

Harlan Carvey

This page intentionally left blank

Elsevier, Inc., the author(s), and any person or fi rm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profi ts, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and fi les.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author
UPDATE®,” and “Hack Proofi ng®,” are registered trademarks of Elsevier, Inc. “Syngress: The Defi nition
of a Serious Security Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think
Like One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

Live Response, Forensic Analysis, and Monitoring
Copyright © 2007 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN 13: 978-1-59749-173-0

Publisher: Andrew Williams Page Layout and Art: SPi
Technical Editor: Dave kleiman Copy Editor: Judy Eby

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director
and Rights, at Syngress Publishing; email m.pedersen@syngress.com.

This page intentionally left blank

To Terri and Kylie

This page intentionally left blank

Harlan Carvey (CISSP), author of the acclaimed Windows Forensics and Incident
Recovery, is a computer forensics and incident response consultant based out of the
Northern VA/Metro DC area. He currently provides emergency incident response
and computer forensic analysis services to clients throughout the U.S. His specialties
include focusing specifi cally on the Windows 2000 and later platforms with regard to
incident response, Registry and memory analysis, and post-mortem computer forensic
analysis. Harlan’s background includes positions as a consultant performing vulnerability
assessments and penetration tests and as a full-time security engineer. He also has
supported federal government agencies with incident response and computer forensic
services.

Harlan holds a bachelor’s degree in electrical engineering from the Virginia Military
Institute and a master’s degree in electrical engineering from the Naval Postgraduate
School.

Harlan would like to thank his wife, Terri, for her support, patience, and humor
throughout the entire process of writing his second book.

Harlan wrote Parts I and II.

Author

vii

Dave Kleiman (CAS, CCE, CIFI, CEECS, CISM, CISSP, ISSAP, ISSMP, MCSE, MVP)
has worked in the Information Technology Security sector since 1990. Currently, he
runs an independent Computer Forensic company DaveKleiman.com that specializes
in litigation support, computer forensic investigations, incident response, and intrusion
analysis. He developed a Windows Operating System lockdown tool, S-Lok, which surpasses
NSA, NIST, and Microsoft Common Criteria Guidelines. He is frequently a speaker
at many national security conferences and is a regular contributor to security-related
newsletters, websites, and Internet forums. Dave is a member of many professional
security organizations, including the Miami Electronic Crimes Task Force (MECTF),
International Association of Computer Investigative Specialists (IACIS), International
Information Systems Forensics Association (IISFA), the International Society of Forensic
Computer Examiners (ISFCE), Information Systems Audit and Control Association
(ISACA), High Technology Crime Investigation Association (HTCIA), Association of
Certifi ed Fraud Examiners (ACFE), High Tech Crime Consortium (HTCC), and the
International Association of Counter Terrorism and Security Professionals (IACSP).
He is also the Sector Chief for Information Technology at the FBI’s InfraGard.

Dave was a contributing author for Microsoft Log Parser Toolkit (Syngress Publishing,
ISBN: 1932266526), Security Log Management: Identifying Patterns in the Chaos (Syngress
Publishing, ISBN: 1597490423) and, How to Cheat at Windows System Administration
(Syngress Publishing ISBN: 1597491055). Technical Editor for Perfect Passwords: Selection,
Protection, Authentication (Syngress Publishing, ISBN: 1597490415), Winternals
Defragmentation, Recovery, and Administration Field Guide (Syngress Publishing,
ISBN: 1597490792), Windows Forensic Analysis: Including DVD Toolkit (Syngress Pub-
lishing, ISBN: 159749156X), The Offi cial CHFI Study Guide (Syngress Publishing,
ISBN: 1597491977), and CD and DVD Forensics (Syngress Publishing, ISBN: 1597491284).
He was Technical Reviewer for Enemy at the Water Cooler: Real Life Stories of Insider
Threats (Syngress Publishing ISBN: 1597491292).

Technical Editor

viii

Jeremy Faircloth (Security+, CCNA, MCSE, MCP+I, A+, etc.) is an IT
Manager for EchoStar Satellite L.L.C., where he and his team architect and
maintain enterprisewide client/server and Web-based technologies. He also
acts as a technical resource for other IT professionals, using his expertise
to help others expand their knowledge. As a systems engineer with over
13 years of real-world IT experience, he has become an expert in many
areas, including Web development, database administration, enterprise
security, network design, and project management. Jeremy has contributed to
several Syngress books, including Microsoft Log Parser Toolkit (Syngress,
ISBN: 1932266526), Managing and Securing a Cisco SWAN (ISBN: 1932266917),
C# for Java Programmers (ISBN: 193183654X), Snort 2.0 Intrusion Detection
(ISBN: 1931836744), and Security+ Study Guide & DVD Training System
(ISBN: 1931836728).

Jeremy wrote Part III.

Contributing Author

ix

This page intentionally left blank

Contents

Preface . xiii
Author Acknowledgements . xxiii

Part I Perl Scripting and Live Response . 1
Built-in Functions . 2

Win32.pl . 2
Pclip.pl . 3

Running Processes . 4
Netstat1.pl . 5
Netstat2.pl . 6
Netstat3.pl . 7

Accessing the API . 8
Getsys.pl . 10

WMI . 14
Fw.pl . 15
Nic.pl . 20
Ndis.pl . 24
Di.pl . 28
Ldi.pl . 32

Accessing the Registry . 36
Bho.pl . 36
Uassist.pl . 38

ProScripts . 44
Acquire1.pl . 44

Final Touches . 47

Part II Perl Scripting and Computer Forensic Analysis 49
Log Files . 50
Parsing Binary Files . 51

Lslnk.pl . 52
Registry . 58

SAMParse.pl . 60
SECParse.pl . 68
Recentdocs.pl . 71
UAssist.pl . 75

Event Logs . 80

xi

xii Contents

Evt2xls.pl . 80
Parsing RAM Dumps . 87

Lsproc.pl . 88
Lspi.pl . 94

ProScripts . 105
Uassist.pl . 106
SysRestore.pl . 110
Prefetch.pl . 117

Parsing Other Data . 122
Cc-sort.pl . 128

Final Touches . 128

Part III Monitoring Windows Applications with Perl 131
In This Toolbox . 132

Core Application Processes . 132
Monitoring System Key Performance Indicators . 133

Monitoring System CPU Utilization . 133
Monitoring System Memory Utilization . 139
Monitoring System Network Utilization . 141

Monitoring a Core Application Process . 145
Monitoring Process Availability a Specifi c Process 145
Monitoring CPU Utilization for a Specifi c Process 149
Monitoring Memory Utilization for a Specifi c Process 152

Setting and Using Thresholds . 154
Loading an XML Confi guration File . 155
Evaluating Thresholds . 158
Taking Action . 163
Putting it all Together . 168

Core Application Dependencies . 173
Monitoring Remote System Availability . 174
Monitoring Available Disk Space . 175
Monitoring Remote Disk Availability . 177
Monitoring Remote Databases . 179
Monitoring Other Dependencies . 180

Web Services . 181
Monitoring Web Service Availability . 181
Monitoring Web Service Functionality . 183

Building a Monitoring System . 185
Summary . 192

Index . 193

Preface

About the Book
I decided to write this book for a couple of reasons. One was that I’ve now written a
couple of books that have to do with incident response and forensic analysis on Windows
systems, and I used a lot of Perl in both books. Okay … I’ll come clean … I used nothing
but Perl in both books! What I’ve seen as a result of this is that many readers want to use
the tools, but don’t know how … they simply aren’t familiar with Perl, with interpreted
(or scripting) languages in general, and may not be entirely comfortable with running
tools at the command line.

Another reason for writing this book is that contrary popular belief, there is no
single application available that does everything or provides every function an incident
responder could possibly need. By “popular”, I’m primarily referring to those folks
who don’t perform incident response on a regular basis, as well as those who hire and
have contracts with fi rms that provide incident responders and other consultants. Many
times, incident responders (such as myself) will show up on-site will a pelican case full
of equipment, CDs and DVDs full of tools and code, all of which provides a base
capability. From there, what data to retrieve and how to view, manipulate, and present
that data is dependant upon the customer … and no two are alike. In the years that I have
been performing incident response and computer forensics, while I have had customers
with similar requirements, no two engagements have been identical. Talking to other
consultants, I have heard the same thing. There simply is no such thing as an application

xiii

xiv Preface

that will read Event Log fi le, web and FTP server log fi les, or perhaps entire images, and
simply give you your answer (was the system compromised, by whom, and when) at the
push of a button. Signifi cant amounts of data collection, review, reduction, analysis, and
presentation are required, and many times I fi nd myself writing Perl scripts to perform
one or more of those functions. In fact, I have found these scripts to be useful enough
that for some, I have documented them, cleaned them up a bit, and provided them for
public consumption.

I really need to point out that this book is not about computer forensic analysis.
The purpose of this book is to show what can be (and has been) done, using Perl,
to perform incident response,computer forensic analysis, and application monitoring
on Windows systems. This book is about using Perl to complete computer incident
response, forensic analysis tasks, and application monitoring, not about the tasks
themselves, or the actual analysis.

Who Should Read this Book
This book is intended for anyone who has an interest in useful Perl scripting, in particular
on the Windows platform, for the purpose of incident response, and forensic analysis, and
application monitoring. While a thorough grounding in scripting languages (or in Perl
specifi cally) is not required, it helpful in fully and more completely understanding the
material and code presented in this book. This book contains information that is useful to
consultants who perform incident response and computer forensics, specifi cally as those
activities pertain to MS Windows systems (Windows 2000, XP, 2003, and some Vista).
My hope is that not only will consultants (such as myself) fi nd this material valuable, but
so will system administrators, law enforcement offi cers, and students in undergraduate
and graduate programs focusing on computer forensics.

Getting Started
What is Perl?
Technically, Perl stands for “practical extraction and report language”, and was originally
developed as a general purpose programming language for manipulating text, but has
grown into something much more. Perl is now used for a wide range of purposes, from
automating system administration tasks, to use in web-based shopping carts, network-
and web-development, etc.

 Preface xv

Perl is an interpreted language, which means that once you’ve written your source
code fi le, you don’t need to compile the code into a standalone executable fi le, the
way you do with other programming languages such as C or C++. Rather, you launch
the interpreter, telling it to run your script, further passing any additional arguments that
may be necessary. The interpreter checks and translates your code into something the
operating system can use and understand, and then executes the commands in the script.
This is a high-level view of things, of course, but my goal with this book isn’t to teach
you the philosophy of interpreted programming languages, but instead to give you
something you can use.

Technical descriptions and the design of the programming language aside, Perl is a
powerful tool for just about anyone involved with computers. Perl is extremely versatile,
and can be used to perform a wide variety of tasks, some of which we’ll be looking at
in this book.

Why use Perl?
Why use Perl? That’s a great question.

One reason to use Perl is that it is fairly ubiquitous. There are a great number of
platforms that have a version or distribution of Perl available. While our sole concern
in this book is the Windows platform, Perl runs on Linux and Mac OS/X, as well as
other platforms. What this means is that an examiner is not restricted to a specifi c platform
on which to perform forensic analysis using Perl. With some care, Perl scripts can be
written to run multiple platforms. I’ve written Perl scripts on a Windows system running
on Intel hardware that ran equally well and produced identical output (given the same
input fi le) on a Mac PowerPC system. This may be a concern where an examiner has
a preference for her examination platform, or has some unique tools that are specifi c
to that platform that she prefers to use for her analysis. Another concern may be when
performing static analysis of Windows portable executable (PE) fi les or other potentially
malicious code. On a Linux or Mac OS/X system, for example, the examiner won’t
suffer any ill effects if the executable fi le being examined is accidentally launched.

One of the major aspects of incident response and computer forensic analysis that
I’ve seen is that no two incidents or investigations are alike. Even given nearly-identical
computing infrastructures, different customers have different questions, based on their
own concerns and the political make-up (i.e., personalities and goals of managers, etc.)
of their organization. What this means is that when responding to an incident or
performing forensic analysis, your tools may allow you to extract the raw data,

xvi Preface

but you’re going to need some method of manipulating, correlating, and presenting that
data in a manner that is required by the customer.

I’ve conducted examinations involving MS Outlook PST fi les, and where one
examination required that I list the attachments by name, another required that I correlate
emails and attachments found based on a keyword search against fi lenames within the
acquired image that were founding during a search using the same list of keywords.

The point of this is that you’re rarely going to fi nd a commercial or freeware
application that you can use during your examination, where all you have to do is
click a button and the output will be exactly what you need, or (if you’re a consultant)
what your customer is asking for. Most available applications allow you to view the raw
data in some form, and may assist you in doing a modicum of correlation, if any at all.
Beyond that, however, it’s up to the examiner to perform any additional correlation
and presentation of the data that has been found. Sometimes this may require that the
examiner translate binary data into something human-readable using a template or
guide, or parsing through hundreds (or even thousands) of lines of log entries to extract
those that are relevant, or perhaps correlate data between multiple fi les. Being able to
produce a utility to perform this function in fairly short order can be of great benefi t
to an examiner as well as to her investigation.

Another example that comes to mind is running searches (for keywords, credit card
numbers, social security numbers, etc.) across an acquired image and getting massive
amounts of data, on the order of tens (or hundreds) of thousands of hits. These may need
to be managed by fi lename path, credit card type, etc., and having to do this by hand can
take several examiners days or even weeks to perform. However, with some programming
ability, just-in-time utilities can be written to effi ciently and accurately perform highly
repetitive tasks, freeing the examiner to focus on other tasks.

As you can see, Perl has a number of advantages, but those advantages could apply
to other languages, as well.

How is Perl Used Within the Computer
Security Community?
Perl is used extensively within the computer security community. (Not bad for an
opening sentence, eh?)

The SleuthKit (http://www.sleuthkit.org) makes use of Perl. From the December 15,
2003 edition of The Sleuth Kit Informer:

 Preface xvii

… it was originally designed to be a CGI script, so it was in one BIG Perl fi le …
Further, the description for The Sleuthkit includes, “ … The Sleuth Kit is written

in C and Perl…”.
The Metasploit Project (http://www.metasploit.org) makes use of Perl. HD

Moore wrote the PEX, or Perl Exploit Library, a Perl module that “provides an
object-oriented interface into common exploit development routines.”

ProDiscover, the incident response and computer forensic analysis application from
Technology Pathways (http://www.techpathways.com) uses Perl as its programming
language. ProDiscover allows a forensic examiner to acquire images of systems, and
then open those images for analysis. The ProDiscover graphical user interface (GUI)
is fairly straightforward and intuitive, but Perl, implemented as ProScripts, can be used
to automate tasks within the loaded project. The ProDiscover installation routine
includes the ActiveState (http://www.activestate.com) ActivePerl distribution, as well as
the ProScript.pm Perl module that provides the interface so that Perl can be used
to interact with images loaded into ProDiscover projects. The Incident Response edition
of ProDiscover also allows the responder to automate tasks such as distributing and
connecting the PDServer agents, collecting volatile information, acquiring live
images, and then disconnecting from the agent.

One of the reasons I use Perl in the work I do is that many times, there are no
available tools that will do the work I need to do. I may be working on one investi-
gation where I need to parse Registry fi les, and on the next one, I need to extract
data from MS OutLook PST fi les. I’ve had multiple cases where I’ve had to parse
PST fi les, but the requirements for each case was different; in one case, I had to simply
obtain a list of fi le attachment names, whereas in another I had to correlate the list
of attachment fi le names to the output of a keyword search. This work could be
done by hand, but would take an inordinate amount of time. However, the point is
that there are very often no available tools or applications that will allow you to do
everything you may need to do; when performing forensic analysis, you may have
no trouble obtaining the raw data, but that can often be thousands or even hundreds
of thousands of entries, and the analysis of that data is the key to the work you need
to do. Perl offers an excellent solution, in that code that you or someone else has
previously written can be used to fi ll the gap quickly, and allow you to complete
your work effi ciently and more importantly, accurately.

xviii Preface

Getting Up and Running
Installing Perl
The fi rst thing you need to do in order to get started using Perl is to install a
distribution for your platform. Perl has been ported to a number of platforms, as
shown on the Ports page at the Comprehensive Perl Archive Network, or CPAN
(http://www.cpan.org/ports). The Perl distribution used throughout this book is
the ActivePerl distribution available from ActiveState. Once you’ve downloaded the
most recent distribution of Perl, go ahead and install it. I usually install Perl into
the “C:\Perl” directory, but you can install it into whichever directory you fi nd
most useful.

Adding Modules
Perl ships with quite a number of installed modules. Modules are libraries of code
that people have written that make repetitive tasks easier. Rather than constantly
rewriting the code you use from scratch (say, to open sockets and connect to a server
on the Internet) you can access the functionality you need in any one of a number
of available modules. To see what modules were installed with Perl, you can click
your way through the Start menu until you get to the ActivePerl Documentation
page, which opens in your web browser.

Another way to manage Perl modules is to use the Perl Package Manager, or “ppm”
that ships with ActivePerl. You access ‘ppm’ via the command line; simply open a command
prompt, change directories to your Perl directory, and type “ppm /?” to get a list of
commands you can use.

If you’re not entirely comfortable with the command line, you can type “ppm” at
the command prompt (with nothing else) and the ppm graphical user interface (GUI)1
will open, as illustrated in Figure 1.

1 http://aspn.activestate.com/ASPN/docs/ActivePerl/5.8/faq/ActivePerl-faq2.html#ppm_gui

 Preface xix

Perl Editors
When writing Perl scripts, you need an editor of some kind. Back in my early days
of graduate school (1994), those of us in the Electrical and Computer Engineering
curriculum would write HTML pages using Notepad as our editor. You can use
Notepad to write Perl scripts, as well, but I’ve found that using Notepad can make
writing and troubleshooting Perl scripts a bit harder than it needs to be. When using
an editor, the things I look for are syntax highlighting or color-coding, automating
indenting (following curly brackets, etc.), and line numbering. These attributes make
it easier to recognize my errors before I try running my code, and tracking them
down when an error actually occurs.

Figure 1 PPM GUI (ppm-gui.tif)

xx Preface

There are a number of editors available for Perl. My personal favorite is UltraEdit.2
Not only is UltraEdit an excellent Perl editor, but I use it to edit and view a variety
of other formats, to include binary and hexadecimal. UltraEdit is a very versatile and
useful tool.

The Perl Code Editor3 (PCE) is a free integrated development environment (IDE)
for Perl. Like UltraEdit, PCE includes syntax highlighting, line numbering, and
auto-indenting, as well as a number of other features.

There are a number of other freely available Perl editors and IDEs, such as the
Open Perl IDE,4 Perl Express,5 and PerlEdit.6 Personally, when I look for a Perl
editor or IDE, I look for a couple of things. I like line numbering (making it easy to
fi nd my mistakes), syntax highlighting (letting me catch my mistakes), and auto-indenting
(code is automatically indented inside curly brackets, etc.), among other things.
There are other nice-to-have features, but those are my three big ones. Take the
opportunity to try some of the editors and IDEs that have been mentioned, or
Google for others and fi nd one that you like.

Learning to Program
There are a number of ways that you can learn to program Perl (or any other
programming language, for that matter), and it really depends on your own personal
preference. One way is to take a class and learn through formal instruction. I had
programming classes in graduate school … I was required to take C, for example, and
when I was much younger, I took courses in BASIC, and even took Pascal in high
school. There are number of ways to obtain formal instruction of this nature, to include
through a local community college. However, some may fi nd this type of instruction
too structured, teaching only some of the very basic uses of the programming language,
such as how to do relatively trivial things like open fi les.

If you’re so inclined, you can teach yourself, simply by diving in and doing it.
There are a number of excellent resources available at of all places, your local library.
By reading books and following the examples, you can learn to program quite quickly,
picking up the basics before progressing on to more complex and useful tasks.

2 http://www.ultraedit.com/
3 http://www.perlvision.com/pce/
4 http://open-perl-ide.sourceforge.net/
5 http://www.perl-express.com/
6 http://www.indigostar.com/perledit.html

 Preface xxi

An additional resource that is available is code that others have written. Some
folks learn to program by looking at the steps others have taken to accomplish a task,
and adding on to it, or modifying it in some other way to meet their needs. There are a
number of resources available, through web sites, blogs, user forums, etc. There are
number of resources that provide archives for code others have written and submitted,
and there are folks out there who are willing to help, and provide assistance and
advice (provided, of course, you’re making an effort to perform the task yourself and
not asking someone to do your homework for you).

Writing Your Own Code
You’ll see in the code throughout this book and on the accompanying DVD that I have
my own programming style … there are certain ways that I do certain things in my
code, and for me, that makes the code stand out. My hope is that it makes it easier for
others to read and use, as well. Others have their own style, particularly in formatting.
What’s that joke about lawyers and opinions? Well, put fi ve Perl programmers in a room
with a task to accomplish, and as long as that task is beyond a simple “print” statement,
you’ll likely get fi ve different versions of code as a result. Then, let them each look at the
others and you’ll likely get more. I mention this because I don’t want you to think that
my way of coding is THE way; it’s simply A way. Many times, I will break certain tasks
down into separate lines or sections of code, with documentation, where a single line
may have been more elegant. I do this so that someone else, perhaps without as much
background in either the problem or in Perl can then look at the code and have an
easier time understanding what I did. There are also times where that “someone else” is
me, six months or a year later. Sometimes elegance and speed have to give way to
understandability and the ability to use the code again at a later date.

Running Perl Scripts
Perhaps the biggest issue I have had with my fi rst two books and Perl scripts is the
inevitable emails that I get … “I double-clicked the Perl script and a black box fl ashed
on the screen … what do I do?” Questions like this come from simply being (a) far
too familiar and comfortable with GUI tools, and (b) unfamiliar with scripts of any
kind (to include batch fi les) and the command prompt.

To run most Perl scripts, you need to open a command prompt, navigate to the
appropriate directory, and then type in a command, by hand, fi nally hitting the Enter
key. I know it sounds fl ippant, but I thought that perhaps breaking it down would
make the process a bit easier to digest. In many cases, you may need to include

xxii Preface

parameters or arguments with the command; in essence, additional instructions which
the script will process based on its code, and hopefully give you the desired result.

Organization of the Book
Part I
Part I addresses the use of Perl when working with live systems, as when an administrator
is troubleshooting an issue, or when responding to an incident.

Part II
Part II covers the use of Perl when performing forensic analysis of fi les after an image
has been acquired of the system.

Part III
In Part III we will be focusing on monitoring the core application processes, the
core application dependencies, network connectivity, Web services, and log fi les.

Download the Code
Visit www.syngress.com/solutions to download the Perl scripts from this book.

I’d like to take this opportunity to acknowledge the efforts of a couple of folks who
were instrumental to this book being written. First, I’d like to acknowledge God for
blessing me, and my family for supporting me through the process of writing this
book, as well as the others. I’d like to thank Dave Roth for his inspiration that started
back in 1999, and for all of his assistance along the way. Dave provided support as
I attempted to use his Perl modules, and even provided the drive to get me to present
at my fi rst conference. I’d like to thank Dave Schultz, whom I met while working
for Trident Data Systems, for being patient as I fumbled, and for providing me with
some useful programming hints that I still use today. I’d like to thank Jesse Kornblum,
Andreas Schuster, and Didier Stevens for their drive and desire to push the envelope
in the area of forensic analysis.

I’d like to thank the members of law enforcement who have asked for my help,
and then acknowledged it. In a community that seems to harbor the expectation of
free tools and tech support, it’s a wonderful feeling when someone thanks you for
your time and assistance.

There may be others that I’m missing, but I’d like to send out a heartfelt “thank you”
to all those who chided (dare I say, “made fun of”) me for using Perl in the fi rst place …
I know that some of you were kidding, while some of you were serious. Hopefully,
folks that did both are reading these words.

Author Acknowledgements

xxiii

1

Part I

Perl Scripting and
Live Response

Solutions for this Part:

■ Built-in Functions

■ Running Processes

■ Accessing the API

■ WMI

■ Accessing the Registry

■ ProScripts

2 Part I • Perl Scripting and Live Response

This Part focuses on the use of Perl when extracting data from a live system, as part
of live response. “Live response” is a general term used to describe activities that are
performed when information is needed from a system while it is still running. This
most often involves collecting volatile data from a system, or data that is only available
when the system is powered on and running. Live response activities can include
something as simple as an administrator troubleshooting an issue on a system, or
collecting process and network connection information from a system prior to
powering the system down and acquiring an image of the system’s hard drive. These
activities can also include inventory control (determining who’s logged into a system,
what software is installed on a system, and so forth), and can be performed locally
(while the administrator is sitting at the console) or remotely, over the network.

Built-in Functions
ActiveState Perl comes with several built-in Windows (i.e., Win32) functions that
allow you to access and retrieve specifi c information from a Windows system. For
example, you can determine the current working directory (Win32::GetCwd()), the
system architecture, and type of CPU of the system (Win32::GetArchName() and
Win32::GetChipName(), respectively), as well as a number of other very useful pieces
of information. All of these functions are simply interfaces into the appropriate
Windows application program interface (API) function calls, and allow the programmer
to quickly retrieve the information they’re looking for.

Win32.pl
Demonstrates the use of some of the Perl Win32 built-in functions:
use strict;

use Win32;

print “Architecture : ”.Win32::GetArchName().“\n”;

print “Chip : ”.Win32::GetChipName().“\n”;

print “Perl Build : ”.Win32::BuildNumber().“\n”;

print “Node Name : ”.Win32::NodeName().“\n”;

print “Login Name : ”.Win32::LoginName().“\n”;

print “OS Name : ”.Win32::GetOSName().“\n”;

my ($str,$maj,$min,$build,$id) = Win32::GetOSVersion();

print “$str $maj $min $build $id\n”;

 Perl Scripting and Live Response • Part I 3

On my test system the output from this script appears as follows:
C:\Perl>win32.pl

Architecture : x86

Chip : 586

Perl Build : 819

Node Name : WINTERMUTE

Login Name : Harlan

OS Name : WinXP/.Net

Service Pack 2 5 1 2600 2

As you can see, some of this information can be quite useful during incident response.
Check the ActiveState Perl documentation for a complete list of Win32 functions.

Pclip.pl
While not a built-in function, ActiveState Perl ships with several Perl modules that
are specifi c to the Windows platform. For example, the Win32::Clipboard module
allows you to set or retrieve the contents of the Windows Clipboard.
use strict;

use Win32::Clipboard;

my $clip = Win32::Clipboard();

my $clipboard;

if ($clipboard = $clip->Get()) {

 print “Clipboard Contents\n”;

 print “-” Χ 20,“\n”;

 print $clipboard.“\n”;

}

else {

 print “Error retrieving clipboad contents:
”.Win32::FormatMessage(Win32::GetLastError()).“\n”;

}

Many times during incident response, there may be information available on the
clipboard that may be of use to the investigator, such as portions of an e-mail or document,
a password, or text transferred between windows on the desktop. The Win32::Clipboard
module allows you to retrieve the contents of the clipboard, and display it in any way
that is useful to you. Pclip.pl is a very simple example of the use of the module. Consult
the Perl “plain old documentation” (POD) for the module for some ideas of a more
complete script that is capable of handling bitmaps, lists of fi les, or other data formats.

4 Part I • Perl Scripting and Live Response

As an example, I was looking up some directions to a location that I needed to
visit, and that I had to provide to a friend. I found the street address of the location
and selected it in one Web page window, copied it, and pasted it into the e-mail that
I was preparing to send. Afterward, I ran pclip.pl and this is what I got back:
Clipboard Contents

––––––––––––––––––––

123 Fake Street

Imagine what people copy into their clipboards throughout the day, many without
really understanding what happens. I suggest that just as an experiment, you should
go around an offi ce or a school, or you can even do this at home, and simply open
a Notepad window, place the cursor anywhere within the window, and press Ctrl-V.
Whatever is in the clipboard will be pasted into Notepad. Pclip.pl allows you to
automate this collection process.

Running Processes
When performing live response, we are working with and interacting with a live,
running system. Many times, when responding to an incident, a user may still be logged
into the system. In some cases, such as employee workstations within an organization,
this user may be the employee themselves. In others, such as in server rooms and data
centers, this user will most likely be a system administrator. Often, an incident will occur
and we will need to log into the system ourselves (as a consultant, I always have the
system administrator do that) in order to obtain information from a system. The point
is that in order to collect information from a live system, there has to be an account
logged into the system, either at the console (via the keyboard) or over the network.

As the system is live and running, there are processes running, threads being executed,
and code being processed. This is how we interact with the system; we “ask” the system
for information by running processes ourselves. Our Perl scripts may be processes, but
many times it is simply much easier to run external, third-party tools, or even tools that
are native to the system itself, in order to get the information we need. For example,
let’s say that we’d like to get a list of open network connections from a system. The fi rst
thing that comes to mind as a means of requesting this information from the system
is the native utility, netstat.exe.

One question that may immediately come to mind is, if I can run netstat.exe
(or any other tool) from the command line, why bother to do it via a Perl script? Well,
there are a couple of very good answers to that. One is that by including the use of the

 Perl Scripting and Live Response • Part I 5

tool or utility in a Perl script (or batch fi le), we have a form of self-documentation.
Documentation is a very important aspect of incident response. Second, many of the
tools we may want to run on systems have a number of command-line arguments, and
I don’t know about you, but sometimes in the heat of the moment, I may not be able
to keep that information straight, particularly at 2:30 a.m. when I’m trying to collect
information from systems’ that may have been compromised. So, by including the tool
or utility in a Perl script, I have a degree of automation that prevents me from making
mistakes, particularly through repetition. Finally, it’s not often that I deal with only one
system, or one tool or utility. Most often, I’m responding to 10, 50, or 100 systems, and
I’m running a number of different tools on each of those systems. Using a Perl script, I’m
able to put everything into a single command so that when the situation changes, I’m
prepared. That way, if something happens further down the road and someone asks me
what I did, I can refer back to the Perl script and the copies of the tools I ran.

So, there are a couple of ways that we can run programs on a system. Using
netstat.exe, we’ll take a look at several of them. Do not think that these are the only
ways to address this particular issue. One of the strengths of Perl is that there is
usually more than one way to complete a task. What I’m going to do here is show
you some of what I have come up with, but this does not mean that these methods
or Perl scripts are the only way to do things.

Netstat1.pl
Perhaps the simplest way to launch external programs in Perl is to use the system()
function. The system() function simply forks a child process from a parent process,
which waits for the child process to complete, and then exits. A very simple use of
the system() function, using netstat.exe as our example, is as follows:
use strict;

my @args = (“netstat”, “-ano”);

system(@args);

While this could have been much simpler in only a single line, simplicity or
elegance isn’t the issue here. What happens when we run this code is that the output
of our command appears at the console, or standard output (i.e., STDOUT). So all
we’ve really done here is added a layer of abstraction and not really bought ourselves
anything useful. In order to save the output of the command, for example, we’d still
need to use the redirection operator at the command prompt:
C:\>perl nestat1.pl > netstat.log

6 Part I • Perl Scripting and Live Response

That’s really no different from not using Perl at all:
C:\>netstat –ano > netstat.log

So, a bit of extra effort, but it would appear that we really haven’t bought ourselves
anything. Now, this might be different if we were using this script to run multiple commands;
after all, wouldn’t we then be benefi ting from automation? During incident response,
you’re usually under pressure, either from your boss or the clock, or you’re tired because
it’s 3:00 a.m., and the fi rst thing that will happen is that you’ll forget a command or
mistype a command or something that will be frustrating under those conditions.
By linking the commands together into a script, we can now type in a single command,
a couple of short keystrokes, and have everything run for us. However, at this point,
we really don’t have anything much more than a batch fi le contained in a Perl script.
We haven’t taken full advantage of the power of Perl to make our jobs easier.

Netstat2.pl
Another way to run external commands through Perl is to use backticks. Backticks are
not the single quote operator on your keyboard; rather the backticks are the slanted
single quote operator. Using the backtick operator, you can access system commands
or even external commands (replace netstat.exe with your program of choice, ensuring
that it is located in the PATH). For example, let’s call the following code “netstat2.pl”:
#! c:\perl\bin\perl.exe

use strict;

my @netstat = ‘netstat -ano’;

map{print “$_”}@netstat;

Notice that we launch netstat.exe with the “a,” “n,” and “o” switches, and collect the
output of the command, whatever it may be, into a Perl list (or array). From there, the
script fi nishes by simply printing out what’s in the list. Now, the output of the command
isn’t at the console (STDOUT); rather, we’ve got control of that output and we can
do what we like with it.

 Perl Scripting and Live Response • Part I 7

Now we’re at the point where we’re making our jobs a little easier. For example,
I can fi lter through the output, looking for a particular Internet Protocol (IP) address,
or skipping lines that contain the loopback address (127.0.0.1). I can minimize the
output, showing only the things I want to see, rather than showing me everything.
I can fi lter the data, showing only those network connections that are in a particular
state, such as LISTENING, TIME_WAIT, or ESTABLISHED. The point is, we’re
now making our jobs easier by running a command of our choosing and being able
to manage the output of that command.

Netstat3.pl
The Win32::Job module provides a bit more granularity of control when creating
and running processes, as shown in netstat3.pl below.
#! c:\perl\bin\perl.exe

use strict;

use Win32::Job;

eval {

 my $job = Win32::Job->new();

 my $result = $job->spawn(“netstat.exe”,“netstat.exe -ano”);

 die “Value is undefi ned. ”.$^E.“\n” unless (defi ned $result);

 my $ok = $job->run(60);

};

print $@.“\n” if ($@);

Master Craftsman

Extending the Use of Backticks
You can use the backticks to not only launch applications on the system, or
even applications and programs external (i.e., not native) to the system, but also
to access native commands, such as “dir.” “Dir” doesn’t exist as an executable
fi le on a system, but it is an accessible command.

Other things you can do is include a list of commands in an array (such as
dir /ah, netstat –ano, and so forth) and then iterate through the list, running
each command individually. If you’re interested in running several commands
and correlating the output or fi ltering the output, the Perl lists make that very
easy to do.

8 Part I • Perl Scripting and Live Response

When we run netstat3.pl, we get the same sort of output we would expect to see
if we were running the netstat –ano command from the command line; however, in
this case, we are able to use the Win32::Job module to do things such as limit the
amount of time that the process runs. In netstat3.pl, we limit that time to 60 seconds,
which is a long time, and probably more time than we need in most cases. However,
I have seen simple command-line tools (such as netstat.exe) hang when run on some
systems, or simply take an inordinate amount of time to run (due to high processing
overhead from other processes, and so forth). In such cases, we may want to limit
how long the process runs, and that’s where Win32::Job comes in.

There are a couple of other functions within the Win32::Job module that may be
of use, depending upon what you’re doing and the level of control of the process you
wish to achieve. For example, you can use the spawn() function to redirect STDOUT
and STDERR messages to log fi les, or you can use the watch() function to provide
a handler for the process, in order to achieve an even more granular level of control
over the process. Check the POD for the Win32::Job module and for the Win32::
Process module, for other ideas on how to run external processes from within
Perl code.

Also notice the use of the eval{} block. This allows us to tell Perl to evaluate the
code, and trap any errors that may occur. One of the big ones that occurred when I was
writing and testing the above code was that I had misspelled the name of the executable
(i.e., “nestat.exe” instead of “netstat.exe”). While this is not an error that would cause
a major application crash, the error was trapped, nonetheless. The eval{} block is useful
for trapping such errors, and even allowing your code to progress in the event of an
error that you simply wish to recover from (and not have your entire script bomb out!).

Accessing the API
When performing live response or perhaps even analyzing fi les retrieved from a system
during live response, you may want to access the Windows API. The Windows API
can provide some useful functionality, already partially built. Fortunately, Microsoft
exposes a good portion of the public API via the Microsoft.com Web site, and in
addition, there are books available that describe other API functions that are accessible,
albeit not fully documented.

In order to access the Windows API, you need to be sure that you have the
Win32::API module installed. You can check to see if this module has been installed
in your Perl distribution by typing the following command at the command prompt.
C:\perl>ppm query Win32-api

 Perl Scripting and Live Response • Part I 9

Figure I.1 illustrates the output of this command on my system.

Figure I.1 Querying for the Win32::API Module

You’ll notice in Figure I.1 that when I ran my query for “win32-api,” all of the
modules that began with that name were returned. What is this module named
“Win32-API-Prototype1”? This is a module created by Dave Roth that encapsulates
the Win32::API module and makes the Win32::API module easier to use.

NOTE

Figure I.1 shows the output of two “ppm” commands. The fi rst, the query
command, queries the current installation to determine the version of the
module that is installed. In this case, the version of the Win32::API module
that is installed is 0.41. The second command is a “search” command that
looks for the currently available versions of modules that start with “win32-api.”
The currently available version of the Win32::API module is 0.46. I can update
my copy of the module by typing “ppm update Win32-API.”

1 www.roth.net/perl/prototype/

10 Part I • Perl Scripting and Live Response

Getsys.pl
When performing incident response, some of the information you may want to get
from the live system includes things such as the current system time and the uptime
of the system. All of these pieces of information can be retrieved via the Windows
API. To do so, we’ll use Dave’s Win32::API::Prototype module to access a couple of
Windows API calls:
#! c:\perl\bin\perl.exe

#––

getsys.pl

This script demonstrates the use of the Win32::API::Prototype

module to retrieve time-based information from the local system

#

The only required module is Win32::API::Prototype:

ppm install http://www.roth.net/perl/packages/win32-api-prototype.ppd

#

Usage: [perl] getsys.pl

#

Copyright 2001–2007 H. Carvey

#––

use strict;

use Win32::API::Prototype;

my @month = qw/Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec/;

my @day = qw/Sun Mon Tue Wed Thu Fri Sat/;

TIP

To install the Win32::API::Prototype module, type the following command:
C: \perl>ppm install http://www.roth.net/perl/packages/win32-api-

prototype.ppd

NOTE

By “easier to use” on the Web page that describes the Win32::API::Prototype
module, Dave provides several examples of how to use a module to access
API functions, as well as how to set up and format the various arguments.
Dave uses a list (array) called “@ParameterTypes” to describe and hold the
various types of the parameters or arguments of the function.

 Perl Scripting and Live Response • Part I 11

Meanings of the following constants can be found here:

http://msdn.microsoft.com/library/default.asp?url

=/library/en-

us/sysinfo/base/gettimezoneinformation.asp

my @tz = qw/TIME_ZONE_ID_UNKNOWN TIME_ZONE_ID_STANDARD TIME_ZONE_ID_DAYLIGHT/;

ApiLink(‘kernel32.dll’,

 ‘VOID GetSystemTime(LPSYSTEMTIME lpSystemTime)’)

 || die “Cannot locate GetSystemTime()”;

ApiLink(‘kernel32.dll’,

 ‘DWORD GetTimeZoneInformation(

 LPTIME_ZONE_INFORMATION lpTimeZoneInformation)’)

 || die “Cannot locate GetTimeZoneInformation()”;

The return value is the number of milliseconds that

have elapsed since the system was started.

This value rolls over to zero after 49.7 days

ApiLink(‘kernel32.dll’,

 ‘DWORD GetTickCount()’)

 || die “Cannot locate GetTickCount()”;

Get the system time

Ref: http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/sysinfo/base/getsystemtime.asp

my $lpSystemTime = pack(“S8”, 0);

GetSystemTime($lpSystemTime);

my $str = sys_STR($lpSystemTime);

print “System Time : $str\n”;

my ($day,$hour,$min,$sec) = getUpTime();

print “System Uptime: $day days, $hour hours, $min min, $sec sec.\n”;

print “\n”;

my $lpTimeZoneInformation = pack ‘lA64SSSSSSSSlA64SSSSSSSSl’,

0, ‘ ’ Χ 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, ‘ ’ Χ 64, 0, 0, 0, 0, 0, 0, 0, 0, 0;

my $bias;

my $standardName;

my $standardBias;

my $dayLightName;

my $dayLightBias;

my @c;

my @f;

my $ret = GetTimeZoneInformation($lpTimeZoneInformation);

($bias, $standardName, $c[0], $c[1], $c[2], $c[3], $c[4], $c[5], $c[6], $c[7],

 $standardBias, $dayLightName, $f[0], $f[1], $f[2], $f[3], $f[4], $f[5],
$f[6], $f[7],

12 Part I • Perl Scripting and Live Response

 $dayLightBias) = unpack ‘lA64SSSSSSSSlA64SSSSSSSSl’, $lpTimeZoneInformation;

print “Return code => ”.$tz[$ret].“\n”;

The bias is the difference, in minutes, between UTC time and local time.

Convert to hours for presentation

UTC = local time + bias

print “Bias => “.$bias.” minutes\n”;

if (1 == $ret) {

 print “Standard Bias => “.$standardBias.” minutes\n”;

}

elsif (2 == $ret) {

 print “Daylight Bias => “.$dayLightBias.” minutes\n”;

}

else {

do nothing

}

$standardName =~ s/\00//g;

$dayLightName =~ s/\00//g;

print “StandardName => “.$standardName.”\n”;

print “DaylightName => “.$dayLightName.”\n”;

Convert returned SystemTime into a string

sub sys_STR {

 my $lpSystemTime = $_[0];

 my @time = unpack(“S8”, $lpSystemTime);

 $time[5] = “0”.$time[5] if ($time[5] =~ m/^\d$/);

 $time[6] = “0”.$time[6] if ($time[6] =~ m/^\d$/);

 my $timestr = $day[$time[2]].“ ”.$month[$time[1]-1].“ ”.

 $time[3].“ ”.$time[4].“:”.$time[5].“:”.$time[6].“ ”.

 $time[0];

 return “$timestr”;

}

sub getUpTime {

 my $count = GetTickCount();

 my $sec = 1000;

 my $min = $sec * 60;

 my $hour = $min * 60;

 my $day = $hour * 24;

 my ($temp,$d,$h,$m,$s);

 if ($count > $day) {

 $d = (split(/\./,$count/$day,2))[0];

 $temp = $count%$day;

 Perl Scripting and Live Response • Part I 13

 $h = (split(/\./,($temp/$hour),2))[0];

 $temp = $temp%$hour;

 $m = (split(/\./,($temp/$min),2))[0];

 $temp = $temp%$min;

 $s = (split(/\./,($temp/$sec),2))[0];

 }

 elsif ($count > $hour) {

 $d = 0;

 $h = (split(/\./,($count/$hour),2))[0];

 $temp = $count%$hour;

 $m = (split(/\./,($temp/$min),2))[0];

 $temp = $temp%$min;

 $s = (split(/\./,($temp/$sec),2))[0];

 }

 elsif ($count > $min) {

 $d = 0;

 $h = 0;

 $m = (split(/\./,($count/$min),2))[0];

 $temp = $count%$min;

 $s = (split(/\./,($temp/$sec),2))[0];

 }

 elsif ($count > $sec) {

 $d = 0;

 $h = 0;

 $m = 0;

 $s = (split(/\./,($count/$sec),2))[0];

 }

 return ($d,$h,$m,$s);

}

Running the script returns the following information from my system:
C:\Perl>getsys.pl

System Time : Fri Aug 31 22:57:38 2007

System Uptime: 0 days, 12 hours, 6 min, 35 sec.

Return code => TIME_ZONE_ID_DAYLIGHT

Bias => 300 minutes

Daylight Bias => −60 minutes

StandardName => Eastern Standard Time

DaylightName => Eastern Daylight Time

14 Part I • Perl Scripting and Live Response

Retrieving information from a Windows system via the API can be useful, but it
can also lead to problems. Many times, APIs will change between versions of Windows
(such as between Windows 2000 and XP), or they may even change when a Service
Pack is installed or updated. As such, direct use of the Windows API to collect some
information from systems should be thoroughly tested before being deployed on
a widespread basis.

WMI
The Windows Management Instrumentation (WMI) is a great way to obtain information
from live Windows systems. WMI is really nothing more than many of the hard-core
details of accessing the Windows API that have been encapsulated and made easier to
use. Instead of having to write code that accesses a system to determine what version
of Windows it is and then take appropriate steps based on that version, an administrator
can write code that will work (in most cases) consistently across Windows 2000 all the
way through Vista. This means that an administrator or incident responder can request
a list of the active processes from systems from across the enterprise, either locally on
the host systems or remotely from a centrally located management console, and use
the same code to get the same results, regardless of the version of Windows being
queried. The advantage of this is that during incident response, many times some tools
work better on some systems than on others and some tools simply do not work at all.

Master Craftsman

Getting Even More Information
You can extend the getsys.pl script to get things such as the current system
time, the current Universal Coordinated Time (UTC) (UTC is analogous to
Greenwich Mean Time [GMT]), the system name, the name of the logged on
user, and so forth. For example, to get the system name, you might use the
GetComputerNameA2 API function, and to get the name of the logged on
user, you might use the GetUserNameA3 API function.

2 http://msdn2.microsoft.com/en-us/library/ms724295.aspx
3 http://msdn2.microsoft.com/en-us/library/ms724432.aspx

 Perl Scripting and Live Response • Part I 15

Another advantage of WMI is that it provides a cleaner, easier to use interface to
some (albeit not all) of what you can access via the Win32::API and Win32::API::
Prototype modules. For example, you can access information about the microprocessor,
physical memory, hard drives, and other devices on the systems.

The Win32::OLE module provides the interface through which you can use Perl
to access the WMI classes. The WMI classes provide access to operating system classes4,
such as classes that provide access to information pertaining to fi les, processes, drivers,
networking, operating system settings, and so forth. The computer system hardware
classes5 provide access to information about devices on the system, such as the
processor(s), hard drivers, batteries, fans, and so forth.

Fw.pl
While one advantage of the WMI classes is that they provide a common interface
to certain aspects of the Windows platform regardless of the operating system version,
one disadvantage is that some versions of Windows have functionality that others
do not. For example, Windows XP Service Pack 2 and Windows 2003 have a built-in
fi rewall that is part of the Security Center, something neither Windows NT 4.0
(WMI classes were installed as a separate download for Windows NT) nor
Windows 2000 have.
#! c:\perl\bin\perl.exe

#––

fw.pl

Use WMI to get info about the Windows fi rewall, as well as

information from the SecurityCenter

#

Usage: fw.pl [-bsph] [-app] [-sec]

#

copyright 2006–2007 H. Carvey keydet89@yahoo.com

#––

use strict;

use Win32::OLE qw(in);

use Getopt::Long;

my %confi g = ();

4 http://msdn2.microsoft.com/en-us/library/aa392727.aspx
5 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/

computer_system_hardware_classes.asp

16 Part I • Perl Scripting and Live Response

Getopt::Long::Confi gure(“prefi x_pattern=(-|\/)”);

GetOptions(\%confi g, qw(b s sec p app help|?|h));

if -h, print syntax info and exit

if ($confi g{help}) {

 _syntax();

 exit 1;

}

some global hashes used throughout the code

my %proto = (6 => “TCP”,

 17 => “UDP”);

my %ipver = (0 => “IPv4”,

 1 => “IPv6”,

 2 => “Any”);

my %type = (0 => “DomainProfi le”,

 1 => “StandardProfi le”);

print “[“.localtime(time).”] Checking Windows Firewall on “.Win32::NodeName().”. . .\n”

 unless ($confi g{sec});

Create necessary objects

my $fwmgr = Win32::OLE->new(“HNetCfg.FwMgr”)

 || die “Could not create fi rewall mgr obj: ”.Win32::OLE::LastError().“\n”;

my $fwprof = $fwmgr->LocalPolicy->{CurrentProfi le};

if (! %confi g || $confi g{b}) {

Profi le type: 0 = Domain, 1 = Standard

 print “Current Profi le = ”.$type{$fwmgr->{CurrentProfi leType} }.“ ”;

 if ($fwprof->{FirewallEnabled}) {

 print “(Enabled)\n”;

 }

 else {

 print “(Disabled)\n”;

 exit(1);

 }

 ($fwprof->{ExceptionsNotAllowed}) ?(print “Exceptions not allowed\n”):
(print “Exceptions allowed\n”);

 ($fwprof->{Notifi cationsDisabled})?(print “Notifi cations Disabled\n”):
(print “Notifi cations not disabled\n”);

 ($fwprof->{RemoteAdminSettings}->{Enabled}) ? (print “Remote Admin Enabled\n”) :
(print “Remote Admin Disabled\n”);

 print “\n”;

}

if (! %confi g || $confi g{app}) {

 print “[Authorized Applications]\n”;

 Perl Scripting and Live Response • Part I 17

 foreach my $app (in $fwprof->{AuthorizedApplications}) {

 if ($app->{Enabled} == 1) {

 print $app->{Name}.“ - ”.$app->{ProcessImageFileName}.“\n”;

 print “IP Version = “.$ipver{$app->{IPVersion} }.”; Remote Addrs = ”
.$app->{RemoteAddresses}.“\n”;

 print “\n”;

 }

 }

}

if (! %confi g || $confi g{p}) {

 print “[Globablly Open Ports]\n”;

 foreach my $port (in $fwprof->{GloballyOpenPorts}) {

 if ($port->{Enabled} == 1) {

 my $pp = $port->{Port}.“/”.$proto{$port->{Protocol} };

 printf “%−8s %−35s %−20s\n”,$pp,$port->{Name},$port->{RemoteAddresses};

 }

 }

 print “\n”;

}

if (! %confi g || $confi g{s}) {

 print “[Services]\n”;

 foreach my $srv (in $fwprof->{Services}) {

 if ($srv->{Enabled}) {

 print $srv->{Name}.“ (“.$srv->{RemoteAddresses}.”)\n”;

 foreach my $port (in $srv->{GloballyOpenPorts}) {

 if ($port->{Enabled} == 1) {

 my $pp = $port->{Port}.“/”.$proto{$port->{Protocol} };

 printf “ %−8s %−35s %−20s\n”,$pp,$port->{Name},$port->{RemoteAddresses};

 }

 }

 print “\n”;

 }

 }

}

Check the SecurityCenter for additional, installed, WMI-managed FW and/or
AV software

Some AV products are not WMI-aware, and may need a patch installed

if ($confi g{sec}) {

 my $server = Win32::NodeName();

 print “[“.localtime(time).”] Checking SecurityCenter on $server . . . \n”;

18 Part I • Perl Scripting and Live Response

 my $objWMIService = Win32::OLE->GetObject(“winmgmts:\\\\$server\\root\\
SecurityCenter”) || die “WMI connection failed.\n”;

Alternative method

my $locatorObj = Win32::OLE->new(‘WbemScripting.SWbemLocator’) || die

“Error creating locator object: ”.Win32::OLE->LastError().“\n”;

$locatorObj->{Security_}->{impersonationlevel} = 3;

my $objWMIService = $locatorObj->ConnectServer($server,‘root\
SecurityCenter’,“”,“”)

|| die “Error connecting to $server: ”.Win32::OLE->LastError().“\n”;

 my $fwObj = $objWMIService->InstancesOf(“FirewallProduct”);

 if (scalar(in $fwObj) > 0) {

 foreach my $fw (in $fwObj) {

 print “Company = ”.$fw->{CompanyName}.“\n”;

 print “Name = ”.$fw->{DisplayName}.“\n”;

 print “Enabled = ”.$fw->{enabled}.“\n”;

 print “Version = ”.$fw->{versionNumber}.“\n”;

 }

 }

 else {

 print “There do not seem to be any non-MS, WMI-enabled FW products
installed.\n”;

 }

 my $avObj = $objWMIService->InstancesOf(“AntiVirusProduct”);

 if (scalar(in $avObj) > 0) {

 foreach my $av (in $avObj) {

 print “Company = ”.$av->{CompanyName}.“\n”;

 print “Name = ”.$av->{DisplayName}.“\n”;

 print “Version = ”.$av->{versionNumber}.“\n”;

 print “O/A Scan = ”.$av->{onAccessScanningEnabled}.“\n”;

 print “UpToDate = ”.$av->{productUptoDate}.“\n”;

 }

 }

 else {

 print “There do not seem to be any WMI-managed A/V products installed.\n”;

 }

}

sub _syntax {

 print>> “EOT”;

fw [-bsph] [-app]

Collect information about the Windows fi rewall (local system only) and

the SecurityCenter (additional WMI-managed FW and AV products)

 Perl Scripting and Live Response • Part I 19

 -bBasic info about Windows fi rewall only

 -appDisplay authorized application info for the Windows fi rewall
(enabled only)

 -sDisplay service info for the Windows fi rewall (enabled only)

 -pDisplay port info for Windows fi rewall (enabled only)

 -secDisplay info from the SecurityCenter (other installed,WMI-

 managed FW and/or AV)

 -hHelp (print this information)

Ex: C:\\>fw -s >server> -u >username> -p >password>

copyright 2006–2007 H. Carvey

EOT

}

There are a couple of things you’ll notice about the fw.pl Perl script. One is the
use of the Getopt::Long module in order to allow for the use of command-line
arguments in the script. This allows us to program different functionality into a single
script, rather than writing separate scripts to do slightly different things. For example,
if you look at the content of the _syntax() function from the script, you’ll see that
you can use command-line arguments and switches to modify the output of the script
and show different bits of information. This way, we can have one script with a
complete set of functionality, rather than half a dozen different scripts. If I run the
fw.pl script on my own system with just the “-b” switch, I get the following output:
C:\Perl>fw.pl -b

[Fri Aug 31 17:29:47 2007] Checking Windows Firewall on WINTERMUTE. . .

Current Profi le = StandardProfi le (Enabled)

Exceptions allowed

Notifi cations not disabled

Remote Admin Disabled

Running the script with just the “-s” switch to see the service information for
the fi rewall, I get:
C:\Perl>fw.pl -s

[Fri Aug 31 17:31:41 2007] Checking Windows Firewall on WINTERMUTE. . .

[Services]

File and Printer Sharing (LocalSubNet)

 139/TCP NetBIOS Session Service LocalSubNet

 445/TCP SMB over TCP LocalSubNet

 137/UDP NetBIOS Name Service LocalSubNet

 138/UDP NetBIOS Datagram Service LocalSubNet

20 Part I • Perl Scripting and Live Response

UPnP Framework (LocalSubNet)

 1900/UDP SSDP Component of UPnP Framework LocalSubNet

 2869/TCP UPnP Framework over TCP LocalSubNet

Using just the “-sec” switch to check the SecurityCenter6 settings, I get:
C:\Perl>fw.pl -sec

[Fri Aug 31 17:32:57 2007] Checking SecurityCenter on WINTERMUTE . . .

There do not seem to be any non-MS, WMI-enabled FW products installed.

There do not seem to be any WMI-managed A/V products installed.

Now, had I had a WMI-enabled antivirus product installed on this system, it
would show up in the output of the script. I would also be able to get some setting
information from the system regarding an installed WMI-enabled fi rewall, if there is
one, as in the following output taken from another system:
D:\Programs\Perl>fw.pl -sec

[Thu Sep 6 15:23:15 2007] Checking SecurityCenter on A1 . . .

Company = Check Point, LTD.

Name = ZoneAlarm Pro Firewall

Enabled = 1

Version = 7.0.337.000

Company = GRISOFT

Name = AVG 7.5.485

Version = 7.5.485

O/A Scan = 1

UpToDate = 1

As you can see, this system has the ZoneAlarm Pro Firewall and Grisoft AVG
anti-virus (AV) applications installed (and more importantly, enabled), and the
AV product appears to be up-to-date and enabled.

Nic.pl
The Perl script nic.pl allows you to retrieve information about network interface
cards (NICs) through the Win32_NetworkAdapterConfi guration7 WMI class. The
script allows you to collect information from either the local system, or from a
remote system. While the class, like many other WMI classes, provides functions or
methods for modifying information on the system, during incident response we’re
most interested in collecting information, so we’ll stick to simply querying the
system and retrieving the information that we need, and avoid modifying anything.

6 http://support.microsoft.com/kb/883792
7 http://msdn2.microsoft.com/en-us/library/aa394217.aspx

 Perl Scripting and Live Response • Part I 21

#! c:\perl\bin\perl.exe

#––

nic.pl

Use WMI to get information about active network interface cards

on a system

#

Usage: [perl] nic.pl

#

Copyright 2004–2007 H. Carvey keydet89@yahoo.com

#––

use strict;

use Win32::OLE qw(in);

use Getopt::Long;

my %confi g = ();

Getopt::Long::Confi gure(“prefi x_pattern=(-|\/)”);

GetOptions(\%confi g, qw(server|s=s user|u=s passwd|p=s csv|c help|?|h));

if ($confi g{help}) {

 _syntax();

 exit 1;

}

if (! %confi g) {

 $confi g{server} = Win32::NodeName();

 $confi g{user} = “”;

 $confi g{passwd} = “”;

}

$confi g{user} = “” unless ($confi g{user});

$confi g{passwd} = “” unless ($confi g{passwd});

my $locatorObj = Win32::OLE->new(‘WbemScripting.SWbemLocator’) || die

 “Error creating locator object: “.Win32::OLE->LastError().”\n”;

$locatorObj->{Security_}->{impersonationlevel} = 3;

my $serverObj = $locatorObj->ConnectServer($confi g{server},‘root\cimv2’,$confi g{user}
,$confi g{passwd})

 || die “Error connecting to $confi g{server}: ”.Win32::OLE->LastError().“\n”;

foreach my $nic (in $serverObj->InstancesOf(“Win32_NetworkAdapterConfi guration”)) {

 if (defi ned($nic->{IPAddress})) {

 my $i = $nic->{IPAddress};

 my $ip = join(“.”,@{$i});

 next if ($ip eq ‘0.0.0.0’);

 print $nic->{Description}.“\n”;

 print “\t$ip\n”;

22 Part I • Perl Scripting and Live Response

 print “\tIP Enabled\n” if ($nic->{IPEnabled});

 print “\t”.$nic->{MACAddress}.“\n\n”;

 }

}

sub _syntax {

 print<< “EOT”;

nic [-s system] [-u username] [-p password] [-c] [-h]

Collect network interface information from a local or remote system

 -s system Name of the system to scan (default: localsystem)

 -u username. . . . Username used to connect to the remote system (usually

 an Administrator)

 -p password. . . . Password used to connect to the remote system

 -h. Help (print this information)

Ex: C:\\>nic -s >server> -u >username> -p >password>

copyright 2004–2007 H. Carvey

EOT

}

Running the script on my local system, you can see the information that the
script returns:
C:\Perl>nic.pl

Dell Wireless 1390 WLAN Mini-Card - Packet Scheduler Miniport

 192.168.1.13

 IP Enabled

 00:16:CE:74:2C:B3

VMware Virtual Ethernet Adapter for VMnet1

 192.168.184.1

 IP Enabled

 00:50:56:C0:00:01

VMware Virtual Ethernet Adapter for VMnet8

 192.168.239.1

 IP Enabled

 00:50:56:C0:00:08

As you can see, we get the name of the adapter, the IP address, whether IP is enabled
or not, and the Media Access Control (MAC) address of the interface. From the output
from my system, you can see that I have a wireless adapter enabled, and two VMWare
virtual adapters (which is good, because I have VMWare Workstation 6.0 installed). This
also indicates that at the time the information was retrieved, the local area network
(LAN) connection, which is usually accessible when plugging in a network cable to the

 Perl Scripting and Live Response • Part I 23

RJ-45 jack on my computer, is not enabled. Figure I.2 illustrates this information clearly
via the Network Connections from the Settings menu on the test system.

Figure I.2 Network Connections Visible On a Test System

Using scripts such as nic.pl, we can preserve the state of the live system at a point
in time, either prior to shutting it down, or simply to document which network
connections were enabled and functioning at a specifi c moment. This information may
not be readily available to us during a follow-on (i.e., “post-mortem”) investigation after
an image has been acquired from the system, and will most likely be extremely
valuable to our investigation.

Swiss Army Knife

Learning More About NICs
Additional information is at your fi ngertips when accessing the Win32_Network
AdapterConfi guration class. For example, you can get information about the
default gateway, whether Dynamic Host Confi guration Protocol (DHCP) is
enabled, as well as information about the Domain name system (DNS) and
Internetwork Packet Exchange (IPX) confi gurations. Minor modifi cations to
nic.pl will make this information available to you.

24 Part I • Perl Scripting and Live Response

Ndis.pl
WMI also provides access to Windows drivers through the Windows Driver Model
(WDM). Figure I.3 demonstrates a dialog box that results from the use of the WBEMTest8
tool, where I’ve listed the WDM classes available on my Windows XP SP 2 system.
The highlighted class, MSNdis_CurrentPacketFilter, for example, provides us with
access to the current fi lters for the NIC (note that a reference link is embedded in
the comments at the beginning of the script).

Figure I.3 Viewing Classes via the WMI Tester Interface (ch1-msndis.tif)

The ndis.pl script appears as follows:
#! c:\perl\bin\perl.exe

#–––

ndis.pl - Perl script to determine settings of NIC;

Checks for promiscuous mode

#

usage: C:\>[perl] ndis.pl

#

Copyright 2007 H. Carvey keydet89@yahoo.com

#–––

8 www.microsoft.com/technet/scriptcenter/resources/guiguy/wbemtest.mspx

 Perl Scripting and Live Response • Part I 25

use strict;

use Win32::OLE qw(in);

OID_GEN_CURRENT_PACKET_FILTER values defi ned in ntddndis.h

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

wceddk5/html/wce50lrfoidgencurrentpacketfi lter.asp

my %fi lters = (”NDIS_PACKET_TYPE_DIRECTED” => 0x00000001,

“NDIS_PACKET_TYPE_MULTICAST” => 0x00000002,

“NDIS_PACKET_TYPE_ALL_MULTICAST” => 0x00000004,

“NDIS_PACKET_TYPE_BROADCAST” => 0x00000008,

“NDIS_PACKET_TYPE_SOURCE_ROUTING” => 0x00000010,

“NDIS_PACKET_TYPE_PROMISCUOUS” => 0x00000020,

“NDIS_PACKET_TYPE_SMT” => 0x00000040,

“NDIS_PACKET_TYPE_ALL_LOCAL” => 0x00000080,

“NDIS_PACKET_TYPE_GROUP” => 0x00000100,

“NDIS_PACKET_TYPE_ALL_FUNCTIONAL” => 0x00000200,

“NDIS_PACKET_TYPE_FUNCTIONAL” => 0x00000400,

“NDIS_PACKET_TYPE_MAC_FRAME” => 0x00000800);

my $server = Win32::NodeName();

my %nic = ();

my $locatorObj = Win32::OLE->new(‘WbemScripting.SWbemLocator’) || die

 “Error creating locator object: ”.Win32::OLE->LastError().“\n”;

$locatorObj->{Security_}->{impersonationlevel} = 3;

my $serverObj = $locatorObj->ConnectServer($server,‘root\wmi’,“”,“”)

 || die “Error connecting to \\root\\wmi namespace on $server: “.

Win32::OLE->LastError().“\n”;

foreach my $ndis (in $serverObj->InstancesOf(“MSNdis_CurrentPacketFilter”)) {

 if ($ndis->{Active}) {

 my $wan = “WAN Miniport”;

 next if ($ndis->{InstanceName} =~ m/^$wan/i);

 my $instance = (split(/-/,$ndis->{InstanceName}))[0];

 $instance =~ s/\s$//;

$nic{$instance} = 1;

 my @gpf = ();

 foreach my $f (keys %fi lters) {

 push(@gpf,$f) if ($ndis->{NdisCurrentPacketFilter} & $fi lters{$f});

 }

 $nic{$instance}{fi lter} = join(‘,’,@gpf);

 }

}

26 Part I • Perl Scripting and Live Response

foreach (keys %nic) {

 print “$_\n”;

 my @fi lt = split(/,/,$nic{$_}{fi lter});

 foreach my $f (@fi lt) {

 ($f eq “NDIS_PACKET_TYPE_PROMISCUOUS”) ? (print “\t--> $f <--\n”) : (print “\t $f\n”);

 }

 print “\n”;

}

Again, when looking at the ndis.pl Perl script, we are most interested in the
highlighted class, MSNdis_CurrentPacketFilter. This class provides us with visibility
into the settings and fi lters for the adapter itself. This is important during incident
response, because as in some cases, an intruder may have installed a network sniffer
and placed the network adapter in “promiscuous” mode. This means that all of the
packets that go by on the wire are read by the network adapter, not just the ones that
are addressed to that system.

Running ndis.pl on my test system, I see:
Dell Wireless 1390 WLAN Mini

 NDIS_PACKET_TYPE_MULTICAST

 NDIS_PACKET_TYPE_DIRECTED

 NDIS_PACKET_TYPE_BROADCAST

This output is to be expected. I would be concerned if I saw the following
included in the output:
NDIS_PACKET_TYPE_PROMISCUOUS

This would tell me that the network adapter is in promiscuous mode and is most
likely being used for network sniffi ng.

Scripts using WMI can be run remotely against other managed systems, such as
those within a domain, or those which the system administrator has local credentials
on the system. For example, take a look at a line of code from ndis.pl:
my $serverObj = $locatorObj->ConnectServer($server,‘root\wmi’,“”,“”)

You can see that the ConnectServer() function takes four arguments: the name of
the server, the WMI namespace, and the username and password used to retrieve this
information. In the code we’re using, the administrator is running these scripts locally
on the system from the account used to log in, so we don’t need to provide login

 Perl Scripting and Live Response • Part I 27

credentials within the script. Also, you’ll notice that earlier in the script, we populated
the $server variable with the following code:
my $server = Win32::NodeName();

Win32::NodeName(), if you remember, is one of the built-in Win32 functions.
Again, using this function we get the name of the local system. However, if the system
administrator wanted to reach out to other managed Windows 2000, XP, and 2003
systems within his or her domain, all he or she would have to do is include the name
or IP address of the remote system, and the proper credentials. In fact, with an accurate
list of all systems within the domain, he or she could run this script against all systems
(some minor modifi cations to the script are required, of course, but those will be left
to the reader) and display only those found to have NICs in promiscuous mode.

Master Craftsman

Drivers for wireless access
In 2004, Beetle of the Shmoo Group gave a presentation at ToorCon entitled
“Wireless Weapons of Mass Destruction for Windows.” That presentation
included a number of VBscripts that accessed MSNdis_80211_∗ classes in order to
retrieve Service Set Identifi ers (SSIDs) “seen” by the wireless adapter, information
about received signal strength, and so forth. This information can be used in
a variety of ways. For example, during incident response, you may want to see
if a laptop or even a workstation has a wireless adapter enabled, and if so, what
SSID it is connected to. However, you can also use this same sort of information
to triangulate the location of rogue access points. Let’s say that you’re in your
offi ce, and you suspect that there may be a rogue access point installed in
another part of the building or in another building all together. Now, you
know where server systems with wireless capability are physically located
within the building; say, the Chief Executive Offi cer (CEO) has his laptop in his
offi ce, and just down the hall and around the corner the Vice President of
Human Resources (HR) has her laptop in her offi ce. You can then query each
of these systems and determine the access points that each “sees” and the
received signal strength of each one. From this information, you may be able
to determine the approximate location of the rogue access point.

28 Part I • Perl Scripting and Live Response

Master Craftsman

Working with BitLocker
Windows Vista and 2008 incorporate an encryption technology referred to as
BitLocker. There is a Win32_EncryptableVolume9 class that allows you query
the system and see if BitLocker is enabled. This is important, as encrypted
drives pose an issue when it comes to acquiring an image of the hard drive.
If BitLocker is enabled, the investigator may opt to perform a live acquisition
of the system, rather than shutting the system down and removing the hard
drive in order to acquire the image.

9 http://msdn2.microsoft.com/en-us/library/aa376483.aspx

Di.pl
WMI can be used to collect quite a bit more information. For example, there are
WMI classes that allow you to collect information from other hardware on the system,
such as disk drives and storage devices. When collecting information about a system, it
is a good idea for the investigator to document the hardware components connected
to the system. Also, when the system is shut down and images of the drives are
acquired, the investigator is going to have to document information about the drives
anyway, and WMI can be used to make the job easier. I wrote the Perl script di.pl
(“di” stands for “drive information”) to do just that, so that I would have complete
information about the hard drives and storage media attached to the system:
#! c:\perl\bin\perl.exe

#––

di.pl - Disk ID tool

This script is intended to assist investigators in

identifying disks

attached to systems. It can be used by an investigator to

document

a disk following acquisition, providing information for use

in

acquisition worksheets and chain-of-custody documentation.

 Perl Scripting and Live Response • Part I 29

#

This tool may also be run remotely against managed system,

by passing

the necessary arguments at the command line.

#

Usage: di.pl

di.pl >system> >username> >password>

#

copyright 2006–2007 H. Carvey, keydet89@yahoo.com

#––

use strict;

use Win32::OLE qw(in);

my $server = shift || Win32::NodeName();

my $user = shift || “”;

my $pwd = shift || “”;

my $locatorObj = Win32::OLE->new(‘WbemScripting.SWbemLocator’) || die

 “Error creating locator object: ”.Win32::OLE->LastError().“\n”;

$locatorObj->{Security_}->{impersonationlevel} = 3;

my $serverObj = $locatorObj->ConnectServer($server,‘root\cimv2’,$user,$pwd)

 || die “Error connecting to $server: ”.Win32::OLE->LastError().“\n”;

my %capab = (0 => “Unknown”,

 1 => “Other”,

 2 => “Sequential Access”,

 3 => “Random Access”,

 4 => “Supports Writing”,

 5 => “Encryption”,

 6 => “Compression”,

 7 => “Supports Removable Media”,

 8 => “Manual Cleaning”,

 9 => “Automatic Cleaning”,

 10 => “SMART Notifi cation”,

 11 => “Supports Dual Sided Media”,

 12 => “Ejection Prior to Drive Dismount Not Required”);

my %disk = ();

foreach my $drive (in $serverObj->InstancesOf(“Win32_DiskDrive”)) {

 $disk{$drive->{Index} }{DeviceID} = $drive->{DeviceID};

 $disk{$drive->{Index} }{Manufacturer} = $drive->{Manufacturer};

 $disk{$drive->{Index} }{Model} = $drive->{Model};

 $disk{$drive->{Index} }{InterfaceType} = $drive->{InterfaceType};

 $disk{$drive->{Index} }{MediaType} = $drive->{MediaType};

 $disk{$drive->{Index} }{Partitions} = $drive->{Partitions};

30 Part I • Perl Scripting and Live Response

The drive signature is a DWORD value written to offset 0x1b8 (440) in the MFT

when the drive is formatted. This value can be used to identify a specifi c HDD,

either internal/fi xed or USB/external, by corresponding the signature to the

values found in the MountedDevices key of the Registry

 $disk{$drive->{Index} }{Signature} = $drive->{Signature};

 $disk{$drive->{Index} }{Size} = $drive->{Size};

 $disk{$drive->{Index} }{Capabilities} = $drive->{Capabilities};

}

my %diskpart = ();

foreach my $part (in $serverObj->InstancesOf(“Win32_DiskPartition”)) {

 $diskpart{$part->{DiskIndex}.“:”.$part->{Index} }{DeviceID} = $part->{DeviceID};

 $diskpart{$part->{DiskIndex}.“:”.$part->{Index} }{Bootable} = 1
if ($part->{Bootable});

 $diskpart{$part->{DiskIndex}.“:”.$part->{Index} }{BootPartition} = 1
if ($part->{BootPartition});

 $diskpart{$part->{DiskIndex}.“:”.$part->{Index} }{PrimaryPartition} = 1
if ($part->{PrimaryPartition});

 $diskpart{$part->{DiskIndex}.“:”.$part->{Index} }{Type} = $part->{Type};

}

my %media = ();

foreach my $pm (in $serverObj->InstancesOf(“Win32_PhysicalMedia”)) {

 $media{$pm->{Tag} } = $pm->{SerialNumber};

}

foreach my $dd (sort keys %disk) {

 print “DeviceID : ”.$disk{$dd}{DeviceID}.“\n”;

 print “Model : ”.$disk{$dd}{Model}.“\n”;

 print “Interface : ”.$disk{$dd}{InterfaceType}.“\n”;

 print “Media : ”.$disk{$dd}{MediaType}.“\n”;

 print “Capabilities : \n”;

 foreach my $c (in $disk{$dd}{Capabilities}) {

 print “\t”.$capab{$c}.“\n”;

 }

 my $sig = $disk{$dd}{Signature};

 $sig = “>None>” if ($sig == 0x0);

 printf “Signature : 0x%x\n”,$sig;

 my $sn = $media{$disk{$dd}{DeviceID} };

 print “Serial No : $sn\n”;

 print “\n”;

 print $disk{$dd}{DeviceID}.“ Partition Info : \n”;

 my $part = $disk{$dd}{Partitions};

 foreach my $p (0..($part - 1)) {

 Perl Scripting and Live Response • Part I 31

 my $partition = $dd.“:”.$p;

 print “\t”.$diskpart{$partition}{DeviceID}.“\n”;

 print “\t”.$diskpart{$partition}{Type}.“\n”;

 print “\t\tBootable\n” if ($diskpart{$partition}{Bootable});

 print “\t\tBoot Partition\n” if ($diskpart{$partition}{BootPartition});

 print “\t\tPrimary Partition\n” if ($diskpart{$partition}{PrimaryPartition});

 print “\n”;

 }

}

Di.pl can be run on a local system, or against a remote system. Simply running
the following command will retrieve information from the local system:
C:\Perl>di.pl

To retrieve the same information from a remote system, you can run the command
this way:
C:\Perl>di.pl 192.168.10.15 Administrator <password >

When run on my local system, this is the output that I see:
C:\Perl\tools>di.pl

DeviceID : \\.\PHYSICALDRIVE0

Model : ST910021AS

Interface : IDE

Media : Fixed hard disk media

Capabilities :

 Random Access

 Supports Writing

Signature : 0x41ab2316

Serial No : 3MH0B9G3

\\.\PHYSICALDRIVE0 Partition Info :

 Disk #0, Partition #0

 Installable File System

 Bootable

 Boot Partition

 Primary Partition

 Disk #0, Partition #1

 Extended w/Extended Int 13

DeviceID : \\.\PHYSICALDRIVE1

Model : WDC WD12 00UE-00KVT0 USB Device

Interface : USB

Media : Fixed hard disk media

32 Part I • Perl Scripting and Live Response

Capabilities :

 Random Access

 Supports Writing

Signature : 0x96244465

Serial No :

\\.\PHYSICALDRIVE1 Partition Info :

 Disk #1, Partition #0

 Installable File System

 Primary Partition

As you can see, my system has two storage devices, the fi rst of which is an internal
fi xed IDE hard drive, model ST910021AS, serial number 3MH0B9G3, with two
partitions. The second storage device (i.e., PhysicalDrive1), is an external Universal
Serial Bus (USB)-connected hard drive. So the di.pl script is useful for documenting
storage hardware that is connected to a system, as well as providing some of the same
information that the investigator will need to document (i.e., drive model, serial
number, and so forth) when he or she acquires an image of that drive.

Ldi.pl
There’s another Perl script that I like to use sometimes that gets similar information as
the previous script, but uses the Win32_LogicalDisk WMI class to obtain information
about storage devices from the system. Ldi.pl (i.e., “Logical Disk Information”)
appears as follows:
#! c:\perl\bin\perl.exe

#––

ldi.pl - Logical Drive ID tool

This script is intended to assist investigators in

identifying

logical drives attached to systems. This tool can be run

remotely

against managed systems.

#

Usage: ldi.pl

ldi.pl -h (get the syntax info)

ldi.pl -s >system> -u >username> -p >password> (remote

system)

ldi.pl -c (.csv output - includes vol name and s/n)

#

copyright 2006–2007 H. Carvey, keydet89@yahoo.com

#––

 Perl Scripting and Live Response • Part I 33

use Win32::OLE qw(in);

use Getopt::Long;

my %confi g = ();

Getopt::Long::Confi gure(“prefi x_pattern=(-|\/)”);

GetOptions(\%confi g, qw(server|s=s user|u=s passwd|p=s csv|c help|?|h));

if ($confi g{help}) {

 _syntax();

 exit 1;

}

if (! %confi g) {

 $confi g{server} = Win32::NodeName();

 $confi g{user} = “”;

 $confi g{passwd} = “”;

}

$confi g{user} = “” unless ($confi g{user});

$confi g{passwd} = “” unless ($confi g{passwd});

my %types = (0 => “Unknown”,

 1 => “Root directory does not exist”,

 2 => “Removable”,

 3 => “Fixed”,

 4 => “Network”,

 5 => “CD-ROM”,

 6 => “RAM”);

my $locatorObj = Win32::OLE->new(‘WbemScripting.SWbemLocator’) || die

 “Error creating locator object: ”.Win32::OLE->LastError().“\n”;

$locatorObj->{Security_}->{impersonationlevel} = 3;

my $serverObj = $locatorObj->ConnectServer($confi g{server},‘root\cimv2’,$confi g{user},
$confi g{passwd})

 || die “Error connecting to $confi g{server}: ”.Win32::OLE->LastError().“\n”;

if ($confi g{csv}) {

}

else {

 printf “%-8s %-11s %-12s %-25s %-12s\n”,“Drive”,“Type”,“File System”,“Path”,
“Free Space”;

 printf “%-8s %-11s %-12s %-25s %-12s\n”,“-” x 5,“-” x 5,“-” x 11,“-” x 5,
“-” x 10;

}

foreach my $drive (in $serverObj->InstancesOf(“Win32_LogicalDisk”)) {

 my $dr = $drive->{DeviceID};

 my $type = $types{$drive->{DriveType} };

 my $fs = $drive->{FileSystem};

34 Part I • Perl Scripting and Live Response

 my $path = $drive->{ProviderName};

 my $vol_name = $drive->{VolumeName};

 my $vol_sn = $drive->{VolumeSerialNumber};

 my $freebytes;

 my $tag;

 my $kb = 1024;

 my $mb = $kb * 1024;

 my $gb = $mb * 1024;

 if (“” ne $fs) {

 my $fb = $drive->{FreeSpace};

 if ($fb > $gb) {

 $freebytes = $fb/$gb;

 $tag = “GB”;

 }

 elsif ($fb > $mb) {

 $freebytes = $fb/$mb;

 $tag = “MB”;

 }

 elsif ($fb > $kb) {

 $freebytes = $fb/$kb;

 $tag = “KB”;

 }

 else {

 $freebytes = 0;

 }

 }

 if ($confi g{csv}) {

 print “$dr\\,$type,$vol_name,$vol_sn,$fs,$path,$freebytes $tag\n”;

 }

 else {

 printf “%-8s %-11s %-12s %-25s %-5.2f %-2s\n”,$dr.“\\
”,$type,$fs,$path,$freebytes,$tag;

 }

}

sub _syntax {

 print>> “EOT”;

L(ogical) D(rive)I(nfo) [-s system] [-u username] [-p password] [-h]

Collect logical drive information from remote Windows systems.

-s system Name of the system to scan

-u username. . . . Username used to connect to the remote system (usually

 an Administrator)

-p password. . . . Password used to connect to the remote system

-c. Comma-separated (.csv) output (open in Excel)

 Includes the vol name and s/n in the output

-h. Help (print this information)

Ex: C:\\>di -s >server> -u >username> -p >password>

copyright 2006–2007 H. Carvey

EOT

}

As with di.pl, ldi.pl can be run locally or remotely. When run locally on my test
system, I see the following output:
C:\Perl\tools>ldi.pl

Drive Type File System Path Free Space

––––– –––– ––––––––––– –––– ––––––––––

C:\ Fixed NTFS 18.22 GB

D:\ Fixed NTFS 38.79 GB

E:\ CD-ROM 0.00

G:\ Fixed NTFS 42.25 GB

As you can see, this output shows similar information to what we saw with di.pl,
to some extent. In this case, drives C:\ and D:\ are the fi rst and second partitions of the
internal IDE hard drive on my system, and the G:\ drive is the external USB-connected
hard drive. The “Path” column isn’t populated for any of the drives, because none of
them are mapped shares. Figure I.4 illustrates what this looks like via the My Computer
window on the live system.

Figure I.4 My Computer Window Showing Drives

When I connect a 4GB Cruzer Micro drive to my system, and run ldi.pl again, I see:
H:\ Removable FAT32 3.82 GB

36 Part I • Perl Scripting and Live Response

Accessing the Registry
There are also times during incident response, or even during simple troubleshooting
tasks, that you may want to query the Registry for specifi c information, such as
check for the existence of a particular key or value, obtain a value’s data, or determine
the LastWrite time of a Registry key. Also, certain portions, or “hives” within the
Registry are not accessible when the system has been shut down. For example, the
HKEY_CURRENT_USER hive is only accessible to the user that is logged on;
when the system is shut down, that hive is no longer available.

In other cases, the information you collect from the Registry may affect your
follow-on investigation. For example, does the pagefi le get cleared during a clean
shutdown? Has the updating of last access times been disabled? Many times, knowing
this (and other information like it) ahead of time can save us time later, or even
completely redirect our next steps.

Bho.pl
Browser Helper Objects10 (BHOs) are essentially dynamic link library (DLL) fi les that
add functionality to the Internet Explorer (IE) Web browser. A popular BHO is from
Adobe, and it allows you to open PDF fi les for viewing right there in your Web
browser. However, malware (spyware, mostly) authors will sometimes create malware that
installs as a BHO, because their malware will automatically be launched every time the user
runs IE. Malware authors are always looking for novel ways of getting their toys to run
without any user interaction, and installing as a BHO is just one of them.

Bho.pl appears as follows:
#! c:\perl\bin\perl.exe

#––

BHO.pl

Perl script to retrieve listing of installed BHOs from a

local system

#

Usage:

C:\Perl>bho.pl [> bholist.txt]

#

copyright 2006–2007 H. Carvey, keydet89@yahoo.com

#––

10 http://en.wikipedia.org/wiki/Browser_Helper_Object

 Perl Scripting and Live Response • Part I 37

use strict;

use Win32::TieRegistry(Delimiter=>“/”);

my $server = Win32::NodeName();

my $err;

my %bhos;

my $remote;

Get Browser Helper Objects

if ($remote = $Registry->{“//$server/LMachine”}) {

 my $ie_bho = “SOFTWARE/Microsoft/Windows/CurrentVersion/Explorer/
Browser Helper Objects”;

 if (my $bho = $remote->{$ie_bho}) {

 my @keys = $bho->SubKeyNames();

 foreach (@keys) {

 $bhos{$_} = 1;

 }

 }

 else {

 $err = Win32::FormatMessage Win32::GetLastError();

 print “Error connecting to $ie_bho: $err\n”;

 }

}

else {

 $err = Win32::FormatMessage Win32::GetLastError();

 print “Error connecting to Registry: $err\n”;

}

undef $remote;

Find out what each BHO is . . .

if ($remote = $Registry->{“//$server/Classes/CLSID/”}) {

 foreach my $key (sort keys %bhos) {

 if (my $conn = $remote->{$key}) {

 my $class = $conn->GetValue(“”);

 print “Class : $class\n”;

 my $module = $conn->{“InprocServer32”}->GetValue(“”);

 print “Module: $module\n”;

 print “\n”;

 }

 else {

 $err = Win32::FormatMessage Win32::GetLastError();

38 Part I • Perl Scripting and Live Response

 print “Error connecting to $key: $err\n”;

 }

 }

}

else {

 $err = Win32::FormatMessage Win32::GetLastError();

 print “Error connecting to Registry: $err\n”;

}

Running bho.pl on my system, I see the following:
Class : DriveLetterAccess

Module: C:\WINDOWS\System32\DLA\DLASHX_W.DLL

Class : Windows Live Sign-in Helper

Module: C:\Program Files\Common Files\Microsoft Shared\Windows Live\
WindowsLiveLogin.dll

Uassist.pl
The UserAssist Registry key is a key that has received a good deal of attention over
the past year, largely due to its value to forensic investigators. This is due to the fact
that the UserAssist key “records” a user’s actions, or more appropriately, it “records”
many of the user’s interactions via the Windows Explorer shell. For example, when
a user opens a Control Panel applet, or double-clicks an icon to launch an application
such as Microsoft Word, or double-clicks a shortcut (*.lnk) fi le to open a fi le, these
interactions are all recorded in the UserAssist key. Figure I.5 illustrates what the
UserAssist key looks like via RegEdit.

Figure I.5 Excerpt from RegEdit Showing the UserAssist Key and Subkeys

As you can see, the UserAssist key really consists of three keys, each represented
by a globally unique identifi er (GUID) that points to a specifi c class. For example,

 Perl Scripting and Live Response • Part I 39

the GUID that starts with “{5E6AB780” refers to the Internet Explorer Toolbar,
while the GUID that starts with “{75048700” refers to the Active Desktop. The last
GUID is added to a system when you install Internet Explorer version 7.

The subkey we’re most interested in is the one that points to the Active Desktop
class, or the shell. As you can see from Figure I.5, each GUID key has a subkey
named “Count.” Even though there is an additional layer or two of subkeys, all of
these keys are collectively referred to as the “UserAssist keys,” largely because it’s
tough to remember the GUIDs.

Figure I.6 illustrates the value names beneath the Count key, as they appear in RegEdit.

Figure I.6 Excerpt of RegEdit Showing One of the UserAssist Key Values

As you can see from Figure I.6, the value names beneath the Count key are ROT-13
“encrypted.” All this really does is make it impossible to search the key names using the
search function in RegEdit11. You’ll notice that while all of the data associated with the
values are binary in nature, if you look on your own system, you’ll see a number of values
that have all zeros in their data. We’ll address this in a moment.

Didier Stevens has done a great deal of work in the area of decoding not only the
value names beneath the UserAssist keys, but also the binary data associated with the
values. In his blog12, he even has a GUI tool called (oddly enough) “UserAssist” that
will parse and translate the value names and data for the UserAssist keys on a live
Windows system. Figure I.7 illustrates the GUI interface of Didier’s UserAssist tool
(version 2.1.0.0).

11 http://support.microsoft.com/default.aspx?scid=kb;en-us;161678
12 http://blog.didierstevens.com/programs/userassist/

40 Part I • Perl Scripting and Live Response

As you can see, Didier’s tool not only “decrypts” the value names, but it parses
the binary data for each value, as well. This is where the forensic value of the UserAssist
key is realized. When a value has data that is exactly 16 bytes long, the second DWORD
(4-byte) value holds the “run count,” which starts incrementing at the value of 5. The
last two DWORDs (8-bytes, or a QWORD) comprise a FILETIME object; that is, the
number of 100 nanosecond increments since January 1, 1601. This value tells us, in
UTC time, when the action in question (launching an executable, and so forth) was
last performed by the user.

The Perl script uassist.pl performs much the same function as Didier’s
UserAssist tool:
#! c:\perl\bin\perl.exe

#––

uassist.pl

Parse UserAssist keys, and translate from ROT-13 encryption

#

usage: C:\perl>[perl] uassist.pl [> uassist.log]

Figure I.7 Didier Stevens’ UserAssist Tool in Action

 Perl Scripting and Live Response • Part I 41

#

Copyright 2007 H. Carvey keydet89@yahoo.com

#––

#use strict;

use Win32::TieRegistry(Delimiter=>“/”);

my @month = qw/Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec/;

my @day = qw/Sun Mon Tue Wed Thu Fri Sat/;

#––

_main

#

#––

\getKeyValues();

#––

Get key values

#––

sub getKeyValues {

 my $reg;

 my $userassist = “SOFTWARE/Microsoft/Windows/CurrentVersion/Explorer/UserAssist”;

 my $subkey1 = “{5E6AB780-7743-11CF-A12B-00AA004AE837}/Count”;

 my $subkey2 = “{75048700-EF1F-11D0-9888-006097DEACF9}/Count”;

 if ($reg = $Registry->Open(“CUser”,{Access=>KEY_READ})) {

 if (my $ua = $reg->Open($userassist,{Access=>KEY_READ})) {

 if (my $key1 = $ua->Open($subkey1,{Access=>KEY_READ})) {

 my @valuenames = $key1->ValueNames();

 print “[$subkey1 - $lastwrite]\n”;

 foreach my $value (@valuenames) {

 my $vData = $key1->GetValue($value);

 $value =~ tr/N-ZA-Mn-za-m/A-Za-z/;

 print $value.“\n”;

 }

 }

 else {

 print “Error accessing $subkey1: $! \n”;

 }

 print “\n”;

 if (my $key2 = $ua->Open($subkey2,{Access=>KEY_READ})) {

 my @valuenames = $key2->ValueNames();

 print “[$subkey2 - $lastwrite]\n”;

 foreach my $value (@valuenames) {

 my (@data,$lastrun, $runcount);

42 Part I • Perl Scripting and Live Response

 my $vData = $key2->GetValue($value);

 $value =~ tr/N-ZA-Mn-za-m/A-Za-z/;

 if (length($vData) == 16) {

 @data = unpack(“V*”,$vData);

 ($data[1] > 5) ? ($runcount = $data[1] - 5) : ($runcount = $data[1]);

 $lastrun = getTime($data[2],$data[3]);

 print $value.“\n”;

 if ($lastrun == 0) {

 next;

 }

 else {

 print “\t”.localtime($lastrun).“ –– ($runcount)\n”;

 }

 }

 else {

 print $value.“\n”;

 }

 print “\n”;

 }

 }

 else {

 print “Error accessing $subkey2: $! \n”;

 }

 }

 else {

 die “Error connecting to $userassist key: $!\n”;

 }

 }

 else {

 die “Error connecting to HKEY_CURRENT_USER hive: $! \n”;

 }

}

#––

getTime()

Get Unix-style date/time from FILETIME object

Input : 8 byte FILETIME object

Output: Unix-style date/time

Thanks goes to Andreas Schuster for the below code, which he

included in his ptfi nder.pl

#––

 Perl Scripting and Live Response • Part I 43

sub getTime() {

 my $lo = shift;

 my $hi = shift;

 my $t;

 if ($lo == 0 && $hi == 0) {

 $t = 0;

 } else {

 $lo -= 0xd53e8000;

 $hi -= 0x019db1de;

 $t = int($hi*429.4967296 + $lo/1e7);

 };

 $t = 0 if ($t > 0);

 return $t;

}

The uassist.pl script parses through the UserAssist keys (only the ones associated
with the IE toolbar and the Active Desktop), decoding both the ROT-13 “encrypted”
value names and the timestamps from within the data of the values that contain them.
A special thanks goes out to Andreas Schuster; Microsoft most often uses an 8-byte
FILETIME value to store timestamps. This is true within the fi le system itself, but also
within the Registry. Registry keys have LastWrite times associated with them and in
some cases, as with the UserAssist keys, Registry values will contain data that is also a
FILETIME object. In the uassist.pl script above, the getTime() function is based on
the Perl code that Andreas developed to accurately translate the 8-byte FILETIME
object into a 4-byte Unix representation of the timestamp. This way, the time value
can be parsed, represented using the gmtime() or localtime() functions within Perl, or
(as with the uassist.pl script) used as a value to sort on, as illustrated in the following
excerpt of the uassist.pl script output:
UEME_RUNPATH:D:\Python\python.exe

 Thu May 3 14:20:37 2007 –– (1)

UEME_RUNPATH:D:\VMware-workstation-6.0.0-45731.exe

 Fri May 11 18:26:33 2007 –– (1)

UEME_RUNPATH:C:\Program Files\Real\RealPlayer\RealPlay.exe

 Wed Aug 29 20:12:04 2007 –– (1)

44 Part I • Perl Scripting and Live Response

Swiss Army Knife

Sorting Time Values
The uassist.pl script can be updated to display not only just the values with
FILETIME objects in their data, but also those values that are sorted in order of
the most recent value fi rst. In the Perl documentation, under perldsc, see what it
says about a “hash-of-lists”. You’ll notice that in the uassist.pl script, the getTime()
function takes the 8 bytes of the FILETIME object and returns a Unix time value
(thanks again to Andreas13 for letting me borrow his code!), which then has to be
run through the Perl gmtime() function to get the date to appear in something
recognizable to people. The Unix time value can be used as the hash key, and
the list can be all of those value names (decoded, of course) that occurred at
that time.

ProScripts
The forensic analysis tool from Technology Pathways14 called ProDiscover,15 uses Perl
as its scripting language. This allows the investigator to automate a wide variety of
the tasks that he or she would perform, so that they can be run from a script, rather
than having to interact through the graphical user interface (GUI). This makes highly
repetitive tasks easier and much less prone to mistakes.

Acquire1.pl
Using the ProScript API manual that ships with ProDiscover, with some of the
example scripts that are provided, I was able to put together a ProScript that would
allow me to connect to a list of systems on which the ProDiscover PDServer was
already installed and running, and perform a live acquisition of the fi rst hard drive
(i.e., PhysicalDisk0) from each system. To make things easier, the list of systems to
connect to is maintained in a fl at text fi le on the system.

13 http://computer.forensikblog.de/en/
14 www.techpathways.com/
15 www.techpathways.com/DesktopDefault.aspx?tabindex=3&tabid=12

 Perl Scripting and Live Response • Part I 45

#! c:\perl\bin\perl.exe

#––

Acquire1.pl

#

Connect to a PDServer running on a specifi c system, and

acquire an image of PhysicalDisk0

#

The image is created in dd format

#

A fi le containing the MD5 checksum for the image fi le is

automatically created, as is an IOErrorLog fi le.

#

Author: Harlan Carvey, keydet89@yahoo.com

#––

use strict;

use ProScript;

#––

Set up variables

These can be changed as needed; absolute paths are required

#––

my $input_fi le = “c:\\prodiscover\\proscript\\hosts.txt”;

my $output_dir = “d:\\cases\\images\\”;

my $logfi le = $output_dir.“capturelog\.txt”;

#––

Load IP Addresses from input fi le

#––

my %ips = ();

open(FH,“>”,$input_fi le);

while(>FH>) {

 chomp;

 next if ($_ =~ m/^#/);

 $ips{$_} = 1;

}

close(FH);

\logData(“Capture logfi le opened ”.localtime(time));

\logData(“Systems to image:”);

foreach my $ip (keys %ips) {

 \logData(“\t$ip”);

}

\logData(“”);

46 Part I • Perl Scripting and Live Response

foreach my $ip (keys %ips) {

Connect to system

 PSDisplayText(“Connecting to $ip . . . ”);

 my $conn = PSConnect($ip, “password”);

#If we are connected notify

 if ($conn == 1) {

 PSDisplayText(“Sucessfully Connected!”);

 \logData(“[”.localtime(time).“] Connected to $ip”);

Acquire image

 my $source = “\\\\$ip\\PhysicalDrive0”;

 my $dest = $output_dir.$ip.“\.img”;

 \logData(“[”.localtime(time).“] Imaging $source to $dest”);

 PSDisplayText(“Source drive -> ”.$source);

 PSDisplayText(“Dest fi le -> ”.$dest);

 my $img = PSCreateImage($source,$dest,FALSE);

 \logData(“[”.localtime(time).“] Image handle (“.$img.”) created”);

 if (PSStartCapture($img)) {

 \logData(“[”.localtime(time).“] Capturing image”);

 PSDisplayText(“Image captured.”);

 PSCloseHandle($img);

 PSReleaseRemoteAgent($ip);

 PSDisconnect();

 \logData(“[”.localtime(time).“] Imaged captured; $ip agent released and
disconnected”);

 \logData(“”);

 }

 else {

 PSDisplayText(“Image capture was not started on $ip”);

 \logData(“[”.localtime(time).“] Image capture not started for $ip”);

 }

 }

 else {

 PSDisplayText(“Unable to connect to $ip”);

 \logData(“[”.localtime(time).“] Unable to connect to $ip”);

 }

}

#––

logData()

#––

 Perl Scripting and Live Response • Part I 47

sub logData {

 my $str = shift;

 open(FH,“>>”,$logfi le);

 print FH $str.“\n”;

 close(FH);

}

Acquire1.pl doesn’t make use of all of the available functionality in the ProScript
API, but it serves the purpose of allowing me to automate live acquisitions. With the
right setup and the right amount of external storage for the images, I could let this
script run, allowing me to focus on other tasks.

Final Touches
Using Perl, there’s a great deal of information you can retrieve from systems, locally
or remotely, as part of troubleshooting or investigating an issue. Perl scripts can be
run from a central management point, reaching out to remote systems in order to
collect information, or they can be “compiled” into standalone executables using
PAR16, PerlApp,17 or Perl2Exe18 so that they can be run on systems that do not have
ActiveState’s Perl distribution (or any other Perl distribution) installed.

16 http://search.cpan.org/˜smueller/PAR-0.976/lib/PAR.pm
17 www.activestate.com/Products/perl_dev_kit/
18 www.indigostar.com/perl2exe.htm

This page intentionally left blank

49

Part II

Perl Scripting and
Computer Forensic
Analysis

Solutions for this Part:

■ Log Files

■ Parsing Binary Files

■ Registry

■ Event Logs

■ Parsing RAM Dumps

■ ProScripts

■ Parsing Other Data

50 Part II • Perl Scripting and Computer Forensic Analysis

Log Files
Log fi les, even on Windows systems, will often be fl at ASCII text fi les that contain
each log entry on one line. This makes the easy to view, but often times these log
fi les can be hundreds of kilobytes (KB) in size, even going over the megabyte (MB)
range, depending upon the application generating the logs and the amount of traffi c.
For example, by default, Microsoft’s web server, Internet Information Server (IIS) will
write web and FTP logs to fl at ASCII text fi les. Perl was originally designed to
quickly and effi ciently parse log fi les, and on Unix systems, those log fi les are, in
many cases, ASCII text fi les. Parsing a nominally sized IIS web server log fi le of say,
20 or 30 KB in size is almost nothing. The power of Perl really comes into play when
you need to parse several hundreds of MB of log fi les, looking for something specifi c,
such as an IP address, or a particular string. For example, when dealing with an
incident where a SQL injection attack has been suspected, I will most often run a
search of the fi les in the image to determine which log fi les contain the string
“xp_cmdshell”, which is the name of an SQL stored procedure that an attack may
call when conducting or attempting his attack. From there, I will most likely extract
the log fi les from the image and extract specifi c information from them.

NOTE

While Perl is extremely powerful, it cannot parse and fi nd what is not
there. As an incident responder, I have seen time and time again how a system
administrator has installed a server with default logging enabled, or for
some reason reduced the logging (or worse, simply disabled the logging all
together). The effect of this is that if certain information isn’t logged, then
there’s simply no way that any number of Perl scripts is going to fi nd it.

When parsing log fi les, particularly those generated by MS IIS, we most often
start by opening a fi le handle to the fi le itself, and then reading in each line of the
fi le one at a time. Once we have the line read in, we can then parse the line, grep()
for specifi c words, etc. A code segment that does this would look similar to the
following:
my $fi le = shift || die “You must enter a fi lename.\n”;

die “File not found!\n” unless (-e $fi le);

my $tag = “xp_cmdshell”;

 Perl Scripting and Computer Forensic Analysis • Part II 51

open(FH,“<”,$fi le) || die “Could not open $fi le: $!\n”;

while (<FH>) {

 if (grep(/$tag/,$_)) {

Do something

 }

}

close(FH);

In the above code segment, we take in the fi lename (and path, if necessary) from
the command line and do some basic error checking (does the fi le exist). We then
open the fi le in read-only mode, and start parsing the fi le one line at a time, looking
for the existence of the word “xp_cmdshell” in the line. Whether the word exists or
not, we don’t actually do anything in the code segment; what action you choose to
take is totally up to you. For example, you may want to parse the line based on
standard delimiter, and extract the source IP address from which the HTTP query
(POST or GET) originated. You can do this by using the Perl split() function to
separate the different elements of the line based on a delimiter, and then acting upon
those individual elements. This allows us to perform rapid, automated data reduction,
leaving us with only what we need.

NOTE

There may be some issues with reusing code between investigations, particularly
when it comes to parsing MS IIS log fi les. IIS allows the administrator to
confi gure which elements of each query actually get logged. In many cases, the
logging may simply be the default settings that came with the system. In other
cases, the web server logs may actually be used by the marketing department
(run through a product like WebSense), and may have all elements logged.
When parsing each line of the log fi le, you may need to adjust your call to the
split() function based on what’s actually being logged.

Parsing Binary Files
Many times when performing forensic analysis of a system, you may need to parse
the contents of binary fi les. This is somewhat different from parsing ASCII text fi les,
such as IIS web server logs or other such fi les, as in that case you’re most often
reading in a line of ASCII text at a time, and parsing the contents of the line based

52 Part II • Perl Scripting and Computer Forensic Analysis

on some delimiter. From there, you may do some matching or grep() searches.
However with binary fi les, you’re very often going to have to start at an offset within
the fi le (many times that offset is 0, or the beginning of the fi le), read in a number of
bytes, and then parse those bytes based on some organized, defi ned structure. The
issue with this is that many times, that structure isn’t defi ned, particularly not by the
vendor, which in the case of analyzing fi les on Windows systems, would be Microsoft.
This usually forces us to search the Internet looking for resources that defi ne the
structures, or at least give us a hint or points us in the right direction to decode the
structures ourselves. This can often be in the form of C or Visual Basic code that we
then translate to Perl.

Lslnk.pl
Windows shortcut fi les appear on the desktop as … well … icons. When the user double-
clicks the shortcut fi les, the actual fi le or application itself, which is not on the desktop,
will open. The Windows shortcut fi le contains to a variety of information about the fi le
to which it points, much of which may be extremely useful to an investigator. For
example, when a user double-clicks, say, an image or movie fi le that is stored on a
CD or thumb drive, a Windows shortcut fi le is created in the Documents section of the
user’s start menu. If that external storage media is removed, the Windows shortcut fi le
will still remain. The same is true when the fi le is downloaded, viewed, and then
deleted.

Windows shortcut fi les consist of a binary format that was decoded (well, actually
reverse engineered) by Jesse Hager (the format is located online as a PDF fi le).1 The
lslnk.pl Perl script is an implementation of that format decoding.
#! c:\perl\bin\perl.exe

#--

lslnk.pl

Perl script to parse a shortcut (LNK) fi le and retrieve data

#

Usage:

C:\Perl>lslnk.pl <fi lename> [> report.txt]

#

This script is intended to be used against LNK fi les

extracted from

from an image, or for LNK fi les located on a system

1 http://www.i2s-lab.com/Papers/The_Windows_Shortcut_File_Format.pdf

 Perl Scripting and Computer Forensic Analysis • Part II 53

#

copyright 2006-2007 H. Carvey, keydet89@yahoo.com

#--

use strict;

my $fi le = shift || die “You must enter a fi lename.\n”;

die “$fi le not found.\n” unless (-e $fi le);

Setup some variables

my $record;

my $ofs = 0;

my %fl ags = (0x01 => “Shell Item ID List exists”,

 0x02 => “Shortcut points to a fi le or directory”,

 0x04 => “The shortcut has a descriptive string”,

 0x08 => “The shortcut has a relative path string”,

 0x10 => “The shortcut has working directory”,

 0x20 => “The shortcut has command line arguments”,

 0x40 => “The shortcut has a custom icon”);

my %fi leattr = (0x01 => “Target is read only”,

 0x02 => “Target is hidden”,

 0x04 => “Target is a system fi le”,

 0x08 => “Target is a volume label”,

 0x10 => “Target is a directory”,

 0x20 => “Target was modifi ed since last backup”,

 0x40 => “Target is encrypted”,

 0x80 => “Target is normal”,

 0x100 => “Target is temporary”,

 0x200 => “Target is a sparse fi le”,

 0x400 => “Target has a reparse point”,

 0x800 => “Target is compressed”,

 0x1000 => “Target is offl ine”);

my %showwnd = (0 => “SW_HIDE”,

 1 => “SW_NORMAL”,

 2 => “SW_SHOWMINIMIZED”,

 3 => “SW_SHOWMAXIMIZED”,

 4 => “SW_SHOWNOACTIVE”,

 5 => “SW_SHOW”,

 6 => “SW_MINIMIZE”,

 7 => “SW_SHOWMINNOACTIVE”,

 8 => “SW_SHOWNA”,

 9 => “SW_RESTORE”,

 10 => “SHOWDEFAULT”);

54 Part II • Perl Scripting and Computer Forensic Analysis

my %vol_type = (0 => “Unknown”,

 1 => “No root directory”,

 2 => “Removable”,

 3 => “Fixed”,

 4 => “Remote”,

 5 => “CD-ROM”,

 6 => “Ram drive”);

Get info about the fi le

#my ($size,$atime,$mtime,$ctime) = (stat($fi le))[7,8,9,10];

#print $fi le.“ $size bytes\n”;

#print “Access Time = ”.gmtime($atime).“ (UTC)\n”;

#print “Creation Date = ”.gmtime($ctime).“ (UTC)\n”;

#print “Modifi cation Time = ”.gmtime($mtime).“ (UTC)\n”;

#print “\n”;

Open fi le in binary mode

open(FH,$fi le) || die “Could not open $fi le: $!\n”;

binmode(FH);

seek(FH,$ofs,0);

read(FH,$record,0x4c);

if (unpack(“Vx72”,$record) == 0x4c) {

 my %hdr = parseHeader($record);

print summary info from header

 print “Flags:\n”;

 foreach my $i (keys %fl ags) {

 print $fl ags{$i}.“\n” if ($hdr{fl ags} & $i);

 }

 print “\n”;

 if (scalar keys %fi leattr > 0) {

 print “Attributes:\n”;

 foreach my $i (keys %fi leattr) {

 print $fi leattr{$i}.“\n” if ($hdr{attr} & $i);

 }

 print “\n”;

 }

 print “MAC Times: \n”;

 print “Creation Time = ”.gmtime($hdr{ctime}).“ (UTC)\n”;

 print “Modifi cation Time = ”.gmtime($hdr{mtime}).“ (UTC)\n”;

 print “Access Time = ”.gmtime($hdr{atime}).“ (UTC)\n”;

 print “\n”;

 print “ShowWnd value(s):\n”;

 Perl Scripting and Computer Forensic Analysis • Part II 55

 foreach my $i (keys %showwnd) {

 print $showwnd{$i}.“\n” if ($hdr{showwnd} & $i);

 }

 $ofs += 0x4c;

Check to see if Shell Item ID List exists. If so, get the length

and skip it.

 if ($hdr{fl ags} & 0x01) {

print “Shell Item ID List exists.\n”;

 seek(FH,$ofs,0);

 read(FH,$record,2);

Note: add 2 to the offset as the Shell Item ID list length is not
included in the

structure itself

 $ofs += unpack(“v”,$record) + 2;

 }

Check File Location Info

 if ($hdr{fl ags} & 0x02) {

 seek(FH,$ofs,0);

 read(FH,$record,4);

 my $l = unpack(“V”,$record);

 if ($l > 0) {

 seek(FH,$ofs,0);

 read(FH,$record,0x1c);

 my %li = fi leLocInfo($record);

 print “\n”;

 if ($li{fl ags} & 0x1) {

Get the local volume table

 print “Shortcut fi le is on a local volume.\n”;

 my %lvt = localVolTable($ofs + $li{vol_ofs});

 print “Volume Name = $lvt{name}\n”;

 print “Volume Type = ”.$vol_type{$lvt{type} }.“\n”;

 printf “Volume SN = 0x%x\n”,$lvt{vol_sn};

 print “\n”;

 }

 if ($li{fl ags} & 0x2) {

Get the network volume table

 print “File is on a network share.\n”;

 my %nvt = netVolTable($ofs + $li{network_ofs});

 print “Network Share name = $nvt{name}\n”;

 }

56 Part II • Perl Scripting and Computer Forensic Analysis

 if ($li{base_ofs} > 0) {

 my $basename = getBasePathName($ofs + $li{base_ofs});

 print “Base = $basename\n”;

 }

 if ($li{path_ofs} > 0) {

 my $pathname = getPathName($ofs + $li{path_ofs});

 print “Path = ”.$pathname.“\n”;

 }

 }

 }

}

else {

 die “$fi le does not have a valid shortcut header.\n”

}

close(FH);

sub parseHeader {

 my $data = $_[0];

 my %hdr;

 my @hd = unpack(“Vx16V12x8”,$data);

 $hdr{id} = $hd[0];

 $hdr{fl ags} = $hd[1];

 $hdr{attr} = $hd[2];

 $hdr{ctime} = getTime($hd[3],$hd[4]);

 $hdr{mtime} = getTime($hd[5],$hd[6]);

 $hdr{atime} = getTime($hd[7],$hd[8]);

 $hdr{length} = $hd[9];

 $hdr{icon_num} = $hd[10];

 $hdr{showwnd} = $hd[11];

 $hdr{hotkey} = $hd[12];

 undef @hd;

 return %hdr;

}

sub fi leLocInfo {

 my $data = $_[0];

 my %fl ;

 ($fl {len},$fl {ptr},$fl {fl ags},$fl {vol_ofs},$fl {base_ofs},$fl {network_ofs},

 $fl {path_ofs}) = unpack(“V7”,$data);

 return %fl ;

}

sub localVolTable {

 my $offset = $_[0];

 Perl Scripting and Computer Forensic Analysis • Part II 57

 my $data;

 my %lv;

 seek(FH,$offset,0);

 read(FH,$data,0x10);

 ($lv{len},$lv{type},$lv{vol_sn},$lv{ofs}) = unpack(“V4”,$data);

 seek(FH,$offset + $lv{ofs},0);

 read(FH,$data, $lv{len} - 0x10);

 $lv{name} = $data;

 return %lv;

}

sub getPathName {

 my $ofs = $_[0];

 my $data;

 my @char;

 my $len;

 my $tag = 1;

 while($tag) {

 seek(FH,$ofs,0);

 read(FH,$data,2);

 $tag = 0 if (unpack(“v”,$data) == 0x00);

 push(@char,$data);

 $ofs += 2;

 }

 return join(‘’,@char);

}

sub getBasePathName {

 my $ofs = $_[0];

 my $data;

 my @char;

 my $len;

 my $tag = 1;

 while($tag) {

 seek(FH,$ofs,0);

 read(FH,$data,2);

 $tag = 0 if (unpack(“v”,$data) == 0x00);

 push(@char,$data);

 $ofs += 2;

 }

 return join(‘’,@char);

}

58 Part II • Perl Scripting and Computer Forensic Analysis

sub netVolTable {

 my $offset = $_[0];

 my $data;

 my %nv;

 seek(FH,$offset,0);

 read(FH,$data,0x14);

 ($nv{len},$nv{ofs}) = unpack(“Vx4Vx8”,$data);

printf “Length of the network volume table = 0x%x\n”,$nv{len};

printf “Offset to the network share name = 0x%x\n”,$nv{ofs};

 seek(FH,$offset + $nv{ofs},0);

 read(FH,$data, $nv{len} - 0x14);

 $nv{name} = $data;

 return %nv;

}

sub getTime() {

 my $lo = shift;

 my $hi = shift;

 my $t;

 if ($lo == 0 && $hi == 0) {

 $t = 0;

 } else {

 $lo -= 0xd53e8000;

 $hi -= 0x019db1de;

 $t = int($hi*429.4967296 + $lo/1e7);

 };

 $t = 0 if ($t < 0);

 return $t;

}

Lslnk.pl will parse the contents of the Window shortcut fi le and display a great
deal of information about the shortcut fi les, including the creation, last access and
modifi cation times not only of the shortcut fi le, but also those of the fi le that the
shortcut points to, which is embedded within the binary content of the shortcut fi le.

Registry
The Windows Registry is a binary hierarchal database that contains a great deal of
valuable information for the analyst or investigator. According to Microsoft, the Registry
holds confi guration information for the system and applications, replacing the old
initialization (∗.ini, pronounced “eye-en-eye”) fi les. For a forensic analyst, though, the

 Perl Scripting and Computer Forensic Analysis • Part II 59

Registry can be looked at as one big log fi le. The Registry is made up of keys (the
folders you see when you open up RegEdit), which contain subkeys and values, and
values, which contain data. Figure II.1 illustrates keys, values, and data.

Figure II.1 Extract from RegEdit showing keys, values, and data

More information regarding the specifi c structure of the Registry, as well as its
immense value in forensic analysis, please see my other book published by Syngress/
Elsevier, Windows Forensic Analysis.

As we saw in the previous Part, a great way to access the Registry on a live system
is through the use of the Win32::TieRegistry module. However, when performing
forensic analysis of Registry fi les extracted from an acquired image, the ideal module
to use is the Parse::Win32Registry module,2 from James McFarlane. I had looked into
writing my own tools for accessing a raw Registry fi le and extracting keys and values,
but while I was going about putting together the ground work for that module, James
released a version of his Parse::Win32Registry module, which takes a completely
object-oriented approach to the task. While we will be using James’ module to parse
Registry fi les from Windows 2000, XP, 2003, and yes, even Vista, Parse::Win32Registry
can also be used to parse Registry fi les from Windows ME and 95/98, as well.

NOTE

As I’m writing this Part, the Parse::Win32Registry module is not available via
the Perl Package Manager (ppm). In order to install this module, all you really
need to do is download the .tar.gz fi le, decompress everything (WinZip works
just fi ne), and copy the entire Parse folder to the \Perl\site\lib\ directory on
your system.

2 http://search.cpan.org/∼jmacfarla/Parse-Win32Registry-0.30/

60 Part II • Perl Scripting and Computer Forensic Analysis

SAMParse.pl
While a system is running, not even an administrator can access the SAM database,
which contains information about the user accounts on the system (to include the
password hashes). However, during a post-mortem analysis of the system, a great deal
of information about the local user accounts is included in the SAM database, which
exists as the fi le named “SAM” within the C:\Windows\system32\confi g (or Winnt\,
as the case may be) directory. The samparse.pl Perl script not only parses through the
various user accounts embedded in the SAM database, but also extracts and decodes
the information maintained in the “F” and “V” values for each user. Before exiting, it
also parses through and displays information about groups and group membership on
the system (i.e., as it applies to local user accounts).
#! c:\perl\bin\perl.exe

#--

samparse.pl

Perl script to retrieve user information from a raw

Registry/SAM fi le

#

Usage:

C:\Perl>samparse.pl <path_to_SAM_fi le> [> sam_user.txt]

#

This script is intended to be used against SAM fi les

extracted from

from an image, either from the system32\confi g directory, or from system

restore points.

#

copyright 2006–2007 H. Carvey, keydet89@yahoo.com

#--

use strict;

use Parse::Win32Registry qw(:REG_);

Included to permit compiling via Perl2Exe

#perl2exe_include “Parse/Win32Registry/Key.pm”;

#perl2exe_include “Parse/Win32Registry/Value.pm”;

my $sam = shift || die “You must enter a fi lename.\n”;

die “$sam not found.\n” unless (-e $sam);

my %acb_fl ags = (0x0001 => “Account Disabled”,

 0x0002 => “Home directory required”,

 0x0004 => “Password not required”,

 0x0008 => “Temporary duplicate account”,

 Perl Scripting and Computer Forensic Analysis • Part II 61

 0x0010 => “Normal user account”,

 0x0020 => “MNS logon user account”,

 0x0040 => “Interdomain trust account”,

 0x0080 => “Workstation trust account”,

 0x0100 => “Server trust account”,

 0x0200 => “Password does not expire”,

 0x0400 => “Account auto locked”);

my $reg = Parse::Win32Registry->new($sam);

my $root_key = $reg->get_root_key;

my %users = getUsers();

print “-” x 25,“\n”;

print “User Information\n”;

print “-” x 25,“\n”;

foreach my $rid (keys %users) {

 ($users{$rid}{fullname} eq “”) ? (print $users{$rid}{name}.“\n”) :

 (print $users{$rid}{name}.“ (”.$users{$rid}{fullname}.“)\n”);

 ($users{$rid}{comment} eq “”) ? () : (print $users{$rid}{comment}.“\n”);

 print “Key LastWrite Time = ”.gmtime($users{$rid}{lastwrite}).“ (UTC)\n”;

 my $ll;

 ($users{$rid}{last_login} == 0)?($ll = “Never”):($ll = gmtime($users{$rid}{last_
login}).“ (UTC)”);

 print “Last Login = ”.$ll.“\n”;

 print “Login Count = ”.$users{$rid}{login_count}.“\n”;

 my $prd;

 ($users{$rid}{pwd_reset_date} == 0)?($prd = “Never”):($prd =
gmtime($users{$rid}{pwd_reset_date}).“ (UTC)”);

 print “Pwd Reset Date = ”.$prd.“\n”;

 my $pfd;

 ($users{$rid}{pwd_fail_date} == 0)?($pfd = “Never”):($pfd =
gmtime($users{$rid}{pwd_fail_date}).“ (UTC)”);

 print “Pwd Failure Date = ”.$pfd.“\n”;

 print “Account Flags: \n”;

 foreach my $fl ag (keys %acb_fl ags) {

 print “ –> ”.$acb_fl ags{$fl ag}.“\n” if ($users{$rid}{fl ags} & $fl ag);

 }

 print “\n”;

}

my %groups = getGroups();

print “-” x 25,“\n”;

print “Group Information\n”;

62 Part II • Perl Scripting and Computer Forensic Analysis

print “-” x 25,“\n”;

foreach my $rid (keys %groups) {

 print $groups{$rid}{name}.“\n”;

 ($groups{$rid}{comment} eq “”) ? () : (print $groups{$rid}{comment}.“\n”);

 print “Key LastWrite Time = ”.gmtime($groups{$rid}{lastwrite}).“ (UTC)\n”;

 my @users = split(/,/,$groups{$rid}{users});

 if ($groups{$rid}{users} eq “None”) {

 print “\tNo Users\n”;

 }

 else {

 foreach my $u (@users) {

 if (exists $users{$u}) {

 print “\t”.$users{$u}{name}.“\n”;

 }

 else {

 print “\t$u\n”;

 }

 }

 }

 print “\n”;

}

sub getUsers {

 my %users = ();

 my $user_path = ‘SAM\\Domains\\Account\\Users’;

 my $users = $root_key->get_subkey($user_path);

 my @user_list = $users->get_list_of_subkeys();

 if (@user_list) {

 foreach my $u (@user_list) {

 my $rid = $u->get_name();

 my $ts = $u->get_timestamp();

 my $tag = “0000”;

 if ($rid =∼m/^$tag/) {

 my $v_value = $u->get_value(“V”);

 my $v = $v_value->get_data();

 my %v_val = parseV($v);

 $rid =∼ s/^0000//;

 $rid = hex($rid);

 $users{$rid}{name} = $v_val{name};

 $users{$rid}{fullname} = $v_val{fullname};

 $users{$rid}{lastwrite} = $ts;

 $users{$rid}{comment} = $v_val{comment};

 Perl Scripting and Computer Forensic Analysis • Part II 63

 my $f_value = $u->get_value(“F”);

 my $f = $f_value->get_data();

 my %f_val = parseF($f);

 $users{$rid}{last_login} = $f_val{last_login_date};

 $users{$rid}{pwd_reset_date} = $f_val{pwd_reset_date};

 $users{$rid}{pwd_fail_date} = $f_val{pwd_fail_date};

 $users{$rid}{fl ags} = $f_val{acb_fl ags};

 $users{$rid}{login_count} = $f_val{login_count}

 }

 }

 }

 else {

 undef %users;

 }

 return %users;

}

sub getGroups {

 my %sam_groups = ();

 my $grppath = ‘SAM\\Domains\\Builtin\\Aliases’;

 my $groups = $root_key->get_subkey($grppath);

 my %grps;

 foreach my $k ($groups->get_list_of_subkeys()) {

 if ($k->get_name() = ~ m/^0000/) {

 $grps{$k->get_name()}{LastWrite} = $k->get_timestamp();

 $grps{$k->get_name()}{C_value} = $k->get_value(“C”)->get_data();

 }

 }

 foreach my $k (keys %grps) {

 my $name = $k;

 $name =∼ s/^0000//;

 $sam_groups{$name}{lastwrite} = $grps{$k}{LastWrite};

 my %c_val = parseC($grps{$k}{C_value});

 $sam_groups{$name}{name} = $c_val{group_name};

 $sam_groups{$name}{comment} = $c_val{comment};

 $sam_groups{$name}{users} = $c_val{users};

 }

 return %sam_groups;

}

sub parseF {

 my $f = shift;

 my %f_value = ();

64 Part II • Perl Scripting and Computer Forensic Analysis

last login date

 $f_value{last_login_date} = _getTimeDate(unpack(“VV”,substr($f,8,8)));

password reset/acct creation

 $f_value{pwd_reset_date} = _getTimeDate(unpack(“VV”,substr($f,24,8)));

Account expires

 $f_value{acct_exp_date} = _getTimeDate(unpack(“VV”,substr($f,32,8)));

Incorrect password

 $f_value{pwd_fail_date} = _getTimeDate(unpack(“VV”,substr($f,40,8)));

 $f_value{rid} = unpack(“V”,substr($f,48,4));

 $f_value{acb_fl ags} = unpack(“v”,substr($f,56,2));

 $f_value{failed_count} = unpack(“v”,substr($f,64,2));

 $f_value{login_count} = unpack(“v”,substr($f,66,2));

 return %f_value;

}

sub parseV {

 my $v = shift;

 my %v_val = ();

 my $header = substr($v,0,44);

 my @vals = unpack(“V*”,$header);

 $v_val{name} = _uniToAscii(substr($v,($vals[3] + 0xCC),$vals[4]));

 $v_val{fullname} = _uniToAscii(substr($v,($vals[6] + 0xCC),$vals[7]))
if ($vals[7] > 0);

 $v_val{comment} = _uniToAscii(substr($v,($vals[9] + 0xCC),$vals[10]))
if ($vals[10] > 0);

 return %v_val;

}

sub parseC {

 my $cv = $_[0];

 my %c_val = ();

 my $header = substr($cv,0,0x34);

 my @vals = unpack(“V*”,$header);

 $c_val{group_name} = _uniToAscii(substr($cv,(0x34 + $vals[4]),$vals[5]));

 $c_val{comment} = _uniToAscii(substr($cv,(0x34 + $vals[7]),$vals[8]));

 my $num = $vals[12];

 my @users = ();

 my $ofs;

 $num -= 2 if ($c_val{group_name} eq “Users”);

 if ($num > 0) {

 my $count = 0;

 foreach my $c (1..$num) {

 Perl Scripting and Computer Forensic Analysis • Part II 65

 $ofs = ($vals[10] + 52 + 25 + $count - 1);

 $ofs = ($vals[10] + 52 + 25 + $count - 1 + 24) if ($c_val{group_name}
eq “Users”);

 my $rid = unpack(“v”,substr($cv,$ofs,2));

 push(@users,$rid);

 $count += (27 + 1) if ($count < $vals[11]);

 }

 }

 if ((scalar @users) > 0) {

 $c_val{users} = join(‘,’,@users);

 }

 else {

 $c_val{users} = “None”;

 }

 return %c_val;

}

#--

_getTimeDate()

Input : 2 DWORDs, each containing half of the LastWrite time

Output: readable GMT time string

#--

sub _getTimeDate {

Borrowed from Andreas Schuster’s ptfi nder code

 my $lo = shift;

 my $hi = shift;

 my $t;

 if ($lo == 0 && $hi == 0) {

 $t = 0;

 } else {

 $lo -= 0xd53e8000;

 $hi -= 0x019db1de;

 $t = int($hi*429.4967296 + $lo/1e7);

 };

 $t = 0 if ($t < 0);

 return $t;

}

sub _uniToAscii {

my $str = $_[0];

$str =Ð s/\00//g;

return $str;

}

66 Part II • Perl Scripting and Computer Forensic Analysis

When samparse.pl is run against a SAM database fi le extracted from an acquired
image, the investigator is presented with information such as what appears below:
--

User Information

--

SUPPORT_388945a0 (CN=Microsoft Corporation,L=Redmond,S=Washington,C=US)

This is a vendor’s account for the Help and Support Service

Key LastWrite Time = Wed Aug 18 00:39:28 2004 (UTC)

Last Login = Never

Login Count = 0

Pwd Reset Date = Wed Aug 18 00:39:27 2004 (UTC)

Pwd Failure Date = Never

Account Flags:

 ––> Password does not expire

 ––> Account Disabled

 ––> Normal user account

Guest

Built-in account for guest access to the computer/domain

Key LastWrite Time = Tue Aug 17 20:27:13 2004 (UTC)

Last Login = Never

Login Count = 0

Pwd Reset Date = Never

Pwd Failure Date = Never

Account Flags:

 ––> Password does not expire

 ––> Account Disabled

 ––> Password not required

 ––> Normal user account

jdoe (John Doe)

Corporate User

Key LastWrite Time = Mon Sep 26 22:55:51 2005 (UTC)

Last Login = Mon Sep 26 22:55:51 2005 (UTC)

Login Count = 2

Pwd Reset Date = Fri Sep 9 01:09:49 2005 (UTC)

Pwd Failure Date = Mon Sep 26 22:55:49 2005 (UTC)

Account Flags:

 ––> Password does not expire

 ––> Normal user account

HelpAssistant (Remote Desktop Help Assistant Account)

Account for Providing Remote Assistance

 Perl Scripting and Computer Forensic Analysis • Part II 67

Key LastWrite Time = Wed Aug 18 00:37:19 2004 (UTC)

Last Login = Never

Login Count = 0

Pwd Reset Date = Wed Aug 18 00:37:19 2004 (UTC)

Pwd Failure Date = Never

Account Flags:

 ––> Password does not expire

 ––> Account Disabled

 ––> Normal user account

Administrator

Built-in account for administering the computer/domain

Key LastWrite Time = Tue Aug 17 20:31:47 2004 (UTC)

Last Login = Never

Login Count = 0

Pwd Reset Date = Tue Aug 17 20:31:47 2004 (UTC)

Pwd Failure Date = Never

Account Flags:

 ––> Password does not expire

 ––> Normal user account

Harlan

Key LastWrite Time = Mon Sep 26 23:37:51 2005 (UTC)

Last Login = Mon Sep 26 23:37:51 2005 (UTC)

Login Count = 35

Pwd Reset Date = Wed Aug 18 00:49:42 2004 (UTC)

Pwd Failure Date = Mon Sep 26 23:37:47 2005 (UTC)

Account Flags:

 ––> Password does not expire

 ––> Normal user account

--

Group Information

--

Users

Users are prevented from making accidental or intentional system-wide changes.

Thus, Users can run certifi ed applications, but not most legacy applications

Key LastWrite Time = Fri Sep 9 01:09:49 2005 (UTC)

 jdoe

Network Confi guration Operators

Members in this group can have some administrative privileges to manage confi gur

ation of networking features

Key LastWrite Time = Tue Aug 17 20:27:13 2004 (UTC)

 No Users

68 Part II • Perl Scripting and Computer Forensic Analysis

Backup Operators

Backup Operators can override security restrictions for the sole purpose of
backing up or restoring fi les

Key LastWrite Time = Tue Aug 17 20:27:13 2004 (UTC)

 No Users

Replicator

Supports fi le replication in a domain

Key LastWrite Time = Tue Aug 17 20:27:13 2004 (UTC)

 No Users

Administrators

Administrators have complete and unrestricted access to the computer/domain

Key LastWrite Time = Wed Aug 18 00:46:24 2004 (UTC)

 Administrator

 Harlan

Power Users

Power Users possess most administrative powers with some restrictions. Thus, Power
Users can run legacy applications in addition to certifi ed applications

Key LastWrite Time = Tue Aug 17 20:27:13 2004 (UTC)

 No Users

Guests

Guests have the same access as members of the Users group by default, except for
the Guest account which is further restricted

Key LastWrite Time = Tue Aug 17 20:27:13 2004 (UTC)

 Guest

Remote Desktop Users

Members in this group are granted the right to logon remotely

Key LastWrite Time = Tue Aug 17 20:27:13 2004 (UTC)

 No Users

As you can see, samparse.pl displays local user account information based on what is
extracted from the SAM database. Within the “Group Membership” section, you may see
series of 4 or 5 digits where you would expect to see a user name, such as beneath the
Administrators group (above). In such cases, these values are relative identifi ers (RIDs)
for domain users. This is an indication that the system being examined is (or was, at one
point) part of a domain.

SECParse.pl
Like the SAM fi le within the system32\confi g directory, the Security fi le also contains
some very useful information. In particular, the Security fi le maintains the audit
confi guration (as seen when running auditpol.exe on a live system) which determines

 Perl Scripting and Computer Forensic Analysis • Part II 69

which events are audited and recorded in the Windows Event Log. Microsoft
Knowledge Base article Q2461203 describes how to parse this information from the
Security fi le extracted from a Windows NT 4.0 system, and sources available on the
Internet provide the necessary information in order to allow you to do the same
thing for Windows 2000, XP, and 2003 systems.
#! c:\perl\bin\perl.exe

#--

secparse.pl

Parse the raw Security fi le and display the audit policy

for the system (2000, XP, 2003)

#

Usage: secparse.pl <fi lename> [> output_fi le]

#

NT: http://support.microsoft.com/kb/246120

2K: http://www.jsifaq.com/SF/Tips/Tip.aspx?id=5231

http://loguk.blogspot.com/2004/09/bit-of-windows-internals-recently.html

#

copyright 2006–2007 H. Carvey keydet89@yahoo.com

#--

use strict;

use Parse::Win32Registry qw(:REG_);

my %win2kevents = (0 => “System Events”,

 1 => “Logon Events”,

 2 => “Object Access”,

 3 => “Privilege Use”,

 4 => “Process Tracking”,

 5 => “Policy Change”,

 6 => “Account Management”,

 7 => “Directory Service Access”,

 8 => “Account Logon Events”);

my %ntevents = (0 => “Restart, Shutdown, Sys”,

 1 => “Logon/Logoff”,

 2 => “File/Object Access”,

 3 => “Use of User Rights”,

 4 => “Process Tracking”,

 5 => “Sec Policy Mgmt”,

 6 => “User/Grp Mgmt”);

3 http://support.microsoft.com/default.aspx?scid=kb;EN-US;q246120

70 Part II • Perl Scripting and Computer Forensic Analysis

my %audit = (0 => “None”,

 1 => “Succ”,

 2 => “Fail”,

 3 => “Both”);

my %policy = ();

my $fi le = shift || die “You must enter a fi lename.\n”;

die “$fi le not found.\n” unless (-e $fi le);

my $reg = Parse::Win32Registry->new($fi le);

my $root = $reg->get_root_key;

my $pol = $root->get_subkey(“Policy\\PolAdtEv”);

my $ts = $pol->get_timestamp();

print “LastWrite: “.gmtime($ts).” (UTC)\n”;

my $val = $pol->get_value(“”);

#print “\t”.$val->print_summary().“\n”;

my $adt = $val->get_data();

my $len = length($adt);

my $enabled = unpack(“C”,substr($adt,0,1));

if ($enabled) {

 print “Auditing was enabled.\n”;

 my @evts = unpack(“V*”,substr($adt,4,$len-4));

 my $tot = $evts[scalar(@evts) - 1];

 print “There are $tot audit categories.\n”;

 print “\n”;

 if ($tot == 9) {

 foreach my $n (0..(scalar(@evts) - 2)) {

 my $adtev = $audit{$evts[$n]};

 $policy{$win2kevents{$n} } = $adtev;

 }

 }

 elsif ($tot == 7) {

 foreach my $n (0..(scalar(@evts) - 2)) {

 my $adtev = $audit{$evts[$n]};

 $policy{$ntevents{$n} } = $adtev;

 }

 }

 else {

 print “Unknown audit confi guration.\n”;

 }

 Perl Scripting and Computer Forensic Analysis • Part II 71

 foreach my $k (keys %policy) {

 printf “%-25 s %-4 s\n”,$k,$policy{$k};

 }

}

else {

 print “Auditing was not enabled.\n”;

}

In order to run the secparse.pl Perl script, simply open a command prompt to the
directory where the script is stored and type the following command:

C:\Perl\forensics>secparse.pl d:\cases\case001\security

When running secparse.pl against a Security fi le extracted from an acquired
image, the investigator should expect to see something similar to the following:

LastWrite: Fri Sep 9 01:11:43 2005 (UTC)

Auditing was enabled.

There are 9 audit categories.

Privilege Use None

Object Access None

Account Logon Events Both

System Events Both

Policy Change Both

Logon Events Both

Account Management Both

Directory Service Access None

Process Tracking None

You’ll notice that one of the fi rst things returned by the secparse.pl Perl script
is the LastWrite time of the PolAdtEv Registry key. I opted to do this so that the
examiner can get an idea of when the audit confi guration on the system may have
been changed in some way. This may be extremely valuable information during an
investigation, particularly when correlated with additional data from other sources.

As you will see in the “Event Log” section further on in this book, information
derived from the use of secparse.pl Perl script can be extremely useful in an investigation,
as it will inform the examiner of what she should expect to see in the various Event
Log fi les.

Recentdocs.pl
Another important aspect of the Registry can be found in the user’s profi le, specifi cally
in the user’s NTUSER.DAT fi le. This fi le maintains a great deal of useful information

72 Part II • Perl Scripting and Computer Forensic Analysis

about the activities performed by whoever logged into the system using the user’s credentials
(i.e., username and password). For example, when the user opens various fi les on the
system, not only are Windows shortcut fi les created, but so are entries within the user’s
RecentDocs Registry key (in the NTUSER.DAT fi le). Some of this information is
in easily searched and viewed ASCII format, but other information is stored in a binary
format that must be parsed in order to be understandable and therefore useable by the
examiner. The recentdocs.pl uses the Parse::Win32Registry module to parse this
information for easy display and viewing.
#! c:\perl\bin\perl.exe

--

recentdocs.pl

#

Parse the contents of the RecentDocs Registry key from a

user’s NTUSER.DAT

fi le; all information is sent to STDOUT

#

Usage

C:\perl>u_recentdocs.pl <fi le>

- or, create a harness fi le that calls the fi le via a

‘require’ pragma,

and launches getRecentDocs() by passing the fi lename (or

use backticks,

and capture output to a list)

#

ChangeLog

20070703 - Created

#

copyright 2007 H. Carvey, keydet89@yahoo.com

--

use strict;

use Parse::Win32Registry qw(:REG_);

my $ntuser = shift || die “You must enter a fi lename.\n”;

die “$ntuser not found.\n” unless (-e $ntuser);

\getRecentDocs($ntuser);

sub getRecentDocs {

 my $reg = Parse::Win32Registry->new($ntuser);

 my $root_key = $reg->get_root_key;

#print “Root key: $root_key\n”;

 Perl Scripting and Computer Forensic Analysis • Part II 73

 my $key_path = “Software\\Microsoft\\Windows\\CurrentVersion\\
Explorer\\RecentDocs”;

 my $r_docs = $root_key->get_subkey($key_path);

 if (!defi ned($r_docs)) {

 print $key_path.“ not found.\n”;

 }

 else {

RecentDocs key exists, so get the values within the key, and

the values within each subkey.

 my $ts = $r_docs->get_timestamp();

 my $main_name = $r_docs->get_name();

 print $main_name.“ [“.gmtime($ts).” (UTC)]\n”;

 my %vals = getValues($r_docs);

 if (scalar(keys %vals) < 2) {

 }

 else {

 foreach my $v (sort {$a <=> $b} keys %vals) {

 printf “%9 s %-30 s\n”,$v,$vals{$v} unless ($v eq “MRUListEx”);

 }

 printf “%9 s %-30 s\n”, “MRUListEx”,$vals{MRUListEx};

 print “\n”;

 my @r_values = $r_docs->get_list_of_subkeys();

 foreach my $r (@r_values) {

 $ts = $r->get_timestamp();

 print $main_name.“\\”.$r->get_name().“ [“.gmtime($ts).” (UTC)]\n”;

 %vals = getValues($r_docs);

 foreach my $v (sort {$a <=> $b} keys %vals) {

 printf “%9 s %-30 s\n”,$v,$vals{$v} unless ($v eq “MRUListEx”);

 }

 printf “%9 s %-30 s\n”, “MRUListEx”,$vals{MRUListEx};

 print “\n”;

 }

 }

 }

}

Get the values in a key

sub getValues {

 my $key_path = shift;

 my %key_values;

 my @vals = $key_path->get_list_of_values();

 foreach my $v (@vals) {

74 Part II • Perl Scripting and Computer Forensic Analysis

 $key_values{$v->get_name()} = $v->get_data();

 }

 return sortValues(%key_values);

}

Sort the values in a hash

sub sortValues {

 my %v = @_;

 my %sorted;

 my $mru = “MRUList”;

 foreach my $i (keys %v) {

 if ($i = ~ m/^$mru/i) {

 if (length($v{$i}) > 4) {

 my @mru = unpack(“V*”,$v{$i});

 pop(@mru);

 my $str = join(‘,’,@mru);

 $sorted{$i} = $str;

 }

 }

 else {

 my $str = parseBinary($v{$i});

 $sorted{$i} = $str;

 }

 }

 return %sorted;

}

Return a null-terminated string from within a binary data

type

sub parseBinary {

 my $binary = shift;

 my @list = unpack(“v*”,$binary);

 my $count = 0;

 my $tag = 1;

 my $str;

 while($tag) {

 if ($list[$count] == 0) {

 $tag = 0;

 }

 else {

 my $i = $list[$count];

 $i = ~ s/\00//;

 $str .= pack(“C”,$i);

 Perl Scripting and Computer Forensic Analysis • Part II 75

 }

 $count++;

 }

 return $str;

}

1;

Running the recentdocs.pl Perl script is fairly straightforward:
C:\Perl\forensics>recentdocs.pl d:\cases\case007\ntuser.dat

An excerpt of the output of the recentdocs.pl Perl script looks like:
RecentDocs [Mon Sep 26 23:33:07 2005 (UTC)]

 0 britney.jpg

 1 jdoe

 2 lads.zip

 3 hand1.gif

 4 Search Results

 5 hand2.gif

 6 alicia.silverstone.jpg

 7 LADS_ReadMe.txt

 8 010219_2100 (D:)

 9 README.TXT

 10 trout.ini

 11 small.gif

 12 honeynet_papers

 13 cover.jpg

 14 USB DISK (E:)

 15 fspconfi g.jpg

 16 fru.jpg

 17 test.txt

 18 c$ on ‘192.168.1.22’ (Z:)

 19 2k3_usb.log

 20 c$ on ‘192.168.1.71’ (X:)

MRUListEx 20,19,18,17,14,16,15,13,12,11,8,10,9,7,1,6,0,4,5,3,2

As with any other Perl script, the output is easily formatted for display by the
examiner…with some simple Perl code, the output can be displayed in ASCII format
to standard output (as above), or to just about any other format and location, such as
to a spreadsheet or database, for example.

UAssist.pl
As mentioned in the previous Part, the UserAssist key within the user’s NTUSER.
DAT fi le contains a great deal of information that can be extremely valuable to an

76 Part II • Perl Scripting and Computer Forensic Analysis

examiner. I’ve used the information derived from this key (actually, from its subkeys)
in order to demonstrate that a user did, in fact, install and launch an application that
had been uninstalled and removed prior to my arrival, as well as to show that a
particular user account had access to the Windows shell (i.e., Windows Explorer)
via the Remote Desktop client.

As you’re undoubtedly aware by now, accessing the contents of the UserAssist key
is a bit different when done in a post-mortem examination vice on a live system, but
some of the other core functionality of the uassist.pl script (below) is no different
from the Perl script by the same name listed in Part I.
#! c:\perl\bin\perl.exe

--

parse NTUSER.DAT fi le, and list the contents of one of the

UserAssist\GUID\Count keys, sorted by most recent time

#

Usage

C:\perl>u_uassist.pl <fi le>

- or, create a harness fi le that calls the fi le via a

‘require’ pragma,

and launches getUserAssist() by passing the fi lename (or

use backticks,

and capture output to a list)

#

ChangeLog

20070703 - Created

#

copyright 2007 H. Carvey

--

use strict;

use Parse::Win32Registry qw(:REG_);

Included to permit compiling via Perl2Exe

#perl2exe_include “Parse/Win32Registry/Key.pm”;

#perl2exe_include “Parse/Win32Registry/Value.pm”;

my $ntuser = shift || die “You must enter a fi lename.\n”;

die “$ntuser not found.\n” unless (-e $ntuser);

\getUserAssist($ntuser);

\getUserAssist($ntuser,0);

sub getUserAssist {

 my $ntuser = shift;

Two levels for output format

 Perl Scripting and Computer Forensic Analysis • Part II 77

0 = All entries, plus time-sorted values

1 = only time-sorted values (default)

 my $level = shift;

 $level = 1 if (!(defi ned($level)));

 my $reg = Parse::Win32Registry->new($ntuser);

 my $root_key = $reg->get_root_key;

The fi rst thing we want to do is check and see if the Settings subkey

exists, and if so, have values such as NoLog and NoEncrypt been set

 my $settings_path = ‘Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\’.

 ‘UserAssist\\Settings’;

 my $settings;

 if ($settings = $root_key->get_subkey($settings_path)) {

 print “Settings subkey [”.gmtime($settings->get_timestamp()).“ (UTC)]\n”;

 my @settings_values = $settings->get_list_of_values();

 if (scalar(@settings_values) > 0) {

 foreach my $v (@settings_values) {

 printf “%-10 s %-10 s\n”,$v->get_name(),$v->get_data();

 }

 print “\n”;

 }

 else {

 print “No values found.\n\n”;

 }

 }

 else {

 print “UserAssist\\Settings subkey not found.\n\n”;

 }

#print “Root key: $root_key\n”;

 my $key_path = ‘Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\
UserAssist\\’.

 ‘{75048700-EF1F-11D0-9888-006097DEACF9}\\Count’;

 my $hrzr = “HRZR”;

 my $ueme = “UEME”;

 my $count = $root_key->get_subkey($key_path);

 print “UserAssist (Active Desktop) [”.gmtime($count->get_timestamp()).“
(UTC)]\n”;

 my %ua = ();

 foreach my $value ($count->get_list_of_values) {

 my $value_name = $value->get_name();

 my $data = $value->get_data();

78 Part II • Perl Scripting and Computer Forensic Analysis

 my ($freq,$val1,$val2) = unpack(“x4VVV”,$data);

 if (length($data) == 16 && $val2 != 0) {

 my $time_value = getTime($val1,$val2);

Check the value name to see if it begins with “HRZR”; this

indicates ROT-13

encryption; if so, decrypt. If NoEncrypt had been set after

some of the values

had been written to the Count key, then the decryption

routine would work on some

values and not others.

 if ($value_name = ~ m/^$hrzr/) {

 $value_name = ~ tr/N-ZA-Mn-za-m/A-Za-z/;

 }

 print $value_name.“\n” if ($level == 0);

 push(@{$ua{$time_value} },$value_name.“;”.$freq);

 }

 }

 print “\n” if ($level == 0);

 foreach my $t (reverse sort {$a <=> $b} keys %ua) {

 print gmtime($t).“ (UTC)\n”;

 foreach my $item (@{$ua{$t} }) {

 print “\t$item\n”;

 }

 }

}

#--

getTime()

Translate FILETIME object (2 DWORDS) to Unix time, to be

passed to gmtime() or localtime()

#--

sub getTime() {

 my $lo = shift;

 my $hi = shift;

 my $t;

 if ($lo == 0 && $hi == 0) {

 $t = 0;

 } else {

 $lo -= 0xd53e8000;

 $hi -= 0x019db1de;

 $t = int($hi*429.4967296 + $lo/1e7);

 Perl Scripting and Computer Forensic Analysis • Part II 79

 };

 $t = 0 if ($t < 0);

 return $t;

}

1;

Figure II.2 illustrates an excerpt of the output of the uassist.pl Perl script when
run against an NTUSER.DAT fi le, using a command similar to the following:

C:\Perl\forensics>uassist.pl d:\cases\case007\ntuser.dat

One of the interesting aspects of this script is that it maintains a hash of lists
(see the Perl docs under “perldsc”)4 of the value data that contains timestamps, and then
sorts them in reverse order, so that all of the user activity that occurred via the
Windows shell and was recorded in the key can be displayed in order, with the most recent
time displayed fi rst. The key line within the Perl script itself that allows this to occur is:
foreach my $t (reverse sort {$a <=> $b} keys %ua) {

Pretty interesting, isn’t it? Perhaps not if you’re an extremely experienced Perl
programmer, but when you’re a forensic examiner interested in establishing a timeline,
having the information you need displayed in an easy-to-understand format (albeit in
UTC time format) can be a blessing!

Figure II.2 Output of uassist.pl script

4 http://www.perl.com/doc/FMTEYEWTK/pdsc/pdsc-2.html

80 Part II • Perl Scripting and Computer Forensic Analysis

Event Logs
Many times, an examination of the Windows Event Log event records will provide
some very useful information that may affect your investigation. The Event Log is
capable of holding a fairly amazing array of information, from records of failed attempts
to login into the system to the system being shutdown and rebooted. When working
with the Event Log on a live system, most folks will interface with it through the
EventViewer. One of the techniques that a forensic analyst may use to analyze an Event
Log during an investigation is to extract the fi le from within the image and then attempt
to open the log in the Event Viewer on their analysis system. However, this does not
always work … many analysts have reported receiving an error message stating that
the Event Log is “corrupt”. This message is reported by the Windows API – so what
if, like the Registry, we can parse the contents of the Event Log fi les without using
the API?

Evt2xls.pl
Evt2xls.pl is a Perl script that I developed over time, and have found it to be
extremely useful. I started with a simple script that parsed through the .evt fi le in
binary mode, and retrieved event records for me, writing them out to the console.
This got to be somewhat cumbersome over time, as there was more that I wanted to
do with the script, so I wrote a module to encapsulate and hide the routines I’d been
writing. From there, I would have the output sent to the console as comma-separated
values, after which I would redirect the output to a fi le and then open that fi le in
Excel. However, the date format was never write, and sometimes the messages would
have commas … both of these threw off my analysis. So, I added some code to write
the event record entries directly to a spreadsheet that is binary compatible with
MS Excel (via the Spreadsheet::WriteExcel module) and also added some code to do
some frequency analysis of event IDs.

Evt2xls.pl appears as follows (and is available on the accompanying DVD):
#! c:\perl\bin\perl.exe

#--

evt2xls.pl, version 20070611

Parse Windows 2000, XP, 2003 EventLog fi les in binary format,

putting the event

records into an Excel spreadsheet; can also generate a report

showing event

source/ID frequencies (for Security Event Log, login type is

 Perl Scripting and Computer Forensic Analysis • Part II 81

added to the

event ID), suitable for entry into eventid.net

#

see _syntax() usage for examples

#

ChangeLog:

20070611: created

#

copyright 2007 H. Carvey, keydet89@yahoo.com

#--

use strict;

use ReadEvt;

use Spreadsheet::WriteExcel;

use Getopt::Long;

my %confi g;

Getopt::Long::Confi gure(“prefi x_pattern=(-|\/)”);

GetOptions(\%confi g,qw(event|e=s output|o=s report|r=s help|?|h));

if ($confi g{help} || !%confi g) {

 _syntax();

}

die “No Event Log fi le name entered.\n” if (! $confi g{event});

die “No output spreadsheet fi le name entered.\n” if (! $confi g{output});

my $fi le = $confi g{event};

my $reportfi le = $confi g{report};

my $login = $confi g{login};

my $outfi le = $confi g{output};

die “$fi le not found.\n” unless (-e $fi le);

my $name;

Parse the fi lename

if (grep(/\\/,$fi le)) {

 my @vals = split(/\\/,$fi le);

 my $i = scalar(@vals) - 1;

 $name = (split(/\./,$vals[$i]))[0];

}

else {

No path separators, so the fi le may be stored in the same directory

 $name = split(/\./,$fi le);

}

my $evt;

if ($evt = ReadEvt::new($fi le)) {

82 Part II • Perl Scripting and Computer Forensic Analysis

print “EVT Object created.\n”;

}

else {

 print “EVT Object not created. Exiting.\n”;

 exit 1;

}

my %hdr = ();

if (%hdr = $evt->parseHeader()) {

no need to do anything ...

print “Header parsed ...\n”;

}

else {

 print “Error : ”.$evt->getError().“\n”;

 die;

}

Set up to generate a report;

my $total = 0;

my %er;

my %dates;

my $wb = Spreadsheet::WriteExcel->new($outfi le);

my $format = $wb->add_format();

$format->set_num_format(‘mmm d yyyy hh:mm AM/PM’);

Add a worksheet

my $ws = $wb->add_worksheet($name);

my $row = 0;

$ws->write($row, 0, “Record Number”);

$ws->write($row, 1, “Source”);

$ws->write($row, 2, “ComputerName”);

$ws->write($row, 3, “Event ID”);

$ws->write($row, 4, “Event Type”);

$ws->write($row, 5, “Time Generated”);

$ws->write($row, 6, “User SID”);

$ws->write($row, 7, “Strings”);

my $ofs = $evt->getFirstRecordOffset();

while ($ofs) {
 $row++;

 my %record = $evt->readEventRecord($ofs);

 my $time_gen = dateConvert($record{time_gen});

 $ws->write($row, 0, $record{rec_num});

 $ws->write($row, 1, $record{source});

 Perl Scripting and Computer Forensic Analysis • Part II 83

 $ws->write($row, 2, $record{computername});

 $ws->write($row, 3, $record{evt_id});

 $ws->write($row, 4, $record{evt_type});

 $ws->write($row, 5, $time_gen , $format);

 $ws->write($row, 6, $record{sid});

 $ws->write($row, 7, $record{strings}) if ($record{num_str} > 0);

Only collect report stats if necessary

 if ($confi g{report}) {

 $total++;

If the Security Event Log is being parsed, add the login type
to the specifi c login IDs

 if ($record{source} eq “Security” && ($record{evt_id} > 527 && $record{evt_id}
< 541)) {

 my $type = getLoginType($record{evt_id},$record{strings});

 $record{evt_id} = $record{evt_id}.“,”.$type;

 }

 if (exists $er{$record{source}.“:”.$record{evt_id} }) {

 $er{$record{source}.“:”.$record{evt_id} }++;

 }

 else {

 $er{$record{source}.“:”.$record{evt_id} } = 1;

 }

 $dates{$record{time_gen} } = 1;

 }

length of record is $record{length} ... skip forward that far

 $ofs = $evt->locateNextRecord($record{length});

printf “Current Offset = 0x%x\n”,$evt->getCurrOfs();

}

$evt->close();

Generate the report

if ($confi g{report}) {

 open(RPT,“>”,$reportfi le) || die “Could not open $reportfi le: $!\n”;

 print RPT “From the Event Log header: \n”;

 print RPT “Oldest ID : ”.$hdr{oldestID}.“\n”;

 print RPT “Next ID : ”.$hdr{nextID}.“\n”;

 print RPT “Total Events : ”.($hdr{nextID} - $hdr{oldestID}).“\n”;

 print RPT “-” x 30,“\n”;

 print RPT “Total number of events counted: ”.$total.“\n”;

 print RPT “-” x 30,“\n”;

 print RPT “Event Source/ID Frequency\n”;

 print RPT “\n”;

84 Part II • Perl Scripting and Computer Forensic Analysis

 printf RPT “%-40 s %10 s %8 s\n”,“Source”,“Event ID”,“Count”;

 printf RPT “%-40 s %10 s %8 s\n”,“-” x 10,“-” x 8,“-” x 5;

 my $er_total = 0;

 foreach my $i (sort keys %er) {

 my ($source,$id) = split(/:/,$i,2);

 printf RPT “%-40 s %10 s %8 s\n”,$source,$id,$er{$i};

 $er_total += $er{$i};

 }

 print RPT “\n”;

 print RPT “Total: ”.$er_total.“\n”;

 print RPT “\n”;

 print RPT “-” x 30,“\n”;

 print RPT “Date Range, in UTC\n”;

 my @daterange = sort {$a <=> $b} keys %dates;

 my $i = scalar(@daterange) - 1;

 print RPT gmtime($daterange[0]).“ to ”.gmtime($daterange[$i]).“\n”;

 close(RPT);

}

sub dateConvert {

 my $input = shift;

Divide timestamp by number of seconds in a day.

This gives a date serial with ‘0’ on 1 Jan 1970.

 my $serial = $input / 86400;

 $serial += 25569;

 return $serial;

}

sub getLoginType {

 my $id = shift;

 my $strings = shift;

 my @vals = split(/\00/,$strings);

 if ($id == 528 || $id == 538 || $id == 540) {

 return $vals[3];

 }

 elsif ($id == 529 || $id = ~ m/^53/) {

 return $vals[2];

 }

 else {

 return 0;

 }

}

 Perl Scripting and Computer Forensic Analysis • Part II 85

sub _syntax {

 print<< “EOT”;

Evt2XLS [-e eventlog_fi le] [-o output_spreadsheet] [-r report_fi le] [-h]

Parse Windows 2000, XP, 2003 EventLog fi les in binary mode, converting to

binary Excel spreadsheet format; can also generate reports/stats (contains

event source/ID frequency info)

 -e eventlog_fi le............EventLog fi le to parse

 -o output_spreadsheet......spreadsheet fi le name to create

 -r report_fi le..............name of fi le to create report in

 -h.........................Help (print this information)

Ex: C:\\>evt2xls -e secevent.evt -o secevent.xls

 C:\\>evt2xls -e appevent.evt -o appevent.xls -r app_stats.log

copyright 2007 H. Carvey

EOT

}

Something to note about evt2xls.pl is that it uses a module called ReadEvt.pm
(which is included on the accompanying media along with the Perl script). I wrote
this module to encapsulate the code for parsing the Windows 2000, XP and 2003
binary Event Logs (.evt fi les). Installation of this module involves nothing more than
copying it into the same directory as the evt2xls.pl Perl script.

Evt2xls.pl also relies upon (or “uses”) two other modules, as well…Spreadsheet::
WriteExcel and Getopt::Long. Both of these modules can be easily installed via the
Perl Package Manager on the ActiveState installation of Perl, using the following
commands:
C:\perl>ppm install spreadsheet-writeexcel

 …and…
C:\perl>ppm install getopt-long

NOTE

Evt2xls.pl only works on Event Logs from Windows 2000, XP and 2003
systems. With Vista, Microsoft changed many things about the Event Log, to
include the structure and format of the fi les themselves. Early in 2007,
Andreas Schuster did considerable work in examining and parsing5 these fi les,
providing (you guessed it!) a Perl script to parse the Vista and Windows 2008
Event Logs into plain text.

5 http://computer.forensikblog.de/en/2007/08/evtx_parser.html

86 Part II • Perl Scripting and Computer Forensic Analysis

Let’s look at an example of how to launch evt2xls.pl and parse a Windows Event
Log fi le. To do that, let’s assume that we’ve got an external hard drive attached to our
analysis system via USB, and that drive has been mounted as F:\. On that external
hard drive is a directory called “cases”, which contains the Security, Application, and
System Event Log fi les from a Windows system. In order to use evt2xls.pl, we would
need to type in a command line such as:
C:\perl\forensics>evt2xls.pl –e f:\cases\secevent.evt –o
f:\cases\secevt.xls –r f:\cases\secevt.rpt

The “-e” switch tells the script which Event Log fi le to open, and the “-o” switch
gives the script the path and fi lename of the Excel spreadsheet where the parsed event
records will be written. The resulting output fi le is a binary spreadsheet fi le, which can
be easily opened in Excel. The dates listed in the spreadsheet (i.e., the dates/times that
the events were generated, which is part of the event record structure) have been converted
to a format that Excel understands, allowing you to sort the spreadsheet based on any of
the visible columns. Finally, the “-r” switch tells the script were to write the report fi le,
which contains information such as the frequency with which each event ID occurs
within the Event Log fi le, as the well as the date ranges of the event records. When the
spreadsheet and report fi le are combined with sources that describe why each event
record is generated (such as http://www.eventid.net), they provide a powerful set of
analysis tools for the forensic examiner.

Swiss Army Knife

Extending evt2xls.pl
Forensic analysts not too terribly familiar with command line tools may fi nd
evt2xls.pl a little cumbersome to use, due to the fact that they need to enter
the path for the various options. One way to extend the use of the script and
make it a bit easier to use would be to simply provide a path for an output
directory for the spreadsheet and the report. Many times when I’m performing
analysis, the images themselves are located on an external hard drive, and
I may not want to store the reports in that location. Other times, I have received

 Perl Scripting and Computer Forensic Analysis • Part II 87

Parsing RAM Dumps
During incident response activities, the responder may opt to dump the contents
of physical memory, or RAM, from a Windows system. This is done to preserve the
contents of physical memory for later use and examination, and as stated by Aaron
Walters and Nick Petroni during their Black Hat DC 20076 presentation, to answer
new questions later. In some cases, the examiner has run strings.exe against the
resulting fi le to attempt to locate passwords or other unique strings, or used regular
expressions (regex’s) to locate IP addresses, email addresses, etc. However, these simple
searches constitute only the most rudimentary activities that can be performed when
analyzing memory dumps. For example, we can extract a list of active processes from
the memory dump, including the process memory and the executable image fi le for
each (this is extremely useful when performing dynamic malware analysis).

Event Log fi les on a CD or DVD, making it impossible to write new data into
the same directory.

Another modifi cation that would possibly make this script easier to use is
to add a GUI with selection buttons for various functionality, such as where to
store the output and report.

Master Craftsman

Parsing Event Logs
A project to parse not only Windows 2000, XP, and 2003 Event Logs, but also
Windows Vista/2008 Event Logs in the same script could be accomplished by
combining evt2xls.pl with code that Andreas Schuster has made available via
his blog. In fact, knowing the “magic number” for Windows 2000, XP, and
2003 Event Logs would allow you to start by “looking at” the Event Log fi le in
binary mode, and if you don’t fi nd that “magic number”, then you could
assume that the fi le is from a Windows Vista or 2008 system, and switch over
to appropriate code.

6 http://www.blackhat.com/html/bh-media-archives/bh-archives-2007.html#dc

88 Part II • Perl Scripting and Computer Forensic Analysis

Lsproc.pl
Lsproc.pl is a Perl script I wrote in order to parse through a RAM dump from a
Windows 2000 system and locate the remnants of processes that were running, or
had exited, on the live system. Lsproc.pl is based in part on the original ptfi nder.pl
script written by Andreas Schuster and posted on his blog.7

#! c:\perl\bin\perl.exe

#--

lsproc.pl - parse Windows 2000 phys. memory/RAM dump,

looking for processes.

#

Version 0.1_2K 20060524

Usage: lsproc <path_to_dump_fi le>

#

copyright 2007 H. Carvey, keydet89@yahoo.com

#--

use strict;

print “lsproc - list processes from a Win2K dd-style RAM Dump (v.0.1_2K 20060524)\n”;

print “Ex: lsproc <path_to_dump_fi le>\n”;

print “\n”;

my $fi le = shift || die “You must enter a fi lename.\n”;

die “$fi le not found.\n” unless (-e $fi le);

my $record;

open(FH,“<”,$fi le) || die “Could not open $fi le : $!\n”;

binmode(FH);

my $offset = 0;

printf “%-4 s %-6 s %-6 s %-20 s %-10 s %-20 s\n”,“Type”,“PPID”,“PID”,“Name”,“Offset”,
“Creation Time”;

printf “%-4 s %-6 s %-6 s %-20 s %-10 s %-20 s\n”,“-” x 4,“-” x 4,“-” x 3,“-” x 4,“-”
x 6,“-” x 13;

while (! eof(FH)) {

 seek(FH,$offset,0);

 read(FH,$record,4);

 my ($type,$size) = unpack(“CxCx”,$record);

 if ($size == 0x1b && $type == 0x03) {

my $hdr = unpack(“V”,$record);

if ($hdr == 0x001b0003) {

Possible EPROCESS block located, let’s run some checks

7 http://computer.forensikblog.de/en/topics/windows/memory_analysis/

 Perl Scripting and Computer Forensic Analysis • Part II 89

printf “Possible EPROCESS block located at offset 0x%08x\n”,$offset;

 my $data;

 seek(FH,$offset,0);

 my $bytes = read(FH,$data,0x290);

 if (0x290 == $bytes) {

 if (my %proc = isProcess($data)) {

 my $name;

 my $proctime;

 ($proc{createtime} == 0) ? ($proctime = “”) : ($proctime = gmtime($proc
createtime}));

 ($proc{exitprocesscalled} == 1) ? ($name = $proc{name}.“(x)”) : ($name =
$proc{name});

 printf “%-4 s %-6d %-6d %-20 s 0x%08x %-20 s\n”,“Proc”,$proc{ppid},$proc{pid},
$name,$offset, $proctime;

 $offset += 0x290;

 }

 else {

 $offset += 4;

 }

 }

 else {

print “Too few bytes read.\n”;

exit 1;

 }

 }

 elsif ($type == 0x06 && $size == 0x6c) {

elsif ($hdr == 0x006c0006) {

Possible ETHREAD found

 my $data;

 seek(FH,$offset,0);

 my $bytes = read(FH,$data,0x244);

 if ($bytes == 0x244) {

 if (my %thread = isThread($data)) {

 $offset += 0x244;

 }

 else {

 $offset += 4;

 }

 }

 }

 else {

90 Part II • Perl Scripting and Computer Forensic Analysis

Increment the offset count by 4 bytes, or one DWORD

 $offset += 4;

 }

}

close(FH);

#--

isProcess()

check to see if we have a valid process (Win2K SP4)

Input : 652 bytes starting at the offset

Output: Hash containing EPROCESS block info, undef if not a valid

EPROCESS block

#--

sub isProcess {

 my $data = shift;

 my %proc = ();

 my $event1 = unpack(“V”,substr($data,0x13c,4));

 my $event2 = unpack(“V”,substr($data,0x164,4));

 if ($event1 == 0x40001 && $event2 == 0x40001) {

Use this area to populate the EPROCESS structure

 my $name = substr($data,0x1fc,16);

 $name = ~ s/\00//g;

 $proc{name} = $name;

$proc{exitstatus} = unpack(“V”, substr($data,0x06c,4));

Get Active Process Links for EPROCESS block

($proc{fl ink},$proc{blink}) = unpack(“VV”,substr($data,0x0a0,8));

 my (@createTime) = unpack(“VV”, substr($data,0x088,8));

 $proc{createtime} = getTime($createTime[0],$createTime[1]);

my (@exitTime) = unpack(“VV”, substr($data,0x090,8));

$proc{exittime} = getTime($exitTime[0],$exitTime[1]);

$proc{pObjTable} = unpack(“V”,substr($data,0x128,4));

$proc{pSectionHandle} = unpack(“V”,substr($data,0x1ac,4));

$proc{pSecBaseAddr} = unpack(“V”,substr($data,0x1b4,4));

 $proc{pid} = unpack(“V”,substr($data,0x09c,4));

 $proc{ppid} = unpack(“V”,substr($data,0x1c8,4));

($proc{subsysmin},$proc{subsysmaj}) = unpack(“CC”,substr($data,0x212,2));

$proc{directorytablebase} = unpack(“V”,substr($data,0x018,4));

$proc{peb} = unpack(“V”,substr($data,0x1b0,4));

 $proc{exitprocesscalled} = unpack(“C”,substr($data,0x1aa,1));

 $proc{pimagefi lename} = unpack(“V”,substr($data,0x284,4));

 }

 Perl Scripting and Computer Forensic Analysis • Part II 91

 else {

Not an EPROCESS block

 }

 return %proc;

}

#--

isThread()

check to see if we have a valid thread (Win2K SP4)

Input : 0x244 bytes starting at the offset

Output: Hash containing ETHREAD block info, undef if not a valid

ETHREAD block

#--

sub isThread {

 my $data = shift;

 my %thread = ();

my $ktimer = unpack(“V”,substr($data,0x0e8,4));

 my $sync1 = unpack(“V”,substr($data,0x190,4));

 my $sync2 = unpack(“V”,substr($data,0x1e8,4));

 if ($sync1 == 0x50005 && $sync2 == 0x50005) {

 ($thread{pid},$thread{tid}) = unpack(“VV”,substr($data,0x1e0,8));

 $thread{hasterminated} = unpack(“V”,substr($data,0x224,4));

 my (@createTime) = unpack(“VV”, substr($data,0x1b0,8));

 $thread{createtime} = getTime($createTime[0],$createTime[1]);

 my (@exitTime) = unpack(“VV”, substr($data,0x1b8,8));

 $thread{exittime} = getTime($exitTime[0],$exitTime[1]);

 $thread{hidefromdebugger} = unpack(“C”,substr($data,0x223,1));

 }

 return %thread;

}

#--

getOffset()

Get physical offset within dump, based on logical addresses

Translates a logical address to a physical offset w/in the dump

fi le

Input : two addresses (ex: PEB and DirectoryTableBase)

Output: offset within fi le

#--

sub getOffset {

 my $peb = shift;

 my $dtb = shift;

92 Part II • Perl Scripting and Computer Forensic Analysis

 my $pdi = $peb >> 22 & 0x3 ff;

 my $pda = $dtb + ($pdi * 4);

 seek(FH,$pda,0);

 read(FH,$record,4);

 my $pde = unpack(“V”,$record);

Determine page size if needed

$pde & 0x080; if 1, page is 4 Mb; else, 4 Kb

Check to see if page is present

 if ($pde & 0x1) {

 my $pti = $peb >> 12 & 0x3 ff;

 my $ptb = $pde >> 12;

 seek(FH,($ptb * 0x1000) + ($pti * 4),0);

 read(FH,$record,4);

 my $pte = unpack(“V”,$record);

 if ($pte & 0x1) {

 my $pg_ofs = $peb & 0x0fff;

 return ((($pte >> 12) * 0x1000) + $pg_ofs);

 }

 else {

 return 0;

 }

 }

 else {

 return 0;

 }

}

#--

getTime()

Get Unix-style date/time from FILETIME object

Input : 8 byte FILETIME object

Output: Unix-style date/time

#--

sub getTime() {

 my $lo = shift;

 my $hi = shift;

 my $t;

 if ($lo == 0 && $hi == 0) {

 $t = 0;

 Perl Scripting and Computer Forensic Analysis • Part II 93

 } else {

 $lo -= 0xd53e8000;

 $hi -= 0x019db1de;

 $t = int($hi*429.4967296 + $lo/1e7);

 };

 $t = 0 if ($t < 0);

 return $t;

}

#--

_uniToAscii()

Input : Unicode string

Output: ASCII string

Removes every other \00 from Unicode strings, returns ASCII string

#--

sub _uniToAscii {

 my $str = $_[0];

 my $len = length($str);

 my $newlen = $len − 1;

 my @str2;

 my @str1 = split(//,$str,$len);

 foreach my $i (0..($len − 1)) {

 if ($i % 2) {

In a Unicode string, the odd-numbered elements of the list will be \00

so just drop them

 }

 else {

 push(@str2,$str1[$i]);

 }

 }

 return join(‘’,@str2);

}

In order to run the lsproc.pl script, launch it from the command line and pass it a
single argument, that being the path to the RAM dump fi le:
C:\Perl\forensics>lsproc.pl d:\cases\case007\ramdump.img

When run against the fi rst RAM dump available from the DFRWS 2005
Memory Challenge web site8 (renamed above to ‘ramdump.img’), lsproc.pl produces
output similar to the following (excerpted for the sake of brevity):

8 http://www.dfrws.org/2005/challenge/

94 Part II • Perl Scripting and Computer Forensic Analysis

Proc 228 672 WinMgmt.exe 0x0017dd60 Sun Jun 5 00:32:59 2005

Proc 820 324 helix.exe 0x00306020 Sun Jun 5 14:09:27 2005

Proc 0 0 Idle 0x0046d160

Proc 600 668 UMGR32.EXE 0x0095f020 Sun Jun 5 00:55:08 2005

Proc 324 1112 cmd2k.exe 0x00dcc020 Sun Jun 5 14:14:25 2005

Proc 156 176 winlogon.exe 0x01045d60 Sun Jun 5 00:32:44 2005

Proc 144 164 winlogon.exe 0x0104ca00 Fri Jun 3 01:25:54 2005

Proc 156 180 csrss.exe 0x01286480 Sun Jun 5 00:32:43 2005

Proc 8 156 smss.exe 0x012b62c0 Sun Jun 5 00:32:40 2005

Proc 0 8 System 0x0141dc60

Proc 1112 1152 dd.exe(x) 0x019d1980 Sun Jun 5 14:14:38 2005

Proc 228 592 dfrws2005.exe 0x02138640 Sun Jun 5 01:00:53 2005

Proc 820 1076 cmd.exe 0x02138c40 Sun Jun 5 00:35:18 2005

The fi rst column of the output is the object that was found; in this case, only the
processes are shown (I removed the display of threads as the output got too verbose
and diffi cult to understand). The second column shows the parent process identifi er
(PID) while the third column shows the PID of the process. The fourth column
shows the name of the process, and the fi fth column displays the offset of where the
process was located within the RAM dump fi le. Finally, the sixth column displays the
creation time of the process (extracted from the process structure, or “block”) in UTC
format. You’ll notice that one of the displayed processes, specifi cally “dd.exe”, has an
“(x)” after the name. This indicates that the process was exited by the time the RAM
dump was made, and that the process will have an exited time associated with it.

NOTE

Lsproc.pl and the other associated scripts for parsing information from RAM
dumps were designed to work on RAM dumps from Windows 2000 systems
only. There are signifi cant changes between operating system versions with
regards to how the operating system manages memory – not just between
versions, but in some instances, between Service Packs! Some additional work
is required to get these scripts to work on systems other than Windows 2000.

Lspi.pl
The name of the lspi.pl Perl script stands for “list process image”; not the most
descriptive title, particularly as only four letters, I know, but I had to come up with

 Perl Scripting and Computer Forensic Analysis • Part II 95

something! The really cool thing is that aside from the name, what the script does is
even more cool…it extracts, if possible, the actual image fi le (i.e., ∗.exe fi le) for a
once-running process from a RAM dump.
#! c:\perl\bin\perl.exe

#---

lspi.pl - parse process image from a Windows 2000 phys. memory/RAM dump,

(LiSt Process Image)

#

Version 0.4

#

Usage: lspi.pl <fi lename> <offset>

Determine the offset of the the process you’re interested in by

running lsproc.pl fi rst

#

Changelog:

20060721 - created

#

copyright 2007 H. Carvey, keydet89@yahoo.com

#---

use strict;

print “lspi - list Windows 2000 process image (v.0.4 - 20060721)\n”;

print “Ex: lspi <path_to_dump_fi le> <offset_from_lsproc>\n”;

print “\n”;

my $fi le = shift || die “You must enter a fi lename.\n”;

die “$fi le not found.\n” unless (-e $fi le);

my $offset = hex(shift) || die “You must enter a process offset.\n”;

my $data;

my $error;

my ($size,$type);

#---

Global Variables

#---

my $pagecount = 0;

my %imagepages = ();

my @pagedout = ();

my $outfi le;

open(FH,“<”,$fi le) || die “Could not open $fi le : $!\n”;

binmode(FH);

seek(FH,$offset,0);

96 Part II • Perl Scripting and Computer Forensic Analysis

read(FH,$data,4);

my ($type,$size) = unpack(“CxCx”,$data);

if ($size == 0x1b && $type == 0x03) {

 seek(FH,$offset,0);

 my $bytes = read(FH,$data,0x290);

 if (0x290 == $bytes) {

 if (my %proc = isProcess($data)) {

 print “Process Name : ”.$proc{name}.“\n”;

 $outfi le = $proc{name}.“\.img”;

 print “PID : ”.$proc{pid}.“\n”;

 my $dtb = $proc{directorytablebase};

 printf “DTB : 0x%08x\n”,$dtb;

 my $peb_ofs = getOffset($proc{peb},$dtb);

 die “The page located at the address for the PEB has been paged out.\n”
if ($peb_ofs == 0);

 printf “PEB : 0x%08x (0x%08x)\n”,$proc{peb},$peb_ofs;

Get specifi c info from the PEB

 if ($peb_ofs != 0x0) {

 my %peb_data = getPEBData($peb_ofs,$dtb);

 my $imgbaseofs = getOffset($peb_data{img_base_addr},$dtb);

 die “The page located at the ImageBaseAddress for this process has been
paged out.\n” if ($imgbaseofs == 0);

 printf “ImgBaseAddr : 0x%08x (0x%08x)\n”,$peb_data{img_base_addr},
$imgbaseofs;

 print “\n”;

 if ($imgbaseofs != 0x00 && getImgBase($imgbaseofs)) {

We’re now ready to begin processing

 $pagecount++;

 $imagepages{$pagecount} = $imgbaseofs;

Read in the fi rst 4K page located at the ImageBaseAddress offset

 seek(FH,$imgbaseofs,0);

 read(FH,$data,0x1000);

Check the NT Header

 my $e_lfanew = unpack(“V”,substr($data,0x3c,4));

 printf “e_lfanew = 0x%x\n”,$e_lfanew;

 my $nt = unpack(“V”,substr($data,$e_lfanew,4));

 die “Not an NT header.\n” if ($nt != 0x4550);

 printf “NT Header = 0x%x\n”,$nt;

 print “\n”;

 print “Reading the Image File Header\n”;

 my %ifh;

 Perl Scripting and Computer Forensic Analysis • Part II 97

 ($ifh{machine},$ifh{number_sections},$ifh{datetimestamp},$ifh{ptr_symbol_table},

 $ifh{number_symbols},$ifh{size_opt_header},$ifh{characteristics})

 = unpack(“vvVVVvv”,substr($data,$e_lfanew + 4,20));

 print “Sections = $ifh{number_sections}\n”;

 printf “Opt Header Size = 0x%08x (”.$ifh{size_opt_header}.“ bytes)
\n”,$ifh{size_opt_header};

 print “Characteristics: \n”;

Translate the image fi le header characteristics

 my @char = getFileHeaderCharacteristics($ifh{characteristics});

 foreach (@char) {print “\t$_\n”;}

 print “\n”;

 print “Machine = ”.getFileHeaderMachine($ifh{machine}).“\n”;

 print “\n”;

 print “Reading the Image Optional Header\n”;

 print “\n”;

 my $opt_hdr = unpack(“v”,substr($data, $e_lfanew + 24,2));

 printf “Opt Header Magic = 0x%x\n”,$opt_hdr;

 my %opt32 = ();

 ($opt32{magic},$opt32{majlinkver},$opt32{minlinkver},$opt32{codesize},

 $opt32{initdatasz},$opt32{uninitdatasz},$opt32{addr_entrypt},$opt32{codebase},

 $opt32{database},$opt32{imagebase},$opt32{sectalign},$opt32{fi lealign},

 $opt32{os_maj},$opt32{os_min},$opt32{image_maj},$opt32{image_min},

 $opt32{image_sz},$opt32{head_sz},$opt32{checksum},$opt32{subsystem},

 $opt32{dll_char},$opt32{rva_num}) = unpack(“vCCV9v4x8V3vvx20Vx4”,substr($data,
$e_lfanew + 24,$ifh{size_opt_header}));

 print “Subsystem : ”.getOptionalHeaderSubsystem($opt32{subsystem}).“\n”;

 printf “Entry Pt Addr : 0x%08x\n”,$opt32{addr_entrypt};

 printf “Image Base : 0x%08x\n”,$opt32{imagebase};

 printf “File Align : 0x%08x\n”,$opt32{fi lealign};

get Data Directories

 print “\n”;

 print “Reading the Image Data Directory information\n”;

 my %dd = ();

 my @dd_names = qw/ExportTable ImportTable ResourceTable ExceptionTable

 Certifi cateTable BaseRelocTable DebugTable ArchSpecifi c

 GlobalPtrReg TLSTable LoadConfi gTable BoundImportTable

 IAT DelayImportDesc CLIHeader unused/;

 my @rva_list = unpack(“VV” x $opt32{rva_num},substr($data,$e_lfanew + 24 +
96,8*$opt32{rva_num}));

 foreach my $i (0..($opt32{rva_num} - 1)) {

 $dd{$dd_names[$i]}{rva} = $rva_list[($i*2)];

98 Part II • Perl Scripting and Computer Forensic Analysis

 $dd{$dd_names[$i]}{size} = $rva_list[($i*2)+1];

 }

 print “\n”;

 printf “%-20 s %-10 s %-10 s\n”,“Data Directory”,“RVA”,“Size”;

 printf “%-20 s %-10 s %-10 s\n”,“-” x 14,“-” x 3, “-” x 4;

 foreach my $name (keys %dd) {

 printf “%-20 s 0x%08x 0x%08x\n”,$name,$dd{$name}{rva},$dd{$name}{size};

 }

Read section headers

 print “\n”;

 print “Reading Image Section Header information\n”;

 print “\n”;

 my $num = $ifh{number_sections};

 my $size = 40;

 my $ofs = $e_lfanew + 24 + 96 + 8*$opt32{rva_num};

 my $sect = substr($data,$ofs,$num * $size);

 my %sections = getImageSectionHeaders($sect,$num);

 printf “%-8 s %-10 s %-10 s %-10 s %-10 s %-10 s\n”,“Name”,“Virt Sz”,“Virt
Addr”,“rData Ofs”,“rData Sz”,“Char”;

 printf “%-8 s %-10 s %-10 s %-10 s %-10 s %-10 s\n”,“-” x 4,“-” x 7,“-” x 9,
“-” x 9,“-” x 8,“-” x 4;

 my %sec_order = ();

 foreach my $sec (keys %sections) {

 printf “%-8 s 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n”,$sec,$sections{$sec}
{virt_sz},

 $sections{$sec}{virt_addr},$sections{$sec}{rdata_ptr},$sections{$sec}
{rdata_sz},

 $sections{$sec}{characteristics};

 $sec_order{$sections{$sec}{virt_addr} } = $sec;

 }

 print “\n”;

Now that we have information from the section headers, we need calculate the
offsets of the pages

within the dump fi le, and check to see if any of the pages have been paged out.

 foreach my $order (sort {$a <=> $b} keys %sec_order) {

 my $sec = $sec_order{$order};

 my $num_pages = $sections{$sec}{rdata_sz} / 0x1000;

 foreach my $n (0..($num_pages - 1)) {

 my $page = $peb_data{img_base_addr} + $sections{$sec}{virt_addr} +
(0x1000 * $n);

 my $offset = getOffset($page, $dtb);

 if ($offset == 0) {

 Perl Scripting and Computer Forensic Analysis • Part II 99

 push(@pagedout,$page);

 }

 else {

 $pagecount++;

 $imagepages{$pagecount} = $offset;

 }

seek(FH,$offset,0);

read(FH,$data,0x1000);

syswrite(OUT,$data,length($data));

 }

 }

 if (scalar(@pagedout) > 0) {

 print “There are “.scalar(@pagedout).” pages paged out of physical
memory.\n”;

 map{printf “\t0x%08x\n”,$_}(@pagedout);

 print “If any pages are paged out, the image fi le cannot be completely
reassembled.\n”;

 }

 else {

 print “Reassembling image fi le into $outfi le\n”;

 open(OUT,“>”,$outfi le) || die “Could not open $outfi le: $!\n”;

 binmode(OUT);

 my $size = 0;

 foreach my $i (sort {$a <=> $b} keys %imagepages) {

 seek(FH,$imagepages{$i},0);

 read(FH,$data,0x1000);

 syswrite(OUT,$data,length($data));

 $size += length($data);

 }

 close(OUT);

 print “Bytes written = $size\n”;

 print “New fi le size = ”.(stat($outfi le))[7].“\n”;

 }

 }

 }

 }

 }

}

close(FH);

#---

isProcess()

100 Part II • Perl Scripting and Computer Forensic Analysis

check to see if we have a valid process (Win2K SP4)

Input : 652 bytes starting at the offset

Output: Hash containing EPROCESS block info, undef if not a valid

EPROCESS block

#---

sub isProcess {

 my $data = shift;

 my %proc = ();

 my $event1 = unpack(“V”,substr($data,0x13c,4));

 my $event2 = unpack(“V”,substr($data,0x164,4));

 if ($event1 == 0x40001 && $event2 == 0x40001) {

Use this area to populate the EPROCESS structure

 my $name = substr($data,0x1fc,16);

 $name =~ s/\00//g;

 $proc{name} = $name;

$proc{exitstatus} = unpack(“V”, substr($data,0x06c,4));

Get Active Process Links for EPROCESS block

($proc{fl ink},$proc{blink}) = unpack(“VV”,substr($data,0x0a0,8));

 $proc{pid} = unpack(“V”,substr($data,0x09c,4));

$proc{ppid} = unpack(“V”,substr($data,0x1c8,4));

($proc{subsysmin},$proc{subsysmaj}) = unpack(“CC”,substr($data,0x212,2));

 $proc{directorytablebase} = unpack(“V”,substr($data,0x018,4));

 $proc{peb} = unpack(“V”,substr($data,0x1b0,4));

 $proc{exitprocesscalled} = unpack(“C”,substr($data,0x1aa,1));

$proc{pimagefi lename} = unpack(“V”,substr($data,0x284,4));

 }

 else {

Not an EPROCESS block

 }

 return %proc;

}

#--

getOffset()

Get physical offset within dump, based on logical addresses

Translates a logical address to a physical offset w/in the dump

fi le

Input : two addresses (ex: PEB and DirectoryTableBase)

Output: offset within fi le

#--

sub getOffset {

 Perl Scripting and Computer Forensic Analysis • Part II 101

 my $peb = shift;

 my $dtb = shift;

 my $record;

 my $pdi = $peb >> 22 & 0x3 ff;

 my $pda = $dtb + ($pdi * 4);

 seek(FH,$pda,0);

 read(FH,$record,4);

 my $pde = unpack(“V”,$record);

Determine page size if needed

$pde & 0x080; if 1, page is 4 Mb; else, 4 Kb

Check to see if page is present

 if ($pde & 0x1) {

 my $pti = $peb >> 12 & 0x3 ff;

 my $ptb = $pde >> 12;

 seek(FH,($ptb * 0x1000) + ($pti * 4),0);

 read(FH,$record,4);

 my $pte = unpack(“V”,$record);

 if ($pte & 0x1) {

 my $pg_ofs = $peb & 0x0 fff;

 return ((($pte >> 12) * 0x1000) + $pg_ofs);

 }

 else {

 return 0;

 }

 }

 else {

 return 0;

 }

}

#--

getPEBData()

Input : physical offset to PEB

Output: data from PEB (Note: Virtual addresses are not

translated to physical offsets in this subroutine)

#--

sub getPEBData() {

 my $ofs = shift;

 my $dtb = shift;

 my %peb = ();

 seek(FH,$ofs,0);

102 Part II • Perl Scripting and Computer Forensic Analysis

 my $record;

 read(FH,$record,20);

 ($peb{inheritedaddrspace},$peb{readimgfi leexecopts},$peb{beingdebugged},
$peb{mutant},

 $peb{img_base_addr},$peb{peb_ldr},$peb{params}) = unpack(“C3xV4”,$record);

 return %peb;

}

#--

getImgBase()

Read 4 K at image base offset (from PEB)

Input : Physical offset to the image base addr

Output: dump of memory

#--

sub getImgBase {

 my $ofs = shift;

 my $data;

 seek(FH,$ofs,0);

 read(FH,$data,2);

 my $mz = unpack(“v”,$data);

 if ($mz == 0x00005a4d) {

 return 1;

 }

 else {

 return 0;

 }

}

#--

sub getFileHeaderCharacteristics {

 my $char = shift;

 my @list = ();

 my %chars = (0x0001 => “IMAGE_FILE_RELOCS_STRIPPED”,

 0x0002 => “IMAGE_FILE_EXECUTABLE_IMAGE”,

 0x0004 => “IMAGE_FILE_LINE_NUMS_STRIPPED”,

 0x0008 => “IMAGE_FILE_LOCAL_SYMS_STRIPPED”,

 0x0010 => “IMAGE_FILE_AGGRESIVE_WS_TRIM”,

 0x0020 => “IMAGE_FILE_LARGE_ADDRESS_AWARE”,

 0x0080 => “IMAGE_FILE_BYTES_REVERSED_LO”,

 0x0100 => “IMAGE_FILE_32BIT_MACHINE”,

 0x0200 => “IMAGE_FILE_DEBUG_STRIPPED”,

 0x0400 => “IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP”,

 Perl Scripting and Computer Forensic Analysis • Part II 103

 0x0800 => “IMAGE_FILE_NET_RUN_FROM_SWAP”,

 0x1000 => “IMAGE_FILE_SYSTEM”,

 0x2000 => “IMAGE_FILE_DLL”,

 0x4000 => “IMAGE_FILE_UP_SYSTEM_ONLY”,

 0x8000 => “IMAGE_FILE_BYTES_REVERSED_HI”);

 foreach my $c (keys %chars) {

 push(@list,$chars{$c}) if ($char & $c);

 }

 return @list;

}

sub getFileHeaderMachine {

 my $word = shift;

 my %mach = (0x014c => “IMAGE_FILE_MACHINE_I386”,

 0x014d => “IMAGE_FILE_MACHINE_I860”,

 0x0184 => “IMAGE_FILE_MACHINE_ALPHA”,

 0x01c0 => “IMAGE_FILE_MACHINE_ARM”,

 0x01c2 => “IMAGE_FILE_MACHINE_THUMB”,

 0x01f0 => “IMAGE_FILE_MACHINE_POWERPC”,

 0x0284 => “IMAGE_FILE_MACHINE_ALPHA64”,

 0x0200 => “IMAGE_FILE_MACHINE_IA64”,

 0x8664 => “IMAGE_FILE_MACHINE_AMD64”);

 foreach my $m (keys %mach) {

 return $mach{$m} if ($word & $m);

 }

}

sub getOptionalHeaderSubsystem {

 my $word = shift;

 my %subs = (0 => “IMAGE_SUBSYSTEM_UNKNOWN”,

 1 => “IMAGE_SUBSYSTEM_NATIVE”,

 3 => “IMAGE_SUBSYSTEM_WINDOWS_CUI”,

 2 => “IMAGE_SUBSYSTEM_WINDOWS_GUI”,

 5 => “IMAGE_SUBSYSTEM_OS2_CUI”,

 7 => “IMAGE_SUBSYSTEM_POSIX_CUI”,

 8 => “IMAGE_SUBSYSTEM_NATIVE_WINDOWS”,

 9 => “IMAGE_SUBSYSTEM_WINDOWS_CE_GUI”,

 14 => “IMAGE_SUBSYSTEM_XBOX”);

 foreach my $s (keys %subs) {

 return $subs{$s} if ($word == $s);

 }

}

104 Part II • Perl Scripting and Computer Forensic Analysis

sub getImageSectionHeaders {

 my $data = shift;

 my $num = shift;

Each section is 40 bytes in size, and all sections are contiguous

 my $sec_sz = 40;

 my %sec = ();

 foreach my $i (0..($num - 1)) {

 my ($name,$virt_sz,$virt_addr,$rdata_sz,$rdata_ptr,$char)

 = unpack(“a8V4x12V”,substr($data,$i ∗ $sec_sz,$sec_sz));

 $name =~ s/\00+$//;

 $sec{$name}{virt_sz} = $virt_sz;

 $sec{$name}{virt_addr} = $virt_addr;

 $sec{$name}{rdata_sz} = $rdata_sz;

 $sec{$name}{rdata_ptr} = $rdata_ptr;

 $sec{$name}{characteristics} = $char;

 }

 return %sec;

}

Lspi.pl is a bit more complex that many of the other Perl scripts I’ve written,
however, it’s fairly easy to run. To launch the script, all you need to provide is the
path to the RAM dump fi le, and the offset of where the process was located within
the RAM dump fi le. This second argument can be populated from the output of the
lsproc.pl Perl script; therefore, in order to run lspi.pl, you fi rst have to run lsproc.pl.

Using the same RAM dump fi le (retrieved from the DFRWS 2005 Memory
Challenge site and renamed to ramdump.img), you can extract the executable image
for the running dd.exe process that was actually used to create the RAM dump itself,
using the following command:

C:\Perl\forensics>lspi.pl d:\case007\ramdump.img 0x0414dd60

Or, you can extract the executable image fi le for the nc.exe process:

C:\Perl\forensics>lspi.pl d:\case007\ramdump.img 0x0625d3c0

Again, in order to get the hex values for the second argument in each of the
above commands, the examiner would need to run lsproc.pl fi rst, and then use the
output of that script to provide the necessary values for lspi.pl.

Now, what makes lspi.pl so complex from a coding perspective is that the script
does some binary fi le data parsing of its own, beyond simply accessing the RAM
dump fi le. The script also has to parse the portable executable (PE) fi le header (the
PE fi le header is defi ned by Microsoft) and reassemble the various bits and pieces of

 Perl Scripting and Computer Forensic Analysis • Part II 105

the executable image fi le based on the “map” provided by the header information.
The actual segments of the executable image fi le are maintained in memory “pages”,
sections that are each 4096 bytes (4Kb) in size. If all of the necessary memory pages
are not available in the RAM dump, such as if the memory manager swapped those
pages out to the pagefi le, lspi.pl will not be able to reassemble the complete executable
image fi le and will quit with a message to that effect.

These two Perl scripts (lsproc.pl and lspi.pl) are available, along with several other
Perl scripts that can be used to parse data from RAM dumps, on the SourceForge
site for the WindowsIR9 project.

Master Craftsman

Extracting other data from RAM
RAM dumps are very often full of much more than just processes and network
connections. Opening a RAM dump in your favorite hex editor will reveal what
might appear to be Event Log event records, as well as Registry keys. In much
the same way as processes were located in a RAM dump, these other objects
can be located and parsed, as well. This can be very useful in an investigation
as these objects contain timestamp information and may be used to establish
or correlate a timeline of activity on the system.

ProScripts
As mentioned in Part I, ProScripts are essentially Perl scripts that provide a scripting
capability for the ProDiscover forensic analysis application provided by Technology
Pathways. The ProDiscover forensic analysis application can be extremely useful, and
the addition of the Perl scripting language allows the examiner to leverage the power
of Perl in conjunction with the ProDiscover product. This gives the examiner the
ability to extend the ProDiscover application to incredible levels of usability.

Graphical user interface (GUI) programming is beyond the scope of this book,
but I have tested the use of a GUI in conjunction with ProDiscover ProScripts

9 http://sourceforge.net/project/showfi les.php?group_id=164158

106 Part II • Perl Scripting and Computer Forensic Analysis

(using the Win32::GUI module) and they have worked very well together. Taking
this to greater lengths would allow the examiner to extend the usability of
ProDiscover even further, all thanks to the power of Perl!

Uassist.pl
In Part I, as well as previously in this Part, I provided Perl scripts that could be used
to extract information from the UserAssist keys in the Registry. In Part I, the uassist.
pl Perl script could be run on a live system to retrieve the contents of the UserAssist
key for the currently logged on user, and earlier in this Part, the uassist.pl Perl script
used the Parse::Win32Registry module to retrieve the same information from an
arbitrary NTUSER.DAT fi le that had been extracted from an acquired image. For
the sake of completeness, I wanted to provide a ProScript that you could use with
ProDiscover and parse the UserAssist keys from the user Registry fi les:
#! c:\Perl\bin\perl.exe

#--

UAssist.pl, version 0.11

#

Copyright 2006–2007 H. Carvey, keydet89@yahoo.com

#--

use ProScript;

PSDisplayText(“UserAssist.pl v.0.11_20060522”);

PSDisplayText(“ProScript to parse the UserAssist keys within each
user’s Registry fi le”);

PSDisplayText(“decrypt the values, and display the data as a GMT time,
where applicable.”);

PSDisplayText(“Also, values with time-stamped data are sorted by time,
in reverse order, so”);

PSDisplayText(“that timelining the user activity is done more readily.”);

PSDisplayText(“\n”);

my @sids = ();

$numRegs = PSGetNumRegistries();

if ($numRegs == 0) {

 PSDisplayText(“No registries to process”);

 return;

}

$regName = PSGetRegistryAt(0);

PSRefreshRegistry($regName);

#--

my $hiveName = “HKEY_Users”;

 Perl Scripting and Computer Forensic Analysis • Part II 107

my $rHandle = PSOpenRegistry($regName, $hiveName);

my @sids = ();

if ($rHandle == 0) {

 PSDisplayText(“Unable to locate registry key”);

 return;

}

else {

 PSDisplayText(“Registry opened succesfully.”);

}

#Successfully opened the key. Now, enumerate the key.

while (1) {

 $RegKeyInfo = &ProScript::PSReadRegistry($rHandle);

 last if ($RegKeyInfo->{nType} == −1);

 push(@sids,$RegKeyInfo->{strRegName}) if (length($RegKeyInfo->
{strRegName}) > 20);

}

PSCloseHandle($rHandle);

PSDisplayText(“Registry handle closed.”);

Now that we have the SIDs, let’s enumerate through the keys

my @guids = (“{5E6AB780-7743-11CF-A12B-00AA004AE837}\\Count”,

 “{75048700-EF1F-11D0-9888-006097DEACF9}\\Count”);

my $key_path = “\\Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\
UserAssist\\”;

foreach my $sid (@sids) {

use %sorter as a hash-of-arrays data structure for maintaining a
sorted list of

times

 my %sorter = ();

 foreach my $g (@guids) {

 my $key = $hiveName.“\\”.$sid.$key_path.$g;

 PSDisplayText(“Key : $key”);

 my $rHandle = PSOpenRegistry($regName,$key);

 while (1) {

 $RegKeyInfo = &ProScript::PSReadRegistry($rHandle);

 last if ($RegKeyInfo->{nType} == −1);

 next if ($RegKeyInfo->{strRegName} eq “(Default)”);

 my $value = $RegKeyInfo->{strRegName};

 $value =~ tr/N-ZA-Mn-za-m/A-Za-z/;

PSDisplayText(“\t”.$value);

 my $data = $RegKeyInfo->{strValueData};

 my $l = length($data);

108 Part II • Perl Scripting and Computer Forensic Analysis

 if ($l == 16) {

 my @vals = unpack(“V4”,substr($data,0,16));

 my $gtime = _getTimeDate($vals[3],$vals[2]);

 if ($gtime > 0) {

 PSDisplayText(“\t”.$value.“ -–> ”.gmtime($gtime));

The following code adds the ROT-13 (decrypted) entry to an array in the
hash-of-arrays

data structure

 if ($g eq “{75048700-EF1F-11D0-9888-006097DEACF9}\\Count”) {

 push(@{$sorter{$gtime} },$value);

 }

 }

 else {

 PSDisplayText(“\t”.$value);

 }

 }

 }

 PSCloseHandle($rHandle);

 }

 PSDisplayText(“\n”);

Display the time-based entries in reverse order, listing the entries that

were accessed at that date/time beneath the time

 PSDisplayText(“Time-sorted Entries”);

 foreach my $item (reverse sort {$a <=> $b} keys %sorter) {

 PSDisplayText(“ -–> ”.gmtime($item));

 foreach my $pdl (@{$sorter{$item} }) {

 PSDisplayText(“\t -–> $pdl”);

 }

 }

 PSDisplayText(“\n”);

}

#--

_getTimeDate()

Input : 2 DWORDs, each containing half of the LastWrite time

Output: readable GMT time string

#--

sub _getTimeDate {

Borrowed from Andreas Schuster’s ptfi nder code

 my $Hi = shift;

 my $Lo = shift;

 Perl Scripting and Computer Forensic Analysis • Part II 109

 my $t;

 if (($Lo == 0) and ($Hi == 0)) {

 $t = 0;

 }

 else {

 $Lo -= 0xd53e8000;

 $Hi -= 0x019db1de;

 $t = int($Hi*429.4967296 + $Lo/1e7);

 }

 $t = 0 if ($t < 0);

 return $t;

}

To run this script, simply open a project or a case in ProDiscover (the uassist.pl ProScript
was written and tested on ProDiscover Incident Response Edition version 4.89), click the
Run ProScript button on the button bar (illustrated in Figure II.3), and in the Run ProScript
dialog, choose the path the uassist.pl ProScript (illustrated in Figure II.4).

Figure II.3 ProDiscover “Run ProScript” Button

Figure II.4 ProDiscover “Run ProScript” Dialog

110 Part II • Perl Scripting and Computer Forensic Analysis

Once you hit the “OK” button, the script will run … no arguments are required
for this ProScript. The uassist.pl ProScript will parse each NTUSER.DAT fi le from
each user profi le within the ProDiscover project, and display all entries, followed by
the reverse time-sorted entries, as shown in Figure II.5.

Figure II.5 Output of uassist.pl ProScript

As uassist.pl automatically parses all of the NTUSER.DAT fi les for all of the local
users on the system (within the acquired image of the system), there can be quite a
bit of output displayed. This version of the script is great for examinations of systems
with a relatively small number of users, but as the number of users increases, you may
want to extract the specifi c NTUSER.DAT fi les from the image and parse them
using the version of the uassist.pl Perl script listed earlier in this Part.

SysRestore.pl
One of the aspects of forensic analysis of Windows XP systems that I’ve found to be
extremely useful is the information maintained within System Restore Points.10

10 http://technet.microsoft.com/en-us/library/bb490854.aspx

 Perl Scripting and Computer Forensic Analysis • Part II 111

System Restore Points allow the user to “back out” of a software installation and roll
back the system state to a previous time (say, 3 days ago) when the system was known
to be functioning properly. While this is extremely useful to the user, it can also be
extremely useful to an examiner.

One of the more useful aspects of the restore points is that, as long as disk space
is available, Windows XP will create a restore point every 24 hours, as well as when
software is installed or uninstalled. Knowing this, the examiner can parse through
each restore point, extracting information about the restore point from the rp.log fi le.
The sysrestore.pl ProScript allows you to do this quickly and easily through the
ProDiscover interface.
#! c:\perl\bin\perl.exe

#--

SysRestore.pl, version 0.1_20061026

ProScript to parse the System Restore subdirectories for

rp.log fi les, and

then parse the fi les for description and creation time info

#

Copyright 2006–2007 H. Carvey, keydet89@yahoo.com

#--

use ProScript;

PSDisplayText(“SysRestore.pl v. 0.1_20061026”);

PSDisplayText(“ProScript to parse through the System Restore
subdirectories on Windows XP”);

PSDisplayText(“systems and return the type, description and
creation time from each rp\.log fi les”);

PSDisplayText(“\n”);

PSDisplayText(“Restore Point Types:”);

PSDisplayText(“0 - Application Install”);

PSDisplayText(“1 - Application Uninstall”);

PSDisplayText(“7 - System CheckPoint”);

PSDisplayText(“10 - Device Driver Install”);

PSDisplayText(“12 - Modify Settings”);

PSDisplayText(“13 - Cancelled Operation”);

PSDisplayText(“\n”);

#--

Get the SystemRoot value

my %sysinfo = ();

$numRegs = PSGetNumRegistries();

if ($numRegs == 0) {

 PSDisplayText(“No registries to process”);

 return;

112 Part II • Perl Scripting and Computer Forensic Analysis

}

$regName = PSGetRegistryAt(0);

PSRefreshRegistry($regName);

my $keyName = “HKEY_LOCAL_MACHINE\\Software\\Microsoft\\Windows
NT\\CurrentVersion”;

my $rHandle = PSOpenRegistry($regName, $keyName);

if ($rHandle == 0) {

 PSDisplayText(“Unable to locate registry key”);

 return;

}

else {

PSDisplayText(“Registry opened succesfully.”);

}

while (1) {

 $RegKeyInfo = &ProScript::PSReadRegistry($rHandle);

 last if ($RegKeyInfo->{nType} == -1);

 next if ($RegKeyInfo->{nType} == PS_TYPE_KEY);

 my $value = $RegKeyInfo->{strRegName};

 my $data = $RegKeyInfo->{strValueData};

PSDisplayText($value.“ –> ”.$data);

 $sysinfo{$value} = $data;

}

PSCloseHandle($rHandle);

#--

Now we have a %sysinfo hash, and all we really want is the

“SystemRoot” value

my $sysroot = $sysinfo{“SystemRoot”};

my $drive = (split(/:/,$sysinfo{“SystemRoot”},2))[0];

$drive should now just be a drive letter

my $objectName = PSGetObjectName(0);

my $path = $objectName.“\\”.$drive.“:\\System Volume Information”;

#--

First, we need to get the name of the _restore directory

#--

my $pHandle = PSOpenDir($path,0);

if ($pHandle == NULL) {

 PSDisplayText(“$path not opened.”);

}

my $rest = “_restore”;

my $restoredir;

 Perl Scripting and Computer Forensic Analysis • Part II 113

my $tag = 1;

while ($tag) {

 my $fi le = &ProScript::PSReadDirectory($pHandle);

 $tag = 0 if ($fi le == NULL || $fi le->{strName} eq “”);

 $restoredir = $fi le->{strName} if ($fi le->{bIsDirectory} && $fi le->{strName} =~ m~
^$rest/i);

PSDisplayText(“Name : $fi le->{strName}”);

}

PSCloseHandle($pHandle);

$path = $path.“\\”.$restoredir.“\\”;

#--

Now, we need to get the list of subdirectories

#--

my @rpdirs = ();

my $rpdir = “RP”;

my $pHandle = PSOpenDir($path,0);

if ($pHandle == NULL) {

 PSDisplayText(“$path not opened.”);

}

my $tag = 1;

while ($tag) {

 my $fi le = &ProScript::PSReadDirectory($pHandle);

 $tag = 0 if ($fi le == NULL || $fi le->{strName} eq “”);

 push(@rpdirs,$fi le->{strName}) if ($fi le->{bIsDirectory}
&& $fi le->{strName} =~ m/^$rpdir/);

PSDisplayText(“Name : $fi le->{strName}”);

}

PSCloseHandle($pHandle);

foreach my $rp (@rpdirs) {

 $rp_path = $path.$rp.“\\rp\.log”;

 my $type = getType($rp_path);

 my $descr = getRpDescr($rp_path);

 my $creation = getCreationTime($rp_path);

 PSDisplayText($rp.“ ”.$type.“ ”.$creation.“ (UTC) ”.$descr);

}

#--

getType()

Read the rp.log fi le to get the restore point type

#--

114 Part II • Perl Scripting and Computer Forensic Analysis

sub getType {

 my $path = shift;

 my $type = 0;

 if (my $oFile = PSOpen($path)) {

 if (PSSeek($oFile,0x04,0,PS_FILE_BEGIN)) {

 my $buffer = PSReadRaw($oFile,4);

 PSCloseHandle($oFile);

 $type = unpack(“V”,$buffer);

 }

 else {

 PSDisplayText(“File seek to fi rst offset failed.”);

 }

 }

 else {

 PSDisplayText(“File could not be opened.”);

 }

 return $type;

}

#--

getCreationTime()

Read the rp.log fi le to get the description and creation

date

#--

sub getCreationTime {

 my $path = shift;

 my $t_val = 0;

 if (my $oFile = PSOpen($path)) {

 if (PSSeek($oFile,0x210,0,PS_FILE_BEGIN)) {

 my $buffer = PSReadRaw($oFile,8);

 PSCloseHandle($oFile);

 my @vals = unpack(“VV”,$buffer);

 $t_val = getTime($vals[0],$vals[1]);

 }

 else {

 PSDisplayText(“File seek to fi rst offset failed.”);

 }

 }

 else {

 PSDisplayText(“File could not be opened.”);

 }

 return gmtime($t_val);

 Perl Scripting and Computer Forensic Analysis • Part II 115

}

#--

getRpDescr()

Read the rp.log fi le to get the description and creation

date

#--

sub getRpDescr {

 my $path = shift;

 my $buffer;

 my $tag = 1;

 my $offset = 0x10;

 my @strs;

 my $str;

 my $oFile;

 if ($oFile = PSOpen($path)) {

 while ($tag) {

 PSSeek($oFile,$offset,0,PS_FILE_BEGIN);

 $buffer = PSReadRaw($oFile,2);

 if (unpack(“v”,$buffer) == 0) {

 $tag = 0;

 }

 else {

 push(@strs,$buffer);

 }

 $offset += 2;

 }

 }

 else {

 PSDisplayText(“File could not be opened.”);

 }

 PSClose($oFile);

 my $str = join(‘’,@strs);

 $str =~ s/\00//g;

 return $str;

}

#--

getTime()

Get Unix-style date/time from FILETIME object

Input : 8 byte FILETIME object

Output: Unix-style date/time

116 Part II • Perl Scripting and Computer Forensic Analysis

Thanks goes to Andreas Schuster for the below code, which he

included in his ptfi nder.pl

#--

sub getTime {

 my $lo = shift;

 my $hi = shift;

 my $t;

 if ($lo == 0 && $hi == 0) {

 $t = 0;

 } else {

 $lo -= 0xd53e8000;

 $hi -= 0x019db1de;

 $t = int($hi*429.4967296 + $lo/1e7);

 };

 $t = 0 if ($t < 0);

 return $t;

}

When run, the sysrestore.pl ProScript starts by accessing the Registry within the
image (this assumes that the examiner only has one system image open in ProDiscover,
and has already populated the Registry View – see the ProDiscover instructions for
how to populate the Registry View) in order to determine the path to the system root
(“SystemRoot” is an environment variable within Windows that points to the
Windows directory … on Windows XP, it is most often “C:\Windows”). From there,
the ProScript populates the complete path to where the restore points are maintained
(this value is stagnant or always in the same place on Windows XP systems), and begins
parsing through the rp.log fi les within each restore point, and extracts information
(timestamp, reason for the restore point being created) from the fi les.

Figure II.6 illustrates the output of the SysRestore.pl ProScript after it has been
run against an image acquired from a Windows XP system.

 Perl Scripting and Computer Forensic Analysis • Part II 117

Figure II.6 clearly illustrates the utility of the SysRestore.pl ProScript. In the
upper portion of the screen is a listing of the various codes that pertain to why a
restore point is created. The rest of the output of the ProScript shows the restore
points listed in sequential order, along with the code for the reason that the restore
point was created, and the date (in UTC time) that the restore point was created.
As you can see from Figure II.6, the system in question was most likely a Windows
XP system running in a VMWare11 session.

Prefetch.pl
Besides System Restore Points, another interesting aspect of Windows XP systems is
that, by default, Windows XP performs application prefetching.12 Windows XP also

Figure II.6 Example output of the SysRestore.pl ProScript

11 http://www.vmware.com/
12 http://technet.microsoft.com/en-us/library/bb457057.aspx

118 Part II • Perl Scripting and Computer Forensic Analysis

does boot prefetching, which Windows 2003 does by default, as well (although
Windows 2003 does not perform application prefetching by default). The long and
short of what application prefetching does is allow applications on Windows XP to
start up quicker by storing some information about the application in a fi xed loca-
tion (yes, this is an overly-simplifi ed description, but a more detailed description is
beyond the scope of this book). Windows XP can store up to 128 Prefetch fi les (end
in ∗.pf) in its Prefetch directory, and the Prefetch.pl ProScript will allow the examiner
to see information about the prefetch fi les.
#! c:\perl\bin\perl.exe

#--

Prefetch.pl, version 0.1_20061026

ProScript to parse the Prefetch directory for .pf fi les, and

then parse the fi les for run count and last run time.

#

Copyright 2006–2007 H. Carvey, keydet89@yahoo.com

#--

use ProScript;

PSDisplayText(“Prefetch.pl v. 0.1_20061026”);

PSDisplayText(“ProScript to parse through the Prefetch directory on Windows XP”);

PSDisplayText(“systems and return the fi lename, time last accessed, and the
run-count”);

PSDisplayText(“ -> Requires ProDiscover v. 4.85 or higher”);

#--

Get the SystemRoot value

my %sysinfo = ();

$numRegs = PSGetNumRegistries();

if ($numRegs == 0) {

 PSDisplayText(“No registries to process”);

 return;

}

$regName = PSGetRegistryAt(0);

PSRefreshRegistry($regName);

my $keyName = “HKEY_LOCAL_MACHINE\\Software\\Microsoft\\Windows NT\\
CurrentVersion”;

my $rHandle = PSOpenRegistry($regName, $keyName);

if ($rHandle == 0) {

 PSDisplayText(“Unable to locate registry key”);

 return;

}

 Perl Scripting and Computer Forensic Analysis • Part II 119

else {

PSDisplayText(“Registry opened succesfully.”);

}

Access the key in order to get the SystemRoot value

while (1) {

 $RegKeyInfo = &ProScript::PSReadRegistry($rHandle);

 last if ($RegKeyInfo->{nType} == −1);

 next if ($RegKeyInfo->{nType} == PS_TYPE_KEY);

 my $value = $RegKeyInfo->{strRegName};

 my $data = $RegKeyInfo->{strValueData};

 $sysinfo{$value} = $data;

}

PSCloseHandle($rHandle);

#--

Now we have a %sysinfo hash, and all we really want is the

“SystemRoot” value

my $sysroot = $sysinfo{“SystemRoot”};

$sysroot = $sysroot.“\\” unless ($sysroot =∼ m/\\$/);

Note: Make sure that the fi rst letter (ie, the drive letter) of the

SystemRoot path is capitalized; this is an issue with ProDiscover

$sysroot = ucfi rst($sysroot);

my $objectName = PSGetObjectName(0);

my $path = $objectName.“\\”.$sysroot.“Prefetch”;

my $pHandle = PSOpenDir($path,0);

if ($pHandle == NULL) {

 PSDisplayText(“$path not opened.”);

}

my $tag = 1;

while ($tag) {

 my $fi le = &ProScript::PSReadDirectory($pHandle);

 $tag = 0 if ($fi le == NULL || $fi le->{strName} eq “”);

 my $pf = “pf”;

 next if ($fi le->{bIsDirectory});

 next unless ($fi le->{strName} =∼ m/$pf$/);
 my $fi lepath = $path.“\\”.$fi le->{strName};

 my ($t_val,$run);

 if (my $oFile = PSOpen($fi lepath)) {

 if (PSSeek($oFile,0x78,0,PS_FILE_BEGIN)) {

 my $buffer = PSReadRaw($oFile,8);

 my @vals = unpack(“VV”,$buffer);

 $t_val = getTime($vals[0],$vals[1]);

120 Part II • Perl Scripting and Computer Forensic Analysis

 }

 else {

 PSDisplayText(“File seek to fi rst offset failed.”);

 }

Get the Run count

 if (PSSeek($oFile,0x90,0,PS_FILE_BEGIN)) {

 my $buffer = &ProScript::PSReadRaw($oFile,4);

 PSCloseHandle($oFile);

 $run = unpack(“V”,$buffer);

 }

 else {

 PSDisplayText(“File seek to second offset failed.”);

 }

 PSDisplayText($fi le->{strName}.“ “.gmtime($t_val).” (UTC) ”.$run);

 }

 else {

 PSDisplayText(“File could not be opened.”);

 }

}

PSCloseHandle($pHandle);

#--

getTime()

Get Unix-style date/time from FILETIME object

Input : 8 byte FILETIME object

Output: Unix-style date/time

Thanks goes to Andreas Schuster for the below code, which he

included in his ptfi nder.pl

#--

sub getTime {

 my $lo = shift;

 my $hi = shift;

 my $t;

 if ($lo == 0 && $hi == 0) {

 $t = 0;

 } else {

 $lo -= 0xd53e8000;

 $hi -= 0x019db1de;

 $t = int($hi*429.4967296 + $lo/1e7);

 };

 $t = 0 if ($t < 0);

 return $t;

}

 Perl Scripting and Computer Forensic Analysis • Part II 121

The Prefetch.pl ProScript is launched in much the same way as other ProScripts,
and does not require any arguments. Once the ProScript locates the Prefetch directory,
it begins parsing though each fi le, locating the timestamp for the last time the application
was launched as well as the total number of times the application was launched, at
specifi c, known offsets (0x78 and 0x90, respectively … these offsets are different for
Prefetch fi les retrieved from Windows Vista sytems) within the binary fi le itself. As
illustrated in Figure II.7, this information is then displayed in the ProScript output
window.

Figure II.7 Output of Prefetch.pl

As you can see in Figure II.7, a great deal of useful information can be derived
from the application prefetch fi les. However, the examiner should keep in mind that
the Windows XP prefetch capability applies to all users on the system; in order to
correlate running specifi c applications to a specifi c user, additional means of analysis
(already discussed in this Part) will need to be employed.

122 Part II • Perl Scripting and Computer Forensic Analysis

NOTE

Windows Vista also maintains Prefetch fi les, as well. However, the offsets
to the specifi c metadata maintained within the Prefetch fi le differ for Vista.
The Prefetch.pl ProScript is meant only for Windows XP.

Swiss Army Knife

Writing ProScript output to fi les
Sometimes, trying to view a great deal of information in the ProScript display
window can be quite cumbersome. As ProScripts are simply Perl scripts, code
can be added to write the output of the ProScript to a fi le, as well as or instead
of sending it straight to the display window.

Parsing Other Data
Besides log fi les and binary data on Windows systems, there is quite a bit of other
data that can be parsed in a number of useful ways. For example, the Visa Payment
Card Industry (PCI) Data Security Standard (DSS)13 has put forth requirements not
only for notifi cation of individuals in case their data has been compromised, but also
notifi cation to the PCI board if there has been a breach. The goals of a PCI forensic
audit are to determine if there was, in fact, a breach and if credit card data was on the
affected systems and possibly compromised. So what generally happens is that some
systems may be forensically acquired, and the images will be analyzed for signs of an
intrusion, as well as searched for credit card numbers. Forensic analysis tools such as
EnCase provide the capability for the user to defi ne a search for credit card numbers14

13 http://www.corporate.visa.com/pd/security/main.jsp
14 http://en.wikipedia.org/wiki/Credit_card_number

 Perl Scripting and Computer Forensic Analysis • Part II 123

(or magnetic strip or “track” data) using a regular expression search, or for the analyst
to use already-written scripts to perform the searches for them. With EnCase Forensic
Edition version 5, for example, there is a Credit Card Finder module that is included
with the Sweep Case EnScript (EnScripts are the user-defi nable scripting components
of EnCase). Whether the analyst searches just for credit card numbers, or performs a
more extensive search for track 1 or track 2 data (again, information which is maintained
on the magnetic stripe of the credit card itself), she should not be surprised when the
search returns hundreds or thousands (or tens of thousands) of hits.

The format of the credit card number is quite simple; generally 13 to 16 digits
in length (some European cards can have 18 or 19 digits), and begin with certain
sequences of numbers, referred to as the Bank Identifi cation Number, or BIN.
A description this general can (and will) return thousands of hits on almost any computer
system, so we have to take another aspect of the credit card number into account.
In order to be a valid credit card number, the number has to successfully pass a check
via the Luhn Formula.15 The Luhn Formula (or Algorithm) is a modulus 10 checksum
that is used to validate credit card numbers. This is not a cryptographic hash function
used for security purposes, but rather a checksum used for validation. Code to perform
a Luhn algorithm verifi cation looks like this:
sub luhn {

 my $num = shift;

 my $len = length($num);

 my @n;

 foreach (0..($len - 1)) {

 push(@n,substr($num,$_,1));

 }

 my @m = reverse @n;

 my @r;

 foreach my $i (0..($len - 1)) {

 if (($i % 2) == 0) {

 $r[$i] = $m[$i];

 }

 else {

 my $x = $m[$i] * 2;

 ($x > 9) ? ($r[$i] = $x - 9) : ($r[$i] = $x);

 }

15 http://en.wikipedia.org/wiki/Luhn_algorithm

124 Part II • Perl Scripting and Computer Forensic Analysis

}

my $sum;

foreach my $i (0..($len - 1)) {

 $sum += $r[$i];

}

 my $v = $sum % 10;

 ($v == 0) ? (return 1) : (return 0);

}

The luhn() function takes a credit card number as it’s argument, and processes it,
verifying whether it is a valid credit card number or not. The function returns 1 if
the number is a valid credit card number, 0 if it isn’t. You will notice that the function
makes no checks as to the length of the number, nor does it verify the BIN of the
credit card number. EnCase’s EnScript functionality includes a built-in string function
called IsValidCreditCard() that perform these checks. I tend to use the luhn() code
even when parsing though the search hits returned by EnCase when searching for
credit card numbers, as an additional verifi cation.

Perl code to validate or determine the type or BIN of the credit card number
might look something like this:
sub getType {

 my $cc = shift;

 my $len = length($cc);

 return undef if ($len > 19);

 my $type;

 if ($len == 16) {

 if ($cc =∼ m/∧4/) {

 $type = “Visa”;

 }

 elsif ($cc =∼ m/∧[51|52|53|54|55]/) {

 $type = “MasterCard”;

 }

 elsif ($cc =∼ m/∧6011/) {

 $type = “Discover”;

 }

 else {

 $type = “Unknown”;

 }

 }

 elsif ($len == 15) {

 $type = “AmEx” if ($cc =∼ m/∧[34|37]/);

 Perl Scripting and Computer Forensic Analysis • Part II 125

 }

 elsif ($len == 14) {

 $type = “Diners” if ($cc =∼

m/∧[36|38|300|301|302|303|304|305]/);

 }

 elsif ($len == 13) {

 $type = “Visa” if ($cc =∼ m/∧4/);

 }

 else {

 $type = “Unknown”;

 print $cc.“ is “.$len.” digits long.\n”;

 }

}

As you can see, as with the luhn() function, the getType() function takes a single
argument, which is the credit card number itself. The function checks the length and the
BIN for the credit card number and returns either the type (i.e., “Visa”, “MasterCard”,
etc.) or “Unknown”. This makes things sorting the credit card numbers based on type
(or BIN) a fairly straightforward process.

The track data is a bit different as it includes the credit card number (a.k.a.,
primary account number, or PAN). Track 1 data has the following format (keep in
mind that this is a very simple overview):
B{PAN}∼{Name}∧{Other data}

Track 1 data starts with a format code of “B”, and is followed by the PAN and
the “∧” separator. The Name fi eld is 19 characters long and is made up of ASCII
characters; this is followed by another “∧” separator, and another 18 digits of data, the
fi rst four of which should be the expiration (expiry) date of the credit card. If you’re
parsing through a fl at ASCII text fi le that contains one search hit for track 1 data on
each line, you might parse through it using Perl code that looks like this (the scalar
$fi le is the name of the fi le that holds our data):
my %cc_nums;

open(FH,“<”,$fi le) || die “Could not open $fi le: $!\n”;

while(<FH>) {

 chomp;

 next unless ($_ =∼ m/∧B/);

 my ($pan,$name,$rest) = split(/\x5e/,$_,3);

 $pan =∼ s/[∧0–9]//g;

 my $expiry = substr($rest,0,4);

126 Part II • Perl Scripting and Computer Forensic Analysis

 my $stuff = join(‘:’,$pan,$name,$expiry);

 $cc_nums{$stuff} = 1;

 printf “%-20 s %-20 s %-4 s\n”,$pan,$name,$expiry;

}

close(FH);

The fi rst thing this code snippet does is create a fi lehandle to our fi le (or “$fi le”),
and opens the fi le in read-only mode. If for some reason the fi le can’t be opened, the
code will die() with an error message (hopefully) telling us why the fi le couldn’t be
opened. From there, we read the fi le a line at a time, chomp()’ing off the carriage
return at the end of the line. If the line does not start with a “B” (remember, this is
track 1 data), then we skip the line. From there, we split the line into components,
based on the “∧” separator, denoted by its hexadecimal representation (\x5e). We
then remove all non-numeric characters (between 0 and 9) from the PAN (there may
be spaces or dashes), and then retrieve the expiration or expiry date from the remainder
of the data in the third segment (i.e., the fi rst four characters).

Swiss Army Knife

Valid Expiry Dates
The expiry date retrieved from the track 1 (and track 2) data consists of four
digits in the form MMYY. I’ll leave it as an exercise for you (the reader) to
develop code to validate the expiry date.

Finally, the last thing the above code does is print out the parsed data in a fi xed
length format, using the printf() function. However, there’s one other thing I’d like to
point out, and that’s the line that reads as follows:
$cc_nums{$stuff} = 1;

The purpose of this line is to remove duplicates. Many times when a search
function goes through fi le (or acquired image), the search may return multiple
instances of the same credit card number. This can happen for a number of reasons:

 Perl Scripting and Computer Forensic Analysis • Part II 127

both track 1 and 2 data are found, the PAN exists in multiple fi les or multiple tables
in a database, etc. Whatever the reason, you don’t want to have to keep track of
10 copies of the same PAN. A real simple way to go about removing duplicates and
guaranteeing uniqueness is to create a Perl hash, where the key to the hash is the data
(PAN, or in the case of our code, PAN, name, and expiry date, separated by colons)
we extracted, and we set the value for that key to 1 (it could be any value, really).

NOTE

David Schultze shared this technique for guaranteeing uniqueness in a dataset
with me back in 1999 when we both worked at the same company. David
shared a couple of really good programming tips with me, and this is one of
them. I like to give credit where credit is due … thanks, David!

Track 2 data, on the other hand, has the following format:
{PAN}={Other data}

The track 2 data starts with the PAN (13–16 digits) and is followed by a “=”
separator, and then up to 18 digits of additional data, the fi rst four of which should
(again) be the expiry date for the credit card. Perl code to parse through a fl at ASCII
text fi le containing a track 2 data search hit on each line might look similar to the
following code:
my %cc_nums;

open(FH,“<”,$fi le) || die “Could not open $fi le:

$!\n”;

while(<FH>) {

 chomp;

 my ($pan,$rest) = split(/=/,$_,2);

 $pan =∼ s/[∧0–9]//g;

 my $expiry = substr($rest,0,4);

 my $stuff = join(‘:’,$pan,$expiry);

 $cc_nums{$stuff} = 1;

}

close(FH);

This code has a lot of similarities to the code for parsing the track 1 data, so
I won’t go through it all again.

128 Part II • Perl Scripting and Computer Forensic Analysis

Cc-sort.pl
Let’s take a look at an example of using the Perl functions getType() and luhn().
use strict;

my $fi le = shift || die “You must enter a

fi lename.\n”;

die “Could not fi nd $fi le.\n” unless (-e $fi le);

open(FH,“<”,$fi le) || die “Could not open $fi le: $!\n”;

while(<FH>) {

 chomp;

 \isValid($_);

}

close(FH);

sub isValid {

 my $cc = shift;

check cc number for validity; if the card is valid,

the number and the type are returned

strips out spaces and dashes

 $cc =∼ s/[∧0–9]//g;

Verifi es the length of the credit card number

 if (luhn($cc)) {

 my $type = getType($cc)) {

 print $type.“:”.$cc.“\n”;

 }

else {

print “Number is greater than 16 digits.\n”;

}

}

This bit of code uses the luhn() and getType() functions to validate the credit card
number, and then print out the type (BIN) of the credit card number, and the credit
card number itself. This code serves as a very simple, yet straightforward example of
how to use this code to validate credit card numbers located during a forensic
investigation.

Final Touches
Perl is an extremely useful and powerful tool for performing computer forensic
analysis. While there are applications available that let an examiner access acquired
images and perform some modicum of visualization, there are relatively few tools

 Perl Scripting and Computer Forensic Analysis • Part II 129

that meet the specifi c needs of a specifi c examiner working on a specifi c case. This is
where the use of Perl really shines through and becomes apparent. For example,
I received a request from another examiner not long ago, asking for some assistance
in parsing a Windows Event Log fi le. I provided a copy of evt2xls.pl, and the examiner
ran into issues with having far too many records in the resulting spreadsheet fi le for
MS Excel to open. I made some quick changes to the script, and resent it…this led
to a rather quick resolution of the issue, whereas prior to that, the examiner’s ability
to open the Event Log fi le and retrieve the necessary information was non-existent.

This page intentionally left blank

131

Part III

Monitoring Windows
Applications
with Perl

Solutions for this Part:

■ Core Application Processes

■ Core Application Dependencies

■ Network Connectivity

■ Web Services

■ Log Files

˛ Summary

132 Part III • Monitoring Windows Applications with Perl

In This Toolbox
Working with enterprise-level Windows applications requires a great deal of analysis
and constant monitoring. Automating the monitoring portion of this effort can save a
great deal of time, reduce system downtimes, and improve the reliability of your overall
application. By utilizing Perl scripts and integrating them with the application technology,
you can easily build a simple monitoring framework that can alert you to current or
future application issues.

In order to build this monitoring framework, you must fi rst separate the individual
components that make up your application, and determine a monitoring strategy for
each. This allows you to build specifi c monitoring processes for each component while
still providing a comprehensive view of the application as a whole from the monitoring
perspective.

In this chapter, the components we will be focusing on are the core application
processes, the core application dependencies, network connectivity, Web services, and
log fi les. We will look at what the purpose of each component is and what its role is
in the scope of the application as a whole. We will also break down each component
even farther and look at what specifi c metrics we need to monitor or record to ensure
that the component is functioning normally. Lastly, we will be putting together some
scripts that monitor the application and build a complete monitoring framework for
a sample application.

Core Application Processes
The “core application processes” component refers to the basic executable(s)
for the application that you are working with. Each executable takes up a certain
amount of system resources including processor, memory, input/output (I/O), and
so forth. By monitoring the state of the core system process and its use of system
resources, you are able to determine how well the process is functioning and detect
abnormalities.

In addition to the resources used by the application itself, we also need to be
aware of resource use by other applications. Other applications that consume an
extraordinary amount of system resources could have performance implications on
the application we are monitoring, so it makes sense to stay aware of what these
other applications are doing. We do this through monitoring of key performance
indicators for the system and will be building some scripts for this purpose as well.

 Monitoring Windows Applications with Perl • Part III 133

Monitoring System Key Performance Indicators
Before we get to writing scripts to monitor our specifi c core processes, let us fi rst
take a look at the system as a whole. There are specifi c key performance indicators
that can tell you the overall status of your system. Among these are processor utilization,
memory utilization, and network utilization.

In this section, we will be creating scripts to watch each of these key performance
indicators, measure their current status against a threshold, and take action when the
threshold is exceeded. This will provide us some foundation scripts that we can then
refi ne to provide information around our specifi c core processes.

Monitoring System CPU Utilization
The system central processing unit (CPU) utilization is one of the most important
metrics to monitor. When a system CPU is too busy, it is diffi cult for applications to get
enough time slices with the CPU to perform their work. Consequently it is important
to try to keep the CPU utilization down to a nominal level. This certainly doesn’t
mean that the process utilization should be low, however. That would mean that you
spent too much money on hardware that you do not need. A good balance means
keeping the system busy, but ensuring that there is enough processor capacity to handle
normal loads and some peaks. We will look at exactly what these numbers should be
when we look at thresholds.

First, let’s put together a quick Perl script for getting the system processor utilization
data. For all of these examples, I will be using Microsoft Windows 2003 Server. I will
also be using Perl 5.8.8 as included in ActivePerl 5.8.8.882. As we go through the exercise
of creating each of these scripts, a variety of Perl modules may be needed. As we get
to each module, I will include the module name and a note indicating that you will
need to install the referenced module.

In the case of working with system CPU utilization, there is a module available
for Perl called Win32::PerfMon that allows for access to all data available through
Windows Performance Monitor. This module should work very well for our purposes
as we will eventually need a lot of data that can be provided through Performance
Monitor. Unfortunately, at this time the module we need cannot be easily installed
using Perl Package Manager (PPM) and does in fact require some additional work to
compile, install, and confi gure. The module itself can be downloaded from CPAN at
http://search.cpan.org/~glensmall/Win32-PerfMon-0.07/PerfMon.pm and is currently
at version 0.07.

134 Part III • Monitoring Windows Applications with Perl

In order to compile this module, you must fi rst have Microsoft Visual C++ 6.0
or later. In these examples, I will be using Microsoft Visual C++ 2005 Express Edition.
This is a free download from Microsoft and is available at http://msdn2.microsoft.
com/en-us/express/aa975050.aspx. Download and install the Visual C++ Express
Edition prior to installing ActivePerl if possible.

In addition, you will also need the Microsoft Platform SDK. This is a development
kit that allows you to create applications using functions in Microsoft’s platform
libraries. The SDK is available at http://www.microsoft.com/downloads/details.
aspx?familyid=0baf 2b35-c656-4969-ace8-e4c0c0716adb&displaylang=en. Download
the SDK and install it using the standard installer.

Post-installation, there are several steps you must take to get the SDK to work
properly with Visual C++ Express Edition. First, open up the C:\Program Files\
Microsoft Visual Studio 8\VC\vcpackages\VCProjectEngine.dll.express.confi g fi le.
Modify the “Directories” section as shown below:
 Include=“$(VCInstallDir)include;$(VCInstallDir)PlatformSDK\include;$(FrameworkSDKDir
)include;C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Include”

 Library=“$(VCInstallDir)lib;$(VCInstallDir)PlatformSDK\lib;$(FrameworkSDKDir)lib;
$(VSInstallDir);$(VSInstallDir)lib;C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Lib”

 Path=“$(VCInstallDir)bin;$(VCInstallDir)PlatformSDK\bin;$(VSInstallDir)Common7\
Tools\bin;$(VSInstallDir)Common7\tools;$(VSInstallDir)Common7\ide;$(ProgramFiles)\
HTML Help Workshop;$(FrameworkSDKDir)bin;$(FrameworkDir)$(FrameworkVersion);
$(VSInstallDir);C:\Program Files\Microsoft Platform SDK for Windows Server 2003
R2\Bin;$(PATH)”

Basically, you are adding the Platform SDK paths to the “Include,” “Library,” and
“Path” variable settings. Next, you’ll need to delete the \%USERPROFILE%\Local
Settings\Application Data\Microsoft\VCExpress\8.0\vccomponents.dat fi le as it
caches these settings. The next step enables the compiler dependencies to work
correctly. Modify the C:\Program Files\Microsoft Visual Studio 8\VC\VCProjectDefaults\
corewin_express.vsprops fi le and change the AdditionalDependencies value to:

AdditionalDependencies=“kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib
advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib”

We’re almost done with these necessary changes. The last requirement is that you
modify the paths used by Visual C++ in the C:\Program Files\Microsoft Visual Studio
8\Common7\Tools\vsvars32.bat fi le. Change the “PATH,” “INCLUDE,” and “LIB”
lines as shown below:
@set PATH=C:\Program Files\Microsoft Visual Studio

8\Common7\IDE;C:\Program Files\Microsoft Visual Studio

 Monitoring Windows Applications with Perl • Part III 135

8\VC\BIN;C:\Program Files\Microsoft Visual Studio

8\Common7\Tools;C:\Program Files\Microsoft Visual Studio

8\SDK\v2.0\bin;C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;
C:\Program Files\Microsoft Visual Studio
8\VC\VCPackages;C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Bin;%PATH%

@set INCLUDE=C:\Program Files\Microsoft Visual Studio
8\VC\INCLUDE;C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Include;%INCLUDE%

@set LIB=C:\Program Files\Microsoft Visual Studio
8\VC\LIB;C:\Program Files\Microsoft Visual Studio
8\SDK\v2.0\lib;C:\Program Files\Microsoft Platform SDK for
Windows Server 2003 R2\Lib;%LIB%

Those are all the required changes, but there is one additional change necessary if
you would like to use the Visual C++ GUI to create Windows applications. This is not
required for compiling the Win32::PerfMon module, but may be useful to you. Edit the
C:\Program Files\Microsoft Visual Studio 8\VC\VCWizards\AppWiz\Generic\Application\
html\1033\AppSettings.htm fi le. On lines 441 through 444, put a “//” at the beginning of
the lines to comment them out. This should look like the following when complete:
// WIN_APP.disabled = true;

// WIN_APP_LABEL.disabled = true;

// DLL_APP.disabled = true;

// DLL_APP_LABEL.disabled = true;

After installing these packages and prior to working with Perl, open a command
window and change to the binaries directory used for Visual C++ Express Edition
(such as C:\Program Files\Microsoft Visual Studio 8\VC\bin\) and run the batch fi le vcvars.
bat. This batch fi le sets the environment variables used by Visual C++ Express Edition.

After loading the environment variables, do not close the command prompt.
These will be necessary for use with Perl when compiling the Win32::PerfMon
module. Assuming that you have Perl in your path, change to the directory where
you downloaded the Win32::PerfMon module. Decompress the module and change
into the Win32-PerfMon-0.07 directory. Run the following commands to compile
and install the module:
 perl Makefi le.PL

 nmake -f Makefi le all

 nmake install

The fi rst command uses Perl to create all the necessary Makefi le data for compiling
the module. Next we run the “nmake” utility, which is part of Visual C++. This utility

136 Part III • Monitoring Windows Applications with Perl

Figure III.1 Win32::PerfMon Installation

uses the Makefi le to compile the module. Finally, we install the module into the correct
location for use by Perl through another use of the nmake utility. After completing
these steps, you should have a screen that looks similar to that shown in Figure III.1.

 Monitoring Windows Applications with Perl • Part III 137

Lastly, due to some changes in the way that the 2005 edition of Visual C++ works,
we have to change the manifest data for the PerfMon.dll fi le. This is unnecessary if you
are using Visual C++ 6.0. Change to the C:\Perl\site\lib\auto\Win32\PerfMon directory
in your command window and run the following command:
mt /manifest PerfMon.dll.manifest /outputresource:PerfMon.dll;#2

This basically embeds the generated manifest fi le into the dynamic link library
(DLL) as a resource allowing the DLL used by the Win32::PerfMon module to work
properly. Again, this is only necessary if you are using the Visual C++ Express Edition
2005 compiler to compile the module.

With this module installed, we now have access to all of the Performance Monitor
data through the use of the following line in our Perl script:
use Win32::PerfMon;

So for our CPU utilization script, this will obviously play a critical role. What we
want to do fi rst is gather the CPU utilization data. After we are able to collect the
information, we’ll fi gure out how to use it as a data point for actual monitoring
activities.

To collect CPU utilization, we will be using the performance monitor counter
“% Processor Time.” According to the description of this counter from Microsoft,
“% Processor Time is the percentage of elapsed time that the processor spends to
execute a non-idle thread. It is calculated by measuring the duration of the idle thread
is active in the sample interval, and subtracting that time from interval duration.
(Each processor has an idle thread that consumes cycles when no other threads are
ready to run). This counter is the primary indicator of processor activity, and displays
the average percentage of busy time observed during the sample interval. It is calculated
by monitoring the time that the service is inactive, and subtracting that value from
100 percent.

Let’s put together some code for this. What we’ll do is use the Win32::PerfMon
module and capture the data available in the “% Processor Time” counter. This is part
of the “Processor” performance monitor object. This object has multiple instances
available depending on the number of processors in the system. If only one processor
exists, the data is stored under instance 0. There is also a special instance available for
objects such as this, which provides the data from all other instances. This is the “_Total”
instance. In most cases, you will not need to know the performance data for a specifi c
processor when monitoring an application, so we’ll use the “_Total” instance for our
data. The code to pull this data is shown in Figure III.2.

138 Part III • Monitoring Windows Applications with Perl

#get_percentprocessortime.pl
use Win32::PerfMon;
use strict;

my $ret = undef;
my $err = undef;
my $Object = undef;
my $Counter = undef;
my $CounterData = undef;
#connect to localhost for data
my $perfmon = Win32::PerfMon->new("\\\\localhost");

if($perfmon != undef)
{
 $ret = $perfmon->AddCounter("Processor",
 "% Processor Time", "_Total");
 if($ret != 0)
 {
 $ret = $perfmon->CollectData();
 if($ret != 0) {
 my $proctime = $perfmon->GetCounterValue(
 "Processor","% Processor Time",
 "_Total");
 if($proctime > -1)
 {
 print "% Processor Time = [$proctime]\n";
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to collect the perf data!\n",
 $err, "\n";
 }
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to add the counter!\n", $err, "\n";
 }
 }
 else
 {
 print "Failed to create the perf object!\n";
}

Figure III.2 get_percentprocessortime.pl

 Monitoring Windows Applications with Perl • Part III 139

The example shown above (and all future examples in this chapter) may not be
formatted in strict adherence to the rules of “readable code,” due to the column
limitations of the print format. In this code, we’re doing a lot of error detecting.
A lot can go wrong when pulling the performance data ranging from being unable
to connect to the host system to being unable to get data from a specifi c counter.
To make strong code, we need to capture as many of these errors as possible and
do something with them. The Win32::PerfMon module makes this easy by returning
a “−1” whenever it is unable to perform a specifi c function. By noting the place
where we receive this return code, we can determine to some degree what went
wrong.

Walking through the code, the fi rst active thing that we do is create an object
using the Win32::PerfMon module. We’ll name that object $perfmon. Next, we’ll add
a counter to the object by calling the AddCounter function and pointing it to the counter
we’re interested in. The syntax of this is to specify the performance monitor object, then
the counter, then the instance. Next, we collect the data from the performance monitor
using the CollectData function. This takes a little over one second to gather. While
technically the poll can be accomplished in less time than this, some counters require
that a one-second delay be instantiated between two data requests in order to properly
collect the values. The PerfMon module takes this into account and collects the data,
sleeps for one second, then collects the data a second time.

After the data is collected, we then must get the value by using the GetCounterValue
function. This data is then stored in the $proctime variable and displayed using the print
function. If we encounter any errors throughout this process, we display an error
message followed by the error that the module returns by using the GetErrorText
function.

Monitoring System Memory Utilization
The next statistic that we’ll monitor is memory utilization for the system. Again,
we’ll use the Win32::PerfMon module to gather this data. Since the system CPU
utilization and the system memory utilization are both statistics of the same type
(both are whole-system related), we can gather them both in the same script and still
adhere to a modular architecture. Figure III.3 shows an example of how this can be
accomplished.

140 Part III • Monitoring Windows Applications with Perl

#get_system_stats.pl
use Win32::PerfMon;
use strict;

my $ret = undef;
my $err = undef;
my $Object = undef;
my $Counter = undef;
my $CounterData = undef;
#connect to localhost for data
my $perfmon = Win32::PerfMon->new("\\\\localhost");

if($perfmon != undef)
{
 $ret = $perfmon->AddCounter("Processor",
 "% Processor Time", "_Total");
 if($ret != 0) {
 $ret = $perfmon->AddCounter("Memory",
 "Available MBytes", -1);
 }
 if($ret != 0)
 {
 $ret = $perfmon->CollectData();
 if($ret != 0) {
 my $proctime = $ perfmon->GetCounterValue(
 "Processor","% Processor Time",
 "_Total");
 if($proctime > -1)
 {
 print "% Processor Time = [$proctime]\n";
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }
 my $freemem = $perfmon->GetCounterValue(
 "Memory","Available MBytes",
 -1);
 if($freemem > -1)
 {
 print "Available Memory = [$freemem]MB\n";
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to collect the perf data!\n",
 $err, "\n";

Figure III.3 get_system_stats.pl

 Monitoring Windows Applications with Perl • Part III 141

In this case, we check to make sure that the previous counter addition was successful
and then add another counter. The counter we’re adding uses the “Memory” object
and the “Available MBytes” counter. There are no individual instances available for
this object and counter, so we use the −1 value as the instance to indicate this.

If all counters were successfully added, we move on to collecting the data. Again,
assuming that the collection went well (and capturing errors as needed when it isn’t),
we then display the data. Now we have two critical system statistics: % Processor
Time and Available MBytes.

Monitoring System Network Utilization
The last system-wide statistic that we’ll look at is network utilization. There are many
other system statistics that you as an application administrator may be interested in,
but the selection we have included here focuses on those counters that are common
requirements for monitoring every application. I feel it’s important to note that we
will be covering dependencies such as disk utilization later in the chapter rather than
here within the KPI section.

Monitoring network utilization on a Windows server takes a little bit more work
than the other statistics that we have gathered so far. Some additional calculations
are required in order to obtain useful information out of the data provided by the
performance monitor counter. The fi gures we need for these calculations are both
provided by the “Network Interface” object. We’ll be using the “Bytes Total/sec” and
“Current Bandwidth” counters. The instance name will be the name of the network
adapter that you are working with.

To determine the actual amount of network utilization, we need to multiply the
“Bytes Total/sec” value by 8, and then divide the result by the value of the “Current
Bandwidth” counter. This will provide us with an overall usage percentage. The code
shown in Figure III.4 shows an example of how this can be done.

 }
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to add the counter!\n", $err, "\n";
 }
 }
 else
 {
 print "Failed to create the perf object!\n";
}

142 Part III • Monitoring Windows Applications with Perl

#get_system_stats.pl
use Win32::PerfMon;
use strict;

my $ret = undef;
my $err = undef;
my $Object = undef;
my $Counter = undef;
my $CounterData = undef;
#connect to localhost for data
my $perfmon = Win32::PerfMon->new("\\\\localhost");

if($perfmon != undef)
{
 $ret = $perfmon->AddCounter("Processor",
 "% Processor Time", "_Total");
 if($ret != 0) {
 $ret = $perfmon->AddCounter("Memory",
 "Available MBytes", -1);
 }
 if($ret != 0) {
 $ret = $perfmon->AddCounter("Network Interface",
 "Bytes Total/sec",
 "Intel 21140-Based PCI Fast ".
 "Ethernet Adapter [Generic]");
 }
 if($ret != 0) {
 $ret = $perfmon->AddCounter("Network Interface",
 "Current Bandwidth",
 "Intel 21140-Based PCI Fast ".
 "Ethernet Adapter [Generic]");
 }
 if($ret != 0)
 {
 $ret = $perfmon->CollectData();
 if($ret != 0) {
 my $proctime = $perfmon->GetCounterValue(
 "Processor","% Processor Time",
 "_Total");
 if($proctime > -1)
 {
 print "% Processor Time = [$proctime]\n";
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }

 my $freemem = $perfmon->GetCounterValue(
 "Memory","Available MBytes",
 -1);
 if($freemem > -1)
 {
 print "Available Memory = [$freemem]MB\n";
 }

Figure III.4 get_system_stats.pl

 Monitoring Windows Applications with Perl • Part III 143

 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }

 my $netbps = $perfmon->GetCounterValue(
 "Network Interface",
 "Bytes Total/sec",
 "Intel 21140-Based PCI Fast ".
 "Ethernet Adapter [Generic]");
 if($netbps > -1)
 {
 print "Network Bytes/Second = [$netbps]\n";
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }

 my $netbw = $perfmon->GetCounterValue(
 "Network Interface",
 "Current Bandwidth",
 "Intel 21140-Based PCI Fast ".
 "Ethernet Adapter [Generic]");
 if($netbw > -1)
 {
 print "Network Bandwidth Bits/Second =".
 " [$netbw]\n";
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }

 if ($netbps > -1 && $netbw > -1)
 {
 my $netutil = sprintf "%.2f",
 (8 * $netbps / $netbw);
 print "% Network Utilization = ".
 " [$netutil]\n";
 }
 else
 {
 print "Not enough data to determine".
 "network utilization!";
 }
 }

144 Part III • Monitoring Windows Applications with Perl

In this example, you can see that we’re continuing to add the new counters in the
same manner as we used for the previous counter addition. Then we’re displaying the
new network statistics as usual. What changes is that we’re doing a quick check to
ensure that there is data in those variables and then performing the necessary calculation
and returning the result. This allows us to provide the network utilization statistic if
we can, and handle the error message properly if we can’t.

In addition, we are doing some formatting of the network utilization data. The
following line of code demonstrates one method of doing this formatting.
my $netutil = sprintf “%.2f”, (8 * $netbps / $netbw);

By using the “sprintf ” function, we are able to round the percentage of network
utilization to two decimal places so that the number is useable. It’s very diffi cult to
work with numbers such as “5.84e–006” from a readability perspective, and this is the
type of number that could be returned if we didn’t do some rounding and formatting
to get the result.

 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to collect the perf data!\n",
 $err, "\n";
 }
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to add the counter!\n", $err, "\n";
 }
 }
 else
 {
 print "Failed to create the perf object!\n";
}

 Monitoring Windows Applications with Perl • Part III 145

Monitoring a Core Application Process
Now that we have some information on the system, we can move on to monitoring
some portions of the application. We’ll start with the core application process and its
availability as well as its use of system resources. As an application can have multiple
processes running that provide different functions, we’ll refer to the process that serves
the purpose of being the parent to the other processes as the core process, with any
other processes spawned from the parent considered dependent processes.

Monitoring Process Availability a Specifi c Process
One of the most important things to monitor for a core process is to make sure that
the process is actually up and running. Statistics such as CPU and memory utilization
are very important, but they won’t help if the process isn’t running. So the fi rst thing
we want to monitor is the availability of the core process itself.

In this case, our best bet for obtaining good process information is to use the
Win32::Process::Info module. This module can be loaded through PPM and can be
found in the default ActiveState repository. Figure III.5 shows this module through
the graphical user interface (GUI) version of PPM.

Swiss Army Knife

Using Performance Monitor Data
In writing these scripts, we have barely touched the surface of the data pro-
vided through performance monitor. Using the Windows Resource Kit utility
“typeperf,” you can get information on which counters are available from a
command-line interface. This is much faster than browsing through the
PerfMon utility itself.

Running the command “typeperf–q” will list all counters. You can further
refi ne your counter search by specifying objects to list the counters for. Using
the command “typeperf-?” will print out help for the tool.

The script in Figure III.6 shows how this module can be used to gather information
on the processes running on the system. Keep in mind that at this point we are not
looking for performance information; rather we are looking for details on the processes
themselves and their availability. First, we’ll get a list of processes running on the system.

Figure III.5 Win32::Process::Info Module

#get_processes.pl
use strict;
use Win32::Process::Info;
my $pi = Win32::Process::Info->new();
my @procinfo = $pi->GetProcInfo();
for my $pid (@procinfo){
 print $pid->{"ProcessId"}." ".
 $pid->{"Name"}."\n";
}

Figure III.6 get_processes.pl

 Monitoring Windows Applications with Perl • Part III 147

In the code sample in Figure III.6, we fi rst create a new instance of the Win32::
Process:: Info object and call it $pi. Next, we call the “GetProcInfo” function of the
module to gather the process information into the “procinfo” list. Cycling through
each member of the list, we then print the process ID and name for each running
process by displaying the “ProcessId” and “Name” keys associated with the process.

Now that we have a way to query for the processes running on a system, we
need to work with that data and fi nd a single specifi c process that we are interested
in. The “GetProcInfo” function, when called with no parameters, loads all of the data
that it obtains into a list of anonymous hashes. Using this list, we can fi nd a process
by either process ID or executable name by comparing the value we are looking for
against the “ProcessId” key or “Name” key, respectively.

Some programs, when started, create a “PID” fi le containing the process ID for
the process being run. While this is more common on ∗NIX operating systems, some
Windows applications use the same standard. If this is the case, the application typically
creates a fi le called <application name>.pid in the working directory for the application.
Reading in the value stored in this fi le allows us to obtain the specifi c process ID and
use it to get the process status. The code shown in Figure III.7 shows how this fi le
could be read and the value utilized to check on the process.

#get_process_status_id.pl
use strict;
use Win32::Process::Info;
my $pi = Win32::Process::Info->new();
my @procinfo = $pi->GetProcInfo();
my $procstatus=0;

my $result = open PIDFILE, "C:\\dls\\Komodo.pid";
if ($result) {
 if (defined(my $piddata = <PIDFILE>)) {
 chomp $piddata;
 for my $pid (@procinfo){
 if ($pid->{"ProcessId"} == $piddata) {
 print $pid->{"Name"}." is running!";
 $procstatus=1;
 }
 }
 if ($procstatus!=1)
 {
 print "Process $piddata cannot be found!"
 }
 }
 else
 {
 print "PID not found in PID file.";
 }
}
else
{
 print "PID file not found.";
}

Figure III.7 get_process_status_id.pl

148 Part III • Monitoring Windows Applications with Perl

In the code shown in Figure III.7, we use the Win32::Process::Info module in
a manner similar to that in Figure III.6, but add in some additional features. The fi rst
major change is the defi nition of the PID fi le, opening the fi le, and reading in the
process ID from the fi rst line of the fi le. We also use the “chomp” function to get rid
of any new line characters. Then we cycle through all of the hashes provided by the
“GetProcInfo” function looking for the process ID gathered from the PID fi le. If this
is found, we note that the process is running (including the executable name) and
change the $procstatus variable to contain a value of 1. Later, we check this variable
and if the value is not 1, we display a message stating that the process is not found.
This implies that the process is either not running or that the PID information is
incorrect. Consequently, the process ID gathered from the PID fi le is included in the
message for validation purposes.

Using this code, we can also fi nd a process by using its name. This allows us
additional fl exibility in our monitoring so that we are not reliant on applications
creating their own PID fi les. Figure III.8 shows an example of how this code can
be modifi ed to check the availability of a process using its name rather than its
process ID.

Figure III.8 get_process_status_name.pl
#get_process_status_name.pl
use strict;
use Win32::Process::Info;
my $pi = Win32::Process::Info->new();
my @procinfo = $pi->GetProcInfo();
my $procstatus=0;
my $procname="komodo.exe";

for my $pid (@procinfo){
 if ($pid->{"Name"} eq $procname) {
 print $pid->{"Name"}." is running under ".
 "process id ".$pid->{"ProcessId"}."!";
 $procstatus=1;
 }
}
if ($procstatus!=1)
{
 print "Process $procname cannot be found!"
}

This is very similar code to that shown in Figure III.7. The differences are the removal
of the fi le operations used for the PID fi le and changing the search to use the “Name”
key rather than the “ProcessId” key. This allows us to perform a string comparison

 Monitoring Windows Applications with Perl • Part III 149

Swiss Army Knife

Monitoring Multiple Processes
You can use the script shown in Figure III.7 or the other process-specifi c scripts
to monitor multiple processes. Just gather information from multiple PID fi les
or use multiple process names when gathering your statistical data. For best
performance of the monitoring script, gather all of the process-specifi c data
fi rst, then go through it and display or work with the data as needed.

Monitoring CPU Utilization
for a Specifi c Process
Collecting the overall processor utilization for the system is very important, but in
many cases we may be concerned about the utilization by a single process for the
application that we are monitoring. So let’s modify the script we have developed
for monitoring CPU utilization shown in Figure III.2 by adding the counter for a
specifi c process.

In order to gather the CPU statistics for the process, we will need to know what
the process name is. One method of fi nding the process name based on a process ID
is shown in Figure III.7. In this example, we’ll assume that we are working with
a PID fi le as shown in Figure III.7.

The counter to use for fi nding the CPU utilization for a specifi c process can be
found by using the “Process” object instead of the “Processor” object that we used
previously. We can then use the “% Processor Time” counter again, since that’s the
statistic we are interested in. And then, when specifying the instance, just use the name
of the executable that you want to get information on. In this case, we’ll be getting
information on the Perl editor Komodo Edit, which was also used for the prior
examples. This can be seen in Figure III.9.

operation using the defi ned process name rather than its process ID. The $procstatus
variable is used in the same manner as it was in the Figure III.7 example.

150 Part III • Monitoring Windows Applications with Perl

Figure III.9 get_percentprocessortime_komodo

#get_percentprocessortime_komodo.pl
use Win32::PerfMon;
use strict;
use Win32::Process::Info;
my $pi = Win32::Process::Info->new();
my @procinfo = $pi->GetProcInfo();
my $procname = undef;
my $procstatus=0;
my $ret = undef;
my $err = undef;
my $Object = undef;
my $Counter = undef;
my $CounterData = undef;
#connect to localhost for data
my $perfmon = Win32::PerfMon->new("\\\\localhost");

my $result = open PIDFILE, "C:\\dls\\Komodo.pid";
if ($result) {
 if (defined(my $piddata = <PIDFILE>)) {
 chomp $piddata;
 for my $pid (@procinfo){
 if ($pid->{"ProcessId"} == $piddata) {
 $procname = $pid->{"Name"};
 print $pid->{"Name"}." is running!\n";
 $procstatus=1;
 }
 }

 if ($procstatus!=1)
 {
 print "Process $piddata cannot be found!"
 } else {
 $procname =~ s/^(.+?)(\.[^.]*)?$/$1/;
 if($perfmon != undef) {
 $ret = $perfmon->AddCounter("Process",
 "% Processor Time", $procname);
 if($ret != 0) {
 $ret = $perfmon->CollectData();
 if($ret != 0) {
 my $proctime=$perfmon->GetCounterValue(
 "Process","% Processor Time",
 $procname);
 if($proctime > -1) {
 print "% Processor Time = ".
 "[$proctime]\n";
 } else {
 $err = $perfmon->GetErrorText();
 print"Failed to get the counter".
 " data!\n", $err, "\n";
 }
 } else {
 $err = $perfmon->GetErrorText();
 print "Failed to collect the ".
 "perf data!\n", $err, "\n";

 Monitoring Windows Applications with Perl • Part III 151

 }
 } else {
 $err = $perfmon->GetErrorText();
 print "Failed to add the counter!\n",
 $err, "\n";
 }
 } else {
 print "Failed to create the perf object!\n";
 }
 } else {
 print "PID not found in PID file.";
 }
} else {
 print "PID file not found.";
}

As you can see, we’re doing practically the same thing as we did in our previous
code sample in Figure III.2, but referring to the new object and a new instance.
In addition, much of the code used for opening a PID fi le and fi nding the process
name demonstrated in Figure III.7 is incorporated in this example as well. One
additional line regarding the process name should be noted. The following statement
is used to format the resulting process name and remove the “.” and fi le extension:
$procname =~ s/^(.+?)(\.[^.]*)?$/$1/;

We didn’t necessarily have to create a new PL fi le for this. We could have used
the existing fi le “get_percentprocessortime.pl” and added a second counter. The
reason that I broke this out separately is because for the overall architecture for our
monitoring application, we should modularize certain sections for ease of use and
maintenance.

In some cases, it makes sense to combine certain statistics into a single script as
you saw in the example shown in Figure III.3. The general rule is to combine code
when the objects that they act upon are similar (e.g., grouping all system-related code
together or all core process code together). In this instance, however, one of these
statistics is related to the system as a whole and the other to an individual process,
therefore it makes sense architecturally to separate them. On the other hand, it does
make sense to combine this code with the availability check for the individual process,
so this example serves both purposes.

152 Part III • Monitoring Windows Applications with Perl

Monitoring Memory Utilization
for a Specifi c Process
Next, we’ll be looking at monitoring the memory utilization for a specifi c process. Again,
it makes sense to combine this effort with the other information we’re gathering from
the process CPU utilization. So we’ll add a counter for the “Process” object, “Private
Bytes” counter, and an instance based on the process ID shown in our PID fi le. Keep in
mind that for any of these examples that use a PID fi le, you can easily convert them
to use the process name in a manner similar to that shown in Figure III.8.

This particular counter is described as, “Private Bytes is the current size, in bytes,
of memory that this process has allocated that cannot be shared with other processes”
by Microsoft. This should fi t our needs and provide useful information for our
monitoring. The code for this is shown in Figure III.10.

Figure III.10 get_process_stats.pl
#get_process_stats.pl
use Win32::PerfMon;
use strict;
use Win32::Process::Info;
my $pi = Win32::Process::Info->new();
my @procinfo = $pi->GetProcInfo();
my $procname = undef;
my $procstatus=0;
my $ret = undef;
my $err = undef;
my $Object = undef;
my $Counter = undef;
my $CounterData = undef;
#connect to localhost for data
my $perfmon = Win32::PerfMon->new("\\\\localhost");

my $result = open PIDFILE, "C:\\dls\\Komodo.pid";
if ($result) {
 if (defined(my $piddata = <PIDFILE>)) {
 chomp $piddata;
 for my $pid (@procinfo){
 if ($pid->{"ProcessId"} == $piddata) {
 $procname = $pid->{"Name"};
 print $pid->{"Name"}." is running!\n";
 $procstatus=1;
 }
 }

 if ($procstatus!=1)
 {
 print "Process $piddata cannot be found!"
 } else {
 $procname =~ s/^(.+?)(\.[^.]*)?$/$1/;

 Monitoring Windows Applications with Perl • Part III 153

 if($perfmon != undef) {
 $ret = $perfmon->AddCounter("Process",
 "% Processor Time", $procname);
 if($ret != 0) {
 $ret = $perfmon->AddCounter("Process",
 "Private Bytes", $procname);
 }
 if($ret != 0) {
 $ret = $perfmon->CollectData();
 if($ret != 0) {
 my $proctime=$perfmon->GetCounterValue(
 "Process","% Processor Time",
 $procname);
 if($proctime > -1) {
 print "% Processor Time = ".
 "[$proctime]\n";
 } else {
 $err = $perfmon->GetErrorText();
 print"Failed to get the ".
 "processor counter data!\n",
 $err, "\n";
 }
 my $freemem = $perfmon->GetCounterValue(
 "Process","Private Bytes",
 "komodo");
 if($freemem > -1)
 {
 $freemem =~ s/(?<=\d)(?=(?:\d\d\d)+\b)/,/g;
 print "Memory used by process = [$freemem]" .
 " Bytes\n";
 } else {
 $err = $perfmon->GetErrorText();
 print "Failed to get the memory ".
 "counter data!\n",
 $err, "\n";
 }
 } else {
 $err = $perfmon->GetErrorText();
 print "Failed to collect the ".
 "perf data!\n", $err, "\n";
 }
 } else {
 $err = $perfmon->GetErrorText();
 print "Failed to add the counter!\n",
 $err, "\n";
 }
 } else {
 print "Failed to create the perf object!\n";
 }
 }
 } else {
 print "PID not found in PID file.";
 }
} else {
 print "PID file not found.";
}

154 Part III • Monitoring Windows Applications with Perl

In this example, we modifi ed the get_percentprocessortime_komodo.pl in a manner
similar to what we did to combine the system statistics. Again, we’re handling error
messages in an appropriate manner and displaying the data appropriate to our specifi c
process. One additional line of code in here that bears some attention is this one:
$freemem =~ s/(?<=\d)(?=(?:\d\d\d)+\b)/,/g;

In this case, we’re formatting the data shown in the $freemem variable and storing
it back in that variable. Why? Simply because it looks better when you’re displaying
a large fi gure if you add commas to separate values. Since this value does not have
a decimal point, we can quickly format it and redisplay the value in a “prettier” manner.

It should also be noted that the data gathered from this performance counter is
different from that shown in Windows Task Manager. This is not a bug, but a difference
in the way that memory use is calculated. Task Manager adds together the memory
allocated to the specifi c process exclusively with the memory shared with other processes,
and displays that cumulative fi gure. This performance monitor counter only shows the
memory dedicated specifi cally to the process. In truth, neither method is 100 percent
accurate, but both give an estimate that is close enough to use for monitoring purposes.
Just be sure that you understand that statistics pulled in one manner may not necessarily
match those pulled in another.

Setting and Using Thresholds
When monitoring an application, ideally you want to be able to take action based
on the data that you receive. For example, you may want to restart a process if it goes
down. Or perhaps send out an e-mail when your system reaches a high percentage
of utilization. In monitoring terms, thresholds are used for determining when these
actions should be taken.

So far we’ve written several scripts that allow us to gather important data about
core processes and the system itself, but we’re not doing anything with that data other
than displaying it. In order to take action based on the data, we need do the following:

■ Defi ne which values are okay for each piece of data

■ Defi ne which values are bad for each piece of data

■ Defi ne which values are critically bad for each piece of data

These can be defi ned as status colors such as green, yellow, and red, or status
codes such as good, warning, and critical. Since we’ll be defi ning thresholds for a lot

 Monitoring Windows Applications with Perl • Part III 155

of different pieces of data that we’re obtaining, we need a generic manner of handling
the evaluation of the threshold and taking action on the threshold. The best method of
doing this is to create a separate script just for dealing with threshold-related items.

In this script, we need to be able to take incoming information on what is
being monitored and what the resulting value of the monitor is. Then we’ll need to
compare that value with a set of threshold values and see how they relate. Finally,
based on the result, we’ll need to take action of some type even if that action is to
ignore the result.

Loading an XML Confi guration File
In order to simplify the use and confi guration of this script, we will be using eXtensible
markup language (XML) as the document format for the script confi guration fi le.
Using XML, we can defi ne the threshold information that we need to work with
and avoid hard-coding values into the threshold script itself. The XML document
shown in Figure III.11 shows one way of storing the confi guration values we’ll be
working with in the XML format.

Figure III.11 Threshold Confi guration XML
<threshold>
 <monitor name="sys_proc">
 <status name="red" value="90" operator="equalorgreater">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="85"
operator="equalorgreater">
 <action>email</action>
 </status>
 <status name="green" value="85" operator="less">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="sys_mem">
 <status name="red" value="50" operator="equalorless">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="100" operator="equalorless">
 <action>email</action>
 </status>
 <status name="green" value="100" operator="greater">
 <action>none</action>
 </status>
 </monitor>
</threshold>

156 Part III • Monitoring Windows Applications with Perl

In this XML document, we have set up a hierarchical format for the confi guration
information. The fi rst tag shown in the document is <threshold>, which indicates
what the contained values will be used for. We then use the <monitor> tag to indicate
a specifi c monitor and set a “name” value for the monitor. This is followed by a series
of <status> tags, each with their own “name”, “value,” and “operator” parameters.
Within the <status> tags, one or more <action> tags exist indicating which actions
should be taken when the conditions set for the status are met.

To import this XML data and make use of it, we will be using the XML::Simple
module. This module is loaded by default with ActivePerl, but can be installed using
PPM if your ActivePerl installation does not have it installed. The XML::Simple module
allows for the importing, exporting, and manipulation of XML data from a fi le or
string. To use our XML fi le, one of the fi rst actions we will take within our threshold
script will be to import the XML using the XML::Simple module. An easy way to
perform this action is shown in Figure III.12.

Figure III.12 load_display_XML.pl
use strict;
use XML::Simple;
use Data::Dumper;

my $xml = new XML::Simple(KeyAttr=>[], ForceArray => 1);
my $data=$xml->XMLin("/dls/thresh.xml");

#DEBUG
#Uncomment to print data structure
#print Dumper($data);
#END DEBUG

foreach my $monitor (@{$data->{monitor}})
{
 print "Monitor: " . $monitor->{name} . "\n";
 foreach my $status (@{$monitor->{status}})
 {
 foreach my $action (@{$status->{action}})
 {
 print "If value is " . $status->{operator} .
 " than " . $status->{value}. " take action " .
 $action . " and set status as " .
 $status->{name} . ".\n";
 }
 }
}
print "\n\nFinished!\n";

 Monitoring Windows Applications with Perl • Part III 157

Figure III.13 load_display_XML Results

When we run the code shown in Figure III.12, we obtain the results shown in
Figure III.13.

Basically this is an output of all the rules built into our XML fi le. Let’s walk
through the code. First, we have our “use” statements indicating that we will be using
XML::Simple and Data::Dumper. While Data::Dumper is not necessary for parsing
the XML, this module can be very useful in displaying a data structure. You’ll see the
use of this a little farther down in the code in the “DEBUG” section.

Next, we create a new instance of XML::Simple with a couple of options. The fi rst
option is the “KeyAttr” option, which translates nested elements from an array to a hash.
We’re also using the “ForceArray” option to force XML::Simple to create arrays even if
there is only one element. This makes it a lot easier to write code to consistently handle
the data in the XML. For a full description of the options available for XML::Simple,
please see http://search.cpan.org/~grantm/XML-Simple-2.18/lib/XML/Simple.pm.

The following line of code loads in our XML fi le using the “XMLin” function.
Then we have our debug section. If you uncomment the code calling the “Dumper”

158 Part III • Monitoring Windows Applications with Perl

function, the script will print out the complete data structure as it is imported from
the XML fi le. This can be very helpful in writing code to handle the structure, as
you can visually see the data elements that you are working with.

Now we can start walking through the data elements. We start by using the
monitors indicated in the XML fi le. As we go through each data element, we need to
keep in mind that we are dealing with arrays of hashes for the most part. Each element
of our XML contains a structure underneath the element with the exception of the
“action” element, which just contains a simple array. Once we populate the $monitor
hash with the data stored in $data->{monitor}, we can easily work with the data
elements within the hash. This is shown in the next line where we print the name of
the specifi c monitor that we are looking at.

After printing the monitor name, we then need to display the status and action
information. We do this by looping through the hash elements in $monitor->{status}
and $status->{action}, respectively. Again note that $action is loaded as an array of
scalar values, not hashes. Therefore, in our print statement, we refer to each hash
value by name, but just display the action using $action. The end result of this very
long print statement is to show the actions associated with each status for each
monitor.

This is useful code for displaying the data shown in our XML and demonstrating
how that data can be used, but it really doesn’t do very much. It’s just intended as a
listing mechanism and an example of how we can use XML to control how our
thresholds work. So let’s make this its own subroutine called “threshold_rules” and
include it in our overall threshold management script for future reference.

Evaluating Thresholds
Next we need to write a script that will take the XML we have imported and evaluate it
against the performance indicator data we gather from our monitoring scripts. To do
this, we’ll create another subroutine called “threshold_check” to handle evaluating data.
We’ll also need to handle evaluation of actions, so we’ll use a subroutine called
“take_action” for that purpose. The script shown in Figure III.14 shows an example
of how this can be done.

 Monitoring Windows Applications with Perl • Part III 159

Figure III.14 thresh.pl
sub threshold_rules {
 use XML::Simple;
 use Data::Dumper;

 my $xml = new XML::Simple(KeyAttr=>[], ForceArray => 1);
 my $data=$xml->XMLin("/dls/thresh.xml");
 #Uncomment to print data structure
 #print Dumper($data);
 foreach my $monitor (@{$data->{monitor}})
 {
 print "Monitor: " . $monitor->{name} . "\n";
 foreach my $status (@{$monitor->{status}})
 {
 foreach my $action (@{$status->{action}})
 {
 print "If value is " . $status->{operator} .
 " than " . $status->{value}.
 " take action " . $action .
 " and set status as " .
 $status->{name} . ".\n";
 }
 }
 }
 print "\n\nFinished!\n";
}

sub threshold_check {
use XML::Simple;
use Data::Dumper;

 my $xml = new XML::Simple(KeyAttr=>[], ForceArray => 1);
 my $data=$xml->XMLin("/dls/thresh.xml");
 foreach my $monitor (@{$data->{monitor}})
 {
 if ($monitor->{name} eq $_[0])
 {
 print "Match found for " . $monitor->{name} .
 "!\n";

 foreach my $status (@{$monitor->{status}})
 {
 foreach my $action (@{$status->{action}})
 {
 print "Evaluating rule \"If value is " .
 $status->{operator} . " than " .
 $status->{value}. " perform action " .
 $action . " and set status as " .
 $status->{name} . "\".\n";

 if ($status->{operator} eq
 "equalorgreater") {
 if ($_[1] >= $status->{value}) {
 &take_action($action,
 $status->{name});
 }

160 Part III • Monitoring Windows Applications with Perl

 } elsif ($status->{operator} eq
 "equalorless") {
 if ($_[1] <= $status->{value}){
 &take_action($action,
 $status->{name});
 }
 } elsif ($status->{operator} eq
 "equal") {
 if ($_[1] = $status->{value}){
 &take_action($action,
 $status->{name});
 }
 } elsif ($status->{operator} eq
 "notequal") {
 if ($_[1] != $status->{value}){
 &take_action($action,
 $status->{name});
 }
 } elsif ($status->{operator} eq
 "greater") {
 if ($_[1] > $status->{value}){
 &take_action($action,
 $status->{name});
 }
 } elsif ($status->{operator} eq
 "less") {
 if ($_[1] < $status->{value}){
 &take_action($action,
 $status->{name});
 }
 }
 }
 }
 }
 }
}

sub take_action
{
 if ($_[0] eq "none") {
 print "Taking no action";
 } else {
 print "Taking action!!! We need to $_[0] someone!\n" .
 "Condition is $_[1]!\n";
 }
}

1;

Now we’re developing a fairly long script containing a variety of subroutines for
dealing with threshold-related items. Again, in the interest of modularization, it makes
sense to group these together and just call them from another script.

 Monitoring Windows Applications with Perl • Part III 161

We’ve already walked through the code contained in the “threshold_rules”
subroutine, so let’s take a look at the “threshold_check” subroutine. We start off loading
the XML data in the same manner used in “threshold_check”. Then we do a
string match against the monitors listed in the XML fi le to see if the fi rst incoming
variable ($_[0]) matches a known monitor. If it does, we gather the value and operator
for the variety of statuses and actions associated to the monitor. For debugging purposes,
we then print out which rule we’re evaluating before moving on to the actual
evaluations.

We have a set of operators available to check values. They are:

■ equalorgreater

■ equalorless

■ equal

■ notequal

■ greater

■ less

Using these operators, we can check the value variable ($_[1]) against the threshold
value ($status->{value}). The series of if/elsif statements perform this evaluation. Note
that we are specifi cally comparing numeric values here. Consequently, we have to
make sure that we are dealing with a numeric value for that second variable. We’ll
need to put in some error checking for this and will demonstrate this in the next
version of the script.

When a match is found, the subroutine “take_action” is called passing a variable
containing the action name and status code. Right now we’re just printing that
string, but we can do more with that later. In this area, we’re evaluating all possible
rules for the monitor against the value. That means that we could potentially have
more than one match. For example, using the following test script:
use strict;

require ‘thresh.pl’;

&threshold_check (“sys_proc” , 85);

yields the results shown in Figure III.15, which has a single match for a yellow
status code.

162 Part III • Monitoring Windows Applications with Perl

Figure III.15 Threshold Test Results

However, if we change the threshold value in our test script to 90, we end up with
three matches; two red status actions and one yellow. This is shown in Figure III.16.

Figure III.16 Threshold Test Results 2

 Monitoring Windows Applications with Perl • Part III 163

Make sure that you keep this behavior in mind when using these scripts for
monitoring. If a status condition is moving from green to yellow to red, you will
receive actions for all of the conditions if they overlap. If you need to handle these
conditions separately, you can modify the evaluation logic by either stopping the
evaluation when a match is found working in a specifi c order (so that it doesn’t
stop evaluation at a match in yellow when it would have matched a red condition),
or setting a condition variable and updating it as the condition becomes progressively
worse (i.e., update the variable from yellow to red, but not from red to yellow).
For the purposes of our examples, multiple matches are acceptable.

One additional thing to note prior to moving on to examining the “take_action”
subroutine in detail, is the last line of the code sample. The “1;” line is critical to
ensuring that this code functions properly. Since we’re including the thresh.pl fi le
in another Perl script, the “use” statement must evaluate to true when the thresh.pl
script is loaded. To accomplish this, we add “1;” as the last line of the script.

Taking Action
Again, our “take_action” subroutine is very simple and just outputs the two variables
that are passed to it. This is where we can have some fun and defi ne all of our
 possible actions for various conditions! You can do anything you want here such as
call a script to automatically put in a ticket in your helpdesk system, send a Simple
Network Management Protocol (SNMP) trap, or even page an application adminis-
trator. For our example, we’ll just set up an e-mail action and a page action using an
e-mail-based paging device. This will basically be the same e-mail functionality, but
the messages will have to be formed differently due to text space limitations for the
pager.

Figure III.17 shows how our “thresh.pl” script can be expanded to include some
error checking around the incoming data and the two new actions for e-mailing
and paging.

164 Part III • Monitoring Windows Applications with Perl

Figure III.17 thresh.pl
require 'actions.pl';

sub threshold_rules {
 use XML::Simple;
 use Data::Dumper;

 my $xml = new XML::Simple(KeyAttr=>[], ForceArray => 1);
 my $data=$xml->XMLin("/dls/thresh.xml");
 #Uncomment to print data structure
 #print Dumper($data);
 foreach my $monitor (@{$data->{monitor}})
 {
 print "Monitor: " . $monitor->{name} . "\n";
 foreach my $status (@{$monitor->{status}})
 {
 foreach my $action (@{$status->{action}})
 {
 print "If value is " . $status->{operator} .
 " than " . $status->{value}.
 " take action " . $action .
 " and set status as " .
 $status->{name} . ".\n";
 }
 }
 }
 print "\n\nFinished!\n";
}

sub threshold_check {
use XML::Simple;
use Data::Dumper;

if(defined($_[0]) && defined($_[1]) && int($_[1])) {
 my $xml = new XML::Simple(KeyAttr=>[], ForceArray => 1);
 my $data=$xml->XMLin("/dls/thresh.xml");
 foreach my $monitor (@{$data->{monitor}})
 {
 if ($monitor->{name} eq $_[0])
 {
 print "Match found for " . $monitor->{name} .
 "!\n";

 foreach my $status (@{$monitor->{status}})
 {
 foreach my $action (@{$status->{action}})
 {
 print my $rule="Evaluating rule \"If " .
 "value is " .
 $status->{operator} . " than " .
 $status->{value}. " perform action " .
 $action . " and set status as " .
 $status->{name} . "\".\n";

 if ($status->{operator} eq
 "equalorgreater") {
 if ($_[1] >= $status->{value}) {
 &take_action($action,

 Monitoring Windows Applications with Perl • Part III 165

 $status->{name},
 $rule);
 }
 } elsif ($status->{operator} eq
 "equalorless") {
 if ($_[1] <= $status->{value}){
 &take_action($action,
 $status->{name},
 $rule);
 }
 } elsif ($status->{operator} eq
 "equal") {
 if ($_[1] == $status->{value}){
 &take_action($action,
 $status->{name},
 $rule);
 }
 } elsif ($status->{operator} eq
 "notequal") {
 if ($_[1] != $status->{value}){
 &take_action($action,
 $status->{name},
 $rule);
 }
 } elsif ($status->{operator} eq
 "greater") {
 if ($_[1] > $status->{value}){
 &take_action($action,
 $status->{name},
 $rule);
 }
 } elsif ($status->{operator} eq
 "less") {
 if ($_[1] < $status->{value}){
 &take_action($action,
 $status->{name},
 $rule);
 }
 }
 }
 }
 }
 }
} else {
 print "Input values do not meet requirements!\n";
}
}

sub take_action {
 if(defined($_[0]) && defined($_[1]) && defined($_[2])) {
 if ($_[0] eq "none") {
 print "Taking no action";
 } elsif ($_[0] eq "email") {
 &action_email("admin\@example.com",
 "Code $_[1] alert!",
 "Rule violated: $_[2]");

166 Part III • Monitoring Windows Applications with Perl

 } elsif ($_[0] eq "page") {
 &action_page("admin_pager\@example.com",
 "Code $_[1]",
 "$_[2]");
 } else {
 print "Invalid Action!";
 }
 } else {
 print "Input values do not meet requirements!\n";
 }
}

1;

There are a few changes in the script that should be noted in this revision. First,
we have added a new dependency fi le called “actions.pl” and included a “require”
statement to load in this fi le. Next, we’ve added some quick error checking code
using the following line:
if(defi ned($_[0]) && defi ned($_[1]) && int($_[1])) {

This basically checks to ensure that we have two values being passed to the
subroutine ($_[0] and $_[1]) and that the second value is an integer. If any of these
three requirements are not met, we print an error message stating that the “Input values
do not meet requirements.” This is a very basic error check and certainly should be
expanded to cover a variety of contingencies. Just like any other code sample in a book,
you should modify these scripts to fi t your needs and handle error conditions that are
specifi c to your environment.

There are two other changes in the “threshold_check” subroutine that you should
pay attention to. First is the modifi cation of the print statement used to display the current
rule being evaluated. This string is now being stored in the $rule variable for use with
our actions. Secondly, we have changed the calls to the “take_action” subroutine to
include another required variable; the rule being evaluated.

The “take_action” subroutine has also seen some changes. First, we’ve added some
more error checking to ensure that we have three incoming variables. Next, we’re now
using a if/elsif/else evaluation of the fi rst incoming variable ($_[0]) to determine which
action routine we should take. Lastly, we’re calling new subroutines for e-mailing and
paging that are coming out of the actions.pl fi le.

Let’s take a look at the actions.pl fi le and see what the two subroutines we’re calling
(“action_email” and “action_page”) actually do. This script is shown in Figure III.18.

 Monitoring Windows Applications with Perl • Part III 167

Figure III.18 actions.pl
sub action_email {
if(defined($_[0]) && defined($_[1]) && defined($_[2])) {
use Mail::Sender;
 $sender = new Mail::Sender {
 smtp => 'localhost',
 from => 'admin@example.com',
 on_errors => undef,
 }
 or die "Can't create the Mail::Sender object: " .
 "$Mail::Sender::Error\n";
 $sender->Open({
 to => $_[0],
 subject => $_[1]
 })
 or die "Can't open the message: ".
 "$sender->{'error_msg'}\n";
 $sender->SendLineEnc($_[2]);
 $sender->Close()
 or die "Failed to send the message: " .
 "$sender->{'error_msg'}\n";
}
}

sub action_page {
if(defined($_[0]) && defined($_[1]) && defined($_[2])) {
use Mail::Sender;
 $sender = new Mail::Sender {
 smtp => 'localhost',
 from => 'admin_pager@example.com',
 on_errors => undef,
 }
 or die "Can't create the Mail::Sender object: " .
 "$Mail::Sender::Error\n";
 $sender->Open({
 to => $_[0],
 subject => $_[1]
 })
 or die "Can't open the message: ".
 "$sender->{'error_msg'}\n";
 $sender->SendLineEnc($_[2]);
 $sender->Close()
 or die "Failed to send the message: " .
 "$sender->{'error_msg'}\n";
}
}

1;

In Figure III.18 we have defi ned the two subroutines for “action_email” and
“action_page.” For example purposes, they are nearly identical with exception for the
“from” e-mail header. In reality, it would be more effi cient to use the same subroutine

168 Part III • Monitoring Windows Applications with Perl

for this, but since some paging providers have unique requirements, I have separated
the two subroutines so that they can be easily modifi ed independently.

First, we do some very basic error checking to make sure that we have the
correct number of options being sent to the subroutine. Again, expand this error
checking to include all necessary checks for your own environment. A good addition
would be using regular expressions to confi rm that the e-mail address is in the right
format.

With that in place, we then add in the use of a new module. The Mail::Sender
module is not included in the base ActivePerl installation, but is very useful for
handling e-mail-related needs. For a full listing of its options, please see http://search.
cpan.org/dist/Mail-Sender-0.8.13/Sender.pm. This module will consequently do all
of our e-mail handling for us so we don’t have to worry about opening ports manually,
creating an Simple Mail Transfer Protocol (SMTP) message in the correct format,
and so forth.

Next, we create a new Mail::Sender object with a variety of options to set our
SMTP mail server address, “from” header, and the error handling option. Then we
call the “Open” function of the object and pass in our incoming variables for the “to”
and subject headers. Finally, we send the message using the “SendLineEnc” function.
Again, all of this is duplicated in the “action_page” subroutine with exception of the
“from” header.

Putting it all Together
By calling our new subroutine in the manner shown in Figure III.17, we are now able
to send e-mails and pages to our application admin from our test script. The last thing
we need to do to make all of this functional is to get away from using the test script
and actually integrating the threshold management script and action script with our
monitoring scripts. Figure III.19 and III.20 show fi nal versions of the get_system_stats.pl
and thresh.xml fi les.

 Monitoring Windows Applications with Perl • Part III 169

Figure III.19 get_system_stats.pl
#get_system_stats.pl
use Win32::PerfMon;
use strict;
require 'thresh.pl';

my $ret = undef;
my $err = undef;
my $Object = undef;
my $Counter = undef;
my $CounterData = undef;
#connect to localhost for data
my $perfmon = Win32::PerfMon->new("\\\\localhost");

if($perfmon != undef)
{
 $ret = $perfmon->AddCounter("Processor",
 "% Processor Time", "_Total");
 if($ret != 0) {
 $ret = $perfmon->AddCounter("Memory",
 "Available MBytes", -1);
 }
 if($ret != 0) {
 $ret = $perfmon->AddCounter("Network Interface",
 "Bytes Total/sec",
 "Intel 21140-Based PCI Fast ".
 "Ethernet Adapter [Generic]");
 }
 if($ret != 0) {
 $ret = $perfmon->AddCounter("Network Interface",
 "Current Bandwidth",
 "Intel 21140-Based PCI Fast ".
 "Ethernet Adapter [Generic]");
 }
 if($ret != 0)
 {
 $ret = $perfmon->CollectData();
 if($ret != 0) {
 my $proctime = $perfmon->GetCounterValue(
 "Processor","% Processor Time",
 "_Total");
 if($proctime > -1)
 {
 print "% Processor Time = [$proctime]\n";
 &threshold_check ("sys_proc", $proctime);
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }

 my $freemem = $perfmon->GetCounterValue(
 "Memory","Available MBytes",
 -1);
 if($freemem > -1)

170 Part III • Monitoring Windows Applications with Perl

 {
 print "Available Memory = [$freemem]MB\n";
 &threshold_check ("sys_mem", $freemem);
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }

 my $netbps = $perfmon->GetCounterValue(
 "Network Interface",
 "Bytes Total/sec",
 "Intel 21140-Based PCI Fast ".
 "Ethernet Adapter [Generic]");
 if($netbps > -1)
 {
 print "Network Bytes/Second = [$netbps]\n";
 if ($netbps > 0) {
 &threshold_check ("sys_netbps",
 int($netbps));
 }
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }

 my $netbw = $perfmon->GetCounterValue(
 "Network Interface",
 "Current Bandwidth",
 "Intel 21140-Based PCI Fast ".
 "Ethernet Adapter [Generic]");
 if($netbw > -1)
 {
 print "Network Bandwidth Bits/Second =".
 " [$netbw]\n";
 }
 else
 {
 err = $perfmon->GetErrorText();
 print "Failed to get the counter data!\n",
 $err, "\n";
 }

 if ($netbps > -1 && $netbw > -1)
 {
 my $netutil = sprintf "%.2f",
 (8 * $netbps / $netbw);
 print "% Network Utilization = ".
 " [$netutil]\n";

 Monitoring Windows Applications with Perl • Part III 171

 if ($netutil >0) {
 &threshold_check ("sys_netutil",
 $netutil);
 }
 }
 else
 {
 print "Not enough data to determine".
 "network utilization!";
 }
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to collect the perf data!\n",
 $err, "\n";
 }
 }
 else
 {
 $err = $perfmon->GetErrorText();
 print "Failed to add the counter!\n", $err, "\n";
 }
 }
 else
 {
 print "Failed to create the perf object!\n";
}

<threshold>
 <monitor name="sys_proc">
 <status name="red" value="90" operator="equalorgreater">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="85"
operator="equalorgreater">
 <action>email</action>
 </status>
 <status name="green" value="85" operator="less">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="sys_mem">
 <status name="red" value="50" operator="equalorless">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="80" operator="equalorless">
 <action>email</action>
 </status>
 <status name="green" value="80" operator="greater">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="sys_netbps">
 <status name="red" value="500" operator="equalorgreater">

Figure III.20 thresh.xml

172 Part III • Monitoring Windows Applications with Perl

The thresh.xml fi le shown in Figure III.20 is pretty straightforward. We have
simply added in additional monitors for “sys_netbps” and “sys_netutil.” Watch for the
line wrapping in the printed XML! Additionally, the values shown in this example
fi le are just samples. Thresholds should be confi gured to appropriate values for your
environment. To extend this fi le to handle thresholds for the get_process_stats.pl, we
would need to add in more monitors and confi gure them.

The get_system_stats.pl in Figure III.19 has had a few changes. First, and most
important, note the new “require” statement at the beginning used to load in the
thresh.pl fi le. The second change is the addition of lines similar to:
&threshold_check (“sys_proc”, $proctime);

to each monitoring area. Basically, we are identifying the monitor to use and passing the
statistical data to the “threshold_check” subroutine. In some cases, we have to handle
special values a little differently. For example, in the section where we are getting the
Network Bytes/Second, there is the possibility that the value could be 0. This would be
rejected by the “threshold_check” subroutine as it is not technically an integer. So, we
handle this by not calling the threshold script if a 0 is found. Keep in mind that this may
not be the behavior that you want in some cases. For example, if a 0 being returned
from a monitor means that there is a problem, you may need to send an alert. In a case

<action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="300"
operator="equalorgreater">
 <action>email</action>
 </status>
 <status name="green" value="300" operator="less">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="sys_netutil">
 <status name="red" value="90" operator="equalorgreater">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="75"
operator="equalorgreater">
 <action>email</action>
 </status>
 <status name="green" value="75" operator="less">
 <action>none</action>
 </status>
 </monitor>
</threshold>

 Monitoring Windows Applications with Perl • Part III 173

Figure III.21 Get System Status Result

like this, just change the 0 to another value prior to sending it to the “threshold_check”
subroutine, and use the values specifi ed in your XML fi le to handle the new value.

When running the script, you should receive output similar to that shown in
Figure III.21.

Now we have a collection of Perl scripts that monitor a core application. Through
the collection of system and process statistics, a threshold evaluation script, and an
action script all confi gured by an XML fi le, we are able to accomplish our goals of
gathering critical data, evaluating that data, and taking action based on the results. Through
simple modifi cations of these scripts, you can put a robust monitoring system in place
for your core application.

Core Application Dependencies
With monitoring in place for the core application, we can move on to building out
some monitoring tools for core application dependencies. These dependencies can
range from remote databases to SAN systems and even to other application processes.
In order to have a good overview of what is happening in our application environment,
these other factors and dependencies need to be monitored. In this section, we will
build out some tools to monitor these application dependencies.

174 Part III • Monitoring Windows Applications with Perl

Monitoring Remote System Availability
When monitoring a remote system, there are several factors to watch for. First, you want
to make sure that the system is available on your network. By performing a simple
PING check, this can easily be confi rmed. But that does not necessarily mean that
the system is actually available and providing the services that you need. For example,
if you are relying on the system to respond on a specifi c port for a service such as
SMTP or Hypertext Transfer Protocol (HTTP), you would want to ensure that you
are able to communicate between systems on that port as well.

Doing this type of availability check is a little more complex, but certainly provides
more information to us from a monitoring perspective. The easiest type of check for
availability along these lines would be to open a port on the remote system, confi rm
that the communication does successfully take place, and then close the port. A more
complex check would involve sending specifi c data down that communication channel
and confi rming the results, but at this point it would be wiser to build a reusable
monitoring component that can check one or more ports for us.

The script shown in Figure III.22 shows one way that we can accomplish this
type of remote system availability check using the IO::Socket module. This module
is part of the default installation for ActivePerl.

Figure III.22 get_port_status.pl
#get_port_status.pl
use strict;
require 'thresh.pl';
use IO::Socket;

my $portCheck = new IO::Socket::INET (
 PeerAddr => 'localhost',
 PeerPort => '80',
 Proto => 'tcp',
);

if ($portCheck == undef) {
 &threshold_check ("remote_port", 1);
 } else {
 &threshold_check ("remote_port", 100);
 }

if ($portCheck != undef) {
 close($portCheck);
}

 Monitoring Windows Applications with Perl • Part III 175

This also requires a modifi cation to our “thresh.xml” fi le in order to create a threshold
for the new monitor. The additional XML for this monitor is shown in Figure III.23.

Figure III.23 remote_port Monitor XML
<monitor name="remote_port">
 <status name="red" value="1" operator="equal">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="green" value="100" operator="equal">
 <action>none</action>
 </status>
 </monitor>

In this script we’re doing a very simple check of the port status on the remote
system. If this test is successful, we learn two things. First, that the remote system is
available and secondly that it is accepting connection requests on the port we are
checking. If this test is unsuccessful, we then know that either the remote system is
down or the remote port is not responding.

The script itself begins by adding in the requirement of “thresh.pl” and the use of
IO::Socket. Next, we create a new object utilizing the IO::Socket module with the
address, port, and protocol used by the remote service that we are monitoring. From
there it’s just a matter of checking to see if we were successful in creating that
connection or not and alerting as appropriate.

You’ll note that for the status values we’re using 100 and 1. Normally you would
expect to see a 0 and 1 status code here, but remember that with the threshold
validation script we require that the values being passed be integers. Since 0 is not an
integer, we have to use other values for our status codes.

Lastly, and perhaps most importantly, we have to do some cleanup. If the “port Check”
object is defi ned indicating a success, we must consequently close that port. You certainly
don’t want to open up a huge number of ports on your remote system due to your
monitoring script. Using the “close” function we can accomplish this cleanup.

Monitoring Available Disk Space
Another dependency that is often overlooked is disk space. When monitoring an
application, it is pretty typical to forget that disk space is a requirement even for

176 Part III • Monitoring Windows Applications with Perl

applications that are not disk intensive. There are always log fi le writes, movement of
temporary data, and potential writes for virtual memory use to consider. With that in
mind, we need a script to monitor free disk space.

While we could use the performance monitor statistics for this, there could be
some potential pitfalls with that approach. Performance monitor only collects disk
statistics if they are explicitly enabled through the use of a command line action.
The alternative is to manually check the disk information. While this is slightly
more disk intensive, it is more reliable and will provide useful information in
more situations.

The script shown in Figure III.24 demonstrates how this type of free disk space
check can be performed. This script makes use of the Win32::FileOp module, which
in turn has dependencies on the Data::Lazy, Win32::AbsPath, and Win32::API modules.
More information on the Win32::FileOp module can be found at http://search.cpan.org/
dist/Win32-FileOp-0.14.1/FileOp.pm.

And again there are some changes to our “thresh.xml” fi le to handle this
additional monitor. The new monitor XML is shown in Figure III.25.

Figure III.24 get_disk_space.pl
#get_disk_space.pl
use strict;
require 'thresh.pl';
use Win32::FileOp qw(GetDiskFreeSpace);

my $disk="c:";

(my $freeSpaceForUser, my $totalSize, my $totalFreeSpace)
 = GetDiskFreeSpace $disk;

if ($totalFreeSpace != undef and $totalSize != undef) {
 my $percentFreeSpace = int(100*($totalFreeSpace
 / $totalSize));
 &threshold_check ("free_disk_space", $percentFreeSpace);
 } else {
 print "Unable to get disk status!\n";
 }

 Monitoring Windows Applications with Perl • Part III 177

Figure III.25 free_disk_space Monitor XML
 <monitor name="free_disk_space">
 <status name="red" value="10" operator="equalorless">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="20" operator="equalorless">
 <action>email</action>
 </status>
 <status name="green" value="20" operator="greater">
 <action>none</action>
 </status>
 </monitor>

This simple script quickly gathers the disk information that we need and provides
it to the “thresh.pl” script for handling. First, we specify the use of the Win32::FileOp
module and specifi cally the “GetDiskFreeSpace” function. This function pulls the free
disk space for the user, the total disk space, and the total free disk space from the
drive specifi ed in the $disk variable. We’ll store all of this data into variables with
intuitive names for later use.

After making sure that we were actually able to obtain the data we need through
a defi nition check of the appropriate variables, we can move on to doing a quick
 percentage computation. By dividing the total free space by the total disk space and
multiplying by 100, we are able to get the percentage of free space. This is a much easier
number to work with than specifying the number of free bytes in the “thresh.xml” fi le.
In order to use this value, we need to drop any data after the decimal point and can do
this by running it through the “int” function to convert the value to an integer.

Lastly, we just call the “threshold_check” function and specify the monitor and
value. This takes the data we added to the “thresh.xml” fi le and handles the actions
appropriate to the thresholds specifi ed.

Monitoring Remote Disk Availability
In some cases you may need to ensure that a remote share is both available and has
suffi cient free space available for your uses. We can write a quick script for performing
this function as well using the Win32::FileOp module. Since this need is similar to the
need to gather local disk information, we can combine these scripts into a single
script for the purpose of validating disk and free space availability. Figure III.26 shows
how this can be accomplished.

178 Part III • Monitoring Windows Applications with Perl

Figure III.26 get_disk_info.pl
#get_disk_info.pl
use strict;
require 'thresh.pl';
use Win32::FileOp qw(GetDiskFreeSpace);

my $disk="c:";
my $remote_disk="z:";
my $remote_share="\\\\localhost\\scripts";
my $freeSpaceForUser, my $totalSize, my $totalFreeSpace, my
$percentFreeSpace;

($freeSpaceForUser, $totalSize, $totalFreeSpace)
 = GetDiskFreeSpace $disk;
if ($totalFreeSpace != undef and $totalSize != undef) {
 $percentFreeSpace = int(100*($totalFreeSpace
 / $totalSize));
 &threshold_check ("free_disk_space", $percentFreeSpace);
 } else {
 print "Unable to get disk status!\n";
 &threshold_check ("free_disk_space", 1),
 }

($freeSpaceForUser, $totalSize, $totalFreeSpace)
 = GetDiskFreeSpace $remote_disk;
if ($totalFreeSpace != undef and $totalSize != undef) {
 $percentFreeSpace = int(100*($totalFreeSpace
 / $totalSize));
 &threshold_check ("free_disk_space", $percentFreeSpace);
 } else {
 print "Unable to get disk status!\n";
 &threshold_check ("free_disk_space", 1),
 }

($freeSpaceForUser, $totalSize, $totalFreeSpace)
 = GetDiskFreeSpace $remote_share;
if ($totalFreeSpace != undef and $totalSize != undef) {
 $percentFreeSpace = int(100*($totalFreeSpace
 / $totalSize));
 &threshold_check ("free_disk_space", $percentFreeSpace);
 } else {
 print "Unable to get disk status!\n";
 &threshold_check ("free_disk_space", 1),
 }

While this is similar to the code shown in Figure III.24, there are a few notable
differences. First, we’re declaring all of our variables up front since we will be reusing
them multiple times within the script. Secondly, we have added a call to the “thresh-
old_check” function passing a hard-coded value of 1 when we are unable to get the disk
free space value. This has the effect of sending a value of 1 if the remote disk is not
available. We simply have to make sure that we have an alert specifi ed if a threshold

 Monitoring Windows Applications with Perl • Part III 179

value of 1 is received, which is already defi ned due to the values used in the XML
shown in Figure III.25.

You’ll also note that for all of these checks we are using different values for which
disk we are checking, but using the same monitor for the threshold check. Typically,
the same values will apply for a remote disk as they do for a local disk. If this is not
the case, you can defi ne a new monitor specifi c to the disks you are checking.

In this script we are effectively checking three disks: the local disk, a remote disk
that has been mapped to a local drive, and a remote disk accessed by its share name.
These are the most common types of disk access methods that you would use when
connecting to a disk, and are all easily handled by the Win32::FileOp module.

Monitoring Remote Databases
When an application reaches the enterprise level, it frequently separates the presentation
layer of the application from the data layer. This means that a database is brought into
the equation, whether local or remote. In order to monitor all dependencies of the
application, it then becomes critical to monitor the database used by the application.

We could simply reuse the “get_port_status.pl” script shown in Figure III.22 for
this purpose, but experience shows that while a connection may be able to be made
to the listening port for a database, that does not necessarily mean that the database is
available. This requires a more complex test than a simple port connection.

Rather than checking the port status, we need to go further and actually connect,
authenticate, and confi rm that the database is returning a valid response. For this
example, we will be using the DBI module. This module is included in the ActivePerl
 installation and extensive detail on this module can be found at http://search.cpan.
org/dist/DBI-1.58/

While there are other database connection modules available, this one allows for a
great deal of fl exibility and works well for monitoring purposes. There are also many
drivers available that work with this module to allow for connections to a variety of
database types. In this example, we’ll be using the DBD::mysql module to connect to
a local MySQL database. Details on this specifi c driver can be found at http://search.
cpan.org/dist/DBD-mysql-3.0002/ and the module can be installed through PPM.

The script shown in Figure III.27 shows a simple database availability monitoring
process that goes through all of the steps described above, and sends the results over
to the usual threshold script. Additionally, the XML shown in Figure III.28 shows the
necessary addition to the “thresh.xml” fi le to add these monitors.

180 Part III • Monitoring Windows Applications with Perl

In effect, we are making a connection to the MySQL database using the parameters
specifi ed for $host, $database, $user, and $password. This database connection object is
then stored in $DBHandle. Similar to the script shown in Figure III.22 for a port check,
we then check and see if the $DBHandle variable is defi ned. If it is, we successfully
made a connection and report a “1” to the “threshold_check” function. Otherwise,
we report a “100” to indicate a failure. Then we do some cleanup and undef our
connection to the database. The monitor used is detailed in the XML shown in
Figure III.28.

Monitoring Other Dependencies
Now that we have a few scripts in place for monitoring some application dependencies,
we have a framework built for monitoring a great deal of other dependencies. Simply
reuse these scripts as needed and convert them to the purpose you need. For example,

Figure III.27 get_db_avail.pl
#get_db_avail.pl
use strict;
require 'thresh.pl';
use MySQL;
my $host="localhost";
my $database="new_db";
my $user="test_user";
my $password="test12";

my $DBHandle = Mysql->connect($host, $database, $user,
$password);

if ($DBHandle == undef) {
 &threshold_check ("DB_avail", 1);
 } else {
 &threshold_check ("DB_avail", 100);
 }

if ($DBHandle != undef) {
 undef $DBHandle;
}

Figure III.28 DB_avail Monitor XML
<monitor name="DB_avail">
 <status name="red" value="1" operator="equal">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="green" value="100" operator="equal">
 <action>none</action>
 </status>
 </monitor>

 Monitoring Windows Applications with Perl • Part III 181

let’s say that you want to check to ensure that a subprocess you need is functioning.
For this, you’d just reuse some of the code used in the “get_system_stats.pl” script
shown in Figure III.19. Need to check to make sure that your system isn’t paging
too much? That’s just another performance monitor counter and can be monitored
using the same script.

The purpose of developing the framework for these scripts in the manner done
in this section is to provide a great deal of fl exibility. By modifying these scripts to fi t
your specifi c needs, you can quickly and easily build a robust monitoring system for
your applications. By making small modifi cations to the scripts, they can be changed
to monitor exactly what you need for your specifi c application.

Of course, there are some application monitoring needs that do require a little more
complexity. The remainder of this chapter deals with those complex monitoring needs
and will help you in expanding this basic monitoring into a full monitoring solution.

Web Services
Web services and Service Oriented Architecture (SOA) are becoming more common
as a method of interfacing multiple applications. This adds another layer of complexity
to application monitoring as you have to rely on the “black box” of a Web service.
Typically, these Web services do not provide a great deal of information about their
internal operations. There are a few different monitors that can be built and confi gured
to help in ensuring the availability of remote Web services, and we will be discussing
a few of them here.

Web services are basically Web-facing interfaces for applications that use a standard
document format (XML) for messages. Simple Object Access Protocol (SOAP) is the
protocol used for transferring these XML messages between systems, and forms
a standard method of access for interfaced systems.

Monitoring Web Service Availability
The fi rst step to monitoring Web services is to make sure that the service is available.
Similar to monitoring for a database connection, we need to go further than a simple
port check for validating Web service availability. There are a couple of ways that this
can be accomplished. First would be to simply send a SOAP message to the Web
service you are using and confi rm that it responds as expected. The second is to send
a SOAP message to a test Web service that is built specifi cally for validating availability
of the system.

182 Part III • Monitoring Windows Applications with Perl

In this example, we will be using the SOAP::Lite module, which is included with
ActivePerl or downloaded through PPM. The Web site for SOAP::Lite has a great
deal of information on how to use the module as well as several test scripts. This
information can be found at http://www.soaplite.com/.

Figure III.29 shows a script for testing the availability of a Web service using
SOAP. This is a quick connectivity test, but also sends a valid SOAP Web service
request as part of the test. The corresponding changes to the “thresh.xml” fi le to add
the monitor for this are shown in Figure III.30.

Figure III.29 get_ws_avail.pl

#get_ws_avail.pl
use SOAP::Lite;
use strict;
require 'thresh.pl';

my $soap = SOAP::Lite
 -> uri('http://www.soaplite.com/Temperatures')
 -> proxy('http://services.soaplite.com/temper.cgi');
my $result = $soap->f2c(61);
unless ($result->fault) {
 &threshold_check ("WS_avail", 100);
} else {
 &threshold_check ("WS_avail", 1);
}

Figure III.30 WS_avail Monitor XML
 <monitor name="WS_avail">
 <status name="red" value="1" operator="equal">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="green" value="100" operator="equal">
 <action>none</action>
 </status>
 </monitor>

This script is very similar to the database availability monitor script shown in
Figure III.27. The main difference is that we are connecting to a data source which is
a Web service using SOAP. The $soap object is created by passing parameters for the
URI and proxy to SOAP::Lite. More information on how to confi gure these parameters
can be found on the SOAP::Lite Web site at the URL mentioned above, but for our

 Monitoring Windows Applications with Perl • Part III 183

purposes the values in the script point to a temperature conversion Web service hosted
by soaplite.com.

We then create a $result variable to hold the result of the Web service call and
through the act of assigning this variable, we contact the Web service and call the
“f2c” conversion function passing a value of 61. While this should return a specifi c
value for the conversion, we’re not concerned at this point with what that value is.
Rather, we just need to confi rm that a value is returned.

Handling the returned result provides the logic behind our monitoring. If the
result is not a fault, we pass the value of 100 to the “threshold_check” function
indicating that the Web service is responding. If a fault is encountered, however, we
send a value of 1 and the “threshold_check” function takes the actions specifi ed in
our “WS_avail” monitor XML.

Monitoring Web Service Functionality
More complex Web services may rely on a host of additional dependencies in order
to return an expected result. For example, you may be connecting to an Oracle
Web Service Manager Gateway, have your request forwarded to a Business Process
Execution Language server, and then to a Web service, which pulls data from a remote
database. This complex chain of transactions will eventually return a result to you, but
it may not necessarily be what you expected.

Since any step in this chain could potentially generate an error, fully testing Web
service functionality involves sending a request that goes through each step then fi nally
returns a result that should be consistent for validation. If an error is encountered, it may
be presented as a valid SOAP message but contain an error message rather than the
result that you are looking for.

We’ll make the assumption for testing purposes that the “f2c” conversion function
that we used in the last test is actually a complex function that has to go through
several steps in order to succeed. For example, and this is completely fi ctional, let’s
assume that it takes the value that we send, connects to a BPEL process to convert
the number to a string, connects to a remote database to do a string match in order
to fi nd the corresponding Celsius value, runs that through a BPEL process to convert
the string to a number, and then fi nally returns our result. Any failure in this chain of
transactions could cause a failure, but would not necessarily generate a fault to
SOAP::Lite.

184 Part III • Monitoring Windows Applications with Perl

Master Craftsman

End-to-end Web Service Testing
While the script shown here does a good job at determining whether or not a
Web service and all its components are functioning, it does not provide a great
deal of troubleshooting information. Just as we monitor multiple layers of our
applications (system, network, database, and so forth), you should consider moni-
toring multiple layers of the Web service to speed up troubleshooting when
something goes wrong.

A good way to do this without increasing the load on the system is to
perform the validation test fi rst. If, after running the validation test, the test
fails, you can then run individual scripts that test each portion of the Web service
(i.e., test the BPEL process manager server, the Web service gateway, and the
back end data source). This will identify where in the stack the problem lies
and allow you to get everything fi xed more quickly.

Figure III.31 get_ws_status.pl
#get_ws_status.pl
use SOAP::Lite;
use strict;
require 'thresh.pl';

my $soap = SOAP::Lite
 -> uri('http://www.soaplite.com/Temperatures')
 -> proxy('http://services.soaplite.com/temper.cgi');
my $result = $soap->f2c(32);
unless ($result->fault) {
 if ($result->result() != 0) {
 &threshold_check ("WS_status", 1);
 } else {
 &threshold_check ("WS_status", 100);
 }
} else {
 &threshold_check ("WS_status", 1);
}

With that in mind, the next script performs a similar transaction, but provides a
guaranteed value as a result. This result is then validated and if the validation fails, we
generate an alert. This script can be seen in Figure III.31 with the corresponding
XML for the “thresh.xml” fi le in Figure III.32.

 Monitoring Windows Applications with Perl • Part III 185

Figure III.32 WS_status Monitor XML
<monitor name="WS_status">
 <status name="red" value="1" operator="equal">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="green" value="100" operator="equal">
 <action>none</action>
 </status>
 </monitor>

Building a Monitoring System
Throughout this chapter we have put together a variety of scripts that can be used
to monitor applications. In order to consider this a full monitoring package, however,
we need to tie all the scripts together. To do this, we’ll take the fi nal versions of
a number of these scripts, call them with the appropriate parameters, and use the
appropriate dependency scripts for handling thresholds and alerting.

The scripts we’ll be putting together for this are the following:

■ get_system_stats.pl shown in Figure III.19

■ get_process_stats.pl using a modifi ed version shown in Figure III.33

■ get_port_status.pl shown in Figure III.22

■ get_disk_info.pl shown in Figure III.26

■ get_db_avail.pl shown in Figure III.27

■ get_ws_status.pl shown in Figure III.31

We’ll also be using the dependency scripts “thresh.pl,” “actions.pl,” and the fi le
“thresh.xml” as shown in Figure III.17, Figure III.18, and Figure III.34, respectively.
First, please take a look at the modifi ed “get_process_stats.pl” shown in Figure III.33
and the fi nal “thresh.xml” shown in Figure III.34.

186 Part III • Monitoring Windows Applications with Perl

Figure III.33 get_process_stats.pl
#get_process_stats.pl
use Win32::PerfMon;
use strict;
use Win32::Process::Info;
require 'thresh.pl';

my $pi = Win32::Process::Info->new();
my @procinfo = $pi->GetProcInfo();
my $procname = undef;
my $procstatus=0;
my $ret = undef;
my $err = undef;
my $Object = undef;
my $Counter = undef;
my $CounterData = undef;
#connect to localhost for data
my $perfmon = Win32::PerfMon->new("\\\\localhost");

my $result = open PIDFILE, "Komodo.pid";
if ($result) {
 if (defined(my $piddata = <PIDFILE>)) {
 chomp $piddata;
 for my $pid (@procinfo){
 if ($pid->{"ProcessId"} == $piddata) {
 $procname = $pid->{"Name"};
 print $pid->{"Name"}." is running!\n";
 &threshold_check ("proc_avail", 100);
 $procstatus=1;
 }
 }

 if ($procstatus!=1)
 {
 print "Process $piddata cannot be found!";
 &threshold_check ("proc_avail", 1);
 } else {
 $procname =~ s/^(.+?)(\.[^.]*)?$/$1/;
 if($perfmon != undef) {
 $ret = $perfmon->AddCounter("Process",
 "% Processor Time", $procname);
 if($ret != 0) {
 $ret = $perfmon->AddCounter("Process",
 "Private Bytes", $procname);
 }
 if($ret != 0) {
 $ret = $perfmon->CollectData();
 if($ret != 0) {
 my $proctime=$perfmon->GetCounterValue(
 "Process","% Processor Time",
 $procname);
 if($proctime > -1) {
 print "% Processor Time = ".
 "[$proctime]\n";
 if ($proctime > 0) {
 &threshold_check("proc_cpu",

 Monitoring Windows Applications with Perl • Part III 187

 $proctime);
 } else {
 &threshold_check("proc_cpu",
 1);
 }
 } else {
 $err = $perfmon->GetErrorText();
 print"Failed to get the ".
 "processor counter data!\n",
 $err, "\n";
 }
 my $freemem = $perfmon->GetCounterValue(
 "Process","Private Bytes",
 "komodo");
 if($freemem > -1)
 {
 &threshold_check ("proc_mem",
 $freemem);
 $freemem =~ s/(?<=\d)(?=(?:\d\d\d)+\b)/,/g;
 print "Memory used by process = [$freemem]" .
 " Bytes\n";
 } else {
 $err = $perfmon->GetErrorText();
 print "Failed to get the memory ".
 "counter data!\n",
 $err, "\n";
 }
 } else {
 $err = $perfmon->GetErrorText();
 print "Failed to collect the ".
 "perf data!\n", $err, "\n";
 }
 } else {
 $err = $perfmon->GetErrorText();
 print "Failed to add the counter!\n",
 $err, "\n";
 }
 } else {
 print "Failed to create the perf object!\n";
 }
 }
 } else {
 print "PID not found in PID file.";
 }
} else {
 print "PID file not found.";
}

188 Part III • Monitoring Windows Applications with Perl

Figure III.34 thresh.xml
<threshold>
 <monitor name="sys_proc">
 <status name="red" value="90" operator="equalorgreater">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="85"
operator="equalorgreater">
 <action>email</action>
 </status>
 <status name="green" value="85" operator="less">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="sys_mem">
 <status name="red" value="50" operator="equalorless">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="80" operator="equalorless">
 <action>email</action>
 </status>
 <status name="green" value="80" operator="greater">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="sys_netbps">
 <status name="red" value="5000" operator="equalorgreater">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="3000" operator="equalorgreater">
 <action>email</action>
 </status>
 <status name="green" value="3000" operator="less">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="sys_netutil">
 <status name="red" value="90" operator="equalorgreater">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="75" operator="equalorgreater">
 <action>email</action>
 </status>
 <status name="green" value="75" operator="less">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="remote_port">
 <status name="red" value="1" operator="equal">
 <action>email</action>
 <action>page</action>
 </status>

 Monitoring Windows Applications with Perl • Part III 189

 <status name="green" value="100" operator="equal">
 <action>none</action>
</status>
 </monitor>
 <monitor name="free_disk_space">
 <status name="red" value="10" operator="equalorless">
 <action>email</action>
 <action>page</action>
 </status>
<status name="yellow" value="20" operator="equalorless">
 <action>email</action>
 </status>
 <status name="green" value="20" operator="greater">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="DB_avail">
 <status name="red" value="1" operator="equal">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="green" value="100" operator="equal">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="WS_status">
 <status name="red" value="1" operator="equal">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="green" value="100" operator="equal">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="proc_avail">
 <status name="red" value="1" operator="equal">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="green" value="100" operator="equal">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="proc_cpu">
 <status name="red" value="90" operator="equalorgreater">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="85"
operator="equalorgreater">
 <action>email</action>
 </status>
 <status name="green" value="85" operator="less">
 <action>none</action>
 </status>
 </monitor>
 <monitor name="proc_mem">

190 Part III • Monitoring Windows Applications with Perl

Make sure you are watching for the wrapping in Figure III.34, as the width of
some lines is longer than the page width in this book.

The easiest way to create a monitoring system using these scripts is to simply call
them all from one master script and let each subsidiary script handle its monitoring
functions as we’ve written them. Some alternatives would be to convert our scripts into
functions and call them in that manner from a single script or to create a monitoring
module and pass various parameters to the module.

The script in Figure III.35 shows one way of calling all of the subsidiary scripts
from a master script.

<status name="red" value="90000000"
operator="equalorgreater">
 <action>email</action>
 <action>page</action>
 </status>
 <status name="yellow" value="80000000"
operator="equalorgreater">
 <action>email</action>
 </status>
 <status name="green" value="80000000" operator="less">
 <action>none</action>
 </status>
 </monitor>
</threshold>

Figure III.35 master_monitor.pl
#master_monitor.pl
do 'get_system_stats.pl';
do 'get_process_stats.pl';
do 'get_port_status.pl';
do 'get_disk_info.pl';
do 'get_db_avail.pl';
do 'get_ws_status.pl';

 Monitoring Windows Applications with Perl • Part III 191

Of course, there is no error checking in here to make sure that the dependency
scripts exist, and so forth. When converting these scripts for your own use, ensure
that you add appropriate error checking and management to every script. Using the
master_monitor.pl script basically calls each of our monitoring scripts individually
and allows them to process their own monitoring routines. You could gain some
signifi cant advantages in error checking and ease of use by converting these into
functions or even into modules.

Master Craftsman

Scheduling Your Monitoring Scripts
After creating the monitoring scripts, you need to monitor your application.
You will then want to automate the execution of those scripts. This has to be
done very carefully! If you run your script too frequently, you can cause the
script to have a performance impact on the system it is monitoring. If you run
it too infrequently, you run the risk of being notifi ed of problems in the system
too late to fi x them.

A good rule of thumb is to perform a load test and run the scripts at a
variety of frequencies. Find the point where the scripts cause minimal to no
performance impact, but yet run frequently enough that you can be assured
of proactive notifi cation in the case of an error. It may take some time to fi nd
the “sweet spot” for executing the monitoring scripts, but it will be worth it
when you do.

192 Part III • Monitoring Windows Applications with Perl

Summary
As previously mentioned, this is only one way that a monitoring system can be written
and implemented using Perl. Many other options are available to you, allowing you to
expand on the work demonstrated in this chapter to create a monitoring system that
fi ts your specifi c needs.

Creating monitors for each layer of your application(s), validating the result of those
monitors, and then taking appropriate actions are the foundation of any monitoring
system. Further enhancements can be done to visually display the results, track historical
data, and use trending information to analyze the mean time to failure or other important
statistics. All of these enhancements are “icing on the cake” so to speak and rely on the
base monitoring foundation to get the data to work with. As always, build a strong
foundation and it will support anything that you put on top of it.

193

Index
A
ActivePerl installation, 168
ActiveState Perl. See Perl Script
AddCounter function, 139
ASCII text fi les, 50

B
Bank Identifi cation Number (BIN), 123
BHO.pl, 36–38
BHOs (Browser Helper Objects), 36
binary hierarchal database, 58
BIN (Bank Identifi cation Number), 123
Browser Helper Objects (BHOs), 36
Business Process Execution Language

server, 183

C
Cc-sort.pl, 128
central processing unit (CPU), 133
code segment, for line parsing, 50–51
CollectData function, 139
command prompt

nestat1.pl, 5–6
nestat2.pl, 6–7
nestat3.pl, 7–8

core application processes
available disk space monitoring,

175–177
core application process monitoring, 145
CPU utilization for specifi c process

monitoring, 149
key performance indicators

monitoring, 133
memory utilization for specifi c process

monitoring, 152
monitoring system CPU utilization, 133

monitoring system key performance
indicators, 133

remote databases monitoring, 179
remote disk availability monitoring,

177–179
remote system availability monitoring, 174
system network utilization monitoring,

141–145
core application process monitoring,

145–149
Credit Card Finder module, 123
credit card number

format of, 123
Luhn algorithm verifi cation of,

123–124
Perl code to parse track code, 127
track 1 and 2 data, 125–127

D
DAT fi le, 75–76
DBD::mysql module, 179
DHCP (Dynamic Host Confi guration

Protocol), 23
DLL (Dynamic link library) fi les, 36
DNS (Domain name system), 23
documentation of incident response, 3, 5
Domain name system (DNS), 23
Dynamic Host Confi guration Protocol

(DHCP), 23
dynamic link library (DLL), 36, 137

E
EnCase (Forensic analysis tool), 122–123
EnScripts, 123
Event Log fi les, content parsing of, 80–85
evt2xls.pl (Perl Script), 80–85

194 Index

F
FILETIME object, 43, 44
forensic analysis tool, 44

EnCase, 122
Parse::Win32Registry module, 59

fw.pl Perl script
Getopt::Long module, 19
-sec switch, for SecurityCenter settings, 20
-s switch, 19–20
for Windows fi rewall information, 15–19

G
GetCounterValue function, 139
GetDiskFreeSpace function, 177
GetErrorText function, 139
Getopt::Long module, 19
get_percentprocessortime_komodo, 150
GetProcInfo function, 147
getsys.pl script, 10–14
getTime() function, 43
getType() function, 125
globally unique identifi er (GUID), 38–39
graphical user interface (GUI), 145
GUID (globally unique identifi er), 38–39
GUI (Graphical user interface), 145

H
Hypertext Transfer Protocol (HTTP), 174

I
incident response

active processes, 14
commands and scripts for, 6
documentation, 5
information availability on clipboard

during, 3
from live system, 10
ndis.pl running during, 26
querying registry during, 36
querying system during, 20–22

Internetwork Packet Exchange (IPX)
confi gurations, 23

IO::Socket module, 174

L
live response activities, 2
load_display_XML.pl, 156
load_display_XML results, 157
log fi le parsing, 50
lspi.pl Perl script, RAM content

parsing by, 94–105
lsproc.pl, RAM content parsing by, 88–94
Luhn algorithm

credit card number verifi cation, 123–124
luhn() function, 124–125

M
Mail::Sender module, 168
Makefi le data, 135
Microsoft Platform SDK, 134
monitoring system, building of, 185–191
MSNdis_CurrentPacketFilter class, 24, 26
MySQL database, 179

N
ndis.pl script, 24–26

ConnectServer funtion, 26–27
running on test system, 26
Win32::NodeName(), 28

Netstat1.pl, 5–6
nic.pl Perl script

for information of network interface
cards (NICs)

adapter, IP address, and local area
network (LAN) connection, 22–23

querying system, 20–22
NTUSER.DAT fi le, 71–72

O
Oracle Web Service Manager Gateway, 183

 Index 195

P
Parse::Win32Registry module, 59
parsing

binary fi les, 51
lslnk.pl Perl script, 52–58

Event Log fi les, 80–87
log fi les, 50
RAM content, 87

using lspi.pl, 94–105
using lsproc.pl, 88–94

SAM database, 58–68
security fi le, 71

Payment Card Industry (PCI), 122
Pclip.pl, 2–3
performance monitor data, 137
Perl code, 124–125
Perl editor Komodo Edit, 149
Perl modules, 133
Perl Package Manager (PPM), 133
Perl Package Manager (ppm), 59
Perl script

di.pl
collecting information from disk drives

and storage devices, 28–31
running on local system, 31

evt2xls.pl for parsing RAM
content, 80–94

fw.pl
Getopt::Long module, 19
-sec switch and SecurityCenter

settings, 20
-s switch, 19–20
for Windows fi rewall information,

15–19
getsys.pl, 10–14
ldi.pl for information retrieval

using Win32_LogicalDisk WMI, 32–35
via My Computer window, 35

lslnk.pl for parsing binary fi les, 52–58
lspi.pl for parsing RAM content, 94–105

nestat1.pl, 5–6
nestat2.pl, 6–7
nestat3.pl, 7–8
nic.pl

for information of network interface
cards (NICs)

adapter, IP address, and local area
network (LAN) connection,
22–23

querying system, 20–22
Pclip.pl, 3–4
for RAM content parsing, 87

lspi.pl, 94–105
lsproc.pl, 88–94

running from central management
point, 47

samparse.pl for parsing SAM database,
60–68

secparse.pl for parsing Security fi le,
68–71

uassist.pl
function of, 40–43
ROT-13 encrypted value name

decoding, 43
win32.pl, 2–3

plain old documentation (POD), 3
POD (plain old documentation), 3
ppm commands, output of, 9
ppm (Perl Package Manager), 59
primary account number (PAN).

See credit card number
ProDiscover

forensic analysis
application, 105
tool, 44

for ProDiscover forensic analysis
application

Prefetch.pl, 118–122
sysrestore.pl, 111–117
uassist.pl, 106–110

196 Index

ProScripts. See also Perl script
acquire1.pl

automating live acquisition, 47
text fi le, 44–47

ProScripts for analysis of
Prefetch.pl, 118–122
sysrestore.pl, 111–117
uassist.pl, 106–110

Q
query command, 9

R
RAM content parsing, Perl script for, 87

lspi.pl, 94–105
lsproc.pl, 88–94

recentdocs.pl
output of, 75
parsing using Parse::Win32Registry

module, 72–75
running, 75

RecentDocs Registry key, 72
Registry

RegEdit keys, 59
samparse.pl for parsing SAM database,

58–68
secparse.pl for parsing security fi le, 71
system and applications, information,

58–59

S
SAM database

local user account information, 68
recentdocs.pl for parsing, 71–75
samparse.pl Perl script for parsing,

58–68
samparse.pl

for parsing SAM database, 58–68
samparse.pl for parsing SAM database,

60–68

search command, 9
secparse.pl for parsing Security fi le, 68–71
security fi le, 68
SendLineEnc function, 168
Service Oriented Architecture (SOA), 181
Simple Network Management Protocol

(SNMP), 163
SOAP::Lite module, 182
Sweep Case EnScript, 123
system memory utilization, monitoring of,

139–140
system processor utilization, 133
System Restore Points, 111

T
take_action subroutine, 163
threshold_check function, 177
threshold confi guration XML, 155

U
uassist.pl

function of, 40–43
ROT-13 encrypted value name

decoding, 43
running against NTUSER.DAT fi le,

75–79
Universal Coordinated Time (UTC), 14
Universal Serial Bus (USB)-connected hard

drive, collecting information
from, 32

UserAssist Registry key
Didier’s, 39–40
globally unique identifi er (GUID)

of, 38–39
user’s interactions recoding via, 38

UTC (Universal Coordinated Time), 14

V
Visual C++ Express Edition, 134, 137
Visual C++ GUI, 135

 Index 197

W
WDM (Windows Driver Model), 24
Web services

availability, 181–183
functionality monitoring, 183–185

Windows API access
getsys.pl for call access, 10–14
Win32::API module

installation of, 8–9, 10
query for, 9

Windows application program interface
(API) function, 2

Windows Driver Model (WDM), 24
Windows Management Instrumentation

(WMI), 14
collecting information from disk drives

and storage devices, 28
Windows Registry. See Registry
Windows system

fi rewall, 15
information retrieval from, 2, 14

interface for, 15
write code for accessing, 14

Windows XP systems
application and boot prefetching, 117–118
forensic analysis of, 110
restore point of, 111

Win32::FileOp module, 177
Win32::NodeName(), 27
Win32::OLE module, 15
Win32::PerfMon Installation, 136
Win32::PerfMon module, compilation

of, 135
Win32.pl, 2–3
Win32::Process::Info module, 148
WMI (Windows Management

Instrumentation), 14

X
XML confi guration fi le, loading

procedure for, 155
eXtensible markup language (XML), 155

