize
prematurely on semantics that are not yet widely implemented or understood.

Examples of possible additional mutex attributes that have been discussed are spin_only,
limited_spin, no_spin, recursive, and mefered. (To explain what the latter attributes might mean:
recursive mutexes would allow for multiple re-locking by the current owner; metered mutexes
would transparently keep records of queue length, wait time, and so on.) Since there is not yet
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wide agreement on the usefulness of these resulting from shared implementation and usage
experience, they are not yet specified in this volume of IEEE Std 1003.1-2001. Mutex attributes
objects, however, make it possible to test out these concepts for possible standardization at a
later time.

Mutex Attributes and Performance

Care has been taken to ensure that the default values of the mutex attributes have been defined
such that mutexes initialized with the defaults have simple enough semantics so that the locking
and unlocking can be done with the equivalent of a test-and-set instruction (plus possibly a few
other basic instructions).

There is at least one implementation method that can be used to reduce the cost of testing at
lock-time if a mutex has non-default attributes. One such method that an implementation can
employ (and this can be made fully transparent to fully conforming POSIX applications) is to
secretly pre-lock any mutexes that are initialized to non-default attributes. Any later attempt to
lock such a mutex causes the implementation to branch to the “slow path™ as if the mutex were
unavailable; then, on the slow path, the implementation can do the “real work™ to lock a non-
default mutex. The underlying unlock operation is more complicated since the implementation
never really wants to release the pre-lock on this kind of mutex. This illustrates that, depending
on the hardware, there may be certain optimizations that can be used so that whatever mutex
attributes are considered “‘most frequently used’ can be processed most efficiently.

Process Shared Memory and Synchronization

The existence of memory mapping functions in this volume of [EEE Std 1003.1-2001 leads to the
possibility that an application may allocate the synchronization objects from this section in
memory that is accessed by multiple processes (and therefore, by threads of multiple processes).

In order to permit such usage, while at the same time keeping the usual case (that is, usage
within a single process) efficient, a process-shared option has been defined.

If an implementation supports the _POSIX_THREAD_PROCESS_SHARED option, then the
process-shared attribute can be used to indicate that mutexes or condition variables may be
accessed by threads of multiple processes.

The default setting of PTHREAD_PROCESS_PRIVATE has been chosen for the process-shared
attribute so that the most efficient forms of these synchronization objects are created by default.

Synchronization variables that are initialized with the PTHREAD_PROCESS_PRIVATE process-
shared attribute may only be operated on by threads in the process that initialized them.
Synchronization variables that are initialized with the PTHREAD_PROCESS_SHARED process-
shared attribute may be operated on by any thread in any process that has access to it. In
particular, these processes may exist beyond the lifetime of the initializing process. For example,
the following code implements a simple counting semaphore in a mapped file that may be used
by many processes.

/* sem.h */

struct semaphore {
pthread mutex t lock;
pthread cond t nonzero;
unsigned count;

)i

typedef struct semaphore semaphore t;

semaphore_t *semaphore create(char *semaphore name);
semaphore t *semaphore open(char *semaphore name);
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void semaphore post (semaphore t *semap) ;
void semaphore wait (semaphore_ t *semap);
void semaphore_ close(semaphore_t *semap) ;

/* sem.c */

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <pthread.h>
#include "sem.h"

semaphore_ t *
semaphore_create (char *semaphore_name)
{
int f£4;
semaphore_t *semap;
pthread mutexattr t psharedm;
pthread condattr_t psharedc;

fd = open(semaphore name, O RDWR | O_CREAT | O_EXCL, 0666);
if (£d < 0)
return (NULL) ;
(void) ftruncate(fd, sizeof (semaphore t));
(void) pthread mutexattr_ init (&psharedm);
(void) pthread mutexattr setpshared (&psharedm,
PTHREAD PROCESS_SHARED) ;
(void) pthread condattr init (&psharedc);
(void) pthread_condattr_setpshared (&psharedc,
PTHREAD_ PROCESS_SHARED) ;

semap = (semaphore_t *) mmap (NULL, sizecof (semaphore t),
PROT_READ | PROT WRITE, MAP_SHARED,
fd, 0);

close (fd);

(void) pthread _mutex init (&semap-=lock, &psharedm);
(void) pthread cond init (&semap->nonzero, &psharedc);
semap->count = 0;

return (semap);

}

semaphore_t *

semaphore_open(char *semaphore name)
int £4;
semaphore t *semap;

fd = open(semaphore name, O _RDWR, 0666);
if (fd < 0)
return (NULL);
semap = (semaphore_t *) mmap (NULL, sizeof (semaphore t),
PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);
close (fd);
return (semap);
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void
semaphore post (semaphore_t *semap)

pthread mutex lock (&semap-=lock) ;
if (semap->count == 0)
pthread cond signal (&semapx->nonzero) ;
semap->count++;
pthread mutex unlock (&semap->lock) ;

}
void
semaphore_wait (semaphore_t *semap)
{
pthread_mutex_lock (&semap->lock) ;
while (semap->count == 0)
pthread cond wait (&semap->nonzero, &semap->lock);
semap->count- -;
pthread mutex unlock (&semap-=>lock) ;

}
void
semaphore close (semaphore t *semap)

{
}

The following code is for three separate processes that create, post, and wait on a semaphore in
the file /tmp/semaphore. Once the file is created, the post and wait programs increment and
decrement the counting semaphore (waiting and waking as required) even though they did not
initialize the semaphore.

munmap ( (void *) semap, sizeof (semaphore_ t}};

/* create.c */
#include "pthread.h"
#include "sem.h"

int

main ()

{

semaphore_t *semap;

semap = semaphore create ("/tmp/semaphore") ;
if (semap == NULL)
exit(1);
semaphore close (semap) ;
return (0);

}

/* post */

#include "pthread.h"
#include "sem.h"

int

main()

{

semaphore_t *semap;
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semap = semaphore open("/tmp/semaphore") ;
if (semap == NULL)
exit(1);
semaphore post (semap) ;
semaphore_close (semap) ;
return (0);

}

/* wait */

#include "pthread.h"
#include "sem.h"

int

main ()

{

semaphore_t *semap;

semap = semaphore_open("/tmp/semaphore") ;
if (semap == NULL)
exit(1);
semaphore wait (semap) ;
semaphore_close (semap) ;
return (0);

}

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy (), pthread_create(), pthread_mutex_destroy (). pthread_mutexattr_destroy(), the
Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutexattr_destroy () and pthread_mutexattr_init () functions are marked as part of the

Threads option.
IEEE PASC Interpretation 1003.1c #27 is applied, updating the ERRORS section.
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NAME
pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling — get and set the
prioceiling attribute of the mutex attributes object (REALTIME THREADS)

SYNOPSIS

THR TP #include <pthread.h>

int pthread mutexattr getprioceiling(const pthread mutexattr t *
restrict attr, int *restrict prioceiling);

int pthread mutexattr setprioceiling(pthread mutexattr t *attr,
int prioceiling) ;

DESCRIPTION
The  pthread_mutexattr_getprioceiling()  and  pthread_mutexattr_setprioceiling()  functions,
respectively, shall get and set the priority ceiling attribute of a mutex attributes object pointed to
by attr which was previously created by the function pthread_mutexattr_init ().

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of
prioceiling are within the maximum range of priorities defined by SCHED_FIFO.

The prioceiling attribute defines the priority ceiling of initialized mutexes, which is the minimum
priority level at which the critical section guarded by the mutex is executed. In order to avoid
priority inversion, the priority ceiling of the mutex shall be set to a priority higher than or equal
to the highest priority of all the threads that may lock that mutex. The values of prioceiling are
within the maximum range of priorities defined under the SCHED_FIFO scheduling policy.
RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprioceiling () and
pthread_mutexattr_setprioceiling () functions shall return zero; otherwise, an error number shall be
returned to indicate the error.
ERRORS
The pthread_mutexattr_getprioceiling () and pthread_mutexatir_setprioceiling () functions may fail if:

[EINVAL] The value specified by attr or prioceiling is invalid.
[EPERM] The caller does not have the privilege to perform the operation.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

pthread_cond_destroy (), pthread_create(), pthread_mutex_destroy (), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>
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CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutexattr_getprioceiling () and pthread_mutexattr_setprioceiling() functions are
marked as part of the Threads and Thread Priority Protection options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Priority Protection option.

The [ENOTSUP] error condition has been removed since these functions do not have a protocol
argument.

The restrict keyword is added to the pthread_mutexattr_getprioceiling () prototype for alignment
with the ISO/IEC 9899: 1999 standard.
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NAME
pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol — get and set the protocol
attribute of the mutex attributes object (REALTIME THREADS)
SYNOPSIS
THR #include <pthread.h>
TPP|TPI int pthread mutexattr getprotocol (const pthread mutexattr t *
restrict attr, int *restrict protocol) ;
int pthread mutexattr setprotocol (pthread mutexattr t *attr,
int protocol) ;
DESCRIPTION
The pthread_mutexattr_getprotocol () and pthread_mutexatir_setprotocol () functions, respectively,
shall get and set the protocol attribute of a mutex attributes object pointed to by attr which was
previously created by the function pthread_mutexattr_init ().
The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of
protocol may be one of:
PTHREAD_PRIO_NONE
TPI PTHREAD_PRIO_INHERIT
PP PTHREAD_PRIO_PROTECT
which are defined in the <pthread.h> header.
When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority
and scheduling shall not be affected by its mutex ownership.
TPI When a thread is blocking higher priority threads because of owning one or more mutexes with

TPP

TPI

the PTHREAD_PRIO_INHERIT protocol attribute, it shall execute at the higher of its priority or
the priority of the highest priority thread waiting on any of the mutexes owned by this thread
and initialized with this protocol.

When a thread owns one or more mutexes initialized with the PTHREAD_ PRIO_PROTECT
protocol, it shall execute at the higher of its priority or the highest of the priority ceilings of all
the mutexes owned by this thread and initialized with this attribute, regardless of whether other
threads are blocked on any of these mutexes or not.

While a thread is holding a mutex which has been initialized with the
PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attributes, it shall not be
subject to being moved to the tail of the scheduling queue at its priority in the event that its
original priority is changed, such as by a call to sched_setparam(). Likewise, when a thread
unlocks a mutex that has been initialized with the PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT protocol attributes, it shall not be subject to being moved to the tail
of the scheduling queue at its priority in the event that its original priority is changed.

If a thread simultaneously owns several mutexes initialized with different protocols, it shall
execute at the highest of the priorities that it would have obtained by each of these protocols.

When a thread makes a call to pthread_mutex_l’ack{], the mutex was initialized with the protocol
attribute having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked
because the mutex is owned by another thread, that owner thread shall inherit the priority level
of the calling thread as long as it continues to own the mutex. The implementation shall update
its execution priority to the maximum of its assigned priority and all its inherited priorities.
Furthermore, if this owner thread itself becomes blocked on another mutex, the same priority
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inheritance effect shall be propagated to this other owner thread, in a recursive manner.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprotocol () and
pthread_mutexattr_setprotocol () functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_mutexattr_setprotocol () function shall fail if:

[ENOTSUP] The value specified by protocol is an unsupported value.

The pthread_mutexattr_getprotocol () and pthread_mutexattr_setprotocol () functions may fail if:
[EINVAL] The value specified by attr or protocol is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy (), pthread_create(), pthread_mutex_destroy (), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutexattr_getprotocol () and pthread_mutexattr_setprotocol () functions are marked as
part of the Threads option and either the Thread Priority Protection or Thread Priority
Inheritance options.

The [ENOSYS| error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Priority Protection or Thread Priority Inheritance
options.

The restrict keyword is added to the pthread_mutexattr_getprotocol () prototype for alignment
with the ISO/IEC 9899: 1999 standard.
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NAME
pthread_mutexattr_getpshared, pthread_mutexattr_setpshared — get and set the process-
shared attribute

SYNOPSIS

THR TsH #include <pthread.h>

int pthread mutexattr getpshared(const pthread mutexattr t *
restrict attr, int *restrict pshared) ;

int pthread mutexattr setpshared(pthread mutexattr t *attr,
int pshared) ;

DESCRIPTION
The pthread_mutexattr_getpshared () function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr. The pthread_mutexattr_setpshared () function shall
set the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be
operated upon by any thread that has access to the memory where the mutex is allocated, even if
the mutex is allocated in memory that is shared by multiple processes. If the process-shared
attribute is PTHREAD_PROCESS_PRIVATE, the mutex shall only be operated upon by threads
created within the same process as the thread that initialized the mutex; if threads of differing
processes attempt to operate on such a mutex, the behavior is undefined. The default value of
the attribute shall be PTHREAD_PROCESS_PRIVATE.
RETURN VALUE

Upon successful completion, pthread_mutexattr_setpshared () shall return zero; otherwise, an error
number shall be returned to indicate the error.

Upon successful completion, pthread_mutexattr_getpshared () shall return zero and store the value
of the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexatir_getpshared () and pthread_mutexattr_setpshared () functions may fail if:

[EINVAL)] The value specified by aftr is invalid.
The pthread_mutexattr_setpshared () function may fail if:

[EINVAL) The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.
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SEE ALSO
pthread_cond_destroy (), pthread_create (), pthread_mutex_destroy (), pthread_mutexattr_destroy(), the
Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutexattr_getpshared () and pthread_mutexattr_setpshared () functions are marked as
part of the Threads and Thread Process-Shared Synchronization options.

The restrict keyword is added to the pthread_mutexattr_getpshared () prototype for alignment
with the ISO/IEC 9899: 1999 standard.
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NAME

pthread_mutexattr_gettype, pthread_mutexattr_settype — get and set the mutex type attribute
SYNOPSIS
XSl #include <pthread.h>

int pthread mutexattr gettype (const pthread mutexattr t *restrict attr,

int *restrict type);

int pthread mutexattr settype (pthread mutexattr t *attr, int type);

DESCRIPTION

The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions, respectively, shall get
and set the mutex type attribute. This attribute is set in the type parameter to these functions. The
default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type of mutex is contained in the type attribute of the mutex attributes. Valid mutex types
include:

PTHREAD_MUTEX_NORMAL
This type of mutex does not detect deadlock. A thread attempting to relock this mutex
without first unlocking it shall deadlock. Attempting to unlock a mutex locked by a
different thread results in undefined behavior. Attempting to unlock an unlocked mutex
results in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK
This type of mutex provides error checking. A thread attempting to relock this mutex
without first unlocking it shall return with an error. A thread attempting to unlock a mutex
which another thread has locked shall return with an error. A thread attempting to unlock
an unlocked mutex shall return with an error.

PTHREAD_MUTEX_RECURSIVE

A thread attempting to relock this mutex without first unlocking it shall succeed in locking
the mutex. The relocking deadlock which can occur with mutexes of type
PTHREAD_MUTEX_NORMAL cannot occur with this type of mutex. Multiple locks of this
mutex shall require the same number of unlocks to release the mutex before another thread
can acquire the mutex. A thread attempting to unlock a mutex which another thread has
locked shall return with an error. A thread attempting to unlock an unlocked mutex shall
return with an error.

PTHREAD_MUTEX_DEFAULT
Attempting to recursively lock a mutex of this type results in undefined behavior.
Attempting to unlock a mutex of this type which was not locked by the calling thread
results in undefined behavior. Attempting to unlock a mutex of this type which is not
locked results in undefined behavior. An implementation may map this mutex to one of the
other mutex types.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_gettype() function shall return zero and store
the value of the type attribute of attr into the object referenced by the type parameter. Otherwise,
an error shall be returned to indicate the error.

If successful, the pthread_mutexattr_settype() function shall return zero; otherwise, an error
number shall be returned to indicate the error.
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ERRORS
The pthread_mutexatir_settype () function shall fail if:
[EINVAL] The value type is invalid.
The pthread_mutexattr_gettype () and pthread_mutexattr_settype() functions may fail if:
[EINVAL] The value specified by attr is invalid.
These functions shall not return an error code of [EINTR].
EXAMPLES
None.

APPLICATION USAGE
It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with
condition variables because the implicit unlock performed for a pthread_cond_timedwait () or
pthread_cond_wait () may not actually release the mutex (if it had been locked multiple times). If
this happens, no other thread can satisfy the condition of the predicate.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_timedwait (), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The Open Group Corrigendum U033/3 is applied. The SYNOPSIS for
pthread_mutexattr_gettype() is updated so that the first argument is of type const
pthread_mutexattr_t *.

The restrict keyword is added to the pthread_mutexattr_gettype() prototype for alignment with
the ISO/IEC 9899: 1999 standard.
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NAME
pthread_mutexattr_init — initialize the mutex attributes object

SYNOPSIS
THR #include <pthread.h>

int pthread mutexattr init (pthread mutexattr t *attr);

DESCRIPTION
Refer to pthread_mutexattr_destroy().
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NAME
pthread_mutexattr_setprioceiling — set the prioceiling attribute of the mutex attributes object
(REALTIME THREADS)

SYNOPSIS
THR TPP #include <pthread.h>

int pthread mutexattr setprioceiling(pthread mutexattr t *attr,
int prioceiling) ;

DESCRIPTION
Refer to pthread_mutexattr_getprioceiling ().
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NAME
pthread_mutexattr_setprotocol — set the protocol attribute of the mutex attributes object

(REALTIME THREADS)

SYNOPSIS
THR #include <pthread.h>

TPP|TPI int pthread mutexattr setprotocol (pthread mutexattr t *attr,
int protocol) ;

DESCRIPTION
Refer to pthread_mutexattr_getprotocol ().
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NAME
pthread_mutexattr_setpshared — set the process-shared attribute

SYNOPSIS
THR TSH #include <pthread.h>

int pthread mutexattr setpshared(pthread mutexattr t *attr,
int pshared) ;

DESCRIPTION
Refer to pthread_mutexattr_getpshared ().
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NAME
pthread_mutexattr_settype — set the mutex type attribute
SYNOPSIS
XSl #include <pthread.h>
int pthread mutexattr settype (pthread mutexattr_t *attr, int type);
DESCRIPTION

Refer to pthread_mutexattr_gettype().
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NAME

pthread_once — dynamic package initialization
SYNOPSIS
THR #include <pthread.h>

int pthread once (pthread once t *once control,
void (*init routine) (veoid));
pthread once t once control = PTHREAD ONCE INIT;

DESCRIPTION
The first call to pthread_once() by any thread in a process, with a given once_control, shall call the
init_routine with no arguments. Subsequent calls of pthread_once() with the same once_control
shall not call the init_routine. On return from pthread_once(), init_routine shall have completed.
The once_control parameter shall determine whether the associated initialization routine has
been called.

The pthread_once () function is not a cancelation point. However, if init_routine is a cancelation
point and is canceled, the effect on once_control shall be as if pthread_once () was never called.

The constant PTHREAD_ONCE_INIT is defined in the <pthread.h> header.

The behavior of pthread_once() is undefined if once_control has automatic storage duration or is
not initialized by PTHREAD_ONCE_INIT.

RETURN VALUE
Upon successful completion, pthread_once () shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_once () function may fail if:

[EINVAL)| If either once_control or init_routine is invalid.
The pthread_once () function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Some C libraries are designed for dynamic initialization. That is, the global initialization for the
library is performed when the first procedure in the library is called. In a single-threaded
program, this is normally implemented using a static variable whose value is checked on entry
to a routine, as follows:

static int random_is initialized = 0;
extern int initialize random();

int random_ function()

if (random is initialized == 0) {
initialize_random() ;
random is initialized = 1;

}

... /* Operations performed after initialization. */
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To keep the same structure in a multi-threaded program, a new primitive is needed. Otherwise,
library initialization has to be accomplished by an explicit call to a library-exported initialization
function prior to any use of the library.

For dynamic library initialization in a multi-threaded process, a simple initialization flag is not
sufficient; the flag needs to be protected against modification by multiple threads
simultaneously calling into the library. Protecting the flag requires the use of a mutex; however,
mutexes have to be initialized before they are used. Ensuring that the mutex is only initialized
once requires a recursive solution to this problem.

The use of pthread_once() not only supplies an implementation-guaranteed means of dynamic
initialization, it provides an aid to the reliable construction of multi-threaded and realtime
systems. The preceding example then becomes:

#include <pthread.h>

static pthread once_t random_is_initialized = PTHREAD ONCE_INIT;

extern int initialize random();

int random_ function()

(void) pthread once(&random is_initialized, initialize_ random) ;
/* Operations performed after initialization. */

}

Note that a pthread_once_t cannot be an array because some compilers do not accept the
construct &<array_name>.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_once () function is marked as part of the Threads option.

The [EINVAL] error is added as a may fail case for if either argument is invalid.
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NAME

pthread_rwlock_destroy, pthread_rwlock_init — destroy and initialize a read-write lock object
SYNOPSIS
THR #include <pthread.h>

int pthread rwlock destroy(pthread rwlock t *rwlock) ;
int pthread rwlock init (pthread rwlock t *restrict rwlock,
const pthread rwlockattr t *restrict attr);

DESCRIPTION

The pthread_rwlock_destroy () function shall destroy the read-write lock object referenced by
rwlock and release any resources used by the lock. The effect of subsequent use of the lock is
undefined until the lock is reinitialized by another call to pthread_rwlock_init(). An
implementation may cause pthread_rwlock_destroy () to set the object referenced by rwlock to an
invalid value. Results are undefined if pthread_rwlock_destroy() is called when any thread holds
rwlock. Attempting to destroy an uninitialized read-write lock results in undefined behavior.

The pthread_rwlock_init() function shall allocate any resources required to use the read-write
lock referenced by rwlock and initializes the lock to an unlocked state with attributes referenced
by attr. If attr is NULL, the default read-write lock attributes shall be used; the effect is the same
as passing the address of a default read-write lock attributes object. Once initialized, the lock can
be used any number of times without being reinitialized. Results are undefined if
pthread_rwlock_init() is called specifying an already initialized read-write lock. Results are
undefined if a read-write lock is used without first being initialized.

If the pthread_rwlock_init () function fails, rwlock shall not be initialized and the contents of rwlock
are undefined.

Only the object referenced by rwlock may be used for performing synchronization. The result of
referring to copies of that object in calls to pthread_rwlock_destroy(), pthread_rwlock_rdlock(),
pthread_rwlock_timedrdlock (), pthread_rwlock_timeduwrlock (), pthread_rwlock_tryrdlock (),
pthread_rwlock_trywrlock (), pf!rrmd_rw.’ork_mrfock(}‘ or pthread_rwlock_wrlock () is undefined.

RETURN VALUE

If successful, the pthread_rwlock_destroy () and pthread_rwlock_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

The [EBUSY] and [EINVAL| error checks, if implemented, act as if they were performed
immediately at the beginning of processing for the function and caused an error return prior to
modifying the state of the read-write lock specified by rwlock.

ERRORS
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The pthread_rwlock_destroy () function may fail if:

[EBUSY] The implementation has detected an attempt to destroy the object referenced
by rwlock while it is locked.

[EINVAL)] The value specified by rwlock is invalid.

The pthread_rwlock_init () function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another read-write lock.

[ENOMEM] Insufficient memory exists to initialize the read-write lock.

[EPERM] The caller does not have the privilege to perform the operation.
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The pthread_rwlock_init () function may fail if:

[EBUSY] The implementation has detected an attempt to reinitialize the object
referenced by rwlock, a previously initialized but not yet destroyed read-write
lock.

[EINVAL] The value specified by attr is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE

None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_rdlock (), pthread_rwlock_timedrdlock (), pthread_rwlock_timedwrlock (),
pthread_rwlock_tryrdlock (), pthread_rwlock_trywrlock (), pthread _rwlock _unlock (),
pthread_rwlock_wrlock (), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

« The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension). The initializer macro is also deleted
from the SYNOPSIS.

« The DESCRIPTION is updated as follows:
— It explicitly notes allocation of resources upon initialization of a read-write lock object.
— A paragraph is added specifying that copies of read-write lock objects may not be used.

« An [EINVAL] error is added to the ERRORS section for pthread_rwlock_init (), indicating that
the rwlock value is invalid.

« The SEE ALSO section is updated.

The restrict keyword is added to the pthread_rwlock_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.
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NAME

pthread_rwlock_rdlock, pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS

THR

#include <pthread.hs>

int pthread rwlock rdlock(pthread rwlock t *rwlock);
int pthread rwlock tryrdlock (pthread rwlock t *rwlock);

DESCRIPTION

TPS

TPS TSP

The pthread_rwlock_rdlock () function shall apply a read lock to the read-write lock referenced by
rwlock. The calling thread acquires the read lock if a writer does not hold the lock and there are
no writers blocked on the lock.

If the Thread Execution Scheduling option is supported, and the threads involved in the lock are
executing with the scheduling policies SCHED_FIFO or SCHED_RR, the calling thread shall not
acquire the lock if a writer holds the lock or if writers of higher or equal priority are blocked on
the lock; otherwise, the calling thread shall acquire the lock.

If the Threads Execution Scheduling option is supported, and the threads involved in the lock
are executing with the SCHED_SPORADIC scheduling policy, the calling thread shall not
acquire the lock if a writer holds the lock or if writers of higher or equal priority are blocked on
the lock; otherwise, the calling thread shall acquire the lock.

If the Thread Execution Scheduling option is not supported, it is implementation-defined
whether the calling thread acquires the lock when a writer does not hold the lock and there are
writers blocked on the lock. If a writer holds the lock, the calling thread shall not acquire the
read lock. If the read lock is not acquired, the calling thread shall block until it can acquire the
lock. The calling thread may deadlock if at the time the call is made it holds a write lock.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock() function n times). If so, the application shall ensure that the thread
performs matching unlocks (that is, it calls the pthread_rwlock_unlock() function n times).

The maximum number of simultaneous read locks that an implementation guarantees can be
applied to a read-write lock shall be implementation-defined. The pthread_rwlock_rdlock()
function may fail if this maximum would be exceeded.

The pthread_rwlock_tryrdlock () function shall apply a read lock as in the pthread_rwlock_rdlock ()
function, with the exception that the function shall fail if the equivalent pthread_rwlock_rdlock ()
call would have blocked the calling thread. In no case shall the pthread_rwlock_tryrdlock ()
function ever block; it always either acquires the lock or fails and returns immediately.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the
signal handler the thread resumes waiting for the read-write lock for reading as if it was not
interrupted.

RETURN VALUE
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If successful, the pthread_rwlock_rdlock () function shall return zero; otherwise, an error number
shall be returned to indicate the error.

The pt.‘:read_m:lﬂck_a‘ryrdfﬂck(} function shall return zero if the lock for reading on the read-write
lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
indicate the error.
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ERRORS
The pthread_rwlock_tryrdlock () function shall fail if:

[EBUSY] The read-write lock could not be acquired for reading because a writer holds
the lock or a writer with the appropriate priority was blocked on it.

The pthread_rwlock_rdlock () and pthread_rwlock_tryrdlock() functions may fail if:

[EINVAL)] The wvalue specified by rwlock does not refer to an initialized read-write lock
object.
[EAGAIN] The read lock could not be acquired because the maximum number of read

locks for rwloeck has been exceeded.
The pthread_rwlock_rdlock () function may fail if:
[EDEADLK] The current thread already owns the read-write lock for writing.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base
Definitions volume of [EEE Std 1003.1-2001, Section 3.285, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy (), pthread_rwlock_timedrdlock (), pthread_rwlock_timedwrlock (),
pthread_rwlock_trywrlock (), pthread_rwlock_unlock (), pthread_rwlock_wrlock (), the Base Definitions
volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

« The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

The DESCRIPTION is updated as follows:

— Conditions under which writers have precedence over readers are specified.
— Failure of pthread_rwlock_tryrdlock() is clarified.
— A paragraph on the maximum number of read locks is added.

« In the ERRORS sections, [EBUSY] is modified to take into account write priority, and
[EDEADLK] is deleted as a pthread_rwlock_tryrdlock () error.

« The SEE ALSO section is updated.
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NAME

pthread_rwlock_timedrdlock — lock a read-write lock for reading

SYNOPSIS
THR TMO #include <pthread.h>

#include <time.h>

int pthread rwlock timedrdlock (pthread rwlock t *restrict rwlock,
const struct timespec *restrict abs timeout) ;

DESCRIPTION

TMR

The pthread_rwlock_timedrdlock() function shall apply a read lock to the read-write lock
referenced by rwlock as in the pﬂrremf_m.=!'ock_rdfock() function. However, if the lock cannot be
acquired without waiting for other threads to unlock the lock, this wait shall be terminated
when the specified timeout expires. The timeout shall expire when the absolute time specified
by abs_timeout passes, as measured by the clock on which timeouts are based (that is, when the
value of that clock equals or exceeds abs_timeout), or if the absolute time specified by abs_fimeout
has already been passed at the time of the call.

If the Timers option is supported, the timeout shall be based on the CLOCK_REALTIME clock. If
the Timers option is not supported, the timeout shall be based on the system clock as returned
by the time() function. The resolution of the timeout shall be the resolution of the clock on which
it is based. The timespec data type is defined in the <time.h> header. Under no circumstances
shall the function fail with a timeout if the lock can be acquired immediately. The validity of the
abs_timeout parameter need not be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_timedrdlock(), upon return from the signal handler the
thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds a write lock on rwlock.
The results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE

The pthread_rwlock_timedrdlock () function shall return zero if the lock for reading on the read-
write lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned
to indicate the error.

ERRORS
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The pthread_rwlock_timedrdlock () function shall fail if:
[ETIMEDOUT]  The lock could not be acquired before the specified timeout expired.
The pthread_rwlock_timedrdlock () function may fail if:

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for lock would be exceeded.

[EDEADLK] The calling thread already holds a write lock on rwlock.

[EINVAL] The value specified by rwlock does not refer to an initialized read-write lock
object, or the abs_timeout nanosecond value is less than zero or greater than or
equal to 1 000 million.

This function shall not return an error code of [EINTR].
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EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-2001, Section 3.285, Priority Inversion.

The pthread_rwlock_timedrdlock () function is part of the Threads and Timeouts options and need
not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy (), pthread_rwlock_rdlock (), pthread_rwlock_timedwrlock(),
pthread_rwlock_tryrdlock (), pthread_rwl ock_trywrlock (), pthread_rwlock_unlock (),
pthread_rwlock_wrlock (), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>,
<time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.
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NAME

pthread_rwlock_timedwrlock — lock a read-write lock for writing

SYNOPSIS
THR TMO #include <pthread.h>

#include <time.h>

int pthread rwlock timedwrlock (pthread rwlock t *restrict rwlock,
const struct timespec *restrict abs timeout) ;

DESCRIPTION

TMR

The pthread_rwlock_timedwrlock() function shall apply a write lock to the read-write lock
referenced by rwlock as in the pthread_rwlock_wrlock () function. However, if the lock cannot be
acquired without waiting for other threads to unlock the lock, this wait shall be terminated
when the specified timeout expires. The timeout shall expire when the absolute time specified
by abs_timeout passes, as measured by the clock on which timeouts are based (that is, when the
value of that clock equals or exceeds abs_timeout), or if the absolute time specified by abs_fimeout
has already been passed at the time of the call.

If the Timers option is supported, the timeout shall be based on the CLOCK_REALTIME clock. If
the Timers option is not supported, the timeout shall be based on the system clock as returned
by the time() function. The resolution of the timeout shall be the resolution of the clock on which
it is based. The timespec data type is defined in the <time.h> header. Under no circumstances
shall the function fail with a timeout if the lock can be acquired immediately. The validity of the
abs_timeout parameter need not be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_timedwrlock (), upon return from the signal handler the
thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds the read-write lock. The
results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE

The pthread_rwlock_timedwrlock() function shall return zero if the lock for writing on the read-
write lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned
to indicate the error.

ERRORS
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The pthread_rwlock_timedwrlock () function shall fail if:

[ETIMEDOUT]  The lock could not be acquired before the specified timeout expired.
The pthread_rwlock_timedwrlock () function may fail if:

[EDEADLK] The calling thread already holds the rwlock.

[EINVAL] The value specified by rwlock does not refer to an initialized read-write lock
object, or the abs_timeout nanosecond value is less than zero or greater than or
equal to 1 000 million.

This function shall not return an error code of [EINTR].
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EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-2001, Section 3.285, Priority Inversion.

The pthread_rwlock_timedwrlock () function is part of the Threads and Timeouts options and need
not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy (), pthread_rwlock_rdlock (), pthread_rwlock_timedrdlock (),
pthread_rwlock_tryrdlock (), pthread_rwl ock_trywrlock (), pthread_rwlock_unlock (),
pthread_rwlock_wrlock (), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>,
<time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.
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NAME
pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
THR #include <pthread.h>

int pthread rwlock tryrdlock(pthread rwlock t *rwlock);

DESCRIPTION
Refer to pthread_rwlock_rdlock ().
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NAME
pthread_rwlock_trywrlock, pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
THR #include <pthread.h>

int pthread rwlock trywrlock (pthread rwlock t *rwlock);
int pthread rwlock wrlock (pthread rwlock t *rwlock);

DESCRIPTION
The pthread_rwlock_trywrlock () function shall apply a write lock like the pthread_rwlock_twrlock ()

function, with the exception that the function shall fail if any thread currently holds rwlock (for
reading or writing).

The pthread_rwlock_wrlock () function shall apply a write lock to the read-write lock referenced
by rwlock. The calling thread acquires the write lock if no other thread (reader or writer) holds
the read-write lock rwlock. Otherwise, the thread shall block until it can acquire the lock. The
calling thread may deadlock if at the time the call is made it holds the read-write lock (whether a
read or write lock).

Implementations may favor writers over readers to avoid writer starvation.
Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the
signal handler the thread resumes waiting for the read-write lock for writing as if it was not
interrupted.

RETURN VALUE
The pthread_rwlock_trywrlock () function shall return zero if the lock for writing on the read-write

lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
indicate the error.

If successful, the pthread_rwlock_wrlock () function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_rwlock_trywrlock () function shall fail if:

[EBUSY] The read-write lock could not be acquired for writing because it was already
locked for reading or writing.

The pHrread_mrfock_frywriock(} and pthread_rwlock_wrlock () functions may fail if:

[EINVAL)] The value specified by rwlock does not refer to an initialized read-write lock
object.

The pthread_rwlock_wrlock () function may fail if:
[EDEADLK] The current thread already owns the read-write lock for writing or reading.

These functions shall not return an error code of [EINTR].

System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 547



System Interfaces pthread_rwlock_trywrlock()

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base
Definitions volume of IEEE Std 1003.1-2001, Section 3.285, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy (), pthread_rwlock_rdlock (), pthread_rwlock_timedrdlock (),
pthread_rwlock_timedwrlock (), pthread_rwlock_tryrdlock (), pthread_rwlock_unlock(), the Base
Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

« The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

« The [EDEADLK] error is deleted as a pn‘?n'md_nufock_frymn’ock(} Error.
« The SEE ALSO section is updated.
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NAME
pthread_rwlock_unlock — unlock a read-write lock object

SYNOPSIS
THR #include <pthread.h>

int pthread rwlock unlock (pthread rwlock t *rwlock) ;

DESCRIPTION
The pthread_rwlock_unlock() function shall release a lock held on the read-write lock object
referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by the
calling thread.

If this function is called to release a read lock from the read-write lock object and there are other
read locks currently held on this read-write lock object, the read-write lock object remains in the
read locked state. If this function releases the last read lock for this read-write lock object, the
read-write lock object shall be put in the unlocked state with no owners.

If this function is called to release a write lock for this read-write lock object, the read-write lock
object shall be put in the unlocked state.

If there are threads blocked on the lock when it becomes available, the scheduling policy shall

TPS determine which thread(s) shall acquire the lock. If the Thread Execution Scheduling option is
supported, when threads executing with the scheduling policies SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC are waiting on the lock, they shall acquire the lock in priority order when
the lock becomes available. For equal priority threads, write locks shall take precedence over
read locks. If the Thread Execution Scheduling option is not supported, it is implementation-
defined whether write locks take precedence over read locks.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

RETURN VALUE
If successful, the pthread_rwlock_unlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_rwlock_unlock () function may fail if:

[EINVAL] The wvalue specified by rwlock does not refer to an initialized read-write lock
object.
[EPERM)] The current thread does not hold a lock on the read-write lock.

The pthread_rwlock_unlock () function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.
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SEE ALSO
pthread_rwlock_destroy (), pthread_rwlock_rdlock (), pthread_rwlock_timedrdlock (),
pthread_rwlock_timedwrlock (), pthread_rwlock_tryrdlock (), pthread_rwlock_trywrlock (),
pthread_rwlock_wrlock (), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

« The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

« The DESCRIPTION is updated as follows:
— The conditions under which writers have precedence over readers are specified.
— The concept of read-write lock owner is deleted.

« The SEE ALSO section is updated.

550 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.



pthread_rwlock_wrlock() System Interfaces

NAME
pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
THR #include <pthread.h>

int pthread rwlock wrlock (pthread rwlock t *rwlock) ;

DESCRIPTION
Refer to pthread_rwlock_trywrlock ().
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NAME
pthread_rwlockattr_destroy, pthread_rwlockattr_init — destroy and initialize the read-write
lock attributes object

SYNOPSIS
THR #include <pthread.h>

int pthread rwlockattr destroy(pthread rwlockattr t *attr);
int pthread rwlockattr init (pthread rwlockattr t *attr);

DESCRIPTION
The pthread_rwlockattr_destroy () function shall destroy a read-write lock attributes object. A
destroyed attr attributes object can be reinitialized using pthread_rwlockattr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined. An implementation
may cause pthread_rwlockattr_destroy () to set the object referenced by aftr to an invalid value.

The pthread_rwlockattr_init () function shall initialize a read-write lock attributes object attr with
the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_rwlockattr_init() is called specifying an already initialized attr
attributes object.

After a read-write lock attributes object has been used to initialize one or more read-write locks,
any function affecting the attributes object (including destruction) shall not affect any previously
initialized read-write locks.

RETURN VALUE
If successful, the pthread_rwlockattr_destroy () and pthread_rwlockattr_init () functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_destroy () function may fail if:

[EINVAL)] The value specified by aftr is invalid.

The pthread_rwlockattr_init () function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the read-write lock attributes object.
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlockatir_getpshared (), pthread_rwlockatir_setpshared (), the
Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>
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CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

« The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

« The SEE ALSO section is updated.
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NAME
pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared — get and set the process-
shared attribute of the read-write lock attributes object

SYNOPSIS
THR TsH #include <pthread.h>

int pthread rwlockattr getpshared(const pthread rwlockattr t *
restrict attr, int *restrict pshared) ;

int pthread rwlockattr setpshared(pthread rwlockattr t *attr,
int pshared) ;

DESCRIPTION
The pthread_rwlockattr_getpshared () function shall obtain the value of the process-shared attribute
from the initialized attributes object referenced by attr. The pthread_rwlockattr_setpshared ()
function shall set the process-shared attribute in an initialized attributes object referenced by aftr.

The process-shared attribute shall be set to PTHREAD_PROCESS_SHARED to permit a read-
write lock to be operated upon by any thread that has access to the memory where the read-
write lock is allocated, even if the read-write lock is allocated in memory that is shared by
multiple processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the read-
write lock shall only be operated upon by threads created within the same process as the thread
that initialized the read-write lock; if threads of differing processes attempt to operate on such a
read-write lock, the behavior is undefined. The default value of the process-shared attribute shall
be PTHREAD_PROCESS_PRIVATE.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

RETURN VALUE
Upon successful completion, the pthread_rwlockattr_getpshared () function shall return zero and
store the value of the process-shared attribute of atfr into the object referenced by the pshared
parameter. Otherwise, an error number shall be returned to indicate the error.

If successful, the pthread_rwlockattr_setpshared () function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_getpshared () and pthread_rwlockattr_setpshared () functions may fail if:

[EINVAL)] The value specified by aftr is invalid.
The pthread_rwlockattr_setpshared () function may fail if:

[EINVAL)] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].
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EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy (),  pthread_rwlockattr_destroy (),  pthread_rwlockattr_init(), the Base
Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

« The margin code in the SYNOPSIS is changed to THR TSH to indicate that the functionality
is now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

« The DESCRIPTION notes that additional attributes are implementation-defined.
« The SEE ALSO section is updated.

The restrict keyword is added to the pthread_rwlockattr_getpshared() prototype for alignment
with the ISO/IEC 9899: 1999 standard.
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NAME
pthread_rwlockattr_init — initialize the read-write lock attributes object

SYNOPSIS
XSl #include <pthread.h>

int pthread rwlockattr init (pthread rwlockattr t *attr);

DESCRIPTION
Refer to pthread_rwlockattr_destroy ().
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NAME
pthread_rwlockattr_setpshared — set the process-shared attribute of the read-write lock
attributes object

SYNOPSIS
Xsl #include <pthread.h>

int pthread rwlockattr setpshared(pthread rwlockattr t *attr,
int pshared) ;

DESCRIPTION
Refer to pthread_rwlockattr_getpshared ().
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NAME

pthread_self — get the calling thread ID
SYNOPSIS
THR #include <pthread.h>

pthread t pthread self (void);

DESCRIPTION
The pthread_self () function shall return the thread ID of the calling thread.

RETURN VALUE
Refer to the DESCRIPTION.

ERRORS
No errors are defined.

The pthread_self () function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_self() function provides a capability similar to the getpid() function for processes
and the rationale is the same: the creation call does not provide the thread ID to the created
thread.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_equal(), the Base Definitions volume of IEEE Std 1003.1-2001,
<pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_self () function is marked as part of the Threads option.
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NAME
pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel — set cancelability state
SYNOPSIS
THR #include <pthread.h>
int pthread setcancelstate(int state, int *oldstate);
int pthread setcanceltype(int type, int *oldtype);
void pthread testcancel (void) ;
DESCRIPTION

The pthread_setcancelstate() function shall atomically both set the calling thread's cancelability
state to the indicated sfate and return the previous cancelability state at the location referenced
by  oldstate. Legal values for state are PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function shall atomically both set the calling thread’s cancelability
type to the indicated fype and return the previous cancelability type at the location referenced by
oldtype. Legal values for type are PTHREAD_CANCEL_DEFERRED and
PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which
main () was first invoked, shall be PTHREAD_CANCEL_EMNABLE and
PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel () function shall create a cancelation point in the calling thread. The
pthread_testcancel () function shall have no effect if cancelability is disabled.

RETURN VALUE
If successful, the pthread_setcancelstate() and pthread_setcanceltype () functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_setcancelstate() function may fail if:

[EINVAL) The  specified state is not PTHREAD CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function may fail if:

[EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_setcancelstate() and pthread_setcanceltype() functions control the points at which a
thread may be asynchronously canceled. For cancelation control to be usable in modular fashion,
some rules need to be followed.

An object can be considered to be a generalization of a procedure. It is a set of procedures and
global variables written as a unit and called by clients not known by the object. Objects may
depend on other objects.
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First, cancelability should only be disabled on entry to an object, never explicitly enabled. On
exit from an object, the cancelability state should always be restored to its value on entry to the
object.

This follows from a modularity argument: if the client of an object (or the client of an object that
uses that object) has disabled cancelability, it is because the client does not want to be concerned
about cleaning up if the thread is canceled while executing some sequence of actions. If an object
is called in such a state and it enables cancelability and a cancelation request is pending for that
thread, then the thread is canceled, contrary to the wish of the client that disabled.

Second, the cancelability type may be explicitly set to either deferred or asynchronous upon entry
to an object. But as with the cancelability state, on exit from an object the cancelability type
should always be restored to its value on entry to the object.

Finally, only functions that are cancel-safe may be called from a thread that is asynchronously
cancelable.

FUTURE DIRECTIONS

None.

SEE ALSO

pthread_cancel (), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY

Issue 6
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First released in Issue 5. Included for alignment with the POSIX Threads Extension.

The pthread_setcancelstate(), pthread_setcanceltype (), and pthread_testcancel () functions are marked
as part of the Threads option.
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NAME

pthread_setconcurrency — set the level of concurrency
SYNOPSIS
XSl #include <pthread.h>

int pthread_setconcurrency (int new level) ;
DESCRIPTION

Refer to pthread_getconcurrency().
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NAME
pthread_setschedparam — dynamic thread scheduling parameters access (REALTIME
THREADS)

SYNOPSIS
THR TPS #include <pthread.h>

int pthread setschedparam(pthread t thread, int policy,
const struct sched param *param);

DESCRIPTION
Refer to pthread_getschedparam ().
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NAME
pthread_setschedprio — dynamic thread scheduling parameters access (REALTIME
THREADS)

SYNOPSIS
THR Tps #include <pthread.h>

int pthread setschedprio(pthread t thread, int prio);

DESCRIPTION
The pthread_setschedprio () function shall set the scheduling priority for the thread whose thread
ID is given by thread to the value given by prio. See Scheduling Policies (on page 44) for a
description on how this function call affects the ordering of the thread in the thread list for its
new priority.
If the pthread_setschedprio () function fails, the scheduling priority of the target thread shall not be
changed.

RETURN VALUE
If successful, the pthread_setschedprio() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_setschedprio () function may fail if:

[EINVAL)] The value of prio is invalid for the scheduling policy of the specified thread.
[ENOTSUP]| An attempt was made to set the priority to an unsupported value.
[EPERM] The caller does not have the appropriate permission to set the scheduling
policy of the specified thread.
[EPERM] The implementation does not allow the application to modify the priority to
the value specified.
[ESRCH] The value specified by thread does not refer to an existing thread.
The pthread_setschedprio () function shall not return an error code of [EINTR].
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE

The pthread_setschedprio() function provides a way for an application to temporarily raise its
priority and then lower it again, without having the undesired side effect of yielding to other
threads of the same priority. This is necessary if the application is to implement its own
strategies for bounding priority inversion, such as priority inheritance or priority ceilings. This
capability is especially important if the implementation does not support the Thread Priority
Protection or Thread Priority Inheritance options, but even if those options are supported it is
needed if the application is to bound priority inheritance for other resources, such as
semaphores.

The standard developers considered that while it might be preferable conceptually to solve this
problem by modifying the specification of pthread_setschedparam (), it was too late to make such a
change, as there may be implementations that would need to be changed. Therefore, this new
function was introduced.
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FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 44), pthread_getschedparam(), the Base Definitions volume of
IEEE Std 1003.1-2001, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Included as a response to IEEE PASC Interpretation 1003.1 #96.
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NAME
pthread_setspecific — thread-specific data management

SYNOPSIS
THR #include <pthread.h>

int pthread setspecific(pthread key t key, const void *value);

DESCRIPTION
Refer to pthread_getspecific().
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NAME

pthread_testcancel — set cancelability state
SYNOPSIS
THR #include <pthread.h>

void pthread testcancel (void);

DESCRIPTION
Refer to pthread_setcancelstate().
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POSIX Standard
for Process Management

This appendix contains sections from the POSIX Standard for Process Management. Portable
Operating System Interface (POSIX) is the open operating system interface standard accepted
worldwide. It is produced by IEEE and recognized by ISO and ANSI. Support of POSIX standards
ensures code portability between systems and is increasingly mandated for commercial
applications and government contracts. The POSIX Standard is the most widely available
method for cross-platform multicore development. It is compatible with high-level libraries such
as the Standard Template Adaptive Parallel Library (STAPL) and new Standard C++0x. The
POSIX Standard is voluminous, containing thousands of pages. Here, for your convenience, are
selected sections from the standard on process management. The API functions contained in
these selected sections were either covered in this book or are of concern when developing
multicore applications.

The following excerpts are reprinted with permission from IEEE Std. 1003.1-2001, IEEE Standard for
Information Technology - Portable Operating System Interface (POSIX), Copyright 2001, by IEEE. The
IEEE disclaims any responsibility or liability resulting from the placement and use in the described
manner.
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NAME

posix_spawn, posix_spawnp — spawn a process (ADVANCED REALTIME)

SYNOPSIS

SPN

#include <spawn.hs

int posix spawn(pid t *restrict pid, const char *restrict path,
const posix spawn file actions t *file actions,
const posix spawnattr t *restrict attrp,
char *const argvlrestrict], char *const envplrestrict]);
int posix spawnp(pid t *restrict pid, const char *restrict file,
const posix spawn file actions t *file actions,
const posix spawnattr_ t *restrict attrp,
char *const argv([restrict], char * const envp[restrict]);

DESCRIPTION

568

The posix_spawn () and posix_spawnp () functions shall create a new process (child process) from
the specified process image. The new process image shall be constructed from a regular
executable file called the new process image file.

When a C program is executed as the result of this call, it shall be entered as a C-language
function call as follows:

int main(int argc, char *argvl[]);

where argc is the argument count and argu is an array of character pointers to the arguments
themselves, In addition, the following variable:

extern char **environ;
shall be initialized as a pointer to an array of character pointers to the environment strings.

The argument argo is an array of character pointers to null-terminated strings. The last member
of this array shall be a null pointer and is not counted in argc. These strings constitute the
argument list available to the new process image. The value inargv[0] should point to a filename
that is associated with the process image being started by the posix_spawn () or posix_spawnp ()
function.

The argument envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The environment array is terminated by a
null pointer.

The number of bytes available for the child process’ combined argument and environment lists
is {ARG_MAX}. The implementation shall specify in the system documentation (see the Base
Definitions volume of I[EEE Std 1003.1-2001, Chapter 2, Conformance) whether any list
overhead, such as length words, null terminators, pointers, or alignment bytes, is included in
this total.

The path argument to posix_spawn () is a pathname that identifies the new process image file to
execute.

The file parameter to posix_spawnp () shall be used to construct a pathname that identifies the
new process image file. If the file parameter contains a slash character, the file parameter shall be
used as the pathname for the new process image file. Otherwise, the path prefix for this file shall
be obtained by a search of the directories passed as the environment variable PATH (see the Base
Definitions volume of IEEE Std 1003.1-2001, Chapter 8, Environment Variables). If this
environment variable is not defined, the results of the search are implementation-defined.
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Ps

If file_actions is a null pointer, then file descriptors open in the calling process shall remain open
in the child process, except for those whose close-on-exec flag FD_CLOEXEC is set (see fentl()).
For those file descriptors that remain open, all attributes of the corresponding open file
descriptions, including file locks (see fcntl (), shall remain unchanged.

If file_actions is not NULL, then the file descriptors open in the child process shall be those open
in the calling process as modified by the spawn file actions object pointed to by file_actions and
the FD_CLOEXEC flag of each remaining open file descriptor after the spawn file actions have
been processed. The effective order of processing the spawn file actions shall be:

1. The set of open file descriptors for the child process shall initially be the same set as is
open for the calling process. All attributes of the corresponding open file descriptions,
including file locks (see fentl()), shall remain unchanged.

2. The signal mask, signal default actions, and the effective user and group IDs for the child
process shall be changed as specified in the attributes object referenced by attrp.

3. The file actions specified by the spawn file actions object shall be performed in the order in
which they were added to the spawn file actions object.

4. Any file descriptor that has its FD_CLOEXEC flag set (see fcntl ()) shall be closed.

The posix_spawnattr_t spawn attributes object type is defined in <spawn.h>. It shall contain at
least the attributes defined below.

If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object
referenced by attrp, and the spawn-pgroup attribute of the same object is non-zero, then the
child’s process group shall be as specified in the spawn-pgroup attribute of the object referenced
by attrp.

As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of
the object referenced by attrp, and the spawn-pgroup attribute of the same object is set to zero,
then the child shall be in a new process group with a process group ID equal to its process ID.

If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the object
referenced by attrp, the new child process shall inherit the parent’s process group.

If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object
referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not set, the new process image
shall initially have the scheduling policy of the calling process with the scheduling parameters
specified in the spawn-schedparam attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSCHEDULER flag is set in the spawn-flags attribute of the object
referenced by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag),
the new process image shall initially have the scheduling policy specified in the spawn-
schedpolicy attribute of the object referenced by attrp and the scheduling parameters specified in
the spatwn-schedparam attribute of the same object.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
governs the effective user ID of the child process. If this flag is not set, the child process shall
inherit the parent process’ effective user ID. If this flag is set, the child process’ effective user ID
shall be reset to the parent’s real user ID. In either case, if the set-user-ID mode bit of the new
process image file is set, the effective user ID of the child process shall become that file's owner
1D before the new process image begins execution.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
also governs the effective group ID of the child process. If this flag is not set, the child process
shall inherit the parent process’ effective group ID. If this flag is set, the child process’ effective
group 1D shall be reset to the parent’s real group ID. In either case, if the set-group-1D mode bit
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THR

of the new process image file is set, the effective group ID of the child process shall become that
file's group ID before the new process image begins execution.

If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object
referenced by aftrp, the child process shall initially have the signal mask specified in the spawn-
sigmask attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced
by attrp, the signals specified in the spawn-sigdefault attribute of the same object shall be set to
their default actions in the child process. Signals set to the default action in the parent process
shall be set to the default action in the child process.

Signals set to be caught by the calling process shall be set to the default action in the child
process.

Except for SIGCHLD, signals set to be ignored by the calling process image shall be set to be
ignored by the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag
being set in the spawn-flags attribute of the object referenced by attrp and the signals being
indicated in the spawn-sigdefault attribute of the object referenced by attrp.

If the SIGCHLD signal is set to be ignored by the calling process, it is unspecified whether the
SIGCHLD signal is set to be ignored or to the default action in the child process, unless
otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the spawn_flags
attribute of the object referenced by attrp and the SIGCHLD signal being indicated in the
spawn_sigdefault attribute of the object referenced by attrp.

If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object referenced
by attrp as specified above or by the file descriptor manipulations specified in file_actions, shall
appear in the new process image as though fork () had been called to create a child process and
then a member of the exec family of functions had been called by the child process to execute the
new process image.

It is implementation-defined whether the fork handlers are run when posix_spawn() or
posix_spawnp () is called.

RETURN VALUE

Upon successful completion, posix_spawn () and posix_spawnp () shall return the process ID of the
child process to the parent process, in the variable pointed to by a non-NULL pid argument, and
shall return zero as the function return value. Otherwise, no child process shall be created, the
value stored into the variable pointed to by a non-NULL pid is unspecified, and an error number
shall be returned as the function return value to indicate the error. If the pid argument is a null
pointer, the process 1D of the child is not returned to the caller.

ERRORS

570

The posix_spawn () and posix_spawnp () functions may fail if:
[EINVAL)| The value specified by file_actions or attrp is invalid.

If this error occurs after the calling process successfully returns from the posix_spawn () or
posix_spawnp () function, the child process may exit with exit status 127.

If posix_spawn () or posix_spawnp () fail for any of the reasons that would cause fork() or one of
the exec family of functions to fail, an error value shall be returned as described by fork() and
exec, respectively (or, if the error occurs after the calling process successfully returns, the child
process shall exit with exit status 127).
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If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by
attrp, and posix_spawn () or posix_spawnp () fails while changing the child's process group, an
error value shall be returned as described by sefpgid() (or, if the error occurs after the calling
process successfully returns, the child process shall exit with exit status 127).

PS If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set
in the spawn-flags attribute of the object referenced by attrp, then if posix_spawn() or
posix_spawnp () fails for any of the reasons that would cause sched_setparam() to fail, an error
value shall be returned as described by sched_setparam () (or, if the error occurs after the calling
process successfully returns, the child process shall exit with exit status 127).

If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced by
attrp, and if posix_spawn () or posix_spawnp () fails for any of the reasons that would cause
sched_setscheduler () to fail, an error value shall be returned as described by sched_setscheduler()
(or, if the error occurs after the calling process successfully returns, the child process shall exit
with exit status 127).

If the file_actions argument is not NULL, and specifies any close, dup2, or open actions to be
performed, and if posix_spawn () or posix_spawnp () fails for any of the reasons that would cause
close(), dup2(), or open () to fail, an error value shall be returned as described by close(), dup2 (),
and open (), respectively (or, if the error occurs after the calling process successfully returns, the
child process shall exit with exit status 127). An open file action may, by itself, result in any of
the errors described by close () or dup2(), in addition to those described by open ().

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
The posix_spawn () function and its close relation posix_spawnp() have been introduced to
overcome the following perceived difficulties with fork(): the fork() function is difficult or
impossible to implement without swapping or dynamic address translation.

« Swapping is generally too slow for a realtime environment.
« Dynamic address translation is not available everywhere that POSIX might be useful.

« Processes are too useful to simply option out of POSIX whenever it must run without
address translation or other MMU services.

Thus, POSIX needs process creation and file execution primitives that can be efficiently
implemented without address translation or other MMU services.

The posix_spawn () function is implementable as a library routine, but both posix_spawn () and
posix_spawnp () are designed as kernel operations. Also, although they may be an efficient
replacement for many fork()/exec pairs, their goal is to provide useful process creation
primitives for systems that have difficulty with fork(), not to provide drop-in replacements for
fork () /exec.

This view of the role of posix_spawn () and posix_spawnp () influenced the design of their APL It
does not attempt to provide the full functionality of fork () /exec in which arbitrary user-specified
operations of any sort are permitted between the creation of the child process and the execution
of the new process image; any attempt to reach that level would need to provide a programming
language as parameters. Instead, posix_spawn() and posix_spawnp() are process creation
primitives like the Start_Process and Start_Process_Search Ada language bindings package
POSIX_Process_Primitives and also like those in many operating systems that are not UNIX
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systems, but with some POSIX-specific additions.

To achieve its coverage goals, posix_spawn () and posix_spawnp () have control of six types of
inheritance: file descriptors, process group ID, user and group ID, signal mask, scheduling, and
whether each signal ignored in the parent will remain ignored in the child, or be reset to its
default action in the child.

Control of file descriptors is required to allow an independently written child process image to
access data streams opened by and even generated or read by the parent process without being
specifically coded to know which parent files and file descriptors are to be used. Control of the
process group ID is required to control how the child process’ job control relates to that of the
parent.

Control of the signal mask and signal defaulting is sufficient to support the implementation of
system (). Although support for system () is not explicitly one of the goals for posix_spawn () and
posix_spawnp (), it is covered under the “at least 50%"" coverage goal.

The intention is that the normal file descriptor inheritance across fork (), the subsequent effect of
the specified spawn file actions, and the normal file descriptor inheritance across one of the exec
family of functions should fully specify open file inheritance. The implementation need make no
decisions regarding the set of open file descriptors when the child process image begins
execution, those decisions having already been made by the caller and expressed as the set of
open file descriptors and their FD_CLOEXEC flags at the time of the call and the spawn file
actions object specified in the call. We have been assured that in cases where the POSIX
Start_Process Ada primitives have been implemented in a library, this method of controlling file
descriptor inheritance may be implemented very easily.

We can identify several problems with posix_spawn () and posix_spawnp (), but there does not
appear to be a solution that introduces fewer problems. Environment modification for child
process attributes not specifiable via the atfrp or file_actions arguments must be done in the
parent process, and since the parent generally wants to save its context, it is more costly than
similar functionality with fork()/exec. It is also complicated to modify the environment of a
multi-threaded process temporarily, since all threads must agree when it is safe for the
environment to be changed. However, this cost is only borne by those invocations of
posix_spawn () and posix_spawnp() that use the additional functionality. Since extensive
modifications are not the usual case, and are particularly unlikely in time-critical code, keeping
much of the environment control out of pesix_spawn () and posix_spawnp () is appropriate design.

The posix_spawn () and posix_spawnp () functions do not have all the power of fork () /exec. This is
to be expected. The fork() function is a wonderfully powerful operation. We do not expect to
duplicate its functionality in a simple, fast function with no special hardware requirements. It is
worth noting that pesix_spawn () and posix_spawnp () are very similar to the process creation
operations on many operating systems that are not UNIX systems.
Requirements
The requirements for posix_spawn () and posix_spawnp () are:

« They must be implementable without an MMU or unusual hardware.

« They must be compatible with existing POSIX standards.
Additional goals are:

« They should be efficiently implementable.

« They should be able to replace at least 50% of typical executions of fork().
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« A system with posix_spawn () and posix_spawnp () and without fork () should be useful, at least
for realtime applications.

« A system with fork() and the exec family should be able to implement posix_spawn () and
posix_spawnp () as library routines.

Two-Syntax

POSIX exec has several calling sequences with approximately the same functionality. These
appear to be required for compatibility with existing practice. Since the existing practice for the
posix_spawn*() functions is otherwise substantially unlike POSIX, we feel that simplicity
outweighs compatibility. There are, therefore, only two names for the posix_spawn*() functions.

The parameter list does not differ between posix_spawn () and posix_spawnp (); posix_spawnp ()
interprets the second parameter more elaborately than posix_spawn ().

Compatibility with POSIX.5 (Ada)

The Start_Process and Start_Process_Search procedures from the POSIX_Process_Primitives
package from the Ada language binding to POSIX.1 encapsulate fork () and exec functionality in a
manner similar to that of posix_spawn () and posix_spawnp (). Originally, in keeping with our
simplicity goal, the standard developers had limited the capabilities of posix_spawn () and
posix_spawnp () to a subset of the capabilities of Start_Process and Start_Process_Search; certain
non-default capabilities were not supported. However, based on suggestions by the ballot group
to improve file descriptor mapping or drop it, and on the advice of an Ada Language Bindings
working group member, the standard developers decided that pesix_spawn () and posix_spawnp ()
should be sufficiently powerful to implement Start_Process and Start_Process_Search. The
rationale is that if the Ada language binding to such a primitive had already been approved as
an IEEE standard, there can be little justification for not approving the functionally-equivalent
parts of a C binding. The only three capabilities provided by posix_spawn () and posix_spawnp ()
that are not provided by Start_Process and Start_Process_Search are optionally specifying the
child's process group ID, the set of signals to be reset to default signal handling in the child
process, and the child's scheduling policy and parameters.

For the Ada language binding for Start_Process to be implemented with posix_spawn (), that
binding would need to explicitly pass an empty signal mask and the parent’s environment to
posix_spawn () whenever the caller of Start_Process allowed these arguments to default, since
posix_spawn () does not provide such defaults. The ability of Start_Process to mask user-specified
signals during its execution is functionally unique to the Ada language binding and must be
dealt with in the binding separately from the call to posix_spawn ().

Process Group

The process group inheritance field can be used to join the child process with an existing process
group. By assigning a value of zero to the spawn-pgroup attribute of the object referenced by
attrp, the setpgid () mechanism will place the child process in a new process group.
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Threads

Without the posix_spawn () and posix_spawnp () functions, systems without address translation
can still use threads to give an abstraction of concurrency. In many cases, thread creation
suffices, but it is not always a good substitute. The posix_spawn () and posix_spawnp () functions
are considerably “‘heavier”” than thread creation. Processes have several important attributes that
threads do not. Even without address translation, a process may have base-and-bound memory
protection. Each process has a process environment including security attributes and file
capabilities, and powerful scheduling attributes. Processes abstract the behavior of non-
uniform-memory-architecture multi-processors better than threads, and they are more
convenient to use for activities that are not closely linked.

The posix_spawn () and posix_spawnp () functions may not bring support for multiple processes to
every configuration. Process creation is not the only piece of operating system support required
to support multiple processes. The total cost of support for multiple processes may be quite high
in some circumstances. Existing practice shows that support for multiple processes is
uncommon and threads are common among ““tiny kernels”. There should, therefore, probably
continue to be AEPs for operating systems with only one process.

Asynchronous Error Notification

A library implementation of posix_spawn () or posix_spawnp () may not be able to detect all
possible errors before it forks the child process. IEEE Std 1003.1-2001 provides for an error
indication returned from a child process which could not successfully complete the spawn
operation via a special exit status which may be detected using the status value returned by
wait () and waitpid ().

The stat_val interface and the macros used to interpret it are not well suited to the purpose of
returning API errors, but they are the only path available to a library implementation. Thus, an
implementation may cause the child process to exit with exit status 127 for any error detected
during the spawn process after the posix_spawn () or posix_spawnp () function has successfully
returned.

The standard developers had proposed using two additional macros to interpret stat_val. The
first, WIFSPAWNFAIL, would have detected a status that indicated that the child exited because
of an error detected during the posix_spawn () or posix_spawnp () operations rather than during
actual execution of the child process image; the second, WSPAWNERRNO, would have
extracted the error value if WIFSPAWNFAIL indicated a failure. Unfortunately, the ballot group
strongly opposed this because it would make a library implementation of posix_spawn () or
posix_spawnp () dependent on kernel modifications to waitpid () to be able to embed special
information in sfaf_val to indicate a spawn failure.

The 8 bits of child process exit status that are guaranteed by IEEE Std 1003.1-2001 to be
accessible to the waiting parent process are insufficient to disambiguate a spawn error from any
other kind of error that may be returned by an arbitrary process image. No other bits of the exit
status are required to be visible in stat_val, so these macros could not be strictly implemented at
the library level. Reserving an exit status of 127 for such spawn errors is consistent with the use
of this value by system () and popen () to signal failures in these operations that occur after the
function has returned but before a shell is able to execute. The exit status of 127 does not
uniquely identify this class of error, nor does it provide any detailed information on the nature
of the failure. Note that a kernel implementation of posix_spawn () or posix_spawnp () is permitted
(and encouraged) to return any possible error as the function value, thus providing more
detailed failure information to the parent process.

Thus, no special macros are available to isolate asynchronous posix_spawn () or posix_spawnp ()
errors. Instead, errors detected by the posix_spatwn () or posix_spawnp () operations in the context
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of the child process before the new process image executes are reported by setting the child's
exit status to 127. The calling process may use the WIFEXITED and WEXITSTATUS macros on
the stat_val stored by the wait () or waitpid () functions to detect spawn failures to the extent that
other status values with which the child process image may exit (before the parent can
conclusively determine that the child process image has begun execution) are distinct from exit
status 127.

FUTURE DIRECTIONS
None.

SEE ALSO
alarn (), chmod (), close (), dup (), exec, exit (), fent1 (), fork (), kill (), open (),
posix_spawn_file_actions_addclose (), posix_spawn_file_actions_adddup2 (),
posix_spawn_file_actions_addopen (), posix_spawn_file_actions_destroy (), <REFERENCE
UNDEFINED>(posix_spawn_file_actions_init), posix_spawnattr_destroy (), posix_spawnattr_init (),
posix_spawnattr_getsigdefault (), posix_spawnattr_getflags (), posix_spawnatir_getpgroup (),
posix_spawnattr_getschedparam (), posix_spawnattr_getschedpolicy (), posix_spawnattr_getsigmask (),
posix_spawnattr_setsigdefault (), posix_spawnattr_setflags(), posix_spawnattr_setpgroup (),
posix_spawnattr_setschedparam (), posix_spawnattr_setschedpolicy (), posix_spawnattr_setsigmask (),
sched_setparam (), sched_setscheduler (), setpgid (), setuid (), stat (), times(), wait (), the Base
Definitions volume of IEEE Std 1003.1-2001, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #103 is applied, noting that the signal default actions are
changed as well as the signal mask in step 2.

IEEE PASC Interpretation 1003.1 #132 is applied.
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NAME
posix_spawn_file_actions_addclose, posix_spawn_file_actions_addopen — add close or open
action to spawn file actions object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix spawn file actions addclose(posix spawn file actions t *
file actions, int fildes);

int posix spawn file actions_addopen(posix spawn file actions t *
restrict file actions, int fildes,
const char *restrict path, int oflag, mode_t mode) ;

DESCRIPTION
These functions shall add or delete a close or open action to a spawn file actions object.

A spawn file actions object is of type posix_spawn_file_actions_t (defined in <spawn.h>) and is
used to specify a series of actions to be performed by a posix_spawn () or posix_spawnp ()
operation in order to arrive at the set of open file descriptors for the child process given the set of
open file descriptors of the parent. IEEE Std 1003.1-2001 does not define comparison or
assignment operators for the type posix_spawn_file_actions_t.

A spawn file actions object, when passed to posix_spawn () or posix_spawnp (), shall specify how
the set of open file descriptors in the calling process is transformed into a set of potentially open
file descriptors for the spawned process. This transformation shall be as if the specified sequence
of actions was performed exactly once, in the context of the spawned process (prior to execution
of the new process image), in the order in which the actions were added to the object;
additionally, when the new process image is executed, any file descriptor (from this new set)
which has its FD_CLOEXEC flag set shall be closed (see posix_spatwn ()).

The posix_spawn_file_actions_addclose () function shall add a close action to the object referenced
by file_actions that shall cause the file descriptor fildes to be closed (as if close(fildes) had been
called) when a new process is spawned using this file actions object.

The posix_spawn_file_actions_addopen () function shall add an open action to the object referenced
by file_actions that shall cause the file named by path to be opened (as if open (path, oflag, mode)
had been called, and the returned file descriptor, if not fildes, had been changed to fildes) when a
new process is spawned using this file actions object. If fildes was already an open file descriptor,
it shall be closed before the new file is opened.

The string described by path shall be copied by the posix_spawn_file_actions_addopen () function.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
These functions shall fail if:

[EBADF] The value specified by fildes is negative or greater than or equal to
{OPEN_MAX}.

These functions may fail if:

[EINVAL) The value specified by file_actions is invalid.

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.
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It shall not be considered an error for the fildes argument passed to these functions to specify a
file descriptor for which the specified operation could not be performed at the time of the call.
Any such error will be detected when the associated file actions object is later used during a
posix_spawn () or posix_spawnp () operation.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE

A spawn file actions object may be initialized to contain an ordered sequence of close(), dup2(),
and open () operations to be used by posix_spawn () or posix_spawnp () to arrive at the set of open
file descriptors inherited by the spawned process from the set of open file descriptors in the
parent at the time of the posix_spawn () or pesix_spawnp () call. It had been suggested that the
close() and dup2() operations alone are sufficient to rearrange file descriptors, and that files
which need to be opened for use by the spawned process can be handled either by having the
calling process open them before the posix_spawn () or posix_spawnyp () call (and close them after),
or by passing filenames to the spawned process (in argv) so that it may open them itself. The
standard developers recommend that applications use one of these two methods when practical,
since detailed error status on a failed open operation is always available to the application this
way. However, the standard developers feel that allowing a spawn file actions object to specify
open operations is still appropriate because:

1. It is consistent with equivalent POSIX.5 (Ada) functionality.

2. It supports the 1/O redirection paradigm commonly employed by POSIX programs
designed to be invoked from a shell. When such a program is the child process, it may not
be designed to open files on its own.

3. It allows file opens that might otherwise fail or violate file ownership/access rights if
executed by the parent process.

Regarding 2. above, note that the spawn open file action provides to pesix_spawn() and
posix_spawnp () the same capability that the shell redirection operators provide to system (), only
without the intervening execution of a shell; for example:

system ("myprog <filel 3<file2");

Regarding 3. above, note that if the calling process needs to open one or more files for access by
the spawned process, but has insufficient spare file descriptors, then the open action is necessary
to allow the open () to occur in the context of the child process after other file descriptors have
been closed (that must remain open in the parent).

Additionally, if a parent is executed from a file having a “'set-user-id"" mode bit set and the
POSIX_SPAWN_RESETIDS flag is set in the spawn attributes, a file created within the parent
process will (possibly incorrectly) have the parent’s effective user ID as its owner, whereas a file
created via an open () action during posix_spawn () or posix_spawnp () will have the parent’s real
ID as its owner; and an open by the parent process may successfully open a file to which the real
user should not have access or fail to open a file to which the real user should have access.
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File Descriptor Mapping

The standard developers had originally proposed using an array which specified the mapping of
child file descriptors back to those of the parent. It was pointed out by the ballot group that it is
not possible to reshuffle file descriptors arbitrarily in a library implementation of posix_spawn ()
or posix_spawnp () without provision for one or more spare file descriptor entries (which simply
may not be available). Such an array requires that an implementation develop a complex
strategy to achieve the desired mapping without inadvertently closing the wrong file descriptor
at the wrong time,

It was noted by a member of the Ada Language Bindings working group that the approved Ada
Language Start_Process family of POSIX process primitives use a caller-specified set of file
actions to alter the normal fork()/exec semantics for inheritance of file descriptors in a very
flexible way, yet no such problems exist because the burden of determining how to achieve the
final file descriptor mapping is completely on the application. Furthermore, although the file
actions interface appears frightening at first glance, it is actually quite simple to implement in
either a library or the kernel.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), dup(), open (), posix_spawn (), posix_spawn_file_actions_adddup2(),
posix_spawn_file_actions_destroy (),  posix_spawnp(), the Base Definitions volume of

IEEE Std 1003.1-2001, <spawn.h>

CHANGE HISTORY

578

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #105 is applied, adding a note to the DESCRIPTION that the
string pointed to by path is copied by the posix_spawn_file_actions_addopen () function.
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NAME
posix_spawn_file_actions_adddup2 — add dup2 action to spawn file actions object
(ADVANCED REALTIME)
SYNOPSIS
SPN #include <spawn.h>
int posix spawn file actions adddup2 (posix spawn file actions t *
file actions, int fildes, int newfildes) ;
DESCRIPTION

The posix_spawn_file_actions_adddup2() function shall add a dup2() action to the object
referenced by file_actions that shall cause the file descriptor fildes to be duplicated as newfildes (as
if dup? (fildes, newfildes) had been called) when a new process is spawned using this file actions
object.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

RETURN VALUE
Upon successful completion, the posix_spawn_file_actions_adddup2() function shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_adddup2 () function shall fail if:

[EBADF] The value specified by fildes or newfildes is negative or greater than or equal to
{OPEN_MAX}.
[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

The posix_spawn_file_actions_adddup2 () function may fail if:
[EINVAL] The value specified by file_actions is invalid.

It shall not be considered an error for the fildes argument passed to the
posix_spawn_file_actions_adddup2 () function to specify a file descriptor for which the specified
operation could not be performed at the time of the call. Any such error will be detected when
the associated file actions object is later used during a posix_spawn() or posix_spawnp ()
operation.

EXAMPLES
None.

APPLICATION USAGE
The posix_spawn_file_actions_adddup2 () function is part of the Spawn option and need not be
provided on all implementations.

RATIONALE
Refer to the RATIONALE in posix_spawn_file_actions_addclose ().

FUTURE DIRECTIONS
None.

SEE ALSO
dup(), posix_spawn (), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_destroy (),
posix_spawnp (), the Base Definitions volume of IEEE Std 1003.1-2001, <spawn.h>
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CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #104 is applied, noting that the [EBADF] error can apply to the
newfildes argument in addition to fildes.
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NAME
posix_spawn_file_actions_addopen — add open action to spawn file actions object
(ADVANCED REALTIME)
SYNOPSIS
SPN #include <spawn.h>
int posix spawn file actions_addopen(posix spawn file actions_t *
restrict file actions, int fildes,
const char *restrict path, int oflag, mode t mode) ;
DESCRIPTION

Refer to posix_spawn_file_actions_addclose().
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NAME
posix_spawn_file_actions_destroy, posix_spawn_file_actions_init — destroy and initialize
spawn file actions object (ADVANCED REALTIME)
SYNOPSIS
SPN #include <spawn.h>
int posix spawn file actions destroy(posix spawn file actions t *
file actions);
int posix spawn file actions init(posix spawn file actions t *
file actions);
DESCRIPTION

The posix_spawn_file_actions_destroy () function shall destroy the object referenced by file_actions ;
the object becomes, in effect, uninitialized. An implementation may cause
posix_spawn_file_actions_destroy () to set the object referenced by file_actions to an invalid value. A
destroyed spawn file actions object can be reinitialized using posix_spawn_file_actions_init(); the
results of otherwise referencing the object after it has been destroyed are undefined.

The posix_spawn_file_actions_init () function shall initialize the object referenced by file_actions to
contain no file actions for posix_spawn () or posix_spawnp () to perform.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().
The effect of initializing an already initialized spawn file actions object is undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_spawn jff_ﬂcffOJis_fifir() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn file actions object.
The posix_spawn _ﬂf{’_ﬂcﬁmis_dt’sfmy() function may fail if:
[EINVAL] The value specified by file_actions is invalid.

EXAMPLES

None.
APPLICATION USAGE

These functions are part of the Spawn option and need not be provided on all implementations.
RATIONALE

Refer to the RATIONALE in posix_spawn_file_actions_addclose ().

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spatwn (), posix_spawnp (), the Base Definitions volume of IEEE Std 1003.1-2001, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.
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NAME
posix_spawnattr_destroy, posix_spawnattr_init — destroy and initialize spawn attributes object
(ADVANCED REALTIME)
SYNOPSIS
SPN #include <spawn.h>
int posix spawnattr destroy(posix spawnattr t *attr);
int posix spawnattr init (posix_spawnattr t *attr);
DESCRIPTION

The posix_spawnattr_destroy () function shall destroy a spawn attributes object. A destroyed attr
attributes object can be reinitialized using posix_spawnattr_init(); the results of otherwise
referencing the object after it has been destroyed are undefined. An implementation may cause
posix_spawnattr_destroy () to set the object referenced by attr to an invalid value.

The posix_spawnattr_init () function shall initialize a spawn attributes object attr with the default
value for all of the individual attributes used by the implementation. Results are undefined if
posix_spawnattr_init () is called specifying an already initialized attr attributes object.

A spawn attributes object is of type posix_spawnattr_t (defined in <spawn.h>) and is used to
specify the inheritance of process attributes across a spawn operation. IEEE Std 1003.1-2001 does
not define comparison or assignment operators for the type posix_spawnattr_t.

Each implementation shall document the individual attributes it uses and their default values
unless these wvalues are defined by IEEE Std 1003.1-2001. Attributes not defined by
IEEE Std 1003.1-2001, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

The resulting spawn attributes object (possibly modified by setting individual attribute values),
is used to modify the behavior of pesix_spawn () or posix_spawnp (). After a spawn attributes
object has been used to spawn a process by a call to a posix_spawn () or posix_spawnp (), any
function affecting the attributes object (including destruction) shall not affect any process that
has been spawned in this way.

RETURN VALUE
Upon successful completion, posix_spawnattr_destroy() and posix_spawnattr_init() shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawnattr_init () function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn attributes object.
The posix_spawnattr_destroy () function may fail if:
[EINVAL] The value specified by attr is invalid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
The original spawn interface proposed in [EEE Std 1003.1-2001 defined the attributes that specify
the inheritance of process attributes across a spawn operation as a structure. In order to be able
to separate optional individual attributes under their appropriate options (that is, the spawn-
schedparam and spawn-schedpolicy attributes depending upon the Process Scheduling option), and
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also for extensibility and consistency with the newer POSIX interfaces, the attributes interface
has been changed to an opaque data type. This interface now consists of the type
posix_spawnattr_t, representing a spawn attributes object, together with associated functions to
initialize or destroy the attributes object, and to set or get each individual attribute. Although the
new object-oriented interface is more verbose than the original structure, it is simple to use,
more extensible, and easy to implement.

FUTURE DIRECTIONS

None.

SEE ALSO

posix_spawn (), posix_spawnattr_getsigdefault (), posix_spawnattr_getflags().
posix_spawnattr_getpgroup (), posix_spawnattr_getschedparam ), posix_spawnattr_getschedpolicy (),
posix_spawnattr_getsigmask (), posix_spawnattr_setsigdefault (), posix_spawnattr_setflags(),
posix_spawnattr_setpgroup (), posix_spawnattr_setsigmask (), posix_spawnattr_setschedpolicy (),
posix_spawnattr_setschedparam (), posix_spawnp (), the Base Definitions volume of

IEEE Std 1003.1-2001, <spawn.h>

CHANGE HISTORY

584

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #106 is applied, noting that the effect of initializing an already
initialized spawn attributes option is undefined.
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NAME
posix_spawnattr_getflags, posix_spawnattr_setflags — get and set the spawn-flags attribute of a
spawn attributes object (ADVANCED REALTIME)
SYNOPSIS
SPN #include <spawn.h>
int posix spawnattr getflags(const posix spawnattr t *restrict attr,
short *restrict flags);
int posix spawnattr setflags(posix spawnattr t *attr, short flags);
DESCRIPTION

The posix_spawnattr_getflags() function shall obtain the value of the spawn-flags attribute from
the attributes object referenced by attr.

The posix_spawnattr_setflags() function shall set the spawn-flags attribute in an initialized
attributes object referenced by attr.

The spawn-flags attribute is used to indicate which process attributes are to be changed in the
new process image when invoking posix_spawn () or posix_spawnp (). It is the bitwise-inclusive
OR of zero or more of the following flags:

POSIX_SPAWN_RESETIDS
POSIX_SPAWN_SETPGROUP
POSIX_SPAWN_SETSIGDEF
POSIX_SPAWN_SETSIGMASK

Ps POSIX_SPAWN_SETSCHEDPARAM
POSIX_SPAWN_SETSCHEDULER

These flags are defined in <spawn.h>. The default value of this attribute shall be as if no flags
were sel.

RETURN VALUE
Upon successful completion, posix_spawnattr_getflags() shall return zero and store the value of
the spawn-flags attribute of attr into the object referenced by the flags parameter; otherwise, an
error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setflags() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.
The posix_spawnattr_setflags () function may fail if:

[EINVAL] The value of the attribute being set is not valid.
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EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn (), posix_spawnattr_destroy (), posix_spawnattr_init (), posix_spawnattr_getsigdefault (),
posix_spawnattr_getpgroup (), posix_spawnattr_getschedparam ), posix_spawnattr_getschedpolicy (),
posix_spawnattr_getsigmask (), posix_spawnattr_setsigdefault (), posix_spawnattr_setpgroup (),
posix_spawnattr_setschedparam (), posix_spawnattr_setschedpolicy (), posix_spawnattr_setsigmask (),
posix_spawnp (), the Base Definitions volume of IEEE Std 1003.1-2001, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.
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NAME
posix_spawnattr_getpgroup, posix_spawnattr_setpgroup — get and set the spawn-pgroup
attribute of a spawn attributes object (ADVANCED REALTIME)
SYNOPSIS
SPN #include <spawn.h>
int posix spawnattr getpgroup (const posix spawnattr t *restrict attr,
pid t *restrict pgroup) ;
int posix spawnattr setpgroup(posix spawnattr t *attr, pid t pgroup) ;
DESCRIPTION

The posix_spawnattr_getpgroup() function shall obtain the value of the spawn-pgroup attribute
from the attributes object referenced by attr.

The posix_spawnattr_setpgroup () function shall set the spawn-pgroup attribute in an initialized
attributes object referenced by aftr.

The spawn-pgroup attribute represents the process group to be joined by the new process image
in a spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute). The
default value of this attribute shall be zero.

RETURN VALUE
Upon successful completion, posix_spawnattr_getpgroup () shall return zero and store the value of

the spawn-pgroup attribute of attr into the object referenced by the pgroup parameter; otherwise,
an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnatir_setpgroup() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL)] The value specified by aftr is invalid.

The posix_spawnattr_setpgroup () function may fail if:

[EINVAL] The value of the attribute being set is not valid.
EXAMPLES

None.
APPLICATION USAGE

These functions are part of the Spawn option and need not be provided on all implementations.
RATIONALE

None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn (), posix_spawnattr_destroy (), posix_spawnattr_init (), posix_spawnattr_getsigdefault (),
posix_spawnattr_getflags(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy ().
posix_spawnattr_getsigmask (), posix_spawnattr_setsigdefault (), posix_spawnattr_setflags(),
posix_spawnattr_setschedparam ), posix_spawnattr_setschedpolicy (), posix_spawnattr_setsigmask (),
posix_spawnp (), the Base Definitions volume of IEEE Std 1003.1-2001, <spawn.h>
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CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.
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NAME
posix_spawnattr_getschedparam, posix_spawnattr_setschedparam — get and set the spawn-
schedparam attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
sPN Ps  #include <spawn.h>
#include <sched.h>

int posix spawnattr getschedparam(const posix spawnattr t *
restrict attr, struct sched param *restrict schedparam);

int posix spawnattr setschedparam(posix spawnattr t *restrict attr,
const struct sched param *restrict schedparam);

DESCRIPTION
The posix_spawnattr_getschedparam() function shall obtain the value of the spawn-schedparam
attribute from the attributes object referenced by atir.

The posix_spawnattr_setschedparam () function shall set the spawn-schedparam attribute in an
initialized attributes object referenced by attr.

The spawn-schedparam attribute represents the scheduling parameters to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or
POSIX_SPAWN_SETSCHEDPARAM is set in the spawn-flags attribute). The default value of this
attribute is unspecified,

RETURN VALUE
Upon successful completion, posix_spawnatir_getschedparam () shall return zero and store the
value of the spawn-schedparam attribute of attr into the object referenced by the schedparam
parameter; otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedparam () shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
These functions may fail if:
[EINVAL] The value specified by aftr is invalid.
The posix_spawnattr_setschedparam () function may fail if:
[EINVAL] The value of the attribute being set is not valid.
EXAMPLES
None.
APPLICATION USAGE

These functions are part of the Spawn and Process Scheduling options and need not be provided
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn (), posix_spawnattr_destroy (), posix_spawnattr_init (), posix_spawnattr_getsigdefault (),
posix_spawnattr_getflags (), posix_spawnattr_getpgroup (), posix_spawnattr_getschedpolicy ().
posix_spawnattr_getsigmask ( ), posix_spawnattr_setsigdefault (), posix_spawnattr_setflags(),
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posix_spawnattr_setpgroup (), posix_spawnattr_setschedpolicy (), posix_spawnattr_setsigmask ().
posix_spawnp (), the Base Definitions volume of IEEE Std 1003.1-2001, <sched.h>, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.
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NAME

posix_spawnattr_getschedpolicy, posix_spawnattr_setschedpolicy — get and set the spawn-
schedpolicy attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
sPN Ps  #include <spawn.h>
#include <sched.h>

int posix spawnattr getschedpolicy(const posix spawnattr t *
restrict attr, int *restrict schedpolicy) ;

int posix spawnattr setschedpolicy(posix spawnattr t *attr,
int schedpolicy) ;

DESCRIPTION
The posix_spawnattr_getschedpolicy () function shall obtain the value of the spawn-schedpolicy
attribute from the attributes object referenced by atir.

The posix_spawnattr_setschedpolicy () function shall set the spawn-schedpolicy attribute in an
initialized attributes object referenced by attr.

The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-
flags attribute). The default value of this attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getschedpolicy() shall return zero and store the

value of the spawn-schedpolicy attribute of atfr into the object referenced by the schedpolicy
parameter; otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnatir_setschedpolicy () shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
These functions may fail if:
[EINVAL] The value specified by aftr is invalid.
The posix_spawnattr_setschedpolicy () function may fail if:
[EINVAL] The value of the attribute being set is not valid.
EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn and Process Scheduling options and need not be provided
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn (), posix_spawnattr_destroy (), posix_spawnattr_init (), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags (), posix_spawnattr_getpgroup (), posix_spawnattr_getschedparam(),
posix_spawnattr_getsigmask (), posix_spawnattr_setsigdefault (), posix_spawnattr_setflags(),
posix_spawnattr_setpgroup (), posix_spawnattr_setschedparam (), posix_spawnattr_setsigmask (),
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posix_spawnp (), the Base Definitions volume of IEEE Std 1003.1-2001, <sched.h>, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

592 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.



Bibliography

Audi, Robert. Action, Intention, and Reason. Ithaca, NY: Cornell University Press, 1993.

Axford, Tom. Concurrent Programming: Fundamental Techniques for Real-Time and Parallel Software
Design. Chichester: John Wiley & Sons, 1989.

Baase, Sarah. Computer Algorithms: Introduction to Design and Analysis. 2nd ed. Reading, MA:
Addison-Wesley, 1988.

Barfield, Woodrow and Thomas A. Furness III. Virtual Environments and Advanced Interface Design.
New York, NY: Oxford University Press, 1995.

Bergadano, Francesco and Daniele Gunetti. Inductive Logic Programming: From Machine Learning to
Software Engineering. London, England: MIT Press, 1996.

Binkley, Robert, Richard Bronaugh, and Ausonio Marras. Agent, Action, and Reason. Britain:
University of Toronto Press, 1971.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User Guide.
Boston, MA: Addison Wesley, 1999.

Brewka, Gerhard, Jurgen Dix, and Kurt Konolige. Nonmonotonic Reasoning. Stanford, CA: CSLI
Publications, 1997.

Carroll, Martin D. and Margaret A. Ellis. Designing and Coding Reusable C++. Reading, MA:
Addison-Wesley, 1995.

Cassell, Justine, Joseph Sullivan, Scott Prevost, and Elizabeth Churchill. Embodied Conversational
Agents. Cambridge, MA: The MIT Press, 2000.

Chellas, Brian F. Modal Logic: An Introduction. New York, NY: Cambridge University Press, 1980.




Bibliography

Conway, Pat and Bill Hughes. “The AMD Opteron Nothrbridge Architecture.” IEEE Micro, March/April
2007 (Vol.27, No.2), pp.10-21.

Coplien, James O. Multi-Paradigm Design for C++. Reading, MA: Addison-Wesley, 1999.

Cormen, Thomas, Charles Leiserson, and Ronald Rivest. Introduction to Algorithms. Cambridge,
MA: The MIT Press, 1995.

Deitel, H.M, PJ. Deitel, and D.R. Choffnes. Operating Systems. 3rd ed. Upper Saddle, NJ: Prentice Hall, 2004.
Englemore, Robert and Tony Morgan. Blackboard Systems. England: Addison-Wesley, 1988.

Fagin, Ronald, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning About Knowledge. London,
England: MIT Press, 1995.

Geist, Al, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sinderman. PVM:
Parallel Virtual Machine. London, England: MIT Press, 1994.

Goertzel, Ben and Cassio Pennachin, eds. Artificial General Intelligence. Berlin, Heidelberg: Springer-
Verlag, 2007.

Goodheart, Berny and James Cox. The Magic Garden Explained: The Internals of Unix System V Release 4.
New York, NY: Prentice Hall, 1994.

Gries, David and Fred B. Schneider. A Logical Approach to Discrete Math. New York, NY:
Springer-Verlag, 1993.

Gshchwind, Michael, David Erb, Sid Manning, and Mark Nutter. “An Open Source Environment for Cell
Broadband Engine System Software.” IEEE Computer, June 2007 (Vol. 40, No.6): pp. 37-47.

Heath, Michael T. Scientific Computing: An Introductory Survey. New York, NY: McGraw Hill, 2002.

Hennessy, John L. and David A. Patterson. Computer Architecture: A Quantitative Approach, Fourth Edition.
San Francisco, CA: Morgan Kaufman, 2007.

Hennessy, John L. and David A. Patterson. Computer Architecture: A Quantitative Approach, 2nd Edition.
San Francisco, CA: Morgan Kaufman, 1996.

Hintikka, Jaakko and Merrill Hintikka. The Logic of Epistemology and the Epistemology of Logic. New York,
NY: Springer-Verlag, 1989.

Horty, John F. Agency and Deontic Logic. New York, NY: Oxford University Press, 2001.

Hughes, Cameron and Tracey Hughes. Linux Rapid Application Development. Foster City, CA:M & T
Books, 2000.

. Object-Oriented Multithreading Using C++. New York, NY: John Wiley & Sons, 1997.
. Mastering the Standard C++ Classes: An Essential Reference. New York, NY:
John Wiley & Sons, 1990.

594



Bibliography

. Parallel and Distributed Programming Using C++. Boston, MA: Addison-Wesley, 2004.

Huth, Michael and Mark Ryan. Logic in Computer Science: Modelling and Reasoning about Systems, 2nd ed.
Cambridge, England: Cambridge University Press, 2004.

ISO, Information Technology: Portable Operating System Interface. “System Interfaces.” Std 1003.1 ANSI/
IEEE. 2001.

Josuttis, Nicolai M. The C++ Standard. Boston, MA: Addison-Wesley, 1999.

Kaner, Cem. Testing Computer Software. Blue Ridge Summit, PA: Tab Professional and Reference Books, 1988.
Koeing, Andrew and Barbara Moo. Ruminations on C++. Reading, MA: Addison-Wesley, 1997.

Kraus, Sarit. Strategic Negotiation in Multiagent Environments. London: The MIT Press, 2001.

Krishnamoorthy, C.S. and S. Rajeev. Artificial Intelligence and Expert Systems for Engineers. Boca Raton, FL:
CRC Press, Inc., 1996.

Luger, George E. Artificial Intelligence. 4th ed. England: Addison-Wesley, 2002.

Mandrioli, Dino and Carlo Ghezzi. Theoretical Foundations of Computer Science. New York, NY: John Wiley
& Sons, 1987.

Meyer, Bertrand. Object-Oriented Software Construction. Upper Saddle River, NJ: Prentice Hall Press, 1988.

Meyer, ].-J. Ch. and W. van der Hoek. Epistemic Logic for Al and Computer Science. Cambridge, England:
Cambridge University Press, 2004.

Nielsen, Michael A. and Isaac L. Chuang. Quantum Computation and Quantum Information. New York, NY:
Cambridge University Press, 2000.

Patel, Mukesh J., Vasant Honavar, and Karthik Balakrishnan. Advances in the Evolutionary Synthesis of
Intelligent Agents. Cambridge, MA: The MIT Press, 2001.

Picard, Rosalind. Affective Computing. England: The MIT Press, 1997.

Reinders, James. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism.
Sebastopol, CA: O’Reilly & Associates, 2007.

Rescher, Nicholas and Alasdir Urquhart. Temporal Logic. New York, NY: Springer-Verlag, 1971.

Robbins, Kay A. and Steven Robbins. Practical Unix Programming. Upper Saddle River, NJ: Prentice
Hall, 1996.

Russell, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach, 2nd ed. Upper Saddle, New
Jersey: Prentice Hall, 2003.

Saraswat, Vijay A. Concurrent Constraint Programming. Cambridge, MA: The MIT Press, 1993.

595



Bibliography

Schmucker, Kurt, Ander Weinand, and John M. Vlissides. Object-Oriented Application Frameworks.
Greenwich, CT: Manning Publications Co., 1995.

Skillicorn, David. Foundations of Parallel Programming. New York, NY: Cambridge University Press, 1994.

Soukup, Jiri. Taming C++: Pattern Classes and Persistence for Large Projects. Reading, MA:
Addison-Wesley, 1994.

Sterling, Thomas L., John Salmon, Donald J. Becker, and Daniel F. Savarese. How to Build a Beowulf:
A Guide to Implementation and Application of PC Clusters. London: MIT Press, 1999.

Stevens, W. Richard. UNIX Network Programming: Interprocess Communications, Vol. 2. 2nd ed. Upper
Saddle River, NJ: Prentice Hall, 1999.

Stroustrup, Bjarne. The C++ Programming Language, 3rd ed. Addison-Wesley, 1997.
Stroustrup, Bjarne. The Design and Evolution of C++. Reading, MA: Addison-Wesley, 1994.

Subrahmanian, V.S., Piero Bonatti, Jurgen Dix, Thomas Eiter, Sarit Kraus, Fatma Ozcan, and Robert Ross.
Heterogeneous Agent Systems. Cambridge, MA: The MIT Press, 2000.

Tel, Gerard. Introduction to Distributed Algorithms. 2nd ed. New York, NY: Cambridge University Press, 2000.
Thompson, William J. Computing for Scientists and Engineers. New York, NY: John Wiley & Sons, 1992.

Tomas, Gerald and Christoph W. Ueberhuber. Visualization of Scientific Parallel Programming. New York,
NY: Springer-Verlag, 1994.

Tracy, Kim W. and Peter Bouthoorn. Object-Oriented: Artificial Intelligence Using C++. New York, NY:
Computer Science Press, 1997.

Weiss, Gerhard. Multiagent Systems. Cambridge, MA: The MIT Press, 1999.

Wooldridge, Michael. Reasoning about Rational Agents. London, England: The MIT Press, 2000.

596



A

AAs. See Architectural Artifacts
abort(), 128
abstract classes, 335
abstraction (C++), 86
Accelerated Graphics Port (AGP), 23, 32
acceptance testing, 380
«access», 350
access policy implementation, with read-write
locks, 259-261
access specifiers (visibility property), 343
access synchronization, 244
ACM CCS (Association of Computing Machinery-
Computing Classification System), 284,
285, 286, 290
actions
entry/exit, 367, 368
objects and, 357
call, 357
create, 357
destroy, 357
return, 357
send, 357
transition and, 369
active class, 359
active objects, diagramming, 359-360
activity diagrams, 62, 64, 407
adaptors, 353
[addOnly]
association property, 352
attribute property, 340
ADDR, 116
address space
processes and, 152
threads and, 152
virtual, 110, 111
adornments, 350, 351, 358
after-the-fact exception handling, 381
agent model of pipeline, 278-282. See also text
files filtering project
agents, 290-291
autonomous/semiautonomous, 291
definitions of, 290-291
controversy in, 290

Index

FIFA, 291
five-part, 291
interactional, 291
knowbot, 290
multiagent architectures, 291-293, 328
rational, 299-300
situated, 291
smart object, 290
society of
structured, 291
whole more than sum in, 291
softbot, 290
software broker, 290
agile model, 39
AGP (Accelerated Graphics Port), 23, 32
AMD multicore Opteron. See Opteron
anonymous instances of classes, 346
Answer (global variable), 231, 237, 244, 257
APIs (Application Programming Interfaces), 68,
75. See also IPC
operating system, 69, 70, 74, 75, 76, 86, 93,
94,210, 282
POSIX, 70, 75, 76
interface classes for, 86-93
layer 2 PADL, 288, 289, 290
application architecture selection (layer 5-PADL),
288, 290-300
concurrency flexibility of, 300
application design, 283-329
differing notions of, 284-286
for massive multicore processors, 284-287
PADL model, 287-326, 328-329. See also PADL
model
PBS approach, 287, 326-328, 329, 375
‘story’ of, 323, 326, 329
Application Programming Interfaces. See APls
Approach, of Grady Booch, 332
architectural approach
in modeling concurrent systems, 331,
371-372
to parallelism, 287. See also application design
Architectural Artifacts (AAs), 41, 44, 45
declarative models and, 45
defined, 45
WBS v., 45
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architectures

architectures
multicore, 2-3

CBE, 3, 17,28-31
challenges in, 64
comparison of, 21
Core 2 Duo, 21, 31-33
designs for, 19-34
hybrid, 3-4
Opteron dual core, 21-25
software redesigning for, 1

trend in, 3, 14, 36, 45, 65, 86, 283

UltraSparc T1, 25-28
single core processor, 5-15
application development, 1

multicore programming and, 15-17

of system, 371
definition (Booch, et. al.), 371
deployment view, 371
design view, 371
implementation view, 371
process view, 371
use cases, 371

arguments, passed to threads, 163-165

asio class library, 305
assertion class, 280
assignment operator, 343, 344
association (stereotype), 358

Association of Computing Machinery-Computing
Classification System (ACM CCS), 284, 285,

286, 290

associations (between objects), 333, 349

bi-directional, 349
binary, 349
constraints, 352
link, 357
multiplicity in, 352
names for, 352
n-ary, 349
navigation, 351
properties, 352
[addOnly], 352
[changeable], 352
[frozen], 352
role in, 352
type, 352
unidirectional, 349, 352
asynchronous cancellation, 173
asynchronous processes, 133-135
atomic functions, 192
attention layer, 324
attribute object
condition variable, 264-265
mutex, 254-256
pthread, 167-171
pthread_cond_t, 264-265
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pthread_mutex_t, 254-256
pthread_rwlock_t, 258-259
thread, 154, 155
attributes (of classes), 337. See also specific
attributes
ordering, 343-345
by access, 343
by category, 343, 344
by category names, 344, 345
properties, 339, 340, 342
[addOnly], 340
[changeable], 340
[frozen], 340
visibility of, 343
visualizing, 336-339
attrp parameter, 100-102
Austin Common Standards Revision Group, 63.

See also Single Unix Specification Version 3

auto parallelization option, 6, 33
automated painters. See painters
autonomous/semiautonomous agents, 291

Back Side Bus (BSB), 14
base class, 349
«become», 350
behavior part, of collaboration, 356
behavioral perspective (modeling concurrent
systems), 331, 357-370
bi-directional association, 349
binary associations, 349
binary semaphores, 248
«bind», 350
binding, 348
explicit, 348
implicit, 348
Blackboard(s), 293-294
architecture, logical layout, 298-299
as critical section, 317-318
defined, 293-294
formal usage, 290
as iterative shared solution space, 298-299
memory configurations for, 295
‘question and answer browser’ program. See
‘question and answer browser’ program
solution spaces, 295, 297, 298-299, 324
structuring approaches for, 294-299
Blackboard model, 293-300, 328
control strategies in, 324-326
problem solvers in, 293, 294, 295
with threads, 420-421
Blackboard Systems (Englemore & Morgan), 299
block event, 366



chip-level multithreading (CMT)

blocked state. See waiting state
Booch, Grady, 371, 372
Approach of, 332

Boost C++ Libraries, 316. See also C++0x standard

mutex class, implementation of (listing 8-2),
312-316
thread class, implementation of (listing 8-1),
305-312
boss thread, 161, 269, 271, 412, 413, 414

boss/worker approaches. See delegation model
bottom-up multicore programming, 5,17, 21, 300

declarative, 300

imperative, 300. See also imperative programming

boundary related errors, 390

broadcast operation, condition variable and, 263

BSB. See Back Side Bus
build and fix model, 39
bus connection, 14-15
DCA and, 22
buses, 14-15
Back Side, 14
EIB, 28, 30, 31
Front Side, 14
processor-to-, configuration, 14-15
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abstraction, 86
compilers. See compilers
encapsulation, 86. See also encapsulation
interface classes. See interface classes
ISO standard and, 17, 62, 63
library approach to parallelism and, 62-64
multiparadigm programming, 5, 46, 64, 86
multiprocessing implementation in, 62-64
predicates. See predicates
Stroustrup and, 62-63, 322
C++0x (C++09) standard, 304-305
class libraries, 305
asio, 305
early implementations, 316
Interprocess, 305
MPI, 305
mutex interface class, 312
implementation of (listing 8-2), 312-316
cache, 12
compiler options, 8-9, 13
L1, 12
L2,12-13
calculation errors, 390
calculus, situational, 286
«call», 350
call action, 357

cancelability state, 172,173
cancelability type, 172,173
cancelable thread, 172
cancellation, 172-180
asynchronous, 173
deferred, 173
disabled, 173
of peer thread, 174
cancellation points, 175-176
list of, 177-178
cancellation-safe
library functions, 177
system calls, 177
catch [ ] block, 392
CBE (IBM Cell Broadband Engine), 3, 17,
28-31
comparison, 21
heterogeneous architecture, 28, 29, 30, 33
Linux and, 29
memory models, 29-30
PPE, 28, 29, 30, 31
processor overview, 28-29
SDK, 29
SPEs, 28, 29, 30, 31
SPUs, 30, 31
CCS (Computing Classification System), 284,
285, 286, 290
Cell Broadband Engine. See CBE
challenges (concurrency), 35-65
concurrency designs, 37, 61-62, 401-409

concurrent access to data/resources by multiple

tasks/agents, 51-56
debugging, 60-61
decomposition. See decomposition
list of, 36-37

multiprocessing implementation in C++, 62-64

processes/threads, necessary number of,
59-60

resource contention. See resource contention

task-to-task communication, 47-51

testing and, 60-61, 377-379. See also testing
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association property, 352
attribute property, 340
child processes, 79, 80, 82, 141, 152
chip designs
CBE, 3, 17,28-31
Core 2 Duo, 21, 31-33
Opteron dual core, 21-25
UltraSparc T1, 25-28
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chip multiprocessors. See CMPs
chip-level multithreading (CMT), 25, 29, 149.
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chipset, 32
Northbridge, 31, 32
Southbridge, 31, 32
class(es). See also interface classes; specific
classes
abstract, 335
active, 359
associated, multiplicity between, 347
attributes. See attributes
base, 349
collection, 335
concrete, 335
container, 335
datatypes, 335
defined, 334
domain, 335
exception. See exception classes
icon, 336, 347, 348
instances of a, 345
visualizing, 345-347
instantiation of a, 345
interface. See interface classes
logic_error, 394, 395
modeling, 334-336
concepts, 334
real-world physical entities, 334
software constructs, 334
multiplicity of, 347
name of, 336
nice, 343, 344
node, 335
objects and
relationship between, 349-353
parent, 349
pure abstract, 347
realization and, 354
responsibilities of, 336
visualizing, 336-339
root, 349
runtime_error, 394
services of. See services
simple name of, 336
singleton, 347
subclass, 349
superclass, 349
support/utility, 335
template, 335, 348
visualizing, 348-349
types, 335
visualizing, 336
class diagrams, 401-405
class libraries (C++0x standard), 305
asio, 305
Interprocess, 305
MPI, 305
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cleanup stack, 178, 179
close(), 177, 229. See also mq_close()
definition for, 229
CMD, 116
CMPs (chip multiprocessors), 2, 17
chip manufacturers and, 2
cost, 4, 16, 96
gatekeeper of, operating system as, 69-71,
93, 312
heterogeneous designs, 28, 29, 30, 33
homogeneous designs, 29, 33
massively parallel, 86, 94, 282, 284-287, 290,
300, 304, 326, 328, 398
as multicore, 2, 96
octa-core, 2,17, 283
parallel programming and, 4
quad core, 2, 3, 31, 73, 283
trend in, 3, 14, 36, 45, 65, 86, 283
CMT (chip-level multithreading), 25, 29, 149. See
also multithreading
code generation (compiler option), 7, 33
code listings. See listings
code, reentrant, 130, 190
collaborating objects, 357-359
collaboration, 356
parts of, 356
behavioral, 356
structural, 356
collaboration diagrams, 62, 357-358, 405-406
collection classes, 335
COMMAND, 116
command-line arguments, 48
environment variables and, 212-213
exec family of functions and, 238
communication. See also IPC; ITC
dependencies, 205-207
flows of, multiple, 360-361
painters and, 51, 204
between processes, 47-51, 150-151
task-to-task, 47-51
between threads, 51, 150-151
comparing
multicore architectures, 21
CBE, 21
Core 2 Duo, 21
Opteron, 21
thread ids, 166-167
compilers, 7-8, 17
compilation process, 7-8
GNU C++, 8, 28, 29, 64
instruction set and, 7-9
Intel C/C++, 64
options, 6-7, 8,9, 17, 33
cache, 8-9, 13
role of, 7-8
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SIMD and, 6, 7, 9
Sun C/C++, 28, 64
compiling threaded programs, 162
[complete], 351
component diagrams, 61
composite state, 369
Computing Classification System (CCS), 284, 285,
286, 290
conceptual design layers (layers 4, 5), 289,
300, 303
concrete classes, 335
concurrency. See also multicore programming;
parallel programming
in C++ program, 141
challenges. See challenges
defined, 37
designs, 61-62, 401-409
synchronizing, 238-268
concurrency models, 411-425
Blackboard approach
with threads, 420-421
CRCW, 242-243, 423, 424
CREW, 242-243, 282, 425
ERCW, 242-243, 424, 425
EREW, 54, 242-243, 282, 424, 425
IPC. See IPC
ITC. See ITC
MIMD, 294, 301, 303, 324, 421, 422
monitor approach, 420
in PADL (layer 4), 288, 300-303
peer-to peer
processes, 415-416
thread strategies, 271-272, 289, 415-416
pipeline model, 233, 269, 273-274, 277, 418
PRAM model, 423, 424
producer-consumer thread strategies, 272-273,
289, 418-419
SIMD, 6, 7, 9, 29, 30, 32-33, 84, 421, 422
workpile approaches, 417
concurrent (service property), 340, 342
concurrent access to data/resources by multiple
tasks/agents, 51-56
Concurrent Read and Concurrent Write. See CRCW
Concurrent Read and Exclusive Write. See CREW
concurrent state diagrams, 62, 64, 408
concurrent systems, model checking and,
326, 398
concurrent_hash_map, 317
concurrent_queue, 317
concurrent_vector, 317
in listing 8-3, 318-321
condition variables, 263-268
attribute object, 264-265
multiple, testing and, 378
mutex semaphores and, 264
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SF synchronization relationship (listing 7-13),
266-267
operations, 263, 264
testing and, 378
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for associations, 352
[complete], 351
declarative models and, 46
[disjoint], 351
for generalization relationships, 351
[implicit], 352
[incomplete], 351
[ordered], 352
[overlapping], 351
constructor
copy, 343, 344
default, 343, 344
consumer-producer model. See producer-consumer
model
container adaptors, 353
container classes, 335
containers
deque, 353, 354
list, 353, 354
vector, 353, 354
contention scopes, 147, 154, 157-159
process, 154, 157, 158
pthread attr_set functions, 168
setting, 187-188
system, 157, 158
context
of process, 147
of thread, 147-149
context failure resilience, 381
context switching, 37, 60, 121, 147, 150
control flow errors, 390
control strategies (layer 3, PADL), 323-326
cooperation dependencies, 207
«copy», 350
copy constructor, 343, 344
Core 2 Duo (Intel), 31-33
comparison, 21
instruction set, 32-33
motherboard, 31-32
block diagram, 31
chipset, 32
Northbridge, 31, 32
PCI-E, 32
Southbridge, 31, 32
cores, 2. See also multicore
logical, 149
octa, 2,17, 283
quad, 2, 3, 31, 73, 283
SMT, 149
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cost
CMPs, 4, 16, 96
parallel programming, 16, 35
Playstation 3, 29
single processor computers, 35
counting semaphore, 248
counting task dependencies, 208-210
CP, 116
%CPU, 116, 118
CPU-intensive processes, 114
CRCW (Concurrent Read and Concurrent Write),
242-243, 423,424
create action, 357
creation functions (pthread_mutex_t attribute
object), 254
CREW (Concurrent Read and Exclusive Write),
242-243, 282, 425
critical sections, 241, 340
Blackboard as, 317-318
managing, with mutex semaphores, 257
crossbar
Opteron, 23
UltraSparc T1, 27
CTEST Laboratories, 287, 328
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data level parallelism
MIMD approach, 421, 422
SIMD approach, 421, 422
data races (race conditions), 52-54, 151, 190,
191, 192, 204, 390
data resources, 130
data rollback, 392
data segment, 109
data structures
ITC and, 231-233
thread-safe, 268
data synchronization, 239, 240
datatypes classes, 335
DCA. See Direct Connect Architecture
deadlocks, 54-55, 64, 174, 219, 239, 241, 246,
255, 282, 387, 395
debugging, 60-61, 376, 377, 399. See also
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declarative models, 45-46, 64, 329
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project
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defined, 378
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412-414
dependency relationships, 205-210, 282, 333, 349
communication, 205-207
cooperation, 207
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«call», 350
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«use», 350
deployment diagrams, 61, 62, 85
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Designing Concurrent, Distributed, and Real-Time
Applications with UML (Gomaa), 373
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concurrency, 61-62, 401-409
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destruction operation
condition variables, 264
mutex semaphores, 253
POSIX semaphores, 249
read-write locks, 258
destructor, 343, 344
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operating system
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DictionaryLexicon, 336, 337, 338, 353, 356, 372
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multiplicity of classes, 347
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Direct Connect Architecture (DCA), 22
disabled cancellation, 173
[disjoint], 351
distributed programming, 63, 64
distributed shared memory (DSM) architecture, 25
documentation techniques
concurrency design. See concurrency
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errors, 391
modeling. See modeling
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domain classes, 335
do_something(), 89, 91, 92, 194, 197, 200
DSM. See distributed shared memory architecture
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encapsulation
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of message queue functions, 226-230
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project
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Exclusive Read and Concurrent Write. See ERCW
Exclusive Read Exclusive Write. See EREW
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failure conditions for, 122-123
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execution units, 75, 83, 96, 97. See also kernel
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fault tolerance
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inheritance, 89, 90, 98, 119, 121, 126, 130, 141
exception class extension through, 393
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initial state, 367
errors, 390

initialization operation
condition variables, 264
mutex semaphores, 253
POSIX semaphores, 248
read-write locks, 258

«instanceof», 350
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persistence of, 211-212
ISO (International Standardization) standard
C++ and, 17, 62, 63
isQuery (service property), 340
ITC (Interthread Communications), 50, 51,
230-238, 282, 411412
data structures and, 231-233
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fault tolerance
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memory management, 71
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Applications with UML, 373
diagrams, 373
for active objects, 359-360
activity, 62, 64, 407
class, 89, 401-405
collaboration, 62, 357-358, 405-406
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package, 409
sequence, 62, 361-362, 406
state/concurrent state, 62, 64, 366-367, 408
as UML language primitive, 333
structural perspective (system structure), 331,
334-356
classes, 334-336
UML and, 332-333. See also UML
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mq_notify(), 74 one instance, 347
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mq_send(), 74 multiprocessing, 15
mq_setattr(), 74 implementing, in C++, 62-64
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MXCSR registers, 33

N

name(s)
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timing considerations in, 58-59
pAlgorithms, 322
Parallel Application Design Layers. See
PADL model
parallel design, documentation of, 61-62
parallel programming, 4, 15-16. See also
multicore programming
CMPs and, 4
cost, 16, 35
defined, 15, 17
errors, 387
testing for. See testing
tradition and, 35
Parallel Random-Access Machine model. See
PRAM models
parallel STL library. See STAPL
parallel_for, 317
in listing 8-3, 318-321
parallelism
architectural approach to, 287. See also
application design
data level
MIMD approach, 421, 422
SIMD approach, 421, 422
implementation of
C++ ISO standard, 62, 63
library approach to, 62-64
massive, 7, 86, 94, 282, 284-287, 290, 300,
304, 326, 328, 398
Stroustrup on, 62-63
parallelization with OpenMP option, 6
parallel_reduce, 317
parallel_scan, 317
parallel_sort, 317
parallel_while, 317
parameter (stereotype), 358
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parameters
attrp, 100-102
file_actions, 99-100
for ITC, 234-238
path, 99, 123
resource, 131
parent class, 349
parent process id. See PPID
parent processes, 80, 141, 152
path parameter, 99, 123
SPATH, 126
patterns of work, 288, 290, 291, 323, 326, 329
PBS (Predicate Breakdown Structure), 287,
326-328, 329, 375
coding, 328
goal of, 375
for guess_it program, 327
PADL, SDLC and, 328
PCB (process control block), 108-109, 141
PCI (Peripheral Component Interconnect), 14, 32
PCIl-Express (PCI-E), 32
pContainers, 322
peer thread
cancellation of, 174
peer threads, 150, 153
terminating, 172
peer-to peer model
with processes, 415-416
thread strategy approach, 271-272, 289,
415-416
performance degradation, 387
Peripheral Component Interconnect. See PCI
permit class, 261-262
definition of, 262
persistence, 211
of IPC, 211-212
PFN (physical page frame number), 110
physical page frame number (PFN), 110
PID (process id), 107,116
pipeline (TBB generic parallel algorithm), 317
pipelines
agent model, 278-282. See also text files filtering
project
six-stage, 27
thread model, 233, 269, 273-274, 277, 289, 418
pipes, 49, 216-222
platform-specific optimizations, 20, 21, 33, 34
Playstation 3, 29
Portable Operating System Interface. See POSIX
POSIX (Portable Operating System Interface)
APIs. See APIs
defined, 75-76
exec() functions. See exec() family of functions
functions. See functions
IPC. See IPC
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message queues. See message queues
scheduling policies. See scheduling policies
semaphores, 248-252
shared memory, 214-215
standards, 17, 63, 64
for operating systems, 17, 26
for Process Management, 567-592
Single Unix Specification Version 3 and,
63-64, 248
for Thread Management, 427-526
thread library, 154
threads. See pthreads
posix_process interface class, 105, 106, 138,
141, 389
definitions for (listing 10-4), 388-389
listing 5-2, 105
listing 5-3, 106
listing 5-4, 106-107
PosixQueue, 82, 85, 89
posix_queue class, 224-230
declaration of, 224-226
posix_spawnattr_t structure, 100-103
spawn process attributes functions in, 101-102
posix_spawn_file_actions object, 98, 99, 100
posix_spawn() function, 63, 74, 78, 79, 80,
98-107, 135
example, 103-104
guess_it program and, 104-107
posix_spawnp(), 98, 99
possible worlds, 398
PowerPC Processing Element. See PPE
PPE (PowerPC Processing Element), 28, 29, 30, 31
PPID (parent process id), 109, 116
PRAM (Parallel Random-Access Machine) models,
242-243, 282, 423, 424
CRCW, 242-243, 423, 424
CREW, 242-243, 282, 425
ERCW, 242-243, 424, 425
EREW, 54, 242-243, 282, 424, 425
pRange, 322
Predicate Breakdown Structure. See PBS
predicate class
valid_code
declaration of, 384
definition of, 384-385
predicate exceptions, 397-398
predicates, 141, 384
defined, 137
interface classes, processes and, 137-141
PRI, 116, 118
primary thread, 143, 159, 200
primitives
operating system, 93, 287, 290, 300, 312,
323, 329
UML language, 332-333



pthread attr_set functions

PRIO_PGRP, 120
PRIO_PROCESS, 120
priorities
dynamic, 114
process, setting /getting, 119-121
static, 114
of threads, 155
priority ceiling functions (pthread_mutex_t
attribute object), 254
priority inversion, 387
priority queue, multilevel, 114
PRIO_USER, 120
private v. shared mutex semaphores, 256
problem decomposition. See decomposition
problem solvers (Blackboard), 293, 294, 295
procedural models, 45, 64. See also imperative
programming
declarative models v., 45, 64
sequential model of programming and, 45
WBS and, 45
process (stereotype), 359
process contention scope, 154, 157, 158
process context, 147
process control, 109
process control block (PCB), 108-109, 141
process creation, 121-125
process environment variables, 126-127
process group id, 98, 99, 129
process id (PID), 107, 116
process image, 109
process lifecycle, 76-77
process management, 71, 76-83
game scenario, 77-83
POSIX functions for, 97-98
process resources. See resources
process states, 111-114
process tables, 111
process view, 371
processes, 47-48, 108-137
address space, virtual, 110, 111
anatomy, 47, 50, 109-111
asynchronous, 133-135
child, 79, 80, 82, 141, 152
communication between, 47-51
concurrency models with. See concurrency models
context of, 147
CPU-intensive, 114
creation of. See process creation
defined, 97
delegation model with, 412-413
differences, with threads, 152-153, 203
four-stage, execution units and, 96
IPC mechanisms, 47-51
kernel, 108
killing, 127-129

lightweight, 51, 73, 75, 77, 144, 200
monitoring, with ps utility, 105, 116-119
multitasking with, 76, 359-361
multithreaded, 143-144, 200
necessary number of, 59-60
parent, 80, 141, 152
peer-to-peer model with, 415-416
POSIX Standard for Process Management,
567-592
predicates, and interface classes, 137-141
priorities, setting/getting, 119-121
programs v., 97
reuse and, 151
scheduling of, 114-116
similarities, with threads, 152-153, 201
spawn/manage, POSIX functions for, 97-98
state of, 111-114
synchronous, 133-135
system, 108
tasks to, 74
threads v., 50, 97, 150-153
user, 108
variables for, 188-189
processor architecture. See multicore
architectures; single core processor
architecture
processor state, 109
processor-to-bus configuration, 14-15
producer-consumer model (thread strategies),
272-273, 289, 418-419
profilers, 61
program code, 109
program profiles, 26. See also listings
programmer ethics, 377, 399
programming. See multicore programming; parallel
programming
programming languages. See languages
programs, 95, 97. See also processes
processes v., 97
properties. See specific properties
protocol functions (pthread_mutex_t attribute
object), 254-255
ps utility, 105, 116-119
pthread attribute object, 167-171
default values, 168-169
Linux/Solaris environment, 169
detached threads from, 169-171
pthread attr_set functions, 167-168
contention scope, 168
detach state, 167
inheritance scheduling, 168
initialization, 167
parameter scheduling, 169
policy scheduling, 168
stack management, 167
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pthread_attr_t

pthread_attr_t, 167-168
pthread_cond_t, 263-265
pthread_create(), 80, 82, 85, 89, 91, 138, 161,
162,163, 166, 168, 196, 201, 312
pthread_mutex_t attribute object, 254-256
functions, 254-256
creation/destruction, 254
priority ceiling, 254
protocol, 254-255
shared, 255
type, 255
pthread_rwlock_t attribute object, 258-259
pthreads (POSIX threads), 29, 63, 82
library, 154, 162
pure abstract classes, 347

Q

quad core CMPs, 2, 3, 31, 73, 283
quantum, 76, 77, 108
‘question and answer browser’ program
(Blackboard), 296-298
components of solution, 296-297
concurrency infrastructure, block diagram
of, 302
KS for, 297
listing 8-3, 318-321
PADL analysis of, 301

race conditions (data races), 52-54, 151,
190, 191, 192, 204, 390
RAM (system main memory), 13-14
rapid prototyping model, 40
rational agents, 299-300
reader, 219-220
read-write locks, 257-263
access policy implementation with, 259-261
testing and, 378
ready queues, 112,113, 114, 115, 116, 159
ready state. See runnable state
realization, 333, 354
of template class, 354, 355
receive(), 228. See also mq_receive()
redundancy, 393
reentrant code, 130, 190
«refine», 350
registers, 10, 11-12
MMX, 6, 33
MXCSR, 33
XMM, 33
regression testing, 379
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relationships
(UML language primitive), 333
associations, 333, 349
constraints, 352
navigation, 351
properties, 352
type, 352
between classes and objects, 349-353
dependency, 333, 349. See also dependency
stereotypes
stereotypes for, 349-351
generalization, 333, 349
constraints, 351
stereotype, 351
synchronization. See synchronization
whole-part, 352
release ownership operation
mutex semaphores, 253
POSIX semaphores, 249
read-write locks, 258
reliability
defined, 378
programmer ethics and, 377, 399
remove(), 229
request ownership operation
mutex semaphores, 253
POSIX semaphores, 248
read-write locks, 258
resource contention, 59
resource limits, POSIX functions for, 131-133
resource management, 68-69, 94
resource parameter, 131
resource reallocation/deallocation, 392
resources
data, 130
defined, 129-133
exclusive access to, 130
hardware, 130
sharable, 130, 238-239
software, 130
thread, 149-150
types of, 131
unshared, 130
responsibilities (of class), 336
visualizing, 336-339
return action, 357
reuse
processes and, 151
threads and, 151
RLIM_INFINITY, 131
RLIMIT_AS, 132
RLIMIT_CORE, 132
RLIMIT_CPU, 132
RLIMIT_DATA, 132
RLIMIT_FSIZE, 132



simultaneous multithreaded (SMT) cores

RLIMIT_NOFILE, 132

RLIMIT_STACK, 132

RLIM_SAVED_CUR, 131

RLIM_SAVED_MAX, 131

role (in associations), 352

root class, 349

round robin (RR) scheduling policies,
115-116, 159

RR (round robin) scheduling policies,
115-116, 159

RSS, 116

Rumbaugh, James, 371, 372

OMT of, 332

run() method, 87, 91, 92, 107

runnable (ready) state, 111,112,113, 114

running state, 111, 112,113, 114

Runtime system (STAPL), 322

runtime_error classes, 394

RUSAGE_CHILDREN, 132, 133

RUSAGE_SELF, 132, 133

S

S (header), 116
safe
cancellation-
library functions, 177
system calls, 177
thread-
data structures, 268
SCHED_FIFO, 77
SCHED_OTHER, 77
SCHED_RR, 77
SCHED_SPORADIC, 77
scheduling allocation domains, 160
scheduling, of processes, 114-116
scheduling policies (POSIX), 76-77, 99, 100, 101,
115, 149, 152
FIFO, 115-116, 152, 160
‘other, 160
round robin, 115-116, 159
thread, 155
setting, 183-187
SDLC. See Software Development Life Cycle
self (stereotype), 358
self-delegation symbol, 363
self-transitions, 367, 368
semaphores, 49, 247-257
binary, 248
counting, 248
on input file (listing 7-10), 250-251
mutex, 252-257
testing and, 378
operations, 247-248

on output file (listing 7-9), 249-250
POSIX, 248-252
operations, 248-249
variable for, 188-189
semiautonomous/autonomous agents, 291
send(), 177. See also mq_send()
definition for, 227
send action, 357
sequence diagrams, 62, 361-363, 406
sequence synchronization, 244
sequential (service property), 340, 341
sequential model of programming, 1, 35-36
defined, 36
multicore programming v., 2, 4, 15, 35-36, 65
procedural model and, 45
testing in, 60
tradition, 35
Serial Peripheral Interface (SPI), 32
services (of classes), 336-339
ordering, 343-345
by access, 343
by category, 343, 344
by category names, 344, 345
properties
concurrent, 340, 342
guarded, 340, 341
isQuery, 340
sequential, 340, 341
visibility of, 343
setenv(), 127
setpriority(), 120, 121
setrlimit() function, 131, 132
setting process priorities, 119-121
SF relationship. See start-to-finish relationship
sharable resources, 130, 238-239
shared functions (pthread_mutex_t attribute
object), 255
shared libraries, 130
shared memory, 49, 152, 214
POSIX, 214-216
shared v. private mutex semphores, 256
$SHELL, 126
SID, 116
signal masks, 98, 101, 149
signaling operation, conditioning variable
and, 264
SIMD (Single Instruction Multiple Data), 84,
274-275, 421, 422
compiler and, 6, 7, 9
Core 2 Duo instruction set and, 32-33
PPE and, 30
SPEs and, 29, 30
SSE and, 6, 32-33
simple name, of class, 336
simultaneous multithreaded (SMT) cores, 149
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single core processor architecture

single core processor architecture, 5-15
application development, 1
multicore programming and, 15-17
Single Instruction Multiple Data. See SIMD
Single Program Multiple Data. See SPMD
Single Unix Specification Version 3, 63-64, 248.
See also IEEE
singleton class, 347
situated agents, 291
situational calculus, 286
six-character code guessing. See guess_it program
six-stage pipeline, 27
sleeping state, 113
smart object, 290. See also agents
SMP. See symmetric multiprocessor
SMT (simultaneous multithreaded) cores, 149
society, of agents
structured, 291
whole more than sum in, 291
sockets, 49
softbot, 290. See also agents
software
decomposition. See decomposition
interface, 68, 93. See also APIs; POSIX; SPIs
operating system. See operating system
programs. See programs
redesigning, for multicore processors, 1
reliability, programmer ethics and, 377, 399
software broker, 290. See also agents
software development, 37-38, 44
concurrency challenges. See challenges
defined, 44
ethical/moral responsibility in, 377, 399
as group effort, 304
software development group, 304
Software Development Life Cycle (SDLC), 37-41
activities, 38, 41
design, 38, 85
Guide for Developing Software Life Cycle
Processes, 287
implementation, 38
maintenance, 38
multicore programming and, 37-41, 59, 64, 65
PADL and, 287. See also PADL model
PBS, PADL and, 328
specifications, 38
testing and evaluation, 38, 375
during all activities, 381
software development methodologies, 38-40
agile, 39
build and fix, 39
extreme programming, 39
incremental, 39
languages in, 39
linear-sequential model, 40
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object-oriented, 38, 39, 40, 46, 141
rapid prototyping, 40
similarities in, 41
spiral, 40
structured, 40
waterfall, 40
software layers, 69-71. See also operating
system
level 1, 69-71
level 2, 69-71
level 3, 69-71
level 4, 69-71
software resources, 130
sharing, 238-239
software system. See system
software-automated painters. See painters
solution decomposition. See decomposition
solution spaces, 295, 297, 298, 324
iterative shared, Blackboard as, 298-299
some_assertion method, 281
source state, 369
Southbridge, 21, 32
spatial locality, 12
spawn_() function. See posix_spawn() function
spawn process attributes functions, 101-102
spawn/manage processes, POSIX functions for,
97-98
adding file actions, 98
creating processes, 98
destroying attributes, 98
initializing attributes, 98
setting/retrieving attribute values, 98
specification testing, 379
specifications (SDLC activity), 38
SPEs. See Synergistic Processor Elements
spiral model, 40
SPIs (Serial Peripheral Interfaces), 32
SPIs (System Programming Interfaces), 68,
69, 70, 72, 94
SPMD (Single Program Multiple Data),
274-275
SPUs. See synergistic processor units
SRI. See System Request Interface
SS relationship. See start-to-start relationship
SSE (Streaming SIMD Extensions), 6, 32-33
stack class, 353
as interface class, 354, 355
stacks
address, 154
cleanup, 178, 179
location of , setting, 182-183
managing, 180-183
segment, 109
size, 154
setting, 181-182



synchronization

standard software engineering testing,
386-399
Standard Template Adaptive Parallel Library.
See STAPL
STAPL (Standard Template Adaptive Parallel
Library), 69, 70, 76, 84, 86, 93, 94,
321-323, 567
components of, 322
pAlgorithms, 322
pContainers, 322
pRange, 322
Runtime, 322
Views, 322
goal of, 70, 94
online information for, 323
Stroustrup and, 322
structure of (block diagram), 322-323
TBB and, 322
START, 116
start-to-finish (SF) relationship, 57-58, 246, 265
condition variables/mutexes in (listing 7-13),
266-267
start-to-start (SS) relationship, 57-58, 245
STAT, 116, 118, 119
state(s)
cancelability, 172, 173
composite, 369
defined, 365
detached, 154
diagrams, 62, 64, 366-367, 408
final, 367
initial, 367
parts of, 367
deferred events, 367, 368
entry/exit actions, 367, 368
internal transitions, 367, 368
name, 367
self-transitions, 367, 368
of processes, 111-114
runnable (ready), 111, 112,113, 114
running, 111, 112,113, 114
sleeping, 113
stopped, 112,113,114
waiting (blocked), 112, 113, 114
zombied, 111, 112, 113,114
of processor, 109
source, 369
substates, 369-370
superstate, 367, 369
target, 369
thread, 156-157
state machines, 365-370
state transitions, 112-113
defined, 112
list of, 112-113

static priority, 114
stereotypes, 350
association, 358
dependency, 349-351. See also dependency
stereotypes
generalization, 351
global, 350
local, 358
parameter, 358
process, 359
self, 358
thread, 359
STIME, 116
stopped state, 112, 113, 114
‘story’ of application, 323, 326, 329
Streaming SIMD Extensions (SSE), 6, 32-33
stress testing, 379
strings, in files, 213
Stroustrup, Bjarne
C++ and, 62-63, 322
on parallelism, 62-63
STAPL and, 322
struct usage attributes, 133
structural part, of collaboration, 356
structural perspective (modeling concurrent
systems), 331, 334-356
structured model, 40
subclass, 349
substates, 367, 369-370
Sun C/C++ compiler, 28, 64
Sun UltraSparc T1 multiprocessor. See
UltraSparc T1
superclass, 349
superstate, 367, 369
support/utility classes, 335
swimlanes, 364, 365
symbols
decision, 364
self-delegation, 363
visibility, 343
symmetric multiprocessor (SMP), 24
synchronization
access, 244
of concurrency, 238-268
data, 239, 240
hardware, 239
mechanisms, 246-268, 282
in painters example, 204
problems, 56. See also data races; deadlocks;
indefinite postponement
relationships, 56-58, 244-246, 282
condition variables and, 265-267
FF, 57-58, 246, 265
FS, 57-58, 245-246, 265
SF, 57-58, 246, 265
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synchronization (Continued)
SS, 57-58, 245
sequence, 244
task, 239, 282
types of, 240
synchronization bar, 364
synchronous processes, 133-135
synergistic memory flow controller, 30, 31
Synergistic Processor Elements (SPEs), 28,
29, 30, 31
synergistic processor units (SPUs), 30, 31
sysconf() function, 26, 125, 188-190
system
architecture of, 371
deployment view, 371
design view, 371
implementation view, 371
process view, 371
use cases, 371
concurrent. See modeling concurrent
systems
defined, 371
Booch, et al, 371
model of, 331, 372
00, 332
structure of, modeling, 334-356
whole, visualizing, 371-372
system calls, cancellation-safe, 177. See also
cancellation points
system contention scope, 154, 157, 158
system libraries, 63-64
system main memory. See RAM
system processes, 108
system programming, 13, 70
System Programming Interfaces. See SPls
System Request Interface (SRI), 23
system() function, 127, 135
$Z,116

T

target state, 369
task-oriented programming. See imperative
programming
tasks. See also processes
dependencies, counting, 208-210
multitasking, 76, 359-361
to processes, 74
synchronization, 239, 282
task-to-task communication, 47-51
TBB (Intel Threading Building Blocks) library, 70,
71, 86, 317-321
concurrent_hash_map, 317
concurrent_queue, 317
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concurrent_vector, 317
in listing 8-3, 318-321
containers, with concurrency support, 317
generic parallel algorithms, 317
parallel_for, 317
in listing 8-3, 318-321
parallel_reduce, 317
parallel_scan, 317
parallel_sort, 317
parallel_while, 317
STAPL and, 322
template classes, 335, 348
realization of, 354, 355
visualizing, 348-349
template object, 348
temporal locality, 12
10 challenges of concurrency. See challenges
terminating
processes, 127-129
threads, 171-180. See also cancellation
termination model, 397
$TERM, 126
testing (multicore programming), 60-61,
375-399
acceptance, 380
concurrency challenges and, 60-61,
377-379
condition variables and, 378
debugging and, 60-61, 376, 377, 399
definitions/terms in, 378, 379
errors during, 391
fundamental questions and, 383, 386
goals of, 376
as fundamental questions, 383
guess_it program, 382-383
concurrency model for agents, 382
declarative implementation of PBS, 383
listing 10-1 (declarative implementation of
guess_it), 383
listing 10-2 (valid_code predicate, declaration
of), 384
listing 10-3 (valid_code predicate, definition of),
384-385
PBS of agent solution model, 383
problem statement, 382
processes before, 382-383
revised agent model, 382
rough-cut solution model, 382
solution model-with layer 5 PADL, 382
strategy, 383
integration, 379
issues in, 376
multiple condition variables and, 378
mutex semaphores and, 378
operational, 380



thread mapping, one-to-one

read-write locks and, 378
regression, 379
SDLC and, 38, 375, 381
in sequential programming, 60
skipping, 376-377
specification, 379
standard software engineering, 386-399
IEEE, 386-399
PADL, PBS, three fundamental questions
in, 386
stress, 379
terms/definitions in, 378, 379
types of, 379-380
unit, 379
activities, 390
phases, 390
V&V in, 387
text files filtering project, 276-282
agent model of pipeline, 278-282
assert method, 281
assertion class, 280
class relationship diagram, 278
main line for, 279
operator(), 279-280
some_assertion method, 281
approaches, 277

communication/cooperation requirements, 278

goals of, 276
larger scale problems and, 282
observations in, 277
problem statement, 276
solution, 277-281
strategy, 276-277
text segment, 109
things (UML language primitive), 332, 333
thread(s), 143-201
anatomy, 50
attribute objects, 154, 155. See also pthread
attribute object
attributes
pthread attribute object, 167-171
setting, 153-155
boss, 161, 269, 271, 412, 413, 414
cancelable, 172
communication between, 51, 150-151
concurrency models with. See concurrency
models
contention scopes, 147, 154,
157-159
process, 154, 157, 158
setting, 187-188
system, 157, 158
context, 147-149
creating, 162-163
data corruption from, 151

defined, 141, 143-144, 200
detached, 155, 169-171
differences, with processes, 152-153, 203
exhaustion, 387
hardware, 149
hybrid, 144, 145
ids
comparing, 166-167
getting, 166-167
joining, 165-166
kernel-level, 144-147
managing, 171-192
multithreading with, 143-201, 359-361
chip-level, 25, 29, 149
necessary number of, 59-60
passing arguments to, 163-165
peer, 150, 153
terminating, 172
POSIX, 29, 63, 82
POSIX Standard for Thread Management,
427-566
primary, 143, 159, 200
priority of, 155
setting, 183-187
process termination from, 151
processes v., 50, 97, 150-153
resources, 149-150
reuse and, 151
-safe data structures, 268
safety, libraries and, 71, 190-192
scheduling policies, 155
setting, 183-187
scheduling policies and, 155
similarities, with processes,
152-153, 201
software, 149
stacks of. See stacks
states, 157
strategies. See thread strategies
terminating, 171-180
cancellation process in, 172-180
self, 171-172
transitions and, 157
uncancelable, 172
unsafe, 191
user, 74-75
user-level, 144-147
variables for, 188-189
thread (stereotype), 359
Thread Checker tool, 7
thread checking option, 7
thread interface class (C++0x standard),
implementation of, 305-312
thread library option, 7
thread mapping, one-to-one, 146
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thread strategies

thread strategies, 268-274, 282
delegation (boss/worker) model, 269-271,
289, 412-414
peer-to-peer model, 271-272, 289,
415-416
pipeline model, 233, 269, 273-274, 277,
289, 418
producer-consumer model, 272-273, 289,
418-419
WBS and, 268
threaded programs
compiling/linking, 162
example, 160-162
Threading Building Blocks library. See
TBB library
thread() method, 91
thread_object interface class, 87, 89, 90, 93
declaration, 88-90
extending, 193-200, 201
implementation, 90-91
as wrapper, 193, 201
thread-specific data (TSD), 148
throughput, 150
throwing exception object, 394-395
TIME, 116
time slices, 15, 60,112, 113, 114
timed wait operation, condition variable and, 263
timing considerations, 58-59
top-down approaches
multicore programming, 17. See also application
design
PADL model. See PADL model
PBS. See PBS
tradition, 35
transaction rollback, 392
transitions, 367, 368, 369
internal, 367, 368
parts of
action, 369
event trigger, 369
guard condition, 369
source state, 369
target state, 369
self-, 367, 368
state, 112-113
threads and, 157
triggerless, 363, 369
transparency, operating system, 72, 86, 94, 105
trend, in CMPs, 3, 14, 36, 45, 65, 86, 283
triggerless transitions, 363, 369
try ownership operation
mutex semaphores, 253
POSIX semaphores, 249
read-write locks, 258
TSD (thread-specific data), 148
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1T, 116

TTY, 116

type, cancelability, 172, 173

type functions (pthread_mutex_t attribute
object), 255

U

uID, 116
UltraSparc T1 (Sun), 25-28
code listing, 25
comparison, 21
compilers, 28
functional overview, 27
L2 cache, 28
listing 2-1, 25, 29
memory controllers, 28
processors available to operating system,
25-26
V9 cores, 27
UMA architecture. See Uniform Memory Access
architecture
UML (Universal Modeling Language), 61-62,
372-373, 401-409
concurrent systems and, 332-333. See also
modeling concurrent systems
creators of, 372
defined, 332-333
diagrams, 373
for active objects, 359-360
activity, 62, 64, 407
class, 89, 401-405
collaboration, 62, 357-358, 405-406
component, 61
of concurrent substates, 369-370
deployment, 61, 62, 85
interaction, 405-407
object, 401-405
package, 409
sequence, 62, 361-362, 406
state/concurrent state, 62, 64, 366-367, 408
as UML language primitive, 333
grammar, 333
language primitives, 332-333
uncancelable thread, 172
unidirectional association, 349, 352
Uniform Memory Access (UMA) architecture,
24,25
unit testing, 379
activities, 390
phases, 390
Universal Modeling Language. See UML
UnrecognizedWords, 336, 341, 342, 346, 351,
353, 356, 360, 361, 362



zombied state

unsafe, thread, 191

unsetenv(), 127

unshared resources, 130

«use», 350

use cases, 371

USER, 116

user id, 98

user interface errors, 390

user mode, 108, 146

user processes, 108

user stack, 109

user threads, 74-75

user-level threads, 144-147

user_thread class, 87, 89, 92
definition for (listing 4-6), 91-92
UML class relationship, 89

SUSER, 126

utility/support classes, 335

Vv

V9 cores, 27
validation. See verification and validation
valid_code, 139-140
predicate class
declaration of, 384
definition of, 384-385
variables
ITC and, 231-233
for threads/processes/semaphores, 188-189
vector container, 353, 354
vectorization option, 6, 33
vectorizer, 6
verification and validation (V&V), 387, 389-390
Views (STAPL), 322
virtual address space, 110, 111
virtual page frame number (VPFN), 110
visibility, of objects, 357-358
visibility property
access specifiers, 343
attributes/services and, 343
symbols for, 343
visualizing
attributes, 336-339
classes, 336
instances of a class, 345-347
interface classes, 353-355
responsibilities, 336-339
services, 336-339
template classes, 348-349
whole system, 371-372

x
()
©
c

VPFN (virtual page frame number), 110
V&V (verification and validation), 387,
389-390

w

wait operation, condition variable and, 263
wait() function call, 135-137
waiting (blocked) state, 112, 113, 114
waitpid() function, 136
wakeup event, 366
waterfall model, 40
WBS. See Work Breakdown Structure
WCHAN, 116
WEXITSTATUS, 137
whole system, visualizing, 371-372
whole-part relationships, 352
WIFCONTINUED, 137
WIFEXITED, 137
WIFSIGNALED, 137
WIFSTOPPED, 137
William, Anthony, 312
WordExpertAgent, 336, 339, 340
Work Breakdown Structure (WBS), 41,
45, 268

AAs v., 45

defined, 45

procedural models and, 45

thread strategies and, 268
workpile approaches, 417
worlds, possible, 398
wrappers

interface classes as, 86, 192, 193

thread_object, 193, 201

for system functions, 178
WSTOPSIG, 137
WTERMSIG, 137

X

XMM registers, 33

y4

zero
multiplicity notation
Oto1, 347
0 to infinite number, 347
zombied state, 111,112, 113,114
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