
The right of the
University of Cambridge

to print and sell
all manner of books

Henry VIII in 1534.
The University has printed
and published continuously

since 1584.

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE
NEW YORK PORT CHESTER

MELBOURNE 5YDNEY

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www. Cambridge. org
Information on this title: www.cambridge.org/9780521336956
© Cambridge University Press 1987

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1987
Reprinted 1990, 1991
Re-issued in this digitally printed version 2008

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Alcock, Donald, 1930-

Illustrating Pascal.
Includes Index.
1. PASCAL (Computer program language) I. Title.

QA76.73.P2A38 1987 005.13'3 87-10369

ISBN 978-0-521-33695-6 paperback

Acknowledgement

V book was to have been a joinh effort firsf- with Colin
Day, then wifti Richard Kife. But despite all efforts the
essentially personal nature of a hand-written book defeated
every attempt at co-autfiorship. Nevertheless the presenf
book is probably better for the experience. My warrnesl"
thanks fo boHi of lfiem.

4iiy fhanks also to Fbul Shearing of Euro Computer Systems Ltd,
for access to his firm's computers and helping me run my
programs using Prospero's Pro Pascal and Borland's Turbo
pascal in addition to fhe hcorn 150 Pascal under which I
had originajly developed them.

[finally my f-hanks fo my elder son Andrew for developing
fhe program I employed fo assemble and sort Hie index
to this book.

i l l

[PREFACE

PRINCIPLES

vt

THE CONCEPT
INTO PASCAL
TYPING
COMPILATION
STEPS TO EXECUTION
EXERCISES

RUDIMENTS

PUNCTUATION
VARIA6LE5
CONSTANTS
STANDARD TYPES
EXPRESSIONS
LOANS ({EXAMPLE J)
DECISIONS
FIELDS
SHAPES ({EXAMPLE >
LOOPS
OLD GLORY <| EXAMPLE £
SINUOUS <t EX AMPLER
EXERCI5ES

QYNTAX

TYPE STYLES
NOTATION
ELEMENTS
COMPOUNDS
SYNTAX OF AN EXPRESSION
SYNTAX OF A 5TATEMENT
SYNTAX OF A PROGRAM
SYNTAX OF TYPE

ARITHMETIC

OPERATORS
SIZE AND PRECISION
COMPARATORS
ARITHMETICAL FUNCTIONS
TRIGONOMETRICAL FUNCTIONS
TRANSFER FUNCTIONS

2
4
5
6
7
8

9

iO
12
12
13
U
15
16
16
17
18
19
19
20

21
22
23
24
25
26
27
28
29

31

32
34
35
36
37
38

BOOLEAN FUNCTfOlO
ORDINAL FUNCTIONS

(CONTROL

FLOW CHARTS
/F'WEN'ELSE STATEMENT
FOZ LOOP
REPEAT LOOP
WHILE LOOP
FILTER <| EXAMPLE])
CASE STATEMENT
SYMBOL- STATE TABLE

<f EX AMPLER
EXERCISES

JUNCTIONS & {PROCEDURES

FUNCTION DEFINITION
TYPICAL FUNCTIONS
RECURSION
PROCEDUKE5
RANDOM NUMBERS
LOANS AGAIN (fEXAMPLE])
FUNCTION NAMES AS

PARAMETERS
FORWARD REFERENCES
LOCAL VARIABLES
SIDE EFFECTS
SCOPE RULES
EXERCISES

ftYPES & QET5
STANDARD TfPES
TYPE DEFINITION
ENUMERATED TYPES
SUBRANGES
SET TYPE AND SET

VARIABLES
SET CONSTRUCTORS AND

OPERATIONS
FILTER2 EXAMPLE
MOOO EXAMPLE
EXERCISES

39
40

43

44
46
hi
48
48
49
50

51
52

53

54
56
57
58
60
62

63
64
65
66
67
66

69

70
71
72
73

74-

75
76
77
78

tv

ARRAYS & Q T R I N G S 79 ^ o ^ N T E R A C T l V E INPUT 129

INTRODUCING ARRAYS
SYNTAX OF ARRAY

DECLARATIONS
AREA OF A POLYGON

(f EXAMPLE })
CABLES (J EXAMPLE })
BUBBLE SORT (J EXAMPLE >
QUICKSORT (f EXAMPLE J
PACKING
INTRODUCING STRINGS
PARLOUR TRICK (f EXAMPLE])
NUMBER BASES (f EXAMPLE j)
MATRIX MULTIPLICATION

(f EXAMPLE £
CONFORMANT ARRAY

PARAMETERS
EXERCISES

INTRODUCING RECORDS
SYNTAX OF RECORDS
PERSONNEL RECORDS

<t EXAMPLE^
THE WITH STATEMENT
INTRODUCING VARIANTS
EXERCISES

INTRODUCING FILES
OPENING FILES
TEXT FILES
WRITE &WRITELN WITH

TEXT FILES
PAGE WITH TEXT FILES
READ & READLK W/TH

TEXT FILES
SAFE READING
GRAB PROCEDURE FOR

SAFE READING
INTRODUCING BINARY FILES

AND PUT AND GET
COMPRESSION (tEXAMPLE> 126
SUMMARY OF PROPERTIES 127
EXERCISES J26

ao
81

82
83
84
86
88
89
90
92

95

96
98

99

100
101 <

J02
106
108
110

i l lU X I

112
M4
115

116
f i 6

117
US

120

124
126

INTERACTION
PEEP-AHEAD PROBLEM
BUFFER PROBLEM
EOF PROBLEM

O^GDYNAMIC STORAGE

DYNAMIC STORAGE
NEW A DISPOSE
STAOUES $ STACKS & QUEUES^
REVERSE POLISH NOTATION
HeiJO^ <f EXAMPLE J
SIMPLE CHAINS
SHORTEST ROUTE (f EXAMPLE J)
INTRODUCING RINGS
ROSES <j[EXAMPLE J
INTRODUCING BINARY TREES
MONKEY-PUZZLE SORT

(t EXAMPLE)
EXERCISES

1 ^ DYNAMIC STRINGS

5TRING UTILITIES
READSTRIMG
MRITESTRIN6
MIDDLE
CONCAT
COMPARE
INSTR
PEEK
POKE

BACKSLANG
HASHING TECHNIQUE
HASHER.

BIBLIOGRAPHY

(^ U I C K REFERENCE

STANDARD PROCEDURES
STANDARD FUNCTI0N5
SYNTAX SUMMARY
LIST OF RESERVED WORDS

130
131
132
133

135

136
138
140
142
144
145
146
150
152
154

156
158

159

160
162
162
J63
164
165
166
166
167
168
WO
172

175

177

177
178
179
181

182

V

j is a computer language which was designed by Professor N/klaus
Wirfh af Eidgnossische Technlsche Hochschule in Zurich. The ftrsf draft
was completed in 1966. Since fhaf Hme Pascal has become more and more
popular, not only as a language for feaching pnnciples op programming
but also as a language in which to write complicated software,

^ h i s book introduces and demonstrates fhe whole of the language
defined by 556192: Specification for Computer programming language Rxsooi,
intended fo be compatible with International Standards Instifute standard
150 7185. To keep in fouch wifii realty [have run Hie programs in this
book under three, te

by flcornsoft
by Prospero

Turbo Pascal by Borland International

• ISO Pascal
• Pro Pascal

/51y style of presentation is pictorial. More can be conveyed by:

[hash]

l ist lhash] t

than by hundreds of words about hash addresses, poinfers, records
and linked lists. But" I have been careful, too, about wording - aiming
at simplicity and conciseness. The page layout has been arranged
mainly as double-page spreads, each complefe in ffself, making if
unnecessary fo turn pages when referring to diagrams from text.
With such layouts - and wifh diagrams being considered af leash as
important as text - fhe wording had to be fitted Into place carefully.
T l ^ is one reason for hand-written fexf; if is easier to use a pen fhan
a type setter under such consfrainfs. (j(With word processing and can-
Jxiter type seftfng making formal composition so easy the modern
auf+tor is being seduced info blinking "How can t presenf fhisconcept
coUhoat a diagram?" when fhe quesfion oughf fo be " How can I design
a diagram to replace all these boring words ? w])

j confenfs of this book are organized as a programming-language
manual. In chapfer 1 is an example for fhe complefe beginner, the
aim being fo demonstrate the. concept of a stored program. In chapter
2 there is a quick canter through the rudimenfs of programming
(^variables, standard types, expressions, decisions and loopsJ whi'ch
Should be easy going for those who have written programs in ofher
languages. These two chapters cover enough ground to present each
feature of Pascal in fhe context of a complefe program.

VI

(Chapter 3 is short but important; it defines the notah'on used through-
out the rest of the book for describing the syntax of Pascal statements
and forms. This notation is a blend or Backus-Naur form and
railway-track diagrams. It doesy I believe, convey structure a t a
glance - and with no loss op rigour.

Ijprom chapter 4 onwards each facility of Fbscal is introduced in the
context of a working program. The longer programs serve not only to
demonstrate facilities of Pbscal but also to illustrate fundamental
techniques of programming - Quicksort, recursion, rings, binary frees
and hashing being among them.

4»\y biggesf headache was dealing with interactive input. Pascal was
designed in the days of card decks and magnetic tapes; ^ e logic of
Pascal's WRITE and READ statements did not allow for programs
prompting fheir users for data from the keyboard. Nowadays such
interaction is taken for granted - Hie reader of this book would
probably expect to run f"he examples interactively - but unfortunately
f-he problem has been solved differently in different versions of
Pascal. So I have provided the examp/es with Hie simplest possible
input statements and noted where the reader who has an interactive,
system should include prompts for the convenience of the program's
user. And I have devoted a short chapter (f chapter 11 ^ to the prob-
lems one can meet on trying to use Pascal inheracfively.

i(][f at first you find fhe punchuaHon of Pascal programs fussy,
and

find
yourself

lurching
towards

f-he
right

margin^
don't despair; you soon grow accustomed to it. When you discover
records the sun begins to shine again. When you reach pointers
(jfand can make chains and stacks and rings and trees ^ you will
become addicted. There is no known cure for addict/on to Pascal.

Qtorutid
Surrey, U.K. h/ov&nber f986

Vti

THE CONCEPT
INTO PASCAL
TYPING
COMPILATION
STEPS TO EXECUTION

OF A "PROGRAM" *& SKIP THIS UNLESS
YOU ARE COMPLETELY NEW TO COMPUTING

1. 35>0
gi^ssume there is no computer to help
solve this problem confronting a painter*
how many pots of paint are needed to
paint the roof and wall of thts oil
tank? .

Sjhe paint manufacturer says
each pot has enough paint to
cover an area of 236.0

L^^^mu that the area of a circle is given by 7Tr2 (J where r is its
radius^ or fTd2-f4 (J where d is its diameter]) . Recall also that
the circumference of a circle is given by ltd (f where d is its diameter
as before]) 9 5o fhe painter can work out:

AREA OF TOP 3./4.X 35.02 +4 s 961.63
AREA OF WALL s 3. * 35.0 x 8.5 sr 93^./5

Vihe area to be painted is the sum of the above fwo a r e a s . Into
this area must be divided the coverage of a pot of paint 50 as to
give the number of pots required:

POTS = • / •
~ 23G 8. 03

fi\ number with a fractional part like this is called a REAL. Because
you cannot readily buy a fraction of a pot of paint the REAL must be
rounded up to the nearest whole number, or INTEGER. TO do thh
truncate the REAL and add I:

FULL POTS « « a

4|f the dimensions had been such that the number of pots worked out at
8.00 instead of 8.03 the solution would still be 9 pots. This is not
arithmetically precise but would make the painter feel happier than an
answer of 8 .

Osjow suppose the painter wanted to set down this calculation \'n a qenernl
way such thaf if the problem arose again he would have only to substituted
few numbers and "turn the handle^ for the
new result to foil out.

height

diameter

j \ e some little boxes
for holding numbers. The
contents of each box will
vary from problem to
problem.

forget to draw and
name the boxes needed to
store intermediate results:

P'1

top wall pot5 fullpots

j /read. Ijrut an approximate value of ft info a special
box. This value remains constant regardless of
oil tank and paint pot 'S* hence the padlock.

/j\ list of instructions <& called a program
written as illustrated below:

could be named and

PROGRAM painter C INPUT Some data, OUTPUT results);
CONSTANTS p i = 5.14 { to be used9 not changed } ;
VARIABLES diameter, height, coverage, ^\^names of all

Axplocked ̂
boxes

, g , g
top, wall, pots, fu l lpots,
these boxes are for REALS, but
full pots Is a box for an INTEGER \

BEGINNING OF THE SET OF INSTRUCTIONS

^ from a waiting line of data, ££AD numbers
into boxes: diameter, height, coverage;

^ into box top put the result of: the number from
box p i times the SQUARE of the number from box
diameter, divided by 4-.0;

-^1 into box wail put the result of: the number from
box p i , times the number from box diometer9 times
the number from, box height;

^ Into box pots put the sum of the numbers found
Ln boxes top and wall after dividing this sunn by
the number found In box coverage;

%f± into box fullpots put the result of TRUNCATING the
number from box pots and adding i ;

Q WRITE a note to the painter <f rYOU NEED1, torite
here the number found in box fu l lpots, " "

END OF THE 5ET OF INSTRUCTIONS •

\ boxes to be used^
and the types ofj

7 value to be
contained

you had the wafting line of data:

35.0 8.5 236.0

and were to obey the program above (j[being a human computer]) you
would go through the calculation set out opposite and end by wn'Nng t*hc
following note to the painter:

YOU HEED 9 POTS

course i f you had a different line of data you would get a different
result. That is the essence of a "program" - » It is a generalized
calculati'on.

A TRANSLATION OF THE ENGLISH PROGRAM
ON THE PREVIOUS PAGE

j English instructions on the previous page would be too wordy to be
used as computer instructions. Nevertheless the English may be trans-
lated Into Pascal without losing the original sense.

[first of all the recurring phrase " the number from box..." may be treated
as understood. For example the third instruction of fhe program may be
shortened to:

into box wall put the result of pi times
diameter times height;

yfhen ^° without fhe phrase " into box such and such put the result of..."
by abbreviating to fhe name of the box followed by a symbol thus:

wall

where := may be pronounced "becomes" when the statement 15 read
aloud.

J(J3OW replace the wond "times" by an asterisk. Similarly, replace "add" and
"subtract" by plus and minus signs; replace "divide" by a slash (f ite forma)
name is solidus]). Thus the third instruction may be shortened to:

wall := pi * diameter * height

which reads aloud " wall becomes pi &>tes diameter times height " .

Tjnere are other abbreviations in Pascal, and some Important rules of
punctuation to be explained /afer, but the stage /s sufficiently set to
illustrate a program in Pascal*.

PROGRAM pa in te r (INPUT, OUTPUT);

CONST pi = 3.14}
VAR diameter, height, coverage, top, wall,

pots: REAL; fullpots: INTEGER;

READ (diameter, height, coverage);
top :& pi * 5QR Cdiameter)/ 4.0 ;
wall fa pi * diameter * he ight ;
pots := (top -f- wall) / coverage ;
fullpots := TRUNCf pots) + i \
WRITE ('YOU NEED', fullpots, T POTS')

ETND.

and
are functions; Pascal
provides a selection
of these

(gompare ("his program with fhe English one. The declarations and
Instructions show a one-to-one correspondence.

mixture of capital letters and 5ma\i letters is explained later.

PASCAL /S STANDARDIZED BUT THE COMPUTERS IT
RUNS ON ARE NOT] EVERY KEYBOARD IS DIFFERENT

yfhe keyboard of a popular home computer is sketched below; ofher
keyboards are similar.

y he keyboard on a VDU connected to a time-sharing computer would \ook
similar to fhat above. There is always a key at the right, engraved with
the word ENTER or RETURN or the symbol JJSrj. Pressing this key causes
a fresh line to be started. Every keyboard has letters A to Z, digits
0 to 9, full stop, comma, colon, semicolon and the arithmetical symbols
+ - * / needed for the present example.

l^jefore storting to type you have to "enter the editor" and the way to
do this depends on the installation. Using Acornsoft Pascal on the. e>BC
Model 5 you type EDIT and press [IRETUKNJ # Using Pro Pascal you use the
local editor or a word processor such as Word Star. Using Turbo Pasca) you
press | jp *

(ZJnce "inside" the editor type fearlessly, taking care over the punctuation
which, in Pascal, is pernickety. There is always a way to backspace and
re-type a wrong character; on the BBC Model b press PDELETÊ , on some
ofher keyboards press [|DEL| or [[SACKSmc£||,

editing facilities differ greatly from installation to installation. The
Turbo Pascal editor is modelled on the word processor called Word Star.
Every editor is horrible when you first try it but appears to improve as you
grow accustomed to if. Patience and perseverence.

^ the distinction between capital letters and small letters $ type with or
without)~he|cAPSL(xfj key having been pressed. The only line of the example in
which this makes any difference is -

wr i te (f You need f , fullpofcs , f pots')

where the phrases between apostrophes reappear in the result precisely as
typed in the program^ upper case, lower case or mixture as above.

\44hi\st typing the program notice that the computer does not obey any
of the instructions. The computer, at this stage, is not even aware that
a Pascal program is bemg fyped; if knows only that a file is being
typed. You could type Twinkle, twinkle little star in Portuguese and
there would be no objection from the computer.

AND% THE PROBLEM OF ENTERING DATA FROM
*A THE KEYBOARD ...

JJ\ Pascal program cannot be set to work simply by entering RUN as with
many BASIC systems; a Pascal program must first be compiled. Com-
pilation means translating the source program from Pascal into an object
program encoded in the computer's own language- When a Pascal program
is put fo work it is the object program that is obeyed, not the source,
program.

r compilation you have two versions of the same program; one in Pascal
and one in machine code (̂ or something close to it]). I f you were able fo
display the object program on the screen it would appear to be gibberish.

j runs faster than BASIC because the object program is in machine code
which can be obeyed directly or in a code which can be interpreted efficiently.
By contrast, statements of a BASIC program are interpreted from source. The
price of faster execution is the time and inconvenience of compilation. However,
on most installations it is possible to save object programs, hence re-run
programs without recompiling therm. This course is followed by the steps
depicted opposite where a copy of the compiled program is saved on disk.

'yhe. steps depicted opposite go from typing a program to running it. Down
the left of fhe page are commands typed at the keyboard to initiate each
step. The commands are particular to the installation, those shown being
imaginary but typical. MYSOUfccE and MYOBJEICT are assumed fo be names
invented by f"he programmer.

ylhe final step depicted opposite assumes INPUT comes from the keyboard
and OUTPUT goes to the screen. This arrangement is typical today but is
by no means the only way to run Pascal programs. The language was
designed at a fr'me when files were saved on magnetic tape, \HPUT came
from a deck of punched cards, OUTPUT went to a line, printer. To make
a Pascal program send prompts to a screen and read data from a key-
board requires a suitably modified compiler. If you have such a com-
piler there should be no difficulty in running the examples in this book.
But if prompts and responses get out of sequence (̂ questions following
answers j) refer to chapter 11 which explains fhe logical difficulties and
their diagnosis. I t may be that your compiler cannot compile an interactive
program properly *& in which case you may still run the examples in this
book but with data waiting on a disk file rather than being typed at the
keyboard when fhe program has been set running. This batch mode arrange-
ment is depicted below:

GO

BUT THE COMMANDS
ARE NOT STANDARD/ZED

^ to the operating system vary from one installation to another
but the process depicted \n steps below is typical:

EDIT

SAVE MYSOUjRCE

that the program, when run, would expect data from the
keyboard. I f it expected data from a disk Fi'fe ff would be necessary
at this stage to fype, ed/f and save a file of data in the same
manner as depicted above for saving the source program.

LOAD PASCAL
Pascal
ompileren a ''Pascal

Environment" such
as Turbo Pascal
this step ooould
' be Implicit compiler's

diagnostics
COMPILE MYSOCJRCE MYOBJECT

or nettling tf
there uoere errors

LOAD MYOBJECT

often
combined as
one step:
RUN MYOdJECT

INPUT
direct
from

keyboard
35 8.5 236

(Implement the oil-tank program. This exercise demands using the
editor and submitting a program for compilation. Getting to grips
with a new system is always troublesome; this exercise is probably
the most difficult in the whole of this book.

8

PUNCTUATION
VARIABLES
CONSTANTS
STANDARD TYPES
EXPRESSfOKS
LOAMS (̂ EXAMPLE ^
DECISIONS
FIELDS
SHAPES (f EXAMPLE J)
LOOPS
OLD GLORY (fEXAMPLE^
SINUOUS (|EXA/APLE J)

SYNTAX IS DEFINED JN THE NEXT
C//APTE/?; THE FOLLOWING /S INGENERAL TERMS

typical Pascal program has the following skeleton:

(heading \ C INPUT, OUTPUT) ;

declarations

(jnot terminators^
this iinota
fly spot; every

program ends coith
a full t

formally
defined in
chapter 3

yfhe heading is terminated with a semicolon.

l ivery list in every declaration is terminated with a semicolon,

are separated from each other by semicolons.

he words BEGIN and END are not statements, they are effectively punc-
tuation marks. BEGIN behaves as a left bracket and END as a right
bracket. Because they act as punctuation marks a semicolon after
BEGIN or before END would be redundant. BEGIN and END are much
used in Pascal programs to make compound statements, where a
compound statement <̂ depicted below J> is one that may be employed
wherever a simple statement would otherwise be allowed. An example
is:

statement-
separators

y/ords in other statements act as punctuation marks too. Hone of these
has yet been demonstrated but here is an example:

IF profit > loss
THEN

WRITE C 'Hooray!')
ELSE

WRITE ('bother1) ;

no semicolons; the
U)ordS IF, THEN, ELSE
act as punctuation marks\
rinside the statement

LO

because statements are separated by punctuation marks the layout of
a program on the page is not important to the compiler. Two rules are.
enough to satisfy the compi'ler:

• *)on*t run words together:

7
PR06RAfApainter(INPUT, OUTPUT)

©on't break up a single item with spaces or new l ines:

— _ . _ _ .
PROvGRAM painter C lHPUTi->/ 0 U T ^ ^
PUT); CONST p^ i = 3.1 ̂ 1 ^

(jspaces not marked with bugs are allowable ^

layout is not important to the compiler it is vital to the pro-
grammer's understanding. The introductory example illustrated the use of
Indentation to clarify the structure of a program. Ho specific rules for
indentation are given in this book; the principles are conveyed by example.
but if the examples in this book were to be run on an installation offering
automatic indentation the resulting patterns would probably differ from
mine. Ideas about fhe ideal layout differ, but all agree that indentation
should make the structure of a program as comprehensible as possible,
(j Glance forward to page if to see a mucb-iqdented program.^

words PROGRAM, CONST, VAR, BEGIN, END (f and thirty more, yet to be
introduced ^ are called reserved coords. Never extend a reserved word:

CONSTANT VARI

and never try to shorten a reserved word:

painting (INPUT, OUTPUT);

t
(J/se capifal letters or lower-case letters or a mixture of both. This book
employs a rnixfure for reasons expla'med later.

OOTPUT); | j program painterOnput,output);j I Program PAINTER(iNput,ourput)jJ

in strings there is a distinction between them;

WRITE ('YOU NEED', full pots, ' POTS')

WRITE ('You need', full pots, 'pots1)

names as long as you like but ensure that every name is unique as
far as the first eight characters. Some compilers would treat
NUMBEROFMEN and NUMBEROFWOMEN as fhe same name.

11

A SIMPLE VARIABLE TO ILLUSTRATE THE CONCEPT
OF VARIABLES GENERALLY

Vhe unlocked little boxes of Hie
introductory example are called
variables. A simple variable is
a conceptual box having a name
and a content,

y\ variable Is created In the computer ad a resuli" of declaring it in a
VAR statement. The declaration specifies both the name of that variable

and the type of Its content* Type
is further discussed opposite.

tnamj ^ ^
y he symbol compounded of a colon

and equals sign <«* pronounced
"becomes" <?* signifies that a value
(J typically the result of evaluating an
expression]) is to be assigned fo Hie box.

wall := pi * diameter * height;

becomes" _
assign

value to variable

y[the introductory example the contents of vanables do not change;
each has a number assfgned to it and there the number stays. But the
program could be modified to use fewer vanables. In the following
version there are several as5ignmenl"s to variable x:

PROGRAM p a i n t i n g (INPUT, OUTPUT);

CONST p i = 3 .14 ;
VAR diameter, height, coverage, x : REAL;

fullpots : INTEGER;

BEGIN
READ(diameter, height, coverage);
X := pi*5QR(diameter)/4.0;
x := x + pi * diameter* height;
X .*= x / coverage;
fullpots := TRUNC(x) + 1;
WRITEC'rou need1, fullpots, ' pots')

END.

each neu)
assignment'
• obliterates

cuhat was
there
before

1395778/
8.03

A SIMPLE NAMED CONSTANT TO ILLUSTRATE
THE CONCEPT

(a K
(constant)^ h e locked little box of the

introductory example is called
a constant. Such constants are
erected as a result of declaring them in a CONST declaration. The type of
constant is declared intrinsically from the form of the value put into
the box. The decimal point in 3.14, for example* shows that pi names
a REAL constant.

notice the equals sign; not :*CONST pi - 3 . 1 4 ;

12

INTEGER, REAL, CHAR, BOOLEAN

CONST dozen = 12^, deer = - i

are whole numbers « negah've, zero or posih've:

• cons fan \s of fype INTEGER must all be
declared as here p ^

• variables of hype INTEGER musi" all be
declared as here t£>

• an expression assigned fo an integer
variable must reduce to an integral
value; this precludes divisions of
Hie form i / j as explained later

VAR i , j , k : INTEGER;

i :« dozen*deer + 6
j := TRUNC(3.14) +7

ytfeals are numbers wfth a fractional parf. A real may be neqptive, zero or
pos/h've:

• constant of type REAL must all be
dedared as here

• variables of f*ype REAL mDs^ a/I be
dedared as here

• an expressfon assigned fo a real
variable may reduce fo a real or integer
value; Integer values are automatically con-
verted to reals before assignment <f Mix-
tures of real if integer terms in an expression are allowed: implications described overleaf.])

(Sharacters are letters, d ig i fs and symbols> type CHAR means single characters:

VAR x, y, z: REAL;

• conshanb of type CHAR must all be
dedared between apostrophes CONST 'A', q= '» ' , r o ' 6 ' ;

• variables of fype CHAR must all be
dedared as here p j ^

characters may be compared, the result
being Boolean, the basts of comparison I F Cp>a) AND Cc* 'X f) THEN

being ordinal value: fAr < fBr, 'B^ 'c 'e tc and ' O ' ^ ' r , ' ! '< '2* etc.

) VAR a, b, c : CHAR;

(boolean values are fake or true. (j[In Pascal, fa tee is "less than" true.])

• Boolean constants are supplied,
needing no declaration by programmer

Boolean variables most all be dedared
as here y ^ >

a boolean expression must reduce to
fhe value £/"£/£ or #?/ie

VAR ok, a l i ve : BOOLEAN5

I F a^b THEN ok := TRUE;
IF alive AND ok THEN WRlTE('6reatV)

13

PRECEDENCE <& BRACKETS MAY OVERRIDE
TYPES: INTEGER, REAL, BOOLEAN

y r i e introductory example illustrates numerical expressions in assignment
statements. Here are two of ("hem:

Ixssighmenb
pots := C top + wall) / coverage;
filllpots :« TRUNC(pots) + i ;

b ensure the desired order of evaluation. If bracket's were omitted
from the first of fhe examples above ;

pots •'= top + wal l / coverage 5

the division would be done first. Division has higher precedence than
addition. In numerical expressions fhe precedence is:

higher
iocoer

TJhe second of the assignments above illustrates an assignment to an
integer variable. The function TRUNC() delivers an integer result, the i
is written without a decimal point, so fhe two terms sum to an integer
value. In general, when all terms have integer values the expression
itself reduces to an integer value.

is an important exception to the rule stated above. A division
(fusing the slash ^ always delivers a real result:

(Jpteger division /?* quotient and remainder •*& may be achieved using the
operators DIV and MOD as explained later.

Jj^n expression may comprise a mixture of integer and real terms. The
presence of one real term, or of one slash, is enough to make fhe
resulting value real. TRUNc() or ROUNDS) may be used to convert a
real term to an integer term.

^ function 5QR() raises fhe value in brackets to fhe power 2, but there is no
operator (f such as f in BASIĈ) for raising to any power, This is done by fakfng
logarithms as shown opposite. Non-mathematicians should fake if on trust
that Atx in BASIC may be expressed as EXP(LN(A)*x) /n Pascal.

(If may seem strange to some, but > and <= etc. may be used as operators
too. i>2 has fhe value false and 1 + 2 = 3 true. Expressions which contain
such operators reduce to boolean values and are called Boolean expressions
or conditions. Boolean expressions may contain the logical operators NOT,
AND, OR, and also terms of type CHAR:

o k :=: (i = 2) OR (ch > = r A ')$ J

14

AN EXAMPLE TO ILLUSTRATE NUMERICAL EXPRESSIONS,
RAISING TO A POWER, WRITING A REAL RESULT

j monl'hiy repayment no, on a
mortgage loan of 3 pounds over n
years at p percent compound
interest fe given by ^

*re is a program to work ouf- m, given values for 5, p and n.

PROGRAM loans(INPUT, OUTPUT);

BEG IK
s^—'^^-~-^+^~ ~~*+^~ ~^^ "V—

fif your Pascal Is Interactive
^insert a suitable prompt here

READ(5 , p , n,
r := p / 1<2><Z> ;
a :* EXP (LN (l + r) ^ n
rr\ i- (s * r * a) / C l 2 * (a - l
jn := TRUNC (l<2><2)*m +
WRiTELNj WRITELN;
W R I T E C 'Borrowed £', 5 : 4 : 2) ;
W R I T E C a t ' , p:5'-2, ' % ') ;
WRITE (' o v e r ' , n''5'2t

f years');
WRITELN; ^
WRITE ('Monthly repayment is £ \ m : 5 : 2) ;
WRITELN;
WRITE ('Total interest comes to £\ m*n*il-s
WRITELN

END.

screen, at the end of a run, should look like

input99.99

Borrowed £99.99 a t 14*5% over 10 years
Monthly repayment is £
Total interest is f

output

y f your version of Pascal permits interactive working, insert a WRITE state-
ment before READ SO as to make the screen prompf for the data needed.

y above program does nofhing fo check dafa. If the user of the program
entered a wrongly-formed number <{ perhaps letter 0 in place of digit 0%
the program would fail. Most programs in this book are equally lax in this
respect. The reason for the laxity is that checking data fhoroughly would
make the programs too long for their purpose <?*> which re fo illustrate
succinctly various other aspects of programming. It is left as an
exercise to make fhese programs friendly and " robusf" .

J5

DIFFERENT COURSES OF ACTION ACCORDING TO
THE RESULT OF A BOOLEAN EXPRESSION

/j\ program may be made to do
different things according to outcome.
Here is a trivial example ^ P ^

stock < 12 true
/'Order more* I

IF stock < 12 THEN WRITELN ('Order more 1) ;

T
(J general the IF statement permifs
any number of statements to be obeyed
according to whether the value of a
Boolean expression proves to be
true or false. £ ^ -

y!he conditions illustrated here are no
more than a comparison of two
terms. Conditions may be more
complicated, involving the logical
operators AND, OR, NOT. for example

(in i t ia l >='Ef) AHD (i n i t i aU 'L 1)
where ' i n i t i a l ' is a variable of type
CHAR and holds the initial letter of a
surname. A result of true would
mean that the surname belonged in
the E to k telephone directory.

stock<12 is a Boolean expression;
its value is either true or fahe. If the
value of stock<i2 reduces to falze then
I"he WRITELN statement Is not obeyed;
control would simply pass to the next
statement.

READ C key);
IF key = 'y

THEN
BEGIN

these statements obeyed If the
response Is

these statements obeyed ifjome
other response than

these statements obeyed subsequently
\u)habever the response u)as

Gkeen := (x = y) OR (z >= 3) ; I y he value of a boolean expression
may be ass/gned to a Boolean variable
and subsequently tested.

5PEC/FY THE FIELDS IN WHICH NUMBERS & STRINGS ARE
TO 3E PRINTED ALSO NUMBER OF DECIMAL PLACES

/ d width and number of decimal places may be specified after a colon
as shown below:

1
i i= 123; r := 123.456 ;
WRITELN (I : 8)y/^^fleldlmdth^^
WR1TELN (-r : 8 : ^ ^ p f o t f *pfa?
WRITELN C' String' z8j(<f/br reals only])]

)you can phi curves by making field-width an expression as demonstrated later.

16

AN EXAMPLE TO ILLUSTRATE DECISIONS AND
PRINTING IN A SPECIFIED FIELD

Sjere is fhe flow chort of a program
designed to compute the area of a
geometrical shape: rectangle, triangle
or cirde.

'READ the initial letter
of a shape*. Rf TorC /

^^^
letter is R? true,

i*r?

——rr

dimensions
b &d /

sides a, bf cj

I READ diameter d j

\oomputearea =tfcf2i

compute'
s * i (a+b + c)
area*

compute
area* bd

WRITE area T
' WRITE error message!- -+HSTOP)

sre is a program to reflect the flowchart:

PROGRAM shapes(INPUT, OUTPUT);
CONST

pi = 3.14.15926;
VAR

l e t t e r : CHAR; 5, area, a , b , c , d ; REAL; ok: BOOLEAN;
BEGIN

ok := TRUE;
READ(l e t t e r) ;
IF (letter = fR') OR (let ter * V1)

THEN
BEGIN

READ(b , d) ;
area := 5 * d

END
ELSE IF (l e t t e r » 'T1) OR (l e t t e r = ' t ')

THEN
BEGIN

READC a, b, c);
5 := ^.5 * (a -f b + c) ;
area .•= SQRTC s*($-a)* C5-

END
ELSE IF (letter « 'C') OR (letter = 'c')

THEN /^/•//(? ^ n u m b e r t
BEGIN / 0/ 2 with 2 decimals

READ(d);
area := pi * SQR(d)/4

END
ELSE ok := FALSE;

IF ok THEN WRITE ('Area 15 f , area:8.*2) ELSE WRiTECMust be Ror T o r e 1)
END.

17

INTRODUCING A CONCEPT WHICH 15 FUNDAMENTAL TO
PROGRAMMING IN ANY LANGUAGE

4fi program may be made to go back and obey a sequence of
instructions several times over:

PROGRAM xmas (OUTPUT) ;
VAR humbug : [NTEGER ;

BEGIN
humbug := 1 TO 3 DO

-WRlTELN ('We wish you a merry Christmas') •
WRITELN C 'And a happy new

E N D # ^obeyed once, after[
' finished

\ore usefully:

PROGRAM t a b l e s (INPUT, OUTPUT);
VAR valu, product, multipHer: [NTE6ER;

BEGIN
READ (va]u)j
FOR mult ip l ier := 1 TO f0 DO

/ BEGJN
f product := mult ipl ier * valu >
\ ^ WRlTELN (mult ipl iers,1 ^ f , valu:2, ' =l,product-.4.)

END
END.

statement c
» (johen hombag awtn/ns]
I, tohen humbug
contains 2, anduohen\

v humbug contains 3

Note:
WRiTELN ('something')'
/3 equivalent to
w WRITE ('something');)

BEGIN and END are
"brackets" enclosing

{the compound statement)
[U)hich follows DO

[\f the outcome of \he above t r i v ia l programs 15 not immediately obvious
they should be tried out- before reading on. Looping is fundamental fo
programming.

'y'he FOR loop 15 called ^deterministic" because fhe number of limes round is
determined before looping sfarfs. Not 50 the REPEAT loop. The following
fragme.nl" could be substituted befween the outer 5E6\H and EHD. aboye:

READ(valu);
multiplier -- 1;
REPEAT

/ product :- multiplier * valu •,
(WRITELN (multiplier:?/ * ' , valu:2, f =', products)$
V multiplier ;= multiplier f I,
UNTIL multiplier > t<2>

(more appropriate
'applications of "
the &PEAT loopf

*Jgii/en later

Tj he FOR loop and REPEAT loop are executed at least once (J unless something
goes 50 wrong that fhey are not executed at all J , Buf fhere is also a loop
for which fhe test for execution is made at the start, the loop being
skipped over if the test f a i l s :

over u)hen
7 multiplier > 1<2>

READC valu);
multiplier := i ;
WHILE m u l t i p l i e r O /<2> DO
/ BEGIN

product := multiplier x valu;
I WRITELN (mul t ip l ier^ / * ^ valu: 2,' =', products);
\ multiplier ->~ multiplier

END

'more appropriate
^applications of

the WHILE Loop
iver) Later

18

A PROGRAM TO ILLUSTRATE LOOP5 BY
FLYING THE STARS AND STRIPES ((circa 1912%

(J 1912 " Old Glory1*, Hie American flag, had 48 stars done per state of
the Union]) and 13 stripes (J one per original Colony^. The program below
displays a rough approximation To Old Glory £.1912. Nowadays there
are more states, hence more stars.

PROGRAM glory (OUTPUT);

VAR row, c o l : INTEGER;

BEGIN

FOR col : * 1 TO 19 DO WRITE ('
WRITELN $
FOR row := i TO 13 DO

BEGIN
FOR col := 1 TO 19 DO

IF (col < 9) AND (row<7
THEN

WRITE (' * ')
ELSE

WRITE (r '>,
WRITELN

END
END.

A PROGRAM TO PLOT Pi SINUOUS CURVE USING A

LOOP AND A VARIABLE FIELD WIDTH

4j he following prograrvo pbfs the graph of zinCx) scaled and offset from
the left margin 50 fhaf the curve oscillates about the middle of fhe
screen. The trick of this kind of plot is to use an expression for field
Wfdth. The field widfh varies from line to \\r\e\ the asterisk is right-
jusfffied in each field.

PROGRAM sinuous (OUTPUT)$

CONST
offset = 20; scale « 18 j degreesfcep = 8;

VAR
i : INTEGER; k : REAL 5

BEGIN
k := degreestep * 3.1415926 /

F̂OR i := 0 TO MAX1NT DO

.WRITELN (' * r : ROUND (offset -h scales SIN (I

END.

three values suitable for
a T-V' monitor; adjust
to suit your equipment

radians from degrees

fietcf oJccfth as
an expression

19

11 o ^mplement the loans program and experiment with different
sets of data. If you enter zero for the percentage rate of
interest the program fails. Include a test in the program for
this eventuality and make the program print the results for
it. If your Pascal permits Interactive inpuf make the pro-
gram prompt its user for the three items of data required*

<mk 9 Umplemenf the dhopes program. Improve the program by
making if return for a new problem having displayed a
result. Let the program treat the letter Z as a stopping code
({i.e. it should recognize R, T\ c and z]) ,

5>» ymplemenf the sinuous program. Dampen fhe wave it pro-
duces by plotting y = sin x / exp x in stead of y = sin x .

20

TYPESTVLES
NOTATION
ELEMENTS
COMPOUNDS
SYNTAX OF AN EXRE5SION
SYNTAX OF A STATEMENT
5YNTAX OF A PROGRAM
SYNTAX OF TYPE

RESERVED WORDS, PREDEFINED NAMES &
names invented by the programmer

the different styles of writing in the introductory program; hene it is
agai n:

pa in t i ng (INPUT, OUTPUT);
CONST pi * 3.14$
VAR diameter, height, coverage, top,

Wall, pots: REAL;
BEGIN

READ (diameter, height, coverage);
top :- p i * SQR (diameter) / 4 - 0 ;
wall ••= pi * diameter * height;
pots •'= C top f wal l) / coverage ;
f u l l pots •= TRUNC(pots) f i ;
WRITE ('You need', fuIJpots, ' p o t s ')

END.

vj/hen dealing w/th Pascal programs the computer makes no dfsf/ncfion
between capital letters and corresponding lower-case letters except for
those between apostrophes. So the program could be typed all in capitals:

PROGRAM PAINTING (INPUT, OUTPUT);
CONST PI = 3.145

or all in lower-case letters:
war diameter, height, coverage, top,

wal l , pots: rea l ;
or in a mixture of capitals and lower-case letters:

Full Pots TRUNC(Pots)-M;
Only between one apostrophe and the next is case significant:

'.You need*! K* Full Pots,

in the introductory example <<&, and throughout fhe rest of this book**three
styles of writing are employed so as fo emphasize the three kinds of word in Pascal;

• PROGRAM, CONST, VAR, 5EGIN,... are reserved words which behave
like punctuation marks, each having a unique meaning in Pascal

• INPUT, REAL, READ, TRUNC,... are predefined names ; they nominate
facilities offered by Pascal for declaring files (f INPUT J , types
(JREAL3) or invoking useful functions (f WRITE(), TRUNC() j) but
the programmer is free to ignore such facilities and use their
names for other purposes

• painting, p i , diameter., height,... are names composed by the pro-
grammer fo identify variables, constants, procedures and other
things yet to be introduced.

[\{ makes a program easier to understand when the kind of name or word is
at once evident from the way ft is written.

22

TO DESCRIBE THE WRITTEN FORM OF
PASCAL'S DECLARATIONS AND STATEMENTS

y o define [he written form and punduohon of Pascal programs it helps to
use a concise, notation. The notation described below is a blend of two
notations in common use for defining the syntax of Pascal: railway-track
diagrams, as used \n several books on Pascal, and Backus-Naur Form $BNF^
as used in the 150 definition of Pascal. Rail way -track diagrams are visually
confusing when following all but the simplest- layouts; 3NF is good for
formal definitions but not so good for quick reference or general appraisal
of a syntactical structure. The notation described below is intended for
quick reference and general appraisal with little ({if any J (oss of rigour.

italt'cs Italic letters are used to name the entities being
defined: digit, operator, expression and so on

says u is defined to be . . . " as in BNF

ROMANS, These s tand for themselves; copy them from the
& 4- C # / * de f in i t ions jus t as they ore. Substitute lower-
012 etc. case letters If preferred: a for A, b f o r B , cforC etc.

Vertical bars enclosing several rows offer a choice
of precisely one row

This arrow says the item(s) over which it is drawn
are optional (\ may be skipped over ^

This arrow permits return -s* hence offers the
choice of another item from vertical bars or the
same item as before

/IQ/veuar
const
file
type
fn
proc

A circle \ or sausage 5hape]) contains the separator
to use when returning for another item. Mo circle
means no separator.

A subscript to name tells what that name is
naming; whether a variable, a constant, a file,
a type, a function, a procedure. (fThls device
goes beyond syntax into the domain of semantics.])

This symbol is put in front of illustrations in place
of the words u for example"

Qeveal words used in the definitions below are different from those in
Standard works on Pascal. In particular, I use name in place of Identifier,
term in place of factor^ and have no need of a word in place of term. I use
comparator in place of relational operator*

23

OF PASCAL SYNTAX: letter, digit, symbol,
space, operator> comparator

letter ::- A
5
c
D
E
F
G
H
1
J
K
L
M Utfexcept in
N p> # string
0 / a locuer-case
P y letter is
Q [equivalent
R l ' '
5) corresponding^
T (upper-case
U \ ^ < s r , ^ .
V
W
X
Y
Z

o the lower-case fetters if
available.

0
1
2
3
4
5
6
7
8
9

symbol ::=

i>iofice thah aposfrophe and
braces {'} do nof appear In Hie
deffnih'on of symbol; they are
dealt wifh explicitly.

(^ symboia such as i and
! and $ (f as available J may
be used In a string or comment.

5pace

s p s are Significant in strings
and commenhs. New lines are
not permiffed in strings or
Comments.

operator ::=

DIV
MOP

AND

+
OR

(precedence
I operators]

' precedence
i operators)

(Jin fhe expression 3f4*5 fhe * is
applied before + because if is of
higher precedence. Use brackets
to override: e.g. (3+4) #5

>=

IN

^ expression 5-3 = 2 is true
because if is treated as (5-3)32,
nof as 5-(3=2). In ofher words the
comparator has lower precedence.

OF PASCAL SYNTAX9- name, digits,number,
constant, variable, string, comment

name ::= letter letter
digit

• X

• H2S04 • h2so4

digits :;= digit

number .-.'= digits .digits

• 6 • 0123444

unsigned) (E says "times ten
tothepocverof.."

variable "~ name

-55.4e-03 {i.e.-0.0554j
• k

fMef >/5 allowed

• k
• arrai I 6,
• person, age
• ptr +
• arrai Is] [2^ k]

string :: = letter
digit
symbol

comment :: = letter
digit
symbol
space
{

y • { A programmer's comment}
• (> This too *)

JJ\ comment 15 treated as a single
space and may be inserted
wherever a space would otherwise
be allowed.

25

& BOOLEAN EXPRESSION, ALSO
CALLED A CONDITION

j "elements" and "compounds" of FbscaPs syntax may now be
combined in the definition of an expression. The introductory example
shows several expressions of which the following two are typical:

C top + wall) / coverage ; pi * SQR(diameter)/ £.0;

4r\n expression comprises one or more terms. The terms are bound
together with brackets and operators. A f-erm may be the name of
a variable (j[e.^. top ^ or a reference to a funcfion \e.g. (t)
or one of several ofher forms defined below.

term namtconSt
number ^Cr^tunsigned^
NIL

string
vctricthle
name ^/\ ^ expression , j *

C expression)

[^expression <T"expression^]> ? k^^—o—~^^^
MOT ^er/77

•

•

TRUE

6.75E3 £ 6750

NIL
fkpgf

epsilon
TRUNc(pots)
Ca + b;

[2*a .. 3*b]
C3
ucrr TRUE

^ than that;
of any
\pperator)

I/Javing defined ^r/r?, here is the definition of expression which is a
collection of terms bound together with operators and comparators :

expression ;: =

• (pi * 5QR(diameter) / A) + (pi * diameter * height)

precedence]) (precedence) {example because of precedence}

\n expression involving one or more comparofora, or a single Boolean
ferrn, is called a Boolean expression or condition.

• - 3 > 1 • TRUE

^/\n exceptional form of expression /s allowed in WRITE and WRITELN
statements:
exceptional ::= expression *^i expression -^expression

• WRITE (X : 8 * 2) • WRITELN(V : ROUND(off5et + Scale *SIN(K*i

26

SOME FORMS HAVE NOT
YET BEEN INTRODUCED

^ h e definition of statement is set out below. Several of these forms of
statement have not yef been introduced.

fiull
>statement\

statement ::= digits:

UaEdfor
GOTO

variable : * expression

:= expression

name

assignment

BEGIN w statement

IF condition THEN statement ELSE statement

REPEAT w statement > UNTIL condition

WHILE condition DO statement

FOR name :=* expression TO

DOWMTO

expression DO statement

CASE expression OF ̂ ^nonstant : statement, ; END

WITH w variable , DO statement
9

GOTO

• JOO : area := p i * 5QR(diameter) / 4

• BEGIN temp ••= a; a := b^ b := temp END
• IF a > b THEN BEGIN t e m p : = a ; a :* b ; b :
• BEGIN ; t : « a ; ; a : = b - ? b ^ t ; END

27

SKIP THIS DOUBLE PAGE ON
FIRST READING

1/Jere 15 a " top-down" definifion of program ••

program - = PROGRAM name (nQmefHe)>

block ::= LA3EL ^digits / ;
Mi/

{ continued on next Line}

CONST ^ naine »* constant ; {continued }

{ continued}

{continued}

TYPE

VAR L w name , * type ;

FUNCTION name parameters * nQmetup&

PROCE DUR E name parameters

{continued}

BEGIN w statement y END

parameters a =

FUNCTION name 'parameters : f^ir^tupt

^PROCEDURE name parameters^

TO COMPLETE THE TOP-DOWN
DEFINITION OF PROGRAM

jere is a fop-down definition of type*.

type :: = nometyPe
ordinal
t name type

PACKED 5ET OF ordinal

ARRAY [w ordinal .] OF type

RECORD fields variant ; END

RLE OF type

• REAL

• 0.-6

• tREAL

• PACKED SET
OF (0 - 6

• ARRAY I m ,
0 . .6] OF

REAL

^ RECORD

END

• FILE OF
INTEGER

lere:

ordinal name • INTEGER

• O» we, you, the/)

constant.. constant

nd where:

0..6 • 'A'..'Z' • I . , we

• nr, age: INTEGER; status: CHAR

where:

variant ::= CASE name i name tuDe OFw ^constanty : (fields variant'type'

complefes the definifion of fhe syntax o f 250 Pascal,

29

OPERATORS
SIZE AND PRECISION
COMPARATORS
ARITHMETICAL FUNCTIONS
TRIGONOMETRICAL FUNCTIONS
TRANSFER FUNCTIONS
BOOLEAN FUNCTIONS
ORDINAL FUNCTIONS

* /
+

D1V
OR

MOD AND

operator ::= jt syntax of operator is
defined again here for convenience.

j use of these operators is
explained on this double page.The,
syntax o f express/or? on page 2&
should be consulted if the use of
bracket's In Hiese examples is not
immediately clear.

/ i n the absence of bracked an expression is evaluated from left fo right",
applying high precedence operators before, low precedence operators.
Brackets may be included fo enforce any desired order of evaluation.
For example a * b / c and (a # b) / c would be evaluated In fhe same
way but a * Cb/c) would enforce a change in the order of
operations.

operators DIV and MOD are for integer division; they yield an
integer quotient and remainder respectively:

WR1TELN C 17 DIV 5 ,

' "modulo "J f quotient

\jfor positive values of i and j the following relationship holds:

(i DIV j) * j + C i MOD j) = i
WR1TELN C C 17 DIV 5) * 5 + C 17 MOD 5))

l£)ut complications arise with non-positive values. The second operand of
MOD is not allowed to be negative:

iWRITELN (17 MOD -

Impermissible arrangements are permuted below:

WRITELN
WRfTELN
WRLTELM
WRITELN

c
c
c
c

17
17
-17
-17

DIV 5,
DIV (-5
DIV 5,
DIV (-5

n
) > ?

-17
))

MOD

MOD ^);

and when the first operand is smaller h absolute value:
WRITELN
WRITELN
WRITELN
WRITELN

c
c

c

5
5
-5
-5

DIV
DIV

DIV
DIV

17,
(-17))
17,
(-17)

5
;
-5
)

MOD

MOD

17);

17);

^ n error is reported if a divisor is zero, or either operand not an integer:

WRITELN (17 DIV
WRITELN C 17.0*5^^" MOD 5)

32

operators + and - may be used as "monadic" operators
other words as signs } in front of Integer or real expressions:

in

WRITELN (- 2 , + 2 * 3) }
WRITELN (- 2 . 0 : 4 : I)

operatars # and + and - produce an integer result when both
operands represent integers:

WRITELN C 2 * 3 , 2+3, 2-3)

but produce a real resulf if either or both operands represent a real:

WRITELN C 2.0*3 : 4 : 1)>
WRITELN C 2 + 3.0: 4 •* I)

operafor / produces a real result *& even when both operands
represent integers:

WRITELN C 6 / 2 : 4 : I) ;
C 6-0/2 :4 .' I)

divisor is not allowed to represent zero:

WRITELN C : 1

operators AND and OR between Boolean operands produce a Boolean
result. Errors are reported if fhe operands are not Boolean:

WRJTELN C i O R ? T F 2) ;
WRITELN C 'A1 A N D ^ f B ')

Vhe following ^/z///? tables define the boolean results obtained when applying
AND and OR operators to Boolean operands:

AND

S r

SECOND

true

> /

X

OPERAND

false

X

X

OR

Q fc

?«
^ e

SECOND

true

y

OPERAND

false

v/

X

1/Jere are some examples of Boolean expressions. Notice how the WRITELW
statement produces boolean results as words. Whether these words
emerge \n capitals or lower-case letters depends on Hie installation:

WRITELN
WRITELN
WRITELN
WRITELN
WRITFLKI

c
(c
c
c

TRUE
FALSE
TRUE
FALSE

AND TRUE,
AND TRUE,

OR TRUE,
OR TRUE,

TRUE
FALSE

TRUE
FALSE

AND FALSE) ;
AND FALSE);

OR F A L S E) ;
OR FALSE) ;

((O=2)OR(|+2«3))OR Cl>2)) AND (2+3 = 5))

33

OF INTEGERS Si REALS

4t\n integer may be positive or zero or negative . A copy of Hie
biggest allowable integer that can be handed or stored is held as
a consfanf named MAXiNT:

MAXINT]

value differs from one installation
to another; find out oJhat it is on
yours by running this little program\

PROGRAM findout (OUTPUT);
BEGIN

WRITE (MAXINT)
END.

ij he value 32767 is usual for installations in which integers are stored
as 16-bit words. A value of 2147483647 is usual where 32-bit words
are employed.

44f the program tries to evaluate an integer expression for which an
intermediate result grows bigger than MAXINT an error message is evoked.
It may be possible to avoid this by adding brackets to an expression $
for fnsfance changing i * j DiV k to i * C j £ * v k) .

Although the allowable range of integer is -MAXIMT to +MAXINT you may
discover that a value of - (MAX/NT f i) causes no error. This is because
a commonly used range of Integers stored in /?-bit words runs from
-2n~' to (_7.n-'-l) ({asymmetrical about zero]).

$k real number may be negative, zero or positive. Its maximum
absolute value is to3 8 ; a typical precision fs 6 to 7 significant
decimal digi ts. On such an installation the biggest positive or negative
number would be abou t :

t ioo, ooo, ooo, oooy ooo, odo, ooo9 ooo, ooo, ooo, ooo, ooo, ooo
The smallest positive or negative number would be about:

± 0. 000) OOO, 000, 000,000,000, OOO, 000^ 000, OOO, 000, OOO, 01

number I,ooo, ooo would be]ost distinguishable (fw/fh the above
precision J) from i,ooa, ooi but" not from i, ooo,ooo. i •

^umbers are stored as binary digits (f bits]) rather than decimal digits,
hence the unavoidable vagueness of the above two paragraphs. The
range of real numbers is depicted below:

m r;*sr- : i^^^^^

uotth p-bit precision',
adjacent numbers are just
distinguishable on the

t» bit

The Real Numbers

34

comparator :: =
<=

>=

IN
^ \ equal)

({OFFICIALLY uRELATIONAL OPERATORS"!)
BOOLEM RESULT FROM COMPATIBLE OPERANDS

y h e syntax of comparator is reproduced
here for convenience. The symbols have
the conventional significance-, >= for
example says " Greater thon or equal t o " .

y precedence of any comparator is lower
than that of any operator.

V'he syntax of expression is also reproduced 50 as to emphasize the difference in
adage between operator and comparator :

express con ::= term comparator •f term
operator

Hjterms of like type may be compared, the result being a boolean value:

WRITELN(2>1, 2 . 0 > 1 . 0 , TRUE > F/U.SE , V

po^r'thebnly Zocy
compare 'items cf type cmR

jljeal and integer terms of like value ore Interchangeable'.

WRirELN(2 > 2*0 > i

ifhe syntax diagram for expression allots only one comparator. But expression
In brackets is a form of term, 50 a further oomparafor may then be
included to make a more complicated expression thus:

^ t s ore explained in chapter 7, bul" fhe following operations on sets are
reproduced below for completeness. The names " friends" and
"acquaintances" are names of sefs; "ffoulkes" is the name of a single
member of a set.

\ ^

«

friends = acquaintances

friends <> acquaintances

friends <= acquaintances

friends >= acquaintances

ffoulkes IN friends
NOT (ffoulkes IN friends)

5{>

true, if all friends are acquaintances and
all acquaintances friends \\dm\ica\ sets])

true }f no friend is an acquaintance and no
acquaintance is a friend | distinct sets])
true if all friends are acquaintances

if all acquaintances are friends

true if ffoulkes is a friend
true if ffoulkes 15 not a friend

35

years functions have enjoyed arguments :
X := AB5(y) \ y PARWETER

faraShent

buf" ^he preferred terminology for argument in Pascal is parameter. The param-
eters described below are actuat parameters. Later we define formal param-
eters hitherto known as dummy arguments.

4/he following two functions may be given an integer parameter, in which
case they return an 'integer result. These functions may be given a real pararrr
etr& in which case they return a real result.

(1 expression J\ TH£ AbSOLUTZ <f i.e. POSITIVE^ VALUE
OF ITS PARAMETER

WRITELN(ABS(-2), , AB5(2));
, ABS(0.0)?4:

THE SQUARE OF THE VALUE
OF /TS PARAMETER.

WRITELN CS(5R(-2),
:4 : i , SQR(2.0)-'4.'i

yrie remaining arifhmeffcal funch'ons may be given an integer or real
parameter, but return a real value in eifher case:

Vv 7>/£" SQUARE £OOT OF /TS
expression]J ^/CH Musr Nor 3B NB6AT/V£

WRITELN
WRirELM CSQRr(-/6))

expressc n
NATURAL LOGARITHM (fBftSEe) OF /TS

WHfCtt MUST BE

CLN(0),

B\ffr ' T l 7?/£ NATU^L ANT/LOGAR/THM (fBA,
express con j j JN CTHER WORD$ EXPOC) S/GA/IF/ES

WRITELN CEXP(0) . ' 4 - , .
WR11TLN CEXP(-1):7:4-, EXP(LN(

i+JLf J. + ...
i! 2! 3!

36

TJ he trigonometrical functions are
defined below; each may be given
an integer or real parameter but
returns a real resulf in either case.

THE SINE OF AN ANGLE
IN RADIANS

sin oo « -
h

CONST PI= 3.UJ5926;

WRITELN

WRITELN

WRiTELN

(

c
(

SIN (- P I / 6

SIN (0) - 4 :

S lN(P l /2)

)'-4

'.A- 1

: 1

)

) ;

/J. . \ \ THE COSINE OF AN
({expression J Me/isM£D IN

cos oc « r:

SIN(hCO5()91 ^ v ARCTANC)

C0N5T PI = 3.1415926;

WRITELN

WRITELN

WRITELN

c
(
(

COS

COS

COS

C-PI
(0)'

(PI)

/G

4 :
) :
i

t

8 :5) ;
) ;

)

ARCTANGENT (UTHE ANGLE, IN RADlAMS> WHOSE\

ft/2

TANGENT 16 ... " /

WRITELN

WRITELM

WRITELN

c
c
c

ARCTAN(lE35)l

ARCTANC0) • 4-'

ARCTAN C-i): 8 •

8 :

O
5)

5
5

) ;

37

when an Integer result is assigned to
a real variable the resu If" is automatically
converted to type real, no function being
needed. This facility is called implicit
type conversion.

ŷ here is no converse of the above-, }jr is
wrong to assign a real result to an
Integer variable.

FROM REAL TO INTEGER
TRUNCC ; , ROUNDC)

i :« 2.0 *3 + 4;
j := 9/3 1 ^

jj\ real value must either be truncated or rounded before being assigned
to an integer variable, fhe functions TRUNcf) and ROUNDC } being provided
for the purpose.

expression j) TRUNCATE ANY FRACTIONAL PART OF THE REAL
VALUE AND CONVERT TO TYPE INTEGER.

WR/TELN

WRITELN

(TRUNC(3.i), TRUNC(3.8));

C TRUNC(-3.1), TRUNCC-3-8;;

(TRUKC(3.0),

ROUND TO NEAREST WHOLE NUMBER AND
CONVERT TO TYPE INTEGER

WRITELN

WRITB.N

WRJTELM

WRITELKI

c
c
c
c

ROUND

ROUND

ROUND

(3

(-

(3.

3.O,
CJ),

ROUND (3.5) ,

ROUND (3

ROUND(

ROUND (-

ROUND (~

•8)) ;

3 • 0 /) *
3.5))

TJrhere can be surprises. Consider a value of 3-499999 stored in a reol
variable x. If this value were displayed using the statement
WRITE (x : s> 5) if would appear as 3.50000, but WRITE(ROUMD(X))
would yield 3 rather than 4 * This problem may be avoided by a
" n u d g e * such as WRITE (ROUMD(X + 0.000001)) (J assuming deva lue
Stored in van'able x is known to be positive ^ •

is wrong to give an integer parameter to TRUMC() or ROUNDC)•

WRIfELN C T R U M C (3)) ;

WRITELN (ROUND (3))

38

RETURNING TRUE or FALSE
DDD() , EOLN() , EOF()

function ODDC) is for revealing whether the result of an Integer
expression is odd or even.

RETURNS TRUE IF PARAMETER REDUCES TO AN ODD
,NTEGER ** OTHERWISE RETURNS FALSEexpressior>

WRITELN

WRITELN

WRITELN

(0DD(3) ,

(ODD (- 3 ; ,

CODDC3.0)

ODD(2),

ODDC-2)

ODD

) ;

(0)) ;

following functions are for detecting fhe end of a line and Hie end of a f i le
respectively. EOLN is usable only with text files which are organized as lines of
i tems. Files are described in chapter 10; below is enough informat ion to explain
the use of EOLN in the early examples. Do not use EOF i f data come from Hie
keyboard ; chapter 11 deals with this precaution.

RETURNS TRUE IF THE FINAL ITEM OF THE CURRENT LINE
HAS BEEN READ

WHILE HOT EOLN
/ BEGIN /^r^
1 READC 1 ,);
\ ^ WRITELN (i :

END

WHILE NOT EOLN
4 BEGIN ^ 5 =
(READ (a) ;
V WRITE (a : 5

END

DO

i{type integer)
3)

DO

Vv RETU
namefile]) READ

RETURNS TRUE IF THE FINAL ITEM ON THE FILE HAS BEEN
OBEYING ANOTHER READ WOULD CAUSE FAILURE J>

WHILE NOT EOFCf)
BEGIN

WHILE NOT EOLN
BEGIN

READ C ch) ;
WRITEC ch)

EUD;
WRITELN

END

input
Spaces are
significant

'c when read-
ing type
CHAR

WHILE NOT EOFCg) DO
4 BEGIN
V READ(ch) ; WRITECch)

END

o The EOLN
mark is
read as
a space

39

POSITION IN ASCENDING ORDER
ORDO, CHRC) , SUK(), PRElX)

letters 'Af to 'z1 run In ascending order\ in other words each fetter
has an ordinal value to establish its relative order in the alphabet. This
ordinal value may be obtained from the ORD() function:

THE ORDINAL VALUE OF THE CHf\RfiCTER -
TYPE & EXPRESSED BY THE

WRITELN C ORD('I f) , ORD('J'))
/isc// cock E6CD1C code

%xhe ordinal value of a character depends on the computer installation,
fhe ASCII code being typical on personal and home computers. But
whatever the code employed the ordinal values of letters run in
ascending order:

O R D (' A ') < ORD('B ') < O R D (' c ') . . . < ORDC'Z1}

but ORD('z')-ORDC'A1) /s not necessarily 25. Not all computers offer
the lower-case letters, buf for those that dot

ORD('a') < ORDC'b1) < ORD('c') ." < ORDC'z1)

/ ia no defined relaHonsbip between upper-case and corresponding
lower-case letters buf If should be safe to assume that ORD('a')-ORDCA')
has the same value through the alphabet* to

the character code employed, the ordinal values of digits run in
ascend'inq order:

ORD(f0') < ORD(M') < ORD('21)... < 0RDCr9')
and furthermore there is a difference of i between ordinal values of
adjacent digi ts, so QRD('9 ') - ORD('0O = 9. i t follows that fhe numerical
value of digit d <f type CHAR Jj) may be obtained from;

value := ORD(d)- ORDO0')
(J if here is probably no Pascal installation af which ORD('0'? returns

CHAR, INTEGER ^c. are provided by Pascal^ but fhe programmer may
define other types by enumerating a sequence of constants:

TYPE
days - (mon, tue, wed, thu,fri, sat, sun) 5

f enumerated types are
^explained on page 72

(Constants of enumerated type have ordinal values counted from zero. For
example ORD(mon) returns 0, ORD(sun) returns e\ mon<sun .

yype BOOLEAN is an enumerated type which is provided automatically as*

TYPE
BOOLEAN = (FALSE, TRUE) ;

hence ORD(FALSE) returns 0, ORD(TRUE) refurns i ; FALSE < TRUE

40

converse of ORDC) is CHR() :

expression J\ RETURNS THE CHARACTER WHOSE ORDINAL VALUE /5 EXPRESSED
'U BY ITS PARAMETER ERROR /F NOT A VALID CODE

WRITELN (CHR(73), CHR(74-))

WRITELM (CHR(2O1), CHR(2O9))(EBCDIC

probably not a
valid code

_ somefhing has an ordinal value W" is seldom necessary to know whah fhaf
value actually isj if is enough to ask for fhe successor or predecessor in
the established order. Functions succ() and PREDC) are provided for
this purpose:

(f expressionj\ RETURNS THE SUCCESSOR TO THE ITEM EXPRESSED BY
THE PARAMETER

WR1TELN (SUCCC'A'), SUCC C0') , 5UCC(0)

WRITELNC SUCC (FALSE)

WRITELM (SUCC ('Z1)) ^T^t successor)

r • T l RETURN
'expression]) 3y JHE

RETURNS THE PREDECESSOR TO THE /TEM EXPRESSED
PARAMETER

WRITELN

WRITELN

WRITELN

(

(

(

PRED('Z ') ,

PRED (TRUE)

PRED (' A '))

PRED(

) ;

'9'),

(w7?

PRED(9));

^ — \
as no Kiecessor)

ijhese two functions may be used to obtain successors and predecessors of
enumerated fypes. Referring to hype days defined opposite:

PREDCsun) returns sat, succimon) returns tue

but if" would be wrong to illustrate this as WRITELN (PRED (sun)) because
enumerated types cannot be read or written & a constraint on their
usefulness. The nearesf thing to VJR\TBLN(PRED(sun)) is
WRITELN (ORD(PRED (sun))) which would cause 5 to be written (j[the
ordinal value of sat J .

succc) function is handy for controlling loops;

REPEAT
1 := 5UCC(i);

statements

FLOW CHARTS
IF'THEN'ELSE STATEMENT
FOR LOOP
REPEAT LOOP
WHILE LOOP
FILTER \ EXAMPLE])
C/tt i" STATEMENT
5YMBOL-STATE TABLE (| EXAMPLE

!F*THEN»EL$E , FOR LOOP, REPEAT LOOP
WHILE LOOP, CASE OF, GOTO

/j& of the control statements have been introduced by example in earlier
chapters^ \n Mils chapter they are defined and their characteristics
explained. Unless disturbed by one of these statements, control goes
from statement fo statement sequentially.

j behaviour of each coniro] statement I'S depicted on this double page
as a flow chart".

true/ tesf the \
t \ condition f

execute the, ztaternert

I F condition THEN statement ELSE statement

path taken when
£LSE is omittedexecute the statement

which follows ELSEwhich follows THEN

REPEAT, statement. (JNTI L condition

evaluate the first expression*,
remember result as the "initial value"

evaluate fhe zecond expression;
remember result as the "ferminal value"

initial value > terminal value ?
in the case of DOWNTO £

true

execute in order the
statements separated
by semicolons

true

initial value
to control variable

execute fhe statement

augment control variable by i
(J decrement in case of ^

control variable> terminal value ?

(ft < In fhe case of DQWNTO j)

Jroe

controi variable)
'becomes undefined]

y the ,
\ condition / ^

WHILE condition DO statement

test the
condition A

true

execute the
statement

44

evaluate. fhe expression
(f result referred to below
as "fhe value" J

(compatible A
(constants

CASE i OF
0 : WRITE ('zero1);
1,3,5: WRITE ('Odd');
2,4,6: WRITE ('Even1)

END

/fhe value matches a
\constant in firsf iî h?

fhe value matches a
constant in second lisf ?

true execute, the
first statement

execute the
second statement

etc. etc.

'fhe value matches a \ ^
constant in final list ? /"

execute f-he
final statement

^ afandand does noh specify what" should happen if
The value of Hie expression matches none of the con-
stants. (j[Some Rascals provide the keyword OTHERWISE
for trapping such cases buf Z+iis facility is not standard.])

send confrol fo Hie
sfatemenf which has
fhe specified label

execufe the labelled
statement

y some Pascals the GOTO and /"he labelled
statement are constrained to be fn the
same program block.

execute statements which
follow the labelled state-
ment.

ijhe GOTO is useful for error recovery in interactive systems « a subject
beyond the scope of this book.

PASCAL LACMS AN EXIT STATEMENT

Qtandard Pascal offers no way fo jump out of the middle of a loop. Buf
here is a contrivance : I

statements/
REPEAT

condition
true

statements i

• apart from GOTO

statements 2

45

TJ he syntax of fhe IF statement is:

IF condition THEN statement ELSE: statement

• IF profit > loss THEN WRITE ('Hoorayi')
^ IF profit > loss THEN WRiTE('Hooray!') ELSE WRITE ('Bother')

• IF initial > 'K' AND in i t ia l < 'S1 THEN WRITE ('See L to R directory')

condition is evaluated, and ite value furns out to be *5/7/e, Hie state-
ment following THEN IS obeyed & the statement following ELSE being
ignored. Conversely, i f Jfie value turns out to be false % the statement
following THEN is ignored *& the sfafement following ELSE $ if fhere is
one]) being obeyed.

i j f condition do&s nof reduce to true or false an error message is
evoked.

[he statement following THEN or ELSE may be a compound statement
i.e. BEGIN E N D]) . There fs no l im i t to fhe number or complexify

o f stafemenfs compr is ing a compound t t K

^ careful when nesting IF sfatementa. Try to employ the paf-fern
"ELSE I F " rather than *4THEN I F " which leaves cxn " E L S E " dangling
in the bra in . A sequence of u THEN I F " can conclude in an
embarrassing pile-up of ELSE clauses :

IF NOT b a d
THEN

I F NOT SOSO
THEN

I F NOT
THEN

gallop

jQn general, ELSE refers to the closest preceding if which has not yet
been paired wifh an ELSE .

46

THE LOOP TO USE WHEN YOU CAN SPECIFY THE
NUMBER OF CYCLES AT THE OUTSET

syntax of the FOR statement is:

FOR name := expression

control variable

TO

DOWNTO

expression DO statement

• FOR humbug :« 1 TO 3 DO WRITELN ('We wish you a merry Christmas*);
WRfTELN ('And a happy new year ')

• FOR m := r2 DOWNTO 2 DO WRITELN (m: 3, f men')-,
W R I T E L N C I man & his dog went to mow a meadow')

control variable may be any ordered i-ype (f typically INTEGER, never
REAL }). Bofh expressions must reduce to the same fype of value as that of
fhe control varfab/e*

^ flow charh on page 44 should be consulted on fhe patterns of behaviour
illustrated below.

^}he two expressions are evaluated before any statemenf of the loop; they
are not subsequently re-evaluated. I f fhese expressions define an
impossible sequence the loop is not executed at all:

FOR i := 2 TO i DO WRlTE('5hy') nothing written
i no error reported

is impossible to arun away with fhe finishing line*' which is frozen on enfry:

precisely three
times round

!\\ is wrong to tamper with the control variable. Obvious cases of tampering Involve
a s s i g n m e n t to t h e c o n t r o l v a r i a b l e and reading values into it:

finish := 3;
FOR i :« i TO
/ BEGIN
f finish : =

finish

finish
\ WRITELN(f in ish)

END

DO

+ i ;

terminal value) 1
frozen at 3 jJ

}
\

FOR X :« i
4 BEGIN

I READ(l)
^ F 0 R a i i ;

END 7 ^ "

TO

« t

3

TO

DO

3 DO WRITE ('Dear me!')

/jt is wrong to assume anyfhing about the value In fhe control vanable on
emergence from a FOR loop (j unless vacated by ^

I ^ I TO 3 DO
WRITE (i : 4) ;

WRITELN',

47

syntax of fhe REPEAT statement is:

statements

conditionft/on)—v

REPEAT ^ statement, UNTJL condition

y n:=3; REPEAT n:=PRED(n); WRITELNfn) UNTIL

^ 5 may be verified from fhe flow chart, fhe statements are obeyed at
least once. A loop that has to be avoided altogether under certain
conditions must be specially protected >» soy by an IF statement. In
such circumstances if may be better to use a WHILE loop.

syntax of fhe WHILE statement r it cony—\condition

statement

WHILE condition DO statement

n : ~ 3 ; WHILE n>0 DO BEGIN n:*PRED(n); WRITELN(n) END;

>\5 may be verified from the flow chart, the test for continuance is made
before statement is obeyed, permitting fhe loop to be avoided altogether
when conditions are not right (̂ not so with the REPEAT

^ / \ typical use of fhe WHILE foop is for copying text files. A fexf file is a
file of (ferns separated by spaces and organized into lines as explained
on page f 15,

I VAR c h : CHAR; 3
WHILE NOT EOF(f) DO

BEGIN
WHILE NOT ECLN(f)
J BEGIN
f READ (f , Ch) ;
I WRirE(ch)
^ END;

WRITELN
END;

\

l^on't use EOF w/th keyboard input. Implications of this are explained in
c h a p t e r s 10 and il.

48

A PROGRAM TO READ SMALL NUMBERS EMBEDDED
IN TEXT ̂ AND ILLUSTRATE REPEAT & WHILE LOOPS

READ statement alone cannot be used to read the numbers from the
following file because the y/ords and punctuation marks would ger in the
way. Program filter is designed to filter out the extraneous data and
abstract just Nie numbers.

Ijjere is a file to serve as data. It
should be typed without pressing
|RETURN) until the ffnal full stop has
been typed. [

In 6 months, with luck, I shall have
i350, +46.47 in interest but -8.12 in
bank charges. That should be
enough for a 32k home computer Mk2.

Were is Hie OUTPUT file that the program
should create from the INPUT file above.

here is a program to do the work:
PROGRAM f i l t e r (INPUT, OUTPUT);

VAR
ch,sgn: CHAR; fraction: INTEGER; number: REAL;

a crudtty: * f
if you incLucte more

than one decimal point,
only the Last is acted
upon; for example

I2.Z.£+ would produce ¥
/23.4c without an

error report

WHILE NOT EOLN DO
BEGIN

number ;= 0.0; fraction := 0;
sgn := ch; READC ch);
IF (ch>= '0') AND (ch <= '91;

THEN
BEGIN { if a digit}

REPEAT
^ REPEAT

number := id*number + 0RD(ch)-0RD('^1);
fraction := fraction * 10;
IF NOT EOLN THEN READ(ch);

UNTIL C (c h < ' 0 ') OR (C h > ' 9 ') ; OR EOLN;
I F (ch s '• ') AND NOT EOLN

THEN
BEGIN

READ(ch); f rac t ion != 1
END

UNTIL (C ch < ' 0 ') OR (c h > ' 9 ')) 0 R EOLN;
IF fraction > 0 THEN number := number /fraction;
IF sgn ss ' - ' THEN number;* -number;
WRITELN (number : 8 : 2)

END { i f a d i g i t }
END { while not eoln }

EHD.

J part of any program concerned wihh inpuf I'S difficult to keep tidy
because of a/I fhe checks that have to be made. The program above is
particularly untidy but there is a dearer version on page % which
exploits features of Pascal not yet introduced.

49

^y he synfax of the CASE statement is J

< match 1
(match 2

i

statement!
$tjatamnt2

CASE

• CASE
0:
1 ,
2,

END

expression

digit OF
WRITELN (
3 , 5 , 7 , 9:
4 , 6 , 8 : WR

OF v

'Zero') 5
WRITELN (
ITELN^'E

gonstant,

•Odd1);
ven'); v i

' : statement/

—(i)-"
• C A S E

'0 ' :

f 2 ' ,
END

ch OF
WRITELN

V,'6','8

C

; END

'Zero')-,
«9': WRITELN (' O d d ') ;
WRITELN ('Even')

yhe expression may reduce to a value of any ordered type, typically type
INTEGER or CHAR but never REAL. The expression and constants must be of
the same type as one another.

Q behaviour of the CASE statement }s defined by the flow chart on page 45.
When ("he first precise match is found the corresponding statement is obeyed,
none of the others being obeyed. If there is no match at all the behaviour
is undefined, so be careful to allow for every poss/ble value that
expression could reduce to (fnor always easy to achieve]).

Res ted CASE statements may be used to represent a symbol-state tctbie
which is a tidy device for resolving input data. The following table is for
decoding Roman numerals with digits X, v and I .

z
3
4
5
6
7

n:=

ok

ok
n :
ok

'X'
10; state :«2
n+10; State* 2

*•= FALSE

: • FALSE

: « FALSE

= n + 8; staters7
5 * FALSE

n*=
n:«
ok
ok
ok

n-
ok

5; state:* 3
n+5; state:-

:=: FALSE

:« FALSE

: = FALSE

»n + 3; state:
:= FALSE

»3

* 7

n:

n:
n§.
n:
n:
ok

- 1 ; state :« 6
-n+1; state :=
*n-Hi; stated
? n+ l ; state-.-
*n+i ; state:»
• n+1*, state:-
: » FALSE

6

4
5
7

5

^ decode XIV starr in stafe l where the arrow is. The first symbol is'*'
so look down from 'x' and find (\'^id>\ state-2. So set n to 10 and move the
arrow to row 2. Now look down from the second symbol, T , and find n:*n-fl;
s t a t e d . The value in n thus becomes \0+i=\i. Move the arrow to row 6. Now look
down from the final symbol, V , and find m=n+3\ state;*!. The value in
n then becomes 11+3= 14. Move the arrow to row 7 and notice that any
further 'x' or 'V or -r would cause an error ({e.g. ^

^ fable decodes Roman numerals starting with any number of X's and
the conventional arrangements of V's and I's :

I , II, HI, iv, v, v i , VII, vin, ix, x, XI etc.
but would treat IIH, for example, as an error by setting ok to FALSE.
The fable may be extended to cope with M, D, c and L.

50

TO ILLUSTRATE HESTED
CASE STATEMENTS

PROGRAM roman (INPUT, OUTPUT);

VAR n, state: INTEGER; symbol: CHAR; ok:

BEGIN { program}

state : * l j ok :=* TRUE; n.*= 0; y ^
WHILE NOT EOLH DO

I BEGIN
T READ (symbol);

y£W IF
' ^ [OS

/ I F ((symbol r fx') OR (symbol* V) ; OR <
/ THEN
/ CASE state
/ 1: CASE
/ 'X':

V :
' I 1 :

END;
2: CASE

•X1:
V *

END;
3: CASE

' I 1 :
END;

4- CASE

' I ' :
END;

5: CASE
'X1,
' I 1 :

END;
6; CASE

'X1

' I 1

END;
7: ok :=

OF
symbol OF
BEGIN n:=l<Z>; State;=:2
BEGIN n: =5; state := 3
BEGIN n-.= i ; state := G

symbol OF
BEGIN n := n + 10; state
BEGIN n :* n+5; state
BEGIN n := n+ l : state

symbol OF
' V ' : Ok := FALSE ;
BEGIN n . ^ n+ l* state

symbol OF
'V1 : ok := FALSE;
BEGIN n:= n+ 1; state

symbol OF
V : Ok :« FALSE 5
BEGIN n— n-M; state

symbol OF
BEGIN n :^ n + 8; state
BEGIN n •'= n-f-3; state
BEGIN n := n+ i ; state

FALSE
1 END { CASE state}
I ELSE
\ BEGIN
\ IF OK
\ THEN
\ ELSE
\ State :--

(decoded number)
{in nj^^^^

WR1TELN (n : 2)
WR1TELH (f PECCAV1STI')

= 1 ; o k :« TRUE
\ END { ELSE } f{
^END { WHILE NOT}

END. {program}
/ /

/ /
/ /

BOOLEAN;

—>N^—^^"^v-^^v-—-^^
/5 nicer to to rite.: ^~N
symbol IN ['x ' , V1, T] <

explained in chapter 7 J

[symbol^'I1)

END;
END;
END

8= 2 END;
: - 3 END;
;= 6 END

:=4 END

r=5 END

:=7 END

:= 7 END;
:=7 END;
:= 5 END

\ terminate finalitem\
C coith full step cr space \
(before pressing)gETUf?Nt j

—^7 — |r {

00 ^ . «—^—zSzL

51

implement the romcm program. Extend It to cope With:
M = 1000, 0 = 5 0 0 , C=l00, L « 5 0 .

If your Pascal permits interactive working, include prornphs for
the benefit of the user of the program.

52

AND

FUNCTION DEFINITION
TYPICAL FUNCTIONS
RECURSION
PROCEDURES
RANDOM NUMBERS
LOANS AGAIN <f[EXAMPLE^
FUNCTION NAMES AS PARAMETERS
FORWARD REFERENCES
LOCAL VARIABLES
SIDE EFFECTS
SCOPE RULES

DEFINE YOUR OWN
FUNCTIONS

[Pascal does not provide, a function for returning the area of a circle
given the diameter as Its actual parameter :

—v-^,.—^^
diameter

a ; - CIRCLE (6 ,5)
WRITELN (a : 8 : 2)

it is easy to define such a function:
function is to

return a faflL resultFUNCTION c i r c l e (d : REAL) :
CONST p i * 3 . 1 4 J 5 9 2 6 J '
BEG1 N

circle :=* pi * SQR(cO/4.0
< the result

'a/we of the functiont this
is a Pascal convention

^Thereafter, circle () (| or CIRCLE())̂ may be used in fhe program just
as SQR() and TRUHCC) have been used in earlier examples.

4Jn the fop line of fhe definition, fhe d says "Do whaf gets done tome,
but use whatever value is put in my place." In the example at the top
of this page 6-5 is put in place of d* and so i$> duly squared,
multiplied by 3.1415926, divided by 4.0. The d is a formal parameter
whereas 6.5 is an actual parameter. You could use fhe name, d for a
variable (j[or any other name^d entity]) in the program which invokes
areaC) without interference from that functioni

d :» -99 5
a i- c i rc le(6.5);
WRITELNC a, d : 8 « 2) _ _

"\niofd\
undisturbed]

yrhe syntax of a function definition (J ignoring, for now, parameters
which are themselves functions or procedures]) is:

type of
value to be
returned

^ f item i?/oc>(: has fhe structure of a
prograrn within a program. The syntax of
2^oe/£ is properly defined on page 285 fhis [
sketch simply illustrates fhe location of func»
lion and procedure definitions in a program.

Ijrunctfon and procedure definitions may
have further function and procedure
definitions nested w/iHiin them-

PROGRAM
CONST
VAR

function
and

procedure
definitions

QQere is a function for returning fhe area of a rectangle, given lengths
of sides as parameters t

FUNCTION rectangleC b, d : REAL) : REAL;
BEGIN rectangle :* b * d END;

a similar one for fhe area of a fr iangle:

FUNCTION tr iangle (a , b, c : REAL): REAL;
VAR X: REAL',

BEGIN
X :« (a + b + c) / 2 ;
t r i a n g l e := SQRT (x *(x-a)*Cx-b)*O<-c);

END;

^J fhree functions <f circleC) , rectangleC), triangleC))) may be
invoked from the following program which is a re-designed version op fhe pro-
gram on page 17.

PROGRAM shapes2('INPUT, OUTPUT) ;
VAR l e t t e r : CHAR; a , x, y , z : REAL:

put the three functions here in any order j /Sreo *s 7# /
v ^ ^ — . ^ ^ — — ^ —

BEGINREPEAT
/ READ(letter))

1 CASE let ter

V , 'R1 :

't' , 'f :

'c1 , 'C1 :
\
\
\ END; (CASE

— ^ ^ - — ^ — - ^ - ^ ^ ^ - —

OF
a := 0 ;
BEGIN

READLN(x,y); ^ :
END',
BEGIN

READLN (X , y , 2) ;
END;
BEGIN

READLN(x); a -
END
letter }

\ WRITELN ('Area is ' , a : 8: 2)
UNTIL (l e t t e r «

END.
•Q1) OR (let ter = 'q

1 firea is 33-69 /
/ / / • *- e / oo)

1 t la i* e'°° 1
1 I nil it * «/i /

= rectangle (x,y)

a:= triangle (x,y,z)

circle (x)

)

£^otice fhaf fhe functions are invoked with actual parameters *>y,z whereas
formoL parameters a,6,cf d were used in the definitions. Variable a in
the main program has no connection wiMi formal parameter a in function
t r i a n g l e (, ,) . Likewise, variable x in fhe main program has no connection
wifh Local variable x in function t r iang le (, ,) . More abouf this later.

ijach function defined here has a diffenenf number of parameters. Any fixed
number is permissible, but never a variable number as wifh READ(a),
READ(a,b)> READC a, b, c) etc. This facility is enjoyed by Pascal alone.

4jn the above examples all types are REAL, buf in general any mixture of types h
allowed: eg. mixrun(a:RE:AL; b:INTEGER; C:CHAR): BOOLEAN;

55

EXAMPLES TO ILLUSTRATE
FUNCTION DEFINITIONS

is no Pascal function for returning a cube roof. Here is one. defined:

FUNCTION c u b r t (x : REAL): REAL;
VAR o l d , 0 0 0 : REAL 5

BEGIN
IF X = 0 THEN CUbrt := 6 ELSE

BEGIN old := 1',
REPEAT

noo := X/5QR(old);
old := (noo 4 o ld) /2

UNTIL ABS(x/ (noo*noo*noo)- i) <
cubrt :« noo

f<:a££ r-27) returns -3
cubrt (0)returns 0
cubrt (2^ retorns 3

C

EMD
/ of fnnrHnn \

, t or function)
programmers regretting the absence of SGHC) may define it; either direcHy:

FUNCTION 5 g n (x : REAL): INTEGER;
BEGIN

IF X > i> THEN sgn := 1 ELSE
I F x < 0 THEH sgn : = - i ELSE sgn := 0

END;

rdornsl if
' returns-l if
\rtturns0 if

or with cunningi
FUNCTION Sgn(X:REAL): INTEGER;

BEGIN sgn := ORD(X>0)-ORD(x<0) END;

Wh is no TAN() function in Pascal (f tangent of an angle measured in
radians j) but here is one defined:

FUNCTION t a n (x : REAL): REAL 5
BEGIN

tan := SIN(X) / cos(x)
END;

OQere are funcHons for the arcsine (J Mie angle, in radians, whose sine is...,;
and arccoslne :

FUNCTION arcsin(x: REAL):
BEGIN

IF ABS(x)* l
THEN arcsin := X * 1.5707963
ELSE arcsin := ARCTAN (X / 5 Q R T (I - S Q R (X)))

END;

FUNCTION arcCOS(X: REAL):
BEGIN

I F X = <b
THEN arccos ••= {. 5107963
ELSE arcCOS := ARCTAN (5QRT(I-5QR(X))/X) +3.1415926^0RD(x<(2>)

is more abouf ^ e ancsinf) and arccos() furicfions on page 68.

56

DEFINITION OF A RECURSIVE FUNCTION TO
INTRODUCE THE CONCEPT OF RECURSION

highest common factor ^ hcf > of 147O and 693 /s 21. In other
21 is the biggest number that w/JI divide into 1470 a n d 693 with-

out leaving a remainder in cither case. To verify this, factorize bo!"b
numbers to prime factors:

and pair off any common factors - » in this case 3 and 7. The highest
common factor (J also called gccf, or greatest common divisor]) is the.
product of these; in this case 3 x7 = 21.

l juc l id 's method of finding the hcf is more elegant. Find the remainder
when 1470 is divided by 693:

(470 MOD 693 =* 84

Because this remainder is not zero, repeat the process substituting the
second number for the first and the remainder for the second:

693 MOD 84 = 21

This remainder is still not zero, so repeat the process :
84 MOD 21 = 0

This remainder \s zero, so the hcf is 2 1 . Nice.

Quere is a Pascal function based on Euclid's method:

FUNCTION hcf (n, m : INTEGER): INTEGER;
VAR rem: JNTEGER;
B E G I N

rem : = n MOD m; ^
IF rem^d> THEN hcf:=m ELSE hcf:* hcf(m, rem)

END;

(this works
(both for \

' n)p>m and 1
m < n

l\t is easy to see what would happen with hcf (84 ,20 because rem would
become zero making the function return 2i. But with hcf(1470,693) rem
becomes 84 so the function invokes itself as hcf (695,84). In so doing rem
becomes 21 , therefore the function invokes itself as hcf (84,21)• It is as
though Pascal provided a fresh copy of the code of the function hcfC,)
on each invocation:

FUNCTION hcf(l470,693)
VAR rem 5

END

FUNCTION
VAR re
BEGIN

^ hcf u
END

hcf(84,2l)

-21

^ ability of a function to invoke itself is called recursion. There is
more about recursion in this and subsequent chapters.

57

AND THE CONCEPT OF ' VALUE' PARAMETERS
VERSUS VAR PARAMETERS

\f/hen a piece of program is to be used more, than once in the same program
there is no need for its text to be duplicated', its texl~ may be parcelled as a
procedure, given a name} and invoked by that name whenever its texh is
to be obeyed. Here is a trivial example; a procedure for writing two integers
in reverse order of the two parameters:

PROCEDURE
BEGIN

WRtTELN
END;

reverse (

(b:3 , a

a, t

•3)

: INTEGER);

l /rorn fhe mam program this procedure could be invoked thus:

X := l ; y •'=
reverse (x , y ; ;
reverse (4 , 5) ;
reverse (4 * x ,

j above is silly, buh serves to show thot the actual parameters may be
constants (f 4 , 5 3) or express/ons (|4*x,5*y J or names oF variables ^ x , y j .
Every Kme reverseC)is invoked its actual parameters are evaluated and these,
values are substituted for the formal parameters a and b. For this
reason a and b are called "value" parameters.

/ jnstead of writing values in reverse order suppose if were required to
exchange the values stored in a pair of integer variables. The following
would be no good at all:

PROCEDURE
VAR

tempry
BEGIN

tempry
END;

swopC a, b :

: INTEGER ;

:= a; a:= t

INTEGER) j ^ ^ 4 > -

rff\
\ b:= tempry

Suppose it were to be invoked as follows with x containing 1, y containing 100:

swopC x , y)
The effect would be to store the values 1 in a, too in b ; then to make the
swop in a and b ; then to return to fhe program with x and y unaffected.
The procedure is inferesfed only in the values of its parameters)
swop(4, 5) or s w o p (4 * x , 5 * y) would have the same non-result.

y h e solution is to make the parameters into VAR parameters. Writing
VAR in front of a parameter gives access to a variable \n the fnvokfng
program:

PROCEDURE 5WOp(VAR a , b : INTEGER) ;
VAR

tempry : INTEGER;

a :=b ; b:= tempry

you can noaJ change
the contents of uanaS/es i
belonging to the

tempry :^ a ;
END;

58

DW suppose the procedure were, invoked as follows:
X: = 1 ; y :~
swop C x, /)
WRITELN (X, y

(00

£Jn simple terms: put VAR In front of those, parameters cohose lvalues are to
be changed by the procedure.

more sophisticated concept is that VAR in the procedure heading signifies
direct access to the invoking program. The statement a : = b in the
procedure signifies x ?= y in the invoking program (f when invoked as shawn
above]) , In the jargon: VAR parameters are passed by address or passed
by reference whereas value parameters are passed by value /& the,
procedure having to set ap a local variable to store each value passed.

following invocations are meaningless with VAR parameters; invocaKons
are meaningful if both parameters
are names of variables which
contain values to be swopped.

swop(4, 5) ;
swop(4 *x , 5* y

4f\ point of possible confusfon: the VAR section of a procedure is for
declaring variables (ocai to that procedure, whereas VAR in the
procedure heading signifies reference to non-local variables:

PROCEDURE 3W0p(VARa,bMNTBSER);
VAR tempry: INTEGER-,*
BEGIN ^ (^
tempry:«

END;

PROCEDURE reverse(afb:INTEGER);*EGIN W ^ ^
WRITELN (b, a) v(variQbles\

END; ^ ^ ^

iljere is the syntax of procedure definition (f ignoring, for now, parameters
which are themselves names of functions]).

PROCEDURE y Ml) : block

^ item block has the structure of
a program within a program. The
synfax of block is properly defined
on page 28.

y his diagram shows the location of
function and procedure definitions
within a program. Each function
and procedure definition may have
further function and procedure
definitions nested within it.

function and
procedure
definitions

A FUNCTION WHICH R£TURKSA
VALUE A CHANGES A PARAMETBR

Qjonai'der the folbwing function:

FUNCTION next (VAR seed : INTEGER) : INTEGER ;
CONST m u l t i p l i e r = 37; increment = 3 ; cyc le * 6 4 ,
BEGIN

nexb • = seedj
seed := (m u l t i p l i e r * seed + increment) MOD cycle

END;

ijnvoked with 5 containing 16 as follows:
5 := 16 : WRITE (

notice VAR. in ffe
heading-, an
unusual tactic
in a function

i*his function must obviously return 16. Furthermore, whenever the function
returns 16 it must always change the value stored in seed to 19. I f the
function were again invoked, but wi'th ("he new setting of J , it would rtturn
19 and change the value in s to 2. Continually invoking nextf) in this
way would produce a predetermined sequence of integers running from the
fnftfal value given to j :

S := 16;
FOR i :« 1 TO 64 DO WRITE CnextCs): 3)

16 id 2 t3 3G 55 54 17 27 42 21 12 63 2>0 Z5
32 35 18 29 52 7 £ 33 8 43 58 37 28 15 4*> 41
48 51 34 45 ^ 23 22 49 24 59 10 53 44 31 6Z 57
0 3 50 61 20 39 38 1 40 11 26 5 60 47 ty- 9

lf\ remarkable thing about this sequence is that every value from 0 to 63
occurs precisely once. Furthermore, invoking nextC) for the s ixty- f i f th
lime would produce i6 , re-starting the identical cycle of integers. In
other words the function generates a fixed permutation of the integers
0 to 63, starting from any desired integer.

^ h i s fechnfque is much used for generating " random" numbers (\ strictly
pseudo-random in deference to their predictability J . f\ cycle of 64
would be inadequate; Grogono (jf see Bibliography]) gives a set of
constants to generate a permutation of integers 0 to G5535 :

CONST mult ip l ier « 25173; increment « 1384.9; cycle** 65536; |

(jhoosi'ng a set of constants with the necessary properties is not a trivial
exercise . To arrive at 37 and 3 for the cycle of 64 numbers shown above
I experimented blindly with prime numbers.

^ above function returns a value ^tfc/ tf/fe/? £/?e value of the parameter.
The tactic is unusual. Most functions have no need to disturb their
parameters, and accordingly make no use of VAR in the headings of
their definitions.

i j n computer simulations and games il* is usual to employ random
fractions in fhe range 0 $ fraction ^ 1 rafher than random integers.
This requires a few changes to fhe function defined opposite:

FUNCTION r n d (V A R seed: INTEGER): REAL*
CONST mult ipl ier = 25173; increment-13849; cycle*
BEGIN ^ i ^EI

rnd := seed /cyc le ;
seed ?= (multiplier * seed + i

END;

^ i s function will not work i f MAXINT has a value of less than 2^ -1 .
here is an ingeniously modified version which generates a cycle of 32768
fractions even if MAXINT has a value as low as 214-! <t 32767 > s

FUNCTION rnd(VAR seed: INTEGER): REAL;
VAR a , b, c , d : INTEGER ;
BEGIN

rnd := seed / 32767;
a := seed DIV 256;
b •= 5eed MOD 256;
C := C C b*93) MOD 256) + 13;
d := Cb*26)+CCt>^93)DIV256)+(a*93)fCCD[V256)f27;
Seed := (C d MOD 128)*256) +• Cc MOD 256)

END;

yyere is a simulafion to show how much wiser it is to bet on 7 than any
other score if throwing a pair of dice for even money. (J An array-s»
see chapter 8 ̂ » would make the program simpler •})

PROGRAM bones (OUTPUT) 5
VAR score, thraws, seed, a ,b ,c ,d ,e , f , 9 , h , i , j , k : INTEGER;

insert first version of rndC)
BEGIN

seed :=(

*V2sr,s; 'V *"• D ° ^ ^ £ ^ -
BEGIN {throws} * ^ K^+^+^J^L^*^^*

scores ROUND(i + 5*rnd(seed))+ROUNDCl+5<frndC5eec/));
CASE score OF

J c : = k + 1 v
j + 1 5

i : - I + 1}
h:^ h + i ;

a-.= a + l ;
b:« b+i;
C :s C + i ;

(2:
11* j -
10:
9 :

e.*= e+ i ; 8 : 9:= g + 1 ;

2
3
4
5
6
7

END {CASE}
END; {FOR throws]

WRITE LN (2 , 3 , 4 , 5 , 6 , 7 , S,9, ID, f i , 12);
WR1TELN Ca ,b ,c ,d ; e , f , g ,h , i , j , k)

END.

u i

100 200 300 40O Q» 600 500 400 300 200 100
/~^%r ^̂ —"v- "*"""—^^—^*-̂
\ compare the "ideal" scores

fchoose suitable format
output device\ e.g.

y resulf is roughly symmetrical abouf 7. Comparison of results wilt)
a rdea l w scores is encouraging; see page 68 about a much bigger sample*

61

A PROGXAM TO ILLUSTRATE A
PROCEDURE DEFINITION

^ program on page 15 computes the
monthly repayment m, on a mortgage
loan of ^ at p% compound interest
over n years. Bui here 1*5 a more
difficult problem; a loan of s is to be
repayed at /77 per month over /? years;
what rate of interest" 13 being charged?

oohtre. r =* p -r 100

Jh equation may be solved by trial and error. Guess r\ substitute in
the formula and compute ml. I f ml 15 fhe same as /?? the goess was
correct. I f ml was foo small if" means /• was guessed foo low, 50 mul-
tiply r by m/ml to make \t bigger and try again. If ml is too big it means
r was goessed too high, 50 multiply r by m/ml to make it smaller and try
agafn. In shorty if ml is not close enough to m multiply r by m/ml
and try again. Sooner or later r wi/l get cloze enough to be acceptable
as a solution to the equation.

^ i s meHiod works well as long as an increase in one thing implies a
corresponding increase (j[or decrease ̂ in anofher. It fails if the. other
fluctuates or there is a discontinui'ty such as a bankrupt mortgagee.

|5 the program:

BEGIN

PROGRAM loanrate (INPUT, OUTPUT);

VAR
6 , m , n a i , r , percent : REAL;
n: INTEGER;

PROCEDURE formula (VAR m: REAL; n: INTEGER; s , r : REAL) ;
VAR a : REAL;
BEGIN

a :=
m -.=

END;
'if your Panoalis
interactive insert a
suitable prompt here

READ (5 , m, n);

^REPEAT
f formula (ml, n,s, r);

UNTIL ABS C m / ml - 1)_<_1E^
percent :» r *
WRITELN ((5 u m is
WRITELN C1 Monthly repayment ^ ' , m54.*2);
WRITELN C1 Number o f years ' , n$ 4);
WRITELN;
WRITELN (' Interest r a t e ' , percent:4:2 , •<

- v rounding to Zdedmals,
END• v ^ ^ ^ ^ ^

62

DEEP
BREATHJH

|/Jere are the statement of a program to compute
northings and eastings of point's on the ground,
given the compass bearing at each point and
the paced distance from the previous point <{ a
f raverse j) • eastings

BEGIN
nor th ing := 0; easting :* <b\
WHILE NOT EOF(f) ^ ? Z

BEGIN ^ ^ ^
READLN (f , bearing, distance);
nor th ing : = northing + projection(bearing, distance,cosine);
east ing := easting* projection (bearing, distance, sine);
WRITELN (nor th ing : 10:2, eastingM0:2) \ ^ <

END { WHiLE } (a. function,
FND. { program }

Jere is fhe definition of projection (, ,) :

FUNCTION projection(bng, d i s t : REAL; FUNCTION ratiofx:REAL):REAL):
B E G I N - " ^ ^mmm

projection s« dist * ratio (bng)
END-, format parameter)

lj\nd here are fhe definitions of fhe functions whose names are used as actual
parameters of projection(, ,):

FUNCTION s i n e (b : REAL): REAL;
BEGIN Sine := SIN (3. 1415926 * b / 180) END;

FUNCTION cosine(b:REAL): REAL;
cosine := COS (3.141592G * b / 18(2)) END;

tice how Fhe fhind formal parameter of projection (, ,) is defined:
- FUNCTION ra t io C x : f?EAL) : REAL

y the acEuatparamefer)
>is tobe, the name of a

(says We oser-cfefinecf
{function is fo ha/e a

<says the. user-cfefmecf)
> function fs fa rtturnj

result
where x serves only to mark the piQceofcx parameter^keeping fhe synfax
consistent wifh fhaf of a funcfion definition.

Tjo complete fhe picfure, here is fhe sfarl" of fhe program i

PROGRAM traverse (f , OUTPUT) ;
VAR nor th ing , easting: REAL;

fr
put function definitions here, fo{lovedby the main program

j h e problem is fo f ind a compWer on which fhis works* Many couplers
fo allow names of functions to be used as parameters, and I can»f say I blame
them. The only sensible applicah'ons of fhis facilify I have so far seen
concern rnafhemafical integration. ...BZEftTH'E Our!

63

DURING COMPILATION

jp any block the CONST and VAR declarations precede the BEGIN and END
which enclose the statements themselves. This enforced order implies
fhat the compiler never has ho handle a statement containing canstante
or variables ft does not know about. The appearance of an un-
declared constant or variable would evoke an error message during
compilation.

^ same logic applies to subprograms \Le. functions and procedures]). An^
error message is evoked if the compiler meets an invocation of a subprogram it
does not know about. It is the programmer's responsibility to see thai" definition
are properly ordered.

PROGRAM demoC INPUT, OUTPUT) ;
VAR a , b, c : REAL;
PROCEDURE ring (VAR area, circumf

BEGIN
Circumf : = 3.14 * diam ; , , ^ c
area •»= circle (diam) ^y*f~

EHD

FUNCTION circle (d : REAL): REAL;
BEGIN circle--* 3-14* 5QR(d) / 4

: REAL; d iam: REAL);

3 the compiler does not knouo j
y about function circleC) y
[on reaching here^^/^s

£\n obvious solution to this problem is to reorder the input so that the
function clrcleC) is defined before Hie procedure r ing(, ,) . But there is a
less drastic solution (f drastic remembering fhat real-life programs are longer
than Hie trivial example programs shown herel) §

• leave the offending subprogram where it is, but simplify Its
heading by removing all parameters

• insert the full heading where if" ought to be 5* i.e. before the
subprogram that invokes ft

• add the predefined word FORWARD after the full heading:

PROGRAM demo (INPUT, OUTPUT);
VAR a , b, c: REAL;

FUNCTION Circle(d : REAL): REAL-,

J insert fuii heading before
>any subprogram that invokes]

this one

FORWARD ;) append this coaming to the compilerj

PROCEDURE r ing (VAR area, circumf: REAL; diarmREAL);
BEGIN

circumf :« 3.14^ diam;
area := circle (d i am)

c l l k l / , - l ^ k l - , }foJust the name) ^^-—> leave the body
FUNCTION c i rc le ; \ ^ L ^ ^ ^ ^ J ^-^^itAhere. ituas

BEGIN circle :» 3.14* SQR(d)/4 END; Were it»as

$ only other forward reference allowed in Pascal is to do with pointers
in linked lists as described in chapter t2.

FRESH ON EACH INVOCATION,
EVAPORATING ON RETURN

j following sketches were used on page 59 to distinguish those variables
that are local to a procedure from those that are not:

PROCEDURE 5WOp(VARQ,b:INTTGER)
VAR tempry ^ ^ ^ i ^ P
BEG IN 'S*^°S5

tempry:=a; a-=b; b:=tempry
END;

PROCEDURE reverse(a,b.-INTEGER);

WR)TELN(b,a)
END 5

_ variables are created as a procedure is invoked. Then curnent
values o f any value parameters are copied into the local variables created
for them. For example the invocation:

_ reverse^ 4 , 5) ; _,
would cause 4 to be copied mto local variable a and 5 info local
variable b*

^ procedure is then pui- to work. On completion, when control returns to
Hie invoking program, all local variables are forgotten, their contenl-s
being lost forever. But the local variables do not evaporate until control
returns to the Invoking program. This behaviour is essential to re-
cursion as illustrated by t"his hackneyed example o f " f a c t o r i a l " :

FUNCTION
VAR n
BEGIN

n :«
IF n =

END;

factorial (number
: INTEGER;

number;
* 1 THEN factorial

ELSE factor ia l

: INTEGER): INTEGER-,
y^^S^—**V- N^"" **"" N

: : ^ J ' Zbc /̂ variable n

:= i
:= n * factor ia l Cn-i)

the behaviour of the function for the invocation m := fac tor ia l (4) :

that the first copy of factorial remembers the value A in local variable
n until the 24 is returned to m> Similarly the second copy remembers the 3
until the 6 is returned to the first copy, and so on. A local variable is looal to the
current copy; at one fnstant during fhe execution depicted above there would be
four distinct copies of local variable n.

(j t was not necessary to declare VAR n as above; value parameters are auto-
matically declared as local variables:

FUNCTION factorial (n ' INTEGER): INTEGER ;

IF n • l THEN fo^^5T ^<^/^c parameters are
m ELSE^^"^ V &?a^ variables

65

GENERALLY TO BE AVOIDED BUT CAN
BE HELPFUL IN PARTICULAR. CASES

e fe an alternah've to the random number generator on page 6i :
A
'DYNAMIC*

PICTURE

FUNCTION ranch :
BEGIN

randi :« seed/ (65536-i) ;
Seed := (25173 * seed + 13&A9) MOD 65536

END;
which could be invoked like this:

seed : = 20 ;
throw := (i + 5 * randi) + (i+F* rand i)

^ example works because the computer can "see" the varfoble named seed
whilst working inside function rondi. Furthermore randi can cause a change
in the value stored in the vorlable nomed seed. An invoked subprogram can see
outwards to its invoking program but cannot be seen by ft.

When a subprogram refers to variable a it
means the local variable a. If there is no
local variable a the eye looks outwards to the
invoking subprogram (J possibly a recursive cop/
of itself } and refers to the local variable a
In that subprogram. If there is no local
variable a the eye looks outwards..."DYMAMIC* PICTURE

^ h e same principle applies to all named entities: variables, constants,
functions, procedures^ files and types.

^ h e n a subprogram changes the value stored in a variable declared oufside
itself the subprogram is said to have o side effect. Function randi
has a side effect; ft changes the value stored h seed which is a variable
declared outside randi .

^jide effects are often caused by accident. Making repeated use of
variables with names like a}b>c whilsl" forgetting to dec lore them locally
is a potential source of trouble; some books on Pascal advocate the use of
long names for variables so as to avoid this danger.

programs are small it may be clearest to make all variables global.
When sets are used (f sets are described in the nexb chapter]) It may be the only
sane approach to make all set variables global. And in long programs It
may make sense to define a few global variables fo be referred to from
inside procedures. But ft is bad practice to employ side effects sporadic-
ally or carelessly.

wpposite fs the skeleton of a typical program, borders ore drawn around
subprograms fo emphasize the nested structure. The notes explain what
variables are available in each layer of nestmg, those able to cause
side effects being pointed out. Notice how the program ftself appears
as a subprogram (J albeit with a non-standard heading to define the
input and oufpuf files and a non-standard ending involving a full
stop ^ nested wfthin fhe " Pascal environment-" .

66

THE "STATIC"PICTURE OF
A NESTED PR06RAM

PASCAL ENVIRONMENT * standard files fl INPUT, OUTPUT]), types J
functions { SQROetc), procedures(| WRITE C) *&•)) , constants ({TRUE, FALSE])

PROGRAM tw ig5 (INPUT, OUTPUT);
VAR a , b, c : REAL;

PROCEDURE l in ing (p, q/. REAL; VAR x , y ; REAL);
VAR Q , b : REAL;

PROCEDURE Chick(p : REAL; VAR * : REAL);
VAR a , d : REAL;
BEGIN

employ
statements you may:

rd,p belonging to chick
employ b belonging to Lining, c belonging to twigs
employ x to return result via invocation of chick
employ y » » •» » « « Lining
invoice chick or Lining recursively
use all ffoscal files, types, functions, procedures, constants

END;

^potential i
ide eflkds)

PROCEDURE egg (p : REAL; VAR x : REAL);
VAR a , e :

J^^i/^ln these statements you may:
employ a,e,p belonging to egg
employ b belonging to Lining, c belonging to tufigs
employ x to return result via invocation of egg
employ y » ^ H « Lining

^potential J
faae effeds\

invoke chick (j for chick to invoke egg you need REWARD j)
fnvoke egg or Lining recursively

ions, procedures, constant

END;

these statements you may:
employ ct}b,p,q belonging to lining
employ c belonging to twigs ^
employ oc, y to return results via invocations of Lining
invoke chick, egg
invoke Lining recursively
use all Pascal files, types, functions, procedures, constanfs

, ^ ^ _ .A. .A. -A. -Â .A. A. A. Â A. J ^t^^

potential
mside effects)

END',

BEGIN_{ twi

ions, procedures, constants
END.

67

V appreciate the range oF results generated by fhe
arcsinf) and arccos() functions defined on page 56,
write a program to tabulate results given parameters
from -1 to +1 in increments of 0.1. For example the
essence of such a program could be fhe statenoenf/
FOR n :- - 1 0 TO 10 EX)

V/RITELN

/implement the program named bones on page 61. If
you have ample computer time to spare increase fhe
number of dice throws from 3600 to *>n^e to see if
fhe scores turn out to be closer to fhe "ideal" ones.

^implement- fhe program named loanrate on page 62. As
with the previous loam program this one fails if the rate
is -zero. Make good this defect. If your Rascal system
permits interactive input make the program prompt Its
user for each item of data requfred.

68

AND

STANDARD TYPES
TYPE DEFINITION
ENUMERATED TYPE5
SUBRANGES
SET TYPE AND SET VARIABLES
SET CONSTRUCTORS AND OPERATIONS
FILTER.2 (j EXAMPLE^
MOOO (£ EXAMPLE ^

REAL, INTEGER, CHAR, BOOLEAN
A SUMMARY

(Constants of standard types may be
defined in the CONST section of any block.
The type of each constant does not hove
to be declared; it is recognizable by
its "literal w form:

C0N5T pi = 3.14; increment •

decimal point \7\ (no decimal point,,
rtherefore pi fs HEAL] [therefore INTEGERy

or by being set equal to some previously-named Gonsfant:

CONST v name = constan

'apostrophes; therefore

star=/*'

p = p i ; stel la»star • verily = TRUE; decrement =- -increment;
(rroexoressians: £ ^ ^ - — ^
rthe limit of complexity is

^? type of each variable must be de-
clared in the VAR section of the block
in which It is to be used: I P ^

^ type of each parameter
most be declared in a
procedure, heading or
function headfng.

FUNCTION m i x (r : REAL; i : INTEGER; C CHAR) : BOOLEAN ;
VAR S: REAL; j : INTEGER; le t ter ; CHAR; ok: BOOLEAN

i£\ril"hmetic involving standard types fe described in chapter 4 ; in particular
fhe mixl-ure of REAL and INTEGER types in an expression and conversion of a
result of one type to the other.

Impressions involving type CHAR or operators Nor, AND, OR reduce to a
Boolean result".

following concerns ordinal values:
• An integer has an ordinal value equal to itself (J ORD(G) is 6 ̂ and

therefore has predecessor and successor { PRSDCS) is5-, succc&?is7])
An item of type REAL has no ordinal value
« An item of type CHAR has an ordinal value such that ORD('A')<ORD('59

4>£c. and oRDOn-ORDO1) to 1, O R D C ^ - O R D W is 2 ^6:.
When writing a condition the ORDC) is implied by omission;
thus ORD(T) < ORDC'J1) may be simplified to 'i'<: ' J 1 . But
recall that Slice(T) is not necessarily \ j ' , nor is C)
ORD C' I •; necessari ly i .

70

OF ENUMERATIONS, SUBRANGES
AND SETS OF THESE

ie programmer may devise and define simple types other than the
four standard types. These definitions may be given in the TYPE
section of the relevant block. The TYPE sect/on comes between the
CONST and VAR sections as illustrated further down this page.

y syntax of the TYPE section
(J omitting structured types which
are dealt w/fh from the next
chapter onwards]) is shown
here. y>

^ three types are called
enumerated types, subrange
types and 3&t types.

TYPE name* C^narney)

constat

SET OF

nt.. constant

constant.. constant

Jene is an example of an enumerated type ond two subrange types:

^enumerated typePROGRAM dodo(INPUT, OUTPUT) $
CONST p i - 3.14;
TYPE day type = (rnon, tue, wed^ thu, fri, sat, sun);

weekdaytype- mon . . f r i ; ^ f ^
^ dice type « 2 ..12

Subsequently the names dac/type,
ooeekdaytc/pe, dicetype may be
used for the definition of variab-
les in the same manner as REAL,
INTEGER, CHAR and BOOLEAN. J

VAR X : REAL 5
today : day type;
throw, score: dicetype;

PROCEDURE egg (VAR drdaytype);

Alternatively, the definition may be omitted from the TYPE section but
included in the VAR section:

PROGRAM
CONST
TYPE
VAR

dodo(
pi - 2

INPUT, OUTPUT) ;
>. 1 4 . ;

day type = (rnon,
X :
today:
throw,

mon.. f r i
score : 2

tue, wed,

..n ^ ^

thu, f r i , sat, sun) ;

\type definitions moved)
\to the \/AR section r^ ^

but such freedom is not permitted in headings of procedures or functions

t
_numerations and subranges find application in program control,
offering an automatic check on range and scope:

WHILE throw >= score EX) simulate Cthrow, score)
CASE today OF

mon, tue, wed> thu, f r i : WRITE ('Work');
s a t , sun : WRITE ('Play1)

END {CASE}

error message
\ evoked tf either
variable runs
out of range

71

2 j 15 the definih'on of two enumerated types and corresponding
variables:

TYPE days = C mon, toe, wed, thu, fri, sat, sun);
status * (wedded, unwed);

VAR today, tomorrow : days

cannof read or write items of enumerated type:
READ(today , tomorrow);
WRITE (f r i , today); k

You can assign values to variables of enumerated type:

today ••= mon;
tomorrow ? = today;

but not if variable and value belong to different enumerations:

today :~ unwed;
And you can't do arithmetic on them:

today := sat f sun

of enumera^ed type have ordinal isa/oes counting from zero:
I WR1TELN (ORD(mon),QRD(tue)y ORD(sun));

which implies predecessors and successors:
today := PRED (sun) >
tomorrow •.= SUCC (today);
WRITELN (ORD(today), ORD(tomorrow);;

but the first constant has no predecessor and the last has no successor:
today := PRED (mon);
tomorrow ••= SUCC (sun);

For all items In Pascal which have ordinal values It fs allowable to omit
the ORD() from Boolean expressions;

IF ORD (today)> ORDCmon) THEN sayso ;
IF today > mon THEN sayso

Jyp BOOLEAN! is an enumerated type supplied automatically by the
Ffciscal processor:

TYPE
BOOLEAN = (FALSE, TRUE)

50 ft follows that ORD (FALSE) is zero, ORD (TRUE) is uni ty, and
FALSE < TRUE .

72

Jere is the definih'on of variables of several subranges;
TYPE daytype « (mon, tue, v/ed, thu, f r i , sat, sun)$
VAR weekday : mon..fri \

throw, score: 2.. 12 ;
musketeer: l . . 3;
grade : 'A1.. 'D1

subrange may be defined comprising any type which has an ordinal.
This precludes subranges of type £

VAR price - 1.99 .. 5.99

ijubranges of enumerations are subject to the restrictions applying to the
enumerated type iteelf. Thus items of type mon.. fri cannot be read or
wrfffen, cannol" have an'Mimehc done on them, cannot be assigned to
variables except those of type mon.. fri and cfQytype (J where daybype
is fhe super-range of which mon.* fri is the subrange, hence compafibte^

2 of a subrange of any possible type have the same ordinal
values as they do in fhe super-range. Thus in fhe subrange sat., sun,
having daytype as its super-range, ("he values 0£D(3at)and ORD(sun)
would be. 5 and 6 respectively; not 0 and i .

\J7hen the super-range of a subrange is of type INTEGER, values of the
subrange may be treated as integers. Such treatment may include
reading, writing and integer arithmetic:

READ C throw)5
score :* SQRC throw);
WRITE (score);

Furthermore, values from different subranges are 'interchangeable:

musketeer := score

Nevertheless a check is made on the bounds of each variable before its value
is updated (f by assignment or READ() etc. ^). This automahc restriction to
declared bounds is the purpose of subranges. It saves the programmer
adding frequent and distracting checks of the form IF C score > 12) OR
(score < 2) THEN WRITE ('Bounds exceeded on SCORE1). In a we/I-written
program you would see VAR score : 2..12 rather than VAR score: INTEGER.

if/hen the super-range of a subrange is of type CHAR, values of the
subrange may be treated as characters. This treatment may include
reading, writing and employment in boolean expressions:

READC grade);
IF grade <* '&'

THEN WRITE ('Well donel')
ELSE WRITE (grade, ' w i l l have to do')

73

AND

p, general terms, a set is a collection of items
the same type. In Pascal you may create and

name sets for keeping track of the fterns of any
ordered type <f not KEAL or "structured** >. * Keeping
track" means recording whether each possible item
fs> present or not.

IJjjere is the definition of an enumerated type, followed by a set type having
day type as its "base type":

SET OF nametype

tyinsp)
constant • • constant

TYPE
dayfcype - (mon, tue, wed,thu, f r i , sat,sun);
day set = SET OF day type __

and here is the definition of two variables for keeping track of sets of days
\n the rnanner depicted below:
K^-s^^- VAR

washdays, bathdays: dayset;
4^t some time or other during execution of Hie program the two vanables
might look like this :

frT /.e./'fnon thu

showing how the information held by a set variable comprises one logical
value 4 presenf or not j) for every possible item of the set.

4 \s when defining enumerations and subranges, it fs allowable to
abbreviate by moving type definitions to the VAR section:

TYPE
daytype =

VAR
washdays,

(mon, tue,

bathdays

wed,

: SET

thu,

OF

fr i , sat, sun);

daytype
or omit the TYPE section altogether:

VAR
washdays, bathdays •• SET OF (rnon, toe, wed, thu, fa , sat, sun);

|ere is a VAR section which defines several set variables:
VAR

SET OF (NTZ6EX\

washdays, bathdays : SET OF (mon, toe, wed,thu,frf, sat, sun),-
teaset : SET OF CHAR ;

Avo « T At o iV ^tnstatiahonjr ^installations
dice : SET OF 2^. i2 _ _ - ^ ! " ^ r ^ ^ ^ ^-^* •-^•^#^ -^—^

d i c e
digit

i.e. depicted full re. depicted empty

74

4& set constructor specifies a
which may then be assigned to an
appropriate variable or manipulated
by set operators or both. A set
constructor may be considered as a
set constant.

4 \ set* may be emptied thus:

\fexpression <7 expression

• [2*3-3*3, 5t6, 5]

dice :« [] ;
/^{di these terms are

0 r assigned to thus ; /j^yvalid in subrange 2-

union of two sets is signified by a plus sign;
« [2.. 5] + [4 - 6] ; I dice

intersection is signified by an asterisk:
["dice \^JT..5] ^TT^6jT" "̂

dice := [2,.5] - [4..
difference of two sets is signified by a minus sign :

5/6/

dice

decisions may be based on sets. The comparator IN or >= or <* o n
or <> in conjunction with s«£ variables or constructors makes a
boolean expression.

/Jnclusion of a single (tern in a set may be investigated with IN:
WR1TELN(6 IN , 6 IN

\jne set contains another-, use >
WRITELNC L2..12] >- [3 - 5]) ;
WRJTELN ([3 - 5] > - [2 . . 1 2]) ;

IN

One set is contained by another; use <=
WRITELN ([3 . .53 < * [2 . J 2]) ;
WRITELN C U . . 1 2] < « [3 - 5]) ;

One set is identical to another; use = or <>nWRITELN ([3..5T = [5,4,3]) ;
WRITELN (L3.» 5] <> [4 ,5 ,3])

75

ILLUSTRATING PROCEDURES WHICH INVOKE EACH OTHER,
ENUMERATED TYPES AND SET CONSTRUCTORS

i^.^y,^,.. filter on page49 reads the INPUT file, abstracting and wriHng on
fhe OUTPUT file any numbers recognized. The version below has the same
spedficalion. It is longer than the earlier version kxtf probably easier ho
follow because ft is less tortuous. Procedures are used in Hie simp lest"
possible way, working only on global variables.

PROGRAM fi lter2 (fNPUT, OUTPUT);
VAR state : C ignoring, pending, reading) ;

fraction : d .. MAXINT;
cht CHAR; positive: BOOLEAN; number: REAL;

PROCEDURE i n i t i a l i z e ;
BEGIN

state := ignoring-, positive := TRUE;
number -.*• 0; fraction := 0

END;
PROCEDURE display, { then initialize}

BEGIN
IF fraction > 0 THEN number ••= number/ fraction-,
IF NOT positive THEN number := -number;
WRITEXN (number: 10:2.")*
initialize

END;

PROCEDURE accumulate; {A set state to reading }
BEGIN

number := 10 * number + ORD (ch) - ORD(W)
fraction :* 10 * fruction;
state := reading

END;

PROCEDURE negate; f A set state to pending }
BEGIN

positive •.- FALSER state := pending
END;

BEGIN { program J
initialise;
WHILE NOT EOLH DO

ignoring:

pending^
reading-

iNW-'e1]
acrumulate

• I set to
reading

ignore negate &setpending

otters
ignore

initialize
fractional display £ initialize

BEGIN {WHILE]
READC ch) ;
CASE state OF

ignoring: IF ch= ' - '
THEN negate
ELSE IF ch m ['•'..'9'J

THEN accumulate;
pending: IF ch IN L 1 ® 1 . . ^ 1]

TlfEN accumulate
ELSE initialize;

reading: IF ch« ••'
THEN fraction :« 1
ELSE IF ch IN [^'. . ' tf l

THEN accumulate
ELSE display

END {CASE]
END { W H I L E } ;

I F state s reading THEN display
END.

e.g. #-8-9* coou/d
produce:

76

A GAME ^ TO ILLUSTRATE SUBRANGES AND THE
MANIPULATION OF SETS

tfhe computer thinks of a four-digit number having no tv^o digifs alike,
you type a guess and are fold the number of bulls (J direct hits D and
number of cows (f digits in the target but nof- directly hit £ „ for example
with a forget of 5734 a guess of 0755 scores 1 bull and 2 cows. Keep
guessing until you score four bulls.

next digit
and update count
Of butts or coeds

if appropriate

pool,PROGRAM rriOOO (INPUT, OUTPUT) ;
TYPE playtype * •©'.. *9';

seedtype - 0 . . 65535;
scoretype * (b •• 4 ;

VAR pool, target : SET OF p laytype;
a, b, c, d : playtype;
seed : seedtype;
bu lb , cows: scoretype;

FUNCTION random : REAL; j£*,nots, so ,
B E61N (f\ result h olwaysj

random :~ seed/ 65536 ; We^hanJ
Seed ?- (25173 * Seed + 13849) MOD 6553G

END; {random}
^ FUNCTION unique : playtype;

VAR ch: CHAR-,
BEGIN
-̂ REPEAT
(ch :« CHR(TRUNC(10*random)-

UNTIL ch IN
unique := ch ;
pool :* pool - ^ [c h] ;
target ••» target

END; { unique }
PROCEDURE t r y (thisone

VAR ch : CHAR;
BEGIN

READC ch) ;
IF ch IN target

THEN IF ch = thisone
THEN bulls -•* SUCC(bulb)
ELS E cows

END; { t r y }

BEGIN {PROGRAM}
WRITELN ('First enter^eed^then (cap
READLNCseed);

pool := [W.- 'S1] ;
a :«unique; b?= unique; c:*unique; d:«unique;

bulls 2* 0; cows s- 0
t ry (a) ' 7 t r y (b) ; t ry (c) ; t r y (d) ;
WRITELN (bulb :1,'Bulls A ' :8 , COW5:2,'Cow5':5);,
READLN

UNTIL bulls * 4 ;
END* {PROGRAM}

77

[jjxtend program filterZ on page 76 to cope wihh numbers
expressed in scientific format:

digits /.digits XE |"+"| digits'

This exercise involves extending the symbol-state fable.

i^mplement the game of mooo on page 77, Improve
the game by making the program :

• offer a new game each time a game has
been concluded

• stop the game, and count it as a win
for fhe computer, if the target number has
not been guessed correctly after ten tries

• keep separate account of fhe number of wins
by fhe player and number of wins by com-
puter; display fhese scores on fhe screen.

78

AND

INTRODUCING ARRAYS
SYNTAX OF ARRAY DECLARATIONS
AREA OF A POLYGON (| EXAMPLE J>
CABLES i EXAMPLE D
BUBBLE SORT (J EXAMPLE})
QUICKSORT (| EXAMPLE J)
PACKING
INTRODUCING STRINGS
PARLOUR TRICK (J EXAMPLE ^
NUMBER BASES (J EXAMPLE ^
MATRIX MULTIPLICATION ({EXAMPLE])
CONFORMANT ARRAY PARAMETERS

l iHie boxes:

A RECTANGULAR ARRAY OF
SOXES OF AN/ ONE TYPE

of standard fype so far encountered have been independent"

VAR X : REAL; i , j : INTEGER; a l ive : BOOLEAN; c y f e r : CHAR;

il I il I alive • cyfer •
and so have variables of enumerated and subrange type: ^\tupes t

TYPE daytype = (mon, tue, wed, thu, f r i , sat, sun);
VAR today: day type; workday: mon..fri; throw: 2..12;

, f , • •

today I 1 workday | | throw _J

ordinary
variables of)

yenumerated<SrA

lyut ft is also possible to declare variables which are arrays of such
liHie boxes:

TYPE daytype = (mon, tue, wed, thu, f r i , sat, sun);
session = (morn, a f t , eve);

VAR vector: ARRAY [1 . .3] OF REAL;
roster: ARRAY [m o n . . f r i , session] OF BOOLEAN;

morn] a f t] eve]
vector [i]
Vector [2]
vector [3]

16-5

(this component \
?n vector [3]

V
X

/
L 1

component/s
te[th]

rosterfmon,
roster[tue,
roster[wed,
rostcr[thu,
roster [f r i ,

'yhe little boxes of an array are called components : foe contents of Hu
square brackets are called subscripts. The base type of an array is
Hne type of liHie box of which the array is composed (J only one fype
of component in any one array))•

^omponenb may be employed in the same way as variables of the base
type: vector

roster
roster

2] :* 16-5 j READ (vector [3]) ;
u t u e , a f t] := TRUE; WRITE (roster[tue, a f t]) ;
'wed, eve] := NOT roster [tue, a f t] %

J/Jowever, fhere is no merit i*n using components as Hiough Hiey
ordinary variables; arroyd are useful because subscripts may be
variables or expressions u)hich indicate success/'i/e components, Watch this:

day := mon TO f r i DO
time := morn TO eve

roster [day, t ime] := FALSE;
FOR i := 1 TO 3 DO vector[i] :=

GFOR
srfOR
^_ r

DO
/set all components

'of roster to FALSE
' and all components
of vector to zero?

assuming a preceding VAR sech'on to declare i : 1..3 and
day: mon.. f r i and t i m e : morn., eve

arrays depicted opposite could be declared after first" naming and
defining fheir types:

TYPE daytype * (mon, tue, wed, thu, f r i , sat, sun);
session = (morn, a f t , eve) ;
vectortype = ARRAY [i . . 3] OF REAL; _
rostertype » ARRAY I mon.. fri, session] OF BOOLEAN?

VAR vector : vectortype;
roster : nostertype;

\ array isgriap/es definedefcneclih\

syntax of array type fc: name an
ordered type

] OF type
specifies any

base type
(frecord or array
types not precluded,

PACKED ARRAY [

onstant • • constant

syntax for referring to a component of an array Is:

name >r [^expression

A y are manipulated by altering the subscripts of components as illustrated
opposire. Buf there is an important exception; a copy of trie entire content of
one array may be assigned to another of the same type in a single operah'on:

name name ENTIRE
ASS/6MMENT

where 'same type" means a type wi'Hi the same name. A type which has Hie
same specification but different name is noY equivalent:

TYPE atype = ARRAY [U 3] Of REAL;
VAR a , b : a t ype ; c: ARRAY [1..3] OF REAL;

specification)a:* b fsa a •'
[j^\ exception to the above is PACKED ARRAY [] OF CHAR for which, in some
Pascals, equivalence is not demanded. Change REAL to CHAR above
and a*-*c would be permftted.

^f\ two-dimensional arra^ such as roster is really an array of'orrays. The
following syntax would be allowable but is unnecessarily clumsy;

TYPE rostertype = ARRAY [mon..fr i] OF ARRAY [session] OF BOOLEAN;
roster [day] [t ime] •= FALSE

81

EXAMPLE TO ILLUSTRATE
ONE-COLUMN ARRAYS

_ the diagram on the r ight: £;
The spotted area /s given by Ay where

(2x3 - 2.5*1)
i ~^i

xj,yj

[-75
1 2 3

ypie same formula may be used for
computing the area on the left. But
this area turns out to be negative \

A i j = £ (
3*2-5-5*4) = -6 .25

^ h e formula may be applied fo sequential
sides of a polygon, and the friangular
areas summed fo give the area shown h

I^ut if the polygon is closed, as shown on
the left, the sum of the areas will be
the area enclosed.

^ bounded surface must be kept to the
left of each arrow •, the sides of the
figure should not cross each other as
in a figure of eight.

Qjjere is a program by which to input coordinates of boundary points
and compute the area enclosed:

PROGRAM polygon (INPUT, OUTPUT);
the'maximum size of

mbiem as desired
TYPE

spantype = 1 .. 30 ;
VAR

i , j , n : spantype; area: REAL;
x, y: ARRAY [spantype] OF REAL;

BEGIN ^ — ^ if yoor foscalis interacti\/e, insert:
_ " Number of vertices ? ')

READLN(n);
r̂FOR i := 1 TO n DO

C^ READLN (x [i] , y [i]
area := 0 ;
FOR i := f TO n

/ BEGIN

en i-1 then j-2
a) hen i-z then j-3
etc.

but LOhen i =/? thenj-1
j := (i MOD II) 4- i ;

s area ••» ansa +0.5*(x[n* ytj] - x[j]
END;

WRITELN ('Area is ' , a r e a : 8 : 2)

DO
r ^ T ^ ^

END.

/ / 7
illi

3
7
7
0

, hn

0

is
15
na8

82

AN EXAMPLE TO ILLUSTRATE ARRAYS USED A5 VECTORS
G* FOR THOSE WITH A BIT OF MATHEMATICS > »

f Wo power cables a and £ look uncom fortably
close when you superimpose these sketches % ^
what is the shortest di'shance between a&bl

\J7ith trigonometry the solution would be
messy but with vector algebra \t}s n ice.
Express # and £ as vectors:

a = (9
b » C/o-6)T (tt-3)f + (is-s)tt

^ e i r cross product, a x_b , \s a vector
normal to both a and A - Scale this by fhs
own length > | a x 51 > and you hove, a unit
vector parallel to d*S-

-p. a vector c connecting any point on a to any point on b . Here is
one of theno; it connects the t ip of a to the tip of &:

c =(to-*)?+ (tl-tc)f +0s-n)£ ^\J^

distance d, the shortest distance between 3 and 2T, is given by the
projection of c on u (f the dot product of c and u J which is:

u uhich works out at 352 fn fhis exartip/e

PROGRAM cables (I N P U T , O U T P U T) ;

TYPE vector = ARRAY [l . . 3] OF REAL;

VAR

coord

BEGIN

a, b, c, u : vector; d , length: REAL;
coord : ARRAY [1 .. 12] OF REAL;
1 a£<fthe data i

FOR
BEGIN

i TO 12 DO READ(coond [i]) ;
t TO 3 DO ^^TfZ^T '

a [i] :* coord [3 + i] - coord [i] ;
b [i] '= coord [9 -Hi] - coord [G+ i] ;
c [i] := coord [9+ i] - coord [3

END;
u [i] •= a [2 l * b [3 l - b [2] * Q [3] ;
U[2] := q[3] * b [l] " a [1] * b [3] ;
U [3] :- a [l] * b [2 l - b [I] * O [2] ; _ ^

length .'= 5QRT(5QR (U[13)+ 5QR(ur2l)f SaR(u[3l));
FOR I := 1 TO 3 DO U[i] := U [i] / length;

] * U[l] -f C[2]*U[2] + C[3] ^._
(f Shortest distance is ' , d : 6: 2)

11
15

axtiP

utail

d :=
W

END

b(btbs
- ^ - ^

:ur3i))

d-C'U

p]

>

CM
C2J

a

7
c
1

- 5
-2

XL2]
C31

[I]
• [2]

b

u
•716

•2S9

83

DAMNED BY ONE OF MY REVIEWERS AS
"UNBEATABLE IN ITS INEFFICIENCY "

^Br ^m^ m^r mmmammm mm -^m^ ^ « • mm

Ijhere are many methods of sorting the contenb of an array; a simple
technique is the bubble or ripple sort described below.

^ o demonstrate the method, toke a list of letters. * Index1* the first
letter and the one following. If the letters indexed are in the right order,
leave them alone and advance the index one row. If the letters are \n
the wrong order, swop them and advance the index one now. Stop
one row before the end of the list 50 as to prevent fine second index
pointing off the end. Here is the method depicted:

right '
leave ^]
alone £5]

'B'

•c1
W stocp

'B1

•D1
•C

corong!

SlOCp

[1]
[2]
t3]

[57

'B1

•D'
•r
•c'A1

/ [l a

•c1
•r'A'

Kjaving sunk the heaviest letter to the bottom it remains to sort the
list of letters above it. We set about this precisely as we se^ about
sorting the full l ist; in other words invoke the same procedure
recursively.

^ tidiest approach to sorting items is to set up an array of
pointers to the items:

[11
[2]
[31
[41
[51

1-
2-
6~
4-
b-

rfiJ
+il]

^t3l
>£ 5]

'D'
'C1

'A

pointers letters

i ^ n d swop pointers rather than the items themselves. When the
sorting is finished the arrays should look like this:

Lil
C2]
[33
CAl
153

5 -
1 -
4-
3 -
2 -

'B1

'Z1

'D'

•c'A1

e.g. letters [pointers[4]] cs fD j

pointers letters

^ i s approach holds no particular merit if the aim is only to sort a
few letters. But in the real world there might be a lot of information
associated with each of the items to be sorted. There is less work in
moving one pointer than moving all the information pointed to,

}ere is a complete program to sort letters :

PROGRAM bubbles (INPUT, OUTPUT) ;
TYPE size type = 0 . . 3 0 ;
VAR pointers : ARRAY [s i ze type] OF sizetype;

le t ters : ARRAY [s i z e t y p e] OF CHAR;
key: CHAR; n , i : sizetype;

PROCEDURE swop (VAR p, q : s i z e t y p e) ;
VAR ternpry r sizetype;
BEGIN

tempry :* p; p : - q ; q,
END

PROCEDURE sort (f irst , last
VAR i : sizetype ; sorted

BEGIN { s o r t }

tempry
— - ^ ^ ~
sizetype);
BOOLEAN $

SORTING
PROCEDUZB

first TO Iast-1 DO

IF f i r s t < last THEN
BEGIN

sorted :- TRUE;
FOR I :=

BEGIN
IF letters [pointers! i] I > letters [pointers [i+ l] J

THEN
&E6IK1

swop C pointers[i] , pointers[f+i]) ;
Sorted := FALSE

END { i f letters}
END; { for i }
IF NOT sorted THEN sort (f i r s t , I a s t - l)

END { i f first < last }
END; { sort}

{recursive
{invocation)

BEGIN { bubbles
READLN (n)•,
FOR i := i TO n DO

BEGIN
READLN Oet tersUI) ;
pointers [x] :* i

END;
sort C 1, n) ; <£&sort them
WRIT ELN; ^

-rFOR i := (TO n DO
C WRITE (le t ters [pointers [i]])
END. {bubbles}

/nsert: WRiTBLN'('tiumberof letters?1')
if your fiasco^ isjntenactive

read Lttttn one byone~
& set up pointers

Although Hie bubble sort is inefficient a\
sorting a jumbled list, a list in which only
one or two items are out of place, is sorted
very quickly.

85

AN EXAMPLE TO ILLUSTRATE RECURSION
AND ANOTHER METHOD OF SORTING

' i jhe sorting method called Quicksort was devised by Prof. C.A.R. Hoare.
The interpretation below has been formulated to illustrate principles op Hie
method rather than as a practical procedure.

'yake some numbers fo sort:
Z 12 3 3 14

£jet pointers r and j at each end of the list as shown. Move/
towards *'. If / points to a bigger number than i does, move/
another step towards i .

Ct\w j points fo a smaller number than i does. So swop the two numbers
pointed to, and swop the pointers / and j as well;

(Continue moving j towards i (f which now means stepping rightwards instead
of leftwards J % If / poink to a smaller number than i does, move j
another step towards t . (f Notice that the condition for continuing to
move j towards i has been reversed.])

Cisiow j points to a bigger number than i does. 5y/op numbers, pointers,
direction and condition exactly as before:

so on, swopping if necessary (f as already illustrated J until j
meets £ :

g which stage it is true to say fhat every number to the left of c is at
least as small as the number pointed to; every number to the right op i is at
least" as big. In other words the number pointed to has found its nestfng
place. The numbers to the left of / have not, however, been sorted-, nor
have those to the right of e\ But, having described a procedure for
locating a resting place which splits a group into two, if remains only to
sort the groups to the left and right of t, starting out in each case in
the manner already described fn detcxW above*

86

TJfhe logic is depicted below:
3

Recursion is applicable when a problem can be reduced to an identical
problem ** or identical problems -» of smaller size. The recursive proced-
ure musty of course, provide tfie means of escape when the size of
problem has been reduced enough. In the case of sorting this should
be when the procedure is called upon to sort a single item.

J/Jere is a Quicksort procedure that may be used in place of the bubble
sort procedure described on The previous double page:

PROCEDURE sort (f i rst , last : s izetype) ;
VAR

x, j : sizetype; js tep: -1..1 ; condit ion: BOOLEAN;
w • — " # r • # » mm w ^ ^ ^ ^ •—• • •

W^5 first < last WiS PROCEDURE
iN THE PROGRAM
ON THE PREVIOUS
DOUBLE FftGEf

first < last
THEN

BEGIN
i :« first; j := last;
jstep : - -1}
condition := TRUE $
REPEAT

IF condition = (letters [pointers [i l] > letterstpointersLj]])

swop (pointers[i], pointers
swop (i , j) ;
jstep := -jstep;
condition :

END;
j := j + jstep

UNTIL j = i j
sort C f irst, i- 1) ;
sort C i + 1 , last)

END { i f first<Iast
END; {sort}

escape if nothing

e how the condition is switched between <= and > . The \oq\ca\
expression: (letters [pointers [i] <= letters [pointers] j]]) takes the value true
or false. This value is compared with fhe Boolean value stored in the
variable named condition which 15 made alternately ttue and false by NOT.

3very time the procedure invokes itself the computer has to stone away
Values of its parameters and local variables for possible re-use on return as
illustrated by a simpler example of recursion on page 65. In the above
example *it would be possible to make jstep and condition global, and
so save storage space. But with problems the size of those
illustrated in this book it would be silly to do so.

87

A &ALANCE BETWEEN SPEED AND SPACE
(fSOME COMP/LERS PACK AUTOMATICALLY <* REGARDLESS^

4 \ Boolean value needs only a single bit (J/.e. binary digit j) for represent-
ation [] ; a character typically requires four bite [7771 ; cm integer 16 or
32 bib [, t> | , , [! , , , , , , I , , , , , TTi. But fhe unit of storage \n a
computer is its word. The size of this word is dependent on the make
and model of computer, 32 bits being typical. I t follows that storing
boolean values and characters (f perhaps even Integers J) one per wond
is wasteful of space.

fan Pascal the word PACKED in the definition of an array (for record J)
gives the compiler permission to pack Information more tightly than
one item per word , For example:

PACKED ARRAY [l . . 32768 J OF BOOLEAN
might result in the compiler packing foe components of this array
thir ty-two to Hie word, making something feasible that would other-
wise be infeasible, $ Some modern compilers pack automatically *])

^ h e price to be paid for saving space is slower retrieval durinq execution.

Qpace and speed on some systems may be balanced by packing select-
ively; say by working on an unpacked array, then copying ite
content's Into a packed array for storage. Procedures PACK and
UNPACK are provided by Pascal for such purposes.

PACK (loose,

UNPACK (tight. Loose, 8)

tight
[last]

loose

>elow are two typical invocations of these standand procedures
VAR prolix : ARRAY [i . . 1000] OF CHAR ;

p i t h : PACKED ARRAY [l -1000] OF CHAR;

PACK(pro l ix , 1, p i th)VAUNPACK(pith, prolix,

88

SOME PASCALS HAVE A
SPECIAL TYPE FOR THIS

I& string constant comprises characters enclosed between apostrophes.
An apostrophe which is to become part of a siring must be written as a
pair of apostrophes :

WRITELN (' 0oh ! \ ' I t l f s cold!1)

Ijor a string variable standard Pascal makes do with a PACKED AfcfcAY []OFCHAI?:

VAR Shiver: PACKED ARRAY [i . # 10] OF CHAR I rf> shiver [I
1 t to

constants may be assigned to string variables :
shiver := ' l t l f s coldi *
WRITELN C f0oh! • ,shiver)

!*^ut in standard Pascal the assignment is allowed only if the constant has the
same number of characters as the packed array:

shiver := f0oh! ' ;
shiver := r 0 o h ! ! ! ! ! f J ; {O.K.}

MANY MODERN PfiSCtfL
COMPILERS RELAX THIS RESTR/C-)
TION OF EQUAL LENGTH

Comparison of strfngs is allowable provided that the number of characters
is the same in each. Any comparator (f s f <>, >» etc.} may be applied:

WRITELN (shiver = f 0 o h ! ! ! ! ! ');
WRITELN C Shiver > r0oh! ') ;

^ basis of comparison is ordinal value. Characters are compared from
the left of each string until a mismatch is found. The siring in which
this mismatching character has the greater ordinal value is considered
fhe greater string. No mismatching character implfes the equality of
strings :

f abcz ' < 'abda 1 'abcdeff = ' a b c d e f

[jxcept for the properties of sequences '0' to '9' , 'A' to 'Z' and 'a1 to (z'
defined by Pascal the ordinal values of characters depend on the
character set on the particular installation; typically ASCII.

individual characters of a string variable may be manipulated :
FOR i - 1 TO 5 DO
^ shiver [i f 5] := shiver [i] ;
WRITELN C shiver)

but not all Pascals allow components of packed arrays (J see opposite J) to be
used as parameters of procedures: WRITE (shiver [i3), for example, might
have to be recast as: ch := shiver[i] 5 "'*•"-*'-•-*

^ facilities, although limited, are enough for constructing a set of
powerful string-handling procedures as demonstrated in chapter 13.

89

ILLUSTRATING THE MANIPULATION
OF STRINGS AS ARRAYS

fi^ your friends. Write down a long
multiplication such as this; then start writing
down the answer, digit by digit, from right to
(eft, carrying all the working in a cool heacf.

'•yphe trick is mentally to reverse the bottom number,
mentally shunting it leftwards past the top number. At
each shunt multiply only the digits lying beneath one
another, summing the products. Write down fhe last
digit of this sum and carry the rest inYo the next shunt.
The entire process is depicted down the right of the page.

Vo see how it works, consider each number as a
polynomial in 10. In every shunted position the
products of terms lying one above the other yield
the same power of 10. Furthermore these terms
are the only terms in the same power of 10 (f but
not forgetting fhe carry from above >•

io3

e.g. all the terms in /o2

j program opposite automates the method of
multiplication described above. If can cope w'lth
any reasonable length of multiplication by
adjusting the constants termllmit and pnodlimit.
As set opposite, the program can multiply terms
as long as 20 digits giving a product a s long as
40 digits.

Tjb use the proaram type two terms separated
by an asterisk: and terminated by an equals
sign. Then press I RETURN 1 .

frlgp urn
4 5

6 1 ^ &W£e.

4 x 3

90

PROGRAM parlour (INPUT, OUTPUT);

20; prod l imi t * 40;
CONST

termlimifc

0.. t e rm l im i t ;
0. . p rod l im i t ;
PACKED ARRAY [termspan] OF CHAR-,
PACKED ARRAY [prodspan] OF CHAR;

TYPE
termspan
prodspan
term type
pnod type

VAR
a , b : termtype; c: prodtype; sum, offset: INTEGER;
na, nb : termspan; i , k : prod spa n ;

PROCEDURE backhand (VAR x: termtype; VAR count: termspan);
VAR

i : INTEGER; buffer: termtype;
BEGIN

i := 0;
REPEAT

f READ(buffer [i]) ;
\ i :« SUCC(i)

UNTIL (buffer [£-1] = •*')
OR (buffer [i - i] = •«•) ;

count := i - 2 j
FOR i :« 0 TO count EX)

x [i] := buffer [count - i]

END-, { backhand }

BEGIN { parlour }

backhand (a , na) ;
backhand (b, nb) ;
sum :« 0h
offset :«

'backhand' does 3 things

c/) reads a term cnto a buffer:

FOR k:« 0 TO na + nb DO
/BEGIN

FOR i := 0 TO k DO
IF (i <= na) AND C (k - i) < = n b)

THEN
sum := 5um + (0RD(aCi])-ofFset)*(0RD(b[k-i])-offseOj

c [k] := CHR(sum MOD 10 + offset);
sum .•= sum DIV 10

/
/
/

(
I
V
\

carry
c [r\a + nb + 1] •» CHR C sum + offset) ;
IF sum = (D THEN i != na + nb ELSE i : =
FOR k := i DOWNTO 0 DO

WRITE (c Lk]) ;
WRITELN

END* { parlour?

na+nb+ l ;

91

MORE MANIPULATION OF STRINGS
AS ARRAYS OF CHARACTERS

^ decimal (J base 10]) number is a polynomial in ten as emphasized on
the previous page. Similarly a hex number \ base 16]> is a polynomial
in sixteen, an octal number \ base 8 j> a polynomial in eight, and so
on. In general, a number to base b is a polynomial in b and b digits
are required to express it. For digits bigger than 9, capital letters are
pressed into service $ letters A toV cope with bases up to base 32.

0 1
Una

2 3 4 5
ry octa

decimal

G 7 8 9 A B C D E F (3
16

H I J K L M N O

base

p Q R s T U V
31

—**

the following program characters '0' to V are held as a string constant
J^fconst]) which is assigned to a packed array of characters named nefstring.
This array is used in two ways. Given a character representing a digit
(fsay a hexd\g\t j) the corresponding numerical value may be found by
matching the digit aqainst each character in turn, the array subscript
indicating ordinal value when a match is found. Conversely, by usfng
the ordinal value as an array subscript the corresponding character may
be picked out without need of a search.

lijhe above principles are employed in procedures find and outdigit
respectively. Unfortunately some Pascals forbid assignment of a string
constant \o an array of the type: ^

PACKED ARRAY [0 . . 3 l] OF CHAR
insisting thai" the lower bound be always unity, e.g. [1..32], The
array subscript therefore cannot express ordinal value directly but has
to be offset by 1. Not nice.

^ program is designed to read a number expressed relative to one
base and write the same number expressed to another base. For
example if the program were given:

1I2D
v-—>

foriginal number

it would convert the 112D frono hex to octal and display 10455.

^ program first looks up the ordinal values of digits D, 2, i , i and
evaluates a polynomial in 16 :

1G1 +• 1 x 162 4- 1 x 16 3 • 4397

The looking up is done by procedure find and the polynomial is evaluated
by procedure decimoL • Notice that find returns -1 if unable to f/ftd a
match within the range of the current base. I f decimal receives -1
from find \t returns a zero result to the main program.

92

bases (INPUT, OUTPUT);
^ 'refconst' is assigned to
'refstring' in the main program)

'(M2345G789ABCDEF6HIJKLMN0PQRSTUV1,*

PROGRAM
CONST

stringlength « 32;
refconst

TYPE
str ingrange =* 1.. stringlength;
Str ingtype = PACKED ARRAY [str ingrange] OF CHAR;
basetype « 2 . .32;
number « 0-.MAXINT;

VAR
instr ing, outstring, refsfcring : stringtype;
in length, out length : str ingrange;
ch : CHAR-, dec* i : number ;
basenow, baserequired : basetype;

FUNCTION f i n d (ch:CHAR; base: basetype): INTEGER;
VAR

f o u n d : BOOLEAN; i : n u m b e r $
BEGIN

i «« 1}
REPEAT

found :- (ch = refstrinq I i 1) •,
IF NOT found THEN i :« SUCC(i)

*UNTIL found OR (i > base);
IF found

THEN f ind :» i - i
ELSE f i nd :* -1

END;

i t

do not search
beyondrange 4
ofgii/en

FUNCTION decimal (string: stringtype; length: stringrange;
base: basetype) : INTEGER;

VAR
d i g i t , power: INTEGER; n: number;
i : stringrange; si l ly: BOOLEAN;

BEGIN
n :* 0 ; silly :* FALSE; power := 1;
FOR i : = leng th DOWNTO 1 DO

BEGIN
digit := find (string [i j , base);
IF digit < 0

THEN
Si l ly :« TRUE (fg. if base - ,6

E L 5 E ^ ***?? 'power'goes)
/ /s /e* /6s ..)n ••= n + d ig i t * power; ^ * ' J

power :* power ^ base
\ END
END;

IF s i l l y THEN decimal :* <t>

END;
d C C i r n Q l contincd outrleaf

CONT/MUED

^o convert the intermediate decimal value
to a number expressed to a new base the
program keeps dividing by the new base,
faking note of Hie remainders. The re-
mainders are the ordinal values of Hie
result in reverse order.

y he ordinal values 10435 are looked up in
the array of characters to give the digits of
the resulf. These are 10455 « apparently not
worHi "looking up". But If the required base
were to be 32 the ordinal values would be
4 , 9 , 13' Looking these up in the array
vtould give 49B .

8) 4 3 9 7
8) 5 4.9 rem

8) 6 8 rcrr» 5
8) 8 rem 4
8) 1 rem 0

0 rem i

32) 4 3 9 7
32) 1 3 7 rem 13 i l

32) A rem 9
0 rem 4

(Conversion to the required base is performed by procedure outdigit.
Recursion is used to solve the problem of digits being computed in reverse order.

PROCEDURE outdigit(n:number; base: basetype);

VAR
m : number; c*. CHAR;

BEGIN
"/oak upH digit

\e.g. 8 gives 8
m := n DIV base;
c i* refstring [i f (n MOO base;] ;
IF m <> 0 ^

THEN ^^^recursion to write
outd ig i t (m, base); ^ ^ "[digits in reverse order]

WRITE (c) ^ ^ ^ ^ ^ J

END;

iGIN { Pf?OGRAM}

refstr ing ••= refconst; INPUT

1REPEAT 0UTf

READ(ch);
instr ing [i] :« ch;
i := 5UCC(i)

UNT(L ch = f f ;
in length : * i - 2 ;
READLN C basenow, base required);
dec := decimal (instr ing, inlength, basenow);
outdigi t (dec, basenequined);
WRITELN

END*

94-

ILLUSTRATIN3
ARRAYS AS MATRICES

yfhere are three sales people selling four
products. Quantities sold are tabulated
in table A. tpj>

1] 2]

L
L4.

i]
PRODUCT

2] 3] A]

1.50
2.«o
5.00
2.00

0.20
0.40
LOO
0.50

5
3

20

2
5
0

0
2
0

iO
5
0

COMM-
tSSfON

4&nd the commissions
earned as follows:

^ 5 shows the price of each produd and
the commission earned for selling each item.

money brought in is calculated as follows:

[1 5*1.50 + 2*2.80+0*5.00 + 10*2.00 = 33.10
12 3*1-50 + 5*2.80+ 2^5.00+ 5*2-00 * 38-50
[3 20*1.50 + 0*2.80+ 0*5.00+ 0*2-00 « 30,00

[5

5*0.20
3*0.20
20*0«20

2*
5*
0*

0.40
0-40
0-40

+ 0*1.00+
4 2*1.00+
+ 0*1.00+

1] 2] 3]

10*0-50
5*0-50
0*0-50
1] 2]

80
iis computation is

called matrix multi
plication ana looks
best set out "

i] 2]
s
3

20

0
2
0

*
B[l
B[2,'
6 [3,
B[4,

1-50
2.80
5.00
2-00

0.20
040
1.00
0-50

cZz]
CCS,

^33.10
38-50
30.00

6-80
7.10
A'OO

nthe number of co/umns
\of A must be the same as)oo.(the number of\

rows of 5

and the result
as many roajs as A

& as many column^ Q$&

(fjere is a program to input data for matrices A £ B , rnultfply them together,
then display their product, matrix c :

PROGRAM
TYPE

atype =
btype =
ctype =

VAR
a: atype

BEGIN
FOR n :=

READLN (
FOR n :=

READLN(

I f BEGIN

FOR n :-
END.

sales (INPUT

ARRAY
ARRAY
ARRAY

i; b :

1 TO
a [n

1 TO
"bLn
1 TO

« i

k : -

1 TO

L 1. .
[i»
[i-

btype

3

4

DO
] , a

DO

, OUTPUT);

3, 1. .4] OF INTEGER;
4 , 1 - 2] OF REAL;
3, 1. .2] OF REAL;

; c: ctypej n,i ,

[n,2] , aUn,33,

, l] , b[n,2]) j
2 DO

TO
._
1

3

3 1

= 0;
TO

DO

DO

4 DO

WRITELN(c[n,l]:

j , k : INTEGER;

a t n , 4]);

n?/y ^/?/i uulthj

(in A & E>)

EM3j

8:2, c[n,2]:8:2)

95

J>££P
BREATH
IN...

^ program on the. previous page could be recast by parcelling the
matrix multiplication as a procedure:

PROCEDURE matmul (VAR p : a type; VAR cr. btype; VAR f : c t y p e) ;
VAR - ^

i» j , k : INTEGER;
BEGIN

FOR i •» I TO 2 DO
FOR j ' « I TO 3 DO

BEGIN
[j

C'
FND

-FOR k I

although p&q art not altered by
this procedure, parameters which
art names of arrays should aliMtfs
be VAR para meters $ otherco/se the \

'ogram has to take copies of the
arrays on each invocation.

main program then simplifies to:
6E6IN {PROGRAM}

FOR n s« I
READLN

FOR n := 1
READLN

matmul C
FOR n : - 1

END.

TO 3
(a[n,

TO 4
(b[n,
a, b,
TO 3

U
l]
c

DO
, a[n,
DO
, bin,
) ;

2J,

DO WRITELN

a[n,

(ctn,

3], a [n,4]);

invoke the procedure j

\^arra^j^c_y
13.-8--2, c[n,2]:8--2)

yrnis is f ine p r o v i d e d tha t the ranges of i , j and k in the FOR loops of
matmul conform to the dimensions of arrays of atype, btype and ctype
as declared In the TYPE section of the main program:

TYPE
atype ~ ARRAY [1..3,
b type = ARRAY [1..4,
Ctype * ARRAY [J.. 3 ,

1..4J OF INTEGER;
i . . 2] OF REAL;
1 . .2] OF REAL

©ut if circumstances made the programmer expand the dimensions of
these array-types then the programmer would have to change the ranges
°f i 9 /> ̂ in the FOR loops of matmul, making them conform to the
new dimensions, h potential source of trouble.

jfi\ partial solution to the problem has been specified in Pascal to 656192.
When usmg arrays Q5 parameters (f such as p,g,r in matmul ^ the idea is
to declare them as conformant arrays. A conformant array is one that
conforms in dimensionality and in its type of component with the type of
of an array declared In an outer block *» typically in the TYPE section of
fhe main program. The programmer tells the Pascal compiler that an
array is conformant by specifying conformant array parameters* At
the top of the opposite page is the matmul procedure rewritten so as
to contain conformant array parameters.

96

emicoion; not comma

PROCEDURE m a t m u l (VAR p : ARRAY [l . . rp: !NTEGER;l . .cp: INTEGER]0F INTEGER;
VAR €['. ARRAY [l..cpsINTEGER; I . .a j : INTEGER] OF REAL;

LVAR r: ARRAY [l » r p : INTEGER; l..ccp INTEGER] OF REAL,);
VAR i ,] , k : INTEGER ; s^y^^—^T^^T—^ ^^—^^—^

9 J '***ts is a conformant array parameter; r is
conformant array which must 'conform*inA

dimensionality and component-type and state
^ of packing with any array nominated as

an actual parameter

BEGIN
FOR i t= l TO cq, DO

FOR j •.* l TO rp DO
BEGIN

k := 1 TO cp DO

END
END;

invocafion of matmuL remains exactly as before:
matmal (a, b, c) ;

Qo how is matmui to know the values for cq, rp and cp? That JS the clever
bit. Conformant array parameters provide enough information for matmui
to peep at the declarations of these arrays in the invoking program. Here
it is pfctorially for array p when the program invokes matmui
actual parameter

VAR a:

matmul(p: ARRAY [l . . r p : INTEGER

(Provided that arrays p and a are conformant (J both two-dimensional;
both with components of type INTEGER; both unpacked J each name such
as rp becomes associated with a dimension such as 3.

\5 array parameters do not provi'de dynamic array bounds, only
the ability to pick up automatically the fi^ed dimensions declared in
the original TYPE declaration. A complicated facility for achieving
litMe. Few Rascals provide conformant array parameters.

dynamic array bounds of limited scope may be simulated by declaring
oversized arrays and making parameters of the current dimensions.
The following fragments of program should convey the idea;

— - — ^ - — N ^ -

oversized declarations)TYPE atype = ARRAY C I..2*, 1..20];!

"PROCEDURE matmulCpIatype; qTbtype; nctype; i,jtkTlNTEGER")5^1
-^%^—-v—>^-
invocationmatmuK a , b , c , 2 , 3, 4) j 4 as parameters j

Conformant array parameters would enable matmuL to tell only that the
maximum allowable dimensions were 20. BREATHE... ourl

97

/J (implement bubbles with fhe constant named sizetype set to
a more challenging size Mian 30 >» say 100 or 150, Then
take some timings:

• When the input sequence is made random by
stabbing at fhe keyboard wifhoat trying fo
make, a pattern

• when fhe input sequence is generally sorted:
AAAABBCCCCCCDDE...
but wifh the occasional letter ouf of sequence;

... EZFFFG6GG...

I/jepeaf- fhe exercise using Quicksort (f page 87 ̂ j) in place cf
bubble sort (J page 85 3)« What conclusions do you draw from
fhe results ?

C/sing program bases as a model, develop specific pro-
cedures for:

• converting from hex to decimal
• converting from decimal fo /?er

By removing fhe generality from bases you should end up
with two short, elegant and useful procedures.

jL You a r e farniliar with mafrix algebra develop a sef
of procedures like matmul for addition, frunsposifion
and $ a challenge ^ inversion. Use paramefers forcurrenf
dimensions as described at fhe bottom of fhe previous
page.

98

INTRODUCING RECORDS
SYNTAX OF RECORDS
PERSONNEL RECORDS ({ EXAMPLE
THE WITH STATEMENT
INTRODUCING VARIANTS

ONCE YOU HAVE SEEN
THE BEAUTY OF A RECORD...

Whereas an array is on arrangement of component's of fdenticol type, a
record is an arrangement of components generally of different type-
Compare, the following type of array: C^£>-

TYPE
nametype = PACKED ARRAY [i . . i0 l OF CHAR;
infotype = ARRAY [l . - 3 1 OF nametype;

with this type of record:
an array of packed arrays

TYPE
nametype = PACKED ARRAt
detail type =

RECORD
surname
a g e : 18 •
grade:

END

} forename:
.65 ;

[1..W] OF CHAR;

nametype;

(j r , sr, exec) a record having various
types of field

as variables may be whole arrays:

VAR
a, b : infotype*

so may variables be whole records :

VAR
I, r : detail type;

~37q.surnaroe
Cq.forename

_ \ q.age
.grade

ad componenb of arrays are addressed by

b[2] \

the components of records are addressed by field name <f after

g
r. grade | |

variable r

q. surname ?= Vilberfonc';
q.age := 22; c^.qcade := j r ;
r. forename := q,. surname ;

q. surname |W!i,]Tb,e,r,f,o,rlcl

TJhe sketches illustrate records vv/hich have components of various types
including packed arrays. Conversely, the components of an array way be
records. The only restriction to the mMure of types In arrays and records
concerns arrays: in any one array all components must be of the same
type. An example of an ar ray o f records is: ^ r ^ ^ T V T ^ ^ " ^ ^

7 ^ i 'people' /s nocvan,
r array of too

\Q0

syntax of record type (f excluding variants which are explained lateral's:

PACKED ~ RECORD
without variants

syntax for referring to a component of a record is;

/7tf/fle 0/" variable
uohich is t

lereas arrays are manipulated by means of subscripts, records are manip-
ulated by means of field names which are analogous to subscripts. But
there is an important exception-, a copy of the 6/7///?? content of one record
may be assigned to another of the same type in a single operation:

name of a
record

name name
ENTIRE

ASSIGN-
MENT

where "same type" means a fype wil-h the samename\ a type with the same
specification is not enough. A similar requirement applying to the entire
assignment of arrays is illustrated on page 81.

TJhe word PACKED in front of RECORD implies the same thing as it does in
front of ARRAY. A packed record occupies less space than the corres-
ponding unpacked record at the coat of slower retrieval during execution.
The procedures PACK and UNPACK | page 88 j> are not applicable to records;
only to arrays.

l\r\ any one type of record & including all records that may be nested
within it >» every field name must be unique. Field names in different
types of record , however, may be identical without causi'ng interference:

TYPE

rectype 1 =
RECORD

END;

REAL;

rectype2
RECORD

U , V, w , x : CHAR;
b :(eeny,meany)

END;

TYPE

« rectype4
j t RECORD

END;

had ODnftiding
fidds named

rectype 3 s

RECORD
n:CHAR;
V,W, X :

END-,

101

AN EXAMPLE ILLUSTRATING
THE USE OF RECORDS

yfhis program prompte for an employed surname,
forename, age and executive grade. Terminate
every answer by pressing Hie REFUKM key. When
fhere are no more records the program sorts all
given records by each of four sorHng keys :

• surname
• forename

f alphabetical order J
(\ alphabetical order

• age <{ ascending numerical order J
grade ({ascending ordinal value: JR,sfc,EXEC)

OUTPUT

INPUT

ijhere are minimal checks on dolta. A
grade ofher l"han JRt SR or EXEC is treated
as JR by default} a response to /fo/r ?
other than Y implies N; oHier errors (Jouch
as a name longer than 10 leHers J) are
trapped by Hie Pascal processor

example shown here assumes a
Pascal processor that oan be used inter-
actively. Chapter ii describes some
of the pofenHal hiccups caused by
interactive inpuK

f allowable lengFh of name and allowable number of records are set into
constant's for ease of ad jusfmenh The type of personnel record is that
already illustrated and depicted again below. Associated wi'fh its fields
(J surname, forename, age and grade ^ are elements of an enumerated
ktytype (llastname, first name, decrepitude and clout ^ a This is used In

Hie sorh'ng procedure for locaKng the appropriate sorting key. The
personnel records are stored in array a; associated pointers are stored
in array p. The pointers are used for sorting as explained on page 84.

Otfere are the declarations:
PR06RAM personnel C INPUT, OUTPUT);

CONST namejength»l0; I is t]ength~30; spacer1 r ;

TYPE nametype= PACKED ARRAY [U n a m e l e n g t h] OF CWAR*
detai l t ype = r~^~^ ~

RECORD /-surname
surname, forename; nametype; A forename \ t

grade: Cjr, sr, exec)
END

indextype « ©-listlength*,
key type * CJastnonr?e, firstname^decrepitude^clout);
ordertype * (g t , eq) ;

102

VAR a : ARRAY [indextype] OF detail type;
p: ARRAY [indextype] OF indextype-,
key: key type)
count : indextypej

HIERARCHY

\array of
[p

Tjhe main program is shown overleaf.
The main program (A) invokes the
inpuf procedure CB), then invokes** four
times each>s*- the sorting procedure (c)
and listing procedure CD). The input
procedure (B) invokes a special proced-
ure (E) for accepting a string of char-
acters) it also invokes a function CF) for
testing the equality of two strings. The
sorting procedure Cc) also invokes func-
h'on (F) to test whether one string is •greater" than another. To avoid using the
FORWARD directive these subprograms should be arranged such fhah CE)and(F)
precede (6), that CF) also precedes (c). The main program CA) mush cowe lash

ijhis is the procedure (E) for accepting data from the keyboard:
'V^NpROCEDU~RÊ accepTcVARlinebufT nametype))

VAR i : 0.. namelength-, ch : CHAR;

BEGIN
FOR

fill line buffer]
ioith spaces

1 TO namelength DO Iinebufti] ••= space;
READ(Iinebuf [1])UNTIL jinebuf[x3 <> space-,

i : - I?
WHILE NOT EOLN DO

BEGIN
i := i + 1 ; ^ " " ^ S ^ continue from
READ C Iinebuf [i 3); \/cnebuf[27

END;
READLN;

END;

re is the function CF) for comparing strings for equality or relative onder:

FUNCTION
VAR i
BEGIN

order (c : ordertype; a , b : nametype): BOOLEAN;
0.. namelength •, c l , c2, nu l l : CHAR ;

invisible
0\ null := CHRC0); > uxth lower ordinal value

^REPEAT
f i •- i + I5^£i

IF a [i] = space THEN cl :»nul l ELSE
V IF b [13 = space THEN c2i»null ELSE
xUNTIL CCi*nameIength) OR CCU>C2))OR

CASE c OF
g t : order := (ci > c2)$
eo: order := (ci = c2)

END { C A S E }

cl '-alii)
c2:« b [i] ;
«=null) AND (c2= null));

103

\fhe sorting procedure CO employs the bubble technique explained
earlier but adapted to cope wiTh different" sorting keys. Each key
signifies a different criterion for ordering. Differences are resolved by a
CASE sfratement having a strucfvre similar to fhaf of the personnel record.

PROCEDURE sort (n: indextype ; k: key type) ;
VAR s, sorted: BOOLEAN; i , tempry: ind
BEGIN

IF n> i THEN
BEGIN

sorted : -
FOR i : «

BEGIN
CASE

TRUE ;
l TO n-i DO

indextype;

signifies which of the four
s is to be sortedk OF

lastnome :
s :* orderCgt, atptill.surname, atpLi+1]].surname);
firstname:
s :-= order (gt^atplill.fonBname, a[p[i-niJ.forename);
decrepitude:
5:* aLptiil.age > atpli+i]] . age;
clout :
5 := 0RD(aCpLi]3.grade) > ORD(a[p[i + J l] , grade)

END; {CASE} s~^~^^^~^-^^
IF 5 THEN ^$S signifies TRUE or FALSE^

BEGIN
sorted :- FALSE;

:= ptij -,

END;

tempry
p t i] ••« p [i + l] ;
p [i 4 -U •= tempry

END
END; { FOR 1} r _ __
IF NOT sorted THEN s o r t (n - l , k)

END { IF n>i }

scoop pointers
if TRUE

recursive
inpocation]

listing procedure (D) is siraighf forward:

PROCEDURE l ist C n: indextype);
VAR i : indextype;
BEGIN

FOR X := i TO n DO
4 BEGIN (FOR i)
i WRITE (aCpriJ]. surname, space);

WRITE (alpt ill.forename * space);
WRITE (aLpiln.aqe:3, space)]
CASE aTp t iU .g rade OF

j r : WRlTELN ('Junior1);
sr : WRITELN ('Senior*)]
exec: WRITELN('Executive')

END { CASE }
END { FOR i]

END;

^•surname |c,AMpLtEwtiTi<|
• forename |Jto,sti AĤ t 11 |

EXAMPLE

remember you cannot
WRITE a. component of

enumerated type) hen
v the CQSE statement

104

©espffe a lamentable lack of checks, Hie input procedure (B) is the mast
tedious to write . Input procedures in any language become so.

Jjf your program gets the hiccups, asking for data it has already been
given (f see dhapter i\]), the remedy 15 to remove all the prompts and set
up a file of input data . Consult your \oca\ manual about typfng,
editing and saving an input file to be read by a Pascal program.

PROCEDURE inputter (VAR n : indextype) ;
VAR indicator: CHAR; ^ 7 ^

st r ing: nametype;
buffer; deta i l type;

BEGIN
n := <b\
REPEAT

WRITE ('More? (Y /N) :
READLN (indicator)
IF ind ica tor = 'Y'

THEN
BEGIN

n •— n + \\
:= n-,

string ;

« str ing;

buffer. sumameL
buffer, forename

buffer.age I I is..65
buffer.grade I I (XSIEXEC)

a[n]
END

ELSE
IF indicator

UNTIL indicator
END-, { input ter }

WRITE ('Surname? (<= 10 chars) : ') *
accept (str ing); buffer, surname :
WRITE ("Forename? (<* JO chars) : ');
accept (string); buffer, forename
WRITEC'Age? (18 to 65) : •)•,
READLNI (buffer, age);
WRITE C'Grade? (JR, SR, EXEC) : ') ;
buffer, qrade ••• j r ;
accept (str ing);
IF onder(eq, string,'EXEC
IF orcter(eq, string,*SR

buffer

')THEN buffer.grades exec;
')THEN buffer, grade :=sr

assignment of record
'buffer' to componentsaTnl \

THEN WRITELN ('Normal ending')
ELSE WRITETLN ('Abnormal ending1)?

Tjhe main program (A) is simple:
BEGIN

inputter (count) ;
FOR key := \astname TO

BEGIN
sort(count, key);
l ist (count);
WRITELN C

END
END. {PROGRAM}

105

SAVING TIME AND
PENCIL ...

IjApWce fhe repetition of a [p t i J] . infne li'sti'ng procedure on paqeJ
The thing that most distinguishes one line from Hie next is the field
name following the full stop.

WRITE (a [p [i] 1 • surname ;
WRITE Ca [p [i 1 1 . forename
WRITE CaCprm. age

a [p t i] 3. grade

^ h e WITH statemenh is designed fo supply a sing/e specified record name
(|as far as fhe full stop J so that statements such as those shown above
may be reduced to their distinguishing features. Here are the state-
ments again, but in full and using WITH.

WRITE (surname , space) \
WRITE (forename, space) ;
WRITE C a g e : 3 , space);
CASE (grade) OF

END {WITH]

tftin the com,
statement
the WITH .,

syntax of the wirH statement- is:

WITH w variable DO statement
-jNote: Do"does ngtj
{signify 'ditto"as
fit does in FOR. and 4
\U)HtL£ loops

where:

variable :«= name

also t explained tn
chapter

Tjhe declarations below are needed by the programs opposite which demon-
strate the implications of a wirH statement in the context of a nested record',

TYPE
nesttype RECORD

f i e l d ! : RECORD
nest fiddl field2|fidd3

: RECORD
f i e l d 3 : BOOLEAN

END

END;
VAR

nest ; nesttype;

END

106

^ h e first demonstration below shows that the WITH statement may be made
to reach any level of nesting ({does a nest have "levels"? "Layers" would mix
the metaphor less but "levels" is the accepted term J :

PROGRAM nesting (OUTPUT

place, TYPE and VAR declarations here

BEGIN
nest, field 1. f ield2. field3 := TRUE ;
WITH nest, field 1. field2 DO WRITELN (f ield3)j
WITH nest, f ield 1 DO WRITELN (fieJd2. fields)-,
WITH nest DO WRITELN (f ie jd l . f ie jd2. f ield3)

END.

next" demonstration illustrates nested WITH statements reflecting the
structure of the nested record:

PROGRAM nesting2(OUTPUT);
place TYPE and VAR. declarations here-

BEGIN
nest, field 1. f ie]d2. fieJd3 := TRUE;
WITH nest DO

WITH f i e l d ! DO
WITH f ield2 DO

WRITELN (f ie ld3)
END.

third demonstration is to illustrate the
implication of using commas in place of
full stops. This syntax appears to imply the
option of nominating more than one type of
record. But this would be impossible because
the compiler could not then know to which record each field-name belonged
({recall thai" several records may use the same name for distinct fields ^ T h
commas are no more than alternatives to full stops. Compare the
following program with the program at the top of this page.

PROGRAM nesting3(OUTPUT);
place TYPE and VAR. declarations here

BEGIN
nc5t.f icldi.f ield2.field3 •= TRUE;
WITH nest, f ie ldJ , f ield2 DO WRITELN (f ield3);
WITH nest, f i e l d i DO WRITELN C f ield2. f ie ld3) \
WITH nest DO WRiTELNCfield!, field2. f ield3)

END.

comma notafion works only after WITH; do not f r y :

WITH nest DO WRITELN (f ie ld l , f i e ld2 , f ie ld3) ;

and do not permute: -r̂ / ^
WITH Heidi, nest, f i e l d i DO WRITELN (f te ld3) ;

°9f
107

SHARING SPACE ON
A FILE

C a program for managing a car-sharing scheme devised to
soften the impact of a bus or rail shrike. The following record might occur:

PROGRAM carshare (INPUT, OUTPUT) ;
TYPE

modetype * (foot* pushbike, motorbike, c a r) ;

gotype * RECORD
surname: PACKED ARRAY [i .
i n i t i a l : CHAR;
mode: modetype3
year: 190(2).. J990;
sidecar: BOOLEAN;
mpg : REAL;
seats: J..6

END;

OF CHAR;

VAR
person : gotype; people: ARRAY [i.. 100 J Of gotype;

^ record must be filled in carefully because not all fields ane relevant
fo every case-, a pedestrian, for example, has no mpq or seats. It" is
f-he item in the mode field that determines w/hich subsequent fields are
relevant to each case. 5o a CASE statement is appropriate to filling
in or printing records. For example:

"wmPpeople [i f
BEGIN

WRITELN (i n i t i a l , surname; 11) ;
CASE mode OF *

foot, pushbike : ^ ^
notorbike : BE6IN WRITE ('Bike made in ', year);

conoentlonah IF sidecar THEN WRITELNC with room for I1)
C/I3£ V ELSE WRITELN(r pillion only1)

f statement/ END 5 { matorbi ke}
car; WRITELN (y e a r ; 4 , mpg;4 # - l , f room forf, sea t s - l : 2)

kEND {CASE mode }
END; {WITH)

s URrrE statement
common to c

of transport

\z)ut there are problems; every record has to have the capacity to store
every possible arrangement of data. Space is wasfed; in a practical
program the wastage could be prodigious. So Rascal provides for a
varial"ion_in_arrangenoenh from record to record like fhi

yr ie parh of the record which varies
in arrangement \s called the variant. The variant
always comes last. The field (f in this case 'model) which discriminates
between variants is called ("he tag field.

108

Sjro specify a variant a special statement" is employed. Its name is CASE
but fhis statement is disfincf from the control statement of the. same
name. Nevertheless, similarities between Hie fwo sfafemente are evident.
Here is a new definition of gotype:

TYPE
mode type
gotype ^

5 (f o o t , pushbike, motorbike, car);
RECORD

surname: PACKED AffRAY [1..10J OF CHAR;
i n i t i a l : CHAR;
CASE mode: modetype OF

r . , , ., ,/^^^^inull definitionA
foo t , pushbike: () ; ^^JZzL!^—->
motorbfke: (bikeyear: 1900..(990; sidecar: BOOLEAN) •
c a r : (year- 1900-.1390;V^mpg: REAL-, seats: I . . G)

END { RECORD } ^ ^ ^ = = = 5 / 7 ^ ^ "bikej/ear" vs. "year"
to make every field-name
unique cue thin the record*-

above defines fhe fype of record deplcted^^ ^ ^ ^ * ^ — - ^
in all ifs guises af fhe foof of fhe opposife page.

CASE has
matching

END

R io the newly-defined record is no simpler hhan ih was previously*,
indeed it is more complicated because There are now different components
for storing fhe year of manufacture (j; change WRITE ('Bike made in', year) to
WRITE ('Bike made iri y bikeyear) to update The fragmenh of program opposite^).
The conventional CASE statement is sfill needed fo proTecT pedesfrians and
eyefiste from being expected to carry passengers.

synfax of variant is defined recursively as follows:

CASE name: name
where-

fields ::=

^Joh'ce there is no END to match CASE. Because f-he variant must come last if
is deemed to share its END with the END which mafches RECORD.

£\otice that (fields panani) permits bofh items to be absent", hence an
empty pair of brackets to signify a null definit ion of fields $ as used in
the example above J . Conversely fhe presence of a variant introduces a
further CASE, causing variants to become nested. And because fields in
any variant may be omi t ted it follows fhaf- no restriction on complexify
is imposed by fhe rule fhaf fhe variant must come lash

©mitfing warne: implies fhe absence of a tag Held to discriminafe befween
varianfs. Such a record is called a free union \ as opposed to a discriminated
union when fhere is a fag field))<, A free union allows an 'item to be stored
under fhe guise of a character, for example, buf retrieved as fhough if were
an integer ** and similarly far other equivalences of fype. A free union
designed fo peek af pointers (f naughfy 5 is given by Grogono along with
appropriate warnings about such praeffce. See bibliography.

109

/implement' fhe personnel progrom. Improve Hie program
by defining a more realistic record.

^ ? a Quicksort procedure to replace the bubble-sorf
procedure on page iOi-. Does «h sorf the records any Faster?
^T^c scale of fhls exercise is so small that one sorting
procedure is as good as another. The simpler the better.]J)

110

INTRODUCING FILES
OPENING FILES
TEXT FILES
idje/T£ & WRITELN WITH TEXT FILES
FHGE WITH TEXT FILES
READ & READLN WITH TEXT FILES
SAFE READING
GRAB PROCEDURE FOR SAFE READING
INTRODUCING FILES & PUT if GET
COMPRESSION t EXAMPLE J)
SUMMARY OF PROPERTIES OF FILES (f TABLE J)

THE MEANS OF COMMUNICATION
BETWEEN PROGRAMS

^ file named OUTPUT has already been demonstrated. The name OUTPUT IS
implied when omitted from a WRITE (Jor WRITELNJ) statement but may be
included i f desired:

2 5
3 9
4 16

- V OUTPUT
(fa TEXT file,
where 'TEXT'/S
defined later)

^? file named IMPUT has atao been demon strafed. The name INPUT fs emptied
when omifred from a READ, READLN,EOFor EOLN pnocedure or funchon but may
be included if desired:

PROGRAM
YAR i :

BEGIN
vFOR i ::

squares (OUTPUT
INTEGER; \ ^

= 1 TO 4 DO
C WRITELN(OUTPUT, i^SQRC
EHD.

) ;

ffue name AJ j
"I essential x

i))

INPUT
ti a TEXT file %

OUTPUT

PROGRAM anysqucrea (INPUT, OUTPUT);

WRITELM (OUTPUT, 'range plcose');
READLN (INPUT, j , k) ;

i:«j TO k ^^ j ^ ^ ^ ^
C WRITELN(OUTPUT, i , SQR(D)
EHD.

may be sent to files other fhan fhe one named OUTPUT. Each such
file must be nominated in the PROGRAM statement and its type declared in
the VAR section. But OUTPUT should always be nominated, if only to pro-
vide a channel for messages -s* error messages from the Pascal processor
fn particular:

X£ OUTPUT

PROGRAM filcsquaresCOUTPUT, myfile);
VAR i : INTEGER; myf 1 lc : TEXT

BEGIN
REWRITE (myf i le) - ,

OR i :* 1 TO 4 DO
WRITELN (myffJe, i , saRCi)}^

WRITE:LN(OUTPUT, •
END.

[files other fhan the file named INPUT may be nominated as sources of data.
Each such file must be nominated \n the PROGRAM statement and fte type
declaration in the VAR. sectfon:

my file yourKU*
PROGRAM filecubes(0UTPUT, myfile,yourffle)5

VAR i , j : INTEGER; myfile/yourfile: TEXT-,
BEGIN

RESET (myfile); REWRITE (yourfile)j
y WHILE NOT EOF (myfile) DO

/ BEGIN
(READLN (myfile, i j) j
V WRiTELN(yourfiJe, i , i * j)

N END;
WRITELN(OUTPUT,'O.K.')

END.

Several files may be open at once\ conversely a single file may be opened for
wrifing and subsequently reset for reading all in a single r u n .

112

Notice that the files myfilt and yourfile had to be "openedH by REWRITE before
writing; by RESET before reading. But REWRITE and RESET may not be employed to
open the special files named OUTPUT and INPUT which art opened automatically. I t
is an error to try to open a file already open.

4\ l l files in 150 Pascal are sequential files. A file opened for writing is initially
empty, comprising just an end-of -file mark. Each WRITE orWRiTELN causes new
information to be appended, then the end-of-file mark to be moved to Hie
new end of file. WRITELN (fas distinct from WRITE]) causes an end-of-line
character to be appended before control moves on.

REWRITE (f) ;
[eof]

• WRiTECf, ' a \ 'i WRlTELN(f, lcl)jt^WRITELNCf,

eof

(Conceptually the eof mark is the next
available component in which the next
item (f if any) will be stored.

fi\ file opened for reading has a "window" placed over its first component.
The first READ to be obeyed causes the item in the window to be read,
then the window to be moved to the next component, and soon. READLN
(J as distinct from READ J causes the wfndow to be moved past the next
end-of-tine character before control moves on. If there is no such char-
acter the window ends up at the end-of-file mark.
RESET(f); £ > READ(M); fi{> READLN(f,j); ££> READ(f,k); c£>READ(f, 1)

a I
c 1

eoln
d

eoin
eof

a
b
c
d

eof

!

4 •

a
b
c

eoln
d

eoln
eof

JOUiff)
Xd)ouLd

now
Return
true

rresult on
' RESET(f):)[• i nou) contains

a copy of lc
to 'a' / (• toindou)£o 'b1]

(result of teNMCfjKresult of&ADCf, k) A

>•] nou) contains -Jy k now contains \
a copy of (b* T(a copy of {c
• 'c' ignored \) • u>incfoio to
• vindocJto'd1

noto contains
a §f>Q£g
character

*toindou) to eof

Tfhe READ(f,i); READL^CfJ) above could be combined as READLN(f,i,j).
In general: " ^

READLNCf, p,q,,r , . . .) H READCf,p);READCf,q,);READ(f,r); ..• READLN(f)
WRITELM (f, p,^»r,.. .) 5 WRITECf,p);WRlTE(f,Cp; WRITE(ftr);...WRITELN Cf)

behaviour of the end-of-line character is relevant only to TEXT files
such as those depicted opposite. A TEXT file comprises rows of words and
numbers separated by spaces as the name suggests. binary files are explained
later.

y/ith interactive input the above logic is modified as explained in l~he
next chapter.

113

EXPLAINING REWRITE AND RESET
SHOWN ON PREVIOUS DOUBLE PAGE.

IJjvery file witter) or read by a Pascal program should be nominated in
the PROGRAM statement:

PROGRAM

• PROGRAM

nQmeprog C \ ^ =

myprogC OUTPUT,

\O—
mydata,

^jzlunys to

>•>

mydump)5

^? type of each file should be declared in the VAR section of the main
program. The syntax is given below, where FILE OF REAL anticipates the
subject of binary files dealt with later:

VAR
(dbngt include the files named

INPUT or OUTPUT uohich ore
r impliciUu declared as files j

of type r£Xf

• VAR mydata : TEXT; mydump: FILE OF REAL

J@\ file other than the file named OUTPUT may be written only when it has
been opened by invoking the REWRITE procedure:

REWRITE C nomefije) '

y REWRITE (mydump)

, possibly some
\ Local extensions)

fdo not
" REWRITE

Kthe file named
OUTPUT

$k file other than the file named INPUT rny be read by READ or READLN only
when it has been opened by invoking the RESET procedure.

RESET (s

• RESET (mydata)

possibly some
Local extensions

WRITE, WRITELN, READ, READLN procedures are elaborated on the
double page.

^ above definitions apply both to TEXT files and binary files. Binary
files are introduced later.

114

CONSULT YOUR LOCAL MANUAL ABOUT TYPING,
EDITING AND SAVING FILES

j files named INPUT and OUTPUT are of fype TEXT. Files nominated by
the programmer may also be declared as files of type TEXT.

PROGRAM (INPUT, OUTPUT, hisffle, herfile);
VAR hisfile, herfile: TEXT; {T£XT files dechred

by programmer

\ text file consists of ASCII characters & or characters of whatever code
the computer uses **& so a text file is intelligible to the human eye
when printed:

text file is organized as rows of items, the Items separated by spaces.
A Pascal program designed to read such a file may do so one character at
a time, using only READ(filc, ch) (J where ch is of type CHAR J. Altern-
atively the program may employ several parameters in its READ state-
ments, each parameter of the same type as that of the corresponding
item expected in the text* f i le. For example READLN C file, i% x, y)
would correctly read the top line o f the text fi le above (f where i
is of type \NTEJGER and x and y of fype REAL) *

Qjt is the unique property of text files that items are automatically
converted from internal form to character form by WRITE , from
character form to internal form by READ, as indicated by the types
of parameters involved. A reading program stops if types fall to
match, so it is safer to read data one character at a time and
forgo automatic conversion. An input procedure like this is given
on pages U8 to iZb

^ files may be created by WRITE statements as Illustrated on page
i/2. Text files may also be typed at" the keyboard and stored on disk.
The way to do this depends an your installation; consult your local
manuals. Typically the file is typed under control of a i{ line editor"
or •screen editor". Such an editor provides facilities for typing,
amending, inserting and erasing text. When a file has been typed
and corrected it may be saved on disk for subsequent use as the
IMPUT file for a Pascal program. The command is typically:

SAVE 'INPUT'

\f/fth many compilers it is not enough to nominate files in the PROGRAM state-
ment; you have also to associate those names w/th file names recognized by
the operating system. Pro Pascal and Turbo Pascal provide the ASSIGN
procedure for tfr\\s\ flcomsoft ISO Pascal extends the RESET and REWRITE

115

AND

syntax of the WRITE and WRITELN procedures is :

WRITE (nameft1e, ^expression : uuldth

WRITE LN

-JAIL

K ftle' (^expression

W R i T E (a , b , c) • WRiTE(myf i le ,a ,b ,c) • W R I T E (' * • :

first WRITE or WRITELN to be obeyed locates the first output field at the
start of the output file. <f A field is a contiguous sequence of character
positions in which an item of output is written -5* right justified.])
Subsequent fields, and ffelds generated by subsequent WR/TE and WRITELM
procedures, are appended sequentially and contiguously as each, in fb turn,
is written to the output* file.

/fan unspecified width for a field of type REAL or INTEGER implies a default
width which is installation dependent (f 14 is typical J>. An unspecified number
of places for a field of type REAL implies output in "scientific" form \B-formates
for example -1.Z3456E-04 to express the value -0.000123456. The number
of significant digits printed before the E is installation dependent ({ 6 or 9
is typical]). An unspecified uoidth fora strfng implies the number of
characters in the string excluding opening and closing apostrophes (j['abc'
implies 3 j) . An unspecified evedth for an item of type PACKED ARRAY
Ll../?3 OF CHAR implies n. An unspecified width tor a boditan Item
implies a width which is installation dependent <f typically 4 for TRUE, 5 for FALSE]).
A field is extended rightwards if a given value for width is too small to
accommodate the corresponding item.

\3(7hen the find parameter of a WRITELN <J as distinct from a WRITE J procedure has
been written, an end-of-line character is automatically appended, WRITELN
without a parameter also causes an end-of-line character to be appended.

ujtrn C ^ R V 2 T I r y r k n r * AND ONLY WITH TEXT FILES

syntax of the PAGE procedure 10:

PAGE • PAGE(myfile) • PAGE

When this $\andard procedure is invoked a page-throw code is sent to the
nominated or implied output file, (f Applicable only if rhe local equip-
ment can respond to such a signal.])

116

mo IN MORE
DETAIL

syntax of the READ and READLN procedures is:

READ (

READLN

• READ(a,b,c)
* READLN(a,b,c)

variable expects a siring o f
characters reducible to a
value of its own type: CHAR,
INTEGER or REAL.

• READ(myfi]e,a,b,c)
• READLNCmyfile)

• READ(a[iJ,p[j])
• READLN

\j/hen the current parameter is of type CHAR the character in the window is read. If
this is an end-of-line character if is read as though it were a space. It is nevertheless
distinguishable from a space because whenever there is an end-of-line character in
the window <& and at no other time «* the EOLM function for that file would return
true if invoked. After fhe character in the window has been read successfully, the
window moves on to frame the very next character. If this character happens to
be the end-of-file mark then the EOF function for that file would return true if
invoked. The EOF function returns true only when fhe window is framing the end-
of-file mark. Trying to read the end-of-file mark is an error.

when fhe current parameter is of fype INTEGER or REAL fhe window skips over
spaces and new lines until fhe Hrst significant character of a new string is
encountered (f or fhe search ends abortively at the end-of-file mark])* f\
string is converted <f if correcfly formed J) to an item of standard type con-
sistent with its corresponding parameter. (f The instruction READ(X), for
example, would fail if fhe string were i.5 and x of type INTEGER.}) After
successful reading of a string fhe window is made to frame the character
immediately following that string. This following character could be a space.
Or it could be a new-Tine character in which case EOLN, if invoked, would
return true (j and EOLN false j) »

\J/hen the final parameter of READLN (J; as distinct from READ]) has been satis-
fied the window skips over everything remaining on the current line . I t
Itien rests, framing the first character of the next line. This first
character could be the end-of-file mark in which case the EOF function,
if invoked, would return true. The same applies to READLN when used
without parameters.

\J7ifh text files fhis conceptual window has an elastic frame. Much of the
time if frames only single characters, but when a string of characters
denoting a number is encountered fhe frame " s f r e t c h e s M to
encompass all characters in that string. This is in contrast to the windows
used for reading binary files; such windows may be complicated i'n
strucfure but not elastic. Binary files are described later.

117

THIS IS A PR03LEM IN MOST
POPULAR LANGUAGES

\JJfe have all had to complete a "formated" data form from time to time. It
has advantages, if only in making life easier for the programmer:

£}ut when the data are complicated (t
is sensible to make the arrangement of
data more flexible. The programmer __
may devise a "problem-oriented language" in which a keyword fells Hie
program what the next number^ or group of numbers, describes:

W e i g h t > . .*• i » k g
R a d i i X » • • * • > > Y • • • * > • . c m
Serial Number

WEIGHT 16.75 hk^vrfpS 5ERI, 54321, WEIGHT
RADII X 2 Y 3.62 ^ M / ^ ^ ^ RADIUSES

SERIAL 54321 Y ^ A Y 3.62, X 2

HT, 16.75 K

/Qn a program designed to read "formated11 data it is conceivable that the
programmer would leave verification of data to Rascal; for example by
employing RE/*D(INPUT, weight) to read the first item in the top data sheet
abave. Bui" if the user of such a pnDgram erroneously entered 16.75, say,
Instead of 16.75 there would be a message from Pascal about a bad
number ^^ and the program would stop. For a program that reads more than
a few items of data such an approach is unthinkable.

V only way for a program to stay in control is to read data one
character at a time, building up the number or keyword and discosferivg
the user's errors for itself. The only pre-defined ftiscal procedure safe
to employ is READ(f i l e , ch) preceded by a check on end-of-file.

\ this conclusion shows Rascal in a bad light be assured that several
other established languages are no better in their handling of input".
Fortran offers a tempting range of input descriptors (f see my Illustrating
Fortran•, c.c/.P, /982> ch io J but the only usable ore. is that wnich reads
a single character. Those versions of BASIC that have "ON ERROR..."ane
a (tfHe more helpful because fhis statement makes il~ possible to win
back control when a bad item has been ready a clumsy approach.

7jhe procedure described below is designed to stay in control whatever
nonsense has been encountered on the input file. The procedure is called grab.

Sfo use grab simply invoke it whenever fhe next 'item is needed; there is no
need to check fhe end-of-file before invocation. Each item is deemed to be
terminated by a space, neujline or end-of-fife* The procedure returns with a
record describing every aspect of the item just read^ The four kinds of item
distinguished by grab are:

• name; a name begins with a letter and comprises only letters and
digite. Only the first four characters arc significant (J RADII HRADIUSES J

• number^ a number may be written with or without a decimal point; the
procedure distinguishes one form of number from the other

• nogood; a string of characters which is neither nanne or number
(f for example + P6))

• 6i6/?9t; a null item implying end-of-file (f any subsequent invaaat/'oo
of grab would then cause the same result ^ a

118

•string
•length

•nr\ REAL

•int[
•nom

tisnumber []
tisinteger Q
tisnome Q
tisnogood []
tisnt []

u record with which the procedure \J*j^
returns is depicted here. It looks n

complicated buf fe very simple to use.
Suppose, for example, the programmer
expects the next item from the input
file to be a number. The invocation
might be: \^M

grabC i t) ;
IF i t . tisnumber

THEN remember :* i t .n r
ELSE complain C i t) ;

where we assume t-hat complain is a
diagnostic procedure. 5o if fhe item
proved to be something other than a number the diagnostic procedure could
discover precisely whaf went wrong d(IF it.fcfsnfc THEN... IF it.tisnogaad
THEN...}) and might investigate precisely what the user typed by consulting
Hie component i t . string.

INTEGER

BOOLEAN
"Hags"

^ programmer would probably employ: WITH i t DO... and so simplify
references to fhe record thus: IF tisnumber THEN... I F tisnogood THEN...

4^ number such as 12345 on the input file causes both the flag tisnumber and
the flag tisinteger to be set true; a value op 12345.0 would then be found
in field *nr and a value of J2345 in field •int. But- 12345000000 on the
input file would cause only tisnumber to be set* true because (J on a
typical computer j) fhis value would be greater than MAXINT.

QQere is fhe essential logfc of the grab procedure expressed as a state
table. Use of such a table is explained on page 50.

2]
' . . ' 9 '

3]
'A'.-'Z1 'a'.-'z1

41
other Q , space, neullne.

71

nr:= digi't(ch) nom[l]:=ch

[2 .
action 2

tisnumber := TRUE

nr := : f
IFnr<MAXiNT then"
tisintegensTRUE and
int •"« sign *Ti?UNC(nr)

'nr:=
tisnogood '-TRUE

rac;
tisnumber:= TRUE}
nr-.= sign *nr (

i-.= i -Hj nom[i]:«ch; tisname-TRoe <. 9
tisnogood i= TRUE

4i table fhe various actions art numbered in little clouds @
Changes of j&t fe are indicated by broad arrows fhus ^ £ 7 , . The fable
itself is stored as array table [1..7, I..7 3 (f overleaf J> and rhe
number in each component is encoded as-.

100* action + state
This fable is created in fhe cornpufer wffh the help of a f i le .

119

J main program begins by setting constants. Stringlength should be as
[ong as the longest possible line of Input $ in case the user forgets to type
any spaces or commas j) * Namelength should be set to the number of
elqnl ficant characters in a name, four being typical. Minord and
maxord are the ordinal values of the ffrst and last character in the
available character set. 32 and ill are for ASCII code\ change these if
you are using EBCDIC or other code.

'file
PROGRAM saferead (INPUT, OUTPUT, f

CONST
stringlength = 72; namelength* 4 J minord* 32; maxord=i27#,

TYPE
Stringtype = PACKED ARRAY [i.. stringlength] OF CHAR;
nametype= PACKED ARRAYE l.. namejength] OF CHAR;
Iookupcype = ARRAY [minord.. maxord] OF I . . 7 ;
fcabletype* ARRAY [1..7, I ..73 OF I.. 1200;

intype = RECORD
string : str ingtype;
length : 0.. stringlength;
nr: REAL;
i n t : INTEGER;
nom; nametype;
tisnumber, t isinteger, tisname,
tisnogood, tisnt : BOOLEAN

END;

VAR
i t : intype-, lookup: [ookupt^pe^ table: fcabletype^
i : INTEGER-, f : Tt)<1^^3F$f&cr7fe

lookup [32]
lookup [33]
lockupl^J

Iookupfe6]

lookup [57]

Iookup[66j

<O

6
<P

5

4

4

arras/s named lookup and table have to be in iHal ! red. The purpose
of lookup is to provide the column nunober of table corresponding to
the character just read, for example. If the character stored in ch were,
"9" then lookup[o#DCch)7 would return 4. directly. Similarly i f ch con-
tained V fhen lookuptORDCch)l would return 5. Initialization is
performed by a special procedure which should be invoked precisely
once before subsequent invocations of grab . Here is the procedure:

PROCEDURE in i t ia l i za t ion (VAR I : Iookuptypej VAR t : tabletype);
VAR

c: CHAR5 i , j : 1..7; k: minord.. maxord;
BEGIN

FOR k ••= minord TO maxord DO l [k] : = 6 ;
lC0RDC+')]:= i ; ICORDC1-1)! : - 1 S
FOR c -l0x TO '9' DO I[ORD(cXJ:= 3;
FOR C '.= 'A1 TO 'Z' DO I[ORD(c)]:« 4;
FOR c :* 'a ' TO 'z' DO 1 [0RD(c)3 :^_4;
ICORDC1.1)] :*

ooeftDr;(2someaFMemoverwrite sane of them

REfiDCch) reads the e.o.C

120

^? VAR declaration in the main program contains " f : TEXT " declaring
a file of type TEXT. Writing this file and reading it back again avoids
the need for forty-nine individual assignments:

t C l . i] := 002; '= 102; := 203 ; etc.

(\l\f your Rascal compiler permits "temporaryIC Files it may be possible
to remove all references to f from the ma\n program and put them in
the VAR section of this initialization procedure <» fhe only place where
f is used, ^

f, , ,
WRITECf, 007, 007,
WRITECf, 007, 007,

WRITECf, 002, 102, 203, f<006, 007,
WRITFCf, 007, 007, 203) 007
WRITE Cf, 007, W , 403,
WRITECf, 007, 007, 605, 007, 0 0 7 , 0 (5 7 , 7 0 ©) ; v / / s
WRITECf, 007, W7, 605, 0*P7, 007, <W>7 , 8<M>); ^

lf(Z>6, <W7, 0 0 7 , 9 0 0) ;
007, 007, 007,

implies
exit

RESET (f) ;
FOR i := 1 TO 7 DO

FOR j := I TO 7 DO
C f t [i j 3)

FOR
f <F

END; {initia]ization }

M he sfarl" of fhe y/r?£ procedure is shown below. This includes Hie
definition of a local funch'on for returning the integer value of a
character:, for example digitCs') would return 6.

PROCEDURE grab (VAR rec: in type) ;
VAR

i : 1 . . stringlength; s i g n : - i . . l ; s ta te : 0.-7;
ch: CHAR; action: 0.. 11} fnac ? INTEGER;

FUNCTION d ig i t (c : CHAR): INTEGER;
BEGIN

d i g i t :« ORDCch) - ORDC'01)
END;

BEGIN {grab}
WITH rec DO

BEGIN f WITH rec } _
^ l all flags

tisnumber ^ FALSE; tisinteger := FALSE; ^ ' _
Lisname := FALSE; tisnogooa .*= FALSE; t isnt:= FALSE;
length := <t>; state.-^l; s iQn:* l ;

1 TO stringlength DO stringCi] := f ' ;
" V

continued overleaf

121

record D continued

Jere is the logic of the grab procedure:
—\^-"-^—->. ^
REPEAT

IF EOFC INPUT)
THEN

BEGIN
action ••-
t isnt :=

END
ELSE

BEGIN
READ(INPUT, c h) ;
length :=]enqth+ l ;
act ion t b l [t

7 heads the column
of ttrnninators

table [state,
(state « 1)

7] Div

- ,_ , - . . , . , string[length] -•- ch; —
table [state, lookup [ORDCch)]] DIV 100;

states table[state,]ookup[ORD(ch)]] MOD 100
END; { END of IF} w

can6e conoerttd to^an
cnteger by TRUNC() only if

CASE action OF

1: sign := - l ;
2- nr := d ig i t (ch) ;
3: BEGIN

IF nr <•» MAXINT
THEN

BEGIN
t is integer := TRUE;
i n t • = sign * TRUNC (nr)

END;
t isnumber := TRUE;
nr :« sign * nr

END;
4: nr := i0^nr + digit(ch);
5: frac :« i ;
6: BEGIN

frac := 10 * frac;
nr : * nr + d ig i t (ch) / frac

END;
7: t isnogood ••» TRUE;
8: BEGIN

t isnumber :* TRUE ;
nr s* sign * nr

END;
9: t isname := TRUE;

10: n o m [i] ?* chj
11: BEGIN

7̂/?c/- /̂?e decimoC point
'id d i t

first character)
of rtom

IF i O
END

END { CASE }
UNTIL (s t a t e =

END
END; { procedure grab}

i ;
namelength THEN

usual ending

) OR t i s n t
C'Of uxx5 met

\before Qny item

nom[i] := ch-
6uiidnow as far
as name length

122

J following main program is just for demonstrating the procedure
named grab :

*^-v—•—'—

BEGIN { main program }
initialization (lookup, table);
REPEAT

A grab (i t) ;
r WITH i t DO

BEGIN

IF tbnumber THEN WRITELN (n r) ;
IF tisinfceger THEN WRITELN (Tint) ;
IF tisname THEN WRiTELN(nom);

IF tisnogood THEN
/rFOR i J= { TO length DO
O WRITE(string [I J) ;
WRITELN

END {WITH i t }

UNTIL it.tisnt

END. { program }

w/th the program as suggested below:

© y files are inhroduced on the next page. The file named f in the
above example would be better as a binary file. To make the alteration
change f:TEXT In the main VAR section to f : FILE OF INTEGER .

yhe check for EOF at f*he top of the opposite page [5 there for non-
interactive applications but should cause no frouble when grab is used
interactively. EOF should ref-urn fake unless some special signal
(I tcTRLflpOl in Turbo Pascal]) is sent from the keyboard. If you do have
trouble wftt) grab consult chapter 11 for inspiration.

123

AND PUT()
AND GET()

$^n ifem on a text file is converted from a character string to internal
farm by READ; from fnfernal form fo a character string by WRITE. By
contrast" a binary fife holds dafa in infernal <f binary £ form. Binary
files have se/eral advantages over text files. They are fasher fo read
and write because there is no need for conversion; fhey are also more com-
pact than text files and suffer none of Hie rounding errors associated with
conversion fo and from internal form . A disadvantage of binary files
({with the exception of FILE or CHAR]) is that they would be incomprehensible
to fhe human eye if prinfed.

2>inary files are useful as backing storage during computations. Usually 51x̂1
files may be deleted af the end of a run, having served their purpose. Buf in
some applications huge files of intermediate data have to be saved between
runs. Binary files, being compact and accurate, are ideal for this purpose.

Pascal a file is a variable. Hotice the (asf line of the VAR section on
page 120, reproduced below:

i : INTEGER; f : TEXT;
which shows f declared as a variable of type TEXT in precisely fhe same
way as i is declared a variable of type INTEGER. In general, files may
be of any type ; those nat of type TEXT being binary files.

5Qere is a file named blnfiie. Each component is a record of fhe shape
used in fhe program of personnel records on page 102.

TYPE
nametype= PACKED ARRAY [1..10] OF CHAR;,
detai l type »

RECORD
surname, forename : nametype;
age: 18..65;
grade: (jr, sr, exec)

END i ^—^f//o/e: "FILB OF"
VAR

b in f i l e : FILE OF detail type;

^) single empty companenf of binfile is sketched above. The file
comprises many such records as needed during fhe course of a run.

[j)ec\araUon of any file has fhe additional
effect of declaring a coincfoco variable
associated wihh that file. The name of
fhe window is fhe name of fhe file, buf
wifh t appended as illustrated hens:
All communication with fhe file named
binfile is through fhe window named
bin filet which you pronounce as
11 b inf i le-window " .

binfi let.surname[,, , ,
binfilet^fonenome

binfjlet.age | |
binfilet. grade

124

syntax, for type of file is defined as follows:

type »= TEXT

PACKED FILE OF type h^Mnory files)

>> TEXT • PACKED FILE OF CHAR > FILE OF d e t a i l t y p e

£)o no\ confuse FILE OF CHAR with TEXT, Automatic conversions to and frorn
character strings <» and detection of end-of-line ^» are properties
exclusively o f TEXT fi les. WRITELN and READLN work only wffh TEXT files.

Wr i t ing a binary file is, in general, a two-stage process: (i)ass ign to
the window-variable whatever is to be written Cii) invoice PUT fo move
the window frame onwards and establish a new end-of- f i le :

REWRITE (b in f i l e) ;
WITH b i n f i l e t

BEGIN ^ ^
surname :« VENTANA1 ;
forename := 'ABIERTA1 ;
age := 21;
grade : -

Qyaving checked for end»of-file, reading is afso a fwo-stage process:
Ci) read what is in the window Cii) use GET to move The window frame
onwards to the next component Q(or to the end-op-file i f there is no next
component))i

RESET C bin f i le);
IF NOT EOFC bin f i le 7

THEN
BEGIN

WITH b in f i l e *
BEGIN

s
f
a :=
9 !

END;
GET(b i n f i l e)

END;

udindou) set
to fthit

component^
DO

surname*,
forename;
age;
grade

[Procedures PUT and GET are "low level" procedures, WRITE and READ may
be described in terms of PUT and GET * * and the window variable^ as follows:

WRITE (filename, item) s
READ (filename,item) s

filename* := item 5 PUT(filename)
item :« f i lename^; GET (filename)

Fbscal does not define pur or GET; it has extended WRITE I READ instead.

125

AN EXAMPLE TO ILLUSTRATE HANDLING
BOTH TEXT AND BINARY FILES

s program is designed to read a
text* file and write a corresponding
binary file, so compressing f*he
informafion held.

Hie text* file has already been
verified by anorher program so fhat
no checks on form or completeness need
be made on input; the file is known to be
strictly of the form illustrated 5 ^

SUN-ROW
Dog
No.

2
A

17

Morth

temperature log

Noon
temp
2*5
- »

Remarks

COLD

3JTTZIZ

PROGRAM compressor (text in, binaryout, OUTPUT)*,

messagesC0N5T
monthchars - 3;
remchars = 8;

TYPE
mo nth type
remtype =
grouptype =

* PACKED ARRAY 11..monthchars] OF CHAR;
PACKED ARRAY [I., remchars] OF CHAR5
RECORD

day : i . . 3 i }
month -• monthtype 5
temp: REAL;
remark: remtype

END;
VAR

text in; TEXT;
binaryout: FILE OF grouptype;

grouptype

cdindouJ

count: INTEGER; i : 1.. monthchars; j : l..remchars\
BEGIN

count := 0;
RESET(textin);
REWRITE (binaryout);
WITH binaryout'T DO

WHILE NOT EOF (t e x t i n) DO
, BEGIN

READ (textin, day);
rFOR i := i TO monthchors DO
— READC textin, month [x]) ;
REA D (text in, temp) •,
F̂OR j := 1 TO remchars DO

^ READ^ text in, remarkEj]) ;
\ count := count + 1 ;
\ READLN C text in) ;
\ PUTC binaryout)
END {WHILE}

{ end of WITH j
WRITELN C OUTPUT, count, ' Iine5 of data transferred1)

END.

binaryout

binary^utt. day U

binaryoutf. month]LLA

binaryout^.temp I

binaryoutf.remark L x

126

PROPERTY

TEXT FILES
The standard
TEXT files:
INPUT and
OUTPUT

Names
given by
the
programmer

PACKED
FILE OF CHAR
(j[not TEXT files)

Other types
(fe.g. files of
ARRAYS; files of
RECORDS of
mixed type J)

Inclusion of
file names
in the
PROGRAM
dtotement

INPUT i$ optional
butOUTPUT must
be included if
only to give a
destination for
error reports

In general the file should be nominated in the
PROGRAM statement.

compilers permit "temporary" files, these
not being nominated in the PROGRAM statement J

Definition of
file variable
in MR section

Implicitly of
type TEXT

In general the file variable should be declared m
Hie main VAR section d a local VAR section
if the compiler allows "temporary" f i les])

RESET and
REWRITE

Implicit: do
not use RESET
or REWRITE

Files to be read must be opened using £ESET(fi)ename).
Files to be written mush first be opened using
REWRITE (filename)

Input
statements
available

READ,ff£ADLN
a n d GET:
Omitting first
parameter
implies INPUT

READ, READW
and C5ET:
Ho default
parameter

READ and GET but not READLN

Conversions
en
input

Eoch character-siring encoded
automatically as CHAR, INTEGER,
or REAL to match the basic type
of the receiving parameter

binary code cm
file converted to
Items of hype
CHAR only

Binary code on file
converted to INTEGER,
REAL or CHAR according
to type of file variable

Output
statements
available

WRITE, WRITELN, PUT and PAGE
(f but some Pascal compilers
do not offer PUT])

WRITE and PUT but not WRITELN

Conpersions
on
output

Items of type CHAR, INTEGER,
BOOLEAN - also PACKED ARRAY OF
CHAR - are converted fo print-
able character str ings

Items of type
CHAR converted to
binary code on
output file

Items of all types
converted to binary
code on output*
file

EOLN The end-of'Une character is
read as a space but causes
EOLU() to return TRUE whilst*
Hie end-of-hne character fe in
the file window

End of line is not detectable;
the EOLNf) fundtion is relevant
only to TEXT files

EOLN implies
EOLN(INPUT)

No default
parameter

EOF The EOF function returns TRUE if invoked whilst the end-of-file
"mark* is in the file window, otherwise it returns FALSE

EOF implies
EOF C INPUT)

No default parameter for EOFC)

With interactive input the EOF sig-
nal is installation dependent

Interactive input is infeasible

127

UO /^implement the soferead program. Experiment by trying to
"break" if from the keyboard. If should be found impossible
to make the program lose control; on each attempt the
erroneous string woutd be displayed for inspection

^ the personnel program on page 102 file the array of
personnel records <? array a]) as a binary file. The file
should be written when all the data have been read and before
they have been sorted. Similarly make Hie program start by
reading such a file before the input of each new bahch of
records. With fhese facilities fhe program begins to look like
a rudimentary management" system,

yrake any of the programs in earlier chapl-ers (̂ for example
the loonrate program on page 62 ^ and replace its primitive
Lnpul" statements with invocations of the grab procedure.
I f your fbscal permits interactive programs add suitable
prompts and error diagnostics to make the resulting pro-
gram reasonably friendly towards Its intended user.

128

INTERACTION
PEEP-AHEAD PROBLEM
BUFFER PROBLEM
EOF PROBLEM

PASCAL WAS NOT DESIGNED AS
AN INTERACTIVE LANGUAGE

jS\ user of many modern programs fakes part in a dialogue, the
program displaying questions or prompts on the screen, /-he user
responding by typing ah the keyboard. Each response is made, in
the light of results 50 far displayed on the screen. There might be
a different result if the user had to supply all information in ad-
vance. In other words the user and the program "interact" to
achieve a result. The concept of interaction is commonplace now
but its achievement is comparatively recent in the history of
computing.

[pascal was designed before 'interaction became commonplace. It was
designed in the days when programmers punched programs into
cards, surrendering a "program deck" to computer operators for
loading into the card reader. The data were also punched into
cards and handed to the operators as a "data deck". Both decks
were later returned to th-e programmer wrapped in "music paper"
with results ({ or woeful diagnostics J from the line printer.
Because it was usual for the operators to wait unh'I they had
acquired several such programs before loading them, this mode of
operation was called "batch mode" .

^ READ procedure of Pascal was designed for the convenience of
programmers working in batch mode. The logic of the READ pro-
cedure in the context of punched cards is : (i) read the specified
item or items from the current card, then (i i) peep ahead to see
if there is a further character position on the current card; make
EOLN true if not. This logic enables the programmer to precede
each READ with*

IF NOT EOLN THEN ...

^ logic for reading a whole line <t READLM]) is similar: (i) read the
specified (tern or items from the current card, ignoring any remaining
character positions, then (i i) peep ahead to see if there is a fbrther enrtfj
make EOF true if not. This logic enabled the programmer to precede each
READLN with;

IF NOT EOF THEN ...

£}ut when input is interactive, peeping ahead fs nonsense 5 a program can't
know what its user intends to type next. So the logic of READ and READLN
has to be modified wherever the source of input is to be a human being
responding to prompts.

fi\ popular modification (f Acornsoft: 150 PasGal, Praspero: ProFhsca)]) is
"lazy i/on which means delaying the peep ahead until the program mate
a further reference <&» e& by READ or EOF-» to fhe keyboard. Another tech-
nique (f Borland: Turbo Pascal) is to \rea\ the current character from a
keyboard as the result of the peep ahead. Both methods solve the peep
ahead problem demonstrated opposite. Other problems follow.

130

THIS PRObLEM PRECLUDES
INTERACTIVE WORKING

^Interactive hiccup are caused by Hie logic o f peeping oheod as discussed
in general opposite. The RESET procedure ({impiicit in Hie case of INPUT^
places a window over foe firsl" irem o f the file-, fhe subsequent" READ or
READLN procedure copies what is in !"he window #?£/? moues the cocndoaj to the
next character or post the next end-of-Une respectively. This logic is so

fundamental ho Pascal that it is worth
exploring what would happen if an
attempt were made to run ("his I [Me
program *& if compiled by a
tradit ional Pascal compiler - »
inheracNvely.

PROGRAM
VAR Q,

BEGIN
WRITE LN
READLN
WRITE j j
READLN

h(CCUpS(INPUT, OUTPUT)-,
b : CHAR;

('firstplease');
(a);
4('second please*);
Cb);

WRITER (Q , b , ' ! ')
END. C begins a\ WRITELNC1 first please1)

and goes straight or) to READLN (a),
making Hie program waif for some-
thing to be typed and entered*

U and press the RETURN key.

READLN (a) picks up the U but is not
satisfied until it has peeped ahead at
the first character of the next line, 5o we
are hung up. The obvious thing to do is
offer the first character of the next line.

Qfill hanging! In most systems the pro-
gram receives no data until the RETURM
ley is pressed. Press it.

t i W satisfied READLNfa) 50 ayntrol went
on to WRITELNC second please1) and 30 to
READLNCb). READLN(b) picked up the P but
won't be satisfied until if has peeped
ahead to the first character of the next
line. Hung up again!

Uhene is no next line. Nevertheless enter
something. Anything !

Tjnat satisfied READLN(b) 50 control went
on to WRiTELNCa,b,'!') and sototheend
of the program. Messy result.

Ipascal compilers such as fhose quoted
opposite do not cause hiccups; Hie
result would be as one would expect
from reading the fext of the program.
In other words as illustrahed here.

131

IF YOUR PASCAL HAS THIS TROUBLE
DON'T WRITE INTERACTIVE PROGRAMS

ZJn the days when the word "file" implied Hmagnetic-tape file" if was customary
Tor Hie Pascal processor to employ buffers for input and output. A buffer is
on area of memory. Characters to be sent to the. output file would be senf
as far as the buffer; only when the buffer was full would its contents be
copied to the magnetic tape. The same ideo was employed for input. Such
buffering is essential when piling on magnetic tapes, useful when fi l ing
on disks, but if the " f i le" is a person typing at a keyboard buffering is
disastrous. The following analysis illustrates such a disaster.

Control starts at WRITELN('first please1).
The words ' f i rst please1 are faithfully
written, but written to the output
buffer >s» which has plenty of room
so its contents are not yet copied to the
screen. The screen reveals nothing. But
the program is waiting.

PROGRAM flush (INPUT, OUTPUT) ;
VAR a, b

BEGIN
WRITELN(
READ(a)v
WRITELN (
READCb);
WRITELN (

END.

: CHAR;

first please1);

second please');

a , b , T)

x line of data and press the
RETURN key. The data are "echoed" to
the screen, but this does not mean
the program has received them.

[jf nothing else happens it means the
data have gone to the input buffer
and won't come out until the buffer
is full or until you send an e.o>f from
the keyboard. (J The e-of signal is
installation dependent.])

Assume there is just a Line buffer for
input and that the RETURN key actfvates
it. That means READfa) is satisfied;
WRITELNC1 second please') sends the words
'second please' to the output buffer^
j?EAD(b) is satisfied; WRiTELNfa,b,r)
sends the word 'OH!1 to the output
buffer.

ijnnally control reaches END. at which
stage the output buffer is copfed to
the screen.

ijf your programs behave like this it means your Pascal compiler was ndt
designed to compile interactive programs. Programs to be compiled by such
a compiler should be designed to read data from a disk file.

[pro Pascal, Turbo Fbscal and bcornsoft 150 Pascal do not exhibi/- the
difficulties described above; interactive programs may be compiled by them.

132

DON'T USE THE STATEMENT WHILE NOT EOF
IN INTERACTIVE PROGRAMS

is is the s tandard Pascal model for WHILE NOT EOF(f) THEN
non-interactive input. But what does EOF
mean in an interactive program? Typically
end-of-f/le is signalled from the keyboard
by o special character particular to
each instal lat ion. An example end.of-file p—
signal is pressing j c m l and [z] together.

BEGIN

•read & process cohat / J in the
toindouJ, then

• move the window to next item

"END 1
PROGRAM pardon (INPUT, OUTPUT)-,

VAR i : INTEGER;
BEGIN

WHILE NOT EOF (INPUT) DO
BEGIN

WRITELN('next pleased
READLN(INPUT, i);
WRiTELNCtimes 2= ' , 2* i)

END
END.

(Jjere is what happens i f you write an
interactive program using this model.

Qontro\ begins at WHILE HOT EOF(INPUT)
where ft hangs. Nothing has yet been
typed so there is nothing for EOF to test.
({The READLN statement is not to blame
because control has not reached a
statement yet.J) Help the program by
entering the first number.

S h ' l l 1 satisf ied the EOF test. EOF(INPUT)
returned false so control went to
WRiTELNf'next please1) and so to the
READLNC INPUT, i) . The READLN (INPUT, i)
picked up the liV but won't be satisfied
until it has peeped ahead (j[more about
this at the bottom of the page J »

satisfied READLN(fNPUT,i) for the first
number 11 so control went to WRITELM
(' t imes 2 = \ 2 * i) which wrote 22, then
back round the loop to WRiTELNCnextplease1),
and so to READLN(iNPUT,i)."[heREADLM(iNPirr,
i) picks up the '12' and waits for fhe
nej^t chance to peep ahead .

Onus the program would continue to print the solution b
the problem-before-last, then aak for the number if has

jusf been

(2)nKI you press the combination of keys that sfgnals
end-of-f i le on your part icular installation ((shown here as S3]).

rifh "lazy input" fhe
results look a little less
silly but remain out of
phase ^

use WHILE NOT to¥ in Interactive programs.

133

DYNAMIC STORAGE
NEW AND DISPOSE
STAQUES (f STACKS AMD QUEUES J
REVERSE POLISH NOTATION
H2IJOq (f EXAMPLE])
SIMPLE CHAINS
SHORTEST ROUTE (f EXAMPLE J
INTRODUCING RINGS
ROSES \ EXAMPLE^
INTRODUCING BINARY TREES
MONKEY-PUZZLE SORT (J EXAMPLE

INTRODUCING POINTERS AND
DYNAMIC RECORDS

concept of a pointer has already been
introduced in fhe context of sorting an array*
The pointers are exchanged rather than fhe
components they point to. In this context
fhe pointers are integers confined to fhe
subrange of the array subscript.

pLU
p[2]
p[3l
pL43
p£5J

5 -
1 -
4 -
3 -
2 -

array
all

FORi- 1 TO 5 DO WRITELN(a[p[i]])

\J7herever the fhings fo be sorfed may be held in a simple array the
poinfers fo fhose fhings may be integers as demonsfrafed above, but fat
use of arrays is not always convenient because fhe array structure is foo
rigid. Moss Bros does not stock a morning suit and a dinner jacket for hire
fo every customer on its books because it is unusual for (-hem all fo wed
on the some day or dine exfravaganfly on fhe same evening. By analogy
it is nof pracficable fo declare an array of maximum possible size forever/
array variable. On the hypofhesis of fhe more sheep fhe less goafs Pascal
provides a "heap" of storage boxes, hs data arrive, boxes may be faken
from fhe heap and assembled info records. If fhe first ifem of data Is a
temperature reading, for example, a container of fype REAL is assembled
for storing fhe value. If fhe next ifem comprises a complicated personnel
record fhen boxes from the heap are assembled info a container of
corresponding TYPE. When a record is no longer wanted its container may
be disposed of by throwing fte component storaoe boxes bade on fhe heap.
Such records, because fhey come and go, are caned dynamic j^ecords.

dynamic records are now introduced by analogy
wifr? a file. Recall fhaf every file is associated wifh
a file variable in fhe form of a cocncfocv. If fhe file
is named f then the window is referred to as ft.
In other words a window has no name of ib own;
if is referred to by fhe name of fhe file which com-
prises a "chain" of such windows j>

Qimilorly a pointer is associated wifh every
dynamic record. If the pointer is named p fhe
dynamic record is referred to os pf. In other
words a dynamic record has no name of its
own; \t may be referred to by the name of any
pointer which points directly fo if. A ncha\nu

may be constructed by giving each record a
componenf for containing fhe pointer to anofoen

£|fems in fhe current record are referred to in fhe same way as fhose in fhe
currenf cuindocu:

WRITELN(f+. i n i t i a l);"~~| = | WRlTELNf p t . i n i t i a l) ; | ^ IjB

Sfhe pointers illustrated here are not of fype INTEGER, they are items of a
special pointer type (f you can't WRITE, a pointer to see what \t looks likej). The
syntax for declaring pointers of pointer type is now defined:

136

Spaces

TYPE
pointertype « t persontype

Gonnpare the above syntax of pointer hype with that" of //*/e type:
• TYPE

PACKED FILE OF

TYPE

that the words FILE OF are matched not by the worcfs POINTED TO (fas one.
might expect J but by an upward arrow* In this context the upward arrow should be
pronounced "pointer to" and Miought of as shorthand for POINTER TO .

Comparing syntax, the words FILE OF may
be followed by the name of a type or
by the full definition of a type. In this
example the name persontype could be
eliminated by placing the RECORD defin-
ition directly after FILE OF. But Hi 15
short cut is not allowed with pointers;
the item after the upward arrow must
be fhe name of a type previously defined.

surname: PACKED ARRAY [\..\6[OF CHAR})
i n i t i a l : CHAR;

18.. 65as:
Rletype* FILE C

pointertype * t persontype

\ pointer to a record is of most use i f the record itself contains a pointer
pointing to another record. The simplest data structure linked by such pointers
is the "chain" illustrated opposite. It needs the following pair of declarations:

(pointerfcype=* persontypeu
persontype = RECORD

next: pointertypef
surname: PACKED ARRAY[i..lfc]OF CHAR;
initial: CHAR;
age: 1 8 . . 6 5 ^ _ ^ — y j ^ 5 h o u (d ^ ^ f.^? J f ^

^iHi—>—^ declared persontype first it would refer forward
to pointertype; conversely pointertype declared first would refer forward to
persontype. But no Catch 22-, declare first the one with the upward arrow. A
forward reference from a POINTER TO \S permitted as a necessary exception to
the rule forbidding references to things yet to be defined.

l}javing named one or mane pointer types, pointer variables may be de-
clared in the VAR section In the usual way. The example on the next double
page shows the declaration of pointer variables named head and p\ both
are of the pointer type named pointertype.

tf\ standard pointer constant is provided, needing no declaration
(t there is no way to declare pointer constants of one's own J). The standard
pointer constant is named NIL and is defined below. I t is analogous to
zero when manipulat ing pointers and is useful for marking the end of
a chain as illustrated on the next double page.

NIL
\ standard constant

of pointer type

137

AND INTRODUCED IN THE CONTEXT OF
A LINKED LIST (f A CHAIN])

SJo explain what the program on Hie opposite page does it is easiest t"o
start me explanation part way through. The user entered an 'A\ then a
'6' and the program did this: —

top
NIL
A

Jend of a
vchQin

Tjthe user now plans to enter a 'c' for linking to fhe chain illustrated.
The four steps for linking (f already employed to link A and b]) are:

(i) create a new record pointed to by
p. This is achieved by invoking
a standard procedure named NEW:

NEW(p);
(ii) put data in the record; €.g.

READLNCpt. data);
Ciii) copy the pointer from top into

the new record, causing the new
record (j[as well as top J) to head
the old chain:

pf •next := top;
(fv) copy the pointer from p)ntotop

causing top (fas well asp}to head
the augmented cham:

top := p$
Sjhe result is:

5

v b unlink the record currently at the head of the chain requires only one
step if a bit of memory may be wasted <Jas often it may]j) s

(i) copy the pointer of the doomed
record into top, causing top to
point to the subsequent record:

top := top t . next;

c 4
NIL
A

(•Jut if Flying Dutchmen cannot be afforded, their hulks may be returned to
the heap for re-use. To do this (i) point to fhe doomed record, Qi) un-
link as above, (Hi) invoke the standard procedure named DISPOSE.
Three steps instead of one:

p := top-,
top := t o p f • next;
DISPOSEC p)

•C has now vanished; p i$ undefined.

B
—-̂ NIL

A

DISPOSED OF

138

@ the explanation opposite ih is evident that the lost record to be
finked is the first to be unlinked. So we can change the metaphor from
linking and unlinking a chain to "pushing and popping a sfuck".

(i)
yo operate the program below: Enter +L (for plus any letter]) to push that
letter onto Hie shack; enfer a lone minus sign (f af me start of a line]) to
pop fhe sfack. Enter a lone asterisk (f af l"he short of a line]) to stop.

PROGRAM stack (INPUT, OUTPUT)•

TYPE
pointertype = f recordtype;
recordtype = RECORD

next: pointertype;
le t te r : CHAR

END;
VAR

top, p : pointertype; ch: CHAR;

BEGIN
top := NIL;
REPEAT

READC ch) ;
IF ch IN [V , ' - ' J

THEN
CASE ch or

' + ': BEGIK { PUSH
NEW C p) ;
READLN (pt . letter)?
pt.next := top;
top :*: p

END

standard procedure

poinfernamepoinfer)

' - ' : BEGIN { POP }
IF top <> NIL i test for an

[empty stack)
THEN

BEGIN
WRITELN (topt . letter,' popped');
p :» top;
top := topt . next j
DISPOSE (p)

END

END
UNTIL ch

END.

ELSE
WRITELN (' nothing to pop1)

END
{ CASE } standard procedure

139

STACKS AND QUEUES *** INTRODUCING
RECURSION TO TRAVERSE A LINKED LIST

y program on the previous page was kept as simple as possible to show
without distraction the mechanism of linking and unlinking a record to The
head of a chain. The program below employs the same techniques but
parcelled as functions and procedures to be Invoked as follows:

push (p t r , ch) and ch ••= pop(pt r)

Without altering the simple chain structure of the stack, two further utilities
are added:

pushtail (ptr, ch) and ch ;= poptai l (ptr)
for pushing an If em on the bottom of a stack and popping an item from
the bottom of a stack respectively.

Casing only push and poptolL means
using a chain as a queue. Items are
pushed on at one end, wait in thcqueue,
get popped from the other end for
service. Using only pushtail and pop
implies a similar queue in the opposite
direction.

Recursion is employed fo reach the bottom of the stack. When pushtail is
invoked the current link of the chain appears in one of two states:

ptr| NIL | or else - • I j ptr f . next

If ptr= NIL we art at the end of a chain, so the NIL has to be replaced by
a pointer to a new record. If ptr <> NIL we are not at the end of a chain
so we invoke pushtaU C ptr t.next, ch) to do the work.

[recursion is also used in poptail, but here there are three possible states;
ptr | NIL | or ptr| • 1 • I N I L J ptr+• next or ptr[

If ptreNIL the queue is empty. If ptrt.next = NIL there is a solitary item which
may be popped as though the queue were a stack. If ptrt. next <> NIL we
invoke poptail (ptrt.next) to do the work.

PROGRAM staqueC INPUT, OUTPUT);

TYPE
pointer type « t recordtype;
record type = RECORD

next: pointertype •,
data : CHAR

END;
VAR

top : pointerfcype;
ch: CHAR;

first set up the
data structure

140

PROCEDURE push(VAR p t r : pointertype; c : CHAR);
VAR

p*. pointertype;
BEGIN

NEW(p) ;
pt. data ••* c;
pt. next : - ptr;
ptr :« p

dispose of 'the.
F Lying Dutchman

if you uoidh

Qijere are the four
utilities; fhey are used
fo good effect in fhe
program on page 144.

FUNCTION pop(VAR p t r : pointertype):CHAR;BEOIN
 r u p , f l , -<^^7fe^^to

P?P
nl: Cf^*7t invisible character.

THEN ysUjse^
BEGIN

pop := p t r t . data;
ptr := p t r t . next

END
END;

PROCEDURE pushtailCVAR ptr: pointertype; c: CHAR);
BEGIN

IF ptr = NIL
THEN

END;

BEGIN
NEWC p t r) ;
p t r f .da ta •=* c;
p t r t . next := NIL

END
ELSE
pushtaiKptrt.next, c)

FUNCTION poptaiI(VAR ptrrpojntertypc):

BEGIN { staque }
top := NIL-, fah
REPEAT rP^ir

READ(ch); r r

IF ch IN [I + I , ' - l / > 1 , ' < ']
THEN

CASE ch OF
•4-': BEGIN

READLN(ch)',
push(top, ch)

END;
•-1: WRITELM(pop(top)) ;
' > ' : BEGIN

READLN(ch);
pushtail (top, ch)

END;
'<*: WR!TELN(poptail (t op))
END

UNTIL ch = ' * '
END.

IF ptr <:> NIL
THEN

IF ptrt.next » NIL
THEN
poptail :* popCptr)

ELSE
poptail := poptail (ptrt.next)

END;

this program in thy
on page f39
o eKtro focUit
' (for any letter))

to push tetter on the bottom

141

ILLUSTRATING TH£

Ag expressions in conventional form may be expressed in Reverse Polish
Notation which has no parentheses (J "Polish" because Hie negation was devised by
fhe Polish logician Jan Lukac/ewicz which only Poles can pronounce-, "Reverse" because
hi5 original order of operators and operands has been reversed D% As an
example of reverse Polish notation:

A4- (b-c)*D - transforms to A B C - D * + F G H

reverse Polish expression is easier to evaluate Mian might appear. For example
let A * G , &=*£, c * l , D = 2, F=3, G = 7 , H*5. WiMi ftiesc values Hi€ €xp-
ression fo be evaluahed is :

6 4 1 - 2 ^ 4 - 3 7 5 f / -
Work from left fo right faking each item in turn. Whenever you come ho an
operator apply U to the previous tcoo termsy reducing two ferrns to one:

\$\\z above should demonstrate that reverse Polish notation would be useful for
evaluating expressions by computer. So how do you transform an expression
such as A + (6 - C) * D -F/O3+H) in Hie first place? The process employs two
stacks; the steps are explained below.

D - F / C G + H) =

find a right brocket
matching

pushing them

Continue stocking
conventionally

io not stack one op
on top of another unless
beiocv has locver precede
or is a left bracket. Dig doujn
popping Y and pushing
until uou reach a left

operator

/

+
C

precedence

3 (ti/gh)
3
2
2
1

0

fice that fhe lefr brocket is included in fhe precedence table and allocated
low precedence* This is a frfck fo avoid having fo treat explicitly thep
condition

h is a fo avoid having
or is a left bracket \ Clever.

142

dig out matching
bracket as before

the floor bt . __
equals sign d the terminator

rei/erse Polish

[jn oddition to the procedure push (stack, ch) and the functions pop(sfack)
and poptoilCstack) a function is needed to return the precedence of
an operator. The function shown below is given a character as its
parameter and returns the corresponding integer from the IftHe fable
opposite:

FUNCTION prec(C : CHAR) : INTEGER;
BEGIN

CASE c OF

'* ' , • / ' : prec := 3;
prec : & 2;

: prec := 1 ;
: prec := 0

(see little table
opposite

END
END;

V!)n the next page is a program to transform conventional expressions
to reverse Fbllsh. To use the program type the express/on and terminate
with an equals si'gn:

rr&-C)*D-F/CG+H). \ enter this

get result

. _ AN EXAMPLE TO ILLUSTRATE THE USE OF STACKS
** • (f operating instructions at foot of previous page])

PROGRAM h s i l o p (INPUT, OUTPUT);
TYPE

pointertype * trecordtype;
recordtype « RECORD

next: pointertype;
data: CHAR

END;
VAR ^^j^Tx^andv stacks

x , y : pointertype; ^ * ^ - ^
ch: CHAR; i: 0..A0; exi t : BOOLEAN;

—^— ta->sx ^s^—^v-—"^^- *^^ ^ ^ *^
insert procedures and functions here : use
push, pop, poptai I , prec from previous pages

EGM { h s i l o p }
X :» NIL; y := NIL; <3&nitiQlize stacks
REPEAT

READC ch) ;

IF ch IN L ' A ' . / Z 1] THEN push(x$ ch);
IF ch =: 'C' THEN pushCy, ch) ;
IF ch = ')•

THEN
BEGIN

WHILE yt.data O 'C
push^x, pop(y));

ch := pop(y)
END;

IF c h IN C ' + V - 1 , ' * ' ,
THEN

BEGIN
REPEAT

\dig out the matching
Left brocket

then throu) it aooau

f ^eprecedence o

• < = prececfenoe^
of the operator

(eft bracket \
beneath

V
THEN

IF prec(ch) <= prec(yt.data)
THEN

BEGIN
p u s h (x , p o p e y)) ;
e x i t := FALSE

END;
UNTIL e x i t ;

UNTIL ch * ' = ' ;

WHILE x <> NIL DO WRITE (p o p t a i 1(x)) ;
WRITELN

END.

144

MODELS FOR "TRAVERSAL"
"INSERT AFTER0

AND

Sj\\e essence of a stack or queue is that referring fo a record means
removing thai- record, (f There to cheohng in the previous example where
fhe program peeps af the record on fop of the stack before deciding
fo pop i t*]) Buf fhere are many applications in which sequential
records of a chofn are referred to without removing them. Referring
to sequential records in this way is called traversal.-

Below are shown a convenHonal chain and a fragment of program for
ITS traversal. "Referring fo a record11 in this example involves no more
than printing an item from one of its components hut would, in gen-
eral, be a more complicated procedure.

head

temp [

NIL

{ traversal}
temp :« head;
WHILE t e m p

MODEL FOR TRAVERSAL
(!l NON-RECURSIVE j)

< >
ft
r WRITE (t e m p t , data) ;
I temp := tempt , next

END
insert an item after another:

{ insert 'B1 after
temp :* head;
ŴHiLE tempt, data <> 'N1 DO

^ temp :« tempt.next;

MODEL FOR
"INSERT AFTER"

NEW(p);
pt.data 'B1;
pt.next := tempt, next;
tempt, next := p

headt. data

delete an item :

{ delete fNr }
IF head t . da ta *

THEN
head

ELSE
BEGIN

temp .•* head
^WHILE tempt.nextt-dataO'N1 DO
v _ temp := tempt, next;
tempt, next ?c tempt, nextt, next

END

ton
then

operation Z
head

{caseij

{case 2} tempt tempt, nextt
^ i f l y Where selective delefion
or "insert before" becomes
necessary if* is better to use
doubly linked rings (f see
later j) than simple chains.

145

AN EXAMPLE TO ILLUSTRATE
THE USE OF CHAINS

f inding Hie shortest (f or longest]) route through a network is a problem
that crops up in various disciplines <s* one of which fe criticat path %
scheduling for the control and monitoring of construction projects. Given a
network such as that below, the problem is to find the shortest route
from the node marked START to that marked END. The journey must follow
the direction op the a rrovt. The number against each arrow shows the journey time.

? data structure needed for a shortest-route program is depicted below.
There is a record for each node and a chain runs from each such record.
Each chain comprises ^ e records which store data describing all the edges
which run out of that node.

-head
•bestime

•switch
•route

record for
node (2)

record for
edge ®~M

•link
•tip

-Lime

record for
edge @h+

[R for all nodes are held in an array named node/bets. The record
for node 2 is annotated more fully below. In the component named

bestime is the value huge (f a con-
stant set to 1020]). In the component
named switch is a Boolean value,
initially switched to on. Use of these
items is explained later.

records for edges runnmg out of a node are created dynamically.
Each record has a component for storing the link, another for storing

nodefbcts[2]-heod
nodefacts[2]. bestime

node factual • switch
nodefbets [27* route

nodefactsfr].headt. link
nodefactsUL head'K tip

nodefacte[2].headt.time

the node number at the tip, another
for storing the journey time along
the particular edqe. This example
is for edge (2>-*®.

shortest route is found by an Iterative process, Before the process can
start the chains must be formed and initial values placed in the com-
ponents that will eventually hold changing values, me component named
bestime is to hold the best time so far achieved to this node by different
trial routes', the initial time in this component is set so high that the first
feasible route, however slow, has to bean improvement. An excepti'an
is the starting node; the best time to the starting node fs, by definition,
nothing.

#\ l l switches are turned on initially. A swftch that is on implies that the
edges leading out of that node must be explored (f or re- explored D *

146

yfhe iterative process starts at the starting node, then cycles the array
of node records until terminated. The process terminates on detection
of all switches being off.

jffltf each node the chain of edge records is traversed. For each edge
\n the chain the time to reach its tip fs found by adding the best t\me
so far achieved at the tail to the journey time for that edge. The
result is compared with the best time so far recorded in the node
record for hhe tip. I f fhe new time is better, several things must be
recorded. These are depicted below:

node

•head
•bestime

•switch
•route

node

journey time
to node 5 fa o

•head
bestime
•switch
•route

whenever a better route to a node is found, the faster fime fs substit-
uted and the node switched on as depicted for node 5 above. To be
able to trace this fmproved route subsequently, the route component fs
made to contain the number of the node through which fhe route came.
5o the outcome of dealing with the edge from © b g '

J&fter traversing the chain of edges from node 2 hhe switch at node 2
is turned off. However, the action at node 2 included hurning on the
switch at node 5 so the iteration is not yet finished. The process
continues until all switches are off** in other words until a complete
cycle ttirough the nodes fails to make a sfngle fmprovenoeni" to the route.

node-records are assembled as an array rather than being created
dynamically and linked as a chain. The array structure was chosen
because node-records are accessed in a Hrandom° way \eg. when
dealing with node 2 you have to refer to nodes 5 and 4])• Using an
array such references are resolved quickly by a simple chanqe of
subscript.

with fhe nehvork sketched
opposite, data and results
(f assuming interactive use]) would
be as shown here. ^

147

THE FULL PROGRAM

PROGRAM network C INPUT, OUTPUT) ;
CONST

on = TRUE; Off s FALSE;
huge = 1E20; nothing * 0 .0 ;
max nodes = 30; max edges * 50;

TYPE
nodetype = <&.. max nodes; edgetype = 0.. maxedges;
pointertype = tchafntype;
chaintype - RECORD

l ink : pointertype-,
t i p : nodetype;
time: REAL

END;
rectype = RECORD

head : pointertype;
bestime: REAL;
switch: BOOLEAN;
route: nodetype

END;
arraytype = ARRAY [nodetype] OF rectype;

VAR
nodes, startnode, endnode, i, n, tai l : nodetype;
edges, j : edge type;
edge p: pointertype;
nodefacts: arraytype;
cycles: 0..2j try i REAL;

BEGIN
WRITELNC'No. nodes, No.edges, Startnode, End node');
R N (nodes, edges, startnode, endmode');

FOR 1 := 1 TO nodes DO
WITH nodefacts [i] DO

BEGIN
4 head := NIL;

bestime : - huge;
I switch •= or]^
\ route :- 0

END; f WITH}
nodefacts [startnode]. bestime

initialize

f replace time y
(at start nodev

nothing;
FOR j :« 1 TO edges 00

yBEG|N
f NEWC p);

READLNCtail, p t . t i p , p f . t i m e) ;
p f . I ink := nodefacts [t a l l] , head;

\ nodefacts C ta iH . head :« p
END;

148

cycles := 0 •,
n := startnode -

WHILE cycles < 2
BEGIN

cycles -' 5UCC(cycles);
n := n MOD nodes + i
IF nodefacts [n] . switch = on

THEN
BEGIN { IF switch}

cycles :* to\
edge :* nodefocts I n] . head;

WHILE edge <> NIL DO
A BEGIN { WHfLE edge }
T try •.= nodefacts[n]. bestime + edget.time;
/ IF try < nodefacts [edge +.t ip] , bestime

THEN
WITH nodefacts [edge t . t i p] DO

BEGIN
bestime :« t r y ;
route : - n;
switch := on

END
\ edge :s edge+.Iink

END 5 { WHILE edge }
nodefacts [n] . switch *•= off

EHD { IF switch }
END-, { WHILE cycles }

WITH nodefacts [endnode] DO
IF Cbestime <> huge) AND (bestime <> nothing)

THEN
BEGIN

WRITELN ('Route from1, encfnode;3, ' to1, startnode:3) ;
n := endnode;

. /n , „ , -z s/f node number has 2 digits
WRITE C n : i) ; ^^+^Jjf^^^ — ^ v- ^

(keeo Lodaha^*n : s nodefacts [n] . route;
S S to ^ IF n <> 0 THEN WRITE ('...')
previous

WRITELN C 'Time taken is1, bestime: 6:2)
END

ELSE
WRITELN ('Mo way through - or going nowhere')

END.

149

AN ELEGANT DATA STRUCTURE

j fundamental record of a
doubly linked ring has pointers
pointing fore and aft hhus: p£

'fore
• aft

Recess to records in a ring is simplified by employing one record as a
dummy head as illustrated below. This device makes it unnecessary to
check whether the record to be added or deleted is next to the fixed head,
faking special action accordingly. Very messy.

head

(Olth four records Unke

head

^ ring is depicted above with four records-, it is also depicted empty.

QQere is the definition of a record
suitable for constructing a ring. To
keep everything simple this record
is made capable of storing just a
single character, c p ^

£|n fhe main program an empty
ring may be set up as follows.

NEWC head)-,
head t . fore := head;
head*, aft — head;

TYPE
pointertype
recordtype=

VAR

* f record type;
RECORD

fore,afti pointertype-,
da ta : CHAR

END;

head, temp : pointertype-,

ii\ new record may be inserted before or after the record currently
pointed to. Procedures for both these operations are given below:

PROCEDURE inafter (old, young: pointertype);
BEGIN

youngt. fore := o ld* , fore*
youngt. af t := o ld ;
oldt. foret. aft : = young;
oldt. fbne := young

INSERT young
AFTER old

150

PROCEDURE inbeforeCVAR old, young: pointertype)•,
BEGIN - • — - • — -

youngt. fore :=• old;
youngt.aft := old^. af t ;
oldt. a f t t . fore ••=• young;
o ld t . aft : * young

END

INSERT young
BEFORE Old

is simple and elegant:

PROCEDURE delete (VAR old : pointertype);,
BEGIN old [•]

old*. foret. aft
old*, a f t t . fore

o ld t . aft;
o ld* , fore

the,

operations \

END;

Tjraversal is simple in either direction; the only difficulty is stopping In
Hme. If the aim Is to traverse the ring precisely once, start by pointing
to the first record and arrange to stop as soon as the pointer points to
the dummy head (J before trying to refer to data In the dummy head)).

temp r iV] head
finishing
state:

lemp « head]

\
M
lead f

A

— • 1 — •

L E

temp := headt . fore;
WHILE temp <> head DO
/ BEGIN
(WRITE tempt , data;
V temp •= tempt.fore

END;
WRITE LN

ftf both occurrences of {lfore" were changed to " a f t " the result of
the above piece of program would be ELBA rather than ABLE,

Overleaf is a demonstration program designed to exercise ffie principles
and procedures introduced on this double page.

151

AM EXAMPLE. PROGRAM TO DEMONSTRATE THE WORKING
OF A DOUBLY-LINKED RING

f following program maintains a doubly-linked ring organized
alphabeh'cally. To introduce a letter enter +L (J or + any ofher letter))
at the sfarh of a line . To remove a letter enter -L (J or - whatever
the lelter]). To display the stored data in alphabetical order enter >
ah foe start of a line. To display in reverse order enter <• To step
enter * at the start of a line.

PR06RAM roses(INPUT, OUTPUT);
TYPE

pointertype = ^ record type;
recondtype = RECORD

fore, a f t : pointertype;
data : CHAR

END;
VAR

ch: CHAR;
head, p, temp: pointertype-,
caps, operators : SET OF CHAR;

PROCEDURE inbeforeCVAR old, young: pointertype);
BEGIN

youngt. fore :» old;
youngf. aft := o l d t . a f t ;
old *. a f t f . fore : - young;
o l d t , a f t := young

END;

PROCEDURE deleteC VAR old: pointertype);
BEGIN

old^.fore^.aft := o l d t . a f t ;
o l d t . a f t t . fore := old?, fore

END;

BEGIN
caps := ['A'.. fz '3;
operators := ['+1, ' - ' , ' > ' , '<' J;
NEW C head);
headt. fore ••= head;
head t . af t s= head;
headt . data := CHRC <2>);
REPEAT

READ(ch) ;
IF ch IN operators

THEN

procedures
inbefore and
delete as on
previous page

ummy head
coarned

152

CASE ch OF

BEGIN
READ C ch) ;
IF ch IN caps

THEN
BEGIN

NEWC p);
p t . data : =

Beware of a potential crash.
"The condition tempt, data < ch

evaluated even u>hen the
condition tempo head /s false.
So tempt.data must not be left
^undefined in the dummy heacf.A

Hence the CHZ(0)
temp •= head t . fore ;
WILE (t e m p o h e a d) AND (t emp t .da ta< ch) DO

temp :« temp t . f o re ;
in before (temp, p) -<S4 insert

END
END;

'<'

BEGIN
READC ch) ;
IF ch IN caps

THEN
BEGIN

temp :« head t . fore;
WHILE (tempohead) AND (tempt.dotaoch) DO
^ temp -= tempt, fore;
IF temp <> head

THEN ^"^~X
delete(temp) Cdelet£\

END ^ ^ ^ r
END;
BEGIN

temp := head t . fore;
WHILE temp O head DO
j BEGIN
r WRITE C tempt, data) ;
V temp ••* tempt, fore
V END;
WRITELN

END;

BEGIN
temp :« headt. a f t ;
WHILE temp <> head DO
j BEGIN
T WRITE C tempt. data) \
[temp := tempt, aft
v END;

WRITELN
END

{ CASE }

dispiay m
, ascending

order

^display in
k descending
order

UNTIL ch « ' *•

END. { r o s e s }

153

ANOTHER
ELEGANCE

the
TJake some letters to sort:

D, Z, B, E, /\, F, C
luring the first letter, D, to the root of a
tree and store it In a node. (f Trees
grow upside down as do several meta-
phors in computer science*]) Now take the next letter, Z, and bring it to

^ ^ the root node. If is " biggerH than D so go
L J L j ^ K ^ ^ ^ right and make a new node to contain
'Dl ^""^ *—•—• z as shown
JaddZ) \Zl - ^here .

[Dj ^ ^
£3ow the third letter, B. It is smaller ^ ^ 4 i r l ^ ^ ^ ^ P
thon D 50 go left and make a new node. &r L J Qxdd 3j L J

next letter, E, is bigger than D so ao
If is smaller rhan Z so go left, men

make a new node to contain E as shown
here.

general; bring the next letter to the
root node and compare. If the new letter
is smaller go left, i f bigger go right. Do

the same thing as you reach each node until there are no more nodes
to supply letters for comparison. Then make a new node to contain
the new letter.

^ t " any stage the tree may
be traversed (f or stripped J
as shown below. Notice that
the arrow runs through fhe
letters in alphabetical order.

if he order may be reversed by frDversing the ofher way

154

type of node record depfcted opposite is easily defined:

TYPE
pointer type = t nodetypej
podetype = RECORD

le f t , right : pointertype-,
data : CHAR

END;

•left _
•data

•right

QQanging letters on a tree *** depicted in stages opposite & is best done
recursively. If the current node Is NIL make a new node to contain the new
letter, otherwise invoke the "hang" procedure with the parameter specifying the
left or right poinier according to how Hie new letter compares with that pointed to:

PROCEDURE hang(VAR nptr: pointertype; ch: CHAR) ;
^ 7 ^

TM2B
BEGIN

NEW(p
nptrt. left
nptrt . right
nptrt.data

END
ELSE { CASE 2 }

IF ch < nptr t . data
THEN hangC nptrt. le f t , ch)
ELSE IF ch > nptrt . data

THEN hang (np t r t . r igh t , ch)
ELSE WR!T£LN (' Duplicate entry')

END;

Sjhe tree may be traversed recursively :
PROCEDURE 5hrip(VAR nptr

BEGIN
IF nptr <> NIL

pointertype);

5EGIN
stripC nptrt. left);
WRITER nptrt. data)
strip (nptrt. right)

END
END',

strip the left subtree

41 n both the above procedures n WITH nptrt Do" could be used to reduce the
number of occurrences of " nptr t " at the cost of extra lines and /ess clarity.
The VAR in the froversal procedure, though not logically necessary, prevente
the processor taking a copy of the data structure on each invocation. Ouch!

Over the poge fs a program based on a binary tree. It reads letters typed
in any order and displays them in alphabetical order. It fs left as an
exercise to add a facility for display in reverse order.

trees are useful for all sorfs of things besides sorting.

155

ANOTHER NAME FOR
BINARY-TREE SORT

Sjhis program maintains a binary tree in much the some way as Rases
maintains a doubly- l inked ring . To hang a new letter on the tree enter
+L (j or + any letter]) . To remove a letter enter -L (fr or minus whatev/er the
letter^). To display the letters on the tree \n alphabetical order enter >
at the start of a line. Inter * a t the start o f a line to stop.

A g to the tree is elegantly simple but deleting a node which is not a
" l e a f <s* especially when duplicated Wems are allowed on the tree ^ * is
not easy a t a l l . This program simply keeps a count o f like items, reducing
the count when an item is deleted. ~~~

PROGRAM monkey(INPUT, OUTPUT)-,

TYPE
pointertype = nodetype-,
nodetype « RECORD

l e f t , r i gh t : pointertype;
data : CHAR;
count: INTEGER

END;

VAR
root f p: pointertype $
ch : CHAR;

PROCEDURE hang(VAR np t r : pointertype; ch: CHAR) ;
BEGIN

IF nptr = NIL
THEN

BEGIN
NEW C nptr) ;

t l f := NIL;
:« NIL ;
:- ch;

p
nptrt.left
nptrt.right
nptr +. data
nptrt. count

END
ELSE

IF ch < nptrt.data
THEN

hang(nptrt. left, ch)
E t t

nptrK count := nptr+. count
END;

^?he following function is for finding a letter to be deleted. The function
is written recursively using the same logfc ad in hong.

156

FUNCTION find(VAR npbr: polntertype; ch: CHAR) : pointertype;

ELSE IF ch < nptrt. data
THEN find := find (nptrt. left, ch)
ELSE IF ch > nptrt. data

THEN find :« find (nptrt.right, ch)
ELSE f ind *= nptr

END;

PROCEDURE str ip (VAR nptr : pointertype);
VAR

i : 0 . . MAX1NT;
BEGIN

IF nptr <> NIL
THEN

BEGIN
strip (nptrt. le f t) ;

>R i *« 1 TO nptrt. count DO
WRITE(nptr t .data) ;
stripe nptrt. r ight)

END
END;

BEGIN { monkey }
root := NIL;
REPEAT

READ(ch);
IF ch IN [' + ' , ' - \ ' > ']

THEN
CASE ch OF

' +• '

END
UNTIL e h *

END.

BEGIN
READ(ch) ;
IF ch IN ['A1 . . l Z ']

THEN
hangC r o o t , c h)

END;

BEGIN
RFADC ch);
p •-= f ind(root, ch);
IF J) <> NIL

THEN IF p t . coun t > <b
THEN p t .count

END;

BEGIN
strip(root);
WRITELN

END
{ CASE }

pt.count - 1

effectively

157

l\<l write a program to read an arithmetic expression such as:

3 . 5 * (7 + (4 - - 6 . 2) / 3 2)
and display fhe answer. Use an input procedure such as
grab d pages 118-23 J) to read fhe numbers and operators
which comprise Hie expression. Employ ("he logic of l"he
reverse Polish program (J pages 142-4 j but wifti an important
differencei when you are about1 to transfer an operator
from shack y to stack x do fhe following Instead:

• pop two numbers from stack X
apply fhe operator to them

• push hhe resulf on shack X

&y this device you should end up wrhh a single number in
stack X; this is the value of ("he expression.

^J?rite an adventure game. The player explores a mystic
palace or smelly dungeon, walking from room to room,
picking things up, putting things down, whilst"contending
wilt) monsters. To write such a program you need /"he sfring-
handling facilities developed in fhe next chapter because
hhe player expects to type :

TAKE POISON
or

GO WEST
and have fhe compiler respond inhelligently. There'ts a
simple buh complete adventure game described in my book:

Illustrating Super-3/)S/c c.u.P. 1985
which exploits ring structures for picking hhings up in one
room and dropping fhem in another, state matrices for
mapping fhe fopology of rooms and doors, and symbol-
sfafe fables for encoding fhe rules of play. Enough
techniques are described for constructing a complete and
worthwhile advenfure game.

158

STRING UTILITIES

READSTRING
WRITESTRING
MIDDLE
CONCAT
COMPARE
INSTR
PEEK
POKE

BACKSLANG (f EXAMPLE J
HASHING TECHNIQUE
HASHER (f EXAMPLE])

MAY B£ USEFUL EVEN IF YOU
HAVE PASCAL WITH 'TYPE STRING'

Qfrandard Pascal defines few string-handling facilities; as a consequence
modern compilers offer non-standard ones, The disadvantage of using non-
standard facilities is loss of portability* One way round the portability
problem is to define one^s own set of utilities built strictly from standard
parts. This course is followed below. Its purpose is to suggest and illustrate
a methodical approach rather than attempt the standardization of string
utilities; the reader is sure, \o want* different facilities and better written
procedures than those to be found here.

y he utilities are based on a record of the form depicted below:

s h 0
NIL
e

•next
•letter

[•jecause dynamic storage is employed every string may have a different
length and there is no arbitrary limit placed on length. Here is the type
definition, (f Also included is a definition of enumerated type for later use
in the comparison of strings.^)

PR06R/WA strings (INPUT, OUTPUT);

TYPE
stringrange
pointertype
lettertype =

stringtype

= (b.. M AX I NT \
= ^ lettertype;
RECORD

next: pointertype;
letter:

END;
CHAR

RECORD
length: stringrange
head: pointertype

ENID;

constrained to be
non-negative'

re la t ion^ (eq,, ne, gt , g e . l t , l e) ;
equivalent

Tj he first two procedures art recursive, flppend is for appending a new
character to the end of a string j reclaim is for disposing of subrecords
when a record is to store a new string. These are Mow-level" procedures
used by the main string utilities. The programmer who uses the main
string utilities need not know about me low-level ones.

TJhroughout all procedunes fhe parameters which nomina te string records
are made VAR pa rame te r s . The idea is to prevent the processor having to
make copies of strings ^ w h i c h cou ld be very l o n g .

16O

PROCEDURE append(VAR p.- pointertype; c: CHAR);
BEGIN

IF p «= NIL
THEN

BEGIN
NEWC p);
pt. letter := c \
p+.next ••= NIL

END
ELSE

append (p t . next, c)
END;

PROCEDURE reclaim (VAR p: point ertype);
BEGIN

IF p <> NIL
THEN

BEGIN
IF pt.nextO NIL

THEN recurston

END;

reclaim C pt. next
DISPOSE (p) j
p :« NIL

END

a string named st :
*-—̂ ^ ^^- > > ^ —
VAR st :

•*-• — ^ NIL
h

effect of append (st. head, '!') would be:

not updated
by append

. length
st.head

effect of reclaim (st. head) would be:

0
-—^ • — * > MIL

t
•

st. length
st.head NIL

j following depicts an empty string, before any string is used by
name in the procedures fhat follow, thai" strfng must be init ialized,
you could write a formal procedure to do this bul" ff's not worMi the effort
and complication.

1eng th
^^—^^

/5 HOW TO INITIALIZE

st. length
st.head

0
NIL

TH/S 15 THE EMPTY STRING DEPICTED

161

name string JJ CHECK EOLN BEFORE INVOCATION

Vhe following procedure reads a string and stores if under the specified name.
The specified name may be fhe name of an empty siring or of a non-emphy
str ing, fhe previous content being lost". It is an error to invoke the procedure
with fhe nome of a string r\ot yef initialized. A string is considered term-
inated by a space or EOLN (f i.e. tine RETURN key pressed j)<> Leading spaces
are ignored by this procedure.

PROCEDURE readstr ing (VAR newstring: s t r ingtype) ;
CONST

space = • ' ;
VAR

ch : CHAR;
reclaim does nothing
if newsfcring is already
empty

ignore Leading
spaces

BEGIN
reclaim(newstring.head);
newstring. length ;= 0;
REPEAT

READC ch)
UNTIL C ch <> Space) OR EOLN;
IF ch <> space

THEN
.REPEAT

appendC newstr ing.head, c h) ;
newst r ing . length := newstr ing. length + 1;
ch := space;
IF NOT EOLN THEN READ(ch)

UNTIL ch * space
END;

\count
^characters

namestring j) DOES NOTHING WITH AN EMPTY STRING

Tjhe following procedure writes a copy o f fhe nominated string wfhh no
leading spaces and no trailing spaces or new-line characters. I f fhe
nominated string is empty the procedure does noffnng.

PROCEDURE wrifcestring C VAR o lds t r ing : s t r i ng t ype) ;
VAR

p: pointer type;

BEGIN
p := oJdstring. head;
WHILE p <> NIL DO

f WRITE (pt. letter);
p := pt. next

END
END;

162

(J namtnm3tfing

procedure creates a string by copying part of another. The new string
is made a copy of Hie "middle" of the old string starting at a specified
position and having a specified number of characters. Use oF parameters
is besl" explained pictorially.

m i d d l e (n e w , o l d , 4 , 7)
y start «

result'- a neu) string named "new" £*^ DEFGHIJ

procedure is modelled on the popular 3/45/c command MID$(9 9 9)0

yhe fourth parameter may specify an impossibly high VQlue, in which case
the new string is truncated where the did string ends. The procedure may
be used to copy a complete sir ing. A new string may be made to overwrite
the old slr fng.

PROCEDURE middle(VAR newstring,oldstring: stringtype;
start, span : stringrange) ;

VAR
i : stringrange; p, temp: pointertype;

BEGIN
IF (start > 0) AND (start <= oldstring. length)

THEN
BEGIN

temp := NIL;
p := oldstring. head;
i := 1;
WHILE i < start DO~

f BEGIN
(p :« p t . next;
V i := succ (i)

END;
x :- i ;
WHILE C p <> NIL) AND (i <= span) DO

irc/r? as fory

(as ''start'

truncate if
'span*is too big

r append (t e m p , p t . le t ter) ;
I p := pt. next;v i - i + 1

END;
newstring.length :« i - 1 ;
reclaim (newstring. head);
newstring, head -- temp

END
END;

build result
as a temporary

string

163

namerighUtnng])

Sjhis procedure creotes a new string as a copy of two nominated strings
joined end to end <& in other words concatenated. The left and right
strings nominated for concatenation remain undisturbed unless the
new string is to overwrite one of them.

PROCEDURE concatC VAR newstring, lef t , r igh t : str ingtype);
VAR

p, t emp : pointer type;
BEGIN

temp ••= NIL;
p -.= lef t , head;
WHILE p <> NIL DO

5EGIN
append C temp, pt. letter);
p := pt.next

END;

p := right.head;
WHILE p <> NIL DO
. 6EGIN

T append (temp, p t . let ter);
v p >« pt.next

END;
newstring.length ••= left.length + right.length;
reclaim (newstring. head);
newstring. head •-= temp

END;

next function is for comparing strings. The criteria for equality and
relative size are those commonly used for alphabetical directories. Upper
case letters are considered "equal" to corresponding lower-case letters.
Strings are "equal" if they have identical length and all characters match
In pairs from left to right:

Abed ti considered 'equal" to abed

vJ/Hen strings are unequal their relative order in a directory is determined
by the first mismatching character from the left. The one wiHi the higher
ordinal value indicates the greater string:

AbCdgw is considered "greaterthan" aBCdefg
first mismatching character

When one string is shorter than another imagine a "null" character of
zero ondinaf value appended to the shorter. The rule above fhen still applies:

Abcde is considered'greater than1

^ ^T>K V-—-V " ^ >^ ^ N -̂
1 first mismatching character

aBCj imaginary
^ " l l "

164-

4
P criterion for returning true:
"eq, ne, gt9 ge. It, le

examples: IF compare(response, eq > af f i rm) THEN...J (enumerated)
^ ~ IF compare(Ieft, ge, r i gh t) XHZYi^. ^ / ^ ^on fDageJSOJ

FUNCTION compare^ VAR left: stringtype; n relation-,
VAR r ight: stringtype) : BOOLEAN}

VAR
cp, c<^: CHAR;
same, pmore, qmore : BOOLEAN;
pf q : pointer type; j^oohen comparing

I strings any Lou>er-
FUNCTION upper (c: CHAR) : CHAR ; ("case letter is treated\

BEGIN \as a capital letter
I F c l N [' a ' . - ' z '] ^ A ^ ' ~ '

THEN
upper :* CHR(ORD(c) - ORD('a1) + ORDC'A1))

ELSE:

UPP6' := c sZswngthis offset
constant:

BEGIN { compare } X " V ^ A + Z

p :« le f t .head; q ••= r ight .head;
pmore := p <> NIL; qrnore := q<> NIL;
same : * TRUE-,
WHILE (pmore AND qmore) AND some DO

,BEGIN
cp := upper(p t . letter)-,
cc\ *= upper (q?. le t te r) ;
same := cp=cq •,
p := p t .next ; pmore := p<> NIL;
q := q* .next ; c^rnore := q-O NIL

ND;EN

IF (s a m e AND qmone) AND (NOT pmore)
THEN cp := CHRC t)',

IF C same AND pmore) AND (NOT <yr\ore)
THEN cc\ i= CHR(<t) j

CASE OF

ô be less V

character it *
is compared,
co'cth

eq, : compare
ne : compare
gt : compare

compare
compare
compare

{ CASE }

If
le

Cp xr CCJ-,
cp <> cq.-,
cp > cq,-,
cp >= cq;
cp < cq,;
cp <= cq

EMD
END •, { compare }

165

namesuperstrino > nQme$ubstnna 1) FUNCTION RETURNS POSITION OF

ij\\\$ function Js modelled on a popular funcKon of BASfC. It seeks the
first occurrence of substring within superstring, returning its position
as an integer counting from 1 &* or zero if no match is found.

FUNCTION instr(VAR super, sub: s t r i n g t y p e) - s t r ingrange;
VAR

tempstring: stringtype•,
i , j : sfcringrange;
match : BOOLEAN

BEGIN
instr := 0;
ternpstring.head ••= NIL;
i : = 0 ;
j := super. length - sub. length + 1;
IF j >= 1

T H E N r +"L- a shod temporary
} from successive positions

SUCC(i);
middle(tempstring, super, i , sub.lengtb);
match ••= compared tempstr ing, eq, , sub)

UNTIL match OR C i * J v

IF match THEN instr T= i$ ^^^corrpare the temporary
reclaim (tempstring. head) {string cuith sub

END;

RFGIN

name5tdng
FUNCTION RETURNS H** CHARACTER

its function returns the character at position n of the nominated string > or
CHRC0) if n is beyond the range of that string.

—i i ^ ^ ^ ^ f ^ i i _ ~ . ^ ^ H|_ "Si " ~ ~ ' ' _ — _ - - , ^ . ^ ^ t —i yy^ - ^ ^ — H| — ^ o

FUNCTION peek C VAR o ld : str ingtype; n: s t r ingrange) :
VAR

i : stringrange; p: pointertype;
BEGIN

p s* old.head;
i f« ij
WHILE C i < n) AND C p <> NIL) DO
/ BEGIN

i := SUCCC i) ;
V p := p t . next

END}
IF p <> NIL

THEN
peek := pt. letter

ELSE
peek := CHR(0)

END;

peekCstr,2)
returns '5'

EXAMPLE

166

name, "p * character 5) f g * * 5 " n» CHARACTERstring * position •

procedure is versah'le:
when t £ n ^ length the procedure replaces the n-'
character of the nominated string with fhe given character:

asKa POfcxCstr, 3, 'c') Qrtrjy? asca
when n ** 0 the given character is pushed on the front:

• when n>Length the given character is appended:
£ f£ r j ^> Pasca POKE (strt 6, T) ^ £ ^ j n > Pascal

Qtring "constants" may be built from empty strings in this manner, for long
siring constants it would be better to write a procedure to build strings
from Pascal string constants assigned to packed arrays of characters.

PROCEDURE poke(VAR o ld: stringtype; n: stringrangej c:CHAR;
VAR

p: pointertype;
i : stringrange;

BEGIN
IF n > old.length

THEN
BEGIN

append (old. head, c);
old. length := old.length + 1

END
ELSE IF n * 0

THEN
BEGIN

NEW(p)•,
pt. next := old-head;
p*. letter := cj
old.head — p;
o ld . l eng th ;= old.length -I- 1

END
ELSE

BEGIN
p i= old.head;
i . - i;
WHILE C I < n) AND (p O NIL)

BEGIN
i := 5UCC (i) ;
p :« pf.next

END;
IF p <> NIL

THEN
pt. let ter := c

END
END;

/7 = <̂ ,•
push on front

DO

167

Isthay isay Ackslangbay! Ancay ouyay
eadray itay? Erhapspay otnay atay irstfay.

Q i g is a secrei language spoken in boarding schools. Ih is suitably
incomprehensible when heard for rhe fjrsh hime buh easy ho masher once
you know the grammatical rules. There are probably many dialect's of
backslang (j also called pig Latin 2); hhis one is remembered from school
days. Each English word is folded abouh its firsh vowel and ay is appended
(jf tea •* eatay, tomato* omototay j) . If a word begins wittn a vowel, hhe
second vowel becomes fhe pivof (f item -» emltay^) unless there i*s no second
vou/el in which case there is no fold (f itch * itchay)) * A diphthong ah hhe
beginning of a word is treated as a single vowel ^oil-^oilay notiloay;
earwigs igearivay not arivigeay })•

\ capifal letFer ah Ifie beginning of a word has to be transformed
(f Godfather -> Odfathergay not odfatherGay]). The a after ^ demands
special treahment" (f Queen -> Eenquay not ueenQay]). A trailing punctuation
mark has ho remain trailing (f Crumbs! -> Umbscray! not Ombs!cray 1) +

Sjb make all this work properly fhe inpuh file for Hie following program should
be hyped wihhouh pressing hhe RETURN key until hhe end. Type in lower-case
but" capitalize words wherever appropriate. There should be a space
after & and not before *& each punctuation mark. Quotation marks,
double or single, are not catered for so should be omitted', embedded
puncfuaKon rnarks such as apostrophes are freated as consonants.

Tjlry Hie following inpuh file which should make hhe program encipher
and display the text shown ah hhe very hop of hhis page:

This is Backslang! Can you read i t? Perhaps not at first.

real purpose of the s
mple is to shou> hoooto
)iy the string facilities

developed on -earlierpages

PROCEDURE colossus;
VAR

puncmark; CHAR;
recap: BOOLEAN-,
btm: 2...S;
fold, k, quin : stringrange ;
Offset: INTEGER;
word, fore, a f t , qu, ay,: s t r i ng type ;

BEGIN
word, head := NIL; word.length ••= (b\
fore* head -= NIL; fore.length :=
a f t . head * = NIL; aft. length -.= 0;
ay. head := NIL; ay. length *= 0;
qu.head:= NIL; qu-length — (J;

offset := ORDCa1)- ORDC'A1);

poke(ay, i , 'a 1) ; pokeCay, 2f
 (y')-, pa(ce(ay, 3,1 ') ;

poke(qu,0,'u«); " ' ~

Initialize
all

string
variables

168

WHILE NOT EOLN DO
.BEGIN

readstring(word);
recap ••« peek(word, JJMNL'A1..'z'];
IF recap ^^ifiniHal letter is a capital, reduce to <

THEN

remember ft as a
.punctuation me

FF h/ord contains 'cju'
change ' ' '

poke (word, i , CHR(ORD(peek (word, i)) +o f f se t)) ;
IF NOT (peek (word, word.length) IN ['A'-.'Z1, 'a'..1*1]

THEN
BEGIN

puncmark := peek(word, word.length);
IF word.length = I

THEN
poke(word, 0f ' *);

middle(word, word, i , word.length - 1)
^ D (if last character is not a

puncmark •= CHR(<t>);
quin .*=« ins t r (word, qu);
IF qoin > 0

THEN
poke(word, q

IF peekC word, i) IN
THEN btm ;= 3
ELSE btm:= 2;

fold := 1;
FOR k := wond.length DOWNTO btm DO

(IF peek(word, k) IN [lAI
>

lal,1El,1el,Tf
iililOl,1oI,lUl,lul

THEN
fold . - k;

IF quin > 0 /^ restore 'W after 'a'
THEN ^ ^ ^ ^ ^ ^ ' '

poke(word, quin + i , ' u ') j
m i d d l e (f o r e t word , fold, word . leng th - fo ld + l);
middle (aft, word, t, fold-1);
concat(word, fore, aft); (fold vord-,
concat (word, v/ordif ay) ; (append *ayf

IF puncmark <> CHR(0) . / ^ \ J
THEN (append punctuation mark t'F there

BEGIN ^ — ^ ^ ^ — ^ ^ - ^ K
poke (word, word. length, puncmark) S

k C d 1 + v ,o rd . leng th , ' •)

IF recap'AND (peek (w o r d , i) IN [' a ' . - ' z '])
THEN

poke(word, i , CHR(ORD(peek (word, t))-offset)) ;
wr i tes t r ing(wond)

END; { WHILE }
WRITELN

END; { colossus }

BEGIN { strings }
colossus

END. { Strings }
the main program

169

FOR LOOKING THINGS UP
QUICKLY

w do you locate a word in a list
of words? The simplest solution is
to scan the list from top to bottom,
arranging to do something when a
match is found. Here is a trivial
piece of program to locate the letter
'c' in a list of letters. There 15
nothing wrong with such an approach
provided that the list of words is short.

FOR TO 9 DO

BEGIN
IF listti]* 'c1

THEN
WRITELNCCatM);

lastposition ?= i
ENID

listEH
list [21
list[3l
list[4]
Iist[53
Il3t[6]
list! 71
list [8]
Iistlel

'P'
•o1
V
•I1

'M'
'A'
'N'

jQn long list's the trick 15 to go straight to the place where the match ought
to be found . In a list of letters having a length o f 26 the technique would
be perfect; such a list would be arranged in alphabetical order, so fo
find i f 'C is there you would look in l i s t [3] . To f ind any letter x you
would look in l i s t [ORD(x) - ORD('A') + l] . The expression ORD(X)-ORDCA')
+1 in mathematical terminology is a function of x . This function returns
the correct address for any letter x •

l^ut it would be impractical to provide a list of words in which ev/ery
conceivable word had an exclusive address. The practical solution is to
set a \imit to the length o f Ifst and devise a funch'on (j similar to the
one i l lustrated above J) to give the probable address of the word sought.
Such a function is called a hash function.

tf\ ha&h function looks and behaves like a function for generating random
numbers. Just as a random-number function involves the use of MOD
to constrain the result to a par t icu lar range, so does a hash function
employ MOD to constrain the address to lie within the length of list.The
hash function shown below is based on one given by Kernighan and PlaugeH*.

X the word ANT which is to find its place in a list o f 17 components, 0
to 16. Ordinal values of the letters are used in the hash function; those
below are in ASCII code but the meJthod would work on computers with other axles.

ordinal v a l u e d
3 x carry xk?

add together cj>
sum MOD 1? ti> o "* see bibliography

2>y the same algorithm AARDV/\RK would generate a hash code of 7 and so
belong in list 111. From the addresses of ANT and AAPOVARK i t is evident that
hash codes do not arrange words in alphabetical order. Hashing STOAT yields a
hash code of 2 in competition with ANT. Clashes such as this are resdlvedby
the logic explained opposite.

y h e 3 is a "magic number"; you could try 5 or 7 or other small prime. The length d
list (f 17 in the example J) should also be a prime number for best effect. wBest"
rneans distr ibut ing the hash codes evenly over the list so that it Is not^filled
in clumps . On page ill is a program to demonstrate the hash function
described above; fry it to see if you get clumping (f I don't J .

170

TJo puf a new word into <a l is t : I

Hash the new word

Is the component
" l i s t [hash] " empty?

IistOZ)]
listen

rej list [hash]
IwtChash+l]
Iist[hash+2]

Store the new word
in component "l ist[hash]"

FuJIUp
TryNextOoor

HsttlastJ

} list should be mode "circular" so that when hash reaches last an
increase of 1 makes hash revert to zero. There, should also be a mechanism
to stop the search going round indefinitely when the list is full.

yo locate a word:
Hash the word sought

no Is the component
• list [hash]'empty?

ues

no
unsuccessful: ujorcf
coas not in the List

successful: uJord found
at component l is t [hash]

program over the page is designed to demonstrate the effect of
hashing. To use i t , simply enter words. Each "new" word is stored in
the list and the list displayed in ful l , showing where the word is stored.
When an "old" word is found its locati'on i*s reported. The program
initially assumes that a given word is "old" and goes searching for it.
If the search proves unsuccessful the program stores the given word as
a "new" one.

y he prograrn relies upon the string utilities developed earlier & thus capital
letters are treated as equal to corresponding fower-case letters: ANTSF Ant.

data structure
comprises an array
of pointers pointing
to records or stringtype.
The arras/ of pointers
has to be dimensioned
and initialized but
the rest of Hie data
are created dynamically.

list 10 3
listCll
list [2]
list[3]
listtt]
list [51

list [141
list [151
list [16]

•head

-length PH
•letter

•head
length [4]

•next 3
-letter ffli

171

AN EXAMPLE PROGRAM TO DEMONSTRATE HASHING

Qdere is the program based on the principles infroduced on Hie previous
double page. To use the program simply enter words and watch f"he
screen to see where f"he words are stored. Enter some words previously
entered and notice thaf" duplicate copies arc not stored-, their location
is reported instead.

PROGRAM hasher (INPUT, OUTPUT) ;

include, here the declarations and utilities employed in the
strings program on pages 160-7 (fi.e. omit procedure colossus
and the main program on pages Z68-9 J), Procedures middle,
conceit, instr and poke are not invoked by the hashing
procedure so may also be omitted if desired.

tkeep one less than size
PROCEDURE hashplay;

CONST
size = 17-, siz - 16;

TYPE
sizerange - 0.. siz;
narnetype = f string type;
arraytype = ARRAY [sizerange] OF nametype;

VAR
name: stringtype;
i , hash, recall : sizerange;
fu l l , found, ahoJe : BOOLEAN;
l i s t : arraytype-,
n : INTEGER;

Stored at
o

PROCEDURE
VAR

i : sizerange;
BEGIN

FOR i :* 0 TO siz DO
IF I i s tE i] <> MIL

THEN
BEGIN

WRITE (i , ' ') ;
w r i t es t r i ng (list Ei 3 t);
WRITELN

END
ELSE

WRITELN (i , '
END;

BEGIN { hashplay }

name.head := NIL;
fu l l *= FALSE;

^FOR i ;= 0 TO six DO
L ^ l i s t t i] :« NIL;

f\NT

space

8
9

LO
Li
12
13
14

*

*

*
*
*

Hill

172

}change louter-case
to capital for
compart

REPEAT
readstring (name);
hash s» 0 ;
FOR i ••« i TO name.length DO

BEGIN
n := ORD(peek (name, i));
IF n IN [ORD('a').. ORDCz1) 1

THEN
n -.= n - ORD('a') + ORDCA1);

hash -.= (3 * hash + n) MOD size
END;

:= Iist[hash]« NIL; ^the hashina
ahole ^ ^ AXW**?

THEN
BEGIN

recall ••= hash;
REPEAT

found :« compare(name, eq, l i s t [hash] t);
IF found

THEN
WRITELN ('Found a t ' , hash:4)

ELSE
BEGIN

hash := (1-I-hash) MOD size;
ahole is l ist [hash] = NIL;
fu l l '•= hash « recall

END
UNTIL (ahole OR found) OR full

augment
hash

by i

IF ahole
THEN

BEGIN
MEW(list [hash]) ;
l ist L hash]f *s name;
WRITELN C ' Stored a t ' , hash: 3) ;
WRITELN;

name.head := NIL
END

ELSE IF fu l l
THEN

BEGIN
WRITELN ('List f u l l ') ;
show

END
UNTIL ful l

END; { hash play }

BEGIN {main program]
hashplay

END. {main program J

173

BSI Specification for Computer programming language fbscal BS6192; 1982

^ British Standard defines the dialect of Pascal presented)n my book.
BS6192 is not bed-time readina buf if you are looking for precise syntax
or the defined behaviour of a Rascal processor under rare circumstances
then BS6192 is what you need. Its preface frees to explain a complicated
relationship between BS6192 and ISO 7185 but I have not yet deciphered it.
Apparently BS6I92 and ISO 7185 were supposed to be the same but aren't quite.

Jensen, k. & Mrfch, ti. (1975). Pascal user manual andreport. (Springer-Verbg)

^ was the first book on Pascal; this book's co-author, Niklaus Wi'rth,
being the inventor of the language. The user manual by Kathleen
Jensen is a model of conciseness and makes fine historical reading.

Grogono9 Peter (1980). Programming in PflSCflL (Addison-Wesley)

^ is the classic; first published in 1978 with word-processed text buf
now nicely type-set. It is still the best book I have seen fora full course
on programming in Pascal. The writing is clear and the examples
imaginative. To get the best from the book you have to work hard and
get stuck mfo the long examples. Grooono gives a long and authoritative
bibliography for the reader who wants to dig deeper still.

Brown, P. J. (1982). Pascal from dASiC (Add/ son -Wesley)

\ good self-teach book, easy to understand yet does not dodge awkvMsrd
issues. Strange characters like Prof. Primple (archetypal academic^) and
Bill Mudd (f enthusiastic bodgerj) keep appearing to emphasize different attitudes
to programming but one learns to forgive their intrusion. Advanced data
structures and dynamic storage are dealt with briefly. This book should help
the erstwhile BftSIC enthusiast to switch allegiance to Pascal and clean habits.

Kernighan, B.W. & Plauger, P.J. ((981). Software tools in Pascal (Addison-WesJey)

£\ book full of tested and practical applications of Pascal. The sentence:
MA picture is worth about a thousand words11 appears next to one of only two
pfctures in the whole book; the rest fs 95,ooo words of text. The prose, to
me, reads awkwardly but perseverance Is rewarded with lots and lots
of information.

175

A SUMMARY OF STANDARD
PROCEDURES % FUNCTIONS & SYNTAX

y n e summaries of standard procedures and standard functions are each in
alphabetical order. A oage reference is giVen on the right of the page for
every procedure and function summarized. The summary of syntax is " top down".

AN UNSPECIFIED FILE NAME
) IMPLIES INPUT OR OUTPUT

• return an unwanted record to the heap 139

• advance the window on the nominated input file 1Z5

• create a new and empty record 139

another
116

another
• write a form-feed character to nominated

output file <f if printer can respond to It J)

• advance the window on the nominated output file 12/5

friable,)

READLN

• read from nominated file; items ill
on TEXT files are separated by

or n&oUnes or both

as READ but only for TE*T files: 117
skip to next line of input when
the final parameter has been
satisfied

• prepare the nominated file for reading
(f never reset INPUT or reuorite OUTPUT J

prepare the nominated file for Writing

RESET C namefiie)

REWRITE C narr>efiie)

UMPACK (nametiqht > norr?e loose > su^crfit loose) # ^ e conVen56 °f PACK

WRITE C

WRITELN C'™?/77£z /ye , ^expression : ^toidth

^ ^ — G > -
CnamefUe)

tie

width and places ace integer expressions, places is applicable only if the
expression whose value is to be written is of fype REAL.

177

YOUR PASCAL PROS ABU HAS
MORE FUNCTIONS THAN THESE

AB5(r)

ARCTANC

CHR(*)

C05(r)

i denotes an expression fhot reduces fo an Integer value , r denotes an
expression reducing ho a real value, m denotes a parameter wfii'ch has
an ordinal va lue : e.g. integer, character or member of enumerated type.

• absolute ualue : AB5C-&) returns Q> (fan integer J 36

• absolute valve-. A&s(-6.5) refurns 6-5 <t<a real]> 36

• arctangent: ARCTAN (1.0) returns (5.785398 (f 7i74 J) 37

• character : CHR(65) returns 'A' i f code is ASCII 4 /

• cosine-. cos(3.141593/3) returns 0.5 37

• returns TRUE, i f READ would fail on its 39
next attempt because of meeting end-of-file

• returns TRUE i f READ would next read the 39
space signifying an end of line

• exponent, or natural antilogarcthm: 36
EXP(i) returns 2.7/82818 (ft'.e. e1)

• natural logarithm : 36
LN (2.7182818) returns 1 (fc.e. inCe) D

• a * / - 0DD(-3) returns TRUE ; ODDO) returns TRUE 39

• ordinal value: ORDf'A') returns 65 i f ASCII code; 40
ORD (TRUE) returns i-7 ORD(FALSE) returns 0

• predecessor: PREDCV) re turns 'A1 ; PREDCe) 4 /
returns 5 ; P R E D (T R U E) returns FALSE

m round to nearest integer: ROUND C3.5) returns 4 ; 38
ROUNDC-3.8) returns -4

• sine: SIN(3.141593/fc) returns 0-5 3 7

• square: SQR(-3) refurns 9 (fan integer]) 36

• square: 5QR(-3.0) returns 9.0 (f a reol J 36

% square root: 5QRTC81) returns 9.0 (fa real J 36

• successor: succC'A') returns B; 5ucc(5) re turns 6; 4 /
succC FALSE) returns TRUE

• truncate to integer: TRUNcf-3.8) returns -3 38
(fan integer J)

0DD(r)

ORDCm)

PREDC/77)

ROUND (r)

SINC /")

SQR(i)

5 0 R (r)

SQRT(r)

SUCCC/77)

TRUNCCr)

178

CHAPTER 3 DEFINES THE NOTATION USED IN THE
FOLLOWING TOP-DOWN SUMMARY OF SYNTAX DIAGRAMS

program ~ = PROGRAM name (^pome^ y); block #

block ::*

CONST >^name =s constant/*,

VAR w ^name, : type , \

FUNCTION name parameters : nametupe

PROaDURE name
; block;

BEGIN ^statementy END

parameters :: * (

FUNCTION /7tf/77e ^parametcrS^ : nome.

PROCEDURE name parameters

type ::=
ordinal

ordinal :: •

type

PACKED SET Of ordinal

ARRAY W ordinal yl OF

RECORD

FILE OF

name

(.name,)

constant., constant

mriantkr? END

179

9UMMAKT CONT,NUED

fields ::= /?#/??e y : type

Variant ::* CASE name: nametype OF ̂ constant,: (fields variant

statement ::= digits:

expression :: =

pariabie

name
fn

:= expression
:= expression

C expression

name

BEGIN END

IF condition THEN statement ELSE statement

REPEAT ^statement/ UNTIL condition

WHILE condition DO statement

FOR r?arnepar-.= expression DOWN TO expression
DO statement

CASE expression Of ̂ \<onstanty: statementy

T END
VJITH variabley DO statement

GOTO digits

term -^comparator

operator]

condition ::« afore**** ^^c^%s^n^)

in WRITE and WRITELN, expression may be

180

term ::= name

string ••:=

const
number

NIL
string
Variable

namefn '(expression,)

(expression)

operator :: =

aitra high
precedence

mam
AND END
ARRAY FILE

FORBEGIN
CASE FUNCTION
CONST 6 0 T 0

IF
IN

PACKED UNTIL
PROCEDURE VAR
PROGRAM WHILE
KECORD WITH
REPEAT

DOWNTO LABEL
ELSE MOD

comparator ::=

IN

\>ariabie ::= name I ̂ expression,]

>name

number

nameconst

name ::= letter

digits - -

number ;:« digits . digits E I +1 digits

string

181

FOR QUICK REFERENCE TO STANDARD PROCEDURES,
FUNCTIONS AND SYNTAX SEE AISO PAGES 177- 81

ABS function, 36
AND operator, 32
ARCTAN function, 37
area

functions, 54-5
of a tank, 2-4
op a polygon, 82

arguments, 36
ARRAY OF type, 81
arrays, 80-1

of CHAR, 89
packed, 88

ASCII characters, 40, 83, 115
assignment, 14.

entire , 81, (oi

Back-slang (i example j) [68-9
base type, 74 * 80
batch mode, 6, 130
BEGIN.. END structure, 10
binary frees, 154-7
Boolean

expressions, 14,16,33, 35
functions, 39
values, 16

BOOLEAN type, 13
bubble sort (f example J) 84-5
buffer problem, 132

Cables <f example]) 83
CASE..OF structure

for control, 45
in variants, 109

Chains, 136, 138, 145-7
CHAR type, 13
characters, 13
CHR function, 41
commands, 6-7
comparators, 24,35

with sets, 75
compilation, 4-6
components

of arrays, 80
of records, 100

Compression <f example J) 126
concatenation, I64
conditions, 14, 16, 26, 46

conformant array parameters, 96-7
CONST declaration^ 10-13, 28,70
conshants, 3, 12-13

pointer, 137
string, 89
types of, 70

COS function, 37

decisions, 16-17, 46
digits, 24
disk files, 6-7
disposal, 138, 161, 173
DISPOSE procedure, 139
DIV operator, 32
DO, see FOR, WHILE or WITH
DOWNTO; see FOR
dynamic storage, 136-7

editor, 4-5, 115
ELSE, see IF
END, see BEGIN, CASE or RECORD
end-of-file problem, 133
end-of-line, H3, 130-i
EOF function, 39
EOLN function, 39
EXP function, 36
expressions 14

boolean, 33
syntax of^ 26

1?
field names, 100-i
fields, for output, 16, 19, Me
FILE Of type, 125
files, 112-27

binary, (24-5
opening of, 114
properties off 127
standard, (12-17
temporary, 121
text, 113, 115-17
type of, 125
window to, (13, 124,13J

Filter (f example £ 49
Filter2 <$ example ^ 76
flow chorfs, 17, 44-5
FOR-TO..DO loop structure, 47
forward reference, 64, 137
FUNCTION definition, 54-5

functions
arihhmeKcal, 36
Boolean, 39
definition of, 54-5
ordinal, 40-1
summary of, 178
transfer, 38
trigonometrical, 37
typical definitions of, 56

(5
GET procedure, 125
GOTO control structure, 27, 45
GRAB procedure <Jexample]) 120-3

Hasher (f example J 172
hashing technique, 170
HZU09 (f example j J44

IF-THEN-ELSE control structure, 46
IN comparator, 35
indentation, 11
INPUT, standard file, 112-5
INTEGER type, 2, 13
interaction, 130-3
intersection of sets, 75

keyboard layout, 5

LABEL declaration, 27, 45
lazy input, 130, 133
letters, 24
linking, 138, 150-1
LN function, 36
Loons d example J 15
Loans again <f example J) 62
loops, 18, 44, 47-8

Matrix multiplication (Jexample]) 95
MOD operator, 32
Monkey puzzle <} example J) 156-7
W000 $ example j> 77

NIL constant, (37
NOT, super operator, 26
notation, 23
Number bases (f example}) 92-4

0
ODD function, 39
OF, see ARRAY, CASE, FILE or RECORD
Old Glory (j example ^ 19
operators, 14, 24, 32-3

relational, 24, 35
OR operator, 32
ORD function, 40
ordinal values, 13,29,40,70,72,89,116
OUTPUT, standard file, 112-5

I?
PACK procedure, 88
PACKED types, 81, 101, 125
packing procedures, 88
PAGE procedure, 116
fainter (Jexamplej) 2-4
parameters

actual versus formal, 54-5
function names as, 63
syntax of, 28
types of, 70
VAR versus value, 58-9

Parlour trick (j example >̂ 90-1
Personnel records (\ example J 102-5
pointers, 136-7
Polygon (f example]) 82
precedence, 14, 24
precision, 34
PRED function, 41
PROCEDURE definition, 59
procedures, definition of, 56-9
PROGRAM heading, 10-11, 28
programs

layout of, 11, 64
object <fi source^ 6
syntax of, 28

punctuation, 4 , 10-11
PUT procedure, 125

Quicksort (f exomple]) 86-7

name
equivalence, 81, 88
syntax ofy 25

NEW procedure, 139

Random numbers <$ example } 60-1
READ & READLN procedures, 117
REAL type, 2,13
RECORD type, 101

183

records, 100-9
recursion, 57,65,84-7,34,140, t55, 160-1
REPEAT.. UNTIL loop structure, 48
reserved words, 11, 22

list of, 181
RESET procedure, 114
Reverse Polish notation, 142-4
REWRITE procedure, 114
rings, linked, 150-3
Roses <texample^) 152-3
ROUND function, 38

Safe reading (̂ example
scope rules, 67
semicolon, 10
SET OF type, 74
sets, 74-5
Shapes <f example j) 17
Shortest route (j example j) 146-9
side efFects, 66
SIN function, 37
Sinuous <j[example]) 19
size of numbers, 34
sorting techniques

binary tree, 154-7
bubble, 84-5
(inked ring, 152-3
Quicksort, 86-7

source program, 6
SQR function, 36
SQRT function, 36
stacks & queues <f staques J f 140-t
Statements, lof 27
strings, 33

comparison of, 89, 164
hashing, 170-3
uti l i t ies, 160-7

subranges, 73
subscripts, 80
SUCC function, 41
symbol, 24
symbol-state tables, 51 , 10
syntax

definition of, 24
notation for, 23
of a program, 28
of a statement, 27
of an expression, 26
of compounds, 25
of elements, 24
of type, 29
summary o f , 177-9

tag f ield, 108-9
text Files, 39, 115, 117, 127
THEN, see IF
TO, see FOR
traversal, 145, 151, 154-5
TRUNC function, 38
truth tables, 33
type

array, 81
enumerated, 71-2
f i le, 125
ordered^ 74-
pointer, 137
record, 101
set, 71, 74
^tandard, 13, 70
subrange, 71, 73
syntax of, 29

TYPE
declaration, 28
definition, 71, 81, lo i , f25

typestyles, 22

©
union, free, 109
UNPACK procedure, 88
UNTIL, see REPEAT

VAR declaration, 10-13, 28, 70
variables, 12

control, 47
local, 55, 59, 65
pointer, 137
set, 74
string, 89
types of, 10
window, 124-5

variants, 29, 108-9

WHILE.• DO loop structure, 48
w indow, 113, 124-5, 131-3, j3<5
WITH-DO structure, 106-7
WRITE & WRITELH procedures, UG

