
Pro Perl
Programming

From Professional to Advanced
—
William “Bo” Rothwell

Pro Perl Programming
From Professional to Advanced

William “Bo” Rothwell

Pro Perl Programming: From Professional to Advanced

ISBN-13 (pbk): 978-1-4842-5604-6			 ISBN-13 (electronic): 978-1-4842-5605-3
https://doi.org/10.1007/978-1-4842-5605-3

Copyright © 2020 by William “Bo” Rothwell of One Course Source, Inc.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484256046. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

William “Bo” Rothwell
San Diego, CA, USA

https://doi.org/10.1007/978-1-4842-5605-3

To all Perl Mongers, new and old.

v

Table of Contents

Chapter 1: Intermediate Regular Expressions��� 1

Review: Basic Regular Expressions��� 1

Basic operations��� 2

Basic modifiers��� 3

Basic metacharacters��� 4

Regular Expressions classes�� 13

Backreferencing��� 15

Modifiers�� 18

The e modifier�� 19

The d modifier�� 19

The s modifier��� 20

Other modifiers��� 20

Getting the Nth occurrence of a match�� 21

Greedy vs. non-greedy matches�� 22

Regular Expression variables��� 23

What was matched��� 23

Before and after what was matched�� 23

Warning about $&, $`, and $’�� 24

Special characters in Regular Expressions�� 25

Assertions�� 26

Looking forward and back�� 27

Using \G�� 29

About the Author��xvii

About the Technical Reviewer���xix

vi

Reading from filehandles using split��� 30

Multiple line matching��� 31

Using the s modifier��� 32

Using the \A, \Z, and \z assertions�� 33

Commenting Regular Expressions��� 33

Alternative delimiters��� 34

Additional resources�� 34

Lab exercises��� 35

Chapter 2: Advanced Regular Expressions�� 37

Make use of the Smartmatch operator�� 37

Using REs with Smartmatch��� 38

Additional Smartmatches��� 38

The given statement��� 39

Use Perl 5.10.1 or higher�� 41

Understand Regular Expression precedence��� 41

Understand what is *NOT* a Regular Expression atom�� 42

Using Regular Expressions in list context�� 43

Naming the capture variables within the pattern match�� 44

Match whitespace properly��� 45

Matching “end of the line”��� 46

Use \G�� 46

Use the \A, \Z, and \z assertions�� 47

Avoid capturing�� 48

Avoid the variables $`, $&, and $’��� 51

Method #1�� 51

Example using @-�� 51

Method #2�� 52

Table of Contents

vii

Compile your Regular Expressions before using them�� 52

Run time vs. compile time�� 53

Using qr to test user input�� 55

Using the o modifier��� 56

Benchmark your patterns�� 57

Use Regexp::Common�� 58

Flags you should consider always using��� 61

Automating /smx�� 61

Avoid escapes�� 62

Use the re pragma��� 63

use re ‘debug’��� 63

Understand backtracking��� 66

Additional resources�� 67

Lab exercises��� 67

Chapter 3: Advanced Features��� 69

Use my iterator variables with for loops�� 69

Foreach loops use local variable by default��� 70

Utilize loop labels��� 72

Avoid using <> for file matching��� 72

Time::HiRes�� 73

Contextual::Return��� 74

Indirect Filehandles�� 76

The three-argument technique to the open statement�� 77

Always check the return values of open, close, and when printing to a file�������������������������������� 78

Close filehandles as soon as possible��� 79

Avoid slurping�� 79

Creatively use the do statement�� 80

Use the slurp() function�� 82

Test for interactivity��� 82

Use IO::Prompt��� 83

Table of Contents

viii

Understand where to find documentation��� 84

Sources of documentation��� 85

Understand context�� 86

Number vs. string��� 86

Scalar vs. array vs. list��� 88

Understand the => operator�� 88

Understand subroutine calls�� 90

Understand and/or vs. &&/||��� 93

Use Perl::Tidy��� 94

Use Perl::Critic��� 96

Understand Getopt::Std�� 97

Understand Getopt::Long��� 100

Alternative commenting technique�� 102

Passing notes within a Perl program��� 104

Use Smart::Comments��� 105

Additional resources�� 106

Lab exercises��� 106

Chapter 4: Advanced Formatted Output�� 107

Review: The format statement��� 107

The format statement��� 107

Placeholders��� 108

Repeating lines��� 111

Using select��� 112

Warning regarding the select statement�� 113

Advanced format statement features�� 113

Top of form��� 114

Format variables��� 115

Padding with zeros��� 119

Using ^*��� 120

Table of Contents

ix

printf and sprintf�� 120

Options for printf and sprintf�� 121

printf and sprintf flags�� 122

Example: Rounding numbers�� 122

Example: Modifying numbers��� 123

Example: Converting ASCII values�� 123

print sprintf��� 125

The <> Operator�� 125

Additional resources�� 127

Lab exercises��� 127

Chapter 5: Exploring Useful Built-in Variables�� 129

Variables reference chart��� 129

Use English�� 132

Status variables��� 133

The $? variable��� 133

The $! variable�� 135

The $^E variable�� 135

The $@ variable�� 136

Separator variables�� 136

Input record separator�� 136

Array separator variable��� 137

print separators�� 138

The signal handle variable��� 139

Version of Perl�� 142

Program start time��� 143

Additional resources�� 143

Lab exercises��� 144

Table of Contents

x

Chapter 6: Advanced File Handling�� 145

Review: Basic file handling�� 145

Opening and reading from files�� 145

Opening and writing to files��� 146

Piping in Perl�� 147

Displaying the file position��� 148

Moving the file position�� 149

Opening files for reading and writing�� 150

Open an existing file for reading and writing��� 150

Truncating files��� 151

Why open a file for both reading and writing?��� 152

Making “files” within your script��� 152

Locking files��� 154

Flushing output buffers�� 155

Using select�� 156

Additional resources�� 156

Lab exercises��� 157

Chapter 7: Pragmas��� 159

Pragma chart��� 159

The use strict pragma�� 160

use strict ‘ref’��� 160

use strict ‘subs’�� 160

use strict ‘vars’��� 161

Predeclaring subroutines��� 163

Predeclaring global variables��� 168

Using new features�� 173

Example of use feature ‘say’ and use feature ‘state’��� 174

Example of use feature “switch”�� 174

Using all features of a specific Perl version��� 175

Table of Contents

xi

Using locale��� 176

Final note about pragmas�� 177

Additional resources�� 177

Lab exercises��� 178

Chapter 8: Exploring Useful Built-in Modules�� 179

Built-in modules��� 179

Manipulate @INC at compile time�� 180

Determining the location of loaded modules�� 181

Loading modules as needed��� 182

Module table�� 183

Cwd�� 184

cwd��� 184

getcwd�� 184

fastcwd��� 185

Why not use a system statement?��� 185

Env��� 186

File modules��� 187

File::Basename��� 187

File::Compare �� 188

File::Copy�� 188

File::Path��� 188

File::Find��� 190

Additional useful file modules�� 191

Math modules�� 192

Math::BigFloat�� 192

Math::Trig��� 192

Additional useful math modules��� 193

Sys modules��� 193

Table of Contents

xii

Text�� 193

Text::Tabs�� 194

Text::Wrap �� 194

Fatal��� 196

Benchmark��� 196

Getopt::Std��� 197

Getopt::Long��� 200

Additional resources�� 202

Lab exercises��� 202

Chapter 9: Debugging Tools��� 205

Review: The -w switch��� 205

The $^W variable��� 207

use warnings�� 207

The -W switch�� 208

The -X switch��� 208

The Perl debugger�� 208

Debugger commands��� 209

Getting help�� 210

An alternative to print��� 211

Stepping through code��� 212

Listing code�� 212

Setting breakpoints�� 213

Listing breakpoints��� 213

Continue to breakpoints��� 214

Deleting breakpoints�� 214

Displaying variables and subroutines��� 216

Additional debuggers��� 217

Table of Contents

xiii

Understanding error messages�� 218

use diagnostics�� 219

Carp��� 220

Using carp�� 220

Using croak��� 221

Data::Dumper��� 222

Perl style�� 223

Additional resources�� 224

Lab exercises��� 224

Chapter 10: Perl/TK Basics�� 225

The TK module��� 225

Types of widgets�� 226

Exploring widget examples�� 227

Geometry managers��� 231

Creating widgets�� 232

The OO nature of the Tk module�� 232

Additional resources�� 233

Lab exercises��� 233

Chapter 11: Perl TK Widgets�� 235

Frames��� 235

Relief�� 236

Colors��� 238

Labels�� 239

bitmaps��� 239

Using other images�� 241

text��� 242

Text wrapping��� 244

Table of Contents

xiv

Buttons��� 247

Using buttons to exit your script��� 248

Using buttons to destroy widgets��� 249

Unpacking instead of destroying�� 250

Changing the cursor��� 251

Opening a toplevel�� 252

Lab�� 254

Checkbuttons��� 255

Radiobuttons�� 257

Padding�� 258

Listboxes�� 260

Using selected values��� 262

Selecting options�� 264

Scrollbars��� 266

Lab�� 269

Scales�� 270

Setting a default scale value�� 272

Entries�� 275

Hiding the user’s input��� 276

Disable an entry box��� 278

Creating menus�� 281

Creating the menu options��� 281

Adding radio options��� 282

Adding check options��� 285

Adding command options��� 288

Adding cascade and separators��� 289

Additional resources�� 293

Lab exercises��� 293

Table of Contents

xv

Chapter 12: Geometry Managers��� 295

The -after and -before option�� 295

The -anchor and -side options��� 298

-anchor vs. -side�� 299

The -fill option�� 301

Padding with pack��� 304

Managing widgets with pack��� 306

Binding��� 312

event��� 312

The focus command�� 315

Additional resources�� 318

Lab exercises��� 318

Index�� 319

Table of Contents

xvii

About the Author

At the impressionable age of 14, William “Bo” Rothwell crossed paths with a TRS-80 Micro

Computer System (affectionately known as a “Trash 80”). Soon after, the adults responsible

for Bo made the mistake of leaving him alone with the TRS-80. He immediately dismantled

it and held his first computer class, showing his friends what made this “computer thing”

work. Since this experience, Bo’s passion for understanding how computers work and

sharing this knowledge with others has resulted in a rewarding career in IT training. His

experience includes Linux, Unix, DevOps tools, orchestration, security, and programming

languages such as Perl, Python, Tcl, and Bash.

Bo can be contacted via LinkedIn: www.linkedin.com/in/bo-rothwell.

http://www.linkedin.com/in/bo-rothwell

xix

About the Technical Reviewer

Germán González-Morris is a polyglot software architect/engineer and has been 20+

years in the field, with knowledge in Java(EE), Spring, Haskell, C, Python, and JavaScript,

among others. He works with web distributed applications. Germán loves math puzzles

(including reading Knuth) and swimming. He has tech-reviewed several books,

including an application container book (WebLogic), as well as titles covering various

programming languages (Haskell, TypeScript, WebAssembly, Math for coders, and

regexp). You can find more details at his blog site (https://devwebcl.blogspot.com/)

or Twitter account (@devwebcl).

https://urldefense.proofpoint.com/v2/url?u=https-3A__devwebcl.blogspot.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=JBubaXpxjMKlEOaFmxdPXtt06ZW1CoYXaaEFq_1hh-o&s=sO8Vn4tmRqIE9wKH9Lreod6mn-UWXwcS36ZRZFgsdEM&e=

1
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_1

CHAPTER 1

Intermediate Regular
Expressions
Many people consider Perl to stand for Practical Extraction and Report Language.

This isn’t strictly true as Larry Wall originally wanted to call the language Pearl, but he

discovered there was already a language that went by that name (PEARL, or Process

and experiment automation realtime language, a language created about ten years

before Perl).

Practical Extraction and Report Language is actually a backronym, but it does serve

to hammer home the point that Perl is well known as an extraction language. In order to

extract data, you need good tools to filter data. That is where Regular Expressions step

into the picture.

Perhaps more than any other language, Regular Expressions are a major part of Perl.

This chapter focuses on “intermediate-level” Regular Expressions. Chapter 2 will

continue the discussion while covering more advanced Regular Expressions.

�Review: Basic Regular Expressions
Basic Regular Expressions are discussed in the Beginning Perl Programming: From

Novice to Professional book. The goal of this section is to provide a quick review of what

is covered in that book.

If you are already familiar with these Regular Expressions, then skip to the next

section. If not, then you should try the examples demonstrated in this section.

2

�Basic operations
The following are the basic operations that can be performed with Regular Expressions:

op Meaning

m Pattern matching

s Substituting

tr Translating

Examples of basic operations:

DB<1> $line = "Today is a good day to learn Perl"

DB<2> if ($line =~ m/good/) {print "yes"}

yes

DB<3> $line =~ s/good/great/

DB<4> print $line

Today is a great day to learn Perl

DB<5> $line =~ tr/a-z/A-Z/

DB<6> print $line

TODAY IS A GREAT DAY TO LEARN PERL

Notes about the basic operators:

•	 Since matching is the most common operation, the "m" can be

dropped in most cases:

DB<1> if ($line =~ /good/) {print "yes"}

•	 If you perform matching, substitution, or translation on the default

variable ($_), you can drop the "$var =~" portion of the command:

DB<1> $_ = "Today is a good day to learn Perl"

DB<2> if (/good/) {print "yes"}

yes

DB<3> s/good/great/

DB<4> print $_

Chapter 1 Intermediate Regular Expressions

3

Today is a great day to learn Perl

DB<5> tr/a-z/A-Z/

DB<6> print $_

TODAY IS A GREAT DAY TO LEARN PERL

•	 The "y" operator is the same as the "tr" operator:

DB<1> print $line

Today is a great day to learn Perl

DB<2> $line =~ y/a-z/A-Z/

DB<3> print $line

TODAY IS A GREAT DAY TO LEARN PERL

�Basic modifiers
The following basic modifiers were covered in the Beginning Perl Programming: From

Novice to Professional book:

Modifier Meaning

g Global match or substitution

i Case-insensitive match

The following code demonstrates the "g" modifier by showing how the behavior

changes when the "g" modifier is used. Note that in the second substitution, all of the

occurrences of dog are replaced with cat, while in the first substitution, only the first

occurrence is replaced.

DB<1> $_="The dog ate the dog food"

DB<2> s/dog/cat/

DB<3> print

The cat ate the dog food

DB<4> $_="The dog ate the dog food"

DB<5> s/dog/cat/g

DB<6> print

The cat ate the cat food

Chapter 1 Intermediate Regular Expressions

4

The following code demonstrates "i" modifier by showing how the behavior

changes when the "i" modifier is used. Note how in the first match attempt that "perl"

without the "i" modifier does not match "Perl".

DB<1> $_="This is a good day to learn Perl"

DB<2> if (/perl/) {print "yes"}

DB<3> if (/perl/i) {print "yes"}

yes

�Basic metacharacters
Perl supports a rich collection of metacharacters. Each metacharacter is used to

represent other characters that you want to match within a string. The following chart

summarizes the metacharacters that were covered in the Beginning Perl Programming:

From Novice to Professional book:

Char Meaning

* Represents the previous character repeated zero or more times

+ Represents the previous character repeated one or more times

{x,y} Represents the previous character repeated x to y times

. Represents exactly one character (any one character)

[] Represents any single character listed within the bracket.

? Represents an optional character. The char. prior to the "?" is optional

^ Represents the beginning of the line when it is the first character in the RE

$ Represents the end of the line when it is the last character in the RE

() Used to group an expression

| Represents an "or" operator

\ Used to "escape" the special meaning of the above characters

Chapter 1 Intermediate Regular Expressions

5

�Examples: The * and + characters

The following example of the * metacharacter matches "A", then zero or more "1"

characters, followed by "Z":

 DB<1> $_="Code: A111Z"

 DB<2> if (/A1*Z/) {print "yes";} else {print "no"}

yes

Be careful when using the * metacharacter. The following will match every possible

line because every line has "zero or more "3" characters":

 DB<1> $_="Code: A111Z"

 DB<2> if (/3*/) {print "yes";} else {print "no"}

yes

The danger of using the * metacharacter was demonstrated in the previous example.

In most cases, it is better to use the + character because it ensures at least one character

is matched:

 DB<1> $_="Code: A111Z"

 DB<2> if (/3+/) {print "yes";} else {print "no"}

no

 DB<1> $_="Code: A333Z"

 DB<2> if (/3+/) {print "yes";} else {print "no"}

yes

Review the following table for some additional examples of the * and +

metacharacters:

Example Meaning

abc* "ab" followed by zero or more c’s

c*enter Zero or more c’s followed by "enter"

a* Anything. Warning: This expression ALWAYS will find a match and will most likely

match "nothing". Look for examples of this later in this unit

(continued)

Chapter 1 Intermediate Regular Expressions

6

Example Meaning

abc+ "ab" followed by at least one (or more) c

c+enter At least one c (or more) followed by "enter"

a+ Match one or more "a"

�Examples: The { } characters

Suppose you don’t want to just match zero or more of a character and you don’t want

to match one or more either. You want to match three, four, or five repeating characters.

This is where the {} metacharacters are useful. The following example will match "A",

then three, four, or five "1" characters, followed by "Z":

 DB<1> $_="Code: A111Z"

 DB<2> if (/A1{3,5}Z/) {print "yes";} else {print "no"}

yes

You can also leave the end value of the range "open". For example, the following will

match "A", then three or more "1" characters, followed by "Z":

 DB<1> $_="Code: A111Z"

 DB<2> if (/A1{3,}Z/) {print "yes";} else {print "no"}

yes

If you place just a single integer in the {} metacharacters, you end up matching

exactly that number of characters. For example, the following will match "A", then three

"1" characters exactly, followed by "Z":

 DB<1> $_="Code: A111Z"

 DB<2> if (/A1{3}Z/) {print "yes";} else {print "no"}

yes

Chapter 1 Intermediate Regular Expressions

7

Review the following table for some additional examples of the { } metacharacters:

Example Meaning

abc{3,5} "ab" followed by three to five "c's"

abc{3,} "ab" followed by three or more "c's"

abc{3} "ab" followed by exactly three "c's"

�Examples: The ? character

Another method that is sometimes used to repeat characters is the ? metacharacter. This

metacharacter means "repeat the previous zero or one times". See the following

for an example:

 DB<1> $_="In the US it is color"

 DB<2> if (/colou?r/) {print "yes";} else {print "no"}

yes

 DB<3> $_="In other countries it is colour"

 DB<4> if (/colou?r/) {print "yes";} else {print "no"}

yes

 DB<3> $_="In no country is it colouuuur"

 DB<4> if (/colou?r/) {print "yes";} else {print "no"}

no

Review the following table for some additional examples of the ? metacharacter:

Example Meaning

abc? Either "ab" or "abc"

colou?r Either "color" or "colour"

Chapter 1 Intermediate Regular Expressions

8

�Examples: The . character

If you want to match a single character, but you are not concerned what the character

actually is, then you can use the . metacharacter. For example, the following will match

"A", then exactly three characters, followed by "Z":

 DB<1> $_="Code: A127Z"

 DB<2> if (/A...Z/) {print "yes";} else {print "no"}

yes

Note that each . character must match exactly one character. The following examples

demonstrate failed matches because the string contains only three characters between the

"A" and "Z", which the Regular Expressions are trying to match two or four characters:

 DB<1> $_="Code: A127Z"

 DB<2> if (/A..Z/) {print "yes";} else {print "no"}

no

 DB<2> if (/A....Z/) {print "yes";} else {print "no"}

no

Note that the . character does not match newline characters. This will be addressed

later in this chapter.

Review the following table for some additional examples of the . metacharacter:

Example Meaning

a.c An "a" followed by any single character followed by a "c"

abc. A "abc" followed by any single character

ab.* A "ab" followed by zero or more of any character

�Examples: The [ ] characters

Suppose you want to match a single character but not just any character. For example,

suppose you want to match an "A", followed by three numbers, followed by a "Z". In this

case you can use the [ ] characters to indicate you want to match a single character, but

this single character must match one of a set of other characters:

Chapter 1 Intermediate Regular Expressions

9

 DB<1> $_="Code: A127Z"

 �DB<2> if (/A[0123456789][0123456789][0123456789]Z/) {print "yes";} else

{print "no"}

yes

If the characters that are within the [ ] characters are in sequential order within the

ASCII text table, a range can be used instead as shown in the next example:

 DB<1> $_="Code: A127Z"

 DB<2> if (/A[0-9][0-9][0-9]Z/) {print "yes";} else {print "no"}

yes

Don’t forget that you can use { } characters to repeat patterns. The following example

repeats the [0-9] three or more times:

 DB<1> $_="Code: A127Z"

 DB<2> if (/A[0-9]{3}Z/) {print "yes";} else {print "no"}

yes

You can also use the [ ] to match a character that is not part of a set of characters.

For example, supposed you want to match any character that is not a lowercase alpha

character, followed by three numbers, followed by a "Z" character:

 DB<1> $_="Code: A127Z"

 DB<2> if (/[^a-z][0-9][0-9][0-9]Z/) {print "yes";} else {print "no"}

yes

The ^ character means "not one of these characters" if it is the first character

within the [ ] characters. Note that is must be the first character within the [ ] characters

to have this special meaning.

Review the following table for some additional examples of the [ ] metacharacters:

Example Meaning

[abc]xyz Either an a, b, or c followed by "xyz"

[bca]xyz Same as previous

[a-c]xyz Same as previous

(continued)

Chapter 1 Intermediate Regular Expressions

10

Example Meaning

[c-a]xyz An improper range

[a-z]xyz Any lowercase character followed by "xyz"

[A-Z]xyz Any uppercase character followed by "xyz"

[A-z]xyz Any lowercase or uppercase character or any of these characters:

"[] ^ _ ' ' followed by "xyz"

[A-Za-z]xyz Any uppercase or lowercase character followed by "xyz"

[A-Z][a-z] A uppercase character followed by a lowercase character

gr[ae]y Either "gray" or "grey"

[^A-Z]xyz Any non-uppercase character followed by "xyz"

[abc^]xyz First character is either "a", "b", "c", or "^" followed by "xyz"

�Examples: The ^ and $ characters

Often you will want to search for a pattern at the beginning or end of the string. To match

something at the beginning of a string, use the ^ character. For example, the pattern

/^A127Z/ will attempt (and fail) to match "A127Z" at the beginning of the string, while

pattern /^Code/ will attempt (and succeed) to match "Code" at the beginning of the

string:

 DB<1> $_="Code: A127Z"

 DB<2> if (/^A127Z/) {print "yes";} else {print "no"}

 DB<3> if (/^Code/) {print "yes";} else {print "no"}

yes

Conversely, the following examples will attempt to match A127Z and code at the end

of the string:

 DB<1> $_="Code: A127Z"

 DB<2> if (/A127Z$/) {print "yes";} else {print "no"}

yes

 DB<3> if (/Code$/) {print "yes";} else {print "no"}

Chapter 1 Intermediate Regular Expressions

11

Review the following table for some additional examples of the ^ and $

metacharacters:

Example Meaning

^abc "abc" found at the beginning of the line

abc$ "abc" found at the end of the line

^abc$ A line that just contains "abc"

^$ A blank line

^\^[^^]*$ A line that starts with a "^" and has no other "^" characters on it

�Examples: The ( ) characters

The ( ) characters are used to group other characters together. For example, suppose you

want to match a pattern like the following:

 DB<1> $_="Code: A127127127Z"

You know there will be an "A", following by a collection of "127" patterns, followed

by a "Z", but you don’t know how many "127" patterns there will be. The following won’t

match because the + character is repeating just the previous character ("7", in this case):

 DB<1> $_="Code: A127127127Z"

 DB<2> if (/A127+Z/) {print "yes";} else {print "no"}

But, you can place ( ) characters around the "127" to have the + character apply to

the group:

 DB<1> $_="Code: A127127127Z"

 DB<2> if (/A(127)+Z/) {print "yes";} else {print "no"}

yes

The ( ) characters are also used for a feature called backreferencing, which will be

covered in a later section of this chapter.

Chapter 1 Intermediate Regular Expressions

12

Review the following table for some additional examples of the ( ) metacharacters:

Example Meaning

(abc)*xyz "abc" zero or more times followed by xyz

(abc)+xyz "abc" one or more times followed by xyz

^(abc)+$ A line that contains one or more groups of "abc"

�Examples: The | character

The | character acts as an "or" operator. It means "match the pattern that appears

before the | character or the pattern that appears after the | character".

For example:

 DB<1> $_="Code: A127Z"

 DB<2> if (/A127Z|B999Y/) {print "yes";} else {print "no"}

yes

 DB<3> $_="Code: B999Y"

 DB<4> if (/A127Z|B999Y/) {print "yes";} else {print "no"}

yes

In some cases, you want to limit the scope of the or operation. This can be done with

() characters:

 DB<1> $_="Code: B999Y "

 DB<2> if (Code: (/A127Z|B999Y/)) {print "yes";} else {print "no"}

yes

 DB<3> $_="Result: B999Y"

 DB<4> if (Code: (/A127Z|B999Y/)) {print "yes";} else {print "no"}

�Examples: The \ character

The \ character is used to escape the meaning of special characters, such as *, + or ?.

For example, suppose you want to match the following pattern: "Code: A*+[Z". The

following won’t work correctly:

Chapter 1 Intermediate Regular Expressions

13

 DB<1> $_='Code: A*+[Z'

 DB<2> if (/Code: A*+[Z/) {print "yes";} else {print "no"}

Unmatched [in regex; marked by <-- HERE in m/Code: A*+[<-- HERE Z/ at

(eval 11)[/usr/share/perl5/perl5db.pl:732] line 2.

 at (eval 11)[/usr/share/perl5/perl5db.pl:732] line 2.

 �eval 'no strict; ($@, $!, $^E, $,, $/, $\\, $^W) =

@DB::saved;package main; $^D = $^D | $DB::db_stop;

if (/Code: A*+[Z/) {print "yes";} else {print "no"};

' called at /usr/share/perl5/perl5db.pl line 732

 DB::eval called at /usr/share/perl5/perl5db.pl line 3093

 DB::DB called at -e line 1

Instead, use \ before each RE character:

 DB<1> $_='Code: A*+[Z'

 DB<2> if (/Code: A*\+\[Z/) {print "yes";} else {print "no"}

yes

�Regular Expressions classes
Regular Expression classes are used to create quick shortcuts to a set of characters.

Commonly used RE classes are described in the following table:

Class Matches

\w Alphanumeric and underscore character

\d Numeric

\s Whitespace (space, tab, newline, formfeed, return)

\b Word boundary (includes "whitespace", end/beginning of line, punctuation, etc.)

\W Non-alphanumeric and underscore character

\D Non-numeric characters

\S Non-whitespace

\B Non-word boundary

Chapter 1 Intermediate Regular Expressions

14

�Examples: "\w" and "\d"

DB<1> $_="The code is A127Z"

DB<2> s/\d\d\d/---/

DB<3> print

The code is A---Z

DB<4> s/\w---\w/ZZZZZ/

DB<5> print

The code is ZZZZZ

�Examples: "\s" and "\b"

DB<1> $_="This is fun"

DB<2> s/\sis\s/was/

DB<3> print

Thiswasfun

DB<4> $_="This is fun"

DB<5> s/\bis\b/was/

DB<6> print

This was fun

DB<7> $_="This is"

DB<8> if (/\sis\s/) {print "yes"}

DB<9> if (/\bis\b/) {print "yes"}

yes

Note that Perl also supports the following POSIX RE character classes:

Class Matches

alpha Any character of the alphabet

alnum Any alphanumeric character

ascii Any character in the ACSII text table

blank A space or tab (horizontal)

cntrl Any control character

digit Any digit (same as [0–9])

(continued)

Chapter 1 Intermediate Regular Expressions

15

Class Matches

lower Any lowercase alphanumeric character

punct Any punctuation character

space Any whitespace character

upper Any uppercase alphanumeric character

xdigit Any hexadecimal digit

word Same as \w

Note that these POSIX character classes are placed within "[::]". For example,

[:alpha:]. Furthermore, these POSIX character classes are used with Perl [ ] characters,

so to look for a lowercase character, followed by three numbers and then a lowercase

character, you would use syntax like the following:

 DB<1> $_='Code: a127z'

 DB<2> if (/[[:lower:]][[:digit:]]{3}[[:lower:]]/) {print "yes";}

yes

Which will leave you wondering why not just use the following:

 DB<1> $_='Code: a127z'

 DB<2> if (/[a-z][\d{3}[a-z]/) {print "yes";}

yes

Often, using POSIX character class is a pain, but consider the following useful

pattern that will match a single character that is either a digit or a punctuation character:

[[:digit:][:punct:]]

�Backreferencing
Grouping can also be used to "backreference" patterns that have been matched. When

Perl makes a match of characters within parentheses, what was matched can be referred

back to

$var =~ s/^(...)abc/\1/;

Chapter 1 Intermediate Regular Expressions

16

The \1 means "match what was matched in the first group". A \2 means

"match what was matched in the second group".

In addition to being able to backreference within the Regular Expression, Perl

assigns what was matched within the grouping to special variables. The first group

match is assigned to $1, the second group matched is assigned to $2, and so on.

$var =~ m/(abc..)/;

print $1;

The above will match the string "abc" followed by the next two characters and assign

all five characters to the string $1.

Note  Future successful matches will cause these variables ($1, $2, etc.) to be
overwritten.

�Example #1: Backreferencing

The variables $1, $2, etc. can be used immediately after a successful pattern match. In

this example, the user enters their first and last name. Then pattern matching is used to

extract the first and last name and print them out in a different format (last name, first

name):

#!perl

#1_back1.pl

print "Please enter your first and last name";

$_=<STDIN>;

if (m/(.*) (.*)/) #ex: "Bob Smith"

{

 print "$2, $1\n";

}

Chapter 1 Intermediate Regular Expressions

17

�Example #2: Backreferencing

In this example, the UNIX file /etc/group will be read into the script one line at a time

and "parsed". Each line contains four fields of data that are separated by colons. This

script will add the third field of each line and print the total:

#!perl

#1_back2.pl

open (GROUP, "</etc/group");

while (<GROUP>) {

 m/(.*):(.*):(.*):(.*)/;

 $total += $3;

}

print "Total: $total\n";

Note  The previous example isn’t ideal because the values of $1, $2, and $4 are
never used. A more efficient method for the while loop would be

while (<GROUP>) {

 m/.*:.*:(.*):/;

 $total += $1;

}

�Example #3: Backreferencing

When you need to refer back to what was matched within the pattern itself, you need to

use \1, \2, etc. instead of $1, $2, etc.:

#!perl

#1_back3.pl

print "Please enter a line: ";

$_=<STDIN>;

chomp $_;

Chapter 1 Intermediate Regular Expressions

18

if (/^(...).*\1$/) {print "$1\n";}

$junk="whatever";

if ($junk =~ /what/) {print "yes\n";}

print "$1\n";

Also note that when another pattern match is attempted and that match (or

substitution) is successful, Perl will overwrite $1, $2, etc. even if you don’t use

parentheses.

�Modifiers
In addition to the g and i modifiers discussed in Beginning Perl Programming: From

Novice to Professional, there are other modifiers that change the behavior of a Regular

Expression match. Modifiers for matching and substitution are different than the

modifiers for translation. The following table provides a short description of commonly

used matching and substation modifiers:

Mod Meaning

e Right-hand side of substitution is the code to evaluate

ee Right-hand side of substitution is a string to evaluate and run as code.

After completion, the return value is to be evaluated

g Global match or substitution

gc Doesn’t reset the search position after a failed match

i Case-insensitive match

m Allows ^ and $ to match embed \n characters

o Only compile the pattern once

p Preserve the string matched such that ${^PREMATCH}, ${^MATCH}, and

${^POSTMATCH} are available for use after matching

s Allows the "." metacharacter to match newlines

x Ignores whitespace in pattern and allows comments

Chapter 1 Intermediate Regular Expressions

19

Commonly used translation modifiers include the following:

Mod Meaning

c Complement the search list

d Delete characters that are not replaced

s Delete replaced characters that are

duplicates

Note that not all of these modifiers are covered in detail in this chapter of the book.

�The e modifier
When the e modifier is used, the right-hand (replacement) side of the substitution is

evaluated as a Perl statement. The result of the statement is used as the replacement

value:

DB<1> $var="123456789"

DB<2> $code="ABCDEFGHIJ"

DB<3> $code =~ s/J/chop $var/e

DB<4> print $code

ABCDEFGHI9

Note  The e modifier can only be used for substitution, not matching.

�The d modifier
Normally when you have too many characters on the left side of a translation operation,

you get "weird" results:

DB<1> $var = "This can become very odd"

DB<2> $var =~ tr/abcdefghij/ABC/

DB<3> print $var

TCCs CAn BCComC vCry oCC

Chapter 1 Intermediate Regular Expressions

20

In the preceding example, the tr operator replaced "a" with "A", "b" with "B", and

all of the other characters ("c-j") with "C".

The d modifier means, "if something is matched and we don’t specify what

to replace it with, then remove it":

DB<1> $var="Lets cap this and remove all numbers: 1234567890"

DB<2> $var =~ tr/a-z0-9/A-Z/d

DB<3> print $var

LETS CAP THIS AND REMOVE ALL NUMBERS:

�The s modifier
When the s modifier is used with the tr operator, it tells tr to delete duplicated

characters that are replaced:

DB<1> $var="Exxtra chars are removed"

DB<2> $var =~ tr/xyz/XYZ/s

DB<3> print $var

EXtra chars are removed

Note  There is also an s modifier for matching and substitution that works
differently than the s modifier for translation.

�Other modifiers
Not all of the modifiers listed on the preceding page are discussed in detail in this

course. The g and i modifiers were covered in the Beginning Perl Programming: From

Novice to Professional book and are reviewed earlier in this chapter. Other modifiers will

be introduced in future chapters.

Chapter 1 Intermediate Regular Expressions

21

Try it!

Execute the following command to enter the Perl Debugger environment:

perl –d –e "1;"

At the debugger prompt, execute the following Perl statements:

$code="Convert digits to ASCII: 1-2-3";
$code =~ s/1/ord(1)/e;
$code =~ s/2/ord(2)/e;
$code =~ s/3/ord(3)/e;
print $code;
$code="Thhis is howw we do itt";
$code =~ tr/a-zA-z/a-zA-Z/s;
print $code;

Exit the debugger by executing the following Perl statement:

q

�Getting the Nth occurrence of a match
In some cases, you will want to find the Nth occurrence of a match. In these cases, use

pattern matching with the g modifier in a while loop:

#!perl

#1_nth.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765J";

while ($line =~ /(Code: [A-Z][0-9]{3}[A-Z])/g) {

 $count++;

 print "The $count match is $1\n";

}

Chapter 1 Intermediate Regular Expressions

22

Try it!

Perform the following steps:

Execute the previous program (1_nth.pl), and observe the output.

Modify 1_nth.pl by taking out the "g" modifier.

Execute 1_nth.pl again, and observe the output (you can stop the program with
control-c)

�Greedy vs. non-greedy matches
By default, Perl patterns are "greedy". This means that when matching a pattern, Perl

will attempt to "grab" as many characters that will possibly match:

DB<1> $line="It was the best of times; it was the worst of times"

DB<2> $line =~ s/the.*times/a very bad year/

DB<3> print $line

It was a very bad year

The ".*" matched the string "the best of times; it was the worst of" because

that was the most it could possibly match. To make your patterns non-greedy (match the

minimal amount), use the "?" after the metacharacter:

DB<1> $line="It was the best of times; it was the worst of times"

DB<2> $line =~ s/the.*?times/a very bad year/

DB<2> print $line

It was a very bad year; it was the worst of times

You can use the following non-greedy patterns:

*? {n}?

+? {n,}?

?? {n,m}?

Chapter 1 Intermediate Regular Expressions

23

�Regular Expression variables
There are many variables that are set as the result of a pattern match:

Variable Meaning

$` String preceding what was last matched

$' String following what was last matched

$+ Last parens match of last pattern match

$& Last pattern match

$1..$9 Subpattern matches of last pattern match

�What was matched
You can "look back" to what was matched during the last pattern match by looking at

the $& variable:

#!perl

#1_match1.pl

print "Enter a line of text and I will find the first 1 digit number: ";

$line=<STDIN>;

$line =~ m/[0-9]/;

print "The number was $&\n";

�Before and after what was matched
You can see what was in the string before and after the match by looking at the $` and $'

variables:

#!perl

#1_match2.pl

print "Enter a line of text and I will find the first 1 digit number: ";

$line=<STDIN>;

$line =~ m/[0-9]/;

Chapter 1 Intermediate Regular Expressions

24

print "The number was $&\n";

print "Before that number was $`\n";

print "After that number was $'\n";

�Warning about $&, $`, and $'
These variables are only set if you use them in your program. Unfortunately, if you use

any of these variables even once in your program, then every pattern match will generate

all of these variables. This could have a performance penalty on your program.

There are two methods available to avoid this problem:

Method #1

As of Perl 5.6, the variable @- contains the offset of the first character that was

matched in the pattern. In other words, if we did the following match

$_="abc123";

m/\d\d/;

then $_[0] would be set to the number 3 (meaning the third character in the string,

counting from zero, is where the match began). Using this value in conjunction with the

substr statement allows you to simulate the $&, $`, and $' variables.

Example using @-

#!perl

#1_match3.pl

print "Enter a line of text and I will find the first 1 digit number: ";

$line=<STDIN>;

$line =~ m/[0-9]/;

print "The number was ", substr($line, $-[0], $+[0] - $-[0]), "\n";

print "Before that number was ", substr($line, 0, $-[0]),"\n";

print "After that number was ", substr($line, $+[0]), "\n";

print "\n\n @- \n\n";

Chapter 1 Intermediate Regular Expressions

25

Method #2

As of Perl 5.10, the variables ${^PREMATCH}, ${^MATCH}, and ${^POSTMATCH} are

created if you use the p modifier. If this modifier is not used, then these variables are not

generated:

#!perl

#1_match4.pl

print "Enter a line of text and I will find the first 1 digit number: ";

$line=<STDIN>;

$line =~ m/[0-9]/p;

print "The number was ${^MATCH}\n";

print "Before that number was ${^PREMATCH}\n";

print "After that number was ${^POSTMATCH}\n";

�Special characters in Regular Expressions
In addition to the classes mentioned previously, there are other special characters

allowed within Regular Expressions:

Spec. Char Meaning

\077 Octal character

\a Bell character

\c Control character

\E End case change

\e Escape character

\f Form feed character

\l Makes the next character lowercase

\L Makes the following characters

lowercase until \E

\n Newline Character

\Q Disable metacharacters until \E

(continued)

Chapter 1 Intermediate Regular Expressions

26

Spec. Char Meaning

\r Return character

\t Tab character

\u Makes the next character uppercase

\U Makes the following characters

uppercase until \E

\x1 Match hex character

Try it!

Execute the following command to enter the Perl Debugger environment:

perl –d –e "1;"

At the debugger prompt, execute the following Perl statements:

$code="Code: A*+?Z";
$code="Code: A*+?Z"; #should result in an error
$code="Code: \QA*+?Z";
print $code;

Exit the debugger by executing the following Perl statement:

q

�Assertions
Some assertions (such as the ^ and $ characters) have already been introduced.

Assertions are used to match certain conditions within a string (such as beginning and

end of a line). Commonly used assertions are described in the following table:

Chapter 1 Intermediate Regular Expressions

27

Assertion Meaning

^ Match beginning of line

$ Match end of line

\b Match a word boundary

\B Match a non-word boundary

\A Match only at the beginning of the string (note – this is the same as ^ except when

using the m modifier)

\Z Match only at the end of the string or before a newline character

at end of the string (note – this is the same as $ except when using the m modifier)

\z Match only at the end of the string

\G Match only where previous m//g left off (this works only with matching, not

substitution or translation)

(?=EXPR) Look ahead match (positive)

(?!EXPR) Look ahead match (negative)

(?<=EXPR) Look behind match (positive)

(?<!EXPR) Look behind match (negative)

�Looking forward and back
The "look forward" and "look back" assertions are useful when you want to be certain

that a pattern is found, but you only want to "work with" a portion of the pattern. For

example, you want to replace the word "great" with "bad" but only if it isn’t the last

word in the string. The following will allow this to occur:

DB<1> $_="This is a good time to learn Perl"

DB<2> s/good(?=.)/great/

DB<3> print

This is a great time to learn Perl

DB<4> $_="This is good"

DB<5> s/good(?=.)/great/

DB<6> print

This is good

Chapter 1 Intermediate Regular Expressions

28

Or, suppose we want to replace "A127Z" with "-----" if the string "Code: " does not

appear at the prior to "A127Z":

DB<1> $_="Code: A127Z"

DB<2> s/(?<!Code:)A127Z/---/

DB<3> print

Code: A127Z

DB<4> $_="Answer: A127Z"

DB<5> s/(?<!Code:)A127Z/---/

DB<6> print

Answer: ---

Try it!

Execute the following command to enter the Perl Debugger environment:

perl –d –e "1;"

At the debugger prompt, execute the following Perl statements:

$code = "Test: A127Z";
$code =~ s/(?<!Test:)A127Z/---/;
print $code;
$code = "Result: A127Z";
$code =~ s/(?<!Test:)A127Z/---/;
print $code;

Exit the debugger by executing the following Perl statement:

q

Chapter 1 Intermediate Regular Expressions

29

�Using \G
Recall that using the g modifier with matching tells Perl to remember where the last

pattern match "left off":

#!perl

#1_g-1.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765J";

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints A127Z

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints B999E

In situations like this, you may want to have the behavior of the ^ (beginning of

variable) assertion, but obviously after the first pattern match, the matching is starting

after the beginning of the variable.

To specify "beginning of where the previous match left off", use the \G

assertion. See the next page for an example.

Example of \G

#!perl

#1_g-2.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765J";

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints A127Z

$line =~ /\G Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints B999E

However, be careful of this as a failed match resets back to the beginning of the

variable:

#!perl

#1_g-3.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765J";

Chapter 1 Intermediate Regular Expressions

30

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints A127Z

$line =~ /\GCode: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints A127Z

Try it!

Perform the following steps:

Execute 1_g-1.pl and observe the results.

Execute 1_g-2.pl and observer the results.

Execute 1_g-3.pl and observer the results.

�Reading from filehandles using split
In the Beginning Perl Programming: From Novice to Professional book, the split

command was introduced. It was used in that book to break up a string using Regular

Expressions and store the resulting items into an array:

DB<1> $line="Bob:Sue:Steve:Nick:Trevor"

DB<2> @names=split(/:/, $line)

DB<3> print $names[0]

Bob

The split command can also be used to read from a filehandle:

#!perl

#1_split.pl

undef $/; #undefine the input separator variable

@words=split (/\s+/, <STDIN>);

print "First word: $words[0]\n";

print "Last word: $words[$#words]\n";

print "Number of words ", $#words+1, "\n";

Chapter 1 Intermediate Regular Expressions

31

�Multiple line matching
In cases in which a string contains multiple lines (text separated with newline

characters), the behavior of Perl’s RE may not be what you want. The default behavior of

Perl is to "ignore" newline characters when it comes to matching the end of a string:

DB<1> $_="Today is the day\n"

DB<2> if (/day$/) {print "yes"}

yes

You can look for a newline character if you want to:

DB<1> $_="Today is the day\n"

DB<2> if (/day\n$/) {print "yes"}

yes

But what if you want to look for something that appears at the "end of a line"? The

following will only look for something at the "end of the string":

DB<1> $_="This is a good day\nto learn Perl"

DB<2> if (/Perl$/) {print "yes"}

yes

DB<3> if (/day$/) {print "yes"}

You could say "match something followed by a newline character", but that

won’t match the last line the string unless there is a newline character:

DB<1> $_="This is a good day\nto learn Perl"

DB<2> if (/Perl\n/) {print "yes"}

DB<3> if (/day\n/) {print "yes"}

yes

To match the end of a line or the end of the string, use the m modifier:

DB<1> $_="This is a good day\nto learn Perl"

DB<2> if (/Perl$/m) {print "yes"}

yes

DB<3> if (/day$/m) {print "yes"}

yes

Chapter 1 Intermediate Regular Expressions

32

The meaning of "$" changes with the m modifier. Instead of meaning "end of the

string", it means "end of the string or prior to a newline character".

�Using the s modifier
Another method that you can use is the s modifier. With this modifier, Perl treats

newlines just like normal characters. This means that the "." metacharacter will match a

newline character:

DB<1> $_="This is a good day\nto learn Perl"

DB<2> if (/day.to/) {print "yes"}

DB<3> if (/day.to/s) {print "yes"}

yes

Try it!

Execute the following command to enter the Perl Debugger environment:

perl –d –e "1;"

At the debugger prompt, execute the following Perl statements:

$code = "Test: A127Z";

$code =~ s/(?<!Test:)A127Z/---/;

print $code;

$code = "Result: A127Z";

$code =~ s/(?<!Test:)A127Z/---/;

print $code;

Exit the debugger by executing the following Perl statement:

q

Chapter 1 Intermediate Regular Expressions

33

�Using the \A, \Z, and \z assertions
When you use the m modifier, the $ assertion matches "the end of any line in the

variable or the end of the string". Additionally, the ^ assertion matches "the

beginning of any line in the variable or the beginning of the string".

In these cases, you can still match "the beginning of the string" by using the \A

assertion. You can also match "the end of the string" by using the \Z assertion.

The \z assertion will also match only the end of the string but differs from \Z in that

it won’t match if there is a newline character at the end of the string (unless that newline

character is specifically included in the pattern).

�Commenting Regular Expressions
While you can place comments before and after your Regular Expressions, sometimes

it would be nice to place comments within your Regular Expressions to help explain

what the expression does. With the x modifier, you can place comments and whitespace

within your Regular Expressions.

When the x modifier is used, comments (# to end of line) and whitespace (tabs,

spaces, newlines, etc.) are completely ignored. This means if you want to "look for"

one of these characters, you need to escape them with a backslash.

An example of commenting within a pattern:

#!perl

#1_comm.pl

$_='Code: 127 -- \State=99\ ?UNSET?';

m/

 (?<=Code:) #Look back for "Code:" but don't replace

 (\ \d{3}) #match and group " " followed by three numbers

 \ --\ #match " -- "

 \\State= #match "\State="

 (\d+) #match and group one or more digits

/x;

print "First number: $1\n";

print "Second number: $2\n";

Chapter 1 Intermediate Regular Expressions

34

�Alternative delimiters
Consider the following code:

#!perl

#1_alt1.pl

$_="Path: perl";

m/\/([a-z]+)\/([a-z]+)/;

print "$1\n$2\n";

While it works just fine, the RE can be difficult to read. The problem is that in order to

match a "/", you need to escape it.

While most programmers use "/" by default as a delimiter, you can choose any

character you wish. If you use a different character, then you don’t have to escape the "/"

character:

#!perl

#1_alt2.pl

$_="Path: perl";

m,/([a-z]+)/([a-z]+),;

print "$1\n$2\n";

Note  Be careful of what character you choose for the alternative delimiter.
Avoid using metacharacters as you won’t be able to use that character as a
metacharacter within the RE.

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Chapter 1 Intermediate Regular Expressions

35

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

�Lab exercises
Mini lab:

Write a program that takes a valid date and converts into this format:

January 01, 2001

The format of the valid date should be "01/01/2001". The first number should be

between 01 and 12. The second number should be between 01 and 31. The last number

should be a four-digit number.

Don’t worry about "errors" such as "02/31/2001".

If an incorrect date is given, display an error message and ask for the input again.

Primary lab:

A note about the lab exercises in this book: Creating lab exercises

that will be beneficial to all learners can be difficult. Lab exercises

that focus on specific scenarios (such as engineering test cases)

can result in difficulties for learners who do not perform this sort

of programming. As a result, the focus of these labs is to perform

tasks that are fairly generic, but that also assist the learners in

practicing the new skills that are learned in this book. In addition,

to make the lab exercises more realistic, you will build on one

primary script throughout the book rather than build many, small

scripts.

Throughout this book you will be creating one script. The script will take the output

provided by a Perl script and parse the data. For this unit you will do the following:

When your script begins, open a file handle to read the output of the data.pl

program. Read the data, perform Regular Expression substitution listed below, and

assign this data to an array:

•	 Remove all leading whitespace in each element.

•	 Compress all multiple spaces into a single space.

Chapter 1 Intermediate Regular Expressions

https://github.com/Apress/beginning-perl-programming

36

Create a main menu that has the following options (you will add more options as the

book progresses):

	 1.	 Remove newline characters from each element.

	 2.	 Convert dates into 01/31 format.

	 3.	 Remove PPID field.

	 4.	 Print the array.

	 5.	 Exit.

Write the code for each of the preceding options.

Notes and hints:

•	 If you don’t remember how to open a file handle that reads the

output of an OS command, review the lab1-hints.txt file.

•	 When printing the array, consider sending the data to the OS

command "more".

•	 If the user runs option #3 more than one time, nothing should

happen after the first time.

•	 Use subroutines to logically break up your program.

When you have completed your work, compare your script against the parse1.pl file

provided in lab answers.

Chapter 1 Intermediate Regular Expressions

37
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_2

CHAPTER 2

Advanced Regular
Expressions
So, you think you know a lot about Perl Regular Expressions? If you finished Chapter 1,

then you certainly do. But, there are more REs that provide you with powerful techniques

to parse data.

This chapter covered REs that will give you a great understanding of how useful Perl

pattern matching is. Each section in this chapter will also start with a brief description

why you should learn that technique.

�Make use of the Smartmatch operator

Why  This operator provides a more powerful technique to perform matching.

The Smartmatch operator, ~~, will perform matching of items based on their context.

In other words, it behaves differently (polymorphic) depending on the values being

compared. It returns true (1) if the match is made and false ("") if the match is not made.

Consider how you currently look for a key in a hash:

if (exists $hash{key}) { }

This could also be done with smart matching:

if ($key ~~ %hash) { }

38

Note  Think of ~~ as "in" or "inside of" when you convert this into a
verbal expression. For example, you could think of the previous code as "$key
is inside of %hash".

�Using REs with Smartmatch
In the preceding example, there wasn’t any difference between using exists and ~~.

However, what if you wanted to look for a key based on a regular expression?

if (%hash ~~ /^A/) {

 print "A key that started with A was found\n";

}

The same could be done with an array (although grep would have done the trick as

well, just not as fast as ~~):

if (@array ~~ /^A/) {

 print "A element that started with A was found\n";

}

Note  Due to how the Smartmatch operator works, the order of the parameters
doesn’t matter. In other words, @array ~~ /^A/ is the same as /^A/ ~~ @array.

�Additional Smartmatches
You can use Smartmaches to perform other sorts of matching. For example, to find if two

arrays have the same elements in the same order:

if (@array1 ~~ @array2) { }

To see if all of the keys of one hash are the same as another hash:

if (%hash1 ~~ %hash2) { }

Chapter 2 Advanced Regular Expressions

39

Suppose you had a list of scalars in an array and you want to determine if one of

those is a key within a hash:

if (%hash ~~ @array) { }

�The given statement

Note  You may wonder why references are made to previous versions of Perl 5.
The author believes it is important to know when new features were added when
dealing with legacy code. This could explain why a bit of legacy code doesn’t use a
newer, more effective Perl feature.

Smartmatching is often used with the given statement, a feature introduced in Perl

5.10. The given statement is a feature that will be available in Perl 6 and has been

"backported" to Perl 5. To make use of a new feature in Perl 5, use the following syntax:

#!perl

#given1.pl

use feature "switch"; #Provides access to the given statement

print "Please enter 'yes' or 'no': ";

$response=<STDIN>;

chomp $response;

given ($response) {

 when ("yes") {print "You agree!\n"; }

 when ("no") {print "Bummer, you don't agree\n"; }

 default {print "Maybe next time\n"; }

}

You can refer to the variable that given is "looking in" as $_. So, the previous could

have been written like this:

given ($response) {

 when ($_ eq "yes") {print "You agree!\n"; }

 when ($_ eq "no") {print "Bummer, you don't agree\n"; }

 default {print "Maybe next time\n"; }

}

Chapter 2 Advanced Regular Expressions

40

So, to use ~~, you can do the following:

#!perl

#given2.pl

use feature "switch";

print "Please enter 'yes' or 'no': ";

$response=<STDIN>;

chomp $response;

given ($response) {

 when ($_ ~~ /^y/) {print "You agree!\n"; }

 when ($_ ~~ /^n/) {print "Bummer, you don't agree\n"; }

 default {print "Maybe next time\n"; }

}

What is given's default?

Consider the code from the first given example:

given ($response) {

 when ("yes") {print "You agree!\n"; }

 when ("no") {print "Bummer, you don't agree\n"; }

 default {print "Maybe next time\n"; }

}

So, if you don’t specify Regular Expression pattern matching, what exactly is given

doing? That isn’t an easy question to answer. Consider what the documentation (see

http://perldoc.perl.org/perlsyn.html) states:

Exactly what the EXPR argument to when does is hard to describe

precisely, but in general, it tries to guess what you want done.

Sometimes it is interpreted as $_ ~~ EXPR, and sometimes it does

not. It also behaves differently when lexically enclosed by a given

block than it does when dynamically enclosed by a foreach loop.

The rules are far too difficult to understand to be described here.

See Experimental Details on given and when later on.

As a result, it might be best to be clear and specific about how you want the match/

comparison to be performed.

Chapter 2 Advanced Regular Expressions

http://perldoc.perl.org/perlsyn.html

41

�Use Perl 5.10.1 or higher
Smartmatch was introduced in Perl 5.10. However, it was significantly modified in Perl

5.10.1, so it works differently in 5.10.1 and higher. To make sure your code uses the 5.10.1

version of Smartmatch, make sure the following is in your code:

use 5.010001;

�Understand Regular Expression precedence

Why U nderstanding precedence allows you to better understand how pattern
matching works.

Understanding the precedence of Regular Expression (regex) operators will allow you to

create more concise patterns. There are four levels of regex precedence, from highest to

lowest:

Operators Description

() (?:) etc. Parentheses/grouping

? + * {m,n} +? ++ etc. Repetition

^ $ abc \G \b \B [abc] Sequence/literal characters/character classes

a|b Alternation

To see an example of how important understanding precedence is, look at the

following:

#!perl

#precedence1.pl

$_="This is simply a test";

if (/^This|test$/) {print "Match 1\n";}

if (/^(This|test)$/) {print "Match 2\n";}

Chapter 2 Advanced Regular Expressions

42

$_="This";

if (/^This|test$/) {print "Match 3\n";}

if (/^(This|test)$/) {print "Match 4\n";}

There is a fundamental difference in the pattern matches with and without the

parentheses because the | character has a lower precedence than ^ and $. The following

expression means "Match' This' at the beginning of the string or 'test' at

the end of the string":

if (/^This|test$/) {print "Match 1\n";}

With the parentheses, the pattern means "Match the beginning of the string,

followed by either' This' or 'test', followed by the end of the string":

if (/^(This|test)$/) {print "Match 2\n";}

�Understand what is *NOT* a Regular
Expression atom

Why  Some character sequences appear to be regex patterns when they are
in fact string patterns. Knowing this helps you with understanding how pattern
matching works.

Consider an atom to be those special characters in a pattern that are interpolated by the

Regular Expression engine (*, +, ., ?, etc.). Sometimes Perl programmers feel that some

expressions are regex atoms when they are really just string interpolations.

For example, in the following code:

$var =~ m/^test\t\U$var\E123$/;

the following are not regex atoms: \t, \U, $var, and \E. These are, instead, string

characters that are interpolated *before* the regex engine sees that pattern.

In most cases, this isn’t an issue, but with variables, you need to be careful as they

may contain characters that are later interpolated as regex atoms:

$var=<STDIN>; #Suppose the user inputs [abc

$var =~ m/^test\t\U$var\E123$/; #Will result in a run time error.

Chapter 2 Advanced Regular Expressions

43

�Using Regular Expressions in list context

Why  This technique provides a more clear way of capturing submatches.

At this point, you should know that the following expression will create three variables,

$1, $2, and $3:

$_="Code: A127Z Code: B999Y Code: Z876G";

m/Code: (\w\d{3}\w) Code: (\w\d{3}\w) Code: (\w\d{3}\w)/;

Typically, after the match, you will want to do something like this:

$first=$1;

$second=$2;

$third=$3;

There are two reasons why reassigning the variables is a "good idea":

	 1.	 $1, $2, and $3 are not very descriptive names.

	 2.	 If another pattern match occurs, either by you or a function that

you call, you may lose the values stored in $1, $2, and $3 as they

will be replaced by values from the new pattern match results.

Instead of making copies of the $1, $2, and $3 variables, you can just have the values

placed directly into an array by using the regex match in list context. For example:

#!perl

#list1.pl

$_="Code: A127Z Code: B999Y Code: Z876G";

@values = m/Code: (\w\d{3}\w) Code: (\w\d{3}\w) Code: (\w\d{3}\w)/;

$"="\n";

print "@values", "\n";

Because the return value of the regex match is being used to assign to an array, the

return value of the regex match is in list context. For regex matching, list context returns

a list of the values matches within the () characters.

Note that the $1, $2, and $3 variables are still created but no longer needed.

Chapter 2 Advanced Regular Expressions

44

You can also assign these to scalar variables by placing a list on the left of the

assignment operator:

#!perl

#list2.pl

$_="Code: A127Z Code: B999Y Code: Z876G";

($first, $second, $third) = m/Code: (\w\d{3}\w) Code: (\w\d{3}\w) Code:

(\w\d{3}\w)/;

$"="\n";

print "$first\n$second\n$third\n";

�Naming the capture variables within the pattern match
There is another technique that can provide completely different variable names, bypassing

the $1, $2, and $3 variable names. As of Perl 5.10, you can use the following syntax:

#!perl

#list3.pl

$_="Code: A127Z Code: B999Y Code: Z876G";

m/Code: (?<first>\w\d{3}\w) Code: (?<second>\w\d{3}\w) Code: (?<third>\w\

d{3}\w)/;

$"="\n";

print "$+{first}\n$+{second}\n$+{third}\n";

Instead of placing the captured values in scalar variables, they are placed in the %+

hash with the key being what was placed within the < > characters.

If you use this technique, you won’t have any of the dollar-sign variables ($1, $2, $3,

etc.) nor will you have access to the backslash references (\1, \2, \3, etc). Instead, you

use the format of \k<label> where label is the name of the key.

You can also make use of relative positions of the \g# (replace # with the numeric

location of the capture):

m/^(?<first>\w\d{3}\w)(?<second>\w\d{3}\w)\g1$/); �#backref first

match

m/^(?<first>\w\d{3}\w)(?<second>\w\d{3}\w)\g{-1}$/); �#backref -1 back

match

Chapter 2 Advanced Regular Expressions

45

�Match whitespace properly

Why L imitations with \s may prompt you to use "new" whitespace pattern-
matching characters.

The \s regex pattern matches any single whitespace character, including "", \t, \n, \r,

a formfeed character, and other similar characters. While this might seem like a good

way to match a whitespace character, consider the following:

DB<1> $_="This needs to be\t\tcut down\nto single spaces"

DB<2> print

This needs to be cut down

to single spaces

DB<3> s/\s+/ /g

DB<4> print

This needs to be cut down to single spaces

In the previous example, the intent was to convert all multiple spaces and tabs into

single spaces. However, since \s also matches \n, the newline character is replaced with

a space.

What you really want to do is march all horizontal white space, which as of Perl 5.10

you can do by using the \h regex pattern:

DB<1> $_="This needs to be\t\tcut down\nto single spaces"

DB<2> print

This needs to be cut down

to single spaces

DB<3> s/\h+/ /g

DB<4> print

This needs to be cut down

to single spaces

You can also use \v to match vertical white space: the carriage return, newline,

form feed, vertical tab, and Unicode line and paragraph separators. Additionally, \H

matches "non-horizontal whitespace characters" and \V matches "non-vertical

whitespace characters".

Chapter 2 Advanced Regular Expressions

46

�Matching "end of the line"
On different systems, lines end with different character(s): a newline character, a return

character, a combination of a return and newline characters, Unicode eol, etc. This

makes matching the end of any line difficult as it would depend on what system the file

was created on.

In Perl 5.10, a new character was introduced to match any "end-of-line" character

on any system: \R.

In Perl 5.12, a new character was introduced to match any single character that isn’t

a newline character: \N. By default, the dot (.) character matches any single character

except a newline, but this can be modified with the s modifier. The \N character isn’t

affected by the s modifier.

�Use \G

Why  It results in more "normal" behavior when matching with the /g modifier.

Recall that using the g modifier with matching tells Perl to remember where the last

pattern match "left off":

#!perl

#g-1.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765J";

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints A127Z

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints B999E

In situations like this, you may want to use the ^ assertion, but obviously after

the first pattern match, nothing will match because the matching has to start at the

beginning of the variable.

Chapter 2 Advanced Regular Expressions

47

To specify "beginning of where the previous match left off", use the \G

assertion:

#!perl

#g-2.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765J";

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints A127Z

$line =~ /\G Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints B999E

However, be careful of this as a failed match resets back to the beginning of the

variable:

#!perl

#g-3.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765J";

$line =~ /Code: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints A127Z

$line =~ /\GCode: ([A-Z][0-9]{3}[A-Z])/g;

print "$1\n"; #prints A127Z

�Use the \A, \Z, and \z assertions

Why A llows the "default" behavior when using the m modifier.

When you use the m modifier, the $ assertion matches "the end of any line in the

variable or the end of the string". Additionally, the ^ assertion matches "the

beginning of any line in the variable or the beginning of the string".

In these cases, you can still match "the beginning of the string" by using the \A

assertion. You can also match "the end of the string" by using the \Z assertion.

Chapter 2 Advanced Regular Expressions

48

The \z assertion will also match only the end of the string but differs from \Z in that

it won’t match if there is a newline character at the end of the string (unless that newline

character is specifically included in the pattern).

For example:

DB<1> $_="This is a good\nday to learn Perl\n"

DB<2> print "true" if /^day/m

true

DB<3> print "true" if /\Aday/m

DB<4> print "true" if /^This/m

true

DB<5> print "true" if /\AThis/m

true

DB<6> print "true" if /good$/m

true

DB<7> print "true" if /good\Z/m

DB<8> print "true" if /Perl$/m

true

DB<9> print "true" if /Perl\Z/m

true

DB<10> print "true" if /Perl\z/m

�Avoid capturing

Why  Sometimes you need grouping, but you don’t want the data to be captured.

Grouping is used for several reasons: in order to have a repeating operation occur on a

group, to limit the scope of the "or" operation, and to capture what is match.

When you use grouping for the first two reasons listed, it also captures what was

matched:

#!perl

#group1.pl

$_="Code: 111ABCABCABC999";

Chapter 2 Advanced Regular Expressions

49

if (/111(ABC)+999/) {

 print "$1\n";

 }

As you can see from the previous example, there is no point to capturing what was

matched. The value that will always be matched is "ABC". If you execute this pattern

once, it probably isn’t a big deal. But, suppose you were parsing a large file, one line at a

time. In that case, you don’t want to have Perl create $1 for each match, so you can use

the following:

#!perl

#group2.pl

$_="Code: 111ABCABCABC999";

if (/111(?:ABC)+999/) {

 print "$1\n";

}

The ?: in the beginning of the parenthesis tells Perl to not store what is matched in a

variable.

It is also important to know about this feature when using the split command.

Consider the following example:

#!perl

#group3.pl

$_="Bob~Smith:29:manager:San Diego";

@fields = split (/(:|~)/, $_);

$"="\n";

print "@fields","\n";

Normally with the split command, the "separator" value isn’t passed back into the

list that split generates. But, if you use parentheses like the preceding example, then the

output will also include the separators values:

Chapter 2 Advanced Regular Expressions

50

ocs% perl group3.pl

Bob

~

Smith

:

29

:

manager

:

San Diego

Clearly not what we want. To avoid these extra fields, use the ?: feature:

#!perl

#group4.pl

$_="Bob~Smith:29:manager:San Diego";

@fields = split (/(?::|~)/, $_);

$"="\n";

print "@fields","\n";

Output:

ocs% perl group4.pl

Bob

Smith

29

manager

San Diego

Note  If the syntax of (?::|~) is confusing because of the repeating colons,
consider writing this as (?:~|:).

Chapter 2 Advanced Regular Expressions

51

�Avoid the variables $`, $&, and $'

Why U sing any of these variables, even once in your program, can result in a
performance penalty in other locations in your program.

These variables are only set if you use them in your program. Unfortunately, if you use

any of these variables even once in your program, then every pattern match will generate

all of these variables. This could have a performance penalty on your program.

There are two methods available to avoid this problem.

�Method #1
As of Perl 5.6, the variable @- contains the offset of the first character that was matched in

the pattern. In other words, if we did the following match

$_="abc123";

m/\d\d/;

then $-[0] would be set to the number 3 (meaning the third character in the string,

counting from zero, is where the match began). Using this value in conjunction with the

substr statement allows you to simulate the $&, $`, and $' variables. See the example in

the next section.

�Example using @-
#!perl

#match1.pl

print "Enter a line of text and I will find the first 1 digit number: ";

$line=<STDIN>;

$line =~ m/[0-9]/;

print "The number was ", substr($line, $-[0], $+[0] - $-[0]), "\n";

print "Before that number was ", substr($line, 0, $-[0]),"\n";

print "After that number was ", substr($line, $+[0]), "\n";

print "\n\n @- \n\n";

Chapter 2 Advanced Regular Expressions

52

�Method #2
As of Perl 5.10, the variables ${^PREMATCH}, ${^MATCH}, and ${^POSTMATCH} are created

if you use the p modifier. If this modifier is not used, then these variables are not

generated:

#!/usr/local/bin/perl

#1_match4.pl

print "Enter a line of text and I will find the first 1 digit number: ";

$line=<STDIN>;

$line =~ m/[0-9]/p;

print "The number was ${^MATCH}\n";

print "Before that number was ${^PREMATCH}\n";

print "After that number was ${^POSTMATCH}\n";

�Compile your Regular Expressions before
using them

Why N on-compiled regex patterns can result in error or unnecessary operations.

Consider the following code fragment:

open (GROUP, "</etc/group") || die;

@match=('\d', '\d\d', '\d\d\d');

while (<GROUP>) {

 foreach $pattern (@match) {

 if (/$pattern/) {

 print "$pattern matches $_";

 }

 }

}

Chapter 2 Advanced Regular Expressions

53

The great thing about being able to put patterns in variables is that it is easier to

maintain your code when you need to perform pattern matching using many different

patterns.

The drawback to this technique is how Perl handles the Regular Expression stored in

the variable. When the regex is stored in a variable, Perl doesn’t compile the regex until

run time. When Perl compiles a regex, it determines if the regex is a valid one, and, if so,

it generates a "compiled" regex. If the regex isn’t valid, Perl will produce an error and

exit the execution of the script.

�Run time vs. compile time
Consider the following example:

#!perl

#compile1.pl

open (GROUP, "<group") || die;

while (<GROUP>) {

 if (/\d/) {

 print "$pattern matches $_";

 }

 if (/\d\d/) {

 print "$pattern matches $_";

 }

 if (/\d\d\d**/) {

 print "$pattern matches $_";

 }

}

The third pattern match is invalid, which results in a compile time error. Any non-

variable regex patterns are compiled during the normal compile time:

ocs% compile1.pl

Nested quantifiers before HERE mark in regex m/\d\d\d** << HERE / at

compile1.pl line 12.

Chapter 2 Advanced Regular Expressions

54

Compare the following example to the preceding example:

#!perl

#compile2.pl

open (GROUP, "<group") || die;

@match=('\d', '\d\d', '\d\d\d**');

while (<GROUP>) {

 foreach $pattern (@match) {

 if (/$pattern/) {

 print "$pattern matches $_";

 }

 }

}

When executed, a run time error occurs:

ocs% compile2.pl

\d matches root::0:root

Nested quantifiers before HERE mark in regex m/\d\d\d** << HERE / at

compile2.pl line 8, <GROUP> line 1.

Why is this a disadvantage? Consider how many times each regex is compiled in this

example: three times for every line in the file. For a 50-line file, that means 150 regex

compiles (3 REs ∗50 lines). Imagine if there were 20 regex patterns and 10,000 lines!

To avoid this problem, there is a technique which we can use to store an interpolated

regex in a variable: the qr function. The qr function returns its argument as an

interpolated regex:

#!perl

#compile3.pl

open (GROUP, "<group") || die;

@match=(qr /\d/, qr /\d\d/, qr /\d\d\d**/);

while (<GROUP>) {

 foreach $pattern (@match) {

 if (/$pattern/) {

Chapter 2 Advanced Regular Expressions

55

 print "$pattern matches $_";

 }

 }

}

Since the patterns are being used as REs, the resulting error is a compile time error:

ocs% compile3.pl

Nested quantifiers before HERE mark in regex m/\d\d\d** << HERE / at

compile3.pl line 5.

The best part is that when the variable is used in a pattern, it doesn’t have to be

"reinterpolated", making execution time much quicker.

�Using qr to test user input
Consider the following code:

#!perl

#compile4.pl

print "Enter the pattern: ";

$pattern=<STDIN>;

chomp $pattern;

$info="Bob:Smith:manager:sales";

if ($info =~ /$pattern/) {print "match made\n";}

The problem with this scenario is that if the user provided a "bad pattern", then

your program would crash with a run time error:

ocs% perl compile4.pl

Enter the pattern: Bob

match made

ocs% perl compile4.pl

Enter the pattern: B+*

Nested quantifiers in regex; marked by <-- HERE in m/B+* <-- HERE / at

compile4.pl line 10, <STDIN> line 1.

Chapter 2 Advanced Regular Expressions

56

If you used the qr function, it would also result in a run time error and halt your

program. But, if you used the qr function within an eval function, then you could

capture any errors and proceed with your program.

Any run time errors that occur within an eval call do not cause your script to exit

prematurely. They do, however, assign the error message to the $@ variable which you

can use to determine what action to take:

#!perl

#compile5.pl

print "Enter the pattern: ";

$pattern=<STDIN>;

chomp $pattern;

$info="Bob:Smith:manager:sales";

eval {$pattern = qr/$pattern/;};

if ($@) {

 print "An error occured: $@";

}

else {

 if ($info =~ /$pattern/) {print "match made\n";}

}

�Using the o modifier
There is another technique you can use to avoid multiple compiles for patterns that

contain variables: use the o modifier:

if (/$pattern/o) {}

Notes

•	 You wouldn’t want to do something like this for the previous

examples because the value of $pattern does change routinely.

•	 Newer versions of Perl (5.6+) are smart enough to know to only

compile the regex if the variable’s value has changed since the last

compile. Again, this feature of Perl won’t be helpful in the previous

examples because $pattern does routinely change.

Chapter 2 Advanced Regular Expressions

57

�Benchmark your patterns

Why  If you have a pattern that will be used on a large chunk of data, use
benchmarking to determine which pattern is more efficient.

Benchmarking is an easy way to determine which patterns will typically run faster. The

Perl built-in module Benchmark provides several functions, including timethese(),

which allows you to run similar tests multiple times to determine the speed of each.

For example:

#!perl

#bench1.pl

use Benchmark qw(timethese);

open (DATA, "<foiadoc.txt") || die;

@data = <DATA>;

timethese(

 1000,

 {

 test1 => q{

 foreach (@data) {

 my ($match) = m/^(\w+) (\w+)/;

 }

 },

 test2 => q{

 foreach (@data) {

 my ($match) = m/^\w+ (\w+)/;

 }

 },

 }

);

Chapter 2 Advanced Regular Expressions

58

The following demonstrates the execution of the bench1.pl script:

ocs% perl bench1.pl

Benchmark: timing 1000 iterations of test1, test2...

 �test1: 156 wallclock secs (155.64 usr + 0.00 sys = 155.64 CPU)

@ 6.43/s (n=1000)

 �test2: 127 wallclock secs (126.78 usr + 0.00 sys = 126.78 CPU)

@ 7.89/s (n=1000)

As you can see, just adding one additional, unnecessary parentheses match can have

a significant impact when large chunks of data are parsed.

�Use Regexp::Common

Why  Instead of recreating techniques to match patterns that are commonly used,
you can utilize the matching tools provided by Regexp::Common.

You need to match a variable if it contains a number, so you use the following:

if ($value =~ /^\d+$/) {print "yes";}

This will match a number perfectly but only if the number is an integer. What if the

number could be a floating point number?

if ($value =~ /^[0-9.]+$/) {print "yes";}

Or, what if the number can have commas for representing thousands separators?

if ($value =~ /^[0-9.,]+$/) {print "yes";}

What if the number could be either positive or negative? Or if it is represented as an

exponential? As you can see, something simple like "match a number" can, in fact, be

much more complex than it seems.

The CPAN module Regexp::Common provides an easy-to-use technique to match

common "things", like numbers:

#!perl

#common1.pl

use Regexp::Common;

Chapter 2 Advanced Regular Expressions

59

@values=("123", "123,567", "123.456", "is the answer", "1.23E3");

for (@values) {

 if (/^$RE{num}{real}+^/) {

 print "$_ is a number\n";

 } else {

 print "$_ is not a number\n";

 }

}

Output of common1.pl:

ocs% perl common1.pl

123 is a number

123,567 is a number

123.456 is a number

is the answer is not a number

1.23E3 is a number

The Regexp::Common module imports the %RE hash into your program. It is a

multidimensional hash that returns complex patterns. There are pre-built patterns that

match things like numbers, strings, URLs, comments (from different languages), and more.

You can use -keep to store portions of the match as well:

#!perl

#common2.pl

use Regexp::Common;

$value = "123.456";

if ($value =~ $RE{num}{real}{-keep}) {

 print "$1 is the entire number\n";

 print "$6 is the decimal value\n";

}

If you look at the documentation of Regexp::Common, you might be frustrated that

all of the possible patterns are not listed in the documentation. However, at the bottom

of the documentation, there is a mention of where you can find what patterns can be

returned by looking at other documentation (Regexp::Common:number, e.g., to see

possible number patterns).

Chapter 2 Advanced Regular Expressions

60

This further documentation will also tell you things like what exactly -keep is doing.

Before you attempt to write a pattern, ask yourself, "Is it likely that this is

something that someone has tried to write before?". If the answer is "yes" or

"maybe", take a few moments to explore what patterns are available in this module.

The following isn’t a complete list but rather an attempt to provide you with some

understanding of some of the thousands of possible patterns that are available (note that

some of these may require downloading additional modules):

%RE Description

$RE{num}{oct} Match octal numbers

$RE{num}{bin} Match binary numbers

$RE{num}{roman} Match Roman numbers

$RE{comment}{lang} Matches comments in lang

(C, C++, Python, PHP, etc.)

$RE{list}{-pat => '\w+'} Matches a list of words

$RE{list}{-pat => $RE{num}{real}} Matches a list of numbers

$RE{net}{IPv4} Matches an IPV4 address

$RE{net}{domain} Matches a domain name

$RE{zip}{US}{-extended => "yes"} Matches a US 5+4 zip code

$RE{Email}{Address} Matches an email address

$RE{CC}{Mastercard} Matches a valid Mastercard format

If you only want to match subsets of the Regexp::Common pattern sets, then load the

module this way:

use Regexp::Common qw(Email::Address);

Take some time to explore other Regexp::Common "sub"-modules. For example, there

is one that will match different time/date formats and one that will match URLs and IP

addresses. There are dozens of them, each providing you with a way to make complex

matches easy.

Chapter 2 Advanced Regular Expressions

61

�Flags you should consider always using

Why  There are flags that affect the default behavior of a pattern, making
matches behave more like one would expect.

There are some regex flags that you should consider using by default (note, all three of

these were covered in detail in the previous chapter):

Flag Reason

/s The dot (.) character matches any single character except \n. With /s the dot

character will match a newline character as well, a more natural "standard" behavior.

/m In variables with multiple lines, you normally want ^ to match the beginning of any line

and $ to match the end of any line. Without /m, ^ will only match the beginning of the

entire string and $ will match the end of the entire string.

/x The /x flag allows you to embed comments in regex patterns, which is very useful if

you routinely write complex patterns.

�Automating /smx
While it is important to use these flags by default, it is a pain to continuously type /smx

at the end of all of your patterns. There are two methods that you can use to tell Perl to

automatically use these flags:

	 1.	 Download the Regexp::Autoflags module from CPAN and use

that module.

	 2.	 Make use of the re pragma: use re '/smx';.

The advantage of the re pragma is that you can make any flag a default flag for the

program. It is also a standard Perl feature (as of Perl 5.14), so you don’t need to download

a module from CPAN to use it.

You can also turn off these default flags by using the following: no re"/smx";.

Chapter 2 Advanced Regular Expressions

62

�Avoid escapes

Why U sing a lot of escapes makes your code difficult to read and understand.

Consider the following example:

$var="Code: A.?+*Z";

if ($var =~ /A\.\?\+*Z/) {print "yes";}

Escaping metacharacters often results in confusion, especially since some escaped

characters (\s, \d, \w, etc.) have a special meaning of their own. One easy way to

"escape" a metacharacter without a backslash character is to make single-character

classes:

$var="Code: A.?+*Z";

if ($var =~ /A[.][?][+][*]Z/) {print "yes";}

Inside of square brackets, a dot is just a dot, a question mark is just a question mark,

etc. It may seem a bit of a pain typing, but look at both of the following, and you will

likely agree that the second is easier to read:

if ($var =~ /A\.\?\+*Z/) {print "yes";}

if ($var =~ /A[.][?][+][*]Z/) {print "yes";}

Obviously this technique won’t help matching "unprintable" characters, like the

DEL character which is symbolized by the octal value \177. Not only is this confusing to

read, but it is hard to memorize all of the special "unprintable" characters’ octal values.

A better solution might be to make use of the charnames pragma:

use charnames qw (:full);

Now to match a DEL character, you can use the more human-readable format of

\N{DELETE}.

Chapter 2 Advanced Regular Expressions

63

�Use the re pragma

Why U sing the re pragma can help you debug your Regular Expression patterns.

The re pragma is designed to alter regular expression behavior. In addition to allowing

you to specify default flags (see previous section), there are other features that the re

pragma provides.

�use re 'debug'
When you enable debug mode, debugging messages are displayed. By default, you see

both compile time message (when it generates the regex) and run time messages (when

it matches the pattern in a string):

#!perl

#debug1.pl

use re 'debug';

$var="Code: A127Z";

if ($var =~ m/[A-Z]\d{3}[A-Z]/) {print "yes";}

Output of debug1.pl:

ocs% perl debug1.pl

Compiling REx "[A-Z]\d{3}[A-Z]"

Final program:

 1: ANYOF[A-Z][] (12)

 12: CURLY {3,3} (15)

 14: DIGIT (0)

 15: ANYOF[A-Z][] (26)

 26: END (0)

stclass ANYOF[A-Z][] minlen 5

Matching REx "[A-Z]\d{3}[A-Z]" against "Code: A127Z"

Matching stclass ANYOF[A-Z][] against "Code: A" (7 chars)

Chapter 2 Advanced Regular Expressions

64

 0 <> <Code: A127> | 1:ANYOF[A-Z][](12)

 1 <C> <ode: A127Z> | 12:CURLY {3,3}(15)

 DIGIT can match 0 times out of 3...

 failed...

 6 <Code: > <A127Z> | 1:ANYOF[A-Z][](12)

 7 <Code: A> <127Z> | 12:CURLY {3,3}(15)

 DIGIT can match 3 times out of 3...

 10 <Code: A127> <Z> | 15: ANYOF[A-Z][](26)

 11 <Code: A127Z> <> | 26: END(0)

Match successful!

yesFreeing REx: "[A-Z]\d{3}[A-Z]"

You can also just enable specific debugging output. For example, the following won’t

display compile time messages (note, "debug" turns on all debugging messages; "Debug"

allows you to select which messages to display):

#!perl

#debug2.pl

use re qw(Debug EXECUTE);

$var="Code: A127Z";

if ($var =~ m/[A-Z]\d{3}[A-Z]/) {print "yes";}

Output of debug2.pl:

ocs% perl debug2.pl

Matching REx "[A-Z]\d{3}[A-Z]" against "Code: A127Z"

Matching stclass ANYOF[A-Z][] against "Code: A" (7 chars)

 0 <> <Code: A127> | 1:ANYOF[A-Z][](12)

 1 <C> <ode: A127Z> | 12:CURLY {3,3}(15)

 DIGIT can match 0 times out of 3...

 failed...

 6 <Code: > <A127Z> | 1:ANYOF[A-Z][](12)

 7 <Code: A> <127Z> | 12:CURLY {3,3}(15)

 DIGIT can match 3 times out of 3...

Chapter 2 Advanced Regular Expressions

65

 10 <Code: A127> <Z> | 15: ANYOF[A-Z][](26)

 11 <Code: A127Z> <> | 26: END(0)

Match successful!

yes

You can also turn on debugging messages for just specific portions on your code as of

Perl 5.9.5 because the Debug feature is lexically scoped:

#!perl

#debug3.pl

{

use re qw(Debug EXECUTE);

$var="Code: A127Z";

if ($var =~ m/[A-Z]\d{3}[A-Z]/) {print "yes\n";}

}

print "no debugging here\n";

if ($var =~ m/[A-Z]\d{3}[A-Z]/) {print "yes\n";}

The re pragme can also provide several functions, including the following:

•	 is_regexp – Returns true if value is a compiled regex.

•	 regexp_pattern – Returns a two element list from a complied

regex; the first element is the pattern, and the second element is the

modifiers.

#!perl

#debug4.pl

use re qw(is_regexp regexp_pattern);

$match=qr/^\d+/smx;

#Check to see if a variable contains a compiled pattern:

if (is_regexp($match)) {

 print "\$match is a compile pattern\n";

}

Chapter 2 Advanced Regular Expressions

66

#Return the actual pattern and modifiers

($pattern, $mods) = regexp_pattern($match);

print "$pattern\t\t$mods\n";

�Understand backtracking

Why U nderstanding how backtracking works allows you to better understand
how Regular Expression pattern matching works.

Consider the following:

DB<1> $_="aaaa"

DB<2> if (/a+a/) {print "yes";}

yes

When you first learn about Perl pattern matching, you learn that Perl matches from

left to right and that Perl is "greedy" by default. Based on this information, you might

conclude that the previous example should not match.

This conclusion is based on the following logic: If Perl is greedy, then a+ should
have matched ALL of the "a" characters, leaving nothing left for the final "a"
character in the pattern to match.

This is sound logic, and the conclusion is true: a+ does (initially) match all of the "a"

characters in the $_ string. But then backtracking kicks in.

Backtracking allows those greedy patterns to "give back" characters in order to

make the match successful. Essentially, the logic is "a+ could match all of the 'a'

characters, but if it did, then the entire match would fail. So, a+ is

'nice' and gives back one 'a' character to make the match succeed."

It is possible to tell Perl to not backtrack. This can be done by using (?>pattern)

DB<1> $_="aaaa"

DB<2> if (/(?>a+)a/) {print "yes";}

Chapter 2 Advanced Regular Expressions

67

Note that you could also use a++ instead of (?<a+). Here are some other commonly

used "non-backtracking" patterns:

Quantifer Form Bracketing Form

a*+ (?>a*)

a++ (?>a+)

a?+ (?>a?)

a{min,max}+ (?>a{min,max})

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

�Lab exercises

Note  There are no exercises for this chapter.

Chapter 2 Advanced Regular Expressions

https://github.com/Apress/pro-perl-programming

69
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_3

CHAPTER 3

Advanced Features
Consider this chapter a collection of useful advanced tips to help you create better Perl

programs. Each section will begin with a brief description of why you should use the

feature or tool, followed by more detailed examples.

�Use my iterator variables with for loops

Why  This technique makes it clear that the iterator variable is scoped, that is, not
available outside of the for loop. It also prevents subroutine calls from accidently
modifying your iterator variable, and it prevents compile time error messages while
using the strict pragma.

Consider the following code:

$name="test";

foreach $name (@INC) {

 print "$name\n";

}

print "$name\n";

The final print statement should display "test" as the $name variable in the

foreach loop is automatically localized with the local statement. This is generally

considered a "bad thing" for three reasons:

	 1.	 It is not clear to other programmers (or, perhaps, even yourself)

that the iterator variable is localized. By declaring the variable

in the foreach loop as a my variable, the scope of the variable is

much more clear.

70

	 2.	 Since the iterator variable is automatically declared with the local

statement, any subroutine call can access/modify this variable

(see next subsection for an example of this).

	 3.	 Using "use strict 'vars';" will result in a compile error

because local variables are not permitted.

�Foreach loops use local variable by default
By default, when you create a foreach loop, the assignment variable is created as a local

variable:

foreach $var (@colors) {print "$var\n";}

In the preceding example, $var is local to the foreach statement. In most cases, this

is fine. In fact, it can even be useful:

#!/usr/local/bin/perl

#foreach1.pl

sub printit {

 print "$var\n";

}

@colors=qw(red blue green);

foreach $var (@colors) {

 &printit;

}

However, this can also cause problems:

#!/usr/local/bin/perl

#foreach2.pl

sub changeit {

 $var="brown";

}

@colors=qw(red blue green);

Chapter 3 Advanced Features

71

foreach $var (@colors) {

 &changeit;

}

print "@colors","\n";

Output of foreach2.pl:

ocs% foreach2.pl

brown brown brown

You can have your assignment variable in a foreach loop be a my variable instead:

#!/usr/local/bin/perl

#foreach3.pl

sub changeit {

 $var="brown";

}

@colors=qw(red blue green);

foreach my $var (@colors) {

 &changeit;

}

print "@colors","\n";

Output of foreach3.pl:

ocs% foreach3.pl

red blue green

Note  This technique can also be applied to for loops.

Chapter 3 Advanced Features

72

�Utilize loop labels

Why  This technique makes it clear when you are using statements like next, last,
or redo what loop the statement applies to. Especially useful with loops are long,
making it difficult to see what loop the statement applies to.

Typically, labels are used in situations like the following:

OUTER:

foreach $name (@INC) {

 INNER:

 while (true) {

 ...

 if (cond1) {last INNER;}

 if (cond2) {last OUTER;}

 }

}

For clarity, use a label whenever you use a last, next, or redo statement, not just for

nested loops:

PARSE:

foreach $name (@INC) {

 ...

 if (cond) {last PARSE;}

}

�Avoid using <> for file matching

Why U sing <> can cause confusion because the angle brackets can also be used
for reading input from a filehandle.

Chapter 3 Advanced Features

73

Consider the following code:

open (INPUT", "<file.txt");

@data=<INPUT>;

@names=<*.txt>;

This seems pretty clear when shown in this context. The second line is reading from

the filehandle, while the third line is returning the filenames that end in .txt.

However, confusion (and errors) can occur with code like the following:

$pattern=<*.txt>;

@data=<$pattern>;

While you might think that $pattern’s value would be treated as a "wildcard"

pattern, that isn’t what Perl will do. When Perl sees a variable within < >, it will always

treat it as a reference to a filehandle. To make sure Perl will do file name matching, use

the glob statement instead:

$pattern=<*.txt>;

@data=glob($pattern);

�Time::HiRes

Why  The sleep command can only sleep in whole integer values.

The built-in sleep command can only sleep in whole integer values, so the following

command will pause the program for 0 seconds, not .0.5 seconds as intended:

sleep 0.5;

Using the Time::HiRes module (standard as of Perl 5.8), you can sleep for fractions

of seconds:

use Time::HiRes;

sleep 0.5;

Chapter 3 Advanced Features

74

This module also provides a more effective function called usleep that lets you pause

your program with even more accuracy:

use Time::HiRes qw(usleep);

usleep 1000_001; #1000=1 second

�Contextual::Return

Why  The wantarray function is more limited than Contextual::Return.

Many Perl statements are designed to return different values if they are called in scalar

context than if they are called in array context. To do this with your own functions, you

can use the wantarray statement.

The wantarray statement can return one of three values:

•	 true if function is called in array context

•	 false if function is called in scalar context

•	 undef if function return value isn’t requested

Syntax of wantarray:

if (wantarray) { #if true, need to return an array

 return (@array);

}

elsif (defined (wantarray)) { #if true, need to return a scalar

 return ($scalar);

}

else { #don't need to return anything

 return;

}

However, the CPAN module Contextual::Return allows you more flexibility, as

described in its documentation:

use Contextual::Return;

use Carp;

Chapter 3 Advanced Features

75

sub foo {

 return

 SCALAR { 'thirty-twelve' }

 LIST { 1,2,3 }

 BOOL { 1 }

 NUM { 7*6 }

 STR { 'forty-two' }

 HASHREF { {name => 'foo', value => 99} }

 ARRAYREF { [3,2,1] }

 GLOBREF { *STDOUT }

 CODEREF { croak "Don't use this result as code!"; }

 ;

}

See the following example:

#!perl

#contextual-return.pl

use Contextual::Return;

sub test {

 return

 SCALAR { 'thirty-twelve' }

 LIST { 1,2,3 }

 BOOL { 1 }

 NUM { 7*6 }

 STR { 'forty-two' }

}

print &test, "\n";

print &test + 5, "\n";

&test && print "yes\n";

@result=&test; print "@result", "\n";

if (&test eq 'forty-two') {print "yes";}

Chapter 3 Advanced Features

76

Note  More advanced features of Contextual::Return, such as hash
references, are not covered in this book as they are beyond the scope of the book.
Please refer to the documentation on CPAN for more details.

�Indirect Filehandles

Why  To avoid issues related to scoping.

Consider the following code fragment:

sub test {

 open (FILE, "<data.txt") || die;

 #more code here

}

open (FILE, "<junk.txt") || die;

#more code here

&test;

$var=<FILE>;

Hopefully you can see the obvious problem here: the open statement in the test

subroutine clobbers the open statement in the main program. This is easy to see (and

avoid) in a small program with just one developer, but in larger programs with multiple

developers, this can easily become an issue.

Unfortunately, the solution that developers use to avoid such clobbering for

variables won’t work here. You can’t use my on filehandles.

You can use local, but that isn’t the best solution in most cases. For example, local

doesn’t solve the problem in the following code fragment:

sub test {

 open (FILE, "<data.txt") || die;

 #more code here

}

Chapter 3 Advanced Features

77

local open (FILE, "<junk.txt") || die;

#more code here

&test;

$var=<FILE>;

For local to really solve the problem, it would have to be used in the &test

subroutine.

The solution here is to use a feature that has been available since Perl 5.6: indirect

filehandles:

sub test {

 open my $FILE, "<junk.txt" || die;

 #more code here

}

open my $FILE, "<junk.txt" || die;

#more code here

&test;

$var=<$FILE>;

Using this technique, Perl will store the filehandle (technically a filehandle

reference) into the scoped variable, $FILE. Since this variable is a my variable, the

subroutine variable won’t clobber the main program variable, and the filehandles won’t

conflict.

�The three-argument technique to the
open statement

Why  It makes the code more clear and avoids a (rare) potential error.

As of Perl 5.6, you can use either the two-argument technique or three-argument

technique to the open statement:

open my $FILE, "<junk.txt" || die;

open my $FILE, "<", "junk.txt" || die;

Chapter 3 Advanced Features

78

With the three-argument technique, the second argument is how you want to open

the file. By making this a separate argument, it is more clear to read and avoids the

following rare potential error:

$file=">abc.txt"; #Filename is really called ">abc.txt"

open my $file, ">$file"; #will append to a file called "abc.txt",

 #not overwrite it as planned

�Always check the return values of open, close,
and when printing to a file

Why  File interaction is one of the most common places where your script
should fail. This failure could occur when you open a file, close a file, or try to
print to a file.

Consider the following code fragment:

open my $FILE, ">", "junk.txt" || die;

print $FILE "output\n";

close $FILE;

Typically, developers will only "look at" the return value of the open statement,

when in fact each print statement and close statement should be "looked at" as well.

Suppose your program opens a file successfully and then the file’s permissions are

changed before you close the filehandle. This would cause the close function to fail (as it

is writing data from the buffer into the file).

Additionally, print statements could fail due to memory issues or if you have the

autoflush variable "turned on". As a result, you should always check the return value of

print (to file) and close statement:

open my $FILE, ">", "junk.txt" || die;

print $FILE "output\n" || die;

close $FILE || die;

Chapter 3 Advanced Features

79

�Close filehandles as soon as possible

Why  Multiple reasons (see the following)

Perl developers know that if they don’t close their filehandles, Perl will close them

automatically when the program ends (or, if using indirect filehandles, when the my

variable goes out of scope).

However, this lazy programming style can cause problems, including, but not limited

to, the following:

•	 While the filehandle is still open, it is using memory, potentially a

large amount of memory if the data is large.

•	 If something goes wrong (program crashes), you will lose the data if it

isn’t saved until the end of the program.

�Avoid slurping

Why R eading I/O one a line-by-line basis is normally more efficient than reading
the entire file.

Consider the following code fragment:

undef $/;

$data=<>;

$/="\n";

$data =~ s/foo/fee/gms;

print $data;

Chapter 3 Advanced Features

80

This technique, called slurping, may seem a great way of replacing all "foo" with

"fee" in a file, but it also has some performance impact. To begin with, if the data being

read is large, then Perl needs to use a great deal of RAM to store the entire file. A better

solution in most cases would be to read one line at a time, manipulate the line, and then

print the results:

while ($data=<>) {

 $data =~ s/foo/fee/gms;

 print $data;

}

Note  If you have the need to do multiline pattern matching, then reading the
entire file into a single scalar might be the best course of action.

�Creatively use the do statement

Why U sing the do statement creatively allows you to create more efficient code.

In the previous example, we undefined the $/ variable (input separator variable) so

we could slurp the entire file into a scalar variable. We had to set it back to a newline

character so it wouldn’t adversely affect other parts of the program.

However, this technique isn’t the best solution in some cases. Consider the following

code fragment:

sub test {

 undef $/;

 $data=<>;

 $/="\n";

}

$/=":"

&test;

$data=<FH>;

Chapter 3 Advanced Features

81

In the main program, the $/ variable was set to a colon character but changed by the

&test subroutine to a newline character (the default value in most cases).

One way to solve this potential problem is by localizing the $/ variable:

sub test {

 local $/;

 $data=<>;

}

$/=":"

&test;

$data=<FH>;

In this example, $/ "goes back to" its original value once outside the scope of the

subroutine.

Note  The my statement can’t be applied to the $/ variable.

This is fine for subroutines, but what if you want to temporarily change $/ (or any

special variable) within the main part of the program? You could create scope with

braces:

{

local $/;

$data=<>;

}

$data =~ s/foo/fee/gms;

print $data;

However, for many developers, this is hard to read. It would be more effective and

clearer to use a do statement:

$data=do { local $/; <>};

Chapter 3 Advanced Features

82

�Use the slurp() function

Why  The Perl6::Slurp module provides more power to read from files than
bulit-in Perl techniques.

Instead of changing $/ to slurp files, you can use the Perl6::Slurp module from CPAN

and use the slurp function:

use Perl6::Slurp;

$data=slurp <FILE>;

The slurp function provides a lot of features. For example, it will behave as a

"normal" filehandle read when assigned to an array variable:

@data=slurp <FILE>; #reads each line into an element of the array

You can also have it automatically chomp the newline character from each line:

@data=slurp <FILE>, {chomp => 1};

Or replace the newline character with a different character:

@data=slurp <FILE>, {chomp => [:]};

You can also change the input record separator for the specific slurp:

@data=slurp <FILE>, {irs => ":"};

Unlike the normal input record separator variable, with slurp you can specify a

regular expression:

@data=slurp <FILE>, {irs => qr/:|-/};

�Test for interactivity

Why  If you have a program that can be run by either interactive (gathering user
input) or noninteractive, use IO::Interactive to test for the interactive mode.

Chapter 3 Advanced Features

83

Consider the following code fragment:

print "Enter the file name: ";

$file=<STDIN>;

The prompt provided by the print command is great, unless the user runs your

program like the following:

%ocs> perl test.pl < filedata

If your program is run like this, then the prompt makes no sense. You could generate

your own technique to test to see if your program is interactive or not, or you could make

use of a CPAN module called IO::Interactive:

use IO::Interactive qw(is_interactive);

if (is_interactive) {

 print "Enter the file name: ";

}

$file=<STDIN>;

You could also use the interactive function to print a prompt. It only prints to

STDOUT if the program is interactive (it discards the print data if the program is not

interactive):

use IO::Interactive qw(interactive);

print interactive "Enter the file name: ";

$file=<STDIN>;

�Use IO::Prompt

Why  The IO::Prompt module provides powerful techniques to read input from
users.

The IO::Prompt module (available on CPAN) provides a function called prompt that

allows you to capture user input in a much more powerful way:

#!perl

#io-prompt.pl

use IO::Prompt;

Chapter 3 Advanced Features

84

$data=prompt "Enter a line: ";

$passwd=prompt "Password: ", -echo => "*";

$passwd=prompt "Password: ", -echo => "";

$charprompt= prompt "Enter your choice [0-9]: ", -onechar;

$charprompt= prompt "Enter your choice [0-9]: ", -onechar,

 -requires => {"Must be between 0-9" => qr/[0-9]/ };

Important note  due to the way this module has been implemented, it will not
work on MSWIN-based systems.

�Understand where to find documentation

Why  Knowing where to effectively find documentation is critical for Perl
developers.

If you are going to be really effective in Perl, you should get in the habit of reviewing

documentation on a regular basis.

One way of developing this habit is to look up the documentation of a Perl feature/

function when you first learn about it. For example, when you are introduced to the sort

function, spend some time reviewing the documentation about that function.

Doing this on a regular basis provides several benefits, including

	 1.	 You become more accustomed to looking at documentation

which results in you developing the habit of looking at the

documentation whenever you have a problem with your code.

	 2.	 You often will learn about new, valuable features that you can

utilize in your Perl program.

Note  If you really want to purchase Perl books, there is an excellent resource for
you here: http://perldoc.perl.org/perlbook.html.

Chapter 3 Advanced Features

http://perldoc.perl.org/perlbook.html

85

�Sources of documentation
For core Perl features and functions, you have two primary sources. One source is on the

Internet: perldoc.perl.org. The second is on your own system: the perldoc command.

The perldoc command is used to display POD (Plain Old Documentation). POD

is how developers document modules. However, in addition to modules, the Perl core

documentation is also in POD format.

To see the core Perl documentation, use the following command:

ocs% perldoc perl

{output omitted}

Included in the output of the preceding command is a list of other documents that

you can view, such as the following:

ocs% perldoc perlcheat

{output omitted}

If you read through the main perl documentation, you will see a bunch of FAQs. The

-q option to perldoc allows you to search the FAQs using a keyword:

ocs% perldoc -q sort

{output omitted}

If you want to see a list of all of Perl’s functions, view the perlfunc document. This

is also an excellent way to see a list of what functions are available on the version of Perl

that you are currently using:

ocs% perldoc perlfunc

{output omitted}

To see a specific function’s documentation, use the -f option:

ocs% perldoc -f sort

{output omitted}

If you want to see a modules documentation, use the following syntax:

ocs% perldoc File::Copy

{output omitted}

Chapter 3 Advanced Features

86

You can even have perldoc tell you where the module is installed by using the -l

option:

ocs% perldoc -l File::Copy

{output omitted}

To see the raw code of a module, use the -m option:

ocs% perldoc -m File::Copy

{output omitted}

�Understand context

Why P erl decides how to handle data based on the context in which it is used.
Not understanding this will cause problems in your code.

A feature that often plagues both novice and experienced Perl developers is how

Perl determines data based on context. While this has been covered to some extent

previously, this section is designed to provide you with a summary of how context is

determined.

With Perl the primary way context is determined is with operators. In most cases, the

question comes down to the following:

•	 number vs. string

•	 scalar vs. array vs. list

�Number vs. string
While both numbers and strings are both scalar data to Perl, they are sometimes treated

differently (depending on how they are used).

When numbers are used in a "string context", they are converted into strings first

and then "used". String context includes

•	 String operators ("." or "x")

•	 String functions

•	 String comparison

Chapter 3 Advanced Features

87

•	 Regular expressions

•	 Assignment to a scalar variable

The method Perl uses to convert numbers to strings is very simple. Essentially,

the number is treated as if there were quotes around it. The only time the number is

modified is when it contains unnecessary "0"s. They are dropped when the number is

used as a string.

Examples:

 DB<1> print "abc".12345

abc12345

 DB<2> print "abc".123.45

abc123.45

 DB<3> print "abc".123.4500

abc123.45

String to number conversion is a bit more complex. Perl will "look" at the first

character of the string and

•	 If it is a number (0–9), then Perl will continue to look for more

numbers. Once it finds a "non-number", it will stop looking and will

convert the string into what it has found.

•	 If it is whitespace (new line, space, tab, etc.), Perl will ignore it and

look at the next character.

•	 If it isn’t a number or whitespace, then the string is treated as the

value zero (0).

Examples:

 DB<1> print "123abc"+10

133

 DB<2> print " 123abc"+10

133

 DB<3> print "abc123" +10

10

 DB<4> print "1.45 xyz" + 10

11.45

Chapter 3 Advanced Features

88

�Scalar vs. array vs. list
When you use array data in scalar context, Perl returns the number of elements in the

list:

 DB<1> @colors=qw(red blue green yellow)

 DB<2> $number=@colors

 DB<3> print $number

4

There is a subtle, yet important, difference between arrays and lists. While arrays

used in scalar context return the number of elements in the array, lists in scalar context

return the last element in the list:

 DB<1> $number=qw(red blue green yellow)

 DB<2> print $number

yellow

It is important to realize that almost all operators in Perl are scalar operators. This

includes

•	 String operators ("." or "x")

•	 Numeric operators (like "+" or "**")

•	 String or numeric functions

•	 String or numeric comparisons

•	 Regular expressions

•	 Assignment to a scalar variables

�Understand the => operator

Why U nderstanding the => operator allows you to write easier to
understand code.

Chapter 3 Advanced Features

89

The => operator is simply a stylized version of the comma operator. However, it allows

you to write easier-to-understand code. For example, consider the following two code

fragments:

%cities=("San Diego", "CA", "Boston", "MA");

%cities=("San Diego" => "CA", "Boston" => "MA");

The second example is more readable, as the association between key and value is

visually defined with the =>. Even better

%cities=(

 "San Diego" => "CA",

 "Boston" => "MA"

);

However, you can also use this => operator for other purposes. For example, consider

the following:

&test("debug", 170, 230);

There are problems with passing in arguments in this fashion:

	 1.	 It is difficult to tell what the arguments are intended for.

	 2.	 It forces the user of the subroutine to pass the arguments in a

specific order.

	 3.	 It forces the user to pass in ALL of the arguments, even if you

consider some of the arguments as "optional".

Instead, you could pass in the arguments in option–argument pairs:

&test(-mode, "debug", -min, 170, -max, 230);

Of course, it would be more readable if you used the => operator:

&test(-mode => "debug", -min => 170, -max => 230);

In the test subroutine, you can read the @_ arguments into a hash:

%args=@_; #-mode, -min and -max become keys

Chapter 3 Advanced Features

90

There are many ways that you can use the => operator. For example, consider the

following code fragment:

rename "file.txt", "data.txt";

rename "file.txt" => "data.txt";

The second line in the preceding example more visually demonstrates the operation.

�Understand subroutine calls

Why  There are three different techniques to calling subroutines. Knowing the
differences between them will allow you to make the right "call".

Subroutines can be called using three different techniques:

&test (1, 2, 3);

test (1, 2, 3);

test 1, 2 3;

In many cases, there is no difference between these three methods. However, in

some cases, there are important differences:

BOTH & and (): If you want to put your functions after they are

called in your program, using the & character is a proper ways to

call the function:

#!perl

#sub1.pl

&hello; #ok

hello(); #ok

hello; #error

sub hello {

 print "hi there\n";

 }

Chapter 3 Advanced Features

91

Only &: If you choose (or accidently) to name a function the same

as a Perl built-in function, this may cause problems. Calling the

subroutine with a & character will call your function. Calling

the subroutine without the & character will call the Perl built-in

function:

#!perl

#sub2.pl

sub chop {

 print "hi there\n";

 }

&chop; #Runs your chop function

chop(); #Runs built-in chop function

chop; #Runs built-in chop function

Only &: If you want to just provide the name of the subroutine,

such as with the defined() and undef() functions

#!perl

#sub3.pl

sub test {

 print "hi there\n";

 }

undef (&test); #Undefines test subroutine

undef (test()); #Run time error

undef (test); #Run time error

BOTH & and (): If you want to call a reference to a subroutine, you

need to either use & or ().

Only &: Prototypes will not work if you use the & character to call

the subroutine.

Only (): Use () when you need to be more clear with how the

parentheses are to be used. Consider the following statement:

print (5+6)*8, " is the result";

Chapter 3 Advanced Features

92

In this case we are trying to print a mathematical operation, (5+6)*8, followed by a

string. The result of this print statement isn’t what we expected:

11

Why 11? To understand this, you need to understand how parentheses are used in

Perl. Parentheses have many different meanings in Perl. For example, they are used to

create lists, to specify conditional statements, to overcome precedence, and to specify

grouping in regular expressions.

In addition to specifying precedence in mathematical expressions, parentheses are

also used to specify the parameters that you want to pass into a statement:

print ("This is the formal way to type a print statement!");

When Perl sees print (5+6)*8, it thinks that the result of 5+6 (11) is a parameter to

be passed into the print statement. To avoid this, just make your print statement a little

more formal:

print ((5+6)*8, " is the result");

Summary chart of different techniques to call a function

Situation Use & Use () Use Neither

If you want to put your functions after they are called in your program • •

If you name a function the same as a Perl built-in function •

If you want to just provide the name of the subroutine, such as with

the defined() and undef() functions

•

If you want to call a reference to a subroutine • •

Call a subroutine that is using prototypes • •

When you need to be more clear with how the parentheses are to be

used

•

Chapter 3 Advanced Features

93

�Understand and/or vs. &&/||

Why  The subtle differences between these operators can have an impact on your
program. Using the correct operators can make your program more readable and
understandable.

There is a subtle, but sometimes important, difference between or and || (as well as and

vs. &&). In many cases they will produce the same results; however, or and and have a

lower precedence than || and &&.

Consider the following code:

DB<1> $test="abc"

DB<2> $new = $junk or $test

DB<3> print $new

The intent was to assign $new to $junk IF the $junk variable was defined. If it was

not defined, then we wanted $new to be assigned to $test. However, since or has a lower

precedence than the assignment operation, the way this statement really executed was

DB<2> ($new = $junk) or $test

The correct way to handle this would be to use ||:

DB<4> $new = $junk || $test

DB<5> print $new

abc

Consider the following code:

DB<1> @info=stat("sub1.pl") || die

DB<2> print "@info"

1

Our intention was to run the stat function, and, if it failed to return the data needed

from the "sub1.pl" file, use the die statement to exit the program. Unfortunately, we

end up with the wrong data stored in @info if the stat function succeeds.

Because of precedence, what is really happening here is this:

DB<1> @info= (stat("sub1.pl") || die)

Chapter 3 Advanced Features

94

If the stat function is successful, then the resulting "rvalue" is 1 for "true" because

one of the two statements returned true, making the entire statement true. If you use or

instead of ||, you will get the correct results:

DB<3> @info=stat("sub1.pl") or die

DB<4> print "@info"

2 0 33206 1 0 0 2 119 1355943060 1355943094 1355943060

�Use Perl::Tidy

Why  There are perl modules which provide you with automated techniques to
make your code look and perform better. Perl::Tidy is one of these.

Writing code that has a persistent style can be difficult. The Perl::Tidy module

(available from CPAN) provides you with a command-line utility called perltidy that

will take "ugly"-looking code and convert it to "nice"-looking code. Consider the

following example:

#!perl

#ugly1.pl

my $lines = 0; # checksum: #lines

my $bytes = 0; # checksum: #bytes

my $sum = 0; # checksum: system V sum

my $patchdata = 0; # saw patch data

my $pos = 0; # start of patch data

my $endkit = 0; # saw end of kit

my $fail = 0; # failed

If you want to line up all of the comments, = characters, etc., then you can run

perltidy on the ugly1.pl file:

ocs% perltidy ugly1.pl

The result of the perltidy command is a file with the same name as the original but

with an extension of .tdy:

Chapter 3 Advanced Features

95

ocs% more ugly1.pl.tdy

#!perl

#ugly1.pl

my $lines = 0; # checksum: #lines

my $bytes = 0; # checksum: #bytes

my $sum = 0; # checksum: system V sum

my $patchdata = 0; # saw patch data

my $pos = 0; # start of patch data

my $endkit = 0; # saw end of kit

my $fail = 0; # failed

The perltidy command makes many format changes. See the following files for

additional examples: ugly2.pl, ugly3.pl, ugly4.pl, and ugly5.pl.

There are also many options to perltidy that can change how it formats your code.

For example, use the -i option to specify how many spaces to indent:

ocs% perltidy -i=4 ugly5.pl

Or use the -st option to have the output go to STDOUT instead of a file.

If you find yourself using the same options repeatedly, you can make them defaults

for your account by creating a .perltidyrc file. An easy way to create this file is to use

the -dump-options option:

ocs% perltidy -i=4 -dump-options

Note  On Windows-based systems, the file name that you should create is
perltidy.ini. The -dump-options option will not create this file automatically,
as specified by perltidy’s man page:

Under Windows, perltidy will also search for a configuration

file named perltidy.ini since Windows does not allow files with

a leading period (.). Use perltidy -dpro to see the possible

locations for your system. An example might be C:\Documents

and Settings\All Users\perltidy.ini.

Chapter 3 Advanced Features

96

The perltidy command has many, many more features that you should explore if

you are going to make use of it. The documentation for the command is located here:

http://perltidy.sourceforge.net/perltidy.html.

�Use Perl::Critic

Why  There are perl modules which provide you with automated techniques to
make your code look and perform better. Perl::Critic is one of these.

As its documentation states, "Perl::Critic critiques Perl source code for best-

practices". It is designed to give you suggestions on possible better ways of doing

something, which is important in a language that prides itself on being able to do things

in more than one way.

In fact, the slogan of Perl::Critic is "Some Ways Are Better Than Others".

Perl::Critic (available on CPAN) uses "policies", rules about how code should

be written. These policies come from several sources, including Damian Conway’s book,

Perl Best Practices. Additional policies can also be downloaded.

When it executes, the perlcritic command will find any code that breaks the policy

rules and reports the code along with a "Severity" level between 1 and 5 (with 5 being

the least severe and 1 being the most severe). By default, only level 5 "warnings" are

reported:

ocs% perlcritic critic.pl

Code before strictures are enabled at line 4, column 1. See page 429 of

PBP. (Severity: 5)

You can make the perlcritic command be more restrictive by using the --severity

option:

ocs% perlcritic --severity 1 critic.pl

perltidy had errors!! at line 1, column 1. See page 33 of PBP. (Severity: 1)

RCS keywords Id not found at line 1, column 1. See page 441 of

PBP. (Severity: 2)

RCS keywords $Revision$, $HeadURL$, $Date$ not found at line 1, column

1. See page 441 of PBP. (Severity: 2)

Chapter 3 Advanced Features

http://perltidy.sourceforge.net/perltidy.html

97

RCS keywords $Revision$, $Source$, $Date$ not found at line 1, column

1. See page 441 of PBP. (Severity: 2)

No package-scoped "$VERSION" variable found at line 1, column 1. See page

404 of PBP. (Severity: 2)

Subroutine "test" does not end with "return" at line 4, column 1. See page

197 of PBP. (Severity: 4)

Code before strictures are enabled at line 4, column 1. See page 429 of

PBP. (Severity: 5)

Code before warnings are enabled at line 4, column 1. See page 431 of

PBP. (Severity: 4)

Return value of flagged function ignored - print at line 5, column 4. See

pages 208,278 of PBP. (Severity: 1)

Useless interpolation of literal string at line 5, column 10. See page 51

of PBP. (Severity: 1)

Found "\N{SPACE}" at the end of the line at line 7, column 1. Don't use

whitespace at the end of lines. (Severity: 1)

Obviously, some of these warnings might not be important to you. However, they do

provide good suggestions of how you can make your code better overall.

The Perl::Critic module and perlcritic command have many features. See

http://search.cpan.org/~thaljef/Perl-Critic-1.118/lib/Perl/Critic.pm for

more examples and features of this tool.

�Understand Getopt::Std

Why  If you require data from users, but don’t want the script to be interactive,
then you can have users pass in data as options. One way to parse this data is by
using the Getopt::Std module.

The Getopt::Std module is standard in Perl. It provides you with an easy way to parse

command-line arguments that are passed in by users:

#!perl

#std_opt1.pl

Chapter 3 Advanced Features

http://search.cpan.org/~thaljef/Perl-Critic-1.118/lib/Perl/Critic.pm

98

use Getopt::Std;

getopts('abc');

print "$opt_a\n";

print "$opt_b\n";

print "$opt_c\n";

In the previous example, the getopts function defined three valid options: -a, -b,

and -c. If these options are used, then the argument passed to the options are assigned

to $opt_a, $opt_b, or $opt_c:

ocs% perl std_opt1.pl -a "test" -c "null

test

null

The arguments that are parsed are also stripped off of the @ARGV array:

ocs% more std_opt2.pl

#!perl

#std_opt2.pl

use Getopt::Std;

getopts('abc');

print "$opt_a\n";

print "$opt_b\n";

print "$opt_c\n";

print "@ARGV\n"

ocs% perl std_opt2.pl -a "test" -c "null"

test

null

You can also have the option/arguments placed into a hash:

#!perl

#std_opt3.pl

Chapter 3 Advanced Features

99

use Getopt::Std;

getopts('abc', \%ops);

print "$ops{a}\n";

print "$ops{b}\n";

print "$ops{c}\n";

print "@ARGV\n"

If you want some options to have arguments and others to be simple booleans, place

a ":" character after the options that are to have arguments (the rest will be booleans):

#!perl

#std_opt4.pl

use Getopt::Std;

getopts('abc:');

print "$opt_a\n";

print "$opt_b\n";

print "$opt_c\n";

print "@ARGV\n"

To tell the getops function to stop looking at arguments, use a -- option (-- will be

removed from the @ARGV array):

ocs% perl std_opt4.pl -a -b -- -c "null"

If an unknown argument is passed, the getopts function will return false:

ocs% more std_opt5.pl

#!perl

#std_opt5.pl

use Getopt::Std;

getopts('abc:') || die;

print "$opt_a\n";

print "$opt_b\n";

print "$opt_c\n";

print "@ARGV\n"

Chapter 3 Advanced Features

100

ocs% perl std_opt5.pl -a -b -d

Unknown option: d

Died at std_opt5.pl line 6.

�Understand Getopt::Long

Why  If you require data from users, but don’t want the script to be interactive,
then you can have users pass in data as options. One way to parse this data is by
using the Getopt::Long module.

The Getopt::Long module is standard in Perl. It provides you with more advanced

techniques to parsing command-line options than Getopt::Std.

Instead of using simple arguments like -a, -b, and -c, with Getopt::Long, you use

options like --all, --verbose, and --catchall. These options will be easier to remember

and will "self-document". Simple example:

#!perl

#long_opt1.pl

use Getopt::Long;

GetOptions ('verbose' => \$verbose, 'all' => \$all, "catchall" => \$catch);

print "$verbose\n";

print "$all\n";

print "$catch\n";

print "@ARGV\n"

One nice feature of the GetOptions function is the ability to specify the "opposite"

of an option. For example, the following will allow for both a "--verbose" and a

"--noverbose" option:

#!perl

#long_opt2.pl

use Getopt::Long;

GetOptions ('verbose!' => \$verbose, 'all' => \$all, "catchall" => \$catch);

Chapter 3 Advanced Features

101

print "$verbose\n";

print "$all\n";

print "$catch\n";

print "@ARGV\n"

In the preceding example, the $verbose variable will be assigned a value of 1 if

--verbose is provided as an option and a value of 0 if --noverbose is provided.

To pass arguments to options, use the following syntax:

#!perl

#long_opt3.pl

use Getopt::Long;

GetOptions ('verbose!' => \$verbose, 'all=i' => \$all, "catchall" => \$catch);

print "$verbose\n";

print "$all\n";

print "$catch\n";

print "@ARGV\n"

The "i" means that an integer can be passed. For a string, use "s". For a floating

point number, use "f".

You can have multiple values passed in by using the following syntax:

#!perl

#long_opt4.pl

use Getopt::Long;

 �GetOptions ('verbose!' => \$verbose, 'all=i' => \$all, "catchall=s" =>

\@catch);

print "$verbose\n";

print "$all\n";

print "@catch\n";

print "@ARGV\n"

Note that the program would have to be run like this:

ocs% perl long_opt4.pl --catch "abc" --catch "xyz"

Chapter 3 Advanced Features

102

In the following example, you can have users pass key/value pairs to be assigned to

a hash:

#!perl

#long_opt5.pl

use Getopt::Long;

 �GetOptions ('verbose!' => \$verbose, 'all=i' => \$all, "catchall=s" =>

\%catch);

print "$catch{test}\n";

print "$catch{error}\n";

print "@ARGV\n"

The syntax on the command line would be

ocs% perl long_opt5.pl --catch test="abc" --catch error="xyz"

There are other options available when you use Getopt::Long. Consult the

documentation for further details.

�Alternative commenting technique

Why  Commenting multiple lines with # characters is frustrating.

Suppose you had code like the following:

#!perl

#comment1.pl

print "hello\n";

foreach $var (@INC) {

 print ++$i, "\t$var\n";

}

print "goodbye\n";

Chapter 3 Advanced Features

103

And you want to comment out the foreach loop. To do this correctly, you would have

to place a # character in front of three lines:

#!perl

#comment2.pl

print "hello\n";

#foreach $var (@INC) {

print ++$i, "\t$var\n";

#}

print "goodbye\n";

This isn’t so bad for three lines, but what if the foreach loop was 30 lines? Or 300

lines?

There is another technique that you can use to temporarily comment out large

chunks of code: POD. Plain Old Documentation is typically how you can comment Perl

modules with POD.

However, you can also use it to tell Perl to "ignore" lines of code while Perl compiles

the code. You do this by turning on POD documentation with "=begin" and turning off

POD documentation with "=cut":

#!perl

#comment3.pl

print "hello\n";

=begin

foreach $var (@INC) {

 print ++$i, "\t$var\n";

}

=cut

print "goodbye\n";

Again, this is meant to be a temporary solution to make it easier to comment out

large chunks of code while you are debugging.

Chapter 3 Advanced Features

104

�Passing notes within a Perl program

Why  If you are trying to "take notes" about your program, this technique may
be better than using a separate file.

Suppose you are making notes as to what needs to be done in a program. These notes

are either for yourself or to let another programmer know some information. Using a

separate file (or email) has the disadvantage that this file (or email message) might be

lost or overlooked.

You could use traditional comments, but a long chunk of notes would be a pain to

comment out. You could use the POD technique mentioned earlier, but that is more

designed for commenting out chunks of code temporarily.

Another technique is to place your notes at the bottom of your program after the

__END__ token as shown in the following program:

#!perl

#end.pl

print "hello\n";

foreach $var (@INC) {

 print ++$i, "\t$var\n";

}

print "goodbye\n";

__END__

You still need to finish the subroutine

that loads the data. Also, you need to make

sure the data file can’t be changed.

Anything under the __END__ token is not considered Perl code. While there are a few

features in Perl that make use of this location (such as main::DATA and the AutoLoader

module), this area is rarely ever "looked at" by Perl. As a result, it is normally a safe

place to place notes without having to comment out a huge section of the program.

Chapter 3 Advanced Features

105

�Use Smart::Comments

Why  Improves debugging.

Using the CPAN module Smart::Comments will help you debug your Perl code by the

use of comments. This module will produce helpful debugging messages. Specifically,

it looks for any lines that have more than three # characters. Any of those lines will

automatically be printed to STDOUT:

#!perl

#smart1.pl

use Smart::Comments;

Acquiring data...

$data = get_data();

Verifying data...

verify_data($data);

Assimilating data...

assimilate_data($data);

Tired now, having a little lie down...

sleep 10;

sub get_data {sleep 5; return "abc";}

sub verify_data {sleep 5; }

sub assimilate_data {sleep 5; }

Certainly, this could be done with print statements, but Smart::Comments has other

features. For example, consider the following code:

#!perl

#smart2.pl

use Smart::Comments;

<now> Acquiring data...

$data = get_data();

Chapter 3 Advanced Features

106

Verifying data at <here>...

verify_data($data);

for (1..10) { ### Progressing... done

 sleep 1;

}

for (1..10) { ### Evaluating [===|] % done

 sleep 1;

}

sub get_data {sleep 5; return "abc";}

sub verify_data {sleep 5; }

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

�Lab exercises

Note  There are no exercises for this chapter.

Chapter 3 Advanced Features

https://github.com/Apress/pro-perl-programming

107
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_4

CHAPTER 4

Advanced Formatted
Output
Recall that many people consider Perl to stand for Practical Extraction and Report

Language. You may be wondering what part of Perl performs the "Report" functionality.

There are several features that provide this functionality as you will see in this chapter.

�Review: The format statement
Basic format statement features are discussed in the Beginning Perl Programming: From

Novice to Professional book. The goal of this section is to provide a quick review of what

is covered in that book.

If you are already familiar with basic format statement usage, then skip to the next

section. If not, then you should try the examples demonstrated in this section.

�The format statement
Perl provides a method of creating formatted output with the format and write

statements. The format statement is used to create a template, while the write statement

is used to send the output to a filehandle:

format FILEHANDLE =

Plain text and placeholder: @>>>>>

$var #variable values go in placeholder.

Notes

•	 The value of the variable will go in the "placeholder", @>>>>> in the

preceding example.

108

•	 The FILEHANDLE can either be STDOUT or a filehandle that you create

with an open statement.

•	 Each filehandle can only have one format statement because the

statements are declared at compile time, not run time.

•	 The "." (dot) must be on a line by itself. This character indicates the

end of the format statement.

After the variables have been set and the filehandle has been opened (if necessary),

use the write statement to send the output to the filehandle:

write FILEHANDLE;

�Placeholders
There are many different types of placeholders that can be use with the format

statement:

Placeholder Type Meaning

@<<< Left justify text in placeholder

@>>> Right justify text in placeholder

@||| Center text in placeholder

@##.## Numeric output (lines up decimal place)

^<<< Left justify, break up over multiple lines if needed

@* Left justify, multiline output

Notes

•	 Each placeholder character represents one character of the variable,

so "@<<<" means "four characters, left justified".

•	 If there aren’t enough placeholder characters to "fix" all of the

variable’s characters, the extra variable’s characters are truncated.

"abced" ➤ @<< would result in "abc".

•	 The "^" placeholder is useful when a variable needs to be divided

among multiple lines.

Chapter 4 Advanced Formatted Output

109

Example #1 of basic format usage:
This example demonstrates the different placeholder fields (left, right, and center),

the multiline placeholder field, and the "breakover multiple-line" placeholder:

#perl

#form1.pl

format STDOUT =

@||||||||||||

$title

Name: @<<<<< Age: @<<

$name, $age

code: @>>>>>>>>

$code

Comment: @*

$comment

Keywords:^<<<<<<

 $keywords

 ^<<<<<<

 $keywords

 ^<<<<<<

 $keywords

.

$title="Status Sheet";

$name="bob"; $age=25; $code="674AR3";

$comment="\nDisplays good tact\nworks hard\nsometimes is late";

$keywords="work effort late";

write STDOUT;

Output of form1.pl:

 Status

Name: bob sm Age: 25

code: 674AR3

Comment:

Displays good tact

Chapter 4 Advanced Formatted Output

110

works hard

sometimes is late

Keywords: work

 effort

 late

Example #2 of basic format usage
This example demonstrates how the "breakover multiple-line" placeholder may

result in not all of the data being displayed. Notice how the value of "raise" is never

displayed (the solution for this problem will be provided in the next section of this chapter):

#!perl

#form2.pl

format STDOUT =

Comment: @*

$comment

Keywords: ^<<<<<<

 $keywords

 ^<<<<<<

 $keywords

.

$comment="Displays good tact\nworks hard\nsometimes is late";

$keywords="work effort raise";

write STDOUT;

Output of form2.pl:

Comment: Displays good tact

works hard

sometimes is late

Keywords: work

 effort

Chapter 4 Advanced Formatted Output

111

�Repeating lines
The "^" placeholder character will break up text across multiple lines:

format STDOUT =

Keywords:^<<<<<<

 $keywords

 ^<<<<<<

 $keywords

 ^<<<<<<

 $keywords

.

Unfortunately, this method is cumbersome and sometimes will produce undesirable

results. For example, what if the variable $keywords is declared like this:

$keywords="work effort late raise";

The word "raise" would never be printed.

To say, "repeat this line over and over until the variable is empty", use

the ~~ characters at the beginning of the line:

format STDOUT =

Keywords:^<<<<<<

 $keywords

~~ ^<<<<<<

 $keyword

.

Example of repeating lines:

#!perl

#form3.pl

format STDOUT =

Keywords: ^<<<<<<

 $keywords

~~ ^<<<<<<

 $keywords

.

Chapter 4 Advanced Formatted Output

112

$keywords="work effort late raise";

write STDOUT;

 Try it!

Perform the following steps:

•	 Execute form1.pl and observe the results.

•	 View/read form2.pl and then execute form2.pl; observe the results.

•	 View/read form3.pl and then execute form3.pl; observe the results.

�Using select
By default, the print and write statements send its output to STDOUT. You can modify

this behavior by using the select statement.

#!perl

#select.pl

open (LOGFILE, ">data");

print "Starting log\n"; #sends output to STDOUT

select LOGFILE; #output will now go to file

print "Starting log...\n";

print "No errors found\n";

print "End of log\n";

select STDOUT;

print "End of logging process\n";

Using the select statement is very useful when you are sending output regularly to a

filehandle other than STDOUT.

Chapter 4 Advanced Formatted Output

113

Note  When you use the select statement, it sets the $~ variable to the currently
selected filehandle.

 Try it!

Perform the following steps:

•	 Execute select.pl and observe the results.

•	 View the contents of the "data" file to confirm that the script wrote
to this file.

�Warning regarding the select statement
It is a good habit to set the standard filehandle back to STDOUT after you are finished

using the "alternative" filehandle. This is especially true if you select a different

filehandle in a subroutine that others are calling.

If a different filehandle is selected in a subroutine, this can affect the calling program:

 DB<1> sub sample {select MORE;}

 DB<2> &sample

 DB<3> print $~

 DB<3> print STDOUT $~

MORE

Notice how frustrating this can be. A regular print statement can’t even display the

value of $~ because the output for the print statement will now go to another filehandle

(MORE in the preceding example).

�Advanced format statement features
This section focuses on some of the more advanced format statement features. If you

are using the format statement on a regular basis, you will find these features to be very

useful in creating rich reports.

Chapter 4 Advanced Formatted Output

114

�Top of form
You can add a header to a format statement by using the top-of-form feature. To use this

feature, specify a special format template called FILEHANDLE_TOP.

format STDOUT_TOP =

Sensitive data: do not duplicate!

.

When the statement write STDOUT is executed, the output from the STDOUT_TOP is

displayed first, followed by the output from the STDOUT format template.

Example of top of form:

#!perl

#top.pl

format MORE =

Name: @<<<<<<<<<<<<<<<<

$1

.

format MORE_TOP =

Groups from the group file

.

open (MORE, "|more");

open (GROUP, "<group") || die "could not open group";

while (<GROUP>) {

 m/^(.*?):/;

 write MORE;

}

close MORE;

close GROUP;

Chapter 4 Advanced Formatted Output

115

 Try it!

Perform the following steps:

•	 Execute top.pl and observe the results. Note: the top.pl program
makes use of a provided system file: the group file. This is just a
copy of the /etc/group file from a Linux system.

�Format variables
There are some variables that can either be used to modify how format statements work

or to display information regarding the format:

Variable Meaning

$~ Current format name. When you specify the statement write without specifying the

FILEHANDLE, the value of this variable is used. This variable is typically modified

with the select statement. $~ is set to STDOUT by default

$^ Current top_of_format name. Like the $~ variable, this is also typically modified by

the select statement

$% Current output page number; set to 1 when filehandle is first written to

$= Number of lines per page; set to 60 by default

$- Contains the number of lines left in the "page". $- is used when you write to

the same filehandle more than once. Perl needs to be informed that it needs to

"restart" the "top of page" format. This is done by setting $- to 0 (which also

resets the output page number variable)

$^L The value of this variable will be printed before each "top of page" except for the

first page

Note  You need to use the select statement for these variables to work.

Chapter 4 Advanced Formatted Output

116

Example #1 of using format variables:

#!perl

#vars1.pl

format MORE =

Name: @<<<<<<<<<<<<<<<<

$1

.

format MORE_TOP =

Groups from the group file page: @<<

$%

.

open (MORE, "|more");

open (GROUP, "<group") || die "could not open group";

select MORE;

$==5;

while (<GROUP>) {

 m/^(.*?):/;

 write;

}

select STDOUT;

Notes

•	 The vars1.pl program makes use of a provided system file: the group

file. This is just a copy of the /etc/group file from a Linux system. You

could use any file that contains 20 or more lines for this example.

•	 The output of the vars1.pl program may be a bit strange because the

$^L variable was not set to a newline character. See the next example

and the Try it! section for more details.

Chapter 4 Advanced Formatted Output

117

Example #2 of using format variables:

#!perl

#vars2.pl

format MORE =

Name: @<<<<<<<<<<<<<<<<

$1

.

format MORE_TOP =

Groups from the group file page: @<<

$%

.

open (MORE, "|more") || die "could not open more";

open (GROUP, "<group") || die "could not open group";

select MORE;

$==5;

while (<GROUP>) {

 m/^(.*?):/;

 write;

}

close GROUP;

close MORE;

print "\n\n\n\n\n";

open (MORE, "|more");

select MORE;

$^L="\n";

$==5;

$-=0;

open (GROUP, "</etc/group") || die "could not open group";

while (<GROUP>) {

 m/^(.*?):/;

 write;

}

Chapter 4 Advanced Formatted Output

118

close GROUP;

close MORE;

 Try it!

Perform the following steps:

•	 Execute vars1.pl and observe the results. Note that the behavior
might be a bit odd (you may need to press the <ENTER> key
continuously until the prompt appears again).

•	 Execute vars2.pl and observe the results. Note that the behavior
is better because the $^L variable was set to a newline character,
rather than the default formfeed character (which doesn’t display
nicely on non-printers).

If you plan on modifying these variables on a regular basis, you might consider using

the Filehandle module. This module provides methods (AKA, subroutines) that you can

use to modify these variables:

#!perl

#vars3.pl

use Filehandle;

format MORE =

Name: @<<<<<<<<<<<<<<<<

$1

.

format MORE_TOP =

Groups from the /etc/group file page: @<<

$%

.

open (MORE, "|more");

open (GROUP, "<group") || die "could not open group";

select MORE;

Chapter 4 Advanced Formatted Output

119

format_lines_per_page MORE 5;

while (<GROUP>) {

 m/^(.*?):/;

 write;

}

Note that on the previous page, the "select MORE;" statement wasn’t necessary for

setting the $= variable. However, it did allow use to use the write statement without

specifying MORE as an argument.

The following methods are provided by the Filehandle module:

•	 autoflush

•	 output_field_separator

•	 output_record_separator

•	 input_record_separator

•	 input_line_number

•	 format_page_number

•	 format_lines_per_page

•	 format_lines_left

•	 format_name

•	 format_top_name

•	 format_line_break_characters

•	 format_formfeed

�Padding with zeros
When using numeric fields, you can have the padding of spaces replaced by zeros by

placing a 0 as the first character after the @ character:

#!perl

#zero.pl

format STDOUT =

Name: @||||| Age: @<<

$name, $age

Chapter 4 Advanced Formatted Output

120

This is a reminder of your appt. on Friday at 10

Please bring @0##.## dollars with you

$amount

.

$name="Bob Smith";

$age=23;

$amount="125.87";

write STDOUT;

Output of zero.pl:

Name: Bob Sm Age: 23

This is a reminder of your appt. on Friday at 10

Please bring 0125.87 dollars with you

�Using ^*
The @<<<< placeholder stops reading from the variable once it hits a newline character. If

you use the ^* placeholder, it will stop after it hits the newline character, but you can use

the ^* placeholder again to continue to read from the variable:

Keywords: ^*

 $keywords

~~ ^*

 $keyword

�printf and sprintf
Both printf and sprintf are used to generate formatted output similar to the C and C++

printf and sprintf commands. Both commands accept a format (how to arrange the

data) and a list (the data to print).

Chapter 4 Advanced Formatted Output

121

Important note D on’t use printf in cases where a regular print command will do.

printf and sprintf are almost identical. The difference is that printf sends its

output to a filehandle by default, while sprintf returns its output to the calling statement.

�Options for printf and sprintf
Both statements use the following format options:

Option Meaning

%% A literal % sign

%c A character of the corresponding ordinal value

%d A signed integer (decimal)

%e A floating-point number (scientific)

%f A floating-point number (decimal)

%g A floating-point number (in either %e or %f notation)

%n The number of chars output in the next variables

%o An unsigned integer (octal)

%p Address in hexadecimal (pointer)

%s A string

%u An unsigned integer (decimal)

%x An unsigned integer (hexadecimal)

%E Like "%e", but using an uppercase "E"

%G Like "%g", but using an uppercase "G"

%O Obsolete

%U Obsolete

%X Like %x but using uppercase letters

Chapter 4 Advanced Formatted Output

122

�printf and sprintf flags
Flags can be used between the % sign and the conversation to modify the output as well.

The following chart illustrates these flags:

Flag Meaning

[space] Place a space prior to a positive number

+ Place a plus character prior to a positive number

- Left justify the output within the field

0 Right justify using zeros instead of spaces

Place a "0" prior to nonzero octal numbers and a "0x" prior to nonzero hex numbers

[number] Indicated the minimum field width

.[number] Results in different behavior for strings, integers, and floats:

String – Max length of string

Integer – Max width

Float – Number of digits after floating point

l Interpret integers as "long" or "unsigned long" according to the C type

h Interpret integers as "short" or "unsigned short" according to the C type

V Interpret integers according to Perl’s type

�Example: Rounding numbers
The int statement will make an integer out of a floating-point number:

DB<1> $num=10.75

DB<2> print int($num)

10

This method, however, can’t be used to round a number. To do this, use sprintf:

DB<1> $num=10.75

DB<2> $num=sprintf ("%.0f", $num)

DB<3> print $num

11

Chapter 4 Advanced Formatted Output

123

or printf:

DB<1> $num=10.75

DB<2> printf ("%.0f", $num)

11

�Example: Modifying numbers
The following will convert an integer into an octal number:

DB<1> $num=999

DB<2> printf ("%o", $num)

1747

The following will convert an integer into a hex number:

DB<1> $num=999

DB<2> printf ("%x", $num)

3e7

The following will convert an integer into scientific notation:

DB<1> $num=999

DB<2> printf ("%e", $num)

9.990000e+02

The following will add "extra" zeros to a floating-point number and add a percent

sign after the number and a "+" before it:

DB<1> $num=1.9

DB<2> printf ("%+.2f%%", $num)

+1.90%

�Example: Converting ASCII values
The printf statement can be used to convert a decimal ASCII value into its

corresponding string value:

DB<1> $number=97

DB<2> printf ("%c", $number)

a

Chapter 4 Advanced Formatted Output

124

A faster method, however, is to use Perl’s chr statement:

DB<1> $number=97

DB<2> print chr($number)

a

You can also convert characters into their corresponding decimal ASCII value with

the ord statement:

DB<3> $char="g"

DB<4> print ord($char)

103

 Try it!

Execute the following command to enter the Perl Debugger environment:

perl –d –e "1;"

At the debugger prompt, execute the following Perl statements:

$num=289.88;
printf("%e", $num);
printf("%x", $num); #Note, in this case $num is
 #treated as an integer
printf("%o", $num); #Note, in this case $num is
 #treated as an integer
printf("%.1f", $num);

Exit the debugger by executing the following Perl statement:

q

Chapter 4 Advanced Formatted Output

125

�print sprintf
In some cases, you may see a Perl programmer use the command print sprintf. This

isn’t any different than using the printf statement:

DB<1> $num=999

DB<2> printf ("%x", $num)

3e7

DB<3> print sprintf ("%x", $num)

3e7

�The <> Operator
One of the advantages of the diamond (<>) operator is that it can read from files that are

command-line arguments. For example, the following file will parse a line at a time from

either STDIN or from the contents of command-line arguments:

#!perl

#argv1.pl

print "@ARGV", "\n";

while (<>) {

 $count++ if (/\d/);

print "@ARGV", "\n";

}

print "@ARGV", "\n";

print "Number of lines that have at least one digit: $count\n";

Since <> reads "multiple files as they were one," it can be difficult to

distinguish between different files. In addition, the @ARGV array is "wiped out" as a result

of reading from <>.

The $ARGV variable can help differentiate between different files being read by <>.

This variable holds the name of the file that is currently being read.

Chapter 4 Advanced Formatted Output

126

Example of $ARGV

#!perl

#argv2.pl

$i=0;

@para=@ARGV;

while (<>) {

 if ($para[$i] eq $ARGV) {

 $count++ if (/\d/);

 } else {

 print "$para[$i] has $count lines with at least one digit\n";

 $count=0;

 $count++ if (/\d/);

 $i++;

 }

}

print "$para[$i] has $count lines with at least one digit\n";

Notes

•	 Reading from <> will "shift" elements from the @ARGV array. That is

why @para needed to be created.

•	 The last print statement is to print the output of the last file in the

@ARGV array.

 Try it!

Perform the following steps:

•	 Execute the following command: perl argv2.pl top.pl
form1.pl vars1.pl

•	 Observe the output of the previous output. Does the logic make
sense in the program?

Chapter 4 Advanced Formatted Output

127

•	 To better understand what is going on, edit argv2.pl, and add the
following line right after the while statement:

print "@ARGV\n";

•	 Execute the following command: perl argv2.pl top.pl
form1.pl vars1.pl

•	 Observe the output, and notice how the <> operator removes
elements from the @ARGV variable.

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

�Lab exercises
Mini lab:

Write a program that takes the following user input:

First name

Last name

Job Title

Favorite quote

Use a format statement to display the user data in the following format:

First Name: Last Name: Title:

Bob Smith Trainer

Chapter 4 Advanced Formatted Output

https://github.com/Apress/pro-perl-programming

128

Quote:

 It was the best

 of times; it

 was the worst

 of times.

Primary lab:

Important note  If you did not finish the previous lab, either finish it before
starting this lab or use the completed parse1.pl provided in the lab answers folder.

Modify parse1.pl to include the following changes:

•	 Instead of printing the array with a print statement, use a format

statement with the following:

•	 Line up each field of data into columns.

•	 Print a header for each page of data (each page should be 20 lines

of output).

•	 Include the current page number in the header.

•	 Have the output still go to the more command.

Save the file with the name parse2.pl.

Notes and hints

•	 You will need different format statements depending on what

changes have been made to the data.

When you have completed your work, compare your script against the parse2.pl file

provided in lab answers.

Chapter 4 Advanced Formatted Output

129
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_5

CHAPTER 5

Exploring Useful
Built-in Variables
A good deal of the power and flexibility behind Perl lies in its "built-in" variables. Perl’s

built-in variables provide many functions:

•	 Allows you to modify the behavior of your Perl script

•	 Holds important information regarding how your Perl script is

running

•	 Holds data regarding the results of pattern matching

This chapter provides some insight as to how you can use built-in variables. Note

that not all variables will be covered in this chapter as some variables are more useful

than others and others are a bit more esoteric. Additionally, some of these variables will

be covered in other chapters of this book.

�Variables reference chart
The following table provides a list of most of Perl’s built-in variables, along with a brief

description of each:

Variable Meaning

$` String preceding what was last matched

$' String following what was last matched

$+ Last parenthesis match of last pattern match

$& Last pattern match

(continued)

130

Variable Meaning

$* Multiline matching (depreciated deprecated by the s and m

modifiers provided in pattern matching)

$: Continuation field characters (rarely used, associated with

format statements)

$1..$9 Subpattern matches of last pattern match

$~ Name of current report format

$- Number of lines remaining on page

$! Current error number or error string

$" Array separator

$# Output format for numbers (depreciated)

$$ Process id of Perl script

$% Current page number of output channel

$= Page length of output channel

$| Output buffer flush

$, Output field separator

$. Current line number of input file

$/ Input record separator

$; Subscript separator for multidimensional array emulation

$? Status of last OS command

$@ Error message from last eval or do

$[Used to have the first index of an array be 1 instead of 0

(deprecated)

$\ Output record separator for print statement

$] Version of Perl

$^ Name of current top of page format

$_ Default input variable

$0 Program name

Chapter 5 Exploring Useful Built-in Variables

131

Variable Meaning

$< User’s real id number

$> User’s effective id number

$(User’s real group id number(s)

$) User’s effective group id number(s)

$^A Accumulator for write and formline

$^D Debugging flags

$^E OS-dependent error data

$^F Largest system file descriptor

$^H Current state of syntax checks

$^I Edit extension passed by -i option

$^L Formfeed characters for formats

$^M Emergency memory pool

$^O OS name

$^P Internal debugging flag

$^S Current interpreter state

$^T The programs start time

$^W The value of -w option

$^X Perl interpreter name

$ARGV Current file name when reading using <>

@ARGV Command-line arguments

@EXPORT Methods and symbols the package exports by default

@EXPORT_OK Methods and symbols the package exports by request

@F Contains the split of input lines when -a option is used

@INC List of places to look for Perl modules

@ISA List of base classes of current package

@_ Argument to the subroutine

(continued)

Chapter 5 Exploring Useful Built-in Variables

132

Variable Meaning

%ENV Environment variables passed into script from shell

%EXPORT_TAGS Names for sets of symbols

%INC List of where specific Perl modules were found

%SIG Used to tell Perl how to handle signals

�Use English
Many Perl programmers find Perl’s variable names somewhat cryptic and difficult to use.

To use "nice English names" instead of these cryptic variable names, use the pragma

"use English":

#!perl

#3_eng.pl

use English;

print "Autoflush is set to $| \n";

print "Autoflush is set to $OUTPUT_AUTOFLUSH \n";

Important note

While "use English" might be convenient, there is a drawback to it. Consider the
following warning from the Perl man pages:

"Due to an unfortunate accident of Perl's implementation, 'use
English' imposes a considerable performance penalty on all
regular expression matches in a program, regardless of whether
they occur in the scope of 'use English'. For that reason,
saying 'use English' in libraries is strongly discouraged".

This performance penalty has to do with the Regular Expression variables ($&, $`

and $') that were discussed in a previous unit.

Consult Perl documentation for a list of all of the English equivalents.

Chapter 5 Exploring Useful Built-in Variables

133

�Status variables
The status variables give data regarding why an error may have occurred. These variables

include the following:

Variable Meaning

$? Status of last OS command

$! Current error number or error string

$^E OS-dependent error data

$@ Error message from last eval or do

�The $? variable
This variable hold the status of the last pipe close, backtick, or system call. This variable

will store a nonzero value if an external program fails. If the program succeeds, the value

of this variable will be set to 0.

#!perl

#quest1.pl

$result=`ls -l /junk`;

print "$? \n"; #prints a positive number since command fails

$result=`date`;

print "$? \n"; #prints 0 since command runs successfully

Note that the previous example is designed to run on Unix or Linux systems. If you

are running Perl on Windows, change the ls command to the dir command.

The follow example demonstrates that the $? variable is also set by the system

statement:

#!perl

#quest2.pl

system "cd /junk";

print "$? \n"; #prints a positive number since command fails

Chapter 5 Exploring Useful Built-in Variables

134

system "date";

print "$? \n"; #prints 0 since command runs successfully

The $? variable is often used in a conditional statement, as demonstrated by the

following code fragment:

system "cd /junk";

if ($? > 0) {die "cmd failed";}

Try it!

Perform the following steps:

•	 Modify the quest1.pl script if necessary for your platform and
then execute it, and observe the output.

•	 Modify the quest2.pl script if necessary for your platform and
then execute it, and observe the output.

Important note regarding opening pipe file handles

When you open a file for reading and writing, you typically check the result of the
open statement. For example, the following code fragment will execute the die
statement if the open statement returns a false value:

DB<1> open (GROUP, "</etc/group") || die

However, when you open a process using the open statement, open will not return

"false" if the process cannot be executed. You need to look at the result of the close
statement or the variable $? after the close statement has executed:

DB<1> open (PS, "ps -fe|")

DB<2> close PS

DB<3> print $?

0

DB<4> open (PS, "ps -z")

Chapter 5 Exploring Useful Built-in Variables

135

DB<6> close PS

DB<7> print $?

256

Notes

•	 When you use the open statement to open a process, the return value

of the open statement is the process id.

•	 You must close the filehandle before you can use the $? variable.

�The $! variable
This variable reports C library errors. Many of Perl’s statements (such as the open
command) use C library calls to perform their tasks. When a C library fails, the error

message is stored in $!.

#!perl

#bang.pl

open (READ, "</etc/junkfile");

print "$!\n"; #prints error message of lib call

�The $^E variable
In cases in which the C library calls are further translated into calls to the kernel the $^E
variable stored the output of kernel errors. Typically, these errors are more verbose than

library errors.

#!perl

#E.pl

open (READ, "</etc/junkfile");

print "$^E\n"; #prints error message of kernel call

Note  $^E is the same as $! in many operating systems (Exceptions: VMS, OS/2,
and Win32).

Chapter 5 Exploring Useful Built-in Variables

136

Try it!

Perform the following steps:

•	 Execute the bang.pl and observe the output.

•	 Execute the E.pl and observe the output.

�The $@ variable
The $@ variable holds error messages that are generated by failed eval statements.

Since the eval statement isn’t covered in this book, the $@ variable will be discussed in

more detail.

�Separator variables
Separator variables are used to modify Perl’s behavior in regard to handling input and

output. These variables include the following:

Variable Meaning

$/ Input record separator

$" Array separator

$, Output field separator

$\ Output record separator for print statement

�Input record separator
The "record separator variable" stores the character(s) that Perl uses to "break up"

the data that is read by <STDIN>. By default, it is set to a newline character ("\n") and, in

almost every case, should not be changed. However, there are a couple of situations in

which changing this variable can make life a little easier:

Suppose we had a database file which contained a completely flat database:

Ted:9930:accounting:Bob:9940:HR:Sue:9950:accounting:

Chapter 5 Exploring Useful Built-in Variables

137

In this case, we could change the $/ variable to a colon (":") and read the entire file

into an array with each element being a field in the array:

$/=":";

@fields=<STDIN>;

chomp (@fields);

$/="\n";

Notes

•	 The chomp command actually chomps whatever the $/ variable is set

to.

•	 It’s important to set the $/ variable back to a newline character as

soon as you are finished reading the file.

�Array separator variable
When you print an array, all of the elements of the array are displayed "merged

together":

DB<1> @colors=qw(red blue green purple)

DB<2> print @colors

redbluegreenpurple

When you place quotes around the array, each element is separated with a space:

DB<1> @colors=qw(red blue green purple)

DB<2> print "@colors"

red blue green purple

The $" variable stores what character(s) should be used to separate array elements

when the array name is place within quotes. By default, this variable is set to a space. To

change this behavior, just set the variable to a different character:

DB<1> @colors=qw(red blue green purple)

DB<2> $"=":"

DB<3> print "@colors"

red:blue:green:purple

Chapter 5 Exploring Useful Built-in Variables

138

Try it!

Execute the following command to enter the Perl Debugger environment:

perl –d –e "1;"

At the debugger prompt, execute the following Perl statements:

@names=qw(Bob Bill Steve Nick);
$"="\n";
print @names;
print "@names";

Exit the debugger by executing the following Perl statement:

q

�print separators
The print statement doesn’t place anything between the items it prints:

DB<1> print ("abc", "123")

abc123

By modifying the $, variable, you can tell Perl to place a character between items

that are printed:

DB<1> $,=" "

DB<2> print ("abc", "123")

abc 123

This is useful in cases in which you are printing multiple items with one print

statement:

DB<1> $,=" "

DB<2> print "The result is", 5+7

The result is 12

Chapter 5 Exploring Useful Built-in Variables

139

The print statement also doesn’t place any characters at the end of the output. By

setting the $\ variable, you can have print always print characters at the end of each

output. For example, to have all print statements end with a newline character:

DB<1> $\="\n"

DB<2> print "print will now end with a newline char"

print will now end with a newline char

DB<3>

Both $, and $\ variables are initially not set to any value.

�The signal handle variable
Signals are "messages" to your shell program (or any OS process). The most common

signals on UNIX and Linux operating systems:

Signal Meaning

INT An interrupt signal (^C)

TERM Signal sent by the kill command

KILL Signal sent by the kill -9 command

HUP Signal sent when there is a terminal break (lost connection)

TSTP A pause signal (^Z)

CONT A resume signal (bg %# or fg %#)

To list all of the possible signals on the system, use the kill -l command on a

UNIX-based OS:

kill -l

HUP INT QUIT ILL TRAP ABRT EMT FPE KILL

SEGV SYS PIPE ALRM TERM USR1 USR2 CLD

URG POLL STOP CONT TTIN TTOU VTALRM PROF

XFSZ LWP TSTP THAW CANCEL RTMIN

Chapter 5 Exploring Useful Built-in Variables

140

In some cases, you may wish to have your script behave differently when it receives a

signal:

	 1.	 Errors may occur if a program is abruptly terminated.

	 2.	 If your program may not require human interaction.

	 3.	 If your program is essential for either the system or software to

operate.

To do this, you can modify the %SIG hash variable:

#!perl

#sleep1.pl

sub nostop {

 print "Can't stop this!\n";

}

$SIG{INT}=\&nostop; #Ignore control-c

print "countdown!\n\n";

$|=1;

for ($i=10;$i>0;$i--) {

 print "$i \r";

 sleep 1;

}

$|=0;

print "Blast off!\n";

You can change your %SIG hash anywhere in your program. The changes will affect

code until you change the hash again. To return to the default action of a signal, set the

key to "DEFAULT":

#!perl

#sleep2.pl

sub nostop {

 print "Can't stop this!\n";

}

$SIG{INT}=\&nostop; #Ignore control-c

Chapter 5 Exploring Useful Built-in Variables

141

print "countdown!\n\n";

$|=1;

for ($i=10;$i>0;$i--) {

 print "$i \r";

 sleep 1;

}

print "Can be stopped now!\n";

$SIG{INT}='DEFAULT'; #Stop script on control-c

sleep 10;

$|=0;

print "Blast off!\n";

If you just want your script to ignore a signal, set the key to "IGNORE":

#!perl

#sleep3.pl

$SIG{INT}='IGNORE'; #Ignore control-c

print "countdown!\n\n";

$|=1;

for ($i=10;$i>0;$i--) {

 print "$i \r";

 sleep 1;

}

$|=0;

print "Blast off!\n";

Try it!

Perform the following steps:

	1.	 Execute the following command: sleep2.pl.

	2.	 Soon after seeing "countdown" appear on the screen, attempt to
stop the program by control-c.

Chapter 5 Exploring Useful Built-in Variables

142

	3.	 Note the message that appears on the screen.

	4.	 Soon after seeing "Can be stopped now!" appear on the
screen, attempt to stop the program by control-c.

	5.	 Notice the program ends without printing "Blast off!".

�Version of Perl
The version of Perl that is currently running is stored in the $] variable:

DB<1> print $]

5.00503

This variable can be very useful when you want to execute code that will only work in

a later version of Perl:

DB<1> $var=<STDIN>

This is a test

DB<2> if ($] > 5) {chomp $var} else {chop $var}

However, in cases in which you have to have a certain version of Perl, using the

require statement would be a better solution:

#!perl

#req.pl

require 5.6;

print "This is only a test";

Output of preceding program:

perl req.pl

Perl 5.6 required--this is only version 5.00503, stopped at ./4_req.pl

line 4.

Chapter 5 Exploring Useful Built-in Variables

143

Try it!

Execute the following command to enter the Perl Debugger environment:

perl –d –e "1;"

At the debugger prompt, execute the following Perl statements:

print $];

print $^V; #This is a newer version of the $] variable
introduced in v5.6.0

Exit the debugger by executing the following Perl statement:

q

�Program start time
In cases in which you want to see how long your script has been running for, you can

compare the current time with the program start time. The current time is returned from

the time statement, while $^T holds the value of the program’s start time. Both times are

given in seconds from January 1, 1970:

DB<1> print $^T

1573589711

DB<2> print time - $^T

12

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Chapter 5 Exploring Useful Built-in Variables

https://github.com/Apress/pro-perl-programming

144

�Lab exercises

Important note  If you did not finish the previous lab, either finish it before
starting this lab or use the completed parse2.pl provided in the lab answers
folder.

Modify parse2.pl to include the following changes:

•	 If the "data.pl" command fails, have your script exit with an error

message.

•	 Have all of your print statements automatically print a newline

character at the end of the string.

•	 Have your script ignore control-c attempts.

•	 Make sure your script is running Perl 5.0 or higher.

•	 Use English variable names instead of the regular names.

Save these changes into a file called parse3.pl.

When you have completed your work, compare your script against the parse3.pl
file provided in lab answers.

Chapter 5 Exploring Useful Built-in Variables

145
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_6

CHAPTER 6

Advanced File Handling
File handling is the process of working with data that either originates from an external

source (typically a file) or is to be sent to an external destination. Perl offers several

features related to file handling that are covered in this chapter.

�Review: Basic file handling
Basic Regular Expressions are discussed in the Beginning Perl Programming: From

Novice to Professional book. The goal of this section is to provide a quick review of what

is covered in that book.

If you are already familiar with these Regular Expressions, then skip to the next

section. If not, then you should try the examples demonstrated in this section.

�Opening and reading from files
To open a file to read from, use the open statement:

open (HANDLE, "<file_to_open") || die "could not open file";

Note  The "<" symbol tells Perl to open the file for reading. This symbol is often
omitted as Perl assumes the file is being opened for reading.

Once a file has been opened, you can read from it by using the filehandle. For

example, to read a line from the file into the variable $line, do the following:

$line=<HANDLE>;

The process of closing the filehandle will close the port:

close HANDLE;

146

�Opening and writing to files
To open a file to write to, use the open statement:

open (HANDLE, ">file_to_open") || die "could not open file";

Note  The ">" symbol tells Perl to open the file for writing. If the file already
exists, then Perl will overwrite the file contents. To append to the end of the file,
use the append symbols: ">>".

Once a file has been opened, you can write to it by using the print statement and

specifying the filehandle to print to:

print HANDLE "First line of text\n";

print HANDLE "Second line of text\n";

The process of closing the filehandle will close the port and write all of the output to

the file:

close HANDLE;

Try it!

Execute the following command to enter the Perl Debugger environment:

perl –d –e "1;"

At the debugger prompt, execute the following Perl statements:

open (DATA, ">output.txt") || die;

print DATA "Today is a good day to learn Perl!\n";

close DATA;

Exit the debugger by executing the following Perl statement:

q

Execute the following command to verify the contents of the file you created:

more output.txt

Chapter 6 Advanced File Handling

147

�Piping in Perl
You can open filehandles that take the output of an OS command and send it into your

Perl script. Once again, the open statement creates the file handle:

open (HANDLE, "ps -fe |");

Note  The command "ps -fe" will run the UNIX command that lists the
processes that are running on the system. The "|" symbol after the "ps -fe"
command tells Perl to run the "ps -fe" command and then sends this data into
the filehandle.

Once the open statement has be executed, you can read from it by using the

filehandle. For example, to read a line from the output of the command into the variable

$line, do the following:

$line=<HANDLE>;

The process of closing the filehandle will close the port:

close HANDLE;

Not only can you get the output of OS commands sent into your script, you can also

send output from your script into an OS command. For example, suppose you had a

large amount of text to display on the screen (more than a screen’s worth). You want the

user to have the features of the UNIX command "more" to control the display of the text.

Here’s how:

open (HANDLE, "| more");

Note  The "|" symbol before the "more" command tells Perl to send output of
the filehandle HANDLE to the UNIX command "more".

Chapter 6 Advanced File Handling

148

Once the open statement has been executed, you can write to it by using the

filehandle. For example, to write the entire contents of an array to the file handle

print HANDLE "@array";

Note  The "more" command isn’t executed until the filehandle is closed. The
process of closing the filehandle will close the port and send the data to the OS
command:

close HANDLE;

The following example shows how to take advantage of the UNIX (or DOS) more

command:

#!perl

#more.pl

open (MORE, "| more");

for ($i=1;$i < 100 ; $i++) {

 print MORE "$i\n";

}

close MORE;

�Displaying the file position
To see where you are in a file, use the tell statement. This statement will indicate how

far you are from the beginning of the file in bytes.

DB<1> open (GROUP, "</etc/group")

DB<2> print tell GROUP

0

DB<3> $line=<GROUP>

DB<4> print tell GROUP

13

Chapter 6 Advanced File Handling

149

�Moving the file position
To move the position where you are in the file, use the seek command. The syntax of the

seek statement is

seek (FILEHANDLE, #_of_bytes_to_move, whence)

The whence is where to begin the movement from. The following are allowed:

0 – Move from beginning of file

1 – Move from current position

2 – Move from end of file

Some examples of seek:

DB<1> open (GROUP, "</etc/group")

DB<2> print tell GROUP

0

DB<3> $line=<GROUP>

DB<4> print tell GROUP

13

DB<5> seek (GROUP, 5, 1)

DB<6> print tell GROUP

18

DB<7> seek (GROUP, 0, 0)

DB<8> print tell GROUP

0

DB<9> seek (GROUP, -10, 2)

DB<10> print tell GROUP

281

Try it!

Change to the unit four "examples" directory and then execute the following
command to enter the Perl Debugger environment:

perl –d –e "1;"

Chapter 6 Advanced File Handling

150

At the debugger prompt, execute the following Perl statements to practice using the
tell and seek statements:

open (DATA, "djcdoscommands.txt") || die;

$dummy=<DATA>;

print tell DATA;

seek (DATA, 0, 0)

print tell DATA;

seek (DATA, 0, 2);

print tell DATA;

close DATA;

Exit the debugger by executing the following Perl statement:

q

�Opening files for reading and writing
In addition to being able to open a file for reading, writing, and appending, you can open

a file for both reading and writing at the same time. The following chart illustrates the

reading/writing options:

Option Meaning

"+<file" Open an existing file for reading and writing

"+>file" Create a new file (or overwrite an existing file)

"+>>file" Open an existing file for appending

�Open an existing file for reading and writing
The following is an example of opening a file for both reading and writing (note: the file

/tmp/group is a copy of the file /etc/group):

Chapter 6 Advanced File Handling

151

DB<1> open (GROUP, "+</tmp/group")

DB<2> $line=<GROUP>

DB<3> print $line

root::0:root

DB<4> seek (GROUP, 0, 0)

DB<5> print GROUP "VOID: Line 1\n"

DB<6> seek (GROUP, 0, 0)

DB<7> $line=<GROUP>

DB<8> print $line

VOID: Line1

DB<9> close GROUP

Important notes

•	 When you open a file using "+<", your position is always at the
first byte of the file (position 0).

•	 Be very careful when printing to this kind of filehandle as you can
easily lose data!

•	 Each character you print to the filehandle will replace one
character in the file.

•	 When you close the file handle, it writes all changes into the file.

�Truncating files
If you have a file open for reading and writing, you can "cut off" data with the truncate

statement:

DB<1> open (GROUP, "+</tmp/group")

DB<2> $line=<GROUP>

DB<3> print $line

root::0:root

DB<4> truncate (GROUP, 100) #truncates all characters beyond 100th

DB<5> close GROUP

Chapter 6 Advanced File Handling

152

�Why open a file for both reading and writing?
Because the reading from and writing to a filehandle is character-based, you most likely

won’t find the process of opening a file for both reading and writing very useful. In most

cases, it would be better to take the following actions:

	 1.	 Open a file for reading.

	 2.	 Store all of the lines of the file into an array (one line per element).

	 3.	 Close the filehandle.

	 4.	 Manipulate the array.

	 5.	 Open the file for writing.

	 6.	 Print the array to the filehandle.

	 7.	 Close the filehandle.

Or, you can edit a file "in place" by using the -i command-line option (consult Perl

documentation to learn more about this method).

While opening a file for both reading and writing is rare, it is important to cover for

two reasons:

	 1.	 So you understand why you normally don’t want to open a file for

both reading and writing

	 2.	 So you understand what a program is doing if you read someone’s

code that does open a file for both reading and writing

�Making "files" within your script
There are times in which your script will need "external" data. This data is typically

stored in another file and read into your script through a filehandle. In some cases,

however, this may not be the best way of handling it.

When someone copies your script, they may not realize that the external file needs to

be copied as well. Another issue might be the permissions on the external file.

Instead of creating an external file, consider using the __END__ token after your

program code and place the data there:

#!perl

#files.pl

Chapter 6 Advanced File Handling

153

@names=<main::DATA>;

chomp (@names);

print "$names[0]\n";

__END__

Ted

Fred

Bob

Sue

Notes

•	 When you read from <main::DATA>, the data will be read from the

__END__ to the end of the file.

•	 Don’t place any code after the __END__ token!

•	 In many cases (such as the preceding example), it would be better

to use a more "normal" method (such as @names=qw(Ted Fred Bob

Sue) than using the __END__ token. However, if there were 10,000

names to place in the array, then using this method would be a very

good one!

Try it!

Change to the unit four "examples" directory and then execute the following
command:

perl -d files.pl

Execute the following commands at the debugger prompt to practice using the
embedded main::DATA filehandle:

print tell main::DATA; �#why is this not 0? See note below.

$name=<main::DATA>;

print $name;

q

Chapter 6 Advanced File Handling

154

Important note  Don’t try to move around in the main::DATA "file".
Technically this includes the entire Perl script. Perl automatically moves the pointer
to right after the __END__ token, so you can start reading from the data. But, if you
seek back to the top, you are reading from the script itself (a handy thing to know
if you ever want to review the code that is currently executing).

�Locking files
On the surface, file locking is a simple concept. You want to make sure someone else

doesn’t meddle with a file that you are writing data to. In reality, file locking is much

more complex.

To begin with, file locking isn’t absolute (at least in UNIX and Linux); it’s more of a

suggestion to the OS to lock the file. Processes that attempt write to files "nicely" will

adhere to this suggestion. However, processes don’t have to be "nice".

In addition, not every OS supports file locking. Since UNIX has long been a multiuser

environment, it does support file locking.

There are four types of file locking:

Symbolic Value "Real" Value Meaning

LOCK_SH 1 Shared lock (allows reading operations from other processes)

LOCK_EX 2 Exclusive lock (when you want to write to the file)

LOCK_NB 4 Non-blocking request

LOCK_UN 8 Unlock the file

Note about the symbolic values: Prior to version 5.004, the symbolic values didn’t

exist. Using the "Real" values is safer.

Example of file locking

#!perl

#flock.pl

open (GROUP, ">>/tmp/group");

flock(GROUP, 2);

Chapter 6 Advanced File Handling

155

print GROUP "test::987:root";

close(GROUP);

The process of closing the filehandle also unlocks the file. You can have the file
unlocked prior to closing the filehandle by using the following statement:

flock (GROUP, 8);

However, this often causes problems when the output of print statements hasn’t

been flushed (see the next section for more details regarding this).

�Flushing output buffers
By default, the output of print statements doesn’t go directly to the filehandle. Perl will

store the output in a buffer until a newline character is printed:

#!/usr/bin/perl

#sleep1.pl

print "countdown!\n\n";

for ($i=10;$i>0;$i--) {

 print "$i \r";

 sleep 1;

}

print "Blast off!\n"

If the preceding example is run, "countdown!" will appear on the screen followed by

what seems to be a pause of 10 seconds. After this pause, "Blast off!" will appear on

the screen.

The "countdown numbers" don’t appear since the output buffer isn’t "flushed" until

the newline character in the last print statement.

To solve this problem, flush the output buffer by changing the value of the $| variable:

#!perl

#sleep2.pl

print "countdown!\n\n";

$|=1;

Chapter 6 Advanced File Handling

156

for ($i=10;$i>0;$i--) {

 print "$i \r";

 sleep 1;

}

$|=0;

print "Blast off!\n"

�Using select
The select statement discussed in a previous chapter also comes into play with the $|

variable. The filehandle indicated by the last select statement is the one that is affected

by this variable.

 Try it!

Change to the unit four "examples" directory and then execute the following
commands:

perl sleep1.pl

perl sleep2.pl

Notice the difference in the output of these two commands. Determine why there
is a difference based on the information provided in the previous section.

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Chapter 6 Advanced File Handling

https://github.com/Apress/pro-perl-programming

157

�Lab exercises

Important notes

#1 If you did not finish the previous lab, either finish it before starting this lab or
use the completed parse3.pl

provided in the lab answers folder.

#2 In this lab, you will be changing the parse.txt file. This is the file that has
been used to provide the data.pl

script with the output data. In the event that you "mess up" this file, there is a

"backup copy" called

parse-orig.txt. Just copy this over the "messed up" parse.txt file to return it to its

original format.

Modify parse3.pl to include the following changes:

•	 Open the file data.txt for both reading and writing (make sure you

lock the file).

•	 Read the data from the file into your array.

•	 When the script ends, write the data back into the file (don’t forget to

add newline characters back in if the user chooses option #1).

Save these changes into a file called parse4.pl.

Notes and hints

•	 Think about how your script will handle the file if it is "new" vs. if it

has been modified.

When you have completed your work, compare your script against the parse4.pl file

provided in lab answers.

Chapter 6 Advanced File Handling

159
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_7

CHAPTER 7

Pragmas
The intent behind pragmas is to modify the behavior of your Perl script. Pragmas are

invoked with the use statement:

use strict;

To disable the use of a pragma, use the no statement:

no strict;

Note  Some pragmas cannot be turned off.

The purpose of this section is to review some of the useful pragmas. Some pragmas

will not be discussed either because they are covered in another class or because they

are beyond the scope of this class.

�Pragma chart
The following chart lists some of the pragmas available in Perl. Note that different versions

of Perl have different pragmas available. Many of these pragmas are covered in this chapter,

but some are covered in other chapters of this book or are not covered in this book because

they are specific to topics that are not related to the topics covered here.

Pragma Meaning

autouse Delays the operation of a require statement until one of the specified

subroutines is called

constant Defined constants during compile time

diagnostics Issues verbose error messages

(continued)

160

Pragma Meaning

feature Makes use of a new feature

lib Modifies the @INC variable at compile time

locale States to either use or ignore the current locale for built-in operations

overload Overloads the basic Perl operations

strict Prevents unwise statements

subs Allows you to predeclare subroutines

vars Allows you to predeclare global variables

warnings Allows you to control warnings

�The use strict pragma
There are three things you can tell Perl to be strict about: reference usage, subroutine

usage, and variable usage:

�use strict 'ref'
This will cause your program to exit if a symbolic reference is used. Symbolic references

are a method of referring to variable and are not covered in this book.

�use strict 'subs'
This feature will creates an error message for "barewords" (a bareword is an unquoted

string that appears to be subroutine calls) that don’t call a valid subroutine. For example,

consider the following code:

#!perl

#subs.pl

use strict 'subs';

sub hello {

print "hello\n";

}

Chapter 7 Pragmas

161

hello; #Calls a valid subroutine, no problem

justatest; #Bareword that isn't a subroutine.

Try it!

Execute the following command:

perl subs.pl

Notice the error message that appears. Now, modify the subs.pl script by
commenting out the "use strict", line and execute the command again:

perl subs.pl

Notice that no error message appears when the "justatest" subroutine is
executed.

You may be wondering why when you run the subs.pl script without the use strict

'subs' pragma, no error occurs. It is fairly common that when you make a logical error

in a Perl program, Perl tends to just ignore the problem completely. In this case, you

attempted to call a function that doesn’t exist, and Perl essentially said "ok, that isn't

going to work, so I will just pretend like you didn't do that".

�use strict 'vars'
This pragma will generate an error if a variable is used that

•	 Has not been declared as a my variable

•	 Isn’t a fully qualified variable name

•	 Has not been declared as an our variable

•	 Has not been declared with a use vars statement

A fully qualified variable is one that includes its package namespace in the variable

name. The following is just a brief introduction to using fully qualified variable names

from the "main" namespace of your script.

Chapter 7 Pragmas

162

While it is sometimes useful to have global variables, use strict vars doesn’t allow

this. If you want to use or modify variables from the "main" part (AKA "main" package) of

your program, use the following syntax:

$main::var

The following program is an example of using global variables (Perl’s default

behavior):

#!perl

#usevars1.pl

use strict 'vars';

sub test {

 print "$total\n";

}

$total=100;

&test;

In this example, we are implementing use strict vars, which would cause compile

errors if we didn’t use fully qualified variable names:

perl usevars1.pl

Global symbol "$total" requires explicit package name (did you forget to declare

"my $total"?) at usevars1.pl line 7.

Global symbol "$total" requires explicit package name (did you forget to declare

"my $total"?) at usevars1.pl line 10.

Execution of usevars1.pl aborted due to compilation errors.

The following program shows a solution in which fully qualified variable names are used:

#!perl

#usevars2.pl

use strict 'vars';

sub test {

 print "$main::total\n";

}

Chapter 7 Pragmas

163

$main::total=100;

&test;

If you are asking yourself "why not declare the $total variable as a my

variable", keep in mind that a my variable would only exist in the main part of the

program. Because my variables are scoped, the subroutine would not have access to the

$total variable. In most cases this is good practice, but there are use cases in which

being able to share a variable between the main program and a subroutine (or between

different subroutines) is advantageous.

Notes regarding use strict

•	 The statement use strict will enforce all restrictions (refs, subs,

and vars).

•	 Perl built-in variables are not affected by use strict vars.

•	 The concept of our variables and use vars variables is covered later

in this chapter.

�Predeclaring subroutines
Typically, you need to create a subroutine prior to using it. For example, the following

code won’t produce any output since the subroutine isn’t declared until after it is called:

#!perl

#sub1.pl

hello;

sub hello {

 print "hi there\n";

}

This can cause problems, especially if you are using use strict subs. This is

because when the subroutine call is made, the subroutine hasn’t officially been declared

yet. This is a very subtle, yet important, feature of Perl. While all of the Perl code is

compiled before it is executed (hence syntax errors result in compile time failures), some

actions are run time operations.

Chapter 7 Pragmas

164

For example, in the following program, the hello subroutine is compiled (in other

words, created) during compile time, but it doesn’t officially exist for Perl until its

definition appears in the Perl program:

#!perl

#sub2.pl

use strict subs;

hello;

sub hello {

 print "hi there\n";

}

Using use subs you can "predefine" subroutines. The process of "predefining"

the subroutine essentially says from this moment on, I declare this a valid subroutine.

See the following for an example:

#!perl

#sub3.pl

use subs qw(hello);

use strict subs;

hello;

sub hello {

 print "hi there\n";

}

Notes

•	 Once invoked, you cannot use no subs to undo a use subs

statement.

•	 If you use the ampersand character before the function name, you

do not have to predeclare subroutines that are placed after they are

called.

•	 The use subs qw(hello) statement is the same as invoking

sub hello {}.

Chapter 7 Pragmas

165

Try it!

Execute the following command:

perl sub1.pl

Notice that no output that appears. The subroutine isn’t executed, and no error
occurs either. Now, execute the following command:

perl sub2.pl

Notice that an error message appears when the "hello" subroutine is executed.
This is because even though the subroutine was created at compile time, it hasn’t
been declared during run time. Now, execute the following command:

perl sub3.pl

The "use subs" statement declares the "hello" subroutine to be the one
that was created at compile time; no error occurs, and the "hello" subroutine
executes normally.

Before moving forward, it is important to answer the question: Why should I put the

subroutine at the bottom of the program rather than the top? Frankly, the reason for this

is essentially "because I can and because it is easier to find the start of the

main part of the program".

To understand this, consider the following scenario: You have a Perl program of

about 10,000 lines of code with about 30 subroutines. Typically, those subroutines would

be placed at the top of the program and the main program placed toward the bottom of

the script. If someone were to read your code, they would need to search through the file

to find the main part of the program and start reading there. Putting the main part of the

program at the top makes is a bit more readable.

Having the main part of the program at the top of the code to make the program

more readable might not be a good enough reason for you to use this technique,

especially when you consider there is a fairly significant issue that results from this

technique. To understand this issue, consider the following code:

#!perl

#sub4.pl

Chapter 7 Pragmas

166

sub hello {

 print "hi there, $name\n";

}

my $name="Ted";

hello;

The outcome of sub4.pl:

perl sub4.pl

hi there,

As expected, the hello subroutine can’t access the contents of the $name variable

because it is a my variable that was created in the main package. Now consider the

following program in which the subroutine is declared after the main part of the program:

#!perl

#sub5.pl

use subs qw(hello);

my $name="Ted";

hello;

sub hello {

 print "hi there, $name\n";

}

The outcome of sub5.pl:

perl sub5.pl

hi there, Ted

How is this possible? The scope of a variable exists from the point it is declared until

the end of the closure of the area in which the variable is declared. This is inclusive of

other blocks of code. You probably already realize this because you have very likely

written code like the following fragment:

my $result=100;

while (some condition here) {

 print $result; #this is the my variable from above

}

Chapter 7 Pragmas

167

You expect the my variable $result to be available within the while loop, but

consider that the while loop has its own scope that allows you to create a my variable that

only would exist within the loop:

my $result=100;

while (some condition here) {

 my $test=99;

 print $result; #this is the my variable from above

}

print $result; #still the original my variable

print $test; #not declared as this only exists in the while loop

In other words, if you put the subroutines as the bottom part of your program, every

subroutine will have access to every my variable in the main part of your program. There

is, however, a solution to this problem: create another level of scope as shown in the

following example.

#!perl

#sub6.pl

use subs qw(hello);

{

my $name="Ted";

hello;

}

sub hello {

 print "hi there, $name\n";

}

The outcome of sub6.pl:

perl sub6.pl

hi there,

Chapter 7 Pragmas

168

�Predeclaring global variables
When you refer to an undeclared variable, Perl either returns a 0 or a null string:

#!perl

#var1.pl

print "The total is $total\n";

print "The result is ", $total+5, "\n";

This is a somewhat commonly used feature in Perl. In fact, it could be used to test if

a variable has been defined (although the defined function is better than the following

technique which would also print "no" if $test was set to 0 or ""):

 DB<1> if ($test) {print "yes";} else {print "no";}

no

 DB<2> $test="abc"

 DB<3> if ($test) {print "yes";} else {print "no";}

yes

In small Perl scripts, using an undeclared variable can often be convenient. However,

if you invoke "use strict vars", you will receive an error message as in the following

program:

#!perl

#var2.pl

use strict vars;

print "The total is $total\n";

print "The result is ", $total+5, "\n";

To be able to use a variable prior to having it set, you can use the statement use vars.

This is essentially saying "ok, I haven't set this variable yet, but for the sake

of the use strict pragma, pretend this is a valid variable". Here is an example:

#!perl

#var3.pl

use strict vars;

use vars qw($total);

Chapter 7 Pragmas

169

print "The total is $total\n";

print "The result is ", $total+5, "\n";

This is very useful when you are not sure if a variable is set or not. When you use

strict vars, even a defined statement will fail:

#!perl

#var4.pl

use strict vars;

if (defined ($total)) #This will result in an error

 {print "hey, it's here!\n";}

else

 {print "It's not there!\n";}

When you use use vars, the defined statement will not fail:

#!perl

#var5.pl

use strict vars;

use vars qw($total);

if (defined ($total))

 {print "hey, it's here!\n";}

else

 {print "It's not there!\n";}

Notes

•	 Once invoked, you cannot use no vars to undo a use vars

statement.

•	 Note that the variable that is declared by a use vars statement is

not a my variable. It belongs to the package it was declared in (in the

previous example, the "main" package).

•	 If you switch packages, then the use vars statement no longer applies,

and an error will occur. This will be demonstrated later in this

section.

Chapter 7 Pragmas

170

use vars is obsolete
As of Perl 5.6, use vars is considered to be obsolete. It is covered in this book for the

following reasons:

	 1.	 You may wish to write code that is backward compatible to older

versions of Perl. If so, you may want to continue to use the use

vars statement.

	 2.	 While use vars is considered to be obsolete, it still performs the

same function that is always has. As a result, you will still see it

being used in another programmer’s code.

	 3.	 Part of being a Perl programmer is maintaining legacy code. There

are still many older Perl scripts that use the use vars pragma.

Instead of using use vars, you should use the our statement to "globally declare"

a variable. Much like use vars, specifying the our statement will allow you to use a

variable without its fully qualified name while your code has use strict implemented:

#!perl

#var6.pl

use strict vars;

our $total;

if (defined ($total))

 {print "hey, it's here!\n";}

else

 {print "It's not there!\n";}

The our statement often creates a lot of confusion among Perl programmers

(especially novice Perl programmers). According to the Perl man pages, the our

statement '...has the same scoping rules as a "my" declaration, but does

not create a local variable'. In a sense, an "our" variable is somewhat of a merge

between a my variable and a variable declared with the use vars statement.

Remember that the use vars statement allowed you to specify $var instead of

$PackageName::var (PackageName is the name of the package the variable was declared

in), and this pertained to the package itself. A "my" variable falls completely outside the

realm of packages; it exists only in its own "area".

Chapter 7 Pragmas

171

An "our" variable allows you to specify $var instead of $PackageName::var. So,

like variables created with use vars, the variable exists inside a package. However,

if you enter a new package, the "our" variable can still be accessed by specifying

$var (you don’t need to specify $PackageName::var). If your leaves the scope

area that the our variable was created in, you need to use the fully qualified name

($PackageName::var) to access the variable again. This means that unlike my variables

which are destroyed once the program leaves the scope that the variable was declared

in, our variables still exist.

All three variable types ("use vars", "my", and "our") are allowed when "use

strict 'vars'" is in force. The following example displays the differences between the

three variable types:

#!perl

#our.pl

{package ABC; #Beginning of scope and ABC package

our($our_var)="xyz"; #part of ABC package

my($my_var)="123"; #part of scope only

use vars qw($use_var); #declares $$ABC::use_var

$use_var="abc"; #part of ABC package

print "\$our_var = $our_var\n";

print "\$my_var = $my_var\n";

print "\$use_var = $use_var\n";

package New;

print "\$our_var = $our_var\n"; #Displays $ABC::our_var

print "\$my_var = $my_var\n"; #Displays "scoped" $my_var

print "\$use_var = $use_var\n"; #Doesn't exist - wrong package

} #End of Scope

print "\$our_var = $our_var\n"; �#Doesn't exist - out of scope & wrong

package

print "\$my_var = $my_var\n"; #Doesn't exist - out of scope

print "\$use_var = $use_var\n"; #Doesn't exist - wrong package

Chapter 7 Pragmas

172

Output of our.pl:

our.pl

$our_var = xyz

$my_var = 123

$use_var = abc

$our_var = xyz

$my_var = 123

$use_var =

$our_var =

$my_var =

$use_var =

Try it!

Execute the following command:

perl var2.pl

Notice the error that occurs due to the "use strict" statement. Now, execute the
following command:

perl var3.pl

Notice that no error occurs. The variable now has a "global-like" quality to it.
Now, execute the following command:

perl var6.pl

Again, no error occurs. The "use var" pragma is very similar to the "our"
statement. In both cases you can use the variable without using a fully qualified
name.

Bonus: Add the use strict statement to the our.pl program and then execute
it. Notice that an error will occur. Comment out the line that the error occurs
on, and run the program again. Another (different) error will occur. Continue to
comment out each error, and run the program until no errors occur.

Chapter 7 Pragmas

173

�Using new features
Starting in Perl 5.10, new features are included via the use feature pragma. To make use

of a new feature, you use the following syntax:

use feature "feature_name";

Some of the new features are taken from Perl 6. Other features may provide backward

compatibility to older versions of Perl 5 or may provide new functionality to Perl 5. Note

that some of these features are "experimental", which means they may be discontinued

in future releases. Use such features sparingly.

These new features in Perl 5.10 include

•	 say – A replacement for print that automatically prints a newline

character.

•	 state – A replacement for my that differs in that it will retain

previously set values

•	 switch – Provides a "switch" statement (although the statement is

actually called given, not switch)

As new versions of Perl are introduced, new features are also added. For example,

the following is a partial list of features that have been introduced in different releases

of Perl:

•	 current_sub – Allows you to determine the current subroutine by

returning a reference to the subroutine when you use the __SUB__

token. Introduced in Perl 5.16

•	 array_base – Allows the use of the $[variable, a variable that is used

in conjunction with arrays. Introduced in Perl 5.16

Note  Not all of the available features are covered in this book as some are
designed for very specific use cases. The purpose of this section is to expose you
to the functionality and purpose of the feature pragma, not to cover all of the
new features. Consult the use feature documentation for additional features.

Chapter 7 Pragmas

174

�Example of use feature 'say' and use feature 'state'
Perhaps the most useful of the new features, or at least the most commonly used, are the

state and say features. With the state feature, Perl now has stateful variables – variables

whose values are persistent from one subroutine call to another. The say feature is really

designed to provide a more programmer-friendly print statement (no longer do you

have to end your print string with a newline character):

#!perl

#feature-1.pl

use feature 'state';

use feature 'say';

sub show {

 state $var;

 say "The variable is set to $var";

 $var=100;

}

&show;

&show;

�Example of use feature "switch"
It is slightly confusing that asking for the "switch" feature gives you access to a function

called "given"; however, the given function acts like a switch statement:

#!perl

#given.pl

use feature "switch"; #Provides access to the given statement

print "Please enter 'yes' or 'no': ";

$response=<STDIN>;

chomp $response;

Chapter 7 Pragmas

175

given ($response) {

 when ("yes") {print "You agree!\n"; }

 when ("no") {print "Bummer, you don't agree\n"; }

 default {print "Maybe next time\n"; }

}

Note  Depending on the version of Perl that you are using, you may receive the
following messages:

given is experimental at given.pl line 10.

when is experimental at given.pl line 11.

when is experimental at given.pl line 12.

This is normal output as these features may change in the future.

�Using all features of a specific Perl version
Both the 'say' and 'state' features are available in Perl 5.10. To load both features (and

all others available in this version), use the following code:

#!perl

#feature-2.pl

use 5.010;

sub show {

 state $var;

 say "The variable is set to $var";

 $var=100;

}

&show;

&show;

Chapter 7 Pragmas

176

Try it!

Execute the following command to enter the Perl debugger:

perl –d –e "1;"

Execute the following code in the debugger:

print "hello"; print "goodbye";

Notice that there is no "newline" character between the outputs of the two
"print" statements. Now execute the following commands:

use feature "say";

say "hello"; say "goodbye";

Notice that the newline character is automatically added to the output of each
"say" statement. Recall that this feature, along with "state" and "switch", was
added in Perl 5.10. Visit the Perl documentation (http://perldoc.perl.org),
select the version of Perl that you are using from the "Perl Version" drop-
down list, and then review the documentation of the "feature" pragma to see
what other features are available for the version of Perl that you are using.

�Using locale
Some Perl statements can behave differently based on the locale. For example, the

numeric fields of format statements assume that the decimal point character is a period

(.), while in some locales, a comma (,) is used.

To tell Perl to make use of a different locale, the locale pragma can be used. Locale

settings include date/time, currency, numeric, and other formats. Perl will query the

operating system for the current locale, which can be configured either system-wide or

for individual users on most operating systems.

Chapter 7 Pragmas

http://perldoc.perl.org

177

You can either use the locale settings throughout your entire program by stating use

locale at the top of your program or use the locale settings in a block:

#not using locale settings here

{

use locale; #using locale settings here

}

#not using locale settings here

�Final note about pragmas
This chapter was designed to introduce you to the concept of pragmas as well as cover

many of the commonly used Perl pragmas. There are certainly more pragmas, some of

which are covered in different parts of this book (the re pragmas, e.g., was introduced in

Chapter 2).

Not all pragmas are covered in this book for a couple of reasons:

	 1.	 Some pragmas are either esoteric or pertain to very specific Perl

features that are not covered in this book.

	 2.	 Some pragmas are only available for specific versions of Perl.

Using these sorts of pragmas can lead to backward dependency

issues (and, in cases of experimental pragmas, forward

dependency issues).

To learn more about other pragmas, review the "pragmas" documentation at

http://perldoc.perl.org.

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

Chapter 7 Pragmas

http://perldoc.perl.org
https://github.com/Apress/pro-perl-programming

178

�Lab exercises

Important note  If you did not finish the previous lab, either finish it before
starting this lab or use the completed parse4.pl provided in the lab answers
folder.

Modify parse4.pl to include the following changes:

•	 Implement "use strict". Note that unless you have been using

scoped variables or fully qualified variable names, you are likely

to see a lot of errors after implementing this pragma. Choose which

variable should be scoped, fully qualified, or "global-like"

("use vars" or "our" variables), and make the necessary changes

to your program.

•	 Move your subroutines to the bottom of your script.

Save these changes into a file called parse5.pl.

When you have completed your work, compare your script against the parse5.pl file

provided in lab answers.

Chapter 7 Pragmas

179
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_8

CHAPTER 8

Exploring Useful
Built-in Modules
Years ago, while assisting a client with a Perl program, the client demonstrated a function

that he was very proud of. The purpose of this function was to overcome the limitations

of Perl and allow for larger floating point numbers. The code itself was a few hundred

lines long, took weeks of work, and was still a bit buggy.

In one of those "good news, bad news" situations, I introduced the client to the

Math::BigFloat module, a module that would have solved the client’s problem in

minutes, not weeks, providing a solution that didn’t contain the bugs and idiosyncrasies

of the client’s code. The client was grateful but also unhappy with the wasted time and

effort spent on his own code.

There are hundreds of built-in Perl modules (and thousands more available on

www.cpan.org/). Some of these modules are often used, while some are a bit more rare.

The purpose of this chapter is to introduce you to some of the more commonly used

built-in modules and to get you to think "let me see if that already exists" before

you start writing any code.

�Built-in modules
Perl modules (sometime called libraries) are files that contain reusable code. These

libraries can either be created by you, built-in to Perl, or downloaded from the Internet.

http://www.cpan.org/

180

This unit focuses on using useful built-in modules. These modules are located in

directories indicated by the elements in the @INC variable. The contents of this variable

can vary depending on the platform you run Perl on and the version or distribution of

Perl. For example, the following was executed on a Windows system with Strawberry Perl

installed:

DB<1> print "@INC"

C:/Strawberry/perl/site/lib C:/Strawberry/perl/vendor/lib C:/Strawberry/

perl/lib

Note  For detailed documentation of Perl modules, go to perldoc.perl.org or
cpan.org.

�Manipulate @INC at compile time
If you install your own modules, you may not be able to put them in one of the default

locations (see output above). Typically, only the system administrator can modify these

directories.

In such cases, you will want to modify the @INC variable during compile time. To do

this, use the lib pragma:

#!perl

#6_lib.pl

use lib "perl_class";

print "@INC", "\n";

The argument to the use lib statement will be pre-appended to the @INC variable.

Note that you can’t simply modify the @INC using normal array manipulation method

because those are executed at run time, while modules are loaded at compile time.

There is, however, an alternative method. The use lib isn’t very flexible in that it

always pre-appends to the @INC variable. Perhaps you would rather the new directory be

appended to the @INC variable. This could be done with a BEGIN block:

Chapter 8 Exploring Useful Built-in Modules

http://perldoc.perl.org
http://cpan.org

181

BEGIN {

push (@INC, "perl_class);

}

Code in a BEGIN block is executed during compile time.

�Determining the location of loaded modules
Once a module has been loaded, the original location of the module is stored in the %INC

associative array:

#!perl

#6_inc.pl

use Cwd;

foreach $key (keys %INC) {

 print "$key ->> $INC{$key}\n";

}

Output of the preceding program on a Linux system:

[student@linux1 student]$ perl 6_inc.pl

Carp.pm ->> /usr/local/lib/perl5/5.02801/Carp.pm

Cwd.pm ->> /usr/local/lib/perl5/5.02801/Cwd.pm

Exporter.pm ->> /usr/local/lib/perl5/5.02801/Exporter.pm

Try it!

Execute the following command to start the Perl debugger:

perl –d –e "1;"

Execute the following command in the debugger to display the location of the
module search path:

print "@INC";

Chapter 8 Exploring Useful Built-in Modules

182

Execute the following command in the debugger to load a module and determine
its location:

use File::Copy;

print $INC{"File/Copy.pm"};

�Loading modules as needed
Modules can be loaded during run time only as needed by using the use autouse

pragma. The syntax for this is

use autouse 'Cwd' => qw(cwd);

If the cwd function is never used in the program, then the Cwd module is never

loaded. The advantage of this technique is that your program might execute faster. More

technically, the compile process would be faster, and, if they module is never needed,

the entire compile + execution time would be faster. However, if the module is needed at

some point in the program, it would be loaded during execution time.

This may pose problems. Module loading is normally a compile time operation

as certain checks (like the most basic "is the module available" check) are best

performed during compile time. Most of the time you would want these checks to be

done at compile time, not in the middle of the execution of the program where they

might cause the program to crash.

So, should you use the autouse pragma? It is mostly a judgment call, but if you are

loading built-in modules, which should certainly be available and shouldn’t cause

any load time errors, then the autouse pragma is fairly safe. However, if you always (or

almost always) use code from the module, it is best to load it during compile time with a

regular use statement. Only consider using the autouse pragma when the use of the code

of a module is based on some sort of condition of your code.

Consult the WARNING section of the autouse pragma documentation for more

details.

Chapter 8 Exploring Useful Built-in Modules

183

�Module table
There are many modules available with the default installation of Perl. Keep in mind

that there are hundreds of modules and some of the most common used modules are

described in the following table:

Module or group Meaning

AutoSplit Split a package for autoloading

Benchmark Used to benchmark the running time of code

CPAN Setup and interface to the Comprehensive Perl Archive Network

Carp Used for debugging; gives warning messages

Class Allows for "struct-like" data structures

Cwd Internal method of displaying current directory

Data Used to display data in different formats

English Allows you to use less cryptic variable names

Env Imports environment variables

Exporter Used in modules to specify default import methods

Fatal Change the outcome of failed statements with die

File A group of modules that deals with files

GDBM_File Gives access to gdbm lib

Getopts Used to handle command line arguments

Math A group of modules that deal with math

Sys A group of modules that gains access to system information

Text A group of modules that manipulate text

Chapter 8 Exploring Useful Built-in Modules

184

�Cwd
The Cwd module provides some functions for displaying the current working directory

and changing your current directory:

Function Purpose

cwd A portable method of getting the current working directory

getcwd Displays current working directory

fastcwd A faster running of getcwd

�cwd
The cwd statement is normally the best method to use to display your current working

directory. It uses the OS architecture to determine the current working directory. An

example of cwd on a Linux system:

DB<1> use Cwd

DB<2> print cwd

/etc/skel

Windows example of cwd:

DB<1> use Cwd

DB<2> print cwd

C:/Windows

�getcwd
Displays current working directory but may not be portable. Avoid if you are trying to

create a portable script. An example of getcwd on a Linux system:

DB<1> use Cwd

DB<2> print getcwd

/etc/skel

Chapter 8 Exploring Useful Built-in Modules

185

�fastcwd
The fastcwd statement is a faster (and less safe) method of getcwd. As the Perl man

pages state "...it might conceivably chdir() you out of a directory that it

can't chdir() you back into". The chdir() function is used to change from one

directory to another. An example of fastcwd on a Linux system:

DB<1> use Cwd

DB<2> print fastcwd

/etc/skel

�Why not use a system statement?
Many operating systems provide command that returns the current directory. While

you could determine the current directory by using an OS command with a system
statement, there are some drawbacks. The following is an example on a Linux system:

DB<1> system "pwd"

/etc/skel

DB<2> chdir("/etc")

DB<3> system "pwd"

/etc

The disadvantages of using this method:

•	 It’s often slower than built-in modules because a separate operating

system shell needs to be spawned.

•	 It makes your script less portable (the above will only work for UNIX-

and Linux-based systems).

•	 It makes your script more user-dependent (e.g., the user might have

an alias for "pwd").

A good rule of thumb: If you can do it within Perl, then do it within Perl!

Chapter 8 Exploring Useful Built-in Modules

186

�Env
Environment variables are variables provided by the operating system or the system’s

shell. These variables often contain very useful information, such as the username of the

person running the program. By default, Perl stores environment variables in a hash. The

Env module will allow you to import these variables into scalar variables that often are

easier to work with than hashes:

DB<1> print $ENV{HOME}

/export/home/student2

DB<2> print $HOME

DB<3> use Env

DB<4> print $HOME

/export/home/student2

Try it!

Execute the following command to start the Perl debugger:

perl –d –e "1;"

Environment variables are different depending on your operating system. For
example, on Linux systems, $ENV{HOME} contains the current user’s home
directory path. On Windows this information is in two %ENV keys: HOMEDRIVE and
HOMEPATH. Execute the following code which should allow you to view the current’s
user’s home directory path in either Linux or Windows (the \ is required before
pressing the <ENTER> key to allow for multiline statements in the Perl debugger):

use Env;

if ($HOME) \

{ \

 print "$HOME\n"; \

} \

Chapter 8 Exploring Useful Built-in Modules

187

else \

{ \

 print "$HOMEDRIVE$HOMEPATH\n"; \

}

Note E nvironment variables are very useful, but you should remember that they
are specific to the platform. In other words, the environment variables provided
by Windows is different than the environment variables provided by Linux. If your
program is not designed to be portable, using environment variables should not
pose a problem.

�File modules
There are many modules in the File group. This section covers some of the most useful of

these modules.

�File::Basename
This module will split up a pathname using the OS’s default delimiter for filenames. The

OS type is determined by looking at the $^O variable. An example:

DB<1> #This is on a UNIX machine

DB<2> print "$^O"

solaris

DB<3> use File::Basename

DB<4> ($base, $path) = fileparse("/usr/local/bin/test.txt")

DB<5> print $base

test.txt

DB<6> print $path

/usr/local/bin/

Chapter 8 Exploring Useful Built-in Modules

188

�File::Compare
This module will check to see if two files are the same or not. It returns 0 if the two files

are equal, 1 if they are unequal, or -1 if an error occurred.

DB<1> use File::Compare

DB<2> print compare ("/etc/group", "/tmp/group")

0

DB<3> print compare ("/etc/passwd", "/etc/group")

1

DB<4> print compare ("/etc/passwd", "/etc/shadow")

1

DB<5> print compare ("/etc/passwd", "/etc/junk")

-1

File::Compare can handle binary files as well as text files:

DB<1> print compare ("/usr/bin/ls", "/usr/ucb/ls")

1

�File::Copy
While there is a built-in Perl rename statement, there isn’t any built-in copy statement.

With the File::Copy module, you can copy files:

DB<1> use File::Copy

DB<2> copy ("/etc/group", "/tmp/group")

�File::Path
Two of Perl’s built-in statements, mkdir and rmdir, are extremely limited. The mkdir
statement is limited because the path up until the new directory must currently exist.

The following will fail because the "data" directory doesn’t exist:

DB<1> mkdir ("/tmp/data/newlogs", 0755) || warn "could not make dir"

could not make dir at (eval 4) line 2, <IN> chunk 1.

Chapter 8 Exploring Useful Built-in Modules

189

The rmdir statement is limited because it will only delete empty directories. The

solution to both of these problems is the File::Path module. This module provides two

new statements: mkpath and rmtree.

The mkpath statement will make a directory and its parent directories if needed. It

takes three arguments:

	 1)	 The name of the path to create

	 2)	 A value to indicate if the command should print the name of each

directory that is created (1=yes, 0=no)

	 3)	 The permissions of the new directories (defaults to 0777)

An example of mkpath:

DB<1> use File::Path

DB<2> mkpath ("/tmp/data/newlogs", 1, 0755)

mkdir /tmp/data

mkdir /tmp/data/newlogs

The rmtree statement will remove a directory tree (much like the UNIX command

"rm -r"). This statement also takes three arguments:

	 1)	 The name of the directory structure to delete

	 2)	 A value to indicate if the command should print the name of each

file and directory and the action that is being taken (1=yes, 0=no)

	 3)	 A value to indicate if rmtree should skip files that you cannot

delete (1=yes, 0=no)

An example of rmtree:

DB<1> use File::Path

DB<2> rmtree ("/tmp/skel", 1, 1)

unlink /tmp/skel/local.login

unlink /tmp/skel/local.profile

unlink /tmp/skel/.profile

unlink /tmp/skel/local.cshrc

rmdir /tmp/skel

Chapter 8 Exploring Useful Built-in Modules

190

�File::Find
The File::Find module provides two subroutines that will allow you to traverse a

directory tree and perform actions: find and finddepth. The basic syntax is

find (\&wanted, @directorys_to_search);

The \&wanted is a subroutine reference to wanted. References are discussed in detail

in a later class. The subroutine does not have to be called wanted().

This wanted function accepts no arguments but creates three variables for use within

the function:

•	 $File::Find::dir stores the current directory name.

•	 $_ stores the current filename within that directory.

•	 $File::Find::name stores the complete pathname to the file.

See the following for an example of this module:

#!perl

#6_find-1.pl

use File::Find;

sub display {

 print "$_\n";

}

find (\&display, "..");

The wanted function has other features; consult the documentation for this module

(http://perldoc.perl.org/File/Find.html#The-wanted-function).

Try it!

Switch to the "unit6" examples directory and then execute the following
command:

perl 6_find-1.pl

Chapter 8 Exploring Useful Built-in Modules

http://perldoc.perl.org/File/Find.html#The-wanted-function

191

This should list all of the files from the "examples" directory down. To make this
more useful, replace the print line in this file with the following:

if (/^6/) {

 print "$_\n";

}

This should only print the files that begin with the number 6. This demonstrates
that the find command will find ALL files; it is really up to you to create a filtering
function.

�Additional useful file modules
There are some additional file modules that you should consider exploring:

•	 File::DosGlob – Provides DOS-based wildcard behavior for filename

matching.

•	 File::Fetch – A very useful module which allows you to "fetch" a

file from a remote location (or even a local location) using ftp, http,

file, git, or rsync.

•	 File::Spec – Provides a host of useful utilities that allow you to

perform platform-specific operations on the filesystem. For example,

the devnull function returns a string of the null device for the current

platform. There are about 20 functions in all, many of which provide

common filesystem operations that you would otherwise need to

create code for or rely on system statements.

•	 File::Spec:: platform – This doesn’t represent a single module

but rather a collection of modules. Replace platform with Mac,

OS2, Unix, Win32, or others for access to functions specific to that

platform.

Chapter 8 Exploring Useful Built-in Modules

192

�Math modules
There are many modules in the Math group. This section covers some of the most useful

of these modules.

�Math::BigFloat
Normally, the precision of floating point numbers is dependent on the OS’s limits. While

you can create a scalar variable that "appears" to be a big floating-point number, as soon

as it is used as a number, Perl will round it off to fit the system’s limit:

DB<1> $num="1.456456456456456456456456456456456456456"

DB<2> print $num+1

2.45645645645646

To overcome this limit, use the Math::BigFloat module:

DB<1> use Math::BigFloat

DB<2> $num2 = new Math::BigFloat "1.456456456456456456456456456456456456456"

DB<3> print $num2+1

2.456456456456456456456456456456456456456

�Math::Trig
With this function, you can perform trigonometric functions:

DB<1> use Math::Trig

DB<2> print tan(0.8)

1.02963855705036

DB<3> print pi/4

0.785398163397448

DB<4> print sin(.7)

0.644217687237691

For a complete listing of all of the trig functions, look at the man page for

Math::Trig.

Chapter 8 Exploring Useful Built-in Modules

193

�Additional useful math modules
There are some additional File modules that you should consider exploring:

•	 Math::BigInt – Like Math::BigFloat but only for integers.

•	 Math::BigRat – Like Math::BigFloat but only for rational numbers.

•	 Math::Complex – Provides mathematical operations for complex

numbers.

�Sys modules
One of the modules in the Sys group of modules is Sys::Hostname. This module will

attempt (using several methods) to return the system’s host name:

DB<1> use Sys::Hostname

DB<2> $hostname=hostname

DB<3> print $hostname

rainbow

The methods used are system dependent, so it will often work on different platforms.

Another potentially useful Sys module is Sys::Syslog. This provides an interface

to the syslog service. This allows you to send log file entries to the system logger, which

in turn sends this data to actual log files or other locations (remote log servers, user

terminals, etc.).

The Sys::Syslog module is limited in that it is designed to work on Unix systems

(and, to some extent, Linux systems), and it doesn’t work with some services, like

journald.

�Text
The Text group of modules contains subroutines that modify text. This section covers

some of the most useful of these modules.

Chapter 8 Exploring Useful Built-in Modules

194

�Text::Tabs
This module contains two subroutines:

expand – Expands tabs just like the UNIX command expand

unexpand – Compresses spaces into tabs just like the UNIX

command unexpand

To use the expand statement, first set a variable called $tabstop to indicate where the

tab stops should be. Then, just use the expand statement:

DB<1> use Text::Tabs

DB<2> $tabstop=3

DB<3> @line=("A tab: Two more the end")

DB<4> @line=expand(@line)

DB<5> print $line[0]

A tab: Two more the end

The unexpand statement will replace spaces with tabs:

DB<1> use Text::Tabs

DB<2> $tabstop=5

DB<3> @line=("Here are ten spaces: Here is five: Finished!")

DB<4> @line=unexpand(@line)

DB<5> print $line[0]

Here are ten spaces: Here is five: Finished!

�Text::Wrap
The purpose of the Text::Wrap module is to be able to break up a paragraph "nicely"

across multiple lines. The wrap statement will format a paragraph by breaking up lines

on word boundaries. You can also "indent" text with spaces or tabs.

The format of the wrap statement:

wrap (first_line_indent, additional_line_indent, string_to_format)

Chapter 8 Exploring Useful Built-in Modules

195

In the following example, wrap will break the string on word boundaries and place a

tab before the first line:

#!perl

#wrap1.pl

use Text::Wrap qw(wrap $columns);

$line="This is an example of how you can break up text into formatted

paragraphs. This process is done by professionals on a closed track. Don't

attempt this at home!";

print "$line\n\n\n";

$columns=40;

print wrap ("\t", "", $line);

In this example, wrap will break the string on word boundaries and place a tab before

all lines:

#!perl

#wrap2.pl

use Text::Wrap qw(wrap $columns);

$line="This is an example of how you can break up text into formatted

paragraphs. This process is done by professionals on a closed track. Don't

attempt this at home!";

print "$line\n\n\n";

$columns=40;

print wrap ("\t", "\t", $line);

Try it!

Switch to the "unit6" examples directory and then execute the following
command:

perl wrap1.pl

Chapter 8 Exploring Useful Built-in Modules

196

Notice that only the first line of the output is indented. Now execute the following
command, and notice that all lines are indented:

perl wrap1.pl

Review the code for these two scripts, and determine why there is a difference in
the output.

�Fatal
Many Perl statements return "true" if they succeed or "false" if they fail. The Fatal

module can be used to modify the behavior of such statements.

Instead of having these statements just return a value, Fatal can be used to have your

script die if the statement fails. The syntax of Fatal:

use Fatal qw(commands_to_affect);

In the following example, if the open statement fails, the script will die:

#!perl

#fatal.pl

use Fatal qw (open);

open (GROUP, "</tmp/junkfile");

print "see...the program stopped!";

�Benchmark
The Benchmark module helps you perform benchmarking tasks on your code. It

provides many features that you can make use of, including

•	 new – Returns the current time

•	 timediff – Returns the difference between two times

•	 timestr – Converts times into "understandable" formats

•	 timeit – Runs a chunk of code once

Chapter 8 Exploring Useful Built-in Modules

197

•	 timethis – Runs a chunk of code several times

•	 timethese – Runs several chunks of code several times

Note that Benchmark is an OO-based module. This may result in some unusual

looking code (unless you understand OO Perl).

See the following for an example:

#!perl

#benchmark-1.pl

use Benchmark;

$|=1; print "wait";

$t0 = Benchmark->new;

for (1..10) {

 print ".";

 sleep 1;

}

$t1 = Benchmark->new;

$td = timediff($t1, $t0);

print "the code took:",timestr($td),"\n";

See the Benchmark documentation for more details (http://perldoc.perl.org/

Benchmark.html).

�Getopt::Std
The Getopt::Std module is standard in Perl. It provides you with an easy way to parse

command-line arguments that are passed in by users. Consider the following code:

#!perl

#std_opt1.pl

use Getopt::Std;

getopts('a:b:c:');

Chapter 8 Exploring Useful Built-in Modules

http://perldoc.perl.org/Benchmark.html
http://perldoc.perl.org/Benchmark.html

198

print "$opt_a\n";

print "$opt_b\n";

print "$opt_c\n";

In the previous example, the getopts function defined three valid options: -a, -b,

and -c. If these options are used, then the argument passed to the options are assigned

to $opt_a, $opt_b, or $opt_c:

ocs% perl std_opt1.pl -a "test" -c "null"

test

null

The arguments that are parsed are also stripped off of the @ARGV array:

#!perl

#std_opt2.pl

use Getopt::Std;

getopts('a:b:c:');

print "$opt_a\n";

print "$opt_b\n";

print "$opt_c\n";

print "@ARGV\n" #prints nothing, @ARGV now empty

ocs% perl std_opt2.pl -a "test" -c "null"

test

null

You can also have the option/arguments placed into a hash:

#!perl

#std_opt3.pl

use Getopt::Std;

getopts('a:b:c:', \%ops);

Chapter 8 Exploring Useful Built-in Modules

199

print "$ops{a}\n";

print "$ops{b}\n";

print "$ops{c}\n";

If you want some options to have arguments and others to be simple booleans, place

a ":" character after the options that are to have arguments (the rest will be booleans):

#!perl

#std_opt4.pl

use Getopt::Std;

getopts('abc:');

print "$opt_a\n";

print "$opt_b\n";

print "$opt_c\n";

To tell the getops function to stop looking at arguments, use a -- option (-- will be

removed from the @ARGV array):

ocs% perl std_opt4.pl -a -b -- -c "null"

If an unknown argument is passed, the getopts function will return false, and the

program will end via a die statement:

#!perl

#std_opt5.pl

use Getopt::Std;

getopts('abc:') || die;

print "$opt_a\n";

print "$opt_b\n";

print "$opt_c\n";

print "@ARGV\n"

ocs% perl std_opt5.pl -a -b -d

Unknown option: d

Died at std_opt5.pl line 6.

Chapter 8 Exploring Useful Built-in Modules

200

�Getopt::Long
The Getopt::Long module is standard in Perl. It provides you with more advanced

techniques to parsing command-line options than Getopt::Std.

Instead of using simple arguments like -a, -b, and -c, with Getopt::Long, you

use options like --all, --verbose, and --catchall. These options will be easier to

remember and will "self-document". Simple example:

#!perl

#long_opt1.pl

use Getopt::Long;

GetOptions ('verbose' => \$verbose, 'all' => \$all, "catchall" => \$catch);

print "$verbose\n";

print "$all\n";

print "$catch\n";

print "@ARGV\n"

One nice feature of the GetOptions function is the ability to specify the "opposite"

of an option. For example, the following will allow for both a "--verbose" and a

"--noverbose" option:

#!perl

#long_opt2.pl

use Getopt::Long;

GetOptions ('verbose!' => \$verbose, 'all' => \$all, "catchall" => \$catch);

print "$verbose\n";

print "$all\n";

print "$catch\n";

print "@ARGV\n"

In the preceding example, the $verbose variable will be assigned a value of 1 if

--verbose is provided as an option and a value of 0 if --noverbose is provided.

Chapter 8 Exploring Useful Built-in Modules

201

To pass arguments to options, use the following syntax:

#!perl

#long_opt3.pl

use Getopt::Long;

GetOptions ('verbose!' => \$verbose, 'all=i' => \$all, "catchall" => \$catch);

print "$verbose\n";

print "$all\n";

print "$catch\n";

print "@ARGV\n"

The "i" means that an integer can be passed. For a string, use "s". For a floating

point number, use "f".

You can have multiple values passed in by using the following syntax:

#!perl

#long_opt4.pl

use Getopt::Long;

 �GetOptions ('verbose!' => \$verbose, 'all=i' => \$all, "catchall=s" =>

\@catch);

print "$verbose\n";

print "$all\n";

print "@catch\n";

print "@ARGV\n"

Note that the program would have to be run like this:

ocs% perl long_opt4.pl --catch "abc" --catch "xyz"

In the following example, you can have users pass key/value pairs to be assigned to a

hash:

#!perl

#long_opt5.pl

use Getopt::Long;

Chapter 8 Exploring Useful Built-in Modules

202

GetOptions ('verbose!' => \$verbose, 'all=i' => \$all, "catchall=s" =>

\%catch);

print "$catch{test}\n";

print "$catch{error}\n";

print "@ARGV\n"

The syntax on the command line would be

ocs% perl long_opt5.pl --catch test="abc" --catch error="xyz"

There are other options available when you use Getopt::Long. Consult the

documentation for further details.

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

�Lab exercises

Important note I f you did not finish the previous lab, either finish it before
starting this lab or use the completed parse5.pl provided in the lab answers
folder.

Modify parse5.pl to include the following changes:

•	 Instead of putting the data file in the /tmp directory, place it in

the user’s home directory. To make it easier to use the HOME

environment variable, use the ENV module.

Chapter 8 Exploring Useful Built-in Modules

https://github.com/Apress/pro-perl-programming

203

•	 Prior to displaying the menu, run the command "ps –fe", strip out

whitespace as you have done in the past, and store the output in a file

called "/tmp/.parse". Compare this new file with parse.txt in the

user’s home directory. If they are different, ask the user if they want

to update their "parse.txt" file with the new file. If the user answers

"yes", perform this action. Remove the "/tmp/.parse" file when you

are finished.

Save these changes into a file called parse6.pl.

When you have completed your work, compare your script against the parse6.pl file

provided in lab answers.

Chapter 8 Exploring Useful Built-in Modules

205
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_9

CHAPTER 9

Debugging Tools
A fundamental part of programming is debugging code. This includes not only your own

code but often code written by other people. You might be sent some code to debug by

a fellow programmer, or download one of the thousands of modules from cpan.org (one

which, unfortunately, doesn’t work quite as expected).

Fortunately, Perl has a variety of tools to help you debug code. This chapter focuses

on many of these tools, including the "warnings" feature, reading diagnostic codes, and

the Perl debugger.

�Review: The -w switch

Note  The -w switch is discussed in the Beginning Perl Programming: From
Novice to Professional book. The goal of this section is to provide a quick review of
what is covered in that book as well as introduce some additional features of this
option.

The -w switch (option) will tell Perl to look for and report unusual (logical errors) code,

including the following:

•	 Variable and filehandle names that are mentioned only once

•	 Scalar variables that are used before being set

•	 Redefined subroutines

•	 References to undefined filehandles

•	 References to filehandles opened read-only that the script is

attempting to write to

http://cpan.org

206

•	 Values used as a number that don’t look like numbers

•	 Subroutines that recurse more than 100 deep

Using the -w switch can avoid common (but sometimes tricky) programming errors

such as some of the logical error in the following code:

#!perl

#w.pl

undef $var;

if ($var == 0) {

 print "yes\n";

}

print GROUP "hello there\n";

$name="Bob";

if ($name == 0) {

 print "yes\n";

}

Note that if you ran the previous program, the code would execute without any

errors:

[student@linux1 student]$./w.pl

yes

yes

There are, however, problems with this code. The problems are logical in nature, and

by using the -w option to the perl executable, you can see these logical errors:

[student@linux1 student]$ perl -w ./w.pl

Name "main::GROUP" used only once: possible typo at w.pl line 9.

Use of uninitialized value $var in numeric eq (==) at w.pl line 5.

yes

print() on unopened filehandle GROUP at w.pl line 9.

Argument "Bob" isn't numeric in numeric eq (==) at w.pl line 13.

yes

Chapter 9 Debugging Tools

207

Note that the code still executed (as demonstrated by the two lines of "yes" output).

The -w option issues warning messages but does not stop the execution of the code.

�The $^W variable
When you use the –w switch, the $^W variable is set to the value of 1. If you don’t use the

–w switch, the $^W variable is set to 0. This is a handy way to see if warnings are turned on

at any point in the program. You can also turn warnings on (and off) by modifying this

variable.

�use warnings
Warnings can also be turned on (and off) with the warnings pragma:

use warnings; #to turn on warnings

no warnings; #to turn off warnings

There are a couple of benefits to using this pragma vs. using the –w switch. One

advantage is that the –w switch turns on "all" warnings, but you can use the pragma to

turn on specific warnings:

use warning "numeric";

Besides "numeric", there are literally dozens of warning categories. See the Category

Hierarchy section of warning pragma documentation for more categories of warnings.

The pragma is also scope based, so you can easily turn on (or off) warnings for a

chunk of code:

use warnings;

{

 no warnings;

 #important code here – warnings off

}

#important code here – warnings on

Chapter 9 Debugging Tools

208

�The -W switch
The -W switch is like the -w switch; however, if you use -W, then any attempt to disable

warnings in the program will be ignored. This means that -W overrides any no warnings

or $^W=0 statements, forcing warnings during the entire execution of the program.

This option is useful when you have multiple no warnings or $^W=0 statements in a

program and you want to temporarily execute the code with these statements disabled.

Instead of commenting out each no warnings or $^W=0 statement, use the -W option.

�The -X switch
Much like the -W switch, the -X switch will apply to the entire execution of the program.

However, the -X switch disables all warnings, regardless if any use warnings or $^W=1

statements exist in the code.

�The Perl debugger

Note  Discussed in the Beginning Perl Programming: From Novice to Professional
book, the goal of this section is to provide a quick review of what is covered in that
book as well as introduce some additional powerful features of the Perl debugger.

Perl provides a built-in debugger that can be invoked when running Perl with the -d

option:

[student@linux1 student]$ perl -d use.pl

Loading DB routines from perl5db.pl version 1.0402

Enter h or 'h h' for help

main::(use.pl:2) copy("example.txt", "newfile.txt ");

 DB<1>

Some notes about the debugger:

•	 Perl must first be able to compile the code prior to entering the

debugger.

•	 main::(use.pl:2) means "Main part of script use.pl, line #2".

Chapter 9 Debugging Tools

209

•	 At this point, no statements have been executed.

•	 The command above the prompt (DB<1>) is what the next command

to be executed.

�Debugger commands
The following chart illustrates the most popular commands available in the debugger:

Command Meaning

!! cmd Runs the command (cmd) in a separate process (this is

typically a shell command)

b Create a breakpoint

c Continue (to next breakpoint)

D Delete all breakpoints

d Delete a breakpoint

h Interactive help

H -num Prints last "num" Perl statements (excludes debugger

commands)

l Lists the next ten lines of code to be executed

L List all of the breakpoints and actions

n Step through a statement (if subroutines are called,

executes over the subroutine)

p expr Essentially the same as Perl’s print statement (expr is a

Perl expression which can be a value or the outcome of a

Perl statement)

q Quits the debugger

R Restart the debugger

return Repeat the last n or s command

S Lists defined subroutines

(continued)

Chapter 9 Debugging Tools

210

Command Meaning

s Step through a statement (if subroutines are called,

executes one subroutine statement at a time)

V [pkg [vars]] Display all of the variables in package (defaults to main)

x expr Prints expr in an "easy-to-read" format

y [level [vars]] Display all of the lexical variables

�Getting help
The h command brings up a list of debugger commands and a brief description of each.

Not much more than the aforementioned list but useful if you don’t have this manual

handy. The output will scroll off the screen much like a cat command in UNIX does. To

avoid this, add a pipe character before the command:

DB<1> |h

List/search source lines: Control script execution:

 l [ln|sub] List source code T Stack trace

 - or . List previous/current line s [expr] Single step [in expr]

 v [line] View around line n [expr] Next, steps over subs

 f filename View source in file <CR/Enter> Repeat last n or s

 /pattern/ ?patt? Search forw/backw r �Return from

subroutine

 M Show module versions c [ln|sub] �Continue until

position

Debugger controls: L �List break/watch/

actions

 o [...] Set debugger options t [n] [expr] �Toggle trace [max

depth]][trace expr]

 �<[<]|{[{]|>[>] [cmd] Do pre/post-prompt b [ln|event|sub] [cnd] Set breakpoint

 ! [N|pat] Redo a previous command B ln|* �Delete a/all

breakpoints

 H [-num] Display last num commands a [ln] cmd Do cmd before line

 = [a val] Define/list an alias A ln|* Delete a/all actions

Chapter 9 Debugging Tools

211

 h [db_cmd] Get help on command w expr �Add a watch

expression

 h h Complete help page W expr|* �Delete a/all watch

exprs

 |[|]db_cmd Send output to pager �![!] syscmd Run cmd in a

subprocess

 q or ^D Quit R Attempt a restart

Data Examination: expr Execute perl code, also see: s,n,t expr

 x|m expr �Evals expr in list context, dumps the result or lists

methods.

 p expr Print expression (uses script's current package).

 S [[!]pat] List subroutine names [not] matching pattern

 V [Pk [Vars]] List Variables in Package. �Vars can be ~pattern or

!pattern.

 X [Vars] Same as "V current_package [Vars]". �i class inheritance

tree.

 y [n [Vars]] List lexicals in higher scope <n>. Vars same as V.

 e Display thread id E Display all thread ids.

For more help, type h cmd_letter, or run perldoc perldebug for all docs.

Note  The pipe character can be used prior to almost all commands to control
scrolling.

�An alternative to print
The x command provides a more "easy-to-read" method of printing. Its behavior

differs greatly depending on the data that it is printing, so you will want to "play with

it" to see the differences. A good example to start with is when you print an array:

DB<1> @names=qw(red green blue)

DB<2> x @names

0 'red'

1 'green'

2 'blue'

Chapter 9 Debugging Tools

212

�Stepping through code
There are two commands that will allow you to step through code: n and s. Normally,

both of these commands work the same: they step through code one step at a time.

Where they differ is when you are stepping into a subroutine.

When the n command "steps over" a subroutine call, it will execute all of the

statements in the subroutine. This is useful when you know that the subroutine is "good"

and you don’t want to step through each line one at a time.

When the s command "steps into" a subroutine call, it will execute each statement

in the subroutine one at a time.

Once you have executed a n or s command, you can re-execute the command again

just by pressing the <enter> or <return> keys.

�Listing code
To list code, use the l command. The l command will list a window of lines. Each

successive l command will show the next ten lines of code to be executed:

[student@linux1 student]$ perl -d select.pl

Loading DB routines from perl5db.pl version 1.0402

Emacs support available.

Enter h or `h h' for help.

main::(select.pl:4): open (LOGFILE, ">/tmp/data${$}$ENV{USER}");

 DB<1> l

4==> open (LOGFILE, ">/tmp/data${$}$ENV{USER}");

5

6: print "Starting log\n"; #sends output to STDOUT

7

8: select LOGFILE; #output will now go to file

9: print "Starting log...\n";

10: print "No errors found\n";

11: print "End of log\n";

12

13: select STDOUT;

Chapter 9 Debugging Tools

213

With the l command, you can also list either a single line to display or a range of

lines:

DB<1> l 6

6: print "Starting log\n"; #sends output to STDOUT

DB<2> l 6-10

6: print "Starting log\n"; #sends output to STDOUT

7

8: select LOGFILE; #output will now go to file

9: print "Starting log...\n";

10: print "No errors found\n";

�Setting breakpoints
The b command allows you to set breakpoints. Typically, you set breakpoints at a line

number or on a subroutine:

DB<1> b 200

DB<2> b test

You can also include a conditional statement with the breakpoint:

DB<1> b 200 x>100

�Listing breakpoints
When you create a lot of breakpoints throughout your code, it is sometimes difficult

to "see" where the breakpoints are. To see a list of current breakpoints, use the L

command:

 DB<1> b 6

 DB<2> L

4_sleep2.pl:

 6: for ($i=10;$i>0;$i--) {

 break if (1)

Chapter 9 Debugging Tools

214

Note that when using the l command, breakpoints are indicated by a "b" character

after the line number (e.g., 5:b):

DB<4> l 4-11

4==> print "countdown!\n\n";

5:b $|=1;

6: for ($i=10;$i>0;$i--) {

7:b print "$i \r";

8: sleep 1;

9 }

10: $|=0;

11:b print "Blast off!\n"

�Continue to breakpoints
Once breakpoints are set, you can have the debugger execute all code up to the next

breakpoint by using the c command:

DB<1> b 6

DB<2> c

countdown!

main::(4_sleep2.pl:6): for ($i=10;$i>0;$i--) {

DB<3>

�Deleting breakpoints
To delete a breakpoint on a certain line, use the B command:

DB<1> b 5

DB<2> b 7

DB<3> b 11

DB<4> l 4-11

4==> print "countdown!\n\n";

5:b $|=1;

6: for ($i=10;$i>0;$i--) {

7:b print "$i \r";

Chapter 9 Debugging Tools

215

8: sleep 1;

9 }

10: $|=0;

11:b print "Blast off!\n"

 DB<5> B 5

 DB<6> l 4-11

4==> print "countdown!\n\n";

5: $|=1;

6: for ($i=10;$i>0;$i--) {

7:b print "$i \r";

8: sleep 1;

9 }

10: $|=0;

11:b print "Blast off!\n"

To delete all breakpoints, use the B * command:

DB<7> B *

Deleting all breakpoints...

DB<8> l 4-11

4==> print "countdown!\n\n";

5: $|=1;

6: for ($i=10;$i>0;$i--) {

7: print "$i \r";

8: sleep 1;

9 }

10: $|=0;

11: print "Blast off!\n"

12

Note  You can also temporary disable a breakpoint with the disable command,
for example, disable 7. To enable a breakpoint again, use the enable
command: enable 7.

Chapter 9 Debugging Tools

216

�Displaying variables and subroutines
The V command will display all existing variables in a given package. By default, it

displays the variables of the main package:

DB<1> V

$@ = ''

FileHandle(stdin) => fileno(0)

%SIG = (

 'ABRT' => undef

{remaining output omitted}

Notes

•	 Most of the output you would normally see has been omitted from the

preceding example.

•	 Normally you want to put the pipe character in front of the V command to

control the scrolling of the output.

To display lexical variables, use the y command:

 DB<1> y

$isa = undef

Only lexical variables in the current scope are displayed. If there are higher levels of

scope, you can use a numeric value to indicate which level to display: y 1

For the y command to work correctly, you will likely need to install the PadWalker

module. If you are using Strawberry Perl or DWIM Perl or have manually installed the

cpan client utility, you can execute the following command:

cpan PadWalker

On ActivePerl, use the following command:

ppm install PadWalker

To see the currently defined subroutines, use the S command:

DB<1> S

Carp::carp

Chapter 9 Debugging Tools

217

Carp::cluck

Carp::confess

Carp::croak

{remaining output omitted}

You can limit the output of the V, y, and S commands using regular expressions. For

example, to see just the subroutines that have "vars" in the subroutine name, use the

following:

 DB<2> S vars

Config::config_vars

vars::BEGIN

vars::import

Because the pattern can be a regex, you can use syntax like the following:

 DB<3> S ^vars

vars::BEGIN

vars::import

You can also list all subroutines that don’t contain a pattern by placing a ! in front

of the regex. For example, S !^vars will display all subroutines that don’t begin with

"vars".

�Additional debuggers
The built-in Perl debugger is very powerful; however, there are additional debuggers and

debugging features that you may want to explore. The following provides a brief list of

some of the more commonly used tools:

•	 ActiveState – ActiveState provides a fork of Perl that includes many

useful features (such as ppm to manage Perl modules). ActiveState

has a GUI-based debugger which can be used with Komodo IDE, a

full IDE for Perl and other languages. Unfortunately, these tools only

come with the paid version of ActiveState Perl.

•	 Padre, the Perl IDE – This IDE has some debugging features as well

as a host of other features to make finding errors easier.

Chapter 9 Debugging Tools

218

•	 Devel:: modules – This is a large collection of modules that

provide useful information that can aid you in debugging scripts.

Use the following link to explore: https://metacpan.org/

search?q=Devel%3A%3A&search_type=modules

�Understanding error messages
There are several different categories of error messages. According to the perldiag

documentation, "These messages are classified as follows (listed in

increasing order of desperation):

(W) A warning (optional).

(D) A deprecation (enabled by default).

(S) A severe warning (enabled by default).

(F) A fatal error (trappable).

(P) An internal error you should never see (trappable).

(X) A very fatal error (nontrappable).

(A) An alien error message (not generated by Perl)."

The perldiag documentation is an excellent reference for more details regarding

specific error messages. There are literally hundreds of messages with explanations

provided in this document. For example, consider the following code:

#!/usr/bin/perl

#diag1.pl

print "this is only a test;

There is a syntax error (no ending quotes), which typically produces the following

compiler error:

Can't find string terminator ' " ' anywhere before EOF at diag1.pl line 4

Chapter 9 Debugging Tools

https://metacpan.org/search?q=Devel::&search_type=modules
https://metacpan.org/search?q=Devel::&search_type=modules

219

At this point in your Perl programming experience, this should be a pretty easy

problem to diagnose. However, imagine you seeing an error message for the first time.

They don’t always make 100% sense, so you can use the perldiag page to learn more

details. For example, a search for "Can't find string terminator" in the perldiag

documentation results in the following:

"Can't find string terminator %s anywhere before EOF

(F) Perl strings can stretch over multiple lines. This message means

that the closing delimiter was omitted. Because bracketed quotes count

nesting levels, the following is missing its final parenthesis:

 print q(The character '(' starts a side comment.);

If you’re getting this error from a here-document, you may have included

unseen whitespace before or after your closing tag, or there may not be

a linebreak after it. A good programmer’s editor will have a way to help

you find these characters (or lack of characters). See perlop for the full

details on here-documents."

�use diagnostics
The diagnostics pragma will use the content of perldiag to provide more verbose

error messages. This statement is very useful when debugging programs; consider the

following code:

#!/usr/bin/perl

#diag2.pl

use diagnostics;

print "this is only a test;

There is a syntax error (no ending quotes), which typically produces the following

compiler error:

Can't find string terminator ' " ' anywhere before EOF at diag2.pl line 5

Chapter 9 Debugging Tools

220

When run when diagnostics are "turned on", the following error is displayed:

Can't find string terminator '"' anywhere before EOF at diag2.pl line 5 (#1)

 (F) Perl strings can stretch over multiple lines. This message

 means that the closing delimiter was omitted. Because

 bracketed quotes count nesting levels, the following is missing

 its final parenthesis:

 print q(The character '(' starts a side comment.);

 If you're getting this error from a here-document, you may have

 included unseen whitespace before or after your closing tag or

 there may not be a linebreak after it. A good programmer's editor

 will have a way to help you find these characters (or lack of

 characters). See perlop for the full details on here-documents.

Uncaught exception from user code:

 Can't find string terminator '"' anywhere before EOF at diag2.pl

 line 5.

�Carp
The Carp module can be used to generate error messages. The module provides

functions that act similar to Perl’s warn and die commands:

Function Purpose

Carp Produces error messages similar to warn

Croak Acts similar to the die statement

�Using carp
The built-in Perl statement warn will print error messages to STDERR. It will also display

the line number in which the error occurred.

Chapter 9 Debugging Tools

221

The carp command will perform in the same manner in cases in which it is called

within the main part of the program. If it is called within a subroutine, it will also provide

the original line from where the subroutine was called:

#!perl

#carp.pl

use Carp;

sub warnings {

 warn "This is warn with a newline char\n";

 warn "This is what warn look like";

 carp "This is what carp looks like";

}

&warnings;

Output of the preceding program:

[student@linux1 student]$./carp.pl

This is warn with a newline char

This is what warn look like at ./carp.pl line 8.

This is what carp looks like at ./carp.pl line 9.

 main::warnings called at ./carp.pl line 12

�Using croak
The built-in Perl statement die will print error messages to STDERR and exit your script.

It will also display the line number in which the error occurred.

The croak statement will perform in the same manner in cases in which it is called

within the main part of the program. If it is called within a subroutine, it will also provide

the original line from where the subroutine was called:

#!perl

#die.pl

sub finish {

 die "This is what die looks like";

}

Chapter 9 Debugging Tools

222

&finish;

print "Never will get to here";

Sample output of the preceding die example:

[student@linux1 student]$./die.pl

This is what die looks like at ./die.pl line 5.

#!perl

#croak.pl

use Carp;

sub finish {

 croak "This is what croak looks like";

}

&finish;

print "Never will get to here";

Sample output of the above croak example:

[student@linux1 student]$./croak.pl

This is what croak looks like at ./croak.pl line 7

 main::finish called at ./croak.pl line 10

�Data::Dumper
Remember back to the Perl debugger when you used the x command to print data in a

"nicer" format:

DB<1> @names=qw(red green blue)

DB<2> x @names

0 'red'

1 'green'

2 'blue'

Chapter 9 Debugging Tools

223

When you use the x command, it uses the Data::Dumper module to format the

output. You can use this module to print data from within your script:

#!perl

#dump.pl

use Data::Dumper;

print Dumper (\%ENV);

Note  The "\" before %ENV is used to make a reference to the %ENV hash.

$Data::Dumper::Indent = 0;

$Data::Dumper::Useqq = 1;

$Data::Dumper::Terse = 1;

$Data::Dumper::Sortkeys = 1;

�Perl style
While style (the format of your code) isn’t really a debugging "feature", a poorly

formatted program does make it more difficult to debug. You should at the very least

pick a style and be consistent throughout the program. Consider reading the perlstyle

documentation guide for some good suggestions on good policies to follow. Here are just

a few of the suggestions offered in the perlstyle guide:

•	 Four-column indent.

•	 Opening curly on same line as keyword, if possible; otherwise,

line up.

•	 Space before the opening curly of a multiline BLOCK.

•	 One-line BLOCK may be put on one line, including curlies.

•	 No space before the semicolon.

Chapter 9 Debugging Tools

224

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

�Lab exercises

Important note I f you did not finish the previous lab, either finish it before
starting this lab or use the completed parse6.pl provided in the lab answers
folder.

Modify parse6.pl to include the following changes:

•	 Take some time to get familiar with the capacities of the Perl

debugger.

•	 Use the -w switch to have Perl look for logical errors.

•	 Implement "use diagnostics" to have verbose error message

displayed.

•	 Replace your die and warn statements with croak and carp

statements.

Save these changes into a file called parse7.pl.

When you have completed your work, compare your script against the parse7.pl file

provided in lab answers.

Chapter 9 Debugging Tools

https://github.com/Apress/pro-perl-programming

225
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_10

CHAPTER 10

Perl/TK Basics
The idea behind Tk is to create an easy-to-use interface between Perl and Windows. In

order to do this, Tk builds on top of the X Window System (or Microsoft Windows) to

create "sub-windows" that contain buttons, menu bars, scroll bars, and other windows

components. These components are called widgets.

Widgets are controls that are built into Motif (the heart of the X Window System on

UNIX platforms). In fact, you can think of Tk as the process of putting widgets together in

an application until you have the graphic interface you need.

�The TK module
TK isn’t part of Perl by default. It needs to be installed on your system and imported into

your program with the use statement.

To determine if TK is installed on your system, run the following command:

perl -e "use Tk;"

If you don’t get any error messages, Tk is installed. If you do get an error message,

like the one displayed here, Tk is probably not installed:

perl -e "use Tk;"

Can't locate Tk.pm in @INC (you may need to install the Tk module) (@INC

contains: C:/Strawberry/perl/site/lib C:/Strawberry/perl/vendor/lib C:/

Strawberry/perl/lib) at -e line 1.

BEGIN failed--compilation aborted at -e line 1.

If the TK module is not installed and you are using Strawberry Perl or DWIM Perl or

have manually installed the cpan client utility, you can execute the following command:

cpan Tk

226

On ActivePerl, use the following command:

ppm install Tk

Important note  Tk is a huge topic. While this section will show you how to
create and use basic widgets, a complete discussion of Tk is beyond the scope of
this book.

�Types of widgets
The following are the primary widgets available to Tk:

Widget Purpose

Frames Used to group other widgets together

Toplevels Toplevels are special frames that create a "separate" window (not a

sub-window like normal frames do)

Labels Similar to frames but also allow text and bitmap graphics to be displayed

Buttons Buttons can be used to bind an action to a graphic

Checkbuttons Used to select options

Radiobuttons Used to select one option only

Listboxes Lists lines of text and allows user to select one or more line

Scroll bars Allows the user to control the display with a scroll bar

Scales Allows the user to control the setting of an item with a slider bar

Entries Allows the user to type in text

Menus Give the user menu options

Chapter 10 Perl/TK Basics

227

Each of these widgets will be discussed in greater detail in the next chapter.

A note regarding options: There are many options for widgets that

affect size, position, effects, and additional widget features. Many of

these options will be discussed as the widgets are explored.

�Exploring widget examples
In addition to the examples provided in this book, there are some examples that are

included with the TK module itself. These examples can be very useful in learning about

how TK works.

To access these examples, you first need to discover the location of where the TK

module is. This can be done by executing the following statements in the Perl debugger:

 DB<1> use Tk

 DB<2> print $INC{"Tk.pm"}

C:/Strawberry/perl/site/lib/Tk.pm

At the same level as the "perl" directory, there should be a "cpan" directory and

subdirectories under this as shown here:

C:\Strawberry\cpan\build\Tk-804.034-0\demos

In the demos directory, there are several examples that show you how TK works.

Start by reading the README file. You will likely find the widget program most useful at

first:

C:\Strawberry\cpan\build\Tk-804.034-0\demos> perl widget

Chapter 10 Perl/TK Basics

228

Each link (colored in blue) represents a small example program. For example, if you

click the "1. Labels (text and images)." link, another program will launch like the

following:

Chapter 10 Perl/TK Basics

229

For each of these example programs, there is a "See Code" button that you can use

to see the code that created the TK program. For example, if you click the "See Code"

button for the "Label Demonstration" program, you would see the following.

Chapter 10 Perl/TK Basics

230

Chapter 10 Perl/TK Basics

231

Try it!

Perform the following steps:

•	 Try running the different programs that are provided by the widget
demo program. Don’t worry about the code details, but rather focus
on the features that are available for Perl TK (buttons, listboxes, etc.).

•	 Try some of the other programs that are mentioned in the README
file. Some of the more interesting ones are listed here:

•	 ixset

•	 rolodex

•	 timer

�Geometry managers
While you can modify the look and feel of widgets with different options, geometry

managers control the location and size of widgets. Consider these managers as functions

that can see the "big picture", while the widgets only can see themselves.

The primary geometry manager in Tk is pack. This manager can place a series of

widgets within a frame. The pack geometry manager is useful for simple Tk applications.

The grid geometry manager is designed to allow you to place widgets into rows

and columns. The place geometry manager is designed to place widgets using an x/y

coordinate.

The pack geometry manager is probably the most commonly used of the three

and the easiest to initially learn. As a result, this book will focus on the pack geometry

manager.

Chapter 10 Perl/TK Basics

232

�Creating widgets
To get started, we are going to create a very simple Tk script. The following will just

create a window:

#!perl

#basic.pl

use Tk;

$main = MainWindow -> new;

$main -> title ("First Tk program!");

MainLoop;

Notes about the program:

•	 The "use Tk;" statement imports the Tk module.

•	 The line "$main = MainWindow -> new;" tells Tk that you want

to create a window. The window isn’t created until you run the

"MainLoop" statement.

•	 The line "$main -> title ("First Tk program!");" tells Tk that

you want to put the string "First Tk program!" in the title bar of the

window.

•	 The line "MainLoop;" creates the window. This statement is referred

to as an "event loop".

�The OO nature of the Tk module
One aspect of Perl/Tk that "throws" people is that it is an object-oriented module. If

you don’t know how OO works in Perl, don’t let this aspect of the module throw you

off. The good thing about object-oriented programming in Perl is that you don’t have to

understand how to write or read OO Perl code in order to use an OO module.

If you understand the concept of OO from other languages (such as C++ or Java),

then the following might be useful information:

$main = MainWindow -> new;

Chapter 10 Perl/TK Basics

233

This command calls the "new" method from the "MainWindow" class and returns an

object that is assigned to the $main variable.

With that said, understand that OOP is a concept, not a standard; therefore, how

OOP "works" in C++ or Java can be quite a bit different than how it works in Perl.

Once again, since you don’t know how to write or read OO code in order to use an

OO module, covering more detail regarding OOP in Perl is deferred to another book.

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

�Lab exercises

Important note I f you did not finish the previous lab, either finish it before
starting this lab or use the completed parse7.pl provided in the lab answers
folder.

Taking an existing command-line-based script and converting it into a GUI-based

script can be challenging. Typically, the best course of action is to create a separate

GUI-based script and incorporate the code from the command-line-based script.

To start this process, create a program that will generate a window that has the title

of "Process Data". At this point the program shouldn’t do anything except provide a

window. Do not attempt to include the code from parse7.pl at this time!

Save this program as parse8.pl.

When you have completed your work, compare your script against the parse7.pl file

provided in lab answers.

Chapter 10 Perl/TK Basics

https://github.com/Apress/pro-perl-programming

235
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_11

CHAPTER 11

Perl TK Widgets
The heart of TK are the widgets. Widgets are window-based components that allow

the user to interact with the program. This chapter will focus on some of the more

commonly used Perl TK widgets, but keep in mind that there are additional, often more

advanced, widgets that you can explore on your own if you decide that you want to make

some more advanced TK-based programs.

�Frames
Frames are great for creating sub-windows within your primary window and grouping

other widgets. To create a frame, use the following syntax:

$frame = $main ->Frame ([option => value, ...]) ->pack;

or:

$frame = $main ->Frame ([option => value, ...]);

$frame ->pack;

Recall that the pack command places the widget into a window (or a toplevel or

frame). In the first example, the widget is placed into the $main window as it is created.

In the second, the widget is placed into the $main window after it is created.

If the pack command occurs directly after the widget is defined, then there isn’t any

difference between these two techniques. However, you can define a widget at any time

and then pack it later. In most cases, however, you will want to pack the widget at the

same time you define it.

Note  You don’t have to pack the main window (or toplevels).

236

�Relief
The -relief option allows you to specify a 3-D border. The following chart lists the

different relief options that are available:

 •  raised •  sunken •  flat

 •  groove •  ridge

relief example

#!perl

#relief.pl

use Tk;

$main = MainWindow -> new;

$frame1 = $main -> Frame (-relief => raised, -height => 150, -width => 200,

 -borderwidth => 15) ->pack;

$frame2 = $main -> Frame (-relief => sunken, -height => 150, -width => 200,

 -borderwidth => 15) ->pack;

$frame3 = $main -> Frame (-relief => flat, -height => 150, -width => 200,

 -borderwidth => 15) ->pack;

$frame4 = $main -> Frame (-relief => groove, -height => 150, -width => 200,

 -borderwidth => 15) ->pack;

$frame5 = $main -> Frame (-relief => ridge, -height => 150, -width => 200,

 -borderwidth => 15) ->pack;

MainLoop;

Notes about the relief.pl

•	 The -height and -width options tell the pack command how large

(in pixels) to make the frame.

•	 The -borderwidth option tells the pack command how large (in

pixels) to make the border.

Chapter 11 Perl TK Widgets

237

•	 Don’t forget to specify a borderwidth and a size (height and width).

Without these options, pack will not assign a border to the frame, and

the -relief option does nothing.

•	 More details on sizes (height, width, borderwidth, etc.) will be

discussed in a later section.

Output of relief.pl:

Chapter 11 Perl TK Widgets

238

�Colors
When specifying colors for options such as -background, you can either use "red,

green, blue" (RGB) component syntax or use the system’s built-in symbolic name. The

RGB can be specified either in 4-bit, 8-bit, 12-bit, or 16-bit:

4-bit: RGB

8-bit: RRGGBB

12-bit: RRRGGGBBB

16-bit RRRRGGGGBBBB

For UNIX and Linux, the system’s built-in symbolic names are listed in the file

"rgb.txt". These names normally will work on other operating systems as well. In the

event that your system doesn’t have this file, perform an Internet search for "rgb.txt".

There is also a "rgb.txt" file provided in the examples for this book.

Colors can be applied to many widgets, not just frames as shown in the next example.

Color example:

#!perl

#colors.pl

use Tk;

$main = MainWindow -> new;

$frame1 = $main -> Frame (-height => 150, -width => 200,

 -background => red) ->pack;

$frame2 = $main -> Frame (-height => 150, -width => 200,

 -background => blue) ->pack;

MainLoop;

Chapter 11 Perl TK Widgets

239

Output of colors.pl:

�Labels
Labels are used to display text and bitmaps. To create a label, use the following syntax:

$label = $main ->Label ([option => value, ...]) ->pack;

�bitmaps
You can display either internally defined bitmaps or external bitmaps. The following lists

the different internal bitmaps available:

 • error • gray50 • info • question

 • gray25 • hourglass • questhead • warning

 • gray12 • gray75 • k • transparent

Chapter 11 Perl TK Widgets

240

Note T he widgets demo program includes code to display all of the internal
bitmaps (look under "Miscellaneous" for The built-in bitmaps):

To display an external bitmap, place a "@" character before the path to the file.

Example using internal bitmap:

#!perl

#bitmap1.pl

use Tk;

$main = MainWindow -> new;

$label = $main -> Label (-bitmap => 'questhead') -> pack;

MainLoop;

Output of bitmap1.pl:

Chapter 11 Perl TK Widgets

241

Example using external bitmap:

#!perl

#bitmap2.pl

use Tk;

$main = MainWindow -> new;

$label= $main -> Label (-bitmap =>

 '@Toronto.bm')

 -> pack;

MainLoop;

�Using other images
A bitmap image can be directly "recognized" by Tk. To use other images, you can use

another tool to covert the image to a bitmap, or use the -image option. To use the -image

option, you first need to create an "image pointer" by using the Photo statement.

Example using a gif image:

#!perl

#image.pl

use Tk;

$main = MainWindow -> new;

$image = $main -> Photo(-file => "activeperl_logo.gif");

$label = $main -> Label (-image => $image) -> pack;

MainLoop;

Output of image.pl:

Chapter 11 Perl TK Widgets

242

�text
You can display text inside a label by using the -text option. The -font option can be

used to define the font of the text that is displayed in the label widget.

The format of the font is as follows:

-adobe-courier-bold-o-normal--14-140-75-75-m-90-hp-roman8

foundry weight width pixels x-res spacing registry
family slant style points y-res width encoding

To list all of the fonts available on a Unix or Linux system, run the xlsfonts command.

Font example:

#!perl

#fonts1.pl

use Tk;

$main = MainWindow -> new;

$lab1 = $main -> Label (

 -text => "Perl is the best",

 �-font => '-adobe-courier-medium-o-normal--24-240-75-75-m-150-hp-

roman8') -> pack;

$lab2 = $main -> Label (

 -text => "Don't you think?",

 �-font => '-adobe-helvetica-medium-o-normal--24-240-75-75-p-130-

iso8859-1') -> pack;

MainLoop;

Chapter 11 Perl TK Widgets

243

Output of fonts1.pl:

Note that you don’t need to provide the complete font definition. For example, the

following program defines just the foundry and family:

#!perl

#fonts2.pl

use Tk;

$main = MainWindow -> new;

$lab1 = $main -> Label (

 -text => "Perl is the best",

 -font => '-adobe-courier') -> pack;

$lab2 = $main -> Label (

 -text => "Don't you think?",

 -font => '-adobe-helvetica') -> pack;

MainLoop;

Output of fonts2.pl:

Chapter 11 Perl TK Widgets

244

�Text wrapping
By default, a label with text placed in it will be as large as necessary to fit the text within

it. This may result in a very long (wide) text box as shown in the following example:

#!perl

#wrap1.pl

use Tk;

$main = MainWindow -> new;

$lab1 = $main -> Label (

 �-text => "Perl is the best language for performing actions such a

s text filtering.",

 -font =>

 �'-adobe-courier-medium-o-normal--24-240-75-75-m-150-hp-roman8')

-> pack;

MainLoop;

Output of wrap1.pl:

You can use the -wraplength option to specify how long each line of text should be:

#!perl

#wrap2.pl

use Tk;

$main = MainWindow -> new;

$lab1 = $main -> Label (

 �-text => "Perl is the best language for performing actions such

as text filtering.",

 �-font => '-adobe-courier-medium-o-normal--24-240-75-75-m-150-hp-

roman8',

 -wraplength => 200) -> pack;

MainLoop;

Chapter 11 Perl TK Widgets

245

Output of wrap2.pl:

Try it!

Perform the following steps:

•	 Open the widget program from the demos directory (this was covered in
Chapter 10).

•	 Review the programs and the source code of the following:

•	 Labels (text and images)

•	 Labels and Unicode text

•	 Two labels displaying images

Chapter 11 Perl TK Widgets

246

Chapter 11 Perl TK Widgets

247

�Buttons
Buttons are useful for assigning a command to a widget and to set variables. There are

three types of buttons:

Button Purpose

Button When a user clicks a button, a command (subroutine) will be run

Checkbutton Allows the user to select multiple items from a list of items

Radiobutton Allows the user to select one item from a list of items

Button example

#!perl

#button.pl

use Tk;

sub info {$lab1 = $main -> Label (-bitmap => 'info') -> pack;}

sub error {$lab2 = $main -> Label (-bitmap => 'error') -> pack;}

sub warning {$lab3 = $main -> Label (-bitmap => 'warning') -> pack;}

$main = MainWindow -> new;

$but1 = $main -> Button (

 -text => "Show info",

 -command => sub {&info}) -> pack;

$but2 = $main -> Button (

 -text => "Show error",

 -command => sub {&error}) -> pack;

$but3 = $main -> Button (

 -text => "Show warning",

 -command => sub {&warning}) -> pack;

MainLoop;

Chapter 11 Perl TK Widgets

248

Notes about the program

•	 The -text option allows you to specify what text you want displayed

in the button.

•	 The -command option allows you to specify what statement or

subroutine to execute if the user clicks the button. This can be a set of

Perl statements enclosed with the curly braces, but most often it will

be a reference to a function call.

Output of button.pl:

�Using buttons to exit your script
Buttons can be used allow the user to exit the application. The following example shows

how this can be done:

#!perl

#exit.pl

use Tk;

sub info {$lab1 = $main -> Label (-bitmap => 'info') -> pack;}

sub error {$lab2 = $main -> Label (-bitmap => 'error') -> pack;}

sub warning {$lab3 = $main -> Label (-bitmap => 'warning') -> pack;}

$main = MainWindow -> new;

$but1 = $main -> Button (

 -text => "Show info",

 -command => sub {&info}) -> pack;

$but2 = $main -> Button (

 -text => "Show error",

 -command => sub {&error}) -> pack;

Chapter 11 Perl TK Widgets

249

$but3 = $main -> Button (

 -text => "Show warning",

 -command => sub {&warning}) -> pack;

$but4 = $main -> Button (

 -text => "Exit",

 -command => sub {exit}) -> pack;

MainLoop;

�Using buttons to destroy widgets
The action that is taken when a button is pressed can also include destroying a widget.

This example shows how to do this and also demonstrates how to modify an existing

widget with the configure option.

#!perl

#dest.pl

use Tk;

sub info_remove {

 $lab1 -> destroy;

 $but1 -> configure (

 -text => "Show info",

 -command => sub {&info});

}

sub info {

 $lab1 = $main -> Label (-bitmap => 'info') -> pack;

 $but1 -> configure (

 -text => "Remove info",

 -command => sub {&info_remove});

}

$main = MainWindow -> new;

$but1 = $main -> Button (

 -text => "Show info",

 -command => sub {&info}) -> pack;

Chapter 11 Perl TK Widgets

250

$but2 = $main -> Button (

 -text => "Exit",

 -command => sub {exit}) -> pack;

MainLoop;

Output of dest.pl when initially executed:

Output of dest.pl after "Show info" button is pressed:

Output of dest.pl after "Remove info" button is pressed:

�Unpacking instead of destroying
Using destroy will not only remove your widget from the window, but it will also

"delete" the contents of the variable that stored the widget. This means you would need

to recreate the widget if you want to use it again.

Chapter 11 Perl TK Widgets

251

If you want to remove the widget from a window, but also want to use the widget

again, use the packForget operation:

$lab1 -> packForget();

�Changing the cursor
Within most widgets, including buttons, you can modify the look of the cursor by using

the -cursor option:

#!perl

#cursor.pl

use Tk;

sub info_remove {

 $top -> destroy;

 $but1 -> configure (

 -text => "Show info",

 -command => sub {&info});

}

sub info {

 $lab1 = $main -> Label (-bitmap => 'info') -> pack;

 $but1 -> configure (

 -text => "Remove info",

 -command => sub {&info_remove});

}

$main = MainWindow -> new;

$but1 = $main -> Button (

 -text => "Show info",

 -command => sub {&info},

 -cursor => hand2) -> pack;

$but2 = $main -> Button (-text => "Exit",

 -command => sub {exit},

 -cursor => X_cursor) -> pack;

MainLoop;

Chapter 11 Perl TK Widgets

252

Note T ry running the previous program and then point your mouse icon to each
button.

�Opening a toplevel
Toplevels are just like frames. You can use them to organize and "hold" other widgets.

While frames reside within the primary window, toplevels are used to create another

window, "separate" from the primary window.

A few other points about toplevels:

•	 Toplevels are very useful for dialog boxes.

•	 If you destroy the default window, the toplevel window will also be

destroyed.

Toplevel example:

#!perl

#top.pl

use Tk;

sub info_remove {

 $lab1 -> destroy;

 $but1 -> configure (-text => "Show info", -command => sub {&info});

}

sub info {

 $top = $main -> Toplevel();

 $lab1 = $top -> Label (-bitmap => 'info') -> pack;

 $but1 -> configure (-text => "Remove info", -command => sub {&info_remove});

}

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Show info", -command => sub {&info}) -> pack;

$but2 = $main -> Button (-text => "Exit", -command => sub {exit}) -> pack;

MainLoop;

Chapter 11 Perl TK Widgets

253

Output of top.pl when program starts:

Output of top.pl after clicking the "Show info" button:

Try it!

Perform the following steps:

•	 Open the widget program from the demos directory (this was covered in
Chapter 10).

•	 Review the programs and the source code of the following:

•	 Buttons

•	 A 15-puzzle game made out of buttons

•	 Iconic buttons that use bitmaps

Chapter 11 Perl TK Widgets

254

�Lab

Important note  If you did not finish the previous lab, either finish it before starting
this lab or use the completed parse8.pl provided in the lab answers folder.

Chapter 11 Perl TK Widgets

255

Using code from parse7.pl and parse8.pl, generate a script that will perform the

following operation:

•	 Determine if the parse.txt file in the user’s home directory is up to

date. If not, use a toplevel to ask the user if they want an updated

file. You should incorporate the code from the parse7.pl script to

perform the non-GUI aspects of this program. Don’t worry about the

position of the toplevel for now.

•	 Read the data from the user’s parse.txt file into the @proc variable.

Store these changes in a file called parse9-1.pl.

When you have completed your work, compare your script against the parse9-1.pl

file provided in lab answers.

�Checkbuttons
With checkbuttons users can turn on and off values. You can assign actions for "on" values

and "off" values. The following is a modification of button.pl using checkbuttons:

#!perl

#check.pl

use Tk;

sub info {$lab1 = $main -> Label (-bitmap => 'info') -> pack;}

sub rminfo {$lab1 -> destroy;}

$main = MainWindow -> new;

$but1 = $main -> Checkbutton (-text => "Show info",

 -variable => \$info,

 -command => sub {

 if ($info) {

 &info

 }

 else {

 &rminfo;

 }}) -> pack;

MainLoop;

Chapter 11 Perl TK Widgets

256

Notes about the program:

•	 The -variable option allows you to assign a value of 0 or 1 to a

variable.

•	 If the user "turns on" the checkbox by clicking it, the value of the

variable is set to 1.

•	 If the user "turns off" the checkbox by clicking it, the value of the

variable is set to 0

•	 The \ character before the variable name is so Perl accesses the

variable as a reference.

•	 The -command option allows you to execute a statement or subroutine

based on the user’s action.

Output of check.pl when program starts:

Output of check.pl after clicking the check box:

Chapter 11 Perl TK Widgets

257

�Radiobuttons
With checkbuttons, you can select more than one option. With Radiobuttons, you can

only select one option from a group of options:

#!perl

#radio.pl

use Tk;

$main = MainWindow -> new;

$but1 = $main -> Radiobutton (-text => "Show info",

 -value => "info",

 �-variable => \$setting)

-> pack;

$but2 = $main -> Radiobutton (-text => "Show error",

 -value => "error",

 �-variable => \$setting)

-> pack;

$but3 = $main -> Radiobutton (-text => "Show warning",

 -value => "warn",

 �-variable => \$setting)

-> pack;

MainLoop;

When a user checks an option, its "value" is set to the variable. For example, if a user

were to check "Show info", the value of the $setting variable would be set to "info".

Output of radio.pl:

Chapter 11 Perl TK Widgets

258

�Padding
You can use the -padx and -pady options to "pad" the borders of a widget. Padding is

good for creating nice-looking formats.

Padding (and other "size" options such as -width and -height) can be

accomplished by several different units:

•	 Centimeters – "c"

•	 Inches – "i"

•	 Millimeters – "m"

•	 Points – "p"

If you don’t specify a unit type, pixels are assumed by default.

Padding example:

#!perl

#pad.pl

use Tk;

sub info_remove {

 $top -> destroy;

 $but1 -> configure (-text => "Show info",

 -command => sub {&info});

}

sub info {

 $top = $main -> Toplevel();

 $lab1 = $top -> Label (-bitmap => 'info',) -> pack;

 $but1 -> configure (-text => "Remove info",

 -command => sub {&info_remove});

}

Chapter 11 Perl TK Widgets

259

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Show info",

 -padx => 50,

 -pady => 25,

 -command => sub {&info}) -> pack;

$but2 = $main -> Button (-text => "Exit",

 -command => sub {exit}) -> pack;

MainLoop;

Output of pad.pl:

Try it!

Perform the following steps:

•	 Open the widget program from the demos directory (this was covered in
Chapter 10).

•	 Review the programs and the source code of the following:

•	 Checkbuttons (select any of a group)

•	 Radiobuttons (select one of a group)

Chapter 11 Perl TK Widgets

260

�Listboxes
Listboxes will display a collection of strings of which the user can select one or more. To

create a listbox, use the following syntax:

$lb = $main ->Listbox ([option => value, ...]) ->pack;

Chapter 11 Perl TK Widgets

261

Listbox example:

#!perl

#list1.pl

use Tk;

open (COLORS, "<rgb.txt") || die;

$temp=<COLORS>; #need to remove 1st line

$main = MainWindow -> new;

$lb = $main -> Listbox -> pack;

while (<COLORS>) {

 chomp;

 s/^[0123456789]+//;

 s/\t\t//;

 $lb -> insert('end', $_);

}

MainLoop;

In this example, we created a Listbox with the following statement: $lb = $main ->

Listbox -> pack;

To add items to the Listbox, the $lb -> insert('end', $_); line was used. These

items came from data in the rgb.txt file.

Output of list1.pl:

Chapter 11 Perl TK Widgets

262

Notes about the program:

•	 If you look at the rbg.txt file, you will notice that there are more than

ten colors in the file. What happened to the remaining colors?

•	 Click any color in the list box, hold down the mouse, and scroll down.

More colors will appear.

•	 This isn’t a very "user-friendly" way of displaying lists; scrollbars

will be added soon to make it easier to see all of the items.

�Using selected values
You can determine what the user selected in a Listbox by using the curselection

function. Since the user can select more than one item in a Listbox, this function returns

a list of values that indicate the item(s) that the user has selected.

The list returned by the curselection function is not the actual item that was

selected but rather the index positions of the items. To determine the items, you need to

use these index values with the get function.

The following example shows the use of the curselection and get fuctions:

#!perl

#list2.pl

use Tk;

sub ok {

 $top = $main -> Toplevel();

 @elements = $lb -> curselection();

 $item = $lb -> get ($elements[0]);

 $lab1 = $top -> Label (

 -text => "$item",

 -background => $item) -> pack;

}

open (COLORS, "<rgb.txt") || die;

$temp=<COLORS>; #need to remove 1st line

Chapter 11 Perl TK Widgets

263

$main = MainWindow -> new;

$lb = $main -> Listbox -> pack;

while (<COLORS>) {

 chomp;

 s/^[0123456789]+//;

 s/\t\t//;

 $lb -> insert('end', $_);

}

$but = $main -> Button (-text => "Ok",

 -command => sub {&ok}) -> pack;

MainLoop;

Output of list2.pl when program starts:

Chapter 11 Perl TK Widgets

264

Output of list2.pl when a color is selected and the "Ok" button is pushed:

�Selecting options
You can modify what the user can select by using the -selectmode option. The following

options are permitted:

•	 single – Allows user to select one option at a time.

•	 browse – Allows user to select one option at a time. Differs from

single in that selection will move with mouse if button 1 is held down.

•	 extended – Allows user to select more than one option at a time by

using control-click and shift-click.

•	 multiple – Allows user to select more than one option at a time by

clicking on additional items.

Selectmode example using the "multiple" option:

#!perl

#select1.pl

use Tk;

open (COLORS, "<rgb.txt") || die;

$temp=<COLORS>; #need to remove 1st line

Chapter 11 Perl TK Widgets

265

$main = MainWindow -> new;

$lb = $main -> Listbox (-selectmode => "multiple") -> pack;

while (<COLORS>) {

 chomp;

 s/^[0123456789]+//;

 s/\t\t//;

 $lb -> insert('end', $_);

}

MainLoop;

Output of select1.pl after three colors have been "clicked on":

The following program example of how the "extended" select mode works:

#!perl

#select2.pl

use Tk;

open (COLORS, "<rgb.txt") || die;

$temp=<COLORS>; #need to remove 1st line

$main = MainWindow -> new;

$lb = $main -> Listbox (-selectmode => "extended") -> pack;

Chapter 11 Perl TK Widgets

266

while (<COLORS>) {

 chomp;

 s/^[0123456789]+//;

 s/\t\t//;

 $lb -> insert('end', $_);

}

MainLoop;

Output of select2.pl after a "shift-click" method was used to select a block of

colors:

�Scrollbars
When listboxes are too small to display all of the strings, scrollbars can be placed next

to the listbox to provide the user a means of accessing the other strings. To create a

scrollbar, use the following syntax:

$scroll = $main -> Scrollbar ('Widget', -scrollbars => 'value' [, options]);

Chapter 11 Perl TK Widgets

267

Scrollbar example:

#!perl

#scroll.pl

use Tk;

open (COLORS, "<rgb.txt") || die;

$temp=<COLORS>; #need to remove 1st line

$main = MainWindow -> new;

$scroll = $main->Scrollbar();

$lb = $main -> Listbox (

 -yscrollcommand => ['set' => $scroll]) -> pack(-side =>'left');

while (<COLORS>) {

 chomp;

 s/^[0123456789]+//;

 s/\t\t//;

 $lb -> insert('end', $_);

}

$scroll -> configure (-command => ['yview' => $lb]);

$scroll ->pack(-side => 'right', -fill => 'y');

MainLoop;

Notes about the program:

•	 The -yscrollcommand option to the listbox widget "links" the listbox

with the $scroll scrollbar. The scrollbar will "listen" to directions

from the listbox and move in sync with the listbox.

•	 The -command option that was used when configuring the scrollbar

told the scrollbar to inform the $lb listbox of when to move its data.

•	 The -side => 'left' option told pack to place the listbox on the left-

hand side of the window.

Chapter 11 Perl TK Widgets

268

•	 The -side => 'right' option told pack to place the scrollbar on the

right-hand side of the window.

•	 The -fill => 'y' option told pack to "fill out" the scrollbar

vertically to match the side of the window.

Output of scroll.pl:

Try it!

Perform the following steps:

•	 Open the widget program from the demos directory (this was covered in
Chapter 10).

•	 Review the programs and the source code of the following:

•	 The 50 states

•	 Change widget’s color scheme

•	 A collection of famous and infamous sayings

Chapter 11 Perl TK Widgets

269

�Lab

Important note  If you did not finish the previous lab, either finish it before starting
this lab or use the completed parse9-1.pl provided in the lab answers folder.

Chapter 11 Perl TK Widgets

270

Using code from parse7.pl and parse9-1.pl, generate a script that will perform the

following operations:

•	 After the user answers the question provided by the toplevel, display

the contents of the @proc array in the main window. Some thoughts

regarding this:

•	 Assume no data changes (ppid field gone, date change, etc.) have

taken place yet.

•	 Probably the best way to display the data in this case is as a listbox.

•	 While you can use some of the code that you have in parse7.pl

, the format statements you created won’t be helpful. Now is a

good time to explore the advantages of sprintf.

•	 Don’t worry about providing any "header" information at this

time.

Store these changes in a file called parse9-2.pl.

When you have completed your work, compare your script against the parse9-2.pl

file provided in lab answers.

�Scales
Scale widgets are used to provide a sliding scale that the user can manipulate to choose a

value. Use the following syntax to create a scale widget:

$scale = $parent -> Scale ([option => value]) -> pack

Scale example:

#!perl

#scale1.pl

use Tk;

sub scale_remove {

 $tone = $scale -> get();

 $top -> destroy;

 $but2 -> configure (-text => "$tone");

Chapter 11 Perl TK Widgets

271

}

sub tone {

 $top = $main -> Toplevel();

 $scale = $top -> Scale (-from => 0, -to => 100,

 -label => "Tone",

 -tickinterval => 10,

 -orient => "horizontal",

 -length => "6i") -> pack;

 $but1 = $top -> Button (-text => "Exit",

 �-command => sub {scale_remove})

-> pack;

}

$tone=0;

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Show scale",

 -command => sub {&tone}) -> pack;

$but2 = $main -> Button (-text => "$tone") -> pack;

$but3 = $main -> Button (-text => "Exit",

 -command => sub {exit}) -> pack;

MainLoop;

Notes about the program:

•	 The -from and -to options specify the "low" and "high" values.

•	 The -tickinterval option specifies where to set the tick marks.

•	 The statement $tone = $scale -> get(); grabs the value that the

scale is currently set to and assigns it to the variable $tone.

Chapter 11 Perl TK Widgets

272

Output of scale.pl:

�Setting a default scale value
To set a default value for a scale, use the set function. The following code demonstrates

the use of this function:

#!perl

#scale2.pl

use Tk;

sub scale_remove {

 $tone = $scale -> get();

 $top -> destroy;

 $but2 -> configure (-text => "$tone");

}

sub tone {

 $top = $main -> Toplevel();

 $scale = $top -> Scale (-from => 0, -to => 100,

 -label => "Tone",

 -tickinterval => 10,

 -orient => "horizontal",

 -length => "6i") -> pack;

Chapter 11 Perl TK Widgets

273

 $scale -> set(50);

 $but1 = $top -> Button (-text => "Exit",

 �-command => sub {scale_remove})

-> pack;

}

$tone=0;

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Show scale",

 -command => sub {&tone}) -> pack;

$but2 = $main -> Button (-text => "$tone") -> pack;

$but3 = $main -> Button (-text => "Exit",

 -command => sub {exit}) -> pack;

MainLoop;

Try it!

Perform the following steps:

•	 Open the widget program from the demos directory (this was covered in
Chapter 10).

•	 Review the programs and the source code of the following:

•	 Horizontal scale

•	 Vertical scale

Chapter 11 Perl TK Widgets

274

Chapter 11 Perl TK Widgets

275

�Entries
Entries are used to allow the user to type in data that will be assigned to a variable. Use

the following syntax to create a scale widget:

$entry = $parent -> Entry ([option => value]) -> pack

An entry example:

#!perl

#entry1.pl

use Tk;

sub entry_remove {

 $tone = $entry -> get();

 $top -> destroy;

 $but2 -> configure (-text => "$tone");

}

sub tone {

 $top = $main -> Toplevel();

 $lab1 = $top -> Label (-text => "Enter Tone:") -> pack;

 $entry = $top -> Entry -> pack;

 $but1 = $top -> Button (-text => "Exit",

 �-command => sub {entry_remove})

-> pack;

}

$tone=0;

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Enter tone",

 -command => sub {&tone}) -> pack;

$but2 = $main -> Button (-text => "$tone") -> pack;

$but3 = $main -> Button (-text => "Exit",

 -command => sub {exit}) -> pack;

MainLoop;

Chapter 11 Perl TK Widgets

276

Output of entry1.pl:

�Hiding the user’s input
Suppose you are having the user type in a password. For security reasons, you don’t want

to have the user’s password display as they are typing. To hide the user’s input, use the

-show option:

#!perl

#entry2.pl

use Tk;

sub entry_remove {

 $tone = $entry -> get(); $top -> destroy;

 $but2 -> configure (-text => "$tone");

}

sub tone {

 $top = $main -> Toplevel();

 $lab1 = $top -> Label (-text => "Enter Tone:") -> pack;

 $entry = $top -> Entry (-show => "*") -> pack;

Chapter 11 Perl TK Widgets

277

 $but1 = $top -> Button (-text => "Exit",

 �-command => sub {entry_remove})

-> pack;

}

$tone=0; $main = MainWindow -> new;

$but1 = $main -> Button (-text => "Enter tone",

 -command => sub {&tone}) -> pack;

$but2 = $main -> Button (-text => "$tone") -> pack;

$but3 = $main -> Button (-text => "Exit",

 -command => sub {exit}) -> pack;

MainLoop;

Output of entry2.pl (note the ∗ characters in the "Enter Tone:" entry box):

Chapter 11 Perl TK Widgets

278

�Disable an entry box
In some cases, you may want to display an entry box but not allow the user to enter data.

To do this, use the -state option:

#!perl

#entry3.pl

use Tk;

sub entry_remove {

 $tone = $entry -> get(); $top -> destroy;

 $but2 -> configure (-text => "$tone");

}

sub tone {

 $top = $main -> Toplevel();

 $lab1 = $top -> Label (-text => "Enter Tone:") -> pack;

 $entry = $top -> Entry (-state => "disable") -> pack;

 $but1 = $top -> Button (-text => "Exit",

 �-command => sub {entry_remove})

-> pack;

}

$tone=0;

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Enter tone",

 -command => sub {&tone}) -> pack;

$but2 = $main -> Button (-text => "$tone") -> pack;

$but3 = $main -> Button (-text => "Exit",

 -command => sub {exit}) -> pack;

MainLoop;

Chapter 11 Perl TK Widgets

279

Output of entry3.pl (note that the "Enter Tone:" entry box is "grayed out"):

Try it!

Perform the following steps:

•	 Open the widget program from the demos directory (this was covered in
Chapter 10).

•	 Review the programs and the source code of the following:

•	 Message boxes

•	 File selection dialog

•	 Directory selection dialog

•	 Color picker

Chapter 11 Perl TK Widgets

280

Chapter 11 Perl TK Widgets

281

�Creating menus
Menus are the most complex of the widgets. This chapter covers the different options (or

entries) available in creating menus including

•	 Check entries to select multiple options (like checkbuttons)

•	 Radio entries to select one option (like radiobuttons)

•	 Separators to separate different options

•	 Command entries to invoke a procedure or other perl code

•	 Cascade entries to display submenus

�Creating the menu options
To create a menu, first create a frame to place the menu in. You will most likely also want

to create another larger frame to put the rest of the application.

The following syntax is used to create a menu:

$menu = $frame -> Menubutton (-text => "text") -> pack

The following program will create a basic menu. Note: Since no action has been

assigned to the menu options (yet), TK will produce an error if you try to click a menu

option:

#!perl

#menu1.pl

use Tk;

$main = MainWindow -> new;

$frame1 = $main -> Frame (-relief => groove,

 -borderwidth => 3) -> pack (-fill => "x");

$frame2 = $main -> Frame (-height => 150, -width => 200) -> pack;

$File_menu = $frame1 -> Menubutton (-text => "File")

 -> pack (-side => "left");

$Edit_menu = $frame1 -> Menubutton (-text => "Edit")

 -> pack (-side => "left");

Chapter 11 Perl TK Widgets

282

$Help_menu = $frame1 -> Menubutton (-text => "Help")

 -> pack (-side => "right");

MainLoop;

Output for menu1.pl:

�Adding radio options
Now that we have the basic menu, we can add options to the menu. You can have these

options execute a command or display a check or radio submenu.

The following example will add radio buttons to the Edit menu:

#!perl

#menu2.pl

use Tk;

sub set_color {$frame2 -> configure (-background => $background); }

$main = MainWindow -> new;

$frame1 = $main -> Frame (-relief => groove,

 -borderwidth => 3)

 -> pack (-fill => "x");

$frame2 = $main -> Frame (-height => 150, -width => 200) -> pack;

$File_menu = $frame1 -> Menubutton (-text => "File")

 -> pack (-side => "left");

Chapter 11 Perl TK Widgets

283

$Edit_menu = $frame1 -> Menubutton (-text => "Edit")

 -> pack (-side => "left");

$Help_menu = $frame1 -> Menubutton (-text => "Help")

 -> pack (-side => "right");

foreach $color (red, green, blue, yellow, black, white) {

 $Edit_menu -> radiobutton (-label => $color,

 -command => \&set_color,

 -variable => \$background,

 -value => $color)

}

MainLoop;

Output of menu2.pl when program starts:

Output of menu2.pl when "Edit" menu button is clicked:

Chapter 11 Perl TK Widgets

284

Output of menu2.pl when "red" option button is clicked:

Note that the submenu has a feature called a "tearoff". By clicking the "-----"

above the options, a toplevel window is automatically created:

Chapter 11 Perl TK Widgets

285

�Adding check options
In the next example, checkbutton options are added to the Edit menu:

#!perl

#menu3.pl

use Tk;

sub info {$lab1 = $main -> Label (-bitmap => 'info') -> pack;}

sub error {$lab1 = $main -> Label (-bitmap => 'error') -> pack;}

sub warn {$lab1 = $main -> Label (-bitmap => 'warning') -> pack;}

$main = MainWindow -> new;

$frame1 = $main -> Frame (-relief => groove, -borderwidth => 3)

 -> pack (-fill => "x");

$frame2 = $main -> Frame (-height => 150, -width => 200) -> pack;

$File_menu = $frame1 -> Menubutton (-text => "File")

 -> pack (-side => "left");

$Edit_menu = $frame1 -> Menubutton (-text => "Edit")

 -> pack (-side => "left");

$Help_menu = $frame1 -> Menubutton (-text => "Help")

 -> pack (-side => "right");

$Edit_menu -> checkbutton (-label => "Show info",

 -variable => \$info,

 �-command => sub {if

($info) {&info}});

$Edit_menu -> checkbutton (-label => "Show error",

 -variable => \$error,

 �-command => sub {if

($error) {&error}});

$Edit_menu -> checkbutton (-label => "Show warning",

 -variable => \$warn,

 -command => sub {

 if ($warn) {&warn}});

MainLoop;

Chapter 11 Perl TK Widgets

286

Output of menu3.pl when program starts:

Output of menu3.pl when the "Edit" menubutton is clicked:

Chapter 11 Perl TK Widgets

287

Output of menu3.pl when the "Show info" is clicked:

Notes about menu3.pl:

•	 The "info" icon appears at the bottom because it was packed under

the frame defined in the $frame2 variable. It might be better in this

case to put it within the frame defined by the $frame2 variable.

•	 Note that once the "Show info" option is chosen, there is a check box

next to this option:

Chapter 11 Perl TK Widgets

288

•	 If you "deselect" the "Show info" option, the info icon isn’t removed

(which would probably be a better solution). Also, if you "select" the

"Show info" option again, then another "info" icon will appear.

It would be better to modify the info subroutine to remove the "info"

icon if the option is "deselected" and display it again if the option is

"selected". Code that performs this behavior was shown earlier in

this chapter.

�Adding command options
In this example, a command option was added to the File menu. Note that "menuitems"

is an array of arrays, hence the double [] characters:

#!perl

#menu4.pl

use Tk;

$main = MainWindow -> new;

$frame1 = $main -> Frame (-relief => groove, -borderwidth => 3) -> pack

(-fill => "x");

$frame2 = $main -> Frame (-height => 150, -width => 200) -> pack;

$File_menu = $frame1 -> Menubutton (

 -text => "File",

 -menuitems =>

 [[

 'command' => "Exit",

 -command => sub {$main -> destroy}

]])

 -> pack (-side => "left");

$Edit_menu = $frame1 -> Menubutton (-text => "Edit")

 -> pack (-side => "left");

$Help_menu = $frame1 -> Menubutton (-text => "Help")

 -> pack (-side => "right");

MainLoop;

Chapter 11 Perl TK Widgets

289

Output of menu4.pl when the "File" menubutton is pressed:

�Adding cascade and separators
In addition to radio, check, and command options, you can add a cascade option and

separators. A cascade option will open a submenu that will contain additional options.

A separator will break up options.

The following example illustrates how cascade options and separators are used:

#!perl

#menu5.pl

use Tk;

sub set_color {$frame2 -> configure (-background => $background);}

sub info {$lab1 = $main -> Label (-bitmap => 'info') -> pack;}

sub error {$lab1 = $main -> Label (-bitmap => 'error') -> pack;}

sub warn {$lab1 = $main -> Label (-bitmap => 'warning') -> pack;}

$main = MainWindow -> new;

$frame1 = $main -> Frame (-relief => groove, -borderwidth => 3)

 -> pack (-fill => "x");

$frame2 = $main -> Frame (-height => 150, -width => 200) -> pack;

$File_menu = $frame1 -> Menubutton (-text => "File")

 -> pack (-side => "left");

Chapter 11 Perl TK Widgets

290

$Edit_menu = $frame1 -> Menubutton (-text => "Edit")

 -> pack (-side => "left");

$Help_menu = $frame1 -> Menubutton (-text => "Help")

 -> pack (-side => "right");

$subshow = $Edit_menu -> menu -> Menu;

$subshow -> checkbutton (-label => "Show info",

 -variable => \$info,

 -command => sub {

 if ($info) {&info}});

$subshow -> checkbutton (-label => "Show error",

 -variable => \$error,

 -command => sub {

 if ($error) {&error}});

$subshow -> checkbutton (-label => "Show warning",

 -variable => \$warn,

 -command => sub {

 if ($warn) {&warn}});

$subcolor = $Edit_menu -> menu -> Menu;

foreach $color (red, green, blue, yellow, black, white) {

 $subcolor -> radiobutton (-label => $color,

 -command => \&set_color,

 -variable => \$background,

 -value => $color)

}

$Edit_menu -> cascade (-label => "Show");

$Edit_menu -> entryconfigure("Show", -menu => $subshow);

$Edit_menu -> separator();

$Edit_menu -> cascade (-label => "Color");

$Edit_menu -> entryconfigure("Color", -menu => $subcolor);

MainLoop;

Chapter 11 Perl TK Widgets

291

Notes about menu5.pl:

•	 The line "$subshow = $Edit_menu -> menu -> Menu;" defines a

submenu.

•	 The line "$Edit_menu -> cascade (-label => "Show");" tells

TK that there is a cascade menu that will be associated with the

$Edit_menu option.

•	 The line "$Edit_menu -> entryconfigure("Show", -menu =>

$subshow);" associates the submenu with the cascade.

Output of menu5.pl:

Try it!

Perform the following steps:

•	 Open the widget program from the demos directory (this was covered in
Chapter 10).

•	 Review the programs and the source code of the following:

•	 Menus and cascades (submenus)

•	 As above but with Perl/Tk -menuitems

•	 Menubuttons

Chapter 11 Perl TK Widgets

292

Chapter 11 Perl TK Widgets

293

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

�Lab exercises

Important note  If you did not finish the previous lab, either finish it before starting
this lab or use the completed parse9-2.pl provided in the lab answers folder.

Using code from parse9-2.pl, generate a script that will perform the following

operations:

•	 Have a menu bar within a frame. Have the menu bar have two items:

File and Filter.

•	 Create a menu item for File that will exit the program.

•	 Create a menu item for Filter for each of the filter features:

•	 Remove newline characters.

•	 Convert date.

•	 Remove PPID field.

•	 Place the listbox that displays the data in a frame under the menu bar.

If the user chooses a filter option, update the data as needed.

Store these changes in a file called parse9-3.pl.

When you have completed your work, compare your script against the parse9-3.pl

file provided in lab answers.

Chapter 11 Perl TK Widgets

https://github.com/Apress/pro-perl-programming

295
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3_12

CHAPTER 12

Geometry Managers
During the last two chapters, the focus has been on creating widgets. Now we will focus

on how to place (manipulate) widgets in the window. The pack command is used to

determine where widgets go and how big they will be.

It is important to understand that pack controls the size and location of the widgets;

the widgets themselves do not have the ultimate control of these parameters. For

example, if a widget definition "requests" to be 2 inches wide and 3 inches tall, pack

will accommodate this request unless an option is passed to pack to override the request.

When a conflict like this occurs, the pack specifications "wins".

�The -after and -before option
By default, widgets are placed in the order that they are packed. You can override this by

using the -after or -before options. The syntax of these options is

$widget -> pack (-after | -before => $otherwidget)

In the following example, the -after option is used to place the frame defined by the

$frame5 variable after the frame defined by the $frame2 variable. To make it easier to see

the result, the size and color of the defined by the $frame5 variable are different than all

of the other frames:

#!perl

#after.pl

296

use Tk;

$main = MainWindow -> new;

$frame1 = $main -> Frame (-relief => raised, -height => 100,

 �-width => 200, -borderwidth

=> 15) ->pack;

$frame2 = $main -> Frame (-relief => sunken, -height => 100,

 �-width => 200, -borderwidth

=> 15) ->pack;

$frame3 = $main -> Frame (-relief => flat, -height => 100,

 �-width => 200, -borderwidth

=> 15) ->pack;

$frame4 = $main -> Frame (-relief => groove, -height => 100,

 �-width => 200, -borderwidth

=> 15) ->pack;

$frame5 = $main -> Frame (-relief => ridge, -height => 250,

 �-width => 200, -borderwidth

=> 15,

 -background => "blue")

 ->pack (-after => $frame2);

MainLoop;

Chapter 12 Geometry Managers

297

Output of after.pl:

Chapter 12 Geometry Managers

298

�The -anchor and -side options
You can specify an anchor position for a widget with the -anchor option. If not specified,

the default is to place it in the center of the window (or frame). The following positions

are permitted:

Position Symbol Location

n North

s South

e East

w West

ne Northeast

nw Northwest

se Southeast

sw Southwest

center Center of window (default)

The -side allows you to specify where to place the widget with the key words

"top", "bottom", "left", or "right". While it seems to be doing the same thing as the

-anchor option, it has a slightly different behavior than -anchor. The -side option is

used to indicate where, relative to the other widgets in the window, the widget should

be placed. The -anchor option is used to attempt to force the widget to be place in a

certain area of the window. See the next pages for examples on the difference between

the two.

Chapter 12 Geometry Managers

299

-anchor vs. -side
In the following example, widgets will be placed, in order, from top to bottom. Two of the

widgets will be anchored on the west side of the window, and one will be anchored on

the east side of the window.

#!perl

#side1.pl

use Tk;

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Show info")

 -> pack (-side => top, -anchor => w);

$but2 = $main -> Button (-text => "Show error")

 -> pack(-side => top, -anchor => e);

$but3 = $main -> Button (-text => "Show warning")

 -> pack(-side => top, -anchor => w);

MainLoop;

Output of side1.pl when program starts:

Chapter 12 Geometry Managers

300

Notice how the anchoring affects the position of the widgets when the overall

window is resized:

In the following example, widgets will be placed, in order, from right to left. Two of

the widgets will be anchored on the north side of the window, and one will be anchored

on the south side of the window.

#!perl

#side2.pl

use Tk;

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Show info")

 -> pack (-side => "right", -anchor => "n");

$but2 = $main -> Button (-text => "Show error")

 -> pack(-side => "right", -anchor => "s");

$but3 = $main -> Button (-text => "Show warning")

 -> pack(-side => "right", -anchor => "n");

MainLoop;

Chapter 12 Geometry Managers

301

Output of side2.pl when program is started:

Notice how the anchoring affects the position of the widgets when the overall

window is resized:

�The -fill option
If the widget is too small to fill the frame it is in, you can specify the -fill option to have

the widget grow to fit the frame.

With -fill you can indicate that you want the widget to fill in horizontally, vertically,

or both. The syntax for this option is

The option can be either an "x" (horizontal fill), a "y" (vertical fill), or "both" (fill

horizontally and vertically).

Fill example:

#!perl

#fill1.pl

use Tk;

sub info {$lab1 = $main -> Label (-bitmap => 'info') -> pack;}

sub error {$lab2 = $main -> Label (-bitmap => 'error') -> pack;}

Chapter 12 Geometry Managers

302

sub warning {$lab3 = $main -> Label (-bitmap => 'warning') -> pack;}

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Show info",

 -command => sub {&info})

 -> pack (-fill => x);

$but2 = $main -> Button (-text => "Show error",

 -command => sub {&error})

 -> pack (-fill => x);

$but3 = $main -> Button (-text => "Show warning",

 -command => sub {&warning})

 -> pack;

MainLoop;

Output of fill1.pl:

Note that the "Show warning" button didn’t have the -fill option, so it was only as

big as necessary to fit the text that is in the button. Also note that when the window is

resized, the buttons that have the -fill option defined also increase in size:

Chapter 12 Geometry Managers

303

Also note that the buttons don’t change size when the window is resized vertically:

You could fill both vertically and horizontally:

#!perl

#fill2.pl

use Tk;

sub info {$lab1 = $main -> Label (-bitmap => 'info') -> pack;}

sub error {$lab2 = $main -> Label (-bitmap => 'error') -> pack;}

sub warning {$lab3 = $main -> Label (-bitmap => 'warning') -> pack;}

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Show info",

 -command => sub {&info})

 -> pack (-fill => both);

$but2 = $main -> Button (-text => "Show error",

 -command => sub {&error})

 -> pack (-fill => both);

Chapter 12 Geometry Managers

304

$but3 = $main -> Button (-text => "Show warning",

 -command => sub {&warning})

 -> pack (-fill => both);

MainLoop;

However, this won’t really work for vertical filling because the widgets were

packed vertically and the pack utility doesn’t really know how much "space" to give

each one:

Filling both vertically and horizontally normally only works well when there is a

single widget in the window or frame.

�Padding with pack
You can specify either internal or external padding for widgets with the pack command.

The following chart illustrates the different padding options:

Chapter 12 Geometry Managers

305

Padding Option Meaning

-ipadx amount Pad widget horizontal borders internally by amount

-ipady amount Pad widget vertical borders internally by amount

-padx amount Pad widget horizontal borders external by amount

-pady amount Pad widget vertical borders externally by amount

The amount can be specified by any of the following units:

•	 Centimeters – "c"

•	 Inches – "i"

•	 Millimeters – "m"

•	 Points – "p"

Padding example:

#!perl

#ppad.pl

use Tk;

sub info {$lab1 = $main -> Label (-bitmap => 'info') -> pack;}

sub error {$lab2 = $main -> Label (-bitmap => 'error') -> pack;}

sub warning {$lab3 = $main -> Label (-bitmap => 'warning') -> pack;}

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Show info",

 -command => sub {&info})

 -> pack (-ipadx => 10, -ipady => 10);

$but2 = $main -> Button (-text => "Show error",

 -command => sub {&error})

 -> pack (-padx => 10, -pady => 10);

$but3 = $main -> Button (-text => "Show warning",

 -command => sub {&warning})

 -> pack;

MainLoop;

Chapter 12 Geometry Managers

306

Output of ppad.pl:

�Managing widgets with pack
If you start combining different side and/or position options when packing widgets, you

will find that the result can be quite weird. For example, look at the following program

and the output it produces:

#!perl

#weird.pl

use Tk;

$main = MainWindow -> new;

$frame1 = $main -> Frame (-relief => raised, -height => 150,

 �-width => 200,

-borderwidth => 15,

 -background => blue)

 ->pack (-side => "left");

$frame2 = $main -> Frame (-relief => sunken, -height => 150,

 �-width => 200,

-borderwidth => 15,

 -background => black)

 ->pack (-anchor => "e");

Chapter 12 Geometry Managers

307

$frame3 = $main -> Frame (-relief => flat, -height => 150,

 �-width => 200,

-borderwidth => 15,

 -background => yellow)

 ->pack (-side => "top");

$frame4 = $main -> Frame (-relief => groove, -height => 150,

 �-width => 200,

-borderwidth => 15,

 -background => green)

 ->pack (-side => "bottom", -fill => "both");

$frame5 = $main -> Frame (-relief => ridge, -height => 150,

 �-width => 200,

-borderwidth => 15,

 -background => purple)

 ->pack (-side => "left");

MainLoop;

Chapter 12 Geometry Managers

308

Output of weird.pl:

Chapter 12 Geometry Managers

309

This is probably NOT what you wanted TK to do. Granted, it isn’t too crazy…yet. Try

running the program and then resizing the window:

Chapter 12 Geometry Managers

310

The process of organizing widgets involves good use of frames. For example, suppose

we want to make the following window:

The best method would be to create frames inside of frames and use the placement

options that pack provides to place the sub-widgets in their proper place.

The following example shows how to create this more complex widget structure:

#!perl

#place.pl

use Tk;

$main = MainWindow -> new;

#Main two frames:

$main1 = $main -> Frame (-relief => groove, -borderwidth => 3) -> pack

(-fill => "x");

$main2 = $main -> Frame (-height => 150, -width => 200) -> pack;

#Placing menu bar in top frame:

$File_menu = $main1 -> Menubutton (-text => "File") -> pack

(-side => "left");

$Edit_menu = $main1 -> Menubutton (-text => "Edit") -> pack

(-side => "left");

$Help_menu = $main1 -> Menubutton (-text => "Help") -> pack

(-side => "right");

Chapter 12 Geometry Managers

311

#Breaking up bottom frame:

$sub1 = $main2 -> Frame -> pack (-side => "left");

$sub2 = $main2 -> Frame -> pack (-side => "right");

#Putting Listbox in left frame:

open (COLORS, "<rgb.txt") || die;

$temp=<COLORS>; #need to remove 1st line

$scroll = $sub1->Scrollbar();

$lb = $sub1 -> Listbox (-yscrollcommand => ['set' => $scroll])

 -> pack(-side=> 'left');

while (<COLORS>) {

 chomp;

 s/^[0123456789]+//;

 s/\t\t//;

 $lb -> insert('end', $_);

}

$scroll -> configure (-command => ['yview' => $lb]);

$scroll ->pack(-side => 'right', -fill => 'y');

#Placing labels in right frame:

$lab1 = $sub2 -> Label (

 -text => "Perl is the best",

 -font =>

 '-adobe-courier-medium-o-normal--24-240-75-75-m-150-hp-roman8')

 -> pack;

$lab2 = $sub2 -> Label (-bitmap => 'questhead') -> pack;

MainLoop;

Chapter 12 Geometry Managers

312

Output of place.pl

�Binding
Binding is the process of associating widgets with events. An event can be a keyboard key

being pressed, mouse clicking, mouse movement (leaving and entering widgets), widget

size changing, widgets being destroyed, and other actions.

The topic of binding is a huge one; only the basics of binding will be discussed in this unit

The format of bind is

$widget -> bind (event, action)

�event
An event is a series of mouse or keyboard actions. An event is broken down into two

categories: modifier and event type.

The following chart illustrates the possible modifiers:

Modifiers Meaning

Control The control key

Shift The shift key

(continued)

Chapter 12 Geometry Managers

313

Modifiers Meaning

Lock The Caps Lock key

Alt The Alt key

Double Double-pressed events (normally for double-clicking)

Triple Triple-pressed events (normally for triple-clicking)

Button # Which button (1, left; 2, center; 3,right)

The following chart illustrates the possible event types:

Event Type Meaning

ButtonPress A button is pressed

ButtonRelease A button is released

Destroy The window is destroyed

Enter The mouse has entered the window

KeyPress A key is pressed

KeyRelease A key is released

Leave A mouse is leaving the window

The two event types we will focus on will be "ButtonPress" and "KeyPress" as they

are the most common.

To specify which button (left, center, or right), specify the number of the button:

<ButtonPress-1>		 Left button

<ButtonPress-2>		 Center button

<ButtonPress-3>		 Right button

To specify which key, specify the key after the "KeyPress" event type:

<KeyPress-a>		 The "a" key

<KeyPress-z>		 The "z" key

<KeyPress-Return>	 The "return" key

Chapter 12 Geometry Managers

314

Other special keys can be specified: Escape, Backspace, Tab, Up, Down, Left, Right,

comma, period, dollar, number sign.

You can also specify event modifiers. For example, maybe you want an action to take

place if the user holds down the control button and presses the "a" key.

Examples:

<Control-KeyPress-a>		 Control+a

<Double-ButtonPress-1>	 Double-click the left mouse button

The following example will bind the left mouse button to the destroy command. The

destroy command will delete widgets.

#!perl

#bind.pl

use Tk;

$main = MainWindow -> new;

$main -> bind ("<ButtonPress-1>", sub {destroy $main});

$lab1 = $main -> Label (-text => "Perl is the best",

 -font => '-adobe-courier-medium-o-

normal--24-240-75-75-m-150-hp-roman8')

 -> pack;

$lab2 = $main -> Label (-text => "Don't you think?",

 �-font => '-adobe-helvetica-medium-

o-normal--24-240-75-75-p-130-

iso8859-1')

 -> pack;

MainLoop;

Output of bind.pl (run this and then click anywhere in the main window to see the

program exit):

Chapter 12 Geometry Managers

315

�The focus command
If you want the user to be able to use the keyboard keys to enact commands in other

widgets, you have to use the focus command. The focus command tells TK what

window to "focus on" when looking for keyboard input.

The following example will switch the focus of the keyboard to the entry widget:

#!perl

#focus.pl

use Tk;

sub entry_remove {

 $tone = $entry -> get();

 $top -> destroy;

 $but2 -> configure (-text => "$tone");

}

sub tone {

 $top = $main -> Toplevel();

 $lab1 = $top -> Label (-text => "Enter Tone:") -> pack;

 $entry = $top -> Entry -> pack;

 $entry -> focus();

 $but1 = $top -> Button (-text => "Exit",

 -command => sub {entry_remove})

 -> pack;}

$tone=0;

$main = MainWindow -> new;

$but1 = $main -> Button (-text => "Enter tone",

 -command => sub {&tone})

 -> pack;

$but2 = $main -> Button (-text => "$tone") -> pack;

$but3 = $main -> Button (-text => "Exit", -command => sub {exit})

 -> pack;

MainLoop;

Chapter 12 Geometry Managers

316

To see how the focus.pl program works, first run the program and then click the

"Enter tone" button:

Note that you can start typing the tone value immediately, without having to click in

window:

Try it!

Another popular geometry manager is call canvas. Perform the following steps for a
quick introduction to the canvas geometry manager:

•	 Open the widget program from the demos directory (this was
covered in Chapter 10).

•	 Review the programs and the source code of the following:

•	 The canvas item types

•	 A simple 2-D plot

•	 Test items in canvases

•	 An editor for arrowheads on canvas lines

Chapter 12 Geometry Managers

317

•	 A ruler with adjustable tab stops

•	 A building floor plan

•	 A simple scrollable canvas

•	 Tiles and transparent images

Chapter 12 Geometry Managers

318

�Additional resources
In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

Resources for this chapter can be found here:

https://github.com/Apress/pro-perl-programming

�Lab exercises

Important note  If you did not finish the previous lab, either finish it before starting
this lab or use the completed parse9-3.pl provided in the lab answers folder.

Using code from parse9-3.pl, generate a script that will perform the following

operations:

•	 Add "header" info that doesn’t move with the scrollbar. Keep in

mind that as the data changes, the "header" may need to be adjusted

as well.

•	 Change the initial prompt ("Update data") so that it appears in the

frame that is used to hold the data instead of withing a toplevel. After

the user answers the question, use that frame to display the data.

Store these changes in a file called parse10.pl.

When you have completed your work, compare your script against the parse10.pl

file provided in lab answers.

Chapter 12 Geometry Managers

https://github.com/Apress/pro-perl-programming

319
© William “Bo” Rothwell of One Course Source, Inc. 2020
W. “Bo” Rothwell, Pro Perl Programming, https://doi.org/10.1007/978-1-4842-5605-3

Index

Symbol
@ARGV array, 126
$ARGV variable, 125
$^E variable, 135, 136
=> operator, 89
<> operator, 125
? metacharacters, 7
| metacharacters, 12
^ and $ metacharacters, 11
∗ and + metacharacters, 5
? metacharacters, 7
. metacharacters, 8
() metacharacters, 11, 12
[] metacharacters, 8, 9
{ } metacharacters, 6, 7
^∗ placeholder, 120
$! variable, 135
$? variable, 133–135
$@ variable, 136

A
\A assertion, 33, 47
ActiveState debugger, 217
Array context, 74
Assertions, 27

g modifier, 29
look forward/back, 27, 29

autouse pragma, 182

B
B command, 213, 214
B ∗ command, 215
Backreference patterns, 15–18
Backtracking, 66, 67
Benchmark module, 57, 58, 196, 197
Binding

ButtonPress, 313
event, 312, 313
KeyPress, 313
modifiers, 312, 313

-borderwidth
option, 236

Built-in Perl modules
drawbacks, 185
@INC variable, 180, 181
location of loaded, 181
use autouse pragma, 182

Built-in variables
English names, 132
reference chart, 129–131

Buttons
cursor,

change, 251, 252
destroy, 249–250
exit application, 248, 249
lab, 254, 255
toplevels, 252, 253
types, 247

https://doi.org/10.1007/978-1-4842-5605-3

320

C
c command, 214
Carp, 220–221
cascade option, 289
cat command, 210, 211
charnames pragma, 62
chdir() function, 185
Checkbuttons, 255, 256
chomp command, 137
chr statement, 124
close statement, 78, 134
-command option, 248, 256, 267
configure option, 249
Contextual::Return module, 74
cpan client, 216
Creating menus

cascade/separators
options, 289–291

checkbutton options, 285–288
check/radio options, 282–284
command options, 288, 289
options, 281

croak statement, 221, 222
curselection function, 262
-cursor option, 251
Cwd module, 184

D
Data capturing, 48, 49
Data::Dumper, 222, 223
Debugger commands, 209

ActiveState, 217
Devel::modules, 218
Padre, 217
print, 211
stepping code, 212
variables/subroutines, 216

defined() functions, 91, 92
defined statement, 169
destroy command, 314
Devel::modules debugger, 218
devnull function, 191
die statement, 93, 134, 199, 220
Digit/punctuation

character, 15
dir command, 133
do statement, 81

E
End-of-line character, 46
__END__ token, 104, 152
Entries

entry box, 278, 279
hide user’s input, 276, 277
scale widget, 275

Environment variables, 186, 187
Error messages

Carp module, 220
classification, 218
diagnostics, 219, 220
perldiag documentation, 218, 219

Escaping metacharacters, 62
eval function, 56, 136
expand statement, 194
External file, 152, 153

F
fastcwd statement, 185
Fatal module, 196
Filehandle module, 79, 118, 119
File handling

file position, 150
opening/reading, 145

Index

321

opening/writing, 146
piping, 147, 148

File locking, 154, 155
File modules

File::Basename, 187
File::Compare, 188
File::Copy, 188
File::DosGlob, 191
File::Fetch, 191
File::Find, 190, 191
File::Path, 188, 189
File::Spec::platform, 191

-fill option, 301–304
focus command, 315, 316, 318
foreach loop, 69–71, 103
format statement, 107–108, 113–115
format variables, 115–117
Frames, 235

colors, 238
-relief option, 236

G
\G assertion, 47
Geometry managers, 231

-after/-before options, 295, 296
-anchor/-side option, 298
-anchor vs.-side options, 299–301

getcwd statement, 184
get function, 262
getops function, 99, 199
GetOptions function, 100, 200
Getopt::Long module, 100, 200
getopts function, 98, 198, 199
Getopt::Std module, 97, 197
g modifier, 3, 46
Greedy vs. non-greedy matches, 22, 23
grid geometry manager, 231

H
h command, 210

I, J
i modifier, 4
interactive function, 83
int statement, 122
IO::Interactive module, 83
IO::Prompt module, 83

K
kill-l command, 139

L
l command, 212–214
Lab, 269–270
Labels

bitmaps, 239, 240
-font option, 242, 243
-image option, 241
-text option, 242, 243
-wraplength

option, 244, 245
Listboxes, 260–262, 266
locale pragma, 176
ls command, 133

M
Math modules

Math::BigFloat, 192
Math::BigInt, 193
Math::BigRat, 193
Math::Complex, 193
Math::Trig, 192

INDEX

322

Metacharacters, 12, 13
^ and $ characters, 11
| characters, 12
∗ and + characters, 5
? characters, 7, 8
. characters, 8
() characters, 11, 12
[] characters, 8, 9
{ } characters, 6, 7

mkdir statement, 188
mkpath statement, 189
m modifier, 31, 33, 47
Modifiers

d modifier, 19, 20
e modifier, 19
g modifier, 20, 21
i modifier, 20, 21
matching and substation, 19
m modifier, 31, 33, 47
s modifier, 20
translation, 19
while loop, 21

Module table, 183
more command, 128, 148
Multiple line matching

m modifier, 31, 33
s modifier, 32

my variable, 69, 71, 163, 167

N
n command, 212
Non-horizontal whitespace characters

(H matches), 45
Non-vertical whitespace characters

(V matches), 45
Number vs. string, 86, 87
Numeric fields, 119, 176

O
Object-oriented module (OO module),

232, 233
o modifier, 56
open statement, 76, 78, 108, 134, 145, 147,

148, 196
our statement, 163, 170, 171
Output buffers, 155, 156

P
pack command, 235, 236, 295
packForget operation, 251
pack geometry manager, 231
Packing widgets, 306, 308

organizing widgets, 310
structure, 310, 312
sub-widgets, 310

Padding widgets, 258, 259, 304–306
Padre debugger, 217
-padx options, 258
-pady options, 258
Pattern match, 16, 23, 44
Perl

debugger, 208
style, 223, 224
version, 142, 143

Perl 5.10, 41
features, 173
say/state features, 175, 176

Perl6::Slurp module, 82
perlcritic command, 96, 97
Perl::Critic module, 97
perldoc command, 85
perlfunc document, 85
Perl statement, 125
perltidy command, 94–96
Perl::Tidy module, 94

INDEX

323

Placeholders, 108
breakover multiple-line, 109, 110
break up text, 111
repeating lines, 111

Plain Old Documentation (POD), 85, 103
POSIX character classes, 15
Practical Extraction and Report

Language (Perl)
backreference patterns, 15–18
basic operations, 2, 3
metacharacters (see Metacharacters)
modifiers, 18
RE (see Regular Expressions (RE))

Pragma chart, 159–160
Predeclaring subroutines, 163–164
Predeclaring variables, 168
Predefine subroutines, 164
printf commands, 120, 125
printf/sprint

ASCII value, 123, 124
flags, 122
floating-point number, 122
format options, 121
hex number, 123
octal number, 123

print statement, 78, 83, 92, 105, 113, 126,
139, 146, 155, 174

Q
qr function, 54, 56

R
Radiobuttons, 257
Reading/writing options

actions, 152
file open, 150

notes, 151
reasons, 152
truncating file, 151

RE classes, 14, 15
Regex atoms, 42
Regex flags, 61
Regexp::Common module, 58–61
Regular Expression precedence (regex),

41, 42
compile

code fragment, 52, 53
disadvantage, 54
o modifier, 56
vs. run time, 53
test user input, 55, 56

list context, 43
whitespace character, 45

Regular Expressions (RE)
backreference, 15–18
comments, 33
delimiter, 34
lab exercises, 35, 36
list context, 43
metacharacters (see Metacharacters)
modifiers, 3, 18
operations, 2, 3
resources, 34
special characters, 26
variables, 23–25

rename statement, 188
re pragma, 63

debug mode, 63–65
functions, 65

require statement, 142, 159
rgb.txt file, 261
rmdir statement, 188, 189
rmtree statement, 189
Run time vs. compile time, 53, 54

INDEX

324

S
s command, 212, 216, 217
say features, 174
Scalar context, 74
Scalar vs. array vs. list, 88
Scale widgets, 270, 272, 273
Scrollbars, 266, 267
seek command, 149, 150
-selectmode option, 264
select statement, 112, 156
separator option, 289
Separator variables, 136

array separator, 137, 138
print separator, 138, 139
record separator, 136, 137

set function, 272
shift-click method, 266
-show option, 276, 277
%SIG hash variable, 140
Signal handle variable, 139–141
slurp function, 82
Slurping, 80
Smart::Comments module, 105
Smartmatch operator, 37, 38

EXPR argument, 40
given statement, 39
sorts of matching, 38

s modifier, 46
sort function, 84
split command, 30, 49
sprintf commands, 120
state features, 174, 175
-state option, 278, 279
stat function, 93, 94
Status variables, 133

$^E variable, 135, 136
$! variable, 135

$? variable, 133–135
$@ variable, 136

Subroutines calls
& and () character, 90, 91
& character, 91
() character, 91

switch statement, 174
Symbolic references, 160
Sys::Syslog module, 193
system statement, 133, 185, 191

T
tell statement, 148
Text modules

Text::Tabs, 194
Text::Wrap, 194

-text option, 242, 248
Three-argument technique, 78
-tickinterval option, 271
Time::HiRes module, 73
time statement, 143
timethese() function, 57
TK module, 225, 226

Label Demonstration program, 229
OO module, 232, 233
See Code button, 229
working, 227

Translation modifiers, 19
Two-argument technique, 77

U
undef() functions, 91, 92
unexpand statement, 194
use statement, 225
use feature pragma, 173, 174
use lib statement, 180

INDEX

325

use strict pragma
use strict ref, 160
use strict subs, 160, 161
use strict vars, 161, 162

use vars variables, 163, 170

V
V command, 216, 217
-variable option, 256
Variables, 51

p modifier, 52
variable @, 51

vars1.pl program, 116

W
wantarray statement, 74
wanted function, 190
warn commands, 220
while loop, 17, 167
Whitespace pattern-matching, 45
widget program, 227
Widgets, 225

creation, 232

types, 226, 227
wrap statement, 194, 195
write statements, 107, 112
write STDOUT statement, 114
-W switch, 208

logical errors, 205, 206
$^W variable, 207
warnings, 207
-X switch, 208

X
x command, 211, 222
x modifier, 33
xlsfonts command, 242

Y
y command, 216, 217
-yscrollcommand option, 267

Z
\z assertion, 33, 48
\Z assertion, 47

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Intermediate Regular Expressions
	Review: Basic Regular Expressions
	Basic operations
	Basic modifiers
	Basic metacharacters
	Examples: The * and + characters
	Examples: The { } characters
	Examples: The ? character
	Examples: The . character
	Examples: The [] characters
	Examples: The ^ and $ characters
	Examples: The () characters
	Examples: The | character
	Examples: The \ character

	Regular Expressions classes
	Examples: "\w" and "\d"
	Examples: "\s" and "\b"

	Backreferencing
	Example #1: Backreferencing
	Example #2: Backreferencing
	Example #3: Backreferencing

	Modifiers
	The e modifier
	The d modifier
	The s modifier
	Other modifiers

	Getting the Nth occurrence of a match
	Greedy vs. non-greedy matches
	Regular Expression variables
	What was matched
	Before and after what was matched
	Warning about $&, $`, and $'
	Special characters in Regular Expressions

	Assertions
	Looking forward and back
	Using \G

	Reading from filehandles using split
	Multiple line matching
	Using the s modifier
	Using the \A, \Z, and \z assertions

	Commenting Regular Expressions
	Alternative delimiters
	Additional resources
	Lab exercises

	Chapter 2: Advanced Regular Expressions
	Make use of the Smartmatch operator
	Using REs with Smartmatch
	Additional Smartmatches
	The given statement
	Use Perl 5.10.1 or higher

	Understand Regular Expression precedence
	Understand what is *NOT* a Regular Expression atom
	Using Regular Expressions in list context
	Naming the capture variables within the pattern match

	Match whitespace properly
	Matching "end of the line"

	Use \G
	Use the \A, \Z, and \z assertions
	Avoid capturing
	Avoid the variables $`, $&, and $'
	Method #1
	Example using @-
	Method #2

	Compile your Regular Expressions before using them
	Run time vs. compile time
	Using qr to test user input
	Using the o modifier

	Benchmark your patterns
	Use Regexp::Common
	Flags you should consider always using
	Automating /smx

	Avoid escapes
	Use the re pragma
	use re'debug'

	Understand backtracking
	Additional resources
	Lab exercises

	Chapter 3: Advanced Features
	Use my iterator variables with for loops
	Foreach loops use local variable by default

	Utilize loop labels
	Avoid using <> for file matching
	Time::HiRes
	Contextual::Return
	Indirect Filehandles
	The three-argument technique to the open statement
	Always check the return values of open, close, and when printing to a file
	Close filehandles as soon as possible
	Avoid slurping
	Creatively use the do statement
	Use the slurp() function
	Test for interactivity
	Use IO::Prompt
	Understand where to find documentation
	Sources of documentation

	Understand context
	Number vs. string
	Scalar vs. array vs. list

	Understand the => operator
	Understand subroutine calls
	Understand and/or vs. &&/||
	Use Perl::Tidy
	Use Perl::Critic
	Understand Getopt::Std
	Understand Getopt::Long
	Alternative commenting technique
	Passing notes within a Perl program
	Use Smart::Comments
	Additional resources
	Lab exercises

	Chapter 4: Advanced Formatted Output
	Review: The format statement
	The format statement
	Placeholders
	Repeating lines

	Using select
	Warning regarding the select statement

	Advanced format statement features
	Top of form
	Format variables
	Padding with zeros
	Using ^*

	printf and sprintf
	Options for printf and sprintf
	printf and sprintf flags
	Example: Rounding numbers
	Example: Modifying numbers
	Example: Converting ASCII values
	print sprintf

	The <> Operator
	Additional resources
	Lab exercises

	Chapter 5: Exploring Useful Built-in Variables
	Variables reference chart
	Use English
	Status variables
	The $? variable
	The $! variable
	The $^E variable
	The $@ variable

	Separator variables
	Input record separator
	Array separator variable
	print separators

	The signal handle variable
	Version of Perl
	Program start time
	Additional resources
	Lab exercises

	Chapter 6: Advanced File Handling
	Review: Basic file handling
	Opening and reading from files
	Opening and writing to files
	Piping in Perl

	Displaying the file position
	Moving the file position
	Opening files for reading and writing
	Open an existing file for reading and writing
	Truncating files
	Why open a file for both reading and writing?

	Making "files" within your script
	Locking files
	Flushing output buffers
	Using select

	Additional resources
	Lab exercises

	Chapter 7: Pragmas
	Pragma chart
	The use strict pragma
	use strict'ref'
	use strict'subs'
	use strict'vars'

	Predeclaring subroutines
	Predeclaring global variables
	Using new features
	Example of use feature'say' and use feature'state'
	Example of use feature "switch"
	Using all features of a specific Perl version

	Using locale
	Final note about pragmas
	Additional resources
	Lab exercises

	Chapter 8: Exploring Useful Built-in Modules
	Built-in modules
	Manipulate @INC at compile time
	Determining the location of loaded modules
	Loading modules as needed

	Module table
	Cwd
	cwd
	getcwd
	fastcwd
	Why not use a system statement?

	Env
	File modules
	File::Basename
	File::Compare
	File::Copy
	File::Path
	File::Find
	Additional useful file modules

	Math modules
	Math::BigFloat
	Math::Trig
	Additional useful math modules

	Sys modules
	Text
	Text::Tabs
	Text::Wrap

	Fatal
	Benchmark
	Getopt::Std
	Getopt::Long
	Additional resources
	Lab exercises

	Chapter 9: Debugging Tools
	Review: The -w switch
	The $^W variable
	use warnings
	The -W switch
	The -X switch

	The Perl debugger
	Debugger commands
	Getting help
	An alternative to print
	Stepping through code
	Listing code
	Setting breakpoints
	Listing breakpoints
	Continue to breakpoints
	Deleting breakpoints
	Displaying variables and subroutines

	Additional debuggers
	Understanding error messages
	use diagnostics
	Carp
	Using carp
	Using croak

	Data::Dumper
	Perl style
	Additional resources
	Lab exercises

	Chapter 10: Perl/TK Basics
	The TK module
	Types of widgets
	Exploring widget examples
	Geometry managers
	Creating widgets
	The OO nature of the Tk module
	Additional resources
	Lab exercises

	Chapter 11: Perl TK Widgets
	Frames
	Relief
	Colors

	Labels
	bitmaps
	Using other images
	text
	Text wrapping

	Buttons
	Using buttons to exit your script
	Using buttons to destroy widgets
	Unpacking instead of destroying
	Changing the cursor
	Opening a toplevel
	Lab

	Checkbuttons
	Radiobuttons
	Padding

	Listboxes
	Using selected values
	Selecting options

	Scrollbars
	Lab

	Scales
	Setting a default scale value

	Entries
	Hiding the user’s input
	Disable an entry box

	Creating menus
	Creating the menu options
	Adding radio options
	Adding check options
	Adding command options
	Adding cascade and separators

	Additional resources
	Lab exercises

	Chapter 12: Geometry Managers
	The -after and -before option
	The -anchor and -side options
	-anchor vs. -side

	The -fill option
	Padding with pack
	Managing widgets with pack
	Binding
	event

	The focus command
	Additional resources
	Lab exercises

	Index

