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Preface

Recursion is the cinderella of programming techniques where lan-
guages such as Pascal are concerned. All primers mention it, of
course, but generally devote only a few pages to it. Rohl and
Barrett’s Programming via Pascal is one of the more generous: it
contains one chapter of 12 pages on the subject!

Books appropriate to second courses in programming, such as
those by Wirth (1976), Alagic & Arbib (1978), and the more modemn
data structures texts, have helped considerably; but currently there is
no book devoted to the use of recursion in Pascal or similar
languages.

And yet this used not to be the case: Barron’s delightful little
book Recursive Techniques in Programming was published in 1968!
Sadly it is now out of print, and in any event was beginning to show
its age. Recursion via Pascal is the author’s attempt to fill this gap.

Of course, in functional programming, recursion has received its
full due, since it is quite often the only repetitive construct, and this
area is fairly well served with text-books. In Recursion via Pascal,
most of the examples are procedures rather than functions, partly
because that is the usual Pascal style and partly because we want to
give examples which actually do something, like drawing the cover
motif of this series, instead of merely having a value. Reading one of
the functional texts after finishing this book would provide an
alternative perspective.

The material could have been organised in a number of ways.
I have chosen to present it in what seems to me to be in order of
increasing complexity. Generally the chapters come in pairs, one
which considers data structures and one which does not. Chapters 1
and 2 introduce linear recursion, which arises in a procedure which
calls itself only once. When a procedure calls itself twice we have



binary recursion, which is considered in Chapters 3 and 4. Chapter 5
is an interlude in which we consider special situations such as mutual
recursion and recursive calls. N-ary recursion, where a procedure calls
itself a number of times, is treated in Chapters 6 and 7. Finally in
Chapter 8 we consider how recursion may be eliminated.

Many helpful suggestions about the presentation of the material
were made by Cambridge University Press’s reviewers, David Barron
and Chris Hawksley, to whom my thanks are due.

A first draft of much of this book was written while on sabbatical
leave at the University of Edinburgh, and I am grateful to Sidney
Michaelson and Peter Schofield for their hospitality, and to Dorothy
McKie and Gina Temple who typed those drafts.

The final drafts were prepared by Joyce Fisher, and all the pro-
grams were tested and corrected by Janet Brockman. My special
thanks to these two.

Perth, July 1983 J.S. Rohl
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Introduction to recursion

What is recursion? It is simply a technique of describing something
partly in terms of itself. This notion has wide applicability. We are
all used to the idea that an adjectival clause, for example, may
contain another adjectival clause. Who has not at sometime or
another recited This is the house that Jack built?

This is the cock that crowed in the mormn

That woke the priest all shaven and shom

That married the man all tattered and torn

That kissed the maiden all forlorn

That milked the cow with the crumpled horn

That tossed the dog

That worried the cat

That killed the rat

That ate the malt

That lay in the house that Jack built.

On a more prosaic level, if you were asked for the differential
with respect to x of x> + 5x you would instantly, and correctly,
reply 2x + 5. If you were pressed to explain your answer you would
probably reply, firstly, that the differential of x2 + 5x is equal to
the differential of x?2 plus the differential of 5x, and, secondly, that
the differential of x2 is 2x and of 5x is 5. This then is the essence of
recursion which consists of two parts:

d d
i) th X le: — (x2 + B5x) = — (x2)+ — (5
(i) the recursive rule I (x x) dx (x*) ia (5x)

in which the differential of a sum is defined in terms of the
differential of the two terms;

d (5x) =5

d
(ii) the explicitly defined cases: i (x%) =2x, —
x x

which terminate the recursion.



For more general expressions, of course, we need further recursive
rules, such as those for products and quotients, and more explicitly
defined cases, such as that for the differential of a constant. We will
return to this example in Chapter 3.

What are the advantages of recursion as a programming technique?
From the point of view of this monograph there are four.

(i) For many problems the recursive solution is more natural than
the altemative non-recursive solution. Of course naturalness is in the
eye of the beholder and for some readers an unfamiliarity with
recursion may indeed make the early examples appear unnatural.
However the relationship between recursively defined data structures
and recursive procedures is very close and by the time trees are
introduced in Chapter 3 the appropriateness of recursion will be
clear enough.

(ii) It is often relatively easy to prove the correctness of recursive
procedures. Inasmuch as recursive procedures are direct translitera-
tions of the mathematical formulations involved, the proofs are often
trivial. Even where they are not, the proofs are based on the very
familiar process of induction.

(ii1) Recursive procedures are relatively easy to analyse to deter-
mine their performance. The analysis produces recurrence relations,
many of which can easily be solved.

(iv) Recursive procedures are flexible. This is a very subjective
statement but, as we demonstrate in Chapter 7 and elsewhere, it is
quite easy to convert a general procedure into a more specific one.
Indeed this is often a useful design technique: first write a program
for a problem which is a generalisation of the given problem, and
then adapt it to the problem in hand.

What are the costs to be incurred in using recursion? There are two:

(i) Recursive procedures may run more slowly than the equivalent
non-recursive ones. There are two causes for this. Firstly, a compiler
may implement recursive calls badly. Most, if not all, Pascal compilers
handle recursion quite well and so the cost is small, perhaps 5% to
10%, perhaps nothing. At worst, as we shall shortly show, a recursive
procedure may run at half-speed though this applies only to the most
trivial procedures. Secondly, the recursive procedures we write may
simply be inefficient. It is easy to write such procedures as we shall
see, and we must always be on our guard to avoid doing so.

(ii) Recursive procedures require more store than their non-
recursive counterparts. Each recursive call involves the creation of
an activation record, and if the depth of recursion is large this space



penalty may be significant. This only arises with simple procedures,
however: with more complex procedures the depth is small, and,
what is more, the non-recursive versions themselves require space
which is proportional to the recursive depth. Furthermore, there are
some situations where the cost of the recursion, in both time and
space, can be eliminated quite simply by a compiler.

With this in mind we now consider some simple examples all of
which exhibit Lnear recursion. In these procedures there is only
one recursive call. Others, such as the differentiation procedure
referred to above, have two recursive calls, and we refer to this as
binary recursion. Yet others have an indefinite number (the one
written call is within a loop), and we refer to this as n-ary recursion.

It would be unreasonable to expect that the advantages listed
above should appear manifest in simple examples, since that is where
recursion is at its weakest. Consequently we will concentrate in this
chapter on explaining recursion and how it works and illustrating
some of its characteristics.

1.1 Some simple examples
The simplest example is the factorial function, which is
defined by:

pl=1, p=0,
=1x2x3x...p, p>0
From this definition the function of Fig. 1.1 follows immediately.

Fig. 1.1. A non-recursive function Fact.

function Fact(p:natural):natural;
var i,f:natural;

begin

f :=1;

for i := 1 to p do
f = £*i;

Fact := £

end { of function "Fact" };

where natural is defined as:
type natural = 0 . . maxint
In a study of the factorial function one of the first theorems proved is:
p'=1, p=0,
=px(p—1)!, p>0

from which the function of Fig. 1.2 immediately follows.



Fig. 1.2, A recursive function Fact.

function Fact(p:natural):natural;

begin
if p = 0 them Fact :=1
else Fact := p*Fact(p-l)

end { of function "Fact" };

Indeed, for many people, the theorem just mentioned is the definition.
In either case, it must be said that it is hard to argue that either
function is more natural than the other.

As a second example, we consider the highest common factor
(HCF) of two positive integers p and g. A description of Euclid’s
algorithm for finding the HCF usually goes something like this:
‘Divide p by g to give a remainder . If » =0 then the HCF is q.
Otherwise repeat with ¢ and r taking the place of p and ¢’. From this
description the non-recursive version of Fig. 1.3 is usually derived.}

Fig. 1.3. A non-recursive version of Hcf.

function Hcf(p,q:natural):natural;
var r:natural;
begin
r := p mod q;
while r <> 0 do

begin
P = gq;
q =T
r := pmod q
end;
Hef := q

end { of function "Hef" };
From the same description, the recursive version of Fig. 1.4 follows.

Fig. 1.4, A recursive version of Hcf.
function Hcf(p,q:natural):natural;

var r:natural;

begin

r := p mod q;

if r = 0 then Hef := q

else Hcf := Hef(q,r)

end { of function "Hcf" };

This is more natural in the sense that p mod g is evaluated in only
one place, as in the description, whereas in Fig. 1.3 it is evaluated
twice.

1 As g must not be 0 we should introduce a type positive = 1 . . maxint for it.
Since we will give a version later in which g may be 0, we do not do so.



Mathematically we can formulate this as:

kef(p, 9) =P, p mod g =0,
= hcf(q,p mod q), pmodgF#0
These two examples are fairly well known. As a third example
Fig. 1.5 gives a procedure, rather than a function, which prints out
an unsigned integer left-justified, that is, with no spaces preceding
the most significant digit.

Fig. 1.5, A procedure for writing an unsigned integer left-justified.

procedure WriteNatural(i:natural);

begin

if i < 10 then
write(chr(i + ord(’0’)))

else
begin
WriteNatural(i div 10);
write(chr(i mod 10 + ord(°0’)))
end

end { of procedure "WriteNatural" };

Its action is fairly clear. If ¢ is less than 10, it has only one digit
which is printed. If it is greater than 10 (say 375), the procedure is
called recursively to print ¢ div 10 (here 37) after which the final
digit (5) is printed.

1.2 How does recursion work?

The standard run-time storage organisation used in Pascal
to ensure the optimal use of store is the stack; and this organisation
automatically encompasses recursion. We will illustrate this with
respect to a program, Test, which simply reads x and calls WriteNatural
to print it. We assume that the activation record for a procedure
contains, as well as the parameters and local variables, two links. The
first, the return address link (ral), holds the address to which control
is to be returned on exit from the procedure. The second is called
the stack link (sl), because it is used to ensure that the stack returns
to the same configuration on exit from a procedure as it had on
entry. We assume that the stack is accessed by a set of registers,
called the display, one register being associated with each textual
level. In what follows we call them D1, D2, .... On entry to a proce-
dure one of the display registers has to be altered to refer to the
variables of this procedure. If the procedure is at level n, then Dn is
changed. It is the original value of this register that is the stack link.



A procedure call then must:

(i)
(i
(i)
(iv)
(v)

stack the return address link,

stack the stack link,

adjust the display,

allocate space for the local variables,
branch to the code of the called procedure.

The corresponding procedure exit then:

(i)
(i)
(i)

recovers the space of the local variables,

adjusts the display using the stack link,

returns to the statement after the call using the retum
address link.

We illustrate this with respect to the Test program mentioned

earlier which we give as Fig. 1.6. Note that two points are marked
« and § by means of comments.

Fig. 1.6. A program to test WriteNatural.

program Test(input,output);
type natural = O..maxint;
var Xx:natural;

procedure WriteNatural(i:natural);
begin
if i < 10 then
write(chr(i + ord(‘07)))
else
begin
WriteNatural(i div 10);
{ point B}
write(chr(i mod 10 + ord(’0°)))
end
end { of procedure "WriteNatural" };

begin

read(x);

write(’ The value of “,x:1,” is ‘);
WriteNatural(x)

{ point a }

end.

Suppose we run this program with 375 as data. Within the main

program there is only one activation record addressed via D1. It
contains only the variable x since the concept of links is irrelevant
for the main program. After read(x) we have:

D1

y X
375




On entry to WriteNatural after the call WriteNatural(x), an activa-
tion record is created for WriteNatural containing the links (ral and
sl) and the parameter 7. It is addressed via D2.

D1 D2

Y x §y ra sl !
375 o ? 375

Note that the stack link is irrelevant, since within the main program
D2 is unused.

On the second entry to WriteNatural, as a result of the recursive
call WriteNatural(i div 10), a further activation record is created for
WriteNatural. It is accessed via D2, while the previous activation
record becomes temporarily inaccessible.

D1 D2

Yy x y ral sl i
375 | o« > | 378 8 | | [ 371

On the third entry to WriteNatural we have:

D1 D2
¥y x y ra sl i

375 a | ? |375 B [ 37 8 | 3 1
4 ]

and chr(i + ord('0")), that is the character 3, is then printed.

On exit from this activation of WriteNatural, the stack is returned
to its previous state so that the second activation record becomes
accessible again, and control returns to point f.

D1 D2

Yy x y ra sl i

375 o3 ] ? | 375 g I | i 37 l

Then chr(i mod 10 + ord('0")), that is, the character 7, is printed.
On exit from this activation we have:

D1 D2

vy x ral sl !

375 « » 375

and, as control returns again to point @, 5 is printed.



On the exit from the first activation to WriteNatural the stack
returns to:
D1
‘ X
375

and control retumns to «, at which point the program stops.

1.3 The storage cost of recursion

From the description of the implementation, the cost in
terms of storage associated with recursive procedures is clear.
If n is the maximum recursive depth, then the store required is
nx(p +1+2) where p represents the space required by the para-
meters and / that required by the local variables. Where the alternative
non-recursive solution requires only a small number of local variables
for its operation, this cost might be significant. (In the two relevant
examples given so far, Fact and Hcf, n is likely to be small but in
Chapter 2 we consider situations where n may be large.)

There are, however, some situations where the non-recursive
procedure requires an amount of store which is proportional to n, in
which case the comparison between recursive and non-recursive
versions may be less clear-cut. In these situations the extra store is
used as a stackt and we will assume that some appropriate facilities
have been added to Pascal. This is simply a matter of abstraction:
the implementation of the facilities in pure Pascal is trivial.

We assume a new structured mode, stack of, so that, for example,
the declaration:

var s:stack of natural
declares s to be a stack of natural numbers. This stack is initialised,
to an empty stack by:
clear s
Only two accessing statements are available. The first:
push ¢ onto s
pushes the value of the expression 7 onto the top of s, while:
pop ¢ from s
pops the top value from s and assigns it to 7. Finally:
s empty
s not empty
are predicates which test the state of the stack.

1 The term stack thus refers to two concepts which are alike in their first-in, last-
out characteristics but have different rules of access.



Fig. 1.7 gives a non-recursive version of WriteNatural using these
facilities.

Fig. 1.7. A non—recursive version of WriteNatural,

procedure WriteNatural(i:natural);
var s:stack of natural;
begin
clear s;
while i >= 10 do
begin
push i onto s;
i :=1 div 10
end;
write(chr(i + ord(’0°)));
while s not empty do
begin
pop i from s;
write(chr(i mod 10 + ord(’0°)))
end
end { procedure "WriteNatural" };

Clearly in WriteNatural the size of the stack will be smallf, perhaps
5 or 6, but the general principle is clear: the amount of store required
is proportional to the recursive depth, though as there will be fewer
links required (here there are none) the constant of proportionality
will be smaller than that for the recursive version.

Fig. 1.7 illustrates another point: that the procedures themselves
occupy space and the differences in procedure size must be con-
sidered. These are generally of a lower order, since there is only one
copy of a procedure code, whereas there may be many activation
records.

1.4 The time cost of recursion
We indicated in the opening paragraphs of this chapter that
even where they have been well written, recursive procedures may
run more slowly than their non-recursive counterparts. We illustrate
this here by using what is perhaps the most extreme example, the
factorial functions given earlier. In Fig. 1.8 we give counts of those
of the so-called structured operations that are involved: arithmetic,
assignment, loop traverse, procedure call and so on.
We also count the number of elementary operations by assigning
appropriate weights to the structured operations: arithmetic, simple
tests and assignments at 1, for-loop entry at 2 (for the assignment

t Indeed for this particular example we could avoid the use of a stack by trading
space for time, and using quite a different technique.



Fig. 1.8. Analysis of the Fact functions.

Number of operations Non-recursive Recursive
of the type (Fig. 1.1) (Fig. 1.2)
Arithmetic t 2p
Assignment p+2 p+1
Test p+1
Parameter evaluation 1 p+1
Procedure call and exit 1 p+1
For-loop entry 1

For-loop traverse p

Elementary operations 5p+10 10p+8
Elementary operations {p=10) 60 108
Time on Cyber 73 (p=10) 210 us 380 us

and test involved), for-loop traverse at 3 (for the test, increment and
assignment involved), parameter evaluation at 1 (for the implied
assignment) and procedure call and exit at 5 (for assigning two links
and setting the display register on entry, resetting two links on exit).
From Fig. 1.8 we see that the recursive procedure is perhaps twice
as slow.t This is probably an upper limit on the differences between
a linear recursive procedure and the equivalent non-recursive version
because the body of Fact is quite trivial.

Fig. 1.8 gives as well some timings for the procedures run on
a Cyber 73, as do subsequent tables. The figures indicate that the
model is a fair approximation to the Cyber Pascal system. The
discrepancies arise from the simplicity of the model and from the
relative inaccuracy of the timer used.

1.5 Recurrence relations

The analysis of most of the procedures considered in this
chapter and the next (those exhibiting linear recursion) is very
simple and really needs no formalism. However this is not so with
binary and n-ary recursion, and so we will consider an analysis based
on the use of a recurrence relation. It is convenient to have the
notion of the size of a problem, so that if 7, represents the cost,
however defined, of evaluating a procedure of size k& then the recur-
rence relation defines 7, in terms of the cost of evaluating the
smaller problem(s) into which it is broken down. For linear recursion
the size is closely related to the recursive depth and 7}, is defined in

t This set of weights is very arbitrary and may not be appropriate to some machines
and some compilers, particularly where procedures are handled by a subroutine
call.

10



terms of T}, _;. A typical recurrence relation, which applies to Fact, is:
T,=b+T,_,, k>0
=a, k=0
where a and b are appropriate constants. T, can be determined quite
simply by a process of substitution.

Tn=b+Tn_1
=b+b+T,_o
=bX2+T_2
=bxn+T
=bn+a

This is linear in n which coincides nicely with our use of the phrase
linear recursion. It is not the only form of recurrence relation that
arises in linear recursion as we shall see. However, in all recurrence
relations that do arise, the coefficient of T on the right-hand side is
always 1.

1.6 The choice of the explicitly defined case

We want now to consider in the next two sections two
aspects which are important in the design of recursive procedures.
Firstly the choice of the explicitly defined case. There is often some
flexibility in this choice. For example, we have chosen 0! = 1 as the
explicitly defined case in the factorial function. We might have
chosen 1! =1 as in Fig. 1.9; and provided we always called Fact
with a parameter >0 it would have operated successfully.

Fig. 1.9, The function Fact modified to use 1! = 1.

function Fact(p:natural):natural;
begin
if p = 1 them Fact :=1
else Fact := p*Fact(p-l)
end { of function "Fact" };

But note the implication that two functions for the same problem
with different explicitly defined cases are different in that one
function might fail in cases where the other does not. For example
the evaluation of Fact(0) using Fig. 1.9 would fail as p went out
of range!t

t As we noted in §1.1 with respect to the parameter g of Hcf, it would be better
to define p to be of the type positive.

11



Considering the example Hcf, if we stop the recursion one step
later, that is when ¢ = 0 rather than when p mod ¢ = 0, we produce
the elegant function of Fig. 1.10.

Fig. 1.10. A function Hcf stopping one step later.
function Hcf(p,q:natural):natural;
begin
if g = 0 them Hef := p
else Hcf := Hcf(q,p mod q)
end { of function "Hef" };
Note that the local variable r has disappeared. Note, too, that this
function gives an interpretation to Hcf(7, 0) where the previous
one did not.
The recurrence relation enables us to determine the effect of the
change. For the new version of Fact we have:
Tk=b’+Tk_1, k>1
=a, k=1
Note we have used constants a' and b’ since they will in general be
different from a and b, even though this is not true for the factorial
functions. The solution is simply:
T,=bn+(a —b')
Which is the faster depends on the values of a, b, a’ and b'. In any
event the different will be small. Thus the choice of explicit case is
usually made on the grounds of elegance or simplicity or generality.
When we consider binary recursion, the difference, however, may
turn out to be significant.

1.7 Two-level procedures
The second aspect is the use of two-level procedures, in
which the main procedure contains within itself a procedure which
is recursive and which it calls initially. This technique has a number
of advantages which we now consider.

It is clear from the discussion of costs that the number of para-
meters is significant in that it affects both space and time require-
ments. Consider a function for evaluating the polynomial:

apx" +ax" 1+ ... Fa,_1x +a,
This is usually evaluated by Horner’s method of nested multiplication:
(-+- (((ag)x + a)x +ag) ... +ap_1)x +ay,
Fig. 1.11 gives a function in which the coefficients are assumed to
be in an array a.§

1 Very often, as here, we will leave some types unspecified, where it is clear what
an appropriate definition might be.

12



Fig. 1.11. A non-recursive version of Poly,
function Poly(var a:coeff; x:real; n:natural):real;
var y:real;
i:natural;

begin

y = 0;

for i := 0 to n do
y = y*x + a[i];

Poly :=y

end { of function "Poly" };

Note that we have called a as a variable even though it serves only
to transmit a value to Poly. The reason is simply one of efficiency.
Since each element of a is accessed only once, the cost of copying
the whole array (which calling it by value would involve) is more
than the cost of the indirect access (which calling as a variable
implies). Further we require less space, since here it requires a single
location (for the indirect address) whereas it would require space
for a copy if it were called by value. We will use this criterion for
the choice between call-by-value and call-as-a-variable extensively
in this book.

The standard recursive version also follows directly from Hormer’s
re-arrangement as Fig. 1.12 shows.

Fig. 1.12. A recursive version of Poly.

function Poly(var a:coeff; x:real; n:natural):real;
begin
if n = 0 them Poly := al0]
else Poly := Poly(a,x,n-1)*x + a[n]
end { of function "Poly" };

Here a and x are unaltered between calls, and we consume both
time and space for them on each recursive call.

To avoid repeatedly assigning these redundant parameters we can
use a two-level approach as shown in Fig. 1.13.

Fig. 1,13, The two-level function Poly,
function Poly(var a:coeff; x:real; n:natural):real;

function P(k:natural):real;
begin
if k = 0 then P := a[0]
else P := P(k-1)*x + al[k]
end { of function "P" };

begin
Poly := P(n)
end { of function "Poly" };
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Here the body of the outer procedure Poly contains simply a call
to the inner procedure P with just the one parameter & which is
initialised to n. Within P the values of a and x are accessed non-
locally. We will use these two-level functions (and procedures) quite
extensively in this book and, by convention, we will generally give
the inner function (or procedure) a name which is the first letter of
the name of the outer one, unless that happens to have a name which
starts with a prefix which is common to a group of procedures.

This function certainly uses less space since the inner recursive
function has only one parameter. The stack space we require is
5 locations for the outer function plus 3(n +1) for P, as against
5(n +1) for the single-level recursive function. (Of course, the
non-recursive function requires only 7 locations for the parameters
and the local variables.)

An analysis of all three functions is given in Fig. 1.14. It shows
that the two-level recursion requires fewer operations than the one-
level recursive function, but more than the non-recursive one.
However some of the operations involve non-local accesses which
the model assumes to be no more costly than local ones. This is
a fairly simplistic assumption, and Fig. 1.14 shows that it is not
appropriate for the Cyber.

Fig. 1.14. An analysis of the Poly functions.

Non-recursive Recursive Two-level
wt (Fig. 1.11) (Fig. 1.12) (Fig.1.13)

Arithmetic 1 2n+2 3n 3n
Assignment 1 n+3 n+1 n+2
Subscripting 1 n+1 n+1 n+1
Test 1 nt+l1 n+1
Parameter evaluation 1 3 3n+3 n+4
Procedure call and exit 5 1 n+1 n+2
For-loop entry 2 1

For-loop traverse 3 n+1

Elementary operations Tn+19 14n+11  12n+18
Elementary operations (n=10) 89 151 138
Time on Cyber 73  (n=10) 350 us 540 us 540 us

However the two-level solution has other advantages which are
indisputable. Firstly, it enables us to maintain an acceptable interface
to the user. For example suppose we wished to write a procedure to
evaluate the polynomial:

ag + ayx +agx®+...+a]
(The one used earlier was agx™ + a;x" ! + ... a,, so we will call this
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PolyUp, reflecting that the coefficients are increasing along the
polynomial.) Using Homer’s method we evaluate:

(- (((an)x +ap—1)x +a,_9)... +a))x + ay
A one-level procedure requires an extra parameter as Fig. 1.15 shows.

Fig. 1.15. A one-level function Poly Up.

function PolyUp(var a:coeff; x:real; i,n:natural):real;
begin
if i = n then PolyUp := a[n]
else PolyUp := PolyUp(a,x,i+l,n)*x + afi]
end { of function "PolyUp" };

This means that the user requires an extra (to him, useless) parameter
in each call such as PolyUp (a, x, 0, n).

The two-level function enables us to retain the usual function
heading as shown in Fig. 1.16.

Fig. 1.16. A two-level function Poly Up.

function PolyUp(var a:coeff; x:real; n:natural):real;

function P(i:natural):real;
begin
if i = n thea P := a[n]
else P := P(i+l)*x + a[i]
end { of function "P" };

begin
PolyUp := P(0)
end { of function "PolyUp" };

Secondly, the use of a two-level solution enables us to accommodate
special cases quite simply. Consider a function Power whose value is
the nth power of x with the added constraint that 0" is 0. Fig. 1.17
gives a single-level function.

Fig. 1.17. A poor function for Power.

function Power(x:real; n:integer):real;
begin
if x = 0 then Power := 0
else if n < 0 then Power := l/Power(x,-n)
elgse if n = 0 then Power := 1
else Power := x*Power(x,n-1)
end { of function "Power" };

Note that on each call x is compared with 0, even though, if it is
different from 0 on the first call, it will remain different from 0 for
all calls. Similarly n is tested to ensure it is not less than 0 at each
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call, when, if it were negative initially, its value would have been
immediately negated. The two-level solution of Fig. 1.18 avoids this
by dealing with these cases in the outer procedure.

Fig. 1.18. A two-level function for Power.

function Power(x:real; n:integer):real;

function P(k:natural):real;
begin
if k =0 then P :=1
else P := x*P(k-1)
end { of function "P" };

begin

if x = 0 then Power := 0

else if n < 0 them Power := 1/P(-n)
else Power := P(n)

end { of function "Power" };

Note that this is the recursive equivalent of moving constants outside
loops.

1.8 Developing the power example: a cautionary tale
The powering procedures implemented the definition:

x" =0, x=0
=1/x"" x#0,n<0
=1, x#¥0,n=0

=xxx""!, x#0,n>0
As many readers will have noticed, this procedure is not very efficient
for large n. It is O(n) whereas the method often called ‘halving and
squaring’ is O (log n). This technique calculates x!*, for example, by
squaring x’ whereas the original multiplies x by itself 13 times.
Formally we can specify the function:

x" =0, x=0
=1[x"", x#0,n<0
=1, x#0,n=0
=x"2xx"2xx, x#0,nodd
= x"2 x x"12, x ¥ 0, n even and >0

From this the function of Fig. 1.19 is easily produced.

Fig. 1.19, A faster version of Power.

function Power(x:real; n:integer):real;

function P(k:natural):real;
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begin

if k =0 then P :=1

else if odd(k) theam P := sqr(P(k div 2))*x
else P := sqr(P(k div 2))

end { of function "P" };

begin

if x = 0 then Power := 0

else if n < 0 thean Power := 1/P(-n)
else Power := P(n)

end { of function "Power" };

The analysis of Fig. 1.19 is a little more difficult than those con-
sidered previously because of the different actions taken depending
on whether & is even or odd. However, the difference is small and we
can, as an approximation, assume that % is equally likely to be even
or odd. The recurrence relation is:
Tk=b+T[k/2|, k>0
=a, k=0
where | £/2 |, the floor of k2, is the largest integer less than £/2. We
can solve this for T, again by simple substitution:
T,=b+T|a2)
=b+ (b+Tinay)
=2b+ T\ nj4|
=2b+ (b+Tjns))
=3b + Tl n/8 |
We can see that, as n is progressively halved, the coefficient of
b is increased by 1. Thus we ultimately arrive at:
Tn =b[10gn] + T]
=bllogn|+b+ T
=bllogn |+ (b +a)
This is only the cost of the call of P, of course. We must also add the
small cost of the body of Power.

This derivation suggests other alternatives, such as stopping the
recursion one step earlier (where £ = 1) and modifying the body of
Power appropriately. Note that this illustrates another advantage of
a two-level procedure: we can stop the recursion earlier without
needing to alter the specification. We leave it to the reader to pursue
this solution.

We indicated earlier that it is trivially easy to write inefficient
recursive procedures. Here is a case in point. Suppose we unthinkingly
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used explicit multiplication instead of squaring as shown in Fig. 1.20.

Fig. 1.20. A bad version of Power.
function Power(x:real; n:integer):real;
function P(k:natural):real;
begin
if k = 0 then P :=1
else if odd(k) then P := P(k div 2)*P(k div 2)*x
else P := P(k div 2)*P(k div 2)
end { of function "P" };

begin
if x = 0 then Power := 0
else if n < 0 then Power := 1/P(-n)
else Power := P(n)
end { of function "Power" };
Unless we have a compiler which can recognise that the multiplications
can be replaced by squarings, we find that the procedure is actually
worse than the original two-level solution of Fig. 1.18. This is because,
at each level, P is called twice. The recurrence relation is:
T, =b+2Tx2), kF0
=a, k=0
whose solution is (a + b)# —a, where 7 is 21°87 1 +1 that is the
smallest power of 2 which is greater than n.
Fig. 1.21 gives a detailed analysis of these procedures, including
the body of Power, in which = is the absolute value of the parameter,
which is assumed as likely negative as positive.

Fig. 1.21. Analysis of the Power functions.

One-level Two-level
Wt (Fig.1.17) (Fig. 1.18) (Fig. 1.19) (Fig. 1.20)

Arithmetic 1 2n+1 2n+1 21 |logn | +3%  3at+n—2
Assignment 1 nt1i nt+2 |logn|+3 2n
Test 1 3nt+4 n+3 2 |logn|+5 3n
Parameter

evaluation 1 2n+3 nt3 |logn | +4 2n+1
Procedure call

and exit 5 nt+1i n+2 {logn|+3 2n
Elementary

operations 13n+17 10n+19 111 |logn | +30% 207+n—1
Elementary

operations

(n=240) 3137 2419 111 5359
Time on

Cyber 73

(n=240) 10200 us 8700 us 400 us 20900 us
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Note that this small error has changed the order of complexity of
the procedure from O(log n) to O(n). Note, too, that the possibility
of such a drastic effect for such a trivial change does not usually
occur with iterative procedures.

1.9 Searching
One of the fundamental operations of computer science is
searching for an item of a given key in a collection of such items. We
assume that the items are of a type itemtype defined:
type itemtype = record
key :keytype;
info :infotype
end
where both keytype and infotype are left unspecified.
Let us assume that the items are held in an array whose type is
defined by:
type sizetype = 1 .. max;
arraytype = array [sizetype] of itemtype
where max is an appropriate constant.
Let us assume that the items are not ordered on their keys. In
Fig. 1.22 we give an obvious function which proceeds through the
array until either the key is found, or all items have been compared.

Fig. 1.22. Searching an array.

function InArray(var a:arraytype; n:sizetype; k:keytype):Boolean;

function I(j:sizetype):Boolean;
begin
if k = a[j].key then I := true
else 1f j = n then I := false
else I := I(j+l)
end { of function "I" };

begin
InArray := I(1l)
end { of function "InArray" };

On average half the elements will be compared so that the
function is O (n).

If the items are held in ascending order of their keys we can do
much better by using the method known as binary-chopping, which
operates as follows. We compare the key of the item being sought
with the key of the item in the middle of the array. If it is the
smaller, then the item, if it is present, must be in the lower half of
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the array; otherwise it must be in the upper half. Fig. 1.23 gives an
appropriate function.

Fig. 1.23. Binary-chopping.
function InArray(var a:arraytype; n:sizetype; k:keytype):Boolean;
function I(1l,u:sizetype):Boolean;
var mid:sizetype;
begin
if 1 =u then I := k = a[l].key
else
begin
nid := (1+u) div 2;
if k <= a[mid].key then I := I(l,mid)
else I := I(mid+l,u)
end
end { of function "I" };

begin
InArray := I(l,n)
end { of function "InArray" };
Clearly this procedure is O(log n) since at each stage the size of

the array is halved.

1.10 Recursion and reversal

The procedure WriteNatural prints out the natural
number which is its parameter in the usual way: the procedure
WriteReversedNatural of Fig. 1.24 prints it out in reverse. That is,
if £ = 375, it prints 573.

Fig. 1.24. A procedure for writing natural numbers reversed.

procedure WriteReversedNatural(i:natural);
begin
if 1 < 10 then
write(chr(i + oxd('0%)))
else
begin
write(chr(i mod 10 + ord(‘07)));
WriteReversedNatural(i div 10)
end
end { of procedure "WriteReversedNatural" };

The only difference between the procedures is the position of
the recursive call: in WriteNatural it occurs before the writing of
a character, in WriteReversedNatural it occurs after. Thus it is often
trivial to modify a recursive procedure to produce a reversed form
of output - and to accept a reversed form of input. We shall see
a useful example in Chapter 2.

With non-recursive procedures the changes are less trivial. In
Fig. 1.25 we give an iterative procedure for WriteReversedNatural.
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Fig. 1.25. A non-recursive version of WriteReversedNatural

procedure WriteReversedNatural(i:natural);
begin
while i >= 10 do
begin
write(chr(i mod 10 + ord(’07)));
i :=1 div 10
end;
write(chr(di + oxrd(’0°)))
end { of procedure "WriteReversedNatural" };

The differences between this procedure and the non-recursive ver-
sion of WriteNatural, Fig. 1.7, are manifest. They have quite different
structures: WriteNatural has two loops while WriteReversedNatural
has one; and WriteNatural requires a stack.

It is an advantage of recursion that a simple change of requirements
often involves only a simple change in the procedure.

1.11 Using recursion indirectly

When writing iterative programs, we are accustomed to using
concepts which are related to that of the problem and which are
useful in its solution. For example, if we are asked to write a proce-
dure for determining whether or not an integer, n, is prime, we
immediately think of searching (in an organised way) for factors
of n. If one is found, then n is not prime.

A similar strategy is also required with recursive procedures. We
cannot write a directly recursive procedure for testing primality,
since the primality of n cannot be expressed in terms of the primality
of n —1 (or any other function of n). However, we can express the
condition n s prime as the condition n has no factors between
2 and n'/2. Then we can write this alternative in a way that is directly
recursive. Fig. 1.26 gives the resulting two-level function.

Fig. 1.26. A function for determining primality.

function Prime(n:natural):Boolean;

function HasFactors(i:natural):Boolean;
begin
if sqr(i) > n then HasFactors := false
else if n mod i = 0 then HasFactors := true
else HasFactors := HasFactors(i+l)
end { of function "HasFactors" };

begin

Prime := not HasFactors(2)
end { of function "Prime" };
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1.1

1.2

1.3

1.4

1.5

1.6

1.7

EXERCISES

Write a function with the heading:

function SumCubes (n : natural)

whose value is the sum of the cubes of the integers 1 to n.
That 1s:

B+234+.. +nd

Write a function with the heading:

function Max (var a:intarray; n :natural):integer

whose value is that of the maximum element of the integer
array a0 .. n].

Write a function with the heading:

function Range (var a:intarray; n :natural): natural

whose value is that of the range of the elements of the array
a, that is, the difference between the maximum and minimum
elements.

What does the function of Fig. 1.27 do?

Fig. 1.27. A mystery function X.
function X(var a,b:realarray; n:natural):real;
begin
if n = 0 then X := a[0]*b[0]
else X := X(a,b,n-1) + a[n]*b[n]
end { of function "X" };

Analyse the function given in Ex. 1.2. Rewrite it non-
recursively, analyse the new version and compare it with
the original.

Write a non-recursive procedure Power based upon the
second definition given in §1.8; analyse it and compare it
with the recursive version.

Fig. 1.28 is a (poorly written) function whose value is that
of the maximum element of an integer array.

Fig. 1.28. A poorly written function Max.

function Max(var a:intarray; n:natural):integer;
begin
if n = 0 then Max := a[0]
else if Max(a,n-1) > a[n] then Max := Max(a,n-1)
elge Max := a[n]
end { of function "Max" };

Analyse the procedure, and compare it with your solution
to Ex. 1.2.



1.8

1.9

1.10

1.11

1.12

Write a function whose value is that of the continued
fraction:
ap +1
a +1
ag +

an

where the coefficients are assumed to be held in array a.
Solve the recurrence relation (given in §1.8)
Tk=b+2T[h/2], kE#0

=a, k=0
Improve the Prime function of Fig. 1.26 by excluding even
numbers greater than 2 from the potential factors tested.
Write a recursive function to determine whether an integer
n is perfect. (A number is perfect if it is equal to the sum of
its factors. Thus 6 is perfect because 6 = 3 + 2 + 1.)

Write two procedures, one for inserting an item into a sorted
array, and one for deleting an item from it.
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Recursion with linked-linear lists

Some data structures lend themselves naturally to recursion. The
simplest of these is the well-known linked-linear list, in which
a sequence of nodes each contains an item and a pointer, next, to
its successor. We shall refer to such a structure as a Ist, and will
use throughout the definition:
type listptr = tnode;
node = record
item :itemtype;
next :listptr
end
where itemtype is, for the moment, left undefined.t The reason
that recursive procedures are so appropriate is that the data structure
is itself recursively defined: node is defined in terms of Lstptr which
is itself a pointer to a node.
In Pascal, such structures are held in the heap, though ultimately
some variable pointing to the structure must exist on the stack.
Fig. 2.1 gives a diagrammatical representation of a list containing

Fig. 2.1. A simple linked-list structure,
!

Stack

S 7y = L 7 = e Oy g

the items 14, 7, 13 and 10 which is pointed to by the variable
l. Note that within the picture the next field is represented by an

1t We will give appropriate definitions from time to time as needed.



arrow pointing to the node, and that a null pointer (found in the
last element of the list) is represented by a slash.

2.1 Some simple and general examples

The operations we perform on lists generally depend on the
nature of items in the list. There are, though, some operations which
are independent of this. Fig. 2.2 gives three: a function Size whose
value is the number of items in the list, a procedure WriteList which
writes out the items in the list, using a procedure Writeltem to
process the individual items, and a procedure DisposeList which
disposes of the elements of the list.

Figure 2.2. Some simple procedures operating on lists.

function Size(l:listptr):natural;
begin
if 1 = nil then Size := 0
else Size := Size(lf.next) + 1
end { of function "Size" };

procedure WriteList(l:listptr);
begin
if 1 <> nil then
begin
Writeltem(1lf.item);
WriteList(l¥.next)
end
end { of procedure “"WriteList" };

procedure DisposeList(l:listptr);
begin
if 1 <> nil then
begin
DisposeList(1f.next);
dispose(l)
end
end { of procedure "DisposeList" };

Clearly the analysis of these procedures follows along the lines of
that of Chapter 1, the size of the problem here being the length of
the list. We will give no detailed analyses in this chapter, contenting
ourselves with order of magnitude figures. All the above procedures
are O(ll[), where by |/| we mean the size of list /.

The proofs, too, are trivial, using the principle of induction; and
so we omit them.
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We have expressed the notion of a list in terms of pointers and the
heap, because they are the appropriate constructs in Pascal. If
a language does not include these notions then they can be simply
simulated. We might use two arrays, item and next, with a given node
being held in, say, item[j], and next[j]. The array next would
contain subscripts while izem would contain the appropriate infor-
mation. We leave the details of programming the equivalents of, for
example, /1. next to the reader.

In what follows we retumn to the original description.

2.2 Copying a list
We give now an example which illustrates the advantage, in
terms of simplicity and elegance, of using a recursive procedure to
process a recursive data structure. Fig. 2.3 gives a procedure for
producing a copy of a list.

Fig. 2.3. A procedure for copying a list.

procedure CopyList(var 1ll:listptr; 12:listptr);
begin
if 12 = nil then 11 := nil
else
begin
new(1l);
11f.item := 12f.item;
CopyList(11lt.next,12t.next)
end
end { of procedure "CopyList" };

Its operation is simple: if /2 represents an empty list, then the copy
must be empty too; otherwise the copy is constructed from a new
node containing the first item of /2 and a pointer to a copy of the
rest of /2. This list (/2 without its first element) must be copied too,
and so we call CopyList recursively.

The procedure CopyList is a good illustration of the fact that
recursive procedures are often easier to write than their non-recursive
equivalents. The problem that arises in the non-recursive version of
CopyList (and indeed in any procedure with a lLstptr parameter
called as a variable) is illustrated by Fig. 2.4 which shows the store
part-way through creating in ¢/ a copy of l. Suppose the first two
items of the copy had been created as shown. Then in creating the
third item, we need a pointer, p say, which points to its predecessor
(the second node) so that its next field can be assigned. The problem
arises in creating the first node, since it has no predecessor. Fig. 2.5
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Fig. 2.4. Creating a copy of a list.
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gives one of the standard solutions in which the first node is treated
specially.

Fig. 2.5. A non-recursive procedure for copying a list.
procedure CopyList(var 1ll:listptr; 12:listptr);
var p:listptr;
begin
if 12 = nil then 1] := nil
else
begin
new(1ll);
11t.item := 12f.itenm;
p :=11; 12 := 12f.next;
while 12 <> nil do
begin
new(pt.next);
pt.nextf.item := 12%t.item;
p := pf.next; 12 := 12f.next
end;
pt.next := nil
end
end { of procedure "CopyList" };

In this context we often talk of p as being a trailing pointer since
it always trails one node behind the node being created. Often too,
we use two pointers, one pointing to the newly created node, and
one trailing behind (like p is in the above). A two-pointer version
can be found in Alagic and Arbib (1978).

An alternative non-recursive version of CopyList is given in Fig. 2.6.

Fig. 2.6. Another non-recursive procedure for copying a list.
procedure CopyList(var 1ll:listptr; 12:1listptr);
var p:listptr;
begin
new(1ll); p := 11;
while 12 <> nil do
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begin

new(pt.next);

pt.nextf.item := 12t.item;

p := plenext; 12 := 12f.next

end;
pt.next := nil;
p := 11; 11 := 11%f.next; dispose(p)
end { of procedure "CopyList" };

The procedure simply creates a dummy as the first node of /1;
produces the copy such that it is pointed to by /11 .next; and finally
beheads /1. The two non-recursive procedures are of about the same
speed, size and complexity. They are both, however, more opaque
than the recursive one. (It is an interesting exercise at this point to
close this book and attempt to re-create all three procedures.)

The action of adding an item at the head of a list (including the
empty list) occurs so frequently in what follows, that we will use
an abbreviation. The statement:

NewList(I1,1,12)
causes a node with item ¢ to be added at the head of the list /2 and
calls this extended list /1. It is short for:

new (temp);

tempt.item :=i;tempt.next :=12;

1 :=temp
Note that the third parameter /2 may be the same as the first, /1, or
be nil.

The action of deleting the element at the head of a list, called
beheading, occurs frequently, too. We introduce the statement:

Behead(l)
as a shorthand for:

temp :=1;

[ :=11.next;

dispose(temp)
Note that [ acts as if it were a parameter called as a variable so that,
for example, Behead(It.next) will delete the second node of / rather
than its first. Behead, then, is a general sequence for node deletion.

2.3 Lists used to hold sequences
Because of their generality, lists have a wide range of uses.
In this section we will consider them as sequences and assume, as
in Chapter 1:

28



type itemtype = record
key :keytype;
info :infotype
end
where both keytype and infotype are still left unspecified. Further
we assume the items are unordered.

The classical operations required on a sequence are to determine
whether an item with a given key is in the sequence (and maybe to
indicate where it is), to insert an item, and to delete an item with
a given key (if it is there).

Fig. 2.7 gives appropriate procedures for searching and deleting
which, for efficiency reasons, are written using two levels. Note that
in DeleteFromList the list [ is called as a variable. This is because the
act of deletion may eliminate the first node of the list and therefore
! must be altered to point to the new first node. The reader who has
little experience with pointer variables and parameters called as
variables will do well to study this procedure carefully, simulating
it by hand if necessary. Similar procedures occur throughout this
chapter.

Fig. 2.7. The basic procedures for (unordered) sequences.
function InList(l:listptr; k:keytype):Boolean;

function I(1l:1listptr):Boolean;
begin
if 1 = nil then I := false
else if k = 1f.item.key then I := true
else I := I(1{.next)
end { of function "I" };

begin
InList := I(1)
end { of function "InList" };

procedure DeleteFromList(var 1l:listptr; k:keytype);

procedure D(var l:listptr);
begin
if 1 = nil then { item not there }
elge if k = 1{.item.key then Behead(l)
else D(1f.next)
end { of procedure "D" };

begin

D(1)
end { of procedure "DeleteFromList" };
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The analysis of these procedures must be a statistical one since
the time taken depends on the data. On average, one half of the
items must be scanned so that the procedures are still O(n).

Since we have assumed that the sequences are not ordered on their
keys, the process of insertion is likely to depend on the application.
If the items are to be stored in the order in which they are inserted,
then NewList does all that is required; if a check has to be made
that an item has not already been inserted then a procedure along
the lines of InList is needed.

These procedures also illustrate the strength of recursion. Let us
consider InList, and in particular the recursive procedure I nested
within it. This function terminates either when [/ = nil (in which case
the item is not there) or when k = [1.item .key (in which case it is).
A non-recursive version must test this conjunction of conditions in
a loop. But (! = nil) or (k = [1.item.key) is undefined when / = nil
and on many systems will cause the program to be terminated. The
traditional solution is to introduce a Boolean variable found which
is used to hold appropriate values of k =I[%.item.key, as shown
in Fig. 2.8.

Fig. 2.8. The traditional non-recursive version of InList,

function InList(l:listptr; k:keytype):Boolean;
var found:Boolean;

begin

found := false;

while (1 <> nil) and not found do
begin

found := k = 1f.item.key;
1 := 1f.next
end;
InList := found
end { of function "InList" };

While many readers will have written just such procedures, not
having been introduced to recursion, it is difficult to argue that they
are natural. As Fig. 2.8 demonstrates, quite different treatments are
accorded to the two terminating conditions. A more elegant solution
arises from simulating Zahn’s construct (1974) by state variables as
advocated by Atkinson (1978). Fig. 2.9 gives InList wirtten this way.

Fig. 2.9. The function InList with state variables.

function InList(l:1listptr; k:keytype):Boolean;
var state:(searching,notthere,found);
begin

state := searching;
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repeat
if 1 = nil then state := notthere
else if k = 1f.item.key then state := found
elge 1 := 1f.next

until state <> searching;

InList := state = found

end { of function "InList" };

Note that this function is closely related to the recursive one -
indeed it would be hard to separate the two on the score of natural-
ness. The non-recursive version has a small disadvantage in that it
introduces the notion of a state variable whereas the recursive version
does not.

2.4 Lists as ordered sequences

We have assumed so far that the items in a list are unordered.
There are situations in which it is desirable to maintain the items in
ascending sequence, say, of their keys. This means that searching and
deletion need not scan the whole list but may stop when an item
with a key larger than that of the item being sought is found. There
is only one sensible insertion procedure now (to insert in sequence)
and an appropriate procedure is included in Fig. 2.10 which gives
the three basic procedures for searching, insertion and deletion.

Fig. 2.10. The basic procedures for ordered sequences.

function InList(1l:listptr; k:keytype):Boolean;

function I(1l:1listptr):Boolean;
begin
if 1 = nil then I := false
elgse if k = 1f.item.key then I := true
else if k < 1¥.item.key then I := false
elgse I := I(1lf.next)
end { of function "I" };

begin
InList := I(1)
end { of function "InList" };

procedure InsertInList(var l:listptr; it:itemtype);

procedure I(var l:listptr);
begin
if 1 = nil then NewList(l,it,nil)
else if it.key = 1f.item.key then { item already there )
elge if it.key < 1{.item.key then NewList(l,it,1)
else I(1f.next)
end { of procedure "I" };
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begin
I(1)
end { of procedure "InsertInList" };

procedure DeleteFromList(var l:listptr; k:keytype);

procedure D(var 1l:listptr);

begin

if 1 = nil then { item not there }

elge if k = 1f.item.key then Behead(l)

elgse 1f k < 1f{.item.key then { item not there }
else D(1f.next)

end { of procedure "D" };

begin
D(1)
end { of procedure "DeleteFromList" };

2.5 An example: polynomials
In many situations the elements of a list are processed in an
organised way so that insertions and deletions take place not at
random throughout the list but at a position marked by a pointer
into the list. We use an example due to Alagic and Arbib (1978).
Suppose we represent a polynomial in ¢ by a list in which the
items consist of the power of ¢ for a given term and its coefficient
assumed to be integer. Thus we have:
type itemtype = record
coeff:integer;
power :natural
end

Suppose, too, that the terms are stored with the powers in descending
order of magnitude. Thus the polynomial:

85* +8x% + 2 —9
is stored as in Fig. 2.11.

Fig. 2.11. The representation of 3x° + 5x> + 2x — 2.

Lele]l F—{s]s] 21| 120 ]

We wish to write procedures to operate on these polynomials; for
example, to add two of them. To give further variety to the examples
we follow Alagic and Arbib (1978) and give a procedure in Fig. 2.12
which adds one polynomial /2 to another /1.
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Fig. 2.12, A procedure for polynomial addition.

procedure PolyAdd(var 1l:listptr; 12:listptr);

begin

if 11 = nil then CopyList(11,12)

else if 12 = nil then { do nothing }

else if 11f.item.power > 12f.item.power them PolyAdd(1lt.next,12)

else 1if 11¥.1tem.power = lZ}.item.power then
begin
11t.item.coeff := 1l1f.item.coeff + 12f.item.coeff;
PolyAdd(11t.next,12%.next);
if 11t.item.coeff = 0 then Behead(1ll)
end

else { if 1ll1f.item.power < 12t.item.power then }
begin
NewList(11,12%.item,11);
PolyAdd(11f.next,12t.next)
end

end { of procedure "PolyAdd" };

The procedures we have considered up until now have been so
straightforward that there seemed no need to give an English descrip-
tion. The PolyAdd procedure is a little more complicated as are the
ones which follow. We could create a formalism such as that used to
describe the power procedures in Chapter 1. Since such a formalism
would be closely related to the Pascal procedure, we will not do so.
Instead we give a brief description.

The action when one or other of the lists is empty is easily des-
cribed. If /1 refers to an empty list, then a copy of /2 must be made
and assigned to it. If, on the other hand, /2 is empty, then /1 already
contains the sum and no further action is required.

When neither list is empty then the action required depends on the
relative values of the power field of the items at the head of the two
lists. There are three cases:

(i) The power field of /1 is larger than that of /2. This item of
{1 forms part of the sum; and we polyadd /2 to the rest of /1.

(i) The power fields of /1 and /2 are equal. An item with the
same power field will be part of the sum, with its coeff
field the sum of the coeff fields of /1 and /2, except when
that sum is 0. We then polyadd the rest of both lists.

(iii) The power field of /1 is smaller than that of /2. An item
with the same value as that of /2 is added to /1, and we
polyadd the rest of /2 to /1.

Clearly the procedure is O(|/1| + |I2]).

This procedure illustrates two small time inefficiencies of recur-
sion not so far met. Firstly, this procedure has two parameters which
must, of course, be assigned on each call. However, on many calls
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only one parameter is changed. We can capitalise on this very easily
in a non-recursive procedure, but not in a recursive one. The extension
of the two-level technique produces far too involved a procedure.
Secondly, the non-recursive version can easily be adapted to cater
efficiently for the situation where the sum contains long sequences
of terms from /1 and /2 alternatively. Whether this is significant or not
is open to question. The reader who wishes to pursue the matter is
referred to Alagic and Arbib (1978) for a closely related non-recursive
version.

2.6 Lists as sets
Lists are often used to represent sets. A set can be thought of
as a sequence with certain additional properties:
(i) The order of the elements is irrelevant;
(ii) Items have no keys;
(ili) No item appears twice.
Since the order of items is irrelevant we are free to choose an ordering
which will make the operations we propose to perform the most
efficient. In some situations we may use unordered lists - in others
we may choose ordered ones. In either case the fundamental opera-
tions of searching, deleting and inserting are applicable; as are the
procedures of §2.2 and §2.3. So, too, are the classical set operations
of union, intersection and set difference, and the test for a subset.
Fig. 2.13 gives a procedure for set union, which assumes that the
sets are represented by ordered lists. Note that in contrast to
PolyAdd this procedure has three parameters, and that the union
of 12 and /3 is assigned to /1.

Fig. 2.13. A procedure for set union.
procedure Union(var 1ll:listptr; 12,13:1istptr);
begin
if 12 = nil then CopyList(11,13)
elge if 13 = nil then CopyList(11,12)
elge if 12f.item < 13{.item them
begin
NewList(1ll,12f.item,nil);
Union(11lf.next,12f.next,13)
end
else if 12f.item = 13f{.item then
begin
NewList(11,12%{.item,nil);
Union(1llf.next,12f.next,13f.next)
end
else { if 12f.item > 13t.item then }
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begin
NewList(1ll,13t.item,nil);
Union(1lltf.next,12,13%.next)
end

end { of procedure "Union" };

Mathematically we define the union of sets /2 and /3:
2UI3={xIx€I2V x €13}

Since the elements held within /1 and /2 are in ascending order we
can rephrase this in terms of the operator = meaning insert as the
first element of, whose first operand is an item and whose second is
a set. Using first(l) to refer to the item at the head of the list and
rest(l) as the list [ after beheading we have:

12013 =13, 2=1{1}
=12, 3={1}
= first(12) = rest(I2) U 3, first(12) < first(13)
= first(12) —> rest(12) U rest(13), first(I2) = first(I3)
= first(I13) > 12 U rest(13), first(12) > first(13)

Fig. 2.13 is a direct implementation of this definition.

Each recursive call produces an element of /1. (This is true, too,
of the calls within CopyList.) Thus the procedure is O(|/1]) which,
in the worst case is O(}/2] + |i31).

Fig. 2.14 gives a function Subset whose value is true if its first
parameter, /1, is a subset of its second, /2. Its action is obvious.

Fig. 2.14. A function for Subset.

function Subset(ll,12:1listptr):Boolean;

begin

if 11 = nil then Subset := true

elgse if 12 = nil then Subset := false

else if 11{.item < 12t.item then
Subset := false

elge if 11t.item = 12¥.item then
Subset := Subset(llf.next,12f.next)

else { 1f 11f.item > 12f.item then }
Subset := Subset(1l1,12f.next)

end { of function "Subset" };

The procedures for intersection and set difference follow similar
lines to that for union.

2.7 A larger example: multi-length arithmetic
The integers of Pascal have a range restricted by the word
size of the computer on which the program is being run. Usually
this range is perfectly adequate, but there are situations where it is
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not. For example, if we wish to know 100! or the 500th Fibonacci

number or the smallest prime greater than 1

0'% we need integers

of a much larger range. We consider now the creation of a package
of procedures for performing arithmetic on integers of arbitrarily
large precision.
An obvious method of storing the integers is to use a list with
each item storing a part of the number. We could store one decimal
digit to a word, but a more efficient solution would be to store as
many digits as possible. The number of digits is constrained by the
fact that we must perform operations on them using the normal
integer arithmetic facilities. Thus, because of multiplication, the
size of the items must be less than the square root of the largest
Pascal integer available on the machine. For a 16-bit machine this
means two digits per word, for example. In the following procedures
we use the constant base to represent one more than the largest
integer in an item. (The choice of the word base reflects the fact
that with a two-digit item, for instance, we are effectively doing
base-100 arithmetic.) We need, as well, to store the sign of a number,
and we will also find it convenient to store its size (the number of
items it contains). Thus an appropriate definition might be:

type signtype = (plus,minus);
multi = record
sign :signtype;
size :natural;
value :listptr
end

Fig. 2.15 shows the storage of the variable m which represents
—1048576 assuming base = 100, where we have made the decision
to store the items with the least significant digits at the head of
the list. It would have been possible, of course, to store them the
other way round.

Fig. 2.15. The multi-length integer —1048576.

m
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The design of a full package is not

possible within the space

available here (and is left to a project at the end of the chapter).
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Instead we sketch out a package and give some illustrative examples.
As well as the DisposeList procedure (Fig. 2.2) we need procedures
for input and output, for converting to and from normal integers,
for comparison and for the fundamental arithmetic operations.

Let us suppose we have chosen to have a single comparison proce-
dure, which mimics the hardware operation often available on
machines, rather than six functions, which correspond to the rela-
tional operators of Pascal. That is, we assume the definition:

type relation = (It,eq,gt)
and a procedure with the heading:
procedure MultiCompare(var r :relation; m1,m2: multr)

which sets r according to whether m1 is less than, equal to, or greater
than m2. We note immediately that only where the two numbers have
the same size and sign need we consider their value. Fig. 2.16 gives
an appropriate procedure.

Fig. 2.16. A procedure for comparing multi-length integers.

procedure MultiCompare(var r:relation; ml,m2:multi);

procedure C(11,12:1istptr);
begin
if 11 = nil then r := eq
else
begin
C(11f.next,12%.next);
if r = eq then
if 11f.item < 12{.item then r := 1t
else if 11f.item > 12f.item then r := gt
end
end { of procedure "C" };

begin
if ml.sign <> m2.sign then
if ml.sign = plus then r := gt else r := 1t
else if ml.size <> m2.size then
if (ml.size > m2.size) = (ml.sign=plus) then
r := gt else r := 1t
else if ml.sign = plus then
C(ml.value,m2.value)
else
C(m2.value,nl.value)
end { of procedure "MultiCompare" };

The internal procedure C is an interesting one. Remember that
a number is stored with its least significant digits at the head of the
list. To effect the comparison we need to access the most significant
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digits first. Thus the procedure must first get to the end of the lists,
deem two null lists to be equal, and, as long as the numbers remain
equal, compare pairs of items back towards the head of the list.

As we noted in §1.10, a subsequent decision to reverse the order
in which we hold the items means that only a small change to C is
required. The new version is given in Fig. 2.17.

Fig. 2.17. A version of C assuming the reverse order of items.

procedure C(11,12:1istptr);
begin
if 11 = nil then r := eq
elge if 117.item > 12f.item then r :
else if 111.1tem < 12¥.1tem then r
else C(11tf.next,12%.next)
end { of procedure "C" };

gt
1t

This is obviously a neater and faster procedure than the earlier
one, and this might incline us to reverse he original decision about
the order of storing the digits. However, the effect of such a decision
on the procedures for performing the arithmetic must be considered
too. We leave this as an exercise at the end of the chapter.

These arithmetic procedures are rather more complicated. We
consider here only the procedure of the heading:

procedure MultiAdd(var m1:multi; m2,m3: mult:)

which sets m1 to the sum of m2 and m3. As we have chosen a sign-
and-modulus representation we have the problem, famil r to us all,
of adding numbers of different sign. In normal decim 1 usage to
add —46 to 73, say, or to 27 we have to subtract the moduli (the
right way round). Rather than recite the rules, we give the procedure
of Fig. 2.18 which is expressed in terms of the procedures AddMods,
which adds the moduli of two numbers, SubMods which subtracts
the moduli and Zero (which creates a zero result).

Note that as MultiCompare compares signed numbers and we want
here to compare moduli, we must first make the numbers positive
before calling MultiCompare. Note, too, that the list originally
referred to by m1 must be deleted.

Fig. 2.18. A procedure for adding two multi-length numbers.

procedure MultiAdd(var ml:multi; m2,m3:multi);
var s2,s3:signtype;
r:relation;
old:listptr;
begin
old := ml.value;
1f m2.sign = m3.sign then
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begin
ml.sign := m2.sign;
AddMods (m1,m2,m3)
end
else { if m2.sign <> m3.sign then }
begin
s2 := m2.sign; s3 := m3.sign;
m2.sign := plus; m3,sign := plus;
MultiCompare(r,m2,m3);
case r of
lt:begin
ml.sign := s3;
SubMods (m1,m3,m2)
end { of case "1t" };
eq:Zero(ml);

gt:begin
ml.sign := s2;
SubMods (m1,m2,m3)

end { of case "gt" }
end { of cases on "r" }
end;
DisposeList(old)
end { of procedure "MultiAdd" };

The procedure Zero is trivial: it simply sets the fields of its para-
meters to plus, 0, nil respectively. The procedures AddMods and
SubMods are more substantial.

It is convenient when adding two numbers of different length, for
the augend to be the larger, and the body of AddMods arranges this.
The inner procedure 4 actually performs the addition. The advantage
of storing the numbers with their least significant digits at the head
becomes manifest when we consider addition, because we must
start adding at the least significant end. The procedure A4 does this,
taking care of any carry which may take place. Note that its para-
meters are quite different from those of AddMods, being pointers
to the parts of the numbers not yet added, together with the carry.

Fig. 2.19. A procedure for adding the moduli of two multi-length
integers.

procedure AddMods(var ml:multi; m2,m3:multi);
type carry = 0..1;

procedure A(var ll:listptr; 12,13:listptr; c:carry);
var sum:integer;
nextl3:listptr;
begin
if 12 = nil { in which case 13 = nil } then
if ¢ = 1 then
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begin

NewList(11,1,nil);
ml.size := ml.size + 1
end

else { do nothing }
else { if 12 <> nil then }

begin

if 13 = nil then
begin
sum := 12f{.item + c;
nextl3 := nil
end

else { 1f 13 <> nil then }
begin

sum := 12f.item + 13f.item + c;
nextl3 := 13{.next
end;
NewList(ll,sum mod base,nil);
A(111.next,12f.next ,next13,sum div base)
end
end { of procedure "A" };

begin

ml.value := nil;

if m2.size > m3.size then
begin

ml.size := m2.size;

A(ml.value,m2.value,m3.value,0)
end

else
begin
ml.size := m3.size;
A(ml.value,m3.value,m2.value,0)
end

end { of procedure "AddMods" };

The procedure SubMods follows similar lines though, by definition,
the minuend is never shorter than the subtrahend. We leave comple-
tion of the package to the reader.

2.8 Iteration and linear recursion
In these first two chapters we have given a number of non-
recursive procedures. The early ones, Fact and Hcf, were given
basically as background. The later ones, such as both versions of
CopyList, and InList, were used to illustrate the ‘naturalness’ of their
recursive equivalents. We now consider the causes of the ‘unnatural-
ness’ of the non-recursive versions.
Note that most linear recursive procedures fall into one of two
classes according to whether the processing takes place before or
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after the recursive call. If it comes before, the procedure is said to
be a preorder one. The phrase tail recursion is often applied too as
a consequence of the recursive call being the last action of the
procedure. If the processing comes after the recursive call we refer
to the procedure as a postorder one. This classification is clearer if
we use formal procedures instead of functions, and in Fig. 2.20 we
give schemata relevant to these two classes.

Fig. 2.20. A ‘PreOrder’ and a ‘PostOrder’ schema.
procedure PreOrder(x:xtype);
begin
if P(x) then M(x)
else
begin
S1(x);
PreOrder(F(x))
end
end { of procedure "PreOrder" };

procedure PostOrder(x:xtype);
begin
if P(x) themn M(x)
else
begin
PostOrder(F(x));
S2(x)
end
end { of procedure "PostOrder" };

In this figure:

x represents the parameters
P(x)  is a Boolean expression in x
M(x)
S1(x) ; are statements involving x
S$2(x)

F(x) isa function of x

These two schemata do not cover all cases, of course. Some proce-
dures, such as C of Fig. 2.17, have more complex conditions which
cannot be expressed in this simple form. Furthermore some proce-
dures process both before and after the recursive call. Nevertheless
this classification of preorder and postorder is a useful one.

The ‘unnaturalness’ of non-recursive procedures arises from three
causes:

(1) Postorder procedures generally (but not always) require
a stack and this adds a new concept to the problem.
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(ii) Procedures which create or alter list structures need a variable
parameter - and the simulation of this parameter in a non-
recursive procedure adds a further problem.

(iii) Because of the way in which the evaluation of a Boolean
expression is defined, we have to be very careful when
expressing the loop that is required in a non-recursive version.
We have to introduce either a Boolean variable or a state
variable to avoid the evaluation of an undefined expression.

These problems are generally enough to convince us of the desira-
bility of a recursive version. However, if we have a preorder procedure
which only inspects a list, then causes (i) and (ii) are not relevant.
In this situation, a procedure based on iteration is fairly simple to
write - and is certainly fairly ‘natural’.

Though we prefer to use the recursive version (and will do so
throughout this book), there is one situation in which we will resort
to an iterative approach. This is when different recursive forms
occur in a procedure. If one of these is linear preorder, and has no
complications due to variable parameters, the iterative form is used.

2.9 More complex data structures

There is one further advantage of using recursive procedures.
When we discussed copying lists in §2.2 we gave two non-recursive
versions. One of these involved initially adding a dummy item at the
head of the list, and subsequently, after the copying had been done,
deleting this dummy item. This continual introduction and elimina-
tion of the dummy item is undoubtedly inefficient, and if we were
obliged to write a set of iterative procedures to process sequences
held in a list, we would most certainly make this dummy a permanent
part of each list. We would then call it a header. Procedures such as
copying, searching, deleting and so on would be those given earlier,
with the initial NewL:st and final Behead statements eliminated. An
empty list would consist simply of a header; so that, for example,
testing for an empty list would be more complicated than before.

Fig. 2.21. A circular list with header,

Stack
!

LT
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Thus the further advantage of recursion is that we do not need to
consider specially modified data structures.

Sentinels are still useful in searching applications and sometimes
this leads to a slighly more complex structure. For example, we can
introduce a header, and, by making the list circular, use it to hold
a sentinel. For example, Fig. 2.21 gives the list { = (2, 17, 10).

A function InList for searching the list is given in Fig. 2.22. It
should be compared with the function of Fig. 2.7.

2.1

2.2

2.3

2.4
2.5

2.6

Fig. 2.22. Searching a circular list with header.

function InList(l:1istptr; k:keytype):Boolean;

function I(11:1istptr):Boolean;
begin
if k = 11f.item.key then I := 11 O 1
elgse T := I(11f.next)
end { of function "I" };

begin

1f.item.key := k;

InList := I(1f.next)

end { of function "InList" };

EXERCISES

Write a function that counts the number of items of a given
key on a list.

Write a procedure with the heading:

procedure Reverse (var I1:listptr; 12 : listptr)

which sets /1 to point to a list whose elements are those of
[2 but in reverse order.

Write a modified version of the PolyAdd procedure of
Fig. 2.12 with the heading:

procedure PolyAdd(var I1:listptr; 12,13 : listptr);

which sets /1 =12 +[3.

Rewrite the PolyAdd procedure of Ex. 2.3 non-recursively.

Write a procedure PolyMult to multiply two polynomials
held as in Fig. 2.11.

Write a procedure with the heading:

procedure Intersection (var I1:listptr; 12,13 : listptr)

which sets /1 = [2 N I3 assuming the sets to be ordered.
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2.7

2.8
2.9

2.10

Write an alternative procedure for Intersection which assumes
the sets are unordered. What is its order of complexity?

Recast the procedure Intersection non-recursively.

Write a complete package for multi-length arithmetic, and use
it to find 100! and the 500th Fibonacci number. (You may,
after reading Chapter 4, want to rewrite the Fibonaccipart.)

Investigate the effects on the multi-length arithmetic package

of:

(i) reversing the order in which the digits are stored, and

(11) using a complements form of representing negative
numbers.




Recursion with binary trees

In Chapter 2 we considered linked-linear list structures defined by:
type listptr = Tnode;
node = record
item :itemtype;
next: listptr
end
When processing list structures, the elements were accessed in
a strictly sequential manner since each item had only one successor,
that defined by next - except, of course, for the last item which
had none.
We are going to consider in this chapter the binary tree, a structure
which arises when we allow an item to have up to two successors.
The definition we shall use is:

type treeptr = tnode;
node = record
left :treeptr;
item :itemtype;
right :treeptr
end
The use of the identifiers left and right as pointers to the two suc-
cessors is traditional and reflects the way we generally draw trees.

We will find, when processing such trees, that sometimes linear
recursive procedures are adequate, but that on other occasions we
require binary recursion. That is, an invocation of a recursive proce-
dure will involve two further invocations.




3.1 Binary search trees
One very important application of binary trees is found in
searching and sorting problems, in which case the trees are often
called search trees.

In Fig. 3.1 we give two such trees holding the mnemonic function
codes for a hypothetical computer. Note that it is conventional not
to draw a box around each node, nor to add an arrow-head on the
branches, which always point down, nor to mark nil pointers.

Fig. 3.1. Two binary search trees.
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The item will usually contain a key together with other informa-
tion so that, as in Chapter 2, we define itemtype as:
type itemtype = record
key :keytype;
info :infotype
end
For the sake of simplicity we omitted the info field in Fig. 3.1.

The distinguishing characteristic of the search tree is that, for
each node, the keys of all the items on its left branch are less than
the key of the item at the node itself, which, in turn, is less than the
keys of all the items on the right branch. If we interpret is less than
as alphabetically precedes then the two trees of Fig. 3.1 are obviously
search trees.

The significance of search trees lies in the speed with which the
operations of searching, inserting and deleting can, in general, be
accomplished. This is because, if an item is not at a node, one test
determines whether to follow its left or right branch, depending on
whether the key of the item is less than or greater than the key of
the item at a node. If the two branches are of more or less the same
size, then at each stage this test effectively halves the number of
nodes to be subsequently considered.

46




In Fig. 3.2 we give the classical operations which we will consider
in tum. Note that we have introduced a statement typified by:
NewTree(t,l,t,r)
as a shorthand for a sequence to create a new node of a tree pointed
to by t with fields /, ¢ and r respectively. This is clearly analogous to
NewList(l1,1,12) of Chapter 2 and is used in similar situations.

Fig. 3.2. The basic procedures for search trees.
function OnTree(t:treeptr; k:keytype):Boolean;

function O(t:treeptr):Boolean;
begin
if t = nil then 0 := false
else if k = tf.item.key then 0 := true
else if k < tt.item.key then O := O(tt.left)
else { if k > tf.item.key then } 0 := 0(tt.right)
end { of function "O0" };

begin
OnTree := 0O(t)
end { of function "OnTree" };

procedure InsertOnTree(var t:treeptr; it:itemtype);

procedure I(var t:treeptr);
begin
if t = nil then NewTree(t,nil,it,nil)
else if it.key = t{.item.key then { item already there }
else if it.key < tf.item.key then I(t}.left)
else { if it.key > tf.item.key then } I(tf.right)
end { of procedure "I" };

begin
I(t)

end { of procedure "InsertOnTree" };

procedure DeleteFromTree(var t:treeptr; k:keytype);
var temp:treeptr;
begin
if t = nil then
{ item not there }
else if k = tt.item.key then
begin
if tf.left = nil then
begin { cases (i) and (ii) }
temp := t; t := t}.right; dispose(temp)
end
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elgse if tf.right = nil then
begin { case (iii) }
temp := t; t:= t}.left; dispose(temp)
end

else { if (tt.left <> nil) and (tt.right <> nil) then }

begin { case (iv) }
FindPredecessor(temp,t);

tf.item := tempf.item;
DeleteFromTree(tt.left,tt.item.key)
end

end { of actual deletion sequence }

else if k < t{.item.key then
DeleteFromTree(tt.left,k)

else { if k > tf.item.key then }
DeleteFromTree(tt.right,k)

end { of procedure "DeleteFromTree" };

We noted in Chapter 2 the similarity of the sequences for search-
ing, inserting and deleting in an ordered list. The same is true for the
sequences of Fig. 3.2, though with DeleteFromTree this is partially
obscured by the amount of extra code needed for deletion.

The procedures OnTree and InsertOnTree are quite straightforward
and need no explanation. We merely comment that they are more
closely related to the equivalent sequences for unordered lists than
those for ordered lists. This is due to the nature of the searching
process. With ordered lists, the search may fail either because the
list becomes exhausted (when the search key is greater than all
numbers in the list) or because a larger item is found: for unordered
lists and trees, these two situations coalesce into one.

The procedure DeleteFromTree is more difficult, the difficulty
arising from the problem of deleting an internal node of the tree.
There is no simple analogue of Behead for trees. Fig. 3.3 illustrates
the cases which can arise while deleting various mnemonics from
the second tree of Fig. 3.1, which is reproduced in this figure.

We consider these in turn:

(i) The item may be held at a leaf of the tree. An example in
Fig. 3.3 is JOV. The node is retured to the heap and the
pointer referring to it, here the right field of the node whose
ttem is JNE, is set to nil.

(ii) The item may be held in a node whose left branch is null.
An example is ADD in Fig. 3.3. The node is returned to the
heap and the pointer referring to it, here the left field of
the node whose item is LDA, is made to refer instead to its
right branch, here the node whose item is DIV.
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Fig. 3.3. Deleting items from a search tree.

LDA
/ \
ADD STA
biv MPY SUB
N
AND JMP LOR SHR STP WRC
/
JCE JNE RDC
Jov
Original
LDA LDA
ADD STA DIV STA
\ N N
DIV MPY SUB AND JMP MPY SUB
SN N N /\
AND JMP LOR SHR STP WRC JGE JNE LOR SiIR STP WRC
/
JGE! JNE RDC Jov  RDC
Case (i)* delete JOV Case (ii). delete ADD
LDA LDA
\
ADD STA ADD SHR
\ VRN \
DIV MPY SUB MPY SUB

AN N A

AND JMP LOR RDC STP WRC JMP LOR RDC STP WRC

JGE  JNE JGE  JNE
Jov Jov
Case (ili) delete SHR Case (iv). delete STA

Note that in Fig. 3.2 these two cases are combined.

(iii) The item may be held in a node whose right branch is null.
An example in Fig. 3.3 is SHR. This is simply the mirror
image of case (ii).
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(iv) The item may be held in a node neither of whose branches
is null. An example in Fig. 3.3 is STA. First we find the
predecessor of the item - that is, the item whose key is the
largest one smaller than the key of the item being deleted.
It is the rightmost node on the left subtree of the node
whose item is being deleted. Here it is SHR. We assume
a procedure with the heading:
procedure FindPredecessor(var pred :treeptr;t:treeptr)
which sets pred to point to the node containing the pre-
decessor. Its body is left to the reader. We then overwrite
the item being deleted with a copy of this item, and delete
(recursively) the original item from the left subtree.

3.2 The importance of search trees: balanced trees
It is clear from the procedures of Fig. 3.2 that:

(i) Insertion requires us to inspect all the nodes on a path
from the root to a leaf.

(ii) In the worst case, searching also requires us to inspect all
the nodes on a path from the root to a leaf, though in many
cases the search terminates earlier.

(iii) In the worst case, deletion requires us to inspect all the nodes
on a path from the root to a leaf twice. We follow the path to
the node whose item is being deleted, we then proceed to
a leaf to find the predecessor, and we repeat this path to
delete the old node.

Thus the procedures all take a time proportional to the average
height of the tree. What we mean by average, of course, depends on
the pattern of access involved; but in what follows we assume that all
items are equally likely, and will talk just of the height of the tree.

The height of a tree clearly depends on its shape. If the tree of
n nodes is well balanced, as is the first tree of Fig. 3.1, then the
height ~logsn so that operations are O(log n). This, of course,
is the virtue of using a tree rather than a linked list where operations
are O(n).

Unfortunately, completely unbalanced trees can arise in which
each node (except for the one leaf) has one null branch. Fig. 3.4
gives parts of two such trees holding the mnemonic function codes
of our computer.

Clearly the processing of such trees is O(n), the same as that of
processing linear lists. Worse, the constant of proportionality is
greater, due to the test required to determine which branch to
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Fig. 3.4. Two degenerate search trees.
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follow, and the tree requires more store for the second pointer.
So this situation must be avoided! Trees must be kept as balanced
as possible. Where the tree is only to be searched, as in a mnemonic
function table, in practice, this poses no problem: the tree is initially
created as balanced. Where there are to be continuous insertions
and/or deletions, in a compiler symbol table for example, the problem
is more difficult.

A great deal of work has been done in defining what constitutes
balance and how to organise the tree so that the O(log n) charac-
teristic is preserved during insertion and deletion. We will not pursue
the matter here. The reader is referred to Wirth (1976) for discussion
of height-balanced trees and 2-3 trees, for example.

Search trees can be trivially adapted to sorting. The items to be
sorted are first added to a search tree and then written out in order
by the WriteTree procedure shown in Fig. 3.5, which assumes the
existence of the same procedure Writeltem as was used with WriteList
in Fig. 2.2.

Fig. 3.5, Writing out a search tree in order.

procedure WriteTree(t:treeptr);

begin

if t <> nil then
begin
WriteTree(tf.left);
Writeltem(tf.item);
WriteTree(t{.right)
end

end { of procedure "WriteTree" };
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The WriteTree procedure capitalises on the key property of
a search tree: the keys of all the items on the left subtree of any
node are less than the key of the item at the node, which in turn is
less than the keys of all the items on the right subtree.

Assuming that the tree can be kept balanced at each insertion, the
combined procedure, called TreeSort, is quite efficient. Inserting
an item on the tree takes a time proportional to the number of items
currently on the tree. Thus to add all n items takes a time roughly
proportional to:

log(1) +log(2) +.. .. log(n)
=log(1x2x ...n)
= log(n!)
which, given Stirling’s approximation of n!, is O (n log n). The actual
writing takes a time proportional to the number of items, 7, so that
the time for TreeSort is O (n log n).

This is much better than the simple sorting methods, such as the
linear selection sort or bubble sort, which are O(n?). However it is
not often used in sorting applications because of the space required
to hold the pointers.

We retumn to better sorting methods in Chapter 4.

3.3 Preorder, inorder and postorder procedures
The WnteTree procedure given above is an example of
binary recursion: that is, each invocation of WriteTree involves two
further invocations. The searching, inserting and deleting procedures,
it should be noted, involve only linear recursion: although there are
two (or more) written recursive calls only one of them is obeyed on
each invocation.

In WnteTree the processing of the node is done between the
recursive calls. Accordingly we refer to this as an inorder procedure.
We expand the notion of preorder (where the processing is done
before the recursive call) and postorder (where it is done after) to
include binary as well as linear recursion. Fig. 3.6 gives the classical
schemata for these procedures, using the same conventions as those
of Fig. 2.20.

Fig. 3.6. Schemata for preorder, inorder and postorder procedures.

procedure PreOrder(x:xtype);
begin
if P(x) them M(x)
else
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begin
S1(x);
PreOrder(F1(x));
PreOrder(F2(x));
end
end { of procedure "PreOrder" };

procedure InOrder(x:xtype);
begin
if P(x) them M(x)
else
begin
InOrder(F1(x));
52(x);
InOrder(F2(x))
end
end { of procedure "InOrder" };

procedure PostOrder(x:xtype);
begin
if P(x) them M(x)
else
begin
PostOrder(F1(x));
PostOrder(F2(x));
S3(x)
end
end { of procedure "PostOrder" };

Note that WriteTree conforms to the inorder schema though we
have replaced:

by:

3.4

if ¢ = nil then {do nothing}
else

if £ <> nil then

Some general binary recursive tree processing procedures
It is with binary recursion that the naturalness spoken of in

Chapter 1 becomes apparent. In Fig. 3.7 we give a procedure for
copying a tree.

Fig. 3.7. A procedure for copying a tree,
procedure CopyTree(var tl:treeptr; t2:treeptr);
begin
if t2 = nil then tl := nil
else
begin
new(tl);
tif.item := t2f.item;
CopyTtee(tl*.left,tZT.left);
CopyTree(tlf.right,t2f.right)
end
end { of procedure "CopyTree" };
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It is clearly a preorder procedure.

The reader will recognise, probably without having to turmn back
to the appropriate page, that this procedure is almost the same as
that given for copying a list in Fig. 2.3: the differences in the proce-
dures reflect the differences in the data structures involved.

By contrast, Fig. 3.8 gives a non-recursive procedure. Not only
is it difficult to understand and write, but it bears precious little
relationship to the corresponding procedure for lists given in Fig. 2.6.

Fig. 3.8. A non-recursive procedure for copying a tree.

procedure CopyTree(var tl:treeptr; t2:treeptr);

var branch:(l,r);

temp,p:treeptr;
s:stack of {treeptr,treeptr;
begin
clear s;
new(tl);
push <tl,t2> onto s;
repeat

pop <p,t2> from s;
branch := r;
while t2 <> nil do
begin
new(temp);
if branch = 1 then pf.left
tempf.item := t2f.item;

push <temp,t2{.right> onto

p := temp; branch := 1; t2
end;
if branch = 1 then pf.left :
until s empty;
temp := tl; tl := tlf.right;
dispose(temp)

= nil else pf.right :=

:= temp else pf.right := temp;
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:= t2f.left

nil

end { of procedure "CopyTree" };

As all non-recursive versions of binary recursive procedures require
a stack or its equivalent, we will take the appropriateness of recursive
procedures for granted for the rest of the book: no further non-
recursive versions will be given until Chapter 8 where we discuss

the elimination of recursion more fully.

As a final example we give, in Fig. 3.9, a postorder procedure for

disposing of trees.

Fig. 3.9. A procedure for disposing of trees.

procedure DisposeTree(t:treeptr);

begin
if t < nil then
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begin
DisposeTree(tt.left);
DisposeTree(tt.right);
dispose(t)
end
end { of procedure "DisposeTree" };

All these procedures visit each node once and once only, so that
they are O(n) where 7 is the number of nodes.

3.5 Expression trees
We turn now to a second specific application of binary trees,
expression trees. These arise in compilers, interpreters, theorem
provers, indeed in any application in which arithmetic or Boolean
expressions are processed. In Fig. 3.10 we give two such trees - for
the expressions:

b?>—4ac and h(e+4f+g)/3

Fig. 3.10. Two expression trees.

N /\
A\ NN
VA N

/\

The salient feature of the expression tree is that the item of each
internal node is an operator and its branches point to each of its
operands. In the first tree of Fig. 3.10 the operands of — are 412 and
4xa*c; the operands of 1 are b and 2, and so on. The leaves contain
either variables or constants. We consider how such a tree may be
created from a string of characters in Chapter 5.t

In some applications the items at the leaves will simply be
characters, in others they will contain more information. For the
next two sections we assume the definition:

type itemtype = char

t The procedure Expression of Fig. 5.6 does not handle exponentiation, but it
is a trivial matter to extend it.
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Note that this implies that any constant in an expression will be
less than 10. We also assume that all operators are binary.

3.6 Writing expression trees
It is a trivial matter to write out the Reverse Polish form of

any expression held in an expression tree as Fig. 3.11 shows.

Fig. 3.11. Printing a tree in Reverse Polish form.

procedure WriteRP(t:treeptr);

begin

if t <> nil then
begin
WriteRP(tt.left);
WriteRP(t{.right);
write(tf.item)
end

end { of procedure "WriteRP" };

This is a simple postorder procedure which merely prints the two
operands of an operator before the operator itself. To print out the
expression in the normal infix form requires an inorder procedure,
though it is not quite so simple as we shall see.

The procedure of Fig. 3.12 is inadequate.

Fig. 3.12. WriteInfix with no parentheses.

procedure WriteInfix(t:treeptr);

begin

if t <> nil then
begin
WriteInfix(t}.left);
write(tf.item);
WriteInfix(tf.right)
end .

end { of procedure "Writelnfix" };

For the second example of Fig. 3.10 it produces:
hxe+4xf+g/3
instead of :
hx(e+4x*f+g)/3
Clearly we need to print parentheses to overcome the normal priority

of operators.
An extreme solution is given in Fig. 3.13.
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Fig. 3.13. WriteInfix with a surfeit of parentheses.

procedure WriteInfix(t:treeptr);

begin

if t <> nil then
begin
write('(");
WriteInfix(tt.left);
write(tt.item);
WriteInfix(tt.right);
write(’)’)
end

end { of procedure "WriteInfix" };

It uses parentheses to indicate explicitly the priority of all operators.
For the example used above it produces:

(((R)*(((e)H((4)*(f))) +(£)))/(3))
which is correct but unreadably redundant. What we require is
a procedure that inserts precisely the right number of parentheses.

First we notice that if an operand is a variable or a constant then
it needs no parentheses. Thus the WriteInfix procedure must take as
its special case not the null tree as has been the case so far but a leaf,
since the items at the leaves are variables and constants.

The items of the internal nodes are operators and for each of
these we need to determine whether its left operand and indepen-
dently its right operand requires parentheses.

If we assume the existence of two Boolean functions
LeftParentheses and RightParentheses which determine whether
parentheses are required and a variable operand of type set of char
which has the constant value ['a’ .. 'z, ’0" .. '9"] then the procedure
of Fig. 3.14 operates correctly.

Fig. 3.14. WriteInfix with just the right number of parentheses.

procedure WriteInfix(t:treeptr);
begin
if tf.item in operand then
write(tf.iten)
else
begin
{ First write the left operand }
if LeftParentheses then
begin
write('(’); WriteInfix(tf.left); write(’)")
end
else
WriteInfix(tt.left);
{ Then write the operator }
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write(tf.item);

{ Finally write the right operand }

if RightParentheses then
begin
write('(’); WriteInfix(tt.right); write(’)’)
end

else
WriteInfix(tt.right)

end

end { of procedure "Writelnfix" };

Before we proceed we should point out that the procedures we
give are now becoming less trivial so that there are many different
ways of expressing them. We will choose to concentrate on making
them as clear as possible, even if it means that the procedures are not
as fast or as small as they could be. If our idea of clarity does not
correspond with that of the reader we offer our apologies.

Note that the recursion does not terminate in Fig. 3.12 when ¢ is
the null tree: it terminates one level above, where ¢ is a leaf. This
illustrates an important difference between search trees and expres-
sion trees. In search trees all the nodes contain items of the same
type; in expression trees there are two classes: leaves holding operands
and internal nodes holding operators. Clearly all procedures process-
ing expression trees will differentiate between the two. Here we have

Fig. 3.15. Some examples appropriate to LeftParentheses.
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differentiated by testing the item. Of course, we could have tested
for a leaf by testing whether its branches were null. This, however,
seems a little obtuse and we will always use the more direct method.

Returning to the infix printing procedure, the key to Writelnfix,
of course, lies in the procedures LeftParentheses and RightParentheses.
In order to determine whether or not parentheses are required it is
perhaps best to draw out trees which illustrate the cases that can
occur. Fig. 3.15 is appropriate to LeftParentheses. The three trees
to the left do not require parentheses, the two to the right do.

While these examples are not exhaustive, they are sufficiently
representative for the rule to be deduced: only if the left branch
points to an internal node whose operator is of a lower priority are
parentheses needed. Assuming a function Priority which has as its
value the priority of the operator which is its parameter, this rule can
be expressed as shown in Fig. 3.16.

Fig. 3.16. The function LeftParentheses.

function LeftParentheses:Boolean;

begin

if tf{.leftf.item in operand then
LeftParentheses := false

else

LeftParentheses := Priority(tf.item) > Priority(tt.leftf.item)
end { of function "LeftParentheses" };

The function RightParentheses is a little more complicated because

of the left associativity rule for operators. Consider the first example
of Fig. 3.17.

Fig. 3.17. Two examples peculiar to RightParentheses.
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Clearly brackets are required because the tree represents a —(b —c)
which is quite different from a —b —c. Thus the rule must be
extended to insert parentheses where the operator at the node on the
right branch has the same priority as that at the parent node.

But what about the second tree of Fig. 3.17? The expressions
a+(b+c)and a+ b + ¢ are equivalent but which should we write?
It very much depends on the application. If the tree was produced
directly from input, and if we wished to print it out in as close a form
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to the original as possible we would leave the brackets in, since
they must have been there originally to have produced that tree.
If, however, the tree had been produced by substitution operations,
or if we wished to write out the ‘simplest’ form, we would omit
them. We have chosen this latter solution in Fig. 3.18.

Fig. 3.18. The function RightParentheses.

function RightParentheses:Boolean;
begin
if t{.right{.item in operand then
RightParentheses := false
else if tf.item in [‘+’,’*’] then
RightParentheses := Priority(t}{.item) > Priority(tf.righef.i

else
RightParentheses := Priority(tf.item) >= Priority(tf.rightt.

end { of function "RightParentheses" };

3.7 An example: symbolic differentiation
In the introductory paragraphs to this book we mentioned,
as an illustration of recursion at work, a procedure which will differ-
entiate with respect to x an expression held in an expression tree. We
return to it now. For brevity, we restrict the operators to + and *.
The formulae for differentiation are well known. If « and v are

subexpressions then:

4o du dv

ax ) T T e
d +v) dv + du

—_— = _— v—

dx (wxv) =u dx dx

dx

_ = 1

dx

dk . .

™ =0 where £ is any constant or variable other than x.
x

In Fig. 3.19 we give a procedure which directly implements these
rules and produces a new tree t1 which is the differential of the
tree t2. It uses the procedure CopyTree of Fig. 3.7.

Fig. 3.19. A symbolic differentiation procedure.

procedure Diff(var tl:treeptr; t2:treeptr);
var u,v,du,dv,udv,vdu:treeptr;
begin
if t2f.item = '+’ then
{ d(ut+v)/dx = du/dx+dv/dx }
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begin
Diff(du,t2t.left); Diff(dv,t2{.right);
NewTree(tl,du, '+’ ,dv)
end

elge if t2f.item = ‘*’ then
{ d(u*v)/dx = u(dv/dx)+v(du/dx) }
begin
CopyTree(u,t2t.left); Diff(dv,t2f{.right);
NewTree(udv,u, “*’,dv);
CopyTree(v,t2t.right); Diff(du,t2f.left);
NewTree(vdu,v,’*’ du);
NewTree(tl,udv,’+’ ,vdu)

end
else if t2f.item = ‘x’ then
{ dx/dx =1}
NewTree(tl,nil, 1’ ,nil)
else

NewTree(tl,nil, 0’ ,nil)
end { of procedure "Diff" };

The tree produced by Diff is clearly quite large. Given the expres-
sion x2+5x mentioned in the introduction (which we have of course
to rephrase as xx+5x because of the limitations of Diff) it produces
the tree of Fig. 3.20.

Fig. 3.20. The tree produced by Diff for xx + 5x.
////////////+\\\\\\\\\\\
/ + +
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* * * *
x \l x 1 5/ \l x/ \0

We can simplify this substantially by using the normal identities
of arithmetic:
x+0 =x = 0+x
x*¥l =x = 1*x
x*%¥0 =0 = O=*x
and we now consider a procedure to do this. We must effectively
work from the bottom up. If a node contains a variable or constant
then it is a leaf and is as simple as possible. If it is an internal node
then we may be able to apply the identities. This is true if one or
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other of its branches points to a leaf either originally or as a result
of the simplification of its subtrees.

A procedure is given in Fig. 3.21 which simplifies the tree itself
(as distinct from creating a new one) and returns unwanted nodes
to the heap, using DisposeTree of Fig. 3.9.

Fig. 3.2

1. A procedure for simplifying a tree.

procedure Simplify(var t:treeptr);

var

temp:treeptr;

begin

if t
else

f.item in operand them { do nothing }

begin
Simplify(tt.left); Simplify(tf.right);

if (tf.item = ‘+’) and (tf.rightf.item = ‘0")

or (tf.item = ‘*’) and (tf.right{.item = "1’)

or (tl.item = "*’) and (tf.leftf.item = ‘0’) then
{ x+0=x, x*1=x, O*x=0 }
begin
temp := t; t:= t{.left; tempf.left := nil;
DisposeTree(temp)
end

else if (tf.item = ‘+’) and (tf.leftf.item = “0")
or (tf.item = ‘*’) and (t¥.1eftf.item = ‘1)

or (tf.item = "*’) and (t

.rightf.item = ‘0’) then
{ O+x=x, l*x=x, x*0=0 }

begin
temp := t; t := t{.right; tempf.right := nil;
DisposeTree(temp)
end
{ else do nothing }
end
end { of procedure "Simplify" };

The result of simplifying the tree of Fig. 3.20 is given in Fig. 3.22.

Fig. 3.22. The result of simplifying the tree of Fig. 3.20.
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This particular tree suggests other operations we might wish to
apply to expression trees such as replacing the subtree representing

x+x by one

representing 2*x. In any system for manipulating

expressions we would wish to perform many such operations. Further
we would wish to perform arithmetic so that a subtree representing

2+5 could be
as part of one
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3.8 Another example: evaluating an expression
Often it is useful to make the item at a node richer in infor-
mation. Suppose that, in an interpreter say, we wish to find the value
of an expression held as a tree given the value of the variables which
are its operands. In terms of one of the examples given earlier we
want the value of b>—4ac given the values of a, b and c. It would be
possible to produce a procedure for this which operated on a tree
in which the items at the nodes were characters. It is much more
reasonable to have a more general tree in which:
(i) a constant is represented by its value;
(if) a variable is represented by the index, of type range, in the
array data in which its value is held;
(iif) an operator is represented by an enumerated type.
If we consider unary as well as binary operators, and assume that
our expressions are real rather than integer then an appropriate
definition might be:

type tagtype = (constant, variable, unary, binary);
itemtype = record

case tag :tagtype of
constant : (value :real);
variable : (index :range);
unary : (unop : (neg));
binary : (binop : (add, sub, mult, dvd, expon))
end

Note that this definition introduces the type unop which has only
one value neg. This is to allow for the inclusion of further unary
operators later. However we can go further. As we have noted
before nodes are of two types: internal nodes and leaves. An internal
node has an operator as its item and a leaf has an operand. In both
cases the node is provided with two branches even though, by
definition, both are null when the node is an operand, and one is when
the node is a unary operator. Since we are already differentiating the
nodes by the tag, it makes sense to extend the differentiation to
eliminate these null branches. The type itemtype becomes redundant
and node which has been defined so far as:

type node = record
left :treeptr;
item :itemtype;
right :treeptr
end
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becomes instead:
type node = record
case tag :tagtype of
constant : (value :real);
variable : (index : range);
unary : (unop : (neg);
branch :treeptr);
binary : (left : treeptr:
binop : (add, sub, mult, dvd, expon);
right : treeptr)
end
A function for evaluating an expression held in such a tree is given
in Fig. 3.23 in which a function Power, closely related to the functions
of Chapter 1, is assumed.

Fig. 3.23. A function for evaluating an expression.

function ExprValue(t:treeptr):real;
var vl,v2:real;
begin
case t{.tag of
constant:
ExprValue := tf.value;
variable:
ExprValue :
unary:
begin
vl := ExprValue(t}.branch);
case tf{.unop of
neg: ExprValue := -vl
end { of cases on "t{.unop" }
end { of case "unary" };
binary:
begin
vl := ExprValue(tf.left);
v2 := ExprValue(t¥.right);
case tf.binop of
add:ExprValue := vi+v2;
sub:ExprvValue := v1-v2;
mult:ExprValue := vl#*v2;
dvd:ExprValue := v1/v2;
expon:ExprValue := Power(vl,v2)
end { of cases on "t{.binop" }
end { of case "binary" }
end { of cases on "tf{.tag" }
end { of function "ExprValue" };

data[tf.index];

3.9 Binary decision trees
As a third and final illustration of binary trees we consider
decision trees.
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Our particular example will be related to Huffman codes. In
contrast to codes like ASCII, which are of fixed length, Huffman
codes have variable length. The more frequently used characters
have short codes and the less frequently used ones have longer
codes. This means that, on average, a message will require fewer
bits than for fixed length codes.

Let us use a hypothetical example in which there are six characters
coded:

o 0

B 1110
0% 100

) 1111
€ 110

¢ 101

The relationship between these codes can be expressed quite
clearly in diagrammatical form as shown in Fig. 3.24.

Fig. 3.24. A binary tree representing Huffman codes.
7 N\
o
y \
0 / \1 0 / \1
Y ¢ e
o/ N\
8 5

Clearly the labels on the branches are redundant since all left
branches are labelled 0, and all right branches, 1. Note that there is
no information stored at internal nodes, so that an appropriate
definition of a node is:

type tagtype = (internal, leaf);
node = record
case tag :tagtype of
internal : (left, right : treeptr);
leaf: (ch :char)
end

We need to be able:

(i) to create the appropriate tree for a given character set;
(ii) to produce a list of codes from a given tree;
(iii) to decode a string of characters coded in a given code.
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We leave (i) and (ii) as exercises, and give in Fig. 3.25 a procedure
which decodes the next character held on a file of type binaryfile
defined:

type binaryfile = file of 0. .1

Fig. 3.25. A procedure for decoding a Huffman code.

procedure Decode(var f:binaryfile; t:treeptr; var ch:char);

procedure D(t:treeptr);
begin
if tf.tag = leaf then ch := ttf.ch
else if ft = O then
begin
get(£);
D(tt.left)
end
else { if £f{ = 1 then }
begin
get(f);
D(tf.right)
end
end { of procedure "D" };

begin
D(t)
end { of procedure "Decode" };

EXERCISES

3.1 Write a function with the heading:
function Height(t : treeptr) :natural
whose value is the height of the tree (pointed to by) ¢. Assume
that a null tree has a height of 0.

3.2 Write a function with the heading:
function NoNodes(t : treeptr) : natural
whose value is the number of nodes on the tree t.

3.3 Write a function with the heading:
function Equal(tl, t2:treeptr) :Boolean
which has the value true if t1 and ¢2 have the same structure
and the same item at each node.

3.4 The notion of a balanced tree can be formalised by defining
a tree to be balanced if and only if the number of nodes on
the left subtree of every node differs by at most one from
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3.5

3.6

the number of nodes on the right subtree. Write a function
with the heading:
function Balanced(t : treeptr) :Boolean
which has the value true if the tree ¢ is balanced, and false
otherwise.
Write a Pascal program cross-referencer which will produce,
for a given Pascal program, a list in alphabetical order, of all
the identifiers used. Each identifier should be followed by
a list, in numerical order, of the lines in which the identifier
appeared. (From Wirth (1976).)

Use a binary search tree to hold the identifiers and alinked-
linear list for the line numbers associated with each identifier.

Write a procedure that will evaluate a logical formula such
as the one shown in Fig. 3.26.

Fig. 3.26. A Boolean expression tree.
/D\
/ A\ :
p T “' g
q P

The variables have values true and false (as for Pascal’s
Booleans); there is a unary operation — (not) with the
obvious interpretation; and four binary operators A (and).
V (or), D (implies) and = (equivalent to) whose operations
are defined in the table of Fig. 3.27 in which x and y are

assumed to be the two arguments.

Fig. 3.27 The definition of the logical operators.

x y x ANy xVy x Dy x=y
false false false false true true
false true false true true false
true false false true false false
true true true true true true
3.7 Write a more complete symbolic differentiation procedure

than that of §3.7 which will deal with expressions containing
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3.8

3.9

3.10
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real constants and the usual logarithmic and trigonometrical
functions (which you can regard as unary operators) as well
as the arithmetic operators. The form of tree should be that
of §3.8.

Write a general procedure for simplifying expressions held
as a tree such as that of Ex. 3.7. Use it to simplify the results
of the differentiation.

The Huffman codes for a set of characters can be produced
in tree form, assuming that the relative frequencies of the
characters are known, as follows:

The two characters with the lowest frequencies are chosen
and a subtree created with them at the leaves. A pseudo-
character is created with a frequency equal to the sum of
the frequencies of the characters just chosen; and the process
repeated with the remaining characters augmented by this
new pseudo-character. Thus the tree grows from the bottom.

The tree of Fig. 3.24 has been produced in this way from the
table of frequencies:

o 0.45
B 0.07
0% 0.12
) 0.08
€ 0.15
¢ 0.13

Write a procedure to create a Huffman tree for a given
character set.

Write a procedure that will produce a list of codes from the
information contained in a Huffman tree.




4

Binary recursion without trees

Although binary recursion is most often associated with binary trees,
it is nevertheless relevant in many situations where there are no
trees, including the fundamentally important one of sorting. We
consider some of these in this chapter. The characteristic of such
a problem is that its solution can be expressed in terms of the
solution of two subproblems of the same type.

4.1 An illustration: Towers of Hanoi
The classical illustrative example is provided by the Towers

of Hanoi. Legends abound about these towers, but essentially they
consist of three vertical pegs, on one of which is initially placed
a tower of n rings of different diameters, each ring resting on one
of a larger diameter.

Fig. 4.1 shows a simple example with a tower of three rings on
the first rod.

Fig. 4.1. The Towers of Hanoi.

e

[ 1 2 3

The problem is to move the tower to a second peg, using the
third as a temporary resting place, subject to the constraints:

(i) only one ring may be moved at a time;
(ii) no ring may ever rest on one of a smaller diameter.

The solution to the problem is expressed very elegantly in
a recursive form:




(i) If we can move a tower of & rings from one peg to another
we can certainly move a tower of k+1 rings by:
(a) moving the top k& rings to the third peg;
(b) moving the bottom ring directly to the second peg;
(c) moving the tower of k rings from the third back to the
second.
(i1) We can trivially move a tower of one ring.

Thus we can move a tower of n rings for any (positive) value of
n. Fig. 4.2 illustrates this with respect to the tower of Fig. 4.1.

Fig. 4.2. Moving a tower of three rings.

The solution of a tower of three rings is as shown in Fig. 4.3.

Fig. 4.3 The solution forn = 3.

Dlﬁg:: i :g % These move two rings from peg 1 to peg 3 to produce
Move 2 to 3/ State (a) of Fig. 4.2.

Move 1 to 2 State (b).

ﬁg:: g :g ; These move two rings from peg 3 back to peg 2 to
Move 1 to 2 ] Produce state (c).

A procedure producing such a solution follows immediately. It
is shown in Fig. 4.4, in which we arbitrarily assume that the rings
are to be moved from peg 1 to peg 2.

Fig. 4.4. A procedure for the Towers of Hanoi.

procedure Hanoi(n:natural);
type pegtype = 1..3;

procedure H(k:natural; pl,p2,p3:pegtype);
begin
if k = 1 then
writeln(’ Move ‘,pl:1,’ to ‘,p2:1)
else
begin
H(k-1 :PlsP3»P2);
writeln(’ Move “,pl:1,’ to ‘,p2:1);
H(k_l ’P3»P29P1)
end
end { of procedure "H" };

begin
H(n,1,2,3)
end { of procedure "Hanoi" };
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4.2  Analysis of Hanot
With trees our analyses were informal ones, and generally
related time to the number of nodes on the tree or the average
height of a tree. With the Towers of Hanoi procedure there is no
explicit tree, but we caninstead do a formal analysis using a recurrence
relation.
As in Chapter 1, 7 is the number of operations required to solve
a problem of size k. Here the explicitly defined case arises where
k=1. Thus we have the relation:
Tk=b+2Tk_1, k#1
=a, k=1
where a represents a test (k=1) and the operations involved in the
writing, and b represents a test (k=1), the operations involved in the
writing and two procedure calls, each of which involves, as well as
the actual call, a subtraction (k—1) and the assignment of four
parameters.
We solve the recurrence relation by substitution:
Tn =b+ 2Tn—1
=b + 2(b+2T,_9)
=b+2b+ 22T, _,
=b + 2b + 22(b+2T,, _3)
= (1+2+22)b + 23T, _5

I

(1+2+2%+...2""2)p + 2" 71Ty
(142+224+...2"2)p + 277 ]g
— (2n—l_l)b + 2n—la
2"~ l(a+b) —b

Let us use this formula to count the number of elementary opera-
tions. For a we have 1+M, where M is the number of operations
involved in writing; for & we have 1 (for the test) + M (for writing)
+ 10 (for 2 calls) + 2 (for 2 subtractions) + 8 (for the parameters):
a total of 21+M. Thus

T, = 2" 1 (1+M+21+M)—(21+M)
= 2"~ 1(22+2M)—21-M
=2"(11+M)—21—M
There are precisely 2"—1 moves so we see that the overheads
of the procedure are approximately 11 elementary operations
per move,
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4.3 Verifying the solution of recurrence relations
So far whenever we have had a recurrence relation we have
solved it by substitution, or where it has been closely related to an
earlier one, we have left it for the reader to do at his leisure. However,
this substitution technique depends on recognising the correct
pattern, and is therefore fallible. We consider now a method of
proving our solutions: the method of induction.
We illustrate this with respect to the last example. That is we
prove that if:
Ty =b+ 2Ty, k#1
=a, k=1
then:
T, = 2" Ya+b) — b
The proof has two parts:
(i) First we prove it is true for the explicitly specified case:
Ty = 2! Ya+b) — b
= (at+b) — b
=aq
(i1) Then assuming it is true for size k#—1 (and in general for sizes
k—2, k—3, ...) we prove it is true for size k:
T, = b+ 2Tn—l
=b + 2[2" ™ %(a+b)—b]
=b +2[2" " 2%(a+b)] — 20
=2""l(a+b) — b
In what follows we may present a proof rather than a derivation
(or leave the proof to the reader) if this enhances the text.

4.4 A variation on Hanot
Let us see now how the solution to a recurrence relation
enables us to determine the effects of changes to the procedure.

Let us consider the effect of stopping the recursion one step
later: that is of explicitly defining how to move 0 rings instead
of 1. This is, of course, trivial and Fig. 4.5 gives an appropriate
procedure.

Fig. 4.5. Another procedure for the Towers of Hanoi.

procedure Hanoi(n:natural);
type pegtype = 1..3;

procedure H(k:natural; pl,p2,p3:pegtype);
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begin
if k = 0 then { do nothing }
else
begin
H(k-1,pl,p3,p2);
writeln(’ Move ’,pl:l,’ to ’,p2:1);
H(k-1 ,P3sP2.P1)
end
end { of procedure "H" };

begin
H(n,1,2,3)
end { of procedure "Hanoi" };

If the number of operations are now called a’ and b’ then the

recurrence relation is:

Ty =b +2Tx—y, k#0

=d, k=0

whose solution is:

T, = 2"(a'+b') — b’
as compared with the original:

T, =2""at+b) —b
In terms of elementary operations, a' is simply 1, and &' is the
same as b, that is 21+M. Substituting we get:

T, =2"(22+M) —21 —M
as compared with:

T, = 2*(11+M) — 21 — M
As the cost of M approaches 0 the ratio 7,/7, approaches 2, and
as M approaches oo, it approaches 1. Thus we see that the choice
of where to stop the recursion can significantly affect the perfor-
mance. Compare this with the case of linear recursion, where the
differences are generally negligible.

Other changes such as replacing the write-statement by H(1, p1,

p2, p3) in the general sequence of Fig. 4.4 are left as exercises.

4.5 Trees of procedure calls

While there is no explicit concept of a tree in the Towers
of Hanoi, there is nevertheless an implicit tree involved which it is
quite instructive to consider. It is the tree of procedure calls of
Fig. 4.6. This shows via the full lines how a given invocation of
H causes further invocations until, at the bottom, the recursion
terminates. The root of the tree corresponds to Hano: which invokes
H initially. (We have also included, via the dotted lines, the moves
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that the invocations generate, using ‘>’ as an abbreviation of ‘Move
... t0")

Fig. 4.6. The tree of procedure calls for Towers of Hanoi.

Hano: (3)
H(3,1,2,3)
[}
[}
1
|
1
H(2,1,3,2) X H(2,3,2,1)
: ! :
| : 1
! |
H(1,1,2,3) | H(1,2,3,1) | H(1,3,1,2) : H(1,1,2,3)
1 1 | . )
: | : ( : l {
! ! : ! ! l !
1-2 1->3 2—>3 1-2 3->1 3—>2 1-2

We can see that for Hanoi(n) the tree has 2"—1 nodes, so that the
procedure is linear in the number of nodes but exponential in n.
Where the solution of the recurrence relations proves difficult, as
in a later chapter, we will find these trees very useful in analysing
procedures.

4.6 Adaptive integration
The Towers of Hanoi is simply an amusement. We pass now
to the more serious matter of adaptive integration.
Let us suppose we have a procedure with the following heading:
procedure Int(function f(x :real) :real; a,b : real;
var approx,eps :real)

which sets approx to an approximation to f2f(x) dx and eps to an
estimate of its accuracy; and that we require a function which will
calculate the integral to a specified accuracy, e. Its heading could be:
function Integral(function f (x :real) :real;a,b,e :real) : real

Simply calling Int will not do, because it may not give the required
accuracy. However, it is well known that the smaller the interval of
integration the better the accuracy. Thus, if Int does not give the
required accuracy, we simply split the interval (a, b) into two halves,
and integrate each half separately. An appropriate procedure is
given in Fig. 4.7 in which, ignoring the numerical analysis involved,
we have asked for an accuracy of e/2 for each half interval.

It is important to note how Integral adapts to the function f being
integrated. Since each half of the interval is integrated independently
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Fig. 4.7. An adaptive integration function.

function Integral(function f(x:real):real; a,b,e:real):real;

var approx,eps:real;
begin
Int(f,a,b,approx,eps);
if abs(eps) <= abs(e) them

Integral := approx
else

Integral := Integral(f,a,(a+b)/2,e/2)

+ Integral(f,(a+b)/2,b,e/2)

end { of function "Integral"” }; °

it may happen that one of the intervals needs to be further halved
while the other does not.

4.7 A sorting procedure: MergeSort
Sorting, a subject we touched upon in the last chapter, is
a fundamental operation in data processing so that it is important
to have procedures that work as fast as possible. Let us assume
definitions:
type sizetype = 0. .max;
itemtype = record
key:keytype;
info :infotype
end;
seqtype = array [sizetype] of itemtype
where max is an appropriate constant and keytype and infotype
are left unspecified.

As is well known the simple sorting procedures such as linear
selection and bubble sort are O(n?), where n is the number of
items to be sorted. We will take a small diversion to consider one
of these, linear selection, to set the scene for the more efficient
MergeSort to be introduced presently. Fig. 4.8 gives a (linear recur-

Fig. 4.8. A procedure for sorting by linear selection.

procedure SelectionSort(var seq:seqtype; n:sizetype);
var s:sizetype;
temp:itemtype;

begin
if n <> 1 then
begin
s := MaxIndex(seq,n);
temp := seq[s]; seq[s] := seq[n]; seq[n] := temp;
SelectionSort(seq,n-1)
end

end { of procedure "SelectionSort" };
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sive) procedure, SelectionSort, in which the operation of finding
the index of the largest element of seq is unspecified.

We can show that this is O(n?) quite simply. Since finding the
largest element of a sequence of length n involves a constant part
and a part proportional to £ we have, for SelectionSort itself:

T, =b+ck+T,_, k#l
=a, k=1
whose solution:
T, = 4cn? + (b+dc)n + (a—b—c)
is easily established by substitution or proved by induction.

Note that SelectionSort has linear recursion and expresses the
sorting of a sequence of length n in terms of sorting a sequence
of length n—1.

MergeSort, which we now consider, expresses the sorting of
a sequence of length n in terms of sorting two subsequences each
of length n/2 and so exhibits binary recursion. The procedure merges
two sorted subsequences to produce a sorted sequence which is, of
course, why it is called MergeSort. It is not possible to merge two
sequences in situ, and so we need a second array. Suppose we call
the arrays x and y. Then MergeSort operates as follows: to get
a sorted sequence into x, we first produce two sorted half-length
subsequences in y and then merge them into x; to get each sorted
subsequence in y, we first produce two sorted quarter-length sub-
sequences in x and then merge them into y. Ultimately we need
to get sorted subsequences of one element in either x or y depend-
ing on n. If the unsorted items are in x it is simplest to copy them
initially into y. Fig. 4.9 gives a procedure in which, for the moment,
the Merge procedure is left unspecified: it merges the sorted sub-
sequences in Y;>Ymig and Y41y, to produce a sorted sequence
in x;~>x,. Ignore, for the moment, the values in the comments.

Fig. 4.9. A procedure for MergeSort.
procedure MergeSort(var seq:seqtype; n:sizetype);

var seql:seqtype;

procedure M(var x,y:seqtype; l,u:sizetype);
var mid:sizetype;

begin
if u =1 then { do nothing } { a=1, b=l }
else
begin
mid := (1l+u) div 2; { b=3 1}
M(y,x,1,mid); { b=9 }
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U(y,x,mid+1,u); { b=10 }
Merge(x,y,l,mid,u) { See Fig.4.11 }
end

end { of procedure "M" };

begin

seql := seq;

M(seq,seql,l,n)

end { of procedure '"Mergesort" };

Fig. 4.10 shows the tree of procedure calls which arises when

sorting the sequence whose keys are:
17 49 26 14 85 36 27 20 55 32 71

Note that at each node of the tree we have placed the keys of
the (sorted) subsequence which will appear in x as a result of the
call. To understand the procedure it is important to note that the two
recursive calls inside M both interchange the parameters x and y. As
the procedure is a postorder one, the actual sorting takes place
from the leaves upwards.

Fig. 4.10, The tree of procedure calls for MergeSort.
14 17 20 26 27 32 36 49 55 71 85

14 17 26 36 49 85 20 27 32 55 71
17 26\49 14/36\85 20 27 55 32 71
17 \49 26 14 85 36 20 27 55 32 71
/ \ /\ / \
17 49 14 85 27. 20

For completeness we give in Fig. 4.11 a fairly standard sequence
for merging. We assume the relevant declarations of the variables it
uses. Again ignore the values in the comments.

Fig. 4.11. A sequence for merging,

pl :=1; p2 :=mid + 1; p := 1; { b=4 }
repeat
if ylpll.key < y[p2].key them {c=31}
begin
x[p] := ylpl]; pl := pl + 13 { =5}
tail := pl > mid { =2}
end
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else

begin
x(pl := y[p2]; p2 := p2 + 1; { c=51}
tail := p2 > u {c=2}
end;
p:=p+1 { c=2}
until tail; {c=1}
if pl <= mid then
repeat

x[p] := ylpl}; p :=p + 1; pl :=pl + 1
until pl > mid

else
repeat
x[p] := y[p2}; p :=p + 1; p2 :=p2 +1
until p2 > u

4.8 The analysis of MergeSort
Let us now analyse the MergeSort procedure, assuming for
the sake of simplicity, that n is a power of 2. (Note, however, that
the procedures themselves all work for any n and that in our example
sequence n has been deliberately chosen to be not a power of 2 to
underline the characteristics of the procedure being discussed.)

First we look at the merge sequence to determine the cost of
merging two sequences each of size k/2 into one of size k. Until one
of the sequences becomes empty, the repeat-loop is traversed once
for each element of the merged sequence. Further, each arm of the
if-statement which is the loop body contains similar orders. Thus
if it were not for having to deal explicitly with the tail of one
sequence when the other becomes exhausted, the cost would be of
the form b+ck, where b represents the initialisation and ¢ the cost
of a traverse of the loop. In fact the cost of processing the tail has
a similar form, and to a first approximation we can assume that the
cost is simply b+ck.

Now considering MergeSort itself we immediately see that the
recurrence relation is of the form:

Tk =b+ck + 2Tk/2, k#1
=a, k=1
Instead of deriving a solution, we prove that its solution is:
T, =cnlog(n) + (at+b)n —b
First the explicitly specified case:
T, = cx1Ixlog(l) + (a+b)x1 —b
=0+ (a+b)—0b
=a
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Now the general case:
T, =b+cn + 2Ty,
=b+cn+ 2[4cnlog(3n) +4(atb)n —b)
=b +cn +cnlog(3n) + (a+b)n —2b
=b +cn + cnlog(n) —cn log(2) + (a+b)n —2b
= cn log(n) + (a+b)n — b
Clearly the first term dominates and the procedure is O(n log(n)).
We can express T, a little more concretely in terms of fundamental

operations. In Fig. 4.9 and Fig. 4.11 we have included the contri-
butions to a, b and ¢ of all the relevant statements. This leads to:

T, = 13n log(n) + 28n — 27
which excludes the cost of the copying within MergeSort and the
initial call of M.

4.9 Investigating variations of MergeSort
In §4.4 we made the point that the recurrence relations and
their solutions enable us to determine the effects of proposed changes
to a procedure. We reinforce the point in this section.

If we look at MergeSort we notice that it uses the merging sequence
to merge together subsequences of one element. We might reason
that this is a sledge-hammer to crack a nut approach, and that
instead we should stop the recursion one step earlier, merging the
single-element sequences explicitly. In the light of our experience
with the Towers of Hanoi we might hope for an improvement of
about a factor of two.

We further notice that as the full sequences are in both x and
y, the merging can be done very efficiently. Fig. 4.12 gives a modified
version of the internal procedure M.

Fig. 4.12, A version of M stopping one level earlier.

procedure M(var x,y:seqtype; l,u:sizetype);
var mid:sizetype;

begin
if u<=1+1 themn { a’=2, b'=2}
begin
if y[1l].key > y[ul.key them {a’=3}
begin
x[1} := ylul; x[u] := y[1] { a’=6 }
end
end
else
begin
mid := (1l+u) div 2; { b’=3}
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M(y,x,1,mid); { b’=9 }
M(y,x,mid+1l,u); { b’=10 }
Merge(x,y,1l,mid,u) { As in Fig. 4.11 }
end

end { of procedure '"M" };

The recurrence relations are:
T, =b +c'k+ 2T, k#2
=d, k=2
whose solution is:
» =c'nlog(n) + (3a’'+40'—c")n — b’

The appropriate values for the components of a' and b’ are written
on Fig. 4.12 and ¢’ is the same as ¢ of Fig. 4.11. If we assume that
two consecutive elements are equally likely to be in order or out of
order, then a’ = 64. We also have ' = 28 and ¢’ = 13 which leads to:

T, = 13n log(n) + 44n — 28
as compared with:

T, = 13n log(n) + 28n — 27
for the original version.

For n = 1000, where log n = 10, the comparison is approximately
134n as against 158n, a gain of 15%; and for n = 10 000 where
log n = 32, the comparison is approximately 420n as against 444n,
a gain of 5%.

This gain is acceptable, of course, but not as large as might have
been expected in the light of having reduced the number of proce-
dure calls by half. This simply underlines the meaning of:

n = cn log(n) + (a+b)n — b
which is that the really worthwhile gain comes from reducing c. Since
¢ is associated exclusively with the merging sequence, indeed with
the inner loop, that is where the effort should be concentrated.

4.10 QuickSort

The objection to MergeSort is that it requires as much store
again as the original sequence. In many operations this effectively
reduces the number of items that can be sorted.

We consider now another O(n log (n)) sorting method, QuickSort,
which does not have this limitation. It is based on the notion of
partitioning. We partition x;— x,, into two sequences, the first x;=> x,
containing items whose keys are less than or equal to some value
(called the partitioning key value), the second x;—> x, containing
items whose keys are greater than or equal to the partitioning key
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value. If these parts are not contiguous x;;—> x,,; contains items whose
keys are equal to the partitioning key. We then recursively sort these
subsequences. In Fig. 4.13 we give a procedure in which the parti-
tioning sequence is as yet unspecified.

Fig. 4.13. A procedure for QuickSort.

procedure Quicksort(var seq:seqtype; n:sizetype);

procedure Q(l,u:sizetype);
var 1ll,ul:sizetype;
begin
if u <= 1 then { do nothing }
else
begin
Partition(seq,1l,u,1ll,ul);
Q(1,ul);
Q(11,u)
end
end { of procedure "Q" };

begin
Q(1,n)
end { of procedure "Quicksort" };

In Fig. 4.14 we give the tree of procedure calls for QuickSort,
to each node of which we have attached the keys of the (unsorted)
subsequence which is in x;—>x, at the call. We have yet to specify
the partitioning sequence so the details may not be immediately
clear but we have underlined the partitioning keys to help. Note
that because the procedure is a preorder one, the actual sorting
takes place from the root. Compare this with MergeSort (Fig. 4.10).

The partitioning sequence is based on scanning the array simul-
taneously from both ends. The lower bound of the upper subse-
quence /1 is set to /; and the upper bound of the lower sequence
ul is set to u. Then /1 is moved up over any item whose key is less
than the partitioning key until it reaches one whose key is not.
(Clearly all items that /1 moves over are correctly in the first subse-
quence.) Then u1 is moved down over any item whose key is greater
than the partitioning key until it reaches one whose key is not.
(Just as, clearly, all items that u1 moves over are correctly in the
second subsequence.) For the given sequence and the partitioning
value 36, we have the situation:

17 49 26 14 85 36 27 20 55 32 71
+ 1 t t
l 11 ul u
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Fig. 4.14. A tree of procedure calls for QuickSort.
17 49 26 14 85 36 27 20 55 32 71

I

17 32 26 14 2 27 36 85 55 49 71
/
17 20 14 2 32 27 36 49 85 71
\
17 14 20 26 27 32 49 71 85
/\
14 17 27

The elements at /1 and ul are out of place. They are therefore
interchanged and the pointers moved over them since they are now
clearly in the correct subsequence. We have

17 32 26 14 85 36 27 20 55 49 71
1 t ) )
l 1 ul u

This process is repeated until 1 and /1 cross.

The sequence in Fig. 4.15 is taken from Wirth (1976), who explains
it in full detail. The reader is counselled not to make any seemingly
obvious improvements until he has studied Wirth.

Fig. 4.15. The partitioning sequence.

11 := 1; ul := u;
partkey := seq[(l+u) div 2].key;
repeat
while seq[ll].key < partkey do 11 := 11+1;
while seq[ul].key > partkey do ul := ul-1;
1f 11 <= ul then
begin
temp := seq[1ll]; seq[ll] := seq[ul]; seq[ul] := temp;
11 := 11+1;
ul := ul-1
end
until 11 > ul
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The analysis of QuickSort is essentially a statistical one, because
its operation is so dependent on the data. As Fig. 4.14 illustrates the
tree of procedure calls can be quite irregular varying from a perfectly
balanced one to a completely unbalanced one (one in which each
node except the leaves has a null branch).

The analysis of these two extremes, however, is quite straight-
forward. From Fig. 4.15 we see that the partitioning involves a con-
stant part, a part proportional to the size of the sequence u—I/+1 and
a part proportional to the number of interchanges required. It seems
reasonable to assume that the number of interchanges is proportional
to the size of the sequence.

For the perfectly balanced case, assuming 4 to be a power of
2 we have:

Th =b+ck+ 2Tk/2, kF1

=a k=1

which is the same as that for MergeSort. We know its solution
already:

T, = cn log(n) + (a+b)n — b
Perusal of the partitioning sequence shows that unless the number
of interchanges is a large fraction of &, ¢ will be less than 13, making
the procedure faster than MergeSort.

For the degenerate case the relations are:

Tk =b+ck+ Tk—l’ kF1
=a, k=1
which is the same as that for SelectionSort. Its solution is:
T, = 3cn? + (b+ic)n + (a—b—c)
Happily, on average QuickSort is O(n log(n)) though we do not
prove it here. The reader is referred to Knuth (1973) for the details.

4.11 Heaps and HeapSort
Perhaps this is the place to introduce another O(n log(n))

sorting method, heap sorting, even though it is based directly on
binary trees, and involves only linear recursion.

A heap is a balanced binary tree in which the key of an item at
a node is greater than or equal to the keys of all the items on both
its branches. Thus Fig. 4.16 is a heap containing the keys we have
been using.

Heap sorting is a technique for sorting based on the use of a heap
for organising the data. Clearly the item with the largest key is at the
root and can be removed to become the largest element of the sorted
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Fig. 4.16. A heap.
85

71

/N

55 49 26 27

/\

20 14 32 17

sequence. (Why this sequence is created in reverse will become clear
in a few paragraphs.) If we can make the resulting pair of heaps (at
the branches of the original root) into a heap again we can repeat
the operation n—1 times to get the complete sorted sequence. To
do this we detach the ‘last’ item (that is the rightmost item in the
bottom level) and place it at the recently vacated root. Fig. 4.17(i)
shows the situation. In general, as in Fig. 4.17, the result will not be

Fig. 4.17. Re-establishing the heap.

17 71
/ N
71 36 17 36
N N N TN
55 49 26 27 55 49 26 27
20 14 3{ 20 14 32
M (ii)
71 71
55 36 55 36
SN N SN N
17 49 26 27 20 49 26 27
/N /
20 14 32 17 14 32

(iii) (iv)

a heap, though it will be a balanced tree. We then compare the key of
this item with the keys of the items on its two branches. If it is
larger than both of them, then we have re-established the heap. If
not we interchange it with the larger of the other two, as shown in
Fig. 4.17(ii), and repeat the process, taking account of the fact that
at some point a node might have only one branch or none at all.
(See Fig. 4.17(iv).)

Now that we have re-established the heap, the item with the
second largest key is at the root, and can be removed . . ..
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Thus the sorting process can be expressed as:
for 7 :=n downto 2 do
begin
remove the item at the root;
re-establish the heap of size i
end

But of course we have to have the heap to start with. As a heap
consists of two other heaps together with an item at the root whose
key is larger than the keys of either heap, we must establish the
heap from the bottom. Let us suppose that the items are initially
put onto a balanced tree as shown in Fig. 4.18(i). Now the n/2
leaves are all heaps of one element each. The subtree whose root
contains the item with a key of 85 is also a heap. That with a root

Fig. 4.18. Establishing the heap.

17 17
/\
49 26 49 26
NN SN N\
14 85 36 27 55 85 36 27
/ /N /N
20 55 32 71 20 14 32 71
(i) (i)
17 17
49 36 85 36
55/ \85 26/ \27 55/ \71 26 27
RNEVAN AN
20 14 32 71 20 14 32 49
(iii) (iv)
85
71 36
NN
55 49 26 27

20 14 32 17

v
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containing the item whose key is 14, is not, and so has to be
reorganised as described earlier. The result is shown in Fig. 4.18(ii).
The process continues as illustrated in Fig. 4.18 until the whole
tree has become a heap, the same one as given in Fig. 4.16.

We could now write the complete procedure; but the same objec-
tion would be raised as was noted with respect to MergeSort: the
procedure uses extra store for the pointers! However, a heap is
a balanced tree and thus can be stored in an array without any
pointers. The root is stored as seq[l]; its sons are stored as seq[2]
and seq[3]; and in general the sons of the node stored at seq[¢]
are stored at seq[2*i] and seq[2*:+1]. A null pointer is indicated
by the fact that 2 (or 2#%7+1) lies outside the bounds of the active
part of the array. A procedure for HeapSort is given in Fig. 4.19.

Fig. 4.19. A procedure for HeapSort.

procedure Heapsort(var seq:seqtype; n:sizetype);
var i:sizetype;
temp:itemtype;

procedure EstablishHeap(l,u:sizetype);
var son:sizetype;
temp:itemtype;
begin
if 2*]1 <= u then
begin
son := 2%];
if 2*]1 < u then { there is a right son }
if seq[son].key < seq[son+l].key then

son := sontl;
if seq[l].key < seq[son].key then
begin
temp := seq[l]; seq[l] := seq[son]; seq[son] := temp;
EstablishHeap(son,u)
end

end
end { of procedure "EstablishHeap" };

begin
for i := n div 2 downto 1 do
EstablishHeap(i,n);
for i := n downto 2 do
begin
temp := seq[l]; seq[l] := seq[1i]; seq[i] := temp;
EstablishHeap(l,i-1)
end

end { of procedure "Heapsort" };
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4.12 Recurrence relations: another cautionary tale
We made the point in Chapter 1 that it is unfortunately
easy to write a very poor recursive procedure. A classical case arises
with recurrence relations - the very things we have been using to
analyse our procedures. Ours have been easily solved so that we
could calculate T(372), for example, directly. But consider the
Fibonacci numbers, whose definition is:
Fib(n) =0, n=20
=1, n=1
= Fib(n—1) + Fib(n—2), n>1
Thus the first ten Fibonacci numbers are:
0 11 2 3 5 8 13 21 34

The obvious function of Fig. 4.20 is woefully inefficient.

Fig. 4.20. A woefully inefficient function for Fibonacci numbers.

function Fib(n:natural):natural;
begin
if n <= 1 then Fib :=n
elge Fib := Fib(n-1) + Fib(n-2)
end { of function "Fib" };

The reason for its poor performance is clearly illustrated by the
tree of procedure calls for Fib(4) given in Fig. 4.21.

Fig. 4.21. The tree of procedure calls in evaluating Fib(4).
Fib (4)
Fib (3) Fib (2)

Fib (2) Fib(1)  Fib (1)  Fib(0)

/\

Fib (1)  Fib (0)

We see that we evaluate Fib(2) twice and Fib(1) three times! There
is an obvious iterative solution, of O(n), based on the storing at any
time of the last two Fibonacci numbers calculated. This is given in
Fig. 4.22.
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Fig. 4.22. An iterative function for Fibonacci numbers.

function Fib(n:natural):natural;
var penultimate,last,this,i:natural;

begin
if n <=1 then Fib :=n
else
begin
last := 0; this := 1;
for 1 := 2 to n do
begin
penultimate := last;
last := this;
this := penultimate + last
end;
Fib := this
end

end { of function "Fib" };

Clearly the iterative version is superior to the recursive one, and
many authors stop here regarding this as one of those cases where
a recursive version is inherently less efficient than a non-recursive
version.

Of course this is not the case, since we are not comparing like
with like. The non-recursive version uses information accumulated
during the computation whereas the recursive procedure does not.
Thus it is the difference in algorithm rather than the difference in
control structure that accounts for the difference in complexity. We
can easily construct a recursive version which uses the better algorithm
and which as a consequence is O(n). One is given in Fig. 4.23.

Fig. 4.23. An O(n) recursive function for Fibonacci numbers.
function Fib(n:natural):natural;

function F({i,last,this:natural):natural;
begin
if i = n then F := this
elge F := F(i+l,this,last+this)
end { of function "F" };

begin

if n <=1 then Fib := n
else Fib := F(1,0,1)

end { of function "Fib" };

We may think of the inner procedure’s job as calculating Fib (:+1)
given that Fib (f) = this and Fib (:—1) = last.

Note the importance of the parameters of F. They are used
effectively to accumulate the values required for the calculation.
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This technique has quite wide applicability as we shall illustrate by
giving another O (log(n)) procedure for Power.

Consider the evaluation of x!® by halving and squaring. The
procedure of Fig. 1.19 involved squaring x® and multiplying by
x. It found x8 recursively, by squaring x3 and so on. An alternative
is to calculate x!3 as x!xx*xx8, where x8, for example, is calculated

by squaring x*. Such a procedure is given in Fig. 4.24.

Fig. 4.24. Another O (logn) function Power.

function Power(x:real; n:integer):real;

function P(k:natural; factor,sofar:real):real;
begin
if k = 0 then P := sofar
else if odd(k) them P := P(k div 2,sqr(factor),sofar*factor)
elgse P := P(k div 2,sqr(factor),sofar)
end { of function "P" };

begin

if x = 0 then Power := 0

else if n < 0 then Power := 1/P(-n,x,1)
elge Power := P(n,x,l)

end { of function "Power" };

Note that both these procedures are preorder and can be easily
converted to non-recursive procedures as we shall see in Chapter 8.
Indeed the non-recursive version of Fib is precisely that given earlier
in this section.

4.13 Generating binary code sequences

As a final example consider the generation of all 2" possible
patterns of r binary digits. For example for r=3 we might produce
either of the sequences of Fig. 4.25.

Fig. 4.25 Two code sequences of three binary digits.

000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

The first is the normal binary code, the second a reflected binary
code. We consider the normal code. Note that it is in two halves,
the first half containing codes starting with 0, the second containing
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codes starting with 1. Furthermore, taking the top half, if we rub
out the 0 we are left with a two-bit code with the same property.
Fig. 4.26 illustrates this by means of a tree.

Fig. 4.26. The generation of the three-bit normal binary code.

A NEVAN
VANVANVANYAN

001 010 011 100 101 110 111

Suppose we wish to generate all 2" codes in turn in an array,
s say, and process them in a manner which we leave unspecified.
A procedure to do this will, in general, make the choice 0 as the first
element, store it in s[1] and call itself recursively to produce the half
of the codes that start with 0. Then it will make the choice 1 and call
itself recursively to produce the other half. When it is choosing the
rth element of course it will stop the recursion and process the
code instead.

Fig. 4.27 gives a procedure in which we have abandoned our
convention for naming an inner procedure and have used Choose
instead. This reflects the way we think of the inner procedure as the
means of organising the choice of the dth element of s.

The procedure assumes the definition:

type range = 1. .nmax;
where nmax is an appropriate constant.

Fig. 4.27. A procedure for generating the normal binary code.

procedure BinaryCodes(r:range);
var s:array[range] of 0..1;

procedure Choose(d:range);

begin

s{d] := 03

if d <> r then Choose(d+l) else Process(s);
s[d] := 1;

if d <> r then Choose(d+l) else Process(s)
end { of procedure "Choose" };

begin
Choose(l)
end { of orocedure "BinaryCodes" };
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This procedure is generally used with a recursive procedure for
processing s as we shall see in the next chapter.

4.1

4.2

EXERCISES

Investigate the effects of each of the following changes to

the Hanoi procedure of Fig. 4.4.

(i) Replacing the writeln-statement in the general sequence
by a recursive call H(1, 1, 2, 3).

(i1) Eliminating the fourth parameter p3, and using the fact
that p1+p2+p3=6 to calculate it instead.

(iii) Stopping the recursion when there are two rings to be
moved.

The solution to the Towers of Hanoi problem given in the
text assumes that the pegs are numbered, and the complete
description is in those terms. Thus 1-3 is interpreted as move
the (top) ring from peg 1 to (become the top ring of) peg 3.
An alternative view is to assume that the 7ngs are numbered
from the smallest to the largest starting at 1. We can then
describe moves by indicating the ring to be moved and its
direction. For convenience we will describe the directions as
clockwise (C), and anticlockwise (4), thinking of the towers
as being in a triangular formation with the pegs numbered
anticlockwise. Thus the following are two alternative descrip-
tions of moving a tower for n=3.

1-3 1C
12 24
32 1c
1-3 3C
2—1 1C
2-3 24
1-3 1C

Write a procedure to produce the alternative description of
the moves based on the observations:
(i) If we can move a tower of k rings in either direction we
can certainly move a tower of k+1 rings by:
(a) moving the top & rings in the opposite direction;
(b) moving ring k+1 in the correct direction;
(c) moving the top k rings again in the opposite direction.
(ii) We can trivially move one ring.
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4.3

4.4

4.5

4.6

92

Solve the recurrence relations
(I) Tk =b+Tk_1, kF0
=a, k=0
(i) Tp =b + 2T, kF0
=a, k=0
(Ill) Tk =b+ ka—I’ k#0
=a, k=0
(lV) Tk =b+ nTk_l, k¥0
=a, k=0

Prove that the solution of:
Tk =b+ck + 2Tk/2, k#2

=a, k=2
is:
T, = cn log(n) + (3a+3b—c)n —b
Modify the MergeSort procedure, Fig. 4.9, so thatitexplicitly
sorts sequences of length <8 by some simple sorting techni-
ques (such as linear selection (Fig. 4.8) or insertion sort).
Assuming the size n to be a power of 2 analyse the procedure
and compare it with the original.

There is a related MergeSort algorithm which is generally
programmed iteratively. The sequence is regarded as n sub-
sequences of length 1, and pairs of the subsequences are
merged in turn to provide |n/2| subsequences of length
2 (possibly with a subsequence of length 1 left over). Pairs
of these subsequences are merged to produce subsequences
of length 4 and so on. Fig. 4.28 gives a tree representation of

Fig. 4.28. The action of the iterative MergeSort.
14 17 20 26 27 32 36 49 55 71 85

14 17 20 26 27 36 49 85 32 55 71
|
I
I
17 26 49 20 27 36 85 32 55 71
17 49 14 26 36 85 20 27 32 55 71

AN AN

17 85 36 27 20 55 32 71




4.7

4.8

the process. Write an iterative procedure and compare it with
MergeSort of Fig. 4.9. Also write a recursive version of this
algorithm. Note that for this recursive procedure Fig. 4.28
may be interpreted as the tree of procedure calls in the same
way as Fig. 4.10.

Write a procedure for generating Fibonacci numbers of
O(log(n)) by creating pairs of consecutive Fibonacci numbers
based on the observations:

Fyi = (F; + 2F;_1)*F;

Foi_1=F} + FF,

Fai— 9= (2F;—F;—1) *F;—;

Write a procedure for generating the reflected binary code
of §4.13. Note that we choose the values for a given position
to be the value we chose last time, followed by the other
choice. This implies that the main procedure must first set
all elements of s to 0.
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5

Double recursion, mutual recursion,
recursive calls

So far we have considered only the simple situation of procedures
in which one form of recursion appeared. In this chapter we are
going to consider problems in which recursion is required for two
purposes, and for which it is tedious and difficult to produce
solutions without the use of this double recursion.

We are also going to consider procedures in which the recursive
call of a procedure 4 does not appear directly within A4, as has been
the case so far, but within some other procedure X which has been
called, perhaps directly, perhaps indirectly, from 4. Thus we may
have a chain of calls A>B—>C...X—A. This situation is called indirect
recursion or mutual recursion in contrast with the direct recursion
of the simple case.

Finally we are going to consider procedures which are, of them-
selves, non-recursive but which can give rise to recursion when called
in a particular way.

5.1 An example of double recursion: determining tautology
Let us start with the double recursion and consider the
problem of determining whether a logical expression such as:
pNg D pV —pNg
is tautologous: that is whether it is true for all possible combinations
of its variables. We can see that there are two problems: firstly, we
must be able to generate all possible combinations of a number of
logical or Boolean variables; secondly, we must be able to evaluate
a logical expression given the values of its variables. We have con-
sidered such problems before in Chapters 4 and 3 respectively and
so we can proceed fairly directly.
First we generate the Boolean values. This is closely related to
the procedure BinaryCodes of Fig. 4.27 with the type Boolean




replacing the type 0..1. The transformed version called AllBooleans
is given in Fig. 5.1.

Fig. 5.1. Generating all combinations of » Boolean variables.

procedure AllBooleans(r:range);
var s:array [range] of Boolean;

procedure Choose(d:range);

begin

s[d] := false;

if d <> r then Choose(d+1) else Process(s);
s[d] := true;

if d <> r then Choose(d+1) else Process(s)
end { of procedure "Choose" };

begin
Choose(l)
end { of procedure "AllBooleans" };

Now, we evaluate the expression. We assume that it is stored in
a tree as shown symbolically in Fig. 5.2, where we have assumed
the traditional precedences of the operators.

Fig. 5.2. The representationof p Ag D p Vp Agq.
2
/ A/ / V\
p q p A

A
|

p

To be compatible with the generation of the Boolean values we
assume that the variables p and g have been associated with entries
in the array s and have been replaced by the integers 1 and 2 respec-
tively. (This is just the process of lexical analysis.) Further, we
assume a definition of this tree closely related to that of §3.8. In
this case there is no need to cater for a Boolean constant, nor for
the possibility of more than one unary operator. Note the use of
the letter ! (for logical) in the constant identifiers to avoid clashes
with the Pascal reserved words not, or, and.
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type treeptr = tnode;
tagtype = (variable,lnot,binary);
node =  record
case tag:tagtype of
variable : (index : range);
Inot: (branch :treeptr);
binary : (left : treeptr;
binop : (land, lor,impl);
right :treeptr)
end
We could evaluate the logical expression along the lines of the
arithmetic expression evaluation of Chapter 3, too. However, with
logical expressions we can take advantage of the fact that often we
know the value of an expression after evaluating only part of it.
Thus in E1 A E2, if E1 is false then so is the whole expression:
therefore it is pointless to evaluate E2. For the three binary operators
we have the following equivalences:

E1 NE2=ifEl then E2 else false
E1V E2=if E1 then true else E2
E1 D E2=ifE]l then E2 else true

The procedure of Fig. 5.3 follows.

Fig. 5.3. A procedure for evaluating a logical expression.

function ExprValue(t:treeptr):Boolean;
var e:Boolean;
begin
case tf.tag of
variable:
ExprValue := s[tf.index];
lnot:
ExprValue := not ExprValue(tf.branch);
binary:
begin
e := ExprValue(tf.left);
case tf{.binop of
land:if e then ExprValue := ExprValue(tf.right)
else ExprValue := false;
lor: if e then ExprValue := true
else ExprValue := ExprValue(tf.right);
impl:if e then ExprValue := ExprValue(tf.right)
else ExprValue := true
end { of cases on "tf.binop" }
end { of case "binary" }
end { of cases on "tf.tag" }
end { of procedure "ExprValue" };

96




We now have to put these two together to produce a Boolean
procedure called, say, Tautology. It seems natural that we should
generate all possible patterns of the variables, and as a pattern is
generated call ExprValue to find the value of the expression for the
current set of values of the variables. We will therefore convert the
procedure AllBooleans into a Boolean function Tautology in which
we shall nest the function ExprValue. The function Tautology will
have the heading:

function Tautology(t :treeptr;r:range) :Boolean

where the parameter ¢ points to the tree of the expression being
tested.

An expression t is a tautology if and only if ¢ is true for all possible
combinations of values of its arguments. We could therefore modify
AllBooleans by first of all initialising a local variable v, say, to true,
by replacing Process(s) by the statement v := v and ExprVal(t), and
by assigning v to Tautology immediately after the call Choose(1).

However, we can again capitalise on the properties of and so that
ExprVal(t) is called only as long as all previous calls have produced
the value true. To do this we could recast the for-loop as a while-
loop. Instead we choose to jump right out of all the recursive activa-
tions of Choose if ExprVal(t) produces the value false. Fig. 5.4 gives
the function.

Fig. 5.4. A function for determining whether a logical expression is
a tautology.

function Tautology(t:treeptr; r:range):Boolean;
label 1;
var s:array [range] of Boolean;

{ As in Fig. 5.3 }

procedure Choose(d:range);
begin
s[d] := false;
if d <) r then Choose(d+l)
else if not ExprValue(t) then goto 1;
s[d] := true;
if d <> r then Choose(d+l)
else if not ExprValue(t) then goto 1
end { of procedure "Choose" };

begin

Tautology := false;
Choose(l);
Tautology := true;

l:end { of function "Tautology" };
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It should be noted that this is one of the more important uses of
a goto-statement.

5.2 An example of mutual recursion: creating expression trees
We consider now mutual recursion - in which a number of
procedures, here three, call each other in sequence with the last
calling the first.

We have given a number of procedures for processing binary
expression trees, either arithmetic or logical. We now see how such
a tree might be created from a string of characters. For simplicity
we will produce a tree whose items are all characters, the sort of
tree we used in the early part of Chapter 3. The definition we use is:

type treeptr = tnode;
node = record

left : treeptr;

ttem :char;

right :treeptr

end
and we adopt the convention that a unary operator (here only —)
has a null right branch. Furthermore we assume, for the moment,
that there are no spaces within the characters of the expression and
that input?t initially holds the first character.

We will start in the middle and consider first how we might create
the tree for a term given that we have a procedure which creates
a tree for a factor.

We approach the problem by cases, starting with the simplest:

(1) Suppose the term consists simply of a factor. The tree for
the term is just that for the factor.

(ii) Suppose the term consists of the product (or quotient) of
only two factors. The tree for this term consists of a node
whose item is * (or /) and whose left and right branches
point to the trees for the two factors.

(ili) Suppose the term consists of the product of three terms.
(The terminology involved when we consider division is too
convoluted to continue with. The implementation though
is trivial.) The tree for this term consists of a node whose
item is *, whose left branch points to the tree for the product
of the first two factors, as described in (ii) above, and whose
right branch points to the tree for the third factor.

(iv) The general case obviously follows.
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From this description we can easily create the procedure of Fig.
5.5 in which, as in Chapter 3, NewTree(t,t,inputt,nil) is a con-
venient shorthand for a sequence that creates a new node, pointed
to by ¢, whose fields are (the old value of) ¢, inputt, and nil.

Fig. 5.5. A procedure for creating the tree for a term.

procedure Term(var t:treeptr);

begin
Factor(t);
while inputf in ['*',°/’] do
begin
NewTree(t,t,inputT,nil);
get(input) { over the ‘*’ or '/’ };
Factor(ttf.right)
end
end { of procedure "Temm" };

The procedure for creating the tree for an expression, given this
procedure, is similar but we have to consider the possibility of
unary minus and create the appropriate node, one with ‘—’ as item
and with a null right branch.

We consider now the procedure for Factor. This creates the
leaves. It also has to deal with the case of a bracketed expression
which, of course, introduces the mutual recursion. Finally, because
it creates the leaves it is the one that detects faulty expressions.

A procedure for the complete job is given in Fig. 5.6 in which
we have chosen to nest Factor within Term within Expression.

Fig. 5.6. A procedure for creating an expression tree.
procedure Expression(var t:treeptr);

procedure Term(var t:treeptr);

procedure Factor(var t:treeptr);
begin
if inputf in [‘a’..’2’,’0’..’9’] then
begin
NewTree(t,nil,inputf,nil);
get(input) { over the letter or digit }

end
else if inputt = "(’ then
begin
get(input) { over the opening parenthesis };
Expression(t);

if inputf = ')’ then

get(input) { over the closing parenthesis }
else error { closing parenthesis missing }
end
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else error { letter, digit or opening parenthesis
expected }
end { of procedure "Factor" };

begin { of procedure "Term" }
Factor(t);
while inputf imn [‘*',’/’] do
begin
NewTree(t,t,inputf,nil);
get(input) { over the “*’ or '/’ };
Factor(tT.right)
end
end { of procedure "Term" };

begin { of procedure "Expression" }
if inputf = ‘~’ then
begin
NewTree(t,nil, '-",nil);
get(input) { over unary minus };
Term(tt.left)
end
else
Term(t);
while inputf in ['+°,’-"] do
begin
NewTree(t,t,inputf,nil);
get(input) { over the '+’ or =" };
Term(tt.right)
end
end { of procedure "Expression" };

The procedure of Fig. 5.6 assumes that the expression being
input neither contains nor is preceded by spaces when Expression
is called. This restriction can be relaxed quite simply by replacing
inputt and get by a variable, ch, and a procedure Getch which puts
the next non-space character into ck by reading over all intervening
spaces.

The procedure also assumes that the operands of the expression
are single characters. For symbolic manipulation, this is too restric-
tive. While we might accept single letters for the names of variables,
we would certainly wish to be able to use arbitrarily large constants
and, of course, to do arithmetic on them. To allow this we must
differentiate as we read between a variable and a constant and,
for a constant, read in the characters and evaluate it. Whether this is
done explicitly in Factor, or whether the procedure Getch is expanded
and renamed to include this function is a matter of taste. The precise
details of these changes depend on the form of structure chosen for
the tree - for example whether the leaves have nil branches or
none at all.
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Further, there are many examples, such as the expression evalua-
tion of Fig. 3.23 and the tautology determiner of Fig. 5.4, where
we would like to be able to have multi-character identifiers as well
and to associate these with the integers 1, 2,.... To do so, Getch,
or as we shall now call it, GetSym, can be further expanded, reading
in the characters of the identifier, adding them to a list (if they are
not already there) and setting sym (a two-field record replacing ch)
to indicate firstly that the symbol read is an identifier, and secondly
what its associated integer is.

It is clear from this description that GetSym is essentially a lexical
analyser. This explains the use of the word symbol and the letters
sym in this description.

5.3 Another example: Sierpinski curves
On the cover of this book, and indeed of all books in this
series, is a pattern based on the Sierpinski space-filling curves. There
is an (infinite) series of such curves, and on the cover two are super-
imposed and stylised. In Fig. 5.7 we give the curves, separated, of
order 1 to 4.

Fig. 5.7. Sierpinski curves of orders 1 to 4.
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It is clear that a curve of order: can be created from one of order
i—1. For example we could place four half-size versions of the
simpler version in a square, join them together with two vertical
and two horizontal lines and then rub out the sloping lines that are
Joined by these new lines.

However, it is difficult to get a graph plotter to rub out lines.
Furthermore we wish to be able to draw a curve of order n by one
continuous line, and so we must use a different approach. The follow-
ing description and procedure is based on that of Wirth (1976).

The algorithm is simple once we realise that a curve consists of
four components joined at the comers. In Fig. 5.8 we illustrate this
with respect to curves of order 1. We will draw the curves in a clock-
wise direction starting in the bottom left-hand corner and will name
the components N, E, S, W reflecting the direction in which they
are drawn.

Note that all vertical and horizontal lines in a curve of a given
order are of the same length, say 2k, and the sloping lines are of

length\/(2)A.

Fig. 5.8. The components of Sierpinski curves.

o 7\

Now the components of a curve of order i are each made from
the components of the curve of order i—1, joined by oblique and
horizontal or vertical lines. Fig. 5.8 also shows, for example, that
in drawing the N component of a curve of order i we draw curves
of order i—1 in the sequence N, E, W, N joining them with lines in
the directions NE, N, and NW respectively. A component curve of
order 1 consists just of the three joining lines.

Suppose we use the notation:

LineNE

102




to mean draw a line of length+/(2)# in a north-easterly direction,
LineN

to mean draw a line of length 2/ in a northerly direction, and define:
type order = 1. .maxorder

where maxorder is a constant related to the resolution of the plotter.
Then an appropriate procedure for N is given in Fig. 5.9.

Fig. 5.9. A procedure for drawing a north component.

procedure N(i:order);

begin

if 1 = 1 then
begin
LineNE; LineN; LineNW
end

else
begin
N(i-1); LineNE;
E(i-1); LineN;
W(i-1); LineNW;
N(i-1)
end

end { of procedure "N" };

Clearly the procedures for E, W and S are closely related and
could be written down by inspection. The main procedure too
follows from the description. The procedure of Fig. 5.10 then draws
a Sierpinski curve of order i and size p. The size is measured in the
units of the plotter used. Thus if the maximum range of the plotter
is maxsize units then:

type size = 1. .maxsize
The procedures StartPlot and StopPlot, which we do not specify,
perform the appropriate housekeeping; and StartLine(x,y) initialises
the pen at co-ordinates (x,y).

Fig. 5.10. A procedure for drawing a Sierpinski curve of order n.

procedure Sierpinski(i:order; p:size);
var h:size;

{ The procedures N,E,S and W using Fig. 5.9
as a model together with their forward
declarations. }

begin { of procedure "Sierpinski" }
StartPlot;

h := p div (power(2,i+2)-2);
StartLine(0,round(h*sqrt(2)));
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N(i); LineNE;

E(i); LineSE;

S(i); LineSw;

W(i); LineNw;

StopPlot

end { of procedure "Sierpinski" };

5.4 Variants of Sterpinski and its analysis
The reader will have noticed that the procedure N of Fig.
5.9 could be reduced in size by postulating a curve of order 0 whose
components are null (and which therefore consists only of the four
connecting lines, making a diamond shape).
The type order must be redefined:

type order = 0. .maxorder
and when this is done we arrive at the procedure of Fig. 5.11.

Fig. 5.11. A more succinct procedure for drawing a north component.

procedure N(i:order);
begin
if i <> 0 then
begin
N(i-1); LineNE;
E(i-1); LineN;
W(i-1); LineNW;
N(i-1)
end
end { of procedure "N" };

Let us now compare the two alternative versions of N by analysing
them. We first of all recognise that N, E, S, W have the same form
and the same cost. Then if:

p = cost of a procedure call
[ = cost of a Line operation
¢ = cost of a condition

We have for the original procedure:
T;=4p+38l+c+4T;,, >1
=3l +c, =1
and for the succinct version:
T, =4 +3l+c+4T;_;, >0
=c :=0
The solutions of these recurrence relations can be produced by
substitution to give:
T, = 4"(p/3) + 4"(c/3) + 4™(I)
+ {small constants}
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T, = 4 *1(p/3) + 4"+ 1(c/3) + 4"(l)
+ {small constants}
(Of course, since Sierpinski calls N, E, S and W in turn, these figures
have to be multiplied by 4 but we can safely ignore that fact in the
comparisons.)

Thus the number of Line operations is the same (the same curve
is being drawn) but the succinct version has four times the number
of procedure calls and four times the number of tests. Thus if [ is
small, as it would be if the Line procedure simply wrote a record of
three integers to a file, then the difference in cost of the two pro-
cedures might well be a factor of two. On the other hand, if the
plotter were on line to the program, then / would dominate and the
procedures would have approximately the same running time.

The reader might also have wondered whether the four proce-
dures N, E, S, and W could be replaced by a single procedure. Indeed
they can by giving the procedure (we shall now call it NESW) an
extra parameter d say, of type direction defined:

type direction = (N,E,S,W)

The simplest solution would be for the procedure to consist of
a case-statement, with d as the selector of one of the sequences
which make up the bodies of the original procedures. However,
these sequences can be merged into one if we parameterise the line
drawing sequences. Suppose:

Oblique(d1,d2)
draws a line of length \/(2)4 in one of the directions NE, NW, SE
or SW as specified by d1 and d2; and

Ortho(d)
draws a line of length 2k in one of the directions N, E, S or W as
specified by d. Then we can produce the procedure of Fig. 5.12,
which, for simplicity is based on the succinct procedure of Fig. 5.11.

Fig. 5.12. Merging N, E, S and W into one procedure.
procedure NESW(d:direction; i:order);
var dsucc,dpred:direction;

begin

if i <> 0 then
begin
if d = W then dsucc := N else dsucc := succ(d);
if d = N then dpred := W else dpred := pred(d);

NESW(d,i-1); Oblique(d,dsucc);
NESW(dsucc,i-1); Ortho(d);
NESW(dpred,i-1); Oblique(d,dpred);
NESW(d,i-1)
end

end { of procedure "NESW" };
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Clearly this procedure is less transparent than the four it replaces
and is less efficient: there is an extra parameter to be transmitted,
the original parameter has now to be calculated and the line drawing
primitives are not ideally suited to most graph plotters. We would
prefer to use the four separate procedures, especially as they are
flexible enough to deal with less regular curves than those of
Sierpinski, such as those of Hilbert. (See Wirth (1976) for these
curves.)

5.5 Ackermann’s function
We really cannot leave this subject without considering

Ackermann’s function. However, rather than produce it out of the
blue, we show how it came to be created.

Let us restrict ourselves to natural numbers.

Consider first exponentiation. If we express multiplication by
a function Mult instead of the operator *, and if we massage the
explicitly defined case to use multiplication we then arrive at the
procedure of Fig. 5.13.

Fig. 5.13. A function for the exponentiation of natural numbers.

function Power(x,n:natural):natural;

begin
if n = 0 then Power := Mult(l,1l)
else Power := Mult(x,Power(x,n-1))

end { of function "Power" };

If we suppose that Pascal does not have multiplication built-in
then we can define Mult in terms of addition as shown in Fig. 5.14.

Fig. 5.14. A function for multiplication of natural numbers.

function Mult(x,n:natural):natural;
begin
if n = 0 then Mult := Add(-1,1)
else Mult := Add(x,Mult(x,n-1))
end { of function "Mult" };

Similarly we could define Add in terms of the successor function,
succ, which we might then explicitly program. (In Pascal, of course,
it exists as a standard function.)

Now the procedures of Fig. 5.13 and Fig. 5.14 are very similar
in the same way that N, E, S and W of the Sierpinski example are
similar. Let us associate the integer 0 with succ, 1 with add, 2 with
mult and 3 with power. Then we can express all the procedures as
a single procedure using a further parameter m. This is done in
Fig. 5.15 where we assume that E1 and E2 are expressions with the
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appropriate values. (Since we are about to eliminate them it is
wasteful to spell them out in detail.)

Fig. 5.15. A generalisation of Mult and Power.

function F(m,x,n:natural):natural;
begin
if m = 0 then F := El
else if n = 0 then F := F(m-1,E2,1)
else F := F(m-1,x,F(m,x,n=1))
end { of function "F" };

The Ackermann function given in Fig. 5.16 is an abstraction of this
procedure in which E1 is set to n+1 and x is simply eliminated.

Fig. 5.16. Ackermann’s function.

function Ack(m,n:natural):natural;
begin
if m = 0 then Ack := n+l
elgse if n = 0 then Ack := Ack(m-1,1)
elge Ack := Ack(m-1,Ack(m,n-1))
end { of function "Ack" };

Clearly this function uses recursion with a vengeance!

The real interest attached to Ackermann’s function is theoretical:
in the language of complexity theory it is a recursive function which
is not primitive-recursive. However it also serves as a good test of the
understanding of recursion: the reader might care to evaluate this
function by hand for m=2, n=3. He may also like to calculate some
values by running the procedure of Fig. 5.16. (Be careful! For m=3
this procedure effectively performs exponentiation by using only
succ!)

5.6 Recursive calls
In all the examples so far used in this book, the recursion has
been manifest. We can see simply by looking at the procedure that
recursion is involved, and, apart from specially constructed cases,
a procedure or set of procedures is either recursive or not recursive.
However, recursion can also result through parametric procedures,
in which case procedures which are not explicitly recursive are called
recursively.
Let us suppose we have an integration procedure like that of §4.6
with a heading:
function Quad(function f (x :real) :real; a,b :real) :real
which has a value equal to f2f(x)dx. We are not concerned with

107




how Quad operates, but for simplicity of the following description
we assume that it is not adaptive. That is, it is not, of itself, recursive.
To use this procedure to evaluate:

b
y=f e* cos x dx

a
we must first write a procedure which will evaluate the integrand
given a value of x:
function ExpCos(x :real);
begin
ExpCos := exp(x) *cos(x)
end
and then call Quad with that function and the two limits as arguments.
y := Quad(ExpCos,a,b)
Now suppose we wish Lo evaluate the double integral:

bx pby
z=f F(x,y) dy dx
ax Jay

Here the integrand is itself an integral:

by
f F(x, y) dy
ay

and we have to write a function, 7 say, that will evaluate this integral
for given values of x. When we do so the double integral can be
evaluated as before by:

z := Quad(l,ax,bx)
The function 7 is simply written as Fig. 5.17 shows.

Fig. 5.17. Evaluating a double integral.
function I(x:real):real;
function J(y:real):real;
begin

J := F(x,y)
end { of function "J" };

begin
1 := Quad(J,ay,by)
end { of function "I" };
Note that Quad is now used recursively. The statement
z := Quad(I,ax,bx)
invokes Quad which, by calling the parameter f, calls / which again
calls Quad.
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Of course if Quad were adaptive as is Integral of Fig. 4.7 then it
would be directly recursive too.

5.7 Substitution parameters

If we exclude for the moment parametric procedures and
functions, Pascal has two classes of parameters, those called by value
and those called as variables, whose characteristics are well under-
stood. In this section we assume the existence of a further class,
parameters called by substitution}, whose operation is as follows.
Within a procedure, a formal parameter behaves as if the text of
the actual parameter were substituted for it. Consider the procedure
of Fig. 5.18 and assume the appropriate declarations of the quantities
involved.

Fig. 5.18. A procedure to illustrate call by substitution.
procedure Ex(subst k,m:integer; subst x,y:real);

begin
for k :=1 tom do
X :=y

end { of procedure "Ex" };

The call:
Ex(s, 1, p, 0)
causes the body to behave as:
begin
fori:=1to1ldo
p:=0
end
and so sets p to 0. (Of course, as a side-effect, 7 becomes undefined.)
The call:
Ex(i,n,a[i),a[i]+b[1])
causes the body to behave as:
begin
fori :=1ton do
alt] :=a[:] +b]7]
end
so that the vector b is added to the vector a. The implementation of
substitution parameters does not involve actual textual substitution
since, when the program is running, the text has been converted to
binary. Instead an access of such a formal parameter is compiled into

t This is Algol’s call-by-name parameter.
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a sequence which determines the value (or the address in appropriate
situations) of the actual parameter. In what follows it is easier to
think in these terms rather than in terms of textual substitution,
since textual substitution often produces syntactically invalid pro-
grams. Clearly an actual parameter may be an expression provided
the corresponding formal parameter does not appear on the left-
hand side of our assignment, either explicitly (as x in Fig. 5.17) or
implicitly (as k).

Now consider the closely related function, called GPS by Knuth
and Merner (1961), of Fig. 5.19.

Fig. 5.19. Knuth’s GPS function.

function GPS(subst k,m:integer; subst x,y:real):integer;
begi
k := 1;
while k <= m do
begin
X 1= y;
k =k +1
end;
GPS :=1
end { of function "GPS" };

It is simply Ex recast so that it uses a while-statement and expressed
as a function whose value is 1. Thus to set p to 0 we write:
dummy := GPS(i, 1, p, 0)
ignoring the assignment of 1 to dummy. Similarly
dummy := GPS(i,n,a[?],a[¢]+b[{])
causes b to be added to a.
Now the fact that GPS is a function with the value 1 means that:
dummy := GPS(k,0%xGPS(¢,n,a[i},a[¢]+b[(]),x,y)
where x and y are real variables also causes b to be added to a. Con-
sider the outer call of GPS. Clearly its loop is not obeyed because its
upper limit is 0. However, in determining this value, the inner call has
to be evaluated, and this as we saw in the previous paragraph, causes
b to be added to a.
From this observation we can see that:
dummy := GPS(t, (n—1)*GPS(j,n,a[,j),a[s,j] +b[4,7]),%,Y)
adds the matrix b to the matrix a. The outer call causes n—1 assign-
ments of x toy with ¢ being set to 1, 2... n. However in this loop the
final value (n—1) *GPS(j,n,al,j),a[?,j]+b[i,7]) is evaluated n times.
On each occasion the /th row of b is added to a.
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Clearly, while the function GPS is not recursive, it is invoked
recursively simply by its call.

It is interesting to note that this function is very powerful. Knuth
and Merner state that any computable function can be expressed as
a single call of GPS. Hence its name: an acronym for General Problem
Solver.

EXERCISES

5.1 Modify the function Tautology of Fig. 5.4 so that it deter-
mines whether a logical formula is a tautology, a contradiction
(i.e. it is false for all combinations of its arguments) or
neither of these two.

5.2 Expand your tautology/contradiction determiner (Ex. 5.1)
so that it reads in the expressions it tests.

5.3 Expand your differentiation program (Ex. 3.7) to read in
the expressions if differentiates.

Fig. 5.20. W-curves of order 1 to 4.
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5.4 Write a general package for reading in arithmetic expressions
and simplifying them.

5.5 Write a program for a simple calculating language with two
forms of statement, one for assigning a value to a variable
and one for printing out an expression as illustrated below:
LET X =7
LETY =3
PRINT (X+Y)*(X—Y)/8
This should result in 5 being printed.

5.6 Fig. 5.20 gives curves, due to Wirth (1976) who calls them
W-curves, of order 1 and 4. Write a procedure to draw a curve
of order n.

5.7 Consider the snowflake curves of Fig. 5.21. As the order
increases, so does the perimeter (by a factor of 4 each time)
but the area slowly approaches a limiting value. Write a proce-
dure to draw a curve of order n.

Fig. 5.21. The snowflake curves of order 1 to 4.
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5.8 Analyse the NESW procedure of Fig. 5.12 to determine the
extra cost involved in the use of that procedure rather than
the N, E, S and W procedures of Fig. 5.11. Do the same
for the version of Fig. 5.22 which is essentially that of
Goldschlager (1981).

Fig. 5.22. An alternative NESW procedure.

procedure NESW(dl,d2,d3,d4:direction; i:order);

begin

if i <> 0 then
begin
NESW(dl,d2,d3,d4,i-1); Oblique(dl,d2);
NESW(d2,d3,d4,d1,i-1); Ortho(dl);
NESW(d4,dl,d2,d3,i-1); Oblique(dl,d4);
NESW(d1,d2,d3,d4,1i-1)
end

end { of procedure "NESW" };

5.9 Consider a generalisation of the Towers of Hanoi problem
discussed in §4.1, in which a fourth peg is added (Rohl
& Gedeon (1983)). Fig. 5.23 gives the inner procedure H4
for generating a solution based on the use of the traditional
procedure, here renamed H3 to underline its applicability
to the three-peg case. The function f(n), which we leave
undefined, determines the number of rings to be moved
using only three pegs.

Fig. 5.23. The inner procedure of a four-tower Hano? procedure,

procedure H4(n:ndiscs; pl,p2,p3,p4:pegtype);

begin

if n <> 0 then
begin
H4(n'f(n),P1,P4,P3’P2);
H3(f(n),pl,p2,p3);
H4(n'f(n)»P4,P2sP3:P1)
end

end { of procedure "H4" };

Write a generalised procedure with the heading:

procedure H(m :npegs,n:ndiscs; p : pegtype)

to generate the solution for m pegs assuming the existence
of a function f(m,n), whose value is the number of the
n rings to be moved using m—1 pegs. Note that pegtype is
now an array.
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5.10 Use Quad to evaluate [5* f,,’;,y S22 f (x,v,2) dz dy dx.
5.11 Use GPS to:
(i) perform the scalar product of two vectors;
(i1) multiply two matrices;
(iii) find the nth prime number.
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6

Recursion with n-ary trees
and graphs

In Chapter 2 we considered a very simple data structure, the linked-
linear list; and in Chapter 3 we moved on to binary trees. In this
chapter we look at two much more general structures.

Firstly we shall consider trees in which nodes may have more
than two branches, and in which the number of branches may vary
from node to node. For want of a better name we shall call them
n-ary trees.

Secondly we shall consider even more general structures which
arise when more than one branch leads into a node. These structures
are called directed graphs. Clearly they are more general than n-ary
trees, which, therefore, may be regarded as a special case.

6.1 B-trees
We consider first the n-ary tree, and, in this section, its use
in searching applications. Such trees are usually called B-trees,
a convention we shall follow.

When we discussed binary trees in Chapter 2 we noted that search-
ing, insertion and deletion were all O(log n), provided that the tree
remained balanced. Although we did not discuss the topic of balance
in much detail there, we referred the reader to a number of relevant
techniques. B-trees arise in this connection too, though here we
shall approach them from a different point of view.

Let us imagine first of all that we have a sequence of variable-
length items in the store with an item with an infinite key placed
at the end.

Let us now provide an index block, that is a block containing, for
each data item, its key and a reference to the item itself. Then the
searching process can be decomposed into two parts: first search the
index block to determine from the keys the appropriate data item,




second access that item. Note that the items need not be contiguous
in the store. Indeed they may be on the heap, a situation we will
assume in what follows, or even on disk.

Finally let us suppose that the number of entries in the index
block is kept between n/2 and n for some given value of n. In practice
n might be a few hundred: in our diagrams it will be 4. Then, for
a large enough number of items, we need a number of index blocks
and an index of index blocks and so on. These higher level index
blocks hold the maximum key of each of the index blocks they refer
to. This structure of index blocks is called a B-tree and = is called
its order.

Fig. 6.1 gives an example of a B-tree of order 4 containing the keys:

5 8 13 15 16 18 19 22 30 40 46 48 60 61 67

Note that the last key on any level is an ‘infinite’ one. We use this
to aid the searching of blocks.
An appropriate definition of this structure is:

const n = {the order of the tree};
nover2 = {n div 2};
type tagtype = (index,data);
sizetype = 1. .n;
itemtype = record
key :keytype;
info :infotype
end;
Bptr = record
maxkey :keytype;
case tag:tagtype of
index : (indexptr: tindextype);
data : (itemptr: titemtype)
end;
indextype = record
nbranches :sizetype;
branches : array [sizetype] of Bptr
end

Note that, when a branch refers to a data item, maxkey holds the
value of the (only) key of that item.

It is clear that a B-tree is balanced by its very definition, and when
we discuss insertion we will see that it expands at the root. That is,
the initial blocks are on the same level, but as they increase in
number it sometimes becomes necessary to add a new level of index
block. Thus for N items its height ranges between log,N, when there
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Fig. 6.1. A B-tree of order 4.

[ 15 16 |

are precisely n entries to each index block, and log,;2N, when each
block is only half full. At the early stages of creating a tree, when
the number of items is less than n/2, then clearly the constraint on
the number of items in a block cannot hold. However, if the tree has
at least n/2 items, then the insertion procedure will ensure that it
does hold. The constraint on the number of entries in an index block
always holds for leaf and internal blocks but it may or may not hold
for the root block.

LIB 19 22] [30 40 46 48|

6.2 The basic operations on B-trees
From the description given above it is fairly clear how

a function for searching could be written. Let us assume the exis-
tence of a function, IndexSub, which searches an index block to find
which lower level block must be searched next. More precisely its
value is the smallest subscript of branches whose maxkey field is
greater than or equal to the key being sought, k. Clearly this function
can be produced by minor modifications to the Indrray functions
of Chapter 1.

Given this function, we can produce the function OnBTree as
shown in Fig. 6.2.

Fig. 6.2, Searching a B-tree.
function OnBTree(B:Bptr; k:keytype):Boolean;

function O(B:Bptr):Boolean;
var s:sizetype;
begin
with B.indexptrt do
begin
s := IndexSub(branches,nbranches,k);
if branches([s].tag = data then

0 := k = branches[s].maxkey
else

0 := O(branches(s])
end

end { of function "0" };
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begin

1f B.indexptr = nil then OnBTree := false
else OnBTree := 0(B)

end { of function "OnBTree" };

The function IndexSub can use either a linear search (appropriate
for small orders) or binary search (appropriate for larger orders).

Note, however, that OnBTree exhibits double recursion: there is
the recursion involved in descending the tree, and the recursion
involved in finding the appropriate branch to descend. This latter
is linear and postorder, and can be easily made iterative. This is
one of those cases referred to in §2.8 where we would prefer to
use the iterative version. Further we would use the sequence directly
rather than make it a function.

We move on now to insertion. As a new item is added we have to
maintain the index blocks, perhaps creating a new level. We consider
two cases in turn which we illustrate by inserting different keys into
the tree of Fig. 6.1:

(i) A key of 20. We find and search the appropriate leaf block
(here the third from the left) and insert it into the correct
place, moving all larger keys (here only 22) to the right. The
other index blocks need no modification. The result is shown
in Fig. 6.3.

Fig. 6.3. The result of adding a key of 20 to the tree of Fig. 6.1.

[ 15 16 |

(ii) A key of 45. It must go into the fourth block from the
left - but this is full. The solution is to ‘split the node’. That
is, a new block is created and placed in position just after
the full one. Then the items in the full block are distributed
equally across the two, the item added at the appropriate
place in the appropriate block, and a new entry made in the
index block above. Fig. 6.4 shows the result.

Note that two entries have changed in the middle-level index block
on the right. A new key, 40, has been added with the appropriate

[18 19 20 22] [30 40 46 48] [60 61 67 «
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reference to the leaf block; and the key 48 has been moved to the
right and acquired a reference to the new leaf block.

It is clear that this splitting can propagate up the tree, as the
index block in turn may be full just before one of its data block
splits. If this reaches the root, then the splitting process involves
the creation of a new root and the tree grows by a level.

Fig. 6.5, the InsertOnBTree procedure, which inserts a branch
pointing to an item held on the heap, is written in a two-level form.
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Fig. 6.5. Inserting a key onto a B-tree,

procedure InsertOnBTree(var B:Bptr; br:Bptr);
var newbr,oldbr:Bptr;
split:Boolean;

procedure I(var B:Bptr; var split:Boolean; var newbr:Bptr);
{ This adds the branch on to the subtree B. If as a result
the root block is split, then split is set to true and
newbr set to point to the new block. }
var s:sizetype;

procedure InsertInBlock(br:Bptr);

{ This actually inserts a branch br into the current block B,

setting split and newbr appropriately. }
var j:sizetype;
begin
{ See if the block has to be split }
split := B.indexptrt.nbranches = n;
if split them { create block }
begin
{ Create new block from first half of old block. }
newbr := B;
with newbr,indexptrt do
begin
nbranches := nover2;
maxkey := branches[nbranches].maxkey
end;
{ Adjust the old block accordingly. }
new(B.indexptr);
with B,indexptrt{ do
begin
nbranches := nover2;
for j := 1 to nbranches do
branches[j] := newbr.indexptrf.branches[j+nover2]
end
end { of creating the block };
{ Now insert br into the right block }
if not split or (s>nover2) them { in old block }
with B.indexptr} do
begin
if split then s := s—nover2;
for j := nbranches downto s do
branches|[j+1] := branches[j];
branches[s] := br;
nbranches := nbranches+l
end { of inserting in old block }




else { in new block }
with newbr.indexptrf do
begin
for j := nbranches downto s do
branches[j+1] := branches[j];
branches[s] := br;
nbranches := nbranches+l
end { of inserting in new block }
end { of procedure "InsertInBlock" };

begin { of procedure "I" }
with B.indexptrt do
begin
s := IndexSub(branches,nbranches, br.maxkey);
if branches({s].tag = data then
if br.maxkey = branches[s].maxkey then { already there }
split := false
else InsertInBlock(br)
else { if branches{s].tag = index then }
begin
I(branches[s],split,newbr);
if split then
InsertInBlock(newbr)
end
end
end { of procedure "1I" };

begin { of procedure "InsertOnBTree" }
if B.indexptr = nil then { create initial tree }
begin
B.tag := index;
new(B.indexptr);
B.indexptr%.nbranches i= 13
B.indexptr{.branches[l] := br;
B.maxkey := br.maxkey
end
else
begin
I(B,split,newbr);
if split then { create new level }
begin
oldbr := B;
new(B.indexptr);
B.indexptr*.nbranches 1= 2;

B.indexptr{.branches[l] := newbr;
B.indexptrt.branches[2] := oldbr
end

end

end { of procedure "InsertOnBTree" };

The deletion procedure for B-trees obviously follows similar
lines. However, this time the index blocks merge rather than split
as items are deleted. We leave it to the reader to create his own
version.
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6.3 A discussion of B-trees

Our approach to B-trees through the notion of multi-level
indexes is not the only one. An alternative is to view them as the
result of flattening logon levels of a binary tree into blocks. With
this view it is natural to have i¢tems in the internal blocks, whereas
with our representation we had only keys there. This is the approach
usually adopted in texts on data structures. The structure of the
processing procedures is simplified since they do not need to dis-
criminate on the type of the block. We refer the reader to Wirth
(1976) for the details.

B-trees find application in searching large sequences which by
their very size have to be stored on external devices. For a tree of
height & only 2h+1 blocks ever have to be in store. Usually, of
course, there will be 4, but because of the merging and splitting
processes, we sometimes have to create new blocks. At worst we
have to create one for each of those searched plus one for a new
root. If we assume that fetching blocks from external devices is
slow, then the virtue of a tree of fixed height is manifest. Further
the time taken searching through the blocks is probably insignificant.

B-trees are used for internal searching too, and simple forms of
them such as 2-3 trees have already been referred to.

Of course, the searching, inserting and deleting procedures all
exhibit only linear recursion provided, of course, that the searching
through the blocks is done iteratively. However, consider the proce-
dure for writing out the keys on a B-tree in order given in Fig. 6.6,
which uses WriteKey, to write out the individual keys.

Fig. 6.6. Writing out a B-tree.

procedure WriteBTree(B:Bptr);
var s:sizetype;
begin
if B.indexptr <> nil then
with B.indexptr} do
for s := 1 to nbranches do
if branches[s].tag = data then
WriteKey(branches [s].maxkey)
else
WriteBTree(branches([s])
end { of procedure "WriteBTree" };

This exhibits n-ary recursion. That is, except at the bottom-level,
the procedure calls itself a number of times, one for each branch.
This number may well be large, and is certainly variable, and so the
calls are performed in a loop. There is only one textual call, but it
is obeyed repetitively.
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6.4 N-ary expression trees
Let us now return to expressions. So far we have used binary
expression trees, the internal nodes of which in general have two
branches representing the binary nature of the operators involved
such as + and —. (They also included nodes for unary operators
which, of course, have only one branch.) An example is given on the
left of Fig. 6.7 for the expression h* ( fO+4%f1+f2) xonethird.

Fig. 6.7. Trees holding & * (fO + 4 * f1 + £2) * onethird.
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On the right is an n-ary tree for the same expression. The opera-
tors are sum, Z, and product, Il, which in general have an arbitrary
number of arguments, so that the tree has an arbitrary number of
branches.

What is the advantage of the n-ary tree over the binary tree for
expressions? It is simply that the n-ary tree explicitly reflects the
assoctative nature of addition and multiplication. It is clear that the
expression is a product of three quantities, two of which are £ and
onethird, the third being a sum of three quantities.

The same information is available in the binary tree, of course,
but there it is implicit.

That this is an advantage can be simply demonstrated. Suppose
we had produced, perhaps as the result of some manipulation, the
binary tree of Fig. 6.8(i). It is not immediately clear that the 2 and
the 1 could be combined as in Fig. 6.8(ii), this latter tree being of
quite a different structure. Given the equivalent n-ary tree, Fig.
6.8(iii) to start with, the transformation to the tree of Fig. 6.8(iv)
can hardly be missed. This is only the simplest example of the
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Fig. 6.8. The advantage of n-ary trees.
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advantages of n-ary trees: others include the ease with which com-
pilers using them can produce more optimum code.

To return, not all operators are associative so we cannot create
equivalent n-ary operators: it makes no sense to talk of the difference
of three quantities, for example. We must therefore allow n-ary trees
to include binary (and unary) nodes as appropriate. We will, however,
avoid the use of the subtraction operator by regarding subtraction
as the addition of the negative of the second operand. This allows it
to become an operand of X-node. Similarly we consider division
as multiplication by the reciprocal of the second operand. In Fig.
6.9 we give n-ary trees for hx(f0+4*f1+f2)/3 and b12—4*axc,
in which — represents the unary negative operator and ~ the unary
reciprocal operator.

Fig. 6.9. N-ary trees for h * (fO+ 4 x f1+f2)/3andb 12— 4x*a=xc.
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6.5 The storage of n-ary expression trees
The characteristic of the n-ary tree is that the number of
branches of an n-ary node is variable, and this dominates the problem
of how to store such trees. Let us suppose, firstly, that we can
place some sensible upper limit on this number. This might be
reasonable in a compiler, for example, since any expression being
compiled is bound to be relatively short. Then the branches of
such a node can be stored in an array. An appropriate definition,
based on that for binary trees in §3.8, might be:
type range = 1. .max;
tagtype = (constant,variable,unary,binary,nary);
naryptr = tnode;
node = record
case tag:tagtype of
constant: (value:real):
variable : (index :range);
unary : (unop : (neg,recip);
branch :naryptr);
binary : (left :naryptr;
binop : (expon);
right :naryptr);
nary : (naryop : (sum,prod);
nbranches :sizetype;
branches : array [sizetype] of naryptr)
end
where sizetype defines the range of the number of branches an
n-ary node may have. Fig. 6.10 gives a pictorial representation of

Fig. 6.10. Storage of n-ary trees using arrays.
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the storage of hx(f0+4xf1+f2)/3 using this definition. Note that
the tag fields have been omitted, and that symbols have been used
for all operators and operands for clarity. Sizetype is assumed
tobe 1. .4.

Inasmuch as n-ary trees are an obvious extension of binary trees
(or almost so) the processing of these trees in many ways is an
obvious extension of the processing of binary trees. For example
in Fig. 6.11 we give a function for evaluating an expression held
in such a tree.

Fig. 6.11. Evaluating an expression held in an n-ary tree.

function ExprValue(n:naryptr):real;
var vl,v2:real;
i:sizetype;
begin
case nf.tag of
constant:
ExprValue := n{.value;
variable:
ExprValue := data[nf.index];
unary:
begin
vl := ExprValue(nf.branch);
case nf.unop of
neg:ExprValue := -vl;
recip:Exprvalue := 1/vl
end { of cases on "nf.unop" }

end { of case "unary" };
binary
begin
vl := ExprValue(nf.left);
v2 := ExprValue(nI.right);
case nf.binop of
expon: ExprValue := Power(vl,v2)

end { of cases on "n{.binop" }
end { of case "binary" };
nary:
begin
vl := ExprValue(n{.branches[l]);
for i := 2 to nf.nbranches do
begin
v2 := ExprValue(n{.branches(i]);
case nf.naryop of
sum:vl := vi+v2;
prod:vl := vl*v2
end { of cases on "nf.naryop" }
end { of loop on "i" };
ExprValue := vl
end { of case "nary" }
end { of cases on "nf.tag" }
end { of function "ExprvValue" };
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Note that the sequence for processing a binary node is closely
related to that for processing an n-ary node. We could in fact elimi-
nate the notion of a binary node altogether, expanding the n-ary
node to include it. While this would have simplified the ExprValue
function, we chose not to do so, since the distinction is sometimes
important: the operators at n-ary nodes are commutative, while
those at binary nodes may not be. However in §6.6 we make the
contrary decision so that the reader may decide for himself.

In many situations the use of an array would be unacceptable.
In algebraic manipulation systems, the size of n-ary nodes varies
quite markedly during the running of a program. The range specified
by sizetype would have to be quite large and at any one time, most
of the nodes would have many fewer branches. Thus an alternative
would be to store the branches of an n-ary node in alist. An appro-
priate definition then might be:

type range = 1. .max;
tagtype = (constant,variable,unary,binary,nary);
naryptr = tnode;
node = record
case tag:tagtype of
constant : (value :real);
variable : (index :range);
unary : (unop : (neg,recip);
branch :naryptr);
binary : (left :naryptr;
binop :expon;
right :naryptr);
nary :(naryop : (sum,prod);
branches :listptr)
end
where:
listptr = tlistnode;
listnode = record
item :naryptr;
next :listptr
end

In Fig. 6.12 we give a pictorial representation of the storage of
hx( f0+4%f1+f2)/3 using the same conventions as those of Fig. 6.10.

The ExprValue procedure of Fig. 6.11 is easily modified to
operate with this structure: the for-statement which accesses the
branches in turn from the elements of the array is replaced by
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Fig. 6.12. Storage of n-ary trees using lists.
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a while-statement which accesses them by sequencing through the list.

Reference to the diagram of Fig. 6.12 shows that the storage is
dominated by space for pointers. The situation is worse than suggested
by the diagram since all nodes, even those holding variables and
constants, will be of the same size.

We can eliminate much of the extra space by opting for quite
a different strategy: we can represent an n-ary node not by alist of
pointers to its operands but by a single pointer to its first operand,
with all operands being extended to include a pointer to the next
operand of the parent node. Fig. 6.13 illustrates this with respect
to h* (fO+4xf1+£2)/3.

An appropriate definition of this structure is:
type range = 1. .max;

tagtype = (constant,variable,unary,binary,nary);

narytype = tnode;

node = record
across,down :narytype;
case tag:tagtype of
constant : (value :real);
variable : (index :range);
unary : (unop : (neg,recip));
binary : (binop : (expon));
nary : (naryop : (sum,power))
end

Note that this definition obscures the ‘n-aryness’ of the tree. In
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Fig. 6.13. An alternative storage structure for n-ary trees.
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fact, it now has the structure of a binary tree, though a binary tree
with a special asymmetric nature. As our choice of identifiers implies,
one branch points down the conceptual n-ary tree to a son, the other
points across to a brother.

Since this book is not about data structures as such, we leave it to
the reader to pursue the use of this form for manipulating expressions.

6.6 Directed graphs
If we allow more than one branch to point to a node, the
tree becomes a directed graph, one of the most general structures
available. It, too, finds use in the processing of expressions.

Consider the expression 4 *r*(1+r)tn/((1+r)tn—1), which defines
the periodic repayment of a mortgage of 4, taken out over n periods
at a rate of r per period. An n-ary tree for this expression is given on
the left of Fig. 6.14. It is a perfectly normal n-ary tree and the
function ExprValue of Fig. 6.11 can be applied to it. However the

Fig. 6.14. An n-ary tree and a directed graph for
Axrx(1+r)1Tn/((Q+7)Tn—1).
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subexpression (1+r)fn would be evaluated twice, and since the
Power operation is expensive we would like to avoid this double
evaluation.

On the right of Fig. 6.14 we give a directed graph for the same
expression. Here there is only one subtree holding (1+r)1n, though
it is on branches from two nodes. Note, by the way that the definition
of the n-ary tree includes the directed graph. There is no way in
Pascal of defining a structure which ensures that all branches are
distinct! Note, too, that the ExprValue procedure of Fig. 6.11 will
operate correctly on a directed graph - but it will cause any common
subtree, such as that holding (1+r)1n, to be evaluated twice.

To ensure a single evaluation we must store more information in
the nodes - in particular whether or not the expression represented
by the subtree has been already evaluated, and if so what its value
is. Thus assuming an array implementation and only a single type
of operator node, an appropriate definition is:

type range = 1. .max;
tagtype = (constant,variable,operator);
graphptr = tnode;
node = record
evaluated : Boolean;
val :real;
case tag :tagtype of
constant : (value :real);
variable : (index :range);
operator:(op : (neg,recip,sum,prod,expon);
nbranches :sizetype;
branches : array [sizetype] of graphptr)
end

In Fig. 6.15 we give a procedure for evaluating an expression held
in such a graph. It assumes that, for all nodes, evaluated is initially
false. On completion, the value field of all nodes will be set to the
appropriate value.

Fig. 6.15. Evaluating an expression held in a graph.

function ExprValue(g:graphptr):real;
var v:real;
i:sizetype;

begin
if not gf.evaluated then

begin

gt.evaluated := true;

case gt.tag of
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constant:g¥.va1 1= gt.value;
variable:gf.val := data[gf.index}];
operator:
begin
gt.val := ExprValue(gf.branch(1]);
case gt.op of
neg:gt.val := -gt.val;
recip:gt.val := 1/gt.val;
sum,prod,expon:
for i := 2 to gf.nbranches do
begin
v := ExprValue(gt.branch[i]);
case gl.op of
sum:gt.val := gt.val+v;
prod:gf.val := gt.val*v;
expon:gf.val := Power(gt.val,v)
end { of cases on "gt.op" }
end { of loop on "i" }
end { of cases on "gt.op" }
end { of case "operator" }
end { of cases on "gf.tag" }
end { of the evaluation sequence };
ExprValue := gf.val
end { of function "ExprValue" };

Of course, this function, as a side-effect, alters the data structure
by changing the evaluated field of each node. If we wish to re-evaluate
the expression represented by the graph later, as would be the case
in an interpreter for example, we would need to restore the graph to
its initial state. Fig. 6.16 gives an appropriate procedure.

Fig. 6.16. Resetting all the nodes of a graph.

procedure Reset(g:graphptr);
var i:sizetype;
begin
if gt.evaluated then
begin
gl.evaluated := false;
if g.tag = operator them
for i := 1 to gt.nbranches do
Reset(gt.branch[i])
end
end { of procedure "Reset" };

This is a classical procedure which marks each node of the graph.
A more familiar form arises when the graph is represented in binary
tree form related in an obvious way to that for the n-ary tree described
in §6.5.
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6.7 Syntax analysis

Searching is perhaps the fundamental operation of computer
science; and searching procedures have appeared in many chapters
of this book. Almost every data structure can be adapted to its use.

In all the procedures we have written so far, the items are explicitly
stored in an array, list or tree, and any structure the items may have
is simply ignored. In many situations the items have structure which
can be capitalised on by appropriate forms of storage and appropriate
searching procedures. We will illustrate this in a progressive manner
by starting with the searching of a linked-linear list, as described

in Chapter 2.

Suppose we have the usual definition:

type listptr = tnode;
node = record

item :itemtype;

next :listptr
end

We are going to use recursion in a powerful way later on, so we
consider now the iterative version of the search procedure, given in

Fig. 2.8 and reproduced as Fig. 6.17.

Fig. 6.17. The non-recursive version of InList.

function InList(l:listptr; k:keytype):Boolean;

var found:Boolean;

begin
found := false;
while (1 <> nil) and not found do
begin
found := k = 1tf.item.key;
1 := 1t.next
end;
InList := found

end { of function "InList" };

Note that this procedure assumes that the key comparison can
be done in a single test. We now assume that this is not the case:
that is we assume that each item, which we subsequently refer to as

Fig. 6.18. Storage of alternatives and their components.
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an alternative is made up from components, which we also store in
alist. (Note that the whole item is now the key.)
To take a very simple example, suppose the two alternatives are
just RVP and WPP. Then they would be stored as shown in Fig. 6.18.
An appropriate definition is:
type comptr = Tcompnode;
compnode = record
comp :char;
nextcomp :comptr
end;
altptr = taltnode;
altnode = record
alt :comptr;
nextalt :altptr
end

The procedure of Fig. 6.17 is easily extended to process this
structure by expanding the comparison appropriately. If we assume
that the alternative being sought is held in an array of characters
which we will call source, then the procedure of Fig. 6.19 follows.

Fig. 6.19. Searching alternatives with components.

function InList(a:altptr; source:chararray):Boolean;
var altfound,compfound:Boolean;
c:comptr;
s:natural;
begin
altfound := false;
while (a<{>nil) and not altfound do
begin
8 :=1; ¢ := aT.alt; compfound := true;
while (¢<>nil) and compfound do
begin
compfound := ct.comp = source[s];
c := cl.nextcomp; s := s+l
end;
altfound := compfound;
a := af.nextalt
end;
InList := altfound
end { of function "InList" };

Note that because s is reset to 1 for each alternative, the procedure
works with a set of alternatives in which some start with the same
sequence of components such as:

RVP RVLL RI1Q
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Now let us suppose that the alternatives we are considering are
not just R VP and WPP but:

RVPO,RVPY1,RVP2,...,RVP9
wPPO,WPPY,WPP3, . .., WPP9

We could simply expand our list structure to include all 20 alter-
natives. However this would ignore the structure of these alternatives,
which is that an item consists of either RVP or WPP followed by
a digit. Thus a component can be either a character (as before) or
a set of alternatives. We shall call sets of alternatives phrases, using
a word borrowed from English grammar, and give them names. The
name digit is appropriate for a phrase describing a digit. For the
main phrase we use the name bookfiles for reasons which will emerge
shortly. Fig. 6.20 gives the appropriate structure, in which we have
indicated the substructure associated with each phrase by putting
its name on the line containing its alternatives.
The changes to the type definition are trivial: compnode now
becomes a variant record:
tagtype = (compchar,compalt);
compnode = record
nextcomp :comptr;
case tag:tagtype of
compchar:(ch :char);
compalt : (a:altptr)
end
The changes to InList are a little more subtle. Firstly the compari-
son takes places either directly or by a recursive call depending on
the value of tag. Secondly, because of the recursion, we need a para-
meter to specify whereabouts in source the process is to start. It
will be called as a variable and will always hold the subscript of the
next character in source. Note that to ensure that the s is reset to
the ‘start’ of source for each alternative its initial value must be
stored in sO0.
An appropriate procedure is given in Fig. 6.21. Note that we have
changed its name to the more appropriate DefinedBy:

Fig. 6.21. Searching a structured definition.

function DefinedBy(a:altptr; source:chararray;
var s:natural):Boolean;
var altfound,compfound:Boolean;
cicomptr;
s0:natural;
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begin

80 := sj
altfound := false;
while (a<>nil) and not altfound do
begin
8 := 80; ¢ := af.alt; compfound := true;
while (¢c<>nil) and compfound do
begin
case cf.tag of
compchar:
begin
compfound := ct.ch = source(s];
s := s+l
end { of case "compchar" };
compalt:

compfound := DefinedBy(ct.a,source,s)
end { of cases on "ct.tag" };
¢ := cf.nextcomp
end { of looking at components };
altfound := compfound;
a := af.nextalt
end;
DefinedBy := altfound
end { of function "DefinedBy" };

Note that this is one of only two procedures with side-effects in
this book. As we regard it as a step on the way to syntax analysis
we leave it in this form - though with a certain amount of guilt.

The type definitions and the searching function are very general,
and can deal with much more complex situations. For example R VP
and WPP may be followed by an integer rather than just a digit; and
that in turn followed by a dot and either of the following three-letter
extensions, PAS, or BAK.

Examples include:

RVP8.PAS RVP11.BAK WPP99.PAS
but not:
RVP8.BAS RVP11Z.PAS

As users of the PDP-11 machines may have already recognised these
are all names of files. The initials of the name of this book are R VP,
and WPP are those of another book. The author’s file store contains
nmtany programs for testing the procedures of these books. The test
programs are numbered RVPO, RVP1 and so on. Each exists in two
files: the working file has the extension PAS (for Pascal) and the
back-up copy has BAK. This file store contains many other files, the
text of projects, answers to assignments and so on. Thus the defini-
tion above describes all the files concerned with these books. Fig. 6.22
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shows how such a structure is stored when, to add further variety,
we have introduced the phrase book which describes R VP and WPP.

The English description of these phrases is quite tortuous, and
clearly some formalism is needed. The classical one is Backus Naur
Form (BNF). The definition for our example is:

(bookfile) ::=<{bookXinteger).{extension)

(book) ::= RVP|WPP
(integer>  ::= (digit){integer);(digit)
(digit) ::=0[11213]4/516171819

{extension’ : := PAS|BAK
Here each definition corresponds to a phrase. Phrases are placed
within pointed brackets. The symbol ::= is read as ‘is defined to
be’ and the symbol | as ‘or’. The juxtaposition of two entities is
read as ‘followed by’.
Thus the first definition is read as:

‘A bookfile is defined to be a book followed by an integer,
followed by a dot, followed by an extension.’

The relationship between a set of BNF definitions and the structure
graph defined earlier is obvious.

The introduction of BNF immediately suggests syntax analysis.
But syntax analysis involves one extra dimension. The function
DefinedBy is adequate for some purposes. Suppose we want to copy
all files defined by bookfile onto a floppy disc or distribution (or
list them, or delete them). Then we could write a program which
scans the file directory and, for each file name in turn, asks whether
it is defined by bookfile. If so it causes the file to be copied.

In syntax analysis we need to know not merely whether a string
conforms to a phrase but why. That is, we need to know the structure
of the string. This is usually represented in a parse tree. Fig. 6.23
gives the parse tree for RVP8.PAS.

This shows that RVP8.PAS is a bookfile because it is a book
followed by an integer, followed by a dot followed by an extension.

Fig. 6.23. The parse tree for RVP8.PAS.
{bookfile)

\ T

{(book) (integer) . {extension)

N 7S

R V P (digt)

8
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(There is, of course, no other way it could be.) Further, the first
three letters are a book because they are R, V and P and so on.

This representation, while being easily interpretable by humans
is very redundant in that it includes every symbol of source. All we
really need to know for each phrase is which alternative is involved.
Thus, instead of the node marked (bookfile) in Fig. 6.23 and its four
pointers, we simply record the fact that it is the first (here the only)
alternative and three pointers pointing to the nodes for {book),
(integer) and (extension). The dot is not explicitly represented.
A complete tree is given in Fig. 6.24. To help the reader, the phrase
names have been put on the branches. Note that, as we have numbered
the alternatives from one, 8 is the ninth.

Fig. 6.24. The succinct form of the parse tree.
NN
(book) (integer) {extension)

1 2 1

(digit)

We define the structure of such a parse tree by:
type parseptr = tparsenode;
parsenode = record
altno:1. .maxalts;
nsubtrees:0. .maxcomps;
subtree:array [1. .maxcomps] of parseptr
end

where maxalts and maxcomps are appropriate constants. In most
cases maxalts and maxcomps are sufficiently small for this array
implementation to be viable. In Fig. 6.25 we give a procedure Parse,
which produces such a tree. More specifically, it parses the string in
source, starting at source[s], to see whether it is defined by the
definitions in a, setting found appropriately. If it is, then a parse
tree is created which is pointed to by p, and s is moved over the
characters recognised.

Fig. 6.25. A parse procedure.

procedure Parse(a:altptr; source:chararray; var found:Boolean;
var s:natural; var p:parseptr);
var altfound,compfound:Boolean;
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c:comptr;
sO:natural;
altno:1l..maxalts;
begin
sO := s;
altfound := false; altno := 1;
while (a<>nil) and not altfound do
begin
new(p); pf.nsubtrees := 0; pt.altno := altno;
s := s0;
c := aft.alt;
compfound := true;
while (¢<>nil) and compfound do
begin
case cf.tag of
compchar:
begin
compfound := cf.ch = source[s];
s 1= s+l;
end { of case "compchar" };
compalt:
begin
Parse(cT.a,s0utce,compfound,s,pf.subtree[pt.nsubtrees+1]);
if compfound then
pl.nsubtrees := pt.nsubtrees + 1
end { of case "compalt" };
end { of cases on "ct.tag" };
¢ := cf.nextcomp
end { of looking at components };

altfound := compfound;
if not altfound then { recover }
begin

DisposeTree(p);
a := af.nextalt;
altno := altno+l
end { of recovery if alternative not found }
end { of looking at alternatives };
found := altfound
end { of procedure "Parse" };

Note the use of DisposeTree, whose body is obvious, to return
any subtree produced during searching for an alternative which in
the end turns out not to be correct.

EXERCISES

6.1 Write a procedure with the heading:
DisposeBTree(B :Bptr)
which disposes a B-tree.
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6.2

6.3

6.4

6.5

6.6

6.7

Suppose, as suggested in §6.3, that the items on a B-tree were
at all nodes of the B-tree not simply at the leaves. Write
appropriate versions of OnBTree and InsertOnBTree.

Write a procedure for deleting a key from a B-tree.

Write a new version of Tautology for which the logical
expressions are stored in n-ary trees.

Write a differentiation procedure for expressions held in
binary trees.

Rewrite your solutions of Ex. 6.4 and Ex. 6.5 to use directed
graphs.

Write a procedure which, from a set of phrase definitions,
produces in an array a random member of the set of strings
defined by a specified member of the set of phrases.
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Simulating nested loops

Of course n-ary recursion can occur in the absence of data structures.
We illustrate this by transforming a binary procedure, the BinaryCodes
procedure of Fig. 4.27. In Fig. 7.1 we recast it to use a loop.

Fig. 7.1. The procedure BinaryCodes using a loop.

procedure BinaryCodes(r:range);
var s:array[range] of 0..1;

procedure Choose(d:range);
var 1:0..1;

begin

for i := 0 to 1 do
begin
s{d] := i;

if d <> r then Choose(d+l) else Process(s,r)
end { of loop on "i" }
end { of procedure "Choose" };

begin
Choose(l)
end { of procedure "BinaryCodes" };

The procedure is a little slower than the original version but
Process(s) occurs only once. This might be useful if Process(s) were
to be replaced in a particular application by an in situ sequence
rather than a procedure call.

Note that this version of the BinaryCodes procedure can be
viewed as a simulation of a nest of loops as shown in Fig. 7.2.

Fig. 7.2. The nested loops simulated by BinaryCodes.

procedure BinaryCodes(r:range);
var s:array[range] of 0..l;
il,i2,...ir:0..1;




begin
for i1 := 0 to 1 do

begin

s[l] := i1;

for i2 := 0 to 1 do
begin
s[2] := 12;

for ir := 0 to 1 do
begin
s[r] := ir;
Process(s,r)
end { of loop on "ir" }

.
.

end { of loop on "i2" }
end { of loop on "il" }
end { of procedure "BinaryCodes" };

It goes without saying that if » has a known small value then
a nest of loops is probably the best implementation. The virtue of
the recursive version is that the simulated nest can be of an unknown
size (as here) and can even be of a dynamically varying size.

7.1 The basic algorithm
We now extend our view to consider situations in which
the elements of the patterns under consideration are not 0 and 1 but
are integers in the same range as the length of the sequence; that is
of type range.
Thus we are assuming the definitions:
type range = 1. .nmax;
rangearray = array [range] of range
and for subsequent examples:
rangeset = set of range;
rangesetarray = array [range] of rangeset
The basic algorithm then generates all patterns of length » whose
elements are chosen from the integers 1 to n. Since the order in
which the sequences are generated is irrelevant, we will generate
them in lexicographical order, thatis 11...11, 11...12, 11...13,
and so on.
In the light of the introduction, the procedure of Fig. 7.3 follows
immediately.
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Fig. 7.3. The basic procedure.

procedure Basic(n,r:range);
var s:rangearray;

procedure Choose(d:range);
var i:range;

begin

for i :=1 to n do
begin
s{d] := 1;

if d < r then Choose(d+l) else Process(s,r)
end { of loop on "i" }
end { of procedure "Choose" };

begin
Choose(l)
end { of procedure "Basic" };

Fig. 7.4 gives the tree of procedure calls, onto the nodes of which
we have added the sequence produced in s at the time of the call.
It is clearly a generalisation of the tree of Fig. 4.26. Note that, if
the statement:

if d <> r then Choose(d+1) else Process(s,r)
of Fig. 7.3 were replaced by the pair of statements:

if d <> r then Choose(d+1);

Process(s,r)
then the procedure would produce all sequences of length up to
and including r. This is often a very useful variant, as is the one in
which Process(s,r) comes first.

Note, too, that not all of the loops need to be simulated by calls
to Choose. If the outer loop were in some way special it could be
included within the body of Basic itself. We will capitalise on this
in some of our examples. Often, too, we can gain some efficiency
by using the recursion to simulate pairs of loops.

7.2 Analysis of the basic algorithm
The procedure has two parameters, n and 7, and so we seek
an analysis in terms of both of them. Thus we require T, ,. Note
that in all the procedures of this chapter, the parameter d is essen-
tially the same as the recursive depth which is negatively related
to the parameter r: as the depth increases, the size of the sub-
problem being treated decreases.
Suppose:
a is the number of operations inside the loop at the bottom
level (including those in Process),
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¢ is the number of operations inside the loop at other levels,
b is the number of operations outside the loop.

Then from Fig. 7.3 we have
Tn,k =cn+b+ nTn,k—l’ kF1

=an + b, k=1
We can, as usual derive a solution to these recurrence relations by
substitution:

T,,=cn+b+nT,,

=cn+ b +n(cntb+nT, ,_2)

=cn?+ (b+c)n+ b + nzT,,,,_g

=cn? + (b+c)n + b + n?(cn+b+nT, ,_3)

=cn® + (b+c)n? + (b+c)n + b + 13T, ,_
en” U4 (bt "2 4L+ b+ 0TI,
en™ V4 (bte)n™ "2 4 ...+ b + " (an+b)
an” + (b+c)n” "L+ (bt "2+ ... (btc)n + b
Clearly the term an” dominates except where 7 is very small indeed.
This accords with our intuition that the body of the inner loop of
a nest of loops dominates. The coefficient of the second term (b+c)
is also in accord with our intuition that operations inside the loop
next to the inner loop are of the same significance as those outside
the inner loop. (Here the latter consists only of the cost of entry
into the inner loop.)

The analysis of a procedure containing an actual nest of loops
such as that in Fig. 7.3 (which is possible, of course, only for a fixed
k) has the same form. This can be seen by inspection because of its
simple structure. If we count fundamental operations, then the
coefficient of n” is a—1, the decrement being due to the absence of
the test d=r within the inner loop. The coefficient in the recursive
version can be reduced to a—1 too, at a cost in procedure size, by
rephrasing Choose so that it contains two loops, one calling itself
recursively, and the other performing the actions of Process, with
an initial test of d=r to determine which loop is to be entered. The
test then becomes part of b rather than a and ¢. We will not do this
because, in the applications we consider, the gain in speed is almost
negligible, while the loss in space caused by repetition of code is
considerable.

Not many problems are general enough to be derived from the
basic algorithm (though many authors use it as a basis for solving
the n-queens problem). It is generally more useful to start with
more constrained algorithms such as those which give rise to the

1l
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classical combinatorial objects: permutations, combinations,
compositions and partitions.

7.3 Permutations

Permutations and combinations arise from the constraint
that no number may appear twice in the pattern. Where the order of
the elements is significant we have permutations; where it is not
significant we have combinations. First we consider permutations.
We will refer to the permutations of 1 to n taken r at a time as the
r-permutations of n. For the reader whose memory of permutations
needs refreshing, Fig. 7.5 gives, at the leaves of the tree, the 3-permu-
tations of 4. When we compare this with the tree for the basic
algorithm (Fig. 7.4) we notice that, for permutations, the number
of branches per node is constant within a level, but decreases by
one at each level.

The generation of permutations has been thoroughly studied and
many different algorithms have appeared. We will content ourselves
here with just one algorithm, which has some properties that we will
want to use later. The reader who wishes to pursue the matter is
referred to the paper by Sedgewick (1977) and to the exercises.

Permutation algorithms can be divided into two classes, those
which produce the permutations in pseudo-lexicographical order
and those which do not. By pseudo-lexicographical order we mean
that, for all d <=, permutations starting with the same d elements
are produced consecutively. (This definition includes lexicographical
as a special case.) Such permutations are produced as follows:

Suppose a choice has been made for elements 1 to d—1. We then
make, in turn, all possible choices for the dth element;and for each

Fig. 7.6 The choices for 4th element (ii) given the choice of the first
three elements (i)-

@3 4 7 2 5 6 1 8 9

chosen available
@3 4 7 2 5 6 1 8 9
3 4 7 5 2 6 1 8 9
3 4 7 6 5 2 1 8 9
3 4 7 1 5 6 2 8 9
3 4 7 8 5 6 1 2 9
3 4 7 9 5 6 1 8 2
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such choice, we make, in turn, all possible choices for the d+1th
element; and so on. This clearly matches the general strategy we are
using. The question is: how do we ensure that all possible choices
are made for the dth element?

Since the number of choices for the dth element is n—d+1, we can
store these with the d—1 elements chosen so far in the array s, which
we initialise to 1, 2, 3...n. Assuming d=4, n=9 and the choice 3 4 7
as the first three elements, we might have the situation of Fig. 7.6(i).

The first choice for the fourth element is already in situ; the
others appear to its right. They may be put in the correct place in
a number of ways. Perhaps the simplest is to interchange each in
turn with the fourth as shown in Fig. 7.6(ii). For this to be achieved
it is necessary to return to the initial state by re-interchanging at the
end of the loop, as shown in the procedure of Fig. 7.7.

Fig. 7.7. A procedure for generating permutations.

procedure Perm(n,r:range);
var s:rangearray;
i:range;

procedure Choose(d:range);
var i,e:range;
begin
if d <> r then Choose(d+l) else Process(s,r);
fori :=d+ 1 ton do
begin
e := s[d]; sld] := s[i]; s[i] := e;
if d <> r then Choose(d+l) else Process(s,r);
e := s[i]; s[i] := s[d]; s[d] := e
end { of loop on "i" }
end { of procedure "Choose" };

begin

fori :=1 ton do
s[i] := 1;

Choose(l)

end { of procedure "Perm" };

7.4 Proof of the permutation generating procedure
We made the point in Chapter 1 that recursive procedures
are often easy to prove but we have not given any proofs so far,
mainly because the proofs are trivial in the sense that the procedures
generally implemented, in a direct fashion, the definitions involved.
The proofs by induction are obvious.
However, the permutation generator is not quite so obvious, and
so we give a proof by way of illustration. It is based on the inductive
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hypothesis that Choose(d):
(i) leaves the values in s; = sq_ unchanged,
(ii) causes all the (r—d+1)-permutations of the values in s4 > s,
to be produced in s4 = s, in turn,
(iii) returns sy = s, to its original state.
The proof, like that for the solution of the recurrence relations, is
in two parts:
(a) The hypothesis is trivially true for d=r.
(b) Assume it is true for Choose(d+1), then it is true for

Choose(d) because:

(i) s1>sq—1 are unchanged as the procedure does not
refer to them,

(ii) all the (r—d+1)-permutations of the value insg —> s, are
produced in sz > s, because all possible choices are made
for s4, and after each choice, Choose(d+1) ensures that
the (r—d)-permutations of the values in sg.1~>s, are
produced in sg 41 = s, In turn,

(iii) s4 >s, is returned to its original state because
Choose(d+1) restores sz.1 s, and the final inter-
change of s[d] and s[¢] completes the restoration.

The procedure Perm then produces all the r-permutations of the
integers 1 to n because it initially places these integers in s and then
calls Choose(1) which, our induction proof has just shown, causes
the r-permutations of the values in s; > s, to be produced in 5| = 5,.

7.5 Animproved permutation generator
We can make two observations about the permutation

generator of Fig. 7.7. Firstly, within a call of Choose, e always
has the same value, the original value of s[d]. We can capitalise on
this by assigning it before the loop and writing it back afterwards.

The second observation in the procedure has two textual calls
both for Process and for Choose. This can be a disadvantage when
the procedure is being used as the basis for some application (such
as topological sorting, to be discussed shortly). We will therefore
eliminate one of them by simply expanding the loop so that its
lower limit is d rather than d+1. On the (new) first traverse of the
loop s[d] is interchanged with itself giving the same effect (at a small
cost) as the original. The modified procedure, which we assume in
what follows, is given in Fig. 7.8.
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Fig. 7.8. An improved permutation generator.

procedure Perm(n,r:range);
var s:rangearray;
i:range;

procedure Choose(d:range);

var i,e:range;

begin

e := s[d];

for 1 :=d to n do
begin
s[d] := s[i]; s[i] := e;
if d <> r then Choose(d+l) else Process(s,r);
s[i] := s[d]
end { of loop on "i" };

s[d] := e

end { of procedure "Choose" };

begin

for i := 1 ton do
s[i] := i;

Choose(l)

end { of procedure "Perm" };

7.6 Analysis of the permutation generator
The analysis of this procedure follows along the same lines
as that of the basic procedure, though it is a little more complex. If
we use the same conventions:
a is the number of operations inside the loop at the bottom
level,
c¢ is the number of operations inside the loop at other levels,
b is the number of operations outside the loop,
then we have:
Tn,k =cn+b +nT,,_1,k_1, k#1
=an + b, k=1
If we use the notation [}] for the r-term product n(n—1)(n—2)...
(n—r+1) then the solution of these equations is:
T,,=a[7] + (b+c) [,24] + (b+c) [[Zo] +... +b
Rather than derive this solution (by substitution) we prove it, as
usual in two parts:
(i) Ty =alf]+b
=an +b

151




(ii) T,,=cn+b+nT,_1,
cn + b +n{a[tZ}] + (b+c) [P23]+ ...+ b)
cn+b+alf]+ (btc) [[Za]+... +bn
a[?t] + (b+c) [21] + (b+c) [[Z4] +. ..+ (bFc)n + b
Again this accords with our intuition if we relate the solution to
the tree of Fig. 7.5. We see there are [}}] leaves, each corresponding to
a permutation and each implying a cost of a due to the traverse of
the inner loop. Immediately above the leaves are [,”{] nodes each
implying a cost of & for the instructions outside the inner loop plus
¢ for the instructions of a traverse of the loop next to the inner
loop, and so on.
It is interesting to compare the form of the solution with that
of the basic algorithm.
T,,=an" + (b+c)n "1 + (b+c)n™ 2+ ...+ (b+c)n + b
The first term dominates, but less than it did with the basic
algorithm, since as r > n the other terms increase in weight. For
example, if we are generating the n-permutations of n, we have
r=n—1 (since the choice of the n—1 elements automatically causes
the nth to be in place), then the cost becomes

n!
n=an!+(b+c)—2+...

so that the second term has half the weight of the first.

7.7 An application: topological sorting
Consider the directed acyclic graph of Fig. 7.9(i), taken
from Wirth (1976).

If we think of the arrow on the arc between two nodes as indi-
cating that the node at its tail is, in some sense, the predecessor of
the node at its head, then a topological sort is an arrangement of
the nodes such that if node ¢ precedes node j (in the above sense)
then ¢ will precede j in the listing. As Fig. 7.9(ii) confirms 791246
3 5 8 10 is one such sort. If the nodes are numbered consecutively
from 1, that is if they are of type range, then a topological sort is
a permutation subject to the precedence condition. We can base
a solution on the permutation generator of Fig. 7.9.

The graph can be defined by the number of its nodes and, for
each node, the set of nodes which must precede it. Thus:

152




Fig. 7.9. A directed acyclic graph (i) and its linearised version (ii).

(if)

type graph = record
n:range;
pred :rangesetarray
end

where rangesetarray was defined earlier as:

rangeset = set of range;
rangesetarray = array [range] of rangeset
To determine more efficiently whether the predecessors of any

element have already been chosen, we keep the current choice of
the first d elements, not only in the array s but also in a set ss, of
the type rangeset. Fig. 7.10 gives a procedure, in which the set ss is
transmitted as a parameter. We often use this technique. The alter-
native is to make ss local to the outer procedure, to have it incre-
mented before the recursive call, and to have it decremented after
the call.
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Fig. 7.10. A procedure for generating topological sorts.

procedure Topsorts(gr:graph);
var s:rangearray;
i:range;

procedure Choose(d:range; ss:rangeset);
var i,e:range;
begin
e := s[d];
for 1 := d to gr.n do
if gr.pred[s[i]] <= ss then
begin
s[d] := s[i]; s[i] := e;

if d <> gr.n then Choose(d+l,ss+{s[d]]) else Process(s,d)

s[i] := s[d]

end { of loop on "i" };
s[d] := e
end { of procedure "Choose" };

begin
for i := 1 to gr.n do
s[i] := 1i;

Choose(l,[])
end { of procedure "Topsorts" };

Note that if we had wanted only one topological sort, we could
have trivially transformed TopSorts by including with Process(s)
a goto-statement, and labelling the end of the (outer) procedure. We
used a similar technique in Chapter 5 with the function Tautology,
where we noted that this was an important use of a goto-statement.

7.8 Combinations
We noted in §7.4 that the difference between permutations

and combinations is that in permutations the order of the elements
is significant. Since the order of the generation of the combinations
and the order of the elements within the combination do not matter,
we are free to choose an order to suit our tastes. Our algorithm will
produce the combinations in lexicographical order as in Fig. 7.11.

This particular choice of ordering naturally places a lower bound
on what can be chosen as the dth element. It is one more than the
current choice of the (d—1)th element. The upper bound is easily
seen to be the choice that leaves one choice for each of the subsequent
elements. This is n—r+d.

Fig. 7.12 gives an appropriate procedure in which the lower bound
is transmitted as a parameter. This enables the general mechanism
to be used for d=1 as well.
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Fig. 7.12. A procedure for generating the r-combinations of n.
procedure Combs(n,r:range);
var s:rangearray;

procedure Choose(d,lower:range);
var i:range;

begin

for i := lower to n-r+d do
begin
s[d] := i;

if d © r then Choose(d+l,i+l) else Process(s,r)
end { of loop on "i" }
end { of procedure "Choose" };

begin
Choose(1,1)
end { of procedure "Combs" };

The analysis of the procedure is rather difficult, since the recur-
rence relations must be expressed in terms of values of the elements
currently chosen. However, following the observations made about
permutations we can appeal directly to the tree of Fig. 7.11 to deduce:

Tr=a(}) + b+ (':_11) + (be) ("_22)

—
+... .+ (btc)(n—r+1)+b

ny . n!
where ( ) isequalto ——— .
r rl (n—)!

Again the first term dominates, but even less so than in the case of
permutations.

Using elementary properties of the combinatorial function, this
can be rewritten:

e () 00 (7)) -

which leads us to a more general observation (true of all the proce-
dures in this chapter) that:
T, ., = ax number of leaves
+ (b+c) x number of internal nodes + b

We have emphasized how easy it is to write poor procedures. The
generation of combinations provides another example, though it is
not strictly due to the use of recursion. The procedure of Fig. 7.12
would still work if the upper limit of the for-statement were changed
from n—r+d to n. This would produce extra invocations of Choose
which would not lead to combinations because at some level lower
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would be greater than n, and so the loop would act as a null state-
ment. As a result, the time would be given by:

Te=a(f)+ () +era ()
+...+(b+c)n+b

7.9 Subsets

Of course, if we want not simply the r-combinations of n, but
all the 1-combinations, 2-combinations, . . . and r-combinations, we
must relax the upper limit to n. Since the elements of a combination
are distinct, and no order is implied amongst the elements, a combi-
nation can be thought of as a subset. Because of the example we
are going to use, we will do so. Fig. 7.13 gives a procedure for
generating all the subsets of a set of n elements.

Fig. 7.13. A procedure for generating subsets of a set.

procedure Subsets(n:range);

procedure Choose(lower:range; s:rangeset);
var i:range;
begin
for i := lower to n do
begin
Process(s+[i]);
if lower <> n then Choose(i+l,s+[il)
end { of loop on "i" }
end { of procedure "Choose" };

begin
Choose(1,[1])
end { of procedure "Subsets" };

If we compare this procedure with the Combs procedure of Fig.
7.12 we notice an important difference: s, which is now of type
rangeset, is not a variable of the outer procedure but instead is
transmitted as a parameter of Choose (and therefore d is no longer
relevant). This relies on the set facilities of Pascal. If those were not
available, and sets had to be simulated by arrays, we would have
to revert to the other form.

7.10 An application: the set covering problem (SCP)

Suppose we have a family (f) of m subsets by, by, ..., b, of
a given set, each with an associated cost ¢j,c9...,c,. The set
covering problem (SCP), is to find that selection of subsets in f that
covers the given set (i.e. the union of the subsets of the selection
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is the given set) and which, of all those that cover the set, has the
smallest cost.
An appropriate data structure might be:
type family = record
m :natural;
n:range;
member :array [range] of
record
b :rangeset;
c:real
end
end

Note that this requires us to produce not all selections that cover
the given set but the optimal one.

Thus the actual processing takes place in the outer procedure.
Within the inner procedure, where previously we processed, we now
update the best solution so far found.

Fig. 7.14 gives a procedure in which s represents the selection of
f currently generated and uncovered represents those elements of
the original set not covered by s. As we expand s it is worth includ-
ing a new member, b; say, only if b; includes some elements not yet
covered and if the total cost of the selection including b; is less than
that of the best set so far found.

Fig. 7.14. A procedure for the set-covering problem.

procedure SCP(f:family);
var bestset:rangeset;
bestcost:real;

procedure Choose(lower:range; s,uncovered:rangeset; partcost:real);
var i:range;

begin
for i := lower to f.m do
with f.member[i} do
begin
if (b*uncovered <> []) amd (partcost+c < bestcost) then
begin
if b >= uncovered then
begin
bestcost := partcost + c;
bestset := s + [i]
end

elgse if i <> f.m then
Choose(i+l,s+[1],uncovered-b,partcost+c)
end
end
end { of procedure "Choose" };
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begin

bestcost := maxint;
Choose(l,[],[1..f.n],0);
Process(bestset,f.m,bestcost)
end { of procedure "SCP" };

7.11 Compositions and partitions
If we now return to the basic algorithm and apply the con-
straint that the elements should sum to n (while allowing the elements
to be repeated) we get compositions (if the order is important) and
partitions (if it is not). Applications may add further constraints, of
course, such as restricting the number of elements or their size.
We consider here only compositions leaving partitions as an exercise.
Fig. 7.15 gives the tree for the generation of the compositions of 5.

/I\\ SN
/\

111 112 13 121 122 131 211 212 221 311

Fig. 7.15. The compositions of 5.

1111 1112 1121 1211 2111

11111

A procedure can be easily produced from the basic procedure of
Fig. 7.3 as shown in Fig. 7.16. No comment is needed except to say
that the parameter residue holds that part of n which is still available
for subsequent elements.

Fig. 7.16. A procedure for generating compositions of n.

procedure Comp(n:range);
var s:rangearray;
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procedure Choose(d,residue:range);
var i:range;

begin

for i := 1 to residue do
begin
s{d] := i;

if 1 = residue then Process(s,d)
else Choose(d+l,residue-i)
end { of loop on "i" }

end { of procedure "Choose" };

begin
Choose(1,n)
end { of procedure "Comp" };

For the analysis we again resort to the tree and to some of the
basic properties of compositions to arrive at:
T, =a2" 1+ (b+c) (2" 1—1) + b
= (a+b+c)2" 7! —¢

7.12 Anapplication: generating contingency tables

An nx 2 contingency table is a matrix of n rows and 2 columns
together with what are called row and sum totals. Fig. 7.17 gives
a schema for a 4x 2 table, together with an actual example.

Fig. 7.17. A 4 X 2 contingency table.

An A, R, 3 1 4
Ay | An | R, 1 0 1
Az | A | R; 2 0 2
Aa | Ag | Ra 1 2 3
¢, | ¢ 7 3

The problem (an abstraction of a real problem for statisticians) is
to generate all possible tables, such as the one given, whose entries
are non-negative and consistent with row and sum totals. Note that
0 entries are allowed.

Clearly we need consider only the first column, since the choice
of any element in that column, say A4;; automatically specifies the
corresponding element in the second column A;s, their sum being
R;. The elements of the column form a composition of Cj, subject
to the constraint that it is of length n. The elements themselves have
tighter constraints than this. To see why, we consider Fig. 7.17 again.
A choice of 4;; =0 would immediately be invalid since it implies
that 4;9 =4 which in turn implies that some other element 4;o

160




would have to be negative to satisfy Cy. The bounds for a given
element are, of course, dependent on the current choices of the
previous elements and, for the dth element, are given by:

d—1
a— (Cz_ _Zl Ai,2)
=

l = ax{
owerg=m 0

‘Rd — restdue of Cg
= max
0
d—1
. {Cl = Y 4
upperg = min i=1
Ry
residue of Cy
= min
Ry

Let us assume the following definitions:

type val = 0. .vmax;

size = 1. .smax;

table = record
n:size;
a:array [size, 1..2] of val;
r:array [size] of val;
cl,c2:val
end

The procedure of Fig. 7.18 follows.

Fig. 7.18. A procedure for n X 2 contingency tables.
procedure Contingency2(t:table);

procedure Choose(d:size; resl,res2:val);
var i,lower,upper:val;
begin
with t do
begin
if r(d]>res2 then lower := r{d]-res2 else lower := 0;
if r{d]<resl then upper := r(d] else upper := resl;

for i := lower to upper do
begin
afd,l] := i;

afd,2] := r[d]-i;
if d = n then Process(t)
else Choose(d+l,resl-i,res2-ald,2])
end { of loop on "i" }
end { of with "t" }
end { of procedure "Choose" };

begin
Choédse(l,t.cl,t.c2)
end { of procedure "Contingency2" };
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7.13 An example of double recursion: Latin squares

Of course double recursion occurs in these combinatorial
problems too. We give an example here in which the two instances
of recursion merge together. A Latin square of order n is a square
of size nxn in which the numbers 1 to n appear once in each row
and once in each column. Examples of squares of order n are given
in Fig. 7.19.

Fig. 7.19 Some Latin squares of order 4
1234 2413 1234
2341 3124 2143
3412 4231 3412
4123 1342 4321

We could regard a square as a sequence of n? elements, the
elements being selected from the integers 1 to n, and adapt the basic
combinatorial algorithm accordingly. However the constraints on
the sequence are complex: they are the constraints corresponding
to the fact that each row and each column consists of a permutation
of the integers 1 to n.

It seems preferable to recognise explicitly the two-dimensional
nature of the problem and the fact that it is essentially about permu-
tations. Thus we can adapt the permutation generator of Fig. 7.8. In
terms of that procedure, after we have generated a row, instead of
processing it we have to create the next row (unless it is the last,
in which case we do the processing). Thus we need recursion to
organise the creation of the rows in turm as well as the creation of
an individual row. Clearly Choose can be used for both tasks provided
we give it an extra parameter to indicate which row is being chosen.
To highlight this we use the identifiers row and col for these
parameters.

Of course, the permutations chosen for each row are restricted
by the constraint that the columns must also be permutations. To
satisfy this constraint, we keep for each column the set of elements
so far chosen for that column. An element is a valid choice for
a given column only if it does not appear in that column’s set.
These elements are held in an array ss of the type rangesetarray:

type rangeset = set of range;
rangesetarray = array[range] of rangeset

An appropriate procedure is given in Fig. 7.20.
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Fig. 7.20. A procedure for generating Latin squares.

procedure LatinSquare(n:range);
var s:array[range,range] of range;
ss:rangesetarray;
row,col:range;

procedure Choose(row,col:range);
var el,e2,i:range;
begin
el := s[row,col];
for i := col toe n do
begin
e2 := s[row,i];
if not (e2 in ss{col]) then
begin
s[row,col] := e2; s[row,i] := el;
ss[col] := ss[col] + [e2];
if col <> n then Choose(row,col+l)
elgse if row <> n then Choose(row+l,l) else Process(s,n);

s[row,i] := e2;
ss[col] := ss[col] - [e2]
end
end { of loop on "i" };
s[row,col] := el

end { of procedure "Choose" };

begin
for col := 1 to n do
begin
for row := 1 to n do
s{row,col] := col;

ss{col] := []

end { of loop on "col" };
Choose(1,1)
end { of procedure "LatinSquare" };

7.14 Approaching combinatorial problems

It is clear from the previous sections of this chapter that
combinatorial problems by their very nature are time-consuming.
Where no special purpose algorithms exist we simply have to use
the exhaustive search procedure given here. Two guidelines are
helpful though.

First, use the thinnest tree. That is, use combinations in prefer-
ence to permutations and permutations in preference to the basic
algorithm; using partitions in preference to compositions and
compositions in preference to the basic algorithm. This avoids
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the production of duplicate solutions which, somehow or other,
would have to be eliminated.

Second, prune as hard as possible. That is, the sooner the branch
of a tree can be eliminated (because it will not lead to any solution)
the better. Often as we have seen, this leads to determining more
closely the bounds on the values each element may take.

EXERCISES

7.1 Write a procedure that will print out all the n-digit numbers
that are equal to the sum of the nth power of their digits.
(For example, if n=3, then it will print 153, 370 and 371.)

7.2 Write a permutation generator that produces them in lexico-
graphical order. Suppose, as in Fig. 7.6, that d=4, n=9, and
that the current choice for the first three elements is 347.
The situation is as shown in Fig. 7.21(i), and the results of
the choice of the fourth element are shown in Fig. 7.21(ii).

Fig. 7.21 Choices for a lexicographic permutation generation.

@))3 4 7 1 2 5 6 8 9
chosen available

@3 4 7 1 2 5 6 8 9
3 4 7 2 1 5 6 8 9
3 4 7 51 2 6 8 9
3 4 7 6 1 2 5 8 9
3 4 7 8 1 2 5 6 9
3 4 7 9 1 2 5 6 8

7.3 Consider the permutation procedures of Fig. 7.7 and Fig. 7.8.
Determine the values of a, b and ¢ in terms of fundamental
operations. Using the expressions derived in §7.6 for T, ,,
determine quantitatively the benefit of the improvement.

7.4 Write a procedure based on the permutation generator of
Fig. 7.7 to solve the n-queens problem. That is, determine
the ways in which n queens may be placed on an n x n chess-
board in such a way that no queen is under attack from any
other. (If the rows and columns are numbered from 1 to n,
then we can represent a solution by the sequence g, where

164




7.5

7.6

7.7
7.8

giy» i=1...n, is the column in which the queen on row g is
placed. Clearly g is an n-permutation of n.)

Consider a graph such as the one in Fig. 7.22. A clique of
a graph is a set of nodes of the graph each of which is joined

Fig. 7.22. An arbitrary graph.

o1
5

8

to all the others. Further, this set of nodes must not be
included in some other (larger) clique. Thus the cliques of
the graph of Fig. 7.22 are:

{1}

{2, 3}

{3, 4, 5}

{4,6,7}

{3,4,7,8}

Clearly the cliques are subsets of the set of nodes. Write
a procedure for generating the cliques of a graph.

A race track for model cars can be made from straight pieces
of length ! and quadrant pieces of radius /. Fig. 7.23 shows
a track made from six straights and four curves. Assuming

Fig. 7.23. A race-track with six straights and four curves.
i 4 } |
< p—t :>
that arrangements can be made for crossovers, write a proce-

dure that will generate all distinct track layout given
s straights and ¢ curves.

Write a procedure for generating partitions.

Extend the contingency table generator of Fig. 7.18 to deal
with nxm tables.
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The elimination of recursion

We are going to finish our study of recursion in Pascal programming
by seeing how to eliminate it. This may seem a curious thing to do
given that for seven chapters we have strongly pressed the case for
using recursion, but there are a number of reasons for doing so.

Firstly, it may be that the system we are using does not allow
recursion. Such a restriction will not arise with Pascal, of course,
but sometimes we are obliged to write in Fortran where such arestric-
tion is part of the language definition. If we can translate a recursive
procedure into a non-recursive one, then we can still retain the
advantages of designing our programs recursively.

Secondly, where there are two or more forms of recursion in
a procedure, its readability may be improved by the removal of one
of the recursive aspects. We discussed this idea in Chapter 2 and used
it in Chapters 5 and 6. For improved readability, the recursion to
be eliminated must be of the preorder, linear type.

Thirdly, we may have tight space constraints or very tight time
constraints and it may be that the replacement of a recursive proce-
dure by an iterative one allows us to satisfy those constraints.

Finally, and most importantly, we may wish to consider the
elimination of recursion purely to increase our understanding of
recursive procedures.

8.1 The tail recursion rule
There is one simple rule that everybody knows. It relates to
preorder procedures (those with tail recursion) though we express it
in the informal terms usually used: if the last statement of a procedure
is a (directly) recursive call, replace it by statements to reassign the
parameters and to jump to the first statement. Consider, for example,
the procedure WriteList of Fig. 2.2 which is reproduced as Fig. 8.1.




Fig. 8.1. The recursive version of WriteList.

procedure WriteList(l:1listptr);
begin
if 1 <> nil then
begin
WriteItem(l¥.item);
WriteList(1l7.next)
end
end { of procedure "WritelList" };

It can be recast as shown in Fig. 8.2.

Fig. 8.2. A non-recursive version of WriteList.

procedure WriteList(l:listptr);
label 1;
begin
1:1£ 1 <> nil then
begin
WriteItem(lT.item);
1 := 1}.next;
goto 1
end
end { of procedure "WriteList" };

It is trivial to recast this in the structured form of Fig. 8.3.

Fig. 8.3. A structured version of WriteList.
procedure WriteList(1l:listptr);
begin
while 1 <> nil do
begin
Writeltem(l}.item);
1 := 1t.next
end
end { of procedure "WriteList" };

This rule is quite general in that it applies not only to linear
recursive procedures such as WriteList, but to binary and n-ary
procedures as well. Only in the linear case, however, is the recursion
completely removed. All the cases in the earlier chapters where we
used iteration instead of recursion were of this type.

On the other hand, the rule is quite restrictive in that it does not
apply to postorder procedures; nor does it apply to those preorder
procedures in which any parameter called as a variable is changed on
each recursive call. One example of this latter class is the procedure
CopyList of Fig. 2.3. Consequently we will consider this rule no
further, regarding it as a simple consequence of the more general
techniques to be discussed.
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Recursion elimination is currently the subject of a great deal of
research and it would require a whole book to do it justice. What
we will do therefore is consider just three techniques which have
a fairly wide applicability. We will illustrate each with respect to
a general linear schema, Fig. 8.4, which includes the preorder and
postorder schemata of Chapter 2. We will, of course, touch on
other aspects.

Fig. 8.4. A general linear recursive schema.
procedure C(x:xtype);
begin
if P(x) them M(x)
elge
begin
S1(x);
C(F(x));
S2(x)
end
end { of procedure "C" };

We assume that all the components of x are changed in each call
(as is usually the case in this book). If this is not true then the
techniques used here will sometimes produce redundant assign-
ments, though these are easily eliminated. Further we assume that
x consists of value parameters only, a point we will return to in §8.5.

8.2 Direct simulation of the stack
The standard method of conversion is to simulate the stack
of all the previous activation records by a local stack. Thus:

(i) The call C(x) is replaced by a sequence to:
(a) push x onto the stack,
(b) set the new value of x,
(¢) jump to the start of the procedure.
(ii) At the end of the procedure a sequence is added which:
(a) tests whether the stack is empty, and ends if it is,
otherwise
(b) pops x from the stack,
(¢) jumps to the statement after the sequence replacing
the call.

Fig. 8.5 illustrates this with respect to the general schema of
Fig. 8.4.
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Fig. 8.5. An unstructured non-recursive schema.

procedure C(x:xtype);
label 1,2;
var s:stack of xtype;
begin
clear s;
1:1f P(x) them M(x)
else
begin
S1(x);
push x onto s;
x = F(x);
goto 1;
2:82(x)
end;
if s not empty then
begin
pop x from s;
goto 2
end
end { of procedure "C" };

Note that the simulation by s of the activation record stack
achieves some efficiency since it avoids the stacking of:

(i) the stack link (because there is only one activation record),
(ii) the return address link (because there is only one call).

It is a relatively simple matter to recast this in the structured
form of Fig. 8.6.

Fig. 8.6. The structured non-recursive schema,

procedure C(x:xtvpe);
var s:stack of xtype;
begin
clear s;
while not P(x) do
begin
S1(x);
push x onto s;
x := F(x)
end;
M(x);
while s not empty do
begin
pop x from s;
S2(x)
end
end { of procedure "C" };
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We consider now the application of this schema to the procedure
WriteNatural first given in Fig. 1.5 and reproduced in Fig. 8.7.

Fig. 8.7. The WriteNatural procedure.

procedure WriteNatural(i:natural);

begin

if 1 <10 then
write(chr(i+ord(’0”)))

else
begin
WriteNatural(i div 10);
write(chr(r mod 10 + ord(’07)))
end

end { of procedure '"WriteNatural" };

The result is given in Fig. 8.8: it is precisely that of Fig. 1.7.

Fig. 8.8. A non-recursive version of WriteNatural.

procedure WriteNatural(i:natural);
var s:stack of natural;
begin
clear s;
while i >= 10 do
begin
push i onto s;
i =1 div 10
end;
write(chr(i+ord('07)));
while s not empty do
begin
pop 1 from s;
write(chr(i mod 10 + ord(’0’)))
end
end { of procedure "WriteNatural" };

It is clear that the schema when applied to WriteList will produce
a procedure that is more complex and less efficient than the one
produced by the tail recursion rule of §8.1. Let us then return to
the schema, Fig. 8.6, and see what simplifications arise if the proce-
dure is preorder, that is if $2(x) is null.

Let us look at the second loop. If S2(x) is null then the loop
merely pops values of x and does nothing with them. Clearly, we
can eliminate the popping, if we can stop the loop cycling indefinitely.
But as the loop is now null, we can do even better: we can eliminate
it entirely!

Now to the first loop. Since we do not pop values of x, there is
no point pushing them. Indeed there is no point having a stack at all.
Thus we are led to the schema of Fig. 8.9.
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Fig. 8.9. A non-recursive preorder schema.

procedure C(x:xtype);
begin
while not P(x) do
begin
S1(x);
x = F(x)
end;
M(x)
end { of procedure "C" };

It is clear that when we apply this schema to WriteList we get
the optimal procedure of Fig. 8.3.

This standard method of recursion elimination is very powerful,
since it mimics precisely the action that the run-time system takes
for the implementation of recursion. However, it produces very
unstructured programs. Rather than consider its application to
binary and n-ary recursion in general, we simply show it in action
in quite a complex case. Consider Ackermann’s function of Fig. 5.16,
which is reproduced as Fig. 8.10.

Fig. 8.10. Ackermann’s function.

function Ack(m,n:natural):natural;
begin
if m = 0 then Ack := ntl
else if n = 0 then Ack := Ack(m-1,1)
else Ack := Ack(m-1,Ack(m,n-1))
end { of function "Ack" };

We first express it as a procedure, Fig. 8.11.

Fig. 8.11. Ackermann’s procedure.

procedure CalcAck(var Ack:natural; m,n:natural);
begin
if m = 0 then Ack := ntl
else if n = 0 then CalcAck(Ack,m-1,1)
else
begin
CalcAck(Ack,m,n=1);
CalcAck (Ack,m-1,Ack)
end
end { of procedure "CalcAck" };

When we apply the standard technique we arrive at the procedure
of Fig. 8.12, in which we have taken a few (obvious) liberties with
Pascal. Note in particular the use of pointed brackets to surround
the denotations of the fields of a record.
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Fig. 8.12. A non-recursive version of Ackermann’s procedure.
procedure CalcAck(var Ack:natural; m,n:natural);
label 1,2,3,4;
var s:stack of <natural,natural,l..4>;
1:1..4;
begin
clear s;
1:4f m = O then Ack :=n + 1
else if n = 0 then
begin
push <m,n,2> onto s;
m := m-l;
n:=1;
goto 1;
2:end
else
begin
push <m,n, 3> onto s;
n := n-1;
goto 1;
3:push <m,n,4> onto s;
m := m-l;
n := Ack;
goto 1;
4:end;
if s not empty then
begin
pop <m,n,l> from s;
case 1 of
l:goto 1;
2:goto 2;
3:goto 3;
4:goto 4
end { of cases on "1" }
end
end { of procedure "CalcAck" };

The advantages of this classical technique are that it is easy to
implement and that it is completely general. However, it produces
unstructured code which is hard to restructure; and it provides no
insight into the program transformation problem.

8.3 Direct use of the stack.

It is clear that all recursive procedures, except linear preorder
ones, require a stack if the recursion is to be eliminated. The second
technique we consider recognises this fact directly by using the
stack to hold future obligations.t

t The idea is duc to Knuth (1974).
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Consider the linear schema of Fig. 8.4 again. A call for this
procedure C(x), can be regarded as an obligation to perform C(x)
and so s is initialised accordingly. The body of the procedure con-
sists of a loop in which an obligation is popped off the stack and
then honoured. A stack element will consist of a value of x and an
indication of the nature of the obligation. We use the type:

type obligation = (CFx,S1x,52x)
If the obligation is a call, then to honour this we test P(x). If it is
true we obey M(x) otherwise we stack the three obligations implied
in S1(x); C(F1(x)); S2(x), in reverse order of course. To honour the
obligation S1lx, we simply perform S1(x); to honour $2x, we
perform S2(x).

If we implement this literally we arrive at the procedure of
Fig. 8.13.

Fig. 8.13. An obvious linear schema using obligations.

procedure C(x:xtype);
type obligation = (CFx,S1x,S2x);
var oblig:obligation;
s:stack of <{xtype,obligationd;
begin
clear s;
push <x,CFx> onto s;
repeat
pop <x,oblig)> from s;
case oblig of
Slx:S1(x);
S$2x:82(x);
CFx:if P(x) then M(x)
else
begin
push <x,S2x> onto s;
push <F(x),CFx> onto s;
push <x,Slx> onto s
end { of case "CFx" }
end { of cases on "oblig" }
until s empty
end { of procedure "C" };

We can improve this procedure in two stages. We first note:
(i) There is no point pushing {(x,S$1x) onto s since we immediately
(on the next traverse of the loop) pop it, and perform S1(x).
We can instead simply perform S1(x), and S1x can be elimi-
nated as an obligation.
(if) This performance of S1(x) can take place before the remain-
ing pushes.
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(iif) There is no point pushing (F(x), CFx) onto s (it is now the
last statement of the CFx obligation) and immediately
poppingit. The whole CFx obligation can be written as a loop.

The result is shown in Fig. 8.14.

Fig. 8.14. A better linear schema using obligations.

procedure C(x:xtype);
type obligation = (CFx,S2x);
var oblig:obligation;
s:stack of <xtype,obligationd;
begin
clear s;
push <x,CFx> onto s;
repeat
pop <x,oblig> fram s ;
case oblig of
S2x:82(x);
CFx:begin
while not P(x) do
begin
S1(x);
push <x,52x> onto s;
x := F(x)
end;
M(x)
end { of case "CFx" }
end { of cases on "oblig" }
until s empty
end { of procedure "C" };

In the second stage we note that only once is the obligation CFx
pushed. We therefore replace the pushing of the obligation by the
sequence for honouring it; and eliminate CFx as an obligation. We
are left with a single obligation and so the notion can be eliminated
entirely as shown in Fig. 8.15.

Fig. 8.15. The general linear schema derived from obligations.

procedure C(x:xtype);
var s:stack of xtype;
begin
clear s;
while not P(x) do
begin
S1(x);
push x onto s;
x = F(x)
end;
M(x);
while s not empty do
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begin
pop x from s;
S2(x)
end
end { of procedure "C" };

It is, of course, precisely the same as that produced by the
traditional technique used in the last section.

However the differences become more apparent when we consider
other more general situations. Consider the general binary recursive
schema of Fig. 8.16.

Fig. 8.16. A general binary recursive schema.

procedure C(x:xtype);
begin
if P(x) then M(x)
else
begin
S1(x);
C(F1(x));
S2(x);
C(F2(x));
S3(x)
end
end { of procedure "C" };

A literal interpretation of the obligation technique produces the
procedure of Fig. 8.17, provided that neither the statements S1(x)
and S2(x), nor the evaluation of the parameters of calls C(F1(x))
and C(F2(x)) affects x.

Fig. 8.17. A literal version of the ‘obligation’ schema.

procedure C(x:xtype);
type obligation = (CFx,S1x,S2x,S3x);
var oblig:obligation;
s:stack of <{xtype,obligation>;

begin
clear s;
push <x,CFx> onto s;
repeat

pop <x,oblig> from s;

case oblig of

Slx:S1(x);

S2x:S2(x);

S3x:S83(x);

CFx:1if P(x) then M(x)

else
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begin
push <x,S3x> onto s;
push <F2(x),CFx> onto s;
push <x,S2x> onto s;
push <Fi1(x),CFx> onto s;
push <x,S1x> onto s
end { of case "CFx" }
end { of cases on "oblig" }
until s empty
end { of procedure "C" };

The restriction is due to the fact that the value of x used by
S1(x), $2(x), S3(x), C(F1(x)) and C(F2(x)) is stacked before any
of those statements is obeyed. Once again we can improve this
procedure using observations similar to those made earlier:

(i) There is no point pushing {x,S1x) onto s when we immediately
pop it (on the next traverse of the loop) and perform S1(x).
We can instead just perform S1(x).
(ii) This performance of S1(x) can take place before the remain-
ing pushes.
(iii) Thereis no point pushing(F'1(x),CFx) ontos, and immediately
poppingit. The whole CFx obligation can be written as a loop.
The improved version is given in Fig. 8.18.

Fig. 8.18. A non-recursive binary schema based on obligations.

procedure C(x:xtype);
type obligation = (CFx,S2x,S3x);
var oblig:obligation;
s:stack of <{xtype,obligationd>;
begin
clear s;
push <x,CFx> onto s;
repeat
pop <x,oblig> from s;
case oblig of
S2x:S2(x);
S3x:S3(x);
CFx:begin
while not P(x) do
begin
S1(x);
push <x,S3x> onmnto s;
push <F2(x),CFx> onto s;
push <x,S2x> onto s;
x = Fl(x)
end;
M(x)
end { of case "CFx" }
end { of cases on "oblig" }
until s empty
end { of procedure "C" };
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The restrictions on S1(x) and C(F1(x)) no longer apply. Even so it
is impossible to use this technique directly on Ackermann’s proce-
dure, because in the pair of calls:

CalcAck(Ack,m,n—1)

CalcAck(Ack,m—1,Ack)
the evaluation of the first produces a value Ack, which is a parameter
of the second.

Simpler forms arise when we consider special cases. Fig. 8.19 gives
the preorder case, which is (surprisingly?) simple.

Fig. 8.19. A non-recursive preorder schema based on obligations.

procedure C(x:xtype);
var s:stack of xtype;
begin
clear s;
push x onto s;

repeat
pop x from s;
while not P(x) do
begin
Si(x);
push F2(x) onto s;
x := Fl(x)
end;
M(x)
until s empty
end { of procedure "C" };

We encourage the reader to produce this schema from the general
schema himself and to produce similar schemata for the inorder and
postorder cases.

The advantages of this technique of direct use of the stack are that
it is relatively simple to implement and that it produces a structured
procedure immediately. Furthermore it is possible to think directly
in the terms of the resulting procedure.

Its disadvantages are two-fold. Firstly, because all the obligations
are stacked at once, it uses more store than the recursive version.
Secondly, the technique is not completely general, because the
resulting procedure causes expressions to be evaluated and statements
to be obeyed out of order. Thus some procedures simply cannot
be handled.

8.4 Body substitution
The third technique we will consider concentrates on the
substantive statements obeyed by the recursive procedure, and seeks

177




an iterative control structure to replace the recursive one. Let us
return again to the general linear schema of Fig. 8.4, and consider
what statements are obeyed when this procedure is called. Provided
P(x) is false, a call C(x) will cause the three statements:

S1l(x); C(F(x)); S2(x)
to be obeyed. Similarly if P(F(x)) is false, C(F(x)) will cause the
three statements:

S1(F(x)); C(F(F(x))); S2(F(x))
to be obeyed. Let us adopt the shorthand of dropping all brackets
and replacing a string of n F's by F". Then if PF"x is true (and
PF'x is false for all i{<n) then the sequence of statements is:

S1x

SlFx

SIF 2x

SlF"_lx
MF"x
San_lx

S 2 F 2x
S 2 Fx
ng
Clearly we have two loops involved here. The first loop can be
easily expressed:
while not P(x) do
begin
S1(x);
x := F(x)
end
The second loop requires the same values for x but in the reverse
order. Thus the use of a stack to hold these values suggests itself and
we arrive at the procedure of Fig. 8.20.

Fig. 8.20. The structured non-recursive schema.

procedure C(x:xtype);
var s:stack of xtype;
begin
clear s;
while not P(x) do
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begin
S1(x);
push x onto s;
x = F(x)
end;
M(x);
while s not empty do
begin
pop x fram s;
S2(x)
end
end { of procedure "C" };

It is, of course, the same schema as produced by the other two
techniques.

It is when we move onto more general forms of recursion that
the differences in the techniques manifest themselves, as we have
already noticed. Consider again the general binary recursive schema
reproduced as Fig. 8.21.

Fig. 8.21. A general binary recursive schema.
procedure C(x:xtype);
begin
if P(x) then M(x)
else
begin
S1(x);
C(F1(x));
S2(x);
C(F2(x));
S$3(x)
end
end { of procedure "C" };

To produce a non-recursive schema, we can proceed as before with
the substitution process. Thus provided P(x) is false, a call C(x)
will cause the five statements:

S1(x); C(F1(x)); S2(x); C(F2(x)); S3(x)
to be obeyed. Similarly, if P(F1(x)) is false, C(F1(x)) causes the five
statements:

SUFL(); C(FLFL()); S2(F1(x));

C(F2(F1(x)); S3(F1(x))
to be obeyed. If on the other hand P(F1(x)) is true then C(F1(x))
causes M(F1(x)) to be obeyed. A similar statement is true, inde-
pendently, of P(F2(x)) and C(F2(x)).

Because of the binary nature of this schema the linear string
produced by these substitutions is difficult to assimilate. A better
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display arises from using a tree representation as in Fig. 8.22 in
which we have used the same abbreviating conventions as earlier.
The three statements relevant to each activation are placed around
the node in a way that suggests the order in which they are obeyed.

Fig. 8.22. The substitutions in the binary schema.

S;x  S3x

/\

S, Fyx  S3Fx

/S le\
/F x S,FyF, x S,F,
S3F, \ S Fzle
MF2F,x

MF,F 2x

2 l

MF *x MF,F3x \
/ \

Using terminology appropriate to this tree of procedure calls, we
see that each node is visited three times. We start at the root, and
follow left branches, obeying an Sl-statement at each node until
we reach a leaf where we obey an M-statement. For the tree of
Fig. 8.22 this will cause the sequence: Syx, SyFix, S1Fi?x, S1F3x,
MF{*x to be obeyed. We then ascend to the node above, and, this
being the second visit to the node, we obey an $2-statement. We then
follow its right branch. In Fig. 8.22 this leads to a leaf and so we
obey MF, F’x, though, in general, it would be an internal node so
we would obey an Sl-statement and descend down left branches
to a leaf. To return to Fig. 8.22, after obeying MF, Fi3x we ascend
to the node above. As this is the third visit to the node we obey
S3 FPx and ascend again. This is our second visit to this node and
so we obey Sy Fi?x and descend.

Clearly we have alternating sequences of descent and ascent,
the whole terminating after obeying S3(x) at which point the stack
will be empty. An appropriate schema is given in Fig. 8.23.

Fig. 8.23. A non-recursive binary schema.

procedure C(x:xtype);
type statetype = (descent,ascent,done);
var visit:2..3;
state:statetype;
s:stack of <{xtype,2..3>;
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begin
clear s;
state := descent;
repeat
while not P(x) do
begin
Si(x);
push <x,2> onto s;
x := Fl(x)
end;
M(x);
state := ascent;
repeat
if empty(s) then state := done
else
begin
pop <x,visitd> from s;
case visit of

2: begin
S2(x);
push <x,3> onto s;
x := F2(x);
state := descent
end { of case 2 };
3: S3(x)
end { of cases on "visit" }
end

until state <> ascent
until state = done
end { of procedure "C" };

This schema is, of course, very general and much simpler schemata
can be produced for the special cases of preorder, inorder and post-
order procedures. In Fig. 8.24 we give the preorder version, that is
one in which §2(x) and $S3(x) are both null. Note that we have to
stack only x and the notion of a statetype disappears.

Fig. 8.24. A non-recursive preorder schema.

procedure C(x:xtype);
var s:stack of xtype;
done:Boolean;
begin
clear s;
repeat
while not P(x) do
begin
S1(x);
push x onto s;
x := Fl(x)
end;
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M(x);
done := s empty;
if not done then
begin
pop x from s;
x 1= F2(x)
end
until done
end { of procedure "C" };

This schema seems radically different from the general procedure
from which it is derived - and yet it is a simplification of it. The
reader is encouraged to take a copy of the procedure of Fig. 8.23
and systematically transform it by following through the conse-
quences of making $3(x) and S2(x) null. It is easier to consider
S3(x) first.

He is also encouraged to produce similar schemata for the inorder
and postorder procedures.

Note that this schema is quite different from the preorder schema
of Fig. 8.19 which is based on obligations.

8.5 Parameters called as variables
None of the techniques we have discussed will deal with
a parameter called as a variable. Thus we cannot transform the
CopyList procedure of Fig. 2.3, which is reproduced as Fig. 8.25.

Fig. 8.25. A recursive version of CopyList.
procedure CopyList(var 1ll:listptr; 12:1listptr);
begin
if 12 = nil then 11 := nil
else
begin
new(1l);
11t.item := 12f.item;
CopyList(11f.next,12%.next)
end
end { of procedure "CopyList" };

The reason for the prohibition is quite simple. If x consists only
of value parameters we wish within the loop to replace x by F(x)
and the assignment x := F(x) does it for us. Suppose now that
x contains some parameter called as a variable, say v. Then v will be
the name of some variable and within the loop we wish to change
the variable of which it is the name. Unfortunately Pascal has no
such facility. If it did (if for example v = vl caused v to become
the name of v1) we could simply produce the procedure of Fig. 8.26.
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Fig. 8.26. An invalid non-recursive version of CopyList.

procedure CopyList(var 1ll:listptr; 12:listptr);
begin
while 12 <> nil do
begin
new(1ll);
11f.item := 12f.item;
11 = 11f.next;
12 := 12t.next
end;
11 := nil
end { of procedure "CopyList" };

Such a solution is effectively available in Algol 68 but not in
Pascal (see Bird (1979)). In Pascal we have to restructure the proce-
dure so that the parameters in the recursive call are called by value.
This implies a two-level solution. There are two techniques which
lead to the two different forms of non-recursive procedure that we
saw in Chapter 2. Both techniques transmit as the first parameter,
not the name of the variable into which the copy will be placed, but
the name of the node whose link points to the variable in which the
copy will be placed. This is clearly the trailing pointeridea introduced
in Chapter 2. In the first technique, the first node, if there is one,
is dealt with separately, as shown in Fig. 8.27.

Fig. 8.27. A modified recursive version of CopyList.

procedure CopyList(war 1ll:listptr; 12:listptr);

procedure C(p,12:1listptr);

begin
if 12 = nil then pf.next := nil
else
begin
new(pt.next);
pt.nextf.item := 12f.item;
C(pt.next,12f.next)
end
end { of procedure "C" };
begin
if 12 = nil then 11 := nil
else
begin
new(1ll);

11t.item := 12f.item;
C(11,12%.next)
end

end { of procedure "CopyList" };
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The application of the preorder schema to this procedure produces
the non-recursive one of Fig. 2.5.

With the second technique a node is created initially, the second
list is produced with this acting as a header, and at the end this list
is beheaded. The enclosed procedure C remains that of Fig. 8.27, and
the body of CopyList becomes:

Fig. 8.28. An alternative body for CopyList.

begin

new(1ll);

Cc(11,12);

Behead(11)

end { of procedure "CopyList" };

Applying the preorder schema to this produces the version of Fig. 2.6.

These trailing pointer techniques need supplementing when
applied to a tree since we need to know whether it is the left or
right branch of the node in front of the trailing pointer that is
involved, for which purpose we introduce a variable of type branch
defined:

type branch = (I,r)
Consider the procedure InsertOnTree whose recursive version,
given in Fig. 3.2, is reproduced as Fig. 8.29.

Fig. 8.29. A recursive version of InsertOnTree.

procedure InsertOnTree(var t:treeptr; it:itemtype);

procedure I(var t:treeptr);
begin
if t = nil then NewTree(t,nil,it,nil)
else if it.key = tf{.item.key then { item already there }
else if it.key < t{.item.key then I(t}.left)
else { if it.key > tf.item.key then } I(tf.right)
end { of procedure "I" };

begin
I(t)
end { of procedure "InsertOnTree" };

Rather than labour the point we simply give in Fig. 8.30 a proce-
dure InsertOnTree in which I has only value parameters. We use
the technique of adding a header and, for variety, use two pointers
with ¢2 trailing ¢t1. The statement Behead(t) stands for a sequence
that beheads ¢ that is known to have only a left branch, and dummy
is a global variable.
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Fig. 8.30. A recursive version of InsertOnTree with value parameters.

procedure InsertOnTree(var t:treeptr; it:itemtype);
type branch = (1,r);

procedure I(tl,t2:treeptr; b:branch);
begin
if t1 = nil then
if b = 1 then NewTree(t2f{.left,nil,it,nil)
else NewTree(t2f.right,nil,it,nil)
else 1f it.key = tlf.item.key then { item already there }
else if it.key < tlf.item.key then I(tlf.left,tl,1)
else { if it.key > tlf.item.key then } I(tlf.right,tl,r)
end { of procedure "I" };

begin

NewTree(t,t,dummy,nil);
I(tf.left,t,1);

Behead(t)

end { of procedure "InsertOnTree" };

The reader can then produce an iterative solution very easily.

8.6 Some problems in conforming to the schema
It is generally trivial to convert most of the procedure of

Chapter 1 into the form of the schema of Fig. 8.4. However, with
the procedures of Chapters 2 and 3 there are two problems of
interest which we consider in turn.

First, what Barron and Mullins (1978) have called the protasts
problem. Consider the function InList of Fig. 2.7, with its inner
function I expressed as a procedure, as shown in Fig. 8.31.

Fig. 8.31. The function InList.
function InList(l:listptr; k:keytype):Boolean;

procedure I(l:listptr);
begin
if 1 = nil then InList := false
else if k = 1f{.item.key then InList := true
else I(1f.next)
end { of procedure "I" };

begin
I(1)
end { of function "InList" };

We cannot simply recast procedure I asshown in Fig. 8.32, because,
when ! =nil, [1.item is undefined and hence the whole Boolean
expression is undefined.
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Fig. 8.32. An invalid version of 1.
procedure I(l:listptr);
begin
if (1 = nil) or (k = 1{.item.key) then
InList := 1 <) nil
else I(1}.next)
end { of procedure "I" };

However, we can ignore this problem for the moment and apply the

appropriate schema, here the preorder one, to give a non-recursive
procedure which is still invalid as shown in Fig. 8.33.

Fig. 8.33. An invalid non-recursive version of .
procedure I(l:listptr);
begin
while (1 <> nil) amd (k <> 1{.item.key) do
1 := 11.next;
InList := 1 <> nil
end { of procedure "I" };

This procedure can now be turned into valid Pascal by the classical
technique of introducing a Boolean variable, which we will call
found. If we then substitute the body of I for the call within InList
we arrive at the non-recursive function of Fig. 8.34.

Fig. 8.34. The non-recursive function InList.

function InList(l:1listptr; k:keytype):Boolean;
var found:Boolean;

begin

found := false;

while (1 <> nil) and not found do
if k = 11.item.key themn found := true
else 1 := 1f.next;

InList := found

end { of function "InList" };

Alternatively we can produce a version based on the notion of
a state variable as shown in Fig. 8.35.

Fig. 8.35. A second non-recursive function InList.
function InList(l:listptr; k:keytype):Boolean;
var state:(searching,notthere,found);
begin
state := searching;
repeat
if 1 = nil then state := notthere
elgse if k = 1f.item.key then state := found
else 1 := 1f.next
until state <> searching;
InList := state = found
end { of function "InList" };
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It is possible to produce a pair of equivalent schemata to match
this class of procedure more directly but we leave this as an exercise
to the reader.

A second problem in conforming to the schema arises where
a procedure, such as Power from Chapter 1 and some tree processing
procedures of Chapter 3, has a number of recursive calls only one of
which is obeyed at each recursive level. One such is OnTree of Fig.
3.2 which is reproduced as Fig. 8.36. Note that it also exhibits the
protasis problem.

Fig. 8.36. The recursive function OnTree.

function OnTree(t:treeptr; k:keytype):Boolean;

procedure O(t:treeptr);
begin
if t = nil then Ontree := false
else if k = tf.item.key then OnTree := true
else if k < tf.item.key then O(t}.left)
else { if k > tf.item.key then } O(tf.right)
end { of procedure "0" };

begin
o(t)
end { of function "OnTree" };

To conform to the general schema, the procedure O has to be
recast so that there is only one recursive call. This requires the
introduction of a local variable as shown in Fig. 8.37. Once again
the resulting procedure is invalid because the Boolean expression
is undefined.

Fig. 8.37. An invalid procedure O,

procedure O(t:treeptr);
var local:treeptr;
begin
if (t = nil) or (k = tf.item.key) thenm OnTree := t <> nil
else
begin
if k < tf.item.key then local := tf.left
else local := tf.right;
0(local)
end
end { of procedure "O" };

From here, using the preorder schema and the state variable
technique of the last section, we can produce the non-recursive
function of Fig. 8.38.
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Fig. 8.38. A non-recursive function OnTree.

function OnTree(t:treeptr; k:keytype):Boolean;

var state:(searching,notthere,found);

begin

state := searching;

repeat
if t = nil then state := notthere
else if k = t*.item.key then state := found
else 1f k < t{.item.key then t := tf.left
else t := tf.right

until state <> searching;

OnTree := state = found

end { of function "OnTree" };

Note that we have been able to eliminate local. Indeed, if Pascal
had allowed conditional expressions, we need not have introduced
it in the first place. We could have replaced the alternative sequence
of Fig. 8.37 by:

O(if k <tt.item.key then t1.left else t1.right)
Thus if we were to create a system for doing this conversion auto-
matically it might be convenient to expand Pascal to include condi-
tional expressions (purely for internal operations of course).

EXERCISES

8.1 Consider the linear schema of Fig. 8.39.

Fig. 8.39. Another linear schema.

procedure C(x:xtype);
begin
S0(x);
if P(x) then M(x)
else
begin
S1(x);
C(F(x));
S2(x)
end
end { of procedure "C" };

Produce an equivalent non-recursive schema. What simplifi-
cation arises if $2(x) is null?

8.2 Consider the schema of Fig. 8.40, which might be appropriate
to procedures that would run into the protasis problem if
they were converted to the standard schema.
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Fig. 8.40. Yet another linear schema.

procedure C(x:xtype);

begin
if P1(x) then M1(x)
else if P2(x) then M2(x)
else

begin

S1(x);

C(F(x));

S2(x)

end
end { of procedure "C" };

Produce an equivalent non-recursive schema.
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Further reading and references

Much of the material of this book comes from the folklore of computer
science, and it is very difficult to attribute the techniques to any specific
author. What we can do is mention a number of books in which different
examples are presented or in which a different view is propounded.

Two important books which use Pascal as a vehicle are Wirth’s
Algorithms + Data Structures = Programs and Alagic and Arbib’s The
Design of Well-Structured and Correct Programs. A number of examples
used here derive from them.

As we have seen, recursive procedures arise naturally in relation to
recursive data structures and many of the more recent texts on that
subject use recursion with facility. One such is Data Structures using
Pascal by Tenenbaum and Augenstein.

These books are practical books about programming in Pascal and
are quite easy to read. There are three books in particular which are
rather more abstract and correspondingly more difficult to read. These
are Burge’s Recursive Programming Techniques, Bauer and Wossner’s
Algorithmic Language and Program Development, and Wand’s Induction,
Recursion and Programming.

We noted in the preface that recursion is the predominant control
structure in functional programming. The reader whose appetite has
been whetted by this book might like to look at this aspect. An excellent
modern text is Henderson’s Functional Programming: Application and
Implementation.

One area where we can attribute techniques to workers is the elimi-
nation of recursion, since this is a current area of research. In the
bibliography below we include what seems to us to be the most
important papers, by Darlington & Burstall, Bird, Arsac and Rohl.

These should act as a good starting point for a search of the literature.

Further reading

Alagic, S. & Arbib, M. A., The Design of Well-Structured and Correct Programs,
Springer-Verlag, 1978.

Arsac, J., ‘Syntactic source to source transforms and program manipulation’,
Comm. ACM, pp. 43-53 (1979).




Bauer, F. L. & Wossner, H., Algorithmic Language and Program Development,
Springer-Verlag, 1982.

Bird, R. S., ‘Notes on recursion elimination’, Comm. ACM. Vol. 20, pp. 434-9,
(1977).

Burge, W. H., Recursive Programming Techniques, Addison-Wesley, 1975.

Darlington, J. & Burstall, R. M., ‘A system which automatically improves
programs’, Proc. 3rd. Int. Conf. on Artificial Intelligence, Stanford University,
pp. 479-85 (1973).

Henderson, P., Functional Programming: Application and Implementation,
Prentice-Hall, 1980.

Rohl, J. S., ‘Eliminating recursion from combinational procedures’, Software
Practice & Experience, Vol. 11, pp. 803-17 (1981).

Tenenbaum, A. M. & Augenstein, M. J., Data Structures using Pascal, Prentice-
Hall, 1981.

Wand, M., Induction, Recursion and Programming, Elsevier, North Holland,
1980.

Wirth, N., Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

References

Atkinson, L. V., ‘Know the state you are in’, Pascal News, No. 13, p. 66 (1978).

Barron, D. W., Recursive Techniques in Programming, MacDonald, 1968.

Barron, D. W. & Mullins, J. M., ‘What to do after a while’, Pascal News, 11 (1978).

Bird, R. S., ‘Recursion climination with variable parameters’, Comp. J., Vol 22,
pp. 161-4 (1979).

Knuth, D. E., The Art of Computer Programming, Vol. 3, Addison-Wesley, 1973.

Knuth, D. E., ‘Structured programming with goto statements, Computing Surveys
Vol. 6, pp. 261-302 (1974).

Knuth, D. E, & Merner, J. N., ‘Algol 60 confidential’, Comm. ACM, Vol 4,
pp. 208-72 (1961).

Goldschlager, L. M., ‘Short algorithms for space-filling curves’, Software Practice
& Experience, Vol. 11, p. 99 (1981).

Leuker, G. S., ‘Some techniques for solving recurrences’, Computing Surveys,
Vol. 12, pp. 419-36 (1980).

Rohl, J. S. & Barrett, H. J., Programming via Pascal, Cambridge University Press,
1980.

Rohl, J. S. & Gedeon, T. D., ‘Four Tower Hanoi and beyond’, Australian
Computer Science Comm., Vol. 5, p. 156 (1983).

Sedgewick, R. ‘Permutation generation methods’, Computing Surveys, Vol. 9,
pp. 187-164 (1977).

Zahn, C. T., ‘A control statement for natural top-down structured programming’,
presented at the Symposium on Programming Languages, Paris, 1974.

191




Index of procedures

This index contains the numbers of all the figures relevant to a given procedure.
Only free-standing procedures are given in this index: internal procedures are
referenced under the name of the procedures they are to be embedded in.

Ackermann 5.13, 5.14, 5.15, 5.16, 8.10,
8.11, 8.12
AllBooleans 5.1

Basic 7.3,7.4
BinaryCodes 4.25, 4.26, 4.27,7.1, 7.2

CalcAck 8.11, 8.12

Combs 7.11,7.12

Comp 17.15,7.16

Contingency2 7.17,7.18

CopyList 2.3, 2.4, 2.5, 2.6, 8.25, 8.26,
8.27, 8.28

CopyTree 3.7,3.8

Decode 3.24, 3.25
DefinedBy 6.20, 6.21
DeleteFromList 2.7, 2.10
DeleteFromTree 3.2, 3.3, 3.4
Diff 3.19, 3.20

DisposeList 2.2

DisposeTree 3.9

Ex 5.18

Expression 5.5, 5.6

ExprValue 3.28,5.2,5.3,6.7, 6.8, 6.9,
6.10,6.11, 6.12, 6.18, 6.14, 6.15

Fact 1.1,1.2, 1.8, 1.9
Fib 4.20, 4.21, 4.22, 4.23

GPS 5.19

Hanoi 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 5.23
Hef 1.3, 1.4, 1.10
HeapSort 4.16, 4.17,4.18, 4.19

IndArray 1.22,1.28

InList 2.7, 2.8, 2.9, 2.10, 2.
6.19, 8.31, 8.32, 8.33, 8.

InsertinList 2.10

InsertOnBTree 6.3, 6.4,6.5

InsertOnTree 3.2, 8.29, 8.30

Integral 4.7

22,6.17,6.18,
34, 8.35

2
4v

LatinSquare 7.19,7.20

MergeSort 4.9, 4.10, 4.11, 4.12, 4.28
Multiddd 2.18, 2.19
MultiCompare 2.16, 2.17

OnBTree 6.1, 6.2
OnTree 3.2, 8.36, 8.37, 8.38

Parse 6.22, 6.23, 6.24, 6.25

Perm 17.5,7.6,7.7,7.8,7.21

Poly 1.11,1.12, 1,13, 1.14

PolyAdd 2.12

PolyUp 1.15, 1.16

Power 1.17, 1.18, 1.19, 1.20, 1.21, 4.24,
5.13

Prime 1.26

Quad 5.17
QuickSort 4.13, 4.14, 4.15

Reset 6.16

SCP 7.14

SelectionSort 4.8

Sierpinski 5.7,5.8,5.9,5.10, 5.11, 5.12,
5.22

Simplify 3.21, 3.22

Size 2.2

Subset 2.14

Subsets 7.13

Tautology 5.4
TopSorts 71.9,7.10

Union 2.13

WriteBTree 6.6

WriteInfix 3.12, 3.13, 3.14, 3.16, 3.17,
3.18

WriteLsist 2.2, 8.1, 8.2, 8.3

WriteNatural 1.5, 1.6, 1.7,8.7, 8.8

WriteReversedNatural 1.24, 1.25

WriteRP 3.11

WriteTree 3.5




