Pro Perl
Programming

From Professional to Advanced

William “Bo” Rothwell

Apress’

Pro Perl Programming

From Professional to Advanced

William “Bo” Rothwell

Apress’

Pro Perl Programming: From Professional to Advanced

William “Bo” Rothwell
San Diego, CA, USA

ISBN-13 (pbk): 978-1-4842-5604-6 ISBN-13 (electronic): 978-1-4842-5605-3
https://doi.org/10.1007/978-1-4842-5605-3

Copyright © 2020 by William “Bo” Rothwell of One Course Source, Inc.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484256046. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5605-3

To all Perl Mongers, new and old.

Table of Contents

About the AULNOFcceiiiiieeininiessnrissss s aa e nn s e annn e s snnns Xvii
About the Technical REVIEWETccuuusssemnmmssssnnnsmsssssnssssssssssssssssssssssssssnssssssssnnssssssnns Xix
Chapter 1: Intermediate Regular EXPreSSions.......ccccosrermssssssssssssssssssssssssssssssssssssssnns 1
Review: BasiC Regular EXPreSSIONScucuvermrrenerrnsmsssesssesesssssssssesssssssssssssssssssssssssssssssssssssssnnes 1
BaSIiC OPEIaliONS.......ccecerreceriresir e e 2
BaSIC MOIfIEIS.....viviuiciriririissi s 3
BasiC Metacharacters............ccvrrinrni s 4
Regular EXPressions ClASSEScuiuvurrerirnsinsinese s ssesss s s e ssessssssssssesssssssessessesssssssessenes 13
BaCKIETEIENCINGeoviercreerie it e e e 15
L0013 18
THE € MOUITIEN .eveeeereeiree s e nr e e nnn e 19

THE d MOGITIEN ... 19

THE S MOUITIEN.....cucuccererircee e 20
Other MOGIfIErS......cccovereiiercre s 20
Getting the Nth occurrence of @ MatCh...........ccocvcrnicnc e ———— 21
Greedy vs. NON-greedy MALCHEScoccvrereresere e 22
Regular EXpression VariabIes..........ccuveerreneresmsrnsesssessssse s sessssessssssesssssssssesssssssssssssssnsssssssnns 23
What was MatChed ... e s 23
Before and after what was matChed ... 23
Warning about $&, $, AN $vcveveeiirrcrecrr e 24
Special characters in Regular EXPreSSionscccoveeernverenenesssesessesesssessssesessesessssessssesenns 25
ASSEITIONSeeeeeecreeee e e e s se e e e e e s e e e e e e Re e e R e e e e e e e Re e R e e e e e e e Re e nrenn 26
Looking forward and Dack............ccceervrrnnennensese s 27
L1511 TR SRS 29

TABLE OF CONTENTS

Reading from filehandles using SPlit ..o 30
Multiple line MAtChING ..o 31
USing the S MOMIfIENcoviririerecr e sre s 32
Using the \A, \Z, and \Z @SSEItiONS........cccvurrvrierennsinsese s s ssssessesnens 33
Commenting Regular EXPreSSiONSccovuceriserrmesssessssssssssssssssessssesssssssssssssssssssssssssssssssssessnns 33
Alternative deliMiters.........crii s ———— 34
AdAItIoNAl FESOUICTEScoviviueeceririseesse e r s n e 34
LD BXEICISES ...t 35
Chapter 2: Advanced Regular EXPreSSions.....c.cccsuussssmsssssssssssesssssssssssssssnnssssnnssssanss 37
Make use of the Smartmatch operator ... ————— 37
Using RES with SmartmatCh.........cccccvcnrcnr s 38
Additional SMartMAICNEScccvceerieirecerr e —— 38
The given StateMEeNt ... e 39
Use Perl 5.10.1 0r NIGRET ... e s s 41
Understand Regular EXpression preCedenceccuvvvininesinsinsessesessssessesessssessessesssssssessesnes 41
Understand what is *NOT* a Regular EXpression atom........c..cocccvvviennsnsnsesiesnssnsesesssssssessesns 42
Using Regular Expressions in list CONEXL........ccovoeirerrnsrnse e 43
Naming the capture variables within the pattern match............ccccovvvrvrininiicncninccnienen 44
Match WhiteSPace ProPerly ... e s r e e 45
Matching “end of the liNE” ... e e 46
USE \Gi..oeeeerrsieeese e e R e e R e AR 46
Use the \A, \Z, and \Z @SSEITIONSceeveereriererererserseresessessessesssssssessesssssssessessesssssssessessessssessesses 47
D0 o 7201 (0 g T T 48
Avoid the variables $, $&, and $’.......cceiiiiicrii s 51
MELNOT #1 ... e 51
EXQMPIE USING @- ..o erere st sere st se s s a s s e e sa e e s ae e e e s e s 51
METNOT H2 ... s 52

TABLE OF CONTENTS

Compile your Regular Expressions before using themccccvvvrrevnrnienienisnensessesesessessessenns 52
Run time vs. compile tiMe........cccoeiiiniri e 53
Using qr 10 teSt USEr iNPUL.........coe i 55
USING the 0 MOIIErceeeecee e 56

Benchmark your PAIBINS ... e 57

0TI e T0 =Y B 0] 1 T OO 58

Flags you should consider alWays USINGccoeeerrerrererersersersersssessessessessssessessesssssssessessessssessesses 61
LT (0] T T £ 1 61

AVOIU BSCAPES ... eeeruerrerieire s s s s e b e R b b e e R e b e e e Re e R e e e e Re e Re e e e e e nne 62

USE the e Pragmac..ccceeecereerescr s r e 63
USE T8 ‘UEDUG ... p e e s 63

Understand backiraCking.........ccocvueernennenmnnsessesssessssse s ssssesens 66

AddItioNAl FESOUICTESciviviuiccirisrsseese e 67

LD BXEICISES ...vucuereeerree st 67

Chapter 3: Advanced Features.........cccuuemrmssanmmssnsmsssssssssnsesssssesssssssssssssssnnssssnnssssanss 69

Use my iterator variables With fOr I00PSccvrerrenrnrrre e 69
Foreach loops use local variable by defaultc.ccoveennrnniesnss e 70

ULIlIZE 100D JADEIS ... ettt s s e b e nnn 72

Avoid using <> for file MAtChINGccovvirirrr e —— 72

TIMEIHIRES ... e 73

CONEEXTUAIREIUIN ... 74

INdirect FIlENANIES.........ccoeeeeeereceece e 76

The three-argument technique to the open statement.............ccocriniinvninncnsn 77

Always check the return values of open, close, and when printing to a file...........ccocveevvivcenane. 78

Close filehandles as S00N as POSSIDIEc.ccovvervrierinnrnr s 79

Lo [0 I 11T 0T o OO 79

Creatively use the do StatEMENTcccvvrierrrrrrir e e nne s 80

Use the SIUrP() TUNCHION........co s 82

Test fOr INTBrACTIVILYccoc e s 82

USE 10 PIOMPL ... e e e e 83

TABLE OF CONTENTS

Understand where to find documentation ... 84
Sources 0f dOCUMENTALION.........ccveierererrrne s 85
UNAerstand CONTEXL.........coeoeoereerescrrc e 86
NUMDEE VS. SENG ...ceiiecrircrirese e nns e nr s 86
Scalar vS. array VS. liSt........cccvverrienernsesrnsisssese s e s ss s sss s sn s ses s 88
Understand the => OPEIatOr ... e 88
Understand Subrouting Calls ..o 90
Understand and/or VS. &&/Il.........coceereruiensiererinseecsesess s eas 93
USE PeILTIUY ..ouvececcccie st e e b e e e r e e e s 94
UL o] 4 14 R 96
Understand GetopliiStd......c.ccovviiiii s ——————— 97
Understand GEtOPL:iLONGc.cucceevererisernesrne s 100
Alternative commenting tEChNIGUEcvvevreviririere st s se e nne s 102
Passing notes within @ Perl Program.........c.ccccvririnneninsensen s ssesessessesssesessessssssessessenns 104
Use SMart::COMMENTSccovienererirssesssese s p s 105
AdAItIONAl FESOUITESc.eeueeeeeereecrercersee s e se e se e e s e s se e sr e e se s e e nse e neens 106
LD BXEICISES ...vueerueerreerieeres s s e e e e e R ne e e 106
Chapter 4: Advanced Formatted Qutputcccciiniimmnnnnnemnnsesnnssss 107
Review: The format statement.............ccccciiinnn 107
The format StatemMent ... —— 107

g2 TT= 0] o T 108
Repeating liNeS......cccucviiiirr e e s 111

UL T JEST=1 < S 112
Warning regarding the select statement ... 113
Advanced format statement features ... ———————— 113
L] 001 {0] 4O 114
FOrmat Variables. ... s 115
Padding With ZEr0S.......cceiicrcrr s s 119
LS T TP 120

viil

TABLE OF CONTENTS

Printf and SPRNTTooi i ——————————— 120
Options for printf and SPrintf.........ccvriir i ——————— 121
printf and sprintf flags.........cccvrrinrni s ————— 122
Example: Rounding NUMDEIS..........ccovorreerrerereer s 122
Example: Modifying NUMDETSccouvviieniesiese s s ss s sss s ssssssessnss 123
Example: Converting ASCH VAIUESccccvevevverrerernnenseness s sese s sessessessssessessesssssssessesaes 123
0100108 0 11 O 125

LR 1< | (0] 125

AdAItIONAl FESOUITESeeeeereeereecrerenere e se e e s se e e se e se e e nne e nrens 127

LD BXEICISES ...vueerucerreeriecres e sse e e ses e e s e e e e e s e nRn e p e e e nr s 127

Chapter 5: Exploring Useful Built-in Variablescccccccummmmsssemnsnnmnnsmsssssssssssssnnns 129

Variables reference Chart ... s 129

0= T OO 132

STATUS VAMADIES ... 133
THE $? VANTADIEcevrreecs e e 133
THE $! VANTADIE......ccuirrerecrireses e 135
ThE SAE VANIADIEcvecececicererisieese ettt st 135
The $@ VariaDI.........cccovrirrrriririrrrirere et 136

SeParator VariableS ... e e 136
INPUL reCOrd SEPAFALON........ccerceree et s r e s ae e 136
Array separator Variable ... e s 137
PriNt SEPAALOrScevciec e e e e s 138

The signal handle Variablec.ccoeeeerrnerrenereerssese s s sessesessenens 139

VEISION OF PEI......cviciecerce s e s ne e srnnn e 142

Program Start iMe.........covceviienncsre e e 143

AddItioNAl FESOUICTEScoviviuiieririsssee s 143

LD BXEICISES ...t e 144

ix

TABLE OF CONTENTS

Chapter 6: Advanced File Handling..........ccccurnnsnmmmmmssssnnnmsssssssnmsssssssssssssssssssssssnnnss 145
Review: Basic file handling..........ccccoivninininnsnn e 145
Opening and reading from fileS ..o —— 145
Opening and WIiting 10 filESccccvverrrerreserr s 146
PIDING N PEIT ..ottt pe e 147
Displaying the file POSITION........cccvirinrrr e 148
Moving the file POSITION......cccveirirrre e s re e nne s 149
Opening files for reading and WEEINGccvevererierierenerrrere e s ssesessessesees 150
Open an existing file for reading and Writingccccvinrnnnnnnsns e 150
TrUNCALING FllESeeeecrerc e e e e nne e 151
Why open a file for both reading and Writing?c.cocvvernnenniesnns s 152
Making “files” Within YOUr SCHPLcccvvirirerrire e 152
LOCKING FIlES...vitreruererirsires s ser s se s s s se s sae e se s b e s e s e e e e s s ae s ae e e e naeeae st e e nannnens 154
Flushing output BUFTEIS......ceci it n e s s 155
USING SEIECT......ocec e e e s 156
AdAItIONAl FESOUITESc.eeeeeeeeeereecreecserse s e e e e e e se e e se e e e nne e nrens 156
LD BXEICISES ...vueeeeeerreeriecres e e ne e e 157
Chapter 7: Pragmas......ccsussssmsssssssssansssssnssssansssssnsssssnsssssnsssssnsssssnnssssnnssssnnssssnnssssns 159
Pragma Chart ... e 159
The USe STHCE Pragma........ccccviiiiiiiirie e e ae e 160
USE SEHCT TBI .. s 160
USE SEFICT ‘SUDS ... s 160
LEET YT R T 161
Predeclaring SUDIOULINEScoveeeresernsesene s 163
Predeclaring global variables. ..o 168
USING NEW TRALUIEScveererierrrrerere s ses e sse s s e s e s sae e s e s saese s e s saesa s e s e saesaesa s e saesaesesnensennens 173
Example of use feature ‘say’ and use feature ‘state’cccecvvrvirirvnsnni e 174
Example of use feature “SWItCh” ... 174
Using all features of a SPecific Perl VErsioncccovvvnvnncnnsscsssesesesesesesesese s 175

TABLE OF CONTENTS

1T R (0o 1 SR 176
Final note about Pragmas ... s sr s s s sr s snens 177
AdAItIONAl FESOUITESeeeeeeeeeereecrereserre s se s e e se e se e e s se e e se e s e e s s e nns e neens 177
LD BXEICISES ...vueerueerreerreeses e s s n e e e e e e e e e 178
Chapter 8: Exploring Useful Built-in Modules........cccuccemmmmssssnmnmnssssnnsssssssssssssssssnnns 179
BUIIE=IiN MOAUIES.......cieeeeerieerinesire st nr s 179
Manipulate @INC at compile tiMEccccvevrirrrrrrr e 180
Determining the location of loaded MOAUIES...........ccocvveriiririnnn s 181
Loading modules as NEEUEM...........cccvcrerirrinene e e 182
MOAUIE TADIE ... 183
o OO STPRRRo 184
(031 OO 184

[0 T<] o OSSOSO 184
L2161 o TP 185
Why not use a system Statement? ... 185
BNV e e E AR e e e e AR ne e e 186
File MOAUIES......cceeeeceeereecr e ne e 187
File::BaSENAME.......cceeercer e e 187
FIle::COMPANE ..o e e e p e pe e nr s 188
o] R 188
FIlEIPAtN......eoee s 188
T T T TSRS 190
Additional useful file MOAUIESccoverereeerrererere e 191
Math MOTUIES ... e 192
Math::BigFI0oatcccoeeerrererneseneses e 192
12 | T RS 192
Additional useful math MOdUIES..........covierrrrr e 193
SYS MOAUIBS....ccuereereerererereree s s rrese s e s s s e e saesa e e s e e e s aesa e e e aeeaesae e eaeeaesae e e e e aesaenae e e e naenaen 193

xi

TABLE OF CONTENTS

TEXE 1ovteteteerese iR R R e e e 193
L= = 13PN 194
TEXEIWEAD v 194

- - | S 196

BENCAMAIK........co e nne 196

GELOPE ST . ——————————— 197

6T (0] 0| i 0] oS 200

AdAItIONAl FESOUITESccueereeeriee e e r s s snsra e sr s 202

LD BXEICISES .. vuecerecereeereeerer e e e R e ne e e 202

Chapter 9: Debugging TOOIS......cccxsssuennrsssssnnsmssssnnnnsssssnnnnssssssnnnssssssnnnsssssnnnnsssssnnnnss 205

ReVieW: The =W SWILCH ..o s 205
ThE SAW VAHADIEecverciitciririri e bbbt s 207
USE WAITHNGS wevveveererersessesessersessessssessessessssessessessessssessesssssssessessessessssessesasssensssessessensssesseses 207
THE =W SWILCH ...ttt 208
THE =X SWILCH . e 208

The Perl deDUGQET.......coe e e e e e e e 208

DebUgger COMMANGS.........ccvrrrerererese s ne e 209
GELEING NEIP . 210
An alternative t0 PriNt........ccviirinin e 211
Stepping throUgh COURcccvererrrere e e s s sa e nne 212
ISy 1T 00T SO 212
Setting breakpoints ... ———————————— 213
Listing breakpointS.........cccovermrenmrnseresese s sre e s se s s snsessnns 213
Continue t0 breakpoints ..o —————————— 214
Deleting Dreakpointsccoivevrenenisesnsesrsesese e 214
Displaying variables and SUDFOULINES.........ccvcvvererennsene s s enes 216

Additional dEDUGQETScvviiieririerrir e sae s 217

xii

TABLE OF CONTENTS

Understanding error MESSAUES.c.cuvererirrriererersessee s s e s ssessessessesssessesessssssesaessesssssasssensnnns 218
USE QIAGNOSTICScvueiveriircre s s e p e r e e b r e e nne 219
{05 T OSSR 220
LS T 72 S 220
USING CrOBK......covieeerreserssesenesesse s e s s e e s s e s e s s sr s s s e s e s s e s e nrnse e nns e nsans 221

D U ez W 101 0T S SRST SRR 222
ST 1Y 1SS 223
AdAItIONAl FESOUITESccueereiereecsereerre s nne e 224
LD BXEICISES ...veeuerucereeereecre s e e e s s e e s e e s e e s e e ae e e e e e e 224
Chapter 10: Perl/TK BaSiCS....cuuurrrmusssssnmssnnsmsssssssssssssnnsssssssssssssssssnssssssssssssnnsnnnnnnnss 225
THE TKMOUUIE ..ot s rnne e p e e s e nrnnn e 225
TYPES OF WIAGELS ..c.veueerreerrie st r e e p e nr e nnnne e 226
EXploring Widget EXamPIES.......ccvcvierererririeresis s e s e sse s sessesse e ssssesessessesessesaesaesassessesnens 227
GEOMEIIY MANAGEIS.cererrerrererrereresersere s e e s e s saese s e ssesresa e e s e saesae e e e eaesaess e e e aesaesae e nsenaennes 231
Creating WidgelS ... e e e e 232
The 00 nature of the TK MOUUIE ..o 232
AdAItIONAl FESOUITESc.veueereeerreesenesesre e s e se s e e e s e e se s e se s e e nsa e neens 233
LD BXEICISES ...veuerrueerreerieeses e se e s e s e e e ne e 233
Chapter 11: Perl TK Widgets.....ccccunmmmmmsssannmmsssssnnnmsssssnsssssssssnssssssssnsssssssnssssssssnnnss 235
FIAMES ..t s 235
REIET ...t R p s 236
0] 0] 3T 238

2 ST 239
DIEMAPS. ..t ——————————— 239
USiNG Other IMAQES.......cucriiririsere e 241
BXE e ————————————————————————— 242
L)AL 10 4T O 244

xiii

TABLE OF CONTENTS

BULLONS ...t e 247
Using buttons 1o exit your SCript........cccviiininin s 248
Using buttons 10 destroy Widgets........ccovinvnnnnnn s 249
Unpacking instead of destroying.......c.cccoverrnnrnnesnese s 250
Changing the CUISOK ..o e 251
0pening @ tOPIBVEL.......coevecercer e e e e 252
I 3 PSSP 254

ChECKDULLONS ... 255

L3100 01040 257
2 1[0 1T T 258

LIS (010 (=SSOSR 260
USiNg SEIECIEd VAIUES.......covecerreerei e 262
SelECHING OPLIONS....ccevere e e 264

BT (0] L]0 1 266
I 3 PSPPI 269

£ 72 T 270
Setting a default SCAIE VAIUEccoeeerecerrceree e 272

ENEIBS c.vuitirecer iR r e 275
Hiding the USEI'S INPULcecevierererir e et s e e 276
DiSADIE AN BNIIY DOX...evcerrirreirerere s s sre s s se s s sre s e e saesr e e e eaesae e e e naenaes 278

CreatiNg MENUS....coccvuereererererrsserse s e ses e rsessess e e s saesaess s e saesaese s e nsesaesa e e naesaesae s enenaesaessenensenanns 281
Creating the Menu OPLIONS ... s 281
Adding radio OPLIONS........coeerererirrcrerese e nne e 282
Adding CHECK OPLIONScoveeecerieerirese e s nennennns 285
Adding commMand OPLIONS........ccueerrimrrreserene s srs e e srsnenees 288
Adding cascade and SEPArALOrScocvverreriererersersere e ser s s sae e enes 289

AdAItIoNAl FESOUITEScoueereierieerireseree s s e r s 293

LD BXEICISES ...vecerecereeereec e e s e e e ne e e 293

Xiv

TABLE OF CONTENTS

Chapter 12: Geometry Managersccccuusssessrsssssnssssssssnsnssssssnnssssssssnsssssssnnssssssnnnnss 295
The -after and -before OptioN..........ccvcvrirninrn i —————— 295
The -anchor and -Side OPLIONS........cccvcririrnnr e ——————— 298

e 10T LT 299

THE —fill OPLION...c..eiiicirire e e 301
Padding With PAcCKcccvcririiriri et e 304
Managing Widgets With PACK........ccceverrrrierieresserreresessssesessesessessessessssessessesssssssessessessssessessens 306
51 T 1 o SR 312
L2 1 S 312

The fOCUS COMMAN ..o e e srnnn e 315
AdAItIONAl FESOUITEScuveueerrierreesesesesse s sesse s se s e e e e e e se s e e nsa e nranis 318
LD BXEICISES ...vvuerrueirriiriee st s e s e e r e e e e r e n e 318
INA@X . iiiiiiinnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnnsssssssssnnnnnnnsessssssssnnnnnnnnnsssssssssnnnnnnnnnsssssnnn 319

About the Author

At the impressionable age of 14, William “Bo” Rothwell crossed paths with a TRS-80 Micro
Computer System (affectionately known as a “Trash 80”). Soon after, the adults responsible
for Bo made the mistake of leaving him alone with the TRS-80. He immediately dismantled
it and held his first computer class, showing his friends what made this “computer thing”
work. Since this experience, Bo’s passion for understanding how computers work and
sharing this knowledge with others has resulted in a rewarding career in IT training. His
experience includes Linux, Unix, DevOps tools, orchestration, security, and programming
languages such as Perl, Python, Tcl, and Bash.

Bo can be contacted via LinkedIn: www.1linkedin.com/in/bo-rothwell.

xvii

http://www.linkedin.com/in/bo-rothwell

About the Technical Reviewer

German Gonzalez-Morris is a polyglot software architect/engineer and has been 20+
years in the field, with knowledge in Java(EE), Spring, Haskell, C, Python, and JavaScript,
among others. He works with web distributed applications. Germén loves math puzzles
(including reading Knuth) and swimming. He has tech-reviewed several books,
including an application container book (WebLogic), as well as titles covering various
programming languages (Haskell, TypeScript, WebAssembly, Math for coders, and
regexp). You can find more details at his blog site (https://devwebcl.blogspot.com/)
or Twitter account (@devwebcl).

Xix

https://urldefense.proofpoint.com/v2/url?u=https-3A__devwebcl.blogspot.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=JBubaXpxjMKlEOaFmxdPXtt06ZW1CoYXaaEFq_1hh-o&s=sO8Vn4tmRqIE9wKH9Lreod6mn-UWXwcS36ZRZFgsdEM&e=

CHAPTER 1

Intermediate Regular
Expressions

Many people consider Perl to stand for Practical Extraction and Report Language.
This isn’t strictly true as Larry Wall originally wanted to call the language Pearl, but he
discovered there was already a language that went by that name (PEARL, or Process
and experiment automation realtime language, a language created about ten years
before Perl).

Practical Extraction and Report Language is actually a backronym, but it does serve
to hammer home the point that Perl is well known as an extraction language. In order to
extract data, you need good tools to filter data. That is where Regular Expressions step
into the picture.

Perhaps more than any other language, Regular Expressions are a major part of Perl.
This chapter focuses on “intermediate-1level” Regular Expressions. Chapter 2 will
continue the discussion while covering more advanced Regular Expressions.

Review: Basic Regular Expressions

Basic Regular Expressions are discussed in the Beginning Perl Programming: From
Novice to Professional book. The goal of this section is to provide a quick review of what
is covered in that book.

If you are already familiar with these Regular Expressions, then skip to the next
section. If not, then you should try the examples demonstrated in this section.

© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_1

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Basic operations

The following are the basic operations that can be performed with Regular Expressions:

op Meaning

m Pattern matching
S Substituting

tr Translating

Examples of basic operations:

DB<1> $line = "Today is a good day to learn Perl"
DB<2> if ($line =~ m/good/) {print "yes"}

yes

DB<3> $line =~ s/good/great/

DB<4> print $line

Today is a great day to learn Perl

DB<5> $line =~ tx/a-z/A-Z/

DB<6> print $line

TODAY IS A GREAT DAY TO LEARN PERL

Notes about the basic operators:

o Since matching is the most common operation, the "m" can be
dropped in most cases:

DB<1> if ($line =~ /good/) {print "yes"}

o Ifyou perform matching, substitution, or translation on the default

~

variable ($_), you can drop the "$var =~" portion of the command:

DB<1> $_ = "Today is a good day to learn Perl"
DB<2> if (/good/) {print "yes"}

yes

DB<3> s/good/great/

DB<4> print $_

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Today is a great day to learn Perl
DB<5> tr/a-z/A-Z/

DB<6> print $_

TODAY IS A GREAT DAY TO LEARN PERL

e The"y" operator is the same as the "tr" operator:

DB<1> print $line

Today is a great day to learn Perl
DB<2> $line =~ y/a-z/A-Z/

DB<3> print $line

TODAY IS A GREAT DAY TO LEARN PERL

Basic modifiers

The following basic modifiers were covered in the Beginning Perl Programming: From
Novice to Professional book:

Modifier Meaning

g Global match or substitution

i Case-insensitive match

The following code demonstrates the "g" modifier by showing how the behavior
changes when the "g" modifier is used. Note that in the second substitution, all of the
occurrences of dog are replaced with cat, while in the first substitution, only the first

occurrence is replaced.

DB<1> $_="The dog ate the dog food"
DB<2> s/dog/cat/

DB<3> print

The cat ate the dog food

DB<4> $_="The dog ate the dog food"
DB<5> s/dog/cat/g

DB<6> print

The cat ate the cat food

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

The following code demonstrates "i" modifier by showing how the behavior

changes when the "i" modifier is used. Note how in the first match attempt that "perl"

without the "i" modifier does not match "Perl".

DB<1> $_="This is a good day to learn Perl"
DB<2> if (/perl/) {print "yes"}

DB<3> if (/perl/i) {print "yes"}

yes

Basic metacharacters

Perl supports a rich collection of metacharacters. Each metacharacter is used to
represent other characters that you want to match within a string. The following chart
summarizes the metacharacters that were covered in the Beginning Perl Programming:
From Novice to Professional book:

Char Meaning

* Represents the previous character repeated zero or more times
+ Represents the previous character repeated one or more times
{x,y} Represents the previous character repeated x to y times

Represents exactly one character (any one character)

[] Represents any single character listed within the bracket.

? Represents an optional character. The char. prior to the "?" is optional

A Represents the beginning of the line when it is the first character in the RE
$ Represents the end of the line when it is the last character in the RE

() Used to group an expression

| Represents an "oxr" operator

\ Used to "escape" the special meaning of the above characters

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Examples: The * and + characters

The following example of the * metacharacter matches "A", then zero or more "1"
characters, followed by "Z":

DB<1> $_="Code: A111Z"

DB<2> if (/A1*Z/) {print "yes";} else {print "no"
yes

Be careful when using the * metacharacter. The following will match every possible
line because every line has "zero or more "3" characters":

DB<1> $_="Code: A111Z"

DB<2> if (/3*/) {print "yes";} else {print "no"
yes

The danger of using the * metacharacter was demonstrated in the previous example.
In most cases, it is better to use the + character because it ensures at least one character
is matched:

DB<1> $_="Code: A111Z"

DB<2> if (/3+/) {print "yes";} else {print "no"
no
DB<1> $_="Code: A3332"

DB<2> if (/3+/) {print "yes";} else {print "no"
yes

Review the following table for some additional examples of the * and +
metacharacters:

Example Meaning

abc* "ab" followed by zero or more c’s
c*enter Zero or more c’s followed by "enter"

a* Anything. Warning: This expression ALWAYS will find a match and will most likely
match "nothing". Look for examples of this later in this unit

(continued)

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Example Meaning

abc+ "ab" followed by at least one (or more) ¢
ctenter Atleast one c (or more) followed by "enter"

a+ Match one or more "a"

Examples: The { } characters

Suppose you don’t want to just match zero or more of a character and you don’t want
to match one or more either. You want to match three, four, or five repeating characters.
This is where the {} metacharacters are useful. The following example will match "A",
then three, four, or five "1" characters, followed by "Z":

DB<1> $_="Code: A111Z"

DB<2> if (/A1{3,5}Z/) {print "yes";} else {print "no"
yes

You can also leave the end value of the range "open". For example, the following will
match "A", then three or more "1" characters, followed by "Z":

DB<1> $_="Code: A111Z"

DB<2> if (/A1{3,}Z/) {print "yes";} else {print "no"
yes

If you place just a single integer in the { } metacharacters, you end up matching
exactly that number of characters. For example, the following will match "A", then three
"1" characters exactly, followed by "Z":

DB<1> $_="Code: A111Z"

DB<2> if (/A1{3}Z/) {print "yes";} else {print "no"
yes

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Review the following table for some additional examples of the { } metacharacters:

Example Meaning

abc{3,5} "ab" followed by three to five "c's"

abc{3,} "ab" followed by three or more "c's"
abc{3} "ab" followed by exactly three "c's"

Examples: The ? character

Another method that is sometimes used to repeat characters is the ? metacharacter. This
metacharacter means "repeat the previous zero or one times". See the following
for an example:

DB<1> $_="In the US it is color"

DB<2> if (/colou?r/) {print "yes";} else {print "no"
yes
DB<3> $_="In other countries it is colour"

DB<4> if (/colou?r/) {print "yes";} else {print "no"
yes
DB<3> $_="In no country is it colouuuur"

DB<4> if (/colou?x/) {print "yes";} else {print "no"
no

Review the following table for some additional examples of the ? metacharacter:

Example Meaning

abc? Either "ab" or "abc"

colou?r Either "color" or "colour"

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Examples: The . character

If you want to match a single character, but you are not concerned what the character
actually is, then you can use the . metacharacter. For example, the following will match
"A", then exactly three characters, followed by "Z":

DB<1> $_="Code: A127Z"

DB<2> if (/A...Z/) {print "yes";} else {print "no"
yes

Note that each . character must match exactly one character. The following examples
demonstrate failed matches because the string contains only three characters between the
"A" and "Z", which the Regular Expressions are trying to match two or four characters:

DB<1> $_="Code: A127Z"

DB<2> if (/A..Z/) {print "yes";} else {print "no"
no

DB<2> if (/A....Z/) {print "yes";} else {print "no"
no

Note that the . character does not match newline characters. This will be addressed
later in this chapter.
Review the following table for some additional examples of the . metacharacter:

Example Meaning

a.c An "a" followed by any single character followed by a "c'
abc. A "abc" followed by any single character

ab.* A "ab" followed by zero or more of any character

Examples: The [] characters

Suppose you want to match a single character but not just any character. For example,
suppose you want to match an "A", followed by three numbers, followed by a "Z". In this
case you can use the [] characters to indicate you want to match a single character, but
this single character must match one of a set of other characters:

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS
DB<1> $_="Code: A1272"

DB<2> if (/A[0123456789][0123456789][0123456789]Z/) {print "yes";} else
{print "no"
yes

If the characters that are within the [] characters are in sequential order within the
ASCII text table, a range can be used instead as shown in the next example:

DB<1> $_="Code: A127Z"

DB<2> if (/A[0-9][0-9][0-9]Z/) {print "yes";} else {print "no"
yes

Don't forget that you can use { } characters to repeat patterns. The following example
repeats the [0-9] three or more times:

DB<1> $_="Code: A127Z"

DB<2> if (/A[0-9]{3}Z/) {print "yes";} else {print "no"
yes

You can also use the [] to match a character that is not part of a set of characters.
For example, supposed you want to match any character that is not a lowercase alpha
character, followed by three numbers, followed by a "Z" character:

DB<1> $_="Code: A127Z"

DB<2> if (/[*a-z][0-9][0-9][0-9]Z/) {print "yes";} else {print "no"
yes

The ” character means "not one of these characters" ifitis the first character
within the [] characters. Note that is must be the first character within the [] characters
to have this special meaning.

Review the following table for some additional examples of the [] metacharacters:

Example Meaning

[abc]xyz Either an a, b, or c followed by "xyz"
[bca]xyz Same as previous

[a-c]xyz Same as previous

(continued)

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Example Meaning

[c-a]xyz An improper range
[a-z]xyz Any lowercase character followed by "xyz"
[A-Z]xyz Any uppercase character followed by "xyz"

[A-z]xyz Any lowercase or uppercase character or any of these characters:
"l 1~ _ " 'followedby "xyz"

[A-Za-z]xyz Any uppercase or lowercase character followed by "xyz"
[A-Z][a-z] Auppercase character followed by a lowercase character
grlaely Either "gray" or "grey"

[*A-Z]xyz Any non-uppercase character followed by "xyz"

[abc”]xyz First character is either "a", "b", "c", or "*" followed by "xyz"

Examples: The * and $ characters

Often you will want to search for a pattern at the beginning or end of the string. To match
something at the beginning of a string, use the " character. For example, the pattern
/"A127Z/ will attempt (and fail) to match "A127Z" at the beginning of the string, while
pattern /*Code/ will attempt (and succeed) to match "Code" at the beginning of the
string:

DB<1> $_="Code: A1272"
DB<2> if (/~A127Z/) {print "yes";} else {print "no"

DB<3> if (/~Code/) {print "yes";} else {print "no"
yes

Conversely, the following examples will attempt to match A1277 and code at the end
of the string:

DB<1> $_="Code: A127Z"

DB<2> if (/A1272$/) {print "yes";} else {print "no"
yes
DB<3> if (/Code$/) {print "yes";} else {print "no"

10

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Review the following table for some additional examples of the " and $

metacharacters:
Example Meaning
~abc "abc" found at the beginning of the line
abc$ "abc" found at the end of the line
~abc$ A line that just contains "abc"
~$ A blank line

MA[A]*$ Aline that starts with a "~" and has no other "~" characters on it

Examples: The () characters

The () characters are used to group other characters together. For example, suppose you
want to match a pattern like the following:

DB<1> $_="Code: A127127127Z"

You know there will be an "A", following by a collection of "127" patterns, followed
bya "Z", but you don’t know how many "127" patterns there will be. The following won’t
match because the + character is repeating just the previous character ("7", in this case):

DB<1> $_="Code: A127127127Z"
DB<2> if (/R127+Z/) {print "yes";} else {print "no"

But, you can place () characters around the "127" to have the + character apply to
the group:

DB<1> $_="Code: A127127127Z"

DB<2> if (/A(127)+Z/) {print "yes";} else {print "no"
yes

The () characters are also used for a feature called backreferencing, which will be
covered in a later section of this chapter.

11

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Review the following table for some additional examples of the () metacharacters:

Example Meaning

(abc)*xyz "abc" zero or more times followed by xyz
(abc)+xyz "abc" one or more times followed by xyz

Mabc)+$ A line that contains one or more groups of "abc"

Examples: The | character

The | character acts as an "or" operator. It means "match the pattern that appears
before the | character or the pattern that appears after the | character".
For example:

DB<1> $_="Code: A127Z"

DB<2> if (/R127Z|B999Y/) {print "yes";} else {print "no"
yes
DB<3> $_="Code: B999Y"

DB<4> if (/R127Z|B999Y/) {print "yes";} else {print "no"
yes

In some cases, you want to limit the scope of the or operation. This can be done with
() characters:

DB<1> $_="Code: B999Y "

DB<2> if (Code: (/A127Z|B999Y/)) {print "yes";} else {print "no"
yes
DB<3> $_="Result: B999Y"

DB<4> if (Code: (/A127Z|B999Y/)) {print "yes";} else {print "no"

Examples: The \ character

The \ character is used to escape the meaning of special characters, such as *, +or ?.
For example, suppose you want to match the following pattern: "Code: A*+[Z".The
following won’t work correctly:

12

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS
DB<1» $_='Code: A*+[Z'

DB<2> if (/Code: A*+[Z/) {print "yes";} else {print "no"
Unmatched [in regex; marked by <-- HERE in m/Code: A*+[<-- HERE Z/ at
(eval 11)[/usr/share/perl5/perl5db.pl:732] line 2.
at (eval 11)[/usr/share/perl5/perls5db.pl:732] line 2.
eval 'no strict; ($@, $!, $°E, $,, $/, $\\, $"W) =
@DB: :saved;package main; $°D = $°D | $DB::db_stop;
if (/Code: A*+[Z/) {print "yes";} else {print "no"};
' called at /usr/share/perl5/perl5db.pl line 732
DB::eval called at /usr/share/perls5/perl5db.pl line 3093
DB::DB called at -e line 1

Instead, use \ before each RE character:
DB<1> $_='Code: A*+[Z'

DB<2> if (/Code: A*\+\[Z/) {print "yes";} else {print "no"
yes

Regular Expressions classes

Regular Expression classes are used to create quick shortcuts to a set of characters.
Commonly used RE classes are described in the following table:

Class Matches

\w Alphanumeric and underscore character

\d Numeric

\s Whitespace (space, tab, newline, formfeed, return)

\b Word boundary (includes "whitespace", end/beginning of line, punctuation, etc.)
\W Non-alphanumeric and underscore character

\D Non-numeric characters

\S Non-whitespace

\B Non-word boundary

13

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Examples: "\w" and "\d"

DB<1> $_="The code is A1272"
DB<2y s/\d\d\d/---/

DB¢3» print

The code is A---Z

DB<4» s/\w---\w/2222Z/

DB<5> print

The code is 22222

Examples: "\s" and "\b"

DB<1y» $_="This is fun"

DB<2> s/\sis\s/was/

DB<3> print

Thiswasfun

DB<4» $_="This is fun"

DB<5> s/\bis\b/was/

DB<6> print

This was fun

DB<7> $_="This is"

DB<8> if (/\sis\s/) {print "yes"}
DB<9» if (/\bis\b/) {print "yes"}
yes

Note that Perl also supports the following POSIX RE character classes:

Class Matches

alpha Any character of the alphabet
alnum Any alphanumeric character

ascii Any character in the ACSII text table
blank A space or tab (horizontal)

cntrl Any control character

digit Any digit (same as [0-9])

(continued)

14

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Class Matches

lower Any lowercase alphanumeric character
punct Any punctuation character

space Any whitespace character

upper Any uppercase alphanumeric character
xdigit Any hexadecimal digit

word Same as \w

Note that these POSIX character classes are placed within "[: :]". For example,
[:alpha:]. Furthermore, these POSIX character classes are used with Perl [] characters,
so to look for a lowercase character, followed by three numbers and then a lowercase
character, you would use syntax like the following:

DB<1> $_='Code: a127z'

DB<2> if (/[[:lower:]][[:digit:]]{3}[[:lower:]]/) {print "yes";}
yes

Which will leave you wondering why not just use the following:
DB<1y $_='Code: a127z'

DB<2> if (/[a-z][\d{3}[a-z]/) {print "yes";}
yes

Often, using POSIX character class is a pain, but consider the following useful
pattern that will match a single character that is either a digit or a punctuation character:

[[:digit:][:punct:]]

Backreferencing

Grouping can also be used to "backreference" patterns that have been matched. When
Perl makes a match of characters within parentheses, what was matched can be referred
back to

$var =~ s/*(...)abc/\1/;

15

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

The \1 means "match what was matched in the first group".A\2 means
"match what was matched in the second group".

In addition to being able to backreference within the Regular Expression, Perl
assigns what was matched within the grouping to special variables. The first group
match is assigned to $1, the second group matched is assigned to $2, and so on.

$var =~ m/(abc..)/;
print $1;

The above will match the string "abc" followed by the next two characters and assign
all five characters to the string $1.

Note Future successful matches will cause these variables ($1, $2, etc.) to be
overwritten.

Example #1: Backreferencing

The variables $1, $2, etc. can be used immediately after a successful pattern match. In
this example, the user enters their first and last name. Then pattern matching is used to
extract the first and last name and print them out in a different format (last name, first
name):

#!perl
#1_backi.pl

print "Please enter your first and last name";
$_=<STDIN>;

if (m/(.*) (.*)/) #ex: "Bob Smith"
{

print "$2, $1\n";

16

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Example #2: Backreferencing

In this example, the UNIX file /etc/group will be read into the script one line at a time
and "parsed". Each line contains four fields of data that are separated by colons. This
script will add the third field of each line and print the total:

#!perl
#1_back2.pl

open (GROUP, “"</etc/group");

while (<GROUP») {
m/(*)s(*)s(*)s(*)/;
$total += $3;

}

print "Total: $total\n";

Note The previous example isn’t ideal because the values of $1, $2, and $4 are
never used. A more efficient method for the while loop would be

while (<GROUP>) {
m/*: *s(.*)2/3
$total += $1;

}

Example #3: Backreferencing

When you need to refer back to what was matched within the pattern itself, you need to
use \1, \2, etc. instead of $1, $2, etc.:

#!perl
#1_back3.pl

print "Please enter a line: ";
$_=<STDIN>;
chomp $_;

17

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS
if (/2(...).*\1$/) {print "$1\n";}
$junk="whatever";

if ($junk =~ /what/) {print "yes\n";}
print "$1\n";

Also note that when another pattern match is attempted and that match (or
substitution) is successful, Perl will overwrite $1, $2, etc. even if you don’t use
parentheses.

Modifiers

In addition to the g and i modifiers discussed in Beginning Perl Programming: From
Novice to Professional, there are other modifiers that change the behavior of a Regular
Expression match. Modifiers for matching and substitution are different than the
modifiers for translation. The following table provides a short description of commonly
used matching and substation modifiers:

Mod Meaning

e Right-hand side of substitution is the code to evaluate

ee Right-hand side of substitution is a string to evaluate and run as code.
After completion, the return value is to be evaluated

g Global match or substitution

gc Doesn’t reset the search position after a failed match

i Case-insensitive match

m Allows * and $ to match embed \n characters

o} Only compile the pattern once

p Preserve the string matched such that ${*PREMATCH}, ${"MATCH}, and

${"POSTMATCH} are available for use after matching

S Allows the "." metacharacter to match newlines

X Ignores whitespace in pattern and allows comments

18

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Commonly used translation modifiers include the following:

Mod Meaning

c Complement the search list

d Delete characters that are not replaced

S Delete replaced characters that are
duplicates

Note that not all of these modifiers are covered in detail in this chapter of the book.

The e modifier

When the e modifier is used, the right-hand (replacement) side of the substitution is
evaluated as a Perl statement. The result of the statement is used as the replacement

value:

DB<1» $var="123456789"

DB<2» $code="ABCDEFGHIJ"

DB<3> $code =~ s/I/chop $var/e
DB<4» print $code

ABCDEFGHI9

Note The e modifier can only be used for substitution, not matching.

The d modifier

Normally when you have too many characters on the left side of a translation operation,
you get "weird" results:

DB<1y $var = "This can become very odd"
DB<2> $var =~ tr/abcdefghij/ABC/

DB<3» print $var

TCCs CAn BCComC vCry oCC

19

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

In the preceding example, the trx operator replaced "a" with "A", "b" with "B", and
all of the other characters ("c-j") with "C".

The d modifier means, "if something is matched and we don’t specify what
to replace it with, then remove it":

DB<1> $var="Lets cap this and remove all numbers: 1234567890"
DB<2y $var =~ tr/a-z0-9/A-Z/d

DB¢<3> print $var

LETS CAP THIS AND REMOVE ALL NUMBERS:

The s modifier

When the s modifier is used with the tr operator, it tells tr to delete duplicated
characters that are replaced:

DB<1» $var="Exxtra chars are removed"
DB<2> $var =" tr/xyz/XYZ/s

DB<3> print $var

EXtra chars are removed

Note There is also an s modifier for matching and substitution that works
differently than the s modifier for translation.

Other modifiers

Not all of the modifiers listed on the preceding page are discussed in detail in this
course. The g and i modifiers were covered in the Beginning Perl Programming: From
Novice to Professional book and are reviewed earlier in this chapter. Other modifiers will
be introduced in future chapters.

20

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

@ myin
Execute the following command to enter the Perl Debugger environment:
perl -d -e "1;"
At the debugger prompt, execute the following Perl statements:
$code="Convert digits to ASCII: 1-2-3";
$code =~ s/1/ord(1)/e;
$code =~ s/2/o0rd(2)/e;
$code =~ s/3/ord(3)/e;
print $code;
$code="Thhis is howw we do itt";
$code =~ tr/a-zA-z/a-zA-1Z/s;
print $code;

Exit the debugger by executing the following Perl statement:

q

Getting the Nth occurrence of a match

In some cases, you will want to find the Nth occurrence of a match. In these cases, use
pattern matching with the g modifier in a while loop:

#!perl
#1_nth.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765]";

while ($line =~ /(Code: [A-Z][0-9]{3}[A-Z])/g) {
$count++;
print "The $count match is $1\n";

}

21

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

@ it
Perform the following steps:
Execute the previous program (1_nth.pl), and observe the output.
Modify 1_nth.pl by taking out the "g" modifier.

Execute 1 nth.pl again, and observe the output (you can stop the program with
control-c)

Greedy vs. non-greedy matches

By default, Perl patterns are "greedy". This means that when matching a pattern, Perl
will attempt to "grab" as many characters that will possibly match:

DB<1> $line="It was the best of times; it was the worst of times"
DB<2> $line =~ s/the.*times/a very bad year/

DB<3> print $line

It was a very bad year

The ".*" matched the string "the best of times; it was the worst of" because
that was the most it could possibly match. To make your patterns non-greedy (match the
minimal amount), use the "?" after the metacharacter:

DB<1y $line="It was the best of times; it was the worst of times"
DB<2y $line =~ s/the.*?times/a very bad year/

DB<2> print $line

It was a very bad year; it was the worst of times

You can use the following non-greedy patterns:

*? {n}?
+? {n,}?
?2? {n,m}?

22

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Regular Expression variables

There are many variables that are set as the result of a pattern match:

Variable Meaning

$ String preceding what was last matched
$' String following what was last matched
$+ Last parens match of last pattern match
$& Last pattern match

$1..%9 Subpattern matches of last pattern match

What was matched

You can "look back" to what was matched during the last pattern match by looking at
the $& variable:

#!perl
#1_matchi.pl

print "Enter a line of text and I will find the first 1 digit number: ";
$1ine=<STDIN>;

$line =~ m/[0-9]/;

print "The number was $&\n";

Before and after what was matched

You can see what was in the string before and after the match by looking at the $~ and $'
variables:

#!perl
#1_match2.pl

print "Enter a line of text and I will find the first 1 digit number: ";
$line=<STDIN>;

$line =~ m/[0-9]/;
23

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

print "The number was $&\n";
print "Before that number was $ \n";
print "After that number was $'\n";

Warning about $&, $", and $'

These variables are only set if you use them in your program. Unfortunately, if you use
any of these variables even once in your program, then every pattern match will generate
all of these variables. This could have a performance penalty on your program.

There are two methods available to avoid this problem:

Method #1

As of Perl 5.6, the variable @- contains the offset of the first character that was
matched in the pattern. In other words, if we did the following match

$_="abc123";
m/\d\d/;

then $_[0] would be set to the number 3 (meaning the third character in the string,
counting from zero, is where the match began). Using this value in conjunction with the
substr statement allows you to simulate the $&, $°, and $' variables.

Example using @-

#!perl
#1_match3.pl

print "Enter a line of text and I will find the first 1 digit number: ";
$line=<STDIN>;

$line =~ m/[0-9]/;

print "The number was ", substrx($line, $-[0], $+[0] - $-[0]), "\n";
print "Before that number was ", substr($line, 0, $-[0]),"\n";
print "After that number was ", substx($line, $+[0]), "\n";

print "\n\n @- \n\n";

24

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Method #2

As of Perl 5.10, the variables ${*PREMATCH}, ${*MATCH}, and ${"POSTMATCH} are
created if you use the p modifier. If this modifier is not used, then these variables are not
generated:

#!perl
#1_matchq.pl

print "Enter a line of text and I will find the first 1 digit number: ";
$1ine=<STDIN>;

$line =~ m/[0-9]/p;

print "The number was ${“MATCH}\n";
print "Before that number was ${"PREMATCH}\n";
print "After that number was ${"POSTMATCH}\n";

Special characters in Regular Expressions

In addition to the classes mentioned previously, there are other special characters
allowed within Regular Expressions:

Spec. Char Meaning

\077 Octal character

\a Bell character

\c Control character

\E End case change

\e Escape character

\f Form feed character

\1 Makes the next character lowercase

\L Makes the following characters
lowercase until \E

\n Newline Character

\Q Disable metacharacters until \E

(continued)
25

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Spec. Char Meaning

\1r Return character

\t Tab character

\u Makes the next character uppercase
\U Makes the following characters

uppercase until \E

\x1 Match hex character

—%
d"TTylﬂ
Execute the following command to enter the Perl Debugger environment:

perl -d -e "1;"

At the debugger prompt, execute the following Perl statements:

$code="Code: A*+?Z";

$code="Code: A*+?Z"; #should result in an error
$code="Code: \QA*+?Z";

print $code;

Exit the debugger by executing the following Perl statement:

q

Assertions

Some assertions (such as the * and $ characters) have already been introduced.
Assertions are used to match certain conditions within a string (such as beginning and
end of a line). Commonly used assertions are described in the following table:

26

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Assertion Meaning

N Match beginning of line

$ Match end of line

\b Match a word boundary

\B Match a non-word boundary

\A Match only at the beginning of the string (note — this is the same as " except when

using the m modifier)

\Z Match only at the end of the string or before a newline character
at end of the string (note — this is the same as $ except when using the m modifier)

\z Match only at the end of the string

\G Match only where previous m//g left off (this works only with matching, not
substitution or translation)

(?=EXPR) Look ahead match (positive)

(?1EXPR) Look ahead match (negative)
(?<=EXPR) Look behind match (positive)
(?<!'EXPR) Look behind match (negative)

Looking forward and back

The "look forward" and "look back" assertions are useful when you want to be certain
that a pattern is found, but you only want to "work with" a portion of the pattern. For
example, you want to replace the word "great" with "bad" but only if it isn’t the last
word in the string. The following will allow this to occur:

DB<1» $_="This is a good time to learn Perl"
DB<2> s/good(?=.)/great/

DB<3> print

This is a great time to learn Perl

DB<4> $_="This is good"

DB<5> s/good(?=.)/great/

DB<6> print

This is good

27

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Or, suppose we want to replace "A127Z" with "----- " if the string "Code: " does not
appear at the prior to "A127Z":

DB<1» $_="Code: A127Z"

DB<2> s/(?<!Code:)A127Z/---/
DB¢3» print

Code: A127Z

DB<4> $_="Answer: A127Z"
DB<5> s/(?<!Code:)A127Z/---/
DB<6> print

Answer: ---

@ it
Execute the following command to enter the Perl Debugger environment:
perl -d -e "1;"
At the debugger prompt, execute the following Perl statements:

$code = "Test: A127Z";

$code =~ s/(?<!Test:)A127Z/---/;
print $code;

$code = "Result: A1277";

$code =~ s/(2<!Test:)A127Z/---/;
print $code;

Exit the debugger by executing the following Perl statement:

q

28

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Using \G

Recall that using the g modifier with matching tells Perl to remember where the last
pattern match "left off":

#!perl
#1_g'1 ° Pl

$line="Code: A127Z Code: B999E Code: G678T Code: T7651";

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;
print "$1\n"; #prints A127Z

$line =~ /Code: ([A-Z][0-9]1{3}[A-Z])/g;
print "$1\n"; #prints B999E

In situations like this, you may want to have the behavior of the * (beginning of
variable) assertion, but obviously after the first pattern match, the matching is starting
after the beginning of the variable.

To specify "beginning of where the previous match left off", use the \G
assertion. See the next page for an example.

Example of \G

#!perl
#1_g-2.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765]";

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;
print "$1\n"; #prints A127Z

$line =~ /\G Code: ([A-Z][0-9]{3}[A-Z])/g;
print "$1\n"; #prints B999E

However, be careful of this as a failed match resets back to the beginning of the
variable:

#!perl
#1_g'3 ° p].

$line="Code: A127Z Code: B999E Code: G678T Code: T765]";

29

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;
print "$1\n"; #prints A127Z

$line =~ /\GCode: ([A-Z][0-9]{3}[A-Z])/g;
print "$1\n"; #prints A127Z

QiFVTTyiﬂ
Perform the following steps:
Execute 1_g-1.pl and observe the results.
Execute 1_g-2.pl and observer the results.

Execute 1_g-3.pl and observer the results.

Reading from filehandles using split

In the Beginning Perl Programming: From Novice to Professional book, the split
command was introduced. It was used in that book to break up a string using Regular
Expressions and store the resulting items into an array:

DB<1» $line="Bob:Sue:Steve:Nick:Trevor"
DB<2> @names=split(/:/, $line)

DB<3» print $names[0]

Bob

The split command can also be used to read from a filehandle:

#!perl
#1_split.pl

undef $/; #undefine the input separator variable
@words=split (/\s+/, <STDIN»);

print "First word: $words[o0]\n";
print "Last woxd: $words[$#woxrds]\n";
print "Number of words ", $#words+i, "\n";

30

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Multiple line matching

In cases in which a string contains multiple lines (text separated with newline
characters), the behavior of Perl’s RE may not be what you want. The default behavior of
Perl is to "ignore" newline characters when it comes to matching the end of a string:

DB<1> $_="Today is the day\n"
DB<2> if (/day$/) {print "yes"}
yes

You can look for a newline character if you want to:

DB<1» $_="Today is the day\n"
DB<2> if (/day\n$/) {print "yes"}
yes

But what if you want to look for something that appears at the "end of a line"? The
following will only look for something at the "end of the string":

DB<1> $_="This is a good day\nto learn Perl"
DB<2» if (/Perl$/) {print "yes"}

yes

DB<3» if (/day$/) {print "yes"}

You could say "match something followed by a newline character", butthat
won't match the last line the string unless there is a newline character:

DB<1y» $_="This is a good day\nto learn Perl"
DB<2» if (/Perl\n/) {print "yes"}

DB<3» if (/day\n/) {print "yes"}

yes

To match the end of a line or the end of the string, use the m modifier:

DB<1> $_="This is a good day\nto learn Perl"
DB<2> if (/Perl$/m) {print "yes"}

yes

DB<3» if (/day$/m) {print "yes"}

yes

31

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

The meaning of "$" changes with the m modifier. Instead of meaning "end of the
string",itmeans "end of the string or prior to a newline character”.

Using the s modifier

Another method that you can use is the s modifier. With this modifier, Perl treats

newlines just like normal characters. This means that the "." metacharacter will match a

newline character:

DB<1y» $_="This is a good day\nto learn Perl"
DB<2» if (/day.to/) {print "yes"}

DB<3» if (/day.to/s) {print "yes"}

yes

@ 1myin
Execute the following command to enter the Perl Debugger environment:

perl -d -e "1;"

At the debugger prompt, execute the following Perl statements:

$code = "Test: A127Z";

$code =~ s/(?<!Test:)A127Z/---/;
print $code;

$code = "Result: A127Z";

$code =~ s/(?<!Test:)A127Z/---/;
print $code;

Exit the debugger by executing the following Perl statement:

q

32

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Using the \A, \Z, and \z assertions

When you use the m modifier, the $ assertion matches "the end of any line in the
variable or the end of the string". Additionally, the * assertion matches "the
beginning of any line in the variable or the beginning of the string".

In these cases, you can still match "the beginning of the string" by usingthe \A
assertion. You can also match "the end of the string" by using the \Z assertion.

The \z assertion will also match only the end of the string but differs from \Z in that
it won’t match if there is a newline character at the end of the string (unless that newline
character is specifically included in the pattern).

Commenting Regular Expressions

While you can place comments before and after your Regular Expressions, sometimes

it would be nice to place comments within your Regular Expressions to help explain
what the expression does. With the x modifier, you can place comments and whitespace
within your Regular Expressions.

When the x modifier is used, comments (# to end of line) and whitespace (tabs,
spaces, newlines, etc.) are completely ignored. This means if you want to "look for"
one of these characters, you need to escape them with a backslash.

An example of commenting within a pattern:

#!perl
#1_comm.pl

$_="Code: 127 -- \State=99\ ?UNSET?';

m/
(?<=Code:) #Look back for "Code:" but don't replace
(\ \d{3}) #match and group " " followed by three numbers
\ -\ #match " -- "
\\State= #match "\State="
(\d+) #match and group one or more digits
/x;

print "First numbexr: $1\n";
print "Second number: $2\n";

33

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Alternative delimiters

Consider the following code:

#!perl
#1_alti.pl

$_="Path: perl";
m/\/([a-z]+)\/([a-z]+)/;
print "$1\n$2\n";

While it works just fine, the RE can be difficult to read. The problem is that in order to
match a "/", you need to escape it.

While most programmers use "/" by default as a delimiter, you can choose any
character you wish. If you use a different character, then you don’t have to escape the "/"
character:

#!perl
#1_alt2.pl

$_="Path: perl"”;
my/([a-z]+)/([a-2]+),;

print "$1\n$2\n";

Note Be careful of what character you choose for the alternative delimiter.
Avoid using metacharacters as you won’t be able to use that character as a
metacharacter within the RE.

Additional resources

In each chapter, resources are provided to provide the learner with a source for more
information. These resources may include downloadable source code or links to other
books or articles that will provide you more information about the topic at hand.

34

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Resources for this chapter can be found here:
https://github.com/Apress/pro-perl-programming

Lab exercises

Mini lab:

Write a program that takes a valid date and converts into this format:

January 01, 2001

The format of the valid date should be "01/01/2001". The first number should be
between 01 and 12. The second number should be between 01 and 31. The last number
should be a four-digit number.

Don’t worry about "errors" such as "02/31/2001".

If an incorrect date is given, display an error message and ask for the input again.

Primary lab:

A note about the lab exercises in this book: Creating lab exercises
that will be beneficial to all learners can be difficult. Lab exercises
that focus on specific scenarios (such as engineering test cases)
can result in difficulties for learners who do not perform this sort
of programming. As a result, the focus of these labs is to perform
tasks that are fairly generic, but that also assist the learners in
practicing the new skills that are learned in this book. In addition,
to make the lab exercises more realistic, you will build on one
primary script throughout the book rather than build many, small
scripts.

Throughout this book you will be creating one script. The script will take the output
provided by a Perl script and parse the data. For this unit you will do the following:

When your script begins, open a file handle to read the output of the data.pl
program. Read the data, perform Regular Expression substitution listed below, and
assign this data to an array:

e Remove all leading whitespace in each element.

o Compress all multiple spaces into a single space.

35

https://github.com/Apress/beginning-perl-programming

CHAPTER 1 INTERMEDIATE REGULAR EXPRESSIONS

Create a main menu that has the following options (you will add more options as the

book progresses):
1. Remove newline characters from each element.
2. Convert dates into 01/31 format.
3. Remove PPID field.
4. Print the array.
5. Exit.

Write the code for each of the preceding options.
Notes and hints:

o Ifyoudon’t remember how to open a file handle that reads the
output of an OS command, review the lab1-hints.txt file.

o When printing the array, consider sending the data to the OS
command "more".

e Ifthe user runs option #3 more than one time, nothing should
happen after the first time.

e Use subroutines to logically break up your program.

When you have completed your work, compare your script against the parsel.pl file
provided in lab answers.

36

CHAPTER 2

Advanced Regular
Expressions

So, you think you know a lot about Perl Regular Expressions? If you finished Chapter 1,
then you certainly do. But, there are more REs that provide you with powerful techniques
to parse data.

This chapter covered REs that will give you a great understanding of how useful Perl
pattern matching is. Each section in this chapter will also start with a brief description
why you should learn that technique.

Make use of the Smartmatch operator

Why This operator provides a more powerful technique to perform matching.

The Smartmatch operator, ~~, will perform matching of items based on their context.
In other words, it behaves differently (polymorphic) depending on the values being

nn

compared. It returns true (1) if the match is made and false ("") if the match is not made.

Consider how you currently look for a key in a hash:
if (exists $hash{key}) { }
This could also be done with smart matching:

if ($key ~~ %hash) { }

37
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_2

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Note Think of ~~as "in" or "inside of" when you convert this into a
verbal expression. For example, you could think of the previous code as "$key
is inside of %hash".

Using REs with Smartmatch

In the preceding example, there wasn’t any difference between using exists and ~~.
However, what if you wanted to look for a key based on a regular expression?

if (%hash ~~ /*A/) {
print "A key that started with A was found\n";

The same could be done with an array (although grep would have done the trick as
well, just not as fast as ~~):

if (@array ~~ /~A/) {
print "A element that started with A was found\n";

Note Due to how the Smartmatch operator works, the order of the parameters
doesn’t matter. In other words, @arxay ~~ /~A/ is the same as /*A/ ~~ @array.

Additional Smartmatches

You can use Smartmaches to perform other sorts of matching. For example, to find if two
arrays have the same elements in the same order:

if (@arrayi ~~ @array2) { }
To see if all of the keys of one hash are the same as another hash:

if (%hasha ~~ %hash2) { }

38

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Suppose you had a list of scalars in an array and you want to determine if one of
those is a key within a hash:

if (%hash ~~ @array) { }

The given statement

Note You may wonder why references are made to previous versions of Perl 5.
The author believes it is important to know when new features were added when
dealing with legacy code. This could explain why a bit of legacy code doesn’t use a
newer, more effective Perl feature.

Smartmatching is often used with the given statement, a feature introduced in Perl
5.10. The given statement is a feature that will be available in Perl 6 and has been
"backported" to Perl 5. To make use of a new feature in Perl 5, use the following syntax:

#!perl
#giveni.pl

use feature "switch"; #Provides access to the given statement

print "Please enter 'yes' or 'no': ";
$response=<STDIN>;
chomp $response;

given ($response) {
when ("yes") {print "You agree!\n"; }
when ("no") {print "Bummer, you don't agree\n"; }
default {print "Maybe next time\n"; }

You can refer to the variable that given is "looking in" as$_. So, the previous could
have been written like this:

given ($response) {
when ($_ eq "yes") {print "You agree!\n"; }
when ($_ eq "no") {print "Bummer, you don't agree\n"; }
default {print "Maybe next time\n"; }

39

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS
So, to use ~*, you can do the following:

#!perl
#igiven2.pl

use feature "switch";

print "Please enter 'yes' or 'no': ";
$response=<STDIN»;
chomp $response;

given ($response) {
when ($_ ~~ /*y/) {print "You agree!\n"; }
when ($_ ~~ /*n/) {print "Bummer, you don't agree\n"; }
default {print "Maybe next time\n"; }

}

What is given's default?
Consider the code from the first given example:

given ($response) {
when ("yes") {print "You agree!\n"; }
when ("no") {print "Bummer, you don't agree\n"; }
default {print "Maybe next time\n"; }

So, if you don’t specify Regular Expression pattern matching, what exactly is given
doing? That isn’t an easy question to answer. Consider what the documentation (see
http://perldoc.perl.org/perlsyn.html) states:

Exactly what the EXPR argument to when does is hard to describe
precisely, but in general, it tries to guess what you want done.
Sometimes it is interpreted as $_ ~~ EXPR, and sometimes it does
not. It also behaves differently when lexically enclosed by a given
block than it does when dynamically enclosed by a foreach loop.
The rules are far too difficult to understand to be described here.
See Experimental Details on given and when later on.

As aresult, it might be best to be clear and specific about how you want the match/
comparison to be performed.

40

http://perldoc.perl.org/perlsyn.html

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Use Perl 5.10.1 or higher

Smartmatch was introduced in Perl 5.10. However, it was significantly modified in Perl
5.10.1, so it works differently in 5.10.1 and higher. To make sure your code uses the 5.10.1
version of Smartmatch, make sure the following is in your code:

use 5.010001;

Understand Regular Expression precedence

Why Understanding precedence allows you to better understand how pattern
matching works.

Understanding the precedence of Regular Expression (regex) operators will allow you to
create more concise patterns. There are four levels of regex precedence, from highest to

lowest:

Operators Description

() (?:) etc. Parentheses/grouping
? + % {m,n} +? ++ etc. Repetition
~$ abc \G \b \B [abc] Sequence/literal characters/character classes

alb Alternation

To see an example of how important understanding precedence is, look at the
following:

#!perl
#precedencel.pl

$_="This is simply a test";

if (/*This|test$/) {print "Match 1\n";}
if (/*(This|test)$/) {print "Match 2\n";}

41

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS
$_= "ThiS“;

if (/"This|test$/) {print "Match 3\n";}
if (/*(This|test)$/) {print "Match 4\n";}

There is a fundamental difference in the pattern matches with and without the
parentheses because the | character has a lower precedence than * and $. The following
expression means "Match' This' at the beginning of the string or 'test' at
the end of the string":

if (/"This|test$/) {print "Match 1\n";}

With the parentheses, the pattern means "Match the beginning of the string,
followed by either' This' or 'test', followed by the end of the string":

if (/~(This|test)$/) {print "Match 2\n";}

Understand what is *NOT* a Regular
Expression atom

Why Some character sequences appear to be regex patterns when they are
in fact string patterns. Knowing this helps you with understanding how pattern
matching works.

Consider an atom to be those special characters in a pattern that are interpolated by the
Regular Expression engine (¥, +, ., 2, etc.). Sometimes Perl programmers feel that some
expressions are regex atoms when they are really just string interpolations.

For example, in the following code:

$var =~ m/"test\t\U$var\E123%$/;

the following are not regex atoms: \t, \U, $var, and \E. These are, instead, string
characters that are interpolated *before* the regex engine sees that pattern.

In most cases, this isn’t an issue, but with variables, you need to be careful as they
may contain characters that are later interpolated as regex atoms:

$var=<STDIN>; #Suppose the user inputs [abc
$var =~ m/"test\t\U$var\E123%/; #Will result in a run time error.

42

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Using Regular Expressions in list context

Why This technique provides a more clear way of capturing submatches.

At this point, you should know that the following expression will create three variables,
$1, $2, and $3:

$_="Code: A127Z Code: B999Y Code: Z876G";
m/Code: (\w\d{3}\w) Code: (\w\d{3}\w) Code: (\w\d{3}\w)/;

Typically, after the match, you will want to do something like this:
$first=$1;

$second=$2;
$third=$3;

There are two reasons why reassigning the variables is a "good idea":
1. $1,%$2, and $3 are not very descriptive names.

2. Ifanother pattern match occurs, either by you or a function that
you call, you may lose the values stored in $1, $2, and $3 as they
will be replaced by values from the new pattern match results.

Instead of making copies of the $1, $2, and $3 variables, you can just have the values
placed directly into an array by using the regex match in list context. For example:

#!perl
#listi.pl

$_="Code: A127Z Code: B999Y Code: Z876G";
@values = m/Code: (\w\d{3}\w) Code: (\w\d{3}\w) Code: (\w\d{3}\w)/;

$ll=ll\nll;
print "@values", "\n";

Because the return value of the regex match is being used to assign to an array, the
return value of the regex match is in list context. For regex matching, list context returns
a list of the values matches within the () characters.

Note that the $1, $2, and $3 variables are still created but no longer needed.

43

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

You can also assign these to scalar variables by placing a list on the left of the
assignment operator:

#!perl
#list2.pl

$_="Code: A127Z Code: B999Y Code: Z876G";
($first, $second, $third) = m/Code: (\w\d{3}\w) Code: (\w\d{3}\w) Code:
(\w\d{3}\w)/;

$Il=ll\nll;
print "$first\n$second\n$third\n";

Naming the capture variables within the pattern match

There is another technique that can provide completely different variable names, bypassing
the $1, $2, and $3 variable names. As of Perl 5.10, you can use the following syntax:

#!perl
#list3.pl

$_="Code: A127Z Code: B999Y Code: Z876G";
m/Code: (?<first>\w\d{3}\w) Code: (?<second>\w\d{3}\w) Code: (?<thirds>\w\
d{3}\w)/;

$II=II\nII;
print "$+{first}\n$+{second}\n$+{third}\n";

Instead of placing the captured values in scalar variables, they are placed in the %+
hash with the key being what was placed within the < > characters.

If you use this technique, you won’t have any of the dollar-sign variables ($1, $2, $3,
etc.) nor will you have access to the backslash references (\1, \2, \3, etc). Instead, you
use the format of \k¢label» where label is the name of the key.

You can also make use of relative positions of the \g# (replace # with the numeric
location of the capture):

m/*(2<First>\w\d{3}\w) (?<second>\w\d{3}\w)\g1$/); #backref first
match

m/*(2<first>\w\d{3}\w) (?<second>\w\d{3}\w)\g{-1}$/); #backref -1 back
match

44

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Match whitespace properly

Why Limitations with \s may prompt you to use "new" whitespace pattern-
matching characters.

The \'s regex pattern matches any single whitespace character, including "", \t, \n, \r,
a formfeed character, and other similar characters. While this might seem like a good
way to match a whitespace character, consider the following:

DB<1> $_="This needs to be\t\tcut down\nto single spaces”
DB<2» print

This needs to be cut down

to single spaces

DB<3> s/\s+/ /g

DB<4> print

This needs to be cut down to single spaces

In the previous example, the intent was to convert all multiple spaces and tabs into
single spaces. However, since \s also matches \n, the newline character is replaced with
a space.

What you really want to do is march all horizontal white space, which as of Perl 5.10
you can do by using the \h regex pattern:

DB<1y $_="This needs to be\t\tcut down\nto single spaces"”
DB<2> print

This needs to be cut down

to single spaces

DB<3> s/\h+/ /g

DB<4> print

This needs to be cut down

to single spaces

You can also use \v to match vertical white space: the carriage return, newline,
form feed, vertical tab, and Unicode line and paragraph separators. Additionally, \H
matches "non-horizontal whitespace characters" and \W matches "non-vertical
whitespace characters”.

45

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Matching "end of the line"

On different systems, lines end with different character(s): a newline character, a return
character, a combination of a return and newline characters, Unicode eol, etc. This
makes matching the end of any line difficult as it would depend on what system the file
was created on.

In Perl 5.10, a new character was introduced to match any "end-of-1line" character
on any system: \R.

In Perl 5.12, a new character was introduced to match any single character that isn’t
a newline character: \N. By default, the dot (.) character matches any single character
except a newline, but this can be modified with the s modifier. The \N character isn’t
affected by the s modifier.

Use \G

Why It results in more "normal™ behavior when matching with the /g modifier.

Recall that using the g modifier with matching tells Perl to remember where the last
pattern match "left off":

#!perl
#g-1.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T7651";

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;
print "$1\n"; #prints A127Z

$line =~ /Code: ([A-Z][0-9]1{3}[A-2])/g;
print "$1\n"; #prints B999E

In situations like this, you may want to use the * assertion, but obviously after
the first pattern match, nothing will match because the matching has to start at the
beginning of the variable.

46

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

To specify "beginning of where the previous match left off", use the \G
assertion:

#!perl
#g-2.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T7651";

$line =~ /Code: ([A-Z][0-9]1{3}[A-Z])/g;
print "$1\n"; #prints A127Z

$line =~ /\G Code: ([A-Z][0-9]{3}[A-Z])/g;
print "$1\n"; #prints B999E

However, be careful of this as a failed match resets back to the beginning of the
variable:

#!perl
#g';.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765]";

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;
print "$1\n"; #prints A127Z

$line =~ /\GCode: ([A-Z][0-9]{3}[A-Z])/g;
print "$1\n"; #prints A127Z

Use the \A, \Z, and \z assertions

Why Allows the "default" behavior when using the m modifier.

When you use the m modifier, the $ assertion matches "the end of any line in the
variable or the end of the string".Additionally, the # assertion matches "the
beginning of any line in the variable or the beginning of the string".

In these cases, you can still match "the beginning of the string" by usingthe \A
assertion. You can also match "the end of the string" by using the \Z assertion.

47

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

The \z assertion will also match only the end of the string but differs from \Z in that
it won’t match if there is a newline character at the end of the string (unless that newline
character is specifically included in the pattern).

For example:

DB<1» $_="This is a good\nday to learn Perl\n"
DB<2> print "true" if /“day/m

true

DB¢<3> print "true" if /\Aday/m

DB<4> print "true" if /~This/m
true
DB<5> print "true" if /\AThis/m
true
DB<6> print "true" if /good$/m
true
DB<7> print "true" if /good\Z/m

DB¢8» print "true" if /Perl$/m
true

DB<9> print "true" if /Perl\Z/m
true

DB<10» print "true" if /Perl\z/m

Avoid capturing

Why Sometimes you need grouping, but you don’t want the data to be captured.

Grouping is used for several reasons: in order to have a repeating operation occur on a
group, to limit the scope of the "or" operation, and to capture what is match.

When you use grouping for the first two reasons listed, it also captures what was
matched:

#!perl
#groupi.pl

$_="Code: 111ABCABCABC999";
48

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

if (/111(ABC)+999/) {
print "$1\n";

}

As you can see from the previous example, there is no point to capturing what was
matched. The value that will always be matched is "ABC". If you execute this pattern
once, it probably isn’t a big deal. But, suppose you were parsing a large file, one line at a
time. In that case, you don’t want to have Perl create $1 for each match, so you can use
the following:

#!perl
#igroup2.pl

$_="Code: 111ABCABCABC999";

if (/1121(?:RABC)+999/) {
print "$1\n";

The ?: in the beginning of the parenthesis tells Perl to not store what is matched in a
variable.

It is also important to know about this feature when using the split command.
Consider the following example:

#!perl
#group3.pl

$_="Bob~Smith:29:manager:San Diego";
@fields = split (/(:|~)/, $_);

$ll="\n“;
print "@fields","\n";

Normally with the split command, the "separator" value isn’t passed back into the
list that split generates. But, if you use parentheses like the preceding example, then the
output will also include the separators values:

49

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

ocs’% perl group3.pl
Bob

Smith
29
manager

San Diego

Clearly not what we want. To avoid these extra fields, use the ?: feature:

#!perl
#igroupg.pl

$_="Bob~Smith:29:manager:San Diego";

@fields = split (/(?::|~)/, $_);

$II=II\nII;
print "@fields","\n";

Output:

ocs% perl group4.pl
Bob

Smith

29

managexr

San Diego

Note |If the syntax of (

oo

e 00

| ~) is confusing because of the repeating colons,

consider writing this as (?:~]2).

50

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Avoid the variables $~, $&, and $'

Why Using any of these variables, even once in your program, can result in a
performance penalty in other locations in your program.

These variables are only set if you use them in your program. Unfortunately, if you use
any of these variables even once in your program, then every pattern match will generate
all of these variables. This could have a performance penalty on your program.

There are two methods available to avoid this problem.

Method #1

As of Perl 5.6, the variable @- contains the offset of the first character that was matched in
the pattern. In other words, if we did the following match

$_="abc123";
m/\d\d/;

then $-[0] would be set to the number 3 (meaning the third character in the string,
counting from zero, is where the match began). Using this value in conjunction with the
substr statement allows you to simulate the $& $~, and $' variables. See the example in
the next section.

Example using @-

#!perl
#matchi.pl

print "Enter a line of text and I will find the first 1 digit number:
$1ine=<STDIN>;

we

$line =~ m/[0-9]/;

print "The numbexr was ", substx($line, $-[0], $+[0] - $-[0]), "\n";
print "Before that number was ", substrx($line, 0, $-[0]),"\n";
print "After that number was ", substr($line, $+[0]), "\n";

print "\n\n @- \n\n";

51

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Method #2

As of Perl 5.10, the variables ${*"PREMATCH}, ${ "MATCH}, and ${"POSTMATCH} are created
if you use the p modifier. If this modifier is not used, then these variables are not
generated:

#!/usx/local/bin/perl
#1_matchg.pl

print "Enter a line of text and I will find the first 1 digit number: ";
$1ine=<STDIN>;

$line =~ m/[0-9]/p;

print "The number was ${“MATCH}\n";
print "Before that number was ${“PREMATCH}\n";
print "After that number was ${“POSTMATCH}\n";

Compile your Regular Expressions before
using them

Why Non-compiled regex patterns can result in error or unnecessary operations.

Consider the following code fragment:

open (GROUP, "</etc/group") || die;
@match=('\d', '\d\d', '\d\d\d');
while (<GROUP>) {
foreach $pattern (@match) {
if (/$pattern/) {
print "$pattern matches $_";

52

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

The great thing about being able to put patterns in variables is that it is easier to
maintain your code when you need to perform pattern matching using many different
patterns.

The drawback to this technique is how Perl handles the Regular Expression stored in
the variable. When the regex is stored in a variable, Perl doesn’t compile the regex until
run time. When Perl compiles a regex, it determines if the regex is a valid one, and, if so,
it generates a "compiled" regex. If the regex isn’t valid, Perl will produce an error and
exit the execution of the script.

Run time vs. compile time

Consider the following example:

#!perl
#compile1.pl

open (GROUP, "<group") || die;
while (<GROUP>) {
if (/\d/) {
print "$pattern matches $_";
}
if (/\d\d/) {
print "$pattern matches $_";
}
if (/\d\d\d**/) {
print "$pattern matches $_";

The third pattern match is invalid, which results in a compile time error. Any non-
variable regex patterns are compiled during the normal compile time:

ocs% compilel.pl
Nested quantifiers before HERE mark in regex m/\d\d\d** << HERE / at
compile1.pl line 12.

53

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS
Compare the following example to the preceding example:

#!perl
#icompile2.pl

open (GROUP, "<group") || die;
@match=('\d', "\d\d', '\d\d\d**');
while (<GROUP>) {
foreach $pattern (@match) {
if (/$pattexn/) {
print "$pattern matches $_";

When executed, a run time error occurs:

ocs% compile2.pl

\d matches root::0:root

Nested quantifiers before HERE mark in regex m/\d\d\d** << HERE / at
compile2.pl line 8, <GROUP> line 1.

Why is this a disadvantage? Consider how many times each regex is compiled in this
example: three times for every line in the file. For a 50-line file, that means 150 regex
compiles (3 REs %50 lines). Imagine if there were 20 regex patterns and 10,000 lines!

To avoid this problem, there is a technique which we can use to store an interpolated
regex in a variable: the qr function. The qx function returns its argument as an
interpolated regex:

#!perl
#compile3.pl

open (GROUP, “"<group") || die;
@match=(qr /\d/, qr /\d\d/, qr /\d\d\d**/);
while (<GROUP>) {
foreach $pattern (@match) {
if (/$pattern/) {

54

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

print "$pattern matches $_";

Since the patterns are being used as REs, the resulting error is a compile time error:

ocs% compile3.pl
Nested quantifiers before HERE mark in regex m/\d\d\d** << HERE / at
compile3.pl line 5.

The best part is that when the variable is used in a pattern, it doesn’t have to be
"reinterpolated”, making execution time much quicker.

Using qr to test user input

Consider the following code:

#!perl
#compileq.pl

print "Enter the pattern: ";
$pattern=<STDIN>;
chomp $pattern;

$info="Bob:Smith:manager:sales";
if ($info =~ /$pattern/) {print "match made\n";}

The problem with this scenario is that if the user provided a "bad pattern", then
your program would crash with a run time error:

ocs% perl compile4.pl
Enter the pattern: Bob
match made

ocs’% perl compileg.pl

Enter the pattern: B+*

Nested quantifiers in regex; marked by <-- HERE in m/B+* <-- HERE / at
compile4.pl line 10, <STDIN> line 1.

55

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

If you used the qx function, it would also result in a run time error and halt your
program. But, if you used the qx function within an eval function, then you could
capture any errors and proceed with your program.

Any run time errors that occur within an eval call do not cause your script to exit
prematurely. They do, however, assign the error message to the $@ variable which you
can use to determine what action to take:

#!perl
#compile5.pl

print "Enter the pattern: ";
$pattern=<STDIN>;
chomp $pattern;

$info="Bob:Smith:manager:sales";
eval {$pattern = qr/$pattern/;};
if ($@) {

print "An error occured: $@";

}

else {
if ($info =~ /$pattern/) {print "match made\n";}

Using the o modifier

There is another technique you can use to avoid multiple compiles for patterns that
contain variables: use the 0 modifier:

if (/$pattern/o) {}
Notes

¢ You wouldn’t want to do something like this for the previous
examples because the value of $pattern does change routinely.

o Newer versions of Perl (5.6+) are smart enough to know to only
compile the regex if the variable’s value has changed since the last
compile. Again, this feature of Perl won’t be helpful in the previous
examples because $pattern does routinely change.

56

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Benchmark your patterns

Why If you have a pattern that will be used on a large chunk of data, use
benchmarking to determine which pattern is more efficient.

Benchmarking is an easy way to determine which patterns will typically run faster. The

Perl built-in module Benchmark provides several functions, including timethese(),

which allows you to run similar tests multiple times to determine the speed of each.
For example:

#!perl
#benchi.pl

use Benchmark qu(timethese);
open (DATA, "<foiadoc.txt") || die;
@data = <DATA>;

timethese(
1000,
{
test1 => q{
foreach (@data) {
my ($match) = m/*(\w+) (\w+)/;

}
}s
test2 =» q{
foreach (@data) {
my ($match) = m/*“\w+ (\w+)/;
}
}s

57

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS
The following demonstrates the execution of the bench1.pl script:

ocs’% perl benchi.pl
Benchmark: timing 1000 iterations of test1, test2...

testi: 156 wallclock secs (155.64 usr + 0.00 sys = 155.64 CPU)
@ 6.43/s (n=1000)
test2: 127 wallclock secs (126.78 usr + 0.00 sys = 126.78 CPU)

@ 7.89/s (n=1000)

As you can see, just adding one additional, unnecessary parentheses match can have
a significant impact when large chunks of data are parsed.

Use Regexp: : Common

Why Instead of recreating techniques to match patterns that are commonly used,
you can utilize the matching tools provided by Regexp s : Common.

You need to match a variable if it contains a number, so you use the following:
if ($value =~ /*\d+$/) {print "yes";}

This will match a number perfectly but only if the number is an integer. What if the
number could be a floating point number?

if ($value =~ /~[0-9.]+$/) {print "yes";}
Or, what if the number can have commas for representing thousands separators?
if ($value =~ /*[0-9.,]+$/) {print "yes";}

What if the number could be either positive or negative? Or if it is represented as an
exponential? As you can see, something simple like "match a number" can, in fact, be
much more complex than it seems.

The CPAN module Regexp: :Common provides an easy-to-use technique to match
common "things", like numbers:

#!perl
#commoni.pl

use Regexp::Common;
58

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS
@values=("123", "123,567", "123.456", "is the answer", "1.23E3");

for (@values) {
if (/*$RE{num}{real}+"/) {
print "$_ is a number\n";
} else {
print "$_ is not a number\n";

}

Output of common1.pl:

ocs% perl commoni.pl

123 is a number

123,567 is a number

123.456 is a number

is the answer is not a number
1.23E3 is a number

The Regexp: : Common module imports the %RE hash into your program. Itis a
multidimensional hash that returns complex patterns. There are pre-built patterns that
match things like numbers, strings, URLs, comments (from different languages), and more.

You can use -keep to store portions of the match as well:

#!perl
#common2.pl

use Regexp::Common;
$value = "123.456";

if ($value =~ $RE{num}{real}{-keep}) {
print "$1 is the entire number\n";
print "$6 is the decimal value\n";

If you look at the documentation of Regexps : Common, you might be frustrated that
all of the possible patterns are not listed in the documentation. However, at the bottom
of the documentation, there is a mention of where you can find what patterns can be
returned by looking at other documentation (Regexp: : Common:number, e.g., to see
possible number patterns).

59

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

This further documentation will also tell you things like what exactly -keep is doing.

Before you attempt to write a pattern, ask yourself, "Is it likely that this is
something that someone has tried to write before?".If the answeris "yes" or
"maybe", take a few moments to explore what patterns are available in this module.

The following isn’t a complete list but rather an attempt to provide you with some
understanding of some of the thousands of possible patterns that are available (note that
some of these may require downloading additional modules):

%RE Description
$RE{num}{oct} Match octal numbers
$RE{num}{bin} Match binary numbers
$RE{num}{roman} Match Roman numbers
$RE{comment}{Iang} Matches comments in /ang
(C, C++, Python, PHP, etc.)
$RE{1list}{-pat => "\w+'} Matches a list of words
$RE{1list}{-pat => $RE{num}{real}} Matches a list of numbers
$RE{net}{IPv4} Matches an IPV4 address
$RE{net}{domain} Matches a domain name
$RE{zip}{US}{-extended => "yes"} Matches a US 5+4 zip code
$RE{Email}{Address} Matches an email address
$RE{CC}{Mastercard} Matches a valid Mastercard format

If you only want to match subsets of the Regexp: : Common pattern sets, then load the
module this way:

use Regexp::Common qw(Email::Address);

Take some time to explore other Regexp: :Common "sub"-modules. For example, there
is one that will match different time/date formats and one that will match URLs and IP
addresses. There are dozens of them, each providing you with a way to make complex
matches easy.

60

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Flags you should consider always using

Why There are flags that affect the default behavior of a pattern, making
matches behave more like one would expect.

There are some regex flags that you should consider using by default (note, all three of
these were covered in detail in the previous chapter):

Flag Reason

/s The dot (.) character matches any single character except \n. With /s the dot
character will match a newline character as well, a more natural "standaxd" behavior.

/m In variables with multiple lines, you normally want # to match the beginning of any line
and $ to match the end of any line. Without /m, # will only match the beginning of the
entire string and $ will match the end of the entire string.

/x The /x flag allows you to embed comments in regex patterns, which is very useful if
you routinely write complex patterns.

Automating /smx

While it is important to use these flags by default, it is a pain to continuously type /smx
at the end of all of your patterns. There are two methods that you can use to tell Perl to
automatically use these flags:

1. Download the Regexp: :Autoflags module from CPAN and use
that module.

2. Make use of the ¥e pragma: use re '/smx';.

The advantage of the re pragma is that you can make any flag a default flag for the
program. It is also a standard Perl feature (as of Perl 5.14), so you don’t need to download
amodule from CPAN to use it.

You can also turn off these default flags by using the following: no re"/smx";.

61

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Avoid escapes

Why Using a lot of escapes makes your code difficult to read and understand.

Consider the following example:

$var="Code: A.2+*Z";
if ($var =~ /A\.\?\+*Z/) {print "yes";}

Escaping metacharacters often results in confusion, especially since some escaped
characters (\s, \d, \w, etc.) have a special meaning of their own. One easy way to
"escape" a metacharacter without a backslash character is to make single-character
classes:

$var="Code: A.2+*Z";
if ($var =~ /A['][?][+][*]Z/) {print "yes“;}

Inside of square brackets, a dot is just a dot, a question mark is just a question mark,

etc. It may seem a bit of a pain typing, but look at both of the following, and you will
likely agree that the second is easier to read:

if ($var =~ /A\.\?\+*Z/) {print "yes";}
if ($var =~ /A[.]1[?]1[+]1[*]Z/) {print "yes";}

Obviously this technique won’t help matching "unprintable” characters, like the
DEL character which is symbolized by the octal value \177. Not only is this confusing to
read, but it is hard to memorize all of the special "unprintable" characters’ octal values.

A better solution might be to make use of the charnames pragma:

use charnames quw (:full);

Now to match a DEL character, you can use the more human-readable format of
\N{DELETE}.

62

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Use the re pragma

Why Using the xe pragma can help you debug your Regular Expression patterns.

The re pragma is designed to alter regular expression behavior. In addition to allowing
you to specify default flags (see previous section), there are other features that the re
pragma provides.

use re 'debug’

When you enable debug mode, debugging messages are displayed. By default, you see
both compile time message (when it generates the regex) and run time messages (when
it matches the pattern in a string):

#!perl
#debugi.pl

use re 'debug';

$var="Code: A127Z";
if ($var =~ m/[A-Z]\d{3}[A-Z]/) {print "yes";}

Output of debug1.pl:

ocs’% perl debugi.pl
Compiling REx "[A-Z]\d{3}[A-Z]"
Final program:
1: ANYOF[A-Z][] (12)
12: CURLY {3,3} (15)
14: DIGIT (o)
15: ANYOF[A-Z][] (26)
26: END (0)
stclass ANYOF[A-Z][] minlen 5
Matching REx "[A-Z]\d{3}[A-Z]" against "Code: A127Z"
Matching stclass ANYOF[A-Z][] against "Code: A" (7 chars)

63

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

0 <> <Code: A127> | 1:ANYOF[A-Z][](12)

1 <C> <ode: A127Z> | 12:CURLY {3,3}(15)
DIGIT can match 0 times out of 3...
failed. ..

6 <Code: > <A1277> [1:ANYOF[A-Z][](12)

7 <Code: A> <1277> | 12:CURLY {3,3}(15)
DIGIT can match 3 times out of 3...

10 <Code: A127> <Z> | 15: ANYOF[A-Z][](26)

11 <Code: A127Z> <> | 26: END(0)

Match successfull
yesFreeing REx: "[A-Z]\d{3}[A-Z]"

You can also just enable specific debugging output. For example, the following won’t
display compile time messages (note, "debug" turns on all debugging messages; "Debug"
allows you to select which messages to display):

#!perl
#debug2.pl

use re quw(Debug EXECUTE);

$var="Code: A1272";

if ($var =~ m/[A-Z]\d{3}[A-Z]/) {print "yes";}
Output of debug2.pl:

ocs’% perl debug2.pl

Matching REx "[A-Z]\d{3}[A-Z]" against "Code: A127Z"
Matching stclass ANYOF[A-Z][] against "Code: A" (7 chars)

0 <> <Code: A127> | 1:ANYOF[A-Z][](12)

1 <C> <ode: A127Z> | 12:CURLY {3,3}(15)
DIGIT can match 0 times out of 3...
failed...

6 <Code: > <A1277> | 1:ANYOF[A-Z][](12)

7 <Code: A> <1277> | 12:CURLY {3,3}(15)

DIGIT can match 3 times out of 3...

64

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

10 <Code: A127> <Z> [15: ANYOF[A-Z][](26)
11 <Code: A127Z> <> | 26: END(0)

Match successfull

yes

You can also turn on debugging messages for just specific portions on your code as of
Perl 5.9.5 because the Debug feature is lexically scoped:

#!perl
#debug3.pl

{

use re quw(Debug EXECUTE);

$var="Code: A127Z2";
if ($var =~ m/[A-Z]\d{3}[A-Z]/) {print "yes\n";}
}

print "no debugging here\n";
if ($var =~ m/[A-Z]\d{3}[A-Z]/) {print "yes\n";}
The re pragme can also provide several functions, including the following:

o 1is_regexp - Returns true if value is a compiled regex.

o regexp_pattern - Returns a two element list from a complied
regex; the first element is the pattern, and the second element is the
modifiers.

#!perl

#debugg.pl

use re quw(is_regexp regexp_pattern);
$match=qr/"\d+/smx;

#Check to see if a variable contains a compiled pattern:
if (is_regexp($match)) {
print "\$match is a compile pattern\n";

65

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

#Return the actual pattern and modifiers
($pattern, $mods) = regexp_pattern($match);
print "$pattexn\t\t$mods\n";

Understand backtracking

Why Understanding how backtracking works allows you to better understand
how Regular Expression pattern matching works.

Consider the following:

DB<1» $_="aaaa"
DB<2» if (/a+a/) {print "yes";}
yes

When you first learn about Perl pattern matching, you learn that Perl matches from
left to right and that Perl is "greedy" by default. Based on this information, you might
conclude that the previous example should not match.

This conclusion is based on the following logic: If Perl is greedy, then a+ should
have matched ALL of the "a" characters, leaving nothing left for the final "a"
character in the pattern to match.

This is sound logic, and the conclusion is true: a+ does (initially) match all of the "a"
characters in the $_ string. But then backtracking kicks in.

Backtracking allows those greedy patterns to "give back" characters in order to
make the match successful. Essentially, the logic is "a+ could match all of the 'a’
characters, but if it did, then the entire match would fail. So, a+ is
'nice’ and gives back one 'a' character to make the match succeed."

It is possible to tell Perl to not backtrack. This can be done by using (?»>pattern)

DB<1> $_="aaaa"
DB<2y if (/(?»a+)a/) {print "yes";}

66

CHAPTER 2 ADVANCED REGULAR EXPRESSIONS

Note that you could also use a++ instead of (?<a+). Here are some other commonly
used "non-backtracking" patterns:

Quantifer Form Bracketing Form
a*+ (?2>a%*)
at++ (?>a+)
ar+ (?>a?)
a{min,max}+ (?>a{min,max})

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Lab exercises

Note There are no exercises for this chapter.

67

https://github.com/Apress/pro-perl-programming

CHAPTER 3

Advanced Features

Consider this chapter a collection of useful advanced tips to help you create better Perl
programs. Each section will begin with a brief description of why you should use the
feature or tool, followed by more detailed examples.

Use my iterator variables with for loops

Why This technique makes it clear that the iterator variable is scoped, that is, not
available outside of the for loop. It also prevents subroutine calls from accidently
modifying your iterator variable, and it prevents compile time error messages while
using the strict pragma.

Consider the following code:
$name="test";

foreach $name (@INC) {
print "$name\n";

}

print "$name\n";

The final print statement should display "test" as the $name variable in the
foreach loop is automatically localized with the local statement. This is generally
considered a "bad thing" for three reasons:

1. Ttisnot clear to other programmers (or, perhaps, even yourself)
that the iterator variable is localized. By declaring the variable
in the foreach loop as a my variable, the scope of the variable is
much more clear.

69

© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_3

CHAPTER 3 ADVANCED FEATURES

2. Since the iterator variable is automatically declared with the local
statement, any subroutine call can access/modify this variable
(see next subsection for an example of this).

3. Using "use strict 'vars';" will resultin a compile error
because local variables are not permitted.

Foreach loops use local variable by default

By default, when you create a foreach loop, the assignment variable is created as a local

variable:
foreach $var (@colors) {print "$var\n";}

In the preceding example, $var is local to the foreach statement. In most cases, this
is fine. In fact, it can even be useful:

#!/usr/local/bin/perl
#foreachi.pl

sub printit {
print "$var\n";

}

@colors=quw(red blue green);

foreach $var (@colors) {
&printit;

However, this can also cause problems:

#!/usr/local/bin/perl
#foreach2.pl

sub changeit {
$var="brown";

}

@colors=quw(red blue green);

70

foreach $var (@colors) {
&changeit;
}

print "@colors","\n";
Output of foreach2.pl:

ocs’% foreach2.pl
brown brown brown

CHAPTER 3 ADVANCED FEATURES

You can have your assignment variable in a foreach loop be a my variable instead:

#!/usr/local/bin/perl
#foreach3.pl

sub changeit {
$var="brown";

}

@colors=quw(red blue green);

foreach my $var (@colors) {
&changeit;

}

print "@colors","\n";

Output of foreach3.pl:

ocs% foreach3.pl
red blue green

Note This technique can also be applied to fox loops.

71

CHAPTER 3 ADVANCED FEATURES

Utilize loop labels

Why This technique makes it clear when you are using statements like next, last,
or redo what loop the statement applies to. Especially useful with loops are long,
making it difficult to see what loop the statement applies to.

Typically, labels are used in situations like the following:

OUTER:

foreach $name (@INC) {
INNER:
while (true) {

;;.(condl) {last INNER;}
if (cond2) {last OUTER;}

For clarity, use a label whenever you use a last, next, or redo statement, not just for
nested loops:

PARSE:
foreach $name (@INC) {

if (cond) {last PARSE;}

Avoid using <> for file matching

Why Using <> can cause confusion because the angle brackets can also be used
for reading input from a filehandle.

72

CHAPTER 3 ADVANCED FEATURES
Consider the following code:

open (INPUT", "<file.txt");
@data=<INPUT>;
@names=<*.txts;

This seems pretty clear when shown in this context. The second line is reading from
the filehandle, while the third line is returning the filenames that end in .txt.
However, confusion (and errors) can occur with code like the following:

$pattern=<*.txty;
@data=<$patterns;

While you might think that $pattern’s value would be treated as a "wildcard"
pattern, that isn’t what Perl will do. When Perl sees a variable within < >, it will always
treat it as a reference to a filehandle. To make sure Perl will do file name matching, use
the glob statement instead:

$pattern=¢*.txt>;
@data=glob($pattern);

Time: :HiRes

Why The sleep command can only sleep in whole integer values.

The built-in sleep command can only sleep in whole integer values, so the following
command will pause the program for 0 seconds, not .0.5 seconds as intended:

sleep 0.5;

Using the Time: :HiRes module (standard as of Perl 5.8), you can sleep for fractions
of seconds:

use Time::HiRes;
sleep 0.5;

73

CHAPTER 3 ADVANCED FEATURES

This module also provides a more effective function called usleep that lets you pause
your program with even more accuracy:

use Time::HiRes qu(usleep);
usleep 1000_001; #1000=1 second

Contextual: :Return

Why The wantarray function is more limited than Contextual: :Return.

Many Perl statements are designed to return different values if they are called in scalar
context than if they are called in array context. To do this with your own functions, you
can use the wantarray statement.

The wantarray statement can return one of three values:

o trueiffunction is called in array context
o falseif function is called in scalar context

o undefif function return value isn’t requested

Syntax of wantarray:

if (wantarray) { #if true, need to return an array
return (@array);

}

elsif (defined (wantarray)) { #if true, need to return a scalar
return ($scalar);

}

else { #don't need to return anything
return;

}

However, the CPAN module Contextual: :Return allows you more flexibility, as
described in its documentation:

use Contextual::Return;
use Carp;

74

CHAPTER 3 ADVANCED FEATURES

sub foo {
return
SCALAR { 'thirty-twelve' }
LIsT { 1,2,3 }

BooL { 1 }
NUM { 7*6 }
STR { 'forty-two' }

HASHREF { {name => 'foo', value => 99} }
ARRAYREF { [3,2,1] }

GLOBREF { *STDOUT }
CODEREF { croak "Don't use this result as code!"; }

we

See the following example:

#!perl
#contextual-return.pl
use Contextual::Return;

sub test {
return
SCALAR { 'thirty-twelve' }
LIST { 1,2,3 }

BooL { 1}

NUM { 7*6 }

STR { 'forty-two' }
}

print &test, "\n";

print &test + 5, "\n";

&test && print "yes\n";

@result=&test; print "@result", "\n";

if (%test eq 'forty-two') {print "yes";}

75

CHAPTER 3 ADVANCED FEATURES

Note More advanced features of Contextual: :Return, such as hash
references, are not covered in this book as they are beyond the scope of the book.
Please refer to the documentation on CPAN for more details.

Indirect Filehandles

Why To avoid issues related to scoping.

Consider the following code fragment:

sub test {
open (FILE, "<data.txt") || die;
#imore code here

}

open (FILE, "<junk.txt") || die;
#imore code here
&test;

$var=<FILE>;

Hopefully you can see the obvious problem here: the open statement in the test
subroutine clobbers the open statement in the main program. This is easy to see (and
avoid) in a small program with just one developer, but in larger programs with multiple
developers, this can easily become an issue.

Unfortunately, the solution that developers use to avoid such clobbering for
variables won’t work here. You can’t use my on filehandles.

You can use local, but that isn’t the best solution in most cases. For example, local
doesn’t solve the problem in the following code fragment:

sub test {
open (FILE, "<data.txt") || die;
#imore code here

76

CHAPTER 3 ADVANCED FEATURES

local open (FILE, "<junk.txt") || die;
#imore code here
&test;

$var=<FILE>;

For local to really solve the problem, it would have to be used in the &test
subroutine.

The solution here is to use a feature that has been available since Perl 5.6: indirect
filehandles:

sub test {
open my $FILE, "<junk.txt" || die;
#imoxe code here

}

open my $FILE, "<junk.txt" || die;
fimoxe code here
&test;

$var=<$FILE>;

Using this technique, Perl will store the filehandle (technically a filehandle
reference) into the scoped variable, $FILE. Since this variable is a my variable, the
subroutine variable won’t clobber the main program variable, and the filehandles won’t
conflict.

The three-argument technique to the
open statement

Why It makes the code more clear and avoids a (rare) potential error.

As of Perl 5.6, you can use either the two-argument technique or three-argument
technique to the open statement:

open my $FILE, "<junk.txt" || die;
open my $FILE, "<", "junk.txt" || die;

77

CHAPTER 3 ADVANCED FEATURES

With the three-argument technique, the second argument is how you want to open
the file. By making this a separate argument, it is more clear to read and avoids the
following rare potential error:

$file=">abc.txt"; #Filename is really called ">abc.txt"
open my $file, ">$file"; #will append to a file called "abc.txt",
#not overwrite it as planned

Always check the return values of open, close,
and when printing to a file

Why File interaction is one of the most common places where your script
should fail. This failure could occur when you open a file, close a file, or try to
print to a file.

Consider the following code fragment:

open my $FILE, "»", "junk.txt" || die;
print $FILE "output\n";
close $FILE;

Typically, developers will only "look at" the return value of the open statement,
when in fact each print statement and close statement should be "looked at" as well.

Suppose your program opens a file successfully and then the file’s permissions are
changed before you close the filehandle. This would cause the close function to fail (as it
is writing data from the buffer into the file).

Additionally, print statements could fail due to memory issues or if you have the
autoflush variable "turned on". As a result, you should always check the return value of
print (to file) and close statement:

open my $FILE, "»", "junk.txt" || die;
print $FILE "output\n" || die;
close $FILE || die;

78

CHAPTER 3 ADVANCED FEATURES

Close filehandles as soon as possible

Why Multiple reasons (see the following)

Perl developers know that if they don’t close their filehandles, Perl will close them
automatically when the program ends (or, if using indirect filehandles, when the my
variable goes out of scope).

However, this lazy programming style can cause problems, including, but not limited
to, the following:

e While the filehandle is still open, it is using memory, potentially a
large amount of memory if the data is large.

o Ifsomething goes wrong (program crashes), you will lose the data if it
isn’t saved until the end of the program.

Avoid slurping

Why Reading I/0 one a line-by-line basis is normally more efficient than reading
the entire file.

Consider the following code fragment:

undef $/;
$data=<>;
$/=n\nn;

$data =~ s/foo/fee/gms;
print $data;

79

CHAPTER 3 ADVANCED FEATURES

This technique, called slurping, may seem a great way of replacing all "foo" with
"fee" in a file, but it also has some performance impact. To begin with, if the data being
read is large, then Perl needs to use a great deal of RAM to store the entire file. A better
solution in most cases would be to read one line at a time, manipulate the line, and then
print the results:

while ($data=<») {
$data =~ s/foo/fee/gms;
print $data;

Note If you have the need to do multiline pattern matching, then reading the
entire file into a single scalar might be the best course of action.

Creatively use the do statement

Why Using the do statement creatively allows you to create more efficient code.

In the previous example, we undefined the $/ variable (input separator variable) so
we could slurp the entire file into a scalar variable. We had to set it back to a newline
character so it wouldn’t adversely affect other parts of the program.

However, this technique isn’t the best solution in some cases. Consider the following
code fragment:

sub test {
undef $/;
$data=¢<>;
$/="\n";
}

$/=ll=ll
&test;
$data=<FH>;

80

CHAPTER 3 ADVANCED FEATURES

In the main program, the $/ variable was set to a colon character but changed by the

&test subroutine to a newline character (the default value in most cases).
One way to solve this potential problem is by localizing the $/ variable:

sub test {
local $/;
$data=¢<>;

}

$/=II=II
&test;
$data=<FH>;

In this example, $/ "goes back to" its original value once outside the scope of the
subroutine.

Note The my statement can’t be applied to the $/ variable.

This is fine for subroutines, but what if you want to temporarily change $/ (or any
special variable) within the main part of the program? You could create scope with
braces:

{
local $/;

$data=<>;

}

$data =~ s/foo/fee/gms;
print $data;

However, for many developers, this is hard to read. It would be more effective and

clearer to use a do statement:

$data=do { local $/; <>};

81

CHAPTER 3 ADVANCED FEATURES

Use the sluxp() function

Why The Perl6::S1lurp module provides more power to read from files than
bulit-in Perl techniques.

Instead of changing $/ to slurp files, you can use the Per16: :Slurp module from CPAN
and use the slurp function:

use Perl6::Slurp;
$data=slurp <FILE>;

The sluxp function provides a lot of features. For example, it will behave as a
"normal"” filehandle read when assigned to an array variable:

@data=slurp <FILE>; #ireads each line into an element of the array
You can also have it automatically chomp the newline character from each line:
@data=slurp <FILE>, {chomp => 1};
Or replace the newline character with a different character:
@data=slurp <FILE>, {chomp => [:]};
You can also change the input record separator for the specific sluxp:
@data=slurp <FILE>, {irs => ":"};

Unlike the normal input record separator variable, with slurp you can specify a
regular expression:

@data=slurp <FILE», {irs =»> qr/:|-/};

Test for interactivity

Why If you have a program that can be run by either interactive (gathering user
input) or noninteractive, use I0: : Interactive to test for the interactive mode.

82

CHAPTER 3 ADVANCED FEATURES

Consider the following code fragment:

print "Enter the file name: ";
$file=<STDIN>;

The prompt provided by the print command is great, unless the user runs your
program like the following:

%ocs> perl test.pl < filedata

If your program is run like this, then the prompt makes no sense. You could generate
your own technique to test to see if your program is interactive or not, or you could make
use of a CPAN module called I0: :Interactive:

use I0::Interactive quw(is_interactive);
if (is_interactive) {
print "Enter the file name: ";

}
$file=<STDIN>;

You could also use the interactive function to print a prompt. It only prints to
STDOUT if the program is interactive (it discards the print data if the program is not

interactive):

use I0::Interactive qu(interactive);

print interactive "Enter the file name: ";
$file=<STDIN>;

Use I0::Prompt

Why The I0::Prompt module provides powerful techniques to read input from
users.

The I0: :Prompt module (available on CPAN) provides a function called prompt that
allows you to capture user input in a much more powerful way:

#!perl
#io-prompt.pl
use I0::Prompt;

83

CHAPTER 3 ADVANCED FEATURES

$data=prompt "Enter a line: ";

$passwd=prompt "Password:
$passwd=prompt "Password:

MWy n
s -echo =» "*";
s -echo => "";

$charprompt= prompt "Enter your choice [0-9]: ", -onechar;
$chaxprompt= prompt "Enter your choice [0-9]: ", -onechar,
-requires => {"Must be between 0-9" => qx/[0-9]/ };

Important note due to the way this module has been implemented, it will not
work on MSWIN-based systems.

Understand where to find documentation

Why Knowing where to effectively find documentation is critical for Perl
developers.

If you are going to be really effective in Perl, you should get in the habit of reviewing
documentation on a regular basis.

One way of developing this habit is to look up the documentation of a Perl feature/

function when you first learn about it. For example, when you are introduced to the sort

function, spend some time reviewing the documentation about that function.
Doing this on a regular basis provides several benefits, including

1. You become more accustomed to looking at documentation
which results in you developing the habit of looking at the
documentation whenever you have a problem with your code.

2. You often will learn about new, valuable features that you can
utilize in your Perl program.

Note If you really want to purchase Perl books, there is an excellent resource for

you here: http://perldoc.perl.org/perlbook.html.

84

http://perldoc.perl.org/perlbook.html

CHAPTER 3 ADVANCED FEATURES

Sources of documentation

For core Perl features and functions, you have two primary sources. One source is on the
Internet: pexldoc.perl.oxrg. The second is on your own system: the pexldoc command.
The perldoc command is used to display POD (Plain Old Documentation). POD
is how developers document modules. However, in addition to modules, the Perl core

documentation is also in POD format.
To see the core Perl documentation, use the following command:

ocs% perldoc perl
{output omitted}

Included in the output of the preceding command is a list of other documents that
you can view, such as the following:

ocs% perldoc perlcheat
{output omitted}

If you read through the main perl documentation, you will see a bunch of FAQs. The
-q option to perldoc allows you to search the FAQs using a keyword:

ocs% perldoc -q sort
{output omitted}

If you want to see a list of all of Perl’s functions, view the perlfunc document. This
is also an excellent way to see a list of what functions are available on the version of Perl
that you are currently using:

ocs% perldoc perlfunc
{output omitted}

To see a specific function’s documentation, use the -f option:

ocs% perldoc -f sort
{output omitted}

If you want to see a modules documentation, use the following syntax:

ocs’% perldoc File::Copy
{output omitted}

85

CHAPTER 3 ADVANCED FEATURES

You can even have perldoc tell you where the module is installed by using the -1
option:

ocs’% perldoc -1 File::Copy
{output omitted}

To see the raw code of a module, use the -m option:

ocs’% perldoc -m File::Copy
{output omitted}

Understand context

Why Perl decides how to handle data based on the context in which it is used.
Not understanding this will cause problems in your code.

A feature that often plagues both novice and experienced Perl developers is how
Perl determines data based on context. While this has been covered to some extent
previously, this section is designed to provide you with a summary of how context is
determined.

With Perl the primary way context is determined is with operators. In most cases, the
question comes down to the following:

e number vs. string

e scalarvs. array vs. list

Number vs. string

While both numbers and strings are both scalar data to Perl, they are sometimes treated
differently (depending on how they are used).

When numbers are used in a "string context", they are converted into strings first
and then "used". String context includes

e String operators ("." or "x")
e String functions

o String comparison

86

CHAPTER 3 ADVANCED FEATURES

o Regular expressions
e Assignment to a scalar variable

The method Perl uses to convert numbers to strings is very simple. Essentially,
the number is treated as if there were quotes around it. The only time the number is
modified is when it contains unnecessary "0"s. They are dropped when the number is
used as a string.

Examples:

DB<1y print "abc".12345

abc12345

DB<2> print "abc".123.45
abc123.45

DB<3» print "abc".123.4500
abc123.45

String to number conversion is a bit more complex. Perl will "look" at the first
character of the string and

o Ifitis a number (0-9), then Perl will continue to look for more
numbers. Once it finds a "non-number", it will stop looking and will
convert the string into what it has found.

« Ifitis whitespace (new line, space, tab, etc.), Perl will ignore it and
look at the next character.

o [Ifitisn’t a number or whitespace, then the string is treated as the
value zero (0).

Examples:

DB<1> print "123abc"+10

133

DB<2» print " 123abc"+10
133

DB¢3» print "abc123" +10
10

DB<4> print "1.45 xyz" + 10
11.45

87

CHAPTER 3 ADVANCED FEATURES

Scalar vs. array vs. list

When you use array data in scalar context, Perl returns the number of elements in the
list:

DB<1> @colors=qu(red blue green yellow)
DB<2> $number=@colors
DB<3» print $number

4

There is a subtle, yet important, difference between arrays and lists. While arrays
used in scalar context return the number of elements in the array, lists in scalar context
return the last element in the list:

DB<1> $number=qu(red blue green yellow)
DB<2» print $number
yellow

It is important to realize that almost all operators in Perl are scalar operators. This
includes

e String operators ("." or "x")

e Numeric operators (like "+" or "**")
e String or numeric functions

o String or numeric comparisons

o Regular expressions

e Assignment to a scalar variables

Understand the =» operator

Why Understanding the => operator allows you to write easier to
understand code.

88

CHAPTER 3 ADVANCED FEATURES

The =» operator is simply a stylized version of the comma operator. However, it allows
you to write easier-to-understand code. For example, consider the following two code
fragments:

%cities=("San Diego", "CA", "Boston", "MA");
%cities=("San Diego" =» "CA", "Boston" => "MA");

The second example is more readable, as the association between key and value is
visually defined with the =>. Even better

%cities=(

"San Diego" =» "CA",
llBostonll => IIMAII
)3

However, you can also use this =» operator for other purposes. For example, consider

the following:
&test("debug", 170, 230);
There are problems with passing in arguments in this fashion:

1. TItis difficult to tell what the arguments are intended for.

2. [Itforces the user of the subroutine to pass the arguments in a
specific order.

3. It forces the user to pass in ALL of the arguments, even if you
consider some of the arguments as "optional".

Instead, you could pass in the arguments in option-argument pairs:
&test(-mode, "debug", -min, 170, -max, 230);

Of course, it would be more readable if you used the =» operator:
&test(-mode => "debug", -min => 170, -max => 230);

In the test subroutine, you can read the @_ arguments into a hash:

%args=@_; #-mode, -min and -max become keys

89

CHAPTER 3 ADVANCED FEATURES

There are many ways that you can use the =» operator. For example, consider the
following code fragment:

rename "file.txt", "data.txt";
rename "file.txt" =»> "data.txt";

The second line in the preceding example more visually demonstrates the operation.

Understand subroutine calls

Why There are three different techniques to calling subroutines. Knowing the
differences between them will allow you to make the right "call".

Subroutines can be called using three different techniques:

&test (1, 2, 3);
test (1, 2, 3);
test 1, 2 3;

In many cases, there is no difference between these three methods. However, in
some cases, there are important differences:

BOTH & and (): If you want to put your functions after they are
called in your program, using the & character is a proper ways to
call the function:

#!perl
#sub1.pl

&hello; #ok
hello(); #ok

hello; #exrox

sub hello {
print "hi there\n";
}

90

CHAPTER 3 ADVANCED FEATURES

Only &: If you choose (or accidently) to name a function the same
as a Perl built-in function, this may cause problems. Calling the
subroutine with a & character will call your function. Calling

the subroutine without the & character will call the Perl built-in
function:

#!perl
#sub2.pl

sub chop {
print "hi there\n";

}

&chop; #Runs your chop function
chop(); #Runs built-in chop function
chop; #Runs built-in chop function

Only &: If you want to just provide the name of the subroutine,
such as with the defined() and undef () functions

#!perl
#sub3.pl
sub test {
print "hi there\n";
}
undef (&test); #Undefines test subroutine
undef (test()); #Run time error
undef (test); #Run time error

BOTH & and (): If you want to call a reference to a subroutine, you
need to either use & or ().

Only &: Prototypes will not work if you use the & character to call
the subroutine.

Only (): Use () when you need to be more clear with how the
parentheses are to be used. Consider the following statement:

print (5+6)*8, " is the result";

91

CHAPTER 3 ADVANCED FEATURES

In this case we are trying to print a mathematical operation, (5+6)*8, followed by a
string. The result of this print statement isn’t what we expected:

11

Why 117 To understand this, you need to understand how parentheses are used in
Perl. Parentheses have many different meanings in Perl. For example, they are used to
create lists, to specify conditional statements, to overcome precedence, and to specify
grouping in regular expressions.

In addition to specifying precedence in mathematical expressions, parentheses are
also used to specify the parameters that you want to pass into a statement:

print ("This is the formal way to type a print statement!");

When Perl sees print (5+6)*8, it thinks that the result of 5+6 (11) is a parameter to
be passed into the print statement. To avoid this, just make your print statement a little
more formal:

print ((5+6)*8, " is the result");

Summary chart of different techniques to call a function

Situation Use & Use () Use Neither

If you want to put your functions after they are called in your program

If you name a function the same as a Perl built-in function o

If you want to just provide the name of the subroutine, such as with
the defined() and undef () functions

If you want to call a reference to a subroutine o o

Call a subroutine that is using prototypes ° °
When you need to be more clear with how the parentheses are to be o

used

92

CHAPTER 3 ADVANCED FEATURES

Understand and/or vs. &&/ | |

Why The subtle differences between these operators can have an impact on your
program. Using the correct operators can make your program more readable and
understandable.

There is a subtle, but sometimes important, difference between or and | | (as well as and
vs. &&). In many cases they will produce the same results; however, or and and have a
lower precedence than | | and &&.

Consider the following code:

DB<1y $test="abc"
DB<2y $new = $junk or $test
DB<3> print $new

The intent was to assign $new to $junk IF the $junk variable was defined. If it was
not defined, then we wanted $new to be assigned to $test. However, since or has a lower
precedence than the assignment operation, the way this statement really executed was

DB<2> ($new = $junk) or $test
The correct way to handle this would be to use | |:

DB<4> $new = $junk || $test
DB<5» print $new
abc

Consider the following code:

DB<1> @info=stat("subi.pl") || die
DB<2y print "@info"
1

Our intention was to run the stat function, and, if it failed to return the data needed
from the "sub1.pl" file, use the die statement to exit the program. Unfortunately, we
end up with the wrong data stored in @info if the stat function succeeds.

Because of precedence, what is really happening here is this:

DB<1» @info= (stat("subi.pl") || die)

93

CHAPTER 3 ADVANCED FEATURES

If the stat function is successful, then the resulting "rvalue" is 1 for "true" because
one of the two statements returned true, making the entire statement true. If you use or
instead of | |, you will get the correct results:

DB<3»> @info=stat("subi.pl") or die
DB<4» print "@info"
2 0 33206 1 0 0 2 119 1355943060 1355943094 1355943060

Use Perl::Tidy

Why There are perl modules which provide you with automated techniques to
make your code look and perform better. Perl: : Tidy is one of these.

Writing code that has a persistent style can be difficult. The Perl: :Tidy module
(available from CPAN) provides you with a command-line utility called pex1tidy that
will take "ugly"-looking code and convert it to "nice"-looking code. Consider the
following example:

#!perl

#uglyi.pl

my $lines = 0; # checksum: #lines

my $bytes = 0; # checksum: #bytes

my $sum = 0; # checksum: system V sum

my $patchdata = 0; # saw patch data
my $pos = 0; # start of patch data
my $endkit = 0; # saw end of kit
my $fail = 0; # failed

If you want to line up all of the comments, = characters, etc., then you can run
perltidy on the ugly1.pl file:

ocs% perltidy uglyi.pl

The result of the perltidy command is a file with the same name as the original but
with an extension of . tdy:

94

ocs% more uglyi.pl.tdy

#!perl
#ugly1.pl

my $lines

my $bytes

my $sum

my $patchdata
my $pos

my $endkit

my $fail

“e W

-

-

-

OOO‘OOOO

)

CHAPTER 3

checksum: #lines
checksum: #bytes
checksum: system V sum
saw patch data

start of patch data
saw end of kit

failed

H OoH HF OH = =

ADVANCED FEATURES

The perltidy command makes many format changes. See the following files for
additional examples: ugly2.pl, ugly3.pl, ugly4.pl, and uglys.pl.
There are also many options to perltidy that can change how it formats your code.

For example, use the -1 option to specify how many spaces to indent:

ocs% perltidy -i=4 ugly5.pl

Or use the -st option to have the output go to STDOUT instead of a file.

If you find yourself using the same options repeatedly, you can make them defaults

for your account by creating a .perltidyrc file. An easy way to create this file is to use

the -dump-options option:

ocsk perltidy -i=4 -dump-options

Note On Windows-based systems, the file name that you should create is
perltidy.ini. The -dump-options option will not create this file automatically,
as specified by perltidy’s man page:

Under Windows, perltidy will also search for a configuration

file named perltidy.ini since Windows does not allow files with

aleading period (.). Use perltidy -dpro to see the possible

locations for your system. An example might be C:\Documents

and Settings\All Users\perltidy.ini.

95

CHAPTER 3 ADVANCED FEATURES

The perltidy command has many, many more features that you should explore if
you are going to make use of it. The documentation for the command is located here:
http://perltidy.sourceforge.net/perltidy.html.

Use Perl::Critic

Why There are perl modules which provide you with automated techniques to
make your code look and perform better. Per1: :Critic is one of these.

As its documentation states, "Perls sCritic critiques Perl source code for best-
practices". Itis designed to give you suggestions on possible better ways of doing
something, which is important in a language that prides itself on being able to do things
in more than one way.

In fact, the slogan of Perls :Criticis "Some Ways Are Better Than Others".

Perl::Critic (available on CPAN) uses "policies"”, rules about how code should
be written. These policies come from several sources, including Damian Conway’s book,
Perl Best Practices. Additional policies can also be downloaded.

When it executes, the perlcritic command will find any code that breaks the policy
rules and reports the code along with a "Severity" level between 1 and 5 (with 5 being
the least severe and 1 being the most severe). By default, only level 5 "warnings" are
reported:

ocs% perleritic critic.pl
Code before strictures are enabled at line 4, column 1. See page 429 of
PBP. (Severity: 5)

You can make the perlecritic command be more restrictive by using the --severity
option:

ocs% perlcritic --severity 1 critic.pl

perltidy had errors!! at line 1, column 1. See page 33 of PBP. (Severity: 1)
RCS keywords Id not found at line 1, column 1. See page 441 of

PBP. (Severity: 2)

RCS keywords $Revision$, $HeadURL$, $Date$ not found at line 1, column

1. See page 441 of PBP. (Severity: 2)

96

http://perltidy.sourceforge.net/perltidy.html

CHAPTER 3 ADVANCED FEATURES

RCS keywords $Revision$, $Source$, $Date$ not found at line 1, column

1. See page 441 of PBP. (Severity: 2)

No package-scoped "$VERSION" variable found at line 1, column 1. See page
404 of PBP. (Severity: 2)

Subroutine "test" does not end with "return" at line 4, column 1. See page
197 of PBP. (Severity: 4)

Code before strictures are enabled at line 4, column 1. See page 429 of
PBP. (Severity: 5)

Code before warnings are enabled at line 4, column 1. See page 431 of
PBP. (Severity: 4)

Return value of flagged function ignored - print at line 5, column 4. See
pages 208,278 of PBP. (Severity: 1)

Useless interpolation of literal string at line 5, column 10. See page 51
of PBP. (Severity: 1)

Found "\N{SPACE}" at the end of the line at line 7, column 1. Don't use
whitespace at the end of lines. (Severity: 1)

Obviously, some of these warnings might not be important to you. However, they do
provide good suggestions of how you can make your code better overall.

The Perl::Critic module and perlcritic command have many features. See
http://search.cpan.org/~thaljef/Perl-Critic-1.118/1ib/Perl/Critic.pm for
more examples and features of this tool.

Understand Getopt::Std

Why If you require data from users, but don’t want the script to be interactive,
then you can have users pass in data as options. One way to parse this data is by
using the Getopt: : Std module.

The Getopt: :Std module is standard in Perl. It provides you with an easy way to parse
command-line arguments that are passed in by users:

#!perl
#std_opti.pl

97

http://search.cpan.org/~thaljef/Perl-Critic-1.118/lib/Perl/Critic.pm

CHAPTER 3 ADVANCED FEATURES
use Getopt::Std;
getopts('abc');

print "$opt_a\n"
print "$opt_b\n"
print "$opt_c\n"

°
b
°
b
°
3

In the previous example, the getopts function defined three valid options: -3, -b,
and -c. If these options are used, then the argument passed to the options are assigned
to $opt_a, $opt_b, or $opt_c:

ocs% perl std opti.pl -a "test" -c "null
test

null
The arguments that are parsed are also stripped off of the @ARGV array:

ocs% more std_opt2.pl
#lperl
#std opt2.pl

use Getopt::Std;
getopts('abc');

print "$opt a\n";
print "$opt b\n";
print "$opt_c\n";
print "@ARGV\n"

ocs’% perl std_opt2.pl -a "test" -c "null”
test

null
You can also have the option/arguments placed into a hash:

#!perl
#std_opt3.pl

98

CHAPTER 3 ADVANCED FEATURES

use Getopt::Std;
getopts('abc', \%ops);

print "$ops{a}\n";
print "$ops{b}\n";
print "$ops{c}\n";
print "@ARGV\n"

If you want some options to have arguments and others to be simple booleans, place

a ":" character after the options that are to have arguments (the rest will be booleans):

#!perl
#istd_optq.pl

use Getopt::Std;

getopts('abc:');

print "$opt_a\n";
print "$opt_b\n";
print "$opt_c\n";
print "@ARGV\n"

To tell the getops function to stop looking at arguments, use a - - option (-- will be
removed from the @ARGV array):

ocs% perl std_opt4.pl -a -b -- -c "null”
If an unknown argument is passed, the getopts function will return false:

ocs% more std_opt5.pl
#lperl
#std opt5.pl

use Getopt::Std;
getopts('abc:') || die;

print "$opt a\n";
print "$opt b\n";
print "$opt c\n";
print "@ARGV\n"
99

CHAPTER 3 ADVANCED FEATURES

ocs% perl std_opt5.pl -a -b -d
Unknown option: d
Died at std opt5.pl line 6.

Understand Getopt: :Long

Why If you require data from users, but don’t want the script to be interactive,
then you can have users pass in data as options. One way to parse this data is by
using the Getopt: : Long module.

The Getopt::Long module is standard in Perl. It provides you with more advanced
techniques to parsing command-line options than Getopt: :Std.

Instead of using simple arguments like -a, -b, and - c, with Getopt: :Long, you use
options like --all, --verbose, and --catchall. These options will be easier to remember
and will "self-document". Simple example:

#!perl
#long_opti.pl

use Getopt::Long;
GetOptions ('verbose' => \$verbose, 'all' =» \$all, "catchall" => \$catch);

print "$verbose\n";
print "$all\n";
print "$catch\n";
print "@ARGV\n"

One nice feature of the GetOptions function is the ability to specify the "opposite”
of an option. For example, the following will allow for both a "--verbose" and a
"--noverbose" option:

#!perl
#long_opt2.pl

use Getopt::Long;

GetOptions ('verbose!' =» \$verbose, 'all’' =» \$all, "catchall" =» \$catch);

100

CHAPTER 3 ADVANCED FEATURES

print "$verbose\n";
print "$all\n";
print "$catch\n";
print "@ARGV\n"

In the preceding example, the $verbose variable will be assigned a value of 1 if
--verbose is provided as an option and a value of 0 if --noverbose is provided.
To pass arguments to options, use the following syntax:

#!perl
#long_opt3.pl

use Getopt::Long;
GetOptions ('verbose!' =» \$verbose, 'all=i' =» \$all, "catchall” =» \$catch);

print "$verbose\n";
print "$all\n";
print "$catch\n";
print "@ARGV\n"

The "i" means that an integer can be passed. For a string, use "s". For a floating
point number, use "f".

You can have multiple values passed in by using the following syntax:

#!perl
#long_opt4.pl

use Getopt::Long;

GetOptions ('verbose!' =» \$verbose, 'all=i' =» \$all, "catchall=s" =>
\@catch);

print "$verbose\n";
print "$all\n";
print "@catch\n";
print "@ARGV\n"

Note that the program would have to be run like this:

ocs% perl long opt4.pl --catch "abc" --catch "xyz"

101

CHAPTER 3 ADVANCED FEATURES

In the following example, you can have users pass key/value pairs to be assigned to
a hash:

#!perl
#long_opt5.pl

use Getopt::Long;

GetOptions ('verbose!' => \$verbose, 'all=i' =» \$all, "catchall=s" =>
\%catch);

print "$catch{test}\n";
print "$catch{error}\n";
print "@ARGV\n"

The syntax on the command line would be
ocs% perl long_opt5.pl --catch test="abc" --catch error="xyz"

There are other options available when you use Getopt: :Long. Consult the
documentation for further details.

Alternative commenting technique

Why Commenting multiple lines with # characters is frustrating.

Suppose you had code like the following:

#!perl
#commenti.pl

print "hello\n";

foreach $var (@INC) {
print ++$i, "\t$var\n";

}
print "goodbye\n";

102

CHAPTER 3 ADVANCED FEATURES

And you want to comment out the foreach loop. To do this correctly, you would have
to place a # character in front of three lines:

#!perl
#comment2.pl

print "hello\n";

#foreach $var (@INC) {
print ++$i, "\t$var\n";

#}
print "goodbye\n";

This isn’t so bad for three lines, but what if the foreach loop was 30 lines? Or 300
lines?

There is another technique that you can use to temporarily comment out large
chunks of code: POD. Plain Old Documentation is typically how you can comment Perl
modules with POD.

However, you can also use it to tell Perl to "ignore" lines of code while Perl compiles
the code. You do this by turning on POD documentation with "=begin" and turning off
POD documentation with "=cut":

#!perl
#comment3.pl

print "hello\n";

=begin
foreach $var (@INC) {
print ++$i, "\t$var\n";

}

=cut
print "goodbye\n";

Again, this is meant to be a temporary solution to make it easier to comment out
large chunks of code while you are debugging.

103

CHAPTER 3 ADVANCED FEATURES

Passing notes within a Perl program

Why If you are trying to "take notes" about your program, this technique may
be better than using a separate file.

Suppose you are making notes as to what needs to be done in a program. These notes
are either for yourself or to let another programmer know some information. Using a
separate file (or email) has the disadvantage that this file (or email message) might be
lost or overlooked.

You could use traditional comments, but a long chunk of notes would be a pain to
comment out. You could use the POD technique mentioned earlier, but that is more
designed for commenting out chunks of code temporarily.

Another technique is to place your notes at the bottom of your program after the
__END__ token as shown in the following program:

#!perl
#end.pl

print "hello\n";

foreach $var (@INC) {
print ++$i, "\t$var\n";

}
print "goodbye\n";
__END__

You still need to finish the subroutine

that loads the data. Also, you need to make

sure the data file can’t be changed.

Anything under the __END__ token is not considered Perl code. While there are a few
features in Perl that make use of this location (such as mains :DATA and the AutoLoader
module), this area is rarely ever "looked at" by Perl. As a result, it is normally a safe
place to place notes without having to comment out a huge section of the program.

104

CHAPTER 3 ADVANCED FEATURES

Use Smart: :Comments

Why Improves debugging.

Using the CPAN module Smart: :Comments will help you debug your Perl code by the
use of comments. This module will produce helpful debugging messages. Specifically,
it looks for any lines that have more than three # characters. Any of those lines will
automatically be printed to STDOUT:

#!perl
#smarti.pl

use Smart::Comments;

Acquiring data...
$data = get_data();

Verifying data...
verify_data($data);

Assimilating data...
assimilate_data($data);

Tired now, having a little lie down...
sleep 10;

sub get_data {sleep 5; return "abc";}
sub verify data {sleep 5; }
sub assimilate_data {sleep 5; }

Certainly, this could be done with print statements, but Smart: : Comments has other
features. For example, consider the following code:

#!perl
#smart2.pl

use Smart::Comments;

<nows> Acquiring data...
$data = get_data();

105

CHAPTER 3 ADVANCED FEATURES

Verifying data at <heres...
verify_data($data);

for (1..10) { ### Progressing... done

sleep 1;

}

for (1..10) { ### Evaluating [=== 1 % done
sleep 1;

}

sub get_data {sleep 5; return "abc";}
sub verify data {sleep 5; }

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Lab exercises

Note There are no exercises for this chapter.

106

https://github.com/Apress/pro-perl-programming

CHAPTER 4

Advanced Formatted
Output

Recall that many people consider Perl to stand for Practical Extraction and Report
Language. You may be wondering what part of Perl performs the "Report"” functionality.
There are several features that provide this functionality as you will see in this chapter.

Review: The format statement

Basic format statement features are discussed in the Beginning Perl Programming: From
Novice to Professional book. The goal of this section is to provide a quick review of what
is covered in that book.

If you are already familiar with basic format statement usage, then skip to the next
section. If not, then you should try the examples demonstrated in this section.

The format statement

Perl provides a method of creating formatted output with the format and write
statements. The format statement is used to create a template, while the write statement
is used to send the output to a filehandle:

format FILEHANDLE =
Plain text and placeholder: @»»»>>
$var #variable values go in placeholder.

Notes
o The value of the variable will go in the "placeholder”, @>>>>> in the
preceding example.

107
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_4

CHAPTER 4 ADVANCED FORMATTED OUTPUT

The FILEHANDLE can either be STDOUT or a filehandle that you create
with an open statement.

Each filehandle can only have one format statement because the
statements are declared at compile time, not run time.

The "." (dot) must be on a line by itself. This character indicates the
end of the format statement.

After the variables have been set and the filehandle has been opened (if necessary),

use the write statement to send the output to the filehandle:

write FILEHANDLE;

Placeholders

There are many different types of placeholders that can be use with the format

statement:

108

Placeholder Type Meaning

@<<< Left justify text in placeholder

@>>> Right justify text in placeholder

@] Center text in placeholder

@ H##t Numeric output (lines up decimal place)

KK Left justify, break up over multiple lines if needed
@* Left justify, multiline output

Each placeholder character represents one character of the variable,
s0 "@<<<" means "four characters, left justified".

If there aren’t enough placeholder characters to "fix" all of the
variable’s characters, the extra variable’s characters are truncated.
"abced" » @<< would resultin "abc".

The """ placeholder is useful when a variable needs to be divided
among multiple lines.

CHAPTER 4 ADVANCED FORMATTED OUTPUT

Example #1 of basic format usage:
This example demonstrates the different placeholder fields (left, right, and center),
the multiline placeholder field, and the "breakover multiple-1line" placeholder:

#perl
#formi.pl

format STDOUT =
CIRRRRRRAAANY

$title

Name: @<<<<< Age: @<<
$name, $age

code: @>3»>>>>>

$code

Comment: @*

$comment

Keywords:~<<<<<<
$keywords
IELLLLLY
$keywords
AL LLLL
$keywords

$title="Status Sheet";

$name="bob"; $age=25; $code="674AR3";

$comment="\nDisplays good tact\nworks hard\nsometimes is late";
$keywords="work effort late";

write STDOUT;
Output of form1.pl:

Status
Name: bob sm Age: 25
code: 674AR3
Comment:
Displays good tact

109

CHAPTER 4 ADVANCED FORMATTED OUTPUT

works hard
sometimes is late
Keywords: work
effort
late

Example #2 of basic format usage

This example demonstrates how the "breakover multiple-line" placeholder may
result in not all of the data being displayed. Notice how the value of "raise" is never
displayed (the solution for this problem will be provided in the next section of this chapter):

#!perl
#form2.pl

format STDOUT =

Comment: @*

$comment

Keywords: “<<<<<<
$keywords
UL LY
$keywords

$comment="Displays good tact\nworks hard\nsometimes is late";
$keywords="work effort raise";

write STDOUT;
Output of form2.pl:

Comment: Displays good tact
works hard
sometimes is late
Keywords: work
effort

110

CHAPTER 4 ADVANCED FORMATTED OUTPUT

Repeating lines
The """ placeholder character will break up text across multiple lines:

format STDOUT =

Keyworxds:"<<<<<<
$keywords
egee<
$keywords
IR
$keywords

Unfortunately, this method is cumbersome and sometimes will produce undesirable
results. For example, what if the variable $keywords is declared like this:

$keywords="work effort late raise";

The word "raise" would never be printed.
To say, "repeat this line over and over until the variable is empty", use
the ~~ characters at the beginning of the line:

format STDOUT =

Keywords:"<<<<<<
$keywords

~ IELL L LY
$keyword

Example of repeating lines:

#!perl
#form3.pl

format STDOUT =

Keywoxrds: "<<<<<<
$keywords

~ IELL L LY
$keywords

111

CHAPTER 4 ADVANCED FORMATTED QUTPUT
$keywords="work effort late raise";

write STDOUT;

@ it
Perform the following steps:
e Execute formi.pl and observe the results.
e View/read form2.pl and then execute form2.pl; observe the results.

e View/read form3.pl and then execute form3.pl; observe the results.

Using select

By default, the print and write statements send its output to STDOUT. You can modify
this behavior by using the select statement.

#!perl
#iselect.pl

open (LOGFILE, "sdata");
print "Starting log\n"; i#isends output to STDOUT

select LOGFILE; #output will now go to file
print "Starting log...\n"
print "No errors found\n"
print "End of log\n";

°
b
°
3

select STDOUT;
print "End of logging process\n";

Using the select statement is very useful when you are sending output regularly to a
filehandle other than STDOUT.

112

CHAPTER 4 ADVANCED FORMATTED OUTPUT

Note When you use the select statement, it sets the $~ variable to the currently
selected filehandle.

.’W Try it!
Perform the following steps:

e Execute select.pl and observe the results.

e \View the contents of the "data" file to confirm that the script wrote
to this file.

Warning regarding the select statement

It is a good habit to set the standard filehandle back to STDOUT after you are finished
using the "alternative" filehandle. This is especially true if you select a different
filehandle in a subroutine that others are calling.

If a different filehandle is selected in a subroutine, this can affect the calling program:

DB<1> sub sample {select MORE;}
DB<2»> &sample
DB¢<3> print $~

DB<3> print STDOUT $~
MORE

Notice how frustrating this can be. A regular print statement can’t even display the
value of $~ because the output for the print statement will now go to another filehandle
(MORE in the preceding example).

Advanced format statement features

This section focuses on some of the more advanced format statement features. If you
are using the format statement on a regular basis, you will find these features to be very
useful in creating rich reports.

113

CHAPTER 4 ADVANCED FORMATTED OUTPUT

Top of form

You can add a header to a format statement by using the top-of-form feature. To use this
feature, specify a special format template called FILEHANDLE_TOP.

format STDOUT_TOP =
Sensitive data: do not duplicate!

When the statement write STDOUT is executed, the output from the STDOUT_TOP is
displayed first, followed by the output from the STDOUT format template.
Example of top of form:

#!perl
#top.pl

format MORE =

Name: @<<<<<<<<<<<<<<<¢
$1

format MORE_TOP =
Groups from the group file

open (MORE, "|more");
open (GROUP, "<group") || die "could not open group";

while (<GROUP>) {
m/*(.*?):/;
write MORE;

}

close MORE;
close GROUP;

114

CHAPTER 4 ADVANCED FORMATTED OUTPUT

” wny it!

Perform the following steps:

Execute top.pl and observe the results. Note: the top.pl program
makes use of a provided system file: the group file. This is just a
copy of the /etc/group file from a Linux system.

Format variables

There are some variables that can either be used to modify how format statements work

or to display information regarding the format:

Variable Meaning

$~

$7L

Current format name. When you specify the statement wrxite without specifying the
FILEHANDLE, the value of this variable is used. This variable is typically modified
with the select statement. $~ is set to STDOUT by default

Current top_of_format name. Like the $~ variable, this is also typically modified by
the select statement

Current output page number; set to 1 when filehandle is first written to
Number of lines per page; set to 60 by default

Contains the number of lines left in the "page". $- is used when you write to

the same filehandle more than once. Perl needs to be informed that it needs to
"restart” the "top of page" format. This is done by setting $- to 0 (which also
resets the output page number variable)

The value of this variable will be printed before each "top of page" except for the
first page

Note You need to use the select statement for these variables to work.

115

CHAPTER 4 ADVANCED FORMATTED OUTPUT
Example #1 of using format variables:

#!perl
#varsi.pl

format MORE =
Name: @<<<<<<<<<<C<<<<<K
$1

format MORE_TOP =
Groups from the group file page: @<«
$%

open (MORE, "|more");
open (GROUP, "<group") || die

"could not open group";

select MORE;
==5;
while (<GROUP>) {
m/~(.*?):/;
write;

}
select STDOUT;

Notes

e The varsi.pl program makes use of a provided system file: the group
file. This is just a copy of the /ete/group file from a Linux system. You
could use any file that contains 20 or more lines for this example.

o The output of the varsi.pl program may be a bit strange because the
$~L variable was not set to a newline character. See the next example
and the Try it! section for more details.

116

CHAPTER 4 ADVANCED FORMATTED OUTPUT
Example #2 of using format variables:

#!perl
#vars2.pl

format MORE =
Name: @<<<<<<<<<<<¢<<<<K
$1

format MORE_TOP =
Groups from the group file page: @<«
$%

open (MORE, "|more") || die "could not open more";
open (GROUP, "<group") || die "could not open group";

select MORE;

==53

while (<GROUP»>) {
m/~(.*?):/;
write;

}

close GROUP;

close MORE;

print "\n\n\n\n\n";

open (MORE, "|more");
select MORE;

$°L="\n";
$==5;
$-=0;
open (GROUP, "</etc/group") || die "could not open group";
while (<GROUP>) {
m/*(.*?):/;
write;

117

CHAPTER 4 ADVANCED FORMATTED OUTPUT

close GROUP;
close MORE;

C"" Try it!

Perform the following steps:

e Execute varsi.pl and observe the results. Note that the behavior
might be a bit odd (you may need to press the <ENTER> key
continuously until the prompt appears again).

e Execute vars2.pl and observe the results. Note that the behavior
is better because the $~L variable was set to a newline character,
rather than the default formfeed character (which doesn’t display
nicely on non-printers).

If you plan on modifying these variables on a regular basis, you might consider using
the Filehandle module. This module provides methods (AKA, subroutines) that you can
use to modify these variables:

#!perl
#vars3.pl

use Filehandle;

format MORE =
Name: @<<<<<<<<<<¢<<<<<<

$1

format MORE_TOP =

Groups from the /etc/group file page: @<«

$%

open (MORE, "|more");

open (GROUP, “"<group”) || die "could not open group";
select MORE;

118

CHAPTER 4 ADVANCED FORMATTED OUTPUT

format_lines_per_page MORE 5;
while (<GROUP>) {

m/*(.*?):/;

write;

Note that on the previous page, the "select MORE;" statement wasn’t necessary for
setting the $= variable. However, it did allow use to use the write statement without
specifying MORE as an argument.

The following methods are provided by the Filehandle module:

¢ autoflush

o output_field_separator

e output_record_separator
e input_record_separator

e input_line_number

o format_page_number

o format_lines_per_page

o format_lines_left

o format_name

o format_top_name

o format_line_break_characters

o format_formfeed

Padding with zeros

When using numeric fields, you can have the padding of spaces replaced by zeros by
placing a 0 as the first character after the @ character:

#!perl
#zero.pl

format STDOUT =
Name: @||||]| Age: @<«

$name, $age
119

CHAPTER 4 ADVANCED FORMATTED QUTPUT
This is a reminder of your appt. on Friday at 10

Please bring @oiti.#i# dollars with you
$amount

$name="Bob Smith";
$age=23;
$amount="125.87";

write STDOUT;
Output of zero.pl:
Name: Bob Sm Age: 23
This is a reminder of your appt. on Friday at 10

Please bring 0125.87 dollars with you

Using ~*

The @<<<< placeholder stops reading from the variable once it hits a newline character. If
you use the ** placeholder, it will stop after it hits the newline character, but you can use
the ** placeholder again to continue to read from the variable:

Keywords: ~*
$keywords

~n A%

$keyword

printf and sprintf

Both printf and sprintf are used to generate formatted output similar to the C and C++
printf and sprintf commands. Both commands accept a format (how to arrange the
data) and a list (the data to print).

120

CHAPTER 4 ADVANCED FORMATTED OUTPUT

Important note Don’t use printf in cases where a regular print command will do.

printf and sprintf are almost identical. The difference is that printf sends its
output to a filehandle by default, while sprintf returns its output to the calling statement.

Options for printf and sprintf

Both statements use the following format options:

Option Meaning

%% A literal % sign

%C A character of the corresponding ordinal value
%d A signed integer (decimal)

%e A floating-point number (scientific)

%t A floating-point number (decimal)

%g A floating-point number (in either %e or %f notation)
%n The number of chars output in the next variables
%0 An unsigned integer (octal)

%p Address in hexadecimal (pointer)

%S A string

%u An unsigned integer (decimal)

%X An unsigned integer (hexadecimal)

%E Like "%e", but using an uppercase "E"

%G Like "%g", but using an uppercase "G"

%0 Obsolete

%U Obsolete

%X Like %x but using uppercase letters

121

CHAPTER 4 ADVANCED FORMATTED OUTPUT

printf and sprintf flags

Flags can be used between the % sign and the conversation to modify the output as well.

The following chart illustrates these flags:

Flag Meaning
[space] Place a space prior to a positive number
+ Place a plus character prior to a positive number
- Left justify the output within the field
0 Right justify using zeros instead of spaces
Place a "0" prior to nonzero octal numbers and a "0x" prior to nonzero hex numbers
[number] Indicated the minimum field width
.[number] Results in different behavior for strings, integers, and floats:
String — Max length of string
Integer — Max width
Float — Number of digits after floating point
1 Interpret integers as "long" or "unsigned long" according to the C type
h Interpret integers as "short" or "unsigned short" according to the C type
v Interpret integers according to Perl’s type

Example: Rounding numbers

The int statement will make an integer out of a floating-point number:

DB<1y $num=10.75
DB<2» print int($num)

10

This method, however, can’t be used to round a number. To do this, use sprintf:

DB<1> $num=10.75
DB<2> $num=sprintf ("%.0f", $num)
DB¢<3> print $num

11

122

CHAPTER 4 ADVANCED FORMATTED OUTPUT
or printf:

DB<1> $num=10.75
DB<2» printf ("%.0f", $num)
11

Example: Modifying numbers

The following will convert an integer into an octal number:

DB<1> $num=999
DB<2> printf ("%o", $num)
1747

The following will convert an integer into a hex number:

DB<1y $num=999
DB<2> printf ("%x", $num)
3e7

The following will convert an integer into scientific notation:

DB<1> $num=999
DB<2» printf ("%e", $num)
9.990000e+02

The following will add "extra" zeros to a floating-point number and add a percent

sign after the number and a "+" before it:

DB<1> $num=1.9
DB<2» printf ("%+.2f%%", $num)
+1.90%

Example: Converting ASCII values

The printf statement can be used to convert a decimal ASCII value into its
corresponding string value:

DB<1> $number=97
DB<2» printf ("%c", $number)
a

123

CHAPTER 4 ADVANCED FORMATTED OUTPUT
A faster method, however, is to use Perl’s chr statement:

DB<1y $number=97
DB<2y print chr($number)
a

You can also convert characters into their corresponding decimal ASCII value with
the oxd statement:

DB<3» $char="g"
DB<4> print ord($char)
103

@i
Try it!
Execute the following command to enter the Perl Debugger environment:

perl -d -e "1;"

At the debugger prompt, execute the following Perl statements:

$num=289.88;
printf("%e", $num);

printf("%x", $num); #Note, in this case $num is
#itreated as an integer
printf("%o0", $num); #Note, in this case $num is

#itreated as an integer
printf("%.1f", $num);

Exit the debugger by executing the following Perl statement:

q

124

CHAPTER 4 ADVANCED FORMATTED OUTPUT

print sprintf

In some cases, you may see a Perl programmer use the command print sprintf. This
isn’t any different than using the printf statement:

DB<1> $num=999

DB<2> printf ("%x", $num)

3e7

DB<3» print sprintf ("%x", $num)
3e7

The <» Operator

One of the advantages of the diamond (<>) operator is that it can read from files that are
command-line arguments. For example, the following file will parse a line at a time from

either STDIN or from the contents of command-line arguments:

#!perl
#argvi.pl

print "@ARGV", "\n";

while (<») {

$count++ if (/\d/);
print "@ARGV", "\n";
}

print "@ARGV", "\n";
print "Number of lines that have at least one digit: $count\n";

Since <> reads "multiple files as they were one," it can be difficult to
distinguish between different files. In addition, the @ARGV array is "wiped out" as a result
of reading from <>.

The $ARGV variable can help differentiate between different files being read by <>.
This variable holds the name of the file that is currently being read.

125

CHAPTER 4 ADVANCED FORMATTED OUTPUT
Example of $ARGV

#!perl
#argv2.pl

$i=0;
@para=@ARGV;
while (<») {

if ($para[$i] eq $ARGV) {
$count++ if (/\d/);

} else {
print "$para[$i] has $count lines with at least one digit\n";
$count=0;
$count++ if (/\d/);
$its;
}

}

print "$para[$i] has $count lines with at least one digit\n";

Notes

o Reading from <¢» will "shift" elements from the @ARGV array. That is
why @para needed to be created.

o The last print statement is to print the output of the last file in the
@ARGV array.

@ Wit

Perform the following steps:

e Execute the following command: perl argv2.pl top.pl
formi.pl varsi.pl

e (Observe the output of the previous output. Does the logic make
sense in the program?

126

CHAPTER 4 ADVANCED FORMATTED OUTPUT

e To better understand what is going on, edit argv2.pl, and add the
following line right after the while statement:
print "@ARGV\n";

e Execute the following command: perl argv2.pl top.pl
formi.pl varsi.pl

e (Observe the output, and notice how the <> operator removes
elements from the @ARGV variable.

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Lab exercises

Mini lab:
Write a program that takes the following user input:

First name
Last name
Job Title
Favorite quote

Use a format statement to display the user data in the following format:

First Name: Last Name: Title:
Bob Smith Trainer

127

https://github.com/Apress/pro-perl-programming

CHAPTER 4 ADVANCED FORMATTED OUTPUT

Quote:

It was the best
of times; it
was the worst

of times.

Primary lab:

Important note If you did not finish the previous lab, either finish it before
starting this lab or use the completed parse1.pl provided in the lab answers folder.

Modify parsel.pl to include the following changes:

o Instead of printing the array with a print statement, use a format

statement with the following:

Line up each field of data into columns.

Print a header for each page of data (each page should be 20 lines
of output).

Include the current page number in the header.

Have the output still go to the more command.

Save the file with the name parse2.pl.

Notes and hints

e You will need different format statements depending on what

changes have been made to the data.

When you have completed your work, compare your script against the parse2.pl file

provided in lab answers.

128

CHAPTER 5

Exploring Useful
Built-in Variables

A good deal of the power and flexibility behind Perl lies in its "built-in" variables. Perl’s
built-in variables provide many functions:

o Allows you to modify the behavior of your Perl script

o Holds important information regarding how your Perl script is
running

o Holds data regarding the results of pattern matching

This chapter provides some insight as to how you can use built-in variables. Note
that not all variables will be covered in this chapter as some variables are more useful
than others and others are a bit more esoteric. Additionally, some of these variables will
be covered in other chapters of this book.

Variables reference chart

The following table provides a list of most of Perl’s built-in variables, along with a brief
description of each:

Variable Meaning

$ String preceding what was last matched

$' String following what was last matched

$+ Last parenthesis match of last pattern match
$& Last pattern match

(continued)

129
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_5

CHAPTER 5

130

EXPLORING USEFUL BUILT-IN VARIABLES

Variable Meaning

$* Multiline matching (depreciated deprecated by the s and m
modifiers provided in pattern matching)

$: Continuation field characters (rarely used, associated with
format statements)

$1..%9 Subpattern matches of last pattern match

$~ Name of current report format

$- Number of lines remaining on page

$! Current error number or error string

$" Array separator

$# Output format for numbers (depreciated)

$% Process id of Perl script

$% Current page number of output channel

$= Page length of output channel

$] Output buffer flush

$, Output field separator

$. Current line number of input file

$/ Input record separator

$; Subscript separator for multidimensional array emulation

$? Status of last 0S command

$@ Error message from last eval or do

$[Used to have the first index of an array be 1 instead of 0
(deprecated)

$\ Output record separator for print statement

$] Version of Perl

$n Name of current top of page format

$ Default input variable

$0 Program name

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

Variable Meaning

$< User’s real id number

$> User’s effective id number

$(User’s real group id number(s)

$) User’s effective group id number(s)

$~A Accumulator for write and formline

$"D Debugging flags

$7E 0S-dependent error data

$"F Largest system file descriptor

$7H Current state of syntax checks

$°1 Edit extension passed by -i option

$~L Formfeed characters for formats

$™M Emergency memory pool

$70 0S name

$1P Internal debugging flag

$7S Current interpreter state

$°T The programs start time

$ W The value of -w option

$7X Perl interpreter name

$ARGY Current file name when reading using <>

@ARGV Command-line arguments

@EXPORT Methods and symbols the package exports by default
@EXPORT_OK Methods and symbols the package exports by request
@F Contains the split of input lines when -a option is used
@INC List of places to look for Perl modules

@ISA List of base classes of current package

@ Argument to the subroutine

(continued)

131

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

Variable Meaning

%ENV Environment variables passed into script from shell
%EXPORT_TAGS Names for sets of symbols
%INC List of where specific Perl modules were found

%SIG Used to tell Perl how to handle signals

Use English

Many Perl programmers find Perl’s variable names somewhat cryptic and difficult to use.
To use "nice English names" instead of these cryptic variable names, use the pragma
"use English":

#!perl
#3_eng.pl

use English;

print "Autoflush is set to $| \n";
print "Autoflush is set to $OUTPUT_AUTOFLUSH \n";

Important note

While "use English" might be convenient, there is a drawback to it. Consider the
following warning from the Perl man pages:

"Due to an unfortunate accident of Perl's implementation, 'use
English' imposes a considerable performance penalty on all
regular expression matches in a program, regardless of whether
they occur in the scope of 'use English'. For that reason,
saying 'use English' in libraries is strongly discouraged".

This performance penalty has to do with the Regular Expression variables ($&, $°
and $') that were discussed in a previous unit.
Consult Perl documentation for a list of all of the English equivalents.

132

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

Status variables

The status variables give data regarding why an error may have occurred. These variables
include the following:

Variable Meaning

$? Status of last 0S command

$! Current error number or error string

$"E 0S-dependent error data

$@ Error message from last eval or do
The $? variable

This variable hold the status of the last pipe close, backtick, or system call. This variable
will store a nonzero value if an external program fails. If the program succeeds, the value
of this variable will be set to 0.

#!perl
#questi.pl

$result="1s -1 /junk’;
print "$? \n"; #prints a positive number since command fails

$result="date";
print "$2? \n"; #prints 0 since command runs successfully

Note that the previous example is designed to run on Unix or Linux systems. If you
are running Perl on Windows, change the 1s command to the dixr command.

The follow example demonstrates that the $? variable is also set by the system
statement:

#!perl
#quest2.pl

system "cd /junk";
print "$? \n"; #prints a positive number since command fails

133

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

system "date"
print "$? \n"

we ‘weo

#prints 0 since command runs successfully

The $? variable is often used in a conditional statement, as demonstrated by the

following code fragment:

system "cd /junk";
if ($? > 0) {die "cmd failed";}

@ 1yin
Perform the following steps:

o Modify the quest1.pl script if necessary for your platform and
then execute it, and observe the output.

e Modify the quest2.pl script if necessary for your platform and
then execute it, and observe the output.

Important note regarding opening pipe file handles

When you open a file for reading and writing, you typically check the result of the
open statement. For example, the following code fragment will execute the die
statement if the open statement returns a false value:

DB<1> open (GROUP, "</etc/group") || die

However, when you open a process using the open statement, open will not return
"false" if the process cannot be executed. You need to look at the result of the close
statement or the variable $? after the close statement has executed:

DB<1» open (PS, "ps -fe|")
DB<2» close PS

DB¢<3> print $?

0

DB<4> open (PS, "ps -z"

134

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

DB<6> close PS
DB<7> print $?
256

Notes

e When you use the open statement to open a process, the return value
of the open statement is the process id.

e You must close the filehandle before you can use the $? variable.

The $! variable

This variable reports C library errors. Many of Perl’s statements (such as the open
command) use C library calls to perform their tasks. When a C library fails, the error
message is stored in $!.

#!perl
#bang.pl

open (READ, "</etc/junkfile");

print "$!\n"; #prints error message of lib call

The $”E variable

In cases in which the C library calls are further translated into calls to the kernel the $*E
variable stored the output of kernel errors. Typically, these errors are more verbose than

library errors.

#!perl
#E.pl

open (READ, "</etc/junkfile");

print "$°E\n"; #prints error message of kernel call

Note $"Eisthe same as $! in many operating systems (Exceptions: VMS, 0S/2,
and Win32).

135

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

—%
éTry it!
Perform the following steps:

o Execute the bang. pl and observe the output.

e Execute the E.pl and observe the output.

The $@ variable

The $@ variable holds error messages that are generated by failed eval statements.
Since the eval statement isn’t covered in this book, the $@ variable will be discussed in
more detail.

Separator variables

Separator variables are used to modify Perl’s behavior in regard to handling input and
output. These variables include the following:

Variable Meaning

$/ Input record separator

$" Array separator

$, Output field separator

$\ Output record separator for print statement

Input record separator

The "record separator variable" stores the character(s) that Perl uses to "break up"
the data that is read by <STDIN>. By default, it is set to a newline character ("\n") and, in
almost every case, should not be changed. However, there are a couple of situations in
which changing this variable can make life a little easier:

Suppose we had a database file which contained a completely flat database:

Ted:9930:accounting:Bob:9940:HR:Sue:9950:accounting:

136

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

In this case, we could change the $/ variable to a colon (":") and read the entire file
into an array with each element being a field in the array:

$/=":";
@fields=<STDIN>;
chomp (@fields);
$/="\n";

Notes

e The chomp command actually chomps whatever the $/ variable is set
to.

o It'simportant to set the $/ variable back to a newline character as
soon as you are finished reading the file.

Array separator variable

When you print an array, all of the elements of the array are displayed "merged
together":

DB<1> @colors=qu(red blue green purple)
DB<2» print @colors
redbluegreenpurple

When you place quotes around the array, each element is separated with a space:

DB<1> @colors=qu(red blue green purple)
DB<2» print "@colors"
red blue green purple

The $" variable stores what character(s) should be used to separate array elements
when the array name is place within quotes. By default, this variable is set to a space. To
change this behavior, just set the variable to a different character:

DB<1> @colors=qu(red blue green purple)
DB<2y $"=":"

DB<3» print "@colors"
red:blue:green:purple

137

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

@y
Execute the following command to enter the Perl Debugger environment:
perl -d -e "1;"
At the debugger prompt, execute the following Perl statements:

@names=qw(Bob Bill Steve Nick);
$l|=ll r]Il;

print @names;

print "@names";

Exit the debugger by executing the following Perl statement:

q

print separators

The print statement doesn’t place anything between the items it prints:

DB<1» print ("abc", "123")
abc123

By modifying the $, variable, you can tell Perl to place a character between items
that are printed:

DB<1> $,=" "
DB<2» print ("abc", "123")
abc 123

This is useful in cases in which you are printing multiple items with one print

statement:

DB<1> $,=" "
DB<2> print "The result is", 5+7
The result is 12

138

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

The print statement also doesn’t place any characters at the end of the output. By
setting the $\ variable, you can have print always print characters at the end of each
output. For example, to have all print statements end with a newline character:

DB<1> $\="\n"
DB<2» print "print will now end with a newline char"
print will now end with a newline char

DB<3>

Both $, and $\ variables are initially not set to any value.

The signal handle variable

Signals are "messages" to your shell program (or any OS process). The most common
signals on UNIX and Linux operating systems:

Signal Meaning

INT An interrupt signal (*C)

TERM Signal sent by the kill command

KILL Signal sent by the kill -9 command

HUP Signal sent when there is a terminal break (lost connection)
TSTP A pause signal (*Z)

CONT Aresume signal (bg %# or fg %#)

To list all of the possible signals on the system, use the kill -1 command on a
UNIX-based OS:

kill -1

HUP INT ouIT ILL TRAP ABRT EMT FPE KILL
SEGV SYsS PIPE ALRM TERM USR1 USR2 CLD

URG POLL sTop CONT TTIN TTO0U VTALRM PROF

XFSZ LWP TSTP THAW CANCEL RTMIN

139

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

In some cases, you may wish to have your script behave differently when it receives a
signal:

1. Errors may occur if a program is abruptly terminated.
2. Ifyour program may not require human interaction.

3. Ifyour program is essential for either the system or software to
operate.

To do this, you can modify the #SIG hash variable:

#!perl
f#isleepi.pl

sub nostop {
print "Can't stop this!\n";

}
$SIG{INT}=\&nostop; #Ignore control-c

print "countdown!\n\n";

$1=1;

for ($i=10;$i>0;$i--) {
print "$i \r";
sleep 1;

}

$|=0;

print "Blast off!\n";

You can change your %SIG hash anywhere in your program. The changes will affect
code until you change the hash again. To return to the default action of a signal, set the
key to "DEFAULT":

#!perl
#isleep2.pl

sub nostop {
print "Can't stop this!\n";
}

$SIG{INT}=\&nostop; #Ignore control-c

140

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

print "countdown!\n\n";
$|=1;
for ($i=10;$i»0;%$i--) {
print "$i \r";
sleep 1;

}

print "Can be stopped now!\n";
$SIG{INT}='DEFAULT'; #Stop script on control-c
sleep 10;

$|=0;

print "Blast off!\n";

If you just want your script to ignore a signal, set the key to "IGNORE":

#!perl
#sleep3.pl

$SIG{INT}="IGNORE'; #Ignore control-c

print "countdown!\n\n";

$=1;

for ($i=10;$i»0;%$i--) {
print "$i \r";
sleep 1;

}

$|=0;

print "Blast off!\n";

&Try it!
Perform the following steps:

1. Execute the following command: sleep2.pl.

2. Soon after seeing "countdown" appear on the screen, attempt to
stop the program by control-c.

141

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

3. Note the message that appears on the screen.

4. Soon after seeing "Can be stopped now!" appear on the
screen, attempt to stop the program by control-c.

5. Notice the program ends without printing "Blast off!".

Version of Perl

The version of Perl that is currently running is stored in the $] variable:

DB<1y print $]
5.00503

This variable can be very useful when you want to execute code that will only work in
a later version of Perl:

DB<1» $var=<STDIN»
This is a test
DB<2> if ($] » 5) {chomp $var} else {chop $var}

However, in cases in which you have to have a certain version of Perl, using the
require statement would be a better solution:

#!perl
#ireq.pl

require 5.6;
print "This is only a test";
Output of preceding program:

perl req.pl
Perl 5.6 required--this is only version 5.00503, stopped at ./4_req.pl
line 4.

142

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

@y
Execute the following command to enter the Perl Debugger environment:
perl -d -e "1;"
At the debugger prompt, execute the following Perl statements:
print $];

print $"V; #This is a newer version of the $] variable
introduced in v5.6.0

Exit the debugger by executing the following Perl statement:

q

Program start time

In cases in which you want to see how long your script has been running for, you can
compare the current time with the program start time. The current time is returned from
the time statement, while $*T holds the value of the program’s start time. Both times are
given in seconds from January 1, 1970:

DB<1> print $°T
1573589711

DB<2> print time - $°T
12

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

143

https://github.com/Apress/pro-perl-programming

CHAPTER 5 EXPLORING USEFUL BUILT-IN VARIABLES

Lab exercises

Important note If you did not finish the previous lab, either finish it before
starting this lab or use the completed parse2.pl provided in the lab answers
folder.

Modify parse2.pl to include the following changes:

o Ifthe "data.pl" command fails, have your script exit with an error

message.

e Have all of your print statements automatically print a newline
character at the end of the string.

e Have your script ignore control-c attempts.
e Make sure your script is running Perl 5.0 or higher.
e Use English variable names instead of the regular names.

Save these changes into a file called parse3.pl.
When you have completed your work, compare your script against the parse3.pl
file provided in lab answers.

144

CHAPTER 6

Advanced File Handling

File handling is the process of working with data that either originates from an external
source (typically a file) or is to be sent to an external destination. Perl offers several
features related to file handling that are covered in this chapter.

Review: Basic file handling

Basic Regular Expressions are discussed in the Beginning Perl Programming: From
Novice to Professional book. The goal of this section is to provide a quick review of what
is covered in that book.

If you are already familiar with these Regular Expressions, then skip to the next
section. If not, then you should try the examples demonstrated in this section.

Opening and reading from files

To open a file to read from, use the open statement:

open (HANDLE, "<file_to_open") || die "could not open file";

Note The "<" symbol tells Perl to open the file for reading. This symbol is often
omitted as Perl assumes the file is being opened for reading.

Once a file has been opened, you can read from it by using the filehandle. For
example, to read a line from the file into the variable $line, do the following:

$1line=<HANDLE>;
The process of closing the filehandle will close the port:

close HANDLE;

145
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_6

CHAPTER 6 ADVANCED FILE HANDLING

Opening and writing to files
To open a file to write to, use the open statement:

open (HANDLE, "»>file_to_open") || die "could not open file";

Note The ">" symbol tells Perl to open the file for writing. If the file already
exists, then Perl will overwrite the file contents. To append to the end of the file,
use the append symbols: ">>".

Once a file has been opened, you can write to it by using the print statement and
specifying the filehandle to print to:

print HANDLE "First line of text\n";
print HANDLE "Second line of text\n";

The process of closing the filehandle will close the port and write all of the output to
the file:

close HANDLE;

@y
Execute the following command to enter the Perl Debugger environment:
perl -d -e "1;"
At the debugger prompt, execute the following Perl statements:
open (DATA, ">output.txt") || die;
print DATA "Today is a good day to learn Perl!\n";
close DATA;
Exit the debugger by executing the following Perl statement:
q
Execute the following command to verify the contents of the file you created:

more output.txt

146

CHAPTER 6 ADVANCED FILE HANDLING

Piping in Perl

You can open filehandles that take the output of an OS command and send it into your
Perl script. Once again, the open statement creates the file handle:

open (HANDLE, "ps -fe |");

Note The command "ps -fe" will run the UNIX command that lists the
processes that are running on the system. The " | " symbol after the "ps -fe"
command tells Perl to run the "ps -fe" command and then sends this data into
the filehandle.

Once the open statement has be executed, you can read from it by using the
filehandle. For example, to read a line from the output of the command into the variable

$line, do the following:
$1ine=<HANDLE> ;

The process of closing the filehandle will close the port:
close HANDLE;

Not only can you get the output of OS commands sent into your script, you can also
send output from your script into an OS command. For example, suppose you had a
large amount of text to display on the screen (more than a screen’s worth). You want the
user to have the features of the UNIX command "more" to control the display of the text.

Here'’s how:

open (HANDLE, "| more");

Note The "|" symbol before the "more"” command tells Perl to send output of
the filehandle HANDLE to the UNIX command "more".

147

CHAPTER 6 ADVANCED FILE HANDLING

Once the open statement has been executed, you can write to it by using the
filehandle. For example, to write the entire contents of an array to the file handle

print HANDLE "@array";

Note The "more" command isn’'t executed until the filehandle is closed. The
process of closing the filehandle will close the port and send the data to the 0S
command:

close HANDLE;

The following example shows how to take advantage of the UNIX (or DOS) more

command:

#!perl
#imore.pl

open (MORE, "| more");

for ($i=1;$i < 100 ; $i++) {
print MORE "$i\n";

}

close MORE;

Displaying the file position

To see where you are in a file, use the tell statement. This statement will indicate how
far you are from the beginning of the file in bytes.

DB<1> open (GROUP, "</etc/group")
DB<2» print tell GROUP

o0

DB<3» $1line=<GROUP»>

DB<4»> print tell GROUP

13

148

CHAPTER 6 ADVANCED FILE HANDLING

Moving the file position

To move the position where you are in the file, use the seek command. The syntax of the
seek statement is

seek (FILEHANDLE, # of bytes to_move, whence)

The whence is where to begin the movement from. The following are allowed:
0 - Move from beginning of file
1 - Move from current position
2 - Move from end of file

Some examples of seek:

DB<1> open (GROUP, "</etc/group")
DB<2» print tell GROUP

o

DB<3» $1line=<GROUP»>

DB<4» print tell GROUP

13

DB<5> seek (GROUP, 5, 1)
DB<6> print tell GROUP

18

DB<7> seek (GROUP, 0, 0)
DB<8> print tell GROUP

o

DB<9» seek (GROUP, -10, 2)
DB<10» print tell GROUP
281

@ it

Change to the unit four "examples" directory and then execute the following
command to enter the Perl Debugger environment:

perl -d -e "1;"
149

CHAPTER 6 ADVANCED FILE HANDLING

At the debugger prompt, execute the following Perl statements to practice using the
tell and seek statements:

open (DATA, "djcdoscommands.txt") || die;
$dummy=<DATA>;

print tell DATA;

seek (DATA, 0, 0)

print tell DATA;

seek (DATA, 0, 2);

print tell DATA;

close DATA;

Exit the debugger by executing the following Perl statement:

q

Opening files for reading and writing

In addition to being able to open a file for reading, writing, and appending, you can open
a file for both reading and writing at the same time. The following chart illustrates the
reading/writing options:

Option Meaning

"+<file" Open an existing file for reading and writing
"+>file" Create a new file (or overwrite an existing file)
"+>>file" Open an existing file for appending

Open an existing file for reading and writing

The following is an example of opening a file for both reading and writing (note: the file
/tmp/group is a copy of the file /etc/group):

150

CHAPTER 6 ADVANCED FILE HANDLING

DB<1> open (GROUP, "+</tmp/group")
DB<2> $line=<GROUP>

DB¢<3> print $line

root::0:root

DB<4» seek (GROUP, 0, 0)

DB<5> print GROUP "VOID: Line 1\n"
DB<6> seek (GROUP, 0, 0)

DB<7> $line=<GROUP>

DB«<8> print $line

VoID: Linei

DB<9> close GROUP

Important notes

e When you open a file using "+<", your position is always at the
first byte of the file (position 0).

e Be very careful when printing to this kind of filehandle as you can
easily lose data!

e Each character you print to the filehandle will replace one
character in the file.

¢ When you close the file handle, it writes all changes into the file.

Truncating files

If you have a file open for reading and writing, you can "cut off" data with the truncate
statement:

DB<1> open (GROUP, "+</tmp/group")

DB<2> $line=<GROUP>

DB<3> print $line

root::0:root

DB<4> truncate (GROUP, 100) #truncates all characters beyond 100th
DB<5> close GROUP

151

CHAPTER 6 ADVANCED FILE HANDLING

Why open a file for both reading and writing?

Because the reading from and writing to a filehandle is character-based, you most likely
won't find the process of opening a file for both reading and writing very useful. In most
cases, it would be better to take the following actions:

1. Open a file for reading.

2. Store all of the lines of the file into an array (one line per element).
3. Close the filehandle.

4. Manipulate the array.

5. Open the file for writing.

6. Print the array to the filehandle.

7. Close the filehandle.

Or, you can edit a file "in place" by using the -i command-line option (consult Perl
documentation to learn more about this method).

While opening a file for both reading and writing is rare, it is important to cover for
two reasons:

1. Soyou understand why you normally don’t want to open a file for
both reading and writing

2. Soyou understand what a program is doing if you read someone’s
code that does open a file for both reading and writing

Making "files" within your script

There are times in which your script will need "external” data. This data is typically
stored in another file and read into your script through a filehandle. In some cases,
however, this may not be the best way of handling it.

When someone copies your script, they may not realize that the external file needs to
be copied as well. Another issue might be the permissions on the external file.

Instead of creating an external file, consider using the __END__ token after your
program code and place the data there:

#!perl
#files.pl

152

CHAPTER 6 ADVANCED FILE HANDLING

@names=<main: :DATA>;
chomp (@names);
print "$names[0]\n";

__END__
Ted
Fred
Bob

Sue

Notes

e When you read from <main: :DATAY, the data will be read from the
__END__ to the end of the file.

e Don’t place any code after the __END__ token!

e Inmany cases (such as the preceding example), it would be better
to use a more "normal"” method (such as @names=qw(Ted Fred Bob
Sue) than using the __END__ token. However, if there were 10,000
names to place in the array, then using this method would be a very
good one!

@ 1yt

Change to the unit four "examples" directory and then execute the following
command:

perl -d files.pl

Execute the following commands at the debugger prompt to practice using the
embedded main: : DATA filehandle:

print tell main::DATA; #why is this not 0? See note below.
$name=<main: :DATA>;

print $name;

q

153

CHAPTER 6 ADVANCED FILE HANDLING

Important note Don’t try to move around in the main: :DATA "file".
Technically this includes the entire Perl script. Perl automatically moves the pointer
to right after the _ END __ token, so you can start reading from the data. But, if you
seek back to the top, you are reading from the script itself (a handy thing to know
if you ever want to review the code that is currently executing).

Locking files

On the surface, file locking is a simple concept. You want to make sure someone else
doesn’t meddle with a file that you are writing data to. In reality, file locking is much
more complex.

To begin with, file locking isn’t absolute (at least in UNIX and Linux); it'’s more of a
suggestion to the OS to lock the file. Processes that attempt write to files "nicely" will
adhere to this suggestion. However, processes don’t have to be "nice".

In addition, not every OS supports file locking. Since UNIX has long been a multiuser
environment, it does support file locking.

There are four types of file locking:

Symbolic Value "Real" Value Meaning

LOCK _SH 1 Shared lock (allows reading operations from other processes)
LOCK_EX 2 Exclusive lock (when you want to write to the file)

LOCK_NB 4 Non-blocking request

LOCK_UN 8 Unlock the file

Note about the symbolic values: Prior to version 5.004, the symbolic values didn’t
exist. Using the "Real" values is safer.
Example of file locking

#!perl
#flock.pl

open (GROUP, "»>>/tmp/group");
flock(GROUP, 2);

154

CHAPTER 6 ADVANCED FILE HANDLING
print GROUP "test::987:root";
close(GROUP) ;

The process of closing the filehandle also unlocks the file. You can have the file
unlocked prior to closing the filehandle by using the following statement:

flock (GROUP, 8);

However, this often causes problems when the output of print statements hasn’t
been flushed (see the next section for more details regarding this).

Flushing output buffers

By default, the output of print statements doesn’t go directly to the filehandle. Perl will
store the output in a buffer until a newline character is printed:

#!/usr/bin/perl
#isleepi.pl

print "countdown!\n\n";
for ($i=10;$i»0;%$i--) {
print "$i \r";
sleep 1;
}
print "Blast off!\n"

If the preceding example is run, "countdown!" will appear on the screen followed by
what seems to be a pause of 10 seconds. After this pause, "Blast off!" will appear on
the screen.

The "countdown numbers" don’t appear since the output buffer isn’t "flushed" until
the newline character in the last print statement.

To solve this problem, flush the output buffer by changing the value of the $| variable:

#!perl
#isleep2.pl

print "countdown!\n\n";
$|=1;

155

CHAPTER 6 ADVANCED FILE HANDLING

for ($i=10;$i»0;%i--) {
print "$i \r";
sleep 1;

}

$|=0;

print "Blast off!\n"

Using select

The select statement discussed in a previous chapter also comes into play with the $|
variable. The filehandle indicated by the last select statement is the one that is affected
by this variable.

@ it

Change to the unit four "examples" directory and then execute the following
commands:

perl sleepl.pl
perl sleep2.pl

Notice the difference in the output of these two commands. Determine why there
is a difference based on the information provided in the previous section.

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

156

https://github.com/Apress/pro-perl-programming

CHAPTER 6 ADVANCED FILE HANDLING

Lab exercises

Important notes

#1 If you did not finish the previous lab, either finish it before starting this lab or
use the completed parse3.pl

provided in the lab answers folder.

#2 In this lab, you will be changing the parse.txt file. This is the file that has
been used to provide the data.pl

script with the output data. In the event that you "mess up" this file, there is a
"backup copy" called

parse-orig.txt. Just copy this over the "messed up" parse.txt file to return it to its
original format.

Modify parse3.pl to include the following changes:

e Open the file data. txt for both reading and writing (make sure you
lock the file).

e Read the data from the file into your array.

e When the script ends, write the data back into the file (don’t forget to
add newline characters back in if the user chooses option #1).

Save these changes into a file called parse4.pl.
Notes and hints

o Think about how your script will handle the file if it is "new" vs. if it
has been modified.

When you have completed your work, compare your script against the parse4.pl file
provided in lab answers.

157

CHAPTER 7

Pragmas

The intent behind pragmas is to modify the behavior of your Perl script. Pragmas are
invoked with the use statement:

use strict;
To disable the use of a pragma, use the no statement:

no strict;

Note Some pragmas cannot be turned off.

The purpose of this section is to review some of the useful pragmas. Some pragmas
will not be discussed either because they are covered in another class or because they
are beyond the scope of this class.

Pragma chart

The following chart lists some of the pragmas available in Perl. Note that different versions
of Perl have different pragmas available. Many of these pragmas are covered in this chapter,
but some are covered in other chapters of this book or are not covered in this book because
they are specific to topics that are not related to the topics covered here.

Pragma Meaning

autouse Delays the operation of a xrequire statement until one of the specified
subroutines is called

constant Defined constants during compile time

diagnostics Issues verbose error messages

(continued)

159
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_7

CHAPTER 7 PRAGMAS

Pragma Meaning

feature Makes use of a new feature

lib Modifies the @INC variable at compile time

locale States to either use or ignore the current locale for built-in operations

overload Overloads the basic Perl operations

strict Prevents unwise statements
subs Allows you to predeclare subroutines
vars Allows you to predeclare global variables

warnings Allows you to control warnings

The use strict pragma

There are three things you can tell Perl to be strict about: reference usage, subroutine
usage, and variable usage:

use strict 'ref’

This will cause your program to exit if a symbolic reference is used. Symbolic references
are a method of referring to variable and are not covered in this book.

use strict 'subs’

This feature will creates an error message for "barewords" (a bareword is an unquoted
string that appears to be subroutine calls) that don’t call a valid subroutine. For example,
consider the following code:

#!perl
#subs.pl

use strict 'subs';
sub hello {
print "hello\n";

}

160

CHAPTER 7 PRAGMAS

hello; #Calls a valid subroutine, no problem
justatest; #iBareword that isn't a subroutine.

@ 1yin
Execute the following command:

perl subs.pl

Notice the error message that appears. Now, modify the subs.pl script by
commenting out the "use strict", line and execute the command again:

perl subs.pl

Notice that no error message appears when the " justatest" subroutine is
executed.

You may be wondering why when you run the subs. pl script without the use strict
'subs’ pragma, no error occurs. It is fairly common that when you make a logical error
in a Perl program, Perl tends to just ignore the problem completely. In this case, you
attempted to call a function that doesn’t exist, and Perl essentially said "ok, that isn't
going to work, so I will just pretend like you didn't do that".

use strict 'vars'

This pragma will generate an error if a variable is used that
o Hasnotbeen declared as a my variable
o Isn’ta fully qualified variable name
o Hasnotbeen declared as an our variable
o Hasnotbeen declared with a use vars statement

A fully qualified variable is one that includes its package namespace in the variable
name. The following is just a brief introduction to using fully qualified variable names
from the "main" namespace of your script.

161

CHAPTER 7 PRAGMAS

While it is sometimes useful to have global variables, use strict vars doesn’t allow
this. If you want to use or modify variables from the "main" part (AKA "main" package) of
your program, use the following syntax:

$mains svar

The following program is an example of using global variables (Perl’s default
behavior):

#!perl
#usevarsi.pl

use strict 'vars';

sub test {
print "$total\n";
}

$total=100;
&test;

In this example, we are implementing use strict vars, which would cause compile
errors if we didn’t use fully qualified variable names:

perl usevarsi.pl

Global symbol "$total" requires explicit package name (did you forget to declare
"my $total"?)atusevarsi.plline?7.
Global symbol "$total" requires explicit package name (did you forget to declare
"my $total"?)atusevarsi.pl line 10.
Execution of usevars1.pl aborted due to compilation errors.
The following program shows a solution in which fully qualified variable names are used:

#!perl
#usevars2.pl

use strict 'vars';

sub test {
print "$main::total\n";

162

CHAPTER 7 PRAGMAS

$main: :total=100;
&test;

If you are asking yourself "why not declare the $total variable as a my
variable", keep in mind that a my variable would only exist in the main part of the
program. Because my variables are scoped, the subroutine would not have access to the
$total variable. In most cases this is good practice, but there are use cases in which
being able to share a variable between the main program and a subroutine (or between
different subroutines) is advantageous.

Notes regarding use strict

e The statement use strict will enforce all restrictions (refs, subs,
and vars).

e Perl built-in variables are not affected by use strict vars.

o The concept of oux variables and use vars variables is covered later
in this chapter.

Predeclaring subroutines

Typically, you need to create a subroutine prior to using it. For example, the following
code won’t produce any output since the subroutine isn’t declared until after it is called:

#!perl
#sub1.pl

hello;

sub hello {
print "hi there\n";

This can cause problems, especially if you are using use strict subs. This is
because when the subroutine call is made, the subroutine hasn’t officially been declared
yet. This is a very subtle, yet important, feature of Perl. While all of the Perl code is
compiled before it is executed (hence syntax errors result in compile time failures), some
actions are run time operations.

163

CHAPTER 7 PRAGMAS

For example, in the following program, the hello subroutine is compiled (in other
words, created) during compile time, but it doesn’t officially exist for Perl until its
definition appears in the Perl program:

#!perl
#sub2.pl

use strict subs;
hello;

sub hello {
print "hi there\n";

Using use subs you can "predefine" subroutines. The process of "predefining”
the subroutine essentially says from this moment on, I declare this a valid subroutine.
See the following for an example:

#!perl
#sub3.pl

use subs qu(hello);
use strict subs;

hello;

sub hello {
print "hi there\n";

Notes

e Once invoked, you cannot use no subs to undo a use subs

statement.

o Ifyouuse the ampersand character before the function name, you
do not have to predeclare subroutines that are placed after they are
called.

o Theuse subs quw(hello) statement is the same as invoking
sub hello {}.

164

CHAPTER 7 PRAGMAS

@ 1yit
Execute the following command:

perl subi.pl

Notice that no output that appears. The subroutine isn’t executed, and no error
occurs either. Now, execute the following command:

perl sub2.pl

Notice that an error message appears when the "hello" subroutine is executed.
This is because even though the subroutine was created at compile time, it hasn’t
been declared during run time. Now, execute the following command:

perl sub3.pl

The "use subs" statement declares the "hello" subroutine to be the one
that was created at compile time; no error occurs, and the "hello" subroutine
executes normally.

Before moving forward, it is important to answer the question: Why should I put the
subroutine at the bottom of the program rather than the top? Frankly, the reason for this
is essentially "because I can and because it is easier to find the start of the
main part of the program"

To understand this, consider the following scenario: You have a Perl program of
about 10,000 lines of code with about 30 subroutines. Typically, those subroutines would
be placed at the top of the program and the main program placed toward the bottom of
the script. If someone were to read your code, they would need to search through the file
to find the main part of the program and start reading there. Putting the main part of the
program at the top makes is a bit more readable.

Having the main part of the program at the top of the code to make the program
more readable might not be a good enough reason for you to use this technique,
especially when you consider there is a fairly significant issue that results from this
technique. To understand this issue, consider the following code:

#!perl
#subg.pl
165

CHAPTER 7 PRAGMAS

sub hello {
print "hi there, $name\n";
}
my $name="Ted";
hello;

The outcome of sub4.pl:

perl subg.pl
hi there,

As expected, the hello subroutine can’t access the contents of the $name variable
because it is a my variable that was created in the main package. Now consider the
following program in which the subroutine is declared after the main part of the program:

#!perl
#subs.pl
use subs qu(hello);

my $name="Ted";
hello;

sub hello {
print "hi there, $name\n";

The outcome of sub5.pl:

perl sub5.pl
hi there, Ted

How is this possible? The scope of a variable exists from the point it is declared until
the end of the closure of the area in which the variable is declared. This is inclusive of
other blocks of code. You probably already realize this because you have very likely
written code like the following fragment:

my $result=100;
while (some condition here) {
print $result; #this is the my variable from above

166

CHAPTER 7 PRAGMAS

You expect the my variable $result to be available within the while loop, but
consider that the while loop has its own scope that allows you to create a my variable that
only would exist within the loop:

my $result=100;
while (some condition here) {
my $test=99;
print $result; #this is the my variable from above
}
print $result; #still the original my variable
print $test; #not declared as this only exists in the while loop

In other words, if you put the subroutines as the bottom part of your program, every
subroutine will have access to every my variable in the main part of your program. There
is, however, a solution to this problem: create another level of scope as shown in the
following example.

#!perl
#sub6.pl

use subs qu(hello);

{
my $name="Ted";
hello;
}
sub hello {
print "hi there, $name\n";
}

The outcome of sub6.pl:

perl sub6.pl
hi there,

167

CHAPTER 7 PRAGMAS

Predeclaring global variables

When you refer to an undeclared variable, Perl either returns a 0 or a null string:

#!perl
#vari.pl

print "The total is $total\n";
print "The result is ", $total+5, "\n";

This is a somewhat commonly used feature in Perl. In fact, it could be used to test if
a variable has been defined (although the defined function is better than the following
technique which would also print "no" if $test was set to 0 or ""):

DB<1> if ($test) {print "yes";} else {print "no";}
no
DB<2y $test="abc"

DB<3»> if ($test) {print "yes";} else {print "no";}
yes

In small Perl scripts, using an undeclared variable can often be convenient. However,
ifyou invoke "use strict vars", you will receive an error message as in the following
program:

#!perl
#var2.pl

use strict vars;

print "The total is $total\n";
print "The result is ", $total+5, "\n";

To be able to use a variable prior to having it set, you can use the statement use vars.
This is essentially saying "ok, I haven't set this variable yet, but for the sake
of the use strict pragma, pretend this is a valid variable".Here is an example:

#!perl
#var3.pl

use strict vars;
use vars qu($total);

168

CHAPTER 7 PRAGMAS

print "The total is $total\n";
print "The result is ", $total+5, "\n";

This is very useful when you are not sure if a variable is set or not. When you use
strict vars, even a defined statement will fail:

#!perl
#varg.pl

use strict vars;

if (defined ($total)) #This will result in an error
{print "hey, it's here!\n";}
else

{print "It's not there!\n";}
When you use use vars, the defined statement will not fail:

#!perl
#varx5.pl

use strict vars;
use vars qu($total);

if (defined ($total))

{print "hey, it's here!\n";}
else

{print "It's not there!\n";}

Notes

e Once invoked, you cannot use no vars to undo a use vars

statement.

o Note that the variable that is declared by a use vars statement is
not a my variable. It belongs to the package it was declared in (in the
previous example, the "main" package).

o Ifyou switch packages, then the use vars statement no longer applies,
and an error will occur. This will be demonstrated later in this

section.

169

CHAPTER 7 PRAGMAS

use vars is obsolete
As of Perl 5.6, use vars is considered to be obsolete. It is covered in this book for the
following reasons:

1. You may wish to write code that is backward compatible to older
versions of Perl. If so, you may want to continue to use the use
vars statement.

2. While use vars is considered to be obsolete, it still performs the
same function that is always has. As a result, you will still see it
being used in another programmer’s code.

3. Part of being a Perl programmer is maintaining legacy code. There
are still many older Perl scripts that use the use vars pragma.

Instead of using use vars, you should use the our statement to "globally declare"
avariable. Much like use vars, specifying the our statement will allow you to use a
variable without its fully qualified name while your code has use strictimplemented:

#!perl
#var6.pl

use strict vars;
our $total;

if (defined ($total))

{print "hey, it's here!\n";}
else

{print "It's not there!\n";}

The our statement often creates a lot of confusion among Perl programmers
(especially novice Perl programmers). According to the Perl man pages, the our
statement '...has the same scoping rules as a "my" declaration, but does
not create a local variable'.In asense, an "our" variable is somewhat of a merge
between a my variable and a variable declared with the use vars statement.

Remember that the use vars statement allowed you to specify $var instead of
$PackageName: :var (PackageName is the name of the package the variable was declared
in), and this pertained to the package itself. A "my" variable falls completely outside the
realm of packages; it exists only in its own "area".

170

CHAPTER 7 PRAGMAS

An "our" variable allows you to specify $var instead of $PackageName: :var. So,
like variables created with use vars, the variable exists inside a package. However,
if you enter a new package, the "our" variable can still be accessed by specifying
$var (you don’t need to specify $PackageName: :var). If your leaves the scope
area that the our variable was created in, you need to use the fully qualified name
($PackageName: :var) to access the variable again. This means that unlike my variables
which are destroyed once the program leaves the scope that the variable was declared
in, our variables still exist.

All three variable types ("use vars", "my", and "our") are allowed when "use
strict 'vars'"isin force. The following example displays the differences between the

three variable types:

#!perl
#our.pl

{package ABC; #Beginning of scope and ABC package

our ($our_var)="xyz";
my($my_var)="123";

use vars qu($use_var);
$use_var="abc";

print "\$our_var = $our_var\n";

print "\$my _var = $my_var\n";

print "\$use_var = $use_var\n";

package New;

print "\$our_var = $our_var\n";

print "\$my var = $my_var\n";

print "\$use_var = $use_var\n";

}

print "\$our_var = $our_var\n";

print "\$my var = $my_var\n";

print "\$use_var = $use_var\n";

#part of ABC package
#part of scope only
#declares $$ABC::use_var
#part of ABC package

#Displays $ABC::our_var
#Displays "scoped" $my_var
#Doesn’'t exist - wrong package

#End of Scope

#Doesn’'t exist - out of scope & wrong
package

#Doesn’'t exist - out of scope
#Doesn’'t exist - wrong package

171

CHAPTER7 PRAGMAS
Output of our.pl:

our.pl
$our var = xyz
$my var = 123
$use _var = abc
$our var = xyz
$my var = 123
$use_var

$our var
$my var =
$use var =

@ yin
Execute the following command:

perl var2.pl

Notice the error that occurs due to the "use strict" statement. Now, execute the
following command:

perl var3.pl

Notice that no error occurs. The variable now has a "global-1ike" quality to it.
Now, execute the following command:

perl var6.pl

Again, no error occurs. The "use var" pragma is very similar to the "our"
statement. In both cases you can use the variable without using a fully qualified
name.

Bonus: Add the use strict statement to the our.pl program and then execute
it. Notice that an error will occur. Comment out the line that the error occurs

on, and run the program again. Another (different) error will occur. Continue to
comment out each error, and run the program until no errors occur.

172

CHAPTER 7 PRAGMAS

Using new features

Starting in Perl 5.10, new features are included via the use feature pragma. To make use

of a new feature, you use the following syntax:

use feature "feature_name";

Some of the new features are taken from Perl 6. Other features may provide backward

compatibility to older versions of Perl 5 or may provide new functionality to Perl 5. Note

that some of these features are "experimental"”, which means they may be discontinued

in future releases. Use such features sparingly.

These new features in Perl 5.10 include

say - A replacement for print that automatically prints a newline
character.

state - A replacement for my that differs in that it will retain
previously set values

switch - Provides a "switch" statement (although the statement is
actually called given, not switch)

As new versions of Perl are introduced, new features are also added. For example,

the following is a partial list of features that have been introduced in different releases

of Perl:

current_sub - Allows you to determine the current subroutine by
returning a reference to the subroutine when you use the SUB__
token. Introduced in Perl 5.16

array_base - Allows the use of the $[variable, a variable that is used
in conjunction with arrays. Introduced in Perl 5.16

Note Not all of the available features are covered in this book as some are
designed for very specific use cases. The purpose of this section is to expose you
to the functionality and purpose of the feature pragma, not to cover all of the
new features. Consult the use featuxe documentation for additional features.

173

CHAPTER 7 PRAGMAS

Example of use feature 'say’ and use feature ‘'state’

Perhaps the most useful of the new features, or at least the most commonly used, are the
state and say features. With the state feature, Perl now has stateful variables - variables
whose values are persistent from one subroutine call to another. The say feature is really
designed to provide a more programmer-friendly print statement (no longer do you
have to end your print string with a newline character):

#!perl
#feature-1.pl

use feature 'state’;
use feature 'say';

sub show {
state $var;
say "The variable is set to $var";
$var=100;

}

&show;
&show;

Example of use feature "switch"

It is slightly confusing that asking for the "switch" feature gives you access to a function
called "given"; however, the given function acts like a switch statement:

#!perl
#given.pl

use feature "switch"; #Provides access to the given statement

print "Please enter 'yes' or 'no': ";
$response=<STDIN> ;
chomp $response;

174

CHAPTER 7 PRAGMAS

given ($response) {
when ("yes") {print "You agree!\n"; }
when ("no") {print "Bummer, you don't agree\n"; }
default {print "Maybe next time\n"; }

Note Depending on the version of Perl that you are using, you may receive the
following messages:

given is experimental at given.pl line 10.
when is experimental at given.pl line 11.

when is experimental at given.pl line 12.

This is normal output as these features may change in the future.

Using all features of a specific Perl version

Both the 'say' and 'state' features are available in Perl 5.10. To load both features (and
all others available in this version), use the following code:

#!perl
#feature-2.pl

use 5.010;

sub show {
state $var;
say "The variable is set to $var";
$var=100;

}

&show;
&show;

175

CHAPTER 7 PRAGMAS

@y
Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following code in the debugger:
print "hello"; print "goodbye";

Notice that there is no "newline" character between the outputs of the two
"print" statements. Now execute the following commands:

use feature "say";
say "hello"; say "goodbye";

Notice that the newline character is automatically added to the output of each
"say" statement. Recall that this feature, along with "state" and "switch", was
added in Perl 5.10. Visit the Perl documentation (http://perldoc.perl.org),
select the version of Perl that you are using from the "Per]l Version" drop-
down list, and then review the documentation of the "feature" pragma to see
what other features are available for the version of Perl that you are using.

Using locale

Some Perl statements can behave differently based on the locale. For example, the
numeric fields of format statements assume that the decimal point character is a period
(.), while in some locales, a comma (,) is used.

To tell Perl to make use of a different locale, the locale pragma can be used. Locale
settings include date/time, currency, numeric, and other formats. Perl will query the
operating system for the current locale, which can be configured either system-wide or
for individual users on most operating systems.

176

http://perldoc.perl.org

CHAPTER 7 PRAGMAS

You can either use the locale settings throughout your entire program by stating use
locale at the top of your program or use the locale settings in a block:

#inot using locale settings here

{

use locale; #using locale settings here

}

#not using locale settings here

Final note about pragmas

This chapter was designed to introduce you to the concept of pragmas as well as cover
many of the commonly used Perl pragmas. There are certainly more pragmas, some of
which are covered in different parts of this book (the re pragmas, e.g., was introduced in
Chapter 2).

Not all pragmas are covered in this book for a couple of reasons:

1. Some pragmas are either esoteric or pertain to very specific Perl
features that are not covered in this book.

2. Some pragmas are only available for specific versions of Perl.
Using these sorts of pragmas can lead to backward dependency
issues (and, in cases of experimental pragmas, forward
dependency issues).

To learn more about other pragmas, review the "pragmas" documentation at
http://perldoc.perl.org.

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

177

http://perldoc.perl.org
https://github.com/Apress/pro-perl-programming

CHAPTER 7 PRAGMAS

Lab exercises

Important note If you did not finish the previous lab, either finish it before
starting this lab or use the completed parse4.pl provided in the lab answers
folder.

Modify parse4.pl to include the following changes:

e Implement "use strict". Note that unless you have been using
scoped variables or fully qualified variable names, you are likely
to see a lot of errors after implementing this pragma. Choose which
variable should be scoped, fully qualified, or "global-1ike"
("use vars" or "our" variables), and make the necessary changes
to your program.

e Move your subroutines to the bottom of your script.

Save these changes into a file called parse5.pl.
When you have completed your work, compare your script against the parse5.pl file
provided in lab answers.

178

CHAPTER 8

Exploring Useful
Built-in Modules

Years ago, while assisting a client with a Perl program, the client demonstrated a function
that he was very proud of. The purpose of this function was to overcome the limitations
of Perl and allow for larger floating point numbers. The code itself was a few hundred
lines long, took weeks of work, and was still a bit buggy.

In one of those "good news, bad news" situations, I introduced the client to the
Math::BigFloat module, a module that would have solved the client’s problem in
minutes, not weeks, providing a solution that didn’t contain the bugs and idiosyncrasies
of the client’s code. The client was grateful but also unhappy with the wasted time and
effort spent on his own code.

There are hundreds of built-in Perl modules (and thousands more available on
www.cpan.org/). Some of these modules are often used, while some are a bit more rare.
The purpose of this chapter is to introduce you to some of the more commonly used
built-in modules and to get you to think "let me see if that already exists" before
you start writing any code.

Built-in modules

Perl modules (sometime called libraries) are files that contain reusable code. These
libraries can either be created by you, built-in to Perl, or downloaded from the Internet.

179
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_8

http://www.cpan.org/

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

This unit focuses on using useful built-in modules. These modules are located in
directories indicated by the elements in the @INC variable. The contents of this variable
can vary depending on the platform you run Perl on and the version or distribution of
Perl. For example, the following was executed on a Windows system with Strawberry Perl
installed:

DB<1y print "@INC"
C:/Strawberry/perl/site/lib C:/Strawberry/perl/vendor/lib C:/Strawberry/
perl/lib

Note For detailed documentation of Perl modules, go to perldoc.perl.oxg or
cpan.org.

Manipulate @INC at compile time

If you install your own modules, you may not be able to put them in one of the default
locations (see output above). Typically, only the system administrator can modify these
directories.

In such cases, you will want to modify the @INC variable during compile time. To do
this, use the 1ib pragma:

#!perl
#6_l1ib.pl

use lib "perl class";
print "@QINC", "\n";

The argument to the use 1lib statement will be pre-appended to the @INC variable.
Note that you can’t simply modify the @INC using normal array manipulation method
because those are executed at run time, while modules are loaded at compile time.

There is, however, an alternative method. The use lib isn’t very flexible in that it
always pre-appends to the @INC variable. Perhaps you would rather the new directory be
appended to the @INC variable. This could be done with a BEGIN block:

180

http://perldoc.perl.org
http://cpan.org

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

BEGIN {

push (@INC, "perl class);
}

Code in a BEGIN block is executed during compile time.

Determining the location of loaded modules

Once a module has been loaded, the original location of the module is stored in the INC

associative array:

#!perl
#6_inc.pl

use Cwd;

foreach $key (keys %INC) {
print "$key -»>> $INC{$key}\n";
}

Output of the preceding program on a Linux system:

[student@linuxi student]$ perl 6_inc.pl

Carp.pm ->> /usr/local/lib/perl5/5.02801/Carp.pm

Cwd.pm ->> /usr/local/lib/perl5/5.02801/Cwd.pm
Exporter.pm -»» /usr/local/lib/perl5/5.02801/Exporter.pm

@ myin
Execute the following command to start the Perl debugger:
perl -d -e "1;"

Execute the following command in the debugger to display the location of the
module search path:

print "@INC";

181

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

Execute the following command in the debugger to load a module and determine
its location:

use File::Copy;

print $INC{"File/Copy.pm"};

Loading modules as needed

Modules can be loaded during run time only as needed by using the use autouse
pragma. The syntax for this is

use autouse 'Cwd' => qu(cwd);

If the ewd function is never used in the program, then the Cwd module is never
loaded. The advantage of this technique is that your program might execute faster. More
technically, the compile process would be faster, and, if they module is never needed,
the entire compile + execution time would be faster. However, if the module is needed at
some point in the program, it would be loaded during execution time.

This may pose problems. Module loading is normally a compile time operation
as certain checks (like the most basic "is the module available" check) are best
performed during compile time. Most of the time you would want these checks to be
done at compile time, not in the middle of the execution of the program where they
might cause the program to crash.

So, should you use the autouse pragma? It is mostly a judgment call, but if you are
loading built-in modules, which should certainly be available and shouldn’t cause
any load time errors, then the autouse pragma is fairly safe. However, if you always (or
almost always) use code from the module, it is best to load it during compile time with a
regular use statement. Only consider using the autouse pragma when the use of the code
of a module is based on some sort of condition of your code.

Consult the WARNING section of the autouse pragma documentation for more
details.

182

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

Module table

There are many modules available with the default installation of Perl. Keep in mind
that there are hundreds of modules and some of the most common used modules are
described in the following table:

Module or group Meaning

AutoSplit Split a package for autoloading

Benchmark Used to benchmark the running time of code

CPAN Setup and interface to the Comprehensive Perl Archive Network
Carp Used for debugging; gives warning messages

Class Allows for "struct-1ike" data structures

Cwd Internal method of displaying current directory

Data Used to display data in different formats

English Allows you to use less cryptic variable names

Env Imports environment variables

Exporter Used in modules to specify default import methods

Fatal Change the outcome of failed statements with die

File A group of modules that deals with files

GDBM File Gives access to gdbm lib

Getopts Used to handle command line arguments

Math A group of modules that deal with math

Sys A group of modules that gains access to system information
Text A group of modules that manipulate text

183

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

Cwd

The Cwd module provides some functions for displaying the current working directory
and changing your current directory:

Function Purpose

cwd A portable method of getting the current working directory
getcwd Displays current working directory

fastcwd A faster running of getcwd

cwd

The cwd statement is normally the best method to use to display your current working
directory. It uses the OS architecture to determine the current working directory. An
example of ewd on a Linux system:

DB<1» use Cwd
DB<2> print cwd
/etc/skel

Windows example of cwd:

DB<1> use Cwd
DB<2» print cwd
C:/Windows

getcwd

Displays current working directory but may not be portable. Avoid if you are trying to
create a portable script. An example of getewd on a Linux system:

DB<1> use Cwd
DB<2» print getcwd
/etc/skel

184

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

fastcwd

The fastcwd statement is a faster (and less safe) method of getewd. As the Perl man
pages state "...it might conceivably chdir() you out of a directory that it
can't chdix() you back into".The chdix() function is used to change from one
directory to another. An example of fastewd on a Linux system:

DB<1» use Cwd
DB<2» print fastcwd
/etc/skel

Why not use a system statement?

Many operating systems provide command that returns the current directory. While
you could determine the current directory by using an OS command with a system
statement, there are some drawbacks. The following is an example on a Linux system:

DB<1> system "pwd"
/etc/skel

DB<2> chdir("/etc")
DB¢<3> system "pwd"
/etc

The disadvantages of using this method:

o It's often slower than built-in modules because a separate operating
system shell needs to be spawned.

e It makes your script less portable (the above will only work for UNIX-
and Linux-based systems).

o It makes your script more user-dependent (e.g., the user might have
an alias for "pwd").

A good rule of thumb: If you can do it within Per], then do it within Perl!

185

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

Env

Environment variables are variables provided by the operating system or the system’s
shell. These variables often contain very useful information, such as the username of the
person running the program. By default, Perl stores environment variables in a hash. The
Env module will allow you to import these variables into scalar variables that often are
easier to work with than hashes:

DB<1> print $ENV{HOME}
/export/home/student2
DB<2y print $HOME

DB<3» use Env
DB<4> print $HOME
/export/home/student2

qiﬁﬁﬁyiﬂ
Execute the following command to start the Perl debugger:
perl -d -e "1;"
Environment variables are different depending on your operating system. For
example, on Linux systems, $ENV{HOME } contains the current user’s home
directory path. On Windows this information is in two %ENV keys: HOMEDRIVE and
HOMEPATH. Execute the following code which should allow you to view the current’s

user’s home directory path in either Linux or Windows (the \ is required before
pressing the <ENTER> key to allow for multiline statements in the Perl debugger):

use Env;
if ($HOME)
{

print "$HOME\n";

~ - =

186

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

else \

{ \
print "$HOMEDRIVE$HOMEPATH\n"; \

Note Environment variables are very useful, but you should remember that they
are specific to the platform. In other words, the environment variables provided
by Windows is different than the environment variables provided by Linux. If your
program is not designed to be portable, using environment variables should not
pose a problem.

File modules

There are many modules in the File group. This section covers some of the most useful of
these modules.

File: :Basename

This module will split up a pathname using the OS’s default delimiter for filenames. The
OS type is determined by looking at the $*0 variable. An example:

DB<1> #This is on a UNIX machine

DB<2> print "$°0"

solaris

DB<3» use File::Basename

DB<4> ($base, $path) = fileparse("/usr/local/bin/test.txt")
DB<5> print $base

test.txt

DB<6> print $path

/usr/local/bin/

187

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

File: :Compare

This module will check to see if two files are the same or not. It returns 0 if the two files
are equal, 1 if they are unequal, or -1 if an error occurred.

DB<1> use File::Compare
DB<2> print compare ("/etc/qroup", "/tmp/qroup")

0

DB<3> print compare ("/etc/passwd", "/etc/group")
1

DB<4> print compare ("/etc/passwd", "/etc/shadow")
1

DB<5> print compare ("/etc/passwd", "/etc/junk")
-1

File::Compare can handle binary files as well as text files:

DB<1> print compare ("/usr/bin/ls", "/usr/ucb/1ls")
1

File::Copy

While there is a built-in Perl rename statement, there isn’t any built-in copy statement.
With the File: : Copy module, you can copy files:

DB<1» use File::Copy
DB<2> copy ("/etc/group", "/tmp/group")

File::Path

Two of Perl’s built-in statements, mkdir and rmdir, are extremely limited. The mkdir
statement is limited because the path up until the new directory must currently exist.
The following will fail because the "data" directory doesn’t exist:

DB<1> mkdir ("/tmp/data/newlogs”, 0755) || warn “"could not make dir"
could not make dir at (eval 4) line 2, <IN> chunk 1.

188

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

The rmdir statement is limited because it will only delete empty directories. The
solution to both of these problems is the File: :Path module. This module provides two
new statements: mkpath and rmtree.

The mkpath statement will make a directory and its parent directories if needed. It

takes three arguments:
1) The name of the path to create

2) Avalue to indicate if the command should print the name of each

directory that is created (1=yes, 0=no)
3) The permissions of the new directories (defaults to 0777)

An example of mkpath:

DB<1» use File::Path

DB<2> mkpath ("/tmp/data/newlogs”, 1, 0755)
mkdir /tmp/data

mkdir /tmp/data/newlogs

The rmtree statement will remove a directory tree (much like the UNIX command

"rm -1"). This statement also takes three arguments:
1) The name of the directory structure to delete

2) Avalue to indicate if the command should print the name of each
file and directory and the action that is being taken (1=yes, 0=no)

3) Avalue to indicate if rmtree should skip files that you cannot
delete (1=yes, 0=no)

An example of xrmtree:

DB<1> use File::Path

DB<2> rmtree ("/tmp/skel”, 1, 1)
unlink /tmp/skel/local.login
unlink /tmp/skel/local.profile
unlink /tmp/skel/.profile
unlink /tmp/skel/local.cshrc
rmdir /tmp/skel

189

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

File::Find

The File: :Find module provides two subroutines that will allow you to traverse a
directory tree and perform actions: find and finddepth. The basic syntax is

find (\&wanted, @directorys_to_search);

The \&wanted is a subroutine reference to wanted. References are discussed in detail
in a later class. The subroutine does not have to be called wanted().

This wanted function accepts no arguments but creates three variables for use within
the function:

e $File::Find::dir stores the current directory name.
e $_ stores the current filename within that directory.
e $File::Find: :name stores the complete pathname to the file.

See the following for an example of this module:

#!perl
#6_find-1.pl

use File::Find;
sub display {

print "$_\n";
}

find (\&display, "..");

The wanted function has other features; consult the documentation for this module
(http://perldoc.perl.org/File/Find.html#The-wanted-function).

@ it

Switch to the "unit6" examples directory and then execute the following
command:

perl 6 find-1.pl

190

http://perldoc.perl.org/File/Find.html#The-wanted-function

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

This should list all of the files from the "examples" directory down. To make this
more useful, replace the print line in this file with the following:

if (/76/) {
print "$ \n";

}

This should only print the files that begin with the number 6. This demonstrates
that the find command will find ALL files; it is really up to you to create a filtering
function.

Additional useful file modules

There are some additional file modules that you should consider exploring:

File: :DosGlob - Provides DOS-based wildcard behavior for filename

matching.

File::Fetch - A very useful module which allows you to "fetch" a
file from a remote location (or even a local location) using ftp, http,

file, git, or rsync.

File: :Spec - Provides a host of useful utilities that allow you to
perform platform-specific operations on the filesystem. For example,
the devnull function returns a string of the null device for the current
platform. There are about 20 functions in all, many of which provide
common filesystem operations that you would otherwise need to
create code for or rely on system statements.

File::Spec:: platform - This doesn’t represent a single module
but rather a collection of modules. Replace platform with Mac,
082, Unix, Win32, or others for access to functions specific to that

platform.

191

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

Math modules

There are many modules in the Math group. This section covers some of the most useful
of these modules.

Math: :BigFloat

Normally, the precision of floating point numbers is dependent on the OS’s limits. While
you can create a scalar variable that "appears” to be a big floating-point number, as soon
as it is used as a number, Perl will round it off to fit the system’s limit:

DB<1» $num="1.456456456456456456456456456456456456456"
DB<2> print $num+1
2.45645645645646

To overcome this limit, use the Math: :BigFloat module:

DB<1> use Math::BigFloat

DB<2> $num2 = new Math::BigFloat "1.456456456456456456456456456456456456456"
DB<3> print $num2+1

2.456456456456456456456456456456456456456

Math::Trig

With this function, you can perform trigonometric functions:

DB<1> use Math::Trig
DB<2> print tan(0.8)
1.02963855705036
DB«¢3» print pi/4
0.785398163397448
DB<4» print sin(.7)
0.644217687237691

For a complete listing of all of the trig functions, look at the man page for
Math::Trig.

192

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

Additional useful math modules

There are some additional File modules that you should consider exploring:
o Math::BigInt - Like Math: :BigFloat but only for integers.
o Math::BigRat - Like Math: :BigFloat but only for rational numbers.

e Math::Complex - Provides mathematical operations for complex

numbers.

Sys modules

One of the modules in the Sys group of modules is Sys : tHostname. This module will
attempt (using several methods) to return the system’s host name:

DB<1» use Sys::Hostname
DB<2» $hostname=hostname
DB<3» print $hostname
rainbow

The methods used are system dependent, so it will often work on different platforms.

Another potentially useful Sys module is Sys: :Syslog. This provides an interface
to the syslog service. This allows you to send log file entries to the system logger, which
in turn sends this data to actual log files or other locations (remote log servers, user
terminals, etc.).

The Sys: :Syslog module is limited in that it is designed to work on Unix systems
(and, to some extent, Linux systems), and it doesn’t work with some services, like
journald.

Text

The Text group of modules contains subroutines that modify text. This section covers
some of the most useful of these modules.

193

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

Text: :Tabs

This module contains two subroutines:
expand - Expands tabs just like the UNIX command expand

unexpand - Compresses spaces into tabs just like the UNIX

command unexpand

To use the expand statement, first set a variable called $tabstop to indicate where the
tab stops should be. Then, just use the expand statement:

DB<1» use Text::Tabs

DB<2> $tabstop=3

DB<3» @line=("A tab: Two more the end")
DB<4> @line=expand(@line)

DB<5> print $line[o0]

A tab: Two more the end

The unexpand statement will replace spaces with tabs:

DB<1»> use Text::Tabs

DB<2> $tabstop=5

DB<3> @line=("Here are ten spaces: Here is five: Finished!")
DB<4» @line=unexpand(@line)

DB<5> print $line[o0]

Here are ten spaces: Here is five: Finished!

Text: :Wrap

The purpose of the Text: :Wrap module is to be able to break up a paragraph "nicely"
across multiple lines. The wrap statement will format a paragraph by breaking up lines
on word boundaries. You can also "indent" text with spaces or tabs.

The format of the wrap statement:

wrap (first_line_indent, additional_line_indent, string_to_format)

194

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

In the following example, wrap will break the string on word boundaries and place a
tab before the first line:

#!perl
#wrap1.pl

use Text::Wrap qu(wrap $columns);

$line="This is an example of how you can break up text into formatted
paragraphs. This process is done by professionals on a closed track. Don't
attempt this at home!";

print "$line\n\n\n";

$columns=40;
print wrap ("\t", "", $line);

In this example, wrap will break the string on word boundaries and place a tab before
all lines:

#!perl
#wrap2.pl

use Text::Wrap quw(wrap $columns);

$line="This is an example of how you can break up text into formatted
paragraphs. This process is done by professionals on a closed track. Don't
attempt this at home!";

print "$line\n\n\n";

$columns=40;
print wrap ("\t", "\t", $line);

@ it

Switch to the "unit6" examples directory and then execute the following
command:

perl wrapl.pl

195

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

Notice that only the first line of the output is indented. Now execute the following
command, and notice that all lines are indented:

perl wrapl.pl

Review the code for these two scripts, and determine why there is a difference in
the output.

Fatal

Many Perl statements return "true" if they succeed or "false" if they fail. The Fatal
module can be used to modify the behavior of such statements.

Instead of having these statements just return a value, Fatal can be used to have your
script die if the statement fails. The syntax of Fatal:

use Fatal quw(commands_to_affect);
In the following example, if the open statement fails, the script will die:

#!perl
#fatal.pl

use Fatal quw (open);
open (GROUP, "</tmp/junkfile");

print "see...the program stopped!";

Benchmark

The Benchmark module helps you perform benchmarking tasks on your code. It
provides many features that you can make use of, including

e new - Returns the current time
o timediff - Returns the difference between two times
o timestr - Converts times into "understandable" formats

o timeit - Runs a chunk of code once

196

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

o timethis - Runs a chunk of code several times
o timethese - Runs several chunks of code several times

Note that Benchmark is an OO-based module. This may result in some unusual
looking code (unless you understand OO Perl).
See the following for an example:

#!perl
#benchmark-1.pl

use Benchmark;

$|=1; print "wait";
$to = Benchmark-snew;

for (1..10) {
print ".";
sleep 1;

}
$t1

Benchmark-»new;

$td = timediff($t1, $to0);
print "the code took:",timestr($td),"\n";

See the Benchmark documentation for more details (http://perldoc.perl.org/
Benchmark.html).

Getopt::Std

The Getopt: :Std module is standard in Perl. It provides you with an easy way to parse
command-line arguments that are passed in by users. Consider the following code:

#!perl
#std_opti.pl

use Getopt::Std;

getopts('azb:c:');

197

http://perldoc.perl.org/Benchmark.html
http://perldoc.perl.org/Benchmark.html

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

print "$opt_a\n"
print "$opt_b\n"
print "$opt_c\n"

°
b
°
b
°
b

In the previous example, the getopts function defined three valid options: -3, -b,
and -c. If these options are used, then the argument passed to the options are assigned
to $opt_a, $opt b, or $opt _c:

ocs% perl std_opti.pl -a "test" -c "null"
test

null
The arguments that are parsed are also stripped off of the ®ARGV array:

#!perl
#istd_opt2.pl

use Getopt::Std;
getopts('azb:c:');

print "$opt_a\n";
print "$opt_b\n";
print "$opt_c\n";
print "@ARGV\n" #prints nothing, @ARGV now empty

ocs’k perl std_opt2.pl -a "test" -c "null"
test

null
You can also have the option/arguments placed into a hash:

#!perl
#std_opt3.pl

use Getopt::Std;

getopts('azb:c:’, \%ops);

198

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

print "$ops{a}\n";
print "$ops{b}\n";
print "$ops{c}\n";

If you want some options to have arguments and others to be simple booleans, place

a ":" character after the options that are to have arguments (the rest will be booleans):

#!perl
#istd_optq.pl

use Getopt::Std;
getopts('abc:');

print "$opt_a\n"
print "$opt_b\n"
print "$opt_c\n"

5

5

5
To tell the getops function to stop looking at arguments, use a - - option (-- will be

removed from the @ARGV array):

ocs% perl std_opt4.pl -a -b -- -c "null"

If an unknown argument is passed, the getopts function will return false, and the
program will end via a die statement:

#!perl
#std_opt5.pl

use Getopt::Std;
getopts('abc:') || die;

print "$opt_a\n";
print "$opt_b\n";
print "$opt_c\n";
print "@ARGV\n"

ocs’% perl std_opt5.pl -a -b -d
Unknown option: d
Died at std_opt5.pl line 6.

199

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

Getopt::Long

The Getopt: :Long module is standard in Perl. It provides you with more advanced
techniques to parsing command-line options than Getopt: :Std.

Instead of using simple arguments like -a, -b, and - ¢, with Getopt: :Long, you
use options like --all, --verbose, and --catchall. These options will be easier to
remember and will "self-document". Simple example:

#!perl
#long_opti.pl

use Getopt::Long;
GetOptions ('verbose' =» \$verbose, 'all’' =» \$all, "catchall" =» \$catch);

print "$verbose\n";
print "$all\n";
print "$catch\n";
print "@ARGV\n"

One nice feature of the GetOptions function is the ability to specify the "opposite”
of an option. For example, the following will allow for both a "--verbose" and a
"--noverbose" option:

#!perl
#long_opt2.pl

use Getopt::Long;
GetOptions ('verbose!' =» \$verbose, 'all' =» \$all, "catchall" =» \$catch);

print "$verbose\n";
print "$all\n";
print "$catch\n";
print "@ARGV\n"

In the preceding example, the $verbose variable will be assigned a value of 1 if
--verbose is provided as an option and a value of 0 if --noverbose is provided.

200

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES
To pass arguments to options, use the following syntax:

#!perl
#long_opt3.pl

use Getopt::Long;
GetOptions ('verbose!' => \$verbose, 'all=i' =» \$all, "catchall" =» \$catch);

print "$verbose\n";
print "$all\n";
print "$catch\n";
print "@ARGV\n"

The "1" means that an integer can be passed. For a string, use "s". For a floating
point number, use "f".
You can have multiple values passed in by using the following syntax:

#!perl
#long_opt4.pl

use Getopt::Long;

GetOptions ('verbose!' =» \$verbose, 'all=i' =» \$all, "catchall=s" =»
\@catch);

print "$verbose\n";
print "$all\n";
print "@catch\n";
print "@ARGV\n"

Note that the program would have to be run like this:
ocs% perl long_opt4.pl --catch "abc" --catch "xyz"

In the following example, you can have users pass key/value pairs to be assigned to a
hash:

#!perl
#long_opt5.pl

use Getopt::Long;

201

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES
GetOptions ('verbose!' =» \$verbose, 'all=i' =» \$all, "catchall=s" =»

\%catch);

print "$catch{test}\n";
print "$catch{error}\n";
print "@ARGV\n"

The syntax on the command line would be
ocs’% perl long opt5.pl --catch test="abc" --catch error="xyz"

There are other options available when you use Getopt: :Long. Consult the
documentation for further details.

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Lab exercises

Important note If you did not finish the previous lab, either finish it before
starting this lab or use the completed parse5.pl provided in the lab answers
folder.

Modify parse5.pl to include the following changes:

o Instead of putting the data file in the /tmp directory, place it in
the user’s home directory. To make it easier to use the HOME
environment variable, use the ENV module.

202

https://github.com/Apress/pro-perl-programming

CHAPTER 8 EXPLORING USEFUL BUILT-IN MODULES

o Prior to displaying the menu, run the command "ps -fe", strip out
whitespace as you have done in the past, and store the output in a file
called "/tmp/.parse". Compare this new file with parse.txt in the
user’s home directory. If they are different, ask the user if they want
to update their "parse.txt" file with the new file. If the user answers
"yes", perform this action. Remove the "/tmp/.parse" file when you
are finished.

Save these changes into a file called parse6.pl.

When you have completed your work, compare your script against the parse6.pl file

provided in lab answers.

203

CHAPTER 9

Debugging Tools

A fundamental part of programming is debugging code. This includes not only your own
code but often code written by other people. You might be sent some code to debug by
a fellow programmer, or download one of the thousands of modules from cpan.org (one
which, unfortunately, doesn’t work quite as expected).

Fortunately, Perl has a variety of tools to help you debug code. This chapter focuses
on many of these tools, including the "warnings" feature, reading diagnostic codes, and
the Perl debugger.

Review: The -w switch

Note The -w switch is discussed in the Beginning Perl Programming: From
Novice to Professional book. The goal of this section is to provide a quick review of
what is covered in that book as well as introduce some additional features of this
option.

The -w switch (option) will tell Perl to look for and report unusual (logical errors) code,
including the following:

e Variable and filehandle names that are mentioned only once
o Scalar variables that are used before being set

e Redefined subroutines

e References to undefined filehandles

o References to filehandles opened read-only that the script is
attempting to write to

205
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_9

http://cpan.org

CHAPTER9 DEBUGGING TOOLS

e Values used as a number that don’t look like numbers
e Subroutines that recurse more than 100 deep

Using the -w switch can avoid common (but sometimes tricky) programming errors
such as some of the logical error in the following code:

#!perl
#w.pl

undef $var;
if ($var == 0) {
print "yes\n";

}
print GROUP "hello there\n";

$name="Bob" ;

if ($name == 0) {
print "yes\n";

Note that if you ran the previous program, the code would execute without any

€Irors:

[student@linuxi student]$./w.pl
yes
yes

There are, however, problems with this code. The problems are logical in nature, and
by using the -w option to the perl executable, you can see these logical errors:

[student@linuxi student]$ perl -w ./w.pl

Name "main::GROUP" used only once: possible typo at w.pl line 9.
Use of uninitialized value $var in numeric eq (==) at w.pl line 5.
yes

print() on unopened filehandle GROUP at w.pl line 9.

Argument "Bob" isn't numeric in numeric eq (==) at w.pl line 13.
yes

206

CHAPTER9 DEBUGGING TOOLS

Note that the code still executed (as demonstrated by the two lines of "yes" output).
The -w option issues warning messages but does not stop the execution of the code.

The $”N variable

When you use the =w switch, the $*W variable is set to the value of 1. If you don’t use the
-w switch, the $*W variable is set to 0. This is a handy way to see if warnings are turned on
at any point in the program. You can also turn warnings on (and off) by modifying this
variable.

use warnings

Warnings can also be turned on (and off) with the warnings pragma:

use warnings; #to turn on warnings
no warnings; #to turn off warnings

There are a couple of benefits to using this pragma vs. using the =w switch. One
advantage is that the =w switch turns on "all" warnings, but you can use the pragma to
turn on specific warnings:

use warning "numeric";

Besides "numeric", there are literally dozens of warning categories. See the Category
Hierarchy section of warning pragma documentation for more categories of warnings.

The pragma is also scope based, so you can easily turn on (or off) warnings for a
chunk of code:

use warnings;

no warnings;
#important code here - warnings off

}

#important code here - warnings on

207

CHAPTER9 DEBUGGING TOOLS

The -W switch

The -W switch is like the -w switch; however, if you use =W, then any attempt to disable
warnings in the program will be ignored. This means that -W overrides any no warnings
or $*W=0 statements, forcing warnings during the entire execution of the program.

This option is useful when you have multiple no waxnings or $*W=0 statements in a
program and you want to temporarily execute the code with these statements disabled.
Instead of commenting out each no warnings or $*W=0 statement, use the -W option.

The -X switch

Much like the -W switch, the -X switch will apply to the entire execution of the program.
However, the -X switch disables all warnings, regardless if any use warnings or $*W=1
statements exist in the code.

The Perl debugger

Note Discussed in the Beginning Perl Programming: From Novice to Professional
book, the goal of this section is to provide a quick review of what is covered in that
book as well as introduce some additional powerful features of the Perl debugger.

Perl provides a built-in debugger that can be invoked when running Perl with the -d
option:

[student@linuxi student]$ perl -d use.pl
Loading DB routines from perl5db.pl version 1.0402

Enter h or 'h h' for help

main::(use.pl:2) copy("example.txt", "newfile.txt ");
DB<1>

Some notes about the debugger:

e Perl must first be able to compile the code prior to entering the
debugger.

o main::(use.pl:2) means "Main part of script use.pl, line #2".

208

CHAPTER9 DEBUGGING TOOLS

» Atthis point, no statements have been executed.

e The command above the prompt (DB<1>) is what the next command
to be executed.

Debugger commands
The following chart illustrates the most popular commands available in the debugger:
Command Meaning
'l cmd Runs the command (cmd) in a separate process (this is
typically a shell command)
b Create a breakpoint
C Continue (to next breakpoint)
D Delete all breakpoints
d Delete a breakpoint
h Interactive help
H -num Prints last "num" Perl statements (excludes debugger
commands)
1 Lists the next ten lines of code to be executed
L List all of the breakpoints and actions
n Step through a statement (if subroutines are called,

executes over the subroutine)

p expr Essentially the same as Perl’s print statement (expr is a
Perl expression which can be a value or the outcome of a
Perl statement)

q Quits the debugger

R Restart the debugger

return Repeat the last n or s command
S Lists defined subroutines

(continued)

209

CHAPTER9 DEBUGGING TOOLS

Command Meaning

s Step through a statement (if subroutines are called,
executes one subroutine statement at a time)

V [pkg [vars]] Display all of the variables in package (defaults to main)
X expr Prints expr in an "easy-to-read" format

y [level [vars]] Display all of the lexical variables

Getting help

The h command brings up a list of debugger commands and a brief description of each.
Not much more than the aforementioned list but useful if you don’t have this manual
handy. The output will scroll off the screen much like a cat command in UNIX does. To
avoid this, add a pipe character before the command:

DB<1> |h
List/search source lines: Control script execution:
1 [In|sub] List source code T Stack trace
-or . List previous/current line s [expr] Single step [in expr]
v [line] View around line n [expr] Next, steps over subs
f filename View source in file <CR/Enter> Repeat last nor s
/pattern/ ?patt? Search forw/backw r Return from
subroutine
M Show module versions c [1In|sub] Continue until
position
Debugger controls: L List break/watch/
actions
of...] Set debugger options t [n] [expr] Toggle trace [max

depth]][trace expr]
<[<1I{[{11>[>] [cmd] Do pre/post-prompt b [1n|event|sub] [cnd] Set breakpoint

! [N|pat] Redo a previous command B 1In|* Delete a/all
breakpoints

H [-num] Display last num commands a [In] cmd Do cmd before line

= [a val] Define/list an alias A 1In|* Delete a/all actions

210

CHAPTER9 DEBUGGING TOOLS

h [db_cmd] Get help on command W expr Add a watch
expression

hh Complete help page W expr|* Delete a/all watch
exprs

|[[|]db_cmd Send output to pager I[!] syscmd Run cmd in a

subprocess
qor *D Quit R Attempt a restart
Data Examination: expr Execute perl code, also see: s,n,t expr
x|m expr Evals expr in list context, dumps the result or lists
methods.

p expr Print expression (uses script's current package).

S [[!]pat] List subroutine names [not] matching pattern

V [Pk [Vars]] List Variables in Package. Vars can be “pattern or

Ipatterxn.

X [Vars] Same as "V current_package [Vars]". i class inheritance

tree.

y [n [Vars]] List lexicals in higher scope <n>. Vars same as V.
e Display thread id E Display all thread ids.
For more help, type h cmd_letter, or run perldoc perldebug for all docs.

Note The pipe character can be used prior to almost all commands to control
scrolling.

An alternative to print

The x command provides a more "easy-to-read" method of printing. Its behavior
differs greatly depending on the data that it is printing, so you will want to "play with
it" to see the differences. A good example to start with is when you print an array:

DB<1> @names=qw(red green blue)
DB<2» x @names

0 'red'
1 ‘'green'
2 'blue’

211

CHAPTER9 DEBUGGING TOOLS

Stepping through code

There are two commands that will allow you to step through code: n and s. Normally,
both of these commands work the same: they step through code one step at a time.
Where they differ is when you are stepping into a subroutine.

When the n command "steps over" a subroutine call, it will execute all of the
statements in the subroutine. This is useful when you know that the subroutine is "good"
and you don’t want to step through each line one at a time.

When the s command "steps into" a subroutine call, it will execute each statement
in the subroutine one at a time.

Once you have executed a n or s command, you can re-execute the command again
just by pressing the <enter> or <return> keys.

Listing code

To list code, use the 1 command. The 1 command will list a window of lines. Each
successive 1 command will show the next ten lines of code to be executed:

[student@linuxi student]$ perl -d select.pl
Loading DB routines from perl5db.pl version 1.0402
Emacs support available.

Enter h or "h h' for help.

main::(select.pl:4): open (LOGFILE, "»>/tmp/data${$}$ENV{USER}");
DB<1> 1

4== open (LOGFILE, "»/tmp/data${$}$ENV{USER}");

5

6: print "Starting log\n"; #sends output to STDOUT
7

8: select LOGFILE; #output will now go to file

9: print "Starting log...\n";

10: print "No errors found\n";

11: print "End of log\n";

12

13: select STDOUT;

212

CHAPTER9 DEBUGGING TOOLS

With the 1 command, you can also list either a single line to display or a range of

lines:

DB<1> 1 6

6: print "Starting log\n"; #sends output to STDOUT
DB<2> 1 6-10

6: print "Starting log\n"; #sends output to STDOUT
7

8: select LOGFILE; #output will now go to file

9: print "Starting log...\n";

10: print "No errors found\n";

Setting breakpoints

The b command allows you to set breakpoints. Typically, you set breakpoints at a line
number or on a subroutine:

DB<1» b 200
DB<2» b test

You can also include a conditional statement with the breakpoint:

DB<1»> b 200 x»100

Listing breakpoints

When you create a lot of breakpoints throughout your code, it is sometimes difficult
to "see" where the breakpoints are. To see a list of current breakpoints, use the L
command:

DB<1> b 6
DB<2> L
4_sleep2.pl:
6: for ($i=10;$i»0;%i--) {
break if (1)

213

CHAPTER9 DEBUGGING TOOLS

Note that when using the 1 command, breakpoints are indicated by a "b" character
after the line number (e.g., 5:b):

DB<4> 1 4-11

4== print "countdown!\n\n";
5:b $|=1;

6: for ($i=10;$i»0;%i--) {
7:b print "$i \r";

8: sleep 1;

9 }

10: $|=0;

11:b print "Blast off!\n"

Continue to breakpoints

Once breakpoints are set, you can have the debugger execute all code up to the next
breakpoint by using the c command:

DB<1> b 6
DB<2» ¢
countdoun!

main::(4_sleep2.pl:6): for ($i=10;$i»0;$i--) {
DB<3>

Deleting breakpoints

To delete a breakpoint on a certain line, use the Bcommand:

DB<1> b 5

DB<2> b 7

DB<3> b 11

DB<4y 1 4-11

4== print "countdown!\n\n";
5:b $|=1;

6: for ($i=10;$i>0;%$i--) {
7:b print "$i \r";

214

CHAPTER 9

8: sleep 1;

9 }

10: $|=0;

11:b print "Blast off!\n"
DB<5> B 5
DB<6> 1 4-11

4== print "countdown!\n\n";

5: $|=1;

6: for ($i=10;$i»0;%i--) {

7:b print "$i \r";

8: sleep 1;

9 }

10: $|=0;

11:b print "Blast off!\n"

To delete all breakpoints, use the B * command:

DB<7> B *

Deleting all breakpoints...
DB<8> 1 4-11

4== print "countdown!\n\n";
5: $|=1;

6: for ($i=10;$i»0;%i--) {
7: print "$i \r";

8: sleep 1;

9 }

10: $|=0;

11: print "Blast off!\n"

12

DEBUGGING TOOLS

Note You can also temporary disable a breakpoint with the disable command,
for example, disable 7.To enable a breakpoint again, use the enable

command: enable 7.

215

CHAPTER9 DEBUGGING TOOLS

Displaying variables and subroutines

The V command will display all existing variables in a given package. By default, it
displays the variables of the main package:

DB<1» V
$@ ="'
FileHandle(stdin) =» fileno(0)
%SIG = (
"ABRT' => undef
{remaining output omitted}

Notes

e Most of the output you would normally see has been omitted from the
preceding example.

e Normally you want to put the pipe character in front of the V. command to
control the scrolling of the output.

To display lexical variables, use the y command:

DB<1> y
$isa = undef

Only lexical variables in the current scope are displayed. If there are higher levels of
scope, you can use a numeric value to indicate which level to display:y 1

For the y command to work correctly, you will likely need to install the PadWalker
module. If you are using Strawberry Perl or DWIM Perl or have manually installed the
cpan client utility, you can execute the following command:

cpan PadiWalker
On ActivePerl, use the following command:
ppm install PadiWalker
To see the currently defined subroutines, use the S command:

DB<1> S
Carp::carp

216

CHAPTER9 DEBUGGING TOOLS

Carxp::cluck

Carp::confess

Carp::croak

{remaining output omitted}

You can limit the output of the V, y, and S commands using regular expressions. For
example, to see just the subroutines that have "vars" in the subroutine name, use the
following:

DB<2> S vars
Config::config_vars
vars: :BEGIN
vars::import

Because the pattern can be a regex, you can use syntax like the following:

DB<3» S “vars
vars: :BEGIN
vars: :import

You can also list all subroutines that don’t contain a pattern by placing a ! in front
of the regex. For example, § !“vars will display all subroutines that don’t begin with
"vars".

Additional debuggers

The built-in Perl debugger is very powerful; however, there are additional debuggers and
debugging features that you may want to explore. The following provides a brief list of
some of the more commonly used tools:

o ActiveState - ActiveState provides a fork of Perl that includes many
useful features (such as ppm to manage Perl modules). ActiveState
has a GUI-based debugger which can be used with Komodo IDE, a
full IDE for Perl and other languages. Unfortunately, these tools only
come with the paid version of ActiveState Perl.

o Padre, the Perl IDE - This IDE has some debugging features as well
as a host of other features to make finding errors easier.

217

CHAPTER9 DEBUGGING TOOLS

o Devel:: modules - This is a large collection of modules that
provide useful information that can aid you in debugging scripts.
Use the following link to explore: https://metacpan.org/
search?q=Devel%3A%3A&search type=modules

Understanding error messages

There are several different categories of error messages. According to the perldiag
documentation, "These messages are classified as follows (listed in
increasing order of desperation):

(W) A warning (optional).

(D) A deprecation (enabled by default).

(S) A severe warning (enabled by default).

(F) A fatal error (trappable).

(P) An internal error you should never see (trappable).
(X) A very fatal error (nontrappable).

(A) An alien error message (not generated by Perl)."

The perldiag documentation is an excellent reference for more details regarding
specific error messages. There are literally hundreds of messages with explanations
provided in this document. For example, consider the following code:

#!/usx/bin/perl
#diagi.pl

print "this is only a test;

There is a syntax error (no ending quotes), which typically produces the following
compiler error:

Can't find string terminator anywhere before EOF at diagi.pl line 4

218

https://metacpan.org/search?q=Devel::&search_type=modules
https://metacpan.org/search?q=Devel::&search_type=modules

CHAPTER9 DEBUGGING TOOLS

At this point in your Perl programming experience, this should be a pretty easy
problem to diagnose. However, imagine you seeing an error message for the first time.
They don’t always make 100% sense, so you can use the perldiag page to learn more
details. For example, a search for "Can't find string terminator" in the perldiag
documentation results in the following:

"Can't find string terminator %s anywhere before EOF

(F) Perl strings can stretch over multiple lines. This message means
that the closing delimiter was omitted. Because bracketed quotes count
nesting levels, the following is missing its final parenthesis:

print q(The character '(' starts a side comment.);

If you’re getting this error from a here-document, you may have included
unseen whitespace before or after your closing tag, or there may not be
a linebreak after it. A good programmer’s editor will have a way to help
you find these characters (or lack of characters). See perlop for the full
details on here-documents."

use diagnostics

The diagnostics pragma will use the content of perldiag to provide more verbose
error messages. This statement is very useful when debugging programs; consider the
following code:

#!/usr/bin/perl
#diag2.pl

use diagnostics;
print "this is only a test;

There is a syntax error (no ending quotes), which typically produces the following

compiler error:

Can't find string terminator anywhere before EOF at diag2.pl line 5

219

CHAPTER9 DEBUGGING TOOLS
When run when diagnostics are "turned on", the following error is displayed:
Can't find string terminator '"' anywhere before EOF at diag2.pl line 5 (#1)

(F) Perl strings can stretch over multiple lines. This message
means that the closing delimiter was omitted. Because
bracketed quotes count nesting levels, the following is missing
its final parenthesis:

print q(The character '(' starts a side comment.);

If you're getting this error from a here-document, you may have
included unseen whitespace before or after your closing tag or
there may not be a linebreak after it. A good programmer's editor
will have a way to help you find these characters (or lack of
characters). See perlop for the full details on here-documents.

Uncaught exception from user code:
Can't find string terminator '"' anywhere before EOF at diag2.pl

line 5.

Carp

The Carp module can be used to generate error messages. The module provides
functions that act similar to Perl’s warn and die commands:

Function Purpose
Carp Produces error messages similar to warn
Croak Acts similar to the die statement

Using carp

The built-in Perl statement warn will print error messages to STDERR. It will also display
the line number in which the error occurred.

220

CHAPTER9 DEBUGGING TOOLS

The carp command will perform in the same manner in cases in which it is called
within the main part of the program. If it is called within a subroutine, it will also provide
the original line from where the subroutine was called:

#!perl
#carxp.pl

use Carp;

sub warnings {
warn "This is warn with a newline char\n";
warn "This is what warn look like";
carp "This is what carp looks like";

}
&warnings;
Output of the preceding program:

[student@linuxi student]$./carp.pl

This is warn with a newline char

This is what warn look like at ./carp.pl line 8.

This is what carp looks like at ./carp.pl line 9.
main: :warnings called at ./caxp.pl line 12

Using croak

The built-in Perl statement die will print error messages to STDERR and exit your script.
It will also display the line number in which the error occurred.

The croak statement will perform in the same manner in cases in which it is called
within the main part of the program. If it is called within a subroutine, it will also provide
the original line from where the subroutine was called:

#!perl
#die.pl

sub finish {

die "This is what die looks like";

221

CHAPTER9 DEBUGGING TOOLS
&finish;
print "Never will get to here";

Sample output of the preceding die example:

[student@linuxi student]$./die.pl
This is what die looks like at ./die.pl line 5.

#!perl
#croak.pl

use Carp;

sub finish {

croak "This is what croak looks like";

}
&finish;
print "Never will get to here";
Sample output of the above croak example:

[student@linuxi student]$./croak.pl

This is what croak looks like at ./croak.pl line 7
main::finish called at ./croak.pl line 10

Data: :Dumper

Remember back to the Perl debugger when you used the x command to print data in a

"nicer" format:

DB<1» @names=qw(red green blue)
DB<2» x @names

0 'red'
1 'green'
2 'blue’

222

CHAPTER9 DEBUGGING TOOLS

When you use the x command, it uses the Data: :Dumper module to format the
output. You can use this module to print data from within your script:

#!perl
#dump.pl

use Data::Dumper;

print Dumper (\%ENV);

Note The "\" before %ENV is used to make a reference to the %ENV hash.

$Data: :Dumper: :Indent = 0;
$Data: :Dumper::Useqq = 1;
$Data: :Dumper::Terse = 1;
$Data: :Dumper: :Sortkeys =

1;

Perl style

While style (the format of your code) isn’t really a debugging "feature", a poorly
formatted program does make it more difficult to debug. You should at the very least
pick a style and be consistent throughout the program. Consider reading the perlstyle
documentation guide for some good suggestions on good policies to follow. Here are just
a few of the suggestions offered in the perlstyle guide:

e Four-column indent.

e Opening curly on same line as keyword, if possible; otherwise,
line up.

e Space before the opening curly of a multiline BLOCK.
e One-line BLOCK may be put on one line, including curlies.

e No space before the semicolon.

223

CHAPTER9 DEBUGGING TOOLS

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Lab exercises

Important note If you did not finish the previous lab, either finish it before
starting this lab or use the completed parse6.pl provided in the lab answers
folder.

Modify parse6.pl to include the following changes:

o Take some time to get familiar with the capacities of the Perl
debugger.

o Use the -w switch to have Perl look for logical errors.

o Implement "use diagnostics" to have verbose error message
displayed.
e Replace your die and warn statements with croak and carp

statements.

Save these changes into a file called parse7.pl.
When you have completed your work, compare your script against the parse7.pl file
provided in lab answers.

224

https://github.com/Apress/pro-perl-programming

CHAPTER 10

Perl/TK Basics

The idea behind Tk is to create an easy-to-use interface between Perl and Windows. In
order to do this, Tk builds on top of the X Window System (or Microsoft Windows) to
create "sub-windows" that contain buttons, menu bars, scroll bars, and other windows
components. These components are called widgets.

Widgets are controls that are built into Motif (the heart of the X Window System on
UNIX platforms). In fact, you can think of Tk as the process of putting widgets together in
an application until you have the graphic interface you need.

The TK module

TKisn't part of Perl by default. It needs to be installed on your system and imported into
your program with the use statement.
To determine if TK is installed on your system, run the following command:

perl -e "use Tk;"

If you don’t get any error messages, Tk is installed. If you do get an error message,
like the one displayed here, Tk is probably not installed:

perl -e "use Tk;"

Can't locate Tk.pm in @INC (you may need to install the Tk module) (@INC
contains: C:/Strawberry/perl/site/lib C:/Strawberry/perl/vendoxr/lib C:/
Strawberry/perl/lib) at -e line 1.

BEGIN failed--compilation aborted at -e line 1.

If the TK module is not installed and you are using Strawberry Perl or DWIM Perl or
have manually installed the epan client utility, you can execute the following command:

cpan Tk

225
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_10

CHAPTER 10 PERL/TK BASICS

On ActivePerl, use the following command:

ppm install Tk

Important note Tk is a huge topic. While this section will show you how to
create and use basic widgets, a complete discussion of Tk is beyond the scope of

this book.

Types of widgets

The following are the primary widgets available to Tk:

Widget Purpose

Frames Used to group other widgets together

Toplevels Toplevels are special frames that create a "separate" window (not a
sub-window like normal frames do)

Labels Similar to frames but also allow text and bitmap graphics to be displayed

Buttons Buttons can be used to bind an action to a graphic

Checkbuttons Used to select options

Radiobuttons Used to select one option only

Listboxes Lists lines of text and allows user to select one or more line

Scroll bars Allows the user to control the display with a scroll bar

Scales Allows the user to control the setting of an item with a slider bar

Entries Allows the user to type in text

Menus Give the user menu options

226

CHAPTER 10 PERL/TK BASICS

Each of these widgets will be discussed in greater detail in the next chapter.

A note regarding options: There are many options for widgets that
affect size, position, effects, and additional widget features. Many of
these options will be discussed as the widgets are explored.

Exploring widget examples

In addition to the examples provided in this book, there are some examples that are
included with the TK module itself. These examples can be very useful in learning about
how TK works.

To access these examples, you first need to discover the location of where the TK
module is. This can be done by executing the following statements in the Perl debugger:

DB<1> use Tk
DB<2> print $INC{"Tk.pm"}
C:/Strawberry/perl/site/lib/Tk.pm

At the same level as the "perl" directory, there should be a "cpan" directory and
subdirectories under this as shown here:

C:\Strawberry\cpan\build\Tk-804.034-0\demos

In the demos directory, there are several examples that show you how TK works.
Start by reading the README file. You will likely find the widget program most useful at
first:

C:\Strawberry\cpan\build\Tk-804.034-0\demos> perl widget

227

CHAPTER 10 PERL/TK BASICS

74 Perl/Tk Widget Demonstration = O X
File Help

Perl/Tk Widget Demonstrations

This application provides a front end for several short scripts that demonstrate what
you can do with Tk widgets. Each of the numbered lines below describes a
demonstration; you can click on it to invoke the demonstration. Once the
demonstration window appears, you can click the See Code button to see the PerlTk
code that created the demonstration. If you wish, you can edit the code and click the
Rerun Demo button in the code window to reinvoke the demonstration with the
modified code.

Getting Started

1. An introduction to PerlTk.

Labels, buttons, checkbuttons, and radiobuttons
1. Labels (text and images).
2. Labels and Unicode text.
3. Buttons.
4. Checkbuttons (select any of a group).
S. Radiobuttons (select one of a group).
6. A 15-puzzle game made out of buttons.
. lconic buttons that use bitmaps.
8. Two labels displaying images.
9. A simple user interface for viewing images.
10. Labelled frames.

-4

Listboxes
1. The S0 states.
2. Change widget's color scheme. v

Each link (colored in blue) represents a small example program. For example, if you
clickthe "1. Labels (text and images)." link, another program will launch like the

following:

228

CHAPTER 10 PERL/TK BASICS

74 Label Demonstration — O X

Five labels are displayed below: three textual ones on
the left, and an image label and a text label on the right.
Labels are pretty boring because you can't do anything
with them.

First label

Second label, raised just for funl

Third label, sunken

Dismiss | See Code |

For each of these example programs, there is a "See Code" button that you can use
to see the code that created the TK program. For example, if you click the "See Code"
button for the "Label Demonstration” program, you would see the following.

229

CHAPTER 10 PERL/TK BASICS

7& Demo code: C:/Strawberry/perl/site/lib/Tk/demos/widget_lib/labels.pl - O X

It labels.pl
use wvars qw/3TOP/;
sub labels |

¢ Create a top-level window that displays a bunch of labels. @pl is the
¢ "packing list"™ wariable which specifies the list of packer attributes.

my ($demo) = @_;
$I0OP = MW->WidgetDemo (
-name => Zdemo,
-text => 'Five labels are displayed below: three textual ones on the

left, and an image label and a text label on the right. Labels are pretty bori
ng because you can\'t do anything with them.’,
-title => 'Label Demonstration',
—iconname => 'label',
)i

my(@pl) = gw/-side left -expand yes -padx l0 -pady 10 -£ill both/;
my $left = $TOP->Frame->pack(@pl);
my right = 3TOP->Frame->pack(@pl).;

@pl = gw/-side top -expand yes -pady 2 -anchor w/;
my $left_1ll = 3left->Label(-text => 'First label')->pack(@pl);
my $left_12 = 3left->Label(

-text => 'Second label, raised just for fun’,
-relief => 'raised',
)->pack(@pl);
my $left_13 = jleft->Label(
-text => 'Third label, sunken',
-relief => 'sunken’,
)->pack(@pl);

@pl = gw/-side top/;
my $right_bitmap = $right->Label(

-image => 3TOP->Photo(-file => Tk->£indINC('Xcamel.gif')),
-borderwidth => 2,
-relief => 'sunken',
)->pack(@pl);
Dismiss Rerun Demo

230

CHAPTER 10 PERL/TK BASICS

@ myin
Perform the following steps:

¢ Try running the different programs that are provided by the widget
demo program. Don’t worry about the code details, but rather focus
on the features that are available for Perl TK (buttons, listboxes, etc.).

e Try some of the other programs that are mentioned in the README
file. Some of the more interesting ones are listed here:

e xset
e rolodex

e timer

Geometry managers

While you can modify the look and feel of widgets with different options, geometry
managers control the location and size of widgets. Consider these managers as functions
that can see the "big picture", while the widgets only can see themselves.
The primary geometry manager in Tk is pack. This manager can place a series of
widgets within a frame. The pack geometry manager is useful for simple Tk applications.
The grid geometry manager is designed to allow you to place widgets into rows
and columns. The place geometry manager is designed to place widgets using an x/y
coordinate.
The pack geometry manager is probably the most commonly used of the three
and the easiest to initially learn. As a result, this book will focus on the pack geometry
manager.

231

CHAPTER 10 PERL/TK BASICS

Creating widgets

To get started, we are going to create a very simple Tk script. The following will just
create a window:

#!perl
#basic.pl

use Tk;

$main = MainWindow - new;
$main -» title ("First Tk program!");
MainLoop;

Notes about the program:
e The "use Tk;" statement imports the Tk module.

e Theline "$main = MainWindow -> new;" tells Tk that you want
to create a window. The window isn’t created until you run the
"MainLoop" statement.

o Theline "$main -> title ("First Tk program!");" tells Tk that
you want to put the string "First Tk program!" in the title bar of the
window.

o Theline "MainLoop;" creates the window. This statement is referred

toasan "event loop".

The 00 nature of the Tk module

One aspect of Perl/Tk that "throws" people is that it is an object-oriented module. If
you don’t know how OO works in Perl, don’t let this aspect of the module throw you
off. The good thing about object-oriented programming in Perl is that you don’t have to
understand how to write or read OO Perl code in order to use an OO module.

If you understand the concept of OO from other languages (such as C++ or Java),
then the following might be useful information:

$main = MainWindow -»> new;

232

CHAPTER 10 PERL/TK BASICS

This command calls the "new" method from the "MainWindow" class and returns an
object that is assigned to the $main variable.

With that said, understand that OOP is a concept, not a standard; therefore, how
OOP "works" in C++ or Java can be quite a bit different than how it works in Perl.

Once again, since you don’t know how to write or read OO code in order to use an
OO module, covering more detail regarding OOP in Perl is deferred to another book.

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Lab exercises

Important note If you did not finish the previous lab, either finish it before
starting this lab or use the completed parse7.pl provided in the lab answers
folder.

Taking an existing command-line-based script and converting it into a GUI-based
script can be challenging. Typically, the best course of action is to create a separate
GUI-based script and incorporate the code from the command-line-based script.

To start this process, create a program that will generate a window that has the title
of "Process Data". At this point the program shouldn’t do anything except provide a
window. Do not attempt to include the code from parse7.pl at this time!

Save this program as parse8.pl.

When you have completed your work, compare your script against the parse7.pl file
provided in lab answers.

233

https://github.com/Apress/pro-perl-programming

CHAPTER 11

Perl TK Widgets

The heart of TK are the widgets. Widgets are window-based components that allow

the user to interact with the program. This chapter will focus on some of the more
commonly used Perl TK widgets, but keep in mind that there are additional, often more
advanced, widgets that you can explore on your own if you decide that you want to make
some more advanced TK-based programs.

Frames

Frames are great for creating sub-windows within your primary window and grouping
other widgets. To create a frame, use the following syntax:

$frame = $main ->Frame ([option => value, ...]) -»pack;
or:

$frame = $main ->Frame ([option => value, ...]);
$frame ->pack;

Recall that the pack command places the widget into a window (or a toplevel or
frame). In the first example, the widget is placed into the $main window as it is created.
In the second, the widget is placed into the $main window after it is created.

If the pack command occurs directly after the widget is defined, then there isn’t any
difference between these two techniques. However, you can define a widget at any time
and then pack it later. In most cases, however, you will want to pack the widget at the
same time you define it.

Note You don’t have to pack the main window (or toplevels).

235
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_11

CHAPTER 11 PERL TK WIDGETS

Relief

The -relief option allows you to specify a 3-D border. The following chart lists the

different relief options that are available:

relief example

#!perl
#relief.pl
use Tk;

$main
$framel = $main

$frame2 = $main
$frame3 = $main
$frameq = $main
$frame5 = $main

MainLoop;

Mainlindow

->

e raised e sunken e flat

e groove e ridge

-> new;

Frame (-relief =» raised, -height =» 150, -width =»> 200,
-borderwidth =» 15) -»pack;

Frame (-relief =» sunken, -height =» 150, -width =»> 200,
-borderwidth =» 15) ->pack;

Frame (-relief =» flat, -height =» 150, -width =»> 200,
-borderwidth =» 15) ->pack;

Frame (-relief =» groove, -height =» 150, -width =»> 200,
-borderwidth =» 15) -»pack;

Frame (-relief =» ridge, -height =» 150, -width =»> 200,
-borderwidth =» 15) -»pack;

Notes about the relief.pl

o The -height and -width options tell the pack command how large

(in pixels) to make the frame.

e The -borderwidth option tells the pack command how large (in

pixels) to make the border.

236

CHAPTER 11 PERL TK WIDGETS

o Don’t forget to specify a borderwidth and a size (height and width).
Without these options, pack will not assign a border to the frame, and
the -relief option does nothing.

e More details on sizes (height, width, borderwidth, etc.) will be
discussed in a later section.

Output of relief.pl:

74 Relief — O X

237

CHAPTER 11 PERL TK WIDGETS

Colors

When specifying colors for options such as -background, you can either use "red,
green, blue" (RGB) component syntax or use the system’s built-in symbolic name. The
RGB can be specified either in 4-bit, 8-bit, 12-bit, or 16-bit:

4-bit: RGB

8-bit: RRGGBB

12-bit: RRRGGGBBB
16-bit RRRRGGGGBBBB

For UNIX and Linux, the system’s built-in symbolic names are listed in the file
"rgb.txt". These names normally will work on other operating systems as well. In the
event that your system doesn’t have this file, perform an Internet search for "rgb.txt".
There is also a "rgb.txt" file provided in the examples for this book.

Colors can be applied to many widgets, not just frames as shown in the next example.

Color example:

#!perl
#icolors.pl

use Tk;

$main = MainWindow -> new;
$frame1 = $main -» Frame (-height =» 150, -width =» 200,
-background =» red) ->pack;

$frame2

$main -» Frame (-height =» 150, -width => 200,
-background => blue) ->pack;
MainLoop;

238

CHAPTER 11 PERL TK WIDGETS

Output of colors.pl:

Labels

Labels are used to display text and bitmaps. To create a label, use the following syntax:

$label = $main -sLabel ([option => value, ...]) ->pack;

bitmaps

You can display either internally defined bitmaps or external bitmaps. The following lists

the different internal bitmaps available:

e error e gray50 e info e (uestion
e gray25 e hourglass e questhead e warning
e grayl?2 e gray75 ° Kk e transparent

239

CHAPTER 11 PERL TK WIDGETS

Note The widgets demo program includes code to display all of the internal
bitmaps (look under "Miscellaneous" for The built-in bitmaps):

74 Bitmap Demonstration = O X

This window displays all of Tk's built-in bitmaps, along
with the names you can use for them in Perl scripts.

error gray12 gray25 grayS0 gray7s hourglass
1 P T ¢
e ¢ "

info questhead question Tk transparent warning

Dbmhsl SeeCode'

To display an external bitmap, place a "@" character before the path to the file.
Example using internal bitmap:

#!perl
#bitmap1.pl

use Tk;

$main = MainWindow -> new;
$label = $main -» Label (-bitmap => 'questhead') -» pack;
MainLoop;

Output of bitmap1.pl:

74 Bitmap1 — O X

240

CHAPTER 11 PERL TK WIDGETS
Example using external bitmap:

#!perl
#bitmap2.pl

use Tk;

$main = MainWindow -> new;
$label= $main -» Label (-bitmap =»>
'@Toronto.bm")
-> pack;
MainLoop;

Using other images

A bitmap image can be directly "recognized" by Tk. To use other images, you can use

another tool to covert the image to a bitmap, or use the -image option. To use the -image

option, you first need to create an "image pointer" by using the Photo statement.
Example using a gif image:

#!perl
#image.pl

use Tk;

$main = MainWindow -> new;

$image = $main -» Photo(-file =» "activeperl_logo.gif");
$label = $main -» Label (-image => $image) -» pack;
MainLoop;

Output of image. pl:

74 Image - O X

+

241

CHAPTER 11 PERL TK WIDGETS

text

You can display text inside a label by using the -text option. The -font option can be
used to define the font of the text that is displayed in the label widget.
The format of the font is as follows:

-adfbe-co rier-bcfld- -norImaI--1T1-140-7I5-75-rrf- O-I'Tp-roma 8
foundry weight| width pixels| x-res|spacihg registry
family slant style points y-res width encoding

To list all of the fonts available on a Unix or Linux system, run the x1sfonts command.

Font example:

#!perl
#fontsi.pl

use Tk;

MainWindow -> new;
$main -» Label (
-text =» "Perl is the best",
-font =» '-adobe-courier-medium-o-normal--24-240-75-75-m-150-hp-

$main
$laba

roman8') -» pack;
$lab2 = $main -» Label (
-text => "Don't you think?",
-font =» '-adobe-helvetica-medium-o-normal--24-240-75-75-p-130-
iso08859-1"') -» pack;

MainLoop;

242

CHAPTER 11 PERL TK WIDGETS

Output of fonts1.pl:

74 Fonts1 —_ O X
Perl is the best
Don't you think?

Note that you don’t need to provide the complete font definition. For example, the
following program defines just the foundry and family:

#!perl
#fonts2.pl

use Tk;

$main = MainWindow -> new;
$lab1 = $main -» Label (

-text =» "Perl is the best",

-font =» '-adobe-courier') -» pack;
$lab2 = $main -» Label (

-text => "Don't you think?",

-font =» '-adobe-helvetica') -» pack;

MainLoop;

Output of fonts2.pl:

—76 O X
Perl is the best
Dontyou think?

243

CHAPTER 11 PERL TK WIDGETS

Text wrapping

By default, a label with text placed in it will be as large as necessary to fit the text within
it. This may result in a very long (wide) text box as shown in the following example:

#!perl
#wrap1.pl

use Tk;

$main
$laba

MainWindow -> new;
$main -» Label (
-text => "Perl is the best language for performing actions such a

s text filtering.",
-font =>
' -adobe-courier-medium-o-normal--24-240-75-75-m-150-hp-roman8')
-> pack;

MainLoop;

Output of wrap1.pl:

T Wrap1 - a x

Perl is the best language for performing actions such as text filtering.

You can use the -wraplength option to specify how long each line of text should be:

#!perl

#wrap2.pl

use Tk;

$main = MainWindow - new;

$lab1 = $main -» Label (
-text => "Perl is the best language for performing actions such
as text filtering.",
-font =» '-adobe-courier-medium-o-normal--24-240-75-75-m-150-hp-
roman8',
-wraplength => 200) -> pack;

MainLoop;

244

CHAPTER 11 PERL TK WIDGETS

Output of wrap2.pl:

74 Wra.. — O X

Perl is the
best language
for performing

actions such

as text
filtering.

@i

Perform the following steps:

e (Open the widget program from the demos directory (this was covered in
Chapter 10).

¢ Review the programs and the source code of the following:
e Labels (text and images)
e Labels and Unicode text

e Two labels displaying images

245

CHAPTER 11 PERL TK WIDGETS

74 Perl/Tk Widget Demonstration - O X
File Help

Perl/Tk Widget Demonstrations

This application provides a front end for several short scripts that demonstrate what
you can do with Tk widgets. Each of the numbered lines below describes a
demonstration; you can click on it to invoke the demonstration. Once the
demonstration window appears, you can click the See Code button to see the PerlTk
code that created the demonstration. If you wish, you can edit the code and click the
Rerun Demo button in the code window to reinvoke the demonstration with the
modified code.

Getting Started

1. An introduction to PerlTk.

and radiobuttons

Lab

1. Labels (text and images).
i text

3. Buttons.

4. Checkbuttons (select any of a group).
5. Radiobuttons (select one of a group).
6. A 15-puzzle game made out of buttons.

| 8. Two labels displaying images. I

9. A simple user interface for viewing images.
10. Labelled frames.

Listboxes
1. The S0 states.
2. Change widget's color scheme.

246

CHAPTER 11 PERL TK WIDGETS

Buttons

Buttons are useful for assigning a command to a widget and to set variables. There are
three types of buttons:

Button Purpose

Button When a user clicks a button, a command (subroutine) will be run
Checkbutton Allows the user to select multiple items from a list of items

Radiobutton Allows the user to select one item from a list of items

Button example

#!perl
#button.pl

use Tk;

sub info {$labi = $main -» Label (-bitmap =» 'info') -» pack;}
sub error {$lab2 = $main -» Label (-bitmap => 'error') -» pack;}
sub warning {$lab3 = $main -> Label (-bitmap =» 'warning') -> pack;}

$main = MainWindow -> new;
$but1i = $main -» Button (

-text =» "Show info",

-command =»> sub {&info}) -» pack;
$but2 = $main -» Button (

-text => "Show error",

-command => sub {&error}) -»> pack;
$but3 = $main -» Button (

-text => "Show warning”,

-command =» sub {&warning}) -»> pack;

MainLoop;

247

CHAPTER 11 PERL TK WIDGETS

Notes about the program

o The -text option allows you to specify what text you want displayed
in the button.

e The -command option allows you to specify what statement or
subroutine to execute if the user clicks the button. This can be a set of
Perl statements enclosed with the curly braces, but most often it will
be a reference to a function call.

Output of button.pl:

-7 O X

Showidol

Showeuml

Show warning |

Using buttons to exit your script

Buttons can be used allow the user to exit the application. The following example shows

how this can be done:

#!perl
#exit.pl

use Tk;

sub info {$labi = $main -» Label (-bitmap =» 'info') -» pack;}
sub error {$lab2 = $main -» Label (-bitmap =» 'error') -» pack;}
sub warning {$lab3 = $main -> Label (-bitmap =» 'warning') -> pack;}

$main
$but1

MainWindow -> new;
$main -» Button (
-text =» "Show info",
-command =»> sub {&info}) -» pack;
$but2 = $main -» Button (
-text =» "Show error",
-command => sub {&error}) -»> pack;

248

CHAPTER 11 PERL TK WIDGETS

$but3 = $main -» Button (

-text => "Show warning",

-command => sub {&warning}) -> pack;
$butg = $main -» Button (

-text =» "Exit",

-command => sub {exit}) -» pack;

MainLoop;

Using buttons to destroy widgets

The action that is taken when a button is pressed can also include destroying a widget.
This example shows how to do this and also demonstrates how to modify an existing
widget with the configure option.

#!perl
#idest.pl

use Tk;

sub info_remove {
$lab1 -> destroy;
$buti -» configure (
-text =» "Show info",
-command =» sub {&info});

}
sub info {
$labi = $main -» Label (-bitmap =» 'info') -» pack;
$but1 -> configure (
-text =» "Remove info",
-command => sub {&info_remove});
}
$main = MainWindow -> new;
$but1i = $main -» Button (

-text =» "Show info",
-command =» sub {&info}) -» pack;

249

CHAPTER 11 PERL TK WIDGETS

$but2 = $main -» Button (
-text =» "Exit",
-command =» sub {exit}) -» pack;

MainLoop;

Output of dest.pl when initially executed:

7% O X

Show info

E it

Output of dest.pl after "Show info" button is pressed:

7% O X

Hemovetﬁj

E it
L

|

Output of dest.pl after "Remove info" button is pressed:

7% O X

Show info

E it

Unpacking instead of destroying

Using destroy will not only remove your widget from the window, but it will also
"delete" the contents of the variable that stored the widget. This means you would need

to recreate the widget if you want to use it again.

250

CHAPTER 11 PERL TK WIDGETS

If you want to remove the widget from a window, but also want to use the widget
again, use the packForget operation:

$lab1 -» packForget();

Changing the cursor

Within most widgets, including buttons, you can modify the look of the cursor by using
the -cursor option:

#!perl
#cursor.pl

use Tk;

sub info_remove {
$top -> destroy;
$but1 -»> configure (
-text =» "Show info",
-command =» sub {&info});

}
sub info {
$labi = $main -» Label (-bitmap =» 'info') -» pack;
$buti -» configure (
-text =» "Remove info",
-command => sub {&info_remove});
}
$main = MainWindow -> new;
$but1i = $main -» Button (

-text =» "Show info",

-command =» sub {&info},

-cursor => hand2) -» pack;
$but2 = $main -» Button (-text =» "Exit",

-command => sub {exit},

-cursor =» X_cursor) -> pack;

MainLoop;

251

CHAPTER 11 PERL TK WIDGETS

Note Try running the previous program and then point your mouse icon to each
button.

Opening a toplevel

Toplevels are just like frames. You can use them to organize and "hold" other widgets.
While frames reside within the primary window, toplevels are used to create another
window, "separate"” from the primary window.

A few other points about toplevels:

o Toplevels are very useful for dialog boxes.

o Ifyou destroy the default window, the toplevel window will also be
destroyed.

Toplevel example:

#!perl
#top.pl

use Tk;

sub info_remove {
$lab1 -> destroy;
$but1 -» configure (-text =» "Show info", -command => sub {&info});

}
sub info {

$top = $main -> Toplevel();

$lab1 = $top -» Label (-bitmap =» 'info') -» pack;

$but1 -» configure (-text => "Remove info", -command => sub {&info_remove});
}

$main = MainWindow -> new;
$buti = $main -» Button (-text => "Show info", -command => sub {&info}) -» pack;
$but2 = $main -» Button (-text =» "Exit", -command =» sub {exit}) -» pack;

MainLoop;

252

CHAPTER 11 PERL TK WIDGETS

Output of top.pl when program starts:

76 O
Show inﬂ
Exit

Output of top.pl after clicking the "Show info" button:

@ wyit
Perform the following steps:

¢ (Open the widget program from the demos directory (this was covered in
Chapter 10).

¢ Review the programs and the source code of the following:
e Buttons
e A 15-puzzle game made out of buttons

¢ |conic buttons that use bitmaps

253

CHAPTER 11 PERL TK WIDGETS

74 Perl/Tk Widget Demonstration - O X
File Help
Perl/Tk Wldget Demonstrations

This application provides a front end for several short scripts that demonstrate what
you can do with Tk widgets. Each of the numbered lines below describes a
demonstration; you can click on it to invoke the demonstration. Once the
demonstration window appears, you can click the See Code button to see the PerlTk
code that created the demonstration. If you wish, you can edit the code and click the
Rerun Demo button in the code window to reinvoke the demonstration with the
modified code.

Getting Started

1. An introduction to PerlTk.

Labels, buttons, checkbuttons, and radiobuttons
1. Labels (text and images).

and Unicode text
3. Buttons. |

4. Checkbuttons (select any of a group).

S. Radiobuttons (select one of a group).

6. A 15-puzzle game made out of buttons.

7. Iconic buttons that use bitmaps.

8. Two labels displaying images.

9. A simple user interface for viewing images.
10. Labelled frames.

Listboxes
1. The S0 states.
2. Change widget's color scheme. v

Lab

Important note If you did not finish the previous lab, either finish it before starting
this lab or use the completed parse8. p1 provided in the lab answers folder.

254

CHAPTER 11 PERL TK WIDGETS

Using code from parse7.pl and parse8.pl, generate a script that will perform the
following operation:

e Determine if the parse.txt file in the user’s home directory is up to
date. If not, use a toplevel to ask the user if they want an updated
file. You should incorporate the code from the parse7.pl script to
perform the non-GUI aspects of this program. Don’t worry about the

position of the toplevel for now.
¢ Read the data from the user’s parse.txt file into the @proc variable.

Store these changes in a file called parse9-1.pl.
When you have completed your work, compare your script against the parse9-1.pl
file provided in lab answers.

Checkbuttons

With checkbuttons users can turn on and off values. You can assign actions for "on" values
and "off" values. The following is a modification of button.pl using checkbuttons:

#!perl
#check.pl

use Tk;

sub info {$labi = $main -» Label (-bitmap =» 'info') -» pack;}
sub rminfo {$lab1 -» destroy;}

MainWindow -> new;
$main -» Checkbutton (-text =» "Show info",
-variable =» \$info,
-command => sub {
if ($info) {
&info
}
else {
&rminfo;

}}) -> pack;

$main
$buta

MainLoop;

255

CHAPTER 11 PERL TK WIDGETS

Notes about the program:

e The -variable option allows you to assign a value of 0 or 1 to a
variable.

e Iftheuser "turns on" the checkbox by clicking it, the value of the
variable is set to 1.

e Iftheuser "turns off" the checkbox by clicking it, the value of the
variable is set to 0

o The \ character before the variable name is so Perl accesses the
variable as a reference.

o The -command option allows you to execute a statement or subroutine
based on the user’s action.

Output of check. pl when program starts:

—7¢ O X
[Show info

Output of check.pl after clicking the check box:

-7 O X
v Show info

1

256

CHAPTER 11 PERL TK WIDGETS

Radiobuttons

With checkbuttons, you can select more than one option. With Radiobuttons, you can

only select one option from a group of options:

#!perl
#iradio.pl

use Tk;

$main
$buta

MainWindow -> new;
$main -» Radiobutton (-text =» "Show info",
-value =» "info",
-variable =» \$setting)
-> pack;
$but2 = $main -» Radiobutton (-text =» "Show error",
-value =» "error",
-variable => \$setting)
- pack;
$but3 = $main -> Radiobutton (-text =»> "Show warning",
-value =) "warn",
-variable => \$setting)
-> pack;

MainLoop;

When a user checks an option, its "value" is set to the variable. For example, if a user
were to check "Show info", the value of the $setting variable would be set to "info".
Output of radio.pl:

=76 O X
" Show info

" Show eror

" Show warming

257

CHAPTER 11 PERL TK WIDGETS

Padding

You can use the -padx and -pady options to "pad" the borders of a widget. Padding is
good for creating nice-looking formats.

Padding (and other "size" options such as -width and -height) can be
accomplished by several different units:

e Centimeters- ¢

e Inches-"1i

e Millimeters - "m

e Points-"p

If you don’t specify a unit type, pixels are assumed by default.
Padding example:

#!perl
#pad.pl

use Tk;
sub info_remove {
$top -> destroy;

$but1i -» configure (-text =» "Show info",
-command =» sub {&info});

}
sub info {
$top = $main -» Toplevel();
$lab1 = $top -» Label (-bitmap =» 'info',) -» pack;
$but1 -» configure (-text => "Remove info",
-command =» sub {&info_remove});
}

258

$main
$buti

MainWindow -> new;
$main -» Button (-text

$but2 = $main -» Button (-text

MainLoop;

Output of pad. p1:

CHAPTER 11 PERL TK WIDGETS

"Show info",

-padx => 50,

-pady => 25,

-command => sub {&info}) -»> pack;
"Exit",

-command => sub {exit}) -» pack;

T& —

Show info

Exit

Q@ it

Perform the following steps:

e (Open the widget program from the demos directory (this was covered in

Chapter 10).

e Review the programs and the source code of the following:

e (Checkbuttons (select any of a group)

¢ Radiobuttons (select one of a group)

259

CHAPTER 11 PERL TK WIDGETS

74 Perl/Tk Widget Demonstration — O X
File Help
Perl/Tk Widget Demonstrations

This application provides a front end for several short scripts that demonstrate what
you can do with Tk widgets. Each of the numbered lines below describes a
demonstration; you can click on it to invoke the demonstration. Once the
demonstration window appears, you can click the See Code button to see the Perl/Tk
code that created the demonstration. If you wish, you can edit the code and click the
Rerun Demo button in the code window to reinvoke the demonstration with the
modified code.

Getting Started

1. An introduction to PerlTk.

Labels, buttons, checkbuttons, and radiobuttons

1. Labels (text and images).
2. Labels and Unicode text.
3 _Buttons
4. Checkbuttons (select any of a group).
. Radiobuttons (select one of a group).
6. A 15-puzzie game made out of buttons.
7. Iconic buttons that use bitmaps.
8. Two labels displaying images.
9. A simple user interface for viewing images.
10. Labelled frames.

Listboxes
1. The SO states.
2. Change widget's color scheme. v

Listboxes

Listboxes will display a collection of strings of which the user can select one or more. To

create a listbox, use the following syntax:
$1b = $main -sListbox ([option =» value, ...]) ->pack;

260

CHAPTER 11
Listbox example:

#!perl
#listi.pl

use Tk;
open (COLORS, "<rgb.txt") || die;
$temp=<COLORSy; #need to remove 1st line

$main = MainWindow -> new;
$1b = $main -» Listbox -»> pack;
while (<COLORS>) {
chomp;
s/*[0123456789]+//;
s/\t\t//;
$1b -» insert('end', $_);
}

MainLoop;

PERL TK WIDGETS

In this example, we created a Listbox with the following statement: $1b = $main -»

Listbox -» pack;

To add items to the Listbox, the $1b -» insert('end', $_); line was used. These

items came from data in the rgb.txt file.
Output of 1ist1.pl:

261

CHAPTER 11 PERL TK WIDGETS

Notes about the program:

o Ifyoulook at the rbg.txt file, you will notice that there are more than
ten colors in the file. What happened to the remaining colors?

e C(lick any color in the list box, hold down the mouse, and scroll down.
More colors will appear.

o Thisisn’tavery "user-friendly" way of displaying lists; scrollbars
will be added soon to make it easier to see all of the items.

Using selected values

You can determine what the user selected in a Listbox by using the curselection
function. Since the user can select more than one item in a Listbox, this function returns
alist of values that indicate the item(s) that the user has selected.

The list returned by the curselection function is not the actual item that was
selected but rather the index positions of the items. To determine the items, you need to
use these index values with the get function.

The following example shows the use of the curselection and get fuctions:

#!perl
#list2.pl

use Tk;

sub ok {
$top = $main -» Toplevel();
@elements = $1b -> curselection();
$item = $1b -»> get ($elements[o0]);
$lab1 = $top -» Label (
-text => "$item",
-background =» $item) -» pack;

}

open (COLORS, "<rgb.txt") || die;
$temp=<COLORS»; #need to remove 1st line

262

CHAPTER 11

$main = MainWindow -> new;
$1b = $main -» Listbox -» pack;
while (<COLORS>) {
chomp;
s/*[0123456789]+//;
s/\t\t//;
$1b -> insert('end', $_);
}
$but = $main -» Button (-text =» "Ok",
-command => sub {&ok}) -» pack;

MainLoop;

Output of 1ist2.pl when program starts:

PERL TK WIDGETS

263

CHAPTER 11 PERL TK WIDGETS

Output of 1ist2.pl when a color is selected and the "0k" button is pushed:

-7k

nawvy

navy blue
NavyBlue
cornflower blue

ComflowerBlue

dark slate blue
DarkSlateBlue
slate blue
SlateBlue
medium slate blue

Selecting options

You can modify what the user can select by using the -selectmode option. The following
options are permitted:

» single - Allows user to select one option at a time.

o browse - Allows user to select one option at a time. Differs from
single in that selection will move with mouse if button 1 is held down.

o extended - Allows user to select more than one option at a time by
using control-click and shift-click.

o multiple - Allows user to select more than one option at a time by
clicking on additional items.

Selectmode example using the "multiple" option:

#!perl
#selecti.pl

use Tk;
open (COLORS, "<rgb.txt") || die;
$temp=<COLORS>; #need to remove 1st line

264

CHAPTER 11 PERL TK WIDGETS

$main = MainWindow -> new;
$1b = $main -» Listbox (-selectmode =» "multiple") -» pack;
while (<COLORS>) {

chomp;
s/*[0123456789]+//;
s/\t\t//;
$1b -> insert('end', $_);
}
MainLoop;
Output of select1.pl after three colors have been "clicked on":
& O X
SNOW
ghost white
Ghostwhite
white smoke
The following program example of how the "extended" select mode works:
#!perl
#iselect2.pl
use Tk;

open (COLORS, "<rgb.txt") || die;
$temp=<COLORSy; #need to remove 1st line

$main = MainWindow -> new;
$1b = $main -» Listbox (-selectmode =» "extended") -» pack;

265

CHAPTER 11 PERL TK WIDGETS

while (<COLORS>) {

chomp;
s/*[0123456789]+//;
s/\t\t//;
$1b -» insert('end', $_);
}
MainLoop;
Output of select2.pl after a "shift-click" method was used to select a block of
colors:
54] X
snow
ghost white
Ghostwhite
white smoke
WhiteSmoke
gainsboro
floral white
Floralw'hite
old lace
Scrollbars

When listboxes are too small to display all of the strings, scrollbars can be placed next
to the listbox to provide the user a means of accessing the other strings. To create a
scrollbar, use the following syntax:

$scroll = $main -» Scrollbar ('Widget', -scrollbars =» 'value' [, options]);

266

CHAPTER 11 PERL TK WIDGETS
Scrollbar example:

#!perl
#iscroll.pl

use Tk;
open (COLORS, "<rgb.txt") || die;
$temp=<COLORSy; #need to remove 1st line

$main = MainWindow -> new;
$scroll = $main-»Scrollbar();
$1b = $main -» Listbox (
-yscrollcommand =» ['set' =» $scroll]) -» pack(-side =>'left');

while (<COLORS»>) {

chomp;

s/~[0123456789]+//;

s/\t\t//;

$1b -» insert('end', $_);
}

$scroll -» configure (-command =» ['yview' =» $1b]);
$scroll -ypack(-side =» 'right', -fill => 'y');
MainLoop;

Notes about the program:

e The -yscrollcommand option to the listbox widget "1inks" the listbox
with the $scroll scrollbar. The scrollbar will "1isten" to directions
from the listbox and move in sync with the listbox.

e The -command option that was used when configuring the scrollbar
told the scrollbar to inform the $Ib listbox of when to move its data.

e The-side =» 'left' option told pack to place the listbox on the left-
hand side of the window.

267

CHAPTER 11 PERL TK WIDGETS

o The-side =» 'right' option told pack to place the scrollbar on the
right-hand side of the window.

o The-fill =» 'y' option told packto "fill out" the scrollbar
vertically to match the side of the window.

Output of scroll.pl:

” &Try it!

Perform the following steps:

e (Open the widget program from the demos directory (this was covered in
Chapter 10).

¢ Review the programs and the source code of the following:
e The 50 states
e (Change widget’s color scheme

e Acollection of famous and infamous sayings

268

CHAPTER 11 PERL TK WIDGETS

File

74 Perl/Tk Widget Demonstration — O X

Help

Listboxes

Entries and Spin-boxes

Text

Canvases

1. The S0 states.
2. Change widget's color scheme.
3. A collection of famous and infamous sayings.

1. Entries without scrollbars.

2. Entries with scrollbars.

3. Validated entries and password fields.
4. Spin-boxes.

5. Simple Rolodex-like form.

1. Basic editable text.

2. Text display styles.

3. Hypertext (tag bindings).

4. A text widget with embedded windows.
5. A search tool built with a text widget.

1. The canvas item types.

2. A simple 2-D plot.

3. Text tems in canvases.

4. An editor for arrowheads on canvas lines.

5. A ruler with adjustable tab stops.

6. A building floor plan.

7. A simple scrollable canvas.

8. Tiles and transparent images. v

Lab

Important note If you did not finish the previous lab, either finish it before starting
this lab or use the completed parse9-1.pl provided in the lab answers folder.

269

CHAPTER 11 PERL TK WIDGETS

Using code from parse7.pl and parse9-1.pl, generate a script that will perform the
following operations:

o After the user answers the question provided by the toplevel, display
the contents of the @proc array in the main window. Some thoughts
regarding this:

e Assume no data changes (ppid field gone, date change, etc.) have
taken place yet.

o Probably the best way to display the data in this case is as a listbox.

e While you can use some of the code that you have in parse7.pl
, the format statements you created won’t be helpful. Now is a
good time to explore the advantages of sprintf.

e Don’t worry about providing any "header" information at this

time.

Store these changes in a file called parse9-2.pl.
When you have completed your work, compare your script against the parse9-2.pl
file provided in lab answers.

Scales

Scale widgets are used to provide a sliding scale that the user can manipulate to choose a
value. Use the following syntax to create a scale widget:

$scale = $parent -» Scale ([option => value]) -» pack
Scale example:

#!perl
#scale1.pl

use Tk;

sub scale_remove {
$tone = $scale -» get();
$top -> destroy;
$but2 -» configure (-text => "$tone");

270

CHAPTER 11 PERL TK WIDGETS

}
sub tone {
$top = $main -» Toplevel();
$scale = $top -» Scale (-from =» 0, -to => 100,
-label =» "Tone",
-tickinterval =» 10,
-orient =» "horizontal",
-length => "6i") -> pack;
$but1 = $top -» Button (-text =» "Exit",
-command => sub {scale_remove})
-> pack;
}
$tone=0;

$main = MainWindow -> new;
$buti = $main -» Button (-text

11
v

"Show scale",

-command =» sub {&tone}) -» pack;
"$tone") -» pack;
"Exit",

$but2 = $main -» Button (-text
$but3 = $main -» Button (-text

11 11
v v

-command => sub {exit}) -» pack;
MainLoop;
Notes about the program:
o The -fromand -to options specify the "low" and "high" values.
o The -tickinterval option specifies where to set the tick marks.

o The statement $tone = $scale -» get(); grabs the value that the
scale is currently set to and assigns it to the variable $tone.

271

CHAPTER 11 PERL TK WIDGETS

Output of scale.pl:

-
I

Show scale

Setting a default scale value

To set a default value for a scale, use the set function. The following code demonstrates
the use of this function:

#!perl
#iscale2.pl

use Tk;

sub scale_remove {
$tone = $scale -» get();
$top -> destroy;
$but2 -» configure (-text => "$tone");

}

sub tone {
$top = $main ->» Toplevel();
$scale = $top -» Scale (-from =» 0, -to => 100,
-label =» "Tone",
-tickinterval =» 10,
-orient =» "horizontal”,
-length =>» "6i") -» pack;

272

CHAPTER 11 PERL TK WIDGETS

$scale -> set(50);

$but1 = $top -» Button (-text =» "Exit",
-command => sub {scale_remove})
-> pack;

}

$tone=0;
$main = MainWindow -»> new;

$but1i = $main -» Button (-text => "Show scale",

-command =» sub {&tone}) -» pack;
$but2 = $main -» Button (-text =» "$tone") -» pack;
$but3 = $main -» Button (-text =» "Exit",

-command => sub {exit}) -» pack;

MainLoop;

WTry it!

Perform the following steps:

¢ (Open the widget program from the demos directory (this was covered in
Chapter 10).

¢ Review the programs and the source code of the following:
e Horizontal scale

e \ertical scale

273

CHAPTER 11 PERL TK WIDGETS

74 Perl/Tk Widget Demonstration
File Help

Scales

1. Horizontal scale.
2. Vertical scale.

Paned Windows

1. Horizontal paned window.
2. Vertical paned window.

Photos and Images

1. Transparent pixels.
2. Alpha channel compositing.

Menus
1. Menus and cascades (sub-menus).
2. As above, but using Perl/Tk -menuitems.
3. Menubuttons.

Common Dialogs
1. Message boxes.
2. File selection dialog.
3. Directory selection dialog.
4. Color picker.

Tix Widgets

1. Popup help window when mouse lingers over widget.
2. Entry with Listbox to select list values.

274

CHAPTER 11 PERL TK WIDGETS

Entries

Entries are used to allow the user to type in data that will be assigned to a variable. Use
the following syntax to create a scale widget:

$entry = $parent -» Entry ([option =» value]) -» pack
An entry example:

#!perl
#entryi.pl

use Tk;

sub entry_remove {
$tone = $entry -» get();
$top -> destroy;
$but2 -» configure (-text => "$tone");

}
sub tone {
$top = $main -» Toplevel();
$lab1 = $top -» Label (-text => "Enter Tone:") -» pack;
$entry = $top -» Entry -> pack;
$but1 = $top -» Button (-text =» "Exit",
-command => sub {entry_remove})
-> pack;
}
$tone=0;
$main = MainWindow -> new;
$buti = $main -» Button (-text =»> "Enter tone",
-command =» sub {&tone}) -» pack;
$but2 = $main -» Button (-text =» "$tone") -» pack;
$but3 = $main -» Button (-text =» "Exit",

-command => sub {exit}) -» pack;

MainLoop;

275

CHAPTER 11 PERL TK WIDGETS

Output of entry1.pl:

Enter Tone:

E it

Hiding the user’s input

Suppose you are having the user type in a password. For security reasons, you don’t want
to have the user’s password display as they are typing. To hide the user’s input, use the
-show option:

#!perl
#entry2.pl

use Tk;

sub entry_remove {
$tone = $entry -» get(); $top -> destroy;
$but2 -» configure (-text => "$tone");

}

sub tone {
$top = $main -» Toplevel();
$lab1 = $top -» Label (-text => "Enter Tone:") -» pack;
$entry = $top -» Entry (-show => "*") -» pack;

276

CHAPTER 11 PERL TK WIDGETS

$but1 = $top -» Button (-text =» "Exit",
-command => sub {entry_remove})
-> pack;

}

$tone=0; $main = MainWindow -»> new;
$buti = $main -» Button (-text =» "Enter tone",
-command =» sub {&tone}) -» pack;
$but2 = $main -» Button (-text =» "$tone") -» pack;
$but3 = $main -» Button (-text =» "Exit",
-command => sub {exit}) -» pack;

MainLoop;

Output of entry2.pl (note the * characters in the "Enter Tone:" entry box):

Enter Tone:

277

CHAPTER 11 PERL TK WIDGETS

Disable an entry box

In some cases, you may want to display an entry box but not allow the user to enter data.
To do this, use the -state option:

#!perl
f#fentry3.pl

use Tk;

sub entry_remove {
$tone = $entry -»> get(); $top -> destroy;
$but2 -» configure (-text =» "$tone");

}
sub tone {
$top = $main -» Toplevel();
$lab1 = $top -» Label (-text => "Enter Tone:") -» pack;
$entry = $top -» Entry (-state =» "disable") -» pack;
$buti = $top -» Button (-text =» "Exit",
-command => sub {entry_remove})
-> pack;
}
$tone=0;

$main = MainWindow -> new;
$buti = $main -» Button (-text => "Enter tone",
-command =» sub {&tone}) -» pack;
$but2 = $main -» Button (-text =» "$tone") -» pack;
$but3 = $main -» Button (-text =» "Exit",
-command => sub {exit}) -» pack;

MainLoop;

278

CHAPTER 11 PERL TK WIDGETS

Output of entry3.pl (note that the "Enter Tone:" entry boxis "grayed out"):

O X

Enter Tone:

@ Tryit!

Perform the following steps:

Open the widget program from the demos directory (this was covered in
Chapter 10).

Review the programs and the source code of the following:
e Message boxes

¢ File selection dialog

e Directory selection dialog

e (Color picker

279

CHAPTER 11 PERL TK WIDGETS

74 Perl/Tk Widget Demonstration
File Help

Scales
1. Horizontal scale.
2. Vertical scale.

Paned Windows

1. Horizontal paned window.
2. Vertical paned window.

Photos and Images

1. Transparent pixels.
2. Alpha channel compositing.

Menus
1. Menus and cascades (sub-menus).
2. As above, but using PerlTk -menuitems.
3. Menubuttons.

Common Dialogs

T. Message boxes.

2. File selection dialog.

3. Directory selection dialog.
4. Color picker.

Tix Widgets

1. Popup help window when mouse lingers over widget.
2. Entry with Listbox to select list values.

280

CHAPTER 11 PERL TK WIDGETS

Creating menus

Menus are the most complex of the widgets. This chapter covers the different options (or
entries) available in creating menus including

e Check entries to select multiple options (like checkbuttons)
e Radio entries to select one option (like radiobuttons)

o Separators to separate different options

o Command entries to invoke a procedure or other perl code

o Cascade entries to display submenus

Creating the menu options

To create a menu, first create a frame to place the menu in. You will most likely also want
to create another larger frame to put the rest of the application.
The following syntax is used to create a menu:

$menu = $frame -» Menubutton (-text =» "text") -» pack

The following program will create a basic menu. Note: Since no action has been
assigned to the menu options (yet), TK will produce an error if you try to click a menu
option:

#!perl
#menui.pl
use Tk;

$main = MainWindow -»> new;

$frame1 = $main -» Frame (-relief => groove,
-borderwidth =» 3) -» pack (-fill =» "x");
$frame2 = $main -» Frame (-height => 150, -width =» 200) -» pack;

$File_menu = $frame1i -» Menubutton (-text =» "File")

-> pack (-side => "left");
$Edit_menu = $framei -» Menubutton (-text =» "Edit")

-» pack (-side =» "left");

281

CHAPTER 11 PERL TK WIDGETS

$Help_menu = $framei -> Menubutton (-text => "Help")
->» pack (-side =» "right");

MainLoop;

Output for menul.pl:

74 Men... — O X

File Edi Help

Adding radio options

Now that we have the basic menu, we can add options to the menu. You can have these
options execute a command or display a check or radio submenu.
The following example will add radio buttons to the Edit menu:

#!perl
#menu2.pl

use Tk;
sub set_color {$frame2 -» configure (-background =» $background); }
$main = MainWindow -> new;

$frame1 = $main -» Frame (-relief => groove,
-bordexwidth => 3)
->» pack (-fill => "x");
$frame2 = $main -» Frame (-height =»> 150, -width =» 200) -> pack;

$File_menu = $framei -» Menubutton (-text =» "File")
-» pack (-side =» "left");

282

CHAPTER 11 PERL TK WIDGETS

$Edit_menu = $frame1i -» Menubutton (-text =» "Edit")

->» pack (-side = "left");
$Help_menu = $frame1r -> Menubutton (-text => "Help")

-> pack (-side =» "right");

foreach $color (red, green, blue, yellow, black, white) {
$Edit_menu -» radiobutton (-label =» $color,
-command => \&set_color,
-variable => \$background,
-value =» $color)

}

MainLoop;

Output of menu2. pl when program starts:

7& Men... — O X

File Edit Help

Output of menu2.pl when "Edit" menu button is clicked:

& Men... — O X

File Edit Help

red
green
blue
yellow
black
white

283

CHAPTER 11

Output of menu2.pl when "red" option button is clicked:

Note that the submenu has a feature called a "tearoff". By clicking the
above the options, a toplevel window is automatically created:

PERL TK WIDGETS

74 Men...

O

X

File Edit

Help

7€ Men... — O X
File Edit Help
—
red \

green
blue
yellow
black
white

284

74 Edit

red
green
blue
yellow
black
white

X

CHAPTER 11 PERL TK WIDGETS

Adding check options

In the next example, checkbutton options are added to the Edit menu:

#!perl
#menu3.pl

use Tk;

sub info {$laba = $main -» Label (-bitmap =» 'info') -» pack;}
sub error {$labi = $main -» Label (-bitmap =» 'error') -» pack;}
sub warn {$laba = $main -» Label (-bitmap => 'warning') -» pack;}
$main = MainWindow -> new;

$frame1 = $main -» Frame (-relief => groove, -borderwidth =»> 3)
->» pack (-fill => "x");

$frame2 = $main -» Frame (-height =» 150, -width =» 200) -> pack;
$File_menu = $framei -» Menubutton (-text =» "File")

-> pack (-side => "left");
$Edit_menu = $framei -» Menubutton (-text =» "Edit")

-» pack (-side =» "left");
$Help_menu = $frame1r -> Menubutton (-text => "Help")

-> pack (-side =» "right");

$Edit_menu -> checkbutton (-label =» "Show info",
-variable =» \$info,
-command =» sub {if
($info) {&info}});

"Show error",
-variable =» \$error,
-command => sub {if
($error) {&error}});

1l
v

$Edit_menu -» checkbutton (-label

$Edit_menu -» checkbutton (-label

1l
v

"Show warning",
-variable => \$warn,
-command => sub {
if ($warn) {&waxn}});
MainLoop;

285

CHAPTER 11 PERL TK WIDGETS

286

Output of menu3.pl when program starts:

74 Men... — O X

File Edit Help

Output of menu3. pl when the "Edit" menubutton is clicked:

74 Men... — O X

File Edit Help

Show info
Show error
Show warning

Output of menu3.pl when the "Show info" is clicked:

Notes about menu3.pl:

74 Men... — O

File Edit

P

X

Help

CHAPTER 11

PERL TK WIDGETS

The "info" icon appears at the bottom because it was packed under

the frame defined in the $frame2 variable. It might be better in this

case to put it within the frame defined by the $frame?2 variable.

Note that once the "Show info" option is chosen, there is a check box

next to this option:

74 Men... — O
File Edit
v Show info
Show error

Show warning

[Pt

X

Help

287

CHAPTER 11 PERL TK WIDGETS

o Ifyou "deselect" the "Show info" option, the info icon isn’t removed
(which would probably be a better solution). Also, if you "select" the
"Show info" option again, then another "info" icon will appear.

It would be better to modify the info subroutine to remove the "info"
icon if the option is "deselected" and display it again if the option is
"selected". Code that performs this behavior was shown earlier in
this chapter.

Adding command options

In this example, a command option was added to the File menu. Note that "menuitems"
is an array of arrays, hence the double [| characters:

#!perl
#menug.pl

use Tk;
$main = MainWindow -> new;

$frame1 = $main -» Frame (-relief => groove, -borderwidth =» 3) -» pack
(-fill =» "x");
$frame2 = $main -» Frame (-height =» 150, -width => 200) -> pack;
$File_menu = $frame1l -» Menubutton (
-text =» "File",
-menuitems =»
[
‘command’ =» "Exit",
-command => sub {$main -» destroy}
11)
-> pack (-side =» "left");
$Edit_menu = $frame1l -» Menubutton (-text =» "Edit")
-> pack (-side => "left");
$Help menu = $framei -» Menubutton (-text =» "Help")
-> pack (-side =» "right");

MainLoop;

288

CHAPTER 11 PERL TK WIDGETS

Output of menu4.pl when the "File" menubutton is pressed:

74 Men... — | X
File Edit Help
Exit

Adding cascade and separators

In addition to radio, check, and command options, you can add a cascade option and
separators. A cascade option will open a submenu that will contain additional options.
A separator will break up options.

The following example illustrates how cascade options and separators are used:

#!perl
#imenu5.pl

use Tk;

sub set_color {$frame2 -» configure (-background =»> $background);}
sub info {$labi = $main -» Label (-bitmap =» 'info') -» pack;}

sub error {$laba = $main -» Label (-bitmap => 'error') -» pack;}
sub warn {$lab1 = $main -» Label (-bitmap => 'warning') -»> pack;}
$main = MainWindow -» new;

$frame1 = $main -» Frame (-relief => groove, -borderwidth =»> 3)
-> pack (-fill => "x");
$frame2 = $main -» Frame (-height => 150, -width =»> 200) -»> pack;
$File_menu = $framei -» Menubutton (-text =» "File")
-» pack (-side =» "left");

289

CHAPTER 11 PERL TK WIDGETS

$Edit_menu = $frame1i -» Menubutton (-text =» "Edit")

-> pack (-side =» "left");
$Help_menu = $frame1r -> Menubutton (-text => "Help")

-> pack (-side =» "right");

$subshow = $Edit_menu -> menu -> Menu;

$subshow -» checkbutton (-label =» "Show info",
-variable =» \$info,
-command => sub {
if ($info) {&info}});

$subshow -» checkbutton (-label =» "Show error",
-variable =» \$error,
-command => sub {
if ($error) {&error}});

$subshow -» checkbutton (-label =» "Show warning",
-variable =» \$warn,
-command => sub {
if ($waxrn) {&waxn}});

$subcolor = $Edit_menu -> menu -> Menu;

foreach $color (red, green, blue, yellow, black, white) {
$subcolor -» radiobutton (-label =» $color,
-command => \&set_color,
-variable => \$background,
-value =» $color)

}

$Edit_menu -» cascade (-label =» "Show");
$Edit_menu -» entryconfigure("Show", -menu => $subshow);

$Edit_menu -» separator();

$Edit_menu -» cascade (-label =» "Color");
$Edit_menu -» entryconfigure("Color", -menu => $subcolor);

MainLoop;

290

CHAPTER 11 PERL TK WIDGETS

Notes about menu5.pl:

o Theline "$subshow = $Edit_menu -> menu -> Menu;" defines a
submenu.

o Theline "$Edit menu -> cascade (-label => "Show");" tells
TK that there is a cascade menu that will be associated with the
$Edit_menu option.

o Theline "$Edit_menu -> entryconfigure("Show", -menu =>
$subshow) ; " associates the submenu with the cascade.

Output of menus5. pl:

7€ Men.. — O X
File Edit Help
|
Show info
Color Show error

Show warning

@i

Perform the following steps:

¢ QOpen the widget program from the demos directory (this was covered in
Chapter 10).

¢ Review the programs and the source code of the following:
e Menus and cascades (submenus)
e As above but with Perl/Tk -menuitems

e Menubuttons

291

CHAPTER 11 PERL TK WIDGETS

74 Perl/Tk Widget Demonstration
File Help

Scales

1. Horizontal scale.
2. Vertical scale.

Paned Windows

1. Horizontal paned window.
2. Vertical paned window.

Photos and Images

1. Transparent pixels.
2. Alpha channel compositing.

Menus

1. Menus and cascades (sub-menus).

2. As above, but using PerlTk -menuitems.
3. Menubuttons.

Common Dialogs
1. Message boxes.
2. File selection dialog.
3. Directory selection dialog.
4. Color picker.

Tix Widgets

1. Popup help window when mouse lingers over widget.
2. Entry with Listbox to select list values.

292

CHAPTER 11 PERL TK WIDGETS

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Lab exercises

Important note If you did not finish the previous lab, either finish it before starting
this lab or use the completed parse9-2.pl provided in the lab answers folder.

Using code from parse9-2.pl, generate a script that will perform the following
operations:

¢ Have a menu bar within a frame. Have the menu bar have two items:
File and Filter.

o Create a menu item for File that will exit the program.

o Create a menu item for Filter for each of the filter features:
¢ Remove newline characters.
¢ Convert date.
¢ Remove PPID field.

o Place the listbox that displays the data in a frame under the menu bar.
If the user chooses a filter option, update the data as needed.

Store these changes in a file called parse9-3.pl.

When you have completed your work, compare your script against the parse9-3.pl
file provided in lab answers.

293

https://github.com/Apress/pro-perl-programming

CHAPTER 12

Geometry Managers

During the last two chapters, the focus has been on creating widgets. Now we will focus
on how to place (manipulate) widgets in the window. The pack command is used to
determine where widgets go and how big they will be.

It is important to understand that pack controls the size and location of the widgets;
the widgets themselves do not have the ultimate control of these parameters. For
example, if a widget definition "requests” to be 2 inches wide and 3 inches tall, pack
will accommodate this request unless an option is passed to pack to override the request.
When a conflict like this occurs, the pack specifications "wins".

The -after and -before option

By default, widgets are placed in the order that they are packed. You can override this by
using the -after or -before options. The syntax of these options is

$widget -» pack (-after | -before => $otherwidget)

In the following example, the -after option is used to place the frame defined by the
$frames variable after the frame defined by the $frame2 variable. To make it easier to see
the result, the size and color of the defined by the $frame5 variable are different than all
of the other frames:

#!perl
#after.pl

295
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_12

CHAPTER 12 GEOMETRY MANAGERS
use Tk;

$main = MainWindow -> new;

$frame1 = $main -» Frame (-relief => raised, -height => 100,
-width => 200, -borderwidth
=>» 15) ->pack;

Frame (-relief =» sunken, -height =»> 100,
-width =» 200, -borderwidth
=> 15) ->pack;

$frame3 = $main -» Frame (-relief =» flat, -height => 100,
-width => 200, -borderwidth
=> 15) ->pack;

Frame (-relief =» groove, -height =»> 100,
-width => 200, -borderwidth
=> 15) ->pack;

Frame (-relief =» ridge, -height =» 250,
-width =» 200, -borderwidth
=> 15,
-background => "blue")

->pack (-after =» $frame2);

$frame2 = $main -

v

$frameq = $main -

v

$frame5 = $main -

v

MainLoop;

296

CHAPTER 12 GEOMETRY MANAGERS

Output of after.pl:

Té After - d X

297

CHAPTER 12 GEOMETRY MANAGERS

The -anchor and -side options

You can specify an anchor position for a widget with the -anchor option. If not specified,
the default is to place it in the center of the window (or frame). The following positions
are permitted:

Position Symbol Location

n North

S South

e East

w West

ne Northeast

nw Northwest

se Southeast

sw Southwest

center Center of window (default)

The -side allows you to specify where to place the widget with the key words
"top", "bottom", "left", or "right". While it seems to be doing the same thing as the
-anchor option, it has a slightly different behavior than -anchoer. The -side option is
used to indicate where, relative to the other widgets in the window, the widget should
be placed. The -anchor option is used to attempt to force the widget to be place in a
certain area of the window. See the next pages for examples on the difference between
the two.

298

CHAPTER 12 GEOMETRY MANAGERS

-anchor vs. -side

In the following example, widgets will be placed, in order, from top to bottom. Two of the
widgets will be anchored on the west side of the window, and one will be anchored on
the east side of the window.

#!perl
#side1.pl

use Tk;

$main = MainWindow -> new;

$buti = $main -» Button (-text =» "Show info")
-> pack (-side =» top, -anchor =» w);
$but2 = $main -» Button (-text => "Show error"
-> pack(-side =» top, -anchor =» e);
$but3 = $main -> Button (-text => "Show warning")
-> pack(-side =» top, -anchor =» w);

MainLoop;

Output of sidel1.pl when program starts:

—76 [X

Show info

Show error

Show warning |

299

CHAPTER 12 GEOMETRY MANAGERS

Notice how the anchoring affects the position of the widgets when the overall
window is resized:

74 Side1 — O X
Show info [
Show error
Show warning

In the following example, widgets will be placed, in order, from right to left. Two of
the widgets will be anchored on the north side of the window, and one will be anchored
on the south side of the window.

#!perl
#side2.pl

use Tk;
$main = MainWindow -»> new;

$but1i = $main -» Button (-text =» "Show info")

-> pack (-side =» "right", -anchor =» "n");
$but2 = $main -» Button (-text =» "Show error"

-> pack(-side =» "right", -anchor =» "s");
$but3 = $main -» Button (-text => "Show warning")
-» pack(-side =» "right", -anchor =» "n");

MainLoop;
300

CHAPTER 12 GEOMETRY MANAGERS

Output of side2.pl when program is started:

7&Si.. — O X

Show walning| Show elrorl Show info

Notice how the anchoring affects the position of the widgets when the overall
window is resized:

74 Side2 - O X

Show warning | Show info I

Show error

The -fil1 option

If the widget is too small to fill the frame it is in, you can specify the -fill option to have
the widget grow to fit the frame.

With -fill you can indicate that you want the widget to fill in horizontally, vertically,
or both. The syntax for this option is

The option can be either an "x" (horizontal fill), a "y" (vertical fill), or "both" (fill
horizontally and vertically).

Fill example:

#!perl
#filli.pl

use Tk;

sub info {$labi = $main -» Label (-bitmap => 'info') -> pack;}
sub error {$lab2 = $main -» Label (-bitmap =» 'error') -» pack;}

301

CHAPTER 12 GEOMETRY MANAGERS

sub warning {$lab3 = $main -» Label (-bitmap => 'warning') -> pack;}

$main = MainWindow -> new;
$but1 = $main -» Button (-text =» "Show info",
-command => sub {&info})
-» pack (-fill =» x);
$but2 = $main -» Button (-text =» "Show error",
-command => sub {&error})
-» pack (-fill =» x);
$but3 = $main -» Button (-text =» "Show warning",
-command => sub {&warning})
-> pack;
MainLoop;
Output of fill1.pl:
—7¢ O X
Show info
Show error
Show warning

Note that the "Show warning" button didn’t have the -fill option, so it was only as

big as necessary to fit the text that is in the button. Also note that when the window is

resized, the buttons that have the -fill option defined also increase in size:

74 Fill

O X

Show info

Show error

302

Show warning |

CHAPTER 12 GEOMETRY MANAGERS

Also note that the buttons don’t change size when the window is resized vertically:

74 Fill — O X

Show info

Show error

Show warning

You could fill both vertically and horizontally:

#!perl
#fill2.pl

use Tk;

sub info {$labi = $main -» Label (-bitmap => 'info') -> pack;}
sub error {$lab2 = $main -» Label (-bitmap =» 'error') -» pack;}
sub warning {$lab3 = $main -» Label (-bitmap => 'warning') -»> pack;}

$main = MainWindow - new;

$but1i = $main -» Button (-text =» "Show info",
-command => sub {&info})
-» pack (-fill =» both);
$but2 = $main -» Button (-text =» "Show error",
-command =» sub {&error})

-» pack (-fill =» both);

303

CHAPTER 12 GEOMETRY MANAGERS

$but3 = $main -» Button (-text => "Show warning",
-command => sub {&warning})
-> pack (-fill =» both);

MainLoop;

However, this won’t really work for vertical filling because the widgets were
packed vertically and the pack utility doesn’t really know how much "space" to give

each one:
74 Fill2 E= O X
Show info
Show error
Show warning

Filling both vertically and horizontally normally only works well when there is a
single widget in the window or frame.

Padding with pack

You can specify either internal or external padding for widgets with the pack command.
The following chart illustrates the different padding options:

304

CHAPTER 12 GEOMETRY MANAGERS

Padding Option Meaning

-ipadx amount ~ Pad widget horizontal borders internally by amount
-ipady amount ~ Pad widget vertical borders internally by amount
-padx amount ~ Pad widget horizontal borders external by amount

-pady amount ~ Pad widget vertical borders externally by amount

The amount can be specified by any of the following units:

e Centimeters- ¢

e Inches-"1

o Millimeters - "m
o Points-"p"
Padding example:

#!perl
#ppad.pl

use Tk;

sub info {$lab1 = $main -» Label (-bitmap =» 'info') -» pack;}
sub error {$lab2 = $main -» Label (-bitmap => 'error') -» pack;}
sub warning {$lab3 = $main -> Label (-bitmap => 'warning') -> pack;}

$main

MainWindow -> new;
$but1 = $main -» Button (-text =» "Show info",

-command => sub {&info})

-> pack (-ipadx => 10, -ipady =»> 10);
$but2 = $main -» Button (-text => "Show error",
-command => sub {&error})
-> pack (-padx =»> 10, -pady => 10);

$but3 = $main -» Button (-text =» "Show warning",
-command => sub {&warning})

-> pack;
MainLoop;

305

CHAPTER 12 GEOMETRY MANAGERS

Output of ppad.pl:

—76 O X
Show info = |nternal padding
Show error == External padding

Show warning [

Managing widgets with pack

If you start combining different side and/or position options when packing widgets, you
will find that the result can be quite weird. For example, look at the following program
and the output it produces:

#!perl
#weird.pl

use Tk;
$main = MainWindow -> new;

$frame1 = $main -» Frame (-relief => raised, -height =» 150,
-width =»> 200,
-boxrderwidth =» 15,
-background =» blue)
-spack (-side =» "left");
$frame2 = $main -» Frame (-relief =» sunken, -height =» 150,
-width => 200,
-borderwidth =» 15,
-background =» black)
->pack (-anchor =» "e");

306

$frame3 =

$frameq =

$frames =

MainLoop;

CHAPTER 12 GEOMETRY MANAGERS

$main -» Frame (-relief =» flat, -height =» 150,
-width => 200,
-bordexrwidth =» 15,
-background =»> yellow)
-spack (-side =» "top");
$main -» Frame (-relief =» groowve, -height =»> 150,
-width =» 200,
-borderwidth =» 15,
-background =» green)
->pack (-side =» "bottom", -fill => "both");
$main -» Frame (-relief =» ridge, -height =» 150,
-width => 200,
-bordexrwidth =» 15,
-background => purple)
-spack (-side =» "left");

307

CHAPTER 12 GEOMETRY MANAGERS

Output of weird.pl:

74 Weird — O X

308

CHAPTER 12 GEOMETRY MANAGERS

This is probably NOT what you wanted TK to do. Granted, it isn’t too crazy...yet. Try
running the program and then resizing the window:

74 Weird

309

CHAPTER 12 GEOMETRY MANAGERS

The process of organizing widgets involves good use of frames. For example, suppose
we want to make the following window:

Menu bar
S
? Label widget w/text
o
List box |
B
Label widget w/graphic
3

The best method would be to create frames inside of frames and use the placement
options that pack provides to place the sub-widgets in their proper place.
The following example shows how to create this more complex widget structure:

#!perl
#place.pl

use Tk;
$main = MainWindow -> new;

#Main two frames:

$maini = $main -» Frame (-relief => groove, -borderwidth =» 3) -» pack
(-fill =» "x");

$main2 = $main -» Frame (-height =» 150, -width =» 200) -» pack;

#Placing menu bar in top frame:

$File_menu = $maini -» Menubutton (-text =» "File") -» pack
(-side => "left");

$Edit_menu = $maini -» Menubutton (-text =» "Edit") -» pack
(-side => "left");

$Help_menu = $maini -» Menubutton (-text => "Help") -» pack
(-side => "right");

310

CHAPTER 12

#Breaking up bottom frame:
$sub1 = $main2 -» Frame -» pack (-side => "left");
$sub2 = $main2 -> Frame -» pack (-side => "right");

#Putting Listbox in left frame:
open (COLORS, "<rgb.txt") || die;
$temp=<COLORSy; #need to remove 1st line

$scroll = $subi-»Scrollbarx();

GEOMETRY MANAGERS

$1b = $sub1 -» Listbox (-yscrollcommand =» ['set' =» $scroll])

-> pack(-side=> 'left');

while (<COLORS>) {
chomp;
s/~[0123456789]+//;
s/\t\t//;
$1b -» insert('end', $_);
}

$scroll -» configure (-command =» ['yview' => $1b]);
$scroll -spack(-side => 'right', -fill =»> 'y');

#Placing labels in right frame:

$lab1 = $sub2 -» Label (
-text => "Perl is the best",
-font =»

' -adobe- courier-medium-o-normal- -24-240-75-75-m-150-hp-roman8')

-> pack;
$lab2 = $sub2 -» Label (-bitmap => 'questhead') -» pack;

MainLoop;

311

CHAPTER 12 GEOMETRY MANAGERS

Output of place.pl

74 Place — O X

File Edit Help

snow A

ghost white

Ghostwhite

white smoke .

MhiaSmoke Perl 1s the best
gainsboro :

floral white
Floralw/hite

old lace
OldLace v

Binding

Binding is the process of associating widgets with events. An event can be a keyboard key
being pressed, mouse clicking, mouse movement (leaving and entering widgets), widget
size changing, widgets being destroyed, and other actions.

The topic of binding is a huge one; only the basics of binding will be discussed in this unit
The format of bind is

$widget -» bind (event, action)

event

An event is a series of mouse or keyboard actions. An event is broken down into two
categories: modifier and event type.
The following chart illustrates the possible modifiers:

Modifiers Meaning

Control The control key
Shift The shift key

(continued)
312

CHAPTER 12 GEOMETRY MANAGERS

Modifiers Meaning

Lock The Caps Lock key

Alt The Alt key

Double Double-pressed events (normally for double-clicking)
Triple Triple-pressed events (normally for triple-clicking)

Button # Which button (1, left; 2, center; 3,right)

The following chart illustrates the possible event types:

Event Type Meaning

ButtonPress A button is pressed

ButtonRelease A button is released

Destroy The window is destroyed

Enter The mouse has entered the window
KeyPress A key is pressed

KeyRelease A key is released

Leave A mouse is leaving the window

The two event types we will focus on will be "ButtonPress" and "KeyPress" as they
are the most common.
To specify which button (left, center, or right), specify the number of the button:

<ButtonPress-1> Left button
<ButtonPress-2> Center button
<ButtonPress-3> Right button

To specify which key, specify the key after the "KeyPress" event type:
<KeyPress-a> The "a" key
<KeyPress-z> The "z" key

<KeyPress-Return> The "return" key

313

CHAPTER 12 GEOMETRY MANAGERS

Other special keys can be specified: Escape, Backspace, Tab, Up, Down, Left, Right,
comma, period, dollar, number sign.

You can also specify event modifiers. For example, maybe you want an action to take
place if the user holds down the control button and presses the "a" key.

Examples:

<Control-KeyPress-a> Control+a
<Double-ButtonPress-1> Double-click the left mouse button

The following example will bind the left mouse button to the destroy command. The
destroy command will delete widgets.

#!perl
#bind.pl

use Tk;

$main = MainWindow -> new;
$main -» bind ("<ButtonPress-1>", sub {destroy $main});

$lab1 = $main -» Label (-text =» "Perl is the best",
-font =» '-adobe-courier-medium-o-
normal--24-240-75-75-m-150-hp-roman8')

-> pack;

$lab2 = $main -» Label (-text => "Don't you think?",
-font =» '-adobe-helvetica-medium-
o-normal--24-240-75-75-p-130-
is08859-1")
- pack;

MainLoop;

Output of bind. pl (run this and then click anywhere in the main window to see the
program exit):

74 Bind — O X
Perl is the best
Don't you think?

314

CHAPTER 12 GEOMETRY MANAGERS

The focus command

If you want the user to be able to use the keyboard keys to enact commands in other
widgets, you have to use the focus command. The focus command tells TK what
window to "focus on" when looking for keyboard input.

The following example will switch the focus of the keyboard to the entry widget:

#!perl
#focus.pl

use Tk;

sub entry_remove {
$tone = $entry -» get();
$top -> destroy;
$but2 -» configure (-text => "$tone");

}
sub tone {
$top = $main -» Toplevel();
$lab1 = $top -» Label (-text =»> "Enter Tone:") -» pack;
$entry = $top -» Entry -» pack;
$entry -» focus();
$buti = $top -» Button (-text =» "Exit",
-command => sub {entry_remove})
-» pack;}
$tone=0;

$main = MainWindow -»> new;

$buti = $main -» Button (-text =»> "Enter tone",
-command => sub {&tone})
- pack;
$but2 = $main -» Button (-text =» "$tone") -» pack;
$but3 = $main -» Button (-text =» "Exit", -command => sub {exit})

- pack;

MainLoop;

315

CHAPTER 12

GEOMETRY MANAGERS

To see how the focus.pl program works, first run the program and then click the

"Enter tone" button:

—7& [X
Enter tone |+«
0
E it

Note that you can start typing the tone value immediately, without having to click in

window:

9 0O X

Enter Tone:

E xit

| &Try it!

Another popular geometry manager is call canvas. Perform the following steps for a
quick introduction to the canvas geometry manager:

e (Open the widget program from the demos directory (this was
covered in Chapter 10).

e Review the programs and the source code of the following:

316

The canvas item types

A simple 2-D plot

Test items in canvases

An editor for arrowheads on canvas lines

e Aruler with adjustable tab stops
e A building floor plan

e Asimple scrollable canvas

e Tiles and transparent images

CHAPTER 12 GEOMETRY MANAGERS

74 Perl/Tk Widget Demonstration
File Help

Canvases

1. The canvas item types.
2. A simple 2-D plot.
3. Text tems in canvases.

5. A ruler with adjustable tab stops.
6. A building floor plan.

7. A simple scrollable canvas.

8. Tiles and transparent images.

4. An editor for arrowheads on canvas lines.

Scales

1. Horizontal scale.
2. Vertical scale.

Paned Windows

1. Horizontal paned window.
2. Vertical paned window.

Photos and Images

1. Transparent pixels.
2. Alpha channel compositing.

Menus

1. Menus and cascades (sub-menus).

2. As above, but using PerlTk -menuitems.

3. Menubuttons.

317

CHAPTER 12 GEOMETRY MANAGERS

Additional resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Lab exercises

Important note If you did not finish the previous lab, either finish it before starting
this lab or use the completed parse9-3.pl provided in the lab answers folder.

Using code from parse9-3.pl, generate a script that will perform the following

operations:

e Add "header" info that doesn’t move with the scrollbar. Keep in
mind that as the data changes, the "header" may need to be adjusted

as well.

o Change the initial prompt ("Update data") so that it appears in the
frame that is used to hold the data instead of withing a toplevel. After
the user answers the question, use that frame to display the data.

Store these changes in a file called parse10.pl.
When you have completed your work, compare your script against the parse10.pl
file provided in lab answers.

318

https://github.com/Apress/pro-perl-programming

Index

Symbol B

@ARGV array, 126 B command, 213, 214

$ARGV variable, 125 B * command, 215

$AE variable, 135, 136 Backreference patterns, 15-18
=> operator, 89 Backtracking, 66, 67

<> operator, 125 Benchmark module, 57, 58, 196, 197
? metacharacters, 7 Binding

| metacharacters, 12 ButtonPress, 313

A and $ metacharacters, 11 event, 312, 313

* and + metacharacters, 5 KeyPress, 313

? metacharacters, 7 modifiers, 312, 313

. metacharacters, 8 -borderwidth

() metacharacters, 11, 12 option, 236

[] metacharacters, 8, 9 Built-in Perl modules

{} metacharacters, 6, 7 drawbacks, 185

A% placeholder, 120 @INC variable, 180, 181

$! variable, 135 location of loaded, 181

$? variable, 133-135 use autouse pragma, 182
$@ variable, 136 Built-in variables

English names, 132
reference chart, 129-131

A Buttons
\A assertion, 33, 47 Cursor,
ActiveState debugger, 217 change, 251, 252
Array context, 74 destroy, 249-250
Assertions, 27 exit application, 248, 249
g modifier, 29 lab, 254, 255
look forward/back, 27, 29 toplevels, 252, 253
autouse pragma, 182 types, 247

319
© William “Bo” Rothwell of One Course Source, Inc. 2020

W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3

https://doi.org/10.1007/978-1-4842-5605-3

INDEX

C

c command, 214

Carp, 220-221

cascade option, 289

cat command, 210, 211

charnames pragma, 62

chdir() function, 185

Checkbuttons, 255, 256

chomp command, 137

chr statement, 124

close statement, 78, 134

-command option, 248, 256, 267

configure option, 249

Contextual::Return module, 74

cpan client, 216

Creating menus
cascade/separators

options, 289-291

checkbutton options, 285-288
check/radio options, 282-284
command options, 288, 289
options, 281

croak statement, 221, 222

curselection function, 262

-cursor option, 251

Cwd module, 184

D

Data capturing, 48, 49
Data::Dumper, 222, 223
Debugger commands, 209
ActiveState, 217
Devel::modules, 218
Padre, 217
print, 211
stepping code, 212
variables/subroutines, 216

320

defined() functions, 91, 92
defined statement, 169
destroy command, 314
Devel::modules debugger, 218
devnull function, 191
die statement, 93, 134, 199, 220
Digit/punctuation

character, 15
dir command, 133
do statement, 81

E

End-of-line character, 46
__END__ token, 104, 152
Entries
entry box, 278, 279
hide user’s input, 276, 277
scale widget, 275
Environment variables, 186, 187
Error messages
Carp module, 220
classification, 218
diagnostics, 219, 220

perldiag documentation, 218, 219

Escaping metacharacters, 62
eval function, 56, 136
expand statement, 194
External file, 152, 153

F

fastcwd statement, 185
Fatal module, 196
Filehandle module, 79, 118, 119
File handling
file position, 150
opening/reading, 145

INDEX

opening/writing, 146 H
piping, 147, 148

File locking, 154, 155

File modules
File::Basename, 187 |) J
File::Compare, 188
File::Copy, 188
File::DosGlob, 191
File::Fetch, 191
File::Find, 190, 191
File::Path, 188, 189
File::Spec::platform, 191

fill option, 301-304 K

focus command, 315, 316, 318 kill-1 command, 139

foreach loop, 69-71, 103

format statement, 107-108, 113-115

h command, 210

i modifier, 4

interactive function, 83
int statement, 122
10::Interactive module, 83
10::Prompt module, 83

format variables, 115-117 L
Frames, 235 I command, 212-214
colors, 238 Lab, 269-270
-relief option, 236 Labels
bitmaps, 239, 240
G -font option, 242, 243
-image option, 241
\G assertion, 47 -text option, 242, 243
Geometry managers, 231 -wraplength
-after/-before options, 295, 296 option, 244, 245
-anchor/-side option, 298 Listboxes, 260-262, 266
-anchor vs.-side options, 299-301 locale pragma, 176
getcwd statement, 184 Is command, 133
get function, 262
getops function, 99, 199
GetOptions function, 100, 200 M
Getopt::Long module, 100, 200 Math modules
getopts function, 98, 198, 199 Math::BigFloat, 192
Getopt::Std module, 97, 197 Math::BigInt, 193
g modifier, 3, 46 Math::BigRat, 193
Greedy vs. non-greedy matches, 22, 23 Math::Complex, 193
grid geometry manager, 231 Math::Trig, 192

321

INDEX

Metacharacters, 12, 13 (@)
A and $ characters, 11
| characters, 12
+ and + characters, 5
? characters, 7, 8
. characters, 8
() characters, 11, 12
[] characters, 8, 9
{} characters, 6, 7
mkdir statement, 188

Object-oriented module (OO module),
232,233

o modifier, 56

open statement, 76, 78, 108, 134, 145, 147,
148, 196

our statement, 163, 170, 171

Output buffers, 155, 156

mkpath statement, 189 P
m modifier, 31, 33, 47 pack command, 235, 236, 295
Modifiers packForget operation, 251
d modifier, 19, 20 pack geometry manager, 231
e modifier, 19 Packing widgets, 306, 308
g modifier, 20, 21 organizing widgets, 310
i modifier, 20, 21 structure, 310, 312
matching and substation, 19 sub-widgets, 310
m modifier, 31, 33, 47 Padding widgets, 258, 259, 304-306
s modifier, 20 Padre debugger, 217
translation, 19 -padx options, 258
while loop, 21 -pady options, 258
Module table, 183 Pattern match, 16, 23, 44
more command, 128, 148 Perl
Multiple line matching debugger, 208
m modifier, 31, 33 style, 223, 224
s modifier, 32 version, 142, 143
my variable, 69, 71, 163, 167 Perl 5.10, 41

features, 173
say/state features, 175, 176

N Perl6::Slurp module, 82
n command, 212 perlcritic command, 96, 97
Non-horizontal whitespace characters Perl::Critic module, 97

(H matches), 45 perldoc command, 85
Non-vertical whitespace characters perlfunc document, 85

(V matches), 45 Perl statement, 125
Number vs. string, 86, 87 perltidy command, 94-96
Numeric fields, 119, 176 Perl::Tidy module, 94

322

Placeholders, 108
breakover multiple-line, 109, 110
break up text, 111
repeating lines, 111
Plain Old Documentation (POD), 85, 103
POSIX character classes, 15
Practical Extraction and Report
Language (Perl)
backreference patterns, 15-18
basic operations, 2, 3
metacharacters (see Metacharacters)
modifiers, 18
RE (see Regular Expressions (RE))
Pragma chart, 159-160
Predeclaring subroutines, 163-164
Predeclaring variables, 168
Predefine subroutines, 164
printf commands, 120, 125
printf/sprint
ASClIlI value, 123, 124
flags, 122
floating-point number, 122
format options, 121
hex number, 123
octal number, 123
print statement, 78, 83, 92, 105, 113, 126,
139, 146, 155,174

Q

gr function, 54, 56

R

Radiobuttons, 257
Reading/writing options
actions, 152
file open, 150

INDEX

notes, 151
reasons, 152
truncating file, 151
RE classes, 14, 15
Regex atoms, 42
Regex flags, 61
Regexp::Common module, 58-61
Regular Expression precedence (regex),
41, 42
compile
code fragment, 52, 53
disadvantage, 54
o modifier, 56
vs. run time, 53
test user input, 55, 56
list context, 43
whitespace character, 45
Regular Expressions (RE)
backreference, 15-18
comments, 33
delimiter, 34
lab exercises, 35, 36
list context, 43
metacharacters (see Metacharacters)
modifiers, 3, 18
operations, 2, 3
resources, 34
special characters, 26
variables, 23-25
rename statement, 188
re pragma, 63
debug mode, 63-65
functions, 65
require statement, 142, 159
rgb.txt file, 261
rmdir statement, 188, 189
rmtree statement, 189
Run time vs. compile time, 53, 54

323

INDEX

S

s command, 212, 216, 217
say features, 174
Scalar context, 74
Scalar vs. array vs. list, 88
Scale widgets, 270, 272, 273
Scrollbars, 266, 267
seek command, 149, 150
-selectmode option, 264
select statement, 112, 156
separator option, 289
Separator variables, 136
array separator, 137, 138
print separator, 138, 139
record separator, 136, 137
set function, 272
shift-click method, 266
-show option, 276, 277
%SIG hash variable, 140
Signal handle variable, 139-141
slurp function, 82
Slurping, 80
Smart::Comments module, 105
Smartmatch operator, 37, 38
EXPR argument, 40
given statement, 39
sorts of matching, 38
s modifier, 46
sort function, 84
split command, 30, 49
sprintf commands, 120
state features, 174, 175
-state option, 278, 279
stat function, 93, 94
Status variables, 133
$AE variable, 135, 136
$! variable, 135

324

$? variable, 133-135

$@ variable, 136
Subroutines calls

& and () character, 90, 91

& character, 91

() character, 91
switch statement, 174
Symbolic references, 160
Sys::Syslog module, 193
system statement, 133, 185, 191

T

tell statement, 148

Text modules
Text::Tabs, 194
Text::Wrap, 194

-text option, 242, 248

Three-argument technique, 78

-tickinterval option, 271

Time::HiRes module, 73

time statement, 143

timethese() function, 57

TK module, 225, 226

Label Demonstration program, 229

OO0 module, 232, 233
See Code button, 229
working, 227
Translation modifiers, 19
Two-argument technique, 77

U

undef() functions, 91, 92
unexpand statement, 194
use statement, 225

use feature pragma, 173, 174
use lib statement, 180

use strict pragma
use strict ref, 160
use strict subs, 160, 161
use strict vars, 161, 162
use vars variables, 163, 170

\"

V command, 216, 217
-variable option, 256
Variables, 51
p modifier, 52
variable @, 51
varsl.pl program, 116

w

wantarray statement, 74
wanted function, 190
warn commands, 220
while loop, 17, 167

Whitespace pattern-matching, 45

widget program, 227
Widgets, 225
creation, 232

types, 226, 227
wrap statement, 194, 195
write statements, 107, 112

write STDOUT statement, 114

-W switch, 208
logical errors, 205, 206
$AW variable, 207
warnings, 207
-X switch, 208

X

x command, 211, 222
x modifier, 33
xlsfonts command, 242

Y

y command, 216, 217

-yscrollcommand option, 267

Y4

\z assertion, 33, 48
\Z assertion, 47

INDEX

325

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Intermediate Regular Expressions
	Review: Basic Regular Expressions
	Basic operations
	Basic modifiers
	Basic metacharacters
	Examples: The * and + characters
	Examples: The { } characters
	Examples: The ? character
	Examples: The . character
	Examples: The [] characters
	Examples: The ^ and $ characters
	Examples: The () characters
	Examples: The | character
	Examples: The \ character

	Regular Expressions classes
	Examples: "\w" and "\d"
	Examples: "\s" and "\b"

	Backreferencing
	Example #1: Backreferencing
	Example #2: Backreferencing
	Example #3: Backreferencing

	Modifiers
	The e modifier
	The d modifier
	The s modifier
	Other modifiers

	Getting the Nth occurrence of a match
	Greedy vs. non-greedy matches
	Regular Expression variables
	What was matched
	Before and after what was matched
	Warning about $&, $`, and $'
	Special characters in Regular Expressions

	Assertions
	Looking forward and back
	Using \G

	Reading from filehandles using split
	Multiple line matching
	Using the s modifier
	Using the \A, \Z, and \z assertions

	Commenting Regular Expressions
	Alternative delimiters
	Additional resources
	Lab exercises

	Chapter 2: Advanced Regular Expressions
	Make use of the Smartmatch operator
	Using REs with Smartmatch
	Additional Smartmatches
	The given statement
	Use Perl 5.10.1 or higher

	Understand Regular Expression precedence
	Understand what is *NOT* a Regular Expression atom
	Using Regular Expressions in list context
	Naming the capture variables within the pattern match

	Match whitespace properly
	Matching "end of the line"

	Use \G
	Use the \A, \Z, and \z assertions
	Avoid capturing
	Avoid the variables $`, $&, and $'
	Method #1
	Example using @-
	Method #2

	Compile your Regular Expressions before using them
	Run time vs. compile time
	Using qr to test user input
	Using the o modifier

	Benchmark your patterns
	Use Regexp::Common
	Flags you should consider always using
	Automating /smx

	Avoid escapes
	Use the re pragma
	use re'debug'

	Understand backtracking
	Additional resources
	Lab exercises

	Chapter 3: Advanced Features
	Use my iterator variables with for loops
	Foreach loops use local variable by default

	Utilize loop labels
	Avoid using <> for file matching
	Time::HiRes
	Contextual::Return
	Indirect Filehandles
	The three-argument technique to the open statement
	Always check the return values of open, close, and when printing to a file
	Close filehandles as soon as possible
	Avoid slurping
	Creatively use the do statement
	Use the slurp() function
	Test for interactivity
	Use IO::Prompt
	Understand where to find documentation
	Sources of documentation

	Understand context
	Number vs. string
	Scalar vs. array vs. list

	Understand the => operator
	Understand subroutine calls
	Understand and/or vs. &&/||
	Use Perl::Tidy
	Use Perl::Critic
	Understand Getopt::Std
	Understand Getopt::Long
	Alternative commenting technique
	Passing notes within a Perl program
	Use Smart::Comments
	Additional resources
	Lab exercises

	Chapter 4: Advanced Formatted Output
	Review: The format statement
	The format statement
	Placeholders
	Repeating lines

	Using select
	Warning regarding the select statement

	Advanced format statement features
	Top of form
	Format variables
	Padding with zeros
	Using ^*

	printf and sprintf
	Options for printf and sprintf
	printf and sprintf flags
	Example: Rounding numbers
	Example: Modifying numbers
	Example: Converting ASCII values
	print sprintf

	The <> Operator
	Additional resources
	Lab exercises

	Chapter 5: Exploring Useful Built-in Variables
	Variables reference chart
	Use English
	Status variables
	The $? variable
	The $! variable
	The $^E variable
	The $@ variable

	Separator variables
	Input record separator
	Array separator variable
	print separators

	The signal handle variable
	Version of Perl
	Program start time
	Additional resources
	Lab exercises

	Chapter 6: Advanced File Handling
	Review: Basic file handling
	Opening and reading from files
	Opening and writing to files
	Piping in Perl

	Displaying the file position
	Moving the file position
	Opening files for reading and writing
	Open an existing file for reading and writing
	Truncating files
	Why open a file for both reading and writing?

	Making "files" within your script
	Locking files
	Flushing output buffers
	Using select

	Additional resources
	Lab exercises

	Chapter 7: Pragmas
	Pragma chart
	The use strict pragma
	use strict'ref'
	use strict'subs'
	use strict'vars'

	Predeclaring subroutines
	Predeclaring global variables
	Using new features
	Example of use feature'say' and use feature'state'
	Example of use feature "switch"
	Using all features of a specific Perl version

	Using locale
	Final note about pragmas
	Additional resources
	Lab exercises

	Chapter 8: Exploring Useful Built-in Modules
	Built-in modules
	Manipulate @INC at compile time
	Determining the location of loaded modules
	Loading modules as needed

	Module table
	Cwd
	cwd
	getcwd
	fastcwd
	Why not use a system statement?

	Env
	File modules
	File::Basename
	File::Compare
	File::Copy
	File::Path
	File::Find
	Additional useful file modules

	Math modules
	Math::BigFloat
	Math::Trig
	Additional useful math modules

	Sys modules
	Text
	Text::Tabs
	Text::Wrap

	Fatal
	Benchmark
	Getopt::Std
	Getopt::Long
	Additional resources
	Lab exercises

	Chapter 9: Debugging Tools
	Review: The -w switch
	The $^W variable
	use warnings
	The -W switch
	The -X switch

	The Perl debugger
	Debugger commands
	Getting help
	An alternative to print
	Stepping through code
	Listing code
	Setting breakpoints
	Listing breakpoints
	Continue to breakpoints
	Deleting breakpoints
	Displaying variables and subroutines

	Additional debuggers
	Understanding error messages
	use diagnostics
	Carp
	Using carp
	Using croak

	Data::Dumper
	Perl style
	Additional resources
	Lab exercises

	Chapter 10: Perl/TK Basics
	The TK module
	Types of widgets
	Exploring widget examples
	Geometry managers
	Creating widgets
	The OO nature of the Tk module
	Additional resources
	Lab exercises

	Chapter 11: Perl TK Widgets
	Frames
	Relief
	Colors

	Labels
	bitmaps
	Using other images
	text
	Text wrapping

	Buttons
	Using buttons to exit your script
	Using buttons to destroy widgets
	Unpacking instead of destroying
	Changing the cursor
	Opening a toplevel
	Lab

	Checkbuttons
	Radiobuttons
	Padding

	Listboxes
	Using selected values
	Selecting options

	Scrollbars
	Lab

	Scales
	Setting a default scale value

	Entries
	Hiding the user’s input
	Disable an entry box

	Creating menus
	Creating the menu options
	Adding radio options
	Adding check options
	Adding command options
	Adding cascade and separators

	Additional resources
	Lab exercises

	Chapter 12: Geometry Managers
	The -after and -before option
	The -anchor and -side options
	-anchor vs. -side

	The -fill option
	Padding with pack
	Managing widgets with pack
	Binding
	event

	The focus command
	Additional resources
	Lab exercises

	Index

