
ptg

Download from <www.wowebook.com>

ptg

Effective Perl
Programming

Second Edition

Download from <www.wowebook.com>

ptg

The Effective Software Development Series provides expert advice on

all aspects of modern software development. Books in the series are well

written, technically sound, and of lasting value. Each describes the critical

things experts always do—or always avoid—to produce outstanding software.

Scott Meyers, author of the best-selling books Effective C++ (now in its

third edition), More Effective C++, and Effective STL (all available in both

print and electronic versions), conceived of the series and acts as its

consulting editor. Authors in the series work with Meyers to create essential

reading in a format that is familiar and accessible for software developers

of every stripe.

Visit informit.com/esds for a complete list of available publications.

The Effective Software
Development Series

Scott Meyers, Consulting Editor

Download from <www.wowebook.com>

ptg

Effective Perl
Programming
Ways to Write Better, More
Idiomatic Perl

Second Edition

Joseph N. Hall
Joshua A. McAdams
brian d foy

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Download from <www.wowebook.com>

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Hall, Joseph N., 1966–
Effective Perl programming : ways to write better, more idiomatic Perl / Joseph N. Hall,

Joshua McAdams, Brian D. Foy. — 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-49694-2 (pbk. : alk. paper)

1. Perl (Computer program language) I. McAdams, Joshua. II. Foy, Brian D III. Title.
QA76.73.P22H35 2010
005.13'3—dc22

2010001078

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-49694-2
ISBN-10: 0-321-49694-9
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, April 2010

Download from <www.wowebook.com>

ptg

❘ Contents at a Glance

v

Foreword xi
Preface xiii
Acknowledgments xvii
About the Authors xix

Introduction 1

Chapter 1 The Basics of Perl 9

Chapter 2 Idiomatic Perl 51

Chapter 3 Regular Expressions 99

Chapter 4 Subroutines 145

Chapter 5 Files and Filehandles 179

Chapter 6 References 201

Chapter 7 CPAN 227

Chapter 8 Unicode 253

Chapter 9 Distributions 275

Chapter 10 Testing 307

Chapter 11 Warnings 357

Chapter 12 Databases 377

Chapter 13 Miscellany 391

Appendix A Perl Resources 435

Appendix B Map from First to Second Edition 439

Index 445

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

❘ Contents

vii

Foreword xi
Preface xiii
Acknowledgments xvii
About the Authors xix

Introduction 1

Chapter 1 The Basics of Perl 9
Item 1. Find the documentation for Perl and its modules. 9

Item 2. Enable new Perl features when you need them. 12

Item 3. Enable strictures to promote better coding. 14

Item 4. Understand what sigils are telling you. 17

Item 5. Know your variable namespaces. 19

Item 6. Know the difference between string and numeric comparisons. 21

Item 7. Know which values are false and test them accordingly. 23

Item 8. Understand conversions between strings and numbers. 27

Item 9. Know the difference between lists and arrays. 31

Item 10. Don’t assign undef when you want an empty array. 34

Item 11. Avoid a slice when you want an element. 37

Item 12. Understand context and how it affects operations. 41

Item 13. Use arrays or hashes to group data. 45

Item 14. Handle big numbers with bignum. 47

Chapter 2 Idiomatic Perl 51
Item 15. Use $_ for elegance and brevity. 53

Item 16. Know Perl’s other default arguments. 56

Item 17. Know common shorthand and syntax quirks. 60

Item 18. Avoid excessive punctuation. 66

Item 19. Format lists for easy maintenance. 68

Item 20. Use foreach, map, and grep as appropriate. 70

Item 21. Know the different ways to quote strings. 73

Item 22. Learn the myriad ways of sorting. 77

Item 23. Make work easier with smart matching. 84

Item 24. Use given-when to make a switch statement. 86

Item 25. Use do {} to create inline subroutines. 90

Download from <www.wowebook.com>

ptg

viii ❘ Contents

Item 26. Use List::Util and List::MoreUtils for easy list
manipulation. 92

Item 27. Use autodie to simplify error handling. 96

Chapter 3 Regular Expressions 99
Item 28. Know the precedence of regular expression operators. 99

Item 29. Use regular expression captures. 103

Item 30. Use more precise whitespace character classes. 110

Item 31. Use named captures to label matches. 114

Item 32. Use noncapturing parentheses when you need only grouping. 116

Item 33. Watch out for the match variables. 117

Item 34. Avoid greed when parsimony is best. 119

Item 35. Use zero-width assertions to match positions in a string. 121

Item 36. Avoid using regular expressions for simple string operations. 125

Item 37. Make regular expressions readable. 129

Item 38. Avoid unnecessary backtracking. 132

Item 39. Compile regexes only once. 137

Item 40. Pre-compile regular expressions. 138

Item 41. Benchmark your regular expressions. 139

Item 42. Don’t reinvent the regex. 142

Chapter 4 Subroutines 145
Item 43. Understand the difference between my and local. 145

Item 44. Avoid using @_ directly unless you have to. 154

Item 45. Use wantarray to write subroutines returning lists. 157

Item 46. Pass references instead of copies. 160

Item 47. Use hashes to pass named parameters. 164

Item 48. Use prototypes to get special argument parsing. 168

Item 49. Create closures to lock in data. 171

Item 50. Create new subroutines with subroutines. 176

Chapter 5 Files and Filehandles 179
Item 51. Don’t ignore the file test operators. 179

Item 52. Always use the three-argument open. 182

Item 53. Consider different ways of reading from a stream. 183

Item 54. Open filehandles to and from strings. 186

Item 55. Make flexible output. 189

Item 56. Use File::Spec or Path::Class to work with paths. 192

Item 57. Leave most of the data on disk to save memory. 195

Chapter 6 References 201
Item 58. Understand references and reference syntax. 201

Item 59. Compare reference types to prototypes. 209

Download from <www.wowebook.com>

ptg

Contents ❘ ix

Item 60. Create arrays of arrays with references. 211

Item 61. Don’t confuse anonymous arrays with list literals. 214

Item 62. Build C-style structs with anonymous hashes. 216

Item 63. Be careful with circular data structures. 218

Item 64. Use map and grep to manipulate complex data structures. 221

Chapter 7 CPAN 227
Item 65. Install CPAN modules without admin privileges. 228

Item 66. Carry a CPAN with you. 231

Item 67. Mitigate the risk of public code. 235

Item 68. Research modules before you install them. 239

Item 69. Ensure that Perl can find your modules. 242

Item 70. Contribute to CPAN. 246

Item 71. Know the commonly used modules. 250

Chapter 8 Unicode 253
Item 72. Use Unicode in your source code. 254

Item 73. Tell Perl which encoding to use. 257

Item 74. Specify Unicode characters by code point or name. 258

Item 75. Convert octet strings to character strings. 261

Item 76. Match Unicode characters and properties. 265

Item 77. Work with graphemes instead of characters. 269

Item 78. Be careful with Unicode in your databases. 272

Chapter 9 Distributions 275
Item 79. Use Module::Build as your distribution builder. 275

Item 80. Don’t start distributions by hand. 278

Item 81. Choose a good module name. 283

Item 82. Embed your documentation with Pod. 287

Item 83. Limit your distributions to the right platforms. 292

Item 84. Check your Pod. 295

Item 85. Inline code for other languages. 298

Item 86. Use XS for low-level interfaces and speed. 301

Chapter 10 Testing 307
Item 87. Use prove for flexible test runs. 308

Item 88. Run tests only when they make sense. 311

Item 89. Use dependency injection to avoid special test logic. 314

Item 90. Don’t require more than you need to use in your methods. 317

Item 91. Write programs as modulinos for easy testing. 320

Item 92. Mock objects and interfaces to focus tests. 324

Item 93. Use SQLite to create test databases. 330

Item 94. Use Test::Class for more structured testing. 332

Download from <www.wowebook.com>

ptg

x ❘ Contents

Item 95. Start testing at the beginning of your project. 335

Item 96. Measure your test coverage. 342

Item 97. Use CPAN Testers as your QA team. 346

Item 98. Set up a continuous build system. 348

Chapter 11 Warnings 357
Item 99. Enable warnings to let Perl spot suspicious code. 358

Item 100. Use lexical warnings to selectively turn on or off complaints. 361

Item 101. Use die to generate exceptions. 364

Item 102. Use Carp to get stack traces. 366

Item 103. Handle exceptions properly. 370

Item 104. Track dangerous data with taint checking. 372

Item 105. Start with taint warnings for legacy code. 375

Chapter 12 Databases 377
Item 106. Prepare your SQL statements to reuse work and save time. 377

Item 107. Use SQL placeholders for automatic value quoting. 382

Item 108. Bind return columns for faster access to data. 384

Item 109. Reuse database connections. 386

Chapter 13 Miscellany 391
Item 110. Compile and install your own perls. 391

Item 111. Use Perl::Tidy to beautify code. 394

Item 112. Use Perl Critic. 398

Item 113. Use Log::Log4perl to record your program’s state. 403

Item 114. Know when arrays are modified in a loop. 410

Item 115. Don’t use regular expressions for comma-separated values. 412

Item 116. Use unpack to process columnar data. 414

Item 117. Use pack and unpack for data munging. 416

Item 118. Access the symbol table with typeglobs. 423

Item 119. Initialize with BEGIN; finish with END. 425

Item 120. Use Perl one-liners to create mini programs. 428

Appendix A Perl Resources 435

Appendix B Map from First to Second Edition 439
Books 435

Websites 436

Blogs and Podcasts 437

Getting Help 437

Index 445

Download from <www.wowebook.com>

ptg

❘ Foreword

xi

When I first learned Perl more than a decade ago, I thought I knew the
language pretty well; and indeed, I knew the language well enough. What
I didn’t know were the idioms and constructs that really give Perl its power.
While it’s perfectly possible to program without these, they represent a
wealth of knowledge and productivity that is easily missed.

Luckily for me, I had acquired the first edition of Joseph N. Hall’s Effective
Perl Programming, and it wasn’t to be found in my bookshelf. Instead, it
had an almost permanent place in my bag, where I could easily peruse it
whenever I found a spare moment.

Joseph’s format for Effective Perl Programming was delightfully simple:
small snippets of wisdom; easily digested. Indeed, it formed the original
inspiration for our free Perl Tips (http://perltraining.com.au/tips/) newsletter,
which continues to explore both Perl and its community.

A lot can change in a language in ten years, but even more can change in
the community’s understanding of a language over that time. Conse-
quentially, I was delighted to hear that not only was a second edition in the
works, but that it was to be written by two of the most prominent mem-
bers of the Perl community.

To say that brian is devoted to Perl is like saying that the sun’s corona is
rather warm. brian has not only literally written volumes on the language,
but also publishes a magazine (The Perl Review), manages Perl’s FAQ, and
is a constant and welcome presence on community sites devoted to both
Perl and programming.

Josh is best known for his efforts in running Perlcast, which has been pro-
viding Perl news in audio form since 2005. Josh’s abilities to consistently
interview the brightest and most interesting people in the world not only
make him an ideal accumulator of knowledge, but also have me very
 jealous.

Download from <www.wowebook.com>

ptg

xii ❘ Foreword

As such, it is with great pleasure that I have the opportunity to present to
you the second edition of this book. May it help you on your way to Perl
mastery the same way the first edition did for me.

—Paul Fenwick
Managing Director
Perl Training Australia

Download from <www.wowebook.com>

ptg

❘ Preface

xiii

Many Perl programmers cut their teeth on the first edition of Effective Perl
Programming. When Addison-Wesley first published it in 1998, the entire
world seemed to be using Perl; the dot-com days were in full swing and
anyone who knew a little HTML could get a job as a programmer. Once
they had those jobs, programmers had to pick up some quick skills. Effec-
tive Perl Programming was likely to be one of the books those new Perl pro-
grammers had on their desks along with the bibles of Perl, Programming
Perl 1 and Learning Perl 2.

There were many other Perl books on the shelves back then. Kids today
probably won’t believe that you could walk into a bookstore in the U.S.
and see hundreds of feet of shelf space devoted to computer program-
ming, and most of that seemed to be Java and Perl. Walk into a bookstore
today and the computer section might have its own corner, and each lan-
guage might have a couple of books. Most of those titles probably won’t
be there in six months.

Despite all that, Effective Perl Programming hung on for over a decade.
Joseph Hall’s insight and wisdom toward the philosophy of Perl pro-
gramming is timeless. After all, his book was about thinking in Perl more
than anything else. All of his advice is still good.

However, the world of Perl is a lot different than it was in 1998, and there’s
a lot more good advice out there. CPAN (the Comprehensive Perl Archive
Network), which was only a few years old then, is now Perl’s killer feature.
People have discovered new and better ways to do things, and with more
than a decade of additional Perl experience, the best practices and idioms
have come a long way.

1. Larry Wall, Tom Christiansen, and Jon Orwant, Programming Perl, Third Edition

(Sebastopol, CA: O’Reilly Media, 2000).

2. Randal L. Schwartz, Tom Phoenix, and brian d foy, Learning Perl, Fifth Edition (Sebastopol,

CA: O’Reilly Media, 2008).

Download from <www.wowebook.com>

ptg

xiv ❘ Preface

Since the first edition of Effective Perl Programming, Perl has changed, too.
The first edition existed during the transition from Perl 4 to Perl 5, so peo-
ple were still using their old Perl 4 habits. We’ve mostly done away with
that distinction in this edition. There is only one Perl, and it is major ver-
sion 5. (Don’t ask us about Perl 6. That’s a different book for a different
time.)

Modern Perl now handles Unicode and recognizes that the world is more
than just ASCII. You need to get over that hump, too, so we’ve added an
entire chapter on it. Perl might be one of the most-tested code bases, a
trend started by Michael Schwern several years ago and now part of almost
every module distribution. Gone are the days when Perlers celebrated the
Wild West days of code slinging. Now you can have rapid prototyping and
good testing at the same time. If you’re working in the enterprise arena,
you’ll want to read our advice on testing. If you’re a regular-expression
fiend, you’ll want to use all of the new regex features that the latest versions
of Perl provide. We’ll introduce you to the popular ones.

Perl is still growing, and new topics are always emerging. Some topics, like
Moose, the post-modern Perl object system, deserve their own books, so
we haven’t even tried to cover them here. Other topics, like POE (Perl
Object Environment), object-relational mappers, and GUI toolkits are
similarly worthy, and also absent from this book. We’re already thinking
about More Effective Perl, so that might change.

Finally, the library of Perl literature is much more mature. Although we
have endeavored to cover most of the stuff we think you need to know,
we’ve left out some areas that are much better covered in other books,
which we list in Appendix B. That makes space for other topics.

—Joseph N. Hall, Joshua A. McAdams, and brian d foy

Preface from the first edition

I used to write a lot of C and C++. My last major project before stepping
into the world of Perl full time was an interpreted language that, among
other things, drew diagrams, computed probabilities, and generated entire
FrameMaker books. It comprised over 50,000 lines of platform-independent
C++ and it had all kinds of interesting internal features. It was a fun project.

It also took two years to write.

Download from <www.wowebook.com>

ptg

It seems to me that most interesting projects in C and/or C++ take months
or years to complete. That’s reasonable, given that part of what makes an
undertaking interesting is that it is complex and time-consuming. But it
also seems to me that a whole lot of ideas that start out being mundane and
uninteresting become interesting three-month projects when they are
expressed in an ordinary high-level language.

This is one of the reasons that I originally became interested in Perl. I had
heard that Perl was an excellent scripting language with powerful string-
handling, regular-expression, and process-control features. All of these are
features that C and C++ programmers with tight schedules learn to dread.
I learned Perl, and learned to like it, when I was thrown into a project
where most of my work involved slinging text files around—taking output
from one piece of software and reformatting it so that I could feed it to
another. I quickly found myself spending less than a day writing Perl pro-
grams that would have taken me days or weeks to write in a different
 language.

How and why I wrote this book

I’ve always wanted to be a writer. In childhood I was obsessed with science
fiction. I read constantly, sometimes three paperbacks a day, and every so
often wrote some (bad) stories myself. Later on, in 1985, I attended the
Clarion Science Fiction & Fantasy Writers’ workshop in East Lansing,
Michigan. I spent a year or so occasionally working on short-story man-
uscripts afterward, but was never published. School and work began to
consume more and more of my time, and eventually I drifted away from
fiction. I continued to write, though, cranking out a technical manual,
course, proposal, or paper from time to time. Also, over the years I made
contact with a number of technical authors.

One of them was Randal Schwartz. I hired him as a contractor on an engi-
neering project, and managed him for over a year. (This was my first stint
as a technical manager, and it was quite an introduction to the world of
management in software development, as anyone who knows Randal
might guess.) Eventually he left to pursue teaching Perl full time. And after
a while, I did the same.

While all this was going on, I became more interested in writing a book. I
had spent the past few years working in all the “hot” areas—C++, Perl,
the Internet and World Wide Web—and felt that I ought to be able to find

Preface ❘ xv

Download from <www.wowebook.com>

ptg

something interesting in all that to put down on paper. Using and teach-
ing Perl intensified this feeling. I wished I had a book that compiled the
various Perl tricks and traps that I was experiencing over and over again.

Then, in May 1996, I had a conversation with Keith Wollman at a devel-
opers’ conference in San Jose. I wasn’t really trying to find a book to write,
but we were discussing what sorts of things might be good books and what
wouldn’t. When we drifted onto the topic of Perl, he asked me, “What
would you think of a book called Effective Perl?” I liked the idea. Scott Mey-
ers’s Effective C++ was one of my favorite books on C++, and the exten-
sion of the series to cover Perl was obvious.

I couldn’t get Keith’s idea out of my head, and after a while, with some
help from Randal, I worked out a proposal for the book, and Addison-
Wesley accepted it.

The rest . . . Well, that was the fun part. I spent many 12-hour days and
nights with FrameMaker in front of the computer screen, asked lots of
annoying questions on the Perl 5 Porters list, looked through dozens of
books and manuals, wrote many, many little snippets of Perl code, and
drank many, many cans of Diet Coke and Pepsi. I even had an occasional
epiphany as I discovered very basic things about Perl that I had never real-
ized I was missing. After a while, a manuscript emerged.

This book is my attempt to share with the rest of you some of the fun and
stimulation that I experienced while learning the power of Perl. I certainly
appreciate you taking the time to read it, and I hope that you will find it
useful and enjoyable.

—Joseph N. Hall
Chandler, Arizona
1998

xvi ❘ Preface

Download from <www.wowebook.com>

ptg

❘ Acknowledgments

xvii

For the second edition

Several people have helped us bring about the second edition by reading
parts of the manuscript in progress and pointing out errors or adding
things we hadn’t considered. We’d like to thank Abigail, Patrick Abi Sal-
loum, Sean Blanton, Kent Cowgill, Bruce Files, Mike Fraggasi, Jarkko
Hietaniemi, Slaven Rezic, Andrew Rodland, Michael Stemle, and Sinan
Ünür. In some places, we’ve acknowledged people directly next to their
contribution.

Some people went much further than casual help and took us to task for
almost every character. All the mistakes you don’t see were caught by Elliot
Shank, Paul Fenwick, and Jacinta Richardson. Anything left over is our
fault: our cats must have walked on our keyboards when we weren’t looking.

—Joseph N. Hall, Joshua A. McAdams, and brian d foy

From the first edition

This book was hard to write. I think mostly I made it hard on myself, but
it would have been a lot harder had I not had help from a large cast of pro-
grammers, authors, editors, and other professionals, many of whom con-
tributed their time for free or at grossly inadequate rates that might as well
have been for free. Everyone who supported me in this effort has my
appreciation and heartfelt thanks.

Chip Salzenberg and Andreas “MakeMaker” König provided a number of
helpful and timely fixes to Perl bugs and misbehaviors that would have
complicated the manuscript. It’s hard to say enough about Chip. I’ve spent
a little time mucking about in the Perl source code. I hold him in awe.

Many other members of the Perl 5 Porters list contributed in one way or
another, either directly or indirectly. Among the most obviously helpful

Download from <www.wowebook.com>

ptg

xviii ❘ Acknowledgments

and insightful were Jeffrey Friedl, Chaim Frenkel, Tom Phoenix, Jon
Orwant (of The Perl Journal), and Charlie Stross.

Randal Schwartz, author, instructor, and “Just Another Perl Hacker,” was
my primary technical reviewer. If you find any mistakes, e-mail him. (Just
kidding.) Many thanks to Randal for lending his time and thought to this
book.

Thanks also to Larry Wall, the creator of Perl, who has answered questions
and provided comments on a number of topics.

I’ve been very lucky to work with Addison-Wesley on this project. Every-
one I’ve had contact with has been friendly and has contributed in some
significant way to the forward progress of this project. I would like to
extend particular thanks to Kim Fryer, Ben Ryan, Carol Nelson, and Keith
Wollman.

A number of other people have contributed comments, inspiration, and/or
moral support. My friends Nick Orlans, Chris Ice, and Alan Piszcz trudged
through several revisions of the incomplete manuscript. My current and
former employers Charlie Horton, Patrick Reilly, and Larry Zimmerman
have been a constant source of stimulation and encouragement.

Although I wrote this book from scratch, some of it by necessity parallels
the description of Perl in the Perl man pages as well as Programming Perl.
There are only so many ways to skin a cat. I have tried to be original and
creative, but in some cases it was hard to stray from the original descrip-
tion of the language.

Many thanks to Jeff Gong, for harassing The Phone Company and keep-
ing the T-1 alive. Jeff really knows how to keep his customers happy.

Many thanks to the sport of golf for keeping me sane and providing an
outlet for my frustrations. It’s fun to make the little ball go. Thanks to Mas-
ter of Orion and Civilization II for much the same reasons.

Most of all, though, I have to thank Donna, my soulmate and fiancée, and
also one heck of a programmer. This book would not have come into being
without her seemingly inexhaustible support, patience, and love.

—Joseph N. Hall
1998

Download from <www.wowebook.com>

ptg

❘ About the Authors

xix

Joseph N. Hall, a self-professed “computer whiz kid,” grew up with a TI
programmable calculator and a Radio Shack TRS-80 Model 1 with 4K
RAM. He taught his first computer class at the age of 14. Joseph holds a
B.S. in computer science from North Carolina State University and has
programmed for a living since 1984. He has worked in UNIX and C since
1987 and has been working with Perl since 1993. His interests include soft-
ware tools and programming languages, piano and electronic keyboards,
and golf.

Joshua A. McAdams has been an active member of the Perl community for
nearly five years. He is the voice of Perlcast, hosted two YAPC::NAs in
Chicago, conducts meetings for Chicago.pm, has spoken about Perl at con-
ferences around the world, and is a CPAN (Comprehensive Perl Archive
Network) author. Though this is his first book, he has authored Perl arti-
cles for The Perl Review and the Perl Advent Calendar. For a day job, Josh
has the privilege to work at Google, where his day-to-day development
doesn’t always involve Perl, but he sneaks it in when he can.

brian d foy is the coauthor of Learning Perl, Fifth Edition (O’Reilly Media,
2008), and Intermediate Perl (O’Reilly Media, 2006) and the author of Mas-
tering Perl (O’Reilly Media, 2007). He established the first Perl user group,
the New York Perl Mongers; publishes The Perl Review; maintains parts of
the Perl core documentation; and is a Perl trainer and speaker.

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

❘ Introduction

1

“Learning the fundamentals of a programming language is one thing;
learning how to design and write effective programs in that language is
something else entirely.” What Scott Meyers wrote in the Introduction to
Effective C++ is just as true for Perl.

Perl is a Very High Level Language—a VHLL for the acronym-aware. It
incorporates high-level functionality like regular expressions, networking,
and process management into a context-sensitive grammar that is more
“human,” in a way, than that of other programming languages. Perl is a
better text-processing language than any other widely used computer lan-
guage, or perhaps any other computer language, period. Perl is an incred-
ibly effective scripting tool for UNIX administrators, and it is the first
choice of most UNIX CGI scripters worldwide. Perl also supports object-
oriented programming, modular software, cross-platform development,
embedding, and extensibility.

Is this book for you?

We assume that you already have some experience with Perl. If you’re look-
ing to start learning Perl, you might want to wait a bit before tackling this
book. Our goal is to make you a better Perl programmer, not necessarily a
new Perl programmer.

This book isn’t a definitive reference, although we like to think that you’d
keep it on your desktop. Many of the topics we cover can be quite compli-
cated and we don’t go into every detail. We try to give you the basics of the
concepts that should satisfy most situations, but also serve as a starting
point for further research if you need more. You will still need to dive into
the Perl documentation and read some of the books we list in Appendix A.

Download from <www.wowebook.com>

ptg

2 ❘ Introduction

There is a lot to learn about Perl.

Once you have worked your way through an introductory book or class on
Perl, you have learned to write what Larry Wall, Perl’s creator, fondly refers
to as “baby talk.” Perl baby talk is plain, direct, and verbose. It’s not bad—
you are allowed and encouraged to write Perl in whatever style works for
you.

You may reach a point where you want to move beyond plain, direct, and
verbose Perl toward something more succinct and individualistic. This
book is written for people who are setting off down that path. Effective Perl
Programming endeavors to teach you what you need to know to become a
fluent and expressive Perl programmer. This book provides several differ-
ent kinds of advice to help you on your way.

■ Knowledge, or perhaps, “Perl trivia.” Many complex tasks in Perl
have been or can be reduced to extremely simple statements. A lot of
learning to program effectively in Perl entails acquiring an adequate
reservoir of experience and knowledge about the “right” ways to do
things. Once you know good solutions, you can apply them to your
own problems. Furthermore, once you know what good solutions look
like, you can invent your own and judge their “rightness” accurately.

■ How to use CPAN. The Comprehensive Perl Archive Network is mod-
ern Perl’s killer feature. With over 5 gigabytes of Perl source code,
major frameworks, and interfaces to popular libraries, you can accom-
plish quite a bit with work that people have already done. CPAN
makes common tasks even easier with Perl. As with any language, your
true skill is your ability to leverage what has already been done.

■ How to solve problems. You may already have good analytical or
debugging skills from your work in another programming language.
This book teaches you how to beat your problems using Perl by show-
ing you a lot of problems and their Perl solutions. It also teaches you
how to beat the problems that Perl gives you, by showing how to effi-
ciently create and improve your programs.

■ Style. This book shows you idiomatic Perl style, primarily by exam-
ple. You learn to write more succinct and elegant Perl. If succinctness
isn’t your goal, you at least learn to avoid certain awkward constructs.
You also learn to evaluate your efforts and those of others.

■ How to grow further. This book doesn’t cover everything you need to
know. Although we do call it a book on advanced Perl, not a whole lot
of advanced Perl can fit between its covers. A real compendium of

Download from <www.wowebook.com>

ptg

advanced Perl would require thousands of pages. What this book is
really about is how you can make yourself an advanced Perl pro-
grammer—how you can find the resources you need to grow, how to
structure your learning and experiments, and how to recognize that
you have grown.

We intend this as a thought-provoking book. There are subtleties to many
of the examples. Anything really tricky we explain, but some other points
that are simple are not always obvious. We leave those to stand on their
own for your further reflection. Sometimes we focus on one aspect of the
example code and ignore the surrounding bits, but we try to make those
as simple as possible. Don’t be alarmed if you find yourself puzzling some-
thing out for a while. Perl is an idiosyncratic language, and in many ways
is very different from other programming languages you may have used.
Fluency and style come only through practice and reflection. While learn-
ing is hard work, it is also enjoyable and rewarding.

The world of Perl

Perl is a remarkable language. It is, in our opinion, the most successful
modular programming environment.

In fact, Perl modules are the closest things to the fabled “software ICs”
(that is, the software equivalent of integrated circuits, components that
can be used in various applications without understanding all of their
inner workings) that the software world has seen. There are many reasons
for this, one of the most important being that there is a centralized, coor-
dinated module repository, CPAN, which reduces the amount of energy
wasted on competing, incompatible implementations of functionality. See
Appendix A for more resources.

Perl has a minimal but sufficient modular and object-oriented program-
ming framework. The lack of extensive access-control features in the lan-
guage makes it possible to write code with unusual characteristics in a
natural, succinct form. It seems to be a natural law of software that the
most-useful features are also the ones that fit existing frameworks most
poorly. Perl’s skeletal approach to “rules and regulations” effectively sub-
verts this law.

Perl provides excellent cross-platform compatibility. It excels as a systems
administration tool on UNIX because it hides the differences between

Introduction ❘ 3

Download from <www.wowebook.com>

ptg

different versions of UNIX to the greatest extent possible. Can you write
cross-platform shell scripts? Yes, but with extreme difficulty. Most mere
mortals should not attempt such things. Can you write cross-platform Perl
scripts? Yes, easily. Perl also ports reasonably well between its UNIX birth-
place and other platforms, such as Windows, VMS, and many others.

As a Perl programmer, you have some of the best support in the world.
You have complete access to the source code for all the modules you use,
as well as the complete source code to the language itself. If picking
through the code for bugs isn’t your speed, you have online support avail-
able via the Internet 24 hours a day, 7 days a week. If free support isn’t
your style, you can also buy commercial support.

Finally, you have a language that dares to be different. Perl is fluid. At its
best, in the presence of several alternative interpretations, Perl does what
you mean (sometimes seen as DWIM, “do what I mean”). A scary thought,
perhaps, but it’s an indication of true progress in computing, something
that reaches beyond mere cycles, disk space, and RAM.

Terminology

In general, the terminology used with Perl isn’t so different than that used
to describe other programming languages. However, there are a few terms
with slightly peculiar meanings. Also, as Perl has evolved, some terminol-
ogy has faded from fashion and some new terminology has arisen.

In general, the name of the language is Perl, with a capital P, and perl is
the name of the program that compiles and runs your source. Unless we
are specifically referring to the interpreter, we default to using the capital-
ized version.

An operator in Perl is a nonparenthesized syntactical construct. (The argu-
ments to an operator may, of course, be contained in parentheses.) A list
operator, in particular, is an identifier followed by a list of elements sepa-
rated by commas:

print "Hello", chr(44), " world!\n";

A function in Perl is an identifier followed by a pair of parentheses that
completely encloses the arguments:

print("Hello", chr(44), " world!\n");

4 ❘ Introduction

Download from <www.wowebook.com>

ptg

Now, you may have just noticed a certain similarity between list operators
and functions. In fact, in Perl, there is no difference other than the syntax
used. We will generally use the term “operator” when we refer to Perl built-
ins like print and open, but may use “function” occasionally. There is no
particular difference in meaning.

The proper way to refer to a subroutine written in Perl is just subroutine.
Of course, “function,” “operator,” and even “procedure” will make accept-
able literary stand-ins. Note that Perl’s use of “function” isn’t the same as
the mathematical definition, and some computer scientists may shudder
at Perl’s abuse of the term.

All Perl methods are really subroutines that conform to certain conven-
tions. These conventions are neither required nor recognized by Perl. How-
ever, it is appropriate to use phrases like “call a method,” since Perl has a
special method-call syntax that is used to support object-oriented pro-
gramming. A good way of defining the (somewhat elusive) difference is
that a method is a subroutine that the author intends you to call via
method-call syntax.

A Perl identifier is a “C symbol”—a letter or underscore followed by one
or more letters, digits, or underscores. Identifiers are used to name Perl
variables. Perl variables are identifiers combined with the appropriate
punctuation, as in $a or &func.

Although not strictly in keeping with the usage in the internals of Perl, we
use the term keyword to refer to the small number of identifiers in Perl
that have distinctive syntactical meanings—for example, if and while.
Other identifiers that have ordinary function or operator syntax, such as
print and oct, we call built-ins, if anything.

An lvalue (pronounced “ell value”) is a value that can appear on the left-
hand side of an assignment statement. This is the customary meaning of
the term; however, there are some unusual constructs that act as lvalues in
Perl, such as the substr operator.

Localizing a variable means creating a separate scope for it that applies
through the end of the enclosing block or file. Special variables must be
localized with the local operator. You can localize ordinary variables with
either my or local (see Item 43 in Chapter 4). This is an unfortunate legacy
of Perl, and Larry Wall wishes he had used another name for local, but
life goes on. We say “localize with my” when it makes a difference.

Introduction ❘ 5

Download from <www.wowebook.com>

ptg

Notation

In this book we use Joseph’s PEGS (PErl Graphical Structures) notation to
illustrate data structures. It should be mostly self-explanatory, but here is
a brief overview.

Variables are values with names. The name appears in a sideways “picket”
above the value. A scalar value is represented with a single rectangular box:

Arrays and lists have a similar graphical representation. Values are shown
in a stack with a thick bar on top:

A hash is represented with a stack of names next to a stack of correspon-
ding values:

$cat

Buster

@cats

Buster

Mimi

Ginger

Ella

%microchips

Mimi 9874

Ginger 5207

Buster 1435

Ella 3004

6 ❘ Introduction

Download from <www.wowebook.com>

ptg

References are drawn with dots and arrows as in those LISP diagrams from
days of yore:

That’s all there is to the basics.

Perl style

Part of what you should learn from this book is a sense of good Perl style.

Style is, of course, a matter of preference and debate. We won’t pretend to
know or demonstrate The One True Style, but we hope to show readers
one example of contemporary, efficient, effective Perl style. Sometimes our
style is inconsistent when that aids readability. Most of our preference
comes from the perlstyle documentation.

The fact that the code appears in a book affects its style somewhat. We’re
limited in line lengths, and we don’t want to write overly long programs
that stretch across several pages. Our examples can’t be too verbose or bor-
ing—each one has to make one or two specific points without unnecessary
clutter. Therefore, you will find some deviations from good practice.

In some examples, we want to highlight certain points and de-emphasize
others. In some code, we use ... to stand in for code that we’ve left out.
Assume that the ... stands for real code that should be there. (Curiously,
by the time this book hits the bookstores, that ... should also be compi-
lable Perl. Perl 5.12 introduces the “yadda yadda” operator, which compiles
just fine, but produces a run time error when you try to execute it. It’s a
nice way to stub out code.)

Some examples need certain versions of Perl. Unless we specify otherwise,
the code should run under Perl 5.8, which is an older but serviceable

$cats

Mimi

Buster

Ginger

Ella

Introduction ❘ 7

Download from <www.wowebook.com>

ptg

 version. If we use a Perl 5.10 feature, we start the example with a line that
notes the version (see Item 2 in Chapter 1):

use 5.010;

We also ignore development versions of Perl, where the minor version is
an odd number, such as 5.009 and 5.011. We note the earliest occurrence
of features in the first stable version of Perl that introduces it.

Not everything runs cleanly under warnings or strict (Item 3). We
advise all Perl programmers to make use of both of these regularly. How-
ever, starting all the examples with those declarations may distract from
our main point, so we leave them off. Where appropriate, we try to be
strict clean, but plucking code out of bigger examples doesn’t always
make that practical.

We generally minimize punctuation (Item 18). We’re not keen on “Perl
golf,” where people reduce their programs to as few characters as they can.
We just get rid of the unnecessary characters and use more whitespace so the
important bits stand out and the scaffolding fades into the background.

Finally, we try to make the examples meaningful. Not every example can
be a useful snippet, but we try to include as many pieces of real-world code
as possible.

Organization

The first two chapters generally present material in order of increasing
complexity. Otherwise, we tend to jump around quite a bit. Use the table
of contents and the index, and keep the Perl documentation close at hand
(perhaps by visiting http://perldoc.perl.org/).

We reorganized the book for the second edition. Appendix B shows a map-
ping from Items in the first edition to Items in this edition. We split some
first-edition Items into many new ones and expanded them; some we com-
bined; and some we left out, since their topics are well covered in other
books. Appendix A contains a list of additional resources we think you
should consider.

The book doesn’t really stop when you get to the end. We’re going to keep
going at http://effectiveperlprogramming.com/. There you can find more
news about the book, some material we left out, material we didn’t have
time to finish for the book, and other Perl goodies.

8 ❘ Introduction

Download from <www.wowebook.com>

ptg

1 ❘ The Basics of Perl

9

If you are experienced in other languages but new to Perl, you are proba-
bly still discovering Perl’s idiosyncrasies. This section deals with some of
those idiosyncrasies. In particular, it addresses those that can bedevil newly
minted Perl programmers who are still attuned to other languages.

For example, you should already know that a Perl variable is generally
made up of some mark of punctuation like $ or @ followed by an identi-
fier. But do you know whether different types of variables with the same
name, such as $a and @a, are completely independent of one another?
They are (see Item 5 in this chapter).

You should know that @a is an array, but do you know the difference
between $a[$i] and @a[$i]? The latter is a slice (Item 9).

You should know that the number 0 is false, and that the empty string, '',
is false, but do you know whether the string consisting of a single space, ' ',
is false? It’s true (Item 7).

Perl has many other interesting quirks that reflect its heritage of stealing
the best from many other languages, with the addition of some uncom-
mon ideas from its linguist creator, Larry Wall. Once you start to think as
Perl thinks, however, these quirks make much more sense.

If you are an experienced Perl programmer, these basic items will be mostly
review for you. However, you may find some interesting details that you
haven’t caught before, or perhaps other ways to explain concepts to your
colleagues.

Item 1. Find the documentation for Perl and its modules.

Perl comes with a lot of documentation—more than you’d ever want to
put on paper. You’d use a couple of reams of paper and a lot of toner to
print it all. We lost count after the documentation got to be around 2,000
pages (on our virtual printer, so no trees harmed).

Download from <www.wowebook.com>

ptg

10 ❘ Chapter 1 The Basics of Perl

There is a huge amount of useful information in the documentation files,
so it pays to be able to read them, but even more than that, to find infor-
mation in them. Part of the ability to find what you need is knowledge,
and part of it is tools.

The perldoc reader

The perldoc command searches the Perl tree for Perl modules (.pm) with
embedded documentation, documentation-only .pod files (Item 82), and
installed Perl programs. The perldoc command formats and displays the
documentation it finds. To start, read perldoc’s own documentation:

% perldoc perldoc

PERLDOC(1) User Contributed Perl Documentation

NAME

C<perldoc> - Look up Perl documentation in pod format.

SYNOPSIS

C<perldoc> [-h] [-v] [-t] [-u] [-m] [-l]

... etc. ...

In general, you give perldoc the name of the documentation page you
want to read. The perltoc is the table of contents that shows you all of the
page names:

% perldoc perltoc

You might be interested in perlsyn, the page that discusses general Perl
 syntax:

% perldoc perlsyn

If you want to read about Perl built-ins, you look in perlfunc:

% perldoc perlfunc

You should read through perlfunc at least once just to see all that Perl has
to offer. You don’t have to remember everything, but you might later
remember that Perl has a built-in to, say, interact with the /etc/passwd file
even if you don’t remember what that built-in is called. You’ll also notice
that it’s extremely annoying to scroll through the output to find the built-
in that you need. If you know the built-in that you want to read about,

Download from <www.wowebook.com>

ptg

specify it along with the -f switch, which pulls out just the part for that
function:

% perldoc -f split

You can also read module documentation with perldoc; just give it the
module name:

% perldoc Pod::Simple

If you wonder where that module is installed, you can use the -l (letter ell)
switch to get the file location:

% perldoc -l Pod::Simple

If you want to see the raw source, use the -m switch:

% perldoc -m Pod::Simple

The Perl documentation comes with several FAQ files that answer many
common questions. You can read through them online, but perldoc also
has a nice feature to search them with the -q switch. If you wanted to find
answers that deal with random numbers, for example, you can try:

% perldoc -q random

Online documentation

As we write this, http://perldoc.perl.org/ is the best site for Perl documen-
tation. It contains the core documentation that comes with the last several
versions Perl as HTML and PDF, and it’s smart enough to remember doc-
umentation that you’ve looked at before.

That site doesn’t have all of the module documentation files, though. You
can read those online at CPAN Search (http://search.cpan.org/) or Kobes’s
Search (http://kobesearch.cpan.org/), both of which give you a Web inter-
face to CPAN. Some people find this documentation so convenient that
they’ll read it before they check their local systems.

CPAN Search is especially useful in that it provides “Other tools,” a link
that you’ll find on each module page. One of those tools is a grep-like fea-
ture that lets you search the documentation inside a single distribution.
That can be quite handy for tracking down the file giving you an error
message, for instance.

Item 1. Find the documentation for Perl and its modules ❘ 11

Download from <www.wowebook.com>

ptg

AnnoCPAN (http://annocpan.org/) is another site for module documen-
tation. On this site, any person can annotate the docs, leaving notes for
the module authors or other people. This is especially handy when the
documentation is missing information or has incorrect or incomplete
information.

Local documentation

You can get some of the features of CPAN Search on your local system.
The CPAN::Mini::Webserver provides a way to browse your MiniCPAN
(Item 66). If you run an Apache Web server, the Apache::Perldoc mod-
ule can act as your Web front end to the perldoc command.

The Pod::POM::Web module can also let you browse your local docu-
mentation. You can set it up under Apache as a mod_perl handler, as a
CGI script, or as its own Web server:

% perl -MPod::POM::Web -e "Pod::POM::Web->server"

Things to remember

■ Use perldoc to read Perl’s documentation.
■ Read uninstalled-module documentation on the Web.
■ Set up a local documentation server to read local documentation with

your Web browser.

Item 2. Enable new Perl features when you need them.

Starting with Perl 5.10, you must explicitly enable new features. This
ensures that the latest release of Perl can be backward compatible while at
the same time letting people start new work using all of the latest nifty fea-
tures.

For instance, Perl 5.10 adds a say built-in that is just like print except
that it adds the trailing newline for you. Not only is your string a couple
of characters shorter, but you don’t have to double-quote the string just for
the newline:

say 'Hello!'; # just like print "Hello\n";

12 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

If someone had already created their own say, their program might break
if they run it with Perl 5.10 using the now built-in with the same name.
Fortunately, Perl doesn’t enable new features by default:

% perl5.10.1 say.pl # doesn't use new features

String found where operator expected at old_script.pl ↵

line 1, near "say "Hello!""

(Do you need to predeclare say?)

If you want the new features, you can enable them with the new -E switch.
It’s just like the -e that lets you specify your program text on the com-
mand line, but it also brings in the all of the latest features for your version
of Perl:

% perl5.10.1 -E say.pl # use new features up to 5.10.1

% perl5.12.0 -E say.pl # use new features up to 5.12.0

You can also enable the features inside the program text. With the use
directive followed by a Perl version, not only do you ensure that people
run your program with a compatible version (Item 83), but you also enable
the new features for that version:

use 5.010; # use new features up to 5.10

Starting with Perl 5.12, you can automatically turn on strictures (Item 3)
by requiring that version or later:

use 5.012; # automatically turns on strict

Whenever we want to use features specific to a version of Perl, we’ll include
a similar line in the example to let you know.

Another way to pull in features is with the feature pragma, also intro-
duced with Perl 5.10. You can give it a “feature bundle” to tell it which set
of features to enable:

use feature ':5.10';

You might not want to enable every new feature. You can control which
new features you use with the feature pragma. For instance, you can limit
feature to activating only switch and say:

use feature qw(switch say);

Item 2. Enable new Perl features when you need them ❘ 13

Download from <www.wowebook.com>

ptg

It’s odd that you import switch although Perl’s version of that idea uses
the keywords given-when (Item 24). It’s a holdover from C jargon.

Things to remember

■ Starting with Perl 5.10, explicitly enable new features if you want to
use them.

■ Use the -E command-line switch to enable all new features.
■ Use the use VERSION sequence to require at least that version of Perl

and enable all new features as of that version.

Item 3. Enable strictures to promote better coding.

Perl is, by default, a very permissive language. You can quickly throw
together some statements with a minimum of fuss. Perl takes care of most
of the details with as little typing from you as possible. It’s a feature.

That permissiveness, however, isn’t so attractive a feature for larger pro-
grams where you’d like Perl to help you manage your coding. The strict
pragma makes Perl much less permissive. In all of your Perl files, add this
line:

use strict;

If you are using Perl 5.12 or later, you can automatically enable strictures
by requiring that version or later (Item 2):

use 5.012; # use strict enabled automatically

By enabling strictures, you’ve just caught most of the common errors that
programmers make. Most of the rest you can catch with warnings (Item
99). These features might be annoying for a couple of weeks, but bit by bit
your coding will improve, and strict will become less-and-less annoying
until you don’t even realize that it is there.

If you’re translating legacy code that is not strict-safe, you might start
by enabling it on the command line to see all of the errors before you com-
mit to it:

perl -Mstrict program.pl

There are three parts to strictures: vars, subs, and refs. Normally you use
all three of them together, but we will cover them separately.

14 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

Declare your variables

Misspellings are an all-too-common source of errors in Perl programs.
You put your data in one variable, but then use the wrong variable name
later. In the following example, you read into @temp but then try to iter-
ate through @tmp. You’re puzzled that you don’t see any output, and no
matter how much you look at the source, you can’t see the problem:

my @temp = <FH>;

foreach (@tmp) { # OOPS -- meant to use @temp

print "Found $_\n";

}

The strict vars pragma catches and prevents such errors by making
you declare all of your variables in some fashion. There are three ways you
can declare a variable. You can declare it with my or our:

use strict 'vars';

my @temp;

our $temp;

Use the full package specification:

use strict 'vars';

$main::name = 'Buster';

Or list variables in use vars:

use strict 'vars';

use vars qw($bar);

$bar = 5;

You never have to declare the special variables—$_, %ENV, and so on. Addi-
tionally, strict ignores the global versions of $a and $b, which are spe-
cial for sort (Item 22). Any other variable that Perl sees triggers a fatal
error at compile time.

Be careful with barewords

Perl’s default treatment of identifiers with no other interpretation as
strings (sometimes called “poetry mode”) is another potential source of

Item 3. Enable strictures to promote better coding ❘ 15

Download from <www.wowebook.com>

ptg

errors that are hard to spot by visual inspection. Can you spot the error in
the following code?

for ($i = 0 ; $i < 10 ; $i++) {

print $a[i]; # OOPS -- meant to say $a[$i]

}

The subscript i, which should have been $i, is interpreted as the string
“i”, which is interpreted in this context to have a numeric value of 0. Thus,
the contents of $a[0] are printed ten times. Using strict 'subs' turns
off poetry mode and generates errors for inappropriately used identifiers:

use strict 'subs';

for ($i = 0 ; $i < 10 ; $i++) {

print $a[i]; # ERROR

}

The strict 'subs' pragma gets along with the sanctioned forms of bare-
word quoting—alone inside hash-key braces, or to the left of the fat arrow:

use strict 'subs';

$a{name} = 'ok'; # bareword as hash key is OK

$a{-name} = 'ok'; # also OK

my %h = (

last => 'Smith', # bareword left of => is OK

first => 'Jon'

);

Avoid soft references

The strict refs pragma disables soft references (Item 58). Soft refer-
ences aren’t often a source of bugs, but they aren’t a widely used feature
either. They happen when you try to dereference something that is really
a string. Without strictures, Perl uses the value in the string as the name of
the variable:

no strict 'refs';

$not_array_ref = 'buster';

@{$not_array_ref} = qw(1 2 3); # really @buster

16 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

Things to remember

■ By default, Perl is a very permissive programming language.
■ Don’t make Perl guess what you mean when you can be explicit.
■ Enable strict to let Perl catch common programming problems.

Item 4. Understand what sigils are telling you.

Sigils are those funny characters you see at the fronts of Perl variable names
and in dereferencing, and are often the source of people’s confusion about
Perl syntax. Programmers confuse themselves because they guess at what
sigils tell them, read incorrect guesses about them on mailing lists, or have
learned Perl from a tarot-card reader. People are afraid of them when, in
reality, sigils are their best friends.

The sigil is only very loosely related to the variable type itself. In fact, you
don’t even need to have a variable. Don’t think of them as variable type
indicators at all.

The $ means you are working with a single value, which can be a scalar
variable or a single element accessed in an array or hash:

$scalar

$array[3]

$hash{'key'}

The @ means you are working with multiple values, so you’ll use it with
arrays or hashes, since they are the only collection types Perl has:

@array

@array[0,2,6] # an array slice

@hash{ qw(key1 key2) } # a hash slice

The % sign is a bit special. It means you’re treating something as a hash, and
there is only one variable type and access method that can act as a hash,
which is the whole hash itself:

%hash

Perl also has sigils for subroutines (&) and typeglobs (*), but they are used
only for those types, so we won’t bother with them here.

Item 4. Understand what sigils are telling you ❘ 17

Download from <www.wowebook.com>

ptg

Now that you know not to use sigils to recognize variable types, how do
you know what sort of variable you’re looking at? There are three factors
to consider: the sigil, the identifier, and possible indexing syntax for arrays
or hashes. You can see all three in a single-element access to an array:

SIGIL IDENTIFIER INDEX

$ name [3]

$name[3]

The sigil is $, the identifier is name, and the indexing is [3]. You know that
the variable is name, and you know that it’s an array variable because that’s
the only type that uses [] for indexing. You do the same thing for hashes:

SIGIL IDENTIFIER INDEX

$ name {'Buster'}

$name{'Buster'}

You know that you are working with a hash variable because you use the
{ } for indexing and because you use a string for the index. The $ tells you
only that this variable contains a single element from the hash.

If you don’t see a single-element access, you can determine the variable
type by looking at the sigil:

$scalar

@array

%hash

You also use sigils to dereference anonymous scalars, arrays, and hashes.
You use the same rules to figure out the reference type (Item 59).

Things to remember

■ Sigils relate to the data, not necessarily the variable type.
■ The $ indicates a single element.
■ The @ indicates a list of elements.

18 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

Item 5. Know your variable namespaces.

There are seven separate kinds of package variables or variable-like ele-
ments in Perl: scalar variables, array variables, hash variables, subroutine
names, format names, filehandles, and directory handles.

Each of these different kinds of package variables has its own namespace.
Changing the value of one kind of variable does not in any way affect the
value of another kind of variable with the same name. For example, the
scalar variable $a is independent of the array variable @a:

my $a = 1; # set scalar $a = 1

my @a = (1, 2, 3); # @a = (1,2,3) but $a is still 1

Also, each package in a Perl program defines its own set of namespaces. For
example, $a in package main is independent of $a in package foo:

$a = 1; # set scalar $main::a = 1

package foo; # default package is now foo

$a = 3.1416; # $foo::a is 3.1416; $main::a still 1

You have to look to the right as well as the left of an identifier, as Perl does,
to determine what kind of variable the identifier refers to. For example,
the syntax for accessing single elements of arrays and hashes begins with
$, not @ or %. The $ means that the result is a scalar value, not that you are
referring to a scalar variable (Item 4):

my $a = 1;

my @a = (1, 2, 3);

my %a = (a => 97, b => 98);

$a[3] = 4; # $a is still 1; @a is (1,2,3,4) now

$a{'c'} = 99; # $a, @a still the same;

%a has three key-value pairs now

Not all variable-like items in Perl are prefixed with punctuation characters.
Subroutine names can be prefixed with ampersand (&), but the amper-
sand is generally optional. The parentheses around subroutine arguments
can also be omitted in some cases, as in the following example.

Define a subroutine named “hi” to see the different ways you can call it:

sub hi {

my $name = shift;

return "hi, $name\n";

}

Item 5. Know your variable namespaces ❘ 19

Download from <www.wowebook.com>

ptg

You can call the subroutine using the “old-style” syntax, including the
ampersand and the parentheses:

print &hi("Fred");

This style isn’t seen as often in new code. Instead, you’ll see subroutines
called with only parentheses:

print hi("Fred");

The parentheses give perl enough information to know that hi is a sub-
routine. If hi has been declared or defined before you use it, even the
parentheses are optional:

print hi "Fred";

Filehandles, format names, and directory handles are not prefixed with
punctuation characters, but are recognized in context. The filehandle,
directory handle, and format name are independent of one another, even
though they are all named TEST:

open TEST, '>', "$$.test" # open filehandle TEST

print TEST "test data\n"; # print to filehandle TEST

opendir TEST, "."; # directory handle named TEST

format named TEST

format TEST = @<<<<<<<<<<<<< @<<<< @<<<<

$name, $lo, $hi

.

If this seems like it can get confusing, it can. Luckily, it is now common for
people to store filehandles and directory handles in objects, thanks to
IO::File and IO::Dir.

Things to remember

■ Each variable type has its own namespace.
■ Different types of variables with the same name don’t affect each

other.
■ Variables in different packages can have the same name but not affect

each other.

20 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

Item 6. Know the difference between string and numeric
comparisons.

Perl has two completely different sets of comparison operators, one for
comparing strings and one for comparing numbers. It’s worthwhile to
know the difference and to keep them straight, since using the wrong com-
parison operator can be a source of hard-to-find bugs.

The operators used to compare strings use letters and look like words, or
like FORTRAN. Strings are compared character-by-character—that is, by
comparing the values of the characters in the strings (or by the current
locale, if you have use locale), including case, spaces, and the like:

'a' lt 'b' # TRUE

'a' eq 'A' # FALSE -- capitalization

"joseph" eq "joseph " # FALSE -- spaces count

Numeric comparison operators use punctuation and look like algebra, or
like C:

0 < 5 # TRUE

10 == 10.0 # TRUE

String-comparison operators should not be used for comparing numbers
since they don’t compare numbers properly (unless your definition of
“properly” puts “10” before “2”). The same applies for numeric operators
used to compare strings:

'10' gt '2' # FALSE -- '1' sorts before '2'

"10.0" eq "10" # FALSE -- different strings

'abc' == 'def' # TRUE -- both look like 0 to ==

The kind of mistake this leads to is conditionals that are true when you
don’t want them to be since both operands turn into numbers:

my $hacker = 'joebloe';

if ($user == $hacker) { # WRONG -- == used on strings

deny_access();

}

Perl’s sort operator uses string comparisons by default. Don’t use string
comparisons to sort numbers (Item 22)!

Item 6. Know the difference between string and numeric comparisons ❘ 21

Download from <www.wowebook.com>

ptg

One way around the confusion of eq and == is to avoid both of them.
Instead of getting it right, let Perl think about it for you by using the smart
match operator, ~~ (Item 23). It looks on either side and figures out what to
do. It also uses the idea of “numish” strings—strings that look like numbers.

These comparisons are really numeric comparisons because the smart
match sees a number on the righthand side, or it sees a number on the
lefthand side and a numish string on the righthand side, causing the com-
parison to be performed with the == operator:

use 5.010;

if (123 ~~ '456') { ... } # Number and numish: FALSE

if ('123.0' ~~ 123) { ... } # String and number: TRUE

if ('Mimi' ~~ 456) { ... } # String and number: FALSE

Otherwise, the smart match will make a string comparison using the eq
operator:

if ('Mimi' ~~ 'Mimi') { ... } # String and string: TRUE

This can be a little tricky. Numish strings on both sides are still a string
comparison (eq operator):

if ('123.0' ~~ '123') { ... } # numish and numish: FALSE

You need to be careful when you use variables with smart match, since
their history in the program matters. If you previously did something to
$var to trigger a conversion (Item 8), you might get unexpected results as
the smart match chooses the wrong comparison type. In the following
cases, you start with a string but convert it to a number by using it with a
numeric operator, forcing a numeric comparison with the == operator:

use 5.010;

if (('123' + 0) ~~ '123.0') { # Number and numish: TRUE

say "Matched 1!";

}

my $var = '123';

if (($var + 0) ~~ '123.0') { # Number and numish: TRUE

say "Matched 2!";

}

22 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

my $var2 = '123';

$var2 + 0;

if ($var2 ~~ '123.0') { # Number and numish: TRUE

say "Matched 3!";

}

However, if you start with a number but make it into a string, Perl sees it
only as a string and forces eq semantics on it.

use 5.010;

my $var3 = 123;

$var3 = "$var3";

if ($var3 ~~ '123.0') { # string and numish, eq, FALSE

say "Matched 4!";

}

Things to remember

■ Remember that strings and numbers compare and sort differently.
■ Use the letter comparison operators to compare strings.
■ Use the symbol comparison operators to compare numbers.

Item 7. Know which values are false and test them accordingly.

Since numeric and string data in Perl have the same scalar type, and since
Boolean operations can be applied to any scalar value, Perl’s test for logi-
cal truth has to work for both numbers and strings.

The basic test is this: 0, '0', undef, and '' (the empty string) are false.
Everything else is true.

More precisely, when you use a quantity in Boolean context (a term some-
times used to refer to conditionals in control expressions, such as the ?:
operator, ||, and &&), it is first converted to a string (Item 8). Perl then
tests the string result. If the result is the empty string, or a string consist-
ing exactly of the single character '0', the result is false. Otherwise, the
result is true. Note that this rule means that undef will evaluate as false,
since it always looks like 0 or the empty string to everything except the
defined operator.

Item 7. Know which values are false and test them accordingly ❘ 23

Download from <www.wowebook.com>

ptg

This generally works very well. If problems arise, it’s probably because you
tested a quantity to see if it is false when really you should have tested to
see if it is defined:

while (my $file = glob('*')) { # WRONG

do_something($file);

}

That glob works well almost all of the time. Each time through the loop,
the glob('*') produces another filename from the current directory,
which goes into $file. Once glob has gone through all the filenames in
the directory, it returns undef, which appears to be the empty string and
therefore false, causing the while loop to terminate.

There is one problem, though. If there is a file named 0 in the current
directory, it also appears to be false, causing the loop to terminate early. To
avoid this, use the defined operator to test specifically for undef:

while (defined(my $file = glob('*'))) { # CORRECT

do_something($file);

}

The situation is exactly the same for the line-input operator, <>, although
Perl does this for you automatically. It looks like you’re testing the line
from STDIN in this while:

while (<STDIN>) {

do_something($_);

}

However, this is a special case in which Perl automatically converts to check
$_ for definedness:

while (defined($_ = <STDIN>)) { # implicitly done

do_something($_);

}

You can verify this for yourself with B::Deparse, which undoes the result
of perl’s compilation so you can see what it thought of your code:

% perl -MO=Deparse \

-e 'while(<STDIN>) { do_something($_) }'

while (defined($_ = <STDIN>)) {

do_something($_);

24 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

}

-e syntax OK

If you want to use another variable to hold the line you just read, you have
to do the defined check yourself:

while (defined(my $line = <STDIN>)) {

do_something($line);

}

The end of the array

The mere fact that an array element is not defined doesn’t mean that
you’ve gone beyond the bounds of the array. Normally, Perl is very toler-
ant of out-of-bounds accesses that make other languages cranky:

my @cats = qw(Buster Roscoe Mimi);

my $favorite = $cats[8]; # there's no cat there, so undef

It’s perfectly fine to have an undef value in the middle of an array, too:

my @cats = qw(Buster Roscoe Mimi);

$cats[1] = undef; # R.I.P. Roscoe

You don’t want to use the value to decide whether you have gone through
each element of the array:

while (defined(my $cat = shift @cats)) { # WRONG

print "I have a cat named $cat\n";

}

Instead, ensure that you go through all of the elements by using foreach,
and skip those that aren’t defined:

foreach my $cat (@cats) {

next unless defined $cat;

print "I have a cat named $cat\n";

}

If you need to know the last element of the array, don’t look for undef
values. The $#cats syntax gives you the last element.

for (my $i = 0 ; $i <= $#cats ; $i += 2) {

next unless defined $cat[$i];

print "I have a cat named $cat[$i]\n";

}

Item 7. Know which values are false and test them accordingly ❘ 25

Download from <www.wowebook.com>

ptg

Hash values

You may also need to use a different testing strategy to check whether an
element is present inside a hash, as undef is a perfectly acceptable value in
a hash. Suppose %hash is undefined to start. Checking for the key foo
results in false as a value, with defined, and with exists:

my %hash;

if ($hash{'foo'}) { ... } # FALSE

if (defined $hash{'foo'}) { ... } # also FALSE

if (exists $hash{'foo'}) { ... } # also FALSE

Once you assign to a key, even with a false or undefined value, the key
exists:

$hash{'foo'} = undef; # assign an undef value

if ($hash{'foo'}) { ... } # still FALSE

if (defined $hash{'foo'}) { ... } # still FALSE

if (exists $hash{'foo'}) { ... } # now TRUE

print keys %hash; # ('foo')

Assigning a defined value, even if it is false, makes the value defined:

$hash{'foo'} = '';

if ($hash{'foo'}) { ... } # still FALSE

if (defined $hash{'foo'}) { ... } # now TRUE

if (exists $hash{'foo'}) { ... } # now TRUE

Before you test hash-element access, figure out what you really want to
test. There isn’t one right answer; it depends on how you want to handle
the value.

Things to remember

■ There are four false values: undef, '', 0, and '0'.
■ Everything other than the four false values is true.
■ Ensure you test for the type of value that you want, not just truth.

26 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

Item 8. Understand conversions between strings and numbers.

Perl’s scalar variables can contain either string or numeric data. They can
also contain both at the same time, usually as the result of converting string
data to a number, or vice versa.

Perl automatically converts values from numeric to string representation,
or vice versa, as required. For example, if a string appears next to a numeric
operator like +, Perl converts the string value to a number before pro-
ceeding with the arithmetic. If a number is the object of a pattern match,
Perl first converts the number to a string.

Places where Perl expects strings are called string contexts, and places
where Perl expects numbers are called numeric contexts. These are nice
terms to know, but we won’t use them very often in this book, since it
rarely makes any real difference.

The function Perl uses to convert numbers to strings is the C standard
library’s sprintf() with a format of "%.20g". If you need to use a par-
ticular format, use Perl’s sprintf:

my $n = sprintf "%10.4e", 3.1415927; # "3.1416e+00"

The function used for converting strings to numbers is the C standard
library’s atof(). Any leading white space is ignored. Perl uses whatever
leading part of the string appears number-like and ignores the rest. Perl
converts anything that doesn’t look like a number to 0. For example:

my $n = 0 + "123"; # 123

my $n = 0 + "123abc"; # also 123 -- trailing stuff

ignored

my $n = 0 + "\n123"; # also 123 -- leading whitespace

my $n = 0 + "a123"; # 0 -- no number at beginning

my $n = 0 + "\x{2165}"; # 0 -- Roman numerals aren't

numbers

The conversion process does not recognize octal or hexadecimal. Use the
oct operator to convert octal or hexadecimal strings:

my $n = 0 + "0x123"; # 0 -- looks like number 0

my $n = 0 + oct("0x123"); # 291 -- oct converts octal

and hex to decimal

print "mode (octal): "; # prompt for file mode

Item 8. Understand conversions between strings and numbers ❘ 27

Download from <www.wowebook.com>

ptg

chmod <STDIN>, $file; # WRONG -- string from STDIN

is interpreted as decimal,

not octal

print "mode (octal): "; # prompt for file mode

chmod oct(<STDIN>), $file; # RIGHT -- mode string converted

to octal

When Perl automatically converts a number to a string or vice versa, it
keeps both representations until the value of the variable is changed.

Strings and numbers at the same time

Usually, it does not matter whether a variable contains a string or a
numeric value, but there are a few occasions when it does. For example, the
bitwise numeric operators act on the whole numeric value if applied to a
number, but character-wise if applied to a string:

my $a = 123;

my $b = 234;

my $c = $a & $b; # number 106

$a = "$a";

$b = "$b";

my $d = $a & $b; # string "020"

You can see this at work with the Devel::Peek module. Start with a string
that has a value that partially converts to a number, and then use it in a
numerical operation (without changing it):

use Devel::Peek qw(Dump);

my $a = '12fred34'; # converts to 12

print STDERR "Before conversion: ";

Dump($a);

my $b = $a + 0;

print STDERR "After conversion: ";

Dump($a);

print STDERR "\n$a\n";

28 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

The Dump output shows you what Perl is tracking. Although we’re not
going to get into Perl internals, you can see that before the conversion, Perl
has a PV slot where it stores the actual string value. After the conversion, it
also has IV and NV slots where it stores the converted numeric value:

Before conversion: SV = PV(0x801038) at 0x80e770

REFCNT = 1

FLAGS = (PADMY,POK,pPOK)

PV = 0x204c10 "12fred34"\0

CUR = 8

LEN = 12

After conversion: SV = PVNV(0x8023c0) at 0x80e770

REFCNT = 1

FLAGS = (PADMY,IOK,NOK,POK,pIOK,pNOK,pPOK)

IV = 12

NV = 12

PV = 0x204c10 "12fred34"\0

CUR = 8

LEN = 12

The error variable $! is an example of a variable with a “magic” property.
It returns the value of the system variable errno when it is used in a
numeric context, but it returns the string from the perror() function (or
some equivalent for your system) in a string context:

open ""; # invalid file name; should produce

an error

print "$!\n"; # "No such file or directory"

print 0 + $!, "\n"; # "2" (or whatever)

This issue also affects the smart match operator (Item 23) that is implic-
itly used by given-when (Item 24). Since the smart match guesses what
sort of comparison it needs to do, it might make unexpected choices. In
this example, you test two strings using the smart match operator, expect-
ing that it will match only the same string:

use 5.010;

for my $s ('137', ' 137') {

given ($s) {

when ('137') { say "$s matches '137'"; continue }

Item 8. Understand conversions between strings and numbers ❘ 29

Download from <www.wowebook.com>

ptg

when (' 137') { say "$s matches ' 137'" }

}

}

The output shows that the strings match only exactly themselves:

137 matches '137'

137 matches ' 137'

However, a slight modification to the program changes the results. If you
use the string in an arithmetic expression, even without changing the
string explicitly, the smart match does a numeric comparison instead of a
string comparison:

use 5.010;

for my $s ('137', ' 137') {

my $t = $s + 0;

given ($s) {

when ('137') { say "$s matches '137'"; continue }

when (' 137') { say "$s matches ' 137'" }

}

}

Now you get more matches than you expect:

137 matches '137'

137 matches ' 137'

137 matches '137'

137 matches ' 137'

Create your own dualvar

You don’t need to use Perl’s internal conversion to create “dualvars”—
variables that have different string and numeric values depending on con-
text. Here’s a subroutine that returns both a numeric error code and an
error string, all in one normal scalar value:

use Scalar::Util qw(dualvar);

sub some_sub {

...

30 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

if ($error) {

return dualvar(-1,

'You are not allowed to do that');

}

}

my $return_value = some_sub();

The variable $return_value keeps its distinct numeric and string values
until you change it. However, now that you know this, don’t start using it
everywhere. Save it for very special situations, like impressing people at
conferences and cocktail parties.

Things to remember

■ Perl uses a scalar as a string or number based on context.
■ Perl converts a string to a number using its best guess.
■ If a string doesn’t look like a number, Perl converts it to 0.

Item 9. Know the difference between lists and arrays.

Lists and arrays are different things. If you can recognize when you have
one or the other, along with the rules that apply to each, you’ll be far ahead
of most people (and even most Perl books, for that matter). Some of the
most powerful idioms in Perl depend on this difference.

A list is an ordered collection of scalars. You can construct lists yourself, get
them as return values from built-ins and subroutines, or extract them from
other lists.

An array is a variable that contains a list, but isn’t the list itself. It’s a con-
tainer for the list.

Part of the confusion comes from a shared syntax. You can extract single
elements from both a list and an array using the same syntax:

(localtime)[5]; # the year

$array[5];

Item 9. Know the difference between lists and arrays ❘ 31

Download from <www.wowebook.com>

ptg

You can also slice both a list and an array with the same syntax:

(localtime)[5, 4, 3]; # the year, month, and day

@array[5, 4, 3];

The comma operator

Although you can have an array, which is a variable, in a scalar context,
there’s no such thing as a list in scalar context. If you use an array in a
scalar context, you get the number of elements in the array:

my @array = qw(Buster Mimi Roscoe);

my $count = @array; # 3

A list is always only a list. It has no scalar interpretation. Consider how
you construct a list. You separate a series of scalars with the comma oper-
ator (yes, it’s an operator):

('Buster', 'Mimi', 'Roscoe')

Is that a list? Well, you really don’t know yet. You have to use that series of
scalars in an expression that expects a list. Assigning it to an array or using
it in a foreach loop provides a list context:

my @cats = ('Buster', 'Mimi', 'Roscoe');

foreach (qw(Buster Mimi Roscoe)) {

...;

}

(The qw() quoting doesn’t change anything. It’s just a syntactic shortcut.)

What if you assign the same literal text to a scalar variable? Do you have a
list then? What shows up in $scalar?

my $scalar = ('Buster', 'Mimi', 'Roscoe');

my $scalar = qw(Buster Mimi Roscoe);

Many people guess that $scalar gets the value 3 because they think they
have a three-item list. But they don’t have a list on the righthand side; they
have a series of scalars separated by the comma operator. The comma
operator in scalar context returns its rightmost element. Perl assigns the
value Roscoe to $scalar.

32 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

People mess up this concept because they test it incorrectly. What’s a com-
mon list to try?

my $scalar = (1, 2, 3);

In this case, the number of scalars on the righthand side just happens to
be the same as the last element on the righthand side, but you still do not
have a list.

Assignment in list context

Another dark corner of Perl is the assignment operator. Most people think
they understand it, but don’t realize that it has a result just like any other
operator. In list context, the assignment operator returns the number of
elements on the righthand side. It doesn’t assign that; it’s just the return
value, which hardly anyone ever uses for anything:

my $elements = my @array = localtime;

The assignment operator is right associative, so the rightmost assignment
operator does its work first, assigning the list produced by localtime to
@array. This part of the operation has its own result that it then assigns
to $elements. If you had written it with grouping parentheses to show
the order of the operation, it would look like:

my $elements = (my @array = localtime);

The rule at work is that a list assignment in scalar context returns the num-
ber of elements on the righthand side of the assignment. It’s true; read
about it in perlop. This is such an important concept that you should read
it again: A list assignment in scalar context returns the number of elements
on the righthand side.

Knowing this rule, you can use it to your advantage. If you want to count the
number of elements from something that produces a list, you first assign
it to a list, then assign that to a scalar, just as in the previous localtime
example. However, since the rule is right associative, you can actually pro-
vide no elements in the list in the middle that you are assigning to:

my $elements = () = localtime;

Sometimes this is known as the goatse operator and written without
spaces so it resembles a goat’s head (or maybe something else):

my $elements =()= localtime;

Item 9. Know the difference between lists and arrays ❘ 33

Download from <www.wowebook.com>

ptg

This comes in handy when you want to count the number of elements a
global match or a split would produce without doing anything with
those elements. You assign to the empty list to set the context, then save the
result of the assignment:

my $count =()= m/(...)/g;

my $count =()= split /:/, $line;

Things to remember

■ A list is a collection of scalars.
■ An array is a container variable that stores a list.
■ Although many operations look the same for lists and arrays, some are

different.

Item 10. Don’t assign undef when you want an empty array.

Uninitialized scalar variables in Perl have the value undef, a special value
that stands for the absence of value. You can reset scalar variables to their
uninitialized state by assigning undef to them or by using the undef()
function:

my $toast = undef;

undef $history;

Uninitialized array variables, however, have the value (), the empty list. If
you assign undef to an array variable, what you actually get is a list of one
element containing undef. Don’t assign undef to an array variable! Since
a single-element list evaluates to true in Perl, even if that single element is
undef, you can create some hard-to-find problems in your code:

@still_going = undef;

if (@still_going) { ... }

The simplest way to avoid this is to assign the empty list () to array vari-
ables when you want to clear them:

my @going_gone = ();

You can also use the undef function:

undef @going_gone;

34 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

The defined operator is the only way to distinguish undef from 0 or the
empty string ''. The defined operator will work on any value, and will
return true as long as the variable is not undefined:

if (defined($a)) { ... }

if (defined(@a)) { ... }

You can assign undef to an element of an array, but that doesn’t change the
size of the array, it just replaces the value for a given element or set of ele-
ments, creating a potentially sparse array:

$sparse[3] = undef;

@sparse[1, 5, 7] = ();

You can eat up quite a bit of memory by adding undefined values to an
array:

@sparse[0 .. 99] = ();

Note that undef is a perfectly reasonable element value. You cannot
shorten an array by assigning undef values to elements at the end of the
array.

my @a = 1 .. 10;

$a[9] = undef;

print scalar(@a), "\n"; # "10"

To actually shorten an array without assigning a whole new value to it, you
must use one of the array operators like pop:

my $val = pop @a;

print scalar(@a), "\n" # "9"

Or splice:

splice @a, -2;

print scalar(@a), "\n"; # "7"

Or assign to $#array_name:

$#a = 4;

print scalar(@a), "\n"; # "5"

As with arrays, you cannot undefine a hash by assigning undef to it. In
fact, assigning any list with an odd number of elements to a hash results
in a warning message:

Item 10. Don’t assign undef when you want an empty array ❘ 35

Download from <www.wowebook.com>

ptg

Odd number of elements in hash assignment ↵

at program.pl ...

You can assign the empty list () to create an empty hash:

%gone = ();

if (keys %gone) {

print "This will never print\n";

}

Or you can use the undef operator to reset the hash to a pristine state.

my %nuked = (U => '235', Pu => 238);

undef %nuked;

if (keys %nuked) {

print "This won't print either\n";

}

if (defined %nuked) {

print "Nor will this\n";

}

As with arrays, you cannot shorten or remove elements from a hash by
assigning undef values to them. In order to remove elements from a hash
you must use the delete operator, which you can use on hash slices as
well as single elements:

my %spacers = (

husband => "george",

wife => "jane",

daughter => "judy",

son => "elroy",

);

delete $spacers{'husband'};

if (exists $spacers{'husband'}) {

print "Won't print because 'husband' is gone\n";

}

delete @spacers{ 'daughter', 'son' };

36 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

Things to remember

■ Remember that undef is a scalar value.
■ Don’t assign undef to an array to clear it out; it makes a one-element

list.
■ Use exists to check whether a key is in a hash; don’t trust its value.

Item 11. Avoid a slice when you want an element.

Is @a[1] an array element or an array slice? It’s a slice. One of the coun-
terintuitive factors encountered by people just beginning to learn Perl is
the difference between array elements and array slices. Even after you know
the difference, it’s not hard to accidentally type @ instead of $.

An introductory book or course about Perl will typically begin by telling
you that scalar variable names begin with $ and array variable names begin
with @. This is, of course, a gross oversimplification (Item 4).

To access element $n of array @a, you use the syntax $a[$n], not @a[$n].
This may seem peculiar. However, it is a consistent syntax. Scalar values, not
variables, begin with $, even when those values come from an array or hash.

Therefore, @a[$n] doesn’t mean element $n of array @a. Rather, it is some-
thing different, called a slice. A slice is a shortcut way of accessing several
elements at once. Instead of repeating the same variable with different
indexes:

my @giant = qw(fee fie foe fum);

my @queue = ($giant[1], $giant[2]);

You can use a slice to accomplish the same task in a much easier-to-read
manner:

my @giant = qw(fee fie foe fum);

my @queue = @giant[1, 2];

You can even use an array to provide indexing:

my @fifo = (1, 2);

my @queue = @giant[@fifo];

Now, @a[1] is as much a slice as are @a[1, 2], @a[2, 10], @a[5, 3, 1],
@a[3..7], and so on: @a[1] is a list, not a scalar value. It is just a list of one
element.

Item 11. Avoid a slice when you want an element ❘ 37

Download from <www.wowebook.com>

ptg

Watch out for single-element slices. They are dangerous critters if not used
properly. A slice used in a scalar context returns the last value in the slice,
which makes single-element slices work like scalar values in some cases.
For example:

my $jolly = @giant[3];

Probably what was intended here was my $jolly = $giant[3]. The single-
element slice @giant[3] is still okay, sort of, since @giant[3] in a scalar
context evaluates to its last (and in this case only) element, $giant[3].

Although single-element slices work somewhat like array elements on the
righthand side of assignments, they behave very differently on the lefthand
side of assignments. Since a single-element slice is a list, an assignment to
a single element slice is a list assignment, and therefore, the righthand side
of the assignment is evaluated in a list context.

If you have warnings turned on (and why don’t you? Item 99), Perl warns
you about this case:

use warnings;

my @giant = qw(fee fie foe fum);

my $jolly = @giant[3];

Though the result of the operation is what you expected, assigning “fum”
to $jolly, it was not for the right reason. Because of this, you get a warn-
ing message that tells you that you might have an unintended use of a slice:

Scalar value @giant[3] better written as ↵

$giant[3] at ...

Lvalue slices

A slice has all the characteristics of a list of variable names on the lefthand
side of an assignment. You can even use it on the lefthand side of an assign-
ment expression, or in other places where lvalues are required. Using
named variables rather than a slice for a lefthand expression looks very
different, but accomplishes the same task:

($giant[1], $giant[2]) = ("tweedle", "dee");

@giant[1, 2] = ("tweedle", "dee");

38 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

Unintentionally evaluating an operator in a list context can produce dra-
matic (and unfortunate) results. A good example is the line-input opera-
tor, which assigned to a slice or even assigned in list context causes the
entirety of STDIN to be evaluated immediately:

@info[0] = <STDIN>;

($info[0]) = <STDIN>;

This reads all the lines from standard input, assigns the first one to ele-
ment 0 of @info, and ignores the rest! Assigning <STDIN> to @info[0]
evaluates <STDIN> in a list context. In a list context, <STDIN> reads all the
lines from standard input and returns them as a list.

Don’t confuse slices and elements

One more difference between slices and elements is that the expression in
the brackets of an element access is evaluated in a scalar context, whereas
for slices it is evaluated in a list context. This leads to another example of
bizarre behavior that is more difficult to explain.

Suppose you want to add a line containing 'EOF' to the end of the array
@text. You could write this as $text[@text] = 'EOF'. What if you write
@text[@text]instead? You’ll end up making a seriously wrong, but very
innocent-looking, mistake:

chomp(@text = <STDIN>);

@text[@text] = 'EOF';

Perl interprets the array @text inside the brackets in a list context. In a
scalar context it returns the number of elements in @text, but in a list
context it returns the contents of the array itself. The result is a slice with
as many elements are there are lines.

The contents of the lines are interpreted as integer indices—if they’re text
they will likely all turn out to be zero, so the slice will look like @text[0,
0, 0, 0, 0, ...]. Then EOF is assigned to the first element of the slice,
and undef to all the rest, which means that this will probably just overwrite
the first element of @text with undef, leaving everything else alone.

What a mess!

Get in the habit of looking for single-element slices like @a[0] in your pro-
grams. Single-element slices are generally not what you want (though

Item 11. Avoid a slice when you want an element ❘ 39

Download from <www.wowebook.com>

ptg

they’re handy for tricks now and then), and a single-element slice on the
lefthand side of an assignment is almost certainly wrong. Perl::Critic
(Item 112) is a tool that can help you find these cases.

Slicing for fun and profit

Beginning Perl programmers generally do not (intentionally) use slices,
except to select elements from a resulting list:

my ($uid, $gid) = (stat $file)[4, 5];

my $last = (sort @list)[-1];

my $field_two = (split /:/)[1];

However, slices can be put to some pretty interesting (and weird) uses. For
example, here are two slightly different ways to reverse elements 5 through
9 of @list:

@list[5 .. 9] = reverse @list[5 .. 9];

@list[reverse 5 .. 9] = @list[5 .. 9];

Slices provide a handy way to swap two elements:

@a[$n, $m] = @a[$m, $n]; # swap $a[$m] and $a[$n]

@item{ 'old', 'new' } =

@item{ 'new', 'old' }; # swap $item{old} and

$item{new}

Use slices to reorder arrays

Slices are also used in sorting (Item 22).

Given two parallel arrays @uid and @name, this example sorts @name
according to the numerical contents of @uid. The sort orders the indices
in @name, uses that sorted list as a slice, then assigns the slice back to @name:

@name =

@name[sort { $uid[$a] <=> $uid[$b] } 0 .. $#name];

Although this works, it’s not a particularly nice thing to do to your
coworkers.

40 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

Create hashes quickly and easily

You can use hash slices to create hashes from two lists, to overlay the con-
tents of one hash onto another, and to subtract one hash from another.

Creating a hash with 26 elements keyed “A” through “Z” with values of 1
through 26 is easy:

@char_num{ 'A' .. 'Z' } = 1 .. 26;

Overlaying all of the matching elements from an existing hash with those
from a new one, while also adding any elements that exist only in the new
hash, is simple:

@old{ keys %new } = values %new;

This task can be accomplished more tersely, but also less efficiently:

%old = (%old, %new);

“Subtracting” one hash from another is just a matter of deleting from a
hash using a list of keys:

delete @name{ keys %invalid };

The preceding one-line statement replaces the more wordy:

foreach $key (keys %invalid) {

delete $name{$key};

}

Things to remember

■ Use a slice to select multiple elements from a list, array, or hash.
■ Don’t use a slice when you know you need exactly one element.
■ Remember that an lvalue slice imposes list context on the righthand side.

Item 12. Understand context and how it affects operations.

Larry Wall, Perl’s creator, is a linguist at heart, and his creation reflects
that. Just as two people talking to each other rely on their shared context
to understand the conversation, Perl uses information about the opera-
tors to decide how to handle the data. Pay more attention to what you are
doing than what you are doing it to.

You can also make your own context-sensitive code (Item 45).

Item 12. Understand context and how it affects operations ❘ 41

Download from <www.wowebook.com>

ptg

Number and string context

In Perl, context tells operations how to treat data and evaluate expressions.
Sometimes this context is completely determined by the operator. The
arithmetic operators treat data as numbers, while the string operators treat
data as strings:

my $result = '123' + '345'; # 468

my $result = 123 . 345; # '123456'

You must use the correct operator in comparisons (Item 6). If you try to
compare numbers as strings, you can get funny results. As a string, '12' is
less than '2' because the string comparators work character-by-character,
and '1' is less than '2':

if ('12' lt '2') { print "12 is less than 2!\n"; }

Likewise, comparing strings with numeric comparators may give you puz-
zling results. As numbers, foo and bar both convert to 0 (Item 8), so they
are numerically equal:

if ('foo' == 'bar') { print "Oh noes! foo is bar!\n" }

Scalar and list context

Perl enforces scalar context when the operation expects to work with sin-
gle items. It enforces list context when the operation expects to work with
multiple items.

The additive operators (numeric and string) are scalar operators because
they expect single items on either side:

1 + 2

'foo' . 'bar'

List operators expect to work with multiple elements. The print opera-
tor takes a list of items and outputs them:

print reverse(1 .. 10), "\n";

The while condition is in scalar context, but the foreach condition is in
list context, because that is the way they are defined:

while (SCALAR CONTEXT HERE) { ... }

foreach (LIST CONTEXT HERE) { ... }

42 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

This means that the two do different things with the line-input operator.
Consider iterating over a filehandle to process lines, stopping once you
find the __END__ token. With a while loop, you read one line per iteration,
and when you are done with the loop, you can still read another line from
that filehandle:

while (<STDIN>) {

last if /__END__/;

...;

}

my $next_line = <STDIN>;

If you used foreach, you would have a problem. Since foreach imposes
list context, it reads all of STDIN, leaving no lines to read after you are done,
even though you stop the loop early:

foreach (<STDIN>) {

last if /__END__/;

...;

}

my $next_line = <STDIN>; # Oops -- no more lines!

It’s normally bad form to read in lines before you need them, so it is gen-
erally better to use while anyway.

Context by assignment

The assignment operator supplies context. It knows whether it is going to
assign to a single element or a list of elements. If the assignment operator
knows it is assigning to a list, it supplies list context to its righthand side.
All of these are list assignments:

my ($n) = ('a', 'b', 'c'); # $n is 'a'

my ($n, $m) = ('a', 'b', 'c'); # $n is 'a', $m is 'b'

my @array = ('a', 'b', 'c');

my @lines = <STDIN>; # reads all lines

Item 12. Understand context and how it affects operations ❘ 43

Download from <www.wowebook.com>

ptg

Note that a list of a single element, like my ($n), is just as good as a list
with any other number of items. It’s still a list. The parentheses around
the scalars make it a list operation even when there is a single scalar.

Assigning to a bare scalar (no surrounding parentheses on the lefthand
side) supplies scalar context.

my $single_line = <STDIN>; # read only one line

That can be really tricky sometimes. What is $n in this case?

my $n = ('a', 'b', 'c'); # $n is 'c'

To understand this odd result, know the difference between lists and arrays
(Item 9).

Void context

There is also a void context, in which you call a subroutine or use an oper-
ator but don’t save or use the result:

some_sub(@args);

grep { /foo/ } @array;

1 + 2;

In some cases, Perl can tell that the operation is useless. For instance, does
it really need to do that grep when you don’t save the result?

In some cases, like that 1 + 2;, you get a warning when you have warn-
ings enabled (Item 99):

Useless use of a variable in void context

Things to remember

■ Perl determines context by what you are doing.
■ Perl interprets scalars according to number or string context.
■ List context can have completely different results than scalar context.

44 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

Item 13. Use arrays or hashes to group data.

Perl has two built-in types to make your coding life easier: the array and
the hash. These are collection types designed to group related data.

Don’t use numbered variables

From the beginner who knows about scalars but hasn’t learned about
arrays, you’ll often see code that uses separate scalars to store a series of
 values:

my $fib_0 = 1;

my $fib_1 = 1;

my $fib_2 = 2;

my $fib_3 = 3;

my $fib_4 = 5;

The next programmer is almost there, having essentially reinvented arrays
the hard way:

$fib[0] = 1;

$fib[1] = 1;

$fib[2] = 2;

$fib[3] = 3;

$fib[4] = 5;

The easy way is to store the values in an array directly:

my @x = (1, 1, 2, 3, 5);

It’s even easier with the quotewords operator, qw():

my @x = qw(1 1 2 3 5);

A more-complicated variation on this involves pairs of values stored in
separate variables—for instance, two-dimensional coordinates:

my $x0 = 1;

my $y0 = 1;

my $x1 = 2;

my $y1 = 4;

Item 13. Use arrays or hashes to group data ❘ 45

Download from <www.wowebook.com>

ptg

You can store those in an array, too, but to keep each point’s data together
you must store them as tuples, where each point gets its own array
 reference:

my @points = ([1, 1], [2, 4]);

It’s then easy to go through all of your points:

foreach my $point (@points) {

print "x: $point->[0] y: $point->[1]\n";

}

Avoid groups of variables

Another common beginner pattern uses several different variables to
record information that logically goes together. To work with the data for
a person, a new programmer might create three separate scalar variables:

my $person_name = 'George';

my $person_id = '3';

my $person_age = 29;

Although this beginner has used three variables, the data are actually con-
nected to a single person, and the variables themselves are connected with
the common prefix person. Anytime the beginner had to work with that
data, it would be necessary to pass each of the values separately, hoping
the variables are used in the correct order:

some_sub($person_name, $person_id, $person_age);

When you see this sort of pattern, convert it to a hash. The part of the vari-
able name after person becomes the hash key:

my %person = (

id => 3,

name => 'George',

age => 29,

);

Now you don’t have to worry about how you pass around everything you
know about George, since you can always just pass a reference to the hash:

some_sub(\%person);

46 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

If you have a list of persons, you can collect them in an array:

my @persons = (\%person1, \%person2);

That example has the same problem the beginner had at the start: a series
of variable names for each hash. You don’t need to construct named hashes
if you create the hash references as the elements of the array:

my @persons = ({ id => 1, ... }, { id => 2, ... }, ...);

Things to remember

■ Avoid series of like-named scalar variables to group data.
■ Use collection variable types to group data that go together.
■ Use hashes to key data to their meanings.

Item 14. Handle big numbers with bignum.

Although Perl tries to hide its underlying architectural details from you, in
some cases, such as with the highest (or lowest) number it can represent,
it has to let those details leak through. Compilations to 32-bit perl are
still common, and their integer range is limited to 32 bits. Try this Perl
one-liner:

% perl -le 'print 1234567890123456789012345';

Instead of the number you may expect, you get something in exponential
notation:

1.23456789012346e+24

Try this program that computes a factorial:

my $factorial = 1;

foreach my $num (1 .. $ARGV[0]) {

$factorial *= $num;

}

print "$factorial\n";

On a 32-bit perl, this falls into exponential notation at 18!:

% perl factorial.pl 17

355687428096000

Item 14. Handle big numbers with bignum ❘ 47

Download from <www.wowebook.com>

ptg

% perl factorial.pl 18

6.402373705728e+15

Those are still the right, exact numbers, but at 21! (51,090,942,171,709,
440,000), perl starts losing digits:

% perl factorial.pl 21

5.10909421717094e+19

Get all of the digits

You can fix perl’s imprecision by using the bignum pragma:

use bignum;

my $factorial = 1;

foreach my $num (1 .. $ARGV[0]) {

$factorial *= $num;

}

print "$factorial\n";

Now your program can deal with much-larger numbers:

% perl factorial.pl 100

93326215443944152681699238856266700490715968264381621

46859296389521759999322991560894146397615651828625369

7920827223758251185210916864000000000000000000000000

You can now process arbitrarily large numbers, limited only by the
resources of your system. Integers and floating-point values are handled
automatically by choosing the right type of object for each, and convert-
ing when necessary. You might pay a run time penalty for stepping outside
of the bounds of the hard-wired data types native to the underlying sys-
tem, but that’s what you get for wanting correct answers.

Limiting bignum’s effect

With the bignum pragma, all of your number and math operations use the
big numbers. Sometimes you may not want that, since bignum converts
numbers to objects of either Math::BigInt or Math::BigFloat. That
can have a significant impact on performance, as all math now requires
method calls.

48 ❘ Chapter 1 The Basics of Perl

Download from <www.wowebook.com>

ptg

If you want bignum for most of the program, you can turn it off within a
scope with no:

{

no bignum;

numbers in here are the regular sort

my $sum = $n + $m;

}

If you want to use bignum for a small portion of the program, you can
enable it lexically:

{

use bignum;

numbers in here are the bignum sort

my $sum = $n + $m;

}

If you need bignum for only certain objects in your program, you can cre-
ate those objects yourself and deal with them as you would any other
object, so their special handling applies only to certain numbers:

use Math::BigInt;

my $big_factorial = Math::BigInt->new(1);

foreach my $num (1 .. $ARGV[0]) {

$big_factorial *= $num;

}

print "$big_factorial\n";

When you create the objects yourself, all of the other numbers in your pro-
gram still use the built-in sizes.

Things to remember

■ Perl’s built-in number precision is limited by the local architecture.
■ The bignum pragma gives you numbers with arbitrary precision.
■ Use bignum selectively to apply it to only part of your program.

Item 14. Handle big numbers with bignum ❘ 49

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

2 ❘ Idiomatic Perl

51

Perl is a language designed by a linguist, and as much as any human lan-
guage, Perl is a language of idioms.

What we call idiomatic Perl is the mixture of elegance and custom that
comes naturally to Perl programmers, or we hope at least the majority of
them, after experience and experimentation.

Exactly what is idiomatic and what is purely a matter of style or opinion
is debatable. There are many different ways to express both simple and
complex algorithms in Perl. Some ways, however, are clearly more “right”
than others. Although Perl’s motto may be “There’s More Than One Way
To Do It,” the corollary is, “But Most of Them Are Wrong,” or “Some Ways
Are Better Than Others.”

Idiom and convention are very important in Perl. They are less important
in simple languages like C and Bourne or C shell. There are not too many
tricks you need to learn in C programming. You may think we’re crazy to
say that, but if you take a look at your local bookstore’s programming sec-
tion, you will see that all the books on how to do clever things in C are
fairly skinny. It’s the books on C++ that are thick. And although there are
a lot of details to be learned in support of shell programming, a thorough
how-to book on shell programming is also a slim volume.

Not so with Perl. Perl is an expressive language, and often a succinct one.
Larry Wall designed the language to allow frequently used constructs to
be coded very compactly. Sometimes Perl programmers will talk about
Perl’s Huffman coding: the most-frequent constructs take the fewest key-
strokes. Perl’s very high level features like <>, regular expressions, and grep
are particularly potent. For example:

swap $a and $b

($a, $b) = ($b, $a);

read lines from files or standard input

and print them out in sorted order

Download from <www.wowebook.com>

ptg

52 ❘ Chapter 2 Idiomatic Perl

print sort <>;

print all the lines containing the word joebloe

print grep /\bjoebloe\b/, <>;

copy all the numbers in @n evenly

divisible by 5 into @div5

my @div5 = grep { not $_ % 5 } @n;

one way of turning "123.234.0.1"

into the integer 0xb7ae0010

$bin_addr = pack 'C4', split /\./, $str_addr;

You can code all of these examples in other ways, but when you write them
in the style of some other language, your result is longer and less efficient.
You could, say, reproduce the functionality of <> explicitly in Perl, but the
result would be a fairly long Perl program that would obscure the “inter-
esting” part of the program. The resulting program would also be harder to
debug and maintain simply because of its greater length and complexity.

To a certain extent, idiom and style overlap. Some idioms, like print sort
<>, are inarguable, but there are certainly gray areas:

print key-value pairs from %h one per line

foreach my $key (sort keys %h) {

print "$key: $h{$key}\n";

}

another way to print key-value pairs

print map "$_: $h{$_}\n", sort keys %h;

The first example above is very plain Perl. It is efficient and readable, and
uses only basic features of the language. The second example is shorter
and, some might argue, has a higher “cool factor” because it uses the nifty
map operator and a list context in place of the mundane foreach loop.
However, you should consider yourself and your potential audience before
leaving code like the second example for posterity, as it is definitely more
obscure (but not that obscure) and might even be less efficient.

Every Perl programmer needs to master a number of basic idioms and
should learn to recognize a number of others. Programmers should always
use those idioms that produce efficient, succinct, and readable code. Other,

Download from <www.wowebook.com>

ptg

more-complex idioms may or may not be appropriate, depending on the
programmer, the audience, and the nature of the program being written.

In this chapter (were you wondering when it would ever really get
started?), we’ll show you a number of Perl idioms. You will definitely want
to learn and use the simpler ones. Beyond those, you will have to consider
the tradeoffs between “plain” and “nifty.”

How your Perl looks is up to you. You can write very plain Perl if you like.
Writing plain Perl is like building a house as much as possible out of
masonry blocks. It works, it’s simple, it’s a little dull, and it’s hard to cre-
ate intricate shapes.

On the other hand, you may want to try using all the nifty features that Perl
gives you. Continuing the house analogy, you may be the kind of builder
who spends more time at Home Depot looking at power tools than
pounding nails on the job. You may like to build all kinds of cool features
using the latest technology. This is fine, so long as you realize that some-
times a hammer is all you need.

Or maybe after a while you will wind up somewhere in-between.

Sometimes you need s/\G0/ /g, and sometimes you just need $a = $b.

Item 15. Use $_ for elegance and brevity.

“Dollar underscore,” or $_—you may love it, or you may hate it, but either
way, if you’re going to be a proficient Perl programmer, you need to under-
stand it.

$_ is a default argument for many operators, and also for some control
structures. Here are some examples:

$_ as a default argument

print $_; # default argument for print

print; # ... same thing

print "found it"

if $_ =~ /Rosebud/; # matches and substitutions

print "found it"

if /Rosebud/; # same thing

Item 15. Use $_ for elegance and brevity ❘ 53

Download from <www.wowebook.com>

ptg

$mod_time = -M $_; # most filehandle tests

$mod_time = -M; # same thing

foreach $_ (@list) { do_something($_) } # foreach

foreach (@list) { do_something($_) } # same thing

while (defined($_ = <STDIN>)) {

while; a special case

print $_;

}

while (<STDIN>) { print } # same thing

As also seen in Item 7, the last example illustrates the special case where
using the line-input operator <filehandle> alone as the condition of a
while loop is a shortcut for reading a line from the file into $_ until the
end-of-file is reached. It automatically checks that it returned something,
since the line input operator tells you it’s done by returning undef.

This may seem a bit capricious and random, but it’s easy to keep track of
what does what with $_ by checking the Perl documentation. You don’t
have to memorize the complete list, because you can just look it up. For
example, does split have special behavior with $_? Just look it up.

$_ is a normal scalar variable—mostly. You can use it, print it, change its
value, and so on, just as if it were an ordinary scalar. There are a couple of
things to watch out for, though.

$_ and the main package

Before Perl 5.10, $_ was always in the package main. This applied even, or
especially, if you were in some other package:

package foo;

$_ = "OK\n"; # this still means $main::_

package main;

print; # prints "OK"

In fact, all special variables ([$@%]-punctuation and a few others) have
this property. You can use a variable like $foo::_ if you like, but it has no
special properties and isn’t the $_.

54 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

Localizing $_

Before Perl 5.10, you could only localize $_ with local. Most times when
you work with special variables, you want to limit their effects so your
changes don’t live beyond your intent. With local, you have your own $_
until the end of the current scope:

{

local $_;

... do stuff with your version of $_

some_sub(); # uses your $_

}

With local, your change affects everything until the end of the scope,
including any subroutines you call. Your version of $_ is visible through-
out the entire program.

As of Perl 5.10, you can have a lexical $_ so that your changes affect only
the code that’s in scope, and nothing outside that scope can see it. Even
though you call some_sub in the same scope, it doesn’t see the value of
the lexically-scoped $_:

{

my $_;

#... do stuff with your version of $_

some_sub(); # doesn't use your $_

}

Programming style and $_

Oddly enough, when you use $_, you may not see much of it. Can you
count how many times it doesn’t show up in this code?

while (<>) { # 1

foreach (split) { # 2 and 3

$w5++ if /^\w{5}$/ # 4

}

}

Item 15. Use $_ for elegance and brevity ❘ 55

Download from <www.wowebook.com>

ptg

find files ending in .txt and less than 5000 bytes long

@small_txt =

grep { /\.txt$/ and (-s) < 5000 } @files; # 5 and 6

Some Perl programmers may feel that $_ is more an aid to obfuscation
than to elegance. There is even one book1 that says, “Many Perl programmers
write programs that have references to $_ running like an invisible thread
through their programs. Programs that overuse $_ are hard to read and are
easier to break than programs that explicitly reference scalar variables you
have named yourself.” However, which of these is easier on the eyes?

while (defined($line = <STDIN>)) {

print $line if $line =~ /Perl/;

}

while (<STDIN>) { print if /Perl/ }

There’s no obfuscation here. If you learn a little Perl and know how to use
the documentation, any confusion should be short-lived.

Things to remember

■ Perl uses $_ as the default variable for many operations.
■ Avoid temporary variables by using the default variables when you

can chain operations.
■ Localize $_ before you use it so you don’t disturb other code.

Item 16. Know Perl’s other default arguments.

$_ is not the one-and-only default argument in Perl. There are several oth-
ers. Just as with $_, reading and referring to the documentation is always
your best guide.

@_ as a default

Inside a subroutine, shift uses @_ as a default argument. When you shift
with no arguments in your subroutine, you are really pulling the left-most
element from @_:

56 ❘ Chapter 2 Idiomatic Perl

1. David Till, Teach Yourself Perl 5 in 21 Days (Berkeley, CA: Sams Publishing, 1996).

Download from <www.wowebook.com>

ptg

sub foo {

my $x = shift;

...;

}

One interesting quirk in Perl syntax shows up when you try to shift an
array argument passed by reference and convert that reference into an
array in one statement:

bar(\@bletch);

sub bar {

my @a = @{shift};

...;

}

In this example, @{shift} refers to the variable shift and not to the func-
tion. If you have strict enabled (Item 3), Perl will catch this for you:

Global symbol @shift requires explicit package name ...

You have to put something else inside the braces to let Perl know that the
identifier isn’t a variable name. Since shift is a function, you can call shift
with parentheses to let perl know:

my @a = @{ shift() };

Alternatively, you can use the unary + operator. In this case it serves as a
no-op (a placeholder that performs no operation), but it does let perl
know that shift is not a regular string:

my @a = @{ +shift };

However, if you don’t attempt inline dereferencing and instead separate
your work, you don’t ever have to work around this ambiguous syntax.

@ARGV as a default

Outside of a subroutine, shift uses @ARGV as its default. Knowing this,
you can write custom command-line argument handling—for example,
processing any string that starts with a hyphen as a command-line option
and everything else as a file:

foreach (shift) {

if (/^-(.*)/) {

Item 16. Know Perl’s other default arguments ❘ 57

Download from <www.wowebook.com>

ptg

process_option($1);

}

else {

process_file($_);

}

}

Of course, you shouldn’t do this yourself. Instead, you should use one of
the many available argument processors, like Getopt::Long.

Also note that the shift operator always uses @ARGV or main::@_ even if
your default package is something other than main.

Other functions that use $_

Several other built-ins use $_ by default: -X filetests (except for -t), abs,
alarm, chomp, chop, chr, chroot, cos, defined, eval, exp, glob, hex,
int, lc, lcfirst, log, lstat, oct, ord, pos, print, quotemeta, read-
link, ref, require, reverse in scalar context only, rmdir, say, sin,
split, sqrt, stat, study, uc, ucfirst, and unlink.

STDIN as a default

Unlike the rest of the file-test operators, which use $_ as a default, the -t
operator uses the filehandle STDIN as a default. -t tests a filehandle in the
manner of the UNIX isatty() function to determine whether the file-
handle is interactive—that is, whether its input is from a human typing at
a keyboard or from some other, most likely automated, source. These two
calls to -t are equivalent:

print "You're alive!" if -t STDIN;

print "You're alive!" if -t;

Use the -t operator to help modify the behavior of a program depending
on whether it is running interactively. For example, you could use -t in a
CGI script to start it up in a special debugging mode if the script is being
run from the command line. You might also want to check out the
IO::Interactive module, which does the same thing but handles a cou-
ple of special cases, too.

58 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

The getc function, which reads a character from a filehandle, uses STDIN
by default:

my $char = getc STDIN;

my $char = getc;

Other defaults

Just to round out this Item, Table 2-1 shows the other defaults that Perl
built-ins use.

Things to remember

■ Some operations use a default argument other than $_.
■ Some default arguments change based on context, like those for
shift.

■ You don’t have to use the defaults when you specify your argument.

Item 16. Know Perl’s other default arguments ❘ 59

Table 2-1 The Default Arguments to Perl’s Built-Ins that Do Not Use $_

Perl built-in Default argument

chdir $ENV{HOME}, $ENV{LOGDIR}, or $ENV{SYS$LOGIN}

close default filehandle

dump top of program

eof last file read or end of ARGV

exit 0

getpgrp $$

gmtime time

localtime time

open $FILEHANDLE

pop @ARGV outside of a subroutine or @_ in a subroutine

rand 1

reverse $_ in scalar context

select current filehandle

shift @ARGV outside of a subroutine or @_ in a subroutine

tell last file read

write current filehandle

Download from <www.wowebook.com>

ptg

Item 17. Know common shorthand and syntax quirks.

Perl is a “human” language in that it has a context-dependent syntax. You
can take advantage of this by omitting things that the interpreter can
assume—default arguments, $_, optional punctuation, and so on. Perl fig-
ures out from the context what you really mean (usually).

Perl is also a very high level language with an extremely rich and diverse
syntax, but sometimes the various syntactical features don’t fit together as
well as they might. In some cases, you may have to help Perl along by
resorting to a syntactical gimmick of one kind or another. Along these
lines, here are some suggestions, and some things to watch out for.

Swap values with list assignments

Perl doesn’t have a special operator to swap values in two variables, but
you can always use a list assignment to the same effect. Perl evaluates the
righthand side before it does the assignment:

($b, $a) = ($a, $b); # swap $a and $b

($c, $a, $b) = ($a, $b, $c); # rotate $a, $b and $c

Slices give you a convenient syntax for permuting the contents of an array:

@a[1, 3, 5] = @a[5, 3, 1]; # shuffle some elements

You can rearrange the indices so you swap the even- and odd-numbered
elements in an array:

@a[map { $_ * 2 + 1, $_ * 2 } 0 .. ($#a / 2)] = @a;

Force a list context with [] or ()[]

In some cases, you may need to force Perl to evaluate an expression in list
context. For example, if you want to split a string captured by a regular
expression capture, you might first write:

split $_ on + up to :

my ($str) = /([^:]*)/;

my @words = split /\+/, $str;

To write this in a single expression without the use of the temporary $str,
you have to resort to trickery, since the pattern match would not return the

60 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

right kind of value in the scalar context imposed by split. The inside of
a literal slice is in list context:

my @words = split /\+/, (/([^:]*)/)[0];

If you want to take a reference to a list literal in a single step, use the anony-
mous array constructor []. The reference operator \ applied to a list literal
actually creates a list of references, not a reference to an array (Item 61):

my $wordlist_ref = \(split /\++/, $str); # WRONG

my $wordlist_ref = [split /\++/, $str]; # CORRECT

Use => to make key-value pairs

The => (fat arrow) operator is a synonym for the comma operator. There
is one minor difference in functionality: if the lefthand argument to => is
an identifier by itself, Perl always treats it as a string and will not interpret
it as a function call. Thus, you can use things such as time to the left of =>
without fear:

my @a = (time => 'flies'); # "time" is taken literally

print "@a\n"; # "time flies"

my @b = (time, 'flies'); # time operator

print "@b\n"; # "862891055 flies"

Use => to make initializers prettier, if you like. This is especially appropri-
ate when creating initializers for hashes. They help you make clear columns
that show the keys and values of a hash:

my %elements = (

'Ag' => 47,

'Au' => 79,

'Pt' => 78,

);

It’s a little nicer when you don’t have to quote the keys:

my %elements = (

Ag => 47,

Au => 79,

Pt => 78,

);

Item 17. Know common shorthand and syntax quirks ❘ 61

Download from <www.wowebook.com>

ptg

Sometimes you don’t need the => at all. You can use the quote-words oper-
ator (Item 21) if your keys and values have no whitespace in them:

my %elements = qw(

Ag 47

Au 79

Pt 78

);

Use the => operator to simulate named parameters

You can simulate named parameters for function calls. You can set up your
subroutine to work with a hash of parameters. To quickly construct that
hash, put your default values at the front and the subroutine arguments at
the end. In this example, %params has a default value for align:

sub img {

my %params = (align => 'middle', @_);

write out the keys and values of the

hash as an HTML tag

print "<img ",

(

join ' ', map { "$_=\"$param{$_}\"" }

keys %param

),

">";

}

When you call the img subroutine, you pass in the key-value pairs for the
settings that you want:

img(src => 'icon.gif', align => 'top');

In this case, you pass in align => 'top', which replaces the default set-
ting in %params, and you get your correctly aligned img tag:

Don’t follow our simple example for creating HTML in real applications,
though. Use one of the HTML modules instead.

62 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

Use => to show direction

Finally, here’s another interesting use of => as syntactic “sugar.” With
rename, you can show the direction from the original filename to the new
one:

rename "$file.c" => "$file.c.old";

Don’t confuse => with ->, which you use for subscripting references (Item
58) or method calls.

Watch what you put inside { }

Parentheses, square brackets, angle brackets, and curly braces all have mul-
tiple meanings in Perl. Perl uses the contents of the braces (or whatever)
and the surrounding context to figure out what to do with them. Usually
the result makes sense, but at times it may surprise you.

Be especially careful with braces, perhaps two of the most hard-working
characters in Perl. Braces are used to enclose blocks, delimit variable
names, create anonymous hashes, and in hash element and dereferencing
syntax. It’s dizzying if you think about it too hard. It’s pretty scary that the
interpreter can tell the difference between an anonymous hash construc-
tor and a block!

If you see a plus sign inside braces for no apparent reason, there probably
is a reason for it. Perl’s unary plus has no effect on its argument, but it does
provide a fix for some syntactical problems. Suppose you have a subrou-
tine that returns a reference to an array. If you put just the subroutine
name in {}, you create a soft reference (catch that with strict: Item 3):

my @a = @{func_returning_aryref}; # WRONG!

These uses do what you probably mean, since you give Perl a hint that
func_returning_aryref is a subroutine name:

my @a = @{ func_returning_aryref() }; # OK -- parentheses

my @a = @{ &func_returning_aryref }; # OK -- ampersand

my @a = @{ +func_returning_aryref }; # OK -- unary plus

If you’re unlucky, you might also run into a situation where a hash con-
structor is confused with a block. Suppose you have a subroutine that

Item 17. Know common shorthand and syntax quirks ❘ 63

Download from <www.wowebook.com>

ptg

returns a list of key-value pairs that you want to use in an anonymous hash
constructor. Since the curly brace is one of the most overloaded characters
in Perl, you might have to give Perl some extra hints to show it which use
you want. As part of a larger expression, Perl knows key_value_pairs()
must be in a hash constructor:

my $hashref = eval {

return { key_value_pairs() } # OK

};

You can use a unary + to give Perl a hint that your opening brace is the
start of an anonymous hash constructor:

my $hashref = eval {

+{ key_value_pairs() } # OK

};

By itself, however, Perl guesses that key_value_pairs() is in a block,
which is unfortunately an incorrect guess in this case:

my $hashref = eval {

{ key_value_pairs() } # probably not okay

};

And, finally, Perl thinks an identifier appearing all alone (possibly sur-
rounded by whitespace) inside braces is a string. If it is the name of a func-
tion, the function is not called unless there is something other than just an
identifier present:

${shift} = 10; # sets $shift = 10

sub soft { ${ +shift } = 10; } # soft reference!

soft 'a'; # sets $a = 10

Because of this confusion, you shouldn’t use these constructs yourself, and
when you encounter someone else using them, give them a proper thrash-
ing.

Use @{[]} or eval {} to make a copy of a list

Sometimes you may want to perform a destructive operation on a copy of
a list rather than on the original. For instance, if you want to find which

64 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

.h files that are missing, you can change the names of the .c files to .h files
and check which ones exist:

my @cfiles_copy = @cfiles;

my @missing_h =

grep { s/\.c$/\.h/ and not -e } @cfiles_copy;

Perl doesn’t give you a function for making copies of things, but if you
need to make an unnamed copy of a list, you can put the list inside the
anonymous list constructor [], then immediately dereference it:

my @missing_h =

grep { s/\.c$/\.h/ and !-e } @{ [@cfiles] };

Another way to make a copy of something is to put it inside an eval block,
which returns the result of its last evaluated expression:

my @missing_h =

grep { s/\.c$/\.h/ and !-e } eval { @cfiles };

Use the block form of eval in situations like this, not the string form, since
the block form is much more efficient.

Consider if you really need to make a copy, though. In these simple exam-
ples, you did that extra work to avoid a little messiness inside the grep.
You could just as well save the element to another variable in the grep:

my @missing_h = grep {

my $h = $_;

$h =~ s/\.c$/\.h/ and !(-e $h)

} @cfiles;

Note that all of these techniques make only shallow copies. If any of the list
elements are references, the copy might share data with the original. If you
need a completely disconnected, deep copy, use dclone from Storable:

use Storable qw(dclone);

my $copy_ref = dclone(\@array);

Now $copy_ref has nothing in common with @array.

You have to decide which way makes more sense for your problem, but
often the mechanics of copying a list obscures what you are doing.

Item 17. Know common shorthand and syntax quirks ❘ 65

Download from <www.wowebook.com>

ptg

Things to remember

■ Perl’s syntax is a blend from many sources, so it has many quirks.
■ Use the => to show the relationships between data.
■ Use dclone to make deep copies of arrays.

Item 18. Avoid excessive punctuation.

Perl programs tend to be filled with punctuation, often to the point where
they have an intimidating, busy appearance. Excessive punctuation makes
programs less readable, and wise programmers will take advantage of
changes in Perl that make it possible to write programs with considerably
less punctuation than before.

Call subroutines without parentheses

You can call a subroutine with varying levels of punctuation: prefixed with
an ampersand, without an ampersand but with parentheses after the func-
tion name, or without an ampersand or parentheses. The last style works
only if the function has been declared or defined before the function call
is encountered.

&myfunc(1, 2, 3);

myfunc(1, 2, 3);

myfunc 1, 2, 3;

The traditional & syntax has its uses: it’s the only way to call a subroutine
whose name is a keyword, such as &for. “List operator” syntax, without
ampersand or parentheses, works if the definition or declaration of the
function appears lexically before the function call. This is generally fine,
but there are some pitfalls.

You can’t use the subroutine with the list operator syntax unless Perl has
already seen the subroutine definition:

myfunc 1, 2, 3; # ERROR

sub myfunc { }

Also, the definition must lexically appear before its use, since that’s the order
that Perl sees it and parses it in. You can’t trick perl with a BEGIN block:

66 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

myfunc 1, 2, 3; # ERROR

BEGIN {

sub myfunc { }

}

Also, the definition of the subroutine needs to be there at compile time, so
a definition inside an eval is not going to work:

eval "sub myfunc {}";

myfunc 1, 2, 3; # ERROR

A BEGIN block that comes lexically before your subroutine call makes it
all work out, even if it is a bit strange:

BEGIN { eval "sub myfunc {}" } # works -- but strange

myfunc 1, 2, 3;

You can also forward-declare the subroutine name, and define it later. Perl
now knows that myfunc is a subroutine, so it can parse the source
 correctly:

use subs qw(myfunc);

myfunc 1, 2, 3;

sub myfunc { }

Use and and or instead of && and ||

Another helpful feature is the addition of the super-low precedence short-
circuit logical operators and and or. Nothing in the precedence table is
lower than these operators. (There’s also the less exciting not and the gen-
erally useless xor.) These allow you to get rid of parentheses in a variety
of situations, since you don’t have to group expressions.

The lowest-precedence and and or operators allow you to omit parenthe-
ses around list operators, assignment, and binding. Which one looks nicer
to you in each case?

print("hello, ") && print "goodbye.";

print "hello, " and print "goodbye.";

(my $size = -s $file) || die "$file has zero size.\n";

my $size = -s $file or die "$file has zero size.\n";

Item 18. Avoid excessive punctuation ❘ 67

Download from <www.wowebook.com>

ptg

(my $word =~ /magic/) || $mode = 'peon';

my $word =~ /magic/ or $mode = 'peon';

open(my ($fh), '>', $file)

|| die "Could not open $file: $!";

open my ($fh), '>', $file

or die "Could not open $file: $!";

Remember that you can always eliminate a semicolon preceding a closing
brace. This is probably a good idea in a block consisting of a single state-
ment, especially as an argument to map, grep, do, eval, and the like:

my @caps = map { uc $_; } @words; # unnecessary semicolon

my @caps = map { uc $_ } @words; # looks cleaner

One more way to get rid of extra parentheses and braces is to use the
expression modifier, or “backwards conditional,” syntax. It’s handy once
you get used to it:

if (/^__END__$/) { last } # mundane

last if /^__END__$/; # doesn't this look better?

Things to remember

■ Avoid overusing parentheses or braces.
■ Use the list operator syntax for Perl subroutines.
■ Use the low precedence and or or to avoid precedence problems.

Item 19. Format lists for easy maintenance.

Although we told you to avoid excessive punctuation (Item 18), there’s at
least one part of Perl that especially wants you to use extra punctuation.
Larry Wall, when designing Perl, wanted to make a language that tolerates
some of the frequent syntax errors from other languages. If people keep
making the same error over and over, sometimes the solution is to make
it not be an error anymore.

Perl lets you add a trailing comma after the last item in a list:

my @cats = ('Buster Bean', 'Mimi',); # not an error

68 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

When you add another item, you don’t have to remember to add the
comma, because it is already there:

my @cats = ('Buster Bean', 'Mimi', 'Roscoe');

This makes more sense when you format your lists so that each element
gets its own line:

my @cats = (

'Buster Bean',

'Mimi',

'Roscoe',

);

If you need to add or delete an element, you don’t need to change any other
line or interfere with any other element as long as you always put a comma
after every element. You can even comment out an item temporarily:

my @cats = (

'Buster Bean',

'Mimi',

'Roscoe',

);

This works even better with hashes, which you construct with lists. You
put one key-value pair on a line, and align the columns:

my %spacers = (

husband => "George",

wife => "Jane",

daughter => "Judy",

son => "Elroy",

);

If your list elements don’t have whitespace, you can also use the quote-
words operator so you don’t have to type the commas or quotes:

my %spacers = qw(

husband George

wife Jane

daughter Judy

son Elroy

);

Item 19. Format lists for easy maintenance ❘ 69

Download from <www.wowebook.com>

ptg

Things to remember

■ Use one line per list element to make data easier to read and edit.
■ Use a trailing comma in your lists so you don’t forget to add it when

you add more elements.
■ Align hash keys and values as columns to make them easier to maintain.

Item 20. Use foreach, map, and grep as appropriate.

There are several different ways of iterating over elements in a list in Perl.

There is a strong tendency among Perl programmers to avoid using a
C-style for loop and subscripts when iterating through a list. Loops that
use subscripts tend to be slower than loops that don’t, since subscripts take
a significant amount of time for Perl to evaluate. The C style is too much
work:

for (my $i = 0 ; $i <= @array ; $i++) {

print "I saw $array[$i]\n";

}

Most programmers use foreach, map, or grep instead. The capabilities of
foreach, map, and grep overlap somewhat, but each is designed for its
own primary purpose. These constructs are easy to abuse—you can write
pretty much any kind of loop with any one of them—but doing so can
confuse you, and anyone else who visits your code in the future. You should
use them appropriately.

Use foreach to iterate read-only over each element of a list

If all you want to do is to cycle over the elements in a list, use foreach:

foreach my $cost (@cost) {

$total += $cost;

}

foreach my $file (glob '*') {

print "$file\n" if -T $file;

}

Remember that foreach uses $_ as a control variable by default if none is
specified:

70 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

foreach (1 .. 10) { # print the first 10 squares

print "$_: ", $_ * $_, "\n";

}

Also, you can always use the shorter keyword for instead of foreach—
Perl knows what you mean:

for (@lines) { # print the first line beginning with From:

print, last if /^From:/;

}

Use map to create a list based on the contents of another list

If you want to create a transformed copy of a list, use map. The following
two lines turn a list of filenames into a list of file sizes. Remember that
most file test operators use $_ by default (Item 51):

my @sizes = map { -s } @files;

my @sizes = map -s, @files;

map evaluates its transform expression or block in list context. Sometimes
it can be useful to return an empty list or a list of more than one element.
Using a match operator can be elegant.

Both of the following examples use the match operator m// and paren-
theses inside map. In a list context, m// returns a list of the substrings cap-
tured in regular expression capture, or the empty list if the match fails.

This map finds all of the filenames (without the extensions) that end in
.txt. Since the match operator is in list context, it returns the list of things
that match in the parentheses:

my @stem = map { /(.*)\.txt$/ } @files;

This map does a similar thing to find the From: address in a list of e-mail
headers. It returns only for those elements where the match succeeds:

my ($from) = map /^From:\s+(.*)$/, @message_lines;

For efficiency, $_ is actually an alias for the current element in the itera-
tion. If you modify $_ within the transform expression of a map, you mod-
ify the input data. This is generally considered to be bad style, and—who
knows?—you may even wind up confusing yourself this way. If you want
to modify the contents of a list, use foreach. (More on this later.)

Item 20. Use foreach, map, and grep as appropriate ❘ 71

Download from <www.wowebook.com>

ptg

You should also make sure that map is returning a sensible value—don’t
use map as just a control structure. The next example breaks three of the
rules concerning map. First, tr/// modifies $_ and thus @elems. Second,
the return value from map is a nonsensical list of values from tr///—the
number of digits deleted by tr/// in each element. Third, you don’t do
anything with the output list, the whole point of map:

map { tr/0-9//d } @elems; # PROBABLY WRONG

This returns a sensible value, but tr/// still modifies @elems (Item 114):

my @digitless = map { tr/0-9//d; $_ } @elems; # BAD STYLE

If you must use tr///, s///, or something similar inside map, use a lexi-
cal variable to avoid changes to $_. In this example, you save the value of
$_ in $x so you can modify it:

my @digitless = map {

(my $x = $_) =~ tr/0-9//d;

$x

} @elems;

Use foreach to modify elements of a list

If you actually want to modify the elements in a list, use foreach. As with
map and grep, the control variable is an alias for the current element in the
iteration. Modifying the control variable modifies that element:

multiply all the elements of @nums by 2

foreach my $num (@nums) {

$num *= 2;

}

strip digits from elements of @ary

foreach (@ary) { tr/0-9//d }

slower version using s///

foreach (@elems) { s/\d//g }

uppercase $str1, $str2 and $str3

foreach ($str1, $str2, $str3) {

$_ = uc $_;

}

72 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

Use grep to select elements in a list

The grep operator has a particular purpose, which is to select or count
elements in a list. You wouldn’t know this, though, looking at some of the
more creative abuses of grep, usually from programmers who feel that a
foreach loop isn’t quite as cool as a grep. As you try to write effective
Perl, we hope you will stay closer to the straight and narrow.

Here’s a conventional use of grep in a list context:

print grep /joseph/i, @lines;

By the way, Perl evaluates the “selection” expression or block argument to
grep in a scalar context, unlike map’s transform expression. This will rarely
make a difference, but it’s nice to know.

In a scalar context, grep returns a count of the selected elements rather
than the elements themselves:

my $has_false = grep !$_, @array;

my $has_undef = grep !defined($_), @array;

Things to remember

■ Use map when you need to transform one list into another.
■ Use grep to filter a list.
■ Use foreach when you want to modify the variable in-place.

Item 21. Know the different ways to quote strings.

Perl gives you a plethora of different ways to quote strings.

There are single quotes, where everything is left “as-is” except for escaped
backlashes and single quotes:

'Isn\'t she "lovely"?' # Isn't she "lovely"?

Double quotes, on the other hand, support several kinds of escape
sequences. There are the usual \t, \n, \r, and so on from C:

"Testing\none\n\two\n\three" # Testing

one wo

hree

Item 21. Know the different ways to quote strings ❘ 73

Download from <www.wowebook.com>

ptg

There are the octal and hex ASCII escapes like \101 and \x41:

"\x50\x65\x72\x6c\x21" # Perl!

You can specify Unicode code points with \x{} (Item 74):

"There be pirates! \x{2620}";

And you can use Unicode character names if you use the charnames
 module:

use charnames;

my $str = "There be pirates! \N{SKULL AND CROSSBONES}";

Double quotes also support the interpolation of the contents of variables
and subscript expressions beginning with $ and @.

foreach $key (sort keys %hash) {

print "$key: $hash{$key}\n";

}

The elements of arrays and slices are interpolated by joining them with
the contents of the $" special variable—normally a single space:

my @n = 1 .. 3;

print "testing @n\n"; # testing 1 2 3

If your variable name appears next to other legal identifier characters, you
can use {} to delimit the name:

print "testing @{n}sies\n"; # testing 1 2 3sies

The \u, \U, \l, \L, \E escapes work to change the case of characters in a
double-quoted string:

my $v = "very";

print "I am \u$v \U$v\E tired!\n"; # I am Very VERY tired!

This doesn’t begin to cover all the nuances of double-quote interpolation.
A full description, with all the gory details, is in the perlop documentation.

Alternative quoting: q, qq, and qw

Sometimes it is helpful to be able to use characters other than single or
double quotes to enclose strings, especially when those characters show

74 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

up as literal text in the string. Naturally, Perl allows you to use any punc-
tuation character to enclose strings. Just prefix your favorite character with
q for a single-quoted string, or qq for a double-quoted string:

q*A 'starring' role* # A 'starring' role

qq|Don't "quote" me!| # Don't "quote" me!

If you use your new delimiter in the string, you still have to escape it,
although you avoid this situation if you can choose a different delimiter:

q*Make this *bold** # Make this *bold*

If you use a “matchable” delimiter (either (, [, <, or {), then the end of the
string is the corresponding closing delimiter. These are all the same:

qq<Don't "quote" me!>

qq[Don't "quote" me!]

qq{Don't "quote" me!}

qq(Don't "quote" me!)

Perl keeps track of nesting when looking for the closing delimiter:

qq<Don't << quote >> me!> # Don't << quote >> me!

Use q{} and/or qq{} to quote source code

The delimiter you choose can give other programmers hints about what
you are doing. Use the curly braces when your string is really source code,
such as snippets for Benchmark:

use Benchmark;

our $b = 1.234;

timethese(

1_000_000,

{

control => q{ my $a = $b },

sin => q{ my $a = sin $b },

log => q{ my $a = log $b },

}

);

Item 21. Know the different ways to quote strings ❘ 75

Download from <www.wowebook.com>

ptg

Create comma-less, quote-less lists with qw()

Finally, as a shorthand way of creating a list of strings, you can quote with
qw (“quote words”). Perl splits a string inside qw quotes on whitespace,
returning a list of strings:

@ISA = qw(Foo Bar Bletch);

That is functionally equivalent to quoting the values yourself and sepa-
rating them with commas:

@ISA = ('Foo', 'Bar', 'Bletch');

Don’t make the mistake of unintentionally including commas inside qw
quotes, because they will be considered part of the quoted strings. In this
example you end up with “Foo,”, “Bar,”, and “Bletch”, all but “Bletch”
having extra commas:

@ISA = qw(Foo, Bar, Bletch);

When you do this with warnings enabled (Item 99), you get something
like this:

Possible attempt to separate words with commas ...

Alternative quoting: “here doc” strings

Perl’s here doc or here document strings provide yet another way to quote
text. Many of you may be familiar with here docs already—Perl’s here doc
feature is derived from the UNIX shell feature of the same name. Here
docs are useful for quoting long passages of text or source code.

A here doc string begins with << followed by an identifier, and ends when
that identifier appears on a line by itself somewhere later in the text. The
string begins on the line after <<. If the identifier is quoted (with single,
double, or back quotes), the type of quotes determines the type of string
enclosed in the here doc. The default is a double-quoted string:

print <<EOT; # ; ends statement = comment ignored!

Dear $j $h,

You may have just won $m!

EOT

76 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

If you want a single-quoted string, you use the single tick (') around the
here-doc identifier:

print <<'XYZZY'; # single-quoted this time ...

Dear $j $h,

You may have just won $m!

XYZZY

Sometimes the here doc can look quite odd because you can use more than
one at the same time. The contents stack on each other:

print <<"HERE", <<"THERE";

This is in the HERE here doc

HERE

This is in the THERE here doc

THERE

Here docs can also look odd as arguments to subroutines, since the text
appears outside of the subroutine call:

some_sub(<<"HERE", <<"THERE");

This is in the HERE here doc

HERE

This is in the THERE here doc

THERE

Although you can do that, it’s pretty confusing for other humans to read
it, so you should probably avoid it.

Things to remember

■ Use q() or qq() for generalized quoting.
■ Use qw() to quote a list automatically.
■ Use here docs to quote multi-line strings.

Item 22. Learn the myriad ways of sorting.

At its most basic, sorting in Perl is simplicity itself. Perl’s sort operator
takes a list of elements and returns a copy of that list in order:

Item 22. Learn the myriad ways of sorting ❘ 77

Download from <www.wowebook.com>

ptg

my @elements = sort qw(

hydrogen

helium

lithium

);

The sort order Perl uses is the UTF-8 collation order (unless you specify
use locale or use bytes), meaning that the items are sorted by com-
paring the UTF-8 values (well, really just the numeric values of the encod-
ing) of the first, second, third, and following characters of each element as
necessary. Make sure you know what a character is, though (Item 77).

This leads to some interesting and unexpected results with numbers and
case:

print join ' ', sort 1 .. 10;

print join ' ', sort qw(my Dog has Fleas);

If the default UTF-8 comparison isn’t what you want, you need to write
your own comparison subroutine.

Comparison (sort) subroutines

A Perl sort subroutine is not an entire sorting algorithm. A better name
might be “comparison subroutine.”

Sort subroutines are different from ordinary subroutines in that the argu-
ments are passed in via the hard-coded package variables $a and $b rather
than as elements of @_. $a and $b are localized for the sort subroutine, as
if there were an implicit local($a, $b) at the beginning of the subrou-
tine (but don’t do that yourself).

$a and $b get a “bye” from use strict vars—they do not have to be declared
explicitly (Item 3). They belong to the current package, not the main pack-
age like special variables.

Perl calls the sort subroutine repeatedly during sorting. Its job is to com-
pare $a and $b and return -1, 0 or 1 depending on whether $a sorts less
than, equal to, or greater than $b.

Perl’s built-in sorting behavior is as though the elements were compared
with the cmp operator. Here you have used a named subroutine, utf8ly,
to specify the sorting order:

78 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

sub utf8ly { $a cmp $b }

my @list = sort utf8ly @list;

A more concise way of using a sort subroutine is to write it as a sort
block. Just place the body of the subroutine right where the name of the
sort subroutine would go:

my @list = sort { $a cmp $b } (16, 1, 8, 2, 4, 32);

To change the sorting order, change the way that $a and $b are compared.
For example, replace the cmp operator with <=> to sort numerically:

my @list = sort { $a <=> $b } (16, 1, 8, 2, 4, 32);

You can sort with case-insensitivity by lowercasing each string before you
do the comparison:

my @list = sort { lc($a) cmp lc($b) } qw(This is a test);

('a', 'is', 'test', 'This')

You can turn an ascending sort into a descending one by swapping $a and $b:

my @list = sort { $b cmp $a } @list;

You can even use $a and $b to compute values to use for the comparison,
like sorting filenames based on their modification times:

my @list = sort { -M $a <=> -M $b } @files;

Something that comes up from time to time is the need to sort the keys of
a hash according to their corresponding values. There is a neat idiom for
doing this by using $a and $b to access the value:

my %elems = (B => 5, Be => 4, H => 1, He => 2, Li => 3);

sort { $elems{$a} <=> $elems{$b} } keys %elems;

Finally, you may want to sort on multiple keys. There is a standard idiom
using the or operator for this. Here’s a slightly contrived example that
sorts on first name if the last names are the same:

my @first = qw(John Jane Bill Sue Carol);

my @last = qw(Smith Smith Jones Jones Smith);

my @index = sort {

$last[$a] cmp $last[$b] # last name, then

Item 22. Learn the myriad ways of sorting ❘ 79

Download from <www.wowebook.com>

ptg

or

$first[$a] cmp $first[$b] # first name

} 0 .. $#first;

for (@index) {

print "$last[$_], $first[$_]\n"; # Jones, Bill

} # Jones, Sue

Smith, Carol, etc.

In the preceding example, you are actually sorting a list of indices. This is
a fairly common thing to do. Note the use of the short-circuit Boolean
operator or in the sort subroutine. Each time Perl calls the sort subrou-
tine, it first evaluates the part of the expression to the left of the or. If it
evaluates to a non-zero “true” value—in this case, meaning that $a doesn’t
compare equal to $b—then or returns that value and you’re done. Other-
wise Perl evaluates the comparison on the righthand side and returns that
value.

Note that this wouldn’t work if Perl’s or operator (or its higher-precedence
cousin, ||) returned only 1 or 0. It’s the fact that or returns the actual
value computed on the lefthand or righthand side that makes this work.

Advanced sorting: the mundane ways

Sometimes it takes a significant amount of processing to compare two
keys. For example, let’s sort on the third field, the uid, of a password entry:

open my ($passwd), '<', '/etc/passwd' or die;

my @by_uid =

sort { (split /:/, $a)[2] <=> (split /:/, $b)[2] }

<$passwd>;

This seems okay at first glance. It does indeed sort the lines in the required
order. However, it also performs the relatively complex split operation
twice each time it calls the sort subroutine.

sort typically calls the subroutine many times for each key. Comparison-
based sorting algorithms perform on the order of n log n comparisons per
sort, where n is the number of elements sorted. In order to make your
sorts run quickly, you have to make the comparisons run quickly. If your
keys require significant transformation before comparison, you should
find a way to cache the result of the transformation.

80 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

In the preceding example, you could create a hash of the comparison val-
ues before performing the sort, and then sort the hash by its values:

open my ($passwd), '<', '/etc/passwd' or die;

my @passwd = <$passwd>;

key is whole line, value is uid

my %lines = map { $_, (split /:/)[2] } @passwd;

my @lines_sorted_by_uid =

sort { $lines{$a} <=> $lines{$b} } keys %lines;

Advanced sorting: the cool ways

Through design, or perhaps trial, or maybe just by accident, Perl pro-
grammers have come up with some convenient idioms for implementing
complex sorting transforms.

One of the things that is less than ideal in the preceding examples is the
need for a separate statement to set up an array or hash of transformed
keys. One way of getting around this is something I have nicknamed the
Orcish Maneuver (“|| cache”). It uses the little-known ||= operator. Let’s
revisit the example of sorting filenames by modification date that we saw
a little earlier.

Sorting with the Orcish Maneuver

Here’s the old way to sort files by their modification ages, inefficiencies
included. This sort has to call -M many, many times:

my @sorted = sort { -M $a <=> -M $b } @files;

Here it is using the Orcish Maneuver:

my @sorted =

sort { ($m{$b} ||= -M $b) <=> ($m{$b} ||= -M $b) }

@files;

Wow! What the heck is going on here? First of all, look at that ||=:

$m{$a} ||= -M $a

The ||= has the same semantics as writing it out:

$m{$a} = $m{$a} || -M $a

Item 22. Learn the myriad ways of sorting ❘ 81

Download from <www.wowebook.com>

ptg

The first time the sort subroutine encounters a particular filename $a,
$m{$a} has the value undef, which is false, and thus the righthand side of
the ||, -M $a, has to be evaluated. Since this is Perl, not C, the || opera-
tor returns the actual result of the righthand side, not a simple 0 or 1
(“true” or “false”) value. This value now gets assigned to $m{$a}.

Subsequent tests against the same filename will use the modification time
value cached in $m{$a}.

The hash %m is temporary and should be empty or undefined when this
sort statement is encountered. You may want to wrap this line of code in
braces and make %m a my variable to limit its scope, something like:

{

my %m;

@sorted = sort ...

}

The Schwartzian Transform

The most concise, all-around sorting technique, though, is the Schwartzian
Transform, named after Randal Schwartz. A Schwartzian Transform is a
sort bracketed by maps.

The best way to show a Schwartzian Transform is to build it up by pieces.
Use the prior example of the modification time sorting, but do it more
efficiently. First, start with the filenames:

my @names = glob('*');

And now, turn the names into a same-length list of two-element anony-
mous lists:

my @names_and_ages = map { [$_, -M] } @names;

Each element is now a reference to a two-element array—a tuple (Item
13). The first element of each tuple is the original name (from $_), while
the second element is the modification age in days (from -M, with an
implied $_ argument).

In the next step, sort this list of references using a sort block:

my @sorted_names_and_ages =

sort { $a->[1] <=> $b->[1] } @names_and_ages;

82 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

Within the sort block, $a and $b represent elements of the
@names_and_ages list, which are array references. Thus, $a->[1] repre-
sents the second element of a selected tuple, containing the age in days.
The net result is that you sort the tuples numerically (note the <=> “space-
ship” operator) by ascending ages.

This gets you most of the way there; now all you need to do is to extract
the original names from each tuple. Simple enough, with one more map:

my @sorted_names =

map { $_->[0] } @sorted_names_and_ages;

And that’s it. But that’s much too wordy for the seasoned Perl hacker, so
here it is all put together as a Schwartzian Transform:

my @sorted_names =

map { $_->[0] } # 4. extract original names

sort { $a->[1]

<=>

$b->[1] } # 3. sort [name, key] tuples

map { [$_, -M] } # 2. create [name, key] tuples

@files; # 1. the input data

Just read this from bottom to top, and you’ll see it’s made up of the same
steps as you had in the previous case—but they’re all strung together.

Simple sorts involving a single key and transformation can use a similar
pattern, changing only the rightmost map and, if necessary, the compari-
son operator. Here’s the password file sorted by the third field using a
Schwartzian Transform:

open my ($passwd), '<', '/etc/passwd' or die;

my @by_uid =

map { $_->[0] }

sort { $a->[1] <=> $b->[1] }

map { [$_, (split /:/)[2]] } <$passwd>;

Note how much more concise this is. You got rid of the hash %key used to
temporarily store the transformed keys. You were also able to eliminate
the @passwd array and take the input to the Schwartzian Transform
directly from the filehandle.

Item 22. Learn the myriad ways of sorting ❘ 83

Download from <www.wowebook.com>

ptg

Things to remember

■ Perl sorts according to UTF-8 by default.
■ You can give sort your own comparison routine.
■ For complex sorting situations, you can used a cached-key sort.

Item 23. Make work easier with smart matching.

Perl 5.10 introduced the smart match operator, ~~. It looks at the operands
on both sides to decide what to do. You can set up some powerful condi-
tions with minimal typing. Complete details are in the perlsyn, but here are
some examples to whet your appetite. Smart matching is mostly used with
given-when (Item 24).

If you want to use smart matching, make sure you are using at least Perl
5.10.1. The original smart match behavior changed from commutative to
non-commutative (meaning that the order of operands now matters). Just
to be clear, this section specifies the point release of Perl for its examples:

use 5.010001;

First, consider the simple task of checking that a key exists in a hash, or an
element in an array. It’s easy to make these conditions:

if (exists $hash{$key}) { ... }

if (grep { $_ eq $name } @cats) { ... }

A smart match makes them look a bit nicer, and more consistent, even
though it handles different tasks:

use 5.010001; # ~~ changed behavior in 5.10.1

if ($key ~~ %hash) { ... }

if ($name ~~ @cats) { ... }

Next, consider how you would check that some key in a hash matches a
regex. You would have to go through all of the keys yourself:

my $matched = 0;

foreach my $key (keys %hash) {

do { $matched = 1; last } if $key =~ /$regex/;

}

84 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

if ($matched) {

print "One of the keys matched!\n";

}

That’s too much work. You could hide all of that in a subroutine to make the
program flow more pleasing, but in Perl 5.10, that work is already built in:

use 5.010001;

if (%hash ~~ /$regex/) {

say "One of the keys matched!";

}

If you want to check if an array element matches a regex, the condition
looks almost the same:

use 5.010001;

if (@array ~~ /$regex/) {

say "One of the elements matched!";

}

Several other operations that would otherwise take a lot of work become
almost trivial with the smart match:

%hash1 ~~ %hash2 # the hashes have the same keys

@array1 ~~ @array2 # the arrays are the same

%hash ~~ @keys # one the elements in @keys is a

key in %hash

$scalar ~~ $code_ref # $code_ref->($scalar) is true

The full table for the smart match operator behavior is in the perlsyn
 documentation.

Things to remember

■ Use the smart match operator to encapsulate complex behavior.
■ Remember that the smart match operator does different things based

on its operands.
■ Use at least Perl 5.10.1 to get the stable behavior for smart matching.

Item 23. Make work easier with smart matching ❘ 85

Download from <www.wowebook.com>

ptg

Item 24. Use given-when to make a switch statement.

Almost since Perl came to life, Perl programmers have been complaining
about the only thing Perl didn’t seem to steal from C: its switch state-
ment. As of Perl 5.10, Perl not only fixes that, but as with most things Perl,
it makes it a heck of a lot better.

Type less

Perl gives switch a new name, calling it given-when. As with most of its
design, Perl thinks about how people talk to each other: “If I’m given this,
when it is this, I do this.” You might already do this as a series of if-elsif-
else statements:

my $dog = 'Spot';

if ($dog eq 'Fido') { ... }

elsif ($dog eq 'Rover') { ... }

elsif ($dog eq 'Spot') { ... }

else { ... }

You want to test $dog for different possibilities, and then run some code
when you find the right condition. You have to repeat the structure of the
code for every branch. That’s too much work for a high-level language
such as Perl. Instead, you can use given-when, which handles most of typ-
ing for you:

use 5.010;

given ($dog) {

when ('Fido') { ... }

when ('Rover') { ... }

when ('Spot') { ... }

default { ... };

};

That’s a lot less typing! Perl handles some of the tricks for you. First, it
topicalizes $dog, which is Perl’s way of saying that it sets the default vari-
able $_ to the value for $dog. That way, you don’t type $dog over and over
again as you did in the first example. Second, Perl automatically compares

86 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

the topic, $_, to the item that you provided. It’s the same as doing it your-
self, if you like doing extra work:

use 5.010;

given ($dog) {

my $_ = $dog;

when ($_ eq 'Fido') { ... }

when ($_ eq 'Rover') { ... }

when ($_ eq 'Spot') { ... }

default { ... };

};

Smart matching

The given-when construct is much more powerful than just a chain of
conditions. The previous example uses the eq string comparison. In the
example before that, though, how does Perl know to use that comparison?
Unless you have an explicit comparison in when, Perl’s really using smart
matching, the ~~ (Item 23):

use 5.010;

given ($dog) {

when ($_ ~~ 'Fido') { ... }

when ($_ ~~ 'Rover') { ... }

when ($_ ~~ 'Spot') { ... }

default { ... };

};

Smart matching figures out how to compare its two operands by what they
are. In this case, Perl sees a scalar variable, $_, and a literal string, 'Fido'.
Perl assumes that you want a string comparison and that’s what it does.
You can use smart matching anywhere, but when uses it when you don’t
specify your own comparison.

If you use something else in the smart match, you get a different compar-
ison. The perlsyn documentation has a table of all of the possibilities, but
here are some interesting ones:

$dog ~~ /$regex/ # $dog matches the regex

Item 24. Use given-when to make a switch statement ❘ 87

Download from <www.wowebook.com>

ptg

$dog ~~ %Dogs # $dog is a key in %Dogs

$dog ~~ @Dogs # $dog is an element in @Dogs

@Dogs ~~ /$regex/ # one item in @Dogs matches regex

%Dogs ~~ /$regex/ # one key in @Dogs matches regex

The when block adds the extra magic of assuming that the operand on the
lefthand side is the topic, $_. These two are the same:

when (RHS) { ... }

when ($_ ~~ RHS) { ... }

Multiple branches

By default, when a when block matches, that’s it. Perl won’t try any of the
other when blocks. That’s just what you would expect of an if-elsif-
else construct. There is an implicit break at the end of each when block
that tells it to break out of the loop:

use 5.010;

given ($dog) {

when ('Fido') { ...; break }

when ('Rover') { ...; break }

when ('Spot') { ...; break }

default { ... };

};

However, with a continue, you can run one when block and then try the
next one, too. In this example, you can test the name in $dog in each when:

use 5.010;

my $dog = 'Spot';

given ($dog) {

when (/o/) { say 'The name has an "o"'; continue }

when (/t/) { say 'The name has a "t"'; continue }

when (/d/) { say 'The name has a "d"'; continue }

88 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

};

Intermingling code

Once of the other drawbacks of if-elsif-else is that you can’t run
interstitial code between the conditions. You have to match a condition
before you run any code. With given-when, you can insert any code you
like around the when portions, including code that changes the topic:

use 5.010;

my $dog = 'Spot';

given ($dog) {

say "I'm working with [$_]";

when (/o/) { say 'The name has an "o"'; continue }

say "Continuing to look for a t";

when (/t/) { say 'The name has a "t"'; continue }

$_ =~ tr/p/d/;

when (/d/) { say 'The name has a "d"'; continue }

};

Switching over a list

You can use when in a foreach loop, too. It does the same thing as in a
given, although you get to try the condition for each item in the input
list:

use 5.010;

my $count = 0;

foreach (@array) {

when (/[aeiou]$/) { $vowels_count++ }

when (/[^aeiou]$/) { $count++ }

}

say "\@array contains $count words ending in consonants and

$vowel_count words ending in vowels";

Item 24. Use given-when to make a switch statement ❘ 89

Download from <www.wowebook.com>

ptg

Things to remember

■ Use given-when if you want a switch statement.
■ The smart match operator in when uses $_ by default.
■ Use when in other looping constructs besides given.

Item 25. Use do {} to create inline subroutines.

The do {} syntax lets you group several statements as a single expression.
It’s a bit like an inline subroutine. For example, to quickly read in an entire
file, you can localize the input record separator $/ (Item 43), open the file
with a lexical filehandle (Item 52), read the data, and store it in a scalar, all
in one block:

my $file = do {

local $/;

open my ($fh), '<', $filename or die;

<$fh>;

};

With the do block, local and my are scoped to just that block; they don’t
affect anything else. The last evaluated expression, <$fh>, is the return
value of the block, just as it would be for a conventional subroutine. You
assign that value once to $file, which you declare outside the block to
give it the proper scope.

Consider the same thing without do {}. You want to make some things
short term inside the block, but you have to end up with the contents out-
side the block. You have to do some extra work to assign the $file, which
you have to type twice:

my $file;

{

local $/;

open my ($fh), '<', $filename or die;

$file = join '', <$fh>;

}

You can save some code in chains of if-elsif-else blocks that you
might use simply to set the right values. Suppose you need to select the

90 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

localization for thousands and decimal separators. You could declare some
variables, and then assign to those variables based on the right conditions:

my ($thousands_sep, $decimal_sep);

if ($locale eq 'European') {

($thousands_sep, $decimal_sep) = qw(. ,);

}

elsif ($locale eq 'English') {

($thousands_sep, $decimal_sep) = qw(, .);

}

That’s a bit sloppy, because you have to type the variables several times,
making the code dense and obscuring the task. With a do, you can use the
fact that the last evaluated expression is the result, so you can get rid of
the extra variable typing:

my ($thousands_sep, $decimal_sep) = do {

if ($locale eq 'European') { qw(. ,) }

elsif ($locale eq 'English') { qw(, .) }

};

Sometimes you might want to use a do to move some error handling out
of the way to de-emphasize it. For instance, if you have to go through a
list of files but don’t want to stop because you can’t open one of them, you
can catch the failure in open and run an expression on the righthand side
of the or:

foreach my $file (@files) {

open my ($fh), '<', $file or do { warn ...; next };

... do stuff ...;

}

If your do {} gets much longer than a couple of statements, you’re better
off moving it into its own subroutine, so don’t overuse the idiom.

There’s another use for do, although it’s rather rare. Sometimes you want
to run your while block before you test the condition for the first time.
Consider prompting users for a string, and continuing to prompt them
until they type it correctly. You need to get their first input before you can
test it, so you repeat some code:

print "Type 'hello': ";

chomp(my $typed = <STDIN>);

Item 25. Use do {} to create inline subroutines ❘ 91

Download from <www.wowebook.com>

ptg

while ($typed ne 'hello') {

print "Type 'hello': ";

chomp($typed = <STDIN>);

}

You can eliminate the duplicate code by using while as an expression
modifier for a do {} when you need run some code before you check the
condition:

my $typed;

do {

print "Type 'hello': ";

chomp($typed = <STDIN>);

} while ($typed ne 'hello');

You did need to declare $typed, which is a bit ugly, but it’s not as ugly as
the previous example.

Things to remember

■ A do block returns the last evaluated expression.
■ Fit the do anywhere you can use an expression.
■ Use the scope of the do block to localize variables.

Item 26. Use List::Util and List::MoreUtils for easy list
manipulation.

One of the keys to grokking Perl is knowing how to work with lists. Indeed,
in his preface to Higher Order Perl, Mark Jason Dominus says that Perl is
more like Lisp than it is like C. Perl has the built-ins like map, grep, and
foreach that you can use to build up complex list handling. Some list
operations are so common that you can use fast, C implementations of
them in either List::Util or List::MoreUtils.

Find the maximum value quickly

If you need to find the maximum number in a list, you can easily do it
yourself in pure Perl:

my @numbers = 0 .. 1000;

my $max = $numbers[0];

92 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

foreach (@numbers) {

$max = $_ if $_ > $max;

}

But in pure Perl that’s relatively slow. The List::Util module, which comes
with Perl, provides a max routine implemented in C that does it for you:

use List::Util qw(max);

my $max_number = max(0 .. 1000);

The maxstr routine does the same thing for strings:

use List::Util qw(maxstr);

my $max_string = maxstr(qw(Fido Spot Rover));

Similarly, you could easily sum a list of numbers yourself in pure Perl:

my $sum = 0;

foreach (1 .. 1000) {

$sum += $_;

}

But it’s much easier and faster with List::Util’s sum:

use List::Util qw(sum);

my $sum = sum(1 .. 1000);

Reduce a list

There’s another way to sum numbers. List::Util’s reduce function,
again implemented in C, can do it for you much faster and with a more-
pleasing syntax:

use List::Util qw(reduce);

my $sum = reduce { $a + $b } 1 .. 1000;

reduce takes a block just like sort, but works differently. It shifts off the
first two elements in its input list and aliases them to $a and $b. The input
list is now two elements shorter. reduce takes the result of the operation,
in this case addition, and unshifts it onto the input list. It starts the process

Item 26. Use List::Util and List::MoreUtils for easy list manipulation ❘ 93

Download from <www.wowebook.com>

ptg

over and finally stops when it has only one element, which becomes the
result of the reduce—in this case, $sum.

Knowing that, you can come up with other reductions that don’t already
have their own functions, such as taking the product of all of the numbers:

my $product = reduce { $a * $b } 1 .. 1000;

Determine if any element matches

In pure Perl, it’s annoying to find the first element in a list that matches
some condition. It’s easy to find that any element matches a condition. For
instance, you can easily check that @list contains an element that is
greater than 1,000:

my $found_a_match = grep { $_ > 1000 } @list;

However, what if @list has 100 million elements, and the first element is
1,001? The preceding code will still check every item even though you
already have your answer. You could fix this by terminating the loop your-
self, but do you really want to write that much code?

my $found_a_match = 0;

foreach my $elem (@list) {

$found_a_match = $elem if $elem > 1000;

last if $found_a_match;

}

List::Util’s first routine does all of this for you, and also tells you
what the value was. It has the advantage, however, of stopping once it
knows the answer. It doesn’t need to scan the entire list to see if one of the
numbers is larger than 1,000:

use List::Util qw(first);

my $found_a_match = first { $_ > 1000 } @list;

In the List::MoreUtils module, which you have to install from CPAN
yourself in most cases, there are additional convenience functions:

use List::MoreUtils qw(any all none notall);

my $found_a_match = any { $_ > 1000 } @list;

my $all_greater = all { $_ > 1000 } @list;

94 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

my $none_greater = none { $_ > 1000 } @list;

my $all_greater = notall { $_ % 2 } @list;

Iterate over more than one list at a time

Sometimes you have several lists that correlate with one another, and you
want to iterate through them simultaneously. You could do the usual thing
by using an index, which wraps the interesting parts of your code with
some structural code. If you wanted a new list, @c, with the sum of corre-
sponding elements in @a and @b, you could iterate over the indices and
add the corresponding values in each array:

my @a = (...);

my @b = (...);

my @c;

foreach my $i (0 .. $#list) {

my ($a, $b) = ($a[$i], $b[$i]);

push @c, $a + $b;

}

Instead of all that extra code to handle the arrays, use the pairwise rou-
tine in List::MoreUtils:

use List::MoreUtils qw(pairwise);

my @c = pairwise { $a + $b } @a, @b;

The pairwise routine is fine if you have two arrays, but if you have more
than two, you can make an iterator with each_array, which brings back
a little of the work but is still easier:

use List::MoreUtils qw(each_array);

my $ea = each_array(@a, @b, @c);

my @d;

while (my ($a, $b, $c) = $ea->()) {

push @d, $a + $b + $c;

}

Item 26. Use List::Util and List::MoreUtils for easy list manipulation ❘ 95

Download from <www.wowebook.com>

ptg

Merge arrays

If you need to merge two or more arrays, you can do it the hard way, but
List::MoreUtils can make it easy with its mesh routine:

use List::MoreUtils qw(mesh);

my @odds = qw/1 3 5 7 9/;

my @evens = qw/2 4 6 8 10/;

my @numbers = mesh @odds, @even; # returns 1 2 3 4 ...

And more much

You’ve seen only a few examples of what the List::Util and
List::MoreUtils modules can do for you to reduce the amount of code
that you type as well as to show other programmers your intent. Check
out their documentation to see what else these modules can do for you.

Things to remember

■ Use the List::Utils and List::MoreUtils modules for common
list operations.

■ Select items from a list with List::MoreUtils’ all, any, none, or
notall.

■ Work with multiple lists at the same time with pairwise or
each_array.

Item 27. Use autodie to simplify error handling.

Many of Perl’s built-in functions are system calls that might fail through
no fault of your program, so you have to check that they’ve succeeded. For
instance, when you try to open a file, you have to ensure that the open
worked before you try to use the filehandle:

open my ($fh), '<', $file

or die "Could not open $file: $!";

All of the error checking clutters your code, but you do it over and over
again. To save yourself the typing, you can use the autodie pragma

96 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

(included with Perl starting with 5.10.1, but also on CPAN so you can
install it yourself):

use autodie;

open my ($fh), '<', $file; # automatically dies for you

By itself, autodie applies to all of the functions it handles, mostly all of the
built-ins that interact with the system. If you want it to apply only to cer-
tain functions, you can tell autodie to handle those specific functions only,
or all of the functions in a group:

use autodie qw(open close); # only specific functions

use autodie qw(:filesys); # all functions from group

You don’t have to apply autodie to your entire file either. It’s a lexical
pragma, like strict, that applies only within its scope:

{

use autodie;

open my ($fh), '<', $file; # automatically dies for you

}

Alternatively, you can apply autodie to the entire file and turn it off within
a scope:

use autodie;

{

no autodie; # back to normal in this scope

chdir('/usr/local') or die "Could not change to $dir";

}

When autodie raises an error for you, it sets $@, the eval error variable,
to an instance of an autodie::exception object:

use autodie;

eval { open my ($fh), '<', $file };

my $error = $@; # always save $@ right away

in case it changes

Item 27. Use autodie to simplify error handling ❘ 97

Download from <www.wowebook.com>

ptg

You can query the error to see where it came from. autodie is smart
enough to know how to classify the errors so you have some flexibility in
how you handle them. The autodie::exception object knows how to deal
with the smart match operator (Item 23), so you can have a hierarchy of han-
dlers going from specific to general. You can match against the specific sort
of error or the error type (these are listed in the autodie documentation):

use 5.010;

use autodie;

eval { open my ($fh), '<', $file };

my $error = $@; # always save $@ right away

in case it changes

given ($error) {

when (undef) { say "No error"; }

when ('open') { say "Error from open"; }

when (':io') { say "Non-open, IO error."; }

when (':all') { say "All other autodie errors." }

default { say "Not an autodie error at all." };

}

If you don’t have Perl 5.10, you have to do a bit more work to handle the
autodie errors:

from the autodie documentation

if ($error and $error->isa('autodie::exception')) {

if ($error->matches('open')) {

print "Error from open\n";

}

if ($error->matches(':io')) {

print "Non-open, IO error.\n";

}

}

elsif ($error) { # A non-autodie exception.

...;

}

Things to remember

■ Use autodie to handle errors from built-ins automatically.
■ Specify subsets of autodie to limit its effect.
■ Catch autodie exceptions with eval.

98 ❘ Chapter 2 Idiomatic Perl

Download from <www.wowebook.com>

ptg

3 ❘ Regular Expressions

99

Perl’s regular expressions are a language unto themselves, and that lan-
guage seems almost as complex as Perl, perhaps even more so.

You don’t have to use everything, but there are some features of regular
expressions that will make your life much easier. This chapter shows you
some of their more-popular features.

Although Perl’s regular-expression engine contains many optimizations
for efficiency, it’s possible—and easy at times—to write matches and sub-
stitutions that run much more slowly than they should.

Efficiency may not always be your primary objective. In fact, efficiency should
rarely be your primary objective in software development. Generally, a pro-
grammer’s first priority should be to develop adequate, robust, and correct
solutions to problems. It doesn’t hurt, though, to keep efficiency in mind.

Now that Perl handles Unicode, Perl’s regular expressions have many fea-
tures to deal with not only bytes but characters and graphemes, too. Not
only that: Regular expressions can deal with character properties. We save
most of this issue for Chapter 8, “Unicode,” so you’ll find quite a bit of
regex stuff there, too.

Item 28. Know the precedence of regular expression operators.

The “expression” in “regular expression” is there because regular expres-
sions are constructed and parsed using grammatical rules similar to those
used for arithmetic expressions. Regular expressions serve a very different
purpose, true; but understanding the similarities between them will help
you write better regular expressions, and hence better Perl.

Regular expressions are made up of atoms and operators. Atoms are gen-
erally single-character matches. For example:

a # matches the letter a

\$ # matches the character $

Download from <www.wowebook.com>

ptg

100 ❘ Chapter 3 Regular Expressions

\n # matches newline

[a-z] # matches a lowercase letter

. # matches any character except \n

\1 # arbitrary length--backreference to 1st capture

There are also special “zero-width” atoms. For example:

\b # word boundary--transition from \w to \W

^ # matches start of a string

\A # absolute beginning of string

\Z # end of a string or newline at end --

might or might not be zero-width

\z # absolute end of string with nothing after it

Atoms are modified or joined together by regular-expression operators.
As in arithmetic expressions, there is an order of precedence among these
operators.

Regular expression precedence

Fortunately, there are only four precedence levels. Imagine if there were as
many as there are for arithmetic expressions!

Parentheses and the other grouping operators have the highest precedence.
Table 3-1 shows the precedence order of regular-expression operators.

A repetition operator binds tightly to its argument, which is either a sin-
gle atom or a grouping operator:

ab*c # matches ac, abc, abbc, abbbc, etc.

abc* # matches ab, abc, abcc, abccc, etc.

ab(c)* # same thing and capture the c

ab(?:c)* # same thing but don't capture the c

abc{2,4} # matches abcc, abccc, abcccc

(abc)* # matches empty string, abc, abcabc, etc.

Table 3-1 Regular Expression Operator Precedence, from Highest to Lowest

Precedence Operators Description

Highest () (?:) etc. Parentheses and other grouping

? + * {m,n} +? ++ etc. Repetition

^ $ abc \G \b \B [abc] Sequence, literal characters,
character classes, assertions

Lowest a|b Alternation

Download from <www.wowebook.com>

ptg

Placement of two atoms side-by-side is called sequence. Sequence is a kind
of operator, even though it is written without punctuation. To illustrate
this, let’s suppose that sequence were actually represented by a bullet char-
acter (•). The above examples would look like:

a•b*•c # matches ac, abc, abbc, abbbc, etc.

a•b•c* # matches ab, abc, abcc, abccc, etc.

a•b•(c)* # same thing and capture the c

a•b•(?:c)* # same thing but don't capture the c

a•b•c{2,4} # matches abcc, abccc, abcccc

(a•b•c)* # matches empty string, abc, abcabc, etc.

Is the precedence of the operators more apparent now?

The last entry in the precedence chart is alternation. Let’s continue to use
the “•” notation for a moment:

e•d|j•o # matches ed or jo

(e•d)|(j•o) # same thing

e•(d|j)•o # matches edo or ejo

e•d|j•o{1,3} # matches ed, jo, joo, jooo

The zero-width atoms like ̂ and \b group the same way as do other atoms:

^e•d|j•o$ # matches ed at beginning, jo at end

^(e•d|j•o)$ # matches exactly ed or jo

It’s easy to forget about precedence. Removing excess parentheses is a
noble pursuit, especially within regular expressions, but be careful not to
remove too many:

who sent me this email?

/^Sender|From:\s+(.*)/; # WRONG! -- this would match:

X-Not-Really-From: faker

The pattern was meant to match Sender: and From: lines in a mail
header, but it actually matches something somewhat different. Here it is
with some parentheses added to clarify the precedence:

/(^Sender)|(From:\s+(.*))/;

Adding a pair of parentheses, or perhaps capture-free parentheses, (?:)
(Item 32), fixes the problem:

better, this time

/^(Sender|From):\s+(.*)/; # $1 contains Sender or From

/^(?:Sender|From):\s+(.*)/; # $1 contains the data

Item 28. Know the precedence of regular expression operators ❘ 101

Download from <www.wowebook.com>

ptg

Double-quote interpolation

Perl regular expressions are subject to the same kind of interpolation as
double-quoted strings are. Variable names, and string escapes like \U and
\Q, are not regular-expression atoms, and are never seen by the regular-
expression parser. Interpolation takes place in a single pass that occurs
before Perl parses a regular expression:

/te(st)/; # matches test in $_

/\Ute(st)/; # matches TEST

/\Qte(st)/; # matches te(st)

$x = 'test';

/$x*/; # matches tes, test, testt, etc.

/test*/; # same thing as above

Double-quote interpolation and the separate regular-expression parsing
phase combine to produce a number of common “gotchas.” For example,
here’s what can happen if you forget that an interpolated variable is not an
atom:

read in a pattern and match it twice

chop($pat = <STDIN>); # for example, bob

print "matched\n" if /$pat{2}/; # WRONG--/bob{2}/

print "matched\n" if /($pat){2}/; # CORRECT--/(bob){2}/

print "matched\n" if /patpat/; # brute force way

In this example, if the user typed in bob, the first regular expression would
match bobb, since the contents of $pat are expanded before the regular
expression is interpreted.

All three of the preceding regular expressions have another potential pit-
fall. Suppose the user types in the string hello :-). This will generate a
fatal run time error. The result of interpolating this string into
/($pat){2}/ is /(hello :-)){2}/, which, aside from being nonsense,
has unbalanced parentheses. Perl tells you where your regex error is:

Unmatched) in regex; marked by <-- HERE in ↵
m/(hello :-)) <-- HERE {2}/

You can catch this with qr// (Item 40).

If you don’t want special characters like parentheses, asterisks, periods,
and the like interpreted as regular-expression metacharacters, use the

102 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

quotemeta operator, or the escape \Q. Both quotemeta and \Q put a back-
slash in front of any character that isn’t a letter, digit, or underscore.

In the following code, you read a string from standard input, quote it, then
use that string for matching. If the string that was input were hello :-),
it would become hello\ \:\-\) after quoting, making it safe to use in a
regular-expression match.

chomp($pat = <STDIN>);

my $quoted = quotemeta $pat;

print "matched\n" if /($quotemeta){2}/;

Alternatively, you can do the meta-quoting in the expression itself with \Q
and \E:

chomp($pat = <STDIN>);

print "matched\n" if /(\Q$pat\E){2}/;

As with seemingly everything else pertaining to regular expressions, tiny
errors in quoting metacharacters can result in strange bugs:

this actually means /hello \ \:\-\)\{2\}/--fatal error

print "matched\n" if /(\Q$pat){2}/; # WRONG! no \E

Things to remember

■ Watch out for regular-expression precedence.
■ Use parentheses to group parts of a regular expression.
■ Use \Q or quotemeta to use metacharacters as literal characters.

Item 29. Use regular expression captures.

Although regular expressions are handy for determining whether a string
looks like one thing or another, their greatest utility is in helping you parse
the contents of strings. To break apart strings with regular expressions,
you use regular-expression captures.

The capture variables: $1, $2, $3 . . .

Most often, parsing with regular expressions involves the use of the regu-
lar expression capture variables $1, $2, $3, and so on. Capture variables are
associated with parentheses inside regular expressions, also known as

Item 29. Use regular expression captures ❘ 103

Download from <www.wowebook.com>

ptg

capture buffers. Each pair of parentheses in a regular expression “cap-
tures” what its contents match and “memorizes” it in a capture variable.
For example, you can pick apart a URL, separating the host from the path:

$_ = 'http://www.perl.org/index.html';

if (m#^http://([^/]+)(.*)#) {

print "host = $1\n"; # www.perl.org

print "path = $2\n"; # /index.html

}

Only successful matches affect the capture variables. An unsuccessful
match leaves the capture variables alone, even if it appears that part of a
match might be succeeding. Continuing with the preceding code example,
a new, unsuccessful match leaves $1 and $2 with the values they contained
before the evaluation of the following expression:

$_ = 'ftp://ftp.uu.net/pub/';

if (m#^http://([^/]+)(.*)#) {

print "host = $1\n"; # still www.perl.org

print "path = $2\n"; # still /index.html

}

When an expression inside a pair of parentheses matches several different
places in a string, the corresponding capture variable contains the last
match:

$_ = 'ftp://ftp.uu.net/pub/systems';

if (m#^ftp://([^/]+)(/[^/]*)+#) {

print "host = $1\n"; # ftp.uu.net

print "fragment = $2\n"; # /systems

}

The capture variables are assigned in the order of the opening parenthe-
ses, regardless of nesting. In cases involving nested parentheses, count left
parentheses to determine which capture variable a particular set of paren-
theses refers to:

$_ = 'ftp://ftp.uu.net/pub/systems';

if (m#^ftp://([^/]+)((/[^/]*)+)#) {

print "host = $1\n"; # ftp.uu.net

print "path = $2\n"; # /pub/systems

print "fragment = $3\n"; # /systems

}

104 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

The “count left parentheses” rule applies for all regular expressions, even
ones involving alternation:

$_ = 'ftp://ftp.uu.net/pub';

if (m#^((http)|(ftp)|(file)):#) {

print "protocol = $1\n"; # ftp

print "http = $2\n"; # empty string

print "ftp = $3\n"; # ftp

print "file = $4\n"; # empty string

}

The $+ special variable contains the value of the last non-empty buffer:

print "\$+ = $+\n"; # ftp, from $3

And the parade of frills continues! Capture variables are automatically
localized by each new scope. In a unique twist, these localized variables
receive copies of the values from the outer scope. This is in contrast to the
usual reinitializing of a localized variable:

$_ = 'ftp://ftp.uu.net/pub';

if (m#^([^:]+)://(.*)#) {

print "\$1, \$2 = $1, $2\n"; # ftp, ftp.uu.net/pub

{

$1 and $2 start with the values from outside

print "\$1, \$2 = $1, $2\n"; # ftp, ftp.uu.net/pub

if ($2 =~ m#([^/]+)(.*)#) {

print "\$1, \$2 = $1, $2\n";# ftp.uu.net, /pub

}

}

on exit from the block, the old $1 and $2 are back

print "\$1, \$2 = $1, $2\n"; # ftp, ftp.uu.net/pub

}

The localizing mechanism used is local, not my (Item 43).

Numbered backreferences

Regular expressions can make use of the capture buffers with backrefer-
ences. The atoms \1, \2, \3, etc. match the contents of the corresponding
buffers.

Item 29. Use regular expression captures ❘ 105

Download from <www.wowebook.com>

ptg

An obvious (but not necessarily useful) application of backreferences is in
solving simple word puzzles. For example, this expression matches a dou-
bled word character:

/(\w)\1/;

An this matches two or more repeated word characters:

/(\w)\1+/;

It is important to keep count of your nested parentheses. For instance, this
expression, which matches consecutive pairs of repeated word characters,
must backreference \2 because of the nesting:

/((\w)\2){2,}/;

You can reuse backreferences. The following example finds occurrences
where the same vowel is repeated four times. The first line illustrates the
long way so you can see repeated backreferences. The second line is more
idiomatic:

/([aeiou]).*\1.*\1.*\1/;

/([aeiou])(.*\1){3}/;

Although you may not find yourself using them all that often, backrefer-
ences are a powerful feature. They can sometimes be handy for dealing
with delimiters in a simplified way. You can find matching quotes with
them:

q/"stuff"/ =~ /(['"]).*\1/;

You probably don’t want greedy regular expressions, because you’ll end
up eating up too many quotes. A nongreedy (Item 34) version works
 better:

q/"stuff","more"/ =~ /(['"]).*?\1/;

You can even get really fancy and handle escaped quotes:

q/"stuff\"more/ =~ /(['"])(\\\1|.)*?\1/;

Unfortunately, this approach breaks down quickly: You can’t use it to
match parentheses (even without worrying about nesting), and there are
faster ways to deal with embedded escapes.

106 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

Captures in substitutions

Capture and match variables are often used in substitutions. The variables
$1, $2, $&, and so forth within the replacement string of a substitution
refer to the capture buffers from the match part, not from an earlier state-
ment. Knowing this, you can perform such functions as swapping two
words using a substitution:

s/(\S+)\s+(\S+)/$2 $1/;

Try some simple HTML entity escaping, using a hash of mapped escape
values:

my %ent = { '&' => 'amp', '<' => 'lt', '>' => 'gt' };

$html =~ s/([&<>])/&$ent{$1};/g;

You can even use substitution to collapse words, in this case “abbreviating”
a newsgroup name:

$newsgroup =~ s/(\w)\w*/$1/g;

You don’t need capture variables in some substitutions if you look at what
to throw away rather than what to keep. Between these two methods of
eliminating leading whitespace, use the second version, since it does less
work:

s/^\s*(.*)/$1/; # WASTEFUL

s/^\s+//; # better

You can use the /e (eval) option to help solve some tricky problems where
you need to compute the replacement string during substitution. Here, you
replace all of the names of nonexistent files with a “not found” message:

s/(\S+\.txt)\b/-e $1 ? $1 : "<$1 not found>"/ge;

Substitutions using /e can sometimes be more legibly written using
matching delimiters, and possibly the /x option (Item 37):

s{

(\S+\.txt)\b # all the filenames ending in .txt

}{

-e $1 ? $1 : '<$1 not found>'

}gex;

Item 29. Use regular expression captures ❘ 107

Download from <www.wowebook.com>

ptg

Matching in list context

In list context, the match operator returns a list of values corresponding to
the contents of the capture buffers. If the match is unsuccessful, the match
operator returns an empty list. This doesn’t change the behavior of the
capture variables: $1, $2, $3, and so on are still set as usual.

This is one of the most-useful features of the match operator. It allows you
to scan and split apart a string in a single step. This makes tasks like split-
ting RFC 2822 headers easy and compact:

my ($name, $value) = /^([^:]*):\s*(.*)/;

You can be selective about what is returned. This code returns a Subject:
line minus any Re: portion:

my ($bs, $subject) = /^subject:\s+(re:\s*)?(.*)/i;

The result can be sliced to provide just the information you want:

my $subject = (/^subject:\s+(re:\s*)?(.*)/i)[1];

Alternatively, you can just make the parentheses around the Re: match
noncapturing:

my ($subject) = /^subject:\s+(?:re:\s*)?(.*)/i

Using a match inside a map is even more succinct. Here you pull the date
with a very compact line of code:

my ($date) = map { /^Date:\s+(.*)/ } @msg_hdr;

Note how it turns out to be extremely handy that a failed match returns an
empty list.

Tokenizing with regular expressions

Tokenizing a string—dividing it into lexical elements like whitespace,
numbers, identifiers, operators, and so forth—offers an interesting appli-
cation for regular-expression captures.

If you have written (or tried to write) computer-language parsers in Perl,
you may have discovered that Perl seems to be missing some features that
would make the task easier. In fact, it can seem downright difficult at times.
The problem is that when you are “lexing” a string, what you want is to
find out which of several possible patterns matches the beginning of a

108 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

string. What Perl is good at, though, is finding out where in a string a sin-
gle pattern matches. The two don’t map onto one another very well.

Take the example of parsing simple arithmetic expressions containing
numbers, parentheses, and the operators +, -, *, and /. Let’s ignore white-
space, assuming you would have substituted it out beforehand.

One way to parse arithmetic might be via a series of conditions that each
pushes its match into an array:

my @tokens;

while ($_) {

if (/^(\d+)/) {

push @tokens, 'num', $1;

}

elsif (/^([+\-\/*()])/) {

push @tokens, 'punct', $1;

}

elsif (/^([\d\D])/) {

die "invalid char $1 in input";

}

$_ = substr($_, length $1);

}

This turns out to be moderately efficient, even if it looks ugly. Regular
expressions that are anchored with ^ execute very quickly, since Perl tries
matching only at the start of the string rather than potentially at every
position in it.

However, if you start feeding long strings to a lexer like this, it will slow
down considerably because of the substr operation at the end. You might
think of keeping track of the current starting position in a variable named
$pos, and then doing something like:

if (substr($_, $pos) =~ /^(\d+)/) { ... }

That probably won’t be much faster, and may even be slower on short
strings.

One approach that works reasonably well, and is not affected unduly by the
length of the text to be lexed, relies on the behavior of the match operator’s
/g option in a scalar context. Each time a /g match is executed in scalar

Item 29. Use regular expression captures ❘ 109

Download from <www.wowebook.com>

ptg

context, the regular-expression engine starts looking for a match after the
end of the preceding match. This allows you to use a single regular expres-
sion, and it frees you from having to keep track of the current position
explicitly:

the m//g method

while (

/

(\d+) | # number

([+\-\/*()]) | # punctuation

(\D) # something else

/xg

)

{

if ($1 ne "") {

push @tok, 'num', $1;

}

elsif ($2 ne "") {

push @tok, 'punct', $2;

}

else {

die "invalid char $3 in input";

}

}

Things to remember

■ Use the capture variables only after a successful match.
■ Save a list of captures by using the match operator in list context.

Item 30. Use more precise whitespace character classes.

Whitespace is a tricky subject that seems simple, but has plenty of gotchas
that can trip you up. There is horizontal whitespace, which we generally
think of as word separators, and various types of typographical whitespace
that make text easy to read.

Similarly, our concept of “lines” is often defined by some sort of vertical
whitespace. Computers don’t particularly care about lines, and programs

110 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

know about them only because they group characters together based on a
character that the program decides is the line separator.

Perl’s regular expressions have a variety of ways for you to specify exactly
the type of whitespace that you need to match.

Horizontal whitespace

Prior to Perl 5.10, you had two predefined character classes that dealt with
whitespace. The \s matched all whitespace, and its complement \S matched
everything that wasn’t whitespace. With this sweeping classification of
whitespace, you could easily find yourself manipulating characters unin-
tentionally if you weren’t paying attention. Suppose you want to replace
runs of whitespace with a single space. You might try just matching \s+:

my $string = <<'HERE';

This is a line

This is another line

And a final line

HERE

$string =~ s/\s+/ /g;

Since the line endings are whitespace, too, you end up replacing each with
a single space. Instead of four lines of single-spaced words, you end up
with one line:

This is a line This is another line And a final line

To avoid this, you could specify exactly the characters you want:

$string =~ s/[\t]+/ /g;

You might think that replacing all spaces and tabs with spaces would do the
job, but what if the string includes any of the several other horizontal
whitespace characters in the Unicode Character Set? You won’t remove
those spaces with such a restrictive substitution.

As of Perl 5.10, you can use the \h character class to match any horizon-
tal whitespace:

use 5.010;

$string =~ s/\h+/ /g;

Item 30. Use more precise whitespace character classes ❘ 111

Download from <www.wowebook.com>

ptg

Now you can collapse all of your horizontal whitespace while keeping your
line endings in place.

Like Perl’s other character-class shortcuts, \h has a converse, \H, which
matches everything that is not horizontal whitespace, including vertical
whitespace and all nonwhitespace characters.

Vertical whitespace

Just as you have situations where you want to match only horizontal white-
space, you may find yourself needing to match only vertical whitespace. This
includes the carriage return, newline, form feed, vertical tab, and Unicode
line and paragraph separators. If you want to check whether you have a multi-
 line string, for example, you can match any vertical whitespace with \v:

use 5.010;

if ($string =~ m/\v/) {

say 'Found a multiline string';

}

To break your multiline string into lines no matter the separator, you can
use \v in your split pattern:

my @lines = split /\v/, $multi_line_string;

The converse of \v, \V, matches all nonvertical whitespace, including hor-
izontal whitespace and all nonwhitespace characters.

Any line ending

Line endings are a long-standing annoyance of computing. There’s the
newline and there’s the carriage return. Some files use just the newline to
terminate a line, and some files use a carriage return followed by a newline.
Many network protocols also expect a carriage return-newline pair. Uni-
code introduces additional line-ending characters.

Say your job is to handle any line ending, or even all of them at the same
time. You could match sequences of optional carriage returns followed by
newlines so you can normalize each line ending to a single newline:

$string =~ s/(?:\r?\n)/\n/g;

112 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

However, that doesn’t quite work, since the \r and \n are really logical
characters that don’t necessarily map to the same bits on every system
(Mac Classic, we’re looking at you). You might change the expression to
use a character class, so you can match a single occurrence or two consec-
utive occurrences of either character:

$string =~ s/[\r\n]{1,2}/\n/g;

However, that might turn \n\n, which should end two separate lines, into
one line. Also, it still doesn’t handle Unicode line endings.

To handle all sorts of line endings, you could use a quite-complicated reg-
ular expression that includes some characters you may not have thought
of as line endings, such as the vertical tab, 0x0B, and the form feed, 0x0C:

$string =~

s/(?>\x0D\x0A?|[\x0A-\x0C\x85\x{2028}\x{2029}])/\n/g;

Rather than making you go through all of that, Perl 5.10 introduces the \R
character class, which does the same thing:

use 5.010;

$string =~ s/\R/\n/g;

Now, each of your line endings is just a newline.

Non-newlines

Perl 5.12 introduces a new character-class shortcut for non-newlines, \N.
Normally, you can match any non-newline with . as in:

if ($string =~ m/(.+)/) { ... }

If someone adds the /s flag, however, perhaps in a blind conversion to
“best practices,” the . suddenly matches newlines and breaks your code:

if ($string =~ m/(.+)/xsm) { ... } # BROKEN!

If you know that you want only non-newlines, you can match them explic-
itly with \N rather than relying on side effects from /s:

use 5.012;

if ($string =~ m/(\N+)/) { ... }

Item 30. Use more precise whitespace character classes ❘ 113

Download from <www.wowebook.com>

ptg

The complement of \N is, curiously, not a character-class shortcut. It’s just
\n, the newline. Remember this for your next Perl Trivia Challenge.

Things to remember

■ Match horizontal whitespace with \h.
■ Match vertical whitespace with \v.
■ Match non-newlines with \N.

Item 31. Use named captures to label matches.

Wouldn’t it be grand if you didn’t have to remember all of those num-
bered variables to get the parts of the string you matched? Consider the
annoyances you’ve had to tolerate. For instance, say you write a regular
expression to match a couple of names:

$_ = 'Buster and Mimi';

if (/(\S+) and (\S+)/) {

my ($first, $second) = ($1, $2);

...;

}

Later, the requirements change and you have to add some more paren-
theses, but you forget about the change in the number variables. It happens
to all of us:

$_ = 'Buster or Mimi';

if (/(\S+) (and|or) (\S+)/) {

my ($first, $second) = ($1, $2); # OOPS!

...;

}

Imagine this example with several more captures added.

What if you didn’t have to remember which number went with which cap-
ture? If you have Perl 5.10 or later, you’re in luck, since you can use named
capture syntax. Instead of just parentheses, you use the (?<LABEL>) syn-
tax. Your matches show up in the %+ hash, with the labels as keys:

use 5.010;

$_ = 'Buster and Mimi';

if (/(?<first>\S+) and (?<second>\S+)/) {

114 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

my ($first, $second) = ($+{first}, $+{second});

...;

}

Now, if you add another set of parentheses, nothing goes wrong, because
the matches don’t depend on order:

use 5.010;

$_ = 'Buster and Mimi';

if (/(?<first>\S+) (and|or) (?<second>\S+)/) {

my ($first, $second) = ($+{first}, $+{second});

...;

}

This works for backreferences, too. Instead of using \1, \2, and so on, you
use \k<label> to refer to a named capture:

use 5.010;

$_ = 'Buster and Buster';

if (/(?<first>\S+) (and|or) \k<first>/) {

say 'I found the same name twice!';

}

Even though you have given labels to some of these captures, Perl still
tracks them in the numbered variables, so you can use either after the
match.

Perl 5.10 also introduces relative backreferences, so you don’t have to
remember the absolute position of each capture. With \g, you can specify
the absolute number corresponding to the capture you want:

if (/(?<first>\S+) (and|or) \g1/) {

say 'I found the same name twice!';

}

In that case, you still must count the captures to ensure that you get the
right one. Better are relative backreferences. If you know the match you
want is two captures back, you can use a negative number to refer to its
position, although you have to wrap curly braces around the number:

if (/(?<first>\S+) (and|or) \g{-2}/) {

say 'I found the same name twice!';

}

Item 31. Use named captures to label matches ❘ 115

Download from <www.wowebook.com>

ptg

Things to remember

■ Staring with Perl 5.10, you can label your captures.
■ Find your labeled capture results in the %+ hash.
■ Use relative backreferences to avoid counting absolute capture

 positions.

Item 32. Use noncapturing parentheses when you need only
grouping.

Parentheses in Perl regular expressions serve two different purposes:
grouping and capture. While this is usually convenient, or at least irrele-
vant, it can get in the way sometimes. For instance, if you want to match
the Subject: line of an e-mail, ignoring possible reply prefixes, you might
use two sets of parentheses:

my ($bs, $subject) = /^subject:\s+(re:\s*)?(.*)/i

You need the first set of parentheses for grouping (so the ? will work cor-
rectly), but they get in the way, capture-wise. What you would like to have
is the ability to group without captures.

Perl offers a feature for this specific purpose. Capture-free parentheses
(?:) group like parentheses, but don’t create backreferences or capture
variables. If you are using parentheses for grouping alone, you don’t need
a copy of what the parentheses matched. You can save the time required to
make the copy by using Perl’s capture-free parentheses:

my ($subject) = /^subject:\s+(?:re:\s*)?(.*)/i;

Some patterns use nested parentheses, as you might if trying to match a
host name with (\w+(\.\w+)*). There’s no point in remembering the
contents of the inner parentheses in this pattern, so if you want to save a
little time, use capture-free parentheses:

my ($host) = m/(\w+(?:\.\w+)*)/;

The time you save isn’t generally all that much unless the parentheses
match large chunks of text, and capture-free parentheses don’t exactly
improve readability. But sometimes, every little bit of speed helps. To see
just how much, benchmark your regular expressions (Item 41).

Capture-free parentheses are also handy in the match-inside-map construct,
where you use the match in list context so it returns a list of its captures:

116 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

my @subjects =

map { /^subject:\s+(?:re:\s*)?(.*)/i } @headers;

You can also use capture-free parentheses to disable the separator-retention
mode in split. Normally, captures in the pattern you give to split also
show up in the output list:

my $string = '1:2:3:4';

my @items = split /(:)/, $string;

With separator-retention mode, you get the captures, too. In this example,
@items now contains the list qw(1 : 2 : 3 : 4), including both the
digits and the colons. This can be useful when you want to know what was
between the elements, but more often it’s a mistake.

Suppose you want to break up the string by either : or ;, surrounded by
optional whitespace. You must use parentheses to set off the ,|; so you can
trim whitespace on both sides:

my $string = '1:2; 3: 4 ;5';

my @items = split /\s*(,|;)\s*/, $string;

You probably didn’t mean to keep those separators, but now you have
them! Oops. To leave them out of the output list, use the noncapturing
parentheses:

my @items = split /\s*(?:,|;)\s*/, $string;

Things to remember

■ Use noncapturing parentheses when you only need to group
 elements.

■ Use noncapturing parentheses in split to avoid separator-retention
mode.

Item 33. Watch out for the match variables.

The match variables ($`, $&, and $') impose a speed penalty on your Perl
programs because they cause Perl to perform some extra bookkeeping.
After a successful match, they represent the part of the string that comes
before the match, the part that matched, and the part that follows the
match, respectively:

Item 33. Watch out for the match variables ❘ 117

Download from <www.wowebook.com>

ptg

'My cat is Buster Bean' =~ m/Buster/;

print <<"HERE";

Prematch: $`

match: $&

Postmatch: $'

HERE

In the output you see the parts of the string surrounding the match:

Prematch: My cat is

match: Buster

Postmatch: Bean

Match variables can help with text manipulation when a you need to com-
pute a replacement string. For instance, suppose you want to replace
HTML comments:

replacing certain html comments

while (<OLD>) {

if (/<!--\s*(.*?)\s*-->/ and ok_to_replace($1)) {

$_ = $` . html_data($1) . $';

}

print NEW $_;

}

Performance issues

Some people complain that using match variables makes Perl programs
run more slowly. This is true—they do complain.

But the match variables actually do pose a performance problem. They
might be useful for a particular match, but any time Perl sees one of these
variables anywhere in your source, it turns on the special accounting it
needs for remembering these parts, and it does that for every match, whether
you want it or not. This extra works slows down your program significantly.

'My cat is Buster Bean' =~ m/Buster/;

print "I matched $&\n";

while (<>) {

next unless /Bean/; # penalty on every match!

}

118 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

You might even get these variables when you don’t intend to use them.
For instance, the English module that provides long names equivalent to
Perl’s special variables uses $`, $&, and $'. Just loading the module is
enough to trigger the problem:

use English; # Oops! Now all are slower

When you use that module, you can tell it not to handle those match vars:

use English qw(-no_match_vars);

Use the /p flag

Perl 5.10 introduced a new way to do the same thing but apply it to only
one match operator rather than to all of them. When you use /p with
the match operator, Perl sets the ${^PREMATCH}, ${^MATCH}, and
${^POSTMATCH} variables, but only for that match. You don’t suffer the
global penalty:

use 5.010;

'My cat is Buster Bean' =~ m/\s\w+\sBean/p;

say "I matched ${^MATCH}";

while (<>) {

next unless /Bean/; # no penalty!

}

Things to remember

■ Avoid using the match variables, which degrade performance.
■ Don’t accidently use the match variables when you use English.
■ Use the /p flag to enable the per-match variables in Perl 5.10.

Item 34. Avoid greed when parsimony is best.

Greed isn’t about money, at least where regular expressions are concerned.
It’s the term used to describe the matching behavior of most regular-
expression engines, Perl’s included.

A general rule is that a Perl regular expression will return the “leftmost
longest” match it can find, at the first position in a string where it can find

Item 34. Avoid greed when parsimony is best ❘ 119

Download from <www.wowebook.com>

ptg

a match of any length. Repetition operators like * and + “gobble up” char-
acters in the string until matching more characters causes the match to fail:

$_ = "Greetings, planet Earth!\n";

/\w+/; # matches Greetings

/\w*/; # matches Greetings

/n[et]*/; # matches n in Greetings

/n[et]+/; # matches net in planet

/G.*t/; # matches Greetings, planet Eart

This is normally a desirable behavior, but not always. What if you want to
match just the text between single quotes? In this example, you match too
much:

match a single-quoted string--not!

$_ = "This 'test' isn't successful?";

my ($str) = /('.*')/; # matches "test' isn"

Perl keeps matching beyond what appears to be the end of your pattern.
It isn’t really, though: The . matches ' characters, ending at the last occur-
rence of '.

You can fix the single-quoted string example by excluding single quote
from the characters allowed inside the match string:

match a single-quoted string, the old-fashioned way

$_ = "This 'test' isn't successful?";

my ($str) = /('[^']*')/; # matches 'test'

Fortunately, Perl has nongreedy repetition operators. This is a powerful
and enormously helpful feature that allows you to write simple regular
expressions for cases that previously required complex or even impossibly
difficult regular expressions.

You can make any repetition operator (*, +, {m,n}) nongreedy by follow-
ing it with a question mark (?). The operator will then match the shortest
string that results in a pattern match, rather than the longest. This makes
the examples above trivially simple:

match a single-quoted string the nongreedy way

$_ = "This 'test' isn't successful?";

my ($str) = /('.*?')/; # matches 'test'

You can now attempt more ambitious operations, like matching a double-
quoted string that contains character escapes (let’s support \",\\, and \123):

120 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

a double-quoted string

$_ = 'a "double-quoted \"string\042"';

my ($str) = /("(\\["\\]|\\\d{1,3}|.)*?")/;

print $str; # "double-quoted \"string\042"

The only problem with nongreedy matching is that it can be somewhat
slow. Don’t use nongreedy operators unnecessarily, but do use them to
avoid having to write complex regular expressions that might or might
not work correctly.

Things to remember

■ Remember that Perl’s quantifiers match the longest strings they can.
■ Avoid writing patterns that match more than you intend.
■ Make your quantifiers nongreedy with ?.

Item 35. Use zero-width assertions to match positions in a
string.

Sometimes you need to match a condition, rather than characters, in a
string. You can match word boundaries, the start or end of the string, or
the starts or ends of lines in a string. Perl’s regular expressions have
anchors that constrain the match to these positions. These anchors are
also called zero-width assertions because they specify a condition but
don’t consume any characters.

Use \b for word boundaries

Consider the following pattern match, which wants to extract the user-
name and terminal from the output of the who command:

innocuous at first ...

my @who = `who`;

$_ = pop @who;

my ($user, $tty) = /(\w+)\s+(\w+)/;

This works fine on input like joebloe ttyp0 ... but will not match at
all on strings like webmaster-1 ttyp1 ... and will return a strange result
on joebloe pts/10. You probably should have matched any nonwhite-
space instead:

my ($user, $tty) = /(\S+)\s+(\S+)/;

Item 35. Use zero-width assertions to match positions in a string ❘ 121

Download from <www.wowebook.com>

ptg

There is probably something wrong in your regular expression if you have
\w adjacent to \s, or \W adjacent to \S. At the least, you should examine
such regular expressions very carefully.

Another thing to watch out for is “words” containing punctuation char-
acters. Suppose you want to search for a whole word in a text string:

print "Enter a word to search for: ";

my $word = <STDIN>;

print "found\n" if $text =~ /\b\Q$word\E\b/;

This works fine for input like hacker and even Perl5-Porter, but fails for
words like goin', or any word in general that does not begin and end with
a \w character. It will also consider isn a matchable word if $text contains
isn't. The \b matches transitions between \w and \W characters—not
transitions between \s and \S characters. If you want to support search-
ing for words delimited by whitespace, you have to write something like
this instead:

print "Enter a word to search for: ";

my $word = <STDIN>;

print "found\n" if $text =~ /(^|\s)\Q$word\E($|\s)/;

The word boundary anchor, \b, and its inverse, \B, are zero-width asser-
tions. They are not the only zero-width assertions (^, \A, etc. are others),
but they are the easiest to get wrong. If you are not sure what \b and \B will
match in your string, try substituting for them:

my $text = q(What's a "word" boundary?);

(my $btext = $text) =~ s/\b/:/g;

(my $Btext = $text) =~ s/\B/:/g;

print "$btext\n$Btext\n";

When you run that program, you see a colon everywhere Perl thinks it sees
a word boundary:

% tryme

:What:':s: :a: ":word:" :boundary:?

W:h:a:t's a :"w:o:r:d": b:o:u:n:d:a:r:y?:

The results at the ends of the string should be especially interesting to you.
Note that if the last (or first) character in a string is not a \w character,
there is no word boundary at the end of the string. The beginnings and
ends of the strings are virtual nonword characters. Note also that there are

122 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

not-word boundaries between consecutive \W characters (like space and
double-quote) as well as consecutive \w characters.

Match the beginning with ^ or \A

The ^ anchor normally matches at the beginning of a string. Many people
incorrectly learn that it’s the “beginning-of-line” anchor, because they only
ever use it on single-line strings. This regex will match only the first word,
even though it has the /g flag:

my $string = <<'HERE';

This is a line

That is another line

And a final line

HERE

my (@matches) = $string =~ m/^(\w+)/g; # only 'This'

print "@matches\n";

The output shows that you’ve made only one match:

This

If you want to match all of the lines’ first words, you can use the /m flag to
turn on multiline mode. The /m changes the ^ anchor to match at the
beginning of the string or after a line ending:

my (@matches) = $string =~ m/^(\w+)/mg;

Now the output shows all of the words of the beginnings of the lines:

This That And

In multiline mode, if you want to match only at the beginning of the
string, use the \A anchor. In this example, you match a word that starts
with a T at the beginning of the string or a word that doesn’t start with a
T at the beginning of any other line:

my (@matches) = $string =~ m/

(# start of $1

(?: # noncapturing parens

\A T # start of string then T

| # --or--

Item 35. Use zero-width assertions to match positions in a string ❘ 123

Download from <www.wowebook.com>

ptg

^ [^T] # start of line and not a T

)

\w+ # the rest of the word

) # end of $1

/xmg;

The output shows that you match just two words, one for each type of anchor:

This And

You can also do some things that are a bit more clever with a beginning-
of-line anchor, such as initializing the %scores hash by matching two
fields per line from a here document:

my %scores = <<'EOF' =~ /^(.*?):\s*(.*)/mg;

fred: 205

barney: 195

dino: 30

EOF

Match the end with $ or \Z

The $ normally matches the end of a string, although it leaves room for a
possible newline at the end:

if ("some text\n" =~ /text$/) {

print "Matched 'text'\n";

}

The preceding example matches as if newline weren’t there. It still works
if you omit the newline from the string:

if ("some text" =~ /text$/) {

print "Matched 'text'\n";

}

However, if what you really want is the absolute end of a string, you need
to be explicit, perhaps using a negative lookahead to ensure that there isn’t
a newline left over:

if ("some text\n" =~ /text(?!\n)$/) { # fails

print "Matched 'text'\n";

}

124 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

Here, the (?!\n) ensures that there are no newline characters after the $,
and this is enough to force $ to its end-of-string meaning.

You don’t need to go that far, however, since the \z anchor does the same
thing. This match fails because there’s a newline after text, so text is not
at the absolute end of the string:

if ("some text\n" =~ /text\z/) { # fails

print "Matched 'text'\n";

}

You could also use the \Z anchor, which matches at the end of the string
but also allows a possible newline, just like $. The string matches because
\Z can ignore the newline:

if ("some text\n" =~ /text\Z/m) { # works again

print "Matched 'text'\n";

}

By adding the /m suffix to the regular expression, a $ can also match just
before intermediate newlines:

print "fred\nquit\ndoor\n" =~ /(..)$/mg;

Both the preceding and the following examples print editor (the last two
characters of each line):

print "fred\nquit\ndoor" =~ /(..)$/mg; # Same

Things to remember

■ Use \b to match boundaries between word and nonword characters.
■ Use \A or \z to match the absolute beginning or end of a string.
■ Use ^ or $ to match the beginning or end of each line in multiline

mode.

Item 36. Avoid using regular expressions for simple string
operations.

Regular expressions are wonderful, but they are not the most-efficient way
to perform every string operation. Although regular expressions can be used
to perform string operations such as extracting substrings or translating
characters, they are better suited for more-complex operations. Simple

Item 36. Avoid using regular expressions for simple string operations ❘ 125

Download from <www.wowebook.com>

ptg

string operations in Perl should be handled by special-purpose operators
like index, rindex, substr, and tr///.

Bear in mind that all regular-expression matches, even simple ones, must
manipulate capture variables. If all you need is a comparison or a sub-
string, manipulating capture variables is a waste of time. For this reason,
if no other, you should prefer special-purpose string operators to regular-
expression matches whenever possible.

Compare strings with string-comparison operators

If you have two strings to compare for equality, use string-comparison
operators, not regular expressions:

the fast way

if ($answer eq 'yes') { something_wonderful() }

The string-comparison operators are at least twice as fast as regular-
expression matches, especially if you don’t use anchors:

the slow way

if ($answer =~ /^yes$/) { something_wonderful() }

even slower (and probably wrong) without anchors

if ($answer =~ /yes/) { something_wonderful() }

Some more-complex comparisons are also faster if you avoid regular
expressions. You don’t need a regular expression just for case-insensitivity,
for example:

this is faster ...

if (lc($answer) eq 'yes') { something_wonderful() }

... than this

if ($answer =~ /^yes$/i) { something_wonderful() }

Find substrings with index and rindex

The index operator locates an occurrence of a shorter string in a longer
string. The rindex operator locates the rightmost occurrence, but still
counts character positions from the left:

126 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

find position of $little_str in $big_str, 0-based

my $pos = index $big_str, $little_str;

find rightmost $little_str in $big_str

my $pos = rindex $big_str, $little_str;

The index operator is very fast—it uses a Boyer-Moore algorithm for its
searches. Perl will also compile index-like regular expressions into Boyer-
Moore searches. You could use a match operator, and then look at the
length of $', the part of the string before the match (although match oper-
ators will be slower):

$big_str =~ /\Q$little_str/; # Don't do this

my $pos = length $';

yes, the pos operator does have uses; still slow

$big_str =~ /\Q$little_str/g; # or /og, maybe

my $pos = pos($big_str) - length($big_str);

The overhead associated with using a regular-expression match makes
index several times faster than m// for short strings, even if the match
uses the /o option.

Extract and modify substrings with substr

The substr operator extracts a portion of a string, given a starting posi-
tion and length. If no length is provided, then the remainder of the string
is extracted.

extract "Perl"

my $perl = substr "It's a Perl World", 7, 4;

extract "Perl World"

my $perl_world = substr "It's a Perl World", 7;

The substr operator is much faster than a regular expression written to
do the same thing:

the slow way

my ($perl) = ("It's a Perl World" =~ /^.{7}(.{4})/);

The neatest thing about substr is that you can make replacements with
it by using it on the left side of an expression. The text referred to by sub-
str is replaced by the string value of the righthand side:

Item 36. Avoid using regular expressions for simple string operations ❘ 127

Download from <www.wowebook.com>

ptg

change the world

my $world = "It's a Perl World";

substr($world, 7, 4) = "Mad Mad Mad Mad";

You can combine index and substr to perform s///-like substitutions,
but for this purpose, s/// is usually faster:

look for Perl, then replace it:

substr($world, index($world, Perl), 4) =

"Mad Mad Mad Mad";

less noisy and probably faster

$world =~ s/Perl/Mad Mad Mad Mad Mad/;

Transliterate single characters

If you want to change all occurrences of a character to another character, you
don’t need the substitution operator, which requires all the overhead of the
regular-expression engine and has additional side effects you don’t care about:

$string =~ s/a/b/g;

Don’t forget about Perl’s tr/// operator. It doesn’t use regular expressions
because it changes literal characters to other characters. You don’t need a
/g flag (tr/// doesn’t have one) because it always changes all characters:

$string =~ tr/a/b/;

The transliteration operator matches corresponding characters on each
side to perform a one-for-one replacement. You can even use ranges to
specify the characters. Here’s a Perly version of ROT-13, moving every let-
ter over 13 places in the alphabet:

$string =~ tr/a-mA-Mn-zN-Z/n-zN-Za-mA-M/;

If you want to transliterate only part of a string, you can combine it with
substr as an lvalue:

substr($string, 0, 10) =~ tr/a/b/;

Things to remember

■ Don’t use regular expressions to solve every problem.
■ Use Perl’s many string operators to do their jobs.
■ Use the transliteration operator to replace single characters.

128 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

Item 37. Make regular expressions readable.

Regular expressions are often messy and confusing. There’s no denying
it—regular expressions have a very compact and visually distracting
appearance. They are a “little language” unto themselves. However, this
little language isn’t made up of words like foreach and while. Instead, it
uses atoms like \w, [a-z], and +.

The concept of regular expressions is confusing all by itself. Ordinary pro-
gramming chores generally translate more-or-less directly into code. You
might think “count from 1 to 10,” and write a foreach loop like the
 following:

foreach my $i (1 .. 10) {

print "$i\n";

}

A regular expression that accomplishes a particular task may not look a
whole lot like a series of straightforward instructions. You might think
“find me a single-quoted string,” and wind up with something like:

/'(?:\\'|.)*?'/

You can make regular expressions more (human-) readable, which is espe-
cially important if you intend to share your programs with others, or if
you plan further work on them yourself. Keeping regular expressions sim-
ple is a start, but there are a couple of Perl regex features you can use to
help make even complex regular expressions more understandable.

Add whitespace and comments to regular expressions

Normally, whitespace encountered in a regular expression is significant.
In this example, the literal space in the regex matches space in the string:

my ($a, $b, $c) = /^(\w+) (\w+) (\w+)/;

Literal newlines in the following patterns match newlines in the string:

$_ = "Testing

one

two"; # $_ contains embedded newlines

Item 37. Make regular expressions readable ❘ 129

Download from <www.wowebook.com>

ptg

s/

/<lf>/g; # replace newlines with <lf>

print "$_\n"; # Testing<lf>one<lf>two

The /x flag, which you can apply to both pattern matches and substitu-
tions, tells the regular-expression parser to ignore whitespace (so long as
it isn’t preceded by a backslash), including comments. You can use this to
spread out the logical parts of your expression and group the parts of the
regex. This pattern to find a single-quoted string, including any escaped
quote, looks much better when you can easily see the parts of the pattern:

my ($str) = /(' (?: \\' | .)*? ')/x;

This can be especially helpful when a regular expression includes a com-
plex alternation and a couple of levels of grouping. With /x, you can for-
mat the regular expression to show its structure, explain the purpose of
each part, and show an example of the text you want to match. When lit-
eral whitespace is not significant, you can add Perl comments inside the
pattern:

my ($str) = m/

(# start of $1

" # start of double-quoted string

(?:

\\\W | # special char, \+

\\x[0-9a-fA-F]{2} | # hex, \xDE

\\[0-3][0-7]{2} | # octal \0377

[^"\\] # ordinary char

)*

"

) # end of $1

/x;

Break complex regular expressions into pieces

Regular expressions are subject to double-quote interpolation (Item 28).
You can use this feature to write regular expressions that are built up out
of variables. In some cases, this may make them easier to read. With qr//

130 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

(Item 40), you can create the subpatterns that you compose into a larger
regular expression:

my $num = qr/[0-9]+/;

my $word = qr/[a-zA-Z_]+/;

my $space = qr/[]+/;

$_ = "Testing 1 2 3";

my @split = /($num | $word | $space)/gxo;

print join(":", @split), "\n"; # Testing: :1: :2: :3

The pattern this example creates is /([0-9]+ | [a-zA-Z_]+ | [])/gxo.
We used the /o (“compile once”) flag (Item 39), since there is no need for
Perl to compile this regular expression more than once.

You can rewrite the double-quoted string example from earlier, this time
using subpatterns to represent the parts, and then composing them into
the final regex in $whole:

my $whole = do {

escaped char like \", \$

my $spec_ch = qr/\\ \W/x;

hex escape: \xab

my $hex_ch = qr/\\x [0-9a-fA-F]{2} /x;

oct escape: \123

my $oct_ch = qr/\\ [0-3][0-7]{2} /x;

ordinary char

my $char = qr/[^\"\\]/;

qr/

(

"

(?: $spec_ch | $hex_ch | $oct_ch | $char) *

"

)

/xo;

};

Item 37. Make regular expressions readable ❘ 131

Download from <www.wowebook.com>

ptg

#... and here's the actual regular expression ...

my ($str) = /$whole/o;

If you are curious as to exactly what a regular expression built up in this
manner looks like, print out $whole. The regular-expression object stringi-
fies it for you:

print "The regex is----\n$whole\n----\n";

This is a fairly straightforward example of using variables to construct reg-
ular expressions. See the book Mastering Regular Expressions1 for a much
more complex example—a regular expression that can parse an RFC 2822
address.

Things to remember

■ Use the /x flag to add insignificant whitespace and comments to reg-
ular expressions.

■ Format your regular expressions to emphasize their structure.
■ Build up regular expressions from smaller regular expressions.

Item 38. Avoid unnecessary backtracking.

Alternation in regular expressions is generally slow. Because of the way
Perl’s regular-expression engine works, each time an alternative in a reg-
ular expression fails to match, the engine has to “backtrack” in the string
and try the next alternative:

Suppose you want to match one of several possible names. You might try
an alternation that includes each name:

while (<>) {

print

if /\b(george|jane|judy|elroy)\b/;

}

The pattern match finds a word boundary, and then tries to match george.
If that fails, it backs up to the boundary and tries to match jane; if that

132 ❘ Chapter 3 Regular Expressions

1. Jeffrey E.F. Friedl, Mastering Regular Expressions, Third Edition, (Sebastopol, CA:
O’Reilly Media, 2006).

Download from <www.wowebook.com>

ptg

fails, judy, then elroy. If one of those names matches, it looks for another
word boundary.

Backtracking is especially bad when many of the alternations look similar.
Consider this contrived example, where the alternations start with the
same prefix:

'aaabbbccg' =

~/\b(aaabbbccc|aaabbbccd|aaabbbcce|aaabbbccf)\b/;

The match operator tries the first alternation and tests it all the way until
the final c before it discovers that it doesn’t match the last character. It
then backs up all the way and starts the second alternation, again getting
all the way to the end before it fails. It backs up again, and keeps trying all
of the alternations, eventually failing. That’s a lot of work.

There’s a way around this, though, by building a trie (as in retrieval).
That’s a tree that uses the common prefixes from all of the alternations to
construct an optimized alternation that minimizes backtracking. The
Regexp::Trie module handles the details for you:

use Regexp::Trie;

my $rt = Regexp::Trie->new;

foreach (qw/foobar foobah fooxar foozap fooza/) {

$rt->add($_);

}

my $alternation = $rt->regexp;

print "$alternation\n";

The output shows the regular expression that the module created to effi-
ciently scan the string with a minimum of backtracking:

(?-xism:foo(?:ba[hr]|xar|zap?))

When you want to use this in the match operator, you just interpolate it
into the match operator:

$string =~ m/$alternation/;

As of Perl 5.10, the regular-expression engine automatically modifies each
string-literal alternations into a trie, so in some cases you don’t have to
handle the details yourself.

Item 38. Avoid unnecessary backtracking ❘ 133

Download from <www.wowebook.com>

ptg

Use a character class ([abc]) instead of alternation

There are some instances where alternation is completely unnecessary and
should be avoided. For example, using an alternation instead of a character
class can impose a tremendous speed penalty on a pattern match. You might
try to find a Perl variable name by using an alternation to match the sigil:

while (<>) {

push @var, m'(($|@|%|&)\w+)'g;

}

Since you’re trying to match a single character, you should use a charac-
ter class instead:

while (<>) {

push @var, m'([$@%&]\w+)'g;

}

Avoid unnecessary backtracking from quantifiers

Consider the pattern /\b(\w*t|\w*d)\b/, which matches words ending
in either t or d. Each time you use this pattern, the engine will look for a
word boundary. It then tries the first alternation, looking for as many word
characters in a row as possible. Then it looks for a t. It won’t find one,
since it already has read all the word characters, so it will have to back up
a character. If that character is a t, that’s great—now it can look for a word
boundary, and then it’s all done. If there was no match, the engine keeps
backing up and trying to find a t. If it runs all the way back to the initial
word boundary, then the engine tries the second half of the alternation,
looking for a d at the end.

You can see that this is a very laborious process. While the regular-
expression engine is meant to do complicated work, this particular pat-
tern makes that work much more complicated than it needs to be.

An obvious shortcoming is that if the engine starts out at the beginning of
a word that ends in d, it has to go all the way to the end and back-search
fruitlessly for a t before it even starts looking for a d. You can fix this by get-
ting rid of the alternation:

/\b\w*[td]\b/

This is an improvement. Now, the engine will scan the length of the word
only once, regardless of whether it ends in t, d, or something else.

134 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

This doesn’t completely solve the backtracking issue, though. Notice that
there is no need for the regular-expression engine to backtrack more than
a single character from the end of a word. If that character isn’t a t or d,
there’s no point in continuing, since even if it did find one earlier in the
string, it wouldn’t be what you are looking for, a t or d at the end of the
word.

You can approach the problem in a slightly different manner. Ask yourself:
“If I were looking for words ending in t or d, what would I be looking at?”
More than likely, you’d look just at the ends of words:

/[td]\b/

Now, this is interesting. This little regular expression does everything that
the other two do, though it may not be obvious at first. Think about it: To
the left of the t or d there will be zero or more \w characters. You don’t care
what sorts of \w characters they are, so, tautologically if you will, once you
have a t or d to the left of a word boundary, you have a word ending in t
or d. This is a general issue with the * quantifier at the beginning of a pat-
tern: Since it can always match zero instances, it’s the same as not being
there at all.

Naturally, this little regular expression runs much faster than either of the
two preceding it—about twice as fast, in fact. And obviously there’s not
much backtracking, since the expression matches only a single character!

Nonbacktracking, possessive quantifiers

One way to avoid backtracking is to tell Perl not to do it. Perl 5.10 intro-
duces a “possessive” form of the regular-expression quantifiers. Put a +
after any quantifier, and it will not backtrack. The quantifier will match as
much as possible and never give anything back. If the portion of the regex
after the quantifier can’t match where the regex left off, the match fails.

Suppose you want to find something interesting in a string representing a
DNA sequence. You write a regular expression that matches as many
groups of three letters as you can, then a GCG, followed by any two char-
acters, and then a G. Maybe this is DNA gibberish or represents a mutant
alien, but it illustrates backtracking quite well:

my $string = 'GCGGCCGCAGCUGCCGCUGCAGCCGCCGCUGCCGCCGCG';

if ($string =~ /^(?:GC.)*GCG(..G)/) {

Item 38. Avoid unnecessary backtracking ❘ 135

Download from <www.wowebook.com>

ptg

print "Matches GCG with XXG afterward!\n";

}

To see all the steps this goes through, you can use the re pragma to turn
on regex debugging. You can run the following program yourself to see its
lengthy output:

use re 'debugcolor';

my $string = 'GCGGCCGCAGCUGCCGCUGCAGCCGCCGCUGCCGCCGCG';

if ($string =~ /^(?:GC.)*GCG(..G)/) {

print "Matches GCG with XXG afterward!\n";

}

In this example, the * is greedy, so it matches as much as it can, almost to
the end of the string. It discovers that although there is a GCG at the end,
there isn’t anything after it. It starts backtracking, trying the match three
characters back, failing, backtracking again, failing, and so on, all the way
back to the beginning. It finds GCG at the beginning, but all of that work is
a waste, because you really wanted it to fail after it matched the last GCG in
the string. That’s not so bad in this short example, but imagine it with a
much longer strand of DNA, or repeated on millions or billions of strings.

You can get rid of the backtracking with the possessive +, which applies to
any of the quantifiers. Add it to any quantifier and that quantifier will
never backtrack. Now the match fails much more quickly:

if ($string =~ /^(?:GC.)*+GCG(..G)/) {

print "Matches GCG with XXG afterward!\n";

}

As a side note, you might also write the pattern with a negated character
class so you don’t match a G in the first group:

/^(?:GC[^G])*GCG(..G)/

Things to remember

■ Turn alternations into tries for faster matching.
■ Use character classes to represent multiple possibilities for single

 characters.
■ Use possessive quantifiers to avoid regular-expression backtracking.

136 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

Item 39. Compile regexes only once.

The regular expressions for most pattern matches and substitutions are
compiled into Perl’s internal form only once—at compile time, along with
the rest of the surrounding statements. In the following example, Perl com-
piles the pattern /\bmagic_word\b/ only once, since it is a constant pat-
tern. Perl reuses the compiled form again and again during run time:

count occurrences of magic_word in @big_long_list

foreach (@big_long_list) {

$count += /\bmagic_word\b/;

}

When a pattern contains interpolated variables, as in /\b$magic\b/, older
perls recompile it every time it executes the match operator. It doesn’t
know whether the variable has changed (although in modern perls, it does):

print "Give me the magic word: ";

chomp(my $magic = <STDIN>);

count occurrences of the magic word in @big_long_list

foreach (@big_long_list) {

$count += /\b$magic\b/;

}

Recompiling such a pattern each time it is used in a match is grossly waste-
ful. If you know $magic isn’t going to change, you can tell Perl as much by
using the /o flag on the match operator.

print "Give me the magic word: ";

chomp(my $magic = <STDIN>);

count occurrences of the magic word in @big_long_list

foreach (@big_long_list) {

$count += /\b$magic\b/o; # compile once

}

Now Perl will compile the regular expression only once. If you change
$magic, the match operator will not notice.

The /o flag also works for substitutions. The replacement string in the
substitution continues to work normally—it can vary from match to
match:

Item 39. Compile regexes only once ❘ 137

Download from <www.wowebook.com>

ptg

print "Give me the magic word: ";

chomp(my $magic = <STDIN>);

foreach (@big_long_list) {

s/\b$magic\b/random_word()/eo;

}

The /o flag works with regular-expression quoting, too (Item 40), which
also allows you to pre-compile regular expressions.

Things to remember

■ Be careful when you interpolate variables into regular expressions.
■ Use the /o flag to compile a regular expression only once.

Item 40. Pre-compile regular expressions.

Quick—how many components do you see in this Perl expression?

/abc/

There are two parts to the expression: the match operator and the regular
expression inside the match operator. The match operator applies the regex
to its target, but the operator and the regex inside it aren’t inseparable.

You can create compiled regular expressions outside of the match or sub-
stitution operator with qr//. Its syntax is just like that of any other gen-
eralized quoting (Item 21):

my $name = 'Buster';

my $regex = qr/\b$name\b/;

As with normal string interpolation in the match operator, regular-expres-
sion metacharacters are special. The value in $regex becomes a virtual
reference to a compiled regular expression. It’s really just a string with
some magic attached to it. It looks like a reference to ref, but if you deref-
erence it, you just get undef. However, if you print it out and take a look,
the output resembles the regular expressions that you know and love:

(?-xism:\bBuster\b)

You can still use any of the flags that affect the pattern, such as /i, /m, and
/s. This regular expression is case-insensitive, and lets the . match a new-
line, so the two names can appear across lines:

138 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

my $regex = qr/Buster(.*)Mimi/si;

You can compile $regex into your match or substitution operators just
as you could with strings:

count occurrences of the magic word in @big_long_list

foreach (@big_long_list) {

$count += /$regex/; # compiled once

}

You don’t even need the match operator explicitly, although it looks a bit
weird without it:

$string =~ $regex;

You can also use qr// to test that a regular expression compiles before you
try to use it. You don’t have to wait until you try to apply the regular
expression to find out whether it will work. Compile the regex in an eval:

my $name = '(';

my $regex = eval { qr/\b$name\b/ }

or die "Regex failed: $@";

For instance, if $name had an unbalanced (, you could catch the error. Perl
helpfully tells you what confused it:

Unmatched (in regex; marked by <-- HERE in m/(<-- HERE /

Things to remember

■ Pre-compile a regular expression with qr//.
■ Interpolate pre-compiled regular expressions into the match operator.
■ Use eval to try matches that might not interpolate into valid regular

expressions.

Item 41. Benchmark your regular expressions.

As with many other things in Perl, one of the best ways to determine how
to make a pattern match run quickly is to write alternative implementa-
tions and compare them to one another.

Use the Benchmark module to see how much of a difference capture-free
parentheses (Item 32) can really make. Here’s a small program to test a

Item 41. Benchmark your regular expressions ❘ 139

Download from <www.wowebook.com>

ptg

regular expression that extracts the requesting host from the line of an
Apache access_log in the common log format, which looks like:

www.example.com - - [01/Dec/2009:21:09:42 -0600] "POST / ↵

HTTP/1.1" 200 30447

To pull out the hostname at the front of that entry, you could try two reg-
ular expressions along with a control:

use Benchmark qw(timethese);

my @data = <>;

timethese(

$ARGV[0] || 100,

{

control => q{

foreach (@data) {

my ($host) = 'www.example.com'

}

},

mem => q{

foreach (@data) {

my ($host) = m/(\w+(\.\w+)+)/;

}

},

memfree => q{

foreach (@data) {

my ($host) = m/(\w+(?:\.\w+)+)/;

}

},

}

);

When we tested this under Perl 5.10.0 on a MacBook Air using a 100,000
line Apache access_log, the capture-free parentheses performed about 22%
faster:

Benchmark: timing 100 iterations of control, mem, memfr↵

ee...

control: 2 secs (2.05 usr + 0.02 sys = 2.07 CPU)

140 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

mem: 25 secs (24.36 usr + 0.12 sys = 24.48 CPU)

memfree: 20 secs (19.18 usr + 0.12 sys = 19.30 CPU)

Your results may vary, so you should always test your benchmarks using
your target platform and setup.

Maybe you’re not satisfied with just 22% improvement. The first two reg-
ular expressions tried were basically the same idea with a variation. Some-
times the answer is to completely rethink the pattern and describe it in
another way. In this case, you’re looking for a hostname at the beginning
of a line:

timethese(

$ARGV[0] || 100,

{

same as before...

anchor => q{

foreach (@data) { my ($host) = m/^(\S+)/; }

},

}

);

The new regular expression is much faster than the previous one:

Benchmark: timing 100 iterations of anchor, control, ↵

mem, memfree...

anchor: 11 secs (10.78 usr + 0.07 sys = 10.85 CPU)

control: 2 secs (2.02 usr + 0.01 sys = 2.03 CPU)

mem: 25 secs (24.69 usr + 0.19 sys = 24.88 CPU)

memfree: 20 secs (19.34 usr + 0.14 sys = 19.48 CPU)

Sometimes elements like an anchor or a less-specific pattern can make a
big difference.

Things to remember

■ Compare regular-expression performance with Benchmark.
■ Use a control as a reference point for comparison.
■ Consider a completely different approach when small optimizations

are insufficient.

Item 41. Benchmark your regular expressions ❘ 141

Download from <www.wowebook.com>

ptg

Item 42. Don’t reinvent the regex.

Finding numbers in text seems easy; you could start with something sim-
ple like /\d+/. But what about decimal places? In that case, there are pos-
sible thousands separators. Oh—and what about the positive or negative
sign, or exponential notation? It doesn’t take long for a simple problem to
get out of hand.

Other than as a mental exercise, why would you want to write a regular
expression to trim white space or to find e-mail addresses? Solutions to
these and many other common problems are nicely packaged in the
Regexp::Common module on CPAN, which contains the patterns already
created for you:

use Regexp::Common;

my $text =

'Absolute zero is -459.67 on the Fahrenheit scale';

print "$1 is [beyond] freezing!\n"

if $text =~ /$RE{num}{real}{-keep}/;

Regexp::Common exports the %RE hash, which contains prebuilt regular
expressions ready for you to use, like the $Re{num}{real} expression in
this example. The final {-keep} key is a little bit of magic that
Regexp::Common provides to capture the matched text.

There is even an object-oriented interface for those so inclined. To access
the keys you need and call the match method. The object-oriented inter-
face tends to blow away captures, but maybe that doesn’t bother you for
the profanity filter you need:

use Regexp::Common;

my $text = 'shpx';

$text =~ tr/A-Za-z/N-ZA-Mn-za-m/;

while (<>) {

print "Kiss your mother with that mouth?\n"

if $RE{profanity}->matches($text);

}

In this case, you read the input and scold people for saying things they
shouldn’t. By the way, if you are looking for some middle-school giggles,

142 ❘ Chapter 3 Regular Expressions

Download from <www.wowebook.com>

ptg

looking at the source code for the profanity regex won’t provide you with
any. The author was kind enough to do a little obfuscation to make the
code G-rated.

It can be difficult to find the regex you need in Regexp::Common because
they are divided among many sub-modules. This can be a pain when you
want to see what is available, but it does have some real benefits. For
instance, you can selectively choose not to load some of the regular expres-
sions in order to reduce your load time and memory footprint.

Also, you can install “plug-in” modules that aren’t distributed with the core
Regexp::Common. For instance, the Regexp::Common::Email::Address
is a separate module, but Regexp::Common can load it:

use Regexp::Common qw(Email::Address);

my $text =

'my email address is josh+spam@example.com, okay';

if ($text =~ /$RE{Email}{Address}{-keep}/) {

$text = $RE{ws}{crop}->subs($1);

print "$text\n";

}

Things to remember

■ Use Regex::Common instead of creating complex regular expressions
yourself.

■ Load plug-ins to expand the regular expressions available in
Regex::Common.

Item 42. Don’t reinvent the regex ❘ 143

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

4 ❘ Subroutines

145

A big part of Perl’s power as a dynamic language comes from its malleable
subroutines. You don’t have to do much to define a subroutine. You don’t
have to tell it how many parameters it will receive, or what types of data
you will give it. You can pass a subroutine any list that you like and figure
out what to do with it later. Although Perl is very permissive and gives you
plenty of flexibility to decide things as late as possible. Despite that, there
is a lot that you can do to keep yourself from being too flexible.

You don’t even have to define subroutines ahead of time, either. You can
make new ones at run time and you can even redefine them later. You can
write subroutines that create other subroutines. Each of those subroutines
can keep its own private data. You can store these subroutines as refer-
ences, passing them around like any other data.

Many complicated problems become quite simple when you use the power
of Perl subroutines.

Item 43. Understand the difference between my and local.

The difference between my and local is one of the more subtle and diffi-
cult aspects of Perl. It’s subtle because the occasions where you can observe
functional differences between my and local are somewhat infrequent. It
is difficult because the differences in behavior that do result can be unex-
pected and very hard to understand.

People sometimes state the difference between my and local as something
like, “my variables affect only the subroutine they’re declared in, while
local variables affect all the subroutines called from that subroutine.”
But this is wrong: my has nothing to do with subroutines, local has noth-
ing to do with subroutines, and of course the difference between them has
nothing to do with subroutines. It may look that way, but the truth—as
you will see—is something else entirely. Nevertheless, we are treating
local and my in this section because their use in subroutines is extremely
important.

Download from <www.wowebook.com>

ptg

146 ❘ Chapter 4 Subroutines

Global variables

In Perl, all variables, subroutines, and other entities that can be named
have package scope (or just “global scope”) by default. That is, they exist
in the symbol table of the current package. Braces, subroutines, or files
alone do not create local variables.

In most cases, Perl puts global names in the appropriate package symbol
table during the compilation phase. Names that Perl cannot see at compile
time it inserts during execution. Let’s run a program named tryme to see:

print join " ", keys %::;

$compile_time; # created at compile time

${"run_time"}; # soft ref, at run time

When you run the program, you see a list of everything that Perl is track-
ing in the symbol table:

ARGV 0 FileHandle:: @ stdin STDIN " stdout STDOUT $

stderr STDERR _<perlmain.c compile_time DynaLoader::

_<tryme ENV main:: INC DB:: _ /

Notice, in this example, that the identifier compile_time is present in the
symbol table before the variable $compile_time is actually reached dur-
ing execution. If you were unsure of Perl’s compiler-like nature before, an
example like this should confirm it for you.

You’ve probably been told since the beginning of your programming
career (or hobby, or however you prefer to describe it) that global variables
are bad. Good programs shouldn’t use a lot of global variables, because
global variables create hidden interfaces, make code difficult to read and
modify, and even make it hard for compilers to optimize your code.

If you have written programs of more than a few hundred lines, especially
as part of a team effort, you’ll agree with this at least partially. You should
see the need for a mechanism to support local variables in Perl.

Of course, Perl does support local variables, and in fact is more generous in
its support than most languages. Most languages give you only a single mech-
anism for creating local variables. Perl gives you two different mechanisms.

Lexical (compile-time) scoping with my

Perl’s my operator creates variables with lexical scope. A variable created
with my exists from the point of declaration through the end of the enclos-

Download from <www.wowebook.com>

ptg

ing scope. An enclosing scope is a pair of braces, a file, or an eval string.
The scope is lexical in that it is determined solely by an inspection of the
program text during compilation. Another way of saying this is that the
scope of a my variable can be determined by simply looking at the source
code. This code uses both a global and lexical $a:

$a = 3.1415926; # global

{

my $a = 2.7183; # lexical

print $a; # 2.7183

}

print $a; # 3.1415926

Here, the variable $a in use outside the braces is the global $a. The vari-
able $a inside the braces is the lexical $a, which is scoped to those braces.

This is the way most commonly used programming languages handle
scopes. But this is Perl, and you shouldn’t be surprised to hear that there
are a few wrinkles. In fact, there are more than a few wrinkles.

Revisit your inspection of the symbol table. Here’s a program similar to the
one at the beginning of this Item but with things reordered a bit. This time
use my:

my $compile_time; # a lexical variable

$compile_time;

print join " ", keys(%::);

This time, when you run it, you don’t see compile_time in the output:

ARGV 0 FileHandle:: @ stdin STDIN " stdout STDOUT $ stderr

STDERR _<perlmain.c DynaLoader:: _<tryme ENV main:: INC

DB:: _ /

Let’s look at something else:

$compile_time; # not a my variable

my $compile_time; # but this is a my variable

print join " ", keys(%::);

When you run this example, you now see compile_time in the output:

ARGV 0 FileHandle:: @ stdin STDIN " stdout STDOUT $

stderr STDERR _<perlmain.c compile_time DynaLoader::

_<tryme ENV main:: INC DB:: _ /

Item 43. Understand the difference between my and local ❘ 147

Download from <www.wowebook.com>

ptg

These examples demonstrate that my variables do not “live” in the symbol
table. In the example with my $compile_time first, there is only one vari-
able named $compile_time in the file, and it never gets into the package
symbol table. In the other example, there are two separate variables named
$compile_time: the global one in the symbol table, and my $compile_time,
which is not in a symbol table.

You can always access the value of package variables via qualified names.
Qualified names (those containing ::) always refer to variables in the sym-
bol table. For example:

qualified names vs. my variables

{

my $a = 3.1416;

$main::a = 2.7183;

print "(inside) a = $a\n";

print "(inside) main::a = $main::a\n";

print "(inside) ::a = $::a\n";

}

print "(outside) a = $a\n";

The output shows what Perl thinks $a is at each step:

(inside) a = 3.1416

(inside) main::a = 2.7183

(inside) ::a = 2.7183

(outside) a = 2.7183

Symbol tables are also used for a variety of other things, including soft ref-
erences and typeglobs. Since my variables are not in a symbol table, you
can’t get at them using either technique. Here’s a demonstration involving
soft references, which always use the symbol table variable even when the
lexical variable is in scope:

soft references vs. my variables

my $a = 3.1416;

${'a'} = 2.7183;

print "my a = $a\n";

print "{a} = ${'a'}\n";

When you run this, you see the different versions of $a that Perl uses in
each print:

148 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

my a = 3.1416

{a} = 2.7183

Typeglobs work the same way. In fact, as this example demonstrates, type-
globs, soft references, and qualified variable names never refer to lexical
(my) variables:

typeglobs vs. my variables

$a = 2.7183;

my $a = 3.1416;

*alias = *a;

print "my a = $a\n";

print "alias = $alias\n";

print "{a} = ${'a'}\n";

print "::a = $::a\n";

The output shows what Perl thinks $a is at each step:

my a = 3.1416

alias = 2.7183

{a} = 2.7183

::a = 2.7183

Notice that the *alias typeglob refers to the global *a, even though the
typeglob assignment comes after my $a. It makes no difference where the
assignment comes—a typeglob always refers to an entry in the symbol
table, and my variables aren’t going to be there.

The rest of the “wrinkles” have to wait until you see more about local
variables.

Run time scoping with local

Perl’s other scoping mechanism is local, which has been around a lot
longer than my. In fact, my was introduced only in Perl 5. What, you may
wonder, is so wrong with local that Larry Wall felt it worthwhile to add
an entirely different scoping mechanism to supplant it?

To answer this question, let’s look at how local works. At some point,
you will start to see the virtues of my.

local is a run time scoping mechanism. Unlike my, which basically creates
new variables in a private symbol table during compilation, local has a

Item 43. Understand the difference between my and local ❘ 149

Download from <www.wowebook.com>

ptg

run time effect: it saves the values of its arguments on a run time stack,
and then restores them when the thread of execution leaves the contain-
ing scope.

At first glance, local and my appear to do very similar things. Here’s an
example similar to the one in the last section, with the my replaced by
local:

your basic use of 'local'

$a = 3.1416;

{

local $a = 2.7183;

print $a; # 2.7183;

}

print $a; # 3.1416;

Although this looks like the example with my and produces the same out-
put, something very different is going on in the innards of Perl.

In the case of my, as you have seen, Perl creates a separate variable that is
not accessible by name during run time. In other words, it never appears
in a package symbol table. During the execution of the inner block, the
global $a on the outside continues to exist, with its value of 3.1416, in
the symbol table.

In the case of local, however, Perl saves the current contents of $a on a
run time stack. Perl replaces the contents of $a with the new value. When
the program exits the enclosing block, Perl restores the values saved by
local. There is only one variable named $a throughout the entire example.

To better illustrate this, use a soft reference to take a peek into the symbol
table:

$a = $b = 3.1416;

{

local $a = 2.7183;

my $b = 2.7183;

print "IN: local a = $a, my b = $b\n";

print "IN: {a} = ${'a'}, {b} = ${'b'}\n";

}

print "OUT: local a = $a, my b = $b\n";

Running this produces:

150 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

IN: local a = 2.7183, my b = 2.7183

IN: {a} = 2.7183, {b} = 3.1416

OUT: local a = 3.1416, my b = 3.1416

How interesting. The trick of using the soft reference to look at the global
$a that worked with my seems to have no effect with local. This is as it
should be. my creates a different variable, while local temporarily saves
the value of the existing one.

Since local is a run time, not a compile-time, mechanism, the changes
that local makes to global variables you can observe outside the lexical
scope containing the local operator. The most notorious example of this
is the nested subroutine call:

$a = 3.1416;

sub print_a { print "a = $a\n" }

sub localize_a {

print "entering localize_a\n";

local $a = 2.7183;

print_a();

print "leaving localize_a\n";

}

print_a();

localize_a();

print_a();

Running this yields:

a = 3.1416

entering localize_a

a = 2.7183

leaving localize_a

a = 3.1416

This is the oft-cited example that leads to describing local as having
something to do with subroutine calls, which, as shown earlier, it does not.

When to use my

In general, you should use my rather than local if you have a choice. One
reason for this is that my is faster than local. It takes some time to save a
value on the stack:

Item 43. Understand the difference between my and local ❘ 151

Download from <www.wowebook.com>

ptg

use Benchmark;

timethese(

1_000_000,

{

'local' => q{ local $a = $_; $a *= 2; },

'my' => q{ my $a = $_; $a *= 2; },

}

);

The output shows that my is quite speedy:

Benchmark: timing 1000000 iterations of local, my...

local: (0.98 usr + 0.01 sys = 0.99 CPU) ↵

@ 1010101.01/s

my: (0.55 usr + -0.00 sys = 0.55 CPU) ↵

@ 1818181.82/s

my is also easier to understand and doesn’t create the strange “nonlocal”
side effects that local does.

Yet another reason to use my is that the lexical variables it creates form the
basis for closures in Perl (Item 49).

When to use local

One compelling reason to use local, or at least to be familiar with it, is
that there is a lot of ancient, Perl 4-style code out there that uses it. Replac-
ing local with my isn’t as easy as a search-and-replace with a text editor—
you will have to examine each use of local individually to see whether it
takes advantage of one of the “features” of local. It is probably better to
leave code that uses local alone so long as it is performing well.

Also, some things have to be done with local.

Most $-punctuation variables—or other variables that Perl handles spe-
cially—can only be localized with local (although Perl 5.10 introduces a
lexical $_: Item 15). It is an error to attempt to localize a special variable
with my:

my $contents = do { my $/; open ... }; # ERROR!

You can use local in a number of other situations where you can’t use
my, such as on a variable in another package:

152 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

package foo;

$a = 3.1416;

{

package main;

local $foo::a = 2.7183;

package foo;

print "foo::a = $a\n";

}

package foo;

print "foo::a = $a\n";

% tryme foo::a=2.7183 foo::a=3.1416

You can also use local on elements of arrays and hashes. Yes, it’s strange,
but true. You can even use local on a slice:

@a = qw(Jolly Green Giant);

{

local (@a[0, 1]) = qw(Grumbly Purple);

print "@a\n";

}

print "@a\n";

This gives:

Grumbly Purple Giant

Jolly Green Giant

You can also use local on typeglobs (Item 118). In theory, local could
be made to work on almost any value, but there are limitations in the cur-
rent implementation. For example, as of this writing, you cannot use
local on a dereferenced value like $$a.

local and my as list operators

One way in which local and my are the same is their syntax; you can apply
both to single scalars, arrays, and hashes:

some examples of local and my

local $scalar;

Item 43. Understand the difference between my and local ❘ 153

Download from <www.wowebook.com>

ptg

my @array;

local %hash;

You can initialize a variable while localizing it:

local $scalar = 3.1416;

my @array = qw(Mary had a little lamb);

local %hash = (H => 1, He => 2, Li => 3);

If you use parentheses around the arguments to my and local, the argu-
ments become a list, and Perl evaluates the assignments in list context:

local ($foo, $bar, $bletch) = @a; # 1st 3 elems from @a

Watch out for the usual list assignment “gotchas”:

WRONG -- don't forget the parens!

$bletch gets size of @a; only $foo is localized!

local $foo, $bar, $bletch = @a;

WRONG -- localizes @a, @b but only @a gets values

my (@a, @b) = @c;

WRONG -- reads all of standard input

my ($a) = <STDIN>;

Things to remember

■ Use my to create lexical variables that are private to a scope.
■ Use local to give global variables temporary values.
■ Use local with most special variables.

Item 44. Avoid using @_ directly unless you have to.

Unlike many programming languages, Perl has no built-in support for
named or “formal” parameters. The arguments to a subroutine are always
passed in via a single array variable called @_. It is up to the author of the
subroutine to give the arguments names and check them for consistency.

In general, you should always start off a subroutine by copying its argu-
ments and giving them names. The preferred method is to use my:

154 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

sub digits_gone {

my ($str) = @_;

$str =~ tr/0-9//d; # remove digits from a string

$str; # return translated string

}

The idiomatic way to read arguments passed to a subroutine is to use
shift to get them one at a time or a list assignment to read them all:

sub char_count {

my $str = shift;

my @chars = @_;

my @counts;

for (@chars) {

push @counts, eval "\$str =~ tr/$_//";

}

@counts; # return list of counts

}

The elements of @_ are actually aliases for the values you passed in. Mod-
ifying an element of @_ modifies the corresponding subroutine argu-
ment—a sort of “call by reference” semantics. Not only can subroutines
modify their arguments, but attempts to do so can fail if the arguments are
read-only:

sub txt_file_size {

$_[0] .= '.txt' unless /\.txt$/;

-s $_[0];

}

If you try to call this subroutine as txt_file_size "test", it fails with
an error message, as it tries to modify the read-only value “test.”

Sometimes this aliasing “feature” turns out to be genuinely useful. For
example, you can write subroutines that modify their argument, which is
especially useful to clean up data:

sub normalize_in_place {

my $max = 0;

for (@_) { $max = abs($_) if abs($_) > $max }

return unless $max;

Item 44. Avoid using @_ directly unless you have to ❘ 155

Download from <www.wowebook.com>

ptg

note that $_ is an "alias of an alias" -- works fine!

for (@_) { $_ /= $max }

return; # void return

}

my ($x, $y, $z) = 1 .. 3;

normalize_in_place $x, $y, $z;

printf(("%.2g " x 3) . "\n", $x, $y, $z);

The output shows that your call to normalize_in_place affects the val-
ues of $x, $y, and $z:

0.33 0.67 1

If you want to optimize for speed, it might be faster for you to use @_ with-
out copying it, since copying values takes a significant amount of time. If
you do so, remember that array subscripting tends to be slow, so try to use
constructs like foreach, grep, and map that allow you to iterate over an
array without having to subscript its elements repeatedly. The best
approach, of course, would be to write two or more different versions and
Benchmark them.

Even though subroutine arguments are passed as aliases, any array argu-
ments are “flattened” into a list. You can modify the elements of an array
argument, but not the array itself:

sub no_bad {

for $i (0 .. $#_) {

if ($_[$i] =~ /^bad$/) {

splice @_, $i, 1;

print "in no_bad: @_\n";

return;

}

}

return;

}

my @a = qw(ok better fine great bad good);

no_bad @a;

print "after no_bad: @a\n";

The output shows that you are able to change @_ inside no_bad, but once
the subroutine returns, @a is back to its original value:

156 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

in no_bad: ok better fine great good

after no_bad: ok better fine great bad good

Finally, on a slightly different topic, a subroutine that you call with no
arguments usually has empty @_s. However, if you call a subroutine with
an ampersand and no parentheses, it inherits the current @_:

sub inner {

print "\@_ = @_\n";

}

sub outer {

&inner; # this is the only syntax that works

}

outer 1 .. 3; # prints @_ = 1 2 3

Things to remember

■ Avoid changing the values in @_ since that changes the original data.
■ Don’t copy data in @_ into variables if you don’t need to change them.

Item 45. Use wantarray to write subroutines returning lists.

You probably know already that subroutines can return either scalar or list
values. Perhaps you have written both kinds of subroutine. You also prob-
ably understand the significance of scalar and list contexts (Item 12). In an
idle moment, you may have even wondered how something like the fol-
lowing works:

sub sorted_text_files {

my $dir = shift;

opendir my ($dh), $dir or die "eh?: $!";

not relevant to wantarray, but we have to

add the directory prefix here to make this work

my @files = grep { -T } map { "$dir/$_" } readdir $dh;

sort @files;

}

Item 45. Use wantarray to write subroutines returning lists ❘ 157

Download from <www.wowebook.com>

ptg

You can get a sorted list of files by using sorted_text_files in a call to
print:

print join ' ', sorted_text_files '/etc';

Since the output is what you expect, you probably don’t see anything mag-
ical about it. However, things are different if you use sorted_text_files
in scalar context:

print join ' ', scalar(sorted_text_files '/etc');

In this case, you get no output.

Maybe what’s going will become more apparent if you change the last line,
sort @files, to read @files = sort @files. Now, instead of nothing
at all, you get a number.

What you are seeing is the result of the way that Perl evaluates the return
value of a subroutine. The context—list or scalar—of the return value of
a subroutine is determined by the context in which you call the subroutine.
Perl notes the context when you call the subroutine and it applies that con-
text to whatever expression winds up as the return value.

In cases where you need to know the calling context, you can use the
wantarray operator, which returns true if the subroutine call appeared
in a list context (yes, wantarray is poorly named, since it implies it must
be an array). Say that you want to modify the sorted_text_files sub-
routine so that it returns a joined list of filenames if evaluated in a scalar
context. You could rewrite it like this:

sub sorted_text_files {

my $dir = shift;

opendir my ($dh), $dir or die "eh?: $!";

not relevant to wantarray, but we have to

add the directory prefix here to make this work

my @files = grep { -T } map { "$dir/$_" } readdir $dh;

if (wantarray) { # list or scalar context?

sort @files; # list context -- return a list

}

else {

join ' ', sort @files; # scalar -- return a string

}

}

158 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

wantarray is also occasionally useful for answering questions. If you want
to find out whether grep’s block argument was evaluated in a scalar or list
context, you can use something like the following:

sub how { print wantarray ? "arrayish" : "scalarish" }

grep { how() } 1;

Its output pretty much settles the question:

scalarish

Void context

There’s a third context, the void context, where you do nothing with the
return value of the subroutine:

sorted_text_files('/etc');

In this case, sorted_text_files doesn’t really need to do any work, since
nothing is going to happen with the result. In that case, wantarray returns
undef and you can return immediately to skip all the work:

sub sorted_text_files {

return unless defined wantarray;

same as before

}

Even finer control

If you want to even know more about what’s happening with the data you
are sending back from your subroutine, you can use Contextual::Return.
Through the magic of Damian Conway, you can find out more about what’s
going to happen to your data. Here’s an excerpt from its documentation:

use Contextual::Return;

sub handle_everything {

return SCALAR { 'thirty-twelve' }

BOOL { 1 }

NUM { 7 * 6 }

STR { 'forty-two' }

Item 45. Use wantarray to write subroutines returning lists ❘ 159

Download from <www.wowebook.com>

ptg

LIST { 1, 2, 3 }

HASHREF { { name => 'foo', value => 99 } }

ARRAYREF { [3, 2, 1] }

GLOBREF { *STDOUT }

CODEREF {

die "Don't use this result as code!";

};

}

Although Contextual::Return is very cool, don’t overuse it.

Things to remember

■ Allow your subroutines to respond to context.
■ The wantarray function tells you the context of your subroutine.
■ For greater control over return values, try Contextual::Return.

Item 46. Pass references instead of copies.

Two disadvantages of the “plain old” method of subroutine argument
passing are that (1) even though you can modify its elements, you can’t
modify an array or hash argument itself, and (2) copying an array or hash
into @_ takes time. You can overcome both of these disadvantages with ref-
erences (Item 58).

Passing reference arguments

When you pass arguments to a subroutine, Perl aliases @_ to them. It does
this for efficiency. When you store them in variables, Perl then makes a
copy. The more arguments you pass, the more work Perl has to do. For
instance, you can write a subroutine to sum a list of numbers. It takes the
list directly from the arguments:

sub sum {

my @numbers = @_; # now makes a copy

my $sum = 0;

foreach my $num (@numbers) { $sum += $num }

$sum;

}

160 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

What if someone wants to call that subroutine with a lot of numbers?

sum(1 .. 100_000);

Perl has to copy 100,000 elements in @numbers in sum, although it doesn’t
change any of the values. Perl does a lot of work for no good reason. If you
could pass only one thing, a reference to the array, Perl wouldn’t have to
do all of that work. A small change to the subroutine fixes that:

sub sum {

my ($numbers_ref) = @_; # now makes a copy

my $sum = 0;

foreach my $num (@$numbers_ref) { $sum += $num }

$sum;

}

Since Perl’s argument list is always a flat list, the subroutine doesn’t know
anything about the original structure. If you make the argument list from
two or more arrays, the subroutine sees only the whole list. To maintain
their identities, you can pass them as array references:

process_arrays(\@arrayA, \@arrayB);

In the subroutine, you’ll get a list of array references, which you can process
independently:

sub process_arrays {

my (@array_refs) = @_; # refs to all arrays

foreach my $ref (@array_refs) {

... process array ...;

}

}

You can do this with any reference types that you like. Your subroutine just
has to do the right thing with the arguments that it gets:

process_refs(\@array, \%hash, \&sub_name);

This isn’t only for arrays and hashes, though. If you have very large strings,
you can pass references to scalars to avoid copying the strings in the sub-
routine. This example processes a string in-place in the subroutine with-
out ever making the copy:

Item 46. Pass references instead of copies ❘ 161

Download from <www.wowebook.com>

ptg

process_big_string(\$string);

sub process_big_string {

my $string_ref = shift;

$string_ref =~ s/\bPERL\b/Perl/g;

}

Returning reference arguments

The same copying problem goes in the other direction, too. When you
return values, the caller just gets a flat list. You return references to any of
the types. You can do this especially when the data structures are large.
Here’s a subroutine that reads in an entire file and returns a reference to
the scalar that has its contents:

my $string_ref = slurp_file($file);

print "The file was:\n$$string_ref\n";

sub slurp_file {

my $file = shift;

open my ($fh), '<', $file or die;

local $/;

my $string = <$fh>;

\$string;

}

You can return more than one thing from a subroutine, too, and they can
keep their identities, just like passing arguments to a subroutine:

my ($array_ref, $hash_ref) = make_data_structure();

sub make_data_structure {

...

return \@array, \%hash;

}

162 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

Passing typeglobs for speed

In the days before references, programmers sometimes resorted to passing
typeglobs (Item 118) when it was necessary to pass an array or hash by
value. Here’s an example of using typeglobs to construct a subroutine that
takes two arrays by reference:

sub two_arrays {

local *a1 = shift; # create a private a1 and a2

local *a2 = shift;

now, do whatever it is to @a1 and @a2 ...

}

our @a = 1 .. 3;

our @b = 4 .. 6;

two_arrays *a, *b;

There is no reason to write code like this any more, but if you deal with a
lot of legacy code, you may run into something like it.

Using local * on reference arguments

Subroutines that take arguments by reference for speed sometimes lose
some of their speed advantage as they continually dereference those argu-
ments. The syntax can become distracting or hard to follow for some peo-
ple.

Here’s a subroutine that takes two arrays and returns a list made up of the
largest elements from the arrays, compared pairwise:

sub max_v {

my ($a, $b) = @_;

my $n = @$a > @$b ? @$a : @$b; # no. of items

my @result;

for (my $i = 0 ; $i < $n ; $i++) {

push @result, $$a[$i] > $$b[$i] ? $$a[$i] : $$b[$i];

}

@result;

}

Those doubled dollar signs aren’t very pretty, are they?

Item 46. Pass references instead of copies ❘ 163

Download from <www.wowebook.com>

ptg

One way to get around this problem is to alias variables to the arrays.
Assigning a reference to a typeglob has the effect of creating an aliased
variable of the type appropriate to the reference:

sub max_v_local {

local (*a, *b) = @_;

my $n = @a > @b ? @a : @b;

my @result;

for (my $i = 0 ; $i < $n ; $i++) {

push @result, $a[$i] > $b[$i] ? $a[$i] : $b[$i];

}

@result;

}

This subroutine is somewhat easier to read once you know what the first
assignment means, and it will probably execute faster than the first ver-
sion. When I tested this example, I saw about a 10% speed increase—not
enormous, but significant.

Things to remember

■ Use references to avoid excessive copying when you pass large data
structures or strings.

■ Pass references to subroutines to work with the original data.
■ Pass references when you need to pass arrays or hashes intact.

Item 47. Use hashes to pass named parameters.

Although Perl provides no method of automatically naming parameters in
the function to which you pass them (in other words, no “formal param-
eters” [Item 48]), there’s a variety of ways that you can call functions with
an argument list that provides both names and values.

All of these mechanisms require that the function you call do some extra
work while processing the argument list. In other words, this feature isn’t
built into Perl either, but it’s a blessing in disguise. Different implementa-
tions of named parameters are appropriate at different times. Perl makes
it easy to write and use almost any implementation you want.

A simple approach to named parameters constructs a hash out of the argu-
ment list:

164 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

sub uses_named_params {

my %param = (

foo => 'val1',

bar => 'val2',

);

my %input = @_; # read in args as a hash

combine params read in with defaults

@param{ keys %input } = values %input;

now, use $param{foo}, $param{bar}, etc.

...

}

You would call uses_named_params with key-value pairs just as if you
were constructing a hash:

uses_named_params(bar => 'myval1', bletch => 'myval2');

That wasn’t very many lines of code, was it? And they were all fairly sim-
ple. This is a natural application for hashes.

You may want to allow people to call a subroutine with either positional
parameters or named parameters. The simplest thing to do in this case is
to prefix parameter names with minus signs. Check the first argument to
see if it begins with a minus. If it does, process the arguments as named
parameters. Here’s one straightforward approach:

sub uses_minus_params {

my %param = (-foo => 'val1', -bar => 'val2');

my %input;

if (substr($_[0], 0, 1) eq '-') {

read in named params as a hash

%input = @_;

}

else {

my @name = qw(-foo -bar);

give positional params names and save in a hash

%input = map { $name[$_], $_[$_] } 0 .. $#_;

}

Item 47. Use hashes to pass named parameters ❘ 165

Download from <www.wowebook.com>

ptg

overlay params on defaults

@param{ keys %input } = values %input;

use $param{-foo}, $param{-bar}

}

You can call this subroutine with either named or positional parameters
(although it’s better to choose one method and stick with it):

uses_minus_params(-foo => 'myval1', -xtra => 'myval2');

uses_minus_params('myval1', 'myval2');

Stay away from single character parameter names—for example, -e and
-x. In addition to being overly terse, those are file test operators (Item 51).

If you use this method for processing named parameters, you refer to the
arguments inside your subroutine by using a hash whose keys are prefixed
with minus signs (e.g., $param{-foo}, $param{-bar}). Using identifiers
preceded by minus signs as arguments or keys may look a little funny to
you at first (“Is that really Perl?”), but Perl actually treats barewords pre-
ceded by minus signs as though they were strings beginning with minus signs.

This is generally convenient, but this approach does have a couple of draw-
backs. First, although an identifier with a leading minus sign gets a little
special treatment from Perl, the identifier isn’t forcibly treated as a string,
as it would be to the left of => or alone inside braces. Thus, you have to
quote a parameter like -print, lest it turn into -1 (while also printing the
value of $_). Second, if you want to use the positional argument style and
need to pass a negative first argument, you have to supply it as a string
with leading whitespace or do something else equally ungainly.

There are plenty of applications where these issues don’t present a prob-
lem, but there are plenty more where one or both do. In this case, you may
want to resort to yet another technique, which is to pass named parame-
ters in an anonymous hash:

sub uses_anon_hash_params {

my %param = (foo => 'val1', bar => 'val2');

my %input;

if (ref $_[0] eq 'HASH') {

read in named params as a hash

%input = %{ shift() };

}

166 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

else {

my @name = qw(foo bar);

give positional params names and save in a hash

%input = map { $name[$_], $_[$_] } 0 .. $#_;

}

overlay params on defaults

@param{ keys %input } = values %input;

use $param{foo}, $param{bar} ... for example:

for (keys %param) {

print "$_: $param{$_}\n";

}

}

The syntax for using named and positional parameters now looks like:

uses_anon_hash_params({ foo => 3, test => 10 });

uses_anon_hash_params(-123, 345);

or even ...

uses_anon_hash_params { foo => 3, test => 10 };

This is a pretty complicated piece of boilerplate to have at the beginning of
a subroutine. If you have several subroutines that accept named parameters,
you will probably want to create a subroutine that does most of the work.
Here is a subroutine that implements the anonymous hash technique:

sub do_params {

my ($arg, $default) = @_;

my %param = @$default;

my %input;

if (ref $$arg[0] eq 'HASH') {

named params -- turn 'em into a hash

%input = %{ $$arg[0] };

}

else {

positional params -- name 'em

%input =

map { $$default[$_ * 2], $$arg[$_] } 0 .. $#_;

}

Item 47. Use hashes to pass named parameters ❘ 167

Download from <www.wowebook.com>

ptg

overlay defaults

@param{ keys %input } = values %input;

\%param;

}

And here’s how you might use it:

sub uses_anon_hash_params {

ref to arg list and defaults

my $param = do_params \@_,

[foo => 'val1', bar => 'val2'];

do_params returned a hash ref

now, use $$param{foo}, $$param{bar}-- for example:

for (keys %$param) {

print "$_: $$param{$_}\n";

}

}

Each of the techniques illustrated here has its own advantages and draw-
backs. Use the technique that best suits your application, or, if none is quite
right, adapt one as necessary.

Things to remember

■ Use hashes to name subroutine arguments.
■ Set default values for parameters by merging hashes.
■ Choose either positional or named parameters, and stick with your

choice.

Item 48. Use prototypes to get special argument parsing.

Perl supports subroutine prototypes, but they are not named, typed for-
mal parameters along the lines of those in most languages. Rather, they
are a mechanism that allows programmers to write subroutines whose
arguments are treated like those of built-in functions. Don’t think of Perl’s
prototypes as a way to validate data; they are there to give Perl hints on
how to parse your code.

168 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

Your own pop

Consider implementing a pop2 function that removes and returns two ele-
ments from the end of an array. Suppose you want to be able to use it like
the built-in pop:

my @a = 1 .. 10;

my $item = pop @a;

You want your version to work similarly by removing two elements from
the array you pass it:

my ($item1, $item2) = pop2 @a;

Normally, if you wanted to implement something like pop2, you would
use references so you could modify the argument (Item 46):

sub pop2_ref { splice @{ $_[0] }, -2, 2 }

But you have to call this with a reference to an array, not the name of the
array:

my @a = 1 .. 10;

my ($item1, $item2) = pop2_ref \@a;

You have to use prototypes in order to write a function that gets the same
special treatment of its argument list that a built-in operator like pop does.

A prototype appears at the beginning of a subroutine declaration or
 definition:

sub pop2 (\@) { splice @{ $_[0] }, -2, 2 }

Prototypes are made up of prototype atoms. Prototype atoms are charac-
ters, possibly preceded by backslashes, indicating the type of argument(s)
to be accepted by a subroutine. In this example, the \@ atom indicates that
the subroutine pop2 is to take a single named array argument. A back-
slashed atom, like \$ or \@, tells Perl to pass a reference to the correspon-
ding argument, so in this case the array argument to pop2 will be passed
as a reference, not as a list of values.

Prototypes also invoke argument type and number checking where appro-
priate. For example, if you try to invoke pop2 on a non-array value it
 doesn’t work:

my @popped = pop2 %hash;

Item 48. Use prototypes to get special argument parsing ❘ 169

Download from <www.wowebook.com>

ptg

The result is a compile-time error, because Perl knows that a hash doesn’t
belong there:

Type of arg 1 to main::pop2 must be array ↵

(not private hash)

Table 4-1 shows the characters you can use in a prototype.

Multiple array arguments

How about a subroutine that takes two array arguments and “blends”
them into a single list? Take one element from the first array, then one
from the second, then another from the first, and so on:

sub blend (\@\@) {

local (*a, *b) = @_; # faster than lots of derefs

my $n = $#a > $#b ? $#a : $#b;

my @res;

for my $i (0 .. $n) {

push @res, $a[$i], $b[$i];

}

could have written this:

map { $a[$_], $b[$_] } 0..$n;

but for and push turn out to be faster

@res;

}

sample usage

blend @a, @b;

blend @{ [1 .. 10] }, @{ [11 .. 20] };

170 ❘ Chapter 4 Subroutines

Table 4-1 Subroutine Prototype Characters and Their Meanings

Prototype characters Meaning

\$, \@, \%, \&, * Returns reference to variable name or argument
beginning with $, @, %, etc

$ Forces scalar context

@, % Gobbles the rest of the arguments; forces list context

& Coderef; sub keyword optional if first argument

* Typeglob

; Separate mandatory from optional arguments

Download from <www.wowebook.com>

ptg

Along the same lines, you can write a subroutine that iterates through the
elements of a list like foreach, but n at a time:

for_n: iterate over a list n elements at a time

sub for_n (&$@) {

my ($sub, $n, @list) = @_;

my $i;

while ($i < $#list) {

&$sub(@list[$i .. ($i + $n - 1)]);

$i += $n;

}

}

sample usage

@a = 1 .. 10;

for_n { print "$_[0], $_[1]\n" } 2, @a;

Be careful when using atoms like \@ and \% in code that you are going to
share with the world, since other programmers may not expect subrou-
tines to take arguments by reference without an explicit backslash. Docu-
ment such behavior thoroughly.

By the way, you don’t need your own blend or for_n, since List::
MoreUtils’ mesh and natatime can do those for you (Item 26).

Things to remember

■ Use prototypes to create your own array or hash operators.
■ Use prototypes to create subroutines that take separate arrays as

 arguments.
■ Avoid overusing prototypes, especially when they would confuse

 people.

Item 49. Create closures to lock in data.

In Perl, closures are subroutines that refer to lexical variables that have
gone out of scope. The data does not disappear, because the subroutines
still have references to them. You can use closures to limit data to a named
subroutine or new anonymous subroutines.

Item 49. Create closures to lock in data ❘ 171

Download from <www.wowebook.com>

ptg

Private data for named subroutines

Sometimes your subroutines need some data that only they can see. As with
any data, you want to limit their visibility to the smallest scope that you can
compose. You could just put your data directly inside the subroutine:

sub some_sub {

my $application_root = '/path/to/my/app';

do stuff with %hash

}

If you do that, Perl has to recreate the scalar every time that you call the
subroutine. If you don’t need to change the data, that’s a waste. Maybe it
doesn’t affect performance that much, but it’s just philosophically ugly
and needless.

You can define $application_root outside of the subroutine, but you
still want to limit its scope. You do that by wrapping a block around the
definition of $application_root and the subroutine. You need to define
$application_root before you define the subroutine so the subroutine
can refer to it, so you need to wrap it in a BEGIN block:

BEGIN {

my $application_root = '/path/to/my/app';

sub some_sub {

...;

}

}

In Perl 5.10 and later, you can get the same thing with a state variable.
This is such a common pattern that it’s now a feature. The first time you
run the subroutine, Perl defines the state variable and assigns its value.
On subsequent calls, Perl ignores that line and the variable keeps the value
it had from the previous run of the subroutine:

use 5.010;

sub some_sub {

state $application_root = '/path/to/my/app';

do stuff with $application_root

}

172 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

The state variable is more useful for maintaining a variable’s value
between calls to the subroutine:

use 5.010;

sub show_letter {

state $letter = 'a';

print "Letter is ", $letter++, "\n";

}

foreach (0 .. 5) {

show_letter();

}

The output shows the progression of $letter:

Letter is a

Letter is b

Letter is c

Letter is d

Letter is e

Letter is f

Private data for subroutine references

Anonymous closures are almost the same thing as using state variables,
but they can be much more useful because you can create as many closures
as you like and you can set up each subroutine just the way you need it. If
you wanted to make an anonymous closure doing the same as the previous
example, you do mostly the same thing although it all happens at run time:

my $session = do {

my $application_root = '/path/to/my/app';

sub {

...;

}

};

More useful, however, is something that creates the closure on demand.
Even though you have an anonymous subroutine, you still did all of the

Item 49. Create closures to lock in data ❘ 173

Download from <www.wowebook.com>

ptg

same work you did to set up the named subroutine. That’s not very flexi-
ble. Instead, you can use a factory that makes subroutines:

my $session = closure_factory('/path/to/my/app');

sub closure_factory {

my $application_root = shift;

sub {

...;

}

}

You can create as many of these as you like. Consider a set of independent
counters that you create from the same factory subroutine (a fancy name
for a subroutine that creates other subroutines):

sub make_cycle {

my ($min, $max) = @_;

my @numbers = $min .. $max;

my $cursor = 0;

sub { $numbers[$cursor++ % @numbers] }

}

my $cycle_5_10 = make_cycle(5, 9);

my $cycle_f_m = make_cycle('f', 'm');

When you call one of your closures, it doesn’t affect any of the other clo-
sures that you created from the same factory:

foreach (0 .. 10) {

print $cycle_5_10->(), $cycle_f_m->();

}

The output shows the closures operating independently as they interlace
their output:

5f6g7h8i9j5k6l7m8f9g5h

174 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

Closures can share data

You don’t have to limit your out-of-scope data to a single closure. As long
as you create the subroutines while those data are in scope, they will share
the references. Consider the File::Find::Closures module, which sup-
plies convenience subroutines to work with File::Find. The find sub-
routine expects a reference to a subroutine to do its magic:

use File::Find qw(find);

use File::Find::Closures qw(find_by_regex);

my ($wanted, $reporter) = find_by_regex(qr/*.pl/);

find($wanted, @search_dirs);

my @files = $reporter->();

The find_by_regex handles two important details for you, each handled
by its own closure. First, it creates the callback function that find needs.
In the same scope, it defines the @files array to store the list of files that
it collects. To access that array, it creates a second closure:

From File::Find::Closures

sub find_by_regex {

require File::Spec::Functions;

require Carp;

require UNIVERSAL;

my $regex = shift;

unless (UNIVERSAL::isa($regex, ref qr//)) {

Carp::croak "Argument must be a regular expression";

}

my @files = ();

sub {

push @files,

File::Spec::Functions::canonpath($File::Find::name)

if m/$regex/;

}, sub { wantarray ? @files : [@files] }

}

Item 49. Create closures to lock in data ❘ 175

Download from <www.wowebook.com>

ptg

Things to remember

■ Use lexical variables to make data private to subroutines.
■ In Perl 5.10 or later, use state variables for private data.
■ Make generator (“factory”) subroutines that create new subroutines

for you.

Item 50. Create new subroutines with subroutines.

If you are often calling the same subroutine with some of the same argu-
ments, you can create a new subroutine that remembers some of the
 arguments for you. This is known as currying a subroutine.

Suppose that you have a subroutine that filters a list for elements match-
ing a pattern, and then sorts the results:

sub my_sorted_grep {

my ($pattern, $array_ref) = @_;

my @results = sort grep /$pattern/o, @$array_ref;

wantarray ? @results : scalar @results;

}

When you call it, you have to supply both the pattern and the input list:

my @results = my_sort_grep qr/.../, \@input;

That’s not such a big deal, but what if you want to do that several times
throughout your code with the same pattern? You have to type all that out
over and over again. That’s no good; you have the same pattern scattered
throughout the code, so wrap it in a subroutine that remembers the pat-
tern for you:

my $find_buster = sub {

my ($array_ref) = shift;

my_sorted_grep(qr/Buster/i, @$array_ref);

};

Now you have a way to call it without going through all of the details:

my @results = $find_buster->(\@input);

176 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

You can also use functions to create new functions out of old ones. We
could devote an entire book to these higher-order functions in Perl, but
fortunately, Mark Jason Dominus has already written Higher Order Perl.

Here’s a short example, though. Suppose you have a set of subroutines that
transform a string:

sub my_uc { uc $_[0] }

sub my_ucfirst { ucfirst $_[0] }

sub trim_front { my $s = shift; $s =~ s/^\s+//; $s }

sub trim_back { my $s = shift; $s =~ s/\s+$//; $s }

Now, given a string, you want to trim the whitespace at the front and end
of the string and make the first character uppercase. You could call all of
the needed subroutines individually, assigning their results back to the
original scalar:

my $string = '';

$string = trim_front($string);

$string = trim_back($string);

$string = my_ucfirst($string);

You could also skip the intermediate steps by using the result of one step
as the input for the next, but that’s a bit messy:

$string = my_ucfirst(trim_back(trim_front($string)));

Instead, you can compose the functions into a new subroutine:

my $ucfirst_and_trim = sub {

my $string = shift;

my_ucfirst(trim_back(trim_front($string)));

};

Now you can use your composed subroutine anywhere you want to per-
form all three operations:

$string = $ucfirst_and_trim->($string);

This isn’t much different than writing a normal subroutine, where you
create a bit of reusable code, except that you are now doing it at run time.

Take it one step further by writing a factory subroutine that creates the
composed subroutine for you. Maybe you don’t know which operations
you’ll need until run time, so you don’t know what to put inside the

Item 50. Create new subroutines with subroutines ❘ 177

Download from <www.wowebook.com>

ptg

anonymous subroutine. This composing subroutine takes a list of sub-
routine references and gives back a single subroutine that returns their
combined result:

sub composer {

my (@sub_refs) = @_;

sub {

my $string = shift;

foreach my $sub_ref (@sub_refs) {

$string = $sub_ref->($string);

}

return $string;

};

}

You compose your new subroutine any way that you like. In this case, you
list the operations you want in the order that you want them in:

my $ucfirst_and_trim =

composer(\&trim_front, \&trim_back, \&my_ucfirst);

$string = $ucfirst_and_trim->($string);

Your composing subroutine can do anything you need it to do, as long as
it returns a code reference (or maybe more than one code reference).

Things to remember

■ Create new subroutines based on program state during run time.
■ Wrap subroutines to provide default arguments.
■ Use generator subroutines to create higher-order functions.

178 ❘ Chapter 4 Subroutines

Download from <www.wowebook.com>

ptg

5 ❘ Files and Filehandles

179

It’s easy to work with files in Perl. Its heritage includes some of the most
powerful utilities for processing data, so it has the tools it needs to exam-
ine the files that contain those data and to easily read the data and write
them again.

Perl’s strength goes beyond mere files, though. You probably think of files
as things on your disk with nice icons. However, Perl can apply its file-
handle interface to almost anything. You can use the filehandle interface to
do most of the heavy lifting for you. You can also store filehandles in scalar
variables, and select which one you want to use later.

Item 51. Don’t ignore the file test operators.

One of the more frequently heard questions from newly minted Perl pro-
grammers is, “How do I find the size of a file?” Invariably, another newly
minted Perler will give a wordy answer that works, but requires quite a bit
of typing:

my (

$dev, $ino, $mode, $nlink, $uid,

$gid, $rdev, $size, $atime, $mtime,

$ctime, $blksize, $blocks

) = stat($filename);

Or, perhaps they know how to avoid the extra variables that they don’t
want, so they use a slice (Item 9):

my ($size) = (stat $filename)[7];

When you are working this hard to get something that should be com-
mon, stop to think for a moment. Perl is specifically designed to make the
common things easy, so this should be really easy. And indeed, it is if you
use the -s file test operator, which tells you the file size in bytes:

my $size = -s $filename;

Download from <www.wowebook.com>

ptg

180 ❘ Chapter 5 Files and Filehandles

Many people overlook Perl’s file test operators. Maybe they are old C pro-
grammers, maybe they’ve seen only the programs that other people write,
or they just don’t trust them. This is a shame; they are succinct and effi-
cient, and tend to be more readable than equivalent constructs written
using the stat operator. Curiously, the file test operators are the first func-
tions listed in perlfunc, because they are under the literal -X. If you want
to read about them, you tell perldoc to give you the function named -X:

% perldoc -f -X

File tests fit into loops and conditions very well. Here, for example, is a list
of the text files in a directory. The -T file test decides if the contents are text
by sampling part of the file and guessing.

Almost all file tests use $_ by default:

my @textfiles = grep { -T } glob "$dir_name/*";

The -M and -A file tests return the modification and access times of the
file, but in days relative to the start of the program. That is, Perl takes the
time the program was started, subtracts the time the file was modified or
accessed, and gives you back the result in days. Positive values are in the
past, and negative values indicate times after the start of the program. That
seems really odd, but it makes it easy to measure age in terms a human
can understand. If you want to find the files that haven’t been modified in
the past seven days, you look for a -M value that is greater than 7:

my $old_files = grep { -M > 7 } glob '*';

If you want to find the files modified after your program started, you look
for negative values. In this example, if -M returns something less than zero,
map gives an anonymous array that has the name of the file and the mod-
ification age in days; otherwise, it gives the empty list:

my @new_files = map { -M < 0 ? [$_, -M] : () } glob '*';

Reusing work

If you want to find all of the files owned by the user running the program
that are executable, you can combine the file tests in a grep:

my @my_executables = grep { -o and -x } glob '*';

Download from <www.wowebook.com>

ptg

The file test operators actually do the stat call for you, figure out the
answer, and give it back to you. Each time you run a file test, Perl does
another stat. In the last example, Perl did two stats on $_.

If you want to use another file test operator on the same file, you can use
the virtual _ filehandle (the single underscore). It tells the file test opera-
tor to not call stat and instead reuse the information from the last file
test or stat. Simply put the _ after the file test you want. Now you call
only one stat for each item in the list:

my @my_executables = grep { -o and -x _ } glob '*';

Stacked file tests

Starting with Perl 5.10, you can stack file test operators. That is, you test the
same file or filehandle for several properties at the same time. For instance,
if you want to check that a file is both readable and writable by the current
user, you list the -r and -w file tests before the file:

use 5.010;

if (-r -w $file) {

print "File is readable and writable\n";

}

There’s nothing especially magic about this, since it’s a syntactic shortcut
for doing each operation independently. Notice that the equivalent long
form does the test closest to the file first:

if (-w $file and -r $file) {

print "File is readable and writable\n";

}

Rewriting the example from the previous section, you’d have:

my @my_executables = grep { -o -x } glob '*';

Things to remember

■ Don’t call stat directly when a file test operator will do.
■ Use the _ virtual filehandle to reuse data from the last stat.
■ Stack file test operators in Perl 5.10 or later.

Item 51. Don’t ignore the file test operators ❘ 181

Download from <www.wowebook.com>

ptg

Item 52. Always use the three-argument open.

A long time ago, in a Perl far, far away, you had to specify the filehandle
mode and the filename together:

open(FILE, '> output.txt') || die ...; # OLD and WRONG

That code isn’t so bad, but things can get weird if you use a variable for the
filename:

open(FILE, $read_file) || die ...; # WRONG and OLD

Since the data in $read_file can do two jobs, specify the mode and the
filename, someone might try to pull a fast one on you by making a weird
filename. If they put a > at the beginning of the filename, all of a sudden
you’ve lost your data:

$read_file = '> birdie.txt'; # bye bye birdie!

The two-argument form of open has a magic feature where it interprets
these redirection symbols. Unfortunately, this feature can leave your code
open to exploits and accidents.

Imagine that the person trying to wreak havoc on your files decides to get
a little more tricky. They think that you won’t notice when they open a file
in read-write mode. This allows the input operator to work on an open
file, but also overwrites your data:

$read_file = '+> important.txt';

They could even sneak in a pipe, which tells open to run a command:

$read_file = 'rm -rf / |'; # that's gonna hurt!

And now, just when you think you have everything working, the software
trolls come out at three in the morning to ensure that your pager goes off
just when you get to sleep.

Since Perl 5.6, you can use the three-argument open to get around this
problem. By “can,” we mean, “you always will from now on forever and
ever.”

When you want to read a file, you ensure that you only read from a file:

open my ($fh), '<', $read_file or die ...;

182 ❘ Chapter 5 Files and Filehandles

Download from <www.wowebook.com>

ptg

The filename isn’t doing double duty anymore, so it has less of a chance of
making a mess. None of the characters in $read_file will be special. Any
redirection symbols, pipes, or other funny characters are literal characters.

Likewise, when you want to write to a file, you ensure that you get the right
mode:

open my ($fh), '>', $write_file or die ...;

open my ($fh), '>>', $append_file or die ...;

The two-argument form of open protects you from extra whitespace. Part
of the filename processing magic lets Perl trim leading and trailing white-
space from the filename. Why would you ever want whitespace at the
beginning or end? We won’t pretend to know what sorts of crazy things
you want. With the three-argument open, you can keep that whitespace
in your filename. Try it sometime: make a filename that starts with a new-
line. Did it work? Good. We’ll let you figure out how to delete it.

Things to remember

■ Use the three-argument form of open when you can.
■ Use lexical scalars to store filehandle references.
■ Avoid precedence problems by using or to check the success of open.

Item 53. Consider different ways of reading from a stream.

You can use the line input operator <> to read either a single line from a
stream in a scalar context or the entire contents of a stream in a list con-
text. Which method you should use depends on your need for efficiency,
access to the lines read, and other factors, like syntactic convenience.

In general, the line-at-a-time method is the most efficient in terms of time
and memory. The implicit while (<>) form is equivalent in speed to the
corresponding explicit code:

open my ($fh), '<', $file or die;

while (<$fh>) {

do something with $_

}

Item 53. Consider different ways of reading from a stream ❘ 183

Download from <www.wowebook.com>

ptg

while (defined(my $line = <$fh>)) { # explicit version

do something with $line

}

Note the use of the defined operator in the second loop. This prevents the
loop from missing a line if the very last line of a file is the single character
0 with no terminating newline—not a likely occurrence, but it doesn’t hurt
to be careful.

You can use a similar syntax with a foreach loop to read the entire file
into memory in a single operation:

foreach (<$fh>) {

do something with $_

}

The all-at-once method is slower and uses more memory than the line-at-
a-time method. If all you want to do is step through the lines in a file, you
should use the line-at-a-time method, although the difference in per-
formance will not be noticeable if you are reading a short file.

All-at-once has its advantages, though, when combined with operations
like sorting:

print sort <$fh>; # print lines sorted

If you need access to more than one line at a time, all-at-once may be
appropriate. If you want to look at previous or succeeding lines based on
the current line, you want to already have those lines. This example prints
three adjacent lines when it finds a line with “Shazam”:

my @f = <$fh>;

foreach (0 .. $#f) {

if ($f[$_] =~ /\bShazam\b/) {

my $lo = ($_ > 0) ? $_ - 1 : $_;

my $hi = ($_ < $#f) ? $_ + 1 : $_;

print map { "$_: $f[$_]" } $lo .. $hi;

}

}

You can still handle many of these situations with line-at-a-time input,
although your code will definitely be more complex:

my @fh;

@f[0 .. 2] = ("\n") x 3;

184 ❘ Chapter 5 Files and Filehandles

Download from <www.wowebook.com>

ptg

for (; ;) {

queue using a slice assignment

@f[0 .. 2] = (@f[1, 2], scalar(<$fh>));

last if not defined $f[1];

if ($f[1] =~ /\bShazam\b/) { # ... looking for Shazam

print map { ($_ + $. - 1) . ": $f[$_]" } 0 .. 2;

}

}

Maintaining a queue of lines of text with slice assignments makes this
slower than the equivalent all-at-once code, but this technique works for
arbitrarily large input. The queue could also be implemented with an index
variable rather than a slice assignment, which would result in more com-
plex but faster running code.

Slurp a file

If your goal is simply to read a file into memory as quickly as possible, you
might consider clearing the line separator character and reading the entire
file as a single string. This will read the contents of a file or stream much
faster than either of the earlier alternatives:

my $contents = do {

local $/;

open my ($fh1), '<', $file1 or die;

<$fh>;

};

You can also just use the File::Slurp module to do it for you, which lets
you read the entire file into a scalar to have it in one big chunk or read it
into an array to have it line-by-line:

use File::Slurp;

my $text = read_file('filename');

my @lines = read_file('filename');

Use read or sysread for maximum speed

Finally, the read and sysread operators are useful for quickly scanning a
file if line boundaries are of no importance:

Item 53. Consider different ways of reading from a stream ❘ 185

Download from <www.wowebook.com>

ptg

open my ($fh1), '<', $file1 or die;

open my ($fh2), '<', $file2 or die;

my $chunk = 4096; # block size to read

my ($bytes, $buf1, $buf2, $diff);

CHUNK: while ($bytes = sysread $fh1, $buf1, $chunk) {

sysread $fh2, $buf2, $chunk;

$diff++, last CHUNK if $buf1 ne $buf2;

}

print "$file1 and $file2 differ" if $diff;

Things to remember

■ Avoid reading entire files into memory if you don’t need to.
■ Read entire files quickly with File::Slurp.
■ Use read of sysread to quickly read through a file.

Item 54. Open filehandles to and from strings.

Since Perl 5.6, you can open filehandles on strings. You don’t have to treat
strings any differently from files, sockets, or pipes. Once you stop treating
strings specially, you have a lot more flexibility about how you get and
send data. Reduce the complexity of your application by reducing the
number of cases it has to handle.

And this change is not just for you. Though you may not have thought
that opening filehandles on strings was a feature, it is. People tend to want
to interact with your code in ways that you don’t expect.

Read from a string

If you have a multiline string to process, don’t reach for a regex to break it
into lines. You can open a filehandle on a reference to a scalar, and then
read from it as you would any other filehandle:

my $string = <<'MULTILINE';

Buster

Mimi

186 ❘ Chapter 5 Files and Filehandles

Download from <www.wowebook.com>

ptg

Roscoe

MULTILINE

open my ($str_fh), '<', \$string;

my @end_in_vowels = grep /[aeiou]$/, <$str_fh>;

Later, suppose you decide that you don’t want to get the data from a string
that’s in the source code, but you want to read from a file instead. That’s
not a problem, because you are already set up to deal with filehandles:

my @end_in_vowels = grep /[aeiou]$/, <$other_fh>;

It gets even easier when you wrap your output operations in a subroutine.
That subroutine doesn’t care where the data come from as long as it can
read from the filehandle it gets:

my @matches = ends_in_vowel($str_fh);

push @matches, ends_in_vowel($file_fh);

push @matches, ends_in_vowel($socket);

sub ends_in_vowel {

my ($fh) = @_;

grep /[aeiou]$/, <$fh>;

}

Write to a string

You can build up a string with a filehandle, too. Instead of opening the
string for reading, you open it for writing:

my $string = q{};

open my ($str_fh), '>', \$string;

print $str_fh "This goes into the string\n";

Likewise, you can append to a string that already exists:

my $string = q{};

open my ($str_fh), '>>', \$string;

print $str_fh "This goes at the end of the string\n";

Item 54. Open filehandles to and from strings ❘ 187

Download from <www.wowebook.com>

ptg

You can shorten that a bit by declaring $string at the same time that you
take a reference to it. It looks odd at first, but it works:

open my ($str_fh), '>>', \my $string;

print $str_fh "This goes at the end of the string\n";

This is especially handy when you have a subroutine or method that nor-
mally expects to print to a filehandle, although you want to capture that
output in memory. Instead of creating a new file only to read it back into
your program, you just capture it directly.

seek and tell

Once you have a filehandle to a string, you can do all the usual filehandle
sorts of things, including moving around in this “virtual file.” Open a
string for reading, move to a location, and read a certain number of bytes.
This can be really handy when you have an image file or other binary
(non–line-oriented) format you want to work with:

use Fcntl qw(:seek); # for the constants

my $string = 'abcdefghijklmnopqrstuvwxyz';

my $buffer;

open my ($str_fh), '<', \$string;

seek($str_fh, 10, SEEK_SET); # move ten bytes from start

my $read = read($str_fh, $buffer, 4);

print "I read [$buffer]\n";

print "Now I am at position ", tell($str_fh), "\n";

seek($str_fh, -7, SEEK_CUR); # move seven bytes back

my $read = read($str_fh, $buffer, 4);

print "I read [$buffer]\n";

print "Now I am at position ", tell($str_fh), "\n";

The output shows that you are able to move forward and backward in the
string:

I read [klmn]

Now I am at position 14

I read [hijk]

Now I am at position 11

188 ❘ Chapter 5 Files and Filehandles

Download from <www.wowebook.com>

ptg

You can even replace parts of the string if you open the filehandle as read-
write, using +< as the mode:

use Fcntl qw(:seek); # for the constants

my $string = 'abcdefghijklmnopqrstuvwxyz';

my $buffer;

open my ($str_fh), '+<', \$string;

move 10 bytes from the start

seek($str_fh, 10, SEEK_CUR);

print $str_fh '***';

print "String is now:\n\t$string\n";

read($str_fh, $buffer, 3);

print "I read [$buffer], and am now at ",

tell($str_fh), "\n";

The output shows that you’ve changed the string, but can also read from it:

String is now:

abcdefghij***nopqrstuvwxyz

I read [nop], and am now at 16

You could do this with substr, but then you’d limit yourself to working
with strings. When you do it with filehandles, you can handle quite a bit
more.

Things to remember

■ Treat strings as files to avoid special cases.
■ Create readable filehandles to strings to break strings into lines.
■ Create writeable filehandles to strings to capture output.

Item 55. Make flexible output.

When you use hard-coded (or assumed) filehandles in your code, you limit
your program and frustrate your users. Some culprits look like these:

print "This goes to standard output\n";

print STDOUT "This goes to standard output too\n";

print STDERR "This goes to standard error\n";

Item 55. Make flexible output ❘ 189

Download from <www.wowebook.com>

ptg

When you put those sorts of statements in your program, you reduce the
flexibility of the code, causing people to perform acrobatics and feats of
magic to work around it. They shouldn’t have to localize any filehandles
or redefine standard filehandles to change where the output goes. Despite
that, people still code like that because it’s quick, it’s easy, and mostly, they
don’t know how easy it is to do it better.

You don’t need an object-oriented design to make this work, but it’s a lot
easier that way. When you need to output something in a method, get the
output filehandle from the object. In this example, you call get_output_
fh to fetch the destination for your data:

sub output_method {

my ($self, @args) = @_;

my $output_fh = $self->get_output_fh;

print $output_fh @args;

}

To make that work, you need a way to set the output filehandle. That can
be a set of regular accessor methods. get_output_fh returns STDOUT if
you haven’t set anything:

sub get_output_fh {

my ($self) = @_;

return $self->{output_fh} || *STDOUT{IO};

}

sub set_output_fh {

my ($self, $fh) = @_ ;

$self->{output_fh} = $fh;

}

With this as part of the published interface for your code, the other pro-
grammers have quite a bit of flexibility when they want to change how
your program outputs data:

190 ❘ Chapter 5 Files and Filehandles

Download from <www.wowebook.com>

ptg

$obj->output_method("Hello stdout!\n");

capture the output in a string

open my ($str_fh), '>', \$string;

$obj->set_output_fh($str_fh);

$obj->output_method("Hello string!\n");

send the data over the network

socket(my ($socket), ...);

$obj->set_output_fh($socket);

$obj->output_method("Hello socket!\n");

output to a string and STDOUT at the same time

use IO::Tee;

my $tee =

IO::Tee->new($str_fh, *STDOUT{IO});

$obj->set_output_fh($tee);

$obj->output_method("Hello all of you!\n");

send the data nowhere

use IO::Null;

my $null_fh = IO::Null->new;

$obj->set_output_fh($null_fh);

$obj->output_method("Hello? Anyone there?\n");

decide at run time: interactive sessions use stdout,

non-interactive session use a null filehandle

use IO::Interactive;

$obj->set_output_fh(interactive());

$obj->output_method("Hello, maybe!\n");

It gets even better, though. You almost get some features for free. Do you
want to have another method that returns the output as a string? You’ve
already done most of the work! You just have to shuffle some filehandles
around as you temporarily make a filehandle to a string (Item 54) as the
output filehandle:

sub as_string {

my ($self, @args) = @_;

my $string = '';

open my ($str_fh), '>', \$string;

Item 55. Make flexible output ❘ 191

Download from <www.wowebook.com>

ptg

my $old_fh = $self->get_output_fh;

$self->set_output_fh($str_fh);

$self->output_method(@args);

restore the previous fh

$self->set_output_fh($old_fh);

$string;

}

If you want to have a feature to turn off all output, that’s almost trivial
now. You just use a null filehandle to suppress all output:

$obj->set_output_fh(IO::Null->new)

if $config->{be_quiet};

Things to remember

■ For flexibility, don’t hard-code your filehandles.
■ Give other programmers a way to change the output filehandle.
■ Use IO::Interactive to check if someone will see your output.

Item 56. Use File::Spec or Path::Class to work with paths.

Perl runs on a couple hundred different platforms, and it’s almost a law of
software engineering that any useful program that you write will migrate
from the system you most prefer to the system you least prefer. If you have
to work with file paths, use one of the modules that handle all of the porta-
bility details for you. Not only is it safer, it’s also easier.

Use File::Spec for portability

The File::Spec module comes with Perl, and the most convenient way
to use it is through its function interface. It automatically imports several
subroutines into the current namespace:

use File::Spec::Functions;

To construct a new path, you need the volume (maybe), the directory, and
the filename. The volume and filename are easy:

192 ❘ Chapter 5 Files and Filehandles

Download from <www.wowebook.com>

ptg

my $volume = 'C:';

my $file = 'perl.exe';

You have to do a bit of work to create the directory from its parts, but that’s
not so bad. The rootdir function gets you started, and the catdir puts
everything together according to the local system:

my $directory =

catdir(rootdir(), qw(strawberry perl bin));

If you are used to Windows or UNIX, you may not appreciate that some
systems, such as VMS, format the directory portion of the path the same
as the filename portion. If you use File::Spec, however, you don’t have
to worry too much about that.

Now that you have all three parts, you can put them together with catpath:

my $full_path =

catpath($volume, $directory, $file);

On UNIX-like filesystems, catpath ignores the argument for the volume,
so if you don’t care about that portion, you can use undef as a placeholder:

my $full_path =

catpath(undef, $directory, $file);

This might seem like a silly way to do that if you think that your program
will ever run only on your local system. If you don’t want to handle the
portable paths, just don’t tell anyone about your useful program, so you’ll
never have to migrate it.

File::Spec has many other functions that deal with putting together and
taking apart paths, as well as getting the local representations to common
paths such as the parent directory, the temporary directory, the devnull
device, and so on.

Use Path::Class if you can

The Path::Class module is a wrapper around File::Spec and provides
convenience methods for things that are terribly annoying to work out
yourself. To start, you construct a file or a directory object. On Windows,
you just give file your Windows path, and it figures it out. The file func-
tion assumes that the path is for the local filesystem:

Item 56. Use File::Spec or Path::Class to work with paths ❘ 193

Download from <www.wowebook.com>

ptg

use Path::Class qw(file dir);

my $file = file('C:/strawberry/perl/bin/perl.exe');

This path doesn’t have to exist. The object in $file doesn’t do anything
to verify that the path is valid; it just deals with the rules for constructing
paths on the local system.

If you aren’t on Windows but still need to work with a Windows path, you
use foreign_file instead:

my $file = foreign_file('Win32',

'C:/strawberry/perl/bin/perl.exe');

Now $file does everything correctly for a Windows path. If you need to
go the other way and translate it into a path suitable for another system,
you can use the as_foreign method:

/strawberry/perl

my $unix_path = $file->as_foreign('Unix');

Once you have the object, you call methods to interact with the file.

To get a filehandle for reading, call open with no arguments. It’s really just
a wrapper around IO::File, so it’s just like calling IO::File->new:

my $read_fh = $file->open

or die "Could not open $file: $!";

If you want to create a new file, you start with a file object. That doesn’t
create the file, since the object simply deals with paths. When you call open
and pass it the >, the file is created for you and you get back a write
 filehandle:

my $file = file('new_file');

my $fh = $file->open('>');

print $fh "Put this line in the file\n";

You can get the directory that contains the file, and then open a directory
 handle:

my $dir = $file->dir;

my $dh = $dir->open or die "Could not open $dir: $!";

194 ❘ Chapter 5 Files and Filehandles

Download from <www.wowebook.com>

ptg

If you already have a directory object, it’s easy to get its parent directory:

my $parent = $dir->parent;

You read from the directory handle with readdir, as normal, and get the
name of the file. As with any readdir operation, you get only the file-
name, so you have to add the directory portion yourself. That’s not a prob-
lem when you use file to put it together for you:

while (my $filename = readdir($dh)) {

next if $filename =~ /^\.\.?$/;

my $file = file($dir, $file);

print "Found $file\n";

}

Things to remember

■ Don’t hard-code file paths with operating system specific details.
■ Use File::Spec or Path::Class to construct portable paths.

Item 57. Leave most of the data on disk to save memory.

Datasets today can be huge. Whether you are sequencing DNA or parsing
weblogs, the amount of data that is collected can easily surpass the amount
of data that can be contained in the memory of your program. It is not
uncommon for Perl programmers who work with large data sets to see the
dreaded “Out of memory!” error.

When this happens, there are a few things you can do. One idea is to check
how much memory your process can use. The fix might be as simple as
having your operating system allocate more memory to the program.

Increasing memory limits is really only a bandage for larger algorithmic
problems. If the data you are working with can grow, you’re bound to hit
memory limits again.

There are a few strategies that you can use to reduce the memory foot-
print of your program.

Item 57. Leave most of the data on disk to save memory ❘ 195

Download from <www.wowebook.com>

ptg

Read files line-by-line

The first and most obvious strategy is to read the data you are processing
line-by-line instead of loading entire data sets into memory. You could
read an entire file into an array:

open my ($fh), '<', $file or die;

my @lines = <$fh>;

However, if you don’t need all of the data at once, read only as much as you
need for the next operation:

open my ($fh), '<', $file or die;

while (<$fh>) {

#... do something with the line

}

Store large hashes in DBM files

There is a common pattern of problem in which you have some huge data
set that you have to cycle through while looking up values keyed in another
potentially large data set. For instance, you might have a lookup file of
names by ID and a log file of IDs and times when that ID logged in to your
system. If the set of lookup data is sufficiently large, it might be wise to
load it into a hash that is backed by a DBM file. This keeps the lookups on
the filesystem, freeing up memory. In the build_lookup subroutine in
the example below, it looks like you have all of the data in memory, but
you’ve actually stored it in a file connected to a tied hash:

use Fcntl; # For O_RDWR, O_CREAT, etc.

my ($lookup_file, $data_file) = @ARGV;

my $lookup = build_lookup($lookup_file);

open my ($data_fh), '<', $data_file or die;

while (<$data_fh>) {

chomp;

my @row = split;

196 ❘ Chapter 5 Files and Filehandles

Download from <www.wowebook.com>

ptg

if (exists $lookup->{ $row[0] }) {

print "@row\n";

}

}

sub build_lookup {

my ($file) = @_;

open my ($lookup_fh), '<', $lookup_file or die;

require SDBM_File;

tie(my %lookup, 'SDBM_File', "lookup.$$",

O_RDWR | O_CREAT, 0666)

or die

"Couldn't tie SDBM file 'filename': $!; aborting";

while (<$lookup_file_handle>) {

chomp;

my ($key, $value) = split;

$lookup{$key} = $value;

}

return \%lookup;

}

Building the lookup can be costly, so you want to minimize the number of
times that you have to do it. If possible, prebuild the lookup DBM file and
just load it at run time. Once you have it, you shouldn’t have to rebuild it.
You can even share it between programs.

SDBM_File is a Perl implementation of DBM that doesn’t scale very well.
If you have NDBM_File or GDBM_File available on your system, opt for
those instead.

Read files as if they were arrays

If key-based lookup by way of a hash isn’t flexible enough, you can use
Tie::File to treat a file’s lines as an array, even though you don’t have
them in memory. You can navigate the file as if it were a normal array. You
can access any line in the file at any time, like in this random fortune print-
ing program:

Item 57. Leave most of the data on disk to save memory ❘ 197

Download from <www.wowebook.com>

ptg

use Tie::File;

tie my @fortunes, 'Tie::File', $fortune_file

or die "Unable to tie $fortune_file";

foreach (1 .. 10) {

print $fortunes[rand @fortunes];

}

Use temporary files and directories

If these prebuilt solutions don’t work for you, you can always write tem-
porary files yourself. The File::Temp module helps by automatically cre-
ating a unique temporary file name and by cleaning up the file after you are
done with it. This can be especially handy if you need to completely create
a new version of a file, but replace it only once you’re done creating it:

use File::Temp qw(tempfile);

my ($fh, $file_name) = tempfile();

while (<>) {

print {$fh} uc $_;

}

$fh->close;

rename $file_name => $final_name;

File::Temp can even create a temporary directory that you can use to
store multiple files in. You can fetch several Web pages and store them for
later processing:

use File::Temp qw(tempdir);

use File::Spec::Functions;

use LWP::Simple qw(getstore);

my ($temp_dir) = tempdir(CLEANUP => 1);

my %searches = (

google => 'http://www.google.com/#hl=en&q=perl',

198 ❘ Chapter 5 Files and Filehandles

Download from <www.wowebook.com>

ptg

yahoo => 'http://search.yahoo.com/search?p=perl',

microsoft => 'http://www.bing.com/search?q=perl',

);

foreach my $search (keys %searches) {

getstore($searches{$search},

catfile($temp_dir, $search)));

}

There’s one caution with File::Temp: it opens its files in binary mode. If
you need line-ending translations or a different encoding (Item 73), you
have the use binmode on the filehandle yourself.

Things to remember

■ Store large hashes on disk in DBM files to save memory.
■ Treat files as arrays with Tie::File.
■ Use File::Temp to create temporary files and directories.

Item 57. Leave most of the data on disk to save memory ❘ 199

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

6 ❘ References

201

Learning references is one of the major rites of passage in Perl. Introduced
in Perl 5, references opened the way for complex data structures and
object-oriented programming. References are the key to organizing data
and passing it around as a unit. If you want to move to the next level in
Perl, you need references.

Although this chapter shows you some reference tricks, your greatest ben-
efit will come from your effective creation and manipulation of data struc-
tures. You’ll develop those skills with practice, so don’t be afraid to start
using them.

Item 58. Understand references and reference syntax.

A reference is a scalar value. You can store a reference in a scalar variable
or as an element of an array or hash, just as you can with numbers and
strings.

You can think of a reference as a “pointer” to some other object in Perl.
References can point to any kind of object, including other scalars (even
references), arrays, hashes, subroutines, and typeglobs.

Aside from a general pointer-like behavior, however, references do not have
very much in common with pointers in C or C++. You can create only ref-
erences to existing objects; you cannot modify them afterward to do some-
thing like pointing to the next element of an array.

You can convert references into strings or numbers, but Perl doesn’t have
a built-in way to convert a string or number back into a reference.
Although a reference is treated syntactically like any other scalar value, a
reference “knows” what type of object it points to. Finally, each reference
to a Perl object increments that object’s reference count, preventing the
object from being scavenged by Perl’s garbage collector.

Download from <www.wowebook.com>

ptg

202 ❘ Chapter 6 References

Creating references

You can create references in several different ways. The simplest is to use
the backslash operator (or “take a reference” operator) on a variable:

my $a = 3.1416;

my $scalar_ref = \$a;

The backslash operator creates a reference pointing at the value of the
argument of the backslash. In the PEGS notation, that looks like:

The backslash operator works on any kind of variable name:

my $array_ref = \@a;

my $hash_ref = \%a;

my $sub_ref = \&a;

my $glob_ref = *a;

It also works on array and hash elements:

$array_elem_ref = \$a[0];

$hash_elem_ref = \$a{'hello'};

It even works on literal values, although references to literal values are
read-only:

$one_ref = \1;

$mode_ref = \oct('0755');

The backslash works in a very strange way on a list of values, returning a
list of references rather than a reference to a list. It decides what references
to return using a seemingly arbitrary heuristic.

Take this val subroutine:

sub val { return 1 .. 3 }

When you create a reference using the ampersand, you get back a CODE
reference to the val subroutine itself:

my $ref1 = \(&val);

$a

3.1416

Download from <www.wowebook.com>

ptg

If you create a reference after calling val, you get a SCALAR back:

my $ref2 = \(val());

Since this particular statement does the assignment in scalar context, the
reference is to the last value returned by val, which is 3.

If you change the assignment to list context, you get a SCALAR reference to
the first value returned by val, which is 1.

my ($ref3) = \(val());

You would think that the behavior of getting references from lists returned
from subroutines would carry over to literal lists—and it does. Both of
these cases return a scalar reference to the value 3:

my $ref4 = \(1 .. 3);

my $ref5 = \(1, 2, 3);

References and reference syntax can get a little complex, so even if you
understand what’s going on, it’s likely that the next person who has to
touch your code will not, so be as clear as possible.

The anonymous array constructor, which looks like an ordinary list except
that you enclose the contents within brackets instead of parentheses, cre-
ates an unnamed array in memory and returns a reference to it. This is the
customary method of creating a reference to a list of items.

my $a_ref = [1 .. 3];

$a_ref is now an ARRAY reference to an unnamed array containing the
values 1, 2, and 3:

print ref $a_ref, " @$a_ref";

$a_ref

1

2

3

Item 58. Understand references and reference syntax ❘ 203

Download from <www.wowebook.com>

ptg

The anonymous hash constructor, which uses braces rather than brack-
ets, works similarly:

my $h_ref = { anonymous => 'user' };

$h_ref->{'joe'} = 'bloe';

$h_ref->{'john'} = 'public';

A subroutine definition without a name returns a reference to an anony-
mous subroutine.

References to subroutines are sometimes called coderefs. Here you store a
coderef in $greetings and then execute the reference code:

my $greetings = sub { print "hello, world!\n" };

$greetings->();

This style of subroutine creation is often used in signal handling, as in this
interrupt handler:

$SIG{INTR} = sub { print "not yet--I'm busy\n" };

References to anonymous subroutines are very useful (Item 50). They are
somewhat like function pointers in C. However, since anonymous sub-
routines are created dynamically, not statically, they have peculiar proper-
ties that are more like something from LISP.

References to scalars can be very efficient when you need to pass around
large strings. In the next example, the first call to some_sub() makes a
copy of the entire contents of $string, while the second call copies only
the reference to the string:

my $string = 'a' x 1_000_000;

some_sub($string);

some_sub(\$string);

This works through “autovivification,” discussed later in this Item.

$h_ref

john public

joe bloe

anonymous user

204 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

Using references

Dereferencing uses the value that a reference points to. There are several
different forms of dereferencing syntax.

The canonical form of dereferencing syntax is to use a block returning a
reference in a place where you could otherwise use a variable or a subrou-
tine identifier. Whereas using an identifier would give you the value of the
variable with that name, using a block returning a reference gives you the
value that the reference points to.

In this example, you have an ordinary scalar, $a, and then create a refer-
ence to that scalar, $s_ref. You can work with this reference just as you
would any regular scalar value:

my $a = 1;

my $s_ref = \$a;

print ${$s_ref};

${$s_ref} += 1;

Array references work in a similar manner. Here you have an array, @a, and
create a reference to it, $a_ref. Both supply the same data to print.
Changes made to either are visible when accessing either the array or the
reference to the array.

my @a = 1 .. 5;

my $a_ref = \@a;

print "@a";

print "@{$a_ref}";

push @{$a_ref}, 6 .. 10;

The code inside the block can be arbitrarily complex, so long as the result
of the last expression evaluated yields a reference. In this contrived exam-
ple, you return the third value of one of two different arrays based on the
value of the variable $hi:

my $ref1 = [1 .. 5];

my $ref2 = [6 .. 10];

my $val = ${

if ($hi) { $ref2; }

else { $ref1 }

}[2];

print $val; # either 3 or 8

Item 58. Understand references and reference syntax ❘ 205

Download from <www.wowebook.com>

ptg

If the reference value is in a scalar variable, you can dispense with the
braces and just use the name of the scalar variable, with the leading $,
instead. You can use more than one $ if it’s a reference to a reference. This
example uses a reference to a scalar and a reference to a reference to print
the word testing twice:

my $a = 'testing';

my $s_ref = \$a;

my $s_ref_ref = \$s_ref;

print "$$s_ref $$$s_ref_ref";

This even applies to references to hashes:

my $h_ref = { 'F' => 9, 'Cl' => 17, 'Br' => 35 };

print "The elements are ", join ' ', keys %$h_ref, "\n";

print "F's atomic number is is $$h_ref{'F'}\n";

Expressions like $$h_ref{'F'}, or the even-more-awkward equivalent
${$h_ref}{'F'}, occur frequently. There is a more visually appealing
“arrow” syntax that you can use to write subscripts for array and hash
 references:

${$h_ref}{'F'} # canonical form

$$h_ref{'F'} # scalar variable form

$h_ref->{'F'} # arrow form

You can cascade arrows. Furthermore, if on the left and right sides of an
arrow are both subscripts, you can omit the arrow. Both of these print
statements print the word joe:

$student->[1] = { 'first' => 'joe', 'last' => 'bloe' };

print $student->[1]->{'first'};

print $student->[1]{'first'};

$student

...

first joe

last bloe

206 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

Be careful about leaving out too many arrows or braces. For example, if
you omit the first arrow, you get an array of hashrefs, which is different:

Finally, Perl handles all references, no matter what their type, like ordinary
scalars—they have no special “type” that distinguishes them syntactically
from other scalars. However, a reference value contains information about
the type of object it points to. You can get to this information with the ref
operator.

This reference to a scalar value results in SCALAR being printed:

my $s_ref = \1;

print ref $s_ref;

And this subroutine reference causes CODE to be printed:

my $c_ref = sub { 'code!' };

print ref $c_ref;

Autovivification

If you use a scalar with an undefined value as if it were a reference to
another object, Perl automatically creates an object of the appropriate type
and makes that scalar a reference to that type. This is called autovivifica-
tion. For example, the following code creates an array of four elements
and makes $ref a reference to it:

undef $ref;

$ref->[3] = 'four';

This can be especially handy for deep data structures, saving you the work
of creating each level:

use Data::Dumper;

my $ds;

@student

...

first joe

last bloe

Item 58. Understand references and reference syntax ❘ 207

Download from <www.wowebook.com>

ptg

$ds->{top}[0]{cats}[1]{name} = 'Buster';

print Dumper($ds);

With a little bit of code, you’ve created a quite complex structure:

$VAR1 = {

'top' => [{

'cats' => [

undef,

{

'name' => 'Buster'

}

]

}]

};

Item 60 presents a longer example of autovivification.

Soft references

If you dereference a string value, Perl will return the value of the variable
with the name given in the string. The variable will be created if necessary.
This is called a soft reference.

Soft references can be the results of variable interpretation:

my $str = 'pi';

${$str} = 3.1416;

print "pi = $pi\n";

You might even use literal strings to create the soft reference:

${ 'e' . 'e' } = 2.7183;

print "ee = $ee\n"; # 2.7183

Such a variable name does not have to be a legal identifier, which means
that you can create variables out of whitespace and even null characters:

${} = 'space';

${' '} = 'space';

${' '} = 'two space';

${"\0"} = 'null';

208 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

Note that soft references have nothing to do with reference counts. Only
ordinary “hard” references increment reference counts.

Turning on strict refs disables soft references (Item 3), and with good
reason: there is almost always a better way to do things.

Things to remember

■ Take a reference to a variable using the reference operator, \, or with
anonymous array, [], or hash, {}, constructors.

■ Dereference a reference to get the value it points to.
■ Don’t treat a normal scalar as a reference; that creates a soft reference.

Item 59. Compare reference types to prototypes.

Once you start passing references as subroutine arguments, you’ll want to
verify that you got the type that you were expecting.

sub count_matches {

my ($regex, $array_ref) = @_;

my $matches = grep /$regex/, @$array_ref;

}

If you pass the wrong sort of arguments to count_matches, everything
blows up. If you use an array instead of an array reference in your call, Perl
will complain:

my $matches = count_matches(qr/.../, @array);

You get an error like:

Not an ARRAY reference at ...

Likewise, if you pass a string instead of a regex reference, you get another
sort of error if the string isn’t a valid regex but one with, say, an unmatched
parenthesis:

my $matches = count_matches('(...', \@array);

You get an error that points at the problem with the regex:

Unmatched (in regex; marked by <-- HERE in ↵

m/(<-- HERE / at ...

Item 59. Compare reference types to prototypes ❘ 209

Download from <www.wowebook.com>

ptg

The ref operator

To find out the reference type that you have, use ref:

my $array_ref = \@array;

my $type = ref $array_ref; # $type is 'ARRAY';

For the basic types, you will get one of: SCALAR, ARRAY, HASH, CODE, GLOB,
or Regexp.

Comparing types

Some people will match the type returned by ref against the literal type
they hard-code:

sub count_matches {

my ($regex, $array_ref) = @_;

die "First argument needs to be a regex reference"

unless ref $regex eq 'Regexp';

die "Second argument needs to be an array reference"

unless ref $regex eq 'ARRAY';

my $matches = grep /$regex/, @$array_ref;

}

However, it’s easy to make a mistake by hard-coding the values. For
instance, it’s easy to forget that the reference type for a regular expression
doesn’t follow the pattern of the other types; it’s mixed case and there is a
trailing p:

die '...' unless ref $regex eq 'REGEX'; # WRONG

die '...' unless ref $regex eq 'Regex'; # WRONG

You don’t have to remember the literal values, though. You can use a proto-
type of the reference that you want to generate the string you need, assign-
ing it to a scalar with an uppercase name to denote that it is a constant:

ref of empty anonymous array

my $ARRAY_TYPE = ref [];

ref of empty anonymous regex

my $REGEX_TYPE = ref qr//;

210 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

ref of empty anonymous hash

my $HASH_TYPE = ref {};

ref of empty anonymous sub

my $CODE_TYPE = ref sub { };

Now you’ll get the same type that Perl returns, and save yourself the risk
of mistyping that literal string, and there’s nothing to memorize:

die '...' unless ref $regex eq $REGEX_TYPE;

die '...' unless ref $array eq $ARRAY_TYPE;

You could do the same thing with the constant or Readonly modules:

use constant ARRAY_TYPE => ref [];

use Readonly;

Readonly my $ARRAY_TYPE => ref [];

If you need to do more complex validation of your subroutine arguments,
check out Params::Validate.

Things to remember

■ Verify references’ types before you dereference them.
■ Use prototypical values to compare reference types.
■ Turn prototypical values into constants.

Item 60. Create arrays of arrays with references.

Perl has no lists of lists per se, but an array containing array references
does the trick. This is commonly called an array of arrays or just AoA.
Remember that the parentheses or brackets you use for the subscripts must
match the type of structure you want to create (Item 61).

You can construct the AoA directly:

an array of refs to arrays

my @a = ([1, 2], [3, 4]);

print $a[1][0]; # gives 3

a ref to an array of refs to arrays

my $a = [[1, 2], [3, 4]];

print $a->[1][0]; # gives 3

Item 60. Create arrays of arrays with references ❘ 211

Download from <www.wowebook.com>

ptg

You can also build up the data structure programmatically. For instance,
you can generate a matrix that represents a multiplication table, using a
couple of C-style for loops to go through the indices:

my $max = 5;

my $matrix;

for (my $i = 1 ; $i < $max ; $i++) {

for (my $j = 0 ; $j < $max ; $j++) {

$matrix->[$i][$j] = $i * $j;

}

}

It’s not too hard to print an AoA nicely, either. Most of the work is in just
setting up the format rather than accessing the data structure:

my $format = ' %2d' x @{$matrix};

printf " i/j $format\n", 0 .. $max;

for my $i (0 .. $max - 1) {

printf "%2d: $format\n", $i, @{ $matrix->[$i] };

}

The output is your nicely formatted multiplication table:

i/j 0 1 2 3 4

0: 0 0 0 0 0

1: 0 1 2 3 4

2: 0 2 4 6 8

3: 0 3 6 9 12

4: 0 4 8 12 16

If you want to get a particular element, you just use the right indices:

my $two_squared = $matrix->[2][2];

Remember to be careful with the first subscript. You need the -> after
$matrix because it’s a reference. After the first index, you can omit the
-> because two subscripts next to each other imply a reference (Item 58).

Consider another example. Suppose you want quick access to lines of text:

my @lines;

while (<>) {

chomp;

212 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

push @lines, [split];

}

Once you have the data structure, you can quickly get to any word on any
line. If you want, say, the third word on the seventh line, you just need to
get the indices correct. In this case, @lines is an array (not a reference), so
you don’t use a leading ->:

my $third_on_seventh = $lines[6][2];

How many words are on line 15 in the file? The array element is a reference
to an array, so you can dereference it and assign it to a scalar to get the
count of its elements (Item 9):

my $count = @{ $lines[14] };

Which line has the most words? You can use a Schwartzian Transform
(Item 22) to sort the indices for @lines to avoid creating a copy of your
data. Since you need only one index to get the line with the most words,
assign it to a list that has one scalar variable:

my ($most_words) =

map { $_->[0] }

sort { $b->[1] <=> $a->[1] }

map { [$_, scalar @{ $lines[$_] }] } 0 .. $#lines;

print "Line $most_words is the longest with ",

scalar @{ $lines[$most_words] }, " words\n";

That’s a little verbose. You could do it as one long list operation, and you
might enjoy puzzling out this variation on the Schwartzian Transform:

use 5.010;

printf "Line %s is the longest with %s words\n",

map { @$_ }

sort { $b->[1] <=> $a->[1] }

map { state $l = 0; [$l++, scalar @$_] }

map { [split] }

<>;

You can see more examples in the perldsc (Perl Data Structures Cookbook)
or the perllol documentation.

Item 60. Create arrays of arrays with references ❘ 213

Download from <www.wowebook.com>

ptg

Things to remember

■ Use array references to create arrays of arrays in Perl.
■ Use arrays of arrays to represent matrices.
■ Ensure you know if your variable is a regular array or a reference.

Item 61. Don’t confuse anonymous arrays with list literals.

The anonymous array constructor, [], looks very much like the paren-
theses that surround list literals. Superficially, they both seem to serve the
same purpose—building lists. However, anonymous array constructors
differ from list literals in significant ways.

An anonymous array constructor returns a reference, not a list. The pur-
pose of an anonymous array constructor is to allow you to create a refer-
ence to an array object without having to create a named array:

If you didn't have [], you might try:

{ my @arr = 0 .. 9; $aref = \@arr }

print $$aref[4]; # gives 4

or perhaps:

my $aref = do { \(my @arr = 0 .. 9) };

But you do have []:

my $aref = [0 .. 9];

You can assign the array references created by anonymous array con-
structors to array variables, but it’s probably not what you want. Be care-
ful to use array variables with lists, and scalar variables with anonymous
array constructors:

meant to use parentheses, maybe?

my @files = [glob '*.c'];

print "@files\n"; # something like ARRAY(0xa4600)

another classic -- yields the enigmatic

ARRAY(0xa45d0),ARRAY(0xa4654),ARRAY(0xa4558)

my @two_d_array = [[1 .. 3], [4 .. 6], [7 .. 9]];

foreach my $row (@two_d_array) {

print join(',', @$row), "\n";

}

214 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

Operators and functions create list and scalar contexts. The anonymous
array constructor is an operator. Parentheses aren’t. Just putting paren-
theses around something will not change a scalar context into a list con-
text (Item 12).

You can see this for yourself:

sub arrayish { print "arrayish\n" if wantarray }

my $foo = arrayish(); # nope

my $foo = (arrayish()); # not yet

my $foo = (arrayish(), ()); # dang, it's stubborn

my $foo = [arrayish()]; # score!

my ($foo) = arrayish(); # this works too

This is part but not all of the problem that results if you mistakenly assign
a would-be list literal instead of an anonymous array constructor to a
scalar variable. The other part of the problem is that when you derefer-
ence the scalar variable, Perl takes whatever weird value wound up in the
scalar and dereferences it—perhaps interpreting it as a soft reference. Of
course, what you are going to get is total nonsense anyway, but these two
effects can combine to make the debugging process difficult by treating
you to some very strange behaviors up front. For example:

meant to use brackets this time, I bet

my $file_list_ref = (glob '*.c');

print "@$file_list_ref\n"; # prints nothing?

print "$file_list_ref\n"; # prints foo.c or something

With all this in mind, a clever reader should be able to figure out what’s
going on here:

my $aref = (1 .. 10);

print $$aref; # prints nothing?

print $aref; # also prints nothing?

Things to remember

■ Use the anonymous array constructor, [], to create a reference.
■ Remember that the anonymous array constructor imposes list context.
■ Assign lists to arrays, but anonymous arrays to scalars.

Item 61. Don’t confuse anonymous arrays with list literals ❘ 215

Download from <www.wowebook.com>

ptg

Item 62. Build C-style structs with anonymous hashes.

People often ask whether Perl has “real data structures, like C.” Well, it sort
of does. You already know that there are only a few data types in Perl:
scalars, arrays, hashes, subroutines, plus a few other odds and ends like
filehandles. Structures, like those used in C or Pascal, are not among those
types. So in one sense, Perl doesn’t have structures. But on the other hand,
hashes provide a very similar effect:

$student{'last'} = 'Smith';

$student{'first'} = 'John';

$student{'bday'} = '01/08/72';

When referring to an element of a hash, you can omit the quotation marks
around the key so long as it is a valid Perl identifier:

$student{last} = 'Smith';

This looks somewhat like an element of a structure, doesn’t it?

Your first reaction to this might be something like, “Yuck! That’s using a
string to look up a member of a structure! That’s horribly inefficient! A
real structure would use some kind of numeric offset computed by the
compiler.” However, this is wishful thinking where Perl is concerned, and
you shouldn’t let it bother you at all. Perl is an interpreted language.
Accessing variables and elements of arrays and hashes is relatively slow no
matter what. The time required to look up an element of a hash is of little
consequence in the grand scheme of things.

You can even pass these “structures” to subroutines:

sub student_name {

my %student = @_;

return "$student{first} $student{last}";

}

print student_name(%student);

Now, this may look useful, but it is not particularly efficient. When you
pass a hash as an argument, you are actually unrolling the hash into a list
of elements, and then reading those elements back into an entirely new
hash inside the subroutine. There are also some syntactic limitations. You

216 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

can’t easily pass two hashes this way. Since Perl unrolls the hashes into a
single list when it calls the subroutine, it doesn’t know how to split the list
back into two hashes. In this case, all of the key-value pairs get eaten up by
%roomie1:

sub roommates {

my (%roomie1, %roomie2) = @_;

...

}

So, while hashes are the right general idea, they aren’t perfect. What works
better is using references to hashes, and in particular, using anonymous
hash constructors to create them:

my $student = {

last => 'Smith',

first => 'John',

bday => '01/08/72'

};

You can also create an empty structure and fill it in a piece at a time. Using
the arrow syntax to access the members of your “structures” makes things
look even more like C or C++:

$student = {};

$student->{last} = 'Smith';

$student->{first} = 'John';

$student->{bday} = '01/08/72';

Since you are now manipulating scalars, not hashes, passing them into
subroutines is more efficient, and passing more than one at a time is no
problem:

sub roommates {

my ($roomie1, $roomie2) = @_;

...

}

roommates($student1, $student2);

This technique is the basis for the way that Perl constructs objects in most
classes.

Item 62. Build C-style structs with anonymous hashes ❘ 217

Download from <www.wowebook.com>

ptg

Things to remember

■ Uses hashes to simulate C structs.
■ Pass hash references, not hashes, to subroutines to avoid copying.
■ Pass hash references to subroutines to retain hash identity.

Item 63. Be careful with circular data structures.

Perl currently uses a reference-counting approach to memory manage-
ment. Each time an object acquires a name or a new reference, Perl incre-
ments that object’s reference count. Whenever an object loses a name or a
reference, Perl decrements its reference count. Once an object’s reference
count reaches zero, Perl deletes the object and reclaims the storage used
by it.

Reference counting fails when objects point to one another in a circular or
self-referential fashion. Consider the following example:

package Circular;

sub new {

my $class = shift;

return bless { name => shift }, $class;

}

sub DESTROY {

my $self = shift;

print "$self->{name}: nuked\n";

}

package main;

{

my $a = Circular->new('a');

my $b = Circular->new('b');

$a->{next} = $b;

$b->{next} = $a;

}

print "the end\n";

218 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

The block inside the main package creates two objects belonging to the
class Circular, each one containing a reference to the other. The situation
looks like this just before the end of the block:

Each object has a reference count of two: one due to its name, and the
other due to the reference from the other object. The lexical variables $a
and $b go out of scope once the block exits, and then you have:

You can no longer get at these objects, since neither has a name and you
have no external references to either of them. They are just taking up space.
Unfortunately, there’s nothing Perl can do to help you, since both objects
still have a reference count of one. These objects will continue to hang
around until the entire program exits.

Perl eventually destroys these objects. At the very end of a thread of exe-
cution, Perl makes a pass with a “mark-sweep” garbage collector. This final
pass destroys all of the objects created by the interpreter, accessible or other-
wise. If you run the example above, you will see the final pass in action:

the end

b: nuked

a: nuked

As you might expect, Perl destroys the objects after it executes the last state-
ment in the normal flow of the program.

This final pass is important. You can use Perl as an embedded language. If
you used the interpreter repeatedly within the same process to execute
code like the above, it would leak memory if there were not a sure-fire
means of destroying all the objects created during that thread.

Short of terminating execution, there is no way to clean up this mess once
you get into it, but you can prevent it by the careful application of brute
force. You have to implement a technique for explicitly breaking the
circular references. One solution that would work in the previous case
would be:

$a $b

Item 63. Be careful with circular data structures ❘ 219

Download from <www.wowebook.com>

ptg

package main;

{

my $a = Circular->new('a');

my $b = Circular->new('b');

$a->{next} = $b;

$b->{next} = $a;

$head = $a;

}

undef $head->{next};

undef $head;

Here, we save a link into the circular data structure in the variable $head.
Since there is only a single cycle in the structure, breaking a single link is
enough to allow Perl to reclaim all the objects in it. If this doesn’t seem
thorough enough, you can handle them all yourself:

while ($head) {

my $next = $head->{next};

undef $head->{next};

$head = $next;

}

undef $head;

print "the end\n";

Here you traverse the structure and explicitly destroy every one of the trou-
blesome references. You are destroying references to the objects you want
to delete so that their reference counts go to zero. There is no way to explic-
itly destroy an object in Perl regardless of its reference count; if there were,
it could be a horrendous source of bugs and crashes.

Another approach is to do the work in two passes, in a fashion somewhat
like that of a mark-sweep collector. First, acquire a list or “catalog” of the
references that you need to destroy:

my $ptr = $head;

do {

push @refs, \$head->{next};

$head = $head->{next};

} while ($ptr != $head);

$ptr = $head = undef;

220 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

This loop traverses the self-referential structure and collects a list of refer-
ences to all the references you need to destroy. The next pass just traverses
the list and destroys them:

foreach (@refs) {

print "preemptive strike on $$_\n";

undef $$_;

}

A two-pass approach is extravagant in the case of a simple circular list like
this one, but in the case of a graph-like structure containing many cycles,
it may be the only alternative.

Things to remember

■ Perl manages memory with reference counting.
■ Avoid circular references, which Perl can’t reclaim.
■ If you create circular references, you have to break them yourself.

Item 64. Use map and grep to manipulate complex data
structures.

Sometimes it’s useful to take a “slice” of a multidimensional array or hash,
or to select slices that have certain characteristics. Conversely, you may
need to assemble a collection of lists into a two-dimensional array, or per-
haps assemble a collection of two-dimensional arrays into a three-dimen-
sional array. Perl’s map and grep operators are perfect choices for chores
like these.

Slicing with map

Begin with a program that reads a file of three-dimensional coordinates
into memory. The example file has these data:

point data

1 2 3

4 5 6

9 8 7

Item 64. Use map and grep to manipulate complex data structures ❘ 221

Download from <www.wowebook.com>

ptg

This program reads a file of 3-D coordinates into memory. Each line of
the file will contain the x, y, and z coordinates of a single point, separated
by whitespace. For example:

open my ($points), '<', 'points'

or die "couldn't read points data: $!\n";

while (<$points>) {

next if /^\s*#.*$/; # skip comments

push @xyz, [split];

}

foreach my $pt (@xyz) {

print "point ", $i++,

": x = $pt->[0], y = $pt->[1], ",

"z = $pt->[2]\n";

}

This program prints:

point 1: x = 1, y = 2, z = 3

point 2: x = 4, y = 5, z = 6

point 3: x = 9, y = 8, z = 7

The point data is read into a structure that looks like:

Now, suppose you would like to have just the x (0th) element from each
point, as indicated by the shading in the PEGS diagram. You could write a
loop using an explicit index, or perhaps a C-style for loop:

for ($i = 0 ; $i < @xyz ; $i++) {

push @x, $xyz[$i][0];

}

1

2

3

4

5

6

9

8

7

@xyz

222 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

But, really, this is a natural application for map:

my @x = map { $_->[0] } @xyz;

Nesting with map

On the other hand, suppose that you are starting out with parallel arrays
@x, @y, and @z containing vectors of points:

Now, you would like to assemble them into a single three-dimensional
structure like the one shown earlier. Once again, you could use some sort
of explicit looping structure to turn @x, @y, and @z into @xyz, the slow and
tedious way:

for ($i = 0 ; $i < @x ; $i++) {

$xyz[$i][0] = $x[$i];

$xyz[$i][1] = $y[$i];

$xyz[$i][2] = $z[$i];

}

However, map provides a much more elegant alternative. Use [] inside map
to create more deeply nested structures:

my @xyz = map { [$x[$_], $y[$_], $z[$_]] } 0 .. $#x;

You can no doubt envision a host of variations on the slicing and nesting
themes. For example, switching the x (0th) and y (1st) coordinates:

my @yxz = map { [$_->[1], $_->[0], $_[2]] } @xyz;

You can do the same thing with a slice that rearranges the elements, which
is a bit nicer to look at:

my @yxz = map {

[@$_[1, 0, 2]]

} @xyz;

@x

1

4

9

@y

2

5

8

@z

3

6

7

Item 64. Use map and grep to manipulate complex data structures ❘ 223

Download from <www.wowebook.com>

ptg

The data look much different from the separate arrays:

Or, perhaps you create a new list containing the magnitudes of the points:

my @mag = map {

sqrt($_->[0] * $_->[0] +

$_->[1] * $_->[1] +

$_->[2] * $_->[2])

} @xyz;

The Schwartzian Transform (Item 22) is an application that uses both slic-
ing and nesting operations with map:

my @sorted_by_mtime =

map { $_->[0] } # slice

sort { $a->[1] <=> $b->[1] }

map { [$_, -M $_] } # nest

@files;

Selecting with grep

Suppose that you would like to filter @xyz so that it contains only points
whose y coordinates are greater than their x coordinates. You could write
a loop (how did you guess we were going to say that?):

foreach $pt (@xyz) {

if ($pt->[1] > $pt->[0]) {

push @y_gt_x, $pt;

}

}

4

5

6

1

2

3

9

8

7

@yxz

224 ❘ Chapter 6 References

Download from <www.wowebook.com>

ptg

But this time, you have a task that is perfectly suited to grep:
my @y_gt_x = grep { $_->[1] > $_->[0] } @xyz;

Of course, you can combine map and grep—for example, to gather the x
coordinates of the points with y greater than x:

my @x = map { $_->[0] }

grep { $_->[1] > $_->[0] } @xyz;

my @x = map { $_->[0] > $_->[1] ? ($_->[0]) : () } @xyz;

Things to remember

■ Use map to transform elements of a data structure into a new
 structure.

■ Use grep to select elements from complex data structures.
■ Use map and grep together for complex operations.

Item 64. Use map and grep to manipulate complex data structures ❘ 225

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

7 ❘ CPAN

227

The Comprehensive Perl Archive Network (CPAN) is a repository of all
things Perl, including the perl source code, Perl libraries and modules,
and Perl applications. The skill of Perl programmers is largely judged by
their ability to effectively use CPAN. As we write this, CPAN is over 6 GB,
with 16,835 modules from 7,758 authors.

In 1993, Tim Bunce, Jarkko Hietaniemi, and Andreas König organized the
perl-packrats mailing list. Larry Wall was working on Perl 5, a major
upgrade to Perl that would allow people to extend the language through
modules. As Perl was becoming more and more popular, people were cre-
ating very useful libraries, but they didn’t have a formal way to distribute
them. If you knew about a library and could find it on the author’s Web
site, you could download it yourself. If that library needed another library,
you had to go find that one, and so on until you had everything installed.

In 1995, Jarkko set up an FTP repository (ftp://ftp.cpan.org/pub/CPAN) to
collect all the Perl that was floating around so that people could get it all
in one place.

Around the same time, Andreas König set up PAUSE, the Perl Authors
Upload Server, to manage modules. People upload their work to PAUSE,
which creates some indices from what it finds, then the master CPAN site
mirrors PAUSE to add the modules/ and authors/ directories. Even though
the authors/ directory forms most of CPAN, by size and attention, it’s not
all of CPAN, which really does aim to be comprehensive.

There is a ring of servers that mirror directly from the CPAN master server.
The master server syncs with PAUSE, and then the public-use mirrors sync
with the master. It’s all just a big repository copied onto several hundred
servers across the globe. CPAN itself doesn’t do anything else for you.

On top of that, however, is the CPAN toolchain, which is how most people
experience CPAN. You probably have already used CPAN.pm or CPANPLUS,
which both know how to read the PAUSE index files, connect to a CPAN
server, and download and install distributions for you.

Download from <www.wowebook.com>

ptg

228 ❘ Chapter 7 CPAN

Over the years, the term “CPAN” has taken on many meanings, though.
It’s as overloaded a term as the braces in Perl syntax. Some people consider
CPAN to be a site, like Graham Barr’s CPAN Search (http://search.cpan.org/),
or Randy Kobes’s (http://kobesearch.cpan.org/). Those Web sites provide
an interface to the CPAN repository but add a lot to the presentation, such
as information from CPAN Testers (http://testers.cpan.org/), CPAN Rat-
ings (http://cpanratings.perl.org/), the CPAN RT issue tracker (http://
rt.cpan.org/), and much more.

Item 65. Install CPAN modules without admin privileges.

If you can create files, you can install modules. “But, but, but . . .” you say.
No, if you can create files, you can install modules. You can even install
perl itself (Item 110) without special privileges. That’s not to say that you
aren’t limited by some sort of restrictive social situation, but that’s not a
problem that technology can solve.

Perl modules aren’t anything special. They are just files, and you can tell
Perl where to find your modules. You just need to know how to get them
there.

First, you have to choose where you want to put them. For your own use,
you can put them into a lib directory under your home directory; that’s as
good a place as any. Assume your home directory is /Users/snuffy for the
rest of this Item.

Doing it yourself

Everyone should install distributions the hard way at least once, just so
they can appreciate the time-saving miracles of the CPAN tools. You may
get only halfway through the process before you give up, but that’s good
enough.

Say you’ve already downloaded and unpacked a distribution, and you’re in
the distribution directory ready to get down to business. You need to run
the right build script to install the modules.

For MakeMaker-based distributions, you use INSTALL_BASE:

% perl Makefile.PL INSTALL_BASE=/Users/snuffy

% make test install

Download from <www.wowebook.com>

ptg

For Module::Build-based distributions, you use --install_base:

% perl Build.PL --install_base /Users/snuffy

% ./Build test

% ./Build install

No matter which one you use, you end up with some directories under
/Users/snuffy/lib, which is just the base directory. Your modules will end
up in something like /Users/snuffy/lib/perl5; that’s the directory that you
need to add to your module search path (Item 69). You might also see
directories such as /Users/snuffy/bin and /Users/snuffy/man.

Configuring CPAN.pm

The easiest way to install modules where you want is to just tell CPAN.pm
where you want them.

You can set the options CPAN.pm passes to both ExtUtils::MakeMaker and
Module::Build. You can start up the CPAN.pm shell by calling the cpan
utility with no arguments. Earlier versions of CPAN.pm made you explic-
itly commit your changes, so you may have to commit them explicitly:

% cpan

cpan> o conf makepl_arg INSTALL_BASE=/Users/snuffy

cpan> o conf mbuild_arg --install_base /Users/snuffy

cpan> o conf commit

Before you rush off to install your modules, check that your configuration
stuck around. Start up the shell again and check the value you just set, just
to be sure:

% cpan

cpan[1]> o conf makepl_arg

makepl_arg [INSTALL_BASE=/Users/snuffy]

If you’d rather just edit a file by hand, look for the CPAN::Config or
CPAN::MyConfig modules.

Once you have everything set up in the tools, simply install the modules:

% cpan Set::CrossProduct IO::Interactive Getopt::Whatever

Item 65. Install CPAN modules without admin privileges ❘ 229

Download from <www.wowebook.com>

ptg

Configuring CPANPLUS

If you like to use CPANPLUS, another distribution installation tool, you can
edit your $HOME/.cpanplus/lib/CPANPLUS/Config/User.pm, which has
your user settings. You can also go through its shell configuration, enter-
ing the same values you used before for CPAN.pm. Choose the “Setup
installer settings”:

% cpanp

CPAN Terminal> s reconfigure

=================> MAIN MENU <=================

Welcome to the CPANPLUS configuration. Please select which

parts you wish to configure

Defaults are taken from your current configuration.

If you would save now, your settings would be written to:

CPANPLUS::Config::User

1> Select Configuration file

2> Setup CLI Programs

3> Setup CPANPLUS Home directory

4> Setup FTP/Email settings

5> Setup basic preferences

6> Setup installer settings

Section to configure: [1]: 6

Once you get that far, just follow the instructions. When you have every-
thing set up, install the modules normally:

% cpanp i XML::Twig

Using local::lib

The local::lib module takes some of the guesswork out of the process
for you. By default, it sets up the modules directory in your home direc-
tory. Just by loading it, you set up a modules directory under your home
directory:

230 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

% perl -MCPAN -Mlocal::lib \

-e 'CPAN::install(Net::MAC::Vendor)'

CPAN.pm installs the Net::MAC::Vendor module in ~/perl5/lib/perl5.
You don’t have to know where local::lib puts it, though, because you
when use the local::lib module in your program, it automatically puts
the right directories in @INC:

#!/usr/bin/perl

use local::lib;

use Net::MAC::Vendor;

If you really want to see all of the details, you can load local::lib by
itself. When you do that, it prints its settings:

% perl -Mlocal::lib

export MODULEBUILDRC="/Users/snuffy/perl5/.modulebuildrc"

export PERL_MM_OPT="INSTALL_BASE=/Users/snuffy/perl5"

export PERL5LIB="/Users/snuffy/perl5/lib/perl5:/Users/↵

snuffy/perl5/lib/perl5/darwin-2level:$PERL5LIB"

export PATH="/Users/snuffy/perl5/bin:$PATH"

The local::lib module also lets you explicitly specify your own direc-
tory. See its documentation for the details.

Things to remember

■ Install Perl modules even if you don’t have administrative privileges.
■ Use the lib or local::lib modules to tell perl where your modules

are.
■ Configure cpan or cpanp to install modules in custom locations.

Item 66. Carry a CPAN with you.

You don’t need to connect to a network to get the benefits of CPAN. You can
install modules from CPAN even though you are on a plane flying over an
ocean, in the middle of a desert, or even at a conference with broken Wi-Fi.

The repository is getting pretty big. It’s been around since around 1994,
and the rate at which it’s growing is not slowing. As we write this, all of
CPAN is just under 7 GB. You can’t even fit it on a DVD anymore.

Item 66. Carry a CPAN with you ❘ 231

Download from <www.wowebook.com>

ptg

However, the immediately usable portion of CPAN is much smaller.
Through the toolchain, you deal only with the latest versions of any mod-
ule. When you take out the older versions of everything, the size drops to
about 1 GB. That size has been growing, too, showing that even just the
bleeding edge of CPAN is getting bigger.

Setting up a MiniCPAN

The CPAN::Mini module provides the minicpan program, which copies
the latest versions of the modules to your local computer. You can call it
from the command line, using one of the mirrors that you find at
http://mirrors.cpan.org/:

% minicpan -l /MiniCPAN -r http://cpan.example.com

Of course, /MiniCPAN doesn’t have to permanently be on your local com-
puter. You can mirror to an external device, like a thumb drive, and have
a CPAN with you wherever you go.

Running minicpan manually is easy. More useful, however, is a constantly
updating MiniCPAN. Add that command to your crontab (or whatever
periodically runs programs on your system).

You can also set options in the minicpan configuration file. Put a
.minicpanrc in your home directory:

~/.minicpanrc

local: /MiniCPAN

remote: http://cpan.example.com

You don’t have to just pull down the latest versions of everything, either.
If the minicpan tool isn’t flexible enough for you, write your own script
using CPAN::Mini. For instance, you might not want a full MiniCPAN, so
you can filter what you mirror with path_filters or module_filters.
Either tells CPAN::Mini what it can skip:

use CPAN::Mini;

CPAN::Mini->update_mirror(

remote => "http://cpan.example.com",

local => "/MiniCPAN",

skip paths matching regex or where the

232 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

sub returns true

path like B/BD/BDFOY/Mac-iTunes-1.23.tar.gz

path_filters =>

[qr/BDFOY/, sub { $_[0] =~ /JMCADA/ }],

skip modules matching the regex:

module_filters => [qr/Acme/i],

);

Using your MiniCPAN

Now that you have set up your MiniCPAN, you have to tell your tools
where to find it. For CPAN.pm, you have to set the urllist configuration.
Start the shell with cpan to configure it:

% cpan

cpan[1]> o conf urllist push file:///MiniCPAN

Please use 'o conf commit' to make the config permanent!

cpan[2]> o conf commit

cpan[3]> o conf urllist

urllist

0 [file:///MiniCPAN]

In CPANPLUS, start up the shell, and follow the directions for s reconfigure:

% cpanp

CPAN Terminal> s reconfigure

Follow the menus to select the “Select Hosts” option, and then the “Cus-
tom” option.

Once you’ve set up your favorite tool, it should draw directly from your
MiniCPAN instead of from a public repository.

Injecting your own modules

Another great feature of a MiniCPAN is that you can inject your own non-
public modules into the MiniCPAN and install them using the standard
CPAN tools. You’ll do the injecting with CPAN::Mini::Inject.

Item 66. Carry a CPAN with you ❘ 233

Download from <www.wowebook.com>

ptg

The first thing that you’ll want to do is set up a configuration file for
CPAN::Mini::Inject. This file is similar to the one that you created for
CPAN::Mini, only it is located at $HOME/.mcpani/config. A sample file
might look like:

local: /Users/clara/cpan

remote: ftp://ftp.cpan.org/pub/CPAN

repository: /Users/clara/internal-modules

passive: yes

dirmode: 0755

Here we have told CPAN::Mini::Inject that we want to store our
 MiniCPAN at /Users/clara/cpan, want to mirror our public modules from
ftp://ftp.cpan.org/, and want to store our private modules at /Users/
clara/internal-modules.

Now that you have a configuration file for CPAN::Mini::Inject, you’ll
want to build a private module to install in your MiniCPAN. Assuming
you have a distribution coded and ready to build, all you have to do is ask
your build tool to make the distribution file. If you are using
ExtUtils::MakeMaker:

% make dist

Or with Module::Build (Item 79):

% ./Build dist

These commands create a .tar.gz file containing all of the files that make
up your distribution. This is the file that you would typically upload to
CPAN (Item 70).

If your distribution is Foo-Bar and is at version 0.01, then the distribu-
tion file that would be created is Foo-Bar-0.01.tar.gz. Knowing this, you
can tell CPAN::Mini::Inject to add your modules to the set of modules
that it knows about. If you aren’t doing anything too fancy, you should be
able to get by with the mcpani utility that is installed with
CPAN::Mini::Inject:

% mcpani --add module Foo::Bar \

--authorid JMCADA --modversion 0.01 \

--file Foo-Bar-0.01.tar.gz

Next, you need to tell mcpani to update your mirror from the public repos-
itory and inject your modules afterward. You can do this in two steps:

234 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

% mcpani --mirror

% mcpani --inject

Or all in one swoop:

% mcpani --update

After you are done, you should have a MiniCPAN with both your private
and all public modules ready to be installed from it.

Things to remember

■ Use CPAN::Mini to maintain a personal CPAN mirror.
■ Configure your CPAN tools to point at your local repository.
■ Use CPAN::Mini::Inject to host your private modules in MiniCPAN.

Item 67. Mitigate the risk of public code.

Think before you download that CPAN module! It might look simple
enough at first, but what else do you have to do? Are there fragile depend-
encies, an unresponsive maintainer, or many unresolved bugs? What are
you getting yourself into by committing to that module?

It might seem like heresy to suggest that you not use a CPAN module, but
that’s not really what’s going on here. No one else can make your decision
for you, since they probably don’t know everything that goes into your
problem. Your economic inputs might be different from somebody else’s.
Providing real-time financial data to a trader has different requirements
than offline analysis of Web server traffic, and with that comes a different
risk tolerance.

Everything is a trade-off. By reusing a module that somebody has already
written, you save yourself development time. In many cases, the original
author thought deeply about the problem and implemented a robust solu-
tion. That doesn’t mean, however, that your boss or customers will absolve
you of any responsibility when things go wrong.

You don’t need a Ferrari to drive to the store

People often think that processing dates is a simple matter, but how many
of them have taken the pains that Dave Rolsky did with DateTime to sup-
port time zones, leap seconds, and the many other dimensions that most

Item 67. Mitigate the risk of public code ❘ 235

Download from <www.wowebook.com>

ptg

people don’t even know about? In those cases, using DateTime might be
a win.

Yes, might be. DateTime handles everything, and you’re sure to get the
right answer using it, but do you need all of that support to format an
epoch time into YYYYMMDD? What if you have to do that task millions
of times as you process a log file? Do you want the extra overhead for all
the features that you won’t use? Maybe you do, but do you know that you
do, or are you guessing?

Do you really need that upgrade?

There’s a lot of stuff under the hood of a CPAN module, and you’ve proba-
bly experienced that long line of dependencies that stack up as you install a
module. Have you ever tried to install a complicated module by hand, track-
ing each new dependency you need to download? It gets messy quickly.

CPAN has one outstanding design flaw: PAUSE tracks only the latest ver-
sion of a module, and that version number has almost no consistency
between different distributions throughout CPAN. When you use CPAN.pm
or CPANPLUS to upgrade a module, the tool recognizes that a module has
dependencies. It checks the version of what you have installed already and
what the latest version on CPAN is. Even though you never asked to
upgrade the dependencies, the tool might do it for you, silently and with-
out asking. What was stable for you previously might be broken by some-
thing you didn’t explicitly ask to install.

For instance, in CGI.pm version 2.64, Lincoln Stein changed the default
separator for query parameters from & to ;. The semicolon is the modern
way to do it, but plenty of old code expects the & because that was part of
the published interface. When applications upgraded to the latest CGI.pm,
despite the fact that they didn’t want (or even know about) the new fea-
tures, they broke.

We’re not telling you not to upgrade; just don’t throw away your thinking
cap. You know there’s a risk, so upgrade a development machine first to see
if anything breaks.

Capstone modules

Michael Schwern, the maintainer of the Test::More and ExtUtils::
Makemaker modules, can effectively break all of CPAN for everyone with

236 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

even the slightest mistake (although he takes great pains not to). Most
modern distributions rely on Test::More to handle the test suite, but if
Test::More doesn’t work, modules can’t pass their tests, and the tool-
chain doesn’t install modules that fail their tests.

To a smaller extent, other modules that you depend on can break your
application. They might introduce bugs, change the interface slightly, give
different output, or do many other things that work differently enough
that your application doesn’t work correctly anymore. It’s inevitable; it
either has happened to you or is going to happen to you. Consider this
before you risk that upgrade, and don’t upgrade your production machine
first.

Test drive before you buy

Mitigate the risk by trying the module before you stake your project on it.
The Perl community provides a wealth of extra information about distri-
butions. You don’t have to go into it blindly.

Check CPAN Testers

The CPAN Testers (Item 97) collect test reports for all distributions
uploaded to CPAN, and it’s not uncommon for distributions to have hun-
dreds of test reports from different systems and versions of Perl. You can
check out a distribution at http://testers.cpan.org/, but you can also see a
summary of the reports on the distribution’s page at CPAN Search
(http://search.cpan.org/).

Along with dependency information, David Cantrell was able to figure
probabilities of successful installation of most CPAN distributions based on
platform and Perl version. Check CPANdeps (http://deps.cpantesters.org/)
before you decide to upgrade or try a new module. If you don’t see green
boxes, especially for the version of perl and operating system that you are
targeting, tread carefully.

Check the Google juice

If you wonder if anyone else uses a module, find your favorite search
engine and see what you can find. It might seem like an obvious thing to
do, but not so many people do it, apparently. Are there mailing lists? When
people ask questions about the modules, do other people answer? How

Item 67. Mitigate the risk of public code ❘ 237

Download from <www.wowebook.com>

ptg

quickly do they answer? In 15 minutes, the same day, two weeks later? How
many answers are there? How many different people gave those answers?
Quick answers from several different people are a sign of vitality and pop-
ularity. Delayed answers that are always from the same person might mean
you’ll have a lonely life using that module.

Separate development from production

You shouldn’t test your code in production, using live customers as your
test subjects. Try deploying your code with upgraded modules to a test
server first, so you can ensure that it works and its performance is accept-
able. You don’t even need new hardware for this when you use virtual
machines.

Upgrade less frequently

Do you really need to upgrade your modules every day? Maybe you truly
need that fix in the latest release, but any time you upgrade, you’re going
to spend a little time managing that. Many upgrades also require newer
versions of dependencies that you may not care about directly, and those
indirect upgrades have chances to create problems. Frequent upgrades can
suck away your time from the task at hand. Consider scheduling all
upgrades at the same time, say quarterly, so you can concentrate your inte-
gration effort.

Use a DPAN to manage your dependencies

Sometimes CPAN is just too risky for you. If you want more control, con-
sider setting up a DPAN, or (Distributed|Decentralized|Dark) Perl Archive
Network. This is a private CPAN-like repository that your normal CPAN
toolchain can use instead of the public repositories. You decide what goes
in your repository, and what version of it goes into your repository. The
MyCPAN::App::DPAN can help you set it up.

Things to remember

■ Remember that publicly available code can be risky.
■ Research modules before you use them.
■ Create your own CPAN substitute (or “DPAN”) to control the mod-

ules and versions you use.

238 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

Item 68. Research modules before you install them.

CPAN is a gold mine of code, but as with a real-life gold mine, there is a
lot of dirt that you have to sift through to get to the good stuff. Fortunately,
the Perl community has a wealth of resources to help you find the gold.

CPAN Search

The best place to start looking for information about a module or distri-
bution is CPAN Search (http://search.cpan.org/). Find the module you are
interested in, and navigate to its distribution page. At the top of that page,
you’ll see links to many of the resources the community provides, as shown
in the figure below. It’s a great place to start your research.

Bugs

From the distribution page on CPAN Search, you see a link to view and
report bugs that takes you to the Request Tracker (RT) ticketing system

Item 68. Research modules before you install them ❘ 239

Download from <www.wowebook.com>

ptg

for CPAN modules (http://rt.cpan.org/). You can see how many out-
standing bugs the distribution has, and just as importantly, how many
bugs the maintainers have fixed. This helps you get a feel for the quality of
the module, but there are some questions that you should consider.

For instance, if there are no bugs filed, does that mean that the code is
really solid, or does it mean that nobody is using the module? Conversely,
if there are scores of bugs, is the module unstable, or are there just a lot of
people using it? If there are bugs filed, but no responses, does that mean
that the module has been abandoned, or does it just mean that the author
uses a different system of bug tracking than CPAN’s Request Tracker?

CPAN Testers

Another important link on the distribution page is for CPAN Testers (Item
97). The CPAN Testers are a group of dedicated individuals who run auto-
mated tests on distributions across a range of platforms and then send the
reports of those test runs back for the world to see. The information they
provide is summarized in three groups: a pass count, a fail count, and an
unknown-state count.

Don’t let a few failures or unknowns get you down. The testers operate on
multiple platforms and test versions of Perl that are years old. The distri-
bution that you are researching could be failing its tests on platforms you
don’t use or on a Perl that retired years ago. Click on the report details and
test matrix links to get a good understanding of where a distribution’s
issues really are.

CPAN Ratings

You also see a five-star rating system for the distribution, and if someone
has rated it, you see some of the stars highlighted. The more stars, the bet-
ter the rating the module has. There is also a link for any reviews people
have written for this distribution. Read a sampling of the reviews to see if
the praise or criticism has any bearing on your decision to install the dis-
tribution.

These ratings and reviews are all subjective, so they shouldn’t be your only
factor in deciding whether or not to use the distribution; however, they
are still useful for your research.

240 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

Other considerations

When was the last release, and how many releases have there been? These
two facts can let you know if a module has gone stale or been abandoned.
Then again, it could just be that the module is stable and does not need
regular updating.

Often there is a link to the source control repository for the code. Poke
around in the repository and get a feel for how the development of the
distribution is going. You might even become a committer!

CPANTS Kwalitee

The CPAN Testers provide another bit of trivia for you to consider when
checking out a distribution. You can visit the CPAN Testing Service
(http://cpants.perl.org/), find the distribution that you are interested in,
and see the “kwalitee” of that distribution. There’s a saying that we don’t
have a way to judge the true quality of a distribution, but we can measure
something that is close, just like “kwalitee” is close to “quality.”

Kwalitee boils down to a checklist of items that the Perl community thinks
are important factors in judging the quality of a module. For instance,
does the distribution have tests and documentation, and does it follow
current best practices?

Of course, you can write a perfectly horrible piece of code that passes
kwalitee checks. Most good distributions pass most kwalitee checks, and
that’s the sign of a detail-oriented maintainer. Be a little wary of any dis-
tribution that fails too many of the kwalitee checks.

Read the code

Perl is an open-source language. Perl code, especially the code on CPAN,
is just text that you can read yourself. Examine some of the code that you
are about to download. You should be able to tell if the developer knows
what he or she is doing, and you might even learn a thing or two.

As you read the code, think about how easy it is to tell what is going on.
Maybe you don’t understand all of the features, but can you follow the
program flow? If you had to work on that code, would you go crazy?
Remember, if you use that code, you might have to deal with one of its
bugs.

Item 68. Research modules before you install them ❘ 241

Download from <www.wowebook.com>

ptg

Things to remember

■ Research modules before you install and rely on a distribution.
■ Use different data sources to judge CPAN distributions.
■ Examine the code you download to get a feel for what you will be

using.

Item 69. Ensure that Perl can find your modules.

Perl modules are just files that the use directive loads into your programs.
How does Perl find these files given just the module name?

The include path

Perl searches an include path, which is a list of directories stored in the
global variable @INC.

The default include path is built into the Perl executable when Perl is com-
piled. There are a number of ways to see exactly what the include path is.
One, of course, is to write a little script that prints it out. From the com-
mand line, this will do the trick:

% perl -e 'print "include is @INC\n"'

A slightly easier-to-type alternative is to check Perl’s configuration with
the -V command line option:

% perl -V

Summary of my perl5 (revision 5 version 10 subversion 0) ↵

configuration:

...blah blah blah...

Characteristics of this binary (from libperl):

Compile-time options: PERL_DONT_CREATE_GVSV ↵

PERL_MALLOC_WRAP USE_LARGE_FILES USE_PERLIO

Built under darwin

Compiled at May 8 2009 02:12:43

%ENV:

PERL5LIB="/usr/local/perls/perl-5.10.0/lib/perl5"

@INC:

/usr/local/perls/perl-5.10.0/lib/perl5/↵

darwin-2level

242 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

/usr/local/perls/perl-5.10.0/lib/perl5

/usr/local/perls/perl-5.10.0/lib/5.10.0/↵

darwin-2leevel

/usr/local/perls/perl-5.10.0/lib/5.10.0

/usr/local/perls/perl-5.10.0/lib/site_perl/5.10.0↵

/darwin-2level

/usr/local/perls/perl-5.10.0/lib/site_perl/5.10.0

.

The include path lists the directories that the use or require directives
search for Perl modules, or, in the case of “nested” modules like File::
Basename, the directories in which the various module trees like File are
rooted.

Modifying the include path

If you have modules installed in places other than those listed in the built-
in @INC, you will have to modify the include path to get Perl to use them.

Under normal circumstances, this won’t happen very often. When you
build and install modules—either by using the CPAN module or by just
unpacking and building them manually—Perl’s ExtUtils::MakeMaker
and Module::Build modules automatically know how to put the distri-
bution files in the correct location for your particular installation of Perl.
If that’s not where you want the module to go, you have to tell them to
put it somewhere else (Item 65).

But let’s assume you have a module installed in a strange place—say, in
the directory /share/perl.

You might be tempted to just modify the include path in your program’s
source code:

unshift @INC, '/share/perl'; # where MyModule.pm lives

use MyModule; # WRONG!

Unfortunately, this simple approach will not work.

The use directive is a compile-time rather than a run-time feature. When
use Module; appears in your program, it actually means a require and
an import:

BEGIN { require 'Module.pm'; Module->import; }

Item 69. Ensure that Perl can find your modules ❘ 243

Download from <www.wowebook.com>

ptg

Perl executes the code inside the BEGIN block at compile time rather than
run time. This means that changes to @INC at run time have no effect on
use directives.

Another way around this problem is to put the change to @INC in a BEGIN
block of its own:

BEGIN {

unshift @INC, '/share/perl'; # where MyModule.pm lives

}

use MyModule; # it works now!

Now, the include path is set up at compile time, and use can find the
module.

Although this is a workable strategy, there is a better way to control the
include path: by using the lib pragma module. To prepend one or more
directories to the include path, just supply them as arguments to use lib:

use lib '/share/perl'; # add dir /share/perl

use lib qw(# add more dirs

/xtra/perl

/xtra/perl5

);

use MyModule; # ready to go now ...

Aside from improved readability, use lib has one other advantage over
explicit changes to the include path. The lib pragma also adds a corre-
sponding architecture-specific autoload path, if such a directory exists.
This can result in improved performance if you are using a module that is
autoloaded. For example, if the machine architecture is “sun4-solaris,”
then use lib '/share/perl' adds /share/perl/sun4-solaris/auto if that
directory exists.

There are some other ways to control the include path in those cases where
use lib isn’t appropriate. You can use the -I command line option:

% perl -I/share/perl myscript

You can also use -I in the shebang line:

#!/usr/local/bin/perl -I/share/perl

244 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

Finally, you can put one or more directory names in the PERL5LIB envi-
ronment variable. On UNIX-like shells, you separate the directories with
colons:

% export PERL5LIB=/share/perl:/xtra/perl5

On Windows machines, you separate the directories with semicolons:

% set %%PERL5LIB%%=C:/libs/perl;C:/libs/perl5

Use a private library with local::lib

Many people are forced to work in situations where they cannot install
modules into the standard Perl library directories. Although you can install
modules anywhere that you can create files, your home directory is a good
place. Simply loading local::lib on the command line tells you where
it expects to find your modules:

% perl -Mlocal::lib

export MODULEBUILDRC="/Users/snuffy/perl5/.modulebuildrc"

export PERL_MM_OPT="INSTALL_BASE=/Users/snuffy/perl5"

export PERL5LIB="/Users/snuffy/perl5/lib/perl5:/Users/↵

snuffy/perl5/lib/perl5/darwin-2level:$PERL5LIB"

export PATH="/Users/snuffy/perl5/bin:$PATH"

Notice that local::lib automatically adds the architecture-dependent
directories for you. To run your program with your local library directo-
ries, you can load it from the command line with -M:

% perl -Mlocal::lib program.pl

You can use local::lib in your program and it will add the right direc-
tories for you, being a bit more smart than lib:

use local::lib;

You can also automatically install modules into the local::lib directo-
ries, too (Item 65).

Setting a relative directory

You might set up your application so that the library directories are near
the program files. You give your application and libraries to someone, but
you don’t know where she will put them, so you can’t configure @INC

Item 69. Ensure that Perl can find your modules ❘ 245

Download from <www.wowebook.com>

ptg

ahead of time. In that case, you can use the FindBin module to locate the
program path, and then build off of that to your module directory:

use FindBin;

use lib "$FindBin::Bin/../lib";

Configuring the include path at compile time

The include path is built in to Perl when you compile it (Item 110). Gen-
erally, it derives from the installation prefix specified when you run the
Configure script:

% ./Configure -des -Dprefix=$HOME/localperl

Changing the installation prefix allows you to build and install private or
alternative copies of Perl for testing or debugging.

Things to remember

■ Add your private module directories to @INC.
■ Use local::lib to set up module directories in your home

directory.
■ Use FindBin to add a relative module path.

Item 70. Contribute to CPAN.

CPAN already seems to have a module that does every task, but paradox-
ically, it’s growing faster than ever. Not only do people discover new prob-
lems or create interfaces to new libraries, but sometimes even the
reinvented wheel is better than the old one. By submitting your code to
CPAN, you get quite a lot back.

Contributing to CPAN can fill an entire book on its own, and it has: Sam
Tregar’s Writing Perl Modules for CPAN1, which you can get as a free down-
load from Apress, LLC (http://www.apress.com/book/view/159059018X).
You need only a little bit to get started, though, so we’ll give you the basics.

246 ❘ Chapter 7 CPAN

1. Sam Tregar, Writing Perl Modules for CPAN (New York, NY: Apress, LLC, 2002).

Download from <www.wowebook.com>

ptg

Register with PAUSE

The Perl Authors Upload Server, or PAUSE (http://pause.perl.org/), is the
real meat behind CPAN. People upload their modules and programs to
PAUSE, which indexes and archives those modules. CPAN then mirrors
the files to its own master server.

Start at http://pause.perl.org/. In the menu you see on the lefthand side
there is a “Request PAUSE Account” link. Follow that, fill out the form,
and PAUSE queues a request for an administrator to see. Every account is
inspected by a real person, and most accounts are set up within a day. If
you don’t get a notice that your account is active, check the
modules@perl.org archive (http://www.xray.mpe.mpg.de/mailing-lists/
modules/). Search for the user name that you requested to see if an admin
made any comment about it, or if you see an account setup e-mail. If you
didn’t get that e-mail, one of the admins can help you access your account
for the first time.

Be bold

PAUSE is there for you to upload your distributions. It doesn’t judge the
quality, the usefulness, or any other aspect of your work. It does check that
your namespace will not conflict with one used by someone else, but even
then you can still upload: PAUSE just doesn’t index the conflicting name-
space.

CPAN is purposely designed to allow you to upload very early drafts of
code, your experimental scripts, and nuggets of ideas. Its motto might be,
“release early and release often.” You’re not wasting any trees or clubbing
baby seals by giving people access to your code as soon as possible.

The sooner that you upload, the sooner you may get help from the rest of
the Perl users in the world. If you give your module a development version
number (Item 97), you can see the CPAN Testers results without PAUSE
adding the distribution to its index.

HTTP file upload

Log in to the PAUSE Web site, choose the “Upload a file to CPAN” menu
item, and follow the instructions on the form.

Item 70. Contribute to CPAN ❘ 247

Download from <www.wowebook.com>

ptg

Anonymous FTP

Log in to ftp://pause.perl.org/ as an anonymous user, and put your archive
in the incoming/ directory. Once there, return to the “Upload a file to
CPAN” item on the PAUSE menu. Go to the bottom of the page to claim
your upload. Until you claim it, your module will sit lonely and neglected
in incoming/.

Use a command-line tool

The cpan-upload tool and the release tool from Module::Release can
handle your upload in a couple of keystrokes without any Web site inter-
action from you.

Watch the test reports roll in

The CPAN Testers (Item 97) almost immediately see your new upload.
These distributed volunteers use their automated testing setups to down-
load your code, run their tests, and send you the results, often within a
couple of hours. You can immediately see how well your tests do on plat-
forms that you don’t have or might never have heard of. You can control
the reports you get by setting your CPAN Testers preferences
(https://prefs.cpantesters.org/). It’s like having a QA department that you
don’t have to pay.

Discuss your module

Before you start work on a new module, ask around. There might be a
worthy module already hidden in CPAN that does just what you need.
Some of the resources in Appendix B can help you find the people who
might be able to answer your question.

Many authors like to consider the “three day rule.” Any good module idea
you have today will still be a good idea three days from now. Following the
three day rule gives you a cooling off period after the initial excitement of
what seems like a good idea but might get you stuck in a lot of boring
work. That doesn’t have to keep you from coding for fun, but if you have
limited time, it helps you use it wisely.

There are a few things you want to get out of any discussion on a new
module:

248 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

Am I wasting my time?

It’s your time to waste, but you might be satisfied with something that
already exists.

Is my interface appropriate?

Before you implement your module, write some sample scripts as if it
already exists. However, since it doesn’t exist, you can choose any inter-
face you like. Which methods might you need to handle common tasks? Is
the interface easy to use, nice to look at, or consistent with the other mod-
ules the task might use?

Who can help me?

There’s no reason you should do all of the work yourself! Even if you are
just coding for fun, sometimes you can have even more fun as other Perlers
help you implement your idea, add their own ideas, or spread the word
about your wonderful, new creation.

Don’t be overly discouraged by feedback you get. People tend to respond in
proportion to their annoyance, so the negatives sometime seem to outweigh
the positives. Don’t discount negative feedback, but you don’t have to listen
to it (unless it’s from the people who sign your checks, and even then you
still might win them over). Many now-stalwarts of CPAN started this way.

Welcome to CPAN

That’s it! You’re now a member of the CPAN author community.

Once you go through the process, you shouldn’t be as intimidated as you
were before you knew how easy it was. Pay it forward by helping someone
else do what you just did.

And, now that you uploaded your first distribution, start thinking what
you’re going to do for your second one!

Things to remember

■ Get a free PAUSE account to upload to CPAN.
■ Upload to CPAN early and often to allow people to help you with your

project.
■ Ask for advice before naming and coding your distribution.

Item 70. Contribute to CPAN ❘ 249

Download from <www.wowebook.com>

ptg

Item 71. Know the commonly used modules.

There are many, many different modules available to Perl programmers. A
wide variety of common programming chores has been encapsulated in
freely distributed modules available from CPAN. What’s available includes
e-mail, netnews, FTP, and WWW utilities; graphical and character user-
interface tools; Perl language extensions; and database, text processing,
mathematical, and image processing utilities. The list goes on from there—
and for quite a while!

We can’t tell you which modules you should use because we don’t know
what you are doing. Here’s a very short list of popular modules. If your
favorite module didn’t make it onto the list, send us a note and maybe we
can get it into the next edition.

In App::Ack, you’ll find ack, which is a replacement for the command-
line grep. Learn more at http://betterthangrep.com/.

Catalyst is the most popular Perl Web framework. If you’re starting a big
Web project, consider using it. There’s an active community ready to help
you. Get more information at http://www.catalystframework.org/.

CGI::Simple is a drop-in replacement for the CGI portions of the legacy
CGI module. CGI::Simple is lighter-weight, much of this accomplished by
dropping the HTML-generation portions of CGI.

If you need to work with dates and times precisely, getting all the details
of leap seconds, time zones, and durations, DateTime is for you.

The DBI module is Perl’s abstract database Interface. It works with CSV,
Sqlite, PostgreSQL, Oracle, ODBC, or any of the other popular (and not so
popular) database servers.

For those who don’t like to directly use SQL, or who prefer having cross-
database SQL automatically generated for them at run time, DBIx::Class
is an object-relational mapper that is very popular.

E-mail handling can be difficult, but Ricardo Signes and many other people
put in a lot of work to make it easy and correct with his Email modules.
You can send mail, parse mail, handle MIME, and do many other things.

Need to source environment variables from a shell script into your cur-
rently executing Perl program? Env::Sourced can accomplish this task with
a simple use statement.

250 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

Parsing command line options is easy with the Getopt family of modules.
Getopt::Long handles both the long and short versions of command line
arguments and has become a standard for many Perl-based command line
programs.

HTML documents are often sloppily structured because of the permissive
nature of many Web browsers. HTML::Parser is a lenient parser that han-
dles deconstructing real-world HTML documents. HTML::TreeBuilder
provides more useful features at a higher level.

Image::Magick is a powerful software suite for creating and editing images
using the popular library of the same name.

There are several modules that deal with JavaScript Object Notation, and
JSON::Any pulls them all together under a common interface.

Log::Log4perl is the Perl version of the Java logging library log4j. It han-
dles all of the details of log messages, including which messages to log and
where to send them. It makes it easier to turn debugging input on or off
on the fly.

LWP (libwww-perl) is a powerful set of modules for programming on
the Web. For many tasks, the LWP::Simple module will do everything that
you need with minimal fuss.

If you are scraping the Web or testing Web pages, you need to take a look
at WWW::Mechanize, which is built on top of LWP. This set of modules
makes spidering HTML links on the Web a piece of cake.

If you need to do some heavy number crunching or scientific computing,
then the Perl Data Language, PDL, is for you. It’s a dialect of Perl that’s
optimized for speedy math, with a natural syntax.

Moose is a next-generation object system for Perl. We wish we could write
more about it here, but it really deserves its own book. If you’re starting a
new work, consider using it as a model across all of your new code. See
more at http://www.iinteractive.com/moose/.

POE is a multitasking and networking framework that implements and
integrates with event loops. It allows for easy event-driven, cooperative
multitasking in Perl programs.

We suspect that historians will look back at the current times and consider
Microsoft Excel to be the most useful software ever created. You can read

Item 71. Know the commonly used modules ❘ 251

Download from <www.wowebook.com>

ptg

or create Excel files from Perl using one of the Spreadsheet::ParseExcel or
Spreadsheet::WriteExcel modules.

Template::Toolkit is a powerful templating system built in Perl. It inte-
grates well with Web frameworks like Catalyst. See more at http://
template-toolkit.org/. You might prefer Mason or Text::Template. No mat-
ter what you choose, templating systems make your program designs
much cleaner by moving data out of your code.

Parsing delimited data seems simple enough, but when you start having to
worry about embedded delimiters, escape characters, and quoting, it
becomes a non-trivial task. Text::CSV_XS takes the hassle out of parsing
delimited files and does it fast (Item 115). It’s important enough to repeat
ourselves in another item, even.

There are many ways to parse XML in Perl. XML::Twig is one of the more
mature systems. It can parse full documents or documents as a stream, has
XPath support, and more. See more at http://xmltwig.com/.

XML::Compile uses XML schemas to translate between XML and Perl. It
handles all of the alphabet soup of XML, including SOAP and WSDL.

YAML is a whitespace-based configuration language that is popular with
many developers. Though it reeks of Python to us, it is still a handy for-
matting style to know. It did start in Perl, though, so it can’t be all bad.

252 ❘ Chapter 7 CPAN

Download from <www.wowebook.com>

ptg

8 ❘ Unicode

253

The world used to be so simple. Everything fit into 7 bits, and you didn’t
have to worry about special characters or character sets. Back then, strings
were sequences of bytes, and each byte represented its own character. Peo-
ple got used to the idea that bytes and characters were the same thing, and
everyone formed really bad habits that still infect programming. We’re
going to call bytes octets instead.

Now you know that characters and bytes aren’t the same thing. To get all
the fancy characters you need, or even the pieces you need to build new
characters, you use the Unicode Character Set (sometimes called just
UCS). This book is much too small to go through all of the details of Uni-
code, but you need to know at least a little to get started.

Unicode maps characters onto code points, which are numbers that rep-
resent those characters. As the Unicode Consortium says:

Unicode provides a unique number for every character,
no matter what the platform,
no matter what the program,
no matter what the language.1

For example, the letter k is U+006B. That’s its code point.

Don’t think about storage just yet (or ever). That code point number is just
floating around. Unicode defines various encodings that turn code points
into octets, and the other way around. Don’t think too much about the octet
representation if you can avoid it. Trust Perl to figure out that part for you.

In Perl, instead of just strings, you now have character strings, which are
sequences of characters, and binary strings, which are the old-fashioned
strings of octets you already know and love. Perl can deal with each,
although sometimes you have to be careful to ensure that Perl treats your
data as the right sort of string. Your goal is to always work with the text
variety, and let Perl figure out the rest.

1. http://www.unicode.org/standard/WhatIsUnicode.html, retrieved January 24, 2010

Download from <www.wowebook.com>

ptg

254 ❘ Chapter 8 Unicode

Not only that, there are different sorts of character strings because there are
different character sets, such as ISO-8859 (Latin), CP-1251 (Windows),
or UCS. At some point, Perl has to store your character string as octets,
because that’s what computers do. Perl encodes the characters as octets.
UTF-8 is one possible encoding for UCS, and the one Perl uses internally.
Likewise, Perl decodes bytes into character strings to go the other way. To
see all of the encodings your perl supports, try this one-liner:

perl -MEncode -le "print for Encode->encodings(':all')"

Perl tries its hardest to make most of this encoding and decoding invisible.
When Perl knows that it is working with a character string, it does what
you expect it to do, mostly. It counts the length in characters, and thinks
character-wise with other string operations.

There are times when Perl can’t divine the encoding, though. Maybe you
typed the characters directly into your source code, read from a file, or
fetched a Web page, where none of those sources gave Perl the proper clues.
In these cases, you have to give Perl the missing clues explicitly.

Before Perl 5.8, Perl’s support for Unicode was quite weak, to put it nicely.
Many people have tried to provide better support through modules, but
considering that Perl 5.6 was first released in early 2000, we’re going to
ignore the older versions. If you’re using an ancient Perl, you are on your
own. Join the modern world!

As of this writing, Perl’s Unicode support is still not complete (there’s a lot
to support to get the 100% seal of approval), but it has most of what you
need, and you probably won’t miss what’s missing.

One final note, though: when we talk about “Unicode” in source, strings,
and so on, we’re thinking about the UTF-8 encoding, which is what Perl
uses internally. If your editor, terminal, and other tools are correctly con-
figured (that’s up to you), then that’s mostly a matter of your typing the
right character.

Item 72. Use Unicode in your source code.

Modern perls let you program with Unicode. You can type it directly into
your program source:

print 'I need to work on my résumé';

Download from <www.wowebook.com>

ptg

There are several things that can go wrong with that bit of code. First, what
encoding is your source, really? How is your editor going to save that? You
really can’t tell just by looking at the characters on the screen. Is it UTF-8,
ISO-8859, or something else? Does it even matter how the editor saves it?

Second, even though you save it as UTF-8, the next person who touches the
source might not. How does her editor do the right thing with the encod-
ing? Even if it reads it correctly, does it save it correctly?

Lastly, the person who runs your program might neglect to tell perl to
expect Unicode in the source. How is Perl supposed to know otherwise?

The utf8 pragma tells Perl to parse the source as UTF-8 (and that’s all it
does). This example has a Turkish string:

use utf8;

print 'Bu iş kârlı'; # 'This business is profitable'

You can even use Unicode in identifiers. This is especially handy for peo-
ple who keep having to spell out the Greek letters they use in formulas:

use utf8;

use Math::Trig;

binmode STDOUT, ':utf8';

my $π = 3.14159265;

my $θ = $π / 2;

printf "cos(θ) is %.2f\n", cos($θ);

printf "sin(θ) is %.2f\n", sin($θ);

my $α = atan(1, 1) * 180 / $π;

printf "Angle is %.2f\n", $α;

You can’t do that with package names or subroutines names, since both of
those need to be valid filenames (with roundtrip guarantees). A package
name such as Foo::Bar translates to Foo/Bar.pm, and AutoSplit turns
a subroutine name into Foo/Bar/auto/some_sub.al. You might be able to
get away with non-ASCII characters in some subroutine names. You might
use π as a constant subroutine without an error, for instance, but this is
undefined behavior:

Item 72. Use Unicode in your source code ❘ 255

Download from <www.wowebook.com>

ptg

sub π () { 3.14159265 }

print "π is ", π, "\n";

However, if you try to use the snowman character (U+2603), ☃, things
probably won’t work:

sub ☃ () { 'snowman' }

The error message is odd, and doesn’t immediately lead you to the cause:

Illegal declaration of anonymous subroutine ...

The utf8 pragma is lexically scoped. If there is only a part of your source
where you want Perl to interpret the source as UTF-8, you can enable it
within a scope:

{

use utf8;

print 'Hyvää päivää'; # "Good morning", in Finnish

}

Likewise, if you don’t want Perl to treat part of your source as UTF-8, you
can turn it off within a scope:

{

no utf8;

print 'Hyvää päivää'; # no guarantees now!

}

The utf8 pragma only tells Perl to interpret the source as UTF-8. It doesn’t
affect the input or output streams, or anything else (Item 73). It also doesn’t
force your editor or IDE to do anything special, and it doesn’t perform
any other magic with other tools.

Things to remember

■ Use the utf8 pragma to use Unicode characters in your source code.
■ Unimport utf8 when part of your source code isn’t Unicode.
■ Identifiers, except for subroutines and package names, can have non-

ASCII characters.

256 ❘ Chapter 8 Unicode

Download from <www.wowebook.com>

ptg

Item 73. Tell Perl which encoding to use.

When you start using Unicode with your old-style programming habits,
you’re probably going to see warnings about “Wide character in . . . ,”
where Perl isn’t expecting something more than ASCII but gets it anyway.
It’s fairly easy to fix this. You just have to tell your filehandles what encod-
ing they should expect. Even if you don’t see any warning, but your input
or output appears to be corrupted, you have to pay attention to how you’re
telling Perl to treat filehandles.

It’s not enough that Perl knows that you used Unicode directly in your
program source. When it sends that data to something else, you also need
to ensure that the next thing sees the data in the right encoding, too. Perl
has to encode your data correctly so the next consumer of the data can
decode them correctly.

Setting the default encoding

You can set the encoding for all streams with the open pragma. If you want
to use the same default encoding for all input and output filehandles, you
can set them at the same time with the IO setting:

use open IO => ':utf8';

You can set the default encoding for just output handles with the OUT
 setting:

use open OUT => ':utf8';

Similarly, you can set all of the input filehandles to have the encoding that
you need:

use open IN => ':utf8';

You can event set the default encoding for the input and output streams
separately, but in the same call to open:

use open IN => ":cp1251", OUT => ":shiftjis";

The -C switch tells Perl to switch on various Unicode features. You can selec-
tively turn on features by specifying the ones that you want without having
to change the source code. If you use that switch with no specifiers, Perl uses
UTF-8 for all of the standard filehandles and any that you open yourself:

perl -C program.pl

Item 73. Tell Perl which encoding to use ❘ 257

Download from <www.wowebook.com>

ptg

You can apply -C more selectively. You can do the same thing as -C by set-
ting the PERL_UNICODE environment variable. It is all detailed in the perl-
run documentation.

Set the encoding on selected filehandles

For specific filehandles, you can specify the encoding you need with the
two-argument form of binmode:

binmode STDOUT, ':utf8';

binmode STDIN, ':utf8';

You can also do that when you open the filehandle. In the general case,
you have to specify it with encoding(...):

open my ($out_fh), '>:encoding(UTF-8)', $filename or die;

open my ($in_fh), '<:encoding(koi8-r)', $filename or die;

open has a special shortcut for UTF-8:

open my ($out_fh), '>:utf8', $filename or die;

open my ($in_fh), '<:utf8', $filename or die;

You can specify any encoding that your perl supports:

open my ($out_fh), '>:encoding(iso-8859-1)', $file

or die;

Things to remember

■ Specify the encodings on all of your filehandles.
■ Set the default encoding for all filehandles with the open pragma.
■ Use binmode to set the encoding for individual filehandles.

Item 74. Specify Unicode characters by code point or name.

You don’t have to type literal characters into your strings. Perl provides a
variety of ways for you to get the right character into your data. For charac-
ters from 0x00 to 0xFF, you can use the normal Perl syntax, in octal or hex:

258 ❘ Chapter 8 Unicode

Download from <www.wowebook.com>

ptg

my $CRLF = "\015\012";

my $CRLF = "\x0D\x0A";

To create literal Unicode code points above 0xFF, enclose the code point
in braces after the \x:

print "The smiley face is \x{263a}\n";

print "Watch out for the ",

"Dread Pirate Fenwick! \x{2620}\n";

You might have trouble remembering the code points themselves, so you
can use the charnames module to use more memorable and recognizable
names. Use the double-quotish \N{NAME} to stand in for the real character:

use charnames qw(:full);

my $arabic_alef = "\N{ARABIC LETTER ALEF}";

You can see the list of all the names on the Unicode Consortium’s Web
site (http://unicode.org/charts/charindex.html), but the list also comes
with perl, since it needs it to do this magic. Look for the lib/5.n.m/unicore/
NamesList.txt file, where the 5.n.m is your particular version of Perl.

Although not as fancy, chr and pack still work, too, although they are a bit
less clear:

my $hebrew_alef = chr(0x05d0);

my $georgian_an = pack("U*", 0x10a0);

These forms work anywhere you have double-quotish interpolation,
including the match and substitution operators.

Names from code points

Remember that code points are not necessarily the same thing as the
encoding. The fact that you see the octet representation doesn’t mean you
know the code point. If you know the code point, you can get the name
with viacode:

use charnames qw(:full);

my $code_name =

charnames::viacode(0x2620); # SKULL AND CROSSBONES

Item 74. Specify Unicode characters by code point or name ❘ 259

Download from <www.wowebook.com>

ptg

You can use the Unicode::CharName module to do the same job. Remem-
ber that you need to use hex to tell Perl to interpret a string as a hexadec-
imal number:

use Unicode::CharName qw(uname);

MUSICAL SYMBOL G CLEF OTTAVA BASSA

my $code_name = uname(hex('1D120'));

Code points from names

You can go the other way to get the code point if you know the name by
using vianame, although you probably want to format the number yourself:

use charnames qw(:full);

my $code_point = sprintf '%04X',

charnames::vianame("THAI CHARACTER KHOMUT");

Aliases

Those names can be quite annoying. Do you want to type “ARABIC LIG-
ATURE UIGHUR KIRGHIZ YEH WITH HAMZA ABOVE WITH ALEF
MAKSURA ISOLATED FORM” every time you need it? Us neither. Use
aliases instead:

use charnames ':full', ':alias' => {

LONGEST => 'ARABIC LIGATURE ...',

OMG_PIRATES => 'SKULL AND CROSSBONES',

RQUOTE => 'RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK',

LQUOTE => 'LEFT-POINTING DOUBLE ANGLE QUOTATION MARK',

};

binmode STDOUT, ':utf8';

print "\N{LQUOTE}Hello Perl!\N{RQUOTE}\n";

charnames already has some aliases, like LINE FEED and CARRIAGE
RETURN. If you can’t remember what numbers they should be, you’re in
luck:

my $CRLF = "\N{CARRIAGE RETURN}\N{LINE FEED}";

binmode STDOUT, ':utf8';

print "\N{LQUOTE}Hello Perl!\N{RQUOTE}$CRLF";

260 ❘ Chapter 8 Unicode

Download from <www.wowebook.com>

ptg

Things to remember

■ Translate between numeric representations and names with Unicode::
CharName.

■ Use charnames to interpolate characters by name.
■ Create aliases for long character names.

Item 75. Convert octet strings to character strings.

In a perfect world, your data would always know what their encodings
were, and Perl could figure it out for you. Sadly, that’s not the real world.
Someone hands you some bytes, Perl doesn’t know what encoding it
should be, and it’s up to you to figure it out. Not only that, you might get
data that specifies an encoding that is a lie.

The best advice is to ensure that you properly decode all of your input.
That is, you have to take the octets and turn them into a proper character
string. Don’t trust anything.

Set the encoding

Start with a string of bytes. Take, for example, this long string of hexadec-
imal numbers:

my $hex = '4A2761692070617373C3A9206C27C3'

. 'A974C3A920C3A0205061726973210A';

(my $bytes = $hex) =~ s/(..)/chr(hex($1))/eg;

Perl doesn’t know anything about which encoding this string should be. As
you are debugging, you can see what Perl thinks of the string with
Devel::Peek:

use Devel::Peek;

Dump($bytes);

The output shows no special knowledge of the encoding (although we’re
not giving away the string just yet):

SV = PVMG(0x830ce4) at 0x80eb50

REFCNT = 1

FLAGS = (PADMY,SMG,POK,pPOK)

Item 75. Convert octet strings to character strings ❘ 261

Download from <www.wowebook.com>

ptg

PV = 0x228bc0 "...\n"\0

CUR = 30

LEN = 32

In this case, assume that you know that the bytes represent a UTF-8 string.
With this prior knowledge, you can use Encode to decode the string to the
correct encoding (remember, going from bytes to characters is decoding):

use Encode;

my $utf8_string = decode_utf8($bytes);

Dump($utf8_string);

Now Dump shows that Perl explicitly knows the encoding and you can see
the UTF-8 flag:

SV = PV(0x801398) at 0x80ea30

REFCNT = 1

FLAGS = (PADMY,POK,pPOK,UTF8)

PV = 0x259a80 "...\n"\0 [UTF8 "...!n"]

CUR = 30

LEN = 32

The decode_utf8 is really a convenience subroutine for a couple of other
steps. The decode subroutine uses the encoding that you give it:

use Encode qw(decode);

decode('utf8', $bytes);

The decode subroutine does the real work with an object:

my $encoding = 'utf8';

my $utf8_string = do {

my $obj = find_encoding($encoding);

die qq(encoding "$encoding" not found) unless ref $obj;

$obj->decode($bytes);

};

If you have to decode many strings, you might want to work with the
object interface so you don’t waste time recreating an encoding object each
time you call decode.

262 ❘ Chapter 8 Unicode

Download from <www.wowebook.com>

ptg

Now that you’ve decoded the input, you can output it. You have to set the
right encoding on the output handle, though (Item 73):

binmode STDOUT, ':utf8';

print $utf8_string;

The output shows the secret sentence:

J'ai passé l'été à Paris!

If you run the program through a shell and don’t get the text above, there
is a good chance that your language or display settings are forcing a char-
acter set that is not UTF-8. In our case, we were using iTerm and had to
change the terminal preferences to use UTF-8, as well as to set the $LANG
environment variable.

Unknown encodings

If you have a string that you know is in one encoding but you need it in
another, you can use Encode’s from_to. This function changes the con-
tents of the string passed to it.

use Encode qw(from_to);

from_to($string, 'iso-8859-1', 'utf8');

Or, maybe you have a stew of strings with some ASCII, some Latin-1, and
some Unicode. Why? Because life is tough sometimes. The fix_latin
routine from Encoding::FixLatin will try its best to fix that, although
it might not always work, since it has to make some guesses:

use Encoding::FixLatin qw(fix_latin);

my $utf8_string = fix_latin($stew_string);

Even if fix_latin appears to work, it might not give you back the string
that you need. Since it needs to guess what it sees and can deal with mul-
tiple encodings, fix_latin might encounter a sequence of bytes that are
valid in more than one encoding, but where each gives a different result.

Command-line arguments

If you take arguments on the command line, your program might receive
them in a different encoding based on various session settings that perl

Item 75. Convert octet strings to character strings ❘ 263

Download from <www.wowebook.com>

ptg

can’t control. You need to decode the arguments correctly to ensure you get
what you want.

First, you can get the correct codeset with the I18N::Langinfo module.
The langinfo subroutine knows how to grab various data from the locale.
With the CODESET constant, it gets the name of the encoding:

use I18N::Langinfo qw(langinfo CODESET);

my $codeset = langinfo(CODESET);

Once you have the codeset, you can translate the command-line arguments
from whatever they are to Perl’s internal encoding:

use Encode qw(decode);

@ARGV = map { decode $codeset, $_ } @ARGV;

Encoding strings

You can decode any byte sequence that you like, but that doesn’t make it
a valid character string. For instance, there are certain characters in Uni-
code called combining characters that modify the characters they come
after.

Start with this Finnish phrase, which has the bonus of a Swedish name in
it. It’s a UTF-8 string because the Perl source is in UTF-8:

use utf8;

(Åke is quite a burly guy)

my $phrase = 'Åke on aika körmy';

Now you want to turn it into bytes. Use encode:

use Encode;

my $bytes = encode('utf8', $phrase);

print

join ':', map { sprintf '%02x', ord($_) }

split //, $bytes;

The byte string looks like:

c5:6b:65:20:6f:6e:20:61:69:6b:61:20:6b:f6:72:6d:79

264 ❘ Chapter 8 Unicode

Download from <www.wowebook.com>

ptg

The first two bytes in the encoded string are \xc5\x6b, which form the
capital A with the ring above it. If you reverse those two bytes, decode
with two arguments tries its best, fails, and replaces what it can’t decode
with the substitution character 0xFFFD.

my $not_a_with_ring =

decode('utf8', "\x6b\xc5"); #\x6b\xfffd

That’s probably not what you want. Now you have a string that isn’t the
data you expect. Instead, you want to know if there was an error. You can
pass decode a third argument that tells it what to do with an invalid byte
string. Encode provides four constants that you can use to tell decode how
to handle errors:

■ FB_DEFAULT replaces invalid sequences with a substitution string.
■ FB_CROAK dies immediately on error.
■ FB_QUIET stops immediately, leaving the string partially decoded.
■ FB_WARN works like FB_QUIET, but with warnings.

Since decode may croak, you can wrap it in an eval to catch the error:

my $a_with_ring =

eval { decode('utf8', "\x6b\xc5", FB_CROAK) }

or die "Could not decode string: $@";

Now you have a way of detecting invalid encodings. If the eval fails, so
does your string.

Things to remember

■ Use Encode to decode bytes and set encodings on strings.
■ Use Encoding::FixLatin to guess what encoding a byte string

might represent.
■ Decode your command-line arguments before you use them.

Item 76. Match Unicode characters and properties.

Unicode gives you much more flexibility in matching characters with a
regex. Instead of the rather limited character classes that you may already
know, you can now match not only literal characters, but also properties of
characters. Unicode characters know a little about themselves.

Item 76. Match Unicode characters and properties ❘ 265

Download from <www.wowebook.com>

ptg

Match specific characters

Matching a specific character is straightforward. You can match it either by
its name or by its hexadecimal value. If you know the code point, you can
use that directly in \x{}:

if ($string =~ /\x{263a}/) {

print "I matched a smiley!\n";

}

You can use the \N{NAME} syntax directly in your regular expression (Item
74):

use charnames ':full';

if ($string =~ /\N{A_TILDE}/) {

print "I found an A with a tilde!\n";

}

You can always use the long names, which specify the script, the capital-
ization, the letter, various modifying marks, and so on:

use charnames ':full';

if ($string =~ /\N{LATIN CAPITAL LETTER A WITH TILDE}/)

{

print "I found an A with a tilde!\n";

}

Perhaps you have an Arabic phrase, and you want to know if it has the
hamza character. Patrick Abi Salloum supplied this phrase, which he tells
us has something to do with a camel crossing a desert:

use charnames ':full';

use utf8;

my $phrase = 'زاتجإ لمجلا ;'ءارحصلا

if ($phrase =~ m/\N{ARABIC LETTER HAMZA}/) {

print "I matched a HAMZA!\n";

}

Be careful with matching. If you’re looking for a grapheme (Item 77), you
might be thrown off by the actual combination of characters that make
up the grapheme.

266 ❘ Chapter 8 Unicode

Download from <www.wowebook.com>

ptg

Match properties

Inside a regular expression, \p{PROPERTY} matches characters with that
property, while its complement \P{PROPERTY} matches characters that
don’t have that property. For instance, a Unicode character knows whether
it is uppercase, title case, lowercase, or none of those (you can see all of
the properties in the perlunicode or perluniprops documentation). This is
the Unicode version of the POSIX bracket expressions, like [[:digit:]]
and so on.

To match a letter, you can use the Letter property. This matches anything
that Unicode considers to be a letter, no matter which language:

my ($letters) = /(\p{Letter}+)/;

Many properties have shortcut names. Instead of \p{Letter}, you can
use \p{L}:

my ($letters) = /(\p{L}+)/;

The Letter is a class of characters, and you can match specific sorts of
Letters. If you want only the uppercase letters:

my ($uppers) = /(\p{UppercaseLetter}+)/;

my ($uppers) = /(\p{Lu}+)/;

Similarly, to match a number, no matter which form it comes in:

my ($number) = /(\p{Number}+)/;

There are quite a, well, number of things that are numbery sorts of char-
acters, most of which you might not expect. See them all for yourself:

use utf8;

binmode STDOUT, ':utf8';

foreach my $point (0 .. 65535) {

my $string = chr $point;

next unless $string =~ /\p{Number}/;

print "$point --> $string\n";

}

You probably don’t want to match most of those numbers, so there are
some extended properties to handle more specific sets:

my ($number) = /(\p{ASCIIHexDigit}+)/;

Item 76. Match Unicode characters and properties ❘ 267

Download from <www.wowebook.com>

ptg

Now that you have Unicode, there are a lot more types of whitespace. You
can match all of those, perhaps replacing each with a space:

$string =~ s/\p{Whitespace}/ /g;

Perhaps you want to match only within a certain block of Unicode. If you
want something from the Greek block:

if ($string =~ /\p{InGreekExtended}/) {

print "I found some greek!\n";

}

Define your own properties

The properties themselves are just special lists of Unicode code points that
should match. You can define your own properties, as long as you want to
do the work to make that list. You simply define a subroutine that begins
with either In or Is, in any package that you like. You then put the full
package specification to your subroutine in \p{}.

sub MyProperties::IsMyFavoriteLetters {

return <<"CODE_POINTS";

33

37

62\t6D

CODE_POINTS

}

foreach (qw(137 Buster XYZ)) {

if(/\p{MyProperties::IsMyFavoriteLetters}/) {

print "I found my favorite letters in [$_]!\n";

}

}

Since the favorite letters are really [37b-m], the match succeeds for only
two of the elements:

I found some of my favorite letters in [137]!

I found some of my favorite letters in [Buster]!

You can use several sorts of data inside your property definition, includ-
ing code point ranges, references to existing block properties, references to
other similar subroutines, and so on. Those references can include or

268 ❘ Chapter 8 Unicode

Download from <www.wowebook.com>

ptg

exclude sets of characters, so you can build up (or take away) just what
you need. It’s very flexible, and completely explained in perlunicode.

Things to remember

■ Match Unicode characters by their names.
■ Match Unicode characters exactly or by their properties.
■ Define custom properties as arbitrary sets of Unicode characters.

Item 77. Work with graphemes instead of characters.

A grapheme, which the Unicode glossary (http://www.unicode.org/glossary/)
defines as “a minimally distinctive unit of writing in the context of a par-
ticular writing system,” is what most people consider a character. The pro-
grammer dealing with Unicode may see that a grapheme is made up of one
or more characters as a matter of implementation. Unicode doesn’t have
a code point for every possible combination, but it has the idea of a com-
bining character that modifies another character, perhaps to add an accent.

Suppose you want to create the grapheme that is a lowercase “a” with an
umlaut (or “diaeresis” to Unicode), ä. Unicode has two ways to do that.
First, you can use the precomposed version that Unicode has already, since
it’s a common character:

use charnames ':full';

my $precomposed =

"\N{LATIN SMALL LETTER A WITH DIAERESIS}"; # length 1

print "Length of precomposed string is "

. length($precomposed) . "\n";

The other way uses composite characters that you combine to create the
grapheme. You start with a character and modify it with a combining
 character:

my $composed =

"\N{LATIN SMALL LETTER A}" . "\N{COMBINING DIAERESIS}";

The problem now is that the length of this string is 2, because you used two
characters to make the one grapheme:

print "Length of composed string is "

. length($composed) . "\n";

Item 77. Work with graphemes instead of characters ❘ 269

Download from <www.wowebook.com>

ptg

Even worse than that, the two strings aren’t the same. Perl compares them by
characters, not graphemes, rendering the condition in this example false:

unless ($precomposed eq $composed) {

print "The strings are different!\n";

}

Have you added this to you list of Unicode horrors yet? You can’t blindly
compare two strings anymore. Logically, the strings are the same even
though their representations aren’t. A little subroutine to show the char-
acters can help you see what is happening:

sub show_chars {

my $phrase = shift;

my $string = '';

foreach my $char (split //, $phrase) {

my $name = charnames::viacode(ord $char);

$string .= "$name\n\t";

}

return $string;

}

Now, check your strings with show_chars:

my $precomposed =

"\N{LATIN SMALL LETTER A WITH DIAERESIS}";

my $composed =

"\N{LATIN SMALL LETTER A}" . "\N{COMBINING DIAERESIS}";

print "precomposed:\n\t", show_chars($precomposed), "\n";

print "composed:\n\t", show_chars($composed), "\n";

The output shows the difference in the strings:

precomposed:

LATIN SMALL LETTER A WITH DIAERESIS

composed:

LATIN SMALL LETTER A

COMBINING DIAERESIS

Help is on the way, though. You can fix this by normalizing your strings.

270 ❘ Chapter 8 Unicode

Download from <www.wowebook.com>

ptg

Normalizing Unicode strings

There’s some good news. To get around the character-grapheme issue,
Unicode has the concept of decomposition. You can turn the precomposed
versions into its parts with Unicode::Normalize. It’s a non-trivial task
that we’ll mostly skip here, so suffice it to say that the Normalization Form
D (NFD) function takes composed characters and gives back decomposed
ones:

use Unicode::Normalize;

my $decomposed = NFD($precomposed);

print "decomposed:\n\t", show_chars($decomposed), "\n";

print "Decomposed and composed are the same!\n"

if $decomposed eq $composed;

Now you’ve turned the single character version into the two character ver-
sion, and you can compare the strings:

decomposed:

LATIN SMALL LETTER A

COMBINING DIAERESIS

Decomposed and composed are the same!

Graphemes in regular expressions

There’s a bit of a bright spot here, though. Regular expressions understand
the concept of graphemes. You match a single grapheme, no matter how
many characters it uses, with \X:

my $composed =

"\N{LATIN SMALL LETTER A}" . "\N{COMBINING DIAERESIS}";

my ($matched) = $composed =~ /(\X)/;

print "matched:\n\t", show_chars($matched), "\n";

The match output shows that the \X matched two characters, just as you
expected:

matched:

LATIN SMALL LETTER A

COMBINING DIAERESIS

Item 77. Work with graphemes instead of characters ❘ 271

Download from <www.wowebook.com>

ptg

The \X is really just a shorthand for the combination of two Unicode prop-
erties, the “not a mark” and “mark” (?:\P{M}\p{M}*) (Item 76).

Knowing that, you can now get a list of graphemes if you want to work
with them individually. There are two easy ways to do that:

separator retention mode

my @graphemes = split /(\X)/, $phrase;

positive lookahead

my @graphemes = split /(?=\X)/, $phrase;

You still have to be careful comparing graphemes, because Perl will com-
pare them character-by-character, which means that you still have the
same problem. At least you know that you have a complete grapheme,
though.

Things to remember

■ Remember that visibly same glyphs can have different representations.
■ Decompose precombined characters to normalize your Unicode

strings.
■ Use \X to match an entire grapheme.

Item 78. Be careful with Unicode in your databases.

Unfortunately, reading this section isn’t going to make your life easier
because we don’t have all of the answers. Different database servers do dif-
ferent things with their data, and these issues aren’t something that Perl
can fix. Anything that touches or stores your data has a chance to mess up
everything.

The DBI module is Unicode transparent. That is, it doesn’t care what the
data are; it just passes them on to your program. The database driver, the
particular DBD, has to handle the details for you. Some of them already
support Unicode in their connections:

my $dbh = DBI->connect(# MySQL

'DBI:mysql:test', 'username', 'pass',

{ mysql_enable_utf8 => 1 }

);

272 ❘ Chapter 8 Unicode

Download from <www.wowebook.com>

ptg

my $dbh = DBI->connect(# PostgreSQL

'DBI:Pg:test', 'username', 'pass',

{ pg_enable_utf8 => 1 }

);

Don’t be fooled, though. This just tells the driver to assume the data are
encoded as UTF-8. The data might not actually be UTF-8 encoded.

You have to ensure that you set up your database schema to handle UTF-8.
Some database servers let you set Unicode properties on particular
columns, or treat all columns as a particular encoding. However, even if
they do that, they might not validate data they put into those records. Pass it
an octet string that is malformed UTF-8, and the server may accept it with-
out complaint. When you pull the data out again, the server tells you that
it is giving you a UTF-8 string even though that string is invalid (Item 75).

You might also have to consider column lengths in your table. Maybe you
set up a varchar(16), but is that really 16 characters, or 16 octets? What
happens when you have a name that is 16 graphemes (Item 77)?

The best answer we can give you is a checklist of things to pay attention to.
You need to watch the entire round trip.

■ If you want a Unicode encoding in your database, ensure that you
pass it valid Unicode strings.

■ Ensure that the database server stores data as Unicode by checking its
various settings.

■ Check the data when it comes back to you.

Things to remember

■ Set up your database to handle Unicode columns and data.
■ The DBI module is Unicode-transparent.
■ Enable database Unicode features when you connect to the database.

Item 78. Be careful with Unicode in your databases ❘ 273

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

9 ❘ Distributions

275

Although anything that you distribute is rightly a “distribution,” in Perl
that takes on a special meaning to most people. For Perl, a distribution
typically refers to a collection of Perl files and supporting files, including
a build program that can install them.

Perl distributions are the culmination of many skills and techniques, all
wrapped together in a nice package that you can put on CPAN, send in
e-mail, put in source control, or do anything else you like with. It could
take us an entire book to go through the collected wisdom of regarding
putting together your distribution. You’ll find some of that advice spread
out throughout this book when that advice fits in nicely with another
chapter. This chapter has the distribution advice that didn’t find a home
somewhere else.

There’s a lot of opinion that goes into people’s distributions, so like brac-
ing and indention styles, there’s a lot to debate. There is more than one
way to do it (but remember that most of them are wrong).

Item 79. Use Module::Build as your distribution builder.

In the beginning was ExtUtils::MakeMaker and it was good, well,
enough. It took the values from a Makefile.PL and turned them into a
Makefile that you used to build the Perl distribution. Coming from the
UNIX world, the Makefile poses a problem for other operating systems
that don’t rely on the same tools. Furthermore, the generated Makefile has
to go to great lengths to create portable code.

If someone is going to install a Perl module, you can be pretty sure that he
already has Perl. Unlike make, Perl is very portable. Instead of dealing with
the pain of Makefiles, enjoy the power of Perl instead. Use Module::Build
instead of ExtUtils::MakeMaker when you want to start a new
 distribution.

Download from <www.wowebook.com>

ptg

276 ❘ Chapter 9 Distributions

The end user’s perspective

From the end-users’ perspectives, migrating to Module::Build does not
require much, if any, change on their part. If they are used to installing
your module with ExtUtils::MakeMaker:

% perl Makefile.PL

% make

% make test

% make install

The sequence to build and install a distribution with Module::Build is
similar:

% perl Build.PL

% ./Build

% ./Build test

% ./Build install

Most people probably won’t even notice this if they use cpan or cpanp,
which handles the installation for them.

From a module author’s perspective

Fortunately, getting started with Module::Build isn’t difficult. Say that
you have a module called MyModule. The minimal Build.PL file specifies
the name of the module, and in which file it should find the version:

use Module::Build;

my $build = Module::Build->new(

dist_name => ‘MyDist’,

dist_version_from => ‘lib/MyModule.pm’,

);

$build->create_build_script;

You can add more information about your distribution. One of the more
common additions is requiring prerequisite modules, which you specify
either in configure_requires, build_requires, or requires, depend-
ing on which part of the process needs the dependency.

Module::Build lets you specify sets of modules that you need for instal-
lation via recommends, and modules that can cause issues with your mod-
ule if they are installed via conflicts:

Download from <www.wowebook.com>

ptg

use Module::Build;

my $build = Module::Build->new(

dist_name => ‘MyDist’,

dist_version_from => ‘lib/MyModule.pm’,

requires => { ‘Some::Module’ => 1.23, },

recommends => { ‘Some::Module_XS’ => 4.56, },

);

$build->create_build_script;

You can even get very precise and exclude a particularly difficult version of
a module by specifying strict version requirements:

requires =>

{ ‘Volatile::Module’ => ‘<= 1.2, !1.3, >= 1.4’, },

This feature of requirements and recommendations becomes very pow-
erful when you distribute a wrapper module that attempts to unite the
interfaces of many similar implementations of a problem space.

Custom actions

Module::Build revolves around actions, which are similar to build targets
in make. For instance, when you ./Build test, you are running the test
action.

To modify an existing action, subclass Module::Build and override the
ACTION_ subroutine related to that action. For instance, to customize the
test action, you override ACTION_test.

Suppose you want to create an action, critique, that invokes
Perl::Critic on your code. Modify your Build.PL file to provide a sub-
class that includes an ACTION_critique method:

use Module::Build;

my $class = Module::Build->subclass(

class => “Module::Build::Custom”,

code => <<’SUBCLASS’);

sub ACTION_critique {

my $self = shift;

$self->depends_on(“test”);

$self->do_system(qw(perlcritic lib/));

}

Item 79. Use Module::Build as your distribution builder ❘ 277

Download from <www.wowebook.com>

ptg

SUBCLASS

my $build = $class->new(

dist_name => ‘MyDist’,

dist_version_from => ‘lib/MyModule.pm’,

requires => {

‘Some::Module’ => 1.23,

},

recommends => {

‘Some::Module_XS’ => 4.56,

},

);

$build->create_build_script;

Things to remember

■ Use Module::Build for new distribution development.
■ Subclass Module::Build to create new actions.
■ Use the subclass argument to Module::Build->new to customize

its behavior.

Item 80. Don’t start distributions by hand.

You find yourself writing a fair amount of boilerplate code when you cre-
ate a new distribution. The first edition of this book used the h2xs tool to
generate this boilerplate (Item 86). Though h2xs will still do the job, it
was designed to create the XS glue you needed to connect Perl to C. If you
don’t need that feature, there are currently better ways to start your
 distribution.

Begin with Module::Starter

Using Module::Starter is a simple matter of supplying some arguments
to module-starter:

% module-starter

--module=Foo::Bar,Foo::Baz \

--author=”John Doe” \

--email=”me@example.com”

Created starter directories and files

278 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

The module-starter program creates the files that you’ll find in almost
every distribution:

./Foo-Bar/Changes

./Foo-Bar/ignore.txt

./Foo-Bar/lib/Foo/Bar.pm

./Foo-Bar/lib/Foo/Baz.pm

./Foo-Bar/Makefile.PL

./Foo-Bar/MANIFEST

./Foo-Bar/README

./Foo-Bar/t/00-load.t

./Foo-Bar/t/boilerplate.t

./Foo-Bar/t/pod-coverage.t

./Foo-Bar/t/pod.t

That’s quite a bit of work that you don’t have to do yourself. With this
code, you can navigate to the Foo-Bar directory and run a build on your
new Foo::Bar distribution.

If you prefer Module::Build or Module::Install to the default
ExtUtils::MakeMaker, you tell module-starter which one you want
with the --builder command-line option:

% module-starter \

--module=Foo::Bar,Foo::Baz \

--author=”John Doe” \

--email=”me@example.com” \

--builder=Module::Build

Created starter directories and files

You can use a ~/.module-starter/config file to store your repetitive options so
that you don’t have to type them in every time you run module-starter:

author: John Doe

email: me@example.com

license: artistic

builder: Module::Install

Now you can run module-starter with only the --module option:

% module-starter --module=Foo::Bar,Foo::Baz

Item 80. Don’t start distributions by hand ❘ 279

Download from <www.wowebook.com>

ptg

Plug-ins for Module::Starter

After you have created your distribution and seeded it with a few mod-
ules, chances are you’ll want to add more modules. By default,
Module::Starter can’t do this. However, the Module::Starter::Smart
plug-in can.

To activate a plug-in, install it and add a line to your ~/.module-starter/
config file. This leaves the basic Module::Starter setup in place and adds
Module::Starter::Smart:

plugins: Module::Starter::Simple Module::Starter::Smart

From the directory that contains your distribution’s base directory, to add
another module file you run module-starter again:

% module-starter --module=Foo::Buzz --dist=Foo-Bar

Created starter directories and files

This adds Buzz.pm to your Foo-Bar/lib/Foo/ directory and adds lib/Foo/
Buzz.pm to your MANIFEST. Unfortunately, Module::Starter::Smart
doesn’t add a use_ok to your 00-load.t file, so remember to add that
 manually.

Extending Module::Starter

If Module::Starter doesn’t quite fit your needs, you can easily write a
plug-in for it.

Internally, Module::Starter loads your listed plug-ins from left to right,
dynamically making each plug-in on the left the inherited parent of the
module on the right. At the end of the list, it makes Module::Starter the
final inheritor, and calls create_distro on it.

Typically, this means that create_distro in Module::Starter::Simple
is called. This method calls a set of other methods that you can choose to
override. For a sample, look at the documentation for Module::
Starter::Plugin::Template. Whatever plug-in is rightmost in the list
of plug-ins wins the battle of inheritance and gets the first say in what the
given method does. After it does its work, it can in turn call the method on
its parent, continuing the chain of inheritance, or it can hijack the entire
method.

280 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

In the next example, you can see how to create a plug-in that puts your
corporate license in the README file and generates modules that you cre-
ate with Module::Starter.

package Module::Starter::Plugin::CorporateLicense;

use subs qw/

_license_blurb_README_license_module_license/;

sub _license_blurb {

return <<’LICENSE’;

This program is distributed under the Nameless

Corporate License

This software is developed as is with little regard

to quality. Should this software eat your homework

or take away your birthday, please call our support

line where we will jerk you around until you give

up.

LICENSE

}

sub _README_license {

my $self = shift;

my $year = $self->_thisyear();

my $license_blurb = $self->_license_blurb();

return <<”HERE”;

COPYRIGHT AND LICENCE

Copyright © $year Nameless Corporation

$license_blurb

HERE

}

sub _module_license {

my $self = shift;

my $module = shift;

my $rtname = shift;

my $license_blurb = $self->_license_blurb();

my $year = $self->_thisyear();

my $content = qq[

\=head1 COPYRIGHT & LICENSE

Copyright © $year Nameless Corporation

Item 80. Don’t start distributions by hand ❘ 281

Download from <www.wowebook.com>

ptg

$license_blurb

];

return $content;

}

Now, add your plug-in to your ~/.module-starter/config:

plugins: Module::Starter::Simple Module::Starter::Smart ↵

Module::Starter::Plugin::CorporateLicense

The next time that you generate a distribution, you’ll get your license text
instead of the default text.

Use Distribution::Cooker

You might think it is too much work to deal with Module::Starter and
its plug-ins to get what you want. Instead, you can start with a distribution
setup that you like, and use it as a template for your new distributions. You
could even set up that template distribution with Module::Starter.

The dist_cooker program from Distribution::Cooker takes a direc-
tory of Template Toolkit templates and processes them, giving you your
final distribution. It’s really a fancy wrapper around the ttree program:

% dist_cooker

ttree 2.9 (Template Toolkit version 2.20)

Source: /Users/Snuffy/.templates/modules

Destination: /Users/Snuffy/Dev/Perl/Foo

Include Path: []

Ignore: [\b(CVS|RCS)\b, ^#, (\.git|\.svn)\b]

Copy: [\.png$, \.gif$]

Accept: []

Suffix: []

...

The ~/.dist_cookerrc configuration file uses the INI format:

[user]

name = Joe Snuffy

pause_id = bdfoy

email = snuffy@example.com

282 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

[license]

perl = 1

[templates]

dir = /Users/Snuffy/.templates/modules

module = lib/Foo.pm

script = bin/script.pl

This configuration says the template directory is /Users/Snuffy/
.templates/modules. You can put any files that you want in that directory,
and dist_cooker will process it. The dist_cooker program supplies sev-
eral templates variables, such as module and module_file, that you can
use without any other setup. Here’s a sample README template:

You can install this using the usual Perl fashion

perl Makefile.PL

make

make test

make install

The documentation is in the module file. Once you install

the file, you can read it with perldoc.

perldoc [% module %]

If you want to read it before you install it, you can use

perldoc directly on the module file.

perldoc lib/[% module_file %]

This makes it easy to get the distribution exactly how you want it, and usu-
ally that involves almost no code. Less code leads to fewer bugs.

Things to remember

■ Use a code generator to do the repetitive, boilerplate work for you.
■ Customize your Module::Starter output with plug-ins.
■ Use Distribution::Cooker to create a new distribution from cus-

tom templates.

Item 81. Choose a good module name.

Naming your Perl packages well is one of the most important things you
can do. Choose a good name and people will naturally find it on CPAN.

Item 81. Choose a good module name ❘ 283

Download from <www.wowebook.com>

ptg

Choose a bad name, and your otherwise excellent code might never get a
download. Imagine your module going out to CPAN one day. Will people
look at your module name and instantly know what your module does?
Will its name fit in with everything else that’s already on CPAN?

There isn’t a set of formal rules, or even their less restrictive little brother
guidelines, for naming your packages. Your module can use any name that
it likes, but as with all names, a good one goes a long way.

The modules@perl.org (the mailing list for PAUSE admins) and module-
authors@perl.org mailing lists can help you choose a good name. Not only
are they generally good at names, but they also know quite a bit about
what is already on CPAN. They can help you choose a name that puts your
module into the right place with all of the other modules.

Naming goals

A module name must accomplish quite a bit in a few characters, and, once
chosen, rarely affords the opportunity to change it after people start using
it. The name of the module isn’t for you; you don’t need a name because
you created it and understand it. The name is for other people, and those
other people don’t have any of the context that you do. Your name needs
to convey three things: context, key features, and defining characteristics.

Provide context

CPAN is mostly without context other than, “This is something in Perl.”
We can categorize modules, but that categorization lives outside the mod-
ule and disappears once someone downloads it, blogs about it, or uses it in
code. As a maintenance programmer, what would you think about seeing:

use XYZ::WWR::JKL;

You might think that’s a silly example, but we’ve seen module names with-
out a single vowel and no recognizable initializations. Even if your name
makes sense to you and your industry, does it make sense to everyone else?
CPAN is much bigger than any one subject.

The task or the feature the module provides has a context, usually given to
it by its author, who created it to scratch some itch. In the author’s mind,
it’s always obvious what the module does and what the name means. Other
people don’t have that context, and the name needs to provide it.

284 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

For example, in the Debian Linux distribution, the package manager is
called dpkg. As a name alone, however, that has no meaning to someone
who doesn’t use Debian. In the context of Debian, it makes perfect sense.
In the context of Perl, it means nothing, so people need extra clues.

Almost any abbreviation or acronym is going to be ambiguous. If the first
page of Google hits for your initialization isn’t about your topic, then you
most likely have the wrong name.

Describe key features

Some modules are designed for particular tasks. Other modules perform
general sets of tasks. Your name should describe the level of generality. What
does an HTML module do? Well, you really can’t tell from that name. How
about HTML::Parser,HTML::TreeBuilder, and HTML::SimpleLinkExtor?
Those names give you more information about what the module can do
for you. When you choose your name, you want to show that same kind-
ness to other people.

Distinguish characteristics

Many of the modules on CPAN work toward similar goals in different
ways, or work in the same way toward different goals. How many Config
and Getopt modules can you find on CPAN? Can you tell what they all do
just from the names? If your module is going to live under the same name-
space as other modules, how is yours different? Why should people use
your module rather than modules with very similar names?

Some naming conventions

CPAN is managed chaos, and many of its conventions have developed over
time. These aren’t every current convention, and even these might evolve.

App

You can distribute applications as Perl distributions. Typically, those sorts
of distributions go under the App namespace, like App::Ack, App::Cpan,
and App::Prove. The namespace implies that it’s a ready-to-use program
rather than a module.

Item 81. Choose a good module name ❘ 285

Download from <www.wowebook.com>

ptg

Local

By convention, the top-level Local namespace should never conflict with
anything on CPAN. This allows you to be confident that the name you
choose under Local isn’t going to conflict with anything from the out-
side world.

Active projects

Some projects, such as Moose, DBI, DateTime, and Catalyst, try to organ-
ize the activity under their respective namespaces to ensure everything
works together nicely. If you want to add a module to such a project, dis-
cuss it on its mailing list.

Names to avoid

CPAN has been around since 1995, and over time the various administra-
tors have discovered or followed certain conventions to make the designed
anarchy a bit less chaotic. As an evolutionary process, it is historically
inconsistent but modernly optimal. That is, looking at the past as an exam-
ple might not be the best thing. The fact that other people did it doesn’t
mean you should do the same.

Top-level namespaces

In general, top-level namespaces are bad, unless one is a nexus for several
modules under that namespace, or a fanciful name that describes some-
thing more application oriented. You might think that DB is a good name
because it’s the database portion of your code, but it doesn’t say much
about what it does. It also happens to be the namespace the Perl debugger
uses. Remember, the name should give as much context as possible, and DB
certainly doesn’t do that (in either case).

That doesn’t mean that all top-level namespaces are bad. For frameworks
like Moose, Catalyst, or DBI provide a functionality around an idea rather
than a particular low-level or general task. They don’t live in a hierarchy
because they are comprehensive enough to stand on their own.

Net

The Net namespace is one of the most abused namespaces out there. It was
originally designed as a home for the code that knows how to talk various

286 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

defined network protocols, such as FTP, HTTP, NNTP, and so on, but peo-
ple started using it for code that merely uses the network without knowing
anything about it. Modules that interact with Web sites use the network,
but they aren’t about the network, and they have much better homes in
WWW or WebService. If you are implementing a network protocol rather than
an application protocol, then Net might be for you. Otherwise, it isn’t.

Avoid Simple, Easy, Reduced, Tiny

The terms Simple, Easy, Reduced, and Tiny are some of the worst parts
of the names on CPAN. They all indicate that a module is a variation of
another module, but why is that variation interesting? It’s usually missing
or hiding some features, less flexible than the original, and in most cases,
tailored to a particular task the author needed. What is that task, though?
Making it easy for you doesn’t mean it’s easy for the next programmer.

Avoid “API,” “Interface,” and the like

Your module is an API? No kidding? Don’t waste space in your name
telling people what they already know. If your code wasn’t an interface of
some sort, it wouldn’t be very useful.

Naming the module after yourself

Many people, lacking other ideas about what their module does, just use
their own name. They might have really good names, but that doesn’t help
anyone figure out what the code does, even if they do attach Util to the
end. What does Snuffy::Util do? Unless those are utilities for manipu-
lating a Snuffy, then it’s a waste of space in the module name.

Things to remember

■ Use the name of your module to communicate its functionality.
■ Avoid vague and nondescriptive names.
■ Ask for namespace suggestions on modules@perl.org.

Item 82. Embed your documentation with Pod.

A good many software developers, especially those working on sizable
projects, work to coding standards that require them to start off function

Item 82. Embed your documentation with Pod ❘ 287

Download from <www.wowebook.com>

ptg

definitions with block comments that provide key information about that
function—overview, inputs, outputs, preconditions, change history, and
the like. If they format those embedded comments precisely enough,
scripts can parse, extract, and reformat into documentation.

A source file could thus be its own programming reference. This is a good
thing, because it allows developers to tweak the documentation each time
they tweak the code without having to locate and edit a separate docu-
ment. Sometimes this is about all the documentation that a developer can
manage to do correctly.

Perl source code can contain embedded documentation in Pod, or “Plain
Old Documentation,” format. The Perl parser ignores Pod sections when
compiling and interpreting scripts, while other programs supplied with the
Perl distribution can scan source files for documentation sections and format
them as man pages, HTML, plain text, or any of a number of other formats.

Pod basics

Pod is a very simple markup language designed for easy translation to
other formats (text, HTML, etc.). Pod is easily readable in raw form if
worse comes to worst, too.

A Pod document consists of paragraphs set off by blank lines. There are
three different kinds of paragraphs:

Verbatim text

A paragraph whose lines are indented will be reproduced exactly as it
appears—no line wrapping, no special interpretation of escape sequences,
no nothing. Translators that can display different fonts will generally
reproduce verbatim text in a fixed-width font.

Pod commands

A command is a line beginning with the character =, followed by an iden-
tifier, and then some optional text. Currently defined commands, which
may not be understood by all translators, include:

■ =head1 =head2 (Level 1, level 2 headings)

=head1 Understand Packages and Modules.

=head2 Packages

288 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

■ =item (An item in a bulleted or numbered list)

=item 1 ... a numbered item

=item * ... a bulleted item

=item B<NOTE> ... a bolded “other” item

■ =over N/=back (Indent N spaces/Go “back” from indent)

=over 4

=item * Dog

=back

■ =pod/=cut (Beginning of Pod/End of Pod)

=pod

=cut

■ =for X (Next paragraph is of format X)

=for html

■ =begin X/=end X (Bracket for beginning and end of format X)

=begin comment

If you can read this, you are using a text translator.

=end comment

Filled text

A paragraph that isn’t verbatim or a Pod command is treated as ordinary
text. Formatters will generally turn it into a justified paragraph, in a pro-
portionally spaced font if possible. A number of special formatting
sequences are recognized inside filled text:

■ Make italicized text with I<text>

You will be I<very> lucky to have John work for you.

■ Make bold text with B<text>

You will be B<very very> lucky to have Heather ↵

work for you.

■ Show inline code with C<text>

now, add 5 to C<$d[$a,$b]>

Item 82. Embed your documentation with Pod ❘ 289

Download from <www.wowebook.com>

ptg

■ Enforce non-breaking whitespace with S<text>

S<foreach $k (keys %hash)>

■ Embed a special character with E<code>

The less-than, E<lt>, is special in Pod

This will be a double quote E<34>

■ Make a cross-reference with L<text>:

L<name> man page

L<name/ident> item in man page

L<name/”sec”> section in man page

L<”sec”> section in this man page

■ Mark a filename with F<lname>:

Be careful not to delete F<config.dat>!

■ Note an index entry with X<text>

Note that some Pod formatters will recognize function names (an identi-
fier followed by parentheses) and other special constructs “in context” and
automatically apply appropriate formatting to them. In addition, most
Pod formatters can convert straight quotes to “smart” matching quotes,
doubled hyphens to em dashes, and so forth.

Here is an example Pod file:

=head1 My Pod Example

=head2 My 2nd level heading

I<Pod> is a simple, useful markup language for Perl

programmers as well as others looking for a way to

write “Plain Old Documentation.” With Pod, you can:

=over 4

=item 1

Create documentation that can be readily translated

into many different formats.

=item 2

Embed documentation directly into Perl programs.

=item 3

Amaze your friends and terrify your enemies. (Possibly.)

=back

290 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

Author: Joseph N. Hall

Date: 1997

When translated—in this case, by my pod2mif filter—it yields:

Translated Pod file

My Pod Example

My 2nd level heading

Pod is a simple, useful markup language for Perl

programmers as well as others looking for a way to write

“Plain Old Documentation.” With Pod, you can:

Create documentation that can be readily translated into

many different formats.

Embed documentation directly into Perl programs.

Amaze your friends and terrify your enemies. (Possibly.)

Author: Joseph N. Hall

Date: 1997

Man pages in Pod

Although you can use Pod for many different purposes, man pages writ-
ten in Pod should follow certain conventions so that they will resemble
other UNIX man pages. Variables and function names should be italicized.
Names of programs, as well as command line switches, should be bold.

The man page should have a proper skeleton. The first level headings tra-
ditionally appear in CAPITAL LETTERS. The most important of the first
level headings, in the traditional order, are:

■ NAME—Name of the program/library/whatever.
■ SYNOPSIS—Brief example of usage.
■ DESCRIPTION—Detailed description, broken into sections if nec-

essary.
■ EXAMPLES—Show us how we use it.
■ SEE ALSO—References to other man pages, etc.
■ BUGS—Things that need a little work yet.
■ AUTHOR—Your name in lights.

See the pod2man documentation for more information about the layout
of man pages.

Item 82. Embed your documentation with Pod ❘ 291

Download from <www.wowebook.com>

ptg

Things to remember

■ POD allows you to embed documentation directly in your Perl code.
■ There are three types of POD paragraphs: filled text, verbatim text,

and commands.
■ Use the common documentation structure that people expect.

Item 83. Limit your distributions to the right platforms.

Most of the time you should endeavor to make your module useful on any
operating system and version of Perl, but sometimes that just doesn’t work
out. Some modules, say Win32::Process, can work only on Windows.
Perhaps you need to use Perl features that aren’t backward compatible.
Catch incompatibility problems as soon as possible so you give your users
good error messages that tell them what to do.

If you are uploading your work to CPAN, or distributing it internally using
the CPAN toolchain, your error message can let the tool know what hap-
pened so it can respond appropriately. CPAN Testers has a guide for authors
(http://wiki.cpantesters.org/wiki/CPANAuthorNotes) that can help you.

use the right Perl version

The use keyword does more than just load libraries. If you give it a Perl
version number, it requires that the version of the perl interpreter run-
ning that code be equal to or greater than the one you specified. If you
need to use Perl 5.10 features, say so explicitly:

use 5.010;

When perl tries to compile that statement and finds a version mismatch,
it stops the compilation. You should already have this statement in your
5.10 code anyway, since it enables all of the 5.10 features. This feature-
enabling aspect of use is new to Perl 5.10.

Remember that Perl versions use three places in each of the minor and
point portions. People say “Perl 5 10 1” and might write Perl 5.10.1, but
inside perl, that’s 5.010001.

If you need to use an earlier version of Perl, perhaps because you need
some external library that works with only a particular perl, use the $]
special variable. Put your check in a BEGIN block so your program checks
the version as soon as possible.

292 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

You can check for a specific Perl version:

BEGIN {

die “This is perl $], but you need 5.008005”

unless $] == 5.008005;

}

You can check that the Perl version must be less than some version, in this
case, the entire 5.10 series:

BEGIN {

die “This is perl $], but you need a version”

. ‘less than 5.010’

unless $] < 5.010;

}

You can check that the Perl version is between two versions, inclusively:

BEGIN {

die “This is perl $], but you need between “

. ‘5.0006002 and 5.008008’

unless $] >= 5.0006002 and $] <= 5.008008;

}

You can also do this inside your code to let your program follow different
paths or load different modules based on the perl version.

If you are creating a Makefile.PL or Build.PL, you can specify the Perl ver-
sion as a prerequisite:

For Build.PL

my $mb =

Module::Build->new(...,

requires => { ‘perl’ => 5.008001, },);

For Makefile.PL

WriteMakefile(..., MIN_PERL_VERSION => ‘5.010001’,);

Check the operating system

If your code works on only some operating systems, you can check for that,
too. If you have to use just standard Perl, you can look in $OSNAME (the
long version of the $^O special variable: see the perlvar documentation):

Item 83. Limit your distributions to the right platforms ❘ 293

Download from <www.wowebook.com>

ptg

use English qw($OSNAME);

die ‘Unsupported OS: You have $OSNAME but ‘

. “I need Windows!\n”

unless $OSNAME eq ‘MSWin32’;

You’ll have an easier time using Devel::CheckOS, though, since it recog-
nizes families of operating systems. The previous example uses a technique
that requires you to know the right special string, and that represents only
one operating system. The documentation for Devel::CheckOS

(http://search.cpan.org/~dcantrell/Devel-CheckOS-1.61/lib/Devel/
CheckOS.pm) says of the use of that variable: “$^O is stupid and ugly, it
wears its pants as a hat“.”

use Devel::CheckOS qw(os_is);

die ‘OS unsupported! You need Windows to run ‘

. “this program!\n”

unless os_is(‘MicrosoftWindows’);

That “OS unsupported” message is important: the CPAN Testers (Item
97) look for it to decide if they should fail your build because it doesn’t
work, or merely ignore it because it’s not targeting their setup. If you don’t
support their setup, you can also use the die_unsupported(). although
you don’t get to add any extra information to the message:

use Devel::CheckOS qw(os_is die_unsupported);

die_unsupported() unless os_is(‘MicrosoftWindows’);

To see the list of platform names you can use, try this one-liner:

% perl -MDevel::CheckOS -e \

‘print join(“, “, Devel::CheckOS::list_platforms())’

Some of the names you see in the output may look funny. They actually
map to file names, so some operating systems’ names lose their special
characters or formatting.

Check perl’s configuration

When someone compiled perl (try it yourself at least once, Item 110), the
build process stored all the compilation and configuration directives in
the Config module. It’s the same information you see in the output of
perl -V.

294 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

Suppose that you need a threaded perl to run your program. You need to
ensure that you have the right perl before you start. By loading the
Config module, you get access to a %Config hash that lets you access the
values:

use Config;

die “You need a threaded perl to run this program!\n”

unless $Config{usethreads} eq ‘define’;

Perhaps your program needs 64-bit integers. You can check for that in
%Config, too:

use Config;

die ‘You need at least a 64-bit perl to run ‘

. “this program!\n”

unless $Config{ivsize} >= 8;

Things to remember

■ Limit your code to the versions of perl under which it should run.
■ Limit your program to specific operating systems or a specific Perl

configuration as appropriate.
■ Use Devel::CheckOS to detect the operating system.

Item 84. Check your Pod.

Code isn’t the only thing you should test. You also want to ensure that
you’ve done the right thing with your embedded documentation (Item
82). Testing your Pod can find many of the documentation mistakes or
omissions. Often, Perl programmers include these as part of their “author
tests” (Item 88).

Check for proper Pod formatting

Once you write your Pod, you want it to render properly when someone
converts it. Hardly anyone reads raw Pod, and most people probably see it
converted to text for their terminals, or as HTML.

From the command line, you can use the podchecker tool:

% podchecker program.pl

Item 84. Check your Pod ❘ 295

Download from <www.wowebook.com>

ptg

It tells you what you messed up:

*** ERROR: unterminated C<...> at line 6 in file ↵

program.pod

*** ERROR: =over on line 4 without closing =back (at ↵

head1) at line 8 in file program.pod

*** ERROR: empty =head1 at line 8 in file program.pod

*** ERROR: =back without previous =over at line 10 in ↵

file program.pod

program.pod has 5 pod syntax errors.

You can do this from your test suite, too. In t/pod.t, use the example from
the Test::Pod documentation:

use Test::More;

eval ‘use Test::Pod 1.00’;

plan skip_all => ‘Test::Pod 1.00 required’ if $@;

all_pod_files_ok();

This is a nice bit of code. It finds all of the files containing Pod and checks
those for you. It runs only if you have Test::Pod installed.

Check for Pod coverage

Now that you document your Perl code with Pod, you want to ensure that
you document all of it. If you add a new subroutine but forget to add its
documentation, you still have work to do. The Test::PodCoverage mod-
ule can check that for you. Typically, you put this test in t/pod_coverage.t:

use Test::More;

eval ‘use Test::Pod::Coverage 1.00’;

plan skip_all => ‘Test::Pod::Coverage 1.00 required’

if $@;

all_pod_coverage_ok();

It complains about any subroutine that you don’t document with Pod. It
knows how to skip “private” subroutines, whose names conventionally
start with underscores (and aren’t really private), as well as to skip sub-
routines that you expressly do not want to document. For example, you can
tell it not to complain about subroutines’ names that are all uppercase:

296 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

use Test::More;

eval ‘use Test::Pod::Coverage 1.00’;

plan skip_all => ‘Test::Pod::Coverage 1.00 required’

if $@;

all_pod_coverage_ok(

{ also_private => [qr/^[A-Z_]+$/], },

);

Check your spelling

Perfect spelling is rarely high on the list of priorities for the code that you
write. However, having the text in your code spelled properly can give your
distributions a little extra polish. Though other people probably won’t
notice if all of your documentation is spelled correctly, they will notice the
times when it is not.

The difficulty in spell checking documentation in Perl is that the docu-
mentation is typically maintained in Pod blocks interspersed throughout
your code. A standard spell checker calls out many of the code elements,
making it more annoying than useful.

Pod::Spell is a Pod formatter that helps you spell check your embedded
documentation. It parses your code files, ignores anything that it thinks is
code, and prints out Pod as plain text so that spellcheckers like ispell can
easily handle it.

Suppose you have a bit of code with some embedded documentation. Can
you spot the spelling mistakes:

use warnings

use strict;

=pod

Before using this module, check the compatability the

public API and the local version the library on your

machine. Hopefully the scripability can help you get it

done.

=cut

sub do_something_amazing {

...

}

Item 84. Check your Pod ❘ 297

Download from <www.wowebook.com>

ptg

The podspell utility reduces your file down to just the contents of the
Pod blocks:

% podspell speling.pl

Before using this module, check the compatability the

public API and the local version the library on your

machine. Hopefully the scripability can help you get it

done.

You can now easily run this plain text through spell checking tools. In this
case, there are three possible mistakes, and ispell suggests possible
replacements when it can:

% podspell speling.pl | ispell -a | \

perl -ne ‘print if /^[#&]/’

& compatability 3 36: comparability, compatibility, ↵

computability

& API 6 61: AI, APE, APT, BPI, DPI, PI

scripability 57

Remembering to spell check is a whole separate issue. If you package your
code as a Perl distribution, you can simply add a spelling check to all of
your files with Test::Spelling. Your t/pod_spell.t file is simple:

use Test::More;

use Test::Spelling;

all_pod_files_spelling_ok();

Things to remember

■ Check your pod format with podchecker.
■ Check that you’ve documented all of your methods with
Test::Pod::Coverage.

■ Spell check your documentation with Test::Spelling.

Item 85. Inline code for other languages.

Sometimes you need to access software written in a language other than
Perl. In the past, this meant that you had to re-write the library in Perl or
use Perl’s XS mechanism (Item 86) to tie into the library. Re-writing isn’t
always a reasonable option, and XS can be tricky. Luckily, the Inline fam-
ily of modules makes it simple to interface with other languages.

298 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

For instance, there is a considerable number of statistical packages avail-
able in Java. With Inline::Java you can do things like combining the
convenient scriptability and networking ability of Perl with the power of
a Java statistical analysis package like Classifier4J.

use LWP::Simple;

use Inline (

Java => <<’END_OF_JAVA_CODE’

import net.sf.classifier4J.summariser.ISummariser;

import net.sf.classifier4J.summariser.SimpleSummariser;

import net.sf.classifier4J.ClassifierException;

public class MySummarizer {

private ISummariser summarizer;

public MySummarizer() {

summarizer = new SimpleSummariser();

}

public String summarize(String input, int sentences)

throws ClassifierException {

return summarizer.summarise(input, sentences);

}

}

END_OF_JAVA_CODE

, CLASSPATH => ‘Classifier4J-0.6.jar’);

my $input = get(

‘http://www.constitution.org/cons/constitu.txt’);

$input =~ s/\[[^]]*\]/ /g; # remove bracketed text

$input =~ s/\s+/ /g; # do some whitespace cleanup

print MySummarizer->new->summarize($input, 1), “\n”;

In this example, you download a copy the Constitution of the United
States, do some minor clean-ups, and pass the text to the summarize
method that you defined in the MySummarizer Java class:

% perl summary.pl

All legislative Powers herein granted shall be vested

in a Congress of the United States, which shall consist

of a Senate and House of Representatives.

Inlining is useful for more than just using third-party libraries built in
other languages. Suppose that you are checking numbers to see if they are

Item 85. Inline code for other languages ❘ 299

Download from <www.wowebook.com>

ptg

prime. If you are brute-forcing it, prime-checking is a very processor-
intensive operation. Perl code is likely to be very slow:

sub is_prime {

my $number = shift;

my $divisor = int(sqrt $number) + 1;

while ($divisor > 1) {

return 0 if $number % $divisor-- == 0;

}

return 1;

}

my $prime_count = 0;

my $ceiling = 1000000;

foreach (1 .. $ceiling) {

$prime_count++ if is_prime($_);

}

print “There are $prime_count primes under $ceiling\n”;

When you change your code to use Inline::C you can get a substantial
speedup:

use Inline qw(c);

my $prime_count = 0;

my $ceiling = 1000000;

for (1 .. $ceiling) {

$prime_count++ if check_prime($_, int(sqrt $_) + 1);

}

print “There are $prime_count primes under $ceiling\n”;

__END__

__C__

int check_prime(int number, int divisor) {

while (divisor > 1) {

if (number % divisor-- == 0) {

return 0;

}

}

300 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

return 1;

}

The speedup that you get even in this very trivial example is huge!

% time perl prime.pl

There are 78498 primes under 1000000

real 5m40.985s

user 5m28.979s

sys 0m1.462s

% time perl prime_inline.pl

There are 78498 primes under 1000000

real 0m14.295s

user 0m12.223s

sys 0m0.794s

Moving from Perl to C in some cases can really help you out. However, you
are even better off searching for a more efficient algorithm that reduces
the theoretical run time of your code, even if you are already using C.

Things to remember

■ Inline code from other languages to access third-party libraries.
■ Improve your Perl algorithm before you optimize by inlining code

from another language.

Item 86. Use XS for low-level interfaces and speed.

XS is a glue language that connects Perl to C or C++ code. It takes care of
data type conversions and other details for you using a special preprocessor.

With XS, you write functions in C or C++ that you can call from your Perl
script. Within XSUBs, the subroutines that make the connection between
Perl and C, you have full access to Perl’s internals. You can create variables,
change their values, execute Perl code, or do pretty much anything that
suits your fancy.

Many of the cases that you would have historically pulled out XS for can
now be handled more elegantly using the Inline family of modules (Item
85). Be sure to check them out for your cross-language integration, too.

Item 86. Use XS for low-level interfaces and speed ❘ 301

Download from <www.wowebook.com>

ptg

An XS module is actually a dynamically loaded, shareable library. Creat-
ing one is a complex process fraught with details. Fortunately, with the XS
interface you get a bunch of tools that handle most of those details for you.
For reasonably simple situations, you need only run x2hs to get a set of
boilerplate files; add some Perl and XS code; and run make. There are make
targets for building the shareable library, testing it, building a distribution
kit, and installing it.

XSUBs provide a handy way to add operating system supported features to
Perl—they beat the heck out of syscall. You can also use XSUBs to speed
up scripts that are spending a significant proportion of their time in a
small number of subroutines. And, of course, you can use XSUBs to add a
Perl interface to an existing C or C++ library of your own.

Suppose that you need a subroutine that returns a copy of a list, but with
all the elements in random order. In Perl, you might write a Fisher-Yates
shuffle:

sub shuffle2 {

my @result = @_;

my $n = @result;

while ($n > 1) {

my $i = rand $n;

$n--;

@result[$i, $n] = @result[$n, $i];

}

@result;

}

If efficiency is important to your problem, Perl’s not always the best tool
for a task. You can rewrite this in XS to get the speed of C.

Generating the boilerplate

To start your C implementation of your shuffle, use h2xs to generate a set
of boilerplate files:

% h2xs -A -n List::Shuffle

Writing List-Shuffle/ppport.h

Writing List-Shuffle/lib/List/Shuffle.pm

Writing List-Shuffle/Shuffle.xs

302 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

Writing List-Shuffle/Makefile.PL

Writing List-Shuffle/README

Writing List-Shuffle/t/List-Shuffle.t

Writing List-Shuffle/Changes

Writing List-Shuffle/MANIFEST

The h2xs program creates stubs for all of the files that you need to create
your C glue.

Writing and testing an XSUB

XS source code goes into files ending with .xs. The XS compiler, xsubpp,
compiles XS into C code with the glue needed to interface with Perl. You
will probably never have to invoke xsubpp on your own, though, because
it is invoked automatically via the generated Makefile.

XS source files begin with a prologue of C code. A MODULE directive follows
the prologue and sets the Perl namespace:

MODULE = List::Shuffle PACKAGE = List::Shuffle

This indicates the start of the actual XS source. Before you try imple-
menting the shuffle, try simple XSUB that just calls the C standard library
log function and returns the result:

double

log(x)

double x

The return type (double) appears first, on a line by itself at the beginning
of the line. Next are the function name (log) and a list of parameter names
((x)). The lines following the return type and function name are ordi-
narily indented for readability. In this case, there is only a single line in the
XSUB body, declaring that x is type double.

In a simple case like this, xsubpp generates code that creates a Perl sub-
routine named log() that calls the C function of the same name. The gen-
erated code also includes the glue necessary to convert the Perl argument
to a C double, and to convert the result back. (To see how this works, take
a look at the C code generated by xsubpp—it’s actually pretty readable.)

Here is a slightly more complex example that calls the UNIX realpath()
function (not available on all systems):

Item 86. Use XS for low-level interfaces and speed ❘ 303

Download from <www.wowebook.com>

ptg

char *

realpath(filename)

char *filename

PREINIT:

char realname[1024]; /* or use MAXPATHLEN */

CODE:

RETVAL = realpath(filename, realname);

OUTPUT:

RETVAL

This creates a Perl function that takes a string argument and has a string
return value. The XS glue takes care of converting Perl strings to C’s char
* type and back. You don’t think about that when you use it in Perl, where
it doesn’t look any different from any other subroutine:

my $realname = realpath($filename);

The CODE section contains the portion of the code used to compute the
result from the subroutine. The PREINIT section contains declarations of
variables used in the CODE section; they should go here rather than in the
CODE section. RETVAL is a “magic” variable supplied by xsubpp used to
hold the return value. Finally, the OUTPUT section lists values that the XSUB
returns. This will ordinarily include RETVAL. It can also include input
parameters that are modified and returned as if through call by reference.

These examples all return single scalar values. In order to write shuffle,
which returns a list of scalars, you have to use a PPCODE section and do
your own popping and pushing of arguments and return values. This is
less difficult than it may sound. To get things rolling, insert the following
code into Shuffle.xs following the MODULE line:

PROTOTYPES: DISABLE

void

shuffle(...)

PPCODE:

{

int i, n;

SV **array; /* SV is the “scalar value” type */

SV *tmp;

/* allocate storage */

array = New(0, array, items, SV *);

for (i = 0; i < items; i++) {

304 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

/* copy input args */

array[i] = sv_mortalcopy(ST(i));

}

n = items;

while (n > 1) { /* shuffle off to Buffalo */

i = rand() % n;

tmp = array[i];

array[i] = array[--n];

array[n] = tmp;

}

for (i = 0; i < items; i++) {

XPUSHs(array[i]); /* push result onto stack */

}

Safefree(array); /* free storage */

}

The PROTOTYPES: DISABLE directive turns off Perl prototype processing
for the XSUBs that follow.

The strategy here is to copy the input arguments into a temporary array,
shuffle them, and then push the result onto the stack. The arguments will
be scalar values, which Perl represents internally using the type SV *.

Instead of a CODE block, you use a PPCODE block inside this XSUB to disable
the automatic handling of return values on the stack. The number of argu-
ments passed in is in the magic variable items, and the arguments them-
selves are in ST(0), ST(1), and so on.

The SV pointers on the stack refer to the actual values supplied to the
shuffle() function. You don’t want this. You want copies instead, so you
use the function sv_mortalcopy() to make a reference-counted clone of
each incoming scalar.

The scalars go into an array allocated with Perl’s internal New() function,
and then you shuffle them. After shuffling, you push the return values onto
the stack one at a time with the XPUSHs() function, and free the tempo-
rary storage you used to hold the array of pointers. If all this seems sketchy,
which it probably does, consult the perlguts and perlxs man pages for more
details.

At this point, you can save Shuffle.xs and build it:

% make

Item 86. Use XS for low-level interfaces and speed ❘ 305

Download from <www.wowebook.com>

ptg

You will see a few lines of gobbledygook as Shuffle.xs compiles and the
other parts of the build run. If the build worked, next create a test script.
Open the test script template t/List-Shuffle.t and add some lines to test
your new shuffle:

List-Shuffle.t

use Test::More tests => 2;

BEGIN { use_ok(‘List::Shuffle’) }

my @shuffle = shuffle 1 .. 10;

diag “@shuffle”;

pass ‘shuffled’;

Run your tests and you should see that your test works, along with some
diagnostic output that shows the order in the list:

% make test

...

t/List-Shuffle.t .. 1/2 # 4 9 6 1 3 5 7 2 10 8

t/List-Shuffle.t .. ok

All tests successful.

Things to remember

■ Use XS to create Perl interfaces to C libraries.
■ Use an Inline module to create a Perl interface to other languages.
■ Use libraries from other languages instead of reimplementing them in

Perl.

306 ❘ Chapter 9 Distributions

Download from <www.wowebook.com>

ptg

10 ❘ Testing

307

Perl has an amazing test culture, and a great set of tools for testing and
managing your code. It might even have some of the most widely tested
code on the planet, thanks to CPAN Testers (Item 97).

Perl has had a testing infrastructure in place since the first Perl modules
came out. The testing craze really took off when Michael Schwern starting
pushing testing with the Test::More module, which made testing almost
trivial. You simply loaded the module and called some convenience
 functions:

use Test::More tests => 2;

ok($some_value, "The value is true");

is($got, $expected, "The values are the same");

The Test::More module emits TAP (Test Anywhere Protocol), a simple
results format that was started in Perl and has spread to many other
 languages.

The Test::Harness module handled the rest, although you probably
 didn’t notice it doing its job behind the scenes. Test::Harness watched
the test output and made a summary of it.

The Perl community, led by the Birmingham Perl Mongers, developed the
CPAN Testers, which collected these test reports from volunteers as peo-
ple uploaded modules to CPAN. There are now millions of reports in a
publicly browsable database.

Along with that, the practices and techniques of Perl testing have evolved
and become more sophisticated. Not only do Perlers test their Perl code,
but they also test the details of their distributions, they test the format and
spelling of their documentation, and they even test their tests.

Even if you think that tests just create more work for you, after setting up
a reasonable test suite you’ll spend less time chasing bugs and reading

Download from <www.wowebook.com>

ptg

308 ❘ Chapter 10 Testing

through code, and more time adding features and marking things off of
your to-do list. So, don’t wait. Let’s get started right away.

Item 87. Use prove for flexible test runs.

The tests that you write for your code are just Perl programs. Since they are
just Perl programs, you can execute them with perl:

% perl t/my_test.t

You do have to be careful about which version of the module under test
gets loaded, though. More likely than not, you are developing and testing
a module that you have already installed on your system. After all, you
wrote the module because you needed to use it, didn’t you?

As always, perl will search through the paths in @INC and will load the
first version of the module that it finds. Depending on what is in your
search path, this could be the stable version of the module that you previ-
ously installed or it could be the development version of the module that
you are actually intending to test.

How do you ensure that you always load the development version of the
module?

One way is to explicitly include the lib/ directory that your development
code is in on the command line:

% perl -Ilib t/my_test.t

Another option, if you are using build scripts, is to take advantage of the
blib module. The blib module searches your current directory and the next
several higher directories looking for the blib directory created by your
build script, and then adds the first one it finds to the front of @INC:

% make; perl -Mblib t/my_test.t

% ./Build; perl -Mblib t/my_test.t

After you are sure that you’re testing the correct version of your module,
you can start running your tests. However, the resulting output of run-
ning a test script with perl can get out of hand pretty quickly:

1..500

ok 1 - testing some code

ok 2 - another test

Download from <www.wowebook.com>

ptg

ok 3 - let's see if this works

ok 4 - everything should be okay here

ok 5 - checking some functionality

...

ok 500 - this should be looking good

Luckily, perl comes with a handy program called prove. The prove com-
mand runs your test programs and can interpret their output. Instead of
dumping screenfuls of output, prove collects the output and provides you
a nice summary of what happened. The -b switch includes the blib/ direc-
tories in @INC, just as -Mblib does for perl:

% prove -b t/my_test.t

my_test.t .. ok

All tests successful.

Files=1, Tests=500, 0 wallclock secs (0.09 usr 0.01 ↵

sys + 0.09 cusr 0.00 csys = 0.19 CPU)

Result: PASS

If there is a problem with any of your tests, prove gives you more infor-
mation on just that test:

% prove -b t/my_failing_tests.t

my_failing_tests.t .. 1/500

Failed test 'checking some functionality'

at my_failing_tests.t line 9.

Looks like you failed 1 test of 500.

my_failing_tests.t .. Dubious, test returned 1 (wstat 25↵

6, 0x100)

Failed 1/500 subtests

Test Summary Report

my_failing_tests.t (Wstat: 256 Tests: 500 Failed: 1)

Failed test: 5

Non-zero exit status: 1

Files=1, Tests=500, 0 wallclock secs (0.08 usr 0.01 sy↵

s + 0.08 cusr 0.00 csys = 0.17 CPU)

Result: FAIL

If all prove did was interpret and summarize the test output, it would still
be a valuable tool; however, prove does much more.

Item 87. Use prove for flexible test runs ❘ 309

Download from <www.wowebook.com>

ptg

Randomize test order

One very useful feature of prove is its ability to shuffle the order in which
it executes your test files. If you have multiple test files, you can pass them
all to prove along with the --shuffle option, and your test files will run
in a pseudo-random order. This helps ferret out inter-dependencies
between your scripts, such as data from one test file affecting a later test file:

% prove --shuffle

Another great feature of prove is the ability to run tests in parallel. Pass in
a -j argument followed by a number of tests to run in parallel, and prove
will run multiple tests at once. This can reduce the real time it takes your
tests to run.

prove has the ability to save state between runs and use the state from a
previous run to help drill down into issues using the --state flag.

For instance, you might shuffle your tests and suddenly you experience a
test failure. Since a test shuffle changes the order of test execution, you
might not be able to recreate the failure easily. However, if you saved state
during the shuffle, you can rerun the same shuffle order:

% prove --shuffle --state=save

... some failure output...

% prove --state=last t/*t

You can also do things such as running only your failing or passing tests
from a previous run. You can run your tests in a variety of orders: fastest
to slowest, slowest to fastest, or newest to oldest, or just run the tests that
have changed since the last time state was modified. You don’t have to
rerun the entire test suite if you need to investigate certain test failures.

prove with other languages

prove doesn’t really care if your tests are written in Perl, or if you are test-
ing Perl code. It expects test output in the Test Anywhere Protocol (TAP)
format that was started in Perl and spread to other languages. You saw an
example in the first output example in this Item.

You can just as easily test programs in any other language using the
--exec argument, as long as the programs emit results in a format under-

310 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

standable by the test harness being used by prove. If you want to run your
test files with ruby, that’s easy to do:

% prove --exec '/usr/bin/ruby -w' t/*t

Things to remember

■ Run a single test when you want to focus on its features.
■ Use prove to selectively run groups of tests.
■ Use prove to run tests for other languages, too.

Item 88. Run tests only when they make sense.

The default Perl distribution setup puts all of the test files in the t/ direc-
tory. The build script typically runs all of the test files every time, although
you don’t have to do that if you use prove instead (Item 87).

Some tests you need just to ensure that you complete all your program-
ming tasks. Other tests you need only for certain situations. With a little bit
of test wrangling, you can ensure that tests run only in the situations where
they should run.

Author tests

Not all tests deal with the functionality of the code. The most common
class of tests that should be filtered is “author” tests. These tests include
checks of the embedded documentation (Item 84), tests about the tests
(Item 96), and “kwalitee” tests (Item 68), among others. Though impor-
tant to the quality of your distribution, the failure of any one of these tests
shouldn’t prevent a person from installing your module.

Use the TEST_AUTHOR environment variable

A common way to prevent these author tests from running on machines
other than yours is to use an environment variable, such as
$ENV{TEST_AUTHOR}, to trigger the test:

use Test::More;

plan skip_all =>

'Set $ENV{TEST_AUTHOR} to enable this test.'

unless $ENV{TEST_AUTHOR};

Item 88. Run tests only when they make sense ❘ 311

Download from <www.wowebook.com>

ptg

eval "use Test::Pod 1.14";

plan skip_all => 'Test::Pod 1.14 required' if $@;

all_pod_files_ok();

Beware: TEST_AUTHOR is a fairly common environment variable to set for
enabling author tests. Other people developing their own modules might
have already set that variable, and they might be surprised when they run
your extra tests. Likewise, you might be bitten by the same thing when you
run their tests.

You might think that you can fix the unexpected author test problem by
checking the value of $ENV{TEST_AUTHOR} for your user name:

plan skip_all =>

'Set $ENV{TEST_AUTHOR} to enable this test.'

unless $ENV{TEST_AUTHOR} eq 'SNUFFY';

However, what if other people, such as your co-maintainers, want to run
those tests? Now they have to pretend to be you! That’s not very nice.

Use the xt/ directory

Instead of putting your author tests in the same directory as your code
tests, you can put them in another directory. Typically this is the xt/ direc-
tory (for extra tests). You can then run those tests with prove when you
need them (Item 87).

If you don’t want to risk distributing your author tests and you’ve put all
of them in a separate directory, you can exclude that directory from your
distribution with MANIFEST.SKIP, which uses Perl regular expressions to
filter files from MANIFEST:

^xt/

If you don’t have your files in a separate directory, you can exclude par-
ticular files, although you have to ensure that you now maintain the list
yourself:

t/pod.t

t/pod_coverage.t

312 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

Limit tests to the right situations

Skipping OS-dependent tests looks almost identical to skipping author
tests, only instead of an environment variable, you rely on the $^O variable
in Perl:

use Test::More;

plan skip_all => 'Skipping Linux-only tests'

unless $^O eq 'linux';

Using skip_all skips the entire file. However, you might need to skip only
a few tests in the middle of your test file. Test::More has special magic
that it can use in a block labeled SKIP:

SKIP: {

skip 'Skipping Linux-only tests', 2

unless $^O eq 'linux';

ok(...);

is(...);

}

ok(1 == 1, 'The universe is stable');

SKIP: {

skip 'Skipping thread-only tests', 2

unless $Config{'usethreads'} eq 'define';

ok(...);

is(...);

}

You can also reuse the concepts that limit your distribution to the right
platforms (Item 83) to limit your tests to the right platforms.

Skip tests in an automated environment

The CPAN Testers (Item 97) automatically test any module that you
upload to CPAN. This is done programmatically, and usually there is no
person monitoring the tests. You probably don’t want to run some of your
tests in these cases. For instance, if you’re creating a graphical interface
and expect the user to push a button, the automatic testing process isn’t

Item 88. Run tests only when they make sense ❘ 313

Download from <www.wowebook.com>

ptg

going to work for you. To get around this, use another SKIP block and
check the value of the AUTOMATED_TESTING environment variable:

SKIP: {

skip 'These tests needs a real person', 2

if $ENV{AUTOMATED_TESTING};

test_start_window();

test_button_push();

}

Things to remember

■ Put your author tests into the xt/ directory to separate them from user
tests.

■ Use a SKIP block to disable tests when they don’t apply.
■ Disable interactive tests by checking $ENV{AUTOMATED_TESTING}.

Item 89. Use dependency injection to avoid special test logic.

You might want to connect to a production database when your code is on
production systems, but to a test database otherwise. Maybe you don’t
want to send out e-mail when you are running tests in a continuous build
(Item 98). No matter what the scenario, the easy (and wrong) thing to do
is to add extra conditional logic to your code:

my $dbh =

($test_mode)

? connect_to_mock()

: connect_to_prod();

if (not $testing) {

send_nag_email();

}

We’ve all done this, even if we don’t want to admit it. The code looks
harmless, but it actually creates a problem. These conditional branches
guarantee that you cannot or will not test some of the code branches, lim-
iting your test coverage (Item 96). This can be the source of some embar-
rassing errors when you forget to put the test check around code that ends
up sending junk e-mail to all of your customers.

314 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

Luckily, there are some good solutions for avoiding the problem altogether.
Inversion of control is one elegant solution—specifically, inverting control
through dependency injection. As a bonus, dependency injection is a good
programming practice even outside of the realm of testing. Once you get
the hang of it, you’ll start using dependency injection throughout your
code base.

In its simplest form, dependency injection constructs dependencies for an
object outside of the object itself. Major parts of the functionality come
from other objects you create outside of the object of interest.

Here is the constructor for class Foo that takes in arguments for a new
database handle, creates the handle, caches it, and then returns a new Foo
object:

package Foo;

sub new {

my ($class, $dsn, $user, $password, $parameters) = @_;

my $self = bless {}, $class;

$self->{dbh} =

DBI->connect($dsn, $user, $password, $parameters);

return $self;

}

To inject the DBI dependency instead of constructing it manually, all you
need to do is pass an already-constructed database handle:

package Foo;

sub new {

my ($class, $dbh) = @_;

my $self = bless {}, $class;

$self->{$dbh} = $dbh;

return $self;

}

On the surface this seems like a trivial change, but it makes your code
much more flexible. In the first example, you could test the code by pass-
ing in valid DBI parameters so you log onto a test database of some sort,
but that always creates a real database connection. With the second exam-
ple, you can pass in any type of object for the database handle that you

Item 89. Use dependency injection to avoid special test logic ❘ 315

Download from <www.wowebook.com>

ptg

want. It can be a reference to a test database. It can be a mocked object
(Item 92). It can be anything that can fake class Foo into thinking that it
is talking to a live database handle.

Often, people pair up the factory design pattern with dependency injec-
tion. You create a factory that constructs and returns the database object
for you:

package DatabaseFactory;

sub new {

my ($class, $dbh) = @_;

my $self = bless {}, $class;

$self->{dbh} = $dbh;

return $self;

}

sub get_dbh {

my ($self) = @_;

return $self;

}

sub set_dbh {

my ($self, $dbh) = @_;

$self->{dbh} = $dbh;

}

package Foo;

sub new {

my ($class, $database_factory) = @_;

my $self = bless {}, $class;

$self->{database_factory} = $database_factory;

return $self;

}

sub do_something {

my ($self) = @_;

my $dbh = $self->{database_factory}->get_dbh();

}

316 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

For testing, you can create a mock database handle, and you don’t have to
change anything in your target code:

my $dbh = create_new_mock_database_handle();

my $factory = DatabaseFactory->new($dbh);

my $foo = Foo->new($factory);

$foo->do_something();

This not only adds dependency injection, it also adds an extra layer in your
code that allows you to do things such as pooling objects to return from
the factory or changing the object at arbitrary times during execution:

my $dbh = create_new_mock_database_handle();

my $factory = DatabaseFactory->new($dbh);

my $foo = Foo->new($factory);

$foo->do_something();

$factory->set_dbh(

create_modified_mock_database_handle());

$foo->do_something();

Factories can get clunky quickly. If you are going to be doing a lot of
dependency injection and have a large application, check out an inversion
of control framework like Bread::Board.

Things to remember

■ Don’t put test versus production logic in your code.
■ Construct dependency objects outside the objects that use them.
■ Create factories that construct dependency objects.

Item 90. Don’t require more than you need to use in your
methods.

Even if you are using good dependency injection (Item 89), keep the num-
ber of dependencies that you actually need to a minimum. Any more than
a couple of dependencies will start to drive you insane and make your code
unmaintainable.

Consider a module that checks your car’s license to ensure that it hasn’t
expired. Maybe this Perl code lives in one of those automated cameras on
traffic signals. The module doesn’t represent the automobile itself, but it
can use an automobile object to access the license information:

Item 90. Don’t require more than you need to use in your methods ❘ 317

Download from <www.wowebook.com>

ptg

package Auto::LicenseChecker;

Also called City::RevenueGenerator

use DateTime ();

sub new {

my ($class, $automobile) = @_;

my $self = bless {

automobile => $automobile

}, $class;

}

sub check_expired_license {

my ($self) = @_;

my $licenseplate =

$self->{automobile}->get_licenseplate;

return $licenseplate->get_expiration <

DateTime->new->now();

}

To construct the Auto::LicenseChecker object, you passed as an argu-
ment an entire automobile object even though you needed only the license
plate. Perhaps you had to construct an Automobile that required specifi-
cation of every part before it would give you an object:

use Test::More tests => 1;

my $automobile = Automobile->new(

engine => Engine->new,

left_front_tire => Tire->new,

...

license_plate => LicensePlate->new($number),

...

);

my $checker = Auto::LicenseChecker->new($automobile);

ok(not $checker->check_expired_license,

'legal to drive');

That’s a lot of work, an excessive memory footprint, and too much to con-
sider just to check the expiration date on the plate. Does that camera really

318 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

care if your car has four tires or an engine? As long as you are going
through its intersection, it just wants to figure out which car you are and
how to charge you. Instead of giving it the whole Automobile object, just
give it the license plate object:

package Auto::LicenseChecker;

use DateTime ();

sub new {

my ($class, $licenseplate) = @_;

my $self = bless {

licenseplate => $licenseplate,

}, $class;

}

sub check_expired_license {

my ($self) = @_;

return $self->{licenseplate}->get_expiration <

DateTime->new()->now();

}

This reduces the amount of setup work you have to do in your test, since
you can ignore most parts of the automobile:

use Test::More tests => 1;

my $plate = LicensePlate->new($license_plate);

my $checker = Auto::LicenseChecker->new($plate);

ok(not $checker->check_expired_license,

'legal to drive');

This is another one of those situations where the difficulty in testing sig-
nals the difficulty in using the code. If you have to set up too much in your
test, you probably have to set up too much in production code, too.

Things to remember

■ Give your methods only the information they need.
■ Remember that excessive setup in tests means excessive setup in code.

Item 90. Don’t require more than you need to use in your methods ❘ 319

Download from <www.wowebook.com>

ptg

Item 91. Write programs as modulinos for easy testing.

Many Perl programs start off innocently enough as merely a few lines of
code that solve the problem of the day. You never think you’ll use the code
again, so you aren’t as careful as you could be. Then somebody finds out
about it, asks you to improve it, and eventually you have a massive pro-
gram that seems to run your entire company. What was once innocent is
now a big ball of mud, and it’s all your fault.

The problem with this sort of evolution is that it’s really hard to compart-
mentalize the different parts of your program and test them individually.
A typical Perl program starts at the beginning and goes to the end. If you
want to test one bit, you have to run all of the other parts, too. Anything
you do, like printing to standard output or sending warnings to standard
error, now becomes a testing problem.

To get around this problem, you can start every program as if it is a mod-
ule, even though it still acts like a program. This sort of program is known
as a modulino, or “little module,” since it starts off small, just like your
innocent program.

The trick is to make your code act like a program when you treat it as a
program, but act like a module when you use it as a module. That is, it
should run and do its job from front to back when you run it, but not do
anything other than compile when you load it as a module.

In its simplest form, you check caller. If you loaded the file as a module,
there is a higher level to the module, the file that loaded it, and caller is
true. If you ran it as a program, there is no higher level, so caller is false.
You use that to decide what to do:

package MyApplication::Icelandic;

use warnings;

use strict;

use utf8;

MyApplication->run unless caller;

sub run {

print "Starf þitt byrjar hér.\n";

}

1;

320 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

This looks like a typical Perl program, but you put all of the interesting
stuff in run, which is like the main routines that you might expect to have
in other languages. There’s nothing special about the name run; some peo-
ple like the traditional main, some like activate, and so on. As long as you
isolate the executable portion of your module in a subroutine so you delay
doing any real work until you are ready, you’re constructing a modulino.
You have actually gone back a step in language evolution, since Perl was
trying to save you the typing by assuming the whole file was your main
routine.

Now, as you add to your program, think less about typing out a pile of
statements in the run subroutine and more about separating the func-
tionality into separate subroutines.

Continuing with the example, suppose that you now want to test your
modulino. The code has some problems that make testing difficult. The
run method outputs only to the default filehandle, and it outputs only a
single hard-coded message. Though this little chunk of code can do only
the one thing, it still largely has the same problems encountered when you
test a full program.

You can aid testing by separating the output destination from run. One
way to do this involves creating an application object where you can set the
output filehandle as one of the attributes:

package MyModulino;

use strict;

use warnings;

__PACKAGE__->new->run unless caller;

sub run {

my ($application) = @_;

print { $application->{output_fh} }

"Your work starts here\n";

}

sub new {

my ($class) = @_;

my $application = bless {}, $class;

$application->init;

Item 91. Write programs as modulinos for easy testing ❘ 321

Download from <www.wowebook.com>

ptg

$application;

}

sub init {

my ($application) = @_;

$application->{output_fh} = *STDOUT;

}

sub output_fh {

my ($application, $fh) = @_;

if ($fh) { $application->{output_fh} = $fh }

$application->{output_fh};

}

1;

Now testing is a bit easier. You load the modulino in your test program,
construct a new application object, and set the output filehandle to a scalar
reference (Item 54):

use Test::More tests => 3;

my $class = 'MyModulino';

use_ok($class)

or die 'Bail out! Could not load module!';

my $application = $class->new;

isa_ok($application, $class);

my $output_string;

open my ($fh), '>:utf8', \$output_string;

$application->output_fh($fh);

$application->run;

like($output_string, qr/work/);

Not only can you easily test MyModulino, but you can easily subclass it
doing the same thing. You can separate the part of the application that
prints the message just as you did with the output filehandle:

322 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

package MyModulino;

use strict;

use warnings;

binmode STDOUT, ':utf8';

__PACKAGE__->new->run unless caller;

sub run {

my ($application) = @_;

print { $application->{output_fh} }

$application->message;

}

... same as before

sub message {

"Your work starts here\n";

}

1;

Now you can test the message without going through the rest of the program:

use Test::More tests => 3;

my $class = 'MyModulino';

use_ok($class)

or die 'Bail out! Could not load module!';

my $application = $class->new;

isa_ok($application, $class);

like($application->message, qr/work/);

When you decide that you need to change the message, you make a very
small subclass that provides a new message:

package MyModulino::Icelandic;

use strict;

use warnings;

Item 91. Write programs as modulinos for easy testing ❘ 323

Download from <www.wowebook.com>

ptg

use utf8;

use base qw(MyModulino);

__PACKAGE__->new->run unless caller;

sub message {

"Starf þitt byrjar hér.\n";

}

1;

Things to remember

■ Create programs as modulinos for easier testing and subclassing.
■ Test your application in pieces.
■ Create small subclasses to override features.

Item 92. Mock objects and interfaces to focus tests.

Sometimes you want to test a small part of your code without dealing with
the rest of the logic and data that go around it. For these cases, it is often
useful to mock, or fake, some parts of the code so you can focus on the
feature you’re testing and not on every feature that leads up to it.

Say, for instance, that you are testing code that sums a list of numbers. In
the real code, these numbers come from a database query:

package MySum;

use DBI;

sub sum_values_per_key {

my ($class, $dsn, $user, $password, $parameters) = @_;

my %results;

my $dbh =

DBI->connect($dsn, $user, $password, $parameters);

324 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

my $sth = $dbh->prepare(

'select key, calculate(value) from my_table');

$sth->execute();

while (my ($row) = $sth->fetchrow_arrayref()) {

$results{ $row->[0] } += $row->[1];

}

$sth->finish();

$dbh->disconnect();

return \%results;

}

1;

You could create a SQLite database for testing (Item 93), but the
calculate() method call in the SQL makes that difficult, since it’s spe-
cific to your production database. Although you might consider depend-
ency injection (Item 89), in some cases you need more than that, especially
when you don’t control the code you need to test.

Using Test::MockObject

The easiest thing to do in your MySum situation is to mock the database
layer. Since the code was poorly written and accesses DBI directly, you’ll
have to create a fake DBI object to stand in for the real thing.

Start by creating a “fake” module. You don’t want to load DBI, so you have
to trick Perl into thinking that you’ve already loaded it. With fake_module,
you do just that:

use MySum;

use Test::More qw(no_plan);

use Test::Deep;

use Test::MockObject;

my $dbi_mock = Test::MockObject->new;

my $sth_mock = Test::MockObject->new;

$dbi_mock->fake_module('DBI',

connect => sub { $dbi_mock });

Item 92. Mock objects and interfaces to focus tests ❘ 325

Download from <www.wowebook.com>

ptg

Once you’ve tricked Perl into thinking that it has already loaded DBI, you
can tell it how to respond to methods. Whenever you call DBI->prepare,
you want to return the fake statement handle $sth_mock, and you want
disconnect to always return true:

$dbi_mock->set_always('prepare', $sth_mock);

$dbi_mock->set_true('disconnect');

Similarly, you want the $sth_mock object to return some fake data. You
assume that the SQL query is going to return what you need; you’re not
testing the database or the query, but are testing the summing feature:

$sth_mock->set_true('execute', 'finish');

$sth_mock->set_series(

'fetchrow_arrayref',

[first => 40],

[first => 70],

[second => 100]

);

Now you can call sum_values_per_key. Even though it tries to make a
real DBI object, Test::MockObject intercepts this attempt and uses your
mocked methods instead:

cmp_deeply(

MySum->sum_values_per_key(

'dbi:Oracle:testdb', 'user',

'password', { RaiseError => 1 }

),

{ first => 110, second => 100 },

'sum values'

);

You don’t always need to fully mock an object in order to get your tests to
run. Sometimes simply overriding a method or two will do. For cases like
this, use Test::MockObject::Extends to selectively replace methods:

use Test::More 'no_plan';

use Test::MockObject::Extends;

use DateTime;

my $dt =

DateTime->new(year => 1979, month => 10, day => 22);

326 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

$dt = Test::MockObject::Extends->new($dt);

$dt->set_always(year => 2009);

is($dt->year, 2009, 'year overridden');

is($dt->month, 10, 'month untouched');

Redefine methods through the symbol table

Sometimes the Test::MockObject and Test::MockObject::Extends
methods can be overkill. You shouldn’t be afraid of messing with the sym-
bol table if you have to.

If you need to redefine only the return value of the year method in
DateTime, you can replace the definition of the subroutine. It’s best to do
this in a small scope to limit your damage. Since this is generally a bad idea
for code, Perl will warn you about your replacement. You can turn off the
redefine class of warnings when that’s what you want to do:

use Test::More 'no_plan';

use DateTime;

my $dt =

DateTime->new(year => 1979, month => 10, day => 22);

{

no warnings qw/redefine/;

local *DateTime::year = sub { return 2009 };

use warnings;

is($dt->year, 2009, 'year overridden');

is($dt->month, 10, 'month untouched');

}

Now every call to year returns your value of 2009.

Sometimes you want to keep the original subroutine, just add more code
around it. In that case, you can wrap the code but still use the original.
Before you redefine the method, you assign the CODE part of the typeglob
to a variable, so you keep the original definition. In this case, you save it in
$original, and you can call it again later with &$original, using the &
in the front and no parentheses so it uses the current value of @_:

use Test::More 'no_plan';

use DateTime;

Item 92. Mock objects and interfaces to focus tests ❘ 327

Download from <www.wowebook.com>

ptg

my $dt =

DateTime->new(year => 1979, month => 10, day => 22);

{

no warnings qw/redefine/;

my $original = *DateTime::year{CODE};

local *DateTime::year = sub {

my $year = &$original;

print STDERR "The real year is $year\n";

return 2009;

};

use warnings;

is($dt->year, 2009, 'year overridden');

is($dt->month, 10, 'month untouched');

}

Even though you have overridden the method, the output shows that you
still called the original one:

The real year is 1979

ok 1 - year overridden

ok 2 - month untouched

1..2

If you really want to do this sort of thing, you probably don’t want to do
it by hand; the Hook::LexWrap module can take care of all of the details
for you.

Overriding Perl built-ins

Sometimes it’ll be not modules that you need to mock, but the built-in
Perl functions like time. If you don’t mind overriding the method com-
pletely, you can use the subs pragma to define your own, and use it in
preference to the real one:

my $fixed_time = 1234567890;

use subs qw(time);

328 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

sub time {

return $fixed_time;

}

is(time, $fixed_time, 'frozen in time');

If you need to be a little more selective, you can override methods in the
CORE::GLOBAL namespace, where Perl keeps the definitions for all of its
built-ins. There’s a trick to this, though: you have to do it in a BEGIN block
before you use it:

my $fixed_time = 1234567890;

BEGIN {

*CORE::GLOBAL::time = sub { CORE::time };

}

ok(time > $fixed_time, 'system time');

{

no warnings qw(redefine);

local *CORE::GLOBAL::time = sub { $fixed_time };

is(time, $fixed_time, 'frozen in time');

}

This can be especially handy when you have to mock code that would nor-
mally do something you need to prevent during testing. For instance, you
know that unlink will delete files, but maybe you want to keep them
around so you can see what is in them:

BEGIN {

*CORE::GLOBAL::unlink = sub {

print "Not unlinking @_";

};

}

Now any code that calls unlink calls your version instead.

Things to remember

■ Test::MockObject allows you to fake classes and methods.
■ Redefine a subroutine by assigning to its typeglob.
■ Override Perl built-ins through the CORE::GLOBAL namespace.

Item 92. Mock objects and interfaces to focus tests ❘ 329

Download from <www.wowebook.com>

ptg

Item 93. Use SQLite to create test databases.

Code that interfaces with a database management system poses an interest-
ing challenge for testing. A common strategy is to create a test version of the
database and connect to it in your tests. You can load the test database with
a known set of data, and then write tests against it. Your test code is simple,
with minimal-to-no mocked objects (Item 92). The test environment is
much more like your production environment. Sounds great, doesn’t it?

Connecting to a live test instance of your database is good for integration
tests. However, for unit tests that you need to execute repeatedly through-
out development, connecting to a test database poses more problems than
it solves.

Establishing a connection to a database management system like Oracle or
MySQL can be slow enough that it disrupts the flow of your development
routine, especially if your tests repeatedly connect and disconnect to the
database. A second or two added to the execution time of your test suite
can break your train of thought and discourage you from running tests
often.

Running multiple tests at once can introduce race conditions. If you’re
running your tests in parallel or if you run your tests manually while your
continuous build is running, you can end up having one test change data
that another test depends on. This can cause seemingly random failures
that are difficult to track down.

Your broken code might also destroy data in your production database.
Accidentally logging in as the wrong user or connecting to the wrong cre-
dentials could have you running your tests against a production database
and wreaking havoc.

Local test databases

SQLite is not a Perl project but a C-based library that implements a local
database. According to the SQLite Web site (http://www.sqlite.org/):
“SQLite is a software library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine.” That sounds per-
fect for a test database.

SQLite allows you to interact with a database without the overhead of a full
database management system. Since SQLite is a local library, all of your

330 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

database communication happens locally in the same application space as
your tests. There is no network latency, and there is no handshaking.

Suppose that your production code normally connects to MySQL:

my $dbh =

DBI->connect('dbi:mysql:my_database', 'user', 'password',

{ other => 'settings' }

);

You need to change only the arguments to connect to use SQLite instead:

my $dbh =

DBI->connect('dbi:SQLite:database.db', q{}, q{},

{ other => 'settings' }

);

SQLite creates (or reads) a file called database.db. SQLite supports many
of the SQL constructs found in popular database management systems.
In some cases, when SQLite doesn’t support a SQL construct, it at least
silently accepts the SQL, so that your code doesn’t choke.

You can also create an in-memory SQLite database by not specifying a file
name in connect. With this setup, you get an empty database for each call to
connect, and you need to create the tables and fill in the data at test time:

my $dbh =

DBI->connect('dbi:SQLite:', q{}, q{},

{ RaiseError => 1 });

$dbh->do('create table test_table '

. '(id integer, value varchar)');

SQLite is quite handy for testing, but it’s not limited to test-only applica-
tions. Many open source and commercial tools use SQLite as the data store
behind their products. It is a lightweight and proven library that you
should definitely look into.

Things to remember

■ Don’t use production databases to test your code.
■ Use SQLite to stand in for production databases during your tests.
■ Create in-memory test databases with SQLite.

Item 93. Use SQLite to create test databases ❘ 331

Download from <www.wowebook.com>

ptg

Item 94. Use Test::Class for more structured testing.

Test::More provides a great toolkit, but is very lackadaisical on structure.
Many programmers dream up their own systems of organization. Some-
times this works, and provides just the right fit. Sometimes this ends up being
an exercise in reinventing the wheel poorly. People coming from an xUnit
background are typically dismayed at this apparent lack of discipline.

Luckily, the Test::Class module provides the structure that will be famil-
iar to anyone who has used an xUnit-style framework. Test::Class is an
object-oriented testing framework that works in conjunction with other
Test::Builder modules to provide a level of organization to test code.

As with other xUnit style tests, you create methods in your class that serve
as the testing infrastructure:

package MyTest;

use base 'Test::Class'; # inherit testing framework

use Test::More; # no plan needed

use My::Class::Under::Test;

my %test_data = (

123 => 'hello',

456 => 'world',

);

sub connect_to_database : Test(startup) {

my ($self) = shift;

$self->{dbh} = connect_to_database;

$self->{insert_sth} =

$self->{dbh}

->prepare('insert into test_table (key, value) '

. 'values (?, ?)');

$self->{delete_sth} =

$self->{dbh}

->prepare('delete from test_table where key = ?');

}

sub disconnect_from_database : Test(shutdown) {

my ($self) = shift;

332 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

$self->{insert_sth}->finish if $self->{insert_sth};

$self->{delete_sth}->finish if $self->{delete_sth};

$self->{dbh}->disconnect if $self->{dbh};

}

sub insert_test_data : Test(setup) {

my ($self) = shift;

for my ($key, $value) (each %test_data) {

$self->{insert_sth}->execute($key, $value);

};

}

sub create_an_object_to_test : Test(setup) {

my ($self) = shift;

$self->{object} = My::Class::Under::Test->new;

}

sub clean_up_after_running_a_test_method : Test(teardown)

{

my ($self) = shift;

for my ($key) (keys %test_data) {

$self->{delete_sth}->execute($key);

};

}

sub do_a_single_test : Test {

my ($self) = shift;

is(

scalar(keys %test_data),

$self->{object}->row_count,

'all data accounted for'

);

}

sub run_a_fixed_number_of_tests : Test(2) {

my ($self) = shift;

isa_ok($self->{object}, 'My::Class::Under::Test');

can_ok($self->{object}, qw(get row_count));

}

Item 94. Use Test::Class for more structured testing ❘ 333

Download from <www.wowebook.com>

ptg

sub run_a_dynamic_number_of_tests : Tests {

my ($self) = shift;

for my ($key, $value) (each %test_data) {

is(

$test_data{$key}, $self->{object}->get($key),

"lookup by key $key"

);

};

}

Each of the test methods is marked with an attribute (which we don’t cover
in this book, but you can read about in the perlsub documentation). Each
of these attributes has a special meaning that is fairly easy to deduce, even
if you don’t know how attributes work:

Test(startup)

Startup methods execute once per run of the test suite and before any of
the other methods. You use them for costly operations and to set up data
structures that you can use in all of the tests without having to repopulate
them.

Test(shutdown)

Shutdown methods execute once per run of the test suite but after all of the
other methods. You use these methods for any final cleanup before your
test program halts.

Test(setup)

Setup methods execute once before each test method. For example, if you
have six test methods, the setup methods execute six times, once for each
time, just before a test method. You use setup methods to build data and
objects that you need to refresh for each run of the test.

Test(teardown)

Teardown methods are the converse of setup methods. They execute just
after each test method and you use them to clean up after each test.

334 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

Test[n]

Test methods contain the actual tests to execute. You can declare one test,
(Test), multiple tests, (Test(n)), or an unknown number of tests,
(Tests).

Now that you’ve put all of the tests into methods, they don’t run unless you
call them. The Test::Class framework provides a method called
runtests that handles this for you; all that you have to do is call it.

You can create an extra .t file that does this for you, or use the modulino
technique (Item 91) to run the tests when you call the module as a
 program:

__PACKAGE__->runtests() unless caller;

This allows you to run your test module directly:

% prove test/MyTest.pm

One parting note: this example showed tests connecting to a database in
order to compactly illustrate all of the hooks in Test::Class. You don’t
have to connect to a production database if you set up a test database or
mocks (Item 92).

Things to remember

■ Use the Test::Class module for xUnit functionality in Perl.
■ Add special test methods to your module.
■ Run your unit tests normally, or call your module as a program.

Item 95. Start testing at the beginning of your project.

Agile methodologies and test-driven development (TDD) are very popu-
lar development practices. Whether you are a staunch advocate of TDD or
think that it is just the latest fad, there are some valuable lessons that you
can learn. If you don’t code with testing in mind, you will have a very dif-
ficult time adding tests later in your development cycle.

With true test-driven development, you always write a test first and then
write the code necessary to make that test pass. In TDD, you first write a
test that runs your not-yet-written code:

Item 95. Start testing at the beginning of your project ❘ 335

Download from <www.wowebook.com>

ptg

use Test::More tests => 3;

BEGIN { use_ok('UpperCaser') }

my $uc = UpperCaser->new();

is($uc->uc('addison clark'), 'ADDISON CLARK');

is($uc->uc_first('ella & ginger'), 'Ella & Ginger');

Now you work your way through the error messages emitted from prove
(Item 87), coding enough to fix each new error along the way. First, you
run the test before the module exists:

% prove t/uc.t

Error: Can't locate UpperCaser.pm in @INC

The test can’t load the module since it doesn’t exist yet, so you create the
module file, but without adding any code yet. Now the test fails because it
can’t find the new method:

% prove t/uc.t

t/uc.t .. 1/3 Can't locate object method "new" via ↵

package "UpperCaser" at t/uc.t line 7.

You implement new so the test finds the method, but new doesn’t do any-
thing yet. The next method fails since it never gets an object:

% prove t/uc.t

t/uc.t .. 1/3 Can't call method "uc" on an undefined ↵

value at t/uc.t line 8.

You implement new so it returns the smallest object it can, and now the
object can’t find the uc method that you haven’t yet implemented:

% prove t/uc.t

t/uc.t .. 1/3 Can't locate object method "uc" via package↵

"UpperCaser" at t/uc.t line 8.

You fix that, and it fails on the next method call:

% prove t/uc.t

Can't locate object method "uc_first" via package "Upper↵

Caser" at t/uc.t line 9.

Finally, you fix that last method call by implementing uc_first as mini-
mally as possible. Since it doesn’t yet do its job, you don’t get the expected
output:

336 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

% prove t/uc.t

t/uc.t .. 1/3

Failed test at t/uc.t line 8.

got: undef

expected: 'ADDISION CLARK'

Failed test at t/uc.t line 9.

got: undef

expected: 'Ella & Ginger'

Looks like you failed 2 tests of 3.

You make uc do what it should, leaving only one method for you to fully
implement:

% prove t/uc.t

t/uc.t .. 1/3

Failed test at t/uc.t line 9.

got: undef

expected: 'Ella & Ginger'

Looks like you failed 1 test of 3.

And, finally, all of the tests pass when you fully implement uc_first:

% prove t/uc.t

t/uc.t .. ok

All tests successful.

Files=1, Tests=3, 0 wallclock secs (0.03 usr 0.01 sys↵

+ 0.02 cusr 0.00 csys = 0.06 CPU)

Result: PASS

After all of the test pass, you have a nice piece of tested code that looks
something like:

package UpperCaser;

use warnings;

use strict;

sub new {

bless {}, shift;

}

Item 95. Start testing at the beginning of your project ❘ 337

Download from <www.wowebook.com>

ptg

sub uc {

my ($self, $word) = @_;

return uc $word;

}

sub uc_first {

my ($self, $word) = @_;

return join ' ', map { ucfirst } split /\s/, $word;

}

1;

This form of development is typically a major change in a programmer’s
workflow. It guarantees that you have tests for your code. It can also be so
intimidating that many people give up after trying it for a few days (or
minutes). Don’t quit so soon, though!

Even if you don’t want to follow TDD, you still should write automated
tests for your code. Write these tests soon after developing the code, before
you have too much untested work to wrangle. Timing is important, because
you are bound to do something that ends up making testing difficult. When
it’s difficult to test your code, it’s also difficult to debug, and probably dif-
ficult to use. Testing helps you find those problems before they get too big.

Consider a counterexample, with this bit of code that downloads the main
English Wikipedia page and prints out the number of articles currently
live:

sub print_number_of_wiki_entries {

my $agent = LWP::UserAgent->new();

$agent->agent('Mozilla/5.0');

my $response =

$agent->get('http://en.wikipedia.org/wiki/Main_Page');

if ($response->is_success) {

if ($response->decoded_content =~

m{>([\d,]*) articles})

{

print

"There are $1 English articles on Wikipedia\n";

}

}

}

338 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

This is very simple code, and it should be easy to test, right? Unfortunately,
there are a few gotchas that make testing a challenge.

First, this subroutine creates a new LWP::UserAgent instead of taking it
from the argument list, so you can’t supply your own user-agent for
dependency injection (Item 89).

Second, this subroutine requires an Internet connection as well as access
to Wikipedia. To make things even worse, the subroutine prints results
directly to standard output, which means that to test the output of the
method, you need to somehow intercept the standard output stream
(Item 55).

You can avoid most of this if you write the tests first. As you test each bit,
you discover these problems and work around them.

Still, since this is a small code block, you can refactor it to be more testable.
A quick improvement is simply taking the print statement out of the sub-
routine and instead having it return a string:

sub get_number_of_wiki_entries {

my $agent = LWP::UserAgent->new();

$agent->agent('Mozilla/5.0');

my $response =

$agent->get('http://en.wikipedia.org/wiki/Main_Page');

if ($response->is_success) {

if ($response->decoded_content =~

m{>([\d,]*) articles})

{

return "There are $1 English articles on Wikipedia";

}

}

}

Now you can test the method with a string comparison:

use Test::More tests => 1;

like(

ToughToTestRefactored::get_number_of_wiki_entries(),

qr"There are [\d,]* English articles on Wikipedia",

'found number of wiki entries'

);

Item 95. Start testing at the beginning of your project ❘ 339

Download from <www.wowebook.com>

ptg

You can also separate the download parts from the data interpretation
parts so you do it in two steps:

sub get_wikipedia_main_page {

my $agent = LWP::UserAgent->new();

$agent->agent('Mozilla/5.0');

my $response =

$agent->get('http://en.wikipedia.org/wiki/Main_Page');

if ($response->is_success) {

return $response->decoded_content;

}

return;

}

sub get_number_of_wiki_entries {

my $html = shift;

if ($html =~ m{>([\d,]*) articles}) {

return "There are $1 English articles on Wikipedia";

}

return;

}

Now you can test the download separately from the HTML scraping:

use Test::More tests => 2;

my $html = get_wikipedia_main_page();

ok($html, 'got data back from Wikipedia');

like(

get_number_of_wiki_entries($html),

qr"There are [\d,]* English articles on Wikipedia",

'found number of wiki entries'

);

my $count = get_number_of_wiki_entries($html);

is($count, ...);

But there is still the pesky network call, which is hard to test if you are
offline. Instead of creating your own user-agent, take one that the caller
gives you in the argument list:

340 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

sub get_wikipedia_main_page {

my $agent = shift;

$agent->agent('Mozilla/5.0');

my $response =

$agent->get('http://en.wikipedia.org/wiki/Main_Page');

if ($response->is_success) {

return $response->decoded_content;

}

return;

}

Now you can create a mock object (Item 92) to stand in for the real user-
agent and avoid the network altogether:

use LWP::UserAgent;

use HTTP::Response;

use Test::MockObject::Extends;

my $agent = LWP::UserAgent->new();

$agent = Test::MockObject::Extends->new($agent);

$agent->mock(

'get',

sub {

HTTP::Response->new(

200, '',

['Content-Type', 'test/html'],

'blah <a>123,456 articles'

);

}

);

my $html = get_wikipedia_main_page($agent);

ok($html, 'got data back from Wikipedia');

like(

get_number_of_wiki_entries($html),

qr"There are [\d,]* English articles on Wikipedia",

'found number of wiki entries'

);

Item 95. Start testing at the beginning of your project ❘ 341

Download from <www.wowebook.com>

ptg

You’ve broken the process down into multiple steps, and you’ve tested
them independently. To get back to the single step, you wrap them in
another subroutine:

sub print_number_of_wiki_entries {

print get_number_of_wiki_entries(

get_wikipedia_main_page(LWP::UserAgent->new())

),

"\n";

}

Imagine how much more difficult this process would be if you had to wait
a few weeks and after you added a few dozen extra dependencies. Don’t
create more work than you need: test early.

Things to remember

■ Write the tests before you start coding.
■ Write just enough code to pass the tests, and then write more tests.
■ Refactor your code into digestible parts for easy testing.

Item 96. Measure your test coverage.

It’s difficult to track which pieces of your code you’ve tested and which
pieces you still need to write tests for. You can easily see that your tests
instantiate your modules and call a few methods, but it is a tedious
accounting chore to ensure that you test all methods. To compound the
issue, consider the different branches of execution within any given sub-
routine. Which paths through the code did you execute and which ones
did you skip?

Take, for instance, the following module, which has a method with two
branches in an if-elsif structure:

package MyModule;

use warnings;

use strict;

sub do_that_thing {

my ($class, $argument) = @_;

342 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

if ($argument =~ /x/) {

return 1;

}

elsif ($argument =~ /y/) {

return 2;

}

return 3;

}

1;

You start testing this module right away (Item 95) and you think you exer-
cise all of the branches:

use Test::More tests => 2;

use MyModule;

is(MyModule->do_that_thing('xyz'), 1, 'got 1 back');

is(MyModule->do_that_thing('abc'), 3, 'got 3 back');

You run prove (Item 87) and you see that all of the tests pass:

% prove -Ilib t/my_module.t

t/my_module.t .. ok

All tests successful.

Files=1, Tests=2, 0 wallclock secs (0.03 usr 0.01 ↵

sys + 0.02 cusr 0.00 csys = 0.06 CPU)

Result: PASS

However, it’s not easy to see from those results that you skipped testing an
entire branch of the code. You never tested the elsif because you didn’t
give the subroutine any data that would trigger that block. Your test results
are only as good as your tests.

Let Devel::Cover watch your tests

The solution to this problem is Devel::Cover, which can watch your tests
as they run, collect statistics, and then present them to you. If the module
uses ExtUtils::Makemaker, you can activate the coverage test with an
environment variable:

% HARNESS_PERL_SWITCHES=-MDevel::Cover make test

Item 96. Measure your test coverage ❘ 343

Download from <www.wowebook.com>

ptg

If you are using Module::Build, you use the special testcover action:

% ./Build testcover

No matter which one you use, Devel::Cover collects its information and
puts it in a cover_db/ directory. To process the information, you run the
cover command. It prints a text summary of the results, which we have
slightly mangled to fit on the page:

% cover

1..2

Devel::Cover 0.65: Collecting coverage data for branch,↵

condition, pod, statement, subroutine and time.

ok 1 - got 1 back

ok 2 - got 3 back

Devel::Cover: Writing coverage database to /Users/jmcadams↵

/development/effective-perl-programming/second↵

T_edition/esting/code/cover_db/runs/1254690988.30080↵

.46156

---------------------------- ------ ------ ------ ↵

File stmt bran cond ↵

---------------------------- ------ ------ ------ ↵

lib/MyModule.pm 90.9 75.0 n/a ↵

t/my_module.t 100.0 n/a n/a ↵

Total 96.0 75.0 n/a ↵

---------------------------- ------ ------ ------ ↵

------ ------ ------ ------

sub pod time total

------ ------ ------ ------

100.0 0.0 25.7 84.2

100.0 n/a 74.3 100.0

100.0 100.0 91.9

------ ------ ------ ------

Writing HTML output to /Users/Snuffy/MyModule/↵

cover_db/coverage.html ...

The coverage tests break down into several categories:

■ Statement coverage—you test every statement in the code.
■ Branch coverage—you test each branch (e.g., each block in an if-
elsif-else structure).

344 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

■ Conditional coverage—you test each part of each condition (e.g., each
side of $a && $b).

■ Subroutine coverage—you test all subroutines.
■ Pod—you document every subroutine with Pod (Item 82).

The text report gives you a summary of each of those types of coverage.
Devel::Cover also creates several HTML files so you can find the uncov-
ered code. cover gives you the path to cover_db/coverage.html at the bot-
tom of its output. You can drill down into code through the HTML pages
to see the coverage for each line of code, and decide where to start work to
improve your coverage.

As you begin to add more code to your project, your coverage metrics will
contain data for files that you really don’t care about. For instance, third
party modules and test files are normally part of your coverage metrics. In
order to avoid this noise in your results, you can pass arguments to
Devel::Cover to tell it which files to ignore and which to look at:

% HARNESS_PERL_SWITCHES=-MDevel::Cover=-ignore,\.t, ↵
+select,MyModule.pm make test

If you want a less noisy command line, you can use the PERL5OPT envi-
ronment variable:

% export \

PERL5OPT=-MDevel::Cover=-ignore,\.t,+select,.*\.pm

% make test

Don’t leave these options in place, though. Devel::Cover adds overhead
to the run time of your program, so you don’t want to have it execute
unless you are explicitly examining code coverage. It also accumulates data,
so you’ll take up more and more space on disk. To clean out the previously
collected data:

% cover -delete

Hard-to-cover code

Life would be perfect if you could get all coverage metrics to 100%, but
sometimes that seems impossible. If you’re the exceptionally careful pro-
grammer, you might create guard code that checks every possible failure:

sub very_careful {

my ($file) = shift;

Item 96. Measure your test coverage ❘ 345

Download from <www.wowebook.com>

ptg

open my ($fh), '<', $file

or die "Could not open $file\n";

if (print $fh "Hello there!\n") {

}

else {

warn "Could not print!\n";

unless (unlink $file) {

die "Could not unlink $file: $!\n";

}

}

die "Could not close $file: $!\n"

unless close($fh);

}

To achieve full coverage, you now have to create every failure in your tests.
You have to ensure the open fails in one test, the print fails in another, and
so on. You could try to set up elaborate situations where each of these fails,
but you’ll probably have an easier time creating mocks and overriding
built-ins (Item 92) to test each failure mode.

You might also consider whether you can live with less than 100% cover-
age or there’s another way that you can structure the code so you can test
it more easily. Often, hard-to-test code is a sign of unmaintainable or bug-
friendly code. Finally, you might consider the economic argument: how
much work do you have to do for the benefit you’ll receive? Maybe that
99% coverage is good enough while you work on more important things.

Things to remember

■ Devel::Cover reports how much of your code you’ve tested, using
several metrics.

■ Mock some features to get full test coverage.
■ Don’t worry excessively about 100% perfect test coverage.

Item 97. Use CPAN Testers as your QA team.

The CPAN Testers (http://cpantesters.org/) is an ad-hoc group of volun-
teers who automatically and programmatically test every upload to CPAN.

346 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

They use a variety of Perl versions, some quite old, and a variety of oper-
ating systems and setups. Once they test a distribution, they upload their
results, and also send them to the distribution author (Item 68). Some
people set up their CPAN toolchains to use CPAN::Reporter so they
upload test reports for every module that they install.

Although you’ll get the most value from CPAN Testers by uploading your
code to CPAN (Item 70), you can also use the same tools used by the testers
to test your code internally.

Set your CPAN Testers preferences

The output of CPAN Testers is voluminous and sometimes overwhelm-
ing, but you can change how and when they notify you. The CPAN Testers
allow authors to set preferences for how they receive test reports about
their modules (https://prefs.cpantesters.org/). You use the same username
and password that you use with your PAUSE account (Item 70). You can
set your notification preferences for all of your modules, or set specific,
per-distribution preferences.

Use developer versions

You don’t have to wait until you have production-ready code to make use
of CPAN Testers. By convention, PAUSE considers any version string with
an underscore to be a developer version:

our $VERSION = '1.001_001';

PAUSE does not index a developer version, although it still puts the dis-
tribution in your CPAN directory. Since your developer version does not
show up in the index files, the CPAN tools such as cpan do not install
them. However, the CPAN Testers notice the upload, download it directly,
and test it. You’ll often get test reports within a couple of hours of your
upload. This way, you can try something new, upload it as a developer ver-
sion, and see what happens with CPAN Testers.

Most of the benefit comes from the variety of platforms that CPAN Testers
use. You might, for instance, have a tricky bit of C code that needs to use
the right types on various platforms and compilers. Rather than test every
combination yourself, you upload, and wait for the reports.

Item 97. Use CPAN Testers as your QA team ❘ 347

Download from <www.wowebook.com>

ptg

One strategy for dealing with version numbers starts developer versions
using the last production release. Suppose that last public release was 1.23.
Working toward the next public release, you start with 1.23_001, then
1.23_002, and so on. When you are ready to release the next public ver-
sion, you bump the version to 1.24 and start the process again.

Set up your own smoke tester

You can set up your own continuous integration system (Item 98), but
you can also use the same tools that the CPAN Testers use (although
you might have to set up your own CPAN if you want to keep your mod-
ules off of the real CPAN). The CPAN Testers Smoke Tools page (http://
wiki.cpantesters.org/wiki/SmokeTools) gives you the details, but you’ll
want to check out one of these systems:

■ CPAN::Reporter

■ CPANPLUS::YACSmoke

■ CPAN::YACSmoke

■ POE::Component::CPAN::YACSmoke

Once you’ve installed them, you can configure or modify these tools for
your specific needs. If you don’t want to send test reports to the public
testers’ database, you can send them just to yourself. A complete setup is
beyond the scope of this book, but CPAN Testers are a helpful bunch. You
can get help on their mailing list (testers@cpan.org).

Things to remember

■ Configure your CPAN Testers notification preferences.
■ Use a development version to let CPAN Testers check your develop-

ment code.
■ Set up your own smoke testing tools.

Item 98. Set up a continuous build system.

As you develop your code, you can get tunnel vision and run the tests for
only the module that you are currently working on. However, it is not
uncommon for changes in one module to cause tests to fail for another.
You should periodically run your entire test suite or, even better, have your
test suite run automatically on a regular basis.

348 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

Continuous integration systems are frameworks that handle the tasks of
regularly building your code and executing the tests packaged with that
code. These frameworks can range from as simple as locally scheduling a
call to prove to using a full-featured system like Cruise Control to moni-
tor your version control system and run your test suite on each new
 commit.

Periodically run prove

One of the simplest systems that you can set up is merely to e-mail your-
self the results of your test suite running periodically. Just schedule an
e-mail of the results of the prove command to be sent to you:

in your crontab

prove -I/path/to/code/lib /path/to/code/t/*t | \

sendmail -t me@example.com -s "build results"

Of course, if you don’t make changes for a while, you will end up getting
the same e-mail over and over again. Also, if you break your build, there
might be a long delay before you notice the failure.

Use a pre-commit hook

Consider adding a pre-commit hook to your source control system. This
hook can verify that all tests pass before it allows you to commit any
changes. Setting up a hook is trivial with most modern version control
systems.

With Git, for example, you add some code to an executable file named
.git/hooks/pre-commit. A few lines of shell code can be used to run prove
every time you commit:

#!/bin/sh

set -e

prove -b t/*t

If you use a build system like ExtUtils::MakeMaker, you can force Git to
run your full build and test suite for every commit:

#!/bin/sh

set -e

perl Makefile.PL && make test && make realclean

Item 98. Set up a continuous build system ❘ 349

Download from <www.wowebook.com>

ptg

Subversion can use identical hooks in a near-identical location,
[repo]/hooks/pre-commit, where [repo] is the location of your Subversion
repository.

Other source control systems that allow for pre-commit hooks can take
advantage of a similar setup. Consult the documentation for your version
control system to determine the details.

As your test suite grows, running all tests for every commit might get
annoying, especially if you commit frequently. You have to make a decision
about how much time you and your team are willing to wait to get results
in order to keep a functioning build and test suite.

Use Smolder to aggregate test results

Smolder is a good Perl-based option for aggregating your test results. With
Smolder, you run your tests through prove or your regular build script,
archive the results, and upload them to the Smolder server for analysis and
presentation.

To begin running smolder, download it from http://sourceforge.net/
projects/smolder/ and follow the instructions in the INSTALL file to get
the server up and running on your system.

Once you are set up, run your tests through prove or your test script, and
send the archived results to your Smolder server:

% prove --archive=/tmp/build.tgz \

/path/to/tests/t/*t && smolder_smoke_signal \

--server smolder.example.com --username username \

--password password --file /tmp/build.tgz \

--project MyProject

The server will display your test results through a nice Web-based interface,
track history, and bug you only when something goes wrong.

You can even take advantage of a module like SmokeRunner::Multi to
monitor branches in your repository, run tests when changes occur, and
upload the results to Smolder automatically. This functionality closely mir-
rors that contained in the popular continuous build system, Cruise Control.

The previous two examples simply run tests against the code on your
local disk on a periodic basis. This can be bad because you might have

350 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

local changes that cause tests to fail, and until they are resolved, your e-mail
or build aggregator will report test failure. You could quickly hack some-
thing together to automatically check out code from your version control
system and run your tests off of that code. But before you start cobbling a
system like this together, take some time to look into continuous build sys-
tems that monitor your version control system.

Cruise Control

Cruise Control (http://cruisecontrol.sourceforge.net/) is a Java framework
that performs continuous integration and testing of your code. With a lit-
tle modification to your Perl project, you can have it up and running in
Cruise Control in no time.

Building in Ant

In order for your project to run in Cruise Control, it helps if you can build
and test it using Apache Ant. If your project uses Module::Build as a build
script, your build.xml file for ant would look something like:

<project name="myproject" default="all">

<macrodef name="module.build">

<attribute name="action" default="build" />

<sequential>

<exec executable="/usr/bin/perl"

failonerror="true">

<arg value="Build" />

<arg value="@{action}" />

<env key='PERL5LIB' path="lib:${env.PERL5LIB}" />

<env key="PERL_TEST_HARNESS_DUMP_TAP"

path="/project_dir/target/test-results/"/>

</exec>

</sequential>

</macrodef>

<target name="all"

depends="clean, configure, build, test"/>

<target name="clean">

<module.build action="clean"/>

</target>

Item 98. Set up a continuous build system ❘ 351

Download from <www.wowebook.com>

ptg

<target name="configure">

<exec executable="/usr/bin/perl" failonerror="true">

<arg value="Build.PL"/>

<env key='PERL5LIB' path="lib:${env.PERL5LIB}" />

</exec>

</target>

<target name="build" depends="configure">

<module.build action="build"/>

</target>

<target name="test" depends="build">

<module.build action="test"/>

</target>

</project>

At first, this file might seem intimidating, but it is actually quite simple. All
it does is define a project, in this case, myproject. It then wraps some build
targets for cleaning up, running Build.PL, building your project, and test-
ing your project. The name of the project is up to you. You want to name
it something meaningful to you and your team.

You also want to tweak the PERL_TEST_HARNESS_DUMP_TAP environment
variable. This variable tells the test harness where to store a copy of the
test output. This is where Cruise Control will eventually collect information
about each test run. This will be a volatile directory, so you probably want
to keep it out of your main source tree, or get your version control system
to ignore it.

After you finish your build.xml file, you should be able to configure, build,
test, and clean up your project using ant:

% ant configure

% ant build

% ant test

% ant clean

This build.xml file is based on a more robust build.xml found in the doc-
umentation of TAP::Formatter::TeamCity. Be sure to check it out if
you need more flexibility.

352 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

Formatting your output

Getting your project building and testing with ant is a big step, but it isn’t
the only change that you need to make to your code to get Cruise Control
to work correctly with your build system. At this point, you could set up
Cruise Control to know whether your test suite passed or failed as a whole,
but that’s about it. In order to get Cruise Control to interpret your test
results and give you test-by-test results, you need to emit JUnit test output
XML instead of TAP from your tests.

If you are fortunate enough to be using Module::Build, this is as easy as
subclassing Module::Build, overriding a method, and then having your
Build.PL file use your subclass.

First, make a subclass that overrides tap_harness_args, and make
TAP::Formatter::JUnit the preferred formatter:

package MyModuleBuild;

use parent 'Module::Build';

sub tap_harness_args {

return { formatter_class => 'TAP::Formatter::JUnit' };

}

1;

Then, change your Build.PL file to use MyModuleBuild:

use MyModuleBuild;

my $build = MyModuleBuild->new(

module_name => 'MyModule',

dist_version => 1,

);

$build->create_build_script;

Now when you run ant test, you should see some JUnit XML on your
screen and find some XML files in the directory that you assigned to the
PERL_TEST_HARNESS_DUMP_TAP environment variable.

If you aren’t using Module::Build, it is not as easy to change the output
formatter. You might want to change your testing target to just use prove:

Item 98. Set up a continuous build system ❘ 353

Download from <www.wowebook.com>

ptg

<target name="test" depends="compile">

<exec executable="/usr/bin/prove"

failonerror="true">

<arg value="--formatter=TAP::Formatter::JUnit"/>

<arg value="t/"/>

<env key="PERL_TEST_HARNESS_DUMP_TAP"

path="/project_dir/target/test-results/"/>

</exec>

</target>

Setting up Cruise Control

Now that you have your project building with ant and emitting JUnit test
output XML, you are ready to get rolling with Cruise Control. The first
thing that you need to do is to download and install the framework. Find
the download link on its project page.

After you download Cruise Control, uncompress the file that you down-
loaded. Move the resulting folder to wherever you like to store executable
files on your system. By default, Cruise Control uses this folder to store
data, so make sure it has room to grow.

Configure the system by editing the config.xml file in the base directory of
Cruise Control. Remove the example project and add an entry for your
project:

<cruisecontrol>

<project name="myproject">

<listeners>

<currentbuildstatuslistener

file="/cc_dir/projects/myproject/status.txt"/>

</listeners>

<bootstrappers>

<antbootstrapper anthome="apache-ant-1.7.0"

buildfile="/project_dir/build.xml"

target="clean"/>

</bootstrappers>

<modificationset quietperiod="0">

<filesystem folder="/project_dir/"/>

</modificationset>

<schedule interval="300">

354 ❘ Chapter 10 Testing

Download from <www.wowebook.com>

ptg

<ant anthome="apache-ant-1.7.0"

antWorkingDir="/project_dir/"

buildfile="/project_dir/build.xml"/>

</schedule>

<log>

<merge dir="/project_dir/test-results/t/"/>

</log>

</project>

</cruisecontrol>

Name your project something that you can recognize in the Cruise Con-
trol interface. Replace /cc_dir with the path to your Cruise Control. Every-
where that you see “myproject,” replace that with your project name.
Everywhere that you see “project_dir,” replace that with the path to your
Perl source code.

After you get config.xml set up, start Cruise Control:

% ./cruisecontrol.sh

You should now be able to navigate to http://localhost:8080 to see your
continuous build system in action. Now that you have a basic setup, you
can customize Cruise Control to better fit your development environment.

Other options

There are many more continuous build systems that you can integrate with
your development. Test::AutoBuild is a Perl-based system that works
well with Perl projects. Hudson is another popular Java-based server that
can read specially formatted output emitted by Test::Harness.

You may be constrained by what your company has already standardized
on, or you may be starting from scratch. The important thing is not what
system you use, but that you have a system in place.

Things to remember

■ Automatically run your tests with a continuous integration system.
■ Use a full-featured continuous build system that works with Perl

projects.
■ Any continuous build system is better than the perfect one that

doesn’t exist.

Item 98. Set up a continuous build system ❘ 355

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

11 ❘ Warnings

357

Perl can be quite helpful in spotting suspicious code and letting you know
about it. Most of the debugging skills you may have learned from other
languages are just as applicable to Perl. When your program spits out pages
and pages of warnings, start with the first ones.

There are several ways to enable warnings. Old-style Perl uses the -w switch
on the command line:

% perl -w program.pl

You can also use command-line switches on the shebang line inside the
program:

#!perl -w

Modern Perl uses the warnings pragma inside the code (Item 99).

use warnings;

The trick to knowing how to handle the warnings is to figure out not only
what Perl is trying to tell you, but when it is telling you. Some problems it
can spot just by looking at the code, while for others it has to wait until
something questionable happens.

In addition to that, Perl has a wonderful feature called taint checking that
can track external data throughout your program, and keep your program
from passing it to external programs. This feature works to prevent peo-
ple from feeding bad data to your program to trick it into doing odd things
with other programs.

Don’t take these warnings for granted; they are indicators of fragility in
your program. That doesn’t mean, however, that you have to completely
solve the source of every warning. Perl has features that let you turn off
warnings within a scope. If you understand the warning, accept the risks
it indicates, and still need to keep the code the same, you can tell Perl not
to complain about it.

Download from <www.wowebook.com>

ptg

358 ❘ Chapter 11 Warnings

Item 99. Enable warnings to let Perl spot suspicious code.

Perl can warn you when it sees something suspicious, whether while it’s
compiling your code or running it. Warnings are a valuable development
tool that you shouldn’t ignore. If you aren’t used to writing warnings-free
code, after a couple of months of Perl’s incessant and unflagging harass-
ment, you will start to write better code and see fewer and fewer warnings.
Even then, you still should use Perl’s warnings.

Perl’s warnings are turned off by default for backward compatibility with
the quick-and-dirty scripts with which Perl got its start. There are several
ways that you can enable warnings. Starting with Perl 5.6, you can enable
warnings per file, which is the preferred way:

use warnings; # put this at the top of every file

If you haven’t added the use warnings line to the files in your project, you
can enable all warnings across all files with the -w switch. You can do that
on the command line to enable them for one run:

% perl -w myscript

You can enable them inside a program by appending the -w flag to the she-
bang line:

#!/usr/bin/perl -w

You can selectively enable or disable warnings, too (Item 100).

Compile time warnings

Perl can spot some suspicious problems at compile time. Consider the sim-
ple program that has an addition as its single statement:

use warnings;

$foo = 1;

1 + 2;

When you enable warnings with -w and check your syntax with -c, perl
tells you that the addition is useless since you don’t do anything with the
result, and that a variable you use only once is probably a mistake:

% perl -cw program.pl

Useless use of a constant in void context

Download from <www.wowebook.com>

ptg

Name "main::foo" used only once: possible typo

/home/snuffy/program.pl syntax OK

Run time warnings

Run time warnings come from the things that perl can’t catch by merely
examining the source, and as such, are often the most annoying. Consider
printing the keys and values for a hash:

use warnings;

foreach my $cat (keys %microchips) {

print "$cat --> $microchips{$cat}\n";

}

Can you see where the warning might come from just by looking at the
code? Neither can perl, at least until it starts iterating through a hash that
has an undefined value:

my %microchips = (

'Mimi' => 123,

'Buster' => undef,

'Roscoe' => 345,

);

When perl runs into the key for Buster, it prints an undefined value and
issues a warning:

Use of uninitialized value $microchips{"Buster"}↵

in concatenation (.) or string

Although annoying, that particular warning is less annoying that it used
to be. Starting with Perl 5.10, the warning tells you what had the unde-
fined value, in this case $microchips{"Buster"}.

Since you can’t catch the run time warnings by looking at the source, the
best way to catch these is with a rigorous test suite using unexpected data
and unusual situations to cover every condition (Item 96).

Get more with diagnostics

If you are just starting out with warnings, you’re probably going to run
into one that you don’t understand. Even if you’ve been using Perl for a

Item 99. Enable warnings to let Perl spot suspicious code ❘ 359

Download from <www.wowebook.com>

ptg

long time, you might run into a warning that you haven’t seen before. To
learn more about a warning, you can look in the perldiag documentation
to get a detailed explanation of the error. Most of those explanations sug-
gest possible problems that would trigger the warning.

There’s an easier way to get the details, though, so you don’t have to dig
through the documentation. You can use the diagnostics pragma to turn
the short error messages into the long ones:

use warnings;

use diagnostics;

$foo = 1;

The output from the program is much more verbose now:

% perl -c program.pl

Name "main::foo" used only once: possible typo ...

(W once) Typographical errors often show up as unique

variable names. If you had a good reason for having a

unique name, then just mention it again somehow to

suppress the message. The our declaration is provided

for this purpose.

NOTE: This warning detects symbols that have been used

only once so $c, @c, %c, *c, &c, sub c{}, c(), and c

(the filehandle or format) are considered the same; if

a program uses $c only once but also uses any of the

others it will not trigger this warning.

Warnings in production

Enabling warnings in production is a contentious issue, though, so be pre-
pared for some people to scream or jump up and down if you mention
this. It’s much like bracing style, tabs versus spaces, and Coke versus Pepsi.
Decide for yourself which side you are on.

Run time warnings impose a small speed penalty on programs, and it is
also not a good idea to present unexpected or spurious warning messages
to users. In general, warnings are meant to be seen by developers, not users.
You should turn off warnings for application code that is released to the
world. Since you can selectively enable warnings and check if they are

360 ❘ Chapter 11 Warnings

Download from <www.wowebook.com>

ptg

enabled (Item 100), you can turn them back on when you need to debug
your program.

One of the big problems is that the warnings change between versions of
Perl. Not only are there new warnings, but there is the chance that some
warnings have become fatal that were previously innocuous. Are you will-
ing to take on that risk when you deploy your application?

The people who insist on “all warnings all the time” are probably not the
people who have been called in to work in the wee hours of a weekend to
find out that an upgrade to perl made an otherwise warning-free and
working application start spewing new warnings and filling up a disk,
despite the facts that the application was still working just fine and no one
was monitoring it for warnings.

If you want to leave warnings on, that’s fine, but you can also re-enable
them any time that you like. It’s a completely reversible decision. At the
enterprise level, you want to use something like Log::Log4perl (Item
113) to record messages from your well-tested, mission-critical code, along
with a proper test suite that catches all the warnings before you deploy.

Things to remember

■ Check for compile-time warnings with perl -cw.
■ Enable per-file warnings with use warnings.
■ Get more information about a particular warning with use
diagnostics.

Item 100. Use lexical warnings to selectively turn on or off
complaints.

Warnings call out code “smells” that aren’t serious enough to stop your
program, but you still need to pay attention to.

You might not care that $number is uninitialized. When Perl converts it to
a number, it turns into zero, which is just fine with this addition:

my $number;

my $value = $number + 2;

However, Perl complains about that when you enable warnings:

Use of uninitialized value $number in addition (+)

Item 100. Use lexical warnings to selectively turn on or off complaints ❘ 361

Download from <www.wowebook.com>

ptg

You don’t really care that $number doesn’t have a value because the right
thing happens anyway. This is a simple example, but you’ll run into situ-
ations where it’s more painful to eliminate the warning rather than just
ignore it. In those cases, you can temporarily turn off warnings.

The warnings pragma is lexically scoped, so you can wrap the offending
code in a block and unimport it temporarily:

{

no warnings;

my $number;

my $value = $number + 2;

}

There’s a small problem with that, though. It turns off all warnings. You
might miss other important warnings that way.

The warnings pragma groups warnings into categories that you can selec-
tively enable or disable. For the complete list, see the warnings docu-
mentation. In this case, you can turn off just the uninitialized warning:

{

no warnings 'uninitialized';

my $number;

my $value = $number + 2;

}

Making some warnings fatal

You might hate some problems so much that you want them to be fatal
errors instead of warnings. For instance, you normally get a warning when
perl can’t completely convert a string to a number:

use warnings;

my $sum = '123buster' + 5;

print "The sum is $sum\n";

You get the warning, but perl keeps going and gives you an answer:

Argument "123buster" isn't numeric in addition (+)

The sum is 128

362 ❘ Chapter 11 Warnings

Download from <www.wowebook.com>

ptg

If that should never happen in your code, you can make it fatal:

use warnings FATAL => 'numeric';

my $sum = '123buster' + 5;

print "The sum is $sum\n";

Now, you only get the warning, because the program stops when you try
to add the non-numeric value:

Argument "123buster" isn't numeric in addition (+)

Use predefined warning categories in your modules

You can issue warnings based on the lexical warnings settings, too. Instead
of using warn to issue the message, use warnif from the warnings
pragma. You can specify the category of your warning, too:

sub create {

warnings::warnif('deprecated',

'create is deprecated, use new instead');

...;

}

If you are using Carp (Item 102), you can check that a warning category
is enabled before triggering carp:

use Carp;

sub create {

carp('create is deprecated, use new instead')

if warnings::enabled('deprecated');

...;

}

Although warnif respects requests for fatal warnings, there isn’t a way for
you to check if a particular category of warnings should be fatal before
you call carp.

Make your own warning categories

Lexical warnings don’t stop here. If you find that none of the predefined cat-
egories meets your needs, you can define your own and respond to requests
for turning them on and off just as if they were predefined categories.

Item 100. Use lexical warnings to selectively turn on or off complaints ❘ 363

Download from <www.wowebook.com>

ptg

Things to remember

■ Disable warnings within a scope with no warnings.
■ Selectively disable classes of warnings if you know you want to ignore

them.
■ Promote some warnings to fatal errors.

Item 101. Use die to generate exceptions.

Some people have habits left over from the old C-programmer style, where
they return a success code after every function. For instance, to signal an
error from a subroutine, they might return undef:

sub do_work {

my $task = shift;

if ($task < 0) {

return; # error, returning undef

}

...;

}

This works okay, although you have to do a lot of work to check that their
subroutine worked:

my $value = do_work($task);

if (defined $value) {

print "It worked and I got [$value]!\n";

}

else {

print "Something went wrong, but I don't know what!\n";

}

In case of an error, you know that something went wrong, but you don’t
know what went wrong. You could die when you encounter a problematic
scenario, which allows you to give a meaningful error message:

sub do_work {

my $task = shift;

364 ❘ Chapter 11 Warnings

Download from <www.wowebook.com>

ptg

if ($task < 0) {

die("Task [$task] should be greater than zero");

}

...;

}

That’s not much of change, but it also has another benefit: it forces you to
handle the problem, since the program stops otherwise. You can catch this
with eval. If do_work dies, the eval catches it and puts the die message
in $@:

my $value = eval { do_work(@tasks) };

if ($@) {

handle the error

}

You have to check $@ immediately after the eval, before anything else has
a chance to change it (Item 103).

The eval-if idiom acts as you might expect from try-catch in other lan-
guages, although you can have try-catch in Perl, too (Item 103).

It gets even better, though. You can die with a reference, which can be an
object that represents your error. You might, for instance, have an error-
recording module to create your error objects:

sub do_work {

my $task = shift;

if ($task < 0) {

die MyErrors->fatal("Task should be greater than 0");

}

...;

}

When the eval fails and you find your object in $@, you can deal with it
as with any other object. That gives you much more flexibility:

my $value = eval { do_work(@tasks) };

if (my $error = $@ and ref $error) {

print "I found an error at level ", $error->level, "\n";

Item 101. Use die to generate exceptions ❘ 365

Download from <www.wowebook.com>

ptg

print "The message was ", $error->message, "\n";

}

Calling die when you encounter a problem doesn’t fit every situation. You
don’t need to do it explicitly, either, if you use autodie (Item 27) to han-
dle errors from Perl built-ins. For more fancy exception handling, use
something like Try::Tiny (Item 103).

Things to remember

■ Use die to generate an exception.
■ Give die a reference or object to pass structured error information.
■ Catch exceptions with eval.

Item 102. Use Carp to get stack traces.

If your code is going to die or emit a warning, it’s nice if it can give you
as much information as possible about what is going on at the time of the
failure. One of the most valuable pieces of information is the call stack.
Unfortunately, Perl’s built-in die and warn functions don’t provide that
information.

Here’s a series of subroutines that call randomly_fail, and some of them
call each other. When you run this program, you don’t know where it will
fail.

sub randomly_fail {

die 'ouch!' if int(rand(100)) % 10 == 0;

}

sub caller_one {

randomly_fail();

}

sub caller_two {

caller_one();

randomly_fail();

}

sub caller_three() {

caller_two();

366 ❘ Chapter 11 Warnings

Download from <www.wowebook.com>

ptg

randomly_fail();

}

while (1) {

caller_three();

}

When you run the program, you see that it dies (as expected); you just
don’t know where, or how long the program ran:

% perl randomly_fail.pl

ouch! at die.pl line 2.

That’s not a very informative error message. Of course it died at line 2:
that’s where you have the die. You already know that! It’s the same situa-
tion with warn.

Carp gives you more information

Carp, a core module, gives you more useful error messages than die or
warn do. Use croak and Carp in place of warn and die, respectively, and
you’ll get a full stack trace from the perspective of the calling function.
The error message tells you not where the code stopped, but one level
above that. You find out who called the subroutine:

package Bar;

use Carp;

sub fail { croak "Ribbit!" }

package main;

Bar::fail();

Although this program stops at line 3, it’s really line 7 that caused the prob-
lem by calling Bar::fail, so that’s what croak reports:

Ribbit! at carp.pl line 7

That’s the message you get when the caller is in a different package. Carp
does its work by crawling up the call stack until it finds a package change.

If Carp doesn’t find a change in packages in the call stack, it gives you a full
stack trace. Now you can improve on the first example by changing that
die to a croak:

Item 102. Use Carp to get stack traces ❘ 367

Download from <www.wowebook.com>

ptg

use Carp;

sub randomly_fail {

croak 'ouch' if int(rand(100)) % 10 == 0;

}

sub caller_one {

randomly_fail();

}

sub caller_two {

caller_one();

randomly_fail();

}

sub caller_three() {

caller_two();

randomly_fail();

}

while (1) {

caller_three();

}

Running the program a couple of times shows you the chain of events that
led up to the failure for each run:

% perl carp.pl

ouch at carp.pl line 4

main::randomly_fail() called at carp.pl line 8

main::caller_one() called at carp.pl line 12

main::caller_two() called at carp.pl line 17

main::caller_three() called at carp.pl line 22

% perl carp.pl

ouch at carp.pl line 4

main::randomly_fail() called at carp.pl line 18

main::caller_three() called at carp.pl line 22

If this were an interesting program that you were actually maintaining,
you would now have a way to trace the failure.

368 ❘ Chapter 11 Warnings

Download from <www.wowebook.com>

ptg

confess always gives a backtrace

You don’t have to stay in the same package to get the full stack backtrace.
If you change that croak to confess, you get everything:

package Bar;

use Carp;

sub fail { confess "Ribbit!" }

package main;

bar::fail();

Now you get the stack backtrace even though the program died in a dif-
ferent package than the caller:

Ribbit! at carp.pl line 3

bar::fail() called at carp.pl line 7

This makes confess a good debugging tool, but you probably don’t want
it for production. If you aren’t debugging, stick with croak. You can turn
a croak into a confess by setting $Carp::Verbose to a true value, mean-
ing that you can localize its effect:

{

local $Carp::Verbose = 1;

Bar::fail();

}

If you want to change all croaks to confesses, you can also just change
the Carp import:

use Carp 'verbose';

That way, you code using croak, but when you need to debug the pro-
gram, you selectively and temporarily get the full stack trace.

Things to remember

■ Use Carp to get information on the code that caused the error or
warning.

■ Use confess to get a full stack backtrace.

Item 102. Use Carp to get stack traces ❘ 369

Download from <www.wowebook.com>

ptg

Item 103. Handle exceptions properly.

Perl doesn’t have a built-in exception handling mechanism, so you have to
fake it with eval and if (Item 101):

my $value = eval { die "throw an error"; };

if ($@) {

warn "I caught an error: $@";

}

There’s a big problem. You can die with any value you like, including a
false one. In this case, $@ is false and the if doesn’t catch it:

my $value = eval { die ''; };

if ($@) {

warn "I should have caught an error: $@";

}

Try::Tiny does it right

The right way to do this is best shown in the Try::Tiny module. There are
several exception handling modules on CPAN, but this one is small and
has no problematic dependencies. If you want to do its job with standard
Perl, you just have to follow its example.

First, you have to handle $@ properly. That’s trickier than most people think.
You need to avoid two problems: you don’t want to change the value of $@
for another eval level that wraps you, and you don’t want an eval that
you nest, even if it is hidden behind a function call, to change your $@. You
start your process by localizing $@ before you use it. Once you do your eval,
you immediately save $@ into your own variable so nothing else changes
it. This is a snippet from Try::Tiny that shows the meat of the solution:

my ($error, $failed);

{

local $@; # protect changes to up level

$failed = not eval {

die "throw an error";

return 1;

};

$error = $@; # protect from changes from below

}

370 ❘ Chapter 11 Warnings

Download from <www.wowebook.com>

ptg

if ($failed) {

warn "Caught an error: $error";

}

The Try::Tiny module handles the boilerplate for you, and gives you the
common try/catch syntax:

use Try::Tiny;

try {

die "throw an error";

}

catch {

warn "Caught an error: $_";

};

Notice that the catch block ends in a semicolon. It’s a Perl statement, just
like eval. Also, it stores the error in $_ instead of $@ (for all the reasons
why it had to do the gymnastics earlier).

You can also die with a reference (Item 101), and then use the given-when
syntax (Item 24) to filter the error:

use Try::Tiny;

use 5.010;

try {

die MyError->new(...);

}

catch {

when ($_->type eq 'IO') { ... }

when ($_->type eq 'Fatal') { ... }

default { ... };

};

If you want to ignore errors, you simply neglect to catch them:

use Try::Tiny;

try {

die "throw an error";

};

Item 103. Handle exceptions properly ❘ 371

Download from <www.wowebook.com>

ptg

Try::Tiny gotchas

Sometimes it looks like you are using Try::Tiny when you aren’t. This
example, which forgets to load the module, is still valid Perl syntax that
doesn’t complain, even under strictures (Item 3):

use strict;

try {

die "throw an error"; # always dies

}

catch {

warn "Caught an error: $_";

};

Also, since the blocks in try-catch are really Perl subroutines, you
shouldn’t use return in them since that would confuse them:

try {

die "throw an error";

return; # WRONG!

}

catch {

warn "Caught an error: $_";

};

Things to remember

■ Use eval to catch errors and examine them in $@.
■ Handling $@ is tricky, but Try::Tiny does it correctly.

Item 104. Track dangerous data with taint checking.

Taint checking is a Perl run time feature that tracks the flow of data inside
a program. Perl marks as “tainted” data that are derived from user input or
the outside world in general, such as command-line arguments, environment
variables, or file or stream input. You won’t be able to pass any of this data
to external programs because Perl will stop your program when you try to.

You can enable taint checking with the -T switch:

% perl -T program.pl

372 ❘ Chapter 11 Warnings

Download from <www.wowebook.com>

ptg

You can also enable it on the shebang line:

#!perl -T

In some cases, such as running under setuid, perl automatically turns on
taint checking for you.

If you specify -T on the command line and try to run the program with
perl explicitly, you’ll get an error:

% perl program.pl

"-T" is on the #! line, it must also be used on the ↵

command line

To give you an idea of how taint checking works, consider a program that
takes a glob pattern from the user and passes it to the external grep
 program:

#!perl -T

print "Enter a grep pattern: ";

chomp(my $pattern = <STDIN>);

print `grep $pattern *`;

If you run this with taint checking enabled, perl stops your program
before it has a chance to do anything:

Insecure dependency in `` while running with -T switch

You’ve gotten the data in the variable $pattern directly from standard
input, and it could be anything. It is a bad idea to send user input directly
to the shell—suppose the user types in something with special characters,
such as the ; that starts a new command:

% perl program.pl

enter pattern: ; rm *

Under taint checking, you must sanitize your data before you use them
with external processes. The only approved way to untaint data is a regu-
lar expression match with capture variables. The best way to untaint data
is to construct a very specific pattern that matches what you will allow
(what Mark Jason Dominus calls the “Prussian Approach”). For instance,
if you want people to input only letters, the ., and the * quantifier in their
grep patterns, you match only those characters:

#!perl -T

Item 104. Track dangerous data with taint checking ❘ 373

Download from <www.wowebook.com>

ptg

my $tainted_data = <STDIN>;

my $untainted_data = do {

if ($tainted_data =~ m/^([a-z.*])$/i) {

$1;

}

else {

die

"The pattern can only contain letters, ., or *!\n";

}

};

print `grep '$untainted_data' *`;

In this example, you fail if the input isn’t exactly what you expect. If you
miss something that you should have allowed, you don’t have a security
problem, but you have to adjust your regular expression. The other way
around—if you forget to exclude something you should have—you still
have a problem. If that’s an overly strict approach, you have to decide how
strict to be on your own. However, when dealing with external programs,
paranoia is a virtue.

You think you’ve fixed everything, but now when you run the program,
you get a different error:

Insecure $ENV{PATH} while running with -T switch

Perl has to find the grep program, so it has to start looking through
$ENV{PATH}, but that also comes from outside the program so it’s tainted
as well. When Perl tries to use it, taint checking kicks in and stops the pro-
gram. To fix this, you can set $ENV{PATH} to the empty string, so it’s no
longer tainted, and use the absolute path to the command that you want
(which ensures you get the one that you want):

$ENV{PATH} = '';

...;

print `/usr/bin/grep '$untainted_data' *`;

You can also set $ENV{PATH} to absolute paths, but those directories can’t
be writeable by the owner or group running your program. That takes a bit
more work.

374 ❘ Chapter 11 Warnings

Download from <www.wowebook.com>

ptg

For more information about taint checking, see the perlsec documenta-
tion or the “Security” chapter in Mastering Perl.1 If you want to add taint
checking to existing programs, start with taint warnings (Item 105).

Things to remember

■ Use taint checking to prevent external data from affecting external
commands.

■ Untaint data with a regular expression and captures.
■ Inside your program, adjust your PATH environment variable to

trusted directories.

Item 105. Start with taint warnings for legacy code.

Taint checking is a Perl development tool that helps you find spots in your
program where you pass “untrusted” data to the outside world (Item 104).
Once it is enabled, any input that comes from outside of your program is
“tainted,” including command-line arguments, CGI input, data from files,
the values in %ENV, and so on. Perl marks the data with a special flag. Any
data derived from tainted values are also tainted, and Perl kills your pro-
gram when you try to pass those data outside the program.

For older code, turning on taint checking might mean that you don’t get
back to working code for a long, long time as you track down all of the
things that you have to adjust, rewrite, or otherwise work around.

You still want to make your legacy code taint-safe, so Perl supplies the -t
switch. It does the same work as its big brother -T, but merely warns when
it finds a problem. You can use it on the command line:

% perl -t program.pl

Or, as with any command-line switch, you can use -t on the shebang line:

#!/usr/bin/perl -t

Now run the same program with taint warnings instead:

#!perl -t

system("ls -l");

Item 105. Start with taint warnings for legacy code ❘ 375

1. brian d foy, Mastering Perl (Sebastopol, CA: O’Reilly Media, 2007).

Download from <www.wowebook.com>

ptg

Taint checking issues two warnings instead of dying on the first problem,
and still runs the operation:

Insecure $ENV{PATH} while running with -t switch...

Insecure dependency in system while running with -t ↵

switch...

...

You enable this on your taint-unsafe legacy code and watch the output
logs to identify trouble spots without that much downtime. As you find
problems, you can fix them.

In this case, taint checking doesn’t like the setting in $ENV{PATH}. The
person running the program can set PATH to be anything he likes. As such,
the program can’t know which ls it will run. You need to set $ENV{PATH}
to a list of absolute paths to directories that the owner and group running
the script do not have write permissions to. The easy way is not to depend
on $ENV{PATH} at all. Instead, specify the path to the command in the
system call:

#!perl -t

$ENV{PATH} = ''; # or '/bin' or other safe directory

system("/bin/ls");

Now you’ve eliminated the two taint warnings.

Once you are confident that you have a safe program, you can promote
your code to the full -T. Your program still might blow up on you in rare
cases, but at least it shouldn’t die on every run, since you’ve already fixed
most of the problems.

Remember, -t is only a tool for bringing legacy code up to snuff. The -t is not
a tool for new projects, where you should use -T from the start.

Things to remember

■ Be careful with taint-checking in legacy code.
■ Use the -t switch to enable taint warnings on legacy code.
■ Use -T for full taint-checking on new code.

376 ❘ Chapter 11 Warnings

Download from <www.wowebook.com>

ptg

12 ❘ Databases

377

Perl’s DBI module makes it extremely easy to interact with almost every
popular database server (and many not-so-popular ones). Although the
mechanics are quite simple and straightforward, there are many higher-
level pitfalls.

Database interaction is a specialized topic, since it requires knowledge of
a lot more than just Perl. You have to know about the query language, the
peculiarities of the database server, and many other extra-Perl things. It’s
an extremely big topic that deserves a book of its own. However, there are
a few things that improve your Perl database experience right away.

We’re purposely ignoring some topics, such as KiokuDB, document data-
base systems such as CouchDB, and Object Relational Mappers (ORMs)
such as DBIx::Class. All of these topics deserve their own books, too, and
they are topics that you should investigate further.

Item 106. Prepare your SQL statements to reuse work and
save time.

There are several steps that go into a database query. You construct the
query, the database server parses it and figures out how to handle it, the
database server handles it, and you get your results. Any one of those steps
can be a bottleneck.

Perl’s DBI module allows you to make one-shot queries:

use DBI;

my $dbh = DBI->connect(...);

my $rv = $dbh->do('DROP TABLE table');

my $array =

$dbh->selectall_arrayref('SELECT * FROM table');

Download from <www.wowebook.com>

ptg

378 ❘ Chapter 12 Databases

You might quickly convert that selectall_arrayref into a loop that
makes the same SELECT, but for specific records:

foreach my $id (@ids) {

my $array = $dbh->selectall_arrayref(

"SELECT * FROM table WHERE id = $id");

}

Although that particular query is simple and easy to handle, imagine
something much more complex, involving several tables, intricate joins,
or sub-selects. Every iteration of that loop starts from scratch, even though
most of the details of the query don’t change.

If you repeatedly make the same query, although perhaps with different
values, after the first query you can skip the steps where you construct the
query and the database server parses it and plans how to handle it. In com-
plex queries, those two steps can take up most of the time involved. One
colleague constructed a query that took five minutes, much too long for his
purposes even though he did everything he could to optimize it. Since he
had to call this query several times, his program took a long time to com-
plete. He eventually figured out that 90 percent of that time was just the
database planning the query, and once planned, it actually ran very fast.
His problem wasn’t the query speed at all.

Instead of issuing one-shot queries repeatedly, you can prepare a query,
which builds and plans the query but doesn’t actually execute it. You can
reuse this prepared query as many times as you like without having to redo
the work to create it. The prepare method handles all of the details for
you, and you can use placeholders (Item 107) to stand in for the data you
fill in later. The prepare command returns a statement handle which you
store in $sth:

use DBI;

my $dbh = DBI->connect(...)

or die 'unable to connect to database';

my $sth =

$dbh->prepare('SELECT * FROM table WHERE id = ?');

Constructing a query with a placeholder allows the database to cache the
query. If your database is optimized for caching, it parses the query and
stores the execution plan so that subsequent queries use the precalculated
execution plan.

Download from <www.wowebook.com>

ptg

When you are ready to run the query, you call the execute method on the
statement handle, passing the parameters to fill in the placeholders. In the
loop, each time you execute the query, the database gets a cache hit and
does not reparse the query, making things faster:

foreach my $id (@ids) {

my $array = $dbh->execute($id);

}

Preparing multiple statements to handle different situations

Once you prepare a query, you have to use it exactly as-is. If you need to
change the number of parameters, the table names, or something else, you
need to prepare different queries. You can, however, prepare as many
queries as you like and select the appropriate ones when you need them.

Suppose you want to select all of the records for the values in a list. In SQL,
you could use IN:

SELECT * FROM table WHERE id IN (...)

How many things go into that IN list, though? You have to use a fixed num-
ber of placeholders in your prepare statement. This statement takes
exactly two parameters:

my $sth = $dbh->prepare(

'SELECT * FROM table WHERE id IN (?, ?)'

);

In your program, though, suppose you need to handle anywhere between
1 and 10 parameters at a time. Since DBI doesn’t handle varying parame-
ter counts for you, you have to handle it yourself. Here’s a wrapper around
a database handle (using dependency injection, Item 89). When you con-
struct a new object in MyDBI::VariadicPrepare, it creates several pre-
pared queries. Each queries handles a different number of parameters, and
you store each in a statement handle as part of the object hash:

package MyDBI::VariadicPrepare::Cache;

sub new {

my ($class, $dbh) = @_;

my $self = bless { dbh => $dbh }, $class;

Item 106. Prepare your SQL statements to reuse work and save time ❘ 379

Download from <www.wowebook.com>

ptg

for my $num (1 .. 10) {

$self->{ 'sth_' . $num } = $self->{dbh}->prepare(

sprintf(

'SELECT value FROM my_table WHERE id IN (%s)',

join(',', ('?') x $num))

);

}

return $self;

}

Instead of calling execute directly, you provide a wrapper subroutine that
selects the correct prepared statement based on the number of parameters:

sub do_something {

my ($self, @values) = @_;

if (@values > 10) {

die 'I can only support 10 values or less';

}

$self->{ 'sth_' . @values }->execute(@values);

}

This works, but it is ugly. Also, in this specific case, you limited yourself to
only ten values for your SELECT statement. To make matters worse, you
might never use most of the prepare statements you precomputed, poten-
tially wasting a lot of time preparing complex and lengthy statement han-
dles you never use.

Don’t worry; there is a better way to do this.

DBI can cache for you

Instead of caching your prepared statements on your own, DBI can do it
for you with its prepare_cached method. This method does the client-
side caching for you, making your code much cleaner and more efficient.
You don’t have to do any work ahead of time or manage the cache yourself:

use DBI;

my $dbh = DBI->connect(...)

or die 'unable to connect to database';

380 ❘ Chapter 12 Databases

Download from <www.wowebook.com>

ptg

my $sth = $dbh->prepare_cached(

sprintf('SELECT value FROM my_table WHERE id IN (%s)',

join(',', ('?') x $num))

);

Each time you call prepare_cached, DBI searches its statement handle
cache. If it finds a matching query that it had already prepared, it returns
it. Otherwise, it creates a new statement handle. The first time you create
the statement handle, you pay the penalty for the work that DBI and the
database server has to do, but you pay only for queries that you actually
use.

There’s a caveat here, though. If you run two simultaneous queries that
use the same statement handle before you finish one of them, you can get
odd results. The second query replaces the work of the first one. If you
want to run simultaneous queries, you have to prepare two separate state-
ment handles (thus, you can’t use prepare_cached).

Not every statement needs a cache

There are cases where preparing SQL statements don’t gain you much. If
you have a static SQL statement that will be executed repeatedly and doesn’t
depend on extra parameters, the database should get a cache hit every time
the statement is executed. Preparation isn’t necessary. These two loops
below perform similarly:

my $query = 'select count(*) from my_table';

foreach (1 .. 100) {

my $array = $dbh->selectrow_array($query);

}

foreach (1 .. 100) {

my $sth = $dbh->prepare_cached($query);

my $array = $sth->fetchrow_array;

}

However, since they have similar performance, you don’t have to worry
about the odd cases where you cache a query that doesn’t need it.

Item 106. Prepare your SQL statements to reuse work and save time ❘ 381

Download from <www.wowebook.com>

ptg

Things to remember

■ Save time preparing statement handles by caching them.
■ Cache statement handles with prepare_cached.
■ You don’t need to cache every statement, but it doesn’t hurt.

Item 107. Use SQL placeholders for automatic value quoting.

Using placeholders for values in your SQL is a good practice that you
should follow religiously. SQL placeholders not only make your code faster,
but also help protect your code from SQL-injection attacks. It’s so easy to
do it correctly that you have no excuse not to.

When you are dynamically building SQL statements, there are two major
things that can change to make the statements dynamic: the structure of
the query itself, and the data values that the query references.

Don’t interpolate variables into queries

For a quick program, you might be tempted to write a one-off statement with
selectall_arrayref that sends a database query and fetches the results:

use DBI;

my $dbh->connect(...);

my $rows = $dbh->selectall_arrayref(

"select v1, v2 from my_table where id = '$id'"

);

This technique has two major drawbacks that should keep you from using
it in anything other than the shortest of programs.

First, selectall_arrayref creates a completely new query string to pass
to the database each time. Since most database management systems
search their execution plan caches for exact string matches, there is little
chance that you will get any cache hits when you run this query. This can
cause some real slowdowns in your code, especially if you have complex
queries that take seconds to parse (Item 106).

Second, it’s vulnerable to SQL injection, where the value of the interpo-
lated variable $id contains unexpected but ultimately legal SQL. What if

382 ❘ Chapter 12 Databases

Download from <www.wowebook.com>

ptg

$id is something like “1' or 'a'='a”? This value effectively short-circuits
the filtering logic of the query and causes all data to be returned from
my_table. If my_table contains sensitive information, this could spell
trouble.

Placeholders for dynamic data values

To include varying data in different calls using the same statement, you
can use placeholders. You indicate a placeholder with a ? to stand in for
data that you’ll fill in later.

In selectall_arrayref, you specify the statement with placeholders, the
DBI settings for that query (in this example, an empty hash ref), and then
the data to use with the query:

my $rows = $dbh->selectall_arrayref(

'select v1, v2 from my_table where id = ?',

{}, $id);

Although different database drivers may handle placeholders separately,
this prevents SQL injection. Either the driver sends the data to the server
separately from the query, or inserts it into the query with proper quoting
and escaping.

More commonly, you’ll want to run the same query more than once, so you
can prepare it with placeholders, and then execute it with the data for
the particular run:

my $sth = $dbh->prepare(

'select v1, v2 from my_table where id = ?');

foreach my $id (@ids) {

$sth->execute($id);

...;

}

You can even prepare statements ahead of time and pre-cache them
(Item 106).

Creating dynamic SQL elements

Placeholders only insert data values into the query. You can’t use place-
holders for other parts of the query, such as the table names, for instance.

Item 107. Use SQL placeholders for automatic value quoting ❘ 383

Download from <www.wowebook.com>

ptg

To use a table name that you decide at run time, you can use DBI’s
quote_identifier to ensure the table name is a valid identifier:

my $table = get_table_name();

my $sth = $dbh->prepare(

sprintf('select * from %s',

$dbh->quote_identifier($table))

);

This doesn’t check that the value in $table is an existing table, though. If
your database driver supports the table_info method, you can check for
some existing table names. See the DBI documentation for more details.

Things to remember

■ Don’t interpolate variables into SQL statements.
■ Use placeholders to send data with your queries.
■ Placeholders work only for data, not identifiers.

Item 108. Bind return columns for faster access to data.

When you fetch data from a DBI statement handle, you probably assign
the values to variables. It’s easy to write and the most expedient means
when you first implement your database query:

use DBI;

my $dbh = DBI->connect(...);

my $sth =

$dbh->prepare('select one, two, three from my_table');

$sth->execute;

while (my ($one, $two, $three) = $sth->fetchrow_array)

{

...;

}

This is slightly inefficient, but for a couple of records, this works just fine.
If you have to process thousands of records, though, you might notice a
slight slowdown. The small inefficiency of copying values into the vari-
ables can really add up.

384 ❘ Chapter 12 Databases

Download from <www.wowebook.com>

ptg

Instead of assigning to new variables, you can bind references to your state-
ment handle. This allows the database access layer to directly write the
returned data to your variables, cutting one data copy per column per row
out of your processing loop. With bind_columns, you pass references for
all the columns that you select:

use DBI;

my $dbh = DBI->connect(...);

my $sth =

$dbh->prepare('select one, two, three from my_table');

$sth->execute;

my ($one, $two, $three);

$sth->bind_columns(\$one, \$two, \$three);

while ($sth->fetchrow_arrayref) {

...;

}

Passing a list of references might not be very convenient or readable, so
you can also bind the columns one at a time. The bind_col method takes
a parameter number (counting from 1) and a reference to bind to. You
should always call bind_col after execute:

use DBI;

my $dbh = DBI->connect(...);

my $sth =

$dbh->prepare('select one, two, three from my_table');

$sth->execute;

$sth->bind_col(1, \my $one);

$sth->bind_col(2, \my $two);

$sth->bind_col(3, \my $three);

while ($sth->fetchrow_arrayref) {

...;

}

Item 108. Bind return columns for faster access to data ❘ 385

Download from <www.wowebook.com>

ptg

You have greater control with bind_col, too. If you know the data type for
the column, you can specify it in the third argument as the attributes for
that column. The DBI module exports the :sql_types tag that includes
constants for the data types:

use DBI qw(:sql_types);

$sth->bind_col(1, \my $one, { TYPE => SQL_DATETIME });

As a shortcut, you can use a scalar as the third argument when the data
type is the only attribute:

use DBI qw(:sql_types);

$sth->bind_col(1, \my $one, SQL_DATETIME);

Once you bind your columns, you should see some modest performance
gains.

Things to remember

■ Copying values into variables is slightly inefficient.
■ Bind columns to references for faster access to returned results.
■ Specify column data types, when you know them.

Item 109. Reuse database connections.

Making a connection to a database is typically a very expensive operation.
Avoid making too many connections in your code and cache database con-
nections when possible. This cuts down on the time it takes to make a
query as well as preserving connections for other people who may need to
connect to the database, too. This can be especially important for high
traffic Web sites. Not only do you not want to connect to the database sev-
eral times in one program, but you also don’t want to then run that pro-
gram several hundred times a minute.

Too many connections

Many programmers don’t integrate the database features of their code into
the higher level design. Maybe they started their programs as something

386 ❘ Chapter 12 Databases

Download from <www.wowebook.com>

ptg

small and evolved, but they never shed their initial poor decisions. For
instance, this example connects to the database only when it needs to make
a query, but closes the connection after it makes its query:

sub find_value {

my ($id) = @_;

my $dbh =

DBI->connect($dsn, $user, $password, %options);

my ($value) = $dbh->selectall_array(

'select value from my_table where id = ?',

{}, $id);

return $value;

}

If you call find_value only once or twice, you might not notice a problem.
If you end up calling it multiple times, your program spends a lot of time
setting up database connections when it could be doing something else.

Share database connections

Instead of connecting every time you want to make a query, connect once
and store the database handle. How you do this largely depends on what
your application needs. You could keep the connection as part of the data:

package MyApp::Foo;

sub new {

my ($class) = @_;

my $self = bless {}, $class;

$self->{dbh} = DBI->connect(...);

return $self;

}

When you need to query the database, you take the database connection
from the object data:

sub find_value {

my $self = shift;

my ($value) =

$self->{dbh}->selectall_array(

'select value from my_table where id = ?',

{}, $id);

Item 109. Reuse database connections ❘ 387

Download from <www.wowebook.com>

ptg

return $value;

}

This can work for short-lived programs, but there’s a problem for longer
running programs. The database might close the connection after inac-
tivity, the network might have a hiccup, or many other things might cause
problems. In your methods, you’re trusting that you have an open database
connection.

Per-object connections

You can fix this by encapsulating the database handle, which is always a
good programming practice. Instead of accessing the object data directly,
you call a method to get the database handle. You don’t care what that
method does or how it does it, as long as it gives you a valid database con-
nection. You can create a get_dbh method that uses DBI’s ping method
to check the connection. If ping returns false, it tries to reconnect:

package MyApp::Foo;

sub connect_to_database {

DBI->connect(...) or die ...;

}

sub get_dbh {

my ($self) = @_;

unless ($self->{dbh}->ping) {

$self->{dbh} = $self->connect_to_database;

}

$self->{dbh};

}

This still might be a waste of database connections, since you need one for
every object.

Per-class connections

If every object in your class should share the same database connection,
you can use a class variable to hold the database handle. The mechanics are

388 ❘ Chapter 12 Databases

Download from <www.wowebook.com>

ptg

much like the per-object connection, but you use a lexical variable that
the entire class uses:

package MyApp::Foo;

my $dbh;

sub connect_to_database {

DBI->connect(...) or die ...;

}

sub get_dbh {

my ($self) = @_;

unless ($dbh->ping) {

$dbh = $self->connect_to_database;

}

$dbh;

}

Remember that $dbh is a file-scoped variable, so anything in the file can
access it, even if you switch packages.

Larger requirements

Sometimes even per-class connections waste resources, and you want to
share a connection with the entire application, or even across multiple
processes. Very large applications and systems might need much more
sophisticated connection management.

The Apache::DBI module shows you how to share a database handle
within the same process by providing a wrapper around DBI to handle the
connection caching for you. Even if you aren’t using Apache, you can adapt
its code to your needs. Versions of Apache::DBI before it added Apache2
support might be easier to convert to your specialized needs.

If that’s not good enough for you, consider the DBD::Gofer module. It sets
up a proxy whose only job is to manage DBI connections. It maintains them
in separate processes, giving you flexibility, caching, scalability, throttling,
and many other things. Once set up, you modify your call to DBI->connect
to tell it to connect to the proxy server that DBD::Gofer sets up:

Item 109. Reuse database connections ❘ 389

Download from <www.wowebook.com>

ptg

use DBI;

my $normal_dsn = "dbi:...";

my $dbh = DBI->connect(

"dbi:Gofer:transport=$transport;...;dsn=$original_dsn",

$user, $passwd, \%attributes

);

Be careful with your new data source name: the stuff at the front of the
string is for DBD::Gofer. Once it strips off that front part, DBD::Gofer
uses the rest of the dsn to make the actual database connection. The “nor-
mal,” non-Gofer dsn needs to be at the very end.

Once you have the database handle from DBD::Gofer, you use it as you
normally would. The rest of the program doesn’t care that you are using
it, and doesn’t even notice it.

Things to remember

■ Don’t connect to the database every time that you want to make a
query.

■ Share database connections across objects, classes, or processes.
■ Use the DBD::Gofer module as a DBI proxy to share connections.

390 ❘ Chapter 12 Databases

Download from <www.wowebook.com>

ptg

13 ❘ Miscellany

391

There were many Items that we couldn’t fit into the other chapters, and as
with many of the other Items, they are worthy topics that each could
deserve much longer treatments. There’s no shame in being shepherded
into the miscellaneous chapter; some of these are ideas for future chap-
ters. Other items are isolated topics that might be powerful techniques
despite their uniqueness. Either way, we think they are important to know.

Item 110. Compile and install your own perls.

Sometimes Perl suffers from its own success. It comes with just about every
version of operating systems with UNIX or Linux heritages, including Mac
OS X. Many of these systems use Perl as part of their normal operation or
provide perl as packages. Even then, you can find precompiled perls for
most platforms.

Perl on Windows commonly uses precompiled binaries from ActiveState
(http://www.activestate.com/), cygwin (http://www.cygwin.com/), or
Strawberry Perl (http://www.strawberryperl.com/). People don’t have to
compile their own perls anymore.

There are many advantages to compiling and using your own perl,
though. Since many operating systems rely on perl for normal mainte-
nance tasks, you want to avoid anything that will break that perl. If you
upgrade a core module, for instance, an important part of the system may
stop working. You probably want to pretend that the system perl is not
even there.

Also, as a Perl developer, you should install several versions of perl so you
can test against each of them. It’s easy to install and maintain distinct ver-
sions. This Item covers the basics, but your system may have additional
requirements. The perl distribution has several README files that give
instructions for particular operating systems.

Download from <www.wowebook.com>

ptg

392 ❘ Chapter 13 Miscellany

Compiling your perl

To compile perl, you’ll need a C compiler and the build tools that typi-
cally come with it. You’ll also need make or one of its variants. You don’t
need any special privileges, and you can install perl in your own user
directory. This Item assumes you have all of that already worked out.

To start, download the version of perl that you want to test. You can find
all of the perl releases on CPAN (http://www.cpan.org/src/README.html).

Once you unpack your distribution, change into its directory. It’s time to
choose an installation location. For this example, you’ll put all of your
perls under /usr/local/perls, and each new installation will get its own
subdirectory under that.

The Configure script examines your system and prepares the perl
sources for compilation. The -des switches accept all of the default
answers and give you terse output. The -D switch overrides one of the
answers, in this case for prefix, which sets the installation location.

% ./Configure -des -Dprefix=/usr/local/perls/perl-5.10.1

In this case, you’ve configured the build to install everything under
/usr/local/perls/perl-5.10.1. By accepting the defaults, you won’t move the
perl into /usr/bin, so don’t be afraid of messing up anything. You should
probably do this from an unprivileged account anyway, so your system
will stop you from doing anything too bad.

If you want to see everything that you can configure, don’t accept any of
the defaults; instead, go through the entire process yourself (try it once in
your life):

% ./Configure

After you run Configure, no matter which options you’ve used, you’re
ready to build the source. Depending on your system, you’ll need a make
variant:

% make all

When the build completes, you can test it, which might take a while:

% make test

And finally, you install it. You should see it copy files into the directory you
previously specified in prefix:

Download from <www.wowebook.com>

ptg

% make install

After you finish installing that perl, try installing another one. You can
enable different features, such as threads. You can change the prefix to note
the interesting feature of this perl:

% ./Configure -des -Dusethreads↵

-Dprefix=/usr/local/perls/perl-5.10.1-threaded

Using your perl

Once you install perl, there’s nothing left for you to configure to use it,
although you have to use the path to the perl you want to use. You can see
the default module search path, for instance:

% /usr/local/perls/perl-5.10.1/bin/perl -V

All of the tools, extra programs, and modules for your new perl show up
under your prefix directory. If you want cpan to install modules for this
perl, you call the cpan for that perl. It’s in the bin/ directory under your
prefix:

% /usr/local/perls/perl-5.10.1/bin/cpan LWP::Simple

Any modules that you install in this fashion go into the library directories
for just that perl, and do not disturb any other installation. Indeed, that’s
the point. Remember that when you switch to using another perl, you
might have to reinstall the modules for that perl, too.

If you want to read the documentation, you use the right path to perldoc
so it searches the correct module path:

% /usr/local/perls/perl-5.10.1/bin/perldoc↵

LWP::Simple

If you want to use this perl and its tools as your main perl, you can add
its path to your PATH environment variable. That leaves the system perl
in place, too. If you want to switch your default perl, you just update your
path so the shell finds the new default first. Anything else takes care of
itself, including the module paths.

You might have some trouble with CPAN.pm or CPANPLUS, since they store
their configurations in your home directory (Item 65). Their configura-
tions are per-user instead of per-perl. Ensure that you update their con-
figurations for the perl that you want to use.

Item 110. Compile and install your own perls ❘ 393

Download from <www.wowebook.com>

ptg

Things to remember

■ Install your own perl so you don’t disturb the system perl.
■ You can install multiple perls with different configurations.
■ Add your preferred Perl’s location to your PATH to make it the default.

Item 111. Use Perl::Tidy to beautify code.

Consistent formatting is a fundamental attribute of maintainable code.
Predictable and repeated patterns in the code make your programs easier
for developers to read. Instead of doing the grunt work to beautify your
code, you can use Perl::Tidy to do it for you.

Start with some code that’s not so pretty, and put it in ugly.pl:

use warnings; use strict;

while(<>) { if(/\d/

) { print "contains number\n"; }

else { print "number-free\n" } }

Run perltidy on that file:

% perltidy ugly.pl

The perltidy command puts the cleansed source in a file of the same
name but with .tdy appended it. Here’s the result in ugly.pl.tdy:

use warnings;

use strict;

while (<>) {

if (/\d/) { print "contains number\n"; }

else { print "number-free\n" }

}

perltidy didn’t overwrite the ugly.pl file, as a safeguard so that you
don’t lose your original program. Although perltidy shouldn’t intro-
duce errors, you don’t want to rely on that. Be sure to run compilation
checks and even unit tests against the beautified code before you get rid of
the original (or better yet, use source control).

Alternatively, you can use the -b option to create a .bak file with the orig-
inal data and modify the code file directly. Using this option can make test-
ing much easier, since you don’t have to move files around, but you should
still save your original source.

394 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

Configuring Perl::Tidy

If you want to change formatting style, there are myriad command-line
options available. Suppose you want to indent four spaces instead of two,
and print to standard output instead of to a .tdy file. With the right options
to perltidy, you get just that:

% perltidy -st -i=4 ugly.pl

Your ugly.pl is now slightly different (and shown on your terminal):

use warnings;

use strict;

while (<>) {

if (/\d/) { print "contains number\n"; }

else { print "number-free\n" }

}

If you don’t line that bracing style, you can change it to something else
that you like better:

% perltidy -st -bl -bli ugly.pl

Now the braces for the while get their own line:

use warnings;

use strict;

while (<>)

{

if (/\d/) { print "contains number\n"; }

else { print "number-free\n" }

}

After you find a format that you like, you don’t have to waste time typing
your configuration options on the command line. Put those options in a
.perltidyrc file. One handy way to start that file is to dump the settings of
everything:

% perltidy -st -bl -bli -dump-options

Now you have the settings for everything for that particular invocation,
including the default settings:

Final parameter set for this run.

See utility 'perltidyrc_dump.pl' for nicer formatting.

Item 111. Use Perl::Tidy to beautify code ❘ 395

Download from <www.wowebook.com>

ptg

--add-newlines

--add-semicolons

--add-whitespace

--backup-file-extension="bak"

--blanks-before-blocks

--blanks-before-comments

--blanks-before-subs

...

You can even create a profile that you use for a single project instead of
using the same configuration for everything. With the --profile switch,
you can tell perltidy which profile to use:

% perltidy --profile=projecttidy ugly.pl

You can also override the configuration file location with the PERLTIDY
environment variable, as well as creating a global default configuration
that you put in /usr/local/etc/perltidyrc or /usr/local/etc/perltidyrc.

If you don’t want to use any configuration other than what you specify on
the command line, use the --noprofile option:

% perltidy --noprofile ugly.pl

Checking syntax

Perl::Tidy can work even if there are some syntax errors in your code,
but it cannot get past them all. If perltidy gets too confused, it creates a
.ERR file that lists the errors.

Here’s some broken code that doesn’t quote its string properly. It’s a syn-
tax error:

b0rk3n.pl

use warnings;

use strict;

print 'I'm broken';

When you run perltidy, it tells you that it had a problem, and that it puts
the errors in a file:

% perltidy b0rk3n.pl

Please see file b0rk3n.pl.ERR

396 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

And see what is in the .ERR file that was created:

5: print 'I'm broken';

---^

found m where operator expected (previous token ↵

underlined)

5: hit EOF seeking end of quote/pattern starting↵

at line 4 ending in b

Although the error was for an unescaped quote delimiter, perltidy got
confused because it thought the m was the start of the match operator.
Don’t pay too much attention to the error message.

In your test suite

You can create an author test (Item 88) that runs perltidy every time
you run your test suite. The Test::PerlTidy module handles the details
for you:

use Test::More;

plan skip_all =>

'Set $ENV{TEST_AUTHOR} to enable this test.'

unless $ENV{TEST_AUTHOR};

eval "use Test::PerlTidy";

plan skip_all => 'Test::PerlTidy required' if $@;

run_tests();

By default, Test::PerlTidy uses the standard options. If you want your
code formatted with different options, ensure that you have a .perltidyrc
file in the root of your distribution or in your home directory.

Things to remember

■ Write consistent code to make it easier to read and maintain.
■ Use Perl::Tidy to standardize code format.
■ Set your favorite options in a .perltidyrc file.

Item 111. Use Perl::Tidy to beautify code ❘ 397

Download from <www.wowebook.com>

ptg

Item 112. Use Perl Critic.

Perl is (in)famous for its flexibility and expressiveness. A long-time mantra
of Perl programmers is, “There’s More Than One Way To Do It”
(TMTOWTDI). This flexibility is great; however, sometimes you have to
reel it in and follow a few coding standards. Having rules for what is
allowed and what isn’t can be handy when you are working with a team of
other programmers. It can keep people from writing code that is hard to
read and make your code base a much more pleasant place. Even when
you are working on a project alone, it never hurts to have a few rules in
place that keep the look and feel of the code consistent.

Having rules is one thing; enforcing them is another. You can set up agile
methods, code reviews, and pair programming, which are all good things
but still leave room for human error. What you really need is an automatic
system that can review your code and tell you where it is breaking your rules.

Perl Critic is that system. It performs a static analysis of your Perl code and
warns you when it can. It doesn’t solve all your problems, but it helps you
manage them.

On the Web

The easiest way to check your files with Perl Critic is to simply upload
them to http://perlcritic.com/. You don’t need to install anything, and you
can try out Perl Critic before you decide to commit to it. The output you
get is similar to that from the other Perl Critic tools you’ll see in the rest
of this Item.

On the command line

Once you install Perl::Critic, you can use the perlcritic program
directly from your command line.

Here’s a short program that will generate some Perl Critic warnings using
the default settings:

package MyPrinter;

sub new {

bless {}, shift;

}

398 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

sub print {

print "Hello, World\n";

}

1;

Even on simple modules like this, perlcritic finds errors. For instance,
it warns you that you didn’t use strict (Item 3):

perlcritic MyPrinter.pm

Code before strictures are enabled at line 3, column 1.↵

See page 429 of PBP. (Severity: 5)

In the error message, perlcritic tells you which line of code has the
problem. Additionally, if this problem is one that Damian Conway showed
in Perl Best Practices1, you get the relevant page number from that book.
Finally, perlcritic rates the “severity” of the issue.

There are five levels of policies and corresponding severities, with 5 being
the most severe and 1 being the least. You should concentrate on the most
severe as your immediate fixes. By default, perlcritic shows only level-
5 violations. To see lower levels, use the --severity switch:

% perlcritic --severity 1 MyPrinter.pm

Error: No word lists can be found for the language "↵

en_US".

Code is not tidy at line 1, column 1. See page 33 of ↵

PBP. (Severity: 1)

RCS keywords Id not found at line 1, column 1. See ↵

page 441 of PBP. (Severity: 2)

RCS keywords $Revision$, $HeadURL$, $Date$ not found at ↵

ine 1, column 1. See page 441 of PBP. (Severity: 2)

RCS keywords $Revision$, $Source$, $Date$ not found at ↵

line 1, column 1. See page 441 of PBP. (Severity: 2)

No "$VERSION" variable found at line 1, column 1. See ↵

page 404 of PBP. (Severity: 2)

Subroutine "new" does not end with "return" at line 3, ↵

column 1. See page 197 of PBP. (Severity: 4)

Code before strictures are enabled at line 3, column 1. ↵

See page 429 of PBP. (Severity: 5)

Item 112. Use Perl Critic ❘ 399

1. Damian Conway, Perl Best Practices (Sebastopol, CA: O’Reilly Media, 2005).

Download from <www.wowebook.com>

ptg

Code before warnings are enabled at line 3, column 1. ↵

See page 431 of PBP. (Severity: 4)

Subroutine name is a homonym for builtin function at ↵

line 7, column 1. See page 177 of PBP. (Severity: 4)

Subroutine "print" does not end with "return" at line 7, ↵

column 1. See page 197 of PBP. (Severity: 4)

Return value of flagged function ignored - print at line ↵

8, column 5. See pages 208,278 of PBP. (Severity: 1)

Perl::Critic “themes” policies, and you can include and restrict
reported policy violations by theme. For instance, you can apply the poli-
cies from Perl Best Practices with the pbp theme:

% perlcritic --brutal --theme=pbp

You can also modify themes. Perhaps you want the pbp theme, but want
to ignore the suggestions that are merely cosmetic (i.e., code formatting)
or deal with distribution maintenance. You can adjust the theme directly:

% perlcritic --brutal --theme=\

'pbp && ! (cosmetic || maintenance)' MyPrinter.pm

No "$VERSION" variable found at line 1, column 1. See ↵

page 404 of PBP. (Severity: 2)

Subroutine "new" does not end with "return" at line 3, ↵

column 1. See page 197 of PBP. (Severity: 4)

Code before strictures are enabled at line 3, column 1. ↵

See page 429 of PBP. (Severity: 5)

Code before warnings are enabled at line 3, column 1. ↵

See page 431 of PBP. (Severity: 4)

Subroutine name is a homonym for builtin function at ↵

line 7, column 1. See page 177 of PBP. (Severity: 4)

Subroutine "print" does not end with "return" at line 7,↵

column 1. See page 197 of PBP. (Severity: 4)

There are scores more command line options for perlcritic. You can
restrict or include policies by regular expression, show only a limited num-
ber of violations, reformat the output, show code statistics, and more. Any
configuration options that you prefer can be stored in a .perlcriticrc file so
that you don’t have to repeatedly type them. Invest some time in reading
the documentation for perlcritic.

400 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

In the test suite

The command line interface to Perl::Critic is nice as long as you remem-
ber to use it. You can use Test::Perl::Critic to run a static analysis
every time you run your test suite. Many people add a t/perlcriticrc file to
their distribution so they can adjust the policies just for that distribution.
Once you add that file, it’s simply a matter of adding the t/perl-critic.t
template to your test suite:

use File::Spec;

use Test::More;

if (not $ENV{TEST_AUTHOR}) {

plan(skip_all =>

'Set $ENV{TEST_AUTHOR} to a true value to run.');

}

eval "use Test::Perl::Critic";

if ($@) {

plan(skip_all =>

'Test::Perl::Critic required to criticise code');

}

my $rcfile = File::Spec->catfile('t', 'perlcriticrc');

Test::Perl::Critic->import(-profile => $rcfile);

all_critic_ok();

Chances are that you are working on a project that already exists, and if
you turn on Test::Perl::Critic you’ll be flooded with too many prob-
lems to deal with at once. Instead of stopping all new development to fix
your static analysis problems (or scrapping Perl Critic altogether), you can
use Test::Perl::Critic::Progressive, which warns you only about
new problems:

use Test::More;

eval {

use Test::Perl::Critic::Progressive

qw(progressive_critic_ok)

};

Item 112. Use Perl Critic ❘ 401

Download from <www.wowebook.com>

ptg

plan skip_all =>

'T::P::C::Progressive required for this test' if $@;

progressive_critic_ok();

Test::Perl::Critic::Progressive first takes note of the number of
violations in your code, and then on each subsequent run ensures that you
have the same number of violations or fewer since the last successful run
of the test suite. You get to cap the number of violations that are accept-
able in your code base, and to slowly chip away at them over time.

You can even set the step sizes per-policy when you want to reduce some
problems faster than others:

use Test::More;

eval {

use Test::Perl::Critic::Progressive

qw(

progressive_critic_ok

set_total_step_size

)

};

plan skip_all =>

'T::P::C::Progressive required for this test' if $@;

set_total_step_size(5);

progressive_critic_ok();

Since the default action of Test::Perl::Critic::Progressive merely
checks that you have the same or fewer number of violations since your last
successful run of the test, you need to force yourself and your team to reduce
the total number of violations. To accelerate compliance, you can configure
Test::Perl::Critic::Progressive with a step amount that complains:

my %step_sizes = (

'ValuesAndExpressions::ProhibitLeadingZeros' => 2,

'Variables::ProhibitConditionalDeclarations' => 1,

'InputOutput::ProhibitTwoArgOpen' => 3,

);

set_step_size_per_policy(%step_sizes);

progressive_critic_ok();

402 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

Custom policies

Perl::Critic is distributed with a large set of policies; however, there
are many non-core policies on CPAN that you can integrate into your sys-
tem based on your own code preferences. There are too many add-on poli-
cies to list here, but some notable ones are:

■ Perl-Critic-More

A package of many different policies written by the Perl::Critic
developers.

■ Perl-Critic-Bangs

A set of useful policies by Andy Lester that search for code “smells”
such as commented-out code and bad variable names.

■ Perl-Critic-StricterSubs

Stricter-than-core subroutine rules, for the really masochistic
 developer.

■ Perl-Critic-Swift

Policies that require that you to use UTF-8 encoding declarations in
your source and Pod files.

■ Perl-Critic-Moose

Criticisms for your Moose-based code.

If you can’t find a policy that checks what you need, you can easily write
your own policy. Check the Perl::Critic::DEVELOPER documentation
in the Perl::Critic distribution.

Things to remember

■ Use Perl::Critic to analyze your source code for potential problems.
■ Add Perl::Critic to your test suite with Test::Perl::Critic.
■ Use Test::Perl::Critic::Progressive to add Perl Critic to an

existing project.

Item 113. Use Log::Log4perl to record your program’s state.

Proper logging can be a powerful debugging and diagnostic tool for your
code. At the most basic level, logging can be as simple as using print
 statements:

print "The value is [$value]\n";

Item 113. Use Log::Log4perl to record your program’s state ❘ 403

Download from <www.wowebook.com>

ptg

You might even get a little more fancy by controlling that with an envi-
ronment variable:

print "The value is [$value]\n" if $ENV{DEBUG};

Easy Log::Log4perl

That’s indiscriminate and not very flexible. To really harness the power of
good logging, you need to use a robust logging framework such as Log::
Log4perl, which handles all of the details for you. The easiest thing to do
is to initialize Log::Log4perl with easy_init. The :easy tag exports
variables that represent each of the levels, and subroutines for each level:

use Log::Log4perl qw(:easy);

Log::Log4perl->easy_init($ERROR);

INFO 'starting program';

for (1 .. 100) {

DEBUG "loop counter: $_";

}

INFO 'program complete';

When you run this code, you don’t see any output! Log::Log4perl
ignores the calls to levels below the one you specified in easy_init.

Log::Log4perl defines several log levels:

■ FATAL
■ ERROR
■ WARN
■ INFO
■ DEBUG
■ TRACE

Each level has its own variable, like $ERROR, and a subroutine of the same
name. When you initialize Log::Log4perl, it will only print the messages
from the initialized level or higher. Since you initialized the last example
at the $ERROR level, you get messages from only the ERROR and FATAL lev-
els. If you want more output, you can change the logging level:

Log::Log4perl->easy_init($INFO);

404 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

Now you get some output, but only from the calls to INFO:

2009/10/20 15:47:45 starting program

2009/10/20 15:47:45 program complete

You can move the logging level down further:

Log::Log4perl->easy_init($DEBUG);

Now you get the output from the DEBUG calls, too:

2009/10/20 15:48:16 starting program

2009/10/20 15:48:16 loop counter: 1

2009/10/20 15:48:16 loop counter: 2

2009/10/20 15:48:16 loop counter: 3

...

2009/10/20 15:48:16 loop counter: 98

2009/10/20 15:48:16 loop counter: 99

2009/10/20 15:48:16 loop counter: 100

2009/10/20 15:48:16 program complete

Object-oriented interface

Log::Log4perl also has an object interface, which gives you much more
power. You can still use easy_init, and after that you can call get_logger
to get the logging object. The methods have the same names, but all
 lowercase:

use Log::Log4perl qw(:easy);

Log::Log4perl->easy_init($DEBUG);

my $logger = Log::Log4perl->get_logger();

$logger->info('starting program');

for (1 .. 100) {

$logger->debug("loop counter: $_");

}

$logger->info('program complete');

Item 113. Use Log::Log4perl to record your program’s state ❘ 405

Download from <www.wowebook.com>

ptg

Better configuration

Before long, you’ll not like the default logging options that come with
easy_init, and you’ll want to customize your logging. You can call init
with the name of a configuration file:

use warnings;

use strict;

use Log::Log4perl;

Log::Log4perl::init('log4perl.conf');

my $logger = Log::Log4perl->get_logger();

$logger->info('starting program');

for (1 .. 100) {

$logger->debug("loop counter: $_");

}

$logger->info('program complete');

Since Log::Log4perl is the Perl version of Log4j, the configuration file
looks a lot like Java configuration files. You can choose an appender, which
decides where the output goes, and also define your own output format.
You configure the rootLogger to tell it its level, and which appender it
should use:

log4perl.rootLogger=DEBUG, Screen

log4perl.appender.Screen=Log::Log4perl::Appender::Screen

log4perl.appender.Screen.stderr=1

log4perl.appender.Screen.layout= ↵

Log::Log4perl::Layout::SimpleLayout

Running your program again, you see the output in your newly defined
format:

INFO - starting program

DEBUG - loop counter: 1

DEBUG - loop counter: 2

DEBUG - loop counter: 3

...

406 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

DEBUG - loop counter: 98

DEBUG - loop counter: 99

DEBUG - loop counter: 100

INFO - program complete

It gets even better than that, though. You can define multiple appenders at
the same time, and you can send output to more than one appender at the
same time:

log4perl.rootLogger=DEBUG, Screen, Logfile

log4perl.appender.Logfile=Log::Log4perl::Appender::File

log4perl.appender.Logfile.filename=my_program.log

log4perl.appender.Logfile.mode=replace

log4perl.appender.Logfile.layout=PatternLayout

log4perl.appender.Logfile.layout.ConversionPattern= ↵

[%r] %F %L %c - %m%n

log4perl.appender.Screen=Log::Log4perl::Appender::Screen

log4perl.appender.Screen.stderr=1

log4perl.appender.Screen.layout= ↵

Log::Log4perl::Layout::SimpleLayout

Now, your messages also go to the my_program.log file, which uses its own
format:

[33] log4perl_object_with_config.pl 8 main ↵

- starting program

[33] log4perl_object_with_config.pl 11 main ↵

- loop counter: 1

[33] log4perl_object_with_config.pl 11 main ↵

- loop counter: 2

[33] log4perl_object_with_config.pl 11 main ↵

- loop counter: 3

...

[44] log4perl_object_with_config.pl 11 main ↵

- loop counter: 98

[45] log4perl_object_with_config.pl 11 main ↵

- loop counter: 99

[45] log4perl_object_with_config.pl 11 main ↵

- loop counter: 100

Item 113. Use Log::Log4perl to record your program’s state ❘ 407

Download from <www.wowebook.com>

ptg

[45] log4perl_object_with_config.pl 14 main ↵

- program complete

You can even create different logging categories and tweak the logging
appenders, formatters, and levels per category. You can turn each category
on or off independently, and even send their output to different appenders:

package MyFirstClass;

use warnings;

use strict;

use Log::Log4perl;

Log::Log4perl::init('log4perlWithClasses.conf');

sub new {

my $logger = Log::Log4perl->get_logger(__PACKAGE__);

$logger->debug('creating new ', __PACKAGE__);

return bless {}, shift;

}

package MySecondClass;

use warnings;

use strict;

use Log::Log4perl;

Log::Log4perl::init('log4perlWithClasses.conf');

sub new {

my $logger = Log::Log4perl->get_logger(__PACKAGE__);

$logger->debug('creating new ', __PACKAGE__);

return bless {}, shift;

}

package main;

my $first = MyFirstClass->new();

my $second = MySecondClass->new();

408 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

In your configuration file, you set up each category separately:

log4perl.rootLogger=WARN, Screen

log4perl.category.MyFirstClass=ERROR

log4perl.category.MySecondClass=DEBUG

log4perl.appender.Screen=Log::Log4perl::Appender::Screen

log4perl.appender.Screen.stderr=1

log4perl.appender.Screen.layout= ↵

Log::Log4perl::Layout::SimpleLayout

When set up properly, you get some nice debugging output:

DEBUG - creating new MySecondClass

Detect the logging level

Log::Log4perl also gives you the power to inspect the logging level. Even
though Log::Log4perl ignores messages from lower log levels, it still has
to make the subroutine call, and then inspect its configuration to decide
what to do. That can be a waste of time. A great cycle-saver is avoiding
costly processing if the output will go unnoticed. You can call is_debug
to find out if you are at the debugging level:

if ($logger->is_debug()) {

for (@big_array) {

$logger->debug("big array value: $_");

}

}

Each level has a similar method, and Log::Log4perl provides other
methods you can use to inspect the configuration.

Getting more information

Although this has been the briefest introduction to Log::Log4perl, have no
fear. The Log::Log4perl documentation is excellent, and has many exam-
ples for most of the common situations. See the Log4perl project on Source-
Forge (http://log4perl.sourceforge.net/). Additionally, you can reuse many
of the Log4j examples, since the configurations are very close to each other.

Item 113. Use Log::Log4perl to record your program’s state ❘ 409

Download from <www.wowebook.com>

ptg

Things to remember

■ Use Log::Log4perl for powerful and configurable logging in your
programs.

■ Separate your logging configuration from your code for added
 flexibility.

■ Avoid evaluation if you know that Log4perl will ignore your message.

Item 114. Know when arrays are modified in a loop.

Perl programmers still get bitten all the time because they don’t realize
when a loop is modifying an array and when it isn’t. Let’s go ahead and
make it simple: for loops, maps, and greps will modify the underlying
array elements if you modify $_.

For instance, all of these statements increment the underlying array
 elements:

my @array = (1 .. 10);

$_++ for @array;

my @incremented = map { $_++ } @array;

my @grand_plus = grep { $_++ > 1000 } @array;

You can give the control variable your own name with for and foreach,
and you can modify that variable directly:

my @array = 0 .. 5;

foreach my $elem (@array) {

$elem++;

}

print "@array\n"; # 1 2 3 4 5 6

To make things faster, Perl actually aliases the control variable to the orig-
inal data instead of copying it. When you modify the value, you are actu-
ally modifying the original data.

Things get a little more interesting when you change the array instead of
merely changing the elements. This code pops elements off of a ten-item
array while you iterate over it:

410 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

my $sum = 0;

my @array = (1 .. 10);

foreach (@array) {

pop @array;

$sum += $_;

}

print "The sum is $sum\n"; # 15 instead of 55

Only the first five elements make it into the sum because the other elements
disappear from the array. After the first iteration, it is a nine-element array.
After the second, it is an eight-element array. This continues until the fifth
iteration, when the array becomes a five-element array.

Just as you can remove elements from an array while you are iterating it,
you can add elements. This example creates an infinite loop by continually
extending the array so the foreach never gets to the end:

my $max = 10;

my @array = (1 .. $max);

foreach (@array) {

print "$_ ";

push @array, ++$max;

}

This loop starts by printing 1, then 2, and goes on incrementing until
infinity (or at least until all of the memory allocated to the process is
 consumed).

What about adding elements to the start of an array that you are iterating?

my $max = 10;

my @array = (1 .. $max);

for (@array) {

print "$_ ";

unshift @array, ++$max;

}

This loop will print 1 forever. It seems to perpetually hang at what was the
first position in the array, even when values eleven through fifteen are
added. But is this really the case? What happens when you stop adding ele-
ments to the array?

my $max = 10;

my @array = (1 .. $max);

Item 114. Know when arrays are modified in a loop ❘ 411

Download from <www.wowebook.com>

ptg

foreach (@array) {

print "$_ ";

unshift @array, ++$max if $max <= 15;

}

This code prints 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10. That’s probably
not what you were expecting.

The magic of unshift and foreach working directly on a single array
causes some internal memory confusion that leads to unexpected results.
You can see similar results when shifting elements off of the beginning
of a loop. The code below produces 1 3 5 7 9, seeming to shift every
other element off of the array instead of the first element on each iteration.

my @array = (1 .. $max);

for (@array) {

print "$_ ";

shift @array;

}

Things to remember

■ Don’t modify the data in loop control variables.
■ foreach, map, and grep can modify the underlying array elements.
■ Don’t add or remove elements from an array while you iterate over it.

Item 115. Don’t use regular expressions for comma-separated
values.

The comma-separated values format seems like such an easy format to
parse, and don’t be embarrassed if you thought so. Everyone has—it’s a
rite of passage. Most often, the problem is that people haven’t encountered
all of the perversions of this format.

In its simplest form, you see simple values separated by the comma:

my $line = 'Buster,Mimi,Roscoe';

That’s easy enough to break up into fields by using split, or so it seems:

my @cats = split /,/, $line;

412 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

There’s a tiny wrinkle when someone leaves some whitespace in the
 format:

my $line = 'Buster, Mimi, Roscoe';

Now, is that whitespace part of the value, or it is extraneous padding that
you can throw away? You might choose the latter, and adjust your split:

my @cats = split /\s*,\s*/, $line;

Then things get tricky. The source of your data quotes some fields, espe-
cially if they have commas in them:

my $line = '"Bean, Buster", Mimi, Roscoe';

Things aren’t so simple, now, are they? Since there is no formal standard,
you might run into a record that is spread over more than one line since
it has an embedded newline:

my $line = '"Bean\nBuster", Mimi, Roscoe';

Or maybe there’s a field with double quotes in it, which you escape by dou-
bling them up:

my $line = '"""Bean"", Buster", Mimi, Roscoe';

Almost every single regular expression we’ve seen to handle CSV has failed
in some regard. Instead of wasting your time refining your regular expres-
sion to handle more and more absurdities with this format, let the
Text::CSV_XS module handle it for you. It’s going to be faster than any-
thing you write anyway, and it’s certainly easier:

my $csv = Text::CSV_XS->new({ binary => 1 })

or die 'Cannot use CSV: ' . Text::CSV->error_diag;

open my $fh, '<', $file or die "$file: $!";

while (my $row = $csv->getline($fh)) {

next unless $row->[2] =~ m/$pattern/;

push @rows, $row;

}

$csv->eof or $csv->error_diag;

close $fh;

Item 115. Don’t use regular expressions for comma-separated values ❘ 413

Download from <www.wowebook.com>

ptg

Things to remember

■ Don’t parse comma-separated values with regular expressions.
■ Use the Text::CSV_XS module to parse comma-separated values.

Item 116. Use unpack to process columnar data.

Don’t reach for a regular expression or split every time you have to
process some lines of text. If your data are in regular, constant width
columns, you can use unpack to turn each line into a list of values.

Parse with unpack

Consider how hard you would have to work to process the following text
with a regular expression:

ID First Name Middle Last Name

1 brian d foy

2 Joshua McAdams

3 Joseph N Hall

Here, a split on the whitespace wouldn’t work because the fields are
determined by their positions in the line, not by the type of whitespace or
how much (or little) whitespace separates them. In particular, note that one
of the names doesn’t have a middle initial. That just messes up everything.

The data are formatted consistently. The ID is always columns 1 and 2, the
first names are columns 4 to 15, and so on.

You can create a pack format that represents a line:

my $format = 'A2 @4 A10 @16 A6 @24 A*';

The @ specifier doesn’t represent a field. It tells unpack to move to that
absolute position before it processes the next part of the format. The A
specifier automatically strips any whitespace padding.

Since the data and their headers are in the same columns, you can use the
same format to deal with the headers and the data:

my $string = <<'COLUMNAR';

ID First Name Middle Last Name

1 brian d foy

414 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

2 Joshua McAdams

3 Joseph N Hall

COLUMNAR

open my ($fh), '<', \$string;

my $format = 'A2 @4 A10 @16 A6 @24 A*';

my @headers = unpack $format, <$fh>;

my @names; # make an array of hash refs

while(<$fh>) {

my %hash;

@hash{ @headers } = unpack $format, $_;

push @names, \%hash;

}

use Data::Dumper::Names;

print Dumper(\@names);

The output shows that unpack extracted the fields and took care of the
whitespace for you:

@names = (

{

'First Name' => 'brian',

'ID' => ' 1',

'Middle' => 'd',

'Last Name' => 'foy'

},

{

'First Name' => 'Joshua',

'ID' => ' 2',

'Middle' => '',

'Last Name' => 'McAdams'

},

{

'First Name' => 'Joseph',

'ID' => ' 3',

Item 116. Use unpack to process columnar data ❘ 415

Download from <www.wowebook.com>

ptg

'Middle' => 'N',

'Last Name' => 'Hall'

}

);

Of course, the annoying thing here is counting the columns to get the var-
ious @ settings for the fields. It’s easier to cheat by guessing at some offsets,
trying the unpack, and adjusting until you get them right.

Things to remember

■ Don’t use regular expressions or split to parse fixed columns.
■ Use unpack to parse fixed-width columns.
■ unpack with the A specifier automatically handles whitespace padding

for you.

Item 117. Use pack and unpack for data munging.

Perl’s built-in pack and unpack functions are two of the bigger, sharper
blades on the “Swiss Army Chainsaw.” Perhaps they were originally
intended as ho-hum means of translating binary data to and from Perl
data types such as strings and integers, but pack and unpack can be put to
more interesting and offbeat uses. For more examples, see the perlpacktut
documentation.

Packing data

The pack operator works more or less like sprintf. It takes a format
string followed by a list of values to be formatted, and returns a string:

"Perl" -- pack 4 unsigned chars

my $packed_chars = pack("CCCC", 80, 101, 114, 108);

The unpack operator works the other way:

my @ints = unpack("CCCC", "Perl") # (80, 101, 114, 108);

The format string is a list of single-character specifiers that specify the type
of data to be packed or unpacked. Table 13-1 shows selected format spec-
ifiers (see pack’s entry in perlfunc for the rest):

416 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

Table 13-1 Selected pack Format Specifiers

Specifier Description

a A string with arbitrary binary data, will be null padded.

A A text (ASCII) string, will be space padded.

h A hex string (low nybble first).

H A hex string (high nybble first).

c A signed char (8-bit) value.

C An unsigned char octet) value.

s A signed short (16-bit) value.

S An unsigned short value.

l A signed long (32-bit) value.

L An unsigned long value.

n An unsigned short (16-bit) in “network” (big-endian) order.

N An unsigned long (32-bit) in “network” (big-endian) order.

v An unsigned short (16-bit) in “VAX” (little-endian) order.

V An unsigned long (32-bit) in “VAX” (little-endian) order.

u A uuencoded string.

U A Unicode character number. Encodes to a character in character mode
and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in byte mode.

@ Absolute position.

Each specifier may be followed by a repeat count indicating how many val-
ues from the list to format. The repeat counts for the string specifiers (A,
a, B, b, H, and h) are special—they indicate how many bytes/bits/nybbles
to add to the output string. An asterisk used as a repeat count means to use
the specifier preceding the asterisk for all the remaining items.

The unpack function also can compute checksums. Just precede a speci-
fier with a percent sign and a number indicating how many bits of check-
sum are desired. The extracted items are then checksummed together into
a single item:

unpack "c4", "\1\2\3\4"; # 1, 2, 3, 4

unpack "%16c4", "\1\2\3\4"; # 10

unpack "%3c4", "\1\2\3\4"; # 2

Item 117. Use pack and unpack for data munging ❘ 417

Download from <www.wowebook.com>

ptg

Sorting with pack

Suppose that you have a list of numeric Internet addresses—in string
form—to sort, something like:

11.22.33.44

1.3.5.7

23.34.45.56

You would like to have them in “numeric” order. That is, the list should be
sorted on the numeric value of the first number, then sub-sorted on the
second, then the third, and finally the fourth. As usual, if you try to sort
a list like this, the results are in the wrong order (Item 22). Sorting numer-
ically won’t work either, because that would sort only on the first number
in each string. Using pack provides a pretty good solution:

my @sorted_addr =

sort {

pack('C*', split /\./, $a) cmp

pack('C*', split /\./, $b)

} @addr;

For efficiency, this definitely should be rewritten as a Schwartzian Trans-
form (Item 22):

my @sorted_addr =

map { $_->[0] }

sort { $a->[1] cmp $b->[1] }

map { [$_, pack('C*', split /\./)] } @addr;

Notice that the comparison operator used in the sort is cmp, not <=>. The
pack function converts a list of numbers (e.g., 11, 22, 33, 44) into a 4-byte
string (\x0b\x16\x21\x2c). Comparing these as strings produces the
proper sorting order. Of course, you could also use Socket, and write:

my @sorted_addr =

map { $_->[0] }

sort { $a->[1] cmp $b->[1] }

map { [$_, inet_aton($_)] } @addr;

Manipulating hex escapes

Since pack and unpack understand hexadecimal strings, you can use them
to manipulate strings containing hex escapes and the like.

418 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

For example, suppose you are programming for the Web and would like to
“URI unescape” unsafe characters in a string. To URI unescape a string,
you need to replace each occurrence of an escape—a percent sign followed
by two hex digits—with the corresponding character. For example,
“a%5eb” would be decoded to yield “a^b”. You can write a Perl substitu-
tion to do this in one line:

$_ = "a%5eb";

s/%([0-9a-fA-F]{2})/pack("c",hex($1))/ge;

This particular snippet is widespread in some older (and probably bro-
ken) hand-rolled CGI scripts. However, it’s somewhat obscure looking,
and as is the case for many commonly performed tasks in Perl, there is a
module designed specifically for the job:

use URI::Escape;

$_ = uri_unescape "a%5eb";

Dealing with endianness

Computer architectures come in two flavors based on how they store the
bytes in a number. In the big-endian representation, the most significant
byte comes first, while in the little-endian one, the least significant byte
comes first.

Consider the hexadecimal number 0xAABBCCDD. In big-endian represen-
tation, the bytes come in the order AA, BB, CC, and DD, so that the byte that
holds the biggest part of the number comes first. In little-endian repre-
sentation, the bytes come in the order DD, CC, BB, and AA, so that the byte
that holds the biggest part of the number comes last. There are many endi-
anness tutorials already, so we defer to them for the details.

The problem typically comes up when you have to read from a binary file.
You read four bytes, but you have to ensure that the four bytes come out
as the right number. If you use the L format, you unpack the bytes accord-
ing to the local architecture. That may not be right:

read $fh, $buffer, 4;

my $number = unpack 'L', $buffer; # ???

Most likely, you have at least an inkling what order the bytes are in, so you
can use an unpack format that notes that explicitly.

Item 117. Use pack and unpack for data munging ❘ 419

Download from <www.wowebook.com>

ptg

If you know the order is little-endian, you unpack it with V (for “VAX”
order) to get a 32-bit unsigned integer, even if you are on a big-endian
system:

read $fh, $buffer, 4;

my $number = unpack 'V', $buffer; # little-endian

If the bytes are in big-endian order, you unpack them with N (for “net-
work order”):

read $fh, $buffer, 4;

my $number = unpack 'N', $buffer; # big-endian

To see the difference, pack the number 0xAABBCCDD using both orders,
and look at the resulting bytes:

my $ddccbbaa = pack 'V', 0xAA_BB_CC_DD; # little

my $aabbccdd = pack 'N', 0xAA_BB_CC_DD; # big

printf "\$aabbccdd is 0x%s\n",

join "_",

map { sprintf '%X', ord }

split //, $aabbccdd;

printf "\$ddccbbaa is 0x%s\n",

join "_",

map { sprintf '%X', ord }

split //, $ddccbbaa;

Even though you packed the same number, you can see in the output that
the bytes are in a different order in the actual data:

$aabbccdd is 0xAA_BB_CC_DD

$ddccbbaa is 0xDD_CC_BB_AA

You can’t determine the order of the bytes just by looking at the number
unless you already know what that number is supposed to be. If you
unpack it with the wrong format, you get the wrong number:

my $packed = pack 'L', 137;

printf '%d', unpack 'N', $packed; # -1996488704

You have to decide how to unpack the data to get back to the right num-
ber. Usually this means you have to look at the data format definition, or

420 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

someone has to tell you what the order should be. Once you know the
pack order, you unpack with that same order. For this reason, many sys-
tems agree to use the network order so both sides know what to expect.

Sometimes the data themselves give you a clue by giving you a byte
sequence that represents a known number. For instance, Unicode-encoded
files can have a byte-order mark, U+FEFF, that you can inspect to see in
which order your architecture translates the sequence. Although the actual
order of the bytes is always the same, a little-endian machine turns U+FEFF
into the number 0xFFFE.

To play with this idea, you can create your “file” inside a string so you can
easily see the byte order. Open a filehandle on the string (Item 54), read
two bytes, and then unpack them with the S (16-bit unsigned short) for-
mat. To discover the endianness, you can compare the result of your
unpack with the numeric value you expect on each architecture:

my $string = "\xFE\xFF";

open my($fh), '<', \$string;

read $fh, my($bom), 2;

my $unpacked = unpack 'S', $bom;

if(0xFEFF == $unpacked) {

print "Big Endian!\n"

}

elsif(0xFFFE == $unpacked) {

print "Little Endian!\n"

}

else {

print "What the heck are you?\n"

}

Uuencoding

Uuencoding is a way to ASCIIfy data to ensure that it makes it through a
7-bit channel, such as e-mail, without corrupting itself. You spend all that
time finding out how to type accented characters and you don’t need some
mail server messing them up. It’s simple to do uuencoding on your own
in Perl because pack’s u specifier handles the details for you:

Item 117. Use pack and unpack for data munging ❘ 421

Download from <www.wowebook.com>

ptg

use utf8;

my $string = <<"HERE";

Can my fiancée, Ms. Sørenson, send you her résumé?

HERE

my $uuencoded = pack 'u*', $string;

print "=begin 644 $filename\n", $uuencoded, "`\n=end\n";

Going from the uuencoded text back to the original text is just as easy.
Assuming you have your uuencoded data in a file, you read the file, discard
the header and footer, and then unpack the rest:

use utf8;

while (<>) {

last

if ($mode, $filename) = /^begin\s+(\d+)\s+(\S+)/i;

}

if ($mode) {

open my ($fh), '>:utf8', $filename

or die "couldn't open $filename: $!\n";

chmod oct($mode), $filename

or die "couldn't set mode: $!\n";

print "$mode $filename\n";

while (<>) {

last if (/^(`|end)/i);

print $fh unpack('u*', $_);

}

}

Things to remember

■ Combine data into a single string using pack.
■ Restore data from a string with unpack.
■ Use pack formats to put data in the right format.

422 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

Item 118. Access the symbol table with typeglobs.

You aren’t really supposed to know about the symbol table or typeglobs,
where Perl keeps track of package variables, named subroutine definitions,
and bareword filehandles. For almost anything you might need from the
symbol table, you can use lexical variables, references, or object-oriented
programming instead. However, sometimes you can’t avoid it. You might
also encounter the symbol table and typeglobs from time to time in old
Perl code, so you should be aware of what they look like and what they do.

In Perl, you can use the same identifier for different variables—for
instance, $foo, @foo, %foo, &foo, foo (as a filehandle), and so on. Perl
keeps track of all of the things named “foo” in the symbol table entry for
that name.

You can directly manipulate the contents of the symbol table with a
construct called a typeglob. A typeglob, which might make more sense
said as “a glob of types,” is an identifier preceded by an asterisk—for
example, *foo. It represents the symbol table entry for everything with
that identifier.

You can use typeglobs to alias names:

*ren = *stimpy; # make $ren an alias for

$stimpy, @ren an alias

for @stimpy, and so on.

Same thing, with an explicit package name.

*main::ren = *main::stimpy;

You can localize typeglobs so your change has limited effect:

$ren = 'hello stimpy';

{

local *ren = *stimpy; # $ren, @ren, etc. are local.

$stimpy = 'yello ren';

print "$ren\n"; # prints 'yello ren'

}

print "$ren\n"; # still prints 'yello ren'

$stimpy = 'later skater';

print "$ren\n"; # STILL prints 'yello ren'

Item 118. Access the symbol table with typeglobs ❘ 423

Download from <www.wowebook.com>

ptg

You can change the symbol table hash directly by using a literal string as
an identifier (this is different than a soft reference):

$main::{'ren'} = $main::{'stimpy'};

local $main::{'ren'} = $main::{'stimpy'};

You can pass typeglobs as arguments to subroutines, or store them like
scalar values:

my @g = (*foo, *bar); # Storing typeglobs in an array.

must be package vars!

our ($foo, $bar) = ("ren", "stimpy");

*s = $g[0]; # Using them.

*t = $g[1]; # Or just (*s, *t) = @g.

print "$s and $t\n"; # Prints "ren and stimpy".

You also can alias a single kind of variable, such as only the array or only the
subroutine slot, by assigning a reference of the appropriate type to a type-
glob. In the code below, you alias the name hello to the subroutine world:

sub world { "world\n" }

*hello = \&world;

my $hello = "hello";

print $hello . ", " . &hello; # Prints "hello, world".

If you need to temporarily replace a subroutine definition, you can local-
ize the typeglob and assign a new subroutine definition for that identifier.
Perl figures out which slot to use based on the righthand side:

sub greet { print "Hello!\n" }

greet();

{

local *greet;

*greet = sub { print "How you doing?\n" };

greet();

}

greet(); # back to normal

424 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

You can use typeglobs to localize filehandles and directory handles (Item
52) for lexical filehandles, though:

sub some_file_thing {

local *FH; # FH is local to this subroutine.

open FH, "foo";

...;

}

You can also use typeglobs in places where you should ordinarily use ref-
erences (but avoid doing so unless you have to):

sub you { print "yo, world\n" }

&{*yo}(); # Prints "yo, world".

Perl also has a “typeglob subscript” syntax, *FOO{BAR}, which allows you
to extract individual references from a typeglob:

$a = "testing";

@a = 1 .. 3;

$sref = *a{SCALAR};

$aref = *a{ARRAY};

print "$$sref @$aref\n";

Things to remember

■ Perl tracks package variables in symbol tables.
■ Alias variables with typeglobs.
■ Redefine subroutines by assigning to their typeglobs.

Item 119. Initialize with BEGIN; finish with END.

Perl provides a mechanism, BEGIN blocks, that allows you to execute ini-
tialization code at program start-up. Perl also provides a complementary
mechanism, END, that allows you to execute code just before normal pro-
gram termination.

The BEGIN block

A BEGIN block encloses code that is to be executed immediately after it is
compiled and before any following code is compiled. For example, you
can use BEGIN to initialize a variable that a subroutine will later use. You

Item 119. Initialize with BEGIN; finish with END ❘ 425

Download from <www.wowebook.com>

ptg

might also want to make a lexical variable private to a subroutine. You
need to define and initialize the lexical variable before the subroutine refers
to it:

BEGIN {

my $dow = qw(Sun Mon Tue Wed Thu Fri Sat);

sub dow {

$dow[$_[0] % 7];

}

}

If you want to replace part of another module, perhaps because you need
to temporarily fix a bug, you need a BEGIN block. You have to ensure that
your changes get in before any other part of the code uses the module:

BEGIN {

use Some::Module;

no warnings 'redefine';

*Some::Module::some_sub = sub { ... your fixes ... }

}

Sometimes you’ll want to check the state of your environment before you
go on. Some things may not compile correctly if you don’t have the right
setup. In this case, you check for a threaded perl:

BEGIN {

use Config;

die "You need a threaded perl to run this!"

unless $Config{useithreads} eq 'define';

}

If you are doing something more interesting, such as connecting to a data-
base, you probably don’t want to run that process when you just want to
check the syntax, as when you run perl -c. The $^C variable tells you the
state of the -c switch:

BEGIN {

if ($^C) {

print "I'm just checking my syntax with -c\n";

}

426 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

else {

print "I'm getting ready to run, so I should "

. "get ready\n";

my $dbh = DBI->connect(...);

}

}

You might not think you would need to check for -c, but does your edi-
tor or IDE show you errors and warnings as you write your program? If so,
it’s probably running perl -c behind the scenes.

You can even have multiple BEGIN blocks. Perl executes them in the order
in which you define them, but you’ll see more on that in a moment.

The END block

END blocks enclose code that will be executed just as a Perl program ter-
minates under normal conditions. END blocks are useful for cleaning up—
getting rid of lockfiles, releasing semaphores, and so forth:

END {

my $program_name = basename($0);

unlink glob "/tmp/$program_name.*";

}

END blocks are executed during any “planned” termination—the end of
the script, exit, die, and so on. Multiple END blocks are executed in
reverse of the order in which they were encountered during compilation.
This little example shows the BEGIN blocks happening in order of their
definition, then the run-time statements, and then the ENDs in reverse
order:

BEGIN { print "1. I'm first\n"; }

END { print "6. I'm sixth\n" }

print "4. I'm fourth\n";

BEGIN { print "2. I'm second\n"; }

BEGIN { print "3. I'm third\n"; }

END { print "5. I'm fifth\n" }

If your program exits abnormally, such as from a panic, an uncaught sig-
nal, etc., the program just stops, and doesn’t get a chance to run its END
blocks.

Item 119. Initialize with BEGIN; finish with END ❘ 427

Download from <www.wowebook.com>

ptg

Things to remember

■ Use BEGIN blocks to run code at compile time.
■ Use END blocks to run code right before program termination.

Item 120. Use Perl one-liners to create mini programs.

Perl’s heritage includes the world of system administration, where people
like to create their entire programs on the command line. The perlrun doc-
umentation lists all of perl’s command-line options that make this pos-
sible, but you’ll get only the most popular ones in this Item.

Many of the normal style rules disappear on the command line. Lexical
variables, descriptive names, and proper scoping don’t matter as much in
short programs. Judicious use of default arguments (Items 15 and 16) saves
space. Although you shouldn’t intentionally make your programs hard to
read by making them as short as you can, you don’t want to make your
one-liners hard to read by making them too long, either.

The -e switch

To specify a program on the command line, you use the -e switch, or the
-E switch if you have Perl 5.10 or later and want to enable its optional fea-
tures. The argument to -e is a string that represents your program. Since
you may want to use quotes inside the program text, you might want to use
generalized quoting (Item 21) so you don’t confuse the shell’s quoting
(e.g., the Windows cmd wants double quotes around arguments):

% perl -e "print qq(Hello World\n)"

% perl -E "say q(Hello World)"

You can add a newline to the end of your output with the -l switch, which
means you can often go without the double quoting if you only used the
quoting to get the newline:

% perl -le "print q(Hello World)"

% perl -le "print q(The time is), scalar localtime"

To print the module search path, you just have to loop over @INC:

% perl -le 'print for @INC'

428 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

You can still give your script arguments. Remember that shift works on
@ARGV (Item 16) when you use it outside of a subroutine. Here’s a one-
liner to convert a decimal representation to a hexadecimal one:

% perl -e "printf qq|%X\n|, int(shift)" 137

93

Once you have a one-liner that you like, you can make it a shell alias so you
don’t have to do so much typing. If you have to convert number bases
often, you might like these bash aliases to translate between binary (b),
octal (o), decimal (d), or hexadecimal (h):

alias d2o="perl -e 'printf qq|%o\n|, int(shift)'"

alias d2b="perl -e 'printf qq|%b\n|, int(shift)'"

alias h2d="perl -e 'printf qq|%d\n|, hex(shift)'"

alias h2o="perl -e 'printf qq|%o\n|, hex(shift)'"

alias h2b="perl -e 'printf qq|%b\n|, hex(shift)'"

alias o2h="perl -e 'printf qq|%X\n|, oct(shift)'"

alias o2d="perl -e 'printf qq|%d\n|, oct(shift)'"

alias o2b="perl -e 'printf qq|%b\n|, oct(shift)'"

If you have to deal with epoch time and want to know what the string ver-
sion is, that’s a similar alias:

alias e2t="perl -le 'print localtime(shift)'"

The -n switch

The -n switch wraps a while loop around the program you specify with
-e. The while iterates the lines in the file that you specify:

% perl -ne "print" fileA fileB

That one-liner program is the same as this full program, where the parts
in the -e are in the while block:

while (<>) {

print;

}

This allows you to change the lines of the input to create new output. Sup-
pose that you want to add the line number to each line. You just need to
add the $. special variable to the output:

% perl -ne 'print qq($.: $_)' fileA

Item 120. Use Perl one-liners to create mini programs ❘ 429

Download from <www.wowebook.com>

ptg

In that one-liner, you single-quoted it so a UNIX shell wouldn’t think that $.
and $_ were shell variables. You can change those to double-quotes on Win-
dows, but on UNIX you’d have to escape the $, making things very messy:

% perl -ne "print qq(\$.: \$_)" fileA

If you want to output only a range of lines, that’s easy, too. The flip-flop
operator (the .. in scalar context) is false until its lefthand side is true,
and it stays true until its righthand side is true. When you give it just num-
bers, it compares $. to those numbers. This one line prints lines 4 to 7
inclusively:

% perl -ne 'print qq($.: $_) if 4 .. 7' fileA

If you just want the odd-numbered lines, that’s easy, too, with the modu-
lus operator, %:

% perl -ne 'print qq($.: $_) if $. % 2' fileA

Since the -n wraps your code in while(<>) { and }, you can play some
extra tricks on it. It just puts those virtual braces around whatever is in
-e, but your entire program doesn’t have to be in that while. For instance,
you can end the while yourself and start another block. In this example,
you use an END block (Item 119) that uses that final parenthesis from -n:

% perl -nle '$count++ } END { print $count' *.pl

If you typed out that program, you’d get this script, even if it looks a bit
oddly formatted:

while(<>) {

$count++ } END { print $count

}

Similarly, you might want to run something once at the start, so you use a
BEGIN block (Item 119):

% perl -nle '$count++ } \

BEGIN { print q(Counting) . @ARGV . q(files) } \

END { print $count' *.pl

The -p switch

The -p switch is like the -n switch, but it automatically prints the value of
$_ at the end of each iteration of the loop.

430 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

% perl -pe 's/buster/Buster/g' fileA fileB

The -p turns that program into this while loop, inserting your code at
the top of the loop, but adding a print before the end of the loop:

while (<>) {

s/buster/Buster/g;

print;

}

Suppose you want to change all line endings to the UNIX line endings.
You just have to supply the part that changes the line, and -p handles the
output:

% perl -pe 's/\012?\015/\n/g' file-dox.txt > \

file-unix.txt

The -i switch

The -i switch turns on some special magic that lets you process files in-
place. When you use -i, Perl renames the original file, opens it for read-
ing using its new name, and then opens a new file for writing with the
original name. As you read lines from the renamed file, you can change
them and write them to the original filename, transforming your file line-
by-line. If you want to change all of the colons to tabs, use -pi:

% perl -pi -e 's/:/\t/' fileA fileB

The -i switch by itself clobbers the original data. perl doesn’t keep a copy
of the original file. If you want to keep a backup in case things don’t work
out correctly, you can give -i a file extension, such as .old. Now perl saves
the original data as fileA.old and fileB.old.

% perl -pi.old -e 's/:/\t/' fileA fileB

You can increment all of the numbers in a file with a global substitution:

% perl -pi.bak -e 's/(\d+)/ 1 + $1 /ge' fileA

You can increment just the numbers that have non-word characters
around them:

% perl -pi.bak -e 's/\b(\d+)\b/ 1 + $1 /ge' fileA

Or maybe you want to expand all of the tabs into spaces. This one is tricky,
because you don’t want to simply make every tab a certain number of

Item 120. Use Perl one-liners to create mini programs ❘ 431

Download from <www.wowebook.com>

ptg

spaces. You want to just expand a tab until the next tab stop, so you have
to do some fancy work to figure out how close to the tab stop you are:

% perl -pi -e 's/\t/ q() x (4 - pos() % 4) /ge' tabs.txt

With the -0 switch, you can specify the input record separator, in either
octal or hexadecimal. If you specify 00, you turn on paragraph mode. To
rewrap paragraphs, you can turn every run of whitespace into a single space,
and then find the first space before 73 characters and turn it into a newline.
Before you print $_, you tack on an extra newline to separate paragraphs:

% perl -000 -pi.bak -e \

's/\s+/ /g; s/(.{50,73})\s/$1\n/g; $_.=qq(\n\n)'

This example is perfect for the \K, which doesn’t include the parts of the
pattern before it in the replacement:

% perl5.10.1 -000 -pe \

's/\s+/ /g; s/(.{50,73})\K\s/\n/g; $_.=qq(\n\n)'

The -M switch

You can load a module from the command line with -M:

% perl -MLWP::Simple -e "getprint 'http://www.example.com'"

% perl -MFile::Spec::Functions -le \

'print catfile(@ARGV)' a b c

If you want to import a symbol, you start the import list with an equal
sign after the module name:

% perl -MList::Util=shuffle -le \

"print for(shuffle(@ARGV))" a b c

If you want to load more than one module, you use more than one -M:

% perl -MList::Util=shuffle -MList::MoreUtils=uniq \

-le "print for(shuffle(uniq @ARGV))" a b c a h g

The -a and -F switches

The -a switch breaks up a line for you and puts the result in @F. By default,
it breaks up the line by whitespace. Using the END trick you saw earlier, but
this time with for, you can get a word frequency table:

432 ❘ Chapter 13 Miscellany

Download from <www.wowebook.com>

ptg

% perl -anle '$S{$_}++ for @F } \

for(keys %S) { print qq($_ $S{$_})'

If you want to sort the list by the number of times you see the word, that’s
easy, too:

% perl -anle '$S{$_}++ for @F } \

for(sort { $S{$b} <=> $S{$a} } keys %S) \

{ print qq($_: $S{$_})'

That’s fine for whitespace-separated words, but what if they are separated
by something else—say, colons? The -F switch allows you to change the
split pattern that -a uses:

% perl -aF: -nle '$S{$_}++ for @F } \

for(sort { $S{$b} <=> $S{$a} } keys %S) \

{ print qq($_: $S{$_})'

What if you want to count only some of the words, such as the first to third
words on each line? In that case, you just use a slice of @F:

% perl -aF: -nle '$S{$_}++ for @F[0..2] } \

for(sort { $S{$b} <=> $S{$a} } keys %S) \

{ print qq($_: $S{$_})'

Things to remember

■ Write short programs directly on the command line.
■ Back up any files you modify in-place.
■ See the perlrun documentation for details on all perl switches.

Item 120. Use Perl one-liners to create mini programs ❘ 433

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

A ❘ Perl Resources

435

This is just a small book about Perl, and we selected only some of the most
valuable topics that we wanted to pass along to the intermediate Perl pro-
grammer. The first edition of this book was published when the Perl canon
and community were still small. Now both are much larger, and there’s a
lot more available to you.

Books

We include a short list of book recommendations, but you can find more
Perl books at http://books.perl.org/.

■ Learning Perl, Fifth Edition, by Randal L. Schwartz, Tom Phoenix, and
brian d foy (Sebastopol, CA: O’Reilly Media, 2008). This is the canon-
ical book for starting with Perl. You’ll get just enough Perl to handle
the 80% of the language that you’ll use every day.

■ Intermediate Perl by Randal L. Schwartz, Tom Phoenix, and brian d
foy (Sebastopol, CA: O’Reilly Media, 2006). After you go through
Learning Perl, you’re ready for an intensive introduction to references,
packages, and modules.

■ Mastering Perl by brian d foy (Sebastopol, CA: O’Reilly Media, 2007).
Instead of teaching you more Perl syntax, this book focuses on using
Perl wisely to create robust, enterprise-worthy programs.

■ Higher Order Perl: Transforming Programs with Programs by Mark
Jason Dominus (San Francisco, CA: Morgan Kaufmann, 2005). If you
really want to harness the power of Perl’s dynamic subroutines, try
this mind-bending tome from one of Perl’s luminaries. You can
download this book for free at http://hop.perl.plover.com/.

■ Object Oriented Perl: A Comprehensive Guide to Concepts and Pro-
gramming Techniques by Damian Conway (Greenwich, CT: Manning
Publications, 2000). You can learn not only Perl’s object oriented syn-
tax, but also a lot of the theory and philosophy of object oriented pro-
gramming.

Download from <www.wowebook.com>

ptg

436 ❘ Appendix A Perl Resources

■ Network Programming with Perl by Lincoln Stein (Boston, MA:
 Addison-Wesley Professional, 2001). Although this book is somewhat
dated, the basics of network programming at the low levels haven’t
changed that much. If you want to understand what the Perl net-
working modules do behind the scenes, start with this book.

■ Perl Testing: A Developer’s Notebook by Ian Langworth and chromatic
(Sebastopol, CA: O’Reilly Media, 2005). Learn more about Perl test-
ing with the advice from this book.

■ Pro Perl Debugging by Richard Foley and Andy Lester (New York, NY:
Apress, LLC, 2005). If you want to know how to use the built-in Perl
debugger, this book will show you how to do more than you thought
 possible.

■ Writing Perl Modules for CPAN by Sam Tregar (New York, NY: Apress,
LLC, 2002). If you’re just getting started as a CPAN author, this is a
good starting point. It’s also available as a free download from Apress,
LLC at http://www.apress.com/book/view/159059018X.

■ The Perl Cookbook, Second Edition, by Tom Christiansen and Nat
Torkington (Sebastopol, CA: O’Reilly Media, 2003). Much like this
book, The Perl Cookbook has many short topics that show you how to
accomplish specific tasks.

■ Automating System Administration with Perl: Tools to Make You More
Efficient by David N. Blank-Edelman (Sebastopol, CA: O’Reilly Media,
2009).

■ Perl Hacks: Tips and Tools for Programming, Debugging, and Surviving
by chromatic, Damian Conway, and Curtis “Ovid” Poe (Sebastopol,
CA: O’Reilly Media, 2006). Learn some cool tricks and Perl innards,
even if just for fun.

Websites

■ http://perldoc.perl.org/
Read the Perl documentation online.

■ http://search.cpan.org/
Find almost everything you need to know about any Perl module.

■ http://learn.perl.org/
Start learning Perl with some of these resources.

■ http://perltraining.com.au/tips/
Find more Perl advice from Perl Training Australia.

Download from <www.wowebook.com>

ptg

■ http://pause.perl.org/
Start your career as a CPAN author at PAUSE, the Perl Authors
Upload Server.

■ http://www.yapc.org/ and http://yapceurope.org/
Find out about Perl events and conferences.

■ http://www.pm.org/
Find a Perl user group near you.

■ http://www.theperlreview.com/
The Perl Review publishes articles and other resources for Perl.

Blogs and Podcasts

There are many Perl blogs out there. Most of the good ones are listed in
one of the blog aggregators.

■ http://perlcast.com/
Perlcast is a podcast about Perl.

■ http://blogs.perl.org/
This is a Perl blogging service. Get your own account!

■ http://planet.perl.org/
Planet Perl is a Perl blog aggregator.

■ http://perlsphere.net/
Perlsphere is a Perl blog aggregator

Getting help

There are several websites where you can get Perl help.

■ http://www.stackoverflow.com/
■ http://www.perlmonks.org/
■ The beginners.perl.org mailing list at http://www.nntp.perl.org/

group/perl.beginners/ is a gentle place for new Perl programmers to
ask questions.

■ http://irc.perl.org/
■ http://lists.perl.org/ lists many of the Perl mailing lists, many devoted

to select topics.

Getting help ❘ 437

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

B ❘ Map from First to Second Edition

439

We restructured the second edition of Effective Perl Programming. We
removed some chapters, such as “Object-Oriented Programming” and
“Debugging,” that other books cover much better, and added new chap-
ters for modern topics, such as “Testing” and “CPAN.” Of course, we kept
and revised quite a number of the original chapters and Items, but shuf-
fled them around a bit.

Table B-1 lists the Items of the first edition in order of appearance in the
book and their corresponding Items in the second edition.

Some Items from the first edition do not appear in the second edition. Table
B-2 shows the Items that we removed for one reason or another. Possibly they
were too outdated to update or were completely eclipsed by a more-modern
practice in Perl. Possibly we felt that we couldn’t cover the topic adequately
within the scope of this book. Maybe we just ran out of time. If we removed
an Item that you particularly liked, we apologize—maybe it will make it back
into the third edition. Check http://www.effectiveperlprogramming.org/:
We’re going to post more Effective Perl there and we still might get to cover
these items.

Download from <www.wowebook.com>

ptg

Table B-1 Mapping of the Items in the First Edition to Their Positions in the Second Edition

First Edition Second Edition

Item Chapter Title Item Chapter Title

1 Basics Know your namespaces. 5 The Basics of Perl Know your variable namespaces.

2 Basics Avoid using slice when you want 11 The Basics of Perl Avoid a slice when you want an
an element. element.

3 Basics Don’t assign undef when you want 10 The Basics of Perl Don’t assign undef when you want an
an empty list. empty array.

4 Basics String and numeric comparisons are 6 The Basics of Perl Know the difference between string and
different. numeric comparisons.

5 Basics Remember that 0 and " " are false. 7 The Basics of Perl Know which values are false and test
them accordingly.

6 Basics Understand conversions between 8 The Basics of Perl Understand conversions between strings
strings and numbers. and numbers.

7 Idiomatic Perl Use $_ for elegance. 15 Idiomatic Perl Use $_ for elegance and brevity.

8 Idiomatic Perl Know the other default arguments: 16 Idiomatic Perl Know Perl’s other default arguments.
@_, @ARGV, STDIN.

9 Idiomatic Perl Know common shorthands and 17 Idiomatic Perl Know common shorthand and syntax
syntax quirks. quirks.

10 Idiomatic Perl Avoid excessive punctuation. 18 Idiomatic Perl Avoid excessive punctuation.

11 Idiomatic Perl Consider different ways of reading 53 Files and Filehandles Consider different ways of reading from
from a stream. a stream.

12 Idiomatic Perl Use foreach, map and grep as 20 Idiomatic Perl Use foreach, map, and grep as
appropriate. appropriate.

13 Idiomatic Perl Don’t misquote. 21 Idiomatic Perl Know the different ways to quote
strings.

440

Download from <www.wowebook.com>

ptg

First Edition Second Edition

Item Chapter Title Item Chapter Title

14 Idiomatic Perl Learn the myriad ways of sorting. 22 Idiomatic Perl Learn the myriad ways of sorting.

15 Regular Expressions Know the precedence of regular 28 Regular Expressions Know the precedence of regular
expression operators. expression operators.

16 Regular Expressions Use regular expression memory. 29 Regular Expressions Use regular expression captures.

17 Regular Expressions Avoid greed when parsimony is best. 34 Regular Expressions Avoid greed when parsimony is best.

18 Regular Expressions Remember that whitespace is not a 35 Regular Expressions Use zero-width assertions to match
word boundary. positions in a string.

19 Regular Expressions Use split for clarity, unpack for 117 Miscellany Use pack() and unpack() for data
efficiency. munging.

20 Regular Expressions Avoid using regular expressions for 36 Regular Expressions Avoid using regular expressions for
simple string operations. simple string operations.

21 Regular Expressions Make regular expressions readable. 37 Regular Expressions Make regular expressions readable.

22 Regular Expressions Make regular expressions efficient. 32 Regular Expressions Use non-capturing parentheses when
you only need grouping.

22 Regular Expressions Make regular expressions efficient. 33 Regular Expressions Watch out for the match variables.

22 Regular Expressions Make regular expressions efficient. 38 Regular Expressions Avoid unnecessary backtracking.

22 Regular Expressions Make regular expressions efficient. 39 Regular Expressions Compile regexes only once.

22 Regular Expressions Make regular expressions efficient. 41 Regular Expressions Benchmark your regular expressions

23 Subroutines Understand the difference between 43 Subroutines Understand the difference between my
my and local. and local.

24 Subroutines Avoid using @_ directly—unless you 44 Subroutines Avoid using @_ directly unless you
have to. have to.

continues

441

Download from <www.wowebook.com>

ptg

Table B-1 Mapping of the Items in the First Edition to Their Positions in the Second Edition (continued)

First Edition Second Edition

Item Chapter Title Item Chapter Title

25 Subroutines Use wantarray to write subroutines 45 Subroutines Use wantarray to write subroutines
returning lists. returning lists.

26 Subroutines Pass references instead of copies. 46 Subroutines Pass references instead of copies.

27 Subroutines Use hashes to pass named 47 Subroutines Use hashes to pass named
parameters. parameters.

28 Subroutines Use prototypes to get special 48 Subroutines Use prototypes to get special
argument parsing. argument parsing.

29 Subroutines Use subroutines to create other 50 Subroutines Create new subroutines with
subroutines. subroutines.

30 References Understand references and 58 References Understand references and
reference syntax. reference syntax.

31 References Create lists of lists with references. 60 References Create arrays of arrays with references.

32 References Don’t confuse anonymous arrays 61 References Don't confuse anonymous arrays
with list literals. with list literals.

33 References Build C-style structs with anonymous 62 References Build C-style structs with anonymous
hashes. hashes.

34 References Be careful with circular data structures. 63 References Be careful with circular data structures.

35 References Use map and grep to manipulate 64 References Use map and grep to manipulate
complex data structures. complex data structures.

36 Debugging Enable static and/or run-time checks. 3 The Basics of Perl Enable strictures to promote better
coding.

41 Using Packages Don’t reinvent the wheel—use 71 CPAN Know the commonly used modules.
and Modules Perl modules.

442

Download from <www.wowebook.com>

ptg

First Edition Second Edition

Item Chapter Title Item Chapter Title

43 Using Packages Make sure Perl can find the modules 69 CPAN Ensure that Perl can find your modules.
and Modules you are using.

44 Using Packages Use perldoc to extract documenta- 1 The Basics of Perl Find the documentation for Perl and its
and Modules tion for installed modules. modules.

45 Writing Packages Use h2xs to generate module 80 Distributions Don’t start distributions by hand.
and Modules boilerplate.

46 Writing Packages Embed your documentation with 82 Distributions Embed your documentation with
and Modules POD. POD.

47 Writing Packages Use XS for low-level interfaces 86 Distributions Use XS for low-level interfaces and
and Modules and/or speed. speed.

48 Writing Packages Submit your useful modules to 70 CPAN Contribute to CPAN.
and Modules the CPAN.

53 Miscellany Use pack and unpack for data 117 Miscellany Use pack() and unpack() for data
munging. munging.

54 Miscellany Know how and when to use eval, 25 Idiomatic Perl Use do {} to create inline subroutines.
require, and do.

56 Miscellany Don’t forget the file test operators. 51 Files and Filehandles Don't ignore the file test operators.

57 Miscellany Access the symbol table with 118 Miscellany Access the symbol table with
typeglobs. typeglobs.

59 Miscellany Initialize with BEGIN; finish with END. 119 Miscellany Initialize with BEGIN; finish with END.

60 Miscellany Some interesting Perl one-liners. 120 Miscellany Use Perl one-liners to create mini
programs.

Appendix B Perl Resources Appendix A Perl Resources

443

Download from <www.wowebook.com>

ptg

Table B-2 Items from the First Edition Left Out of the Second Edition

Item number Chapter Title
in 1st Edition

37 Debugging Use debugging and profiling modules.

38 Debugging Learn to use a debugging version of Perl.

39 Debugging Test things by using the debugger as a Perl “shell”.

40 Debugging Don’t debug too much as once.

42 Using Packages and Modules Understand packages and modules.

49 Object-Oriented Programming Consider using Perl’s object-oriented programming features.

50 Object-Oriented Programming Understand method inheritance in Perl.

51 Object-Oriented Programming Inherit data explicitly.

52 Object-Oriented Programming Create invisible interfaces with tied variables.

55 Object-Oriented Programming Know when, and when not, to write networking code.

58 Miscellany Use @{[...]} or a tied hash to evaluate expressions inside strings.

444

Download from <www.wowebook.com>

ptg

❘ Index

445

Symbols
& (ampersand), sigil for subroutines, 17

&&, and operator used in place of,
67–68

$ anchor, 124

$ (dollar sign), sigil for scalars, 17

$_ (dollar underscore)
built-ins that use, 58
as default for many operations,

53–54
localizing, 55
main package and, 54
-p switch and, 430
programming style and, 55–56

$’ match variable, 117

$` match variable, 117

$. special variable, 429–430

$& match variable, 117

$1, $2, $3 capture variables, 103–105

$@, for handling exceptions, 365,
370–371

$dbh, per-class database connections,
389

$^C variable, 426

" " (double quotes), options for quote
strings, 73–74

%+ hash, labeled capture results in,
114–115

% (percent symbol), sigil for hashes, 17

() [], forcing list context, 60

() (parentheses). See Parentheses ()

* (asterisk), sigil for typeglobs, 17

' ' (single quotes), options for quote
strings, 73

; (semicolon), for handling exceptions,
371

?
for nongreedy quantifiers, 120
using SQL placeholders, 383

?: (capture-free parenthesis), 116–117

@ (at), sigil for arrays
for list of elements, 17
overview of, 9

@_
as default argument, 56–57
passing arguments, 154–157

@{[]}, for making copies of lists, 64

@ specifier, parsing column data,
414–416

@ARGV
as default argument, 57–58
as default argument outside

subroutines, 429

@INC, module search path, 428

[] (square brackets)
anonymous arrays constructor, 60
careful use of, 63

Download from <www.wowebook.com>

ptg

446 ❘ Index

\ (reference operator), creating list of
references, 61

^ anchor, matching beginning of a
string with, 123–124

{} (curly braces), careful use of, 63–64

||= operator, Orcish Maneuver using,
82

||, or operator used in place of, 67–68

~~ (smart match) operation. See
smart match operation (~~)

<> (diamond) operator
careful use of, 63
for line-input operator, 24, 183

<=> (spaceship) operator, 83

== (equality) operator, 22

=> (fat arrow) operator
making key-value pairs, 61–62
for simulating named parameters, 62

_ (underscore), virtual file handler, 181

A
\A anchor, matching beginning of a

string with, 123–124

Actions, Module::Build, 277

Additive operators, 42

Admin privileges, for installing CPAN
modules, 228

Agile methodologies, 335

Aliases
for characters, 260
for typeglobs, 424

All-at-Once method, for reading from
streams, 184

Alternation operators
avoiding backtracking in regular

expressions, 132–133
character class used in place of, 134
precedence of, 100–101

Anchors
matching beginning with ^ or \A,

123–124
regular expressions and, 121
setting word boundaries with \b,

121–123

and operator, 67–68

Angle brackets, diamond operator
(<>)

careful use of, 63
for line-input operator, 24

AnnoCPANn, 12

Anonymous arrays constructors,
214–215

Anonymous closures, 173

Apache Ant, 351–352

Apache::DBI module, 389

API, names to avoid, 287

App namespace, 285

App:Ack module, 250

Appenders, in Log::Log4perl
configuration, 406–409

Arguments
default. See Default arguments
passing to subroutines, 160–162
passing with @_, 56–57, 154–157
passwith with @ARGV. See @ARGV
returning from subroutines, 162

Arithmetic expressions, 99

Arithmetic operators, 42

Download from <www.wowebook.com>

ptg

Index ❘ 447

Arrays
$, for retrieving scalar values, 9
@, for retrieving lists of values, 17
anonymous array constructors,

214–215
avoiding slices when you want an

element, 37–38
creating arrays of arrays, 211–213
creating prototypes, 168
end of, 25
for grouping data, 45–47
knowing when loops are modifying,

410–412
vs. lists, 31–32
merging, 96
namespace for, 19
not assigning undef for empty

arrays, 34–37
not confusing slices with elements,

39–40
reading files as if they were arrays,

197–198
removing and returning elements

from end of, 169–170
slices for sorting, 40
swapping values in, 60

ASCII
telling Perl which encoding system to

use, 257
using non-ASCII characters for

identifiers, 255

Assignment operators
in list and scalar context, 43-44
not assigning undef for empty

arrays, 327
redefining subroutines by assigning

to their typeglobs, 34–37
swapping values using list

assignments, 60

atof(), for converting strings to
numbers, 27

Atoms, 99–100

Author tests, 311–312

autodie, exception handling with,
96–98, 366

Automated environment, skipping
tests in, 313–314

Automatic value quoting, SQL
placeholders for, 382–384

Autovivification, of references, 207–208

B
\b and \B, matching boundaries

between word and nonword
characters, 121–123

Backreferences, capture buffers with,
105–106

Backtracking, in regular expressions
avoiding, 132–133
character class used in place of

alternation, 134
quantifiers and, 134–136

Barewords, caution in use of, 15–16

Barr, Graham, 228

BEGIN blocks, for initialization,
425–426

Benchmarking, in regular expressions,
139–141

Big-endian representation, 419–421

bignum, 47–49

Binary strings, 253

bind_col method, performance
enhanced by, 385–386

Download from <www.wowebook.com>

ptg

448 ❘ Index

binmode, for encoding system on
selected filehandles, 258

Birmingham Perl Mongers, 307

blib module, 308

Blogs, Perl, 437

Books, on Perl, 435–436

Boolean context, converting numbers
to strings before testing, 23

Branching, 88

Bugs, viewing or reporting, 239–240

Built-ins
overriding, 328–329
in Perl, 5
that do not use $_, 59
that use $_ (dollar underscore), 58

Bunce, Tim, 227

Bytes. See Octets

C
C compiler, compiling perl, 392

C language
Perl compared with, 51
XS connecting to Perl, 301–302

Caching statement handles, 380–382

Call stacks, tracing using Carp,
366–369

Cantrell, David, 237

Capture
labeling matches, 114–115
noncapturing parentheses for

grouping, 116–117
parenthesis for, 116

Capture buffers. See Capture variables

Capture-free parenthesis (?:), 116–117

Capture variables
capture buffers with backreferences,

105–106
overview of, 103–105
used in substitutions, 107

Carp module
checking enabled warning before

triggering, 363
stack traces using, 366–369

Carriage return, in regular expression,
112–113

Catalyst module, 250

CGI::Simple module, 250

Character class, used in place of
alternation, 134

Character sets, 254

Character strings, 253, 261–265

Characters
aliases used for, 260
converting octet strings to character

strings, 261–265
getting code points from names, 260
getting names from code points,

259–260
matching, 266
metacharacters used as literal

characters, 102–103
specifying by code point or name,

258–259
transliterating single, 128
zero-width assertions for matching,

121

charnames, 259

Circular data structures, 218–221

Classes
character class used in place of, 134
faking with Test::MockObject,

325–327

Download from <www.wowebook.com>

ptg

Index ❘ 449

sharing database connections across,
388–389

subclass argument of
Module::Build, 277–278

Test::Class module, 332–335

Closures
anonymous closures compared with
state variable, 173

for locking in data, 171
private data for subroutines, 172–174
for sharing data, 175

Code
beautifying with Perl::Tidy,

394–396
reading code underlying CPAN

modules, 241
spotting suspicious, 358–361
taint warnings for legacy, 375–376

Code points
defining custom properties, 268
getting from names, 260
getting names from, 259–260
specifying characters by, 258–259
Unicode mapping characters to, 253

Collection types, arrays and hashes as,
45

Columns
binding for performance, 384–386
using unpack to parse fixed-width,

414–416

Combining characters, in Unicode, 264

Comma operator
=> (fat arrow) operator compared

with, 61
creating series not lists, 32–33
formatting lists for easy

maintenance, 68–70

Comma-separated values (CSVs),
412–414

Command-line arguments, decoding
before using, 263–264

Command line, writing short
programs on, 428–434

-a and -F switches, 431
-e or -E switch, 428–429
-i switch, 431–432
-M switch, 432
-n switch, 429–430
overview of, 428
-p switch, 430–431

Commands, Pod, 288–289

Comments, adding to regular
expressions, 129–130

Comparison operators, string and
numeric comparison, 21–23

Comparison (sort) subroutines,
8–80

Compatibility, cross-platform, 3

Compilation
compile time warnings, 358–359
compiling regular expression only

once, 137–138
precompiling regular expressions,

138–139
running code with BEGIN blocks at,

426–427
of your own perl, 391–393

Complaints, selectively toggling using
lexical warnings, 361–364

Complex behavior, encapsulating
using smart match, 84–85

Complex data structures,
manipulating, 221

Download from <www.wowebook.com>

ptg

450 ❘ Index

Complex regular expressions,
breaking down into pieces,
130–132

Composite characters, graphemes
and, 269

Comprehensive Perl Archive Network.
See CPAN (Comprehensive Perl
Archive Network)

confess, full stack backtrace with, 369

Configuration, checking Perl’s,
294–295

Configure script, for compiling perl,
392

Configuring CPAN clients
CPANPLUS, 230
CPAN.pm, 229

Connections, database
reusing, 386
sharing, 387–390
too many, 386–387

Context
affect on operations, 41
by assignment, 43–44
context-sensitive code, 41
forcing list context, 60–61
matching in list context, 108
names providing, 284
of numbers and strings, 27, 42
of scalars and lists, 42–43
of subroutines, 157–159
void context, 44

Contextual::Return module,
159–160

Continuous integration and testing,
348–349

Control structures, 53

Conway, Damian, 159

CORE::GLOBAL namespace, 329

Coverage testing. See Test coverage

CP-1251 character set (Windows), 254

CPAN (Comprehensive Perl Archive
Network)

commonly used modules, 250–252
compiling perl, 392–393
configuring CPANPLUS, 230
configuring CPAN.pm, 229
considering need for upgrades, 236
considering which modules are

needed, 235–237
contributing to, 246–249
CPAN Search, 239–241
CPAN Testers, 237
CPANTS Kwalitee, 241–242
ensuring that Perl can find your

modules, 242–243
how to use, 2
injecting own modules with
CPAN::Mini::Inject, 233–235

installing, 228–229
local::lib module, 230–231
mitigating the risk of public code,

235
overview of, 227
researching modules before using,

237–238
setting up MiniCPAN, 232–233
updating configurations to use perl,

393
using MiniCPAN, 233

CPAN Ratings
for module distributions, 240
web site interface to CPAN, 228

CPAN RT issue tracker, 228

CPAN Search
module documentation files, 11

Download from <www.wowebook.com>

ptg

Index ❘ 451

researching modules before
installing, 239–241

web site interface to CPAN, 228

CPAN Testers
creating custom smoke testers, 348
developer versions of, 347–348
as a QA team, 346–347
setting preferences, 347
skipping tests in automated

environment, 313–314
testing modules before purchasing,

237
viewing test results for newly

uploaded distribution, 248
viewing tests run on modules, 240
web site interface to CPAN, 228

cpan-upload tool, 247–248

CPAN::Mini module, 232. See also
MiniCPAN

CPAN::Mini::Inject module, 234

CPANPLUS

configuring, 230
reading PAUSE index files with, 227

CPAN.pm

configuring, 229
reading PAUSE index files with, 227

CPANTS Kwalitee, 241–242

croak, using in place of warn and die,
367–368

Cross-platform compatibility, in Perl, 3

Cruise Control
building project in Apache Ant and,

351–352
as continuous build system, 350
formatting output for , 353–354
for integration testing, 351–355
overview of, 351
setting up, 354–355

CSVs (comma-separated values),
412–414

Curly braces ({}), careful use of, 63–64

Currying subroutines, 174

D
Data structures

cautions with use of circular,
218–221

manipulating complex, 221

Data types, specifying column, 386

Database Interface, 250. See also DBI
module

Databases, 377–390
automatic value quoting with SQL

placeholders, 382–384
binding return columns for

performance, 384–386
care in using Unicode with, 272–273
creating test databases, 330–331
mocking database layer, 325
preparing multiple statements,

379–382
reusing connections, 386–390
reusing work with SQL statements,

377–379

DateTime module
overview of, 235–236
mocking, 327

DBD::Gofer module, 389–390

DBI module
care in use of Unicode with

databases, 272–273
in list of commonly used modules,

250

DBI object, mocking, 325–326

Download from <www.wowebook.com>

ptg

452 ❘ Index

DBIx::Class module, 250

DBM files, storing large hashes in,
196–197

dclone, for deep copies of arrays, 65

DEBUG level, Log::Log4perl,
405–407

Decoding, bytes into character strings,
254

Default arguments
@ARGV as, 57–58
@_ as, 56–57
$_ (dollar underscore) for, 53–54
STDIN as, 58–59
table of, 59

defined operator, 35

Dependencies
keeping to a minimum, 317
managing, 238

Dependency injection, for ease of
testing, 314–317

Devel::CheckOS command, 293–294

Devel::Cover module, 343–345

Development, separating from
production, 238

die

generating exceptions with, 364–366
handling exceptions with, 371
using croak and Carp as alternative

to, 366–368

Directories
Path::Class module and, 193–195
setting up relative directory, 245–246
t/ directory for test files, 311
temporary, 198–199
xt/ (extra tests) directory for author

tests, 312

Directory handles namespace, 19–20

Distributed|Decentralized|Dark Perl
Archive Network (DPAN), 238

Distribution::Cooker module,
282–283

Distributions
building with Module::Build,

275–278
checking for Pod coverage, 296–297
checking Pod formatting, 295–296
CPAN Ratings, 240
CPAN Testers, 248
creating from custom templates,

282–283
embedding documentation using

Pod, 287–291
extending Module::Starter,

280–282
inline code for other languages,

298–301
limiting to right platforms, 292–295
naming modules, 283–287
overview of, 275
plug-ins for Module::Starter, 280
spell checking code, 297–298
starting with Module::Starter,

278–279
uploading to PAUSE (Perl Authors

Upload Server), 247–248

do {} syntax and usage, 90–92

Documentation
embedding using Pod, 287–291
finding, 9–10
local, 12
Log::Log4perl, 409
online, 11–12
Perl::Critic custom policies, 403
perldiag, 360
perldoc reader, 10–11
perlstyle documentation, 7

Download from <www.wowebook.com>

ptg

Index ❘ 453

Dominus, Mark Jason, 177, 373–374

Double-quote interpolation
making regular expressions readable,

130–132
of regular expressions, 101–103

Double quotes (“ ”), options for
quote strings, 73–74

DPAN
(Distributed|Decentralized|Dark
Perl Archive Network), 238

Dualvars, creating, 30–31

E
/e . See Regular Expresssions

easy_init, initializing
Log::Log4perl, 404–406

Elements
avoiding slices when you want an

element, 37–38
checking for presence inside hashes,

26
creating dynamic SQL elements, 384
finding matches, 94
iterating read-only over list elements,

70–71
modifying in lists, 72
modifying underlying array

elements, 410–412
not confusing slices with elements,

39–40
selecting in lists, 73

Email module, 250

Encapsulation, of database handle,
388

Encode, for encoding and decoding
strings, 262

Encoding
code points into octets, 253
setting default, 257–258
setting on selected filehandles, 258
telling Perl which encoding system to

use, 256

Encoding::FixLatin module, 263

END blocks, running code before
program termination with, 427

endianness, dealing with, 419–421

English module, 119

$ENV{PATH}

enabling taint checking, 374
taint warnings for legacy code, 376

$ENV{AUTOMATED_TESTING}, 314

Environment variables
$ENV{PATH}, 374, 376
$ENV{AUTOMATED_TESTING}, 314
$ENV{TEST_AUTHOR}, 311–312
PATH environment variable, 393
PERLTIDY environment variable, 396
PERL5LIB, 231
PERL_MM_OPT, 231
MODULEBUILDRC, 231
PERL5OPT, 345
PERLTIDY, 30
HARNESS_PERL_SWITCHES, 345
sourcing from shell script, 250

Env::Sourced module, 250

eq operator, 22

.ERR file, checking perltidy syntax,
396–397

Error handling
with autodie, 96–98
fatal errors, 362–363
generating exceptions using die,

364–366
overview of, 370–372

Download from <www.wowebook.com>

ptg

454 ❘ Index

ERROR level, Log::Log4perl,
404–405

eval

catching autodie exceptions with,
97–98

catching exceptions with, 365
checking matches that might not

interpolate into valid regular
expressions, 139

substitutions using, 107

eval {}, for making copies of lists, 64

eval-if, 365, 370

Excel, Microsoft, 251–252

Exception handling. See Error
handling

exec argument, of prove command,
310–311

execute method
calling bind_col after, 385
reusing work with SQL statements,

379

exists operator, checking to see if key
is in a hash, 36

ExtUtils::Makemaker module
coverage testing, 343–344
forcing Git to run full build and test

suite for every commit, 349–350
modifying include paths, 243
using Makefiles to build Perl

distribution, 275

F
Factories (generators)

for constructing dependencies
objects, 316–317

subroutines that create other
subroutines, 174

Fake module, in testing, 325–326

Fatal errors, promoting some
warnings to, 362–363

FATAL level, Log::Log4perl, 404–405

feature pragma, 13

File tests
file test operators compared with
stat operator, 180–181

finding/reusing, 180–181
not ignoring file test operators,

179–180
stacking file test operators, 181

File::Find::Closures module, 175

Filehandles. See also Files
hard-coded (or assumed), 189
making output flexible, 189–192
namespace for, 19–20
options for working with paths, 192
reading files from a string, 186–187
seek and tell, 188–189
setting encoding system on selected,

258
STDIN as default argument, 58
three-argument open, 182–183
virtual filehandle, _, for reusing data

from last stat, 181
writing files to a string, 187–188

Files
File::Slurp module, 185
File::Spec module, 192–193
finding/reusing file tests, 180–181
making output flexible, 189–192
maximizing speed in reading,

185–186
memory saving options, 195

Download from <www.wowebook.com>

ptg

Index ❘ 455

not ignoring file test operators,
179–180

overview of, 179
Path::Class module and, 193–195
reading file data line-by-line to save

memory, 196
reading files as if they were arrays to

save memory, 197–198
reading files from a string, 186–187
reading from streams, 183–185
seek and tell, 188–189
stacking file test operators, 181
storing large hashes in DBM files,

196–197
temporary files and directories for

saving memory, 198–199
three-argument open, 182–183
working with paths, 192
writing files to a string, 187–188

File::Slurp module, 185

File::Spec module, 192–193

File::Temp module, 198–199

Filled text, Pod, 289–291

Flexibility, of file output, 189–192

foreach

iterating read-only over each element
of a list, 70–71

modifying elements of a list, 72
modifying underlying array

elements, 410–412

Formats
consistent, 394–396
namespace for, 19–20

Formatting outputs, for testing,
353–354

Function calls, simulating named
parameters for, 62

Functions
list of built-in functions that use

$_, 58
in Perl, 4–5

G
Generators. See Factories (generators)

getc function, 59

get_logger, in Log::Log4perl, 405

Getopt::Long module, 251

git, pre-commit hooks in, 349

given-when

as alternative to if-elsif-else,
86–87

handling exceptions with
Try::Tiny, 371

intermingling code using, 89
multiple branching with, 88
smart matching and, 84, 87–88
for switch statements, 86

glob, 24

Global variables, 146

Goatse, =()=, operator, 33

Graphemes
overview of, 269–271
in regular expressions, 271–272

Greed, of regular expressions,
119–121

grep

finding/reusing file tests, 180–181
modifying underlying array

elements, 410–412
selecting elements in a list, 73
selecting references, 224–225

Download from <www.wowebook.com>

ptg

456 ❘ Index

Grouping
arrays or hashes for grouping data,

45–47
noncapturing parentheses for,

116–117

H
\h and \H, in matching horizontal

whitespace, 111–112

Hard-to-cover code, testing, 345–346

Hash operators, creating prototypes
with, 168

Hashes
checking to see if element is present

inside, 26
creating, 41
for grouping data, 45–47
namespace for, 19
for passing named parameters,

164–168
simulating C-style structs,

216–218
storing in DBM files, 196–197
symbol for, 17

Help, getting Perl, 437

Here doc strings, 76–77

Hex escapes, manipulating, 418–419

Hexadecimals
converting numbers to/from strings,

27
Perl syntax for, 258–259

Hietaniemi, Jarkko, 227

Higher-order functions, 177

Higher Order Perl (Dominus), 177

Hook::LexWrap module, 328

Horizontal whitespace, 111–112

HTML::Parser module, 251

HTML::TreeBuilder module, 251

Huffman coding, in Perl, 51

I
Identifiers

inappropriate use of, 16
in Perl, 5
using non-ASCII characters for, 255

Idiomatic Perl, 51–98
avoiding excessive punctuation,

66–68
careful use of braces ({}), 63–64
default arguments ($_), 53–56
default arguments (@_), 56–57
default arguments (@ARGV), 57–58
default arguments (STDIN), 58–59
error handling with autodie, 96–98
forcing list context, 60–61
foreach, map, and grep, 70–73
format lists for easy maintenance,

68–70
given-when for switch statements,

86–90
inline subroutines, 90–92
list assignments for swapping values,

60
list manipulation options, 92–96
making copies of lists, 64–66
overview of, 51–53
quote string options, 73–77
simulating named parameters (=>),

61–63
smart matching, 84–85
sorting options, 77–84
table of default arguments, 59

Download from <www.wowebook.com>

ptg

Index ❘ 457

if-elsif-else statements
given-when as alternative to, 86
measuring test coverage, 342–343

Image::Magick module, 251

Include path
configuring at compile time, 246
modifying, 243
searching for module locations,

242–243

index operator, finding substrings
with, 126–127

init, in Log::Log4perl
configuration, 406

Initialization
with BEGIN blocks, 425–426
Log::Log4perl, 404
using => with initializers, 61

Inline code, for other languages in
distributions, 298–301

Inline subroutines, 90–92

Inline::C module, 299

Inline::Java module, 299

Installation
multiple perls, 392–393
own perl, 391–392

Installing CPAN modules
CPANPLUS for, 230
CPAN.pm for, 229
without admin privileges, 228–229

Integration testing, 351–355

interfaces, for focused testing, 324–325

Interpolation
double-quote, 101–103
precompiled regular expressions into

match operator, 139

Inversion of control, 315

ISO-8859 character set (Latin), 254

J
Java, 299

JSON::Any module, 251

K
Key-value pairs, 61–62

Keywords, in Perl, 5

Kobe’s Search
module documentation files, 11
web site interface to CPAN, 228

König, Andreas, 227

L
Legacy code, 375–376

Lexical warnings, 361–364

Lexing strings, 108–110

Libraries
setting up module directories,

230–231
using private, 245

Line-by-line method
reading files, 196
for reading from streams, 184

Line endings
newline and carriage return for,

112–113
as whitespace, 111

Line input operator (<>), 24, 183

Download from <www.wowebook.com>

ptg

458 ❘ Index

List operator
local and my as, 153–154
in Perl, 4

List::MoreUtil

iterating over more than one list at a
time, 95

for list manipulation, 92
merging arrays, 96

Lists
vs. arrays, 31–32
assignment in list context, 33–34
comma operator creating series not

lists, 32
context of, 42–43
creating based on contents of

another list, 71–72
forcing list context, 60–61
formatting for easy maintenance,

68–70
iterating over more than one list at a

time, 95
iterating read-only over each element

of, 70–71
making copies of, 64–66
manipulation options, 92–96
match operator used in list context,

108
modifying elements of, 72
selecting elements in, 73
swapping values using list

assignments, 60
wantarray for writing subroutines

that return, 157–159

List::Util

first function for finding
matches, 94–95

for list manipulation, 92
reduce function for summing

numbers, 93–94

Little-endian representation, dealing
with, 419–421

local

as list operator, 153–154
run time scoping with, 149–151
understanding the difference

between my and local, 145
using on reference arguments,

163–164
when to use, 152–153

Local documentation, 12

Local namespace, 286

Local test databases, 330–331

Localizing
$_ (dollar underscore) default

argument, 55
filehandles and directory handles

with typeglobs, 425
typeglobs, 423–424

Localizing variables, in Perl, 5

local::lib module
setting up module directories,

230–231
using private libraries, 245

Locking in data, closures for, 171

Logging. See also Log::Log4perl
defining logging levels, 404–405
detecting logging levels, 409
with print statements, 403–404

Log::Log4perl, 404–410
better configuration, 406–409
detecting logging level, 409
getting more information, 409–410
log levels defined by, 404–405
logging levels, 404–405
object-oriented interface, 405
overview of, 404

Download from <www.wowebook.com>

ptg

Index ❘ 459

looping
foreach loop, 89
knowing when loops are modifying

arrays, 410–412
from the command line, 429–430
while loop and, 429, 431

Low-level interfaces, XS language for,
301–306

Lvalues
in Perl, 5
slices, 38–39

LWP (libwww-perl), 251

LWP::Simple module, 251

M
/m flag, for turning on multiline mode,

123

main package, $_ (dollar underscore)
and, 54

make, compiling perl, 392

Makefiles, 275

Man pages, in Pod markup language,
291

map

creating lists based on contents of
another list, 71–72

matching inside, 108
modifying underlying array

elements, 410–412
nesting references with, 223–224
slicing references with, 221–223

Mason module, 252

Mastering Perl (foy), 375

Match operator, used in list context,
108

Match variables
/p flag used with, 119
helping with text manipulation when

computing replacement strings,
118

performance, 118–119
speed penalty of, 117–118
used in substitutions, 107

Matching
beginning of a string, 123–124
characters, 121, 266
end of a string, 124–125
greedy behavior of regular

expressions and, 119–121
named capture for labeling matches,

114–115
properties, 267–268

Maximum values, finding, 92–93

Memory saving options
overview of, 195
reading file data line-by-line, 196
reading files as if they were arrays,

197–198
storing large hashes in DBM files,

196–197
temporary files and directories,

198–199

Methods
faking with Test::MockObject,

325–327
in Perl, 5
redefining test methods with symbol

table, 327–328

Microsoft Excel, 251–252

MiniCPAN
hosting private modules in, 233–235
setting up, 232–233
using, 233

Download from <www.wowebook.com>

ptg

460 ❘ Index

Mock objects
for focused testing, 324–325
Test::MockObject, 325–327

Modular programming environments, 3

Module::Build

building project in Apache Ant,
351–352

custom actions, 277–278
end user’s perspective, 276
module author’s perspective,

276–277
overview of, 275

Modules
commonly used, 250–252
considerations before creating new,

248–249
considering which modules are

needed, 235–237
distributing. See Distributions
ensuring that Perl can find, 242–243
fake module in testing, 325–326
installing CPAN modules, 228–229
loading from command line, 432
locating, 9–10
managing dependencies and versions

with DPAN, 238
naming, 283–287
quality checklist for, 241–242
reading code underlying, 241
researching before using, 237–238
testing and ratings, 240–241

Module::Starter

extending, 280–282
plug-ins for, 280
starting distributions with, 278–279

Modulinos, 320–324

Moose object system, for Perl, 251

Multiline mode, turning on with /m
flag, 123

my

copying and naming arguments,
154–155

lexical (compile-time) scoping with,
146–149

as list operator, 153–154
understanding the difference

between my and local, 145
when to use, 151–152

N
\N, for non-newlines, 113

Named parameters
=> operator simulating, 62
hashes for passing, 164–168

Named subroutines, 172–173

Names
aliasing with typeglobs, 423
variable namespaces, 19–20

Naming modules, 283–287
goals of, 284–285
names to avoid, 286–287
naming conventions, 285–286
overview of, 283–284

Nesting references, with map, 223–224

Net namespace, 286–287

Newline
for line endings, 112–113
non-newlines, 113–114

no warnings, disabling warnings
within a scope, 362

Non-newlines, 113–114

Nongreedy repetition operators,
120–121

--noprofile switch, 396

Normalizing Unicode strings, 271

Download from <www.wowebook.com>

ptg

Index ❘ 461

Notion, Perl, 6– 7

Numbers
context of, 42
converting to strings, 27–28
handling big, 47–49
knowing and testing false values,

23–25
knowing difference between string

and numeric comparisons,
21–23

summing, 93–94
using strings and numbers

simultaneously, 28–30

Numeric contexts, 27

Numish strings, 22

O
/o flag, for compiling regular

expressions, 138

Object-oriented interface,
Log::Log4perl, 405

Objects, sharing database connections
across, 388

oct operator, for converting octal and
hexadecimal values, 27

Octals
converting numbers to/from strings,

27
Perl syntax, 258–259

Octets
converting octet strings to character

strings, 261–265
defined, 253

Online
documentation, 11–12
file checking with Perl Critic, 398

open

or for checking success of, 183
three-argument, 182–183

open pragma, setting default
encoding with, 257–258

Operating systems. See OSs (operating
systems)

Operators
in Perl, 4
precedence of, 100–101
regular expression, 99–100

or operator
checking success of open, 183
using instead of ||, 67–68

Orcish Maneuver (|| cache), 81–82

OSs (operating systems)
checking, 293–294
skipping OS-dependent tests, 313

Overriding Perl built-ins, 328–329

P
/p flag, used with match variables, 119

pack

computing with unpack, 417
dealing with endianness, 419–421
how it works, 416–417
manipulating hex escapes, 418–419
sorting with, 418
uuencoding with, 421–422

Parentheses ()
calling subroutines without using,

66–67
careful use of, 63
noncapturing parentheses for

grouping, 116–117
regular expression precedence and,

100–101

Download from <www.wowebook.com>

ptg

462 ❘ Index

Parsing comma-separated values,
412–414

PATH environment variable
adding preferred Perl's location to,

393
enabling taint checking, 374

Path::Class module, 193–195

Paths
File::Spec module, 192–193
options for working with, 192
Path::Class module, 193–195

PAUSE (Perl Authors Upload Server)
developers versions and, 347–348
overview of, 227
registering with and uploading

distributions to, 247–248

PDL (Perl Data Language), 251

PEGS (PErl Graphical Structures), 6–7

Per-class database connections,
388–389

Per-object database connections, 388

Performance
binding return columns for, 384–386
match variables and, 118–119

perl

compiling, 391–393
compiling your own, 391–392
executing tests with, 308
installing multiple, 392–393
using, 393

Perl Authors Upload Server. See
PAUSE (Perl Authors Upload
Server)

Perl, basics
array slices, 37–38
arrays, 25
assignment in list context, 33–34

avoiding soft references, 16
bignum, 47–49
caution in using barewords, 15–16
comma operator, 32–33
context by assignment, 43–44
context of numbers and strings, 42
context of scalars and lists, 42–43
converting between strings and

numbers, 27–28
creating dualvars, 30–31
creating hashes, 41
declaring variables, 15
enabling features as needed, 12–14
enabling strictures for better coding,

14
finding documentation and modules

for, 9–10
grouping data in, 45–47
hash values, 26
knowing and testing false values,

23–25
lists vs. arrays, 31–32
local documentation, 12
lvalue slices, 38–39
online documentation, 11–12
overview of, 9
perldoc reader, 10–11
proper use of undef values, 34–37
sigils, 17–18
slices for sorting arrays, 40
slices vs. elements, 39–40
string vs. numeric comparisons,

21–23
understanding context and its affect

on operations, 41
using strings and numbers

simultaneously, 28–30
variable namespaces, 19–20
void context, 44

Perl Best Practices (Conway), 399–400

Download from <www.wowebook.com>

ptg

Index ❘ 463

Perl Critic
on command line, 398–399
custom policies, 403
overview of, 398
in test suite, 401–402
on web, 398

Perl-Critic-Bangs policies, 403

Perl-Critic-Moose policies, 403

Perl-Critic-More policies, 403

Perl-Critic-StricterSubs policies, 403

Perl-Critic-Swift policies, 403

Perl Data Language (PDL), 251

PErl Graphical Structures (PEGS), 6–7

perl-packrats mailing list, 227

perlcritic program, 398–400

perldiag documentation, 360

perldoc reader, 10–11

perlfunc documentation, 10, 180

perlrun documentation, 428

perlsec documentation, 375

Perlstyle documentation, 7

Perlsyn, 84

Perl::Tidy

beautifying code with, 394–395
checking syntax, 396–397
configuring, 395–396
testing for, 397

PERLTIDY environment variable, 396

.perltidyrc file, 395–396

perltoc, 10

perlunicode documentation, 267

perluniprops, 267

ping method, sharing database
connections, 388

Placeholders, SQL
automatic value quoting, 382–384
constructing queries with, 378–379
preparing multiple statements,

379–382

Platforms, limiting distributions to
right platform, 292–295

Plug-ins, for Module::Starter, 280

Pod markup language
checking coverage, 296–297
checking formatting, 295–296
commands, 288–289
embedding documentation using

Pod, 287–288
filled text, 289–291
man pages in, 291
spell checking code, 297–298
verbatim text in, 288

Podcasts, Perl, 437

podchecker tool, 295

Pod::Spell, 297

POE multitasking and networking
framework, 251

Poetry mode, 15

Policies
adding Perl::Critic custom, 403
using Perl Critic, 399–400

Possessive, nonbacktracking
quantifiers, 135–136

Pre-commit hooks, 349–350

Precedence
of operators, 100–101
using low precedence operators to

avoid problems, 67–68

Precompiling regular expressions,
138–139

Download from <www.wowebook.com>

ptg

464 ❘ Index

Precomposed version, of Unicode, 269

prefix directory
compiling perl, 392–393
using perl, 393

prepare method, reusing work with
SQL statements, 378–379

prepare_cached method, caching
statement handles with, 380–381

print statements, logging and,
403–404

Private data
for named subroutines, 172–173
for subroutine references, 173–174

Problem solving, with Perl, 2

Processes, sharing database
connections across, 389–390

Production
enabling warnings in, 360–361
separating from development, 238

Profile, creating for single project, 396

--profile switch, 396

Programming style, 55–56

Programs, writing short, 428–434

Projects, testing from beginning,
335–342

Properties
defining, 268
matching, 267–268

Prototypes
characters and meanings, 170
comparing reference types to, 209
for creating array or hash operators,

168

prove command
for flexible test runs, 308–309
randomizing test order, 310
running periodically, 349

used with other languages than Perl,
310–311

Prussian Approach, for untainting
data, 373–374

Public code, mitigating the risk of, 235

Punctuation, avoiding excessive, 66–68

Q
\Q, for using metacharacters as literal

characters, 102–103

q option, for quote strings, 74–75

QA (quality assurance) team, CPAN
Testers on, 346–347

qq options, for quote strings, 74–75

qr//, precompiling regular
expressions with, 138–139

Quantifiers
avoiding backtracking from, 134–135
possessive, nonbacktracking form of,

135–136

quote_identifier, creating dynamic
SQL elements, 384

quotemeta operator, 102–103

qw(), for quoteless lists, 75

qw option, for quote strings, 74–75

R
\R, for line endings, 113

Randomizing test order, 310

Reading files
as if they were arrays, 197–198
maximizing speed of, 185–186
to strings, 186–187

Download from <www.wowebook.com>

ptg

Index ❘ 465

README files, installing perl and,
391

reduce function, summing numbers,
93–94

Refactoring code, to increase
testability, 339

Reference arguments
passing to subroutines, 160–162
passing with @_, 154–157
returning from subroutines, 162
using local * on, 163–164

Reference operator (\)
comparing reference types, 210
creating list of references, 61

References
anonymous arrays constructors for

creating, 214–215
autovivification of, 207–208
basic types, 210
cautions with use of circular data

structures, 218–221
comparing reference types, 210–211
comparing with prototypes, 209
creating, 202–204
creating arrays of arrays using,

211–213
creating list of, 61
hashes used to simulate C-style
structs, 216–218

Log::Log4perl, 409
manipulating complex data

structures, 221
nesting with map, 223–224
overview of, 201
parts of strictures, 14
Perl Critic and, 398–399
ref operator, 210
selecting with grep, 224–225
slicing with map, 221–223

soft, 16, 208–209
using, 205–207
using typeglobs instead of, 425

Regexp::Common module, 142–143

Regexp::Trie module, 133

Regular expressions
adding whitespace and comments to,

129–130
atoms, 99–100
avoiding backtracking due to

alternation, 132–133
avoiding backtracking from

quantifiers, 134–135
avoiding for CSVs, 412–414
avoiding for simple string

operations, 125–126
avoiding parsing fixed columns with,

414–416
benchmarking, 139–141
breaking complex regular

expressions into pieces, 130–132
capture and match variables used in

substitutions, 107
capture buffers with backreferences,

105–106
capture variables, 103–105
character class used in place of

alternation, 134
comparing strings, 126
compiling only once, 137–138
double-quote interpolation, 101–103
extracting and modifying substrings,

127–128
finding substrings, 126–127
graphemes in, 271–272
greed and, 119–121
horizontal whitespace, 111–112
line endings, 112–113
making readable, 129

Download from <www.wowebook.com>

ptg

466 ❘ Index

Regular expressions (continued)
match operator used in list context,

108
match variables, 117–119
matching beginning of a string with

^ or \A, 123–124
matching boundaries between word

and nonword characters, 121–123
matching the end of a string with $

or \Z, 124–125
named capture for labeling matches,

114–115
non-newlines, 113–114
noncapturing parentheses for

grouping, 116–117
operator precedence, 100–101
overview of, 99
/p flag used with match variables,

119
possessive, nonbacktracking form of

quantifiers, 135–136
precompiling, 138–139
solutions in Regexp::Common

module, 142–143
tokenizing with, 108–110
transliterating single characters, 128
vertical whitespace, 112
zero-width assertions for matching

characters, 121

Repetition operators
greedy and nongreedy, 120–121
precedence of, 100

Resources, Perl, 435–437

rindex operator, finding substrings,
126–127

Rolsky, Dave, 235

rootLogger, Log::Log4perl
configuration, 406

Run time warnings
overview of, 359
speed penalty of enabling, 360

S
\s and \S, matching whitespace and, 111

Scalar context, 44

Scalar variables, namespace for, 19

Scalars
$ for, 37
Boolean operations applied to, 23
containing either string or numeric

data, 27
context of, 42–43
lists as ordered collection of, 31

Schwartz, Randal, 82

Schwartzian Transform, 82–83

Schwern, Michael, 236, 307

Scope
global variables and, 146
lexical (compile-time) scoping with
my, 146–149

run time scoping with local,
149–151

seek, files/filehandles and, 188–189

selectall_arrayref, automatic
value quoting using SQL
placeholders, 382–383

Separator-retention mode, disabling
in split, 117

Sequence operators
overview of, 101
precedence of, 100–101

Setup methods, Test::Class module,
334

Download from <www.wowebook.com>

ptg

Index ❘ 467

--severity switch, using Perl Critic,
399–400

Sharing data, closures for, 175

Sharing database connections, 387–390

shift

@ARGV as default argument outside
subroutines, 57–58, 429

@_ as default argument inside
subroutines, 56–57

reading arguments passed to
subroutines, 155

shuffle option, prove command, 310

Shutdown methods, Test::Class
module, 334

Sigils, 17–18

Single quotes (‘ ’), options for quote
strings, 73

SKIP blocks, in testing, 313–314

Slices
avoiding slices when you want an

element, 37–38
defined, 37
knowing difference between slices

and arrays, 9
of lists and arrays, 32
lvalue slices, 38–39
not confusing slices with elements,

39–40
for sorting arrays, 40
syntax for permuting contents of

arrays, 60
using hash slices to creates hashes, 41

Slicing references, with map, 221–223

Smart match operation (~~)
given-when and, 87–88
knowing difference between string

and numeric comparisons, 22
making work easier with, 84–85

Smoke testers, creating custom, 348

SmokeRunner::Multi, 350

Smolder, for aggregating test results,
350–351

Soft references, 16, 208–209

sort operator, 77–78

Sorting
advanced sorting, 80–83
comparison (sort) subroutines,

78–80
with pack, 418
slices for sorting arrays, 40
sort operator, 77–78

Source code
quoting, 75
Unicode in, 254–256

Source control, pre-commit hooks, 349

Special characters, 102–103

Spell checking code, in distributions,
297–298

split

avoiding regular expressions for
CSVs, 412–413

disabling separator-retention mode,
117

Spreadsheet::ParseExcel module,
252

Spreadsheet::WriteExcel module,
252

sprintf(), for converting numbers to
strings, 27

SQL-injection attacks, 382–383

SQL statements
automatic value quoting using

placeholders, 382–384
preparing multiple statements,

379–382

Download from <www.wowebook.com>

ptg

468 ❘ Index

SQL statements (continued)
reusing work and saving time using,

377–379

SQLite, creating test databases,
330–331

Square brackets ([])
anonymous arrays constructor, 60
careful use of, 63

Startup methods, Test::Class
module, 334

stat operator
file test operators compared with,

180–181
virtual_filehandle for reusing data

from last stat, 181

state flag, prove command, 310

state variable, anonymous closures
compared with, 173

STDIN, as default argument, 58–59

Stein, Lincoln, 236

Streams, options for reading from,
183–185

strict pragma, 14

Strictures
enabling for better coding, 14
parts of, 14

String contexts, 27

String operators
comparison operators, 126
number and string context and, 42

Strings
avoiding regular expressions for

simple string operations, 125–126
comparing, 126
context of, 42
converting octet strings to character

strings, 261–265

converting to numbers, 27–28
extracting and modifying substrings,

127–128
finding substrings, 126–127
knowing and testing false values,

23–25
knowing difference between string

and numeric comparisons, 21–23
matching beginning of, 123–124
matching end of, 124–125
normalizing Unicode strings, 271
opening filehandles to/from, 186
options for quote strings, 73–77
reading files from a, 186–187
tokenizing, 108–110
using strings and numbers

simultaneously, 28–30
writing files to a, 187–188

Structs (C-style), simulating with
hashes, 216–218

Structured testing, Test::Class for,
332–335

Style
idiomatic Perl style, 2
preferences, 7–8

subclass argument,
Module::Build, 277–278

Subclasses, creating to override
features, 322–324

Subroutines
calling without using parentheses,

66–67
closures for locking in data, 171
closures for sharing data, 175
comparison (sort), 78–80
of context, 157–159
Contextual::Return for fine

control, 159–160

Download from <www.wowebook.com>

ptg

Index ❘ 469

creating inline subroutines using do
{} syntax, 90–92

creating new subroutines (currying),
176–178

global variables, 146
hashes for passing named

parameters, 164–168
lexical (compile-time) scoping with
my, 146–149

local * on reference arguments,
163–164

multiple array arguments, 170–171
my and local as list operators,

153–154
namespace for, 19–20
overview of, 145
passing arguments, 154–157, 160–162
passing typeglobs, 163, 424
in Perl, 5
private data for named subroutines,

172–173
private data for subroutine

references, 173–174
prototypes for creating array or hash

operators, 168
redefining by assigning to their

typeglobs, 424
returning arguments, 162
run time scoping with local, 149–

151
separating functionality into

subroutines for ease of testing, 321
void context, 159
wantarray for context of, 157–159
when to use local, 152–153
when to use my, 151–152

subs

being careful with barewords, 15–16
parts of strictures, 14

Substitutions, capture variables in, 107

substr operator, extracting and
modifying substrings, 127–128

Substrings
extracting and modifying, 127–128
finding, 126–127

Subversion, source control and, 350

Sum, of numbers, 93–94

Swapping values, using list
assignments, 60

Switch statements, given-when for,
86–90

Symbol table
accessing with typeglobs, 423–425
redefining test methods with,

327–328

sysread, maximizing speed of reading
files, 185–186

T
t/ directory, test files stored in, 311

-t operator, STDIN as default
argument, 58

t/perlcriticrc file, 401

Taint checking
defined, 357
for legacy code, 375–376
tracking dangerous data with,

372–375
untainting data, 373–374

TAP (Test Anywhere Protocol), 307, 310

TDD (test-driven development), 335,
338

Teardown methods, Test::Class
module, 334

Download from <www.wowebook.com>

ptg

470 ❘ Index

tell, files/filehandles and, 188–189

Template Toolkit templates, 282

Templates, creating custom, 282–283

Template::Toolkit module, 252

Temporary directories, 198–199

Temporary files, 198–199

Test Anywhere Protocol (TAP), 307,
310

Test coverage
Devel::Cover used to watch test

results, 343–345
hard-to-cover code and, 345–346
measuring, 342–343

Test-driven development (TDD), 335,
338

Test [n] methods, Test::Class
module, 335

TEST_AUTHOR environment variable,
311–312

Test::Builder module, 332

Test::Class, for structured testing,
332–335

Test::Harness module, 307

Testing
adapting test requirements to

application needs, 317–319
author tests, 311–312
continuous builds and, 348–349
CPAN Testers on QA team, 346–347
creating custom smoke testers, 348
Cruise Control for integration

testing, 351–355
dependency injection for avoiding

special test logic, 314–317
Devel::Cover used to watch test

results, 343–345
hard-to-cover code and, 345–346

limiting tests to right situations, 313
local test databases, 330–331
measuring test coverage, 342–343
mock objects and interfaces for

focused testing, 324–325
modulinos for easy testing, 320–324
overriding Perl built-ins, 328–329
overview of, 307–308
pre-commit hooks, 349–350
prove for flexible test runs, 308–309
prove, running periodically, 349
prove used with other languages

than Perl, 310–311
randomizing test order, 310
redefining test methods with symbol

table, 327–328
setting CPAN Tester preferences, 347
skipping tests in automated

environment, 313–314
Smolder for aggregating test results,

350–351
SQLite used to create test databases,

330
starting at project beginning,

335–342
Test::Class for structured testing,

332–335
Test::MockObject, 325–327
using developer versions of CPAN

Tester, 347–348

Test::MockObject, 325–327

Test::More module
overview of, 236–237
Schwern’s promotion of, 307
Test::Class module compared

with, 332

Test::Perl::Critic, 401

Test::Perl::Critic::Progressive,
401–402

Download from <www.wowebook.com>

ptg

Index ❘ 471

Test::PerlTidy, 397

Text::CSV_XS module, 252

Text::Template module, 252

Themes, using Perl Critic, 400

There's More Than One Way To Do It
(TMTOWTDI) acronym, 398

Three-argument open, 182–183

Tie::File, 197

TMTOWTDI (There's More Than
One Way To Do It) acronym, 398

Tokenizing strings, 108–110

Top-level namespaces, 286

Transliteration operator (tr///), 128

Tregar, Sam, 246

Regexp::Trie, minimizing
backtracking with, 133

try - catch exception handling,
371–372

Try::Tiny

catching exceptions with, 366
handling exceptions properly,

370–372

Tuples, storing point data as, 46

Two-argument form, of open, 182–183

Typeglobs
accessing symbol table with, 423–425
passing to subroutines, 163
redefining subroutines by assigning

to its typeglob, 327

U
UCS character set, 254

undef values, not assigning for empty
arrays, 34–37

Unicode
aliases used for characters, 260
care in use with databases, 272–273
converting octet strings to character

strings, 261–265
defining own properties, 268
getting code points from names, 260
getting names from code points,

259–260
graphemes instead of characters,

269–272
matching characters, 266
matching properties, 267–268
overview of, 253–254
Perl handling, 99
setting default encoding, 257–258
setting encoding on selected

filehandles, 258
specifying characters by code point

or name, 258–259
telling Perl which encoding system to

use, 256
using in source code, 254–256

Unicode Consortium Web site, 259

Unicode::CharName, 261

uninitialized warning, turning off,
362

UNIX, Perl as scripting tool for, 1

unpack

dealing with endianness, 419–421
how it works, 416–417
manipulating hex escapes, 418–419
parsing fixed-width columns,

414–416
uuencoding with, 421–422

Upgrades
considering need for, 236
restricting frequency of, 238

Download from <www.wowebook.com>

ptg

472 ❘ Index

use diagnostics, for warning
information, 360

use directive, for enabling new
features, 13

use keyword, for specifying right Perl
version, 292–293

use warnings, enabling per-file
warnings with, 358–361

UTF-8
sort order based on, 78
UCS encoding, 254
utf8 pragma, 255

utf8 pragma, 255

uuencoding, 421–422

V
\v, for matching vertical whitespace, 112

Values
avoiding regular expressions for

comma-separated values, 412–414
finding maximum value, 92–93
knowing and testing false, 23–25
undef values, 34–37

Variables
alias variables, 424
avoiding groups of, 46–47
creating dualvars, 30–31
declaring, 15
environment variables. See Environ-

ment variables
global variables, 146
lexical (compile-time) scoping with
my, 146–149

localizing, 5
log levels defined by Log::Log4perl,

404–405

namespaces for, 19–20
not interpolating into SQL

statements, 382–383
run time scoping with local,

149–151

vars

declaring variables, 15
parts of strictures, 14

Verbatim text, in Pod, 288

Versions, specifying correct, 292–293

Vertical whitespace, 112

Very High Level Language (VHLL), 1

VHLL (Very High Level Language), 1

viacode, getting names from code
points, 259–260

Virtual_filehandle, for reusing data
from last stat, 181

Void context
overview of, 44
subroutines and, 159

W
Wall, Larry, 9, 41

wantarray operator, for context of
subroutines, 157–159

warn, using croak in place of, 367–368

warnif, using predefined warning
categories in modules, 363

Warnings
enabling, 357–358
generating exceptions using die,

364–366
getting stack traces using carp,

366–369
handling exceptions, 370–372

Download from <www.wowebook.com>

ptg

Index ❘ 473

for legacy code, 375–376
overview of, 357
Perl Critic, 398–400
promoting to fatal errors, 362–363
for suspicious code, 358–361
taint checking, 372–375
toggling complaints using lexical,

361–364
understanding using diagnostics,

360

Web. See Online

Websites, Perl, 436–437

when, in foreach loop, 89

while loop
perl -n switch and, 429
perl -p switch and, 431

Whitespace
adding to regular expressions,

129–130
avoiding regular expressions for

CSVs, 413
horizontal, 111–112
overview of, 110–111
parsing column data with unpack

and, 414–416
Unicode and, 268
vertical, 112

Word boundaries, matching, 121–123

Writing files, from strings, 187–188

Writing Perl Modules for CPAN
(Tregar), 246

WWW::Mechanize module, 251

X
/x flag, adding insignificant

whitespace and comments to
regular expressions, 130

XML::Compile module, 252

XML::Twig module, 252

XS language, 301–306
generating boilerplate for C

implementation, 302–303
overview of, 301–302
writing and testing XSUB,

303–306

xsubpp compiler, 303

xt/ (extra tests) directory, author tests
stored in, 312

xUnit functionality, Test::Class
module for, 332

Y
YAML, 252

Z
\Z anchor, matching end of a string,

124

Zero-width assertions
for matching characters, 121
for word boundaries, 121–123

Zero-width atoms, 100–101

Download from <www.wowebook.com>

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Introduction
	Chapter 1 The Basics of Perl
	Item 1. Find the documentation for Perl and its modules.
	Item 2. Enable new Perl features when you need them.
	Item 3. Enable strictures to promote better coding.
	Item 4. Understand what sigils are telling you.
	Item 5. Know your variable namespaces.
	Item 6. Know the difference between string and numeric comparisons.
	Item 7. Know which values are false and test them accordingly.
	Item 8. Understand conversions between strings and numbers.
	Item 9. Know the difference between lists and arrays.
	Item 10. Don’t assign undef when you want an empty array.
	Item 11. Avoid a slice when you want an element.
	Item 12. Understand context and how it affects operations.
	Item 13. Use arrays or hashes to group data.
	Item 14. Handle big numbers with bignum.

	Chapter 2 Idiomatic Perl
	Item 15. Use $_ for elegance and brevity.
	Item 16. Know Perl’s other default arguments.
	Item 17. Know common shorthand and syntax quirks.
	Item 18. Avoid excessive punctuation.
	Item 19. Format lists for easy maintenance.
	Item 20. Use foreach, map, and grep as appropriate.
	Item 21. Know the different ways to quote strings.
	Item 22. Learn the myriad ways of sorting.
	Item 23. Make work easier with smart matching.
	Item 24. Use given-when to make a switch statement.
	Item 25. Use do {} to create inline subroutines.
	Item 26. Use List::Util and List::MoreUtils for easy list manipulation.
	Item 27. Use autodie to simplify error handling.

	Chapter 3 Regular Expressions
	Item 28. Know the precedence of regular expression operators.
	Item 29. Use regular expression captures.
	Item 30. Use more precise whitespace character classes.
	Item 31. Use named captures to label matches.
	Item 32. Use noncapturing parentheses when you need only grouping.
	Item 33. Watch out for the match variables.
	Item 34. Avoid greed when parsimony is best.
	Item 35. Use zero-width assertions to match positions in a string.
	Item 36. Avoid using regular expressions for simple string operations.
	Item 37. Make regular expressions readable.
	Item 38. Avoid unnecessary backtracking.
	Item 39. Compile regexes only once.
	Item 40. Pre-compile regular expressions.
	Item 41. Benchmark your regular expressions.
	Item 42. Don’t reinvent the regex.

	Chapter 4 Subroutines
	Item 43. Understand the difference between my and local.
	Item 44. Avoid using @_ directly unless you have to.
	Item 45. Use wantarray to write subroutines returning lists.
	Item 46. Pass references instead of copies.
	Item 47. Use hashes to pass named parameters.
	Item 48. Use prototypes to get special argument parsing.
	Item 49. Create closures to lock in data.
	Item 50. Create new subroutines with subroutines.

	Chapter 5 Files and Filehandles
	Item 51. Don’t ignore the file test operators.
	Item 52. Always use the three-argument open.
	Item 53. Consider different ways of reading from a stream.
	Item 54. Open filehandles to and from strings.
	Item 55. Make flexible output.
	Item 56. Use File::Spec or Path::Class to work with paths.
	Item 57. Leave most of the data on disk to save memory.

	Chapter 6 References
	Item 58. Understand references and reference syntax.
	Item 59. Compare reference types to prototypes.
	Item 60. Create arrays of arrays with references.
	Item 61. Don’t confuse anonymous arrays with list literals.
	Item 62. Build C-style structs with anonymous hashes.
	Item 63. Be careful with circular data structures.
	Item 64. Use map and grep to manipulate complex data structures.

	Chapter 7 CPAN
	Item 65. Install CPAN modules without admin privileges.
	Item 66. Carry a CPAN with you.
	Item 67. Mitigate the risk of public code.
	Item 68. Research modules before you install them.
	Item 69. Ensure that Perl can find your modules.
	Item 70. Contribute to CPAN.
	Item 71. Know the commonly used modules.

	Chapter 8 Unicode
	Item 72. Use Unicode in your source code.
	Item 73. Tell Perl which encoding to use.
	Item 74. Specify Unicode characters by code point or name.
	Item 75. Convert octet strings to character strings.
	Item 76. Match Unicode characters and properties.
	Item 77. Work with graphemes instead of characters.
	Item 78. Be careful with Unicode in your databases.

	Chapter 9 Distributions
	Item 79. Use Module::Build as your distribution builder.
	Item 80. Don’t start distributions by hand.
	Item 81. Choose a good module name.
	Item 82. Embed your documentation with Pod.
	Item 83. Limit your distributions to the right platforms.
	Item 84. Check your Pod.
	Item 85. Inline code for other languages.
	Item 86. Use XS for low-level interfaces and speed.

	Chapter 10 Testing
	Item 87. Use prove for flexible test runs.
	Item 88. Run tests only when they make sense.
	Item 89. Use dependency injection to avoid special test logic.
	Item 90. Don’t require more than you need to use in your methods.
	Item 91. Write programs as modulinos for easy testing.
	Item 92. Mock objects and interfaces to focus tests.
	Item 93. Use SQLite to create test databases.
	Item 94. Use Test::Class for more structured testing.
	Item 95. Start testing at the beginning of your project.
	Item 96. Measure your test coverage.
	Item 97. Use CPAN Testers as your QA team.
	Item 98. Set up a continuous build system.

	Chapter 11 Warnings
	Item 99. Enable warnings to let Perl spot suspicious code.
	Item 100. Use lexical warnings to selectively turn on or off complaints.
	Item 101. Use die to generate exceptions.
	Item 102. Use Carp to get stack traces.
	Item 103. Handle exceptions properly.
	Item 104. Track dangerous data with taint checking.
	Item 105. Start with taint warnings for legacy code.

	Chapter 12 Databases
	Item 106. Prepare your SQL statements to reuse work and save time.
	Item 107. Use SQL placeholders for automatic value quoting.
	Item 108. Bind return columns for faster access to data.
	Item 109. Reuse database connections.

	Chapter 13 Miscellany
	Item 110. Compile and install your own perls.
	Item 111. Use Perl::Tidy to beautify code.
	Item 112. Use Perl Critic.
	Item 113. Use Log::Log4perl to record your program’s state.
	Item 114. Know when arrays are modified in a loop.
	Item 115. Don’t use regular expressions for comma-separated values.
	Item 116. Use unpack to process columnar data.
	Item 117. Use pack and unpack for data munging.
	Item 118. Access the symbol table with typeglobs.
	Item 119. Initialize with BEGIN; finish with END.
	Item 120. Use Perl one-liners to create mini programs.

	Appendix A: Perl Resources
	Appendix B: Map from First to Second Edition
	Books
	Websites
	Blogs and Podcasts
	Getting Help

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

