ILLUSTRATINCYPASCATY

[onaLo [Lcock

The right of the

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE
NEW YORK PORT CHESTER
MELBOURNE SYDNEY

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521336956

© Cambridge University Press 1987

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1987
Reprinted 1990, 1991
Re-issued in this digitally printed version 2008

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Alcock, Donald, 1930-
Illustrating Pascal.

Includes Index.
1. PASCAL (Computer program language) I. Title.
QA76.73.P2A38 1987 005.13'3 87-10369

ISBN 978-0-521-33695-6 paperback

Ack nowledgements

lﬁlhfs book was fto have been a joint effort, First with Colin
Day, then with Richard Kite. But despite all efforts the
essentially personal nature of a hand-written book defeafed
every attempt at co-authorship. Nevertheless the present
book is probably better for the experience. My warmest
thanks fo both of them.

ﬁﬁy thanks also to Paul Shearing of Furo Computer Systems /1.
for access fo his firm's computers and helping me run my
programs using Prospero's Pro Pascal and Borland's Turbo
Pascal in addition to the Acorn 150 Pascal under which 1
had originally developed them.

(Zinally my thanks to my elder son Andrew for developing
the program I employed fo assemble and sort the index
fo this book.

iii

CORTENTS

[PREFACE vé
Vo [PrincipLES i
THE CONCEPT 2
INTO PASCAL 4
TYPING 5
COMPILATION 6
STEPS TO EXECUTION 7
EXERCISES 8
% o [FQuoimenTs °
PUNCTUATION 10
VARIABL ES 12
CONSTANTS 12
STANDARD TYPES 3
EXPRE SSIONS 14
LOANS ({EXAMPLE) 15
DECISIONS 16
FIELDS 16
SHAPES ({ EXAMPLE) 17
LOOPS 18
OLD GLORY ({ EXAMPLE) 19
SINUOUS ({ EXAMPLE) 19
EXERCISES 20
Do Gyniax 21
TYPE STYLES 22
NOTATION 23
ELEMENTS 24
COMPOUNDS 25
SYNTAX OF AN EXPRESSION 26
SYNTAX OF A STATEMENT 27
SYNTAX OF A PROGRAM 28
SYNTAX OF TYPE 29
(be [ARMMETIC 31
OPERATORS 32
SIZE AND PRECISION 3%
COMPARATORS 35
ARITHMETICAL FUNCTIONS 36

TRIGONOMETRICAL FUNCTIONS 37

TRANSFER FUNCTIONS

v

38

BOOLEAN FUNCTIONDS
ORDINAL FUNCTIONS

60 @ONTROL

FLOW CHARTS

IF o THEN-ELSE STATEMENT
FOR LOOP

REPEAT LOOP

WHILE LOOP

FILTER (f EXAMPLE)
CASE STATEMENT
SYMBOL- STATE TABLE

@ EXAMPLE)

EXERCISES

@ [Funcrions & [Procepures

FUNCTION DEFINITION

TYPICAL FUNCTIONS

RECURSION

PROCEDURES

RANDOM NUMBERS

LOANS AGAIN (fEXAMPLE))

FUNCTION NAMES AS
PARAMETERS

FORWARD REFERENCES

LOCAL VARIABLES

SIDE EFFECTS

SCOPE RULES

EXERCISES

7 o Bvees & Sers

STANDARD TYPES
TYPE DEFINITION
ENUMERATED TYPES
SUBRANGES
SET TYPE AND SET
VARIABLES
SET CONSTRUCTOR3 AND
OPERATIONS
FILTER2 EXAMPLE
MOOO EXAMPLE
EXERCISES

&

46
47

49

51
52

54
56
57

62

SI8RLY

69

!

73
4
75
3

77
8

& o QArravs & Grrines 7 J0e[INTERACTIVE INPUT 129

INTRODUCING ARRAYS 8 INTERACTION 130
SYNTAX OF ARRAY PEEP-AHEAD PROBLEM 131
DECLARATIONS 81 BUFFER PROBLEM 132
AREA OF A POLYGON £EOF PROBLEM 133
Q @ EXAMPLE) 82
CABLES ({ EXAMPLE 83
BUBBLE SORT ([EXAM%LE) 8 e Dvame srorase 135
QUICKSORT ({ EXAMPLE)) 86 DYNAMIC STORAGE 136
PACKING 88 NEW & DISPOSE 138
INTRODUCING STRINGS 89 STAQUES { STACKS &QUEUES)) 140
PARLOUR TRICK fEXAMPLE) 90 REVERSE POLISH NOTATION 142
NUMBER BASES { EXAMPLE) 92 H21J09 { EXAMPLE) 144
MATRIX MULTIPLICATION SIMPLE CHAINS 145
@ EXAMPLE)) 95 SHORTEST ROUTE JEXAMPLE)) 146
CONFORMANT ARRAY INTRODUCING RINGS 150
PARAMETERS 96 ROSES (f EXAMPLE) 152
EXERCISES 98 INTRODUCING BINARY TREES 154

MONKEY-PUZZLE SORT

q EXAMPLE 15%
Dqlidecoros % EXERCISES > 158
INTRODUCING RECORDS 100
SYNTAX OF RECORDS {01
S o RECORD 18 [Dynamic sTrINGS 159
Q EXAMPLE) 102 STRING UTILITIES 160
THE W/TH STATEMENT 106 READSTRING 162
INTRODUCING VARIANTS (08 WRITESTRING 162
EXERCISES 110 MIDDLE 163
CONCAT 164
COMPARE 165
1QelfiLes {1 o 1es
INTRODUCING FILES 112 PEEK 166
OPENING FILES 114 POKE 167
TEXT FILES 15 BACK SLANG 168
WRITE & WRITELN WITH HASHING TECHNIQUE 170
TEXT FILES 116 HASHER. 172
PAGE WITH TEXT FILES {16
READ & READLN WITH
T RLES 117 [BisLioGRAPHY 175
SAFE READING 118
GRAS PROCEDURE FOR @“'CK REFERENCE m
SAFE READING {20 STANDARD PROCEDURES 177
INTRODUCING BINARY FILES STANDARD FUNCTIONS 17
AND PUT AND GET (2% SYNTAX SUMMARY 179
COMPRESSION { EXAMPLE)) 126 LIST OF RESERVED WORDS {8}
SUMMARY OF PROPERTIES {27
EXERCISES 128 [INpex 182

PREFACE

[?ascal is a computer language which was designed by Professor Niklaus
Wirth al Eidgnossische Technische Hochschule in Zurich, The first draft
was completed in 1968. Since that time Pascal has become more and more
popular, not only as a language for teaching principles of programming
but also as a language in which to write complicated software.

%f'his book introduces and demonstrates the whole of the language
defined by BS6192: Specification for Computer programming language Rascal,
intended to be compatible with International Standards Institute standard
150 7i185. To keep in touch with reality [have run the programs in this
book under three systems:

e ISO Pascal by Acornsoft
e Pro Pascal by Prospero

e Turbo Pascal by Borland International

Q]y style of presentation is pictorial. More can be conveyed by:

sl = B EEEEEE

list list [hash]t

than by hundreds of words about hash addresses, pointers, records
and linked lists. But I have been careful, too, about wording - aiming
at simplicity and conciseness. The page layout has been arranged
mainly as double-page spreads, each complete in itself, making it
unnecessary to turn pages when referring to diagrams from text.
With such layouts - and with diagrams being considered al least as
important as text - the wording had to be fitted into place carefully.
That is one reason for hand-writlen text; it is easier to use a pen than
a type setfer under such constraints. { With word processing and com-
puter type setting making formal composition so easy the modern
author is being seduced into thinking "How can [present this concept
without o diagraom?" when the question ought fo be " How can 1 design
a diagram to replace all these boring words? ")

q}'he contents of this book are organized as a progromming-language
manual. In chapter 1 is an example for the complete beginner, the
aim being to demonstrate the concept of a stored program. In chapter
2 there is a quick canter through the rudiments of programming

{ voriables, standard types, expressions, decisions and loops) which
should be easy going for those who have written progroms in other
lan?uages. These two chapters cover enough ground to present each
feafure of Pascal in the context of a comp?ere progrom.

vi

(hapter 3 is short but important; it defines the notation used through-
out the rest of the book for describing the synrax of Pascal statements
and forms. This notation is a blend of Backus-Naur form and
railway-track diagrams. It does, 1 believe, convey structure at a
glance — and with no loss of rigour.

Erom chopter 4 onwards each facility of Pascal is introduced in the
context of a working program. The longer programs serve not only to
demonstrate facilities of Pascal but also to illustrate fundamental
techniques of programming — Quicksort, recursion, rings, binary trees
and hashing being among them.

[e\y biggest headache was dealing with interactive input. Pascal was
designed in the days of card decks and magnetic tapes; the logic of
Pascal’s WRITE and READ statements did not allow for progroms
prompting their users for data from the keyboard. Nowadays such
interaction is taken for granted - the reader of this book would
probably expect to run the examples interactively — but unfortunately
the problem has been solved differently in different versions of
Pascal. So 1 have provided the examples with the simplest possible
input statements and noted where the reader who has an interactive
system should include prompts for the convenience of the program’s
user. And 1 have devoted a short chapter @ chapter 11)) to the prob-
lems one can meet on trying to use Pascal interactively.

[f at first you find the punctuation of Pascal programs fussy,
and
find
yourself
lurching
towards
the
right
margin,
don't despair; you soon grow accustomed to it. When you discover
recorads the sun begins to shine again. When you reach pointers
and can make chains and stacks and rings and frees) you will
become addicted. There is no known cure for addiction to Fascal.

Reicate Qonata leock,
Surrey, U.K. November 1986

vii

PRINCAPLES

THE CONCEPT

INTO PASCAL
TYPING
COMPILATION

STEPS TO EXECUTION

OF A “"PROGRAM" 5& SKIP THIS UNLESS
YOU ARE COMPLETELY NEW TO COMPUTING
A 35.0
ssume there is no computer to help 1
solve this problem confronting a painter; -
how many pots of paint are needed to - 8.5
paint the roof and wall of this oil — =

tank ?

[ﬁ'he paint manufacturer says
i - each pot has enough paint fo

cover an area of 236.0

[Becall that the area of a circle is given by mr? { where r is ils
radius)) or fd?+4 { where d is its diameter }). Recall also that
the circumference of a circle is given by mnd where d is its diamefer
as before). So the painter can work out:

AREA OF T70P = 3./4 x 35.0% = 4 961,63

|}

AREA OF WALL = 3.14 x 35,0 x 8.5 = 934./5

la‘q'he area to be painted is the sum of the above two areas. Into
this area must be divided the coverage of a pot of paint so asto
give the number of pots required:

pPors = (961.63 + 934.51) + 236 = 8.03

A number with a fractional part like this is called a REAL. Because
you cannot readily buy a fraction of a pot of paint the REAL must be
rounded up to the nearest whole number, or /NTEGER. To do this
truncate the REAL and add 1:

8+1=9

ﬂf the dimensions had been such that the number of pots worked out at
8.00 instead of 8.03 the solution would still be o pots. This is not
arithmetically precise but would make the painter feel happier than an
answer of 8.

FULL POTS =

mow suppose the painter wanted to set down this calculation in a general
way such that if the problem arose again he would have only to substitute a
few numbers ana “turn the handle” for the ,

new result to fall out. diameter

MOme some liltle boxes
for holding numbers. The
contents of each box will Q height
vary from problem to
problem. /e coverage
| v/-_@ v__ﬁ__

[ont forget fo draw and top wall pots fullpots /z>
name the boxes needed fo l—f-l 1~ whole
store intermediafe results: L j L J ’ numbers

pi
@ @ut an approximate value of f into a special
only

box. This value remains constant regardiess of
oil tank and paint pot =& hence the padlock.

A list of instructions s called a progrom s could be named and
written as illustrated below:

PROGRAM painter (INPUT Some data, oOuTPUT results);

CONSTANTS pi = 3.14 { fo be used, rot changed };
VARIABLES diometer, height, coverage,

locked to
E p, wall, pots, fullpots,
bores (Lé)ﬁ/xes ed) these boxes are for REALS, but
° fullpots is a box for an INTEGER ;

declare the
names of all

boxes lo be vsed,
and the types of
value to be
contained

BEGINNING OF THE SET OF INSTRUCTIONS

X from a waiting line of data, READ numbers
into boxes: diameter, height, coverage;

X into box top put the result of: the number from
box pi times the SQUARE of the rumber from box
diameter, divided by 4.0,

2 into box wall put the result of : the number from
box pi, times the number from box diameter, times
the number from box height;

A into box pots put the sum of the numbers found
in boxes top ana wall after dividing this sum by
the number founa in box coverage;

XX into box fullpots put the result of TRUNCATING the
number from box pots and adding 1;

I wriTe a note to the painter 'YOU NEED', write
tere the number found in box fullpots, ' POTS'))

END OF THE SET OF INSTRUCTIONS .

ﬂf you had the waiting line of data:
35.0 8.5 236.0

ond were to obey the program above { being a human computer) you
would go through the calculation set out opposite and end by writing the
following note to the painter:

YOU NEED 9 POTS

@f course if you had a different line of data you would get a different
result, That is the essence of a “program” ss it is a generalized
caleulation.

A TRANSLATION OF THE ENGL/SH PROGRAM
ON THE PREV/IOUS PAGE
’i?he English instructions on the previous page would be too wordy to be

used as computer instructions. Nevertheless the English may be frans-
lated into Pascal without losing the original sense,

Eirsr of all the recurring phrase “ the number from box...” may be treated
as understood. For example the third instruction of the program may be
shortened fo:

X into box wall put the result of pi times
diameter ({imes height;

?hen do without the phrase “ into box such and such put the result of...”
by obbreviating fto the name of the box followed by a symbol thus:

where := may be pronounced “becomes” when the statement is read
aloud.

[ow replace the word “times” by an asterisk. Similarly, replace *add” and
“sublract™ by plus and minus signs; replace “divice” by a slash its formal
name is solicus). Thus the third instruction may be shortened to:

X wall := pix diameter x height

which reads aloud “wall becomes pi times diameter times height ”.

? here are other abbreviations in Pascal, and some important rules of
punctuation to be explained later, but the stage is sufficiently set to
illustrate a program in Pascal:

PROGRAM painter (INPUT, OUTPUT);

CONST pi = 3.143 @g?ﬂs
VAR

diameter, height, coverage, top, wall,
pots: REAL; fullpots: INTEGER;

BEGIN

READ (diameter, height, coverage); instructions

top = pi x SQrR{diameter)/ 4.0 ;
wall = pi * diameter x height; SoRC) ana TRMCC)
are functions; Pascal

pots := (top + wall)/ coverage;

fullpots := TRUNC(pots) + 1; , .
WRITE ("YOU NEED', fullpots, ' PoTS') ,g;o;;zﬁa::ea selection

END.

@ompare this program with the English one. The declarations and
instructions show a one-to-one correspondence.

bfhe mixture of capital letlers and small lefters is explained later.

4

PASCAL 1S STANDARDIZED BUT THE COMPUTERS IT
RUNS ON ARE NOT; EVERY KEYBOARD IS DIFFERENT

qhe keyboard of a popular home computer is sketched below; other
keyboards are similar,

laihe keyboard on a VDU connected to a time-sharing computer would look
similar fto that above. There is always a key at the right, engraved with
the word ENTER or RETURN or the symbol [J]. Pressing this key cavses
o fresh line to be started. Every keyboard has letters A to Z, digits
0 to 9, full stop, comma, colon, semicolon and the arithmetical symbols
+ - x / needed for the present example.

E}efore starting to type you have to “enter the editor” and the way fo
do this depends on the installation. Using Acornsoft Pascal on the BBC
Model B you type EDIT and press [rewwry]. Using Pro Pascal you use the
local editor or a word processor such as Word Star. Using Turbo Pascal you

press [E} -

@nce “inside” the editor type fearlessly, taking care over the punctuation
which, in Pascal, is pernickety. There is always a way to backspace and
re-type a wrong character; on the BBC Model B press [prere] , on some
other keyboards press [pet] or [eacksrc] ,

@iher editing facilities differ greatly from installation fo installation. The
Turbo Pascal editor is modelled on the word processor called Word Star .
Every editor is horrible when you first try it but appears to improve as you
grow accustomed to it. Patience and perseverence.

>
without fhe [asiax] key having been pressed. The only line of the example in
which this makes any difference is:

nore the distinction between capital letters and small letters; type with or

write ("You need', fullpots, ' pots')

where the phrases between apostrophes reappear in the result precisely as
typed in the program; upper case, lower case or mixture as above.

\afhilst typing the program notice that the computer does not obey any
of the instructions. The computer, at this stage, is not even aware that
a Pascal program is being typed; it knows only that a #le is being
typed. You could ftype Twinkle, twinkle litte star in Portuguese and
there would be no objection from the computer,

‘OAP‘I.A,T‘OA ’7"_//;’&9 Z{, Bf’éfqolgéfﬁm ENTERING DATA FROM

m Pascal program cannot be set to work simply by entering RUN as with
many BASIC systems; a Pascal program must first be compiled. Com-
pilation means translating the sarce program from Pascal into an object

program encoded in the computer’s own language. When a Pascal program
is put to work it is the object program that is obeyed, not the source

program.

After compilation you have two versions of the some program; one in Pascol
and one in machine code { or something close fo it). If you were able fo
display the object program on the screen it would appear to be gibberish.

J?ascal runs faster than BASIC because the object program is in rachine code
which can be obeyed directly or in a code which can be interpreted efficiently.
By contrast, statements of a BAsic program are interpreted from source. The
price of faster execution is the time and inconvenience of compilation. However,
on most installations it is possible to save object programs, hence re-run
programs without recompiling them. This course is followed by the steps
depicted opposite where a copy of the compiled program is saved on disk.

Ehe steps depicted opposite go from typing a program to rumning it. Down
the left of the page are commands typed at the keyboard to initiate each
step. The commands are particular to the installation, those shown being
imaginary but typical. MYSOURCE and MYOBJECT are assumed fo be names
invented by the programmer.

Ehe final step depicted opposite assumes INPUT comes from the keyboard
and OUTPUT goes fo the screen. This arrangement is typical today but is
by no means the only way fto run Pascal programs. The language was
designed at a time when files were saved on magnetic tape, INPUT came
from a deck of punched cards, OUTPUT went to a line printer., To make
a Pascal program send prompts to a screen and read data from a key-
board requires a suitably modified compiler. If you have such a com-
piler there should be no difficulty in running the examples in this book.
But if prompts and responses get out of sequence questions following
answers) refer fo chapter 11 which explains the logical difficulties and
their diagnosis. It may be that your compiler cannot compile an interactive
program properly s in which case you may still run the examples in this
book but with dafa waiting on a disk file rather than being typed at the
keyboard when the program has been set running. This batch moce arrange-
ment is depicted below:

GO

dalta on
INPUT file
orn disk |

“sarcy mooe ”

ST!_Ps BUT THE COMMANDS
B, ARE NOT STANDARDIZED
@ommonds to the operating system vary from one installation to another
but the process depicted in steps below is typical:

f

Source pragmm

EDIT

source

SAVE MYSOURCE

c any name

allocated by
programmer

Assume that the program, when run, WOuld expect data from the
keyboard. If it expected dala from a disk file it would be necessary
at this stage fo lype, edit and sove a file of dafa in the same
manner as depicted above for saving the source program.

LOAD PASCAL

asra/
ampz/er

this step would
be implicit

edited
Source

EXERCASES

ﬂo ﬂmplemenf the oil-tank program. This exercise demands using the
editor and submitting a program for compilation. Getting fo grips
with a new system is always froublesome; this exercise is probobly
the most difficult in the whole of this book.

&
RUDIMERTS

PUNCTUATION
VARIABLES
CONSTANTS

STANDARD TYPES
EXPRESSIONS

LOANS ({EXAMPLE)
DECISIONS

FIELDS

SHAPES {EXAMPLE)
LOOPS

OLD GLORY (EXAMPLE)
SINUOUS {EXAMPLE J)

SYNTAX 1S DEFINED IN THE NEXT
F!“"|::Ir'ih‘\sl.‘“l"'l CHAPTER ; THE FOLLOWING /S IN GENERAL TERMS
/A typical Pascal program has the following skeleton :

(INPUT, OUTPUT) 3

list - =y
terminators

Statement -
separators

@rnot terminators)

this (s not a
flyspot; every
program ends with
a full stop

formally
defined in
chapter 3

Ehe heading is terminated with a semicolon,
l}very list in every declaration is terminated with a semicolon.
8Tai'emenfs are separated from each other by semicolons,

q.?he words BEGIN and END are not statements, they are effectively punc-
tuation marks. BEGIN behaves as a left bracket and END as a right
bracket. Because they act as punctuation marks a semicolon after
BEGIN or before END would be redundant. BEGIN and END are much
used in Pascal programs fo make compound statements, where a
compound statement { depicted below) is one that may be employed
wherever a simple statement would otherwise be allowed. An example
is:

Words in other statements act as punctuation marks foo. None of these
has yet been demonstrated but here is an example:

IFTHEN profit > loss no semicolons; the

] M N, S

WRITE ('Hooray!') words 76, THEN ELSE
ELSE

WRITE ('Bother’) ; inside the statement

10

Because statements are separated by punctuation marks the layoul of
a program on the page is nhot important to the compiler. Two rules are
enough fo satisfy the compiler:

o [Don’t run words together:

PROGRAMpainter (INPUT, OUTPUT)
CONSTpi =3.143

e Don't break up a single item with spaces or new lines:

=

PRO”GRAM painter (INPUT, our AR
PUT); CONST pni = 3.174

{(spaces ot marked with bugs are allowable)

[;Xhhough layout is not important to the compiler it is vifal fo the pro-
rammer’s understanding. The introductory example illustrated the use of
indentation to clarify the structure of a program. No specific rules for
indentation are given in this book; the principles are conveyed by example.
But if the examples in this book were fto be run on an installation offering
automatic indentation the resulting patterns would probably differ from
mine. Ideas about the ideal layout differ, but all agree that indentation
should make the sfructure of a program as comprehensible as possible.
d Glance forward to page {7 to see a much-indented program.)

? he words PROGRAM, CONST, VAR, BEGIN, END { and thirty more, yet to be
introduced) are caolled reserved words. Never extend a reserved word:

CONSTANT, VARI
T A
ond never try to shorten a reserved word:

PROG, painting (INPUT, OUTPUT);

*

@se capifal letters or lower-case leters or a mixture of both. This book
employs o mixture for reasons explained later,

lPROGRAM PAINTER(INPUT , OUTPUT)3 l I program painter (input,output);, l Program PAINTER(INput,OUTput);,

But in strings there is a distinction between them:

| wrime (" You neED’, fullpots, " pors') | > | YU NEED S POR

il

[-wmrs("You need', fullpots, 'Pots') |I> [(You need o Pots

L\oke names as leng as you like but ensure that every name is unique as
far as the first eight characters. Some compilers would treat
NUMBEROFMEN aQnd NUMBEROFWOMEN as the same name.

VARIABLE SEEirir-h st

1 name of
diameter variable
parigble)| .
/] Ccontent of
variable

A variable is created in the computer as a result of declaring it in a
VAR sftatement. The declaration specifies both the name of that variable

. - i and the type of its content. Type
VAR diameter: RE, is further discussed opposite.

?he symbol compounded of a colon
and equals sign == pronounced
“becomes™ s» signifies thal a valve
Q typically the result of evaluating an
expression)) is fo be assigned to the box.

g.?he unlocked litHe boxes of the
introductory example are called
varigbles. A simple variable is
a concepfual box having a name
ond a content.

wall := pi x diameter x height ;

“ becomes, assign
value to variable

ﬂn the introductory example the contents of variables do not change;
each has a nhumber assigned 1o it and there the number stays. But the
program could be modified fo use fewer variables. In the following
version there are several assignments to variable x:

PROGRAM painting (INPUT, OUTPUT);

CONST pi = 3.14;
VAR diameter, height, coverage, x : REAL;
fullpots : INTEGER

BEGIN
READ (diameter, height, coverage);
X := pixSQR(diameter)/ 4.0;
x X + pixdiameter * height ;
X := X / coverages;
fullpots := TRUNC(xX) + 13
WRITE('You need’, fullpots, ' pots')
END.

A SIMPLE NAMED CONSTANT TO [LLUSTRATE
THE CONCEPT
Qhe locked little box of the)

introductory example is called
a constant. Such constants are
creafed as a result of declaring them in a CoNsT declaration. The Zype of
constant is declared intrinsically from the form of the value put into

the box. The decimal point in 3.14, for example, shows that pi names

0 REAL constant.
r CONST pi = 3.143 notice the equals signs; not :=

12

each new
assignment
obliterates
what was
there

before

non o

STANDARD m INTEGER, REAL, CHAR, BOOLEAN

ﬂntegers are whole numbers s= negatlive, zero or positive: no decimal
poink

o constants of type INTEGER must all be
declared as here 5>

L CONST dozen =1;P, decr = _W; l

e variables of type INTEGER must all be

declared as here => [VAR i, j, k: INTEGER;]

e an expression assigned to an integer
i r o) ink
variable must reduce to an integral s TRUNC (3.44) + 7

value; this precludes divisions of § =
the form i/j as explained later k = 1/] “‘5#:

@eals are numbers with a fractional part. A real may be negotive, zem or
positive:

a’ecima[points essentjal #)

ts REAL mu i " 75
o consfants of fype st all be CONST pi=3.141592% , couple=2 ;

declared as here 13>

e variables of type REAL must all be -
declared as here 1=> L VAR x, y, z: REAL} j

N

® an expression assigned to a real
variable may reduce to a real or integer
value; Integer values are automatically con- Y
verted fo reals before assignment. { Mix-
tures of real & infeger ferms in an expression are allowed: implications described overleaf)

Wow o

@haracters are letters, digits and symbols; type CHAR means single characters:

o constants of type CHAR must all be ™ e ;
declared between apostrophes > L CONST p="A, g="¥', r="6"; 1

e variables of fype CiAR must all be
declared as here 5> r VAR a, b, c: CHAR}]

e characters may be compared, the result —
being Boolean, the basis of comparison l_ IF (p>a) AND (c="X') THEN I
being ordinal valve: 'A'<'B', 'B<'c'etc. and '0'<'t', '1'<'2' etc.

Boolean valves are false or true. @ In Pascal, false is “less than” Zree.)

e bBoolean constants are supplied,
needing no declaration by programmer

Bool iabl t
* a?ﬁ::e v;rn;b es must all be declored r VAR ok, alive: BOOLEAN; j

® o Boolean expression must reduce fo
the value true or false

IF a=b THEN ok := TRUE;
IF alive AND ok THEN WRITE(‘Great!’)

13

PRECEDENCE 52 BRACKETS MAY OVERRIDE .
TYPES ¢ INTEGER, REAL, BOOLEAN
ﬁhe introductory example illustrates numerical expressions in assignment
sfatements, Here are two of them:

real assignment

pots := (top + wall)/ coverage;
fullpots := TRUNC(pots) + 1i;

(nteger Esignmem‘

@rackefs ensure the desired order of evaluation. If brackets were omitted
from the first of the examples above:
pots := top + wall / coverage

the division would be done first. Division has higher precedence than
addition. In numerical expressions the precedence is:

P St S
xand / have equal precedernce

higher * /
lower + - = + and =~ have equal precedence

LE;?he second of the assignmenfts above illustrates an assignment fo an
integer variable. The function TRUNC() delivers an integer result, the 1
is written without a decimal point, so the two fterms sum fo an integer
value. In general, when all ferms have integer values the expression
itself reduces to an integer value.

E!:\Jlflere is an important exception fo the rule stated above. A division
qusing the slash)) always delivers a real result:

ﬂnfeger division s= quotient and remainder 55 may be achieved using the
operafors DIV and MOD os explained later.

An expression may comprise a mixture of integer and real terms, The
presence of one real term, or of one slash, is enough to make the
resulting value real. TRUNC() or ROUND() may be used to convert a
real term to an integer term.

Cx?he function SGR() raises the value in brackets to the power 2, but there is no
operator { such as 4 in BAsic) for raising to any power, This is done by taking
logarithms as shown opposite. Non-mathematicians should take it on trust
that A4X in BASIC may be expressed as ExXP(LN(A)*Xx) in Pascal.

ﬂf may seem strange fo some, but > and <= etc. may be used as operators
too. 1>2 has the value false and 1+2 =3 frue. Expressions which confain
such operators reduce to Boolean values and are called Boolean expressions
or conditions. Boolean expressions may contain the /logical operators NoT,
AND, OR, and also terms of type CHAR:

ok 1= (1=2) OR (ch >='A"); j
IF ok THEN ,~—— ~—

14

AN EXAMPLE TO ILLUSTRATE NUMERICAL EXPRESSIONS ,
RAISING TO A POWER, WRITING A REAL RESULT

Ehe monthly repayment, m, on a n
morfgage loan of s pounds over n | m = sr(1+r)

years at p percent compound 12 (C(14r)" -1)
interest is given by

where r = p+ 100

mere is a program to work out m, given values for s, p and n.

keyboard screen

PROGRAM Joans(INPUT, OUTPUT);
VAR
m, s, p, n, r, : REAL;

if your Pascal is interactive
BEGIN / insert a suitable prompt here

READ(S, Py N3
= p/1eo; il :
t= EXP(IN(L+r)xn); bytabnglogs

(sxrxa) / (12x(a-13);
TRUNC (1060 *m + ¢.5) / 1003
WRITELN; WRITELN
WRITE ('Borrowed £', s:4:2);
WRITE (' at’, p:5:2, '%');

wRITE (' over', n:5:2,' vears');

s sum borrowed
P[] percent (nterest

n[] gean torepay

r[__1 pitoo
[asemm

T e

a
m

339"
g onon

=tround to
nearest penny
N\ESFeach WRITELN starts
a new LtNe

25:2 means a fleld
Of 5 with 2 places

WRITELN § ;
wrITE ('Monthly repayment is £, m:5:2); Ofdicimgl‘%
WRITELN 3 t 2 3 4 5
wRITE (‘Total interest comes to £', manx12-5:5:2);
WRITELN

END.

‘ahe screen, al the end of a run, should look like this:

99.99 4.5 10

Borrowed £99.99 at 14.5% over 18 years
Monthly repayment is £1.63
Total interest is £95.61

F your version of Pascal permits interactive working, insert a WRITE state-
ment before READ so as fo make the screen prompt for the data needed.

ghe above program does nothing fo check data. If the user of the program
entered a wrongly- formed number { perhaps letter O in place of digit @)
the program would fail. Most programs in this book are equally lax in this
respect, The reason for the laxity is that checking data thoroughly wovld
make the programs too long for their purpose = which i3 to illustrate
succinctly various other aspects of programming. It is left as an
exercise to make these programs friendly and “robust™,

15

DIFFERENT COURSES OF ACT/ON ACCORDING TO
THE RESULT OF A BOOLEAN EXPRESSION
program may be made fo do

different things according to outcome.
Here is a trivial example >

1F stock <12 THEN WRITELN('Order more');

ghe stock<12 is a Boolean expression;

stock < 12 ~ true its value is either trve or false. If the
: ; value of stock<12 reduces fo false then
/ Order more' /' tpe \writELN statement is not obeyed;
control would simply pass to the next
¥ <3<z statement.

ﬂn general the IF statement permits
any number of statements fo be obeyed
according to whether the value of a
Boolean expression proves to be

truve or false, It

READ (key);
IF key = 'y’
THEN
BEGIN

these statements obeyed if the
[‘ﬁ'he conditions illustrated here are no response i [Yj{REToR]
more than a comparison of two
terms. Conditions may be more
complicated, involving the logical

operators AND, OR, NOT. for example
(initial p="E') AND (initial<'L')
where ‘initial” is a variable of type
CHAR and holds the initial letter of a
surname. A result of frve would

mean that the surname belonged in
the E to k telephone directory.

these statements obeyed if some
other response than

these statements obeyed subsequently
whatever the resporse was

keen := (x=y) OR (z >= 3); J Cz?he value of a Boolean expression
' maoy be assigned fo a Boolean variable
IF_NOT_keen THEN and subsequently tested.

SPECIFY THE FIELDS IN WHICH NUMBERS & STRINGS ARE
TO BE PRINTED s ALSO NUMBER OF DECIMAL PLACES

[}'ield width and number of decimal places may be specified after a colon
as shown below:

all items

1 3= 123', r = {23,456 % [{g_/)_t‘/u.’ttfléd

WRITELN(1 ¢ 8 112 in the Field
WRITELN (-r : 87 2); romber of places —1112|3]e 14
WRITELN (' String': 8) (@/or reals only) Stiri

Syou can plot curves by making field-width an expression as demonstrated later,

[T)

16

AN EXAMPLE 7O JLLUSTRATE DEC/ISIONS AND
PRINTING IN A SPECIFIED FIELD

mere is the flow chart of a program @

designed to compute the area of a READ the initial letter
geometrical shape: rectangle, triangle of a shape: R, TorC
or circle.
troe
. 2 READ dimensions,
letter is T: trve [b 2 of

lrve

/ READ siaes a, b, .:7

1

READ diameler d compute :
[T‘ZM -s-.-';’)(afbf-c) compuée

Eompufe area =7a?: 41 area= \J5G-205-E)6-0 area = bd

¥
N

\—/ werr error message 708

Were is a program fo reflect the flowchart:

PROGRAM shapes (INPUT, OUTPUT);
CONST
pl = 3.1415926;
VAR
letter : cHAR; s, area, a, b,c,d: REAL; ok: BOOLEAN;
BEGIN
ok := TRUE;
READ (letter);
IF (letter = 'R*) OR (letter = 'r")

THEN
BEGIN
READ(b, d);
area := b xd
END
ELSE IF (Jetter ='TD OR (letter = 't')
THEN
BEGIN
READ(a, b, ¢)3
s:= 0.5 x (a+b+c)
area := SQRT(sx(5-a)* (s-b)*x(s5-¢))
END
ELSE IF (letter = 'Cc’) OR (letter = '¢')
THEN wrife the number in a field
BEGIN Of 8 with 2 decimals
READ(d)

area := pi x SQR{(d)/ 4 WP EEGE
END
ELSE ok := FALSE}

IF ok THEN WRITE('Area is ', area:8:2) ELSE WRITE('MustbeRor Tor C')
END.

17

INTRODUCING A CONCEPT WHICH IS FUNDAMENTAL 70
PROGRAMMING IN ANY LANGUAGE

LOOES'

A program may be made to go back and obey a sequence of
instructions several times over:

PROGRAM

BEGIN

xmas (OUTPUT)3

VAR humbug: INTEGER

1 TO 3 DO

FOR humbug :=
LWR[TELN ('We wish you a merry Christmas’) ;

his statement obey
when humbug antains
1, when humbug

contains 2, and when
humbug contains 3

WRITELN ('And a happy new year') <z om0y

END. obeyed once, after
i3 finlshed

Note:
wriTeLN (something’)
/s equivalent to
WRITE ("something')s
WRITELN

[wore usefully :

PROGRAM tables (INPUT, OUTPUT);

VAR valu, product, multiplier: INTEGER;
BEGIN

READ (valu);

FOR multiplier :=

1 To (¢ DO

BEGIN BEGIN and END are
product := multiplier x valu “brackets " enclosing
WRITELN (multiplier:2,’ *,valu:2, ' =',product:4 the compound statement
END
END.

[lf the outcome of the above trivial programs is not immediately obvious
they should be tried out before reading on. Looping is fundamental to
programming.

Lﬂ'he FOR loop is called “deterministic” because the number of times round is
defermined before looping starts. Not so the REPEAT loop. The following
fragment could be substituted between the ocuter BEGIN and END. above:

READ (valu)s
multiplier :=
REPEAT
product := multiplier x valu;
Vn{‘RII’f‘LNI(multipHer:'Z,' x', valus2, ' =', product:4);
ultiplier :=

multiplier + 1 3 e
UNTIL multiplier > 10 ZZ/:SZZZ;M wkthuit

L3
more appropriate

plications of
the REPEAT loop
quven later,

?he FOR loop and REPEAT loop are executed alb least once § unless something
goes so wrong that they are not executed at all), But there is also a leop
for which the test for execution is made at the start, the loop being
skipped over if the test fails:

READ (valu);

more appropriale

multiplier := {3 > ayf

ipli = applications of

WH;IEEGILnuItlpher {= {@ DO the WHLE (oop
product := multiplier x valu; given later

WRITELN (multiplier:2," ', valu:2,' =", product:4);

multiplier := multiplier + 1
L\Eﬁp—,

18

A PROGRAM TO ILLUSTRATE LOOPS By

FLYING THE STARS AND STRIPES (fcirca1912))
ﬂn 1912 “ Old Glory™, the American flag, had 48 stars & one per state of
the Union) and 13 stripes @ one per original Colony)). The program below

displays a rough approximation fo Old Glory c¢.1912. Nowadays there
are more states, hence more stars.

PROGRAM glory (0UTPUT)3
VAR row, col: INTEGER;

BEGIN
FOR col := { 1O 19 DO wRITE('A');

C; WRITELN '

1

FOR row := | TO 13 DO
BEGIN
FOR col := 1 TO 19 DO
IF (col < 9) AND (row< 7
THEN
WRITE ('x ')
ELSE
WRITE ("'
WRITELN
END
END.

A PROGRAM TO PLOT A SINUOUS CURVE USING A
LOOP AND A VARIABLE FIELD WIDTH
':I:I‘hc following program plots the graph of sin(x) scaled and offset from
the left margin so that the curve oscillates about the middle of the
screen. The trick of this kind of plot is to use an expression for field

width. The field width varies from line to line; the asterisk is right-
justified in each field.

PROGRAM sinuous (OUTPUT)3

CONST
offset = 285 scale = 18, degreestep = 8;

three valves suitable for
<K} a 7V monilor; adjvst
to suil your equipment

VAR
i: INTEGER; k: REALS

BEGIN /4 radians from degrees

k := degreestep * 3.1415926 / 180

5
FOR 1 := @ TO MAXINT DO A 0y 1,2,... degrees

(_/WRITELN ('x': ROUND(offset + scale x SIN(k x 1
END. field width as)
an expression

aegreestep

19

EK.ER"‘S‘!S

o

20

ﬂmplement the /loans program and experiment with different
sefs of data, If you enter zero for the percentage rate of
interest the program fails. Include o test in the program for
this eventuality and make the progrom print the results for
it. If your Pascal permits interactive input make the pro-
gram prompt its user for the three items of data required.

ﬂmplemenf the shapes program. Improve the program by
making it return for a new problem having displayed a
result. Let the program freat the letter Z as a stopping code
@ i.e. it should recognize R, T, c and Z),

ﬂmplememL the scnvous program, Dampen the wave it pro-
duces by plotting y = sinx /exp x instead of y = sinx.

3

SYNTAXY

TYPESTYLES

NOTATION

ELEMENTS

COMPOUNDS

SYNTAX OF AN EXRESSION
SYNTAX OF A STATEMENT
SYNTAX OF A PROGRAM
SYNTAX OF TYPE

RESERVED WORDS, PREDEFINED NAMES &
names invented by the programmer
mofice the different styles of writing in the introductory program; here it is
again:
PROGRAM painting(INPUT, OUTPUT);
CONST pi = 3.143

VAR diameter, height, coverage, top,
wall, pots: REAL;

BEGIN
READ (diameter, height, coverage);
top := pix SQr (diameter)/ 4.0;
wall pi x diameter x height;
pots := (top + wall)/ coverage ;
fullpots := TRUNC(pots) + 13
wRITE ('You need', fullpots, ' pots’)
END.

Wi

When dealing with Pascal programs the computer makes no distinction
between capital letters and corresponding lower-case letters except for
those between apostrophes. So the program could be typed all in capitals:

g
PROGRAM PAINTING (INPUT, OUTPUT);
CONST PI = 3.143

or all in lower-case lefters:

var diameter, height, coverage, top,
wall, pots: real;

or in a mixture of capitals and lower-case lelters:

| FullPots := TRUNC(Pots)+1; |
Only between one apostrophe and the next is case significant:
Write 'You needy,, FullPots, »
[¢ ; /

WG N Gty
Bu’r in the introductory example sz and throughout the rest of this book s=three
styles of writing are employed so as to emphasize the three kinds of word in Pascals

e PROGRAM, CONST, VAR, BEGIN,... are reserved words which behave
like punctuation marks, each having a unique meaning in Pascal

e INPUT, REAL, READ, TRUNC, ... are predefined rnames ; they nominate
facilities offered by Pascal for declaring files q INPUT), types
{REALY) or invoking useful functions { WRITE(), TRUNC()) but
the programmer is free to ignore such facilities and use their
names for other purposes

e painting, pi, diameter, height,... are names composed by the pro-
grammer to identify variables, constants, procedures and other
things yet fo be introduced,

ﬂf makes a program easier fo understand when the kind of name or word is
ot once evident from the way it is written.

22

70 DESCR/BE THE WRITTEN FORM OF
m PASCAL’S DECLARATIONS AND STATEMENTS
?o define the written form and punctuation of Pascal programs it helps to
use o concise notation. The notation described below is o blend of fwo
rotations in common use for defining the syntax of Pascal: railway-track
dingrams, as used in several bocks on Pascal, and Backus-Naur Form { BNF)
as used in the IS0 definition of Pascal. Railway-track diagrams are visually
confusing when following all but the simplest layouts; BNF is good for
formal definitions but not so good for quick reference or general appraisal
of a syntactical structure. The notation described below is intended for
quick reference and general appraisal with little @if any) loss of rigour.

¢clalics Italic letters are used fo name the entities being
defined : digit, operafor, expression and so on

n= says “is defined to be...” as in BNF

ROMANS , These stand for themselves; copy them from the
&+ (x/- definitions just as they are. Substitute lower-
012 etc. case letters if preferred: a for A, b forB, cforC etc.

Vertical bars enclosing several rows offer a choice
of precisely one row

~ 4 This arrow says the item(s) over which it is drawn
are optional { may be skipped over)

This arrow permits return s= hence offers the

. choice of another jtem from vertical bars or the

same ifem as before

A circle or sausage shape) contains the separator

\O_/ fo use when returning for another item. No circle
means no separator,

name A subscript to pame tells what that name is
const haming; whether a variable, a constant, a file,
file abype, o function, a procequre. {This device
;ype goes beyond syntax info the domain of semantics.)
n
proc

> This symbol is put in front of illustrations in place

of the words “ for example”

Several words vsed in the definitions below are different from those in
standard works on Pascal. In particular, I use name in place of wntifier,
term in place of factor, and have no need of a word in place of ferm. I vse
comparalor in place of relational operator.

23

OF PASCAL SYNTAX: letter, digit, symbol,
space, operator, comparator

letter == digit =

a string
a lower-case
letter ¢s
eguivalent
to the

correspondiing
upper-case
letter, e.9.
DIV = div

NAXZI<KCAUOURNQOIVOZITrAC—=IOMMOO >

ﬂlso the lower-case letters if
available.

operator =

ﬂn the expression 3+4 %5 the * is
applied before + because it is of
higher precedence. Use brackets
fo override: e.5. (3+4)*s

24

©O IOV WM -

precederice)
than that

symbol =

e e TNV AN R]+

A\ e N dodd

moh'ce thalt apostrophe and
braces {'} do not appear in the
definition of symbol, they are
dealt with explicitly.

(Dther symbols such as £ and
! and $ @ as available) may
be used in a string or comment.

/- Space bar pressea
space = once __

8poces are significant in strings
and comments. New lines are
not permitted in strings or
comments.

comparator =

1]

V'V I AA

v o

- A
=

L‘l?he expression 5-3 =2 is true
because it is trealed as (5-3)=2,
not as 5~(3=2). In other words the
comparator has lower precedence.

COMPOUNDS Qi inpliiinst

name ::= letter | letter b X
aigit » H2504 » h2so4
| S
digits == digit > 6 > 0123444
A/
TN SN

number = digits 7, digits

E +! digits » 66
p 66.2
p 662E-0t

£ says “times ten
to the power of...”

+ number » -35.4e-03
> k
. name ,,st » -k <Gf CoNST k=25 m=—k;
» 'Me' is allowed
variable = name [. expression,] > k
» arreil e, 24k]
» person.age
. name » ptr4
" p arraile] [2x k]
\/
string =" letter ' » 'You need’
digit | A
sgmbog
v wrrTe ("It ''s cold! ')
space produces It's cold!
{
}
Y -
comment = |{ || letter } » { A programmer's comment }
digit .
(* Sjmboz x) > (* This too *)
space ﬁ comment is freated as a single
{ space and may be inserted
herever a space would otherwise
\ W P

be allowed.

25

OF ‘ & BOOLEAN EXPRESS/OW, ALYD
mfw AP RESS‘O CALLED A CONDITION
‘?he “elements” and “compounds” of Pascal’s syntax may now be

combined in the definition of an expresston. The introductory example
shows several expressions of which the following two are typical:

(top + wall) / coverage ; pi * 5QR(diameter)/ 4.0;

An expression comprises one or more terms. The terms are bound
fogether with brackets and operafors. A term may be the name of
o variable { e.g. top) or a reference fo a function {eg. TRuNC(pots))
or one of several other forms defined below.

term = name .ops¢ > TRUE
number <Qf unvigned) > 6.ISE3 = 6750
NIL > NIL
string » 'kpg'
variable > pé+t
name fﬂm > epsilon

» Trunc(pots)

(expression) » (a+b)
[m] » [2*a. 3%b]
NOT term » NOT TRUE

[fJaving defined term, here is the definition of expression which is a
collection of fterms bound together with operators and comparators :

/__\"N
term comparator [+ term
:

» (pt x sar(diameter) /4) + (pi * diameter x height)
N both high A s low brackels riot necessary in this
precegénce precedene) (example becayse of precedence

An expression involving one or more comparators, or a single Boolean
term, is called a Boolearr expression or condition.

>"3>1 » TRUE

ﬂn exceptional form of expression is allowed in WRITE and WRITELN

exceptional = expression = : expression T expression >

expression = |+

. ’

» WRITE(x:8:2) p WRITELN (%' : ROUND (offset + scale *SIN(k*1i)))

26

OF SOME FORMS HAVE NOT
A YET BEEN INTRODUCED

qlj'he definition of statement is set out below. Several of these forms of

statement have not yet been introduced.

statement ::={¢'g;s: variable = expression

label for name, = expression

name C

broc expression |)

fonction-names
as paramelers

BEGIN \, statement END compound statement

IF condition THEN statement W

REPEAT W UNTIL condition

WHILE condition DO statement

”amef”

FOR name := expression|To

var expression DO statement

DOWNTO

, /w
CASE expression OF W 5 END
WITH ngsb[e/ Do statement

GOTO digits

100 : area := pi * SQR(diameter) / 4
BEGIN temp := a; a:=b; b:= temp END <&§campound statement
IF a>b THEN BEGIN temp:=a; a:=b; b:=temp END <
END

<kf assignment statement s [abelled,

vvyvwvyy

27

SYNTAXCIPR OCR AN AT

mere is a “top-down” definition of program :

program = PROGRAM name ((76@); block . -
Where:
/_\A
block 1= LABEL b&gégs/ ; { continved on next line}
CONST name = constant 3% { continued ¥

Tree oy nome = tgpe P

—_

VAR ,\mz(ge/z type, 3 {continueda }
FUNCTION name parameters : name, .,

PROCEDURE n7ame parameters 3 block. ;

BEGIN w END

Where :

m
aramel EE R me , :
parameters (VA ,\na®/ narme ;o)

FUNCTION name W :namey, .,

T

PROCEDURE 1name ° parameters

T o —

functions
& procedures
as parameters
of functions
& proceaures

OF 70 COMPLETE THE TOP-DOWN
DEFINITION OF PROGRAM

[lere is a top-down definition of type:

type == nAME 4pg b REAL
ordinal » 0..6
1‘nametype » M REAL
PACKED SET OF ordinal » PACKED SET
oF @..6
ARRAY [o ordinal |] oF {ype » ARRAY[m,
\@/ 9..61 OF
REAL
SN T N Y
RECORD ~ flelds “variant 3 END » RECORD
a,b,cs REAL;
i:0..6
FILE OF fype END
» FILE OF
INTEGER
Where: notof a
/ REAL
ordinal == name g . » INTEGER
(Kn&ﬂe/) » (1, thou, thee, we, you, they)
constant .. constant » 0.6 » A'..'ZY p I..we
ﬂnd where :

fields == .n\ame_@fy/pe > nr, age: INTEGER; status: CHAR

[And where:

pariant = CASE “ name : name 4 e OF

Sariant')

%¥hat completes the definition of the syntax of 150 Pascal,

29

2
ARITHME TAC!

OPERATORS

SIZE AND PRECISION
COMPARATORS
ARITHMETICAL FUNCTIONS
TRIGONOMETRICAL FUNCTIONS
TRANSFER FUNCTIONS
BOOLEAN FUNCTIONS
ORDINAL FUNCTIONS

OPLRKTORs I f 132’ MOD AND

"ifhe syntox of operator is
defined again here for convenience.

operalor =

BPhe yse of these operators is
explained on this douvble page.The
syntax of expression on page 26
should be consulted if the use of
brackets in these examples is not
immediately clear.

[n the absence of brackets an expression is evaluated from left to right,
applying high precedence operators before low precedence operators.
Brackets may be included to enforce any desired order of evaluation.
For example a¥b/c and (ax*xb)/c would be evaluated in the same
way but ax (b/c) would enforce a change in the order of
operations.

lﬁ'he operators DIV and MOD are for integer division; they yield an
integer quotient and remainder respectively:

[wriTELN C 17 DIV 5, 17 MOD 5)
MOD is short for “modulo”,

l?or positive values of i and j the following relationship holds:

.

(ibwvj) * j + (iMODj) = 1

I WRITENC (17DV 5) %5 + (r7MOD 5) > | ;{)@

@uf complications arise with non-positive values. The second operand of
moD is not allowed to be negative:

[WRITELN (17 MOD —S57~8%)])Y {Egrror 5

Ei)ermissible arrangements are permuted below:

WRITELN C {7 DIV 5, 17 MOD 5); >
WRITELN (17 DIV (=5));
WRITELN (-17 DIV 5, -~{7 MOD 5);
WRITELN (=17 DIV (-5))

ond when the first operand is smaller in absolute valuve:

WRITELN (5 DIV {7, 5 MOD (7)3 [
WRITELN ¢ 5 DIV (-17));
WRITELN (-5 DIV 17, ~5 MOD 17)
WRITELN (=5 DIY (-17))

An error is reported if a divisor is zero, or either operand not an integer:

WRITELN ({7 DIV @3); =)
WRITELN (17.0%8" MOD 5) W

32

;}he operafors + and - may be used as “monadic” operators @ in
other words as signs) in front of integer or real expressions:

WRITELN (=2, +2 % 3);
WRITELN (=~2.8% 4: 1) B> ”
%fhe operators * and + and - produce an integer result when both
operands represent integers:
[WRITELN (243, 2+3, 2-3) j)3 _
but produce a real result if either or both operands represent a real:
WRITELN (2.0%¥3: 4: 1) 5>
WRITELN 2+ 3.0: 4:) W

T operator / produces a real result & even when both operands

represent integers:
WRITELN (6/2 4 01 0) 2>
WRITELN (6.0/2 :4 : 1)
'?he divisor is not allowed to represent zero:
EWRITELN(6/0xi4 1) | =

e operafors AND and OR between Boolean operands produce a Boolean
result. Errors are reported if the operands are not Boolean:

WRITELN € | ORS%2)3 only comparatars may be
WRITELN ('A" AND2&s 'B') “2‘73“?,’;/’5?5/‘* CHAR =y

fr'he following fruth tables define the Boolean results cbtained when applying
AND and OR operators to Boolean operands :

AND SECOND OPERAND OR SECOND OPERAND
true false true false

q t q t

0l vV X 20 Vv v

X e % e

8+ g

S £ N g

g 3f X X 51 v | X

N < ¢

[ﬂere are some examples of Boolean expressions. Notice how the WRITELN
statement produces Boolean results as words., Whether these words
emerge in capitals or lower-case letters depends on the installation:

WRITELN (TRUE AND TRUE, TRUE AND FALSE)3
WRITELN (FALSE AND TRUE, FALSE AND FALSE);
WRITELN (TRUE OR TRUE, TRUE OR FALSE);
WRITELN (FALSE OR TRUE, FALSE OR FALSE);
WRITELN ((((1=2)OR (1+2=3))OR (1>2)) AND (2+3=5))

pp——

33

A\n infeger may be positive or zero or negative. A copy of the
biggest allowable integer that can be handed or stored is held as
a constant named MAXINT:

ORI RS ATENDERO A |
% 7
MAX'NT 32767 %"7\\ PROGRAM findout (0uTpPUT);
value differs from one installation B E?vlf:TE (MAXINT)
to another; find out what it is on END

yours by running this little program

[E"he value 32767 is usual for installations in which integers are stored
as le-bit words. A value of 2147483647 is uvsual where 32-bit words
are employed.

ﬂf the program tries fo evaluate an integer expression for which an
intermediate result grows bigger than MAXINT an error message is evoked.
It may be possible to avoid this by adding brackets to an expression;
for instance changing 1xj DIVk to 1% (jDIVk),

Alfhough the allowable range of integer is -MAXINT to +MAXINT you may
discover that a value of ~(MAXINT +1) causes no error. This is because
o commonly uvsed range of integers stored in r-bit words runs from
-2 to (27'-1) { asymmetrical about zero).

4\ real number may be negative, zero or positive. Its maximum
absolute value is 10%*®; a typical precision is 6 fo 7 significant
decimal digits. On such an installation the biggest positive or negative
number would be about:

* 100, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000
The smallest positive or negative number would be about:
+ 0. 000, 000, 000, 000,000, 000, 000, 000, 000, 000, 000, 000, 01

gI]he nomber {,000,000 would be just distinguishable {with the above
precision) from 1,000,001 buf not from 1{,000,000.1 .

[NAumbers are stored as binary digits @ bits)) rather than decimal digits,

hence the unavoidable vagueness of the above two paragraphs. The
range of real numbers is depicted below :

R R
m:iir TS

\ biggest

~ve real

with p-bit precision,
adjacent numbers are just
distingucshable on the
P bit

The Real Numbers

34

COMPARATORS I it

comparator = | < l:Iilhe syntax of comparator is reproduced
<= here for convenience. The symbols hove
= the conventional significance; >= for
> > example says “Greater than or equal to”.
>= ”
< >J equal 4 fhe precedence of any comparator is lower
IN to” than that of any operator.

qhe synfax of expression is also reproduced so as to emphasize the difference in
usage between gperator and comparator :

eXpression u= +' term comparator \ +l lerm
- -

erms of like type may be compared, the result being a Boolean value:

DRJTELN(%M, 2.9>1.0, TRUE>FasE, W <'B | i)

compare items OF Lype CHAR

@eal and integer terms of like value are interchangeable :

[wrrew (2> 10, 20>t)c{m 1;{>

ghe syntax diagram for expression allows only one comparator. But expression
in brackets is a form of term, so a further comparator may then be
included to make a more complicated expression thus:

.’»z > 1 «1@ ;
(tedm 5502 > 1) = (5> 2) o o)

gefs ore explained in chapter 7, but the following operations on sets are
reproduced below for completeness. The names *friends” ana
“acquaintances” are names of sets; “ffoulkes® is the name of a single
member of a set.

<N an expression
a more complicated
expression

E‘,’ friends = acquaintances iy #re if all friends are acquaintances and
all acquaintances friends {identical sets)

Gb friends <> acquaintonces iy fwe if no friend is an acquaintance and no
aqquaintance is a friend { distinct sets)
«E friends <

%E friends >

[]L\ﬂ ffoulkes IN friends
NoT (ffoulkes IN friends)

acquaintances true if all friends are acquaintances

acquaintances true if all acquaintances are friends

trve if ffoulkes is a friend
trve if ffoulkes is not a friend

5>
B>
&>
Py

ABS(), SOR(), SGRT(),
LN(), EXP

[For years functions have enjoyed arguments :

x = ABS(y) PARAMETER !

but the preferred terminology for argument in Pascal is pammeter. The param-
eters described below are acfval parameters. Later we define formol param-
eters hitherfo known as aguvmmy arguoments.

“rhe following two functions may be given an integer parameter, in which

case they return an integer result. These functions may be given a real param-
eters# in which case they refurn a real result.

ss/ THE ABSOLUTE § i.e. POSITIVE) VALUE
@ expression D OF ITS PARAMETER

WRITELN (ABS (-2), ABS(0), ABS(2));
WRITELN (ABS (-2:8):4:1, ABS(0.0):4:1, ABS(2.0):4:1)

. THE SOQUARE OF THE VALUE
g@[}? Qexpr esseon D OF TS PARAMETER

WRITELN (8QR(-2), SQR(®), SQAR(2))3 » 4 g 4 - g
WRITELN (SQRE2.0):4:1, SQR(8.D):4:1, SAR(2.0):4:1) MM

li:(ihe remaining arithmetical funclions may be given an integer or real
paramefer, but return o real value in either case:

expressio THE SQUARE ROOT OF 175 PARAMETER
P é WHICH MUST NOT BE NEGATIVE

WRITELN C SQRT (16):4:1, SQRT(®.64):4:1, SQRT (@):4:1)3 5
WRITELN (SQRT (~16)) >=

PARAMETER WHICH MUST BE POSITIVE

\ HE NATL OGARITHM £ e OF /TS
D;m QexpresszonD 7 LRAL L ¢oree)

WRITELN CLN(1): 421, LN(2.718282):4:1, LN(7.5):4:1)3

WRITELN (LN (9), 8%~ LN (-DI80

. THE NATURAL ANTILOGAR/THM (FBASE €)).
EXIP@CX’O rESSEOn)Y In ommer worps EXP(X) SIGMIFIES €%
WRITELN CEXP(@):4:1, EXP(1):8:5, EXP(2.014903):4:1); o
WRITELN CEXP(=1):7: 4, EXP(LN(100):6:1)

36

TRICONOMETRICALIFURCTIONS R0 R

Ehe trigonometrical functions are
defined below; each may be given
an integer or real parameter but

®
1 radian

returns a real result in either case. = (180/7)°
. THE SINE OF AN ANGLE
[] N QCXP/’ 63301 |} MEASURED IN RADIANS
n___3MA

i - P %
5in o0 = n 3p

CONST PL= 3.1415926}

WRITELN { SIN(-PL/&) 4 :1);
WRITELN (SIN(@®)i 4 1) [;‘? '0'05
WRITELN (SIN(P1/2):4:1) g

oy T) 7HE COSINE OF AN ANGLE /<>‘
@g eXpression |) messuren v RaDiaNs o B
-} 0 /
a

CONST P1 = 3,1415926;

WRITELN (€OS (~P1/6):8:5);
WRITELN ¢ cos (@):4:1)3
WRITELN ¢ COS(PI)*4:L)

. THE ARCTANGENT { “THE ANGLE , IN RADIANS, WHOSE
ARCGTAN (ewresion) Kol

arctan (p/a) = TLL2 Quverceereemermmreanssesins vossenes st

e

Qa

effectively
infinite \

WRITELN ¢ ARCTAN (1E35): 8: 5);
WRITELN ARCTAN(B): 4:1);

% radians

WRITELN (ARCTAN (-1): 8 :5)

37

! o o FROM REAL TO INTEGER
TRANSFERJF UNCTIONS Yertaoss
When an integer result is assigned fo
a real variable the result is avtomatically
converted to type real, no function being

needed. This facility is called implicit
type conversion.

[VAR X,y:REAL; 1,j: INTEGER;J

Ty
10 to 10.0
el 55)

('?here is no converse of the above; if is — ——
wrong to assign a real result to an 1= 20 *3‘;{;, =
integer variable. j = 9/3 =

ﬂ real value must either be fruncated or rounded before being assigned
to an integer variable, the functions TRUNC() and ROUND() being provided

for the purpose.

ression) TRUNCATE ANY FRACTIONAL PART OF THE REAL
H exp VALUE AND CONVERT TO TYPE INTEGER

WRITELN (TRUNC (3.1), TRUNC(3.8))3
WRITELN (TRUNC(=3.1), TRUNC(=3.8)); (;{>
WRITELN (TRUNC (3.0), TRUNC (=3.0))

: ROUND TO NEAREST WHOLE NUMBER AND
L\ﬂ@ chpr eSS‘O”D CONVERT TO TYPE INTEGER

WRITELN (ROUND (3.1), ROUND(3.8))
WRITELN (ROUND (-3.1), ROUND(-3.8));

WRITELN (ROUND (3.0), ROUND(-3.8)); »
WRITELN (ROUND (3.5), ROUND (-3.5))

IT/J:'here can be surprises. Consider a value of 3.499999 stored in a real
variable x. If this value were displayed vusing the statement
WRITE (x: 8: 5) it would appear as 3.50000, but WRITE(ROUND(X))
would yield 3 rather than 4. This problem may be avoided by a
“nudge” such as WRITE (ROUND(x + $.000081)) ~{ assuming the value
sfored in variable x is known to be positive).

at i5 wrong to give an integer parameter to TRUNC() or ROUND().

WRITELN (TRUNC (3))3 =9 ;
WRITELN (ROUND (3)) 73#‘

38

BOOLE A“ PETURNING TRUE or FALSE
_ oDD(), FOLN(), EOF()
laihe function oDD() is for revealing whether the result of an integer
expression is odd or even.

©D g RETURNS TRUE IF PARAMETER REDUCES TO AN ODD
@Ge"ﬁ" esston D INTEGER % OTHERWISE RETURNS FALSE

WRITELN (0DD(3), ODD(2), ODD (%));

WRITELN (ODD (-3), 0DD(-2))3 é'm

o0, Y
WRITELN (0DD (3.0)) 3= (T05 B fmieg)

‘?he following functions are for detecting the end of a line and the end of a file
respectively. EOLN is usable only with Zext files which are organized as lines of
items. Files are described in chapter 10; below is enough information to explain
the use of EOLN in the early examples. Do not use EOF if data come from the

keyboards chapter 11 deals with this precavtion.

name RETURNS TRUE IF THE FINAL ITEM OF THE CURRENT LINE
E@&m@ f/YeD HAS BEEN READ

EONY <Cmsairs

WHILE NOT EOWN DO

BEGIN L= \
(READ (i3 type integer

WRITELN(C i: 3)
END

WHILE NOT EOLN DO

BEGIN N
(READ (a); fype real

WRITE (a:5:1)
END

name RETURNS TRUE [F THE FINAL ITEM ON THE FILE HAS BEEN
G File READ { OBEY/ING ANOTHER READ WOULD CAUSE FAILURE)

WHILE NOT EOF(f) DO
BEGIN
WHILE NOT EOLN(f) DO

:

BEGIN . © Spoces are

READ Cch); o significant o

wrITE(ch) o when read- o

END; ing type o

WRITELN CHAR °

END g e
WHILE NOT EOF(g) DO & The EOLN
BEGIN mark is

READ (ch); wrITECch) read as
END o O space

39

ORD‘“ AL POSITION IN ASCENDING ORDER
o ‘ ORD(), CHR(), SUcc(), PREL()
qhe letters 'A' to 'Z' run in ascending order; in other words each letter

has an ordinal valve to establish its relative order in the alphabet. This
ordinal value may be obtained from the ORD() function:

B) oy T} RETURNS THE ORDINAL VALUE OF THE CHARACTER =% OR

@Qexpr €ss D OTHER ORDERED TYPE 53 EXPRESSED BY THE PARAMETER

r WRITELN (ORD (‘1) , ORD('J')) S = 74 w
ASCI! Coce EBCDIC code

li./llhe ordinal valve of a character depends on the computer installation,
the AsCIl code being typical on personal and home computers. But
whatever the code employed the ordinal values of letters run in
ascending order:

ORD ('A') < ORD('B') < ORD('c')... < orD('z")
but ORD('Zz') —~ORD('A') is spot necessarily 25. Not all computers offer
the lower-case lelers, buf for those that do:

ORD('a') < ORD('b') < ORD('c)... < ORD('z")

Wfhere is no defined relationship between upper-case and corresponding
lower-case letters but it should be safe o assume that ORD('a')— ORD('A")
has the same value through the alphabet to ORD('z')-0ORD('Z'").

Wiatever the character code employed, the ordinal values of digits run in
ascending order:

ORD(*®#') < ORD('t') < ORD('2")... < ORDC'9")

and furthermore there is a difference of { between ordinal values of
adjacen! digits, so ORD('9')-ORD('®) = 9. It follows that the numerical
valve of digit @ { fype C#AR) may be cbhained from:

value := ORD(d)~- ORD('@"
(ﬁ.?here is probably 7o Pascal installation al which oRD('¢") returns zero,)

‘t/fypes CHAR, INTEGER efc. are provided by Pascal, bul the programmer may
define other types by envmerating o sequence of constants:

TYPE envmerated Lypes are
days = (mon, tve, wed, thu, fri, sat, sun); explained on page 72

@onsfanrs of enumerated type have ordinal values counted from zero. For
example ORD(mon) returns 0, ORD(sun) returns 63 mon< sun.

ﬁ/pe BOOLEAN is an enumerated type which is provided automaltically as:

TYPE
BOOLEAN = (FALSE, TRUE)3
hence ORD(FALSE) returns 0, ORD(TRUE) returns 13 FALSE < TRUE

40

“Phe converse of ORD() is CHR():

ession) RETURNS THE CHARACTER WHOSE ORDINAL VALUE /S EXPRESSED
@G expresst BY ITS PARAMETER s ERROR IF NOT A VALID CODE

wRITELN (CHR(73), CHR(T4)) (A1) .
WRITELN (CHR(201), CHR(209)) (ZBCBIC) e
WRITELN ¢ CHR (1000)) E: ’f
\&G probablg nof a '
valid code

ﬂf something has an ordinal value it is seldom necessary to know what that
value actually is; it is enough fo ask for the successor or predecessor in
the established order. Functions succ() and PRED() are provided for

this purpose:

o T\ RETURNS THE SUCCESSOR TO THE ITEM EXPRESSED BY
@@@ @ expresston D THE PARAMETER

WRITELN (succ ('A"), succ ('8'), succ(f));
1
WRITELN (succ (FALSE)) s D{> B
’ 'z’ has no TRUgr
WRITELN (succ (‘2')) = successor grr

R ssion T) RETURNS THE PREDECESSOR TO THE ITEM EXPRESSED
@@Qexpr €55 D BY THE PARAMETER

WRITELN (PRED ('Z'), PRED('S"), PRED(9))3

WRITELN (PRED (TRUE) D5 oo ™

WRITELN (PRED ('A")) :}%\ predecessor

’{fhese two functions may be vsed to obtain successors and predecessors of
enumerated types. Referring fo type days defined opposite :

PRED (sun) refurns sat, succ(mon) returns tue

but it would be wrong to illustrate this as WRITELN (PRED (sun)) because
enumerated types cannot be read or written 4% a constraint on their
usefulness. The nearest thing to WRITELN (PRED (sun)) is
WRITELN (ORD{ PRED (sun))) which would cause 5 to be written { the
ordinal valve of sat).

qfhe succ() function is handy for controlling loops:

it= 03
REPEAT
i :=succ(i);

Statements

UNTIL I = i¢

41

..

FLOW CHARTS
JF s THEN+ELSE STATEMENT

FOR LOOP

REPEAT LOOP

WHILE LOOP

FILTER { EXAMPLE)

CASE STATEMENT

SYMBOL-STATE TABLE @ExAMPLe))

[FeTHENSELSE , FOR LOOP, REPEAT LOOP

WHILE LOOP, CASE OF, GOTO
MOsl' of the control statements have been introduced by example in earlier
chapters; in this chapter they are defined and their characteristics
explained. Unless disturbed by one of these statements, control goes

from statement to statement sequentially.

i fhe behaviour of each control stafement is depicted on this double page

as a flow chart.
IF condition THEN statement eLsE stalement
D& test the \ ~~ ~ — —=——=
condition N
execule the statemert| |execule the statement | |5 ﬁfsi’ﬁ [\faf%é%;”
which follows THEN which follows ELSE '

T
= efoess/on'TDgWNm]e Xpression
REPEAYT

{ FOR name var

|

evoluate the first expression;
remember result as the “inifial valve”

Do statement

execvte in order the
Statements separated
by semicolons

test the true
condition

ercufe the 5t‘atement]
| IWHITILES

|
evaluate the second expression;
remember result as the “terminal valve”

|
initial value > terminal valve ? trve
@< In the case of DOWNTO))

l

assign initial valve
to conlrol variable

T
augment control variable by 1 true
{ aecremertt in case of DOWNTOD test the
l condttion
A

control variable > terminal value ?
{ < in the case of DoWNTO))

execute rhé
statement

)

control variable
becormes undefined

44

CASE expression

CASE [o —

evaluate the expression
@result referred to below
as “the valve”)

@: wriTE ("Zero');
1,3,5: wriTe (' 0dd');
2,4, % WRITE (‘Even')
END

{
the valve matches a troe execule the
constant in first list? first statement A

] trve
the value matches a execute the
constant in second list ? second Statement ™

T

ele. etc.
the value matches a Lroe execufe the
constant in final list? final statement

hfhe standard does not specify what should happen if
the value of the expression mafches none of the con- Y
stants. @ Some Fascals provide the keyword OTHERWISE

for trapping such cases but this facility is not standard.)

GOTO -

send control to the execute the labelled
statement which has statement
the specified label

|l
execule shatements which
ﬂn some Pascals the Goto and the labelled F°”°;N the labeled state-
statement are constrained to be in Fhe ment.
same program block., Y

Wfhe Goto is useful for error recovery in interactive systems & a subject
beyond the scope of this book.

@g&?‘? PASCAL LACKS AN EXIT STATEMENT

8fandard Pascal offers no way to jump out of the middle of a loopt But
here s a contrivance :

REPEAT
statements?

Lstatemmts! J
] froe

(test condttion
l
statements2 |

IF NOT condlifion THEN
Statements2 Ny

UNTIL condition

tapart from Goto

AT H ENEGENS ERRS TATEMENTY

l1—Ehe syntax of the IF statement is:

IF condition TREN Stafement = ELSE Statement

b IF profit > loss THEN WRITE (‘Hooray!')
p IF profit > loss THEN wWRITE('Hooray!') ELSE WRITE ('Bother')

» IF initial > 'K' AND initial < 'S’ THEN WRITE ('See L to R directory’)

When condition is evaluated, and its value turns out to be frue, the stale-
ment following THEN (s obeyed s the statement following ELSE being
ignored. Conversely, if the value furns out fo be false, the statement
following THEN is ignored sa the statement following ELSE if there is
one) being obeyed.

[\f condition does not reduce to true or false an error message is
evoked.

‘?}he statement following THEN or ELSE may be a compound statement
i.e. BEGIN... ...END). There is no limit to the number or complexity
of statements comprising a compound statement,

[Be careful when nesting IF statements. Try to employ the pattern
“ELSE IF ” rather than *THEN IF” which leaves an “ELSE” dangling
in the brain. A sequence of “THEN IF” can conclude in an
embarrassing pile-up of ELSE clauses :

1F bad IF NoT bad
THEN THEN
walk IF NOT soso
ELSE THEN
IF soso
THEN
trot
ELSE canter| |gallop
1F good
THEN
canter
ELSE
gallop

ﬂn general, ELSE refers to the closest preceding IF which has not yer
been paired with an ELSE.

46

THE LOOP 7O USE WHEN YOU CAN SPEC/IFY THE
NUMBER OF CYCLES AT THE OUTSET

bfhe synfax of the FOR statement is:

FOR name := expression|To expression DO statement
g 7ames the DOWNTO
conltrol variable

» FOR humbug := { TO 3 DO WRITELN (‘We wish you o merry Christmas’)
WRITELN ('And o happy new year')

» FOR m := (2 DOWNTO 2 DO WRITELN(m:3,' men');
WRITELN ('1 man & his dog went fo mow a meadow')

?he control variable may be any ordered type { typically INTEGER, never
REAL). Both expressions must reduce to the same type of value as that of
the control variable.

“fhe flow chart on page 4k should be consulted on the patterns of behaviour
illustrated below.

[ﬁhe two expressions are evaluated before any statement of the loop; they
are not subsequently re-evaluated. 1If these expressions define an

impossible sequence the loop is not executed at all:
OR i:= 2 TO 1 wRITE (' Shy* nothing writfen

[}t is impossible to “run away with the Finishing line” which is frozen on entry:

inish = 2 terminal valve
ﬁnlsh- =5 . frozen at 3
FOR i:= 1 TO finish Do
BEGIN :
ini int ecisely three
< WRITELN (finish) fimes roun
END

ﬂt is wrong fo tamper with the control variable. Obvious cases of tampering involve
assignment to the control varioble and reading valuves into it :

FOR 1:=1{ TO 3 DO

BEGIN

oW
1 = 1—1’\'&/ ﬁ>
READ (1) § O
FORy i := 1 TO 3 DO WRITE ('Dear me!")

END

ﬂf is wrong to assume anything aboul the valve in the control variable on
emergence from a FOR loop { unless vacated by GoTo):

FOR i:= { TO 3 DO
(/ wrRITE (1:4);

WRITELNS ,fﬂ
WRITE(1:4)

&7

REPEAY (Ml f?

r!]'he syntax of the REPEAT statement is:

REPEAT ,\stizt@em@ UNTIL condition

p n:=3; REPEAT n:=PRED(M; WRITELN(N) UNTIL n=@; Hp 12
o

&5 may be verified from the flow chart, the statements are obeyed at
least once. A loop that has to be avoided alfogether under cerfain
conditions must be specially profected s say by an IF statement. In
such circomstances it moy be better to use a WHILE loop.

WVHILE [XJUP

rﬁ'he syntax of the WHILE statement is:

WHILE condition DO statement

P n:=3; WHLE n>D DO BEGIN n:=PRED(N); WRITELN(n) END; 13

As may be verified from the flow chart, the test for continuance is made
before statement is obeyed, permitting the loop to be avoided altogether
when conditions are not right { not so with the REPEAT loop).

A typical use of the WHILE loop is for copying text files. A text file is a
file of {tems separated by spaces and organized into lines as explained
on page {15,

VAR ch: cHARj

WHILE NOT EOF(f) DO
BEGIN
WHILE NOT EOLN(f)

BEGIN
< READ (f, ch)3

WRITE(ch)
END;

WF?IT ELN copied o screer]
END; in this exampe

@on'l’ use EOF with keyboard input. Implications of this are explained in
chopters 10 and 11.

48

FALTE R

A PROGRAM TO READ SMALL NUMBERS EMBEDDED
IN TEXT 53 AND [LLUSTRATE REPEAT & WHILE LOOPS

ﬁhe READ statement alone cannot be used to read the numbers from the
following file because the words and punctuation marks would get in the
way. Program filter is designed to filter oul the extraneous data and
absfract just the numbers.

]}]ere is o file to serve as data. It

should be typed without pressing

been

And here is a program to do the work:

[Revornl until the final full stop [};{a;

Fyped .

In & months, with luck, I shall have
£350, +46.47 in interest but -8.12 in
bank charges. That should be

enough for a 32k home computer Mk2.

&3 [plere is the oUTPUT file that the program
should create from the INPUT file above.

PROGRAM filter (INPUT, OUTPUT);

VAR

ch, sgn: CHAR; fraction: INTEGER;

BEGIN LN
ch := '

WHILE NOT EOLN DO

BEGIN

number := ¢.0; fraction

sgn := ch; READ(ch);

1F (ch>="'®'") AND (ch«="'9")

THEN

BEGIN {if a digit}

REPEAT
REPEAT

number := 16 xnumber + ORD(ch) — ORD('8");
< fraction := fraction * 16;

IF NOT EOLN THEN READ(ch)j
UNTIL ((ch<'@') OR (ch>'9')) OR EOLN;

IF (ch="'.") AND NOT EOLN
THEN
BEGIN
READ(ch); fraction := i
END

UNTIL (Cch <'0@') OR (ch >'9')) OR EOLN;

1F fraction > @ THEN number := number /fraction;
IF sgn = '~' THEN number := —number ;

WRITELN (number: 8:2)

END {if a digit}
END { while not eoln }

END.

i= B3

number: REAL;

a crudity: 'P”L\%
if you (ncludle more
than one decimal poirt,
only the last s acted
upory; for example

12.3.4 would produce
12340 without an
error report

r'l_,‘|‘he part of any program concerned with input is difficult to keep tidy
because of all the checks that have to be made. The program above is
particularly untidy but there is a clearer version on page % which
exploits features of Pascal not yet introduced.

49

{match 1)£ statement
CASE SEULGE SoiE=

El?he syntax of the CASE statement is: i v

7y
CASE expresscon OF W: statement, 3 END

» CASE digit OF PCASE ch OF
0: WRITELN ('Zero')s ‘0': WRITELN ('Zero');
1, 3,5, 7, 9: WRITELN ('Odd"'); 14,'3,'5,'7",'9" : WRITELN ('0dd");

2,4,6,8: WRITELN('Even'); '2', %4','6', '8': WRITELN ('Even')
END (airely)_END
Nt

r!}he expression may reduce to a valve of any ordered type, typically type
INTEGER or CHAR bul never REAL. The expression and constants must be of
the same type as one another.

9fhe behaviour of the CASE statement is defined by the flow chart on page 4.
When the first precise match is found the corresponding statement is obeyed,
none of the others being obeyed. If there is no match at all the behaviour
is undefined, so be careful to allow for every possible valve that
expression could reduce to { not always easy to achieve).

meafed CASE statements may be used to represent a symbol-state table
which is a tidy device for resolving input data. The following table is for
decoding Roman numerals with digits X, v and I.

v Y Y v v v
ot~y X \% I
= 1 | n:=19; state :=2 n:=5; state:=3 i=]; State:=6

2 | ni=n+10; state:=2 | n:=n+5; state:=3 n:=n+i; state:=é6
3 | ok := FALSE ok:= FALSE ni=n+l; state:=4
4 | ok := FALSE ok:= FALSE ni=n+1; state:=5
5 | ok:= FALSE ok := FALSE n:=n+1; State:=7
6 | n:=n+8; state:=7 | n:=n+3; state:=7 | nNi=n+1; stale:=5
7 | ok:=FALSE ok := FALSE ok := FALSE

'i?o decode xiy slarl in state { where the arrow is. The first symbol is'X’
so look down from 'X' and find n:=18; state:=2, So set n to 10 and move the
arrow to row 2. Now look down from the second symbol, 'I', and find nien+ls
state:=6. The value in n thus becomes 1p+1=11. Move the arrow to row 6. Now Jook
down from the final symbol, 'v', and find n:=n+3; statei=7. The valve in
n then becomes 11+3=14. Move the arrow to row 7 and notice that any
further 'x' or '"V' or 'I' would cause an error {e.g. XIVX>%C).

f-—[?his table decodes Roman numemls starting with any number of X‘s and
the conventional arrangements of V’s and 1% :

I, II, 111, 1V, Vv, VI, VII, VIII, IX, X, X1 &fc.

but would treat 1T, for example, as an error by setling ok to FALSE.
The table may be extended to cope with M, D, ¢ and L.

50

SYMBOLLSTATERTABLE

7O JLLUSTRATE NESTED
CASE STATEMENTS

PROGRAM

VAR n, state: INTEGER;
BEGIN { program}

roman (INPUT, OUTPUT)3

symbol: CHAR;

state :=1; Ok:= TRUE; n:=0;
WHILE NOT EOLN DO
BEGIN

READ (symbol);

ok: BOOLEAN;

(t (s nicer to write:
IF symbol IN ['x','v', ‘1"]
as explained in chapter 7

1F ((symbol = 'X') OR (symbol="'V')) OR (symbol="1")

THEN
CASE state OF
1: cASE symbol OF
'X's BEGIN n:=10; state:=2 END
'V': BEGIN n:=5; state:=3 END
'I': BEGIN n:=1; state:=6 END
END;
2: CASE symbol OF
‘X't BEGIN n:=n+10; state:= 2
'V't BEGIN n:=n+5; state:=3
'T': BEGIN n:=n+1: state:=6
END;
3: CASE symbo! OF
X', V' ok = FALSE 3
'I't BEGIN n:= n+1; state :=4
END;
4t CASE symbol OF
X', 'V's ok i= FALSE;
‘I': BEGIN n:= n+1; stale:=5
END;
5: CASE symbo] OF
'X','V': ok:= FALSE;
‘I' : BEGIN n:= n+1; state:=7
END;
6: CASE 5ymbol ofF
‘X' BEGIN n:=n+8; state:=7
W' BEGIN n:=n+3; state:=7
'1' BEGIN n:=n+{; state:=5
END;
7: ok = FALSE
END { CASE state}
£ LZE GIN dgcoded number
IF ok LR
THEN WRITELN (n: 2)
ELSE WRITELN (' PECCAVISTI');
state := 1; ok := TRUE
END { ELSE}

END { WHILE NOT }

END. {program}

.
’

.
?

END;
END;
END

END

END

END

END;

END;
END

terminate final item
with Full stop o space
before pressing

51

EXERCISES

ﬂg ﬂmplemenr the roman program. Extend it to cope with:
M= 1000, D=500, C=100, L= 50,

If your Pascal permits interactive working, include prompts for
the benefit of the user of the program.

52

FONCTAONSEZAPROCEDVURES

FUNCTION DEFINITION
TYPICAL FUNCTIONS
RECURSION

PROCEDURES

RANDOM NUMBERS

LOANS AGAIN { EXAMPLE))
FUNCTION NAMES AS PARAMETERS
FORWARD REFERENCES
LOCAL VARIABLES

SIDE EFFECTS

SCOPE RULES

DEFINE YOUR OWN
FUNCT/ONS
[Pascal does not provide a function for returning the area of a circle
given the diameter as its actual parameter :

a = CIRCLE (6.5)
WRITELN (a1 8:2) Dl’> W

Buf it s easy fo define such a function

- : the function s to
FUNCTION C.lr'cle(d: REAL): REAL; retorn a REAL result
CONST pi = 3.1415926; the parameter :

BEGIN 5 o be KEAL
circle := pi x sqrR(d)/4.0

05 N ool O resils = 2 ok vl)

to the name of the function: (his
[‘l?hereaﬂer, circle () { or CIRCLE() }) may be used in the program just
as SQR() and TRUNC() have been used in earlier examples.

ﬂn the top line of the definition, the d says “Do what gets done fo me,
but use whatever value is put in my place.” In the example at the top
of this page 6.5 s put in place of d, and so is duly squared,
multiplied by 3.1415926, divided by 4.0. The d (s o formal parameter
whereas 6.5 is an actual parameter. You could use the name o for a
variable or any other named entity)) in the program which invokes
area() without interference from that function:

d = -99;
)70 = circle(6.5); =)

WRITELNC a, d : 8:2)

ﬁhe syntax of a function definition { ignoring, for now, parameters
which are themselves functions or procedures) is:

R
FUNCTION r7arme (W VAR ,\naége/ © nameg,;,

VAR explained later ()

ﬂhe item block has the structure of a
program within a program. The syntax of
block is properly defined on page 28; this
sketch simply illustrates the location of func-
tion and procedure definitions in a program.

definitions
?uncﬁon and procedure definitions may
have further function and procedure «
——
RNV,

definitions nested within them.

54

MCre is a function for returning the area of a rectangle, given lengths
of sides as parameters:

FUNCTION rectangle(b, d: REAL): REAL;
BEGIN rectangle := b xd END;

[And a similar one for the area of a triangle:

FUNCTION triangle (a, b, ¢ : REAL): REAL;
VAR X : REAL;
BEGIN
xi=(a+b+c)/2;
triangle := SQRT (X *(x-Q)*(x-b)*(x-C))
END;

“fhese three functions { circle(), rectangle(), triangle()) may be
invoked from the following program which is a re-designed version of the pro-

gram on page [T.

PROGRAM shapes?2 (INPUT, OUTPUT);
VAR letler: CcHAR; a, Xx,y, Z: REAL;

/\/‘\/—\/_\/'\/W\/W
put tne three fonclions here in any order

BEGIN
REPEAT
READ (letter);
CASE letter oF

nql R lol . a = w ;
'r'y 'R': BEGIN

READLN (x,y); Q:= rectangle(x,y)

END;

't', 'T': BEGIN
READLN (x, Y, 2); a:=triangle (x,y,z)
END;
e’y 'C' : BEGIN
READLN(x)3 a = circle(x)
END
END; {CASE letter}
WRITELN (‘Area is’', a:8:2)
UNTIL (letter = 'Q') OR (letter='q’')
END.

ﬂoﬁce that the functions are invoked with actual parameters x,y,z whereas
formal parameters a, b,c, a were used in the definitions. Variable a in
the main program has no connection with formal parameter @ in function
triangle (', ,). Likewise, variable r in the main program has no connection
with local variable r in function triangle(,,). More about this later.

Each function defined here has a different number of parameters. Any fixed
number is permissible, but never a variable number as with READ(a),
READ(a,b), READ(a,b,c) efc. This facility is enjoyed by Pascal alone.

[n the above examples all types are ReAL, but in general any mixture of types is
allowed: eg. mixfun (a:REAL; b: INTEGERS €: CHAR) : BOOLEAN;

55

EXAMPLES TO /LLUSTRATE
FUNCTION DEFINITIONS
E'here is no Pascal function for returning a cube root, Here is one defined:

FUNCTION cubrt(x: REAL): REAL;
VAR old, noo: REAL;
BEGIN

IF x=@0 THEN cubrt:= 6 ELSE
BEGIN old := 1, exit when 7oy ™
REPEAT A Cgvess)

(noo = x/56R(old);
old (noo+old) /2
UNTIL ABS(x/ (nooxnooxnoo)~t) < {E-6 ;
cubrt := noo
END
END; { of function}

cubrt (-27) retvrns -3
cubrt (o)>returns @
cubrt (27) retorns 3

[Basic programmers regretting the absence of saN() may define it; either directly:

FUNCTION sgn(x: REAL): INTEGER;
BEGIN
IF x> ¢ THEN sgn := 1 ELSE
IF x < @ THEN sgn := -1 ELSE sgn:=@
END3

or with cunning:
FUNCTION sgn(x: REAL): INTEGER; wWorks pecavse':
BEGIN sgn := ORD(X >®)— ORD(X< @) ENDj (ORO(TRVE)=], ORNFALSE)=0

?here is no TAN() function in Pascal { fangent of an angle measured in
radians)) but here is one defined:

reforns !l F x>0
returns -1 if x<@ J

retorns @ if x=9

FUNCTION tan(x: REAL): REAL; 2;’;::%’;
BEGIN A
tan := SIN(x) / COS(x) - B dnx
END;

and arccosine :

FUNCTION arcsin(x: REAL): REAL3
IF ABS (x)=1 2

THEN arcsin := x x 1.5767963

sine= X/1
tanws —2—

= i
-t o= arctan (x /JT=x1)

ELSE arcsin s= ARCTAN (X /SQRT (1-SQRCX))) ‘W—Tz |
END; €Os & = X/1
X tan o= fFxt /X
FUNCTION arccos(x: REAL) : REAL; & w=arebon(fT=X3 /%)
BEGIN
IF x=¢ / +% when x30

THEN arccos :i= {.57¢ 7963
ELSE arccos := ARCTAN (SQRT (1~ SQR(X))/ X) +3.1415926 ¥ ORD(x< @)

END;
?here is more about the arcsin() and arccos() functions on page 68 .

56

DEFINITION OF A RECURSIVE FUNCT/ON TO

INTRODUCE THE CONCEPT OF RECURSION
ffhe highest common factor § hef) of 1470 and 693 is 21. In other
words 21 is the biggest number that will divide info 1470 and €33 with-

out leaving a remainder in either case. To verify this, factorize both
numbers to prime factors:

1470 = 2 x x 5 x ®x 7
693 = x 3 x = 11

and pair off any common factors =% in this case 3 and 7. The highest
common factor { also called gca, or greatest common divisor)) is the
product of theses; in this case 3 x7 = 21.

Buch‘d’s method of finding the hcf js more elegant. Find the remainder
when 1470 (s divided by ©93:
1470 MOD 693 = &4

Because this remainder is not zero, repeal the process substituting the
second humber for the first and the remainder for the second:

693 MOD 84 = 21

This remainder is still nof zero, so repeat the process :
84 MoD 21 = 0

This remainder s zero,so the hef is 21. Nice.

f}]ere is a Pascal function based on Euclid's method:
FUNCTION hef(n, m: INTEGER): INTEGER ;

VAR rem: INTEGER; recursive
BEGIN . .
rnvocation
rem := n MOD m; 3 ‘ ?

IF rem=@ THEN hcf:=m ELSE hcf:= hef(m, rem)
END;

ﬂf is easy to see what would happen with hcf(84,21) because rem would
become zero making the function return 21. But with hcf(1470,693) rem
becomes 84 so the function invokes itself as hcf (693,84). In so doing rem
becomes 21, therefore the function invokes itself as hcf(84,21). It is as
though Pascal provided a fresh copy of the code of the function hef(,)
on each invocation:

FUNCTION hef (i470,693), FUNCTION hef (693,84) FUNCTION hef (84,21)

f (14705,69 VAR rem; VAR rem; VAR rem;
<] BEGIN BEGIN BEGIN
"& rem:= 1410 MOD693 =84 rem:=693MQD84 = 21 rem:s84MoD2! =0
et tertonnn>] |t Ctoum>| | hefeas
END | ZTeno | 21 enp

gr?he ability of a function to invoke itself is called recurscon. There is
more about recursion in this and subsequent chapters.

37

PROCE-DURES Q- Rt a v

When a piece of program is fo be used more than once in the same program

there is no need for its text fo be duplicated; its text may be parcelled as a
procedure, given a name, and invoked by that name whenever its fext is

to be obeyed. Here is a trivial example; a procedure for writing two integers

in reverse order of the two parameters:

PROCEDURE reverse(a, b: INTEGER)3
BEGIN
WRITELIN(b:3 , a:3)
END;

?rom the main program this procedure could be invoked thus:

X = {3 Yy = {00}

reverse (X, y¥); 5> 100 1
reverse (4, 5); 5 Z
reverse (4% %, 5xy) 500

“Phe above is silly, but serves to show that the actual parameters may be
constants @ 4,5) or expressions { 4x*x,5»y)) or names of variables {x,y).
Every ftime reverse()is invoked its actuol parameters are evaluated and these
valves are substituted for the formal parameters a and b. For this
reason a and b are called “valve” parameters.

ﬂnsfead of writing valves in reverse order suppose it were required to
exchange the values stored in a pair of integer variables. The following
would be no good at all:

PROCEDURE swop(a, b : INTEGER);
VAR
tempry : INTEGER ; 7

BEGIN
tempry :=a; a:=b; b:=tempry
END;
Suppose it were to be invoked as follows with x confaining 1, y containing 100:
[swop (X,Yy)

The effect would be to store the valves 1in a, 100 in b3 then to make the
swop in a and b3 then to return to the program with x and y unaffected.
The procedure is inlerested only in the walves of its parameters;
swop (4,5) or swop(4#%x,5»y) would have the same non-result,

ehe solution is to make the parameters into VAR parameters. Writin
VAR in front of o parameter gives access to a variable In the invoking
program:

PROCEDURE swop(VAR a, b : INTEGER)3 Tou can now change
VAR . the contents of variables
5 t;empry ¢ INTEGER3 belonging to the
EGIN . .
tempry:=a; a:=b; b:=tempry voking PR
END;

58

mow suppose the procedure were invoked as follows:
x:i=1y y:i= 100;

swop (X, ¥) l;)>
WRITELN (X, ¥)

an simple terms: put VAR in front of those parameters whose valves are to
be changed by the procedure.

ﬂ more sophisticated concept is that VAR in the procedure heading signifies
direct access to the invoking program. The statement a:=b in the
procedure signifies x:=y in the invoking program { when invoked as shown
above), In the jargon: VAR parameters are passed by address or passed
by reference whereas value parameters are passeqd by value 53 the
procedure having to set up a local variable fo store each valve passed.

‘:zi'he, following invocations are meaningless with VAR parameters; invocations
! ot
swop (4, 5)3 "R are meaningful if both parameters

are names of variobles which
swop (4¥x, 5xy) S¥ contain values fo be swopped.

& point of possible confusion: the VAR section of a procedure is for
declaring variables /local to that procedure, whereas VAR in the
procedure heading signifies reference to non-local variables:

PROCEDURE swop (VAR a,b: INTEGER); PROCEDURE reverse(a,b:INTEGER);
VAR temipry: INTEGERS \{\@ BEGIN N T
BEGIN N&f Lotal) WRITELN(b, a)
tempry:=a; a:=b; b:=tempry END
ENDs

IHere is the syntax of procedure definition (f ignoring, for now, parameters
which are themselves names of functions).

PROCEDURE name(/V;a \ rame , : ﬁametype) block ;

"The item block has the structore of
o program within a program. The
syntax of block is properly defined
on page 28.

PROGRAM
CONST
VAR

fonction and
<2\ procequre
ghis diagram shows the location of definitions
function and procedure definitions
within a program. Each function
and procedure definition may have
further function and procedure

definitions nested within it.

59

RAMDOMYRUMBE RS RISt

@onsc‘de,r the following function:

FUNCTION next (VAR seed: INTEGER): INTEGER ;
CONST multiplier = 37; increment = 3; cycle=64;

rotice VAR in fhe)
headrng; an
unvsual factic

BEGIN n a function
next := seed; .)
seed := (multiplier x seed + Increment) MoD cycle

END;3

[nvoked with s containing 16 as follows:
[5= 16 ; WRITE(next(s)) D.'> ﬂ

this function must obviously return 16. Furthermore, whenever the function
returns 16 it must always change the valve stored in seed to 19. If the
function were again invoked, but with the new setting of s, it would return
19 and change the valve in s to 2. Continvally Invoking next() in this
way would produce a precletermined sequence of integers running from the
initial value given to s:

S:= 63
FOR i:= { TO 64 DO WRITE(next(s):3)

16 19 2 13 3 55 54 17 56 27 42 21 12 63 30 25
32 35 18 29 52 T © 33 B 43 58 37 28 15 46 Af
L8 51 34 45 & 23 22 49 24 59 10 53 44 31 62 51
0O 3 50 6] 20 39 38 1 40 i1 26 5 60 4T 4 9

——_ " -

[A remarkable thing about this sequence is that every value from 0 fo &3
occurs precisely once. Furthermore, invoking next() for the sixty- fifth
fime would produce fe, re-starting the identical cycle of integers. In
other words the function generates a fixed permutation of the integers
O to €3, starting from any desired integer.

?his technique is much used for generating “random® numbers (strictly

seudo-random in deference fo their predictability). A cycle of 64
would be inadequate; Grogono (see Bibliography) gives a set of
constants to generate a permutation of integers 0 to 65535 :

L CONST multiplier = 25173; iIncrement = 13849; cycle = 655363]

@hoosmg a set of constants with the necessary properties is not a trivial
exercise . To arrive at 37 and 3 for the cycle of 64 numbers shown above
I experimented blindly with prime numbers.

Ehe above function returns o valve and alters the value of the parameter.
The tactic is unusual. Most functions have no heed to disturb their

rameters, and accordingly make no use of VAR in the headings of
their definitions.

60

Qn computer simulations and games it is usual to employ random
racttons in the range 0 < fraction € 1 rather than random integers.

This requires a few changes tfo the function defined opposite :

FUNCTION rnd (VAR seed: INTEGER): REAL; <4 /ormerly WrEsk] |

CONST multiplier=25173; increment=13849; cycle=65536;
BEGIN rame changed to rad()
e e joles R
seed := (multiplier x seed + increment) MOD cycle ~ 0.0<rnd< 1.0

END;

ﬂhis function will not work if MAXINT has a valve of less than 2¥-1, But
here is an ingeniously modified version which generates a cycle of 32768
fractions even if MAXINT has a valve as low as 2%-1 q 32767)

FUNCTION rnd (VAR seed: INTEGER): REAL;
VAR a, b, c, d: INTEGER ;
BEGIN
rnd := seed / 32767;

a = seed DIV 256;
b := Seed MOD 256;
¢ = ((b%*93) MOD 256) + [3;
d = (b*26)+(Cbx93) DIV 256)+ (a*93) +(C DIV 256)+ 27,
seed := ((dMOD 128) *25¢) + (c MOD 256)

END;

lﬂere is a simulation fo show how much wiser it is fo bet on 7 than any
other score if throwing a pair of dice for even money. { An array =
see chapter 8 == would make the program simpler.))

PROGRAM bones (OUTPUT)3 .
VAR score, throws, seed, a,b,c,d,e,f, g, h,1,j,k : INTEGER;

insert firsé version of rnd() here > (B>
BEGIN Qp

seed :=0; Q:=0; bi=0; c:=0; di=p; e:=p; {:=0;

g:=0; hi=0; i:=0; j:=03 ki=@;
FOR throws := { TO 3668 DO G*rnd(;esd r)ohasaers @
BEGIN {throws} range 0. un .

score:= ROUND (1+5# rnd(seed))+ ROUND(1+ 5% rnd (seed)) ;
CASE score OF

2: o= a+t; {2: k:= k+1{;

3: b= b1 11: j:=j+],

4t cr=CHl; 1P T:= I1+1 S 456 7T 89 4o

5: di=d+l; 9! h:i= h+iy 2 SIS0 532 4 na 12
6: e=e+s; 8: gi=g+t;[] BB " g
7: fi=f+1 T00 200 300 400 BOD 600 500 400 300 200 160

20 {r)
END; {FOR throws } jcompare the “aeal” scares

WRITELN (2,3,4,5,6,7,8,9, 10, 11, 12); -
WRITELN (0, b, c.d,e,f, g.h, i, j, k) g’u’t’;“t;“;ﬁzé; eﬁrmlg‘ ot
END. _Qia, bis, ci4 el

'ahe result is roughly symmetrical about 7. Comparison of results with
“ideal” scores is encouraging; see page 68 aboul a much bigger sample.

61

A PROGRAM 70 ILLUSTRATE A
PROCEDURE DEFINITION
he am on page 15 computes the n

er?u)nfh‘l);o?'rcpaymen?, Q/]n, on a r?oorrgage sr(t + 1)
loan of s at p% compound interest m (1+r) - 1:]
over /7 years. But hereis a more [(1+r)
difficult problem; a loan of s is fo be
repayed at /m per month over 7 years; where T = p + 100
what rate of interest is being charged ?

L'l/,,\‘l'le equation may be solved by trial and error. Guess r; substitute in
the formula and compute mi. 1If ml is the same as m the guess was
correct. Lf mt was too small it means r was guessed too low, so mul-
tiply r by m/mt to make it bigger and try again. If ml is too big it means
r was guessed too high, so multiply 7 by m/mi o make it smaller and try
again. In short; if mt is not close enough to m multiply r by m/mi
and try again. Sooner or later r will get close enough fo be acceptable
as a solution to the equation.

ﬁhis method works well as long as an increase in one thing implies a
corresponding increase ({ or decrease) in another. It fails if the other
fluctuates or there is a discontinuity such as a bankrupt mortgagee.

[Blere is the program:

PROGRAM loanrate (INPUT, OUTPUT)3

VAR
s,m, mt, r, percent: REAL;
n: INTEGER;

PROCEDURE formula (VAR m: REAL; n: INTEGER; s,r: REAL);
VAR a: REAL;
BEGIN
a = EXP(LN(CLI+r) x n)3 o

mi=(Csxr*xa)/ (12%(a-1))

(nteractive insert a

BEGIN suitable prompf here ‘.
.99
READg 51, m, n); ggﬂhilsy "‘rizayment £1.63
REPEAT | {gUess initial rafe Number oF Y

formula (mi,n,s,r); erest rate 14:52%
r:= rx m/mi

UNTIL ABSCm/m1 - 1) < 1E-

percent. 1= r x 100; <& aare jourding RN

WRITELN ('Sum is £', 8:4:2);

WRITELN (' Monthly repayment £', m:4:2);

WRITELN (' Number of years', n: a4);

WRITELN

WRITELN ('Interest rate', percent:4:2,'%')

END. roundiing to 7 decimals GV

Int

62

4

FONCTIONWNAMESEIPARARE TERSY =0

[Mere are the statements of a program to compute N
northings and eastings of points on the ground,
given the compass bearing al each point and
the paced distance from the previous point { a = &Z

traverse) . 1 eastings

BEGIN
RTOCTIIP

northing := @; easting := 6;
_—4 zerd at point {

northings

WHILE NOT EOF(f)
BEGIN [~ > 1 name of
READLN (f, bearing, distance);
northing := northing + projection (bearing, distance, cosine);
easting := easting+ projection (bearing, distance, sine);

WRITELN (northing: 10:2, easting:19:2) N&—F name of)|
END { WHILE } a forction

END. {program }

[;]ere is the definition of projection(,,) :

FUNCTION projection(bng, dist: REAL; FUNCTION ratio(x:REAL): REAL): REALS
BEGIN
L. . . defines the” third
projection := dist x ratio(bng) “
END3 formal parameter,

ﬂnd here are the definitions of the functions whose names are used as actval
parameters of projection(,,):

FUNCTION sine(b: REAL): REAL;
BEGIN sine := SIN(3.1415926 *b/180) END;

FUNCTION cosine (b:REAL): REAL;
BEGIN cosine := C€0S (3.1415926 * b/ 180) END;

MOfioe how the third formal parameter of projection(,,) is defined:
FUNCTION ratxox : REAL)@ REAL Wx

> ~ M
Says the actual parameter) (Says the ~aefined) (soys user-defined
is tobe the name of a fonction 5 fo have a
user-defined function EEAL parameter

fonction is fo refurn
a REAL result

where x serves only to mark the place of a paramerer, keeping the syntax

consistent with that of a function definition.

Z

r‘f}o complete the picture, here is the start of the program:

PROGRAM traverse (f, OUTPUT);
YAR northing, easting: REAL;

put function definitions here, followed by the main program

ﬁ?he problem is to find a compiler on which this works. Many compilers refuse
to allow names of functions to be used as parameters, and I can't say I blame
them. The only sensible applications of this facility 1 hove so far seen
concern mathematical integration. ... BREATHE our!

63

FORWARD m DURING COMPILATION

ﬂn any block the COoNST and VAR declarations precede the BEGIN and END
which enclose the shatements themselves. This enforced order implies
that the compiler never has to handle a statement containing constants
or variables it does not know about. The appearance of an un-
declared constant or variable would evoke an error message during
compilation.

?he same logic applies to subprograms ({(i.e. functions and procedures)). An
error message is evoked if the compiler meets an invocation of a subprogram it
cloes not know about. It is the programmer’s responsibility fo see that definitions
are properly ordered.

PROGRAM demo (INPUT, OUTPUT)3
VAR a, b, c: REAL;
PROCEDURE ring(VAR area, circumf: REAL; diam:REAL);
BEGIN
circumf := 3.14 x diom ;
area := circle(diam) =«

=] the compiler does not know
abeut function circle()

END on reaching here
FUNCTION circle (d: REAL): REAL;
BEGIN circle:= 3.14 % SQR(d) /4 END; _—

An obvious solution to this problem is to re-order the input so that the
function circle() is defined before the procedure ring(,,). Bul there is a
less drastic solution { drastic remembering that real-life programs are longer
than the trivial example programs shown here) s

® leave the offending subprogram where it is, but simplify its
heading by removing all parameters

® insert the full heading where it ought to be == ie before the
subprogram that invokes it

® add the predefined word FORWARD after the full heading:

PROGRAM demo (INPUT, OUTPUT)34
VAR a, b, ¢: REAL;

insert full heading before
any subprogram that invokes
this one

FUNCTION circle(d: REAL): REAL;

FORWARD 5 N~} append this warning to the compiler

PROCEDURE ring (VAR area,circumf: REAL; diom: REAL)
BEGIN
circumf := 3.14 ¥ diam;
area := circle (diam)

END3 Ssimplify headii

= y heading

FUNCTION circle; WoJusithename) "‘;‘Ze fhe body
BEGIN circle := 3.14 ¥ SQR(d) /4 END; where it was

Ehe only other forward reference allowed in Pascal is to do with pointers
in linked lists as described in chapter 12.

64

VARAABLE FRESH ON EACH INVOCATION ,
YAl EVAPORATING ON RETURN
Ei'he following sketches were used on page 59 to distinguish those variables
that are local to a procedure from those that are not:

PROCEDURE swop (VAR Q,b: INTEGER); PROCEDURE reverse(a, b:INTEGER);
VAR tempry n0i-local BEGIN \3
BEGIN &S variables WRITELN(b, @) a/f?;Z/lcs
tempry:=a; a:=b; bi=tempry END;
END3

[Yocal variables are created as a procedure is invoked. Then current
valves of any value parameters are copied info the local variables created
for them. For example the invocation:

| reverse (4, 5)3% }

would cause 4 to be copied info local variable a and 5 info local
variable 5.

e procedure is then put to work. On completion, when control returns to
the invoking program, ali local variables are forgotten, their contents
being lost forever. But the local variables do not evaporate until control
returns to the i(nvoking program. This behaviour is essential to re-
cursion as illustrated by this hackneyed example of “factorial” :

FUNCTION factorial (number: INTEGER): INTEGER;

VAR n: INTEGER;
BEGIN N~} local variable n
N := number;

iIF N=1 THEN factorial := { .
ELSE factorial := nx factorial (n-1)

END 3

EmCe the behaviour of the function for the invocation m :=factorial(4):

#hn wln 1

n#1 s mu- n=1s0
2 returnf;)
which 15

v | 2 %14
™~ return@

\<

[Notice that the First copy of factorial remembers the value 4 in local variable
~ until the 24 is returned fo m. Similarly the second copy remembers the 3
until the 6 is returned to the first copy, and so on. A Jocal variable is loaal to the
current copy; at one instant during the execution depicted above there would be
four distinct copies of local variable 7.

L\r was not necessary to declare YARn as above; value parameters are auto-
matically declared as local variables:

FUNCTION factorial (n: INTEGER):INTEGER
BEGIN
IF n=1 THEN fac

value parameters are
local variables

65

GENERALLY TO BE AVOIDED BUT CAN
BE HELPFUL IN PARTICULAR CASES
Dn’]ere is an alternative to the random number generator on page 61 :

. A
Fugg:zN randi : OYNAMIC”

. PICTURE
randi := seed/ (65536-1);
seed := (25173 x seed + 13849) MOD 65536

END;
which could be invoked like this:
seed := 20 .
throw := (1+5*randi)+ (i1+5*randj)

“S'he example works because the computer can “see” the variable named seed
whilst working inside function rondi. Furthermore randi can couse a change
in the value stored in the variable named seed. An invoked subprogram can see
outwards to its invoking program but cannot be seen &y it.

When a subprogram refers to variable a it

ocal a, b means the (ocal vorioble a. If thereis no
local variable a the eye looks outwards to the
inveking subprogram { possibly a recursive copy
of itself) and refers to the local variable a

E in that subprogram. If there is no local

A YDYNAMIC* PICTURE variable a the eye looks outwards...

'ﬁ'he same principle applies to all named entities: variables, constants,
functions, procedures, files and types.

When a subprogram changes the value stored in a variable declared outside
itself the subprogram is said to have o sice effect. Function randi
has a side effect; it changes the volue stored in seead which is a varioble
declared outside randi .

@ide effects are often caused by accident. Making repeated use of
variables with names like a, b, c whilst forgelting to declare them locally
is a potential source of trouble; some books on Pascal advocate the use of
long names for variables so as to aveid this danger.

When programs are small it moy be cleorest to make all variobles global.
wWhen sefs are used (f sefs are described in the next chapter) it may be the only
sane approach fo make all set variables global. And in long programs it
may make sense fo define a few global variables to be referred to from
inside procedures. But it is bad proctice to employ side effects sporadic-
ally or carelessly.

@pposife is the skeleton of o typical program. Borders are drawn around
subprograms fo emphasize the nested structure. The notes explain what
variables are available in each layer of nesting, those able to cause
side effecls being pointed out. Notice how the program itself appears
as a subprogram { albeit with a non-standard heading to define the
input and output files and a non-standard ending involving a full
stop) nested within the “ Pascal environment?” .

66

THE "STATIC" PICTURE OF
A NESTED PROGRAM

PROGRAM twigs (INPUT, OUTPUT);
VAR a, b, c: REAL}

PROCEDURE lining (p, q.: REAL; VAR X, y : REAL);
VAR @G, b: REAL}

PROCEDURE chick(p: REAL; VAR x: REAL);
VAR @, d: REAL;

BEGI|N in these statements you may:
X employ a, g, p belonging to chick .
% emplgz b beléonging to lining, ¢ belonging to twigs <RiA %’”I’(ZIS
3 employ & to return result via invocation of chick ae
X* emp(oy 7 " " " o [[/7[/7g
% invoke chick or lining recursively

X use all Pascal files, types, functions, procedures, constants

END;

PROCEDURE €egg (p:REAL; VAR X :REAL);
VAR Qa,e:

BEGIN ~ 77 these statements you may:

¥ employ a,e,p belonging to egg d Sl
X employ b belonging to lining, ¢ belonging to fwigs s/,gg/? ia

¥ employ x toreturn result via invocation of egg
xemploy ¢ v " n " v lning
X invoke chick @ for chick to invoke egg you need FORWARD)
3 invoke 'eggg or lining recursively

X use all Pascal files, types, functions, procedures, constants

END;

BEGIN {lining} in these statements you may:
* employ a, b, p, g belonging to lining

% employ ¢ belonging to fwigs

%* employ x, y to return results via invocations of lining
X invoke chick, egg

% invoke lining recursively

% vse all Pascal files, types, functions, procedures, constants

ENDj;

< h m/e/?f /'a/
S/ce effects

BEGIN {twigs} % uin program you may
% employ a, b,c belonging to twigs

% invoke l[m'n?

X use all Pascal files, types, functions, procedures, constants

END.

67

EXERCASES

il

N

R

68

b appreciate the range of results generated by the
arcsin() and arccos() functions defined on page 56,
write a program to tabulate results given parameters
from -1 to +1 in increments of 0.1. For example the
essence of such a progrom could be the statement:

FOR n:= -1 TO 10 DO
WRITELN (n/10:6:2, arcsin(n/18):6:2, arccos(n/1¢):6:2)

[]mplemenf the program named bones on page 61. If
you have ample computer time to spare increase rhe
nomber of dice throws from 3600 to 32768 to see if
the scores turn out to be closer to the «ideal” ones.

[A\mplement the program named /loanrate on page 62. As
with the previous loarns program this one fails if the rate
is zero. Make good this defect. If your Pascal system
permits interactive inpul make the program prompt its
user for each item of data required.

Y

STANDARD TYPES

TYPE DEFINITION

ENUMERATED TYPES
SUBRANGES

SET TYPE AND SET VARIABLES
SET CONSTRUCTORS AND OPERATIONS
FILTER2 ({ EXAMPLE)

MOoO ((EXAMPLE))

STANDARDETYPES i

(Bonstants I;:F standard types moylbﬁ<
defined in the CONST section of any block, /\
The type of each constant does not have | CONST w name = constani,;

to be declared; it is recognizable by ‘\CD—-/

its “literal ™ form:

CONST pi= 3.14; increment=1; star=/x's

A ‘4 Vi
no decimal point,) Mapastrophes; therefore
therefore INTEGER x /s of type CHAR

or by being sel equal to some previously-named constant:

decimal point,
therefore pi 1s REAL

p=pi; stella=star; verily =TRUE; decrement= —increment;

710 eXpressons;
the limit of complexity rs x=-y

‘Ehe type of each wariable must be de- . -
clared in the VAR section of the block. VAR ;ﬁ%g‘) : t{//o‘\’k
in which it is to be used: [=7>

N\ l:l?he type of each parameter

A ,
(\ VAR . name , : 0amety):namef must be declared ina
W ad rocedure heading or
unction heaading.

FUNCTION mix (r: REAL; 1:INTEGER; c: CHAR): BOOLEAN ;
VAR s:REAL; j:INTEGER; letter: CHAR; ok: BOOLEAN

et e el et o)

&rithmcfic involving standard types is described in chapter 4; in particviar
the mixture of REAL and INTEGER types in an expression and conversion of a
result of one type to the other.

Bxpressions involving type CHAR or operators NOT, AND, OR reduce to a
Boolean result.

A Lhe following concerns ordinal valves:

® An integer has an ordinal value equal fo itself q 0rD(s) is 6) and
therefore has predecessor and successor { PRED(6) is5; SUCC(6) isT)

e An item of type REAL has no ordinal valve

e An item of type ciAR has an ordinal valve such that ORD('A')< ORD('B)
ete. and ORD('1")~ORD('®') is 1, ORD('2')-0RD('®') is 2 elc.

e When writing a condition the ORD() is implied by omission;
thus ORD('1') < ORD('J') may be simplified to '1'< 'J'. But
recall that SucC('1') is not necessarily 'J', nor is ORD('J') -
ORD('l') necessarily 1.

70

OF ENUMERATIONS, SUBRANGES
AND SETS OF THESE
?he programmer may devise and define simple types other than the
our standard types. These definitions may be given in the TYPE

section of the relevant block. The TYPE section comes between the
CONST and VAR sections as illustrated further down this page.

Ehe syntax of the TYPE section | — —

{ omitting structured tyoes which | TYPE name= (\ rname ;) $

are dealf with from the next

chapter onwards)) is shown constant .. constant

here. > SETOF| rramey, .

“fhe three types are called (\rame ;)

enuvmerated types, subrange

types and Jset types. . ~ | constant..constart| |,
—3)—

[Mlere is an example of an enumerated type and two subrange types:

PROGRAM dodo (INPUT, OUTPUT)3
CONST Pi = 3.14; _Me=lenumerated type
TYPE daytype = (mon, tue, wed, thu, fri, sat, sun);

weekdaytype = mon.. fri ; SYS{ subrange Lypes

dicetype = 2..12_

g -

8ubsequcnﬂy the names daytype,
weekdaytype, dicelype may be
used for the definition of variab-

VAR x: REAL}

today : daytype;

throw, score: dicetype;
INTEGER, CHAR and BOOLEAN. Gi» | PROCEDURE egg (VAR d:daytype);

les in the same manner as REAL,

QAlternatively, the definition may be omitted from the TYPE section but
included in the VAR section:

PROGRAM dodo (INPUT, OUTPUT)3
CONST pi = 3.14;
TYPE daytype = (mon, tue, wed, thu, fri, sat, sun);
VAR X

today : mon..fri; »"D type definitions moved

throw, score: 2..12 fo the VAR section

e o e Ml S - - ——

but such freedom is not permitted in headings of procedures or functions :
PROCEDURE egg (VAR d: daytype);

Lype of parameter must hawe
been defined in a TYPE
section

Bnumeraﬁons and subranges find application in program control,
offering an automatic check on range and scope:

WHILE throw >= score DO simulate (throw, score);

CASE todoay OF
mon, tue, wed, thu, fri : wrIiTE ("Work");
sat, sun : WRITE ('Play')

END {CASE} L -

L ~— e —

error message
evoked if eiher
variable rons
out of range

71

ENUMERATEDETY PES TGS

I}'\]ere is the definition of two enumerated types and corresponding
variables:

TYPE days = (mon, tue, wed, thu, fri, sat, sun);
status = (wedded, unwed); eddes ' not we becise
every name in these enumerations

VAR today, tomorrow : days W'

you cannot read or write items of enumerated type:

READ (today, tomorrow); =%t
WRITE (fri, today); &dc

You carr assign valves to variables of enumerated type:

today := mon;
tomorrow := today 3

but not if variable and valve belong to different enumerations:
| today := unwed; >%-]

And you carn’t do arithmetic on them:

today := sat + sun”

Bonstants of enumermated type hove ordinal valves counting from zero:

| WRITELN (ORD (mon), ORD(tue), ORD (sun)); S
which implies predecessors and successors: ﬂ
today := PRED (sun);
tomorrow := SUCC (today);
WRITELN (ORD (today), ORD(tomorrow)); I»

but the first constant has no predecessor and the last has no successor:

today := PRED (mon); =~
tomorrow := SUCC (sun); =

For all items in Pascal which have ordinal values it is allowable to omit
the ORD() from Boolean expressions:

1IF ORD (today)> ORD(mon) THEN soyso ;
IF foday > mon THEN sayso

& the effect of these
} two statements (s
cdentical

lﬂ]ype BOOLEAN is an enumerated type supplied avtomatically by the
Pascal processor:

TYPE
BOOLEAN = (FALSE, TRUE)

so it follows that ORD(FALSE) is zero, ORD(TRUE) is unity, and
FALSE < TRUE ,

72

or ENUMERAT/ONS' constant .. constant
suB GE INTEGER & CHAR .Upl%l,,d

[Mere is the definition of variebles of several subranges:

TYPE daytype = (mon, tue, wed, thu, fri, sat, sun);

VAR weekday : mon..fri; <&f subrange of daytype
throw, score: 2..123 <o
musketeer : 1..3; y

grade : 'N'..'D’ < Stbringe o)

ﬂ subrange may be defined comprising any type which has an ardinal
Valve. This precludes subranges of type REAL.

VAR price = 1.99 .. 5.99 omgC-{REL)

8ubranges of enumerations are subject to the restrictions applying to the
enumerated type itself. Thus items of type man.. fri cannot be read or
written, cannot have arithmetic done on them, cannot be assigned to
variables except those of type mon..fri and daytype ({ where daytype
is the super-range of which mon..fri is the subrange, hence compatible)),

@onsfanrs of @ subrange of any possible type have the same ordinal
values as they do in the svper-range. Thus in the subrange sat.. sun,
having daytype as its super-range, the valves ORD(sat) and ORD(sun)
would be 5 and 6 respectively; not @ and 1.

When the super-range of a subrange is of type INTEGER, valves of the
subrange may be treated as integers. Such treatment may include
reading, wrifing and integer arithmetic:

READ (throw);
score := SQR (throw);
WRITE (score);

Furthermore, values from different subranges are interchangeable :

musketeer := score + 2 w
{212

Nevertheless a check is made on the bounds of each variable before its valve
is updated { by assignment or READ() efc.)). This automatic restriction to
declared bounds is the purpose of subranges. It saves the programmer
adding frequent and distracting checks of the form IF (score »12) OR
(score < 2) THEN WRITE ('Bounds exceeded on SCORE'). In a well-written
program you would see VAR score : 2..12 rather than VAR score: INTEGER.

\W/hen the super-range of a subrange is of type CHAR, values of the
subrange may be treated as characters. This treatment may include
reading, writing and employment in Boolean expressions:

READ (grade);
IF grade <= 'B'
THEN WRITE ('Well done!')
ELSE WRITE (grade, ' will have to do')

73

SETLTY PELISETAVARIABLES

ﬂn general terms, a et is a collection of items
of the same type. In Pascal you may creafe and

SET OF ﬂametype

name sets for keeping track of the items of any (xrame ,)
orgered type (not REAL or *structured”). “Keeping

track " means recording whether each possible item constark «« constant
{s present or not. _

mere is the definition of an enumerated type, followed by a set type having
daytype os its “base type*:
TYPE

daytype = (mon, tue, wed, thu, fri, sat,sun);

dayset = SET OF daytype
g - — -
and here is the definition of two variables for keeping track of sets of days
in the manner depicted below:

VAR
washdays, bathdays: dayset;

&’r some time or ather during execution of the program the two variables
might look like this :

mon @(e wid thu j
fri t S

[.€. T

washdays bathdays

showing how the information held by a sef variable comprises one logical
value { present or not) for every possible item of the set.

&s when defining enumerations and subranges, it is allowable to
abbreviate by moving type definitions to the VAR section:

TYPE .
daytype = (mon, tue, wed, thu, fri, sat, sun);
R

washdays, bathdays: SET OF daytype
or omit the TYPE section altogether:

VAR
washdays , bathdays: SET OF (mon, tue, wed, thu, fri, sat, sun);

lplere is a VAR section which defines several sef variables:

VAR
washdtays, bathdays : SET OF (mon, tue, wed,thu fri, sat, sun);
teaset : SET OF CHAR ;

letters : SET OF 'A'..'Z' a’,‘”"‘“’ﬁ’;";‘e”“
digits : SET OF '0'..'9"; ‘p“m}a/"/ otion
dice : SET OF 2..12

T4 5 6778
9 10 11 1%

i.e. depicted full i.e. depicted empty

SET OF INTEGER
/s too big for some
installations

dice

74

SETRCONS TRUCT,ORSLZOPERATIONS
ﬂ set constructor specifies a set s //_\
which may then be assigned to an [LTSN :l

appropriate variable or manipulated EXPIBSSION <. expression
by set operators or both. A set \@_/
constructor may be considered as a
set constant. > [2%3..3%3, 5+6,5] ‘
<
[\ set may be emptied thus: > [5.6,7,8,9, (1] sels
' all these terms are
Or assigned fo thus: valid in subrange 2..12
dice

dice := [2#3..3%3, 5+6,57;
e g
“Phe wrion of two sets is signified by a plus sign: \
e e N

dice = [2..5] + [4-6]; dice @
~WM

Gfhe intersection is signified by an asterisk : T

e :“’2— -‘“
dice = [2..5] * L4~61; | diceifE; (] *

Whe arfference of two sets is signified by a minus sign : -
dice := [_2.- 5] - m < 4 . 5

56 4 13
dice = [4..6]1 -~ [2..5]; < fedsss
dice dice~_:

[Decisions may be based on sets. The comparator IN or >= or <= or=
or <> in conjunction with 5ef variables or constructors makes a
Boolean expression.

ﬂnclusion of a single item in a set may be investigated with IN:

L'.._lenTrz'LN(6IN[4-6], 6N [2..5127' »

@ne set contains another; use >=

WRITEIN([2..12] >= [3.51); | S=
WRITELN ([3..5] >=[2.. 12]); 7o 2
One set is contained by another; use <=

T WRITELN € [3..5] <= [2..12]);

@ne set /s identical to another; vse = or <>
WRITELN ([3..51 = [5,4,3])3
WRITELN ([3..5] <> [4,5,3]) »Iﬁ =

A

75

ILLUSTRATING PROCEDURES WHICH INVOKE EACH OTHER,
ENUMERATED TYPES AND SET CONSTRUCTORS

Program Filter on poge 49 reads the INPUT file, abstracting and writing on
the OUTPUT file any numbers recognized. The version below has the same
specification. It is longer than the earlier version but probably easier to
follow because it is less tortuous. Procedures are used in the simplest
possible way, working only on global variables.

PROGRAM filter2 (INPUT, OUTPUT);
VAR state : (ignoring, pending, reading); <& eaumerted tyoe

fraction : "0 .. MAXINT; <&subrange

ch: CHAR; positive: BOOLEAN; number: REAL;

PROCEDURE initiclize;

S e = 1gnoring; sitive := TRUE;
number :g. 0, ’frggtfon = @ ’
END;

PROCEDURE display; { then initialize}
BEGIN

IF fraction > @ THEN number := number / fraction;
IF NOT positive THEN number := —numbers;
WRITELN (number: {¢:2);
inftialize

END;

PRgCEGDHRE accumulate ; { & set state to reading ¥
EGI
number := 1{®*number + ORD(ch)~ ORD('0");
fraction := ¢ x fraction;
state := reading

try thcs program
with the aata

ENDs Shown on
PRgCgF#% negate; {& set state to pending} page 439
E
ENBositive := FALSE's state := pending
H
w 'N [I..lel] (I ._c Oﬁus
BEGIN { program } slate - Lo - ,
initialize’; ignoring: | accumulate | ignore |negale &fset ignore
wng.ees :‘w}- EOLN DO ¢ set to pending
IN {WHILE .. . PR
READC ch g; ding: | reading initialize
CASE state OF |[reading: fraction==1| display & initialize
ignoring: IF ch= '~

THEN negate ,
ELSE IF ch IN ['0..'9']
THEN accumulates;

cruge (ogic:
any character acts
as terminator

e.qg. $-8-9% would
proauce:

pending: IF ch IN ['9'..'9']
THEN accumulate
ELSE initialize;

-00
9.00

reading: IF ch="'.')
THEN fraction := 1
ELSE IF ch IN ['0'..'9']
THEN accumulate
ELSE display

ENEN? w{nﬁ‘gg,} = calch number if at very
1IF state = reading THEN display end of wrpul file

END.

76

A GAME =3 TO ILLUSTRATE SUBRANGES AND THE
MANIPULATION OF SETS

“The computer thinks of a four-digit number having no two digits alike.
you type a guess and are told the number of bulls { direct hits) and
number of cows { digifs in the target butl not directly hit). For example
with a target of 5734 a guess of 0755 scores i bull and 2 cows. Keep
quessing until you score four bulls.

PROGRAM mooo (INPUT, OUTPUT)3

TYPE playtype = '0'..'9';
seedtype = @.. 65535;
scoretype = @+ 4

VAR pool, target : SET OF playtype;
a,b, ¢, d: playtype;
seed : seedtype;
bulls, cows: scoretype;

FUNCTION random: REAL; €, N0t 5, so that
BEGIN result is always
random := seed/ 6553e ; “\/essthan 1.0
seed := (25173 * seed + 13849) MOD 65536 ;
END; {random}

return a raridom
nomber in range
0.0 £ ranaom < 1.0

/" FUNCTION unique: playtype;)
VAR ch: cHAR;
BEGIN
REPEAT remove a
(ch = CHR (TRUNC (1¢*random)+0RD('¢'));} random digit

ﬁ UNTIL ch IN pool;
pool := pool ~“[chl;
target :=target + _[chl
L END; {unique}
PROCEDURE try (thisone : CHAR)3

VAR ch: CHAR;
BEGIN
READ (ch);
JF ch IN target
THEN IF ch = thisone
THEN bulls :
ELSE cows

I

read next aigit
and update count
Of bulls or cows

(F appropriale

A

succ (bulls)
Succ (cows)

_ END; {try}
BEGIN { PROGRAM }

WRITELN ('First enter seed; then keep guessing');

READLN (seed); ¥~/ 3ef) W
pool := ['¢'..'9']; ~target := [1; 599011 & OCows
a:=unique; bi=unique; c:=unique; d:=unique; || 28473

REPEAT
bU”S o ¢; COWS := ¢ ; creaée tafge[ngd

try(a); try(b); try(c; try(d);
WRITELN (bulls:1, ‘Bulls &':8, cows:2, 'Cows':5);

READLN 4 Bulls & @ Cows
UNTIL bulls = 4 H ‘\

END. {PROGRAM}

77

ﬂq [Bxtend progrom filter2 on page 76 to cope with numbers
expressed in scientific format:

digits 7+ digits m

This exercise involves extending the symbol-state table.

&g ﬂmplement the game of mooo on page 77. Improve
the game by making the program :

e offer a new game each time a game hos
been concluded
e stop the game, and count it as a win

for the computer, if the target number has
not been guessea correctly after ten tries

e keepseparate account of the number of wins
by the player and number of wins by com-
puter; display these scores on the screen,

78

RRRAYSELESTRIRCS

INTRODUCING ARRAYS

SYNTAX OF ARRAY DECLARATIONS
AREA OF A POLYGON ({ EXAMPLE)
CABLES { EXAMPLE)

BUBBLE SORT ({ EXAMPLE)
QUICKSORT ({ EXAMPLE)
PACKING

INTRODUCING STRINGS

PARLOUR TRICK EXAMPLE
NUMBER BASES ({EXAMPLE
MATRIX MULTIPLICATION { EXAMPLE)
CONFORMANT ARRAY PARAMETERS

ANTRODVCINCYARRAYS Yoyt

variables of standard type so far encountered have been independent
little boxes:

| VAR x:REAL; 1i,j:INTEGER; olive: BOOLEAN; cyfer: CHARj

ordinary

x| 1 i[] j[CJ alive[] cyfer[] variables of,
and so have variables of ewmerated and subrange type:
TYPE daytype = (mon, tue, wed, thu, fri, sat, sun);
VAR today:daytype; workday: mon..fri; throw: 2..12;

today [| workday[] throw []
svbrange types
[Dut itis also possible to declare variables which are arrays of such
little boxes:

TYPE daytype = (mon, tue, wed, thu, fri, sat, sun);
sessfon = (morn, aft, eve);

VAR vector: ARRAY [1..3] OF REAL;
roster : ARRAY [mon..fri, session] OF BOOLEAN;

A‘m"i morn] aft] evel

vector [1] roster[mon,
vector [2]] 1e-6 roster[tue, v
vector [3] 175 roster| wed, x this

roster[thu, (G

roster[fri,

tf'he little boxes of an array are called components : the contents of the
square brackets are called swbscripts. The base fype of an array is
the type of little box of which the array is composed { only one type
of component in any one array)).

@omponenfs may be employed in the same way as variables of the base

fype: vector [2] := 16-5; READ (vector [3]1);
roster [tue , aft] := TRUE; WRITE Croster[tue,aft]);
roster [wed, eve] := NOT roster [tue,aft];

l}]owever, there is no merit in vsing components as though they were
ordinary variables; arrays are useful becauvse subscripts may be
variables or expressions which indicate successive components. Walch this:

FOR day:= mon TO fri DO
FOR time := morn TO eve DO
roster [day, time] := FALSE; and all components
FOR i := 1 TO 3 DO vector[i]:=0 Of vector to zero

assuming a preceding VAR section to declare 1i: {..3 and
day : mon..fri and time: morn..eve

Of roster fo FALSE

80

SYNTAXEOFJARRAYADECUNRATIONS

Ehe arrays depicted oppasite could be declared after first naming and
defining their types:

TYPE daytype = (mon, tue, wed, thy, fri, sat, sun);
session = (morn, aft, eve);
vectortype = ARRAY [{..3] OF REAL; s
rostertype = ARRAY [mon..fri, session] OF BOOLEAN;

enumeratea

VAR vector : vectortype;
roster : rostertype; <=

he syntax of array type is: must name an
orgered type
TN
PACKED ARRAY [namey, ., J OF ¢ype

(n r7ame ;) Jpecifies any
base type
@record or array

types not preclvded))

constant «. constart

\—'G)—/

“Whe syntax for referring to a component of an array Is:
P N

name [wexpression

ryamyy | Se—o—

Arro%s are manipulated by altering the subscripts of components as illustrated
opposite. But there is an important exception; a copy of the estire content of
one array may be assigned to another of the same type in a single operation:

name of an name := name QL7ame of an orray ENTIRE
array — Of the same lype) ASSIGNMENT

where “same type” means a type with the same name. A type which has the
same specification but different name is not equivalent:

TYPE atype = ARRAY [1..3] OF REAL;
VAR a, b : atype; c: ARRAY [{..3] OF REAL;

same named same.

&n exception fo the above is P/AC;B ARRAY [1 oF chAR for which, in some

Pascals, equivalence is not demanded. Change REAL to CHAR above
and a:=c would be permitted.

two-dimensional array such as roster is really an array of arrays. The
following syntax would be allowable but is unnecessarily clumsy :

TYPE rostertype = ARRAY [mon..fri] OF ARRAY [session] OF BOOLEAN;
roster [day] [time] := FALSE

81

AN EXAMPLE TO ILLUSTRATE
ONE-COLUMN ARRAYS
(@onsider the diagram on the right : = 2
The spotted area is given by Ajj where 2
Ay =3 (XY =XjYi) i
=4 (2x3 -25x1) =1.75

S SR <3 I‘l:l]he same formula may be used for

computing the area on the left. Bur
Xj, this area turns out to be negalive -
Aij =3 (XpYj = Xjvi)
= 2(3x2:5-5x4)= ~-6.25

[e ke

1 2 l;> &
Gfhe formula may be applied to sequential

sides of a polygon, and the triangular
areas summed to give the area shown hereliy

@ur if the polygon is closed, as shown on
XaYa - <& the left, the sum of the areas will be
N the area enclosed.
X2,Y2
o Ehe bounded surface must be kept to the
__________ PR left of each arrow; the sides of the
figure should not cross each other as
in a figure of eight.

mere is a program by which to input coordinates of boundary points
and compute the area enclosed:

PROGRAM polygon (INPUT, OUTPUT);

TYPE sel the maximom size of
spantype = 1..30; problem as aesired 8,15
VAR

i, j, n: spantype; area: REAL;
X, y: ARRAY [spantype] OF REAL;

BEGIN = /F your Pasaal is ihteractive, insert:
WRITELN (' Number of vertices? ')

READLN (Nn)s

FOR i := { TO n DO
- READLN (x[il, y[i]
area := @3 e.q. when <=1 then j=2

2
FOR i = { TO n Do éot?eni=zmcnj=s

BEGIN but wheni=n then j=1
j := (i MoD n) + 1;

area := area + 0.5 (x[17* y[j1 - x[j1*y[il)
END3
WRITEL,N ('Area is ', area:8:2)

END.

82

AN EXAMPLE TO JLLUSTRATE ARRAYS USED AS VECTORS
s FOR THOSE WITH A BIT OF MATHEMATICS 4%

Az

“Pwo power cables 3 and B look uncomfortably
close when you superimpose these sketches
what is the shortest distance between 2 & 6 ¢

With trigonometry the solution would be
messy but with vector algebra it's nice.
Express & and & as vectors:

= (9-4)70 + (/6-8)] +#(17-0)K
= (10-6)¢ + (11-3)] + (15-5) K

Yfheir cross product, @ x5, is a vector
normal to both & and &. Scale this by its
own length, | d xB1, apd you have a wnit
vector parallel to axb: 3

= GxE+|daxbl ><_ 2

"Sake a vector & connecting any point on & to any point on 5. Hereis
one of them; it connects the tip of & to the tip of 5 :

E =(o-9)7T + (U-16)7 + (15-17)% > Ba g

[Distance d, the shortest distance between & and B, is given by the
projection of ¢ on « { the dot product of ¢ and &) whichis:

d = C.d <& which works out at 352 in this example

PROGRAM cables (INPUT, OUTPUT); coord
TYPE vector = ARRAY [1..3] OF REAL; E*]J “ 1l
2 N
VAR a, b, c, u : vector; d, length: REAL; 31 10 tail
coord : ARRAY [1..12] OF REAL; [al .
BEGIN s f.12;3 _yread the data 63 Ii‘f)]atip
> FOR 1 i=1 TO 12 DO READ(coord [i]); Ml e >
FOR 5710 3 00 g 2 52) WS b
ali] := coord [3+i]- coord [i]; poi 10 |) -
brij :==coord [9+i]- coord [e+i]; L |t by
cli) = coord [9+11~ coord [3+i] Al 15 P
END;
uftl:= al2]*b[3] - bl2)* al3]; a b
ul2] = al3]*bl1] - a[1] ¥ b[3]; gis |4
uf3] = aft] *bl2] - b 1] * a[2]; 2) 3 X [2] {8;)
length := SQRT(SQR (ul11)+ SarR(uUL2]1)+ 5QR(U[3]));B] il
C/FOR™ 1 := 170 3 DO U[i] := ulil/ length; 0 ? : 'IllJé
1 0
d:= c[1)xul1] + c[21*u2] + c[3]1*u[3]; [211] -5 e [2]1-.655
EN\AIIDRITELN (' Shortest distance is', cl:6:2) @}m -2 [31}239

83

BYBBLERS ORI vttt

q}here are many methods of sorting the contents of an array; a simple
technique is the bubble or ripple sort described below.

W% demonstrate the method, take a list of letters. “Index” the first
letter and the one following. If the letters indexed are in the right order,
leave them alone and advance the index one row. If the letters are in
the wrong order, swop them and advance the index one row. Stop
one row before the end of the list so as to prevent the second index
pointing off the end. Here is the method depicted:

@::m 5’ (1] the heaviest has
oht ! [21 |7-' [2]
right! [31[D (31

leave [,1[c'| wromg! 14
alore [51[AT] WP [s]

D’.]aving sunk the heaviest letter to the bottom it remains to sort the
list of letters above it. We set about this precisely as we set about
sorting the full list; in other words invoke the same procedure
recursively,

q'he tidiest approach to sorting items is to set up an array of
pointers to the items:

L1114 1187
(21| 24+—21('Z
[31] 31—31('D'
(4l 4 —t41[C’
[5]1] 5+—>»51 ‘A

pointers letters

&nd swop pointers rather than the items themselves. When the
sorting is finished the arrays should look like this:

O11[s 3 B’
[27] 11 'z s .
(3143 oy e.g. letters| pointers[4]] ¢5 'D'
[41[37 41[°C’
[53] 21 s1'A'

pointers letters

Lhis approach holds no particular merit if the aim is only to sort a

few letters., But in the real world there might be a lot of information
associated with each of the items to be sorted. There is less work in

moving one pointer than moving all the information pointed to.

84

lere is a complete program to sort letters :

PROGRAM bubbles (INPUT, OUTPUT)3
TYPE sizetype = @..30;

VAR pointers : ARRAY [sizetype] oF sizetype;
letters : ARRAY [sizetypel] OF CHAR;
key: CHAR; n,1: sizetype;

PROCEDURE swop (VAR p, g : sizetype);
VAR tempry : sizetype;
BEGIN

tempry := p; pi=Qi q:=tempry
END;

PROCEDURE sort (first, last: sizetype);
VAR i: sizetype; sorted: BOOLEAN;
BEGIN { sort 3 SORTING

BEGIN
sorted := TRUE3:
FOR 1 := first TO last-1 DO
BEGIN

THEN
BEGIN

sorted := FALSE
END { if letters}
END; { fori}
1F NOT sorted THEN sort (first, last-1)
END {if first < last}
END; { sort}

recursive
et g .
/X (nvocation

BEGIN { bubbles } insert: WRITELN ('Number of lelters?’)

READLN (n); . o .
FOR i := {70 n DO if your Rascal is [nteract/ve

o A
BEGIN <3 read lelters ore by ore
(READLN(lettera[{I); & seL up pointers

pointers[i] := i
ENDj
sort (1, n)s

WRITELN3 display them

WRITE (jetters [pointers[il])
END. {bubbles}

:

&I’rhwgh the bubble sort is inefficient at

sorting a jumbled list, a list in which only
one or two items are out of place is sorted
very quickly.

IF first < last THEN PROCEDURE

IF letters [pointers[i1]> letters[pointers [1+1]]

swop (pointers[il, pointers[i+1]);

ters?

85

AN EXAMPLE TO ILLUSTRATE RECURSION
AND ANOTHER METHOD OF SORTING
"fhe sorting method called Quicksort was devised by Prof. ¢.A.R.Hoare.

The interpretation below has been formulated to illustrate principles of Hhe
method rather than as a practical procedure.

‘?f'ake some numbers to Sorf:

2 12 9 3 14 13

7 8
i4 4

get pointers ¢ and j at each end of the list as shown. Move s
towards ¢. If j points to a bigger number than ¢ does, move s
another step towards ¢ .

Lﬂow J points to a smaller number than ¢ does. So swop the two numbers
pointed to, and swop the pointers ¢ and s as well:

3 2 12 9 % 13
jE—~

7 3 8
i

@onfinue moving ;s towards 7 ¢ which now means stepping rightwards instead
of leftwards)) . If s points to a smaller number than ¢ does, move ;
another step towards ¢. Notice that the condition for continuing to
move s towards ¢ has been reversed.)

LNow 5 points fo a bigger number than 7 does. Swop numbers, pointers,
direction and condition exactly as before:

3 2 7 2 14 13 8
it -1

And so on, swopping if necessary { as already illustrated) untif

3 2 7 9 12 14 13 8

Af which stage it is true to say that every number to the left of ¢ is at
least as small as the number pointed to; every number to the right of ¢ is ot
leask as big. In other words the number pointed fo has found its resting

lace. The numbers to the left of ¢ have not, however, been sorted; nor
ove those fo the right of ¢. But, having described a procedure for
locating a resting place which splits a group into two, it remains only to
sort the groups to the left and right of ¢, starting out in each case in
the manner already described in detail above.

86

Afhe logic is depicted below:

E?ecursion is applicable when a problem can be reduced to an identical
problem s or identical problems <& of smaller size. The recursive proced-
ure must, of course, provide the means of escape when the size of
problem has been reduced enough. In the case of sorting this shoud
be when the procedure is called upon to sort a single item.

[8lere is a Quicksort procedure that may be used in place of the bubble
sort procedure described on the previous double page:

PROCEDURE sort (first, last : sizetype);
VAR
i,j: sizetype; jstep:-1..1; condition: BOOLEAN;
BEGIN

=4 nothing fo sort

1IF first < last ; SUBSTITUTE
THEN wnless first<last) & boneenuee
BEGIN IN THE PROGRAM
1:= first; j:= last; ON 77‘7’6'3?&‘1//0(,61
jstep := -1; DOUBLE MGE
condition := TRUE;
REPEAT

IF condition = (letters(pointers[i1] > letters] pointers[j11)

Tﬂgg GIN _g—3 effeclively swao dems

swop (pointers[il, pointers[j1);
SWoD (1,]); =200 pa)
jstep i= = jstep; ~=3_reverse dircction)
condition := NOT conditio
_ENDs
Ji=] + jstep
UNTIL J=13%
sort (first, i-~1); <& jrecursive
sort (i+1, last) < iwvocations

END { if first< lost} .
END; {sortt] e%‘gzseoéﬂoﬁ"/ﬂg

[Notice how the condition is switched between <=and >. The logical
expression: (letters[pointers[il <= letters[pointers]j11) fakes the valve Zrve
or false. This valve is compared with the Boolean valve stored in the
variable named condition which is made alternately frue and false by NOT.

Bvery time the procedure invokes itself the computer has to store away
values of its parameters and local variables for possible re-use on return as
illustrated by a simpler example of recursion on page 65. In the above
example it would be possible fo make jstgo and condjtion global, and
so save storage space. Bul with problems the size of those
illustrated in this book it would be silly to do so.

87

A BALANCE BETWEEN SPEED AND SPACE
& SOME COMPILERS PACK AUTOMATICALLY & REGARDLESS)

& Boolean volue needs only a single bit {<.e. binary digit) for represent-
ation [J; @ character typically requires four bits [[[]; an integer 16 or

32 bits | [[| 1. But the unit of storage in a
compuler i1s its wora/. The size of this word is dependent on the make
and model of computer, 32 bits being typical. It follows that storing

Boolean values and characters { perhaps even integers) one per word
is wasteful of space.

[\n Pascal the word PACKED in the definition of an array (or record)
gives the compiler permission to pack information more tightly than
one item per word, Ffor example:

PACKED ARRAY [1..32768] OF BOOLEAN

might result in the compiler packing the components of this array
thirty-two to the word, making something feasible that would other-
wise be infeasible. @ Some modern compilers pack automatically o))

ﬁ?he price to be paid for saving space is slower retrieval during execution.

8pace and speed on some systems may be balanced by packing select-
ively; say by working on an unpacked array, then copying its
contents into a packed array for storage. Procedures PAck and
UNPACK are provided by Pascal for such purposes.

o ‘
pack (loose, s, tight) [5] }/[:1\‘ I
~ N WO [s+1] A1)
name suoscr,
an unpacked)(of "loose [s+2] -] [3] fm
bypiesty T tige
e N
[s+last-1] ~—1 [last] T~
§2
uNPack (tight, loose, 5) (11 idF [s]
Don't use a component of a packed [2] _\[sH]
array as a parameter ofF a proceaure tiaht Toose
or function; it may not work 9
X 1= SQR(/00se[37) {0.k.} [last] [-] _[s+last-]
y := SeR(Light[3]) ﬁ‘% S

Below are two typical invocations of these standard procedures :
VAR prolix : ARRAY [{..10@0] OF CHAR3
pith: PACKED ARRAY [1..10p0] OF CHAR;

r— ——t®

PACK (prolix, 1, pith);
UNPACK (pith, prolix, 1)

88

INTRODWCINCYS TRINCS It oArie

A string constant comprises characters enclosed between apostrophes.
An apostrophe which is to become part of a string must be written as a
pair of apostrophes :

[wrmeLN('Ooh!', "It"'s cld!") | B> FOOh! It's cold!

Bor a Xring variable standard Pascal makes do with a PACKED ARRAY [] OF cHAR:
[VAR shiver: PACKED ARRAY [i..1] OF CHAR|EA> shiver []

1 10

@fring constants may be assigned to string variables :

shiver := 'It''s cold!' 's cold!
WRITELN ('Ooh! *,shiver) > Ooh! It's

[But in standard Pascal the assignment is allowed only if the conskant has the
same number of characters as the packed array:

shiver := 'Ooh!'
shiver :=

MANY MODERN PASCAL
COMPILERS RELAX THIS RESTRIC-
TION OF EQUAL LENGTH

@omparison of strings is allowable provided that the number of characters
is the same (n each. Any comparator =, <>, >= efc.) may be applied:

WRITELN (shiver = 'Ooh!{!11"); >
WRITELN (shiver > 'Ooh!"); w

?he basis of comparison is ordinal valve. Characters are compared from
the left of each string until a mismatch is found. The string in which
this mismatching character has the greater ordinal value is considered

the greater string. No mismalching character implies the equality of
strings :

a' < 'b' 'abecz' < 'abda' 'abcdef' = 'abcdef

[}
troe, troe, true,
ORD('a") < ORD('b") OrD('c") < ORD('d") 7o mismalch

E;(cepf for the properties of sequences '¢' fo '9', 'A' to 'Z' and 'a' to '2'
defined by Pascal the ordinal values of characters depend on the
character set on the particular installation; typically Ascit.

ﬂndivu’dual characters of a string variable may be manipulated :

FORi :=1 TO 5 DO
C/shiver[i-l-S] := shiver [1]; l;{>
WRITELN (shiver) 0o

but not all Pascals allow components of packed arrays (see opposite) fo be
used as paramefers of procedures: WRITE (shiver [i1), for example, might
have to be recast as: ch:=shiver[i]; WRITE (ch).

5oh 0000h

ﬁ"hese facilities, although limited, are enough for constructing a set of
powerful string-handling procedures as demonstrated in chapter 13.

89

PARLOWR LTRICHY

[Amaze your friends. Write down a long
multiplication such as this; then start writing
down the answer, digit by digit, from right to
left, carrying all the working in a cool head .

‘I?he trick is mentally to reverse the bottom number,
mentally shunting it leftwards past the top number. At
each shunt multiply only the digils lying beneath one
another, summing the ucts. Write down the last
digit of this sum and carry the rest into the nextshunt.
The entire process is depicted down the right of the page.

"l?o see how it works, consider each number as a
polynomial in 10. In every shunted position the
products of terms lying one above the other yield
the same power of 0. furthermore these terms
are the anly terms in the same power of 10 § but
not forgetting the carry from above).

7x 10!l + 5x10°
8 x 10! + 3x10%

4x100 + 6x 10t +
9 x 10° +

54 < 100 + 56x10% + 15 x 10°

e.g. all the terms in 102 I~

Q?he program opposite aufomates the method of
multiplication described above. It can cope with
any reasonable length of multiplication by
adjusting the constants Zermlimit and prodlimit.
As set opposite, the program can multiply terms
as long as 20 digits giving a product as longas
40 digits.

o use the progrom type two terms separated
by an asterisk and terminatea by an equals
sign. Then press .

7711111111 1111 1111%200000000000,

!
2 22222222%2222221220000000000000000, ogg°o=

90

ILUSTRATING THE MANIPULATION
OF STRINGS AS ARRAYS

BN 46715

x 289

l4]e[7]5
9]|8[3]

Ex9 = 45 wr/tc.,@
Qarr

l4Iel715
918[3

A
5x8 = 40
7x9 = 63

FJ’;M
r

AAKE
9[8[3

10

13
7x3= 21
6x8= 48

4x9= 36
o write
118

416]715]

lo[8]3

11
6x3= 8
4x8= 32

6 1—_write (D)
arn

416]7]5]
EIEE

[
12
T8 __write (8

%@

4x3=

read
result

PROGRAM parlour (INPUT, OUTPUT);

CONST
termlimit = 20, prodlimit = 44;
TYPE
termspan = @..termlimit;
prodspan = @.. prodlimit;
termtype = PACKED ARRAY [termspan] OF CHAR;
prodtype = PACKED ARRAY [prodspan] OF CHAR;
VAR

a, b :termtype; c: prodtype; sum, offset: INTEGER;
no, nb: termspan; i, k: prodspan;

PROCEDURE backhand (VAR x: termtype; VAR count: termspan);

VAR
i : INTEGER; buffer: termtype;
55‘;'1 5 ‘backhana’ does 3 things
REPEAT (/) reads a term wnlo a buffer:
READ (buffer [i1)3 (26 [7]5 [*]3
i = succ(i) 1 2 3 4

UNTIL (buffer [1:—1] ='x") Vs
OR (buffer [i-11="'="); (1) counts dligits from 6
?g: ni = ; 1-6 count DO (i) reverses digits info x[]
x [i] := buffer [count -i] tl4 6]7]5]

3219

END; { backhand }
BEGIN { parlour }

backhand (a, na);
backhand (b, nb);
sum = @3

offset := ORD('®');

32
a>3aje]7

FOR k:=@¢ T0 nat+nb DO

BEGIN
FOR 1i:= @ TO k DO

IF (i<=na) AND ((k-i)<=nb)

THEN

sum := sum+ (ORD(alil)-offset) * (ORD (b[k-11)-offset);

c[k] := CHR(sum MOD 10 + offset);

sum = sum DIV 10

END: “' 4 but sypress any,
- 7 “leading zero
c[na+ nb+1] = CHR(sum + offset);
1IF sum= @ THEN i:= na+nb ELSE i:= na+nb+1;
FOR k := 1 DOWNTO @ DO

WRITE (¢ Lkl);
WRITELN

END. { parlour}

o1

MORE MANIPULATION OF STRINGS
m AS ARRAYS OF CHARACTERS
ﬂ decimal @ base 10) number is a polynomial in ten as emphasized on
the previous page. Similarly a Aer number ¢ base 16) is a polynomial
in sixteen, an ocfal number { base 8) a polynomial in eight, and so
on. In general, a number to base & is a polynomial in b and & digils

are required to express it. For digits bigger than 9, capital letters are
pressed into service; letters A toV cope with bases up to base 32.

¢l23456'789ABCDEFGH1JKLMNOPORSTUXl
t+— » 16
binary petal
decimal base 16, hex
>) » base 32

Tl

[n the following program characters ‘@ to'V' are held as a string constant
{refconst) which is assigned to a packed array of characters named refstring.
This array is used in fwo ways. Given a character representing a digit

@ say a #ex digit) the corresponding numerical value may be found by
matching the digit against each character in turn, the array subscript
indicating ordinal value when a match is found. Conversely, by using
the ordinal value as an array subscript the corresponding character may
be picked oul without need of a search.

e above principles are employed in procedures find and outdigit
respectively. Unfortunately some Pascals forbid assignment of a string
constant to an array of the type: ﬁ%

PACKED ARRAY [@#..31] OF CHAR

insisting that the lower bound be always unity, e.g. [1..32]. The
array subscript therefore cannot express ordinal value directly but has
to be offset by 1. Not nice.

ﬁfhe program s designed fo read a number expressed relative fo one
base and write the same number expressed to another base. For
example if the program were given :

it would convert the 112D from hex to octal and display 10455.

L‘1:|:'he program first looks up the ordinal values of digits D, 2, 1,1 and
evaluates a polynomial in 16 :

13 x16° + 2x16! + {x162 + {x 163 = 4397
NS Zorresponds to D

The looking up is done by procedure find and the polynomial is evaluated
by procedure decimal. Notice that Finc returns -1 if unable to finda
match within the range of the current base. If decimal receives -1

from find it returns a zero result to the main program.

92

PROGRAM bases(INPUT, OUTPUT);
‘refeonst’ 15 assigned (o
CONST refconst 9"
stringlength = 32; refstring’ in the main program
refconst = '012345678 9ABCDEFGHIJKLMNOPQRSTUV' 3

TYPE
stringrange = 1..stringlength;
stringtype = PACKED ARRAY [stringronge] OF CHAR;
basetype = 2..32;
number = @..MAXINT;

VAR
instrin%], outstring, refstring : stringtype;
inlength, outlength: stringrange;

ch: CHAR; dec, 1 : number;
basenow, baserequired : basetype;

FUNCTION find(ch: CHAR; base: basetype) : INTEGER;
VAR
found: BOOLEAN; i: number;
BEGIN
i = 1;
REPEAT
found := (ch= refstring[il);
IF NOT found THEN i:= Succ(i)
UNTIL found OR (i > base);

1F found
HEN find = it NGO
ELS ind = -1 .
END; of grven base

FUNCTION decimal (string: stringtype; length: stringrange;
base: basetype) : INTEGER;

VAR
digit, power : INTEGER; n: number;
i: stringrange; silly: BOOLEAN;
BEGIN
n := ®; silly := FALSE; power := 1;
FOR i:= length DOWNTO 1 DO

BEGIN
digit := find (string[i], base);
IF digit < 0
THEN
EL;EHY = TRUE 2.g. I base = /6
then ‘power’ goes
BEGIN 1, 16, /6%, /65...
n:= n + digit * power; P
power := power * bose
END
END;s

IF silly THEN decimal :» ¢
ELSE decimal :=n
ED;

contined overleafl

93

INUNBERIBRSISECLCRD

Gfo convert the intermediate decimal valve 8)4397

to a number expressed to a new base the 8 9 rem 5
program keeps dividing by the new base, 8) 68 rem 5
taking note of the remainders. The re- 8) 8 rem 4
mainders are the ordinal values of the 8)1 rem O
result in reverse order. 0 rem {
"Phe ordinal valves 10435 are looked up in

the array of characters to give the digits of

the resul¥. These are 10455 == apparently not 32) 4397

worth “looking up”. ButIf the required base 32) 137 rem {3
were to be 32 the ordinal values would be 32 rem 9
4, 9, 13. Looking these up in the array o rem 4

would give 49D.

@onversion fo the required base is performed by procedure outdigit .
Recursion is used fo solve the problem of digirs being computed in reverse orcer.

]

PROCEDURE outdigit (n:number; base: basetype)3

SR S, S

VAR

m: number; c: CHAR; “look up " digit

&g 8 gives 8

BEGIN 7 1 %/m D

m := n DIV base;

¢ := refstring [1+ (n MOD base)] ;

IF m<>

THEN recursion fo write

outdiqit (m, base); digils in reverse order

WRITE(¢)

END

READLN (basenow, baserequired);

BEGIN { PROGRAM}
16 8
refstring := refconst; weur A7) ”205
=i 1043
REPEAT ourevr A7
READ(ch);
instring[i] := ch; .55 8 16
j = SUCC(i) 19
UNTIL ch = '"'; 112b
inlength := i -2;

dec

:= decimal (instring, inlength, basenow);

outdigit (dec, baserequired);
WRITELN

END.

94

AT RIXQMOLTAPLACATAONI v A

q} PRODUCT
here are three sales people selling four 11 21 31 4l
roducts. Quantities sold are tabulaled A 5Tz oo
in table A. o> S Te e Ts
1] 2] SyM,[20[0 [0 [0
50] 0.0
B g Eé' é,:ﬁ 0.40 <&flable B shows the price of each product and
S [s [500[T.00 the commission earned for selling each item.
¥ [4.[2.00[050
L4 m'c[co;w— fifthe money brought in is calculated as follows:
SN oF[1 5150 + 26280+ O¥500+0¥200 = 33.0
a3 @2 3#150 + 54280+ 2¥5.00+ 5%2.00 = 38.50
And the commissions SE [3 29150 + 0¥2.80+ 0*5.00+ 0%2.00 = 30,00

earned as follows:

X1 5%0.20 + 2% 0.40 + 0%1.004 10%050 = 6.80 Whis computation is

"30 » P
§E[2 3%020 + 5% 040 + 251.004 51050 = 7-10 ;}Zﬂgﬁ;’;”,’gﬁ;
”Q [3 20x*x 0-:20 + [oR 3 0:40 + 0*1.00 + 0% 0.50 = A-OO besr Sel’ouf f‘hUSl
11 2] 31 4] 11 2] 11 2]
A[1,| 5 2 o 10 Bl1,| 15 o cl1,]| 310 68
Al2,] 3 5 2 5| X B[2 |28 040 = cl2,]3850 110
A[3, |20 0 o o© B[3,|500 100 c[3,]30.00 4.00
8 [4, | 200 050

and the result has

the number of colvmns o
of A must be the same as Jo.(the number of) ,¢' (asmany rows as A

rows of B)° (& as many colvmng asB

mere is a program fo input data for matrices A& B, multiply them together,
then display their product, matrix ¢ :

PROGRAM sales (INPUT, OUTPUT);

TYPE
otype = ARRAY [1..3, {..4] OF INTEGER;
btype = ARRAY [1..4, t..2] OF REAL;
ctype = ARRAY [{..3, 1..2] OF REAL}

VAR
a: atype; b:btype; c: ctype; n,i,j,k: INTEGER;

BEGIN
FOR n:= { TO 3 DO
READLN (a[n, 11, al[n,2], aln,33,aln,41);
FOR n:= 1 TO 4 DO
READLN(b[n, 1], bLn, 2])3
FOR 1:= 1 TO 2 DO
FOR j:= 1 TO 3 DO
BEGIN |
cl[i,]] = 03
CFOR k:==1 TO 4 DO
clj,il=cl[j,il+ a[j,klxblk,il;
END;
FOR n:= 1§ TO 3 DO WRITELN(c[n,1]:8:2, c[n,2]:8:2)
END.

lry this with
the valves
inA&B
above

95

CONRFORMANTIARRAYAPARAMET ERS 20

“fhe program on the previous page could be recast by parcelling the
matrix multiplication as a procedure:

PROCEDURE matmul (VAR p: atype; VAR g: btype; VAR r:ctype);

VAR
iy J, k : INTEGER; although péq are not altered by
BEGIN this procedure, parameters which

FOR i :={ TO 2 DO

are names of arrays should always
FOR j = { TO 3 DO

be VAR parameters; otherwise the

BEGIN | ogram has to take copies of the
rlj,1] = &; arrays on each invocation. N8!

COR k := 1 'l"q 4 DO
ENDr[j,i] = r[f,il+pLj,kl*qlk,i]
END;

Ehe main progrom then simplifies to:

BEGIN { PROGRAM }
FOR n:=] TO 3 DO
READLN (aln,t], aln,2], a[n, 3], aln,al);
FOR n:=1 TO 4 DO

READLN (b[n,1], bln,2]) invoke the procedure
matmul Ca, b, ¢); for arrays a,b,c

FOR n:=1T0 3 DO WRITELIN(cIn,11:8:2, cln,21:8:2)
END.

Ehis is fine provided that the ranges of ¢, j and £ in the FOR loops of
matmul conform to the dimensions of arrays of afype, blype and ctype
as declared in the TYPE section of the main program:

ARRAY[1..3, 1.4] OF INTEGER;
ARRAY [1..4, [..2] OF REALs
ARRAY [1..3, 1..2] OF REAL

— —— g

btype
ctype

[|

But if circumstances made the programmer expaond the dimensions of
these array-types then the programmer would have to change the ranges
of ¢, 7, k in the FOR loops of matmul, making them conform to the
new dimensions. A potential source of trouble.

(A partial solution to the problem has been specified in Pasaal to Bsé192.
When using arrays as parameters { such as p, g,7 in matmul)) the idea is
to declare them as conformant arrays. A conformant array is one that
conforms m dimensionality and in its type of component with the type of
of an array declared in an outer block s= typically in the TYPE seclion of
the main program. The programmer tells the Pascal compiler that an
array is conformart by specifying conformant array parameters. At
the top of the opposite page is the matmul procedure rewrilten so as
fo contain conformant array parameters.

96

ppeciclon; o comnj)
PROCEDURE matmul (VAR p: ARRAY [1..rp:INTEGER; {..cp: INTEGER JOF INTEGER;

VAR q: ARRAY [1..cp:INTEGER; {..cq: INTEGER] OF REAL;
VAR r:ARRAY [1..rp:INTEGER; I..cq: INTEGER] OF REAL);

VAR 1i,j,k: INTEGER;

this (s a conformant array parameter s I (S
BEGIN the conformant array which mut “conform” in
FOR i:=1 TO cq DO dimensionality and component-type and state
FOR j:= 1 TO rp DO [of packing with any array nominated as
BEGIN an actual parameter
rlj,il:=0;
FOR k:=1 T0 cp DO
rlj,i1:=r[3,11+p[j,kI*qlk,i]
END
END;

r'l:l"he invocation of matmul remains exactly as before:
r matmul (a, b,c)3

To how is matmul to know the values for cg, rp and cp? That is the clever
bit. Conformant array parameters provide enough information for matmul
o peep at the declarations of these arrays in the invoking program. Here
it is pictorially for array p when the progrom invokes matmul with

actual parameter a :

[Provided that arrays p and a are conformant @ both two-dimensional;
both with components of type INTEGER; both unpacked) each name such
0s rp becomes associated with a dimension such as 3.

(@onformant array parameters do not provide dynamic array bounds, only
the ability to pick up automatically the fixed dimensions declared in
the original TYPE declaration. A complicated focility for achieving
litle. Few Pascals provide conformant array parameters.

Dynamu'c array bounds of limited scope may be simulated by declaring
oversized arrays and making parameters of the current dimensions.
The following fragments of program should convey the idea:

[TWPE_otype = ARRAY [.20, 1.2013) <4 overaized dectarations)
| PROCEDURE matmul(p:atype; q: btype; r:ctype; i,j,k: INTEGER)Q
I matmul(va,b,c,z,:ﬁ,l;-);z W

@onformanr array parometers would enable matmul to tell only that the
maximum allowable dimensions were 20. BREATHE... ouT!

97

EXERCAISES

ﬂo [mplement bubbles with the constant named sizetype set fo
a more challenging size than 30 s say 100 or 150. Then
take some timings:

o when the input sequence is made random by
stabbing at the keyboard without trying to
make a pattern

e when the input sequence is generally sorted:
AAAABBCCCCCCDDE ...
but with the occasional letter oul of sequence:

vo EZFFFGGGG...
W

89 [Repeat the exercise using Quicksort page 87) in place of
bubble sort { page 85) . What conclusions do you draw from
the results ?

30 @sing program bases as a model, develop specific pro-
cedures for:
e converting from hex to cec/mal

e converting from decimal to hex

By removing the generality from bases you should end up
with two short, elegant and useful procedures.

@q ﬂf you are familiar with matrix algebra develop a set
of procedures like matmul for addition, transposition
and (a challenge) inversion. Use parameters for current
dimensions as described at the bottom of the previous

page.

o8

9

RECORDS

INTRODUCING RECORDS

SYNTAX OF RECORDS

PERSONNEL RECORDS ({ EXAMPLE))
THE W/7H STATEMENT

INTRODUCING VARIANTS

ANTRODWCINCYRECORDSE A A0

Whereas an array is an arrangement of components of identical type, a
recara is an arrangement of components generally of different type .

Compare the following type of array: = Tintotye”
TYPE

nametype = PACKED ARRAY [1..161OF CHARs| ([20[.....
infotype = ARRAY [1..31 OF nametype;

S W

A2 4 180) 3 3

an array of packed arrays

with this type of record : =

TYPE
nametype = PACKED ARRAY [1..10] OF CHAR; ssurname []
detail ‘pg = “forename [, .. . 1]
RECO .
surname, forename : nametype; age []
age: 18..65; ‘grade []
grade: (jr, or, exec) a record having various
END types of field
Just as variables may be whole arrays:
VAR ar
o, b: infotype; afs]

variable a variable b

so may variables be whole records :

VAR Qf-sumame[:|
. : . g-forename [] rforename[1
q, r: detailtype; (9.9 O .age [
q.grade[] r.grade[]
variable g variable r

Luch as components of arrays are addressed by subscripts § in square brackets):

alt] [iTber fore]

brzjWilberForel

the components of records are addressed by feld name § ofter a full sfop):
g-surname I Eerfore]

(q-0gez2]) (qgrode[ir]

IIl"he sketches illustrate records which have components of various types
including packed arrays. Conversely, the components of an array may be
records. The only restriction fo the mixture of types in arrays and records
concerns arrays: n any one arroy all components must be of the same
type. An example of an array of records is:

alil := 'Wilberforc'; bl2] := a[1];

q.surname := 'Wilberfore';

q-age := 22; q-.grade := jr;
r. forename := q.surname;

ZA'people’ /s now an

VAR people: ARRAY [(..100] OF detailtype Z;fgg”;:ztggmrds

100

SYNTAXQOFIRECORDS

e syntax of record type excluding variants which are explained later)is:
/\A /.‘

PACKED RECORD W: Lype 3" END
(without variants ") \Wﬁ%
perm

ilte
T

'ﬁ'he syntax for referring to a component of a record is:

which is a record esting

Whereas arrays are manipulated by means of subscripts, records are manip-
ulated by means of field names which are analogous fo subscripts. But
there is an important exception; a copy of the entire content of one record
may be assigned fo another of the same Lype in a single operation:

name of a g name = name < jname of a record fyfg/ﬁ
recorg, of the same type | BIGIT

where *same type” means a type with the same name; a type with the same
specification is not enough. A similar requirement applying to the entire
assignment of arrays is illustrated on page 81.

name &fa field of
e specifred record

?he word PACKED in front of RECORD implies the same thing as it does in
front of ARRAY. A packed record occupies less space than the corres-
ponding unpacked record at the cost of slower retrieval during execution.
The procedures PACk and UNPACK { page 88) are nob applicable to records;
only to arrays.

ﬂn any one type of record s» including all records that may be nested
within it s every field name must be unique. Field names in different
types of record, however, may be identical withoul causing interference;

TYPE [TTvPE

rectypel = rectype3 =
RECORD RECORD
Z,Y, X, W REAL; n:CHAR;
arf.3 V,W, X
END; %% END;
rectype2 = rectypes4 =
RECORD RECORD

U, Vv, w, x: CHAR;
b : (eeny, meany)
END;
P

%g:
ENDs

101

PERSOANELIRECOR DS §/ 31 ¥

”l_.—lbhis program prompts for an employee's surname,
forename, age and executive grade. Terminate
every answer by pressing the retuen key. When
there are no more records the program sorts all
given records by each of four sorting keys :

2 (YIN): Y .
! =10 chars):HAIG
gfjrmmgz(&i 10chars): JORN

Foresip toe2) 12y exec
ae’?

)Y ‘
re? (1% =10chars): DAVIS
Morname 9£<= tOgﬂars): SAMUE
5 565)" .
/F‘ogegig"g(ﬁ?z, s;g, £XEQ) IR
G ?

% "l]'here are minimal checks on data. A

grade other than JR, SR or EXEC is treated
as JR by default; a response fo More?
other than Y implies N; other errors ({such
as a name longer than 10 lefters) are
trapped by the Pascal processor.

7Y/

e surname { alphabetical order)

o forename (alphabetical order)

* age { ascending numerical order)

grade {ascending ordinal valve: JR, SR,EXEC))

ouTPUT

L 64 Junior
DAVIS %mys 40 Executive
AlG

CFEE oy 4O Executive

6 .
g:\ilﬁ SAMUEL 64 Junior
KEEX .

OHN 40 Exec:utl\/e
A ‘éAMUEL 64 Junior

a9¢) e example shown here assumes a

DA\/IS)
*m’;s SAMPEL 64 Junior 2 Pascal processor that can be used inter-
3,”6 JORN 40 Executivg(gradef gctively. Chapter 1 describes some

of the potential hiccups caused by
interactive input.

'i?he allowable length of name and allowable number of records are set into
constants for ease of adjustment. The type of personnel record is that
already illustrated and depicted again below. Associated with its fields
{ surname, forename, age and gracte)) are elements of an enumeroted
keytype @ lastname, firstname, decrepitude and clovt)) . This is used in
the sorting procedure for locating the appropriate sorting key. The
personnel records are stored in array a; associated pointers are stored
in array p. The pointers are used for sorting as explained on page 84 .

I}’]ere are the declarations:
PROGRAM personnel (INPUT, OUTPUT);

CONST namelength=1@; listlength=3¢; space=" "3

TYPE nameltype= PACKED ARRAY [{..namelength] OF CHAR;

detailtype = '

RECORD ~surname []
surname, forename: nametype; “forename | |
0983 18 n: 65; ’ R
grace: (jr, sr, exec)

END

indextype = 0..listlength;
keytype = (lastname, firstname, decrepitude, clout);

ordertype = (gt, eq);

102

s Aarfay of
personnel recards

<& pointers for sorting

<A counl oF recarch)

VAR a: ARRAY [indextype] OF detailtype;
p: ARRAY [indextypel OF indextype;

key : keytype;
count : indextype;

~—

4¢'he main program is shown overleaf. -
The main program (A) invokes the HERARCHY | (A) main program

input procedure (B), then invokes ss four r——r
times each s the sorting procedure (¢)

and listing procedure (D). The input (B)inputter| (@ sort| | (D) list
procedure (B) invokes a special proced- *+
u:;et (E) Fcf)r alccepfing a af?'ngdof c(h%r l I—} «
aclers; it also invokes a function (F

festing the equality of two strings. The |(E) accept | [(F) order| \ 20w
sorting procedure (€) also invokes func-

hon (F) to test whether one string is “greater” than another. To avoid using the
FORWARD directive these subprograms should be arranged such that (€) and (F)
precede (B), that (F) also precedes (¢). The main program (A) must come last.

Whis is the procedure (E) for accepting data from the keyboard:
PROCEDURE accept (VAR linebuf : nametype);

V [2 .o h‘ : Rs
AR i: 0..namelengths ch: CHAR; AT line bufFer
BEGIN wrth spaces

FOR i:=1 TO namelength DO linebuf[1]:= space;
(7~ REPEAT READ(linebuf [11) UNTIL linebuflil <> space;

i:=13 ; - .
WHILE NOT EOLN DO N/t character, N ’9’?;65"”"”9
BEGIN
i o= 14+1; £ continve from
READ (linebuf [il1); linebuf[27
END;
READLN:

ENDs

[plere is the function (F) for comparing strings for equality or relative order :

FUNCTION order (c: ordertype; a,b: nametype): BOOLEAN;
VAR i: @..namelength; ci,c2, null: CHAR;

BEGIN ~F an (nvisible character
1:= 03 null:= CHR(®); with lower ordinal valve
REPEAT than any letter or digit

i= 1413 [constant
IF ali]l = space THEN cl:=null ELSE cl:=alil;
IF blil = space THEN c2:=null ELSE c2:= b[il;
UNTIL ((i=namelength) OR (ci1<>¢c2))OR ((cl=null) AND (c2=null))s
CASE ¢ OF
gt: order := (¢cl> ¢c2);
eq: order := (ci=¢c2)
END { cast}
END;

"‘MM—W—WW
103

PERSONAEL R,Eﬁakbs ((co/mwzo)

Whe sorting procedure (c) employs the bubble technique explained
earlier but adapted to cope with different sorting keys. Each key
signifies a different criterion for ordering. Differences are resolved by a
case statement having a structure similar to that of the personnel record.

P e s’ - WMM
PROCEDURE sort (n:indextype; k: keytype);

VAR s, sorted: BOOLEAN; i, tempry: indextype;
BEGIN
IF n>1 THEN
BEGIN
sorted := TRUE 3

FOR i L T It DO Laignifies which of the four
CASE k OF keys is to be sorted

lastname :
s := order (gt, alplill.surname, al pli+1]l.surname);
keys firstname:
s := order (gt,al pLill. forename, alpli+11].forename);
decrepitude :

s:= alplill.age > alpli+i1l.age;

a5
clout:

ordinal > 5 = ORD (al plill. grade) > ORD(alpli+131. grade)

key ;7 END; { cASE]

BEGIN
sorted := FALSE} .
tempry i= PLil; “
plil := pLi+1];
ENSIIH] = tempry recursive
END; { FOR i } /‘ invocation

IF NOT sorted THEN sort(n-t, k)
END {IFn>1}
END;

“'he listing procedure (D) is straight forward:

PROCEDURE list (n: indextype);
VAR i:indextype;
BEGIN
FOR i := 1 TO n DO
BEGIN {FOR i}
WRITE (al pliJ1. surname , space)};
WRITE (alplill.forename » Space);
WRITE Calpllll.age:3, space);
CASE alplill.grade OF
jr: WRITELN ('Junior')s
sr: WRITELN ('Senior*);
exec: WRITELN('Executive')
END {cASE }
END {FOR i}
END;

MM}‘NWM‘NMM‘

3. surname
-forename [T0STAH

J.age (193] sxamee
1. grade [jr]

remember you cannol
WRITE A comporent of
enumerated type; hence
the CASE statement

104

Despi%e a lamentable lack of checks, the input procedure (B) is the most
tedious to write . Input procedures in any language become so.

ﬂf your program gefs the hiccups, asking for data it has already been
given { see chapter 11), the remedy is to remove all the prompts and set
Up a file of input data. Consult your local manual about typing,
editing and saving an input file fo be read by a Pascal program.

PROCEDURE inputter (VAR n: indextype)3

VAR indicator: CHAR; <=9 indicator |Y| for Yes

string: nametype;
buffer: detoiltyp,e;

BEGIN buffer,surname .]
ni= 6 buffer.forename [., 1]
REPEAT buffer.age] 18..65

WRITE ('More? (Y/N): ‘)3

READLN (indicator)3 buffer.grade [__] (%, SReXE0)

IF indicator = 'Y’
THEN
BEGIN
n:=n+i;
plnl := n;

WRITE ('Surname ? (<= {@chars) : ')3

accept (string); buffer.surname := string;
WRITE ('Forename ? (<= 1@ chars) : ');

accept (string); buffer. forename := string;
WRITE('Age? (18toe5): ');

READLN (buffer. age);

WRITE ('Grade ? (JR, SR, EXEC) : ')}

buffer. ?rode = jr;

accept (string);
IF order (eq, string, 'EXEC ') THEN buffer.grade := exec;
IF order(eq, string, 'SR ') THEN buffer.grade:= sr,

Na [nl = buffer &4 entire assignment of récord
ELE‘EE D ‘buffer' to component 'alnl’

IF indicator ='N' THEN WRITELN ('Normal ending')
ELSE WRITELN ('Abnormal ending');
UNTIL indicator <>'Y';
ENDj; {inputter}

P A e et e et Ottt
i ~—

l'_l.?he main program (A) is simple:
P

BEGIN
i . MAIN
inputter (count)3
FOR key := lastname TO clout DO
v

BEGIN
sort (count, key);
list (count)s
WRITELN (' *xxxx"')
END

END. {PROGRAM}

cycles all four
fields of the

105

SAVING TIME AND
[T HERWIITILES TATEMENT g 7A
”
[otice the repetition of a[p[iJ]. in fhe listing procedure on page 104 .

The thing that most distinguishes one line from the next is the field-
name following the full stop.

WRITE Calplill. surname;
WRITE Calplill. forename
WRITE (alp[i]l. age
CASE alp[ill.qgrade

he witH statement is designed to supply a single specified record name

as far as the full stop) so that statements such as those shown above
moy be reduced to their distinguishing features. Here are the state-
ments again, but in full and using WITH.

WITH alpli]l
BEGIN
WRITE (surname, space);

WRITE (forename, spoce) ;
WRITE Cage :3, space);
CASE (grade) OF

[END {wiTh}

the WITH applies to
all Reld-names

Within the compound
statement following

“‘“: 5 the wWiTH ... DO

"l?he syatax of the witH skatement is:

Note : “DO" does not
signify *ditlo” as

WITH _ variable DO statement it does in FOR and
\Q/ WHILE [00ps

where :
e.g. al plil]
¢.9. nest.field1. field2
also 1 explained in
chapter 12

?he declarations below are needed by the programs opposite which demon -
strate the implications of a wiTH statement in the context of a nested record:

TY|’r’v§s,ttype = RECORD neSt field1 fieldz

fieldi : RECORD
field2 : RECORD
field3 : ROOLEAN
END

variable := name

L

e7QMeE

END
END3
VAR

nest : nesttype; ,

106

q}he first demonstration below shows that the With statement may be made
to reach any level of nesting { does a nest have “levels*? “Layers" would mix
the metaphor less bul "levels" is the accepted term):

PROGRAM nesting (OUTPUT);
place TYPE and VAR declaralions here
BEGIN
nest. field1. field2. field3 := TRUE;
WITH nest. fieldi. field2 DO WRITELN (field3);
WITH nest.field! DO WRITELN (field2. field3);
WITH nest DO WRITELN (field1. field?. field3)

| END.

"Phe next demonstration illustrates nested WiTH statements reflecting the
structure of the nested record:

PROGRAM nesting2(OUTPUT);
place TYPE and VAR declarations here

BEGIN
nest. field1. field?2.field3 := TRUE;
WITH nest DO

WITH fieldl Do
WITH field2 DO
WRITELN (field3)

END.

lﬂ]he third demonstration is to illustrate the

implication of using commas in place of WITH w Do
full stops. This syntax appears to imply the
option of nominating more than one type of

record. Bul this would be impossible because

the compiler could not then know to which record each field-name belonged
{recall that several records moy use the same name for distinct fields). The
commas are no more than alternatives to full stops. Compare the
following program with the program at the top of this page.

PROGRAM nesting3 (OUTPUT);

place TYPE and VAR declarations here

BEGIN
nest. field1. field2.field3 := TRUE;
WITH nest, field, field2 DO WRITELN (field3);
WITH nest, fieldl DO WRITELN(field2. field3);
WITH nest DO WRITELN(field{. field2. field3)
END.

‘!—f'he comma notation works only after WiTH; do not fry:
WITH nest Do WRITELN (fieldi,field2, field3);

and do not permute:
WITH field?2, nest, field1 DO WRITELN (field3);

=3

107

IATRODUCING W SHARING SPACE ON

Gonsider a program for managing a car-sharing scheme devised tfo
soften the impact of a bus or rail strike. The following record might occur:

PROGRAM carshare (INPUT, OUTPUT);
TYPE
modetype = (foot, pushbike, motorbike, car);

gotype = RECORD
surname: PACKED ARRAY [1..10] OF CHAR;
initial: CHAR;

mode: modetype; *surnaime |
year: 1300.. {990 ; -initial (]
sidecar: BOOLEAN; smode []
mpg: REAL; year (]
seats: {..6 -sidecar _]
END; -mpg
VAR -seats (]
person: gotype; people: ARRAY [1..100] OF gotype;
i:1..100;

?his record must be filled in carefully because not all fields are relevant
to every case; a pedestrian, for example, has no mpg or seats. 1t is
the item in the mode field that determines which subsequent fields are
relevant fo each case. So a CASE statement is appropriate to filling
in or printing records. For example :

WITH people[i]l DO
BEGIN
WRITELN (initial, surname: 11);
CASE mode OF
foot, pushbike : %
motorbike: BEGIN WRITE ('Bike made in ', year);
IF sidecar THEN WRITELN (' with room for 1')
ELSE WRITELN(' pillion only*)
END; { motorbike}
car: WRITELN (year:4, mpg:4:1, ' room for', seats-1:2)
END {CASE mode }
END; { WITH}

(s common to all
modes of transport

E}uf there are problems; every record has fo have the capacity to store
every possible arrangement of dafa. Space is wasted; in a proctical
program the wastage could be prodigious. So Pascal provides for a
varigtion_in arrangement from record to record like this:

suname [])(surname[])fsurname[] -surname‘:]
«initial [+nitial [J -initial iinitial [J
-mode [fool] :mode [pushbike] ~mode (moforbike] ‘mode [car]
b‘geYeOfD:J year C_1
.sidecar . ‘
“he part of the record which varies = seaks I

in arrangement is called the pariant. The variant
always comes /ast. The field ¢ in this case -mode)) which discriminates
between variants is called the Zag field.

108

L?o specify a variant a special statement is employed. Ifs name is CASE
but this statement is distinct from the control statement of the same
name. Nevertheless, similarities between the two statements are evident,
Here is a new definition of gotype:

TYPE ~

modetype = (foot, pushbike, motorbike, car);

gotype = RECORD

surname: PACKED ARRAY [1..10] OF CHAR;
initial: CHAR;}

CASE mode : modetype OF

A
foot, pushbike: (") ; null definition

no matching
END A motorbike: (bikeyear:1900..199¢; sidecar: BOOLEAN) ;
car : (year: 1900..1990; mpg: REAL; seats:1..6)

END { RECORD} note "bikeyear * vs. "year”
fo make every field-name
unigue within the réecord,

bhe above defines the type of record depicted
in all its guises at the foot of the opposite page.

&ccess to the newly-defined record is no simpler than it was previously;
indeed it is more complicated because there are now different components
for storing the year of manufacture change WRITE('Bike made in’, year) to
WRITE ('Bike made in', bikeyear) to update the fragment of program opposite).
The conventional CASE statement is still needed to protect pedestrians and
cyclists from being expected to carry passengers.

Afhe syntax of variant is defined recursively as follows:

Y
CASE @ nametwe OF w: (fields @)
where: __@_____,/
fields u= b\-@/l/?m ,zfgpe

moh'ce there is no END fo match CASE. Because the variant must come last it
is deemed to share its END with the END which matches RECORD.

TN T A
G]oh‘ce that (Frelds variant) permits both items to be absent, hence an
empty pair of brackets to signify a null definition of fields { as used in
the example above). Conversely the presence of a wariant introduces a
further CASE, causing variants to become nested. And because Felds in
any variant may be omifted it follows that no restriction on complexity
is imposed by the rule that the variant must come last.

@mifh’ng Frame: implies the absence of a fag field fo discriminate between
variants. Such a record is called a free union { as opposed to a discriminated
uriion when there is a tag field)), A free union allows an item to be stored
under the guise of a character, for example, but retrieved as though it were
an integer s and similarly for other equivalences of type. A free union
designed to peek al pointers § naughty) is given by Grogono along with
appropriate warnings about such practice. See bibliography-

109

ﬂq l]mplement the personnel(program. Improve the program
by defining a more realistic record.

aa Write a Quicksort proceaure to replace the bubble-sort
procedure on page 104. Does it sort the records any faster?
{The scale of this exercise is so small that one sorting
procedure s as good as another. The simpler the better.)

110

19
FILES

INTRODUCING FILES
OPENING FILES

TEXT FILES

WRITE & WRITELN WITH TEXT FILES
PIGE WITH TEXT FILES

READ & READLN WITH TEXT FILES
SAFE READING

GRA8 PROCEDURE FOR SAFE READING
INTRODUCING FILES & PUT & GET
COMPRESSION ({ EXAMPLE)
SUMMARY OF PROPERTIES OF FILES ({ TABLE)

INTRODVCINCYFALES Rttty

?he file named OUTPUT has already been demonstrated. The name OUTPUT is
implied when omitted from a WRITE { or WRITELN) stotement but may be
included if desired:

FYTI
aoa—
_oe® 10)

PROGRAM squares (OUTPUT);
defined later) €°R i< 1 T04 DO
EN
?he file named INPUT has also been demonstrated. The name INPUT is cmplied

oureur
./q a TExT file, VAR i: INTEGER; \NF Ale name 75
BEGIN essential
WRITELN (OUTPUT, 1, SQR(i))
when omitted from a READ, READLN,EOF or EOLN procedure or function but may

where 'TEXT'[S
it 0. TR e Shtival
be included if desired:

PROGRAM anysquares (INPUT, OUTPUT);

X AM
Lowm| e
oureur - .
INPUT _ BEGIN File ralnes essential,
farerr fike) ronge Pease E WRITELN (OUTPUT, 'range please');

% . % READLN (INPUT, §, k)3

FOR i:#j TO k DO~frite name optional
o
o ———__| END.

WRITELN (OUTPUT, 1, SOR(1))
E}esulfs may be sent to files other than the one named outpuT. Each such
file must be nominated in the PrRoGraM statement and its fype declared in
the VAR section. But OUTPUT should always be nominated, if only to pro-
vide a channel for messages = error messages from the Pascal processor
in particular: '

/YL ourPur

PROGRAM filesquares(output, myfile);
VAR {:INTEGER; myfile: TEXT

BEGIN /‘
0.K: REWRITE (myfile); %
FOR i:=1TO4 DO

C WRITELN (myfile, i, sQr{)); —
£ WRITELN (QUTPUT, '0.K.") ggﬁ%
i END.

]?iles other than the file named INPUT may be nominated as sources of data.
Each such file must be nominated in the PROGRAM statement and its fype

ion in the VAR ion:
declaration in fthe VAR section PROGRAM_filecubes(OUTPUT, myfile,yourfile)]

myfile yourfile VAR i,j: INTEGER; myfile,yourfile: TEXT 5
® BEGIN {
OUTPUT ¢, RESET (myfile); REWRITE (yourfile); %
WHILE NOT EOF (myfile) DO

- (3 4 BEG'N
i 0'?;7 READLN (myfile, i, j);
i reading WRITELN (yourfile, i, i%j)

END;
] WRITELN{ OUTPUT, '0.K.")
- | END. ’

geyeral files may be open at once; conversely a single file may be opened for
writing and subsequently reset for reading all in a single run.

112

[Notice that the files myfile and yourfile had to be "opened" by REWRITE before
writing; by RESET before reading. But REWRITE and RESET may nof be employed fo
open the special files named OUTPUT and INPUT which are opened automatically. Lt
is an error to try to open a file already open.

Al files in 150 Pascal are seguential files. A file opened for writing is initially
empty, comprising just an end-of -file mark. Each WRITE or WRITELN causes new
information to be appended, then the end-of-file mark to be moved to the
new end of file. WRITELN § as distinct from WRITE) causes an end-of-line
character to be appended before control moves on.

REWRITE(f); > WRITE(f, 'a','b'); 5> WRITELN(F, '¢'); > WRITELN(F, 'd")

eof a a a
b b b
Meor 4 c c
o eoln
(Bonceptually the eof mark is the next Meof 4 d
available component in which the next eoln
item @ if any) will be stored. Meo 4

£ file opened for reading has a "window" placed over its first component.
The first READ fo be obeyed causes the item in the window fo be read,
then the window to be moved to the next component, and so on. READLN
@ as distinct from READ) causes the window fo be moved past the rnext
end-of-line character before control moves on. If there s no such char-
acter the window ends up at the end-of-file mark.

RESET ()3 I> READ(f,1); B> READLN(T, j); G3» READ(f,k); S>READ(f,1)

,....T.....'. sk,
T ol G oot

» window to'd'
Afhe ReAD(f,)3 READLN
In general:

READLN (f, p,q.,r,..) 2 READ(f, P); READ(f,q); READ(f,r); ... READLN ()
WRITELN (f, Py G ,Fy...) B WRITE(F, D)3 WRITE(£,q)5 WRITE (f,)3 ... WRITELN (F)

(f,j) above could be combined as READLN(f,1,j).

Gfhe behaviour of the end-of-line character is relevant only to 7exr files
such as those depicted opposite. A 7Err file comprises rows of words and
numbers separated by spaces as the name suggests. Binary files are explined
later.

With interactive input the above logic is medified as explained in the
next chapter.

113

EXPLAINIMG REWRITE AND RESET
SHOWN ON PREV/IOUS DOUBLE PAGE

Every file written or read by a Pascal progrom should be nominated in
the PROGRAM statement :

PROGRAM rame,,. (w)

» PROGRAM myprog (OUTPUT, mydata, mydump);

always to be nominated
i S~ N

e type of each file should be declared in the VAR section of the main
program. The synfax is given below, where FILE OF REAL anticipates the

subject of binary files dealt with later :
implicitly declared as files

VAR p\n%e@ 2 lype;
Of Lype TEXT

» VAR mydafa: TEXT3 mydump: FILE OF REAL

ab not include the files named
INPUT or OUTPUT which are

.[a\ file other than the file named OUTPUT may be written only when it has
been opened by invoking the REWRITE procedure:

do rnot
REWRITE
the file named
ouTPUT

<IY possibly same
REWRITE (namey,) local extensions

» REWRITE (mydump)

[A file other than the file named INPUT my be read by READ or READLN only
when it has been opened by invoking the RESET procedure.

I possibly some
ReSET g)

» RESET (mydata)

?he WRITE, WRITELN, READ, READLN procedures are elaborated on the
next double page.

“fhe above definitions apply both to TEXT files and binary files. Binary
files are introduced later.

114

CONSULT YOUR LOCAL MANUAL ABOUT TYPING,
EDITING AND SAVING FILES
r?he files named INPUT and OUTPUT are of type TEXT. Files nominated by
the programmer may also be declared as files of type TEXT.

PROGRAM (INPUT, OUTPUT, hisfile, herfile); ZXr £
VAR hisfile, herfile: TEXT; N ’ 7;; ,’;’,{;;rg;c,fe’fd

A text file consists of ASCIl characters s» or characters of whatever code
the compulter uses s so a text file is intelligible to the human eye
when printed:

A text file is organized as rows of items, the items separafed by spaces.
A Pascal program designed to read such a file may do so one character at
a time, using only READ(file, ch) { where ¢/ is of type CHAR). Altern-
atively the program may employ several parameters in its READ stote-
ments, each parameter of the same type as that of the corresponding
item expected in the fext file. For example READLN (file, i, x, y).
would correctly read the top line of the text file above ¢ where 1
is of type INTEGER and x and 'y of type REAL),

[t is the unique property of text files that items are aufomatically
converted from internal form to character form by WRITE, from
character form to internal form by READ, as indicated by the &pes
of parameters involved. A reading program stops if types fail fo
match, so it is safer to read data one character at a time and
forgo automatic conversion. An input procedure ltke this is given
on pages {8 fo 123.

Gfext files may be created by WRITE statements as Illustrated on page
{2, Text files may also be typed at the keyboard and stored on disk.
The way to do this depends on your inskallation; consult your local
manuals, Typically the file is typed under control of a *line editor"
or 'screen editor". Such an editor provides facilities for typing,
amending, inserting and erasing text. When a file has been t

and corrected It may be saved on disk for subsequent use as the
INPUT file for a Pascal program. The command is typically:

SAVE ' INPUT' perhaps wthout the quotes

With many compilers it is not enough to nominate files in the PRoGRAM state-
ment 3 you have also to associate those names with file names recognized by
the operating system. Aro Pascal and TurboFascal provide the ASSIGN
procedure for this; Acornsoft /150 Fascal extends the RESET and REWRITE

procedures: oy '
ZilE nome fory ASSIGN (mydata?, ‘MYDAT2.7X') S o
RESET(mydata2,'MYDAT2.TX') cperating system

{15

WRINEREAWIRI T AN BT EXTF ILES et

['l?he syntax of the WRITE and WRITELN procedures is :

only when
Expression (s REAL

WRITE (%:.\f expression i width ;,f:/acy)
file V\ "
2/
WRITELN [(“rname "y yexpression m >
A oMly when
(namegy,) expressior is REAL

» WrRITECa,b,c) P wWrRITE(myfile,a,b,c) P> WRITE ('«'t 36#C05(x))

» WRITELN(a,b,c) P> WRITELN(myfile) » WRITELN <K¥(ou7pu7) implied.

Rfhe first WRITE or WRITELN to be obeyed locates the first output field ot the
start of the output file. € A field is a contiguous sequence of character
go.sih’ons in which an item of output is wriften s right justified.)

ubsequent fields, and fields generated by subsequent WRITE and WRITELN
procedures, are appended sequentially and contiguously as each, in ifs turn,
is written to the output file.

[An unspecified width for a field of type REAL or INTEGER implies o default
width which is installation dependent ¢ 14 is typical). An unspecified number
of places for a field of type REAL implies outpul in “scientific* form § £-format));
for example -1.23456E-04 to express the value —0.000123456, The number
of significant digits printed before the E is installation dependent { 6 or 9
is typical). An unspecified width for a string implies the number of
characters in the string excluding opening and clo.sin? apostrophes { 'abc’
implies 3). An unspecified width for an item of type PACKED ARRAY
[1..n] OF CHAR implies ». An unspecified width for a Boolean item
implies a width which is installation dependent { typically 4 for TRUE, 5 for FALSE)),
A field is extended rightwards if a given value for width is too small to
accommodate the corresponding item.

When the final parameler of o WRITELN { as distinct from a WRITE) procedure has
been wrilten, an end-of-line characler is automatically appended. WRITELN
without a parameter also causes an enc-of-line character to be appended.

m@g WITH ﬁm m AND ONLY WITH TEXT FILES

ﬁ’he syntax of the PAGE procedure is:

7TPUT
PAGE 7 (name c,) implied » PAGE(myfile) » PAGE I

thn this standard procedure is invoked a page-throw code is sent to the
nominated or implied output file. Applicable only if the local equip-
ment can respond to such a signal.)

116

R EAD Xz MW/T//W%%%?E

"he syntax of the READ and READLN procediures is:

READ (m variable ,) variable expects a string of
file \@/ characters reducible fo a
value of its own type: CHAR,
INTEGER or REAL.

READLN | (“Trame g %b/})

(name 4,)
» READ(a,b,c¢) » READ(myfile,a,b,c) » READ(alil,pLjl)
» READLN(a,b,¢) » READLN (myfile) » READLN (TIweur
implied

Vhen the current parameter is of type CiAR the character in the window is read. If
this is an end-of-line character it is read as though it were a goace. It is nevertheless
distinguishable from a space because whenever there is an end-of-line character in
the window s and at no other time s the EOWN function for that file would return
true if invoked. After the character in the window has been read successfully, the
window moves on to frame the very next character. If this character happens to
be the end-of-file mark then the EOF function for that file would return {rve if
invoked. The EOF function returns Zrwe only when the window is framing the eng-
of-file mark. Trying to reacd the end-of-file mark is an error.

When the current parameter is of type INTEGER or REAL the window skips over
spaces and new lines until the first significant character of a new string is
encountered (or the search ends abortively at the end-of-file mark). A
string is converfed q if correctly formed) to an item of standard type con-
sistent with its corresponding parameter. (f The instruction READ(x), for
example, would fail if the string were 1.5 and x of type INTEGER.) After
successful reading of a string the window is made to frame the character
immediately following that string. This following character could be a space.
Or it could be a new-line character in which case EOLN, if invoked, would
return Zrue { and EOLN false)) o

When the final parameter of READLN { as distinct from READ)) has been satis-
fied the window skips over everything remaining on the current line. It
then rests, framing the Firsé character of the next line. This first
character could be the end-of-file mark in which case the EOF function,
if invoked, would return frue. The same applies to READLN when used
without parameters.

With text files this conceptual window has an elastic frome. Much of the
time it frames only single characters, but when a string of characters
denoting a number is encountered the frame ¢ stretches ™ to
encompass all characters in that string. This is in contrast to the windows
used for reading binary files; such windows may be complicated in
structure but not elastic. Binary files are described later.

117

THIS IS A PROBLEM /N MOST
POPULAR LANGUAGES
W have all had to complete a "formated" data form from time to time. It
has advantages, if only in making life easier for the programmer:

[3ut when the data are complicated it Rodii : .
is sensible to make the arrangement of ad.“l X o Y ot cm
data more flexible. The programmer |S€rial Number ...,

may devise a "problem-oriented language" in which a keyword tells the
program what the next number, or group of numbers, describes:

WEIGHT 16.75 b} o SER1,54321, WEIGHT,16.75 AN
RADII X 2 Y 3.62 a_,a RADIUSES
SERIAL 54321 Y 3.62, X 2

On a program designed fo read “formated" data it is conceivable that the
programmer would leave verification of data to Pascal; for example by
employing READ(INPUT, weight) to read the first item in the top data sheet
above. But if the user of such a program erroneously entered 16.75, say,
instead of 16.75 there would be a message from Pascal about a bad
number 42 and the program would stop. For a program that reads more than
a few items of data such an approach is unthinkable.

Whe only way for a program to stay in control is to read data one
character at a time, building up the number or keyword and discovering
the user’s errors for itself. The only pre-defined Pascal procedure safe
to employ is READ(file, ch) preceded by a check on end-of-file.

ﬂf this conclusion shows Pascal in a bad light be assured that several
other established [anguages are no better in their handling of input.
Fortran offers a tempting range of input descripfors { see ml Illustrating
Fortran, c.u.P, 1982, ch 10) but the only usable one is that which reads
G single character. Those versions of BASIC that have " ON ERROR..." are
a little more helpful because this statement makes it possible to win
back control when a bad item has been read; a clumsy approach.

['l?he procedure described below is designed to stay in control whatever
nonsense has been encountered on the input file. The procedure is called grab.

['_l?o use grab simply invoke it whenever the next item is needed; thereis no
need fo check the end-of-file before invocation. Each item is deemed to be
terminated by a space, newline or end-of-fife. The procedure returns with a
record describing every aspect of the item just read. The four kinds of item
distinguished by grab are:

e rname; a name begins with a letter and comprises only letters and
digits. Only the first four characters are significant ¢ RADIT = RADIUSES))

o rwmber; o number may be written with or without a decimal point; the
procedure distinguishes one form of number from the other

e nogood; a string of characters which is neither name or number
q for example +Pé)

e tisn't; a null item implying end-of-file § any subsequent invazation
of grab would then cauvse the same result).

118

8he record with which the procedure H’:{> estring [o U
returns is depicted here. It looks Jlength[J1.72 7
complicated but is very simple to use. [|ReAL

Suppose, for example, the programmer .
expects the next il‘gm from the input -int [] INTEGER

file to be a number. The invocation
might be:
rab(it); -tisinteger {]
N rememben s it.nr tisnome [] - poovea
ELSE complain(it)s -tisnogood [] ags

where we assume that complain is a tisnt 0
diagnostic procedure. So if the item
proved to be something other than a number the diagnostic procedure could
discover precisely what went wrong ¢ IF it.tisnt THEN... IF it.tisnogood
THEN...) and might investigate precisely what the user fyped by consulting
the component It. string.

e programmer would probably employ: WITH it DO... and so simplify
references to the record thus: IF tisnumber THEN... IF tisnogood THEN...

£\ number such as 12345 on the input file causes both the flag fisnumber and
the flag tisinteger to be set frue; a value of 12345.0 would then be found
in field «r and a value of 12345 in field -int. But 12345000000 on the
input file would cavse only tisnumber to be set true because q on a
typical computer) this value would be greater than MAXINT.

Ei’]ere is the essential logic of the grab procedure expressed as a state
table. Use of such a table is explained on page 50.

mbol 0'..'9 ‘AT a2 other | (5) , space, newline
Efofe 613] C?J 3] 41 %DJ 6] © 7]
ign:=-1| nr:= digit(ch) nom[1]:=ch
$[1’ :N'z’ :DES'L$[3, $[6, @ ﬂ-,y $[7a $[17
tisnumber ;= TRUE
[2, |20 (=7, {7, D7D, | nri=signenr @
G IF nr{MAXINT then A
3 nr:={@xnr+digit(ch) ffﬁi.q tisinteger:=TRUE and
[el | = (3, @ =7, D[4, DI7| int:= signeTRUNC(NN)
[4, |20, |frac:= 10¥frac; D% | I iy | tisnagood =TriE {7)
nr:=nr+digitch)/fracy tisnomber:= TRUE;
(5, |[bedin | LS, @ l7 DD pe i signanr
[6, |r|pir, [ir=i+1; nomlilisch; &6, g din| cbl| tisname:=TriE § 93
(7, |DEDIT, | L L7, ‘1:—.5[7, c>[7,| tisnogoed i= TRUE @

[n this table the various actions are numbered in little clouds thus{73.
Changes of state are indicated by broad arrows thus =2[7,. The table
itself is stored as arroy table[1..7,1{..7 1 qoverieaf)) and the
number in each component is encoded as:

100 x action + state
This table is created in the computer with the help of a file.

119

PROCEDURE
GRAR) 7 Ca3 I

fhe main program begins by setting constants. Séringlength should be as
fong as the longest possible line of input { in case the user forgets to type
any spaces or commas) « Namelength should be set to the number of
significant characters in a name, four being typical. Minorad and
maxord are the ordinal values of the first and last character in the
available character set. 32 and 127 are for ASCII code; change these if
you are using EBCDIC or other code.

RS
PROGRAM saferead (INPUT, OUTPUT, f)3
CONST
stringlength= 72; namelength=4; minord= 32, maxord=127;
TYPE

stringtype = PACKED ARRAY [1..stringlengthl OF cHAR;
nametype= PACKED ARRAYI[{.. namelengthl OF ChAR}
lookuptype = ARRAY [minord .. maxordl OF 1..73
tabletype = ARRAY [{..7, 1..7] OF {..1200;

intype = RECORD
string : stringtype;
length: @..stringlength;
nr: REAL;
int: INTEGER;
nom: nametype;
tisnumber, tisinteger, tisname,
tisnogood, tisnt : BOOLEAN

lookup(32]
Jookup[33]
[ookupla4l

Tookupl46]

lookup([s7]| 4 |'9"

Q#EEI IE L3S RN

END; lookup(é6] ‘8"
VAR “examp/es
it: intype; lookup: lookuptype; table: tabletype; -

i INTEGER f: TEXTy~<g

"he arrays named lookup and table have to be initialized. The purpose
of lookup is to provide the column number of fable corresponding to
the character just read. For example, if the characrer stored in ¢/ were
"Q" then [ookup[0RD(ch)T would return 4 directly. Similarly if cA con-
tained "." fthen [ookup[ORD (ch)T would return 5. Initialization is
performed by a special procedure which should be invoked precisely
once before subsequent invocations of grab. Here is the procedure:

PROCEDURE initialization (VAR 1:lookuptype; VAR t: tabletype);
VAR

c: CHAR; 1,J: (..7; k: minord.. maxords
BEGIN

FOR k := minord TO maxord DO 1[kl:=6}

oo LLOROCHII= g5 | 1TORDC-01 1 2 &

FOR c:='@' To 's’ Do ILORDI:= 3 (Camy X7

O~ FOR = 'A'T0 ‘7 DO 1LORD(1= 4; 3[04 wilh Sixes, hen
C~ FOR c:='a' 70 'z' DO 1 LORD(C)] := 43 xome

%Egsg g: :;::; - 3’ READ(Ch) reads the € 0.
ILORD ¢)] = T character as a space

P Y e U AP SR~ Ay Yy N A S PSRN |

120

"Phe VAR declaration in the main progrom contains " f: TEXT" declaring
o file of type TEXT. Writing this file and reading it back again avoids
the need for forty-nine individual assignments:

tl1,11:=002; t[1,2]:=102; t[1,3]:= 203; ek.

(QY; your Pascal compiler permits "temporary* files it may be possible
to remove oll references to # from the moin program and put them in
the VAR section of this initialization procedure s the only ploce where
£ is used. D

REWRITE (f); <% open for writing o file f,

WRITE (f, 002, 102, 203, 1006, 007, 00T, 001); (4o tort

WRITE (£, 007, 097, 203, @07, OPT, QOT, 380)i et phat
WRITE (f, 607, €07, 403, 007, 304, 007,300)5 % 5n e
WRITE(Cf, @D, ¢XD7, &5, 007, 007, OOT, 700), 119
WRITE(f, 007, 007, 605, 0Q7, @7, OPT, 800);
WRITE (f, 007, 007, 1106, 1106, C07, 007,900)
WRITE(f’ w", w?, W, @@7’ w7’ m77 7@);

RESET (£); 4‘

FOR i :=1 TO 7 DO

FOR j:=1 TO 7 DO
READ (f, t1i,31);

{ initialization }

END;

“he start of the grab procedure is shown below. This includes the
definition of a local function for returning the integer value of o
character ; for example digit ('6') would return 6.

PROCEDURE grob(VAR rec: intype);
VAR
i: 1..stringlength; sign:-~t..1y state: ¢..7;
ch: cHAR; action: @.. 11; froc: INTEGER;

FUNCTION digit (c: CHAR): INTEGER;
BEGIN
digit := ORD(ch)- ORD('®")
END;

BEGIN {grab}
WITH rec DO
BEGIN { WITH rec }

' o set all flags
tisnumber := FALSE; tisinteger := FALSE; false

tisname := FALSE; tisnogood := FALSE; tisnt:= FALSE;
length := @3 state:=1; sign:=1;

C-FOR 1i:= { TO stringlength DO stringlil:="' ',

C~ FOR i:= 110 namelength DO nom[il:=" '3 Rer > > rp,
1z b receiving string

continued overleaf

12t

@ ({fecam/ D continued

[Rlere is the logic of the grab procedure :

A e i T S P W Ve U e A P L\ VN - S T WL
REPEAT { for each digit }

check IF EOF (INPUT) 7 heacs the column

end THEN (of terminalors

of BEGIN

file action := table [state, 71 DIV 100;

tisnt := (state =1)
END
ELSE

BEGIN

this is
the only
\ READ

statement

READ (INPUT, ch);
length := length+1; string[length] := ch;
action:= table [state, lookup[ORD(ch)11 DIV 100;
state := table][state, lookup[ORD(ch)11 MOD 100

{n grab END; { END of IF} ~=
CS?E action or-'. o rew
. ?
1: sign := -1 ; state
2: nr = digit (ch);
3: BEGIN

IF nr <= MAXINT <3=inr can be corwerted to an
THEN teger by TRUNCC) only IF
BEGIN in range of MAXINT
tisinteger := TRUE;

int := sign x TRUNC (nr)

END;
tisnumber := TRUE;
nr := sign x or
END; . . A4 build integer
4: nr = 1@xnr + digit(ch); in nr
5: frac = 1;
6: BE?LZC = 10 % frac: = arter the decimal point
= : R A/ . i
nr := Nr + digit(ch)/ froc d’"’{co ’,‘Lf,"‘”o;‘o’ee?ég‘“
END; I -
7: tisnogood := TRUE;
8: BEGIN
tisnumber := TRUE;
nr := sign x nr
ENDj
PN IS T
. . 7
11: BEGIN of.non

=141
IF i <= namelength THEN noml[i]:= ch-
9 N4 buidc vom as far
END { CASE } A : as namelength
UNTIL (state =@) OR tisnt

END
END; { procedure grab} bt:);ofeoagwaay

122

4r'he Following main program is just for demonstrating the procedure
named grab :

M e e N e T A e e N e
BEGIN { main program }
initialization (lookup, table);

REPEAT
grab (it);
WITH it Do
BEGIN

1F tisnumber THEN WRITELN (nr);
IF tisinteger THEN WRITELN(int) 3
1F tisname THEN WRITELN(nom);

IF Lisnogood THEN
FOR i := 1 TO length Do
_ WRITE (string[i1);
WRITELN
END {WITH it}
UNTIL it.tisnt

END. { program }

Experimenf with the program as suggested below:

< eqput file on
one line

@inary files are introduced on the next page. The file named # in the
above example would be better as a binary file. To make the alteration
change f:TEXT in the main VAR section to f: FILE OF INTEGER .

tlhe check for EOF at the top of the opposite page is there for non-
interactive applications but should cause no frouble when grab is used
interactively. ' EOF should return false unless some special signal

d [z in Turbo Pascal) is sent from the keyboard. If you do have
trouble with gmab consult chapter 11 for inspiration.

123

ANT RODUCINCYBINARYAFALES PiacitR

[An item on a text file is converted from a character string to internal
form by READ; from internal form to a character string by wRITE, By
contrast a binary file holds data in internal € binary) form. Binary
files have several advantages over text files. They are faster to read
and write because there is no need for conversion; they are also more com-
pact than text files and suffer none of the rounding errors associated with
conversion to and from internal form. A disadvantage of binary files
@with the exception of FILE OF CHAR) is that they would be incomprehensible
to the human eye if printed.

@inary files are useful as backing storage during computations. Usually suh
files may be deleted at the end of a run, having served their purpose. But in
some applications huge files of intermediate data have to be saved between
runs. Binary files, being compact and accurate, are ideal for this purpose.

Qn Pascal a fileis a variable. Notice the last line of the VAR section on

age {20, reproduced below:

: N Dariable of

[_iwreeer; f: Text; 10

which shows #F declared as a variable of type TEXT in precisely the some

way as I is declared a variable of type INTEGER. In general, files may
be of any type ; those not of type TEXT being binary files.

[Here is a file named binfile. Each component is a record of the shape
used in the program of personnel records on page 102.

TYPE
nametype = PACKED ARRAY [1..101 OF CHAR;/A;
detailtype = R omme [
RECORD §
surname, forename : nametype; 8 forename[]
aged: 18(..65; , S age []
grade: (jr, sr, exec ©
i\ e
VAR

binfile: FILE OF detailtype;

A single empty component of binfile is sketched above. The file
comprises many such records as needed during the course of a run.

[Declaration of any file has the additional -
effect of declaring a_window variacle | | birfiletssmame[]

associated with that file. The name of binfileTsforename |]

the window is the name of the file, but Lo
with 4 appended as illustratea here : binfilet.age [_]
All communication with the file named binfilet.grade []

binfile is through the window named

binfile? which you pronounce as I
"binfile-window ",

124

" the syntax for type of file is defined as follows:

byoe == | TEXT «m
R
PACKED FILE OF type <I<d binary Files)

B TEXT D PACKED FILE OF CHAR » FILE OF detailtype

[Do not confuse FILE of cuAR with TEXT. Aufomatic conversions to and from
character strings s and detection of end-of-line s are properties
exclusively of TEXT files. WRITELN and READLN work only with TEXT files.

Writing a binary file is, in general, a two-stage process: (i)assign to
the window-variable whatever is to be written (ii) invoke PUT to move
the window frame onwards and establish a new end-of-file:

REWRITE (binfile); N ,/\

WITH binfile4 DO VENIATE VENTANA
BEG'N 2," {6@ _5}'
surname := 'VENTANA'; Sy NN z
forename := 'ABIERTA'; AL 5 o
age = 213 O (1 e

(2
AN e % D
e
lP @? Q 10 4jje D
W—M

[Maving checked for endsof-file, reading is also a two-stage process :
(i) read what is in the window (ii) use GET fo move the window frame
onwards to the next component ¢ or fo the end-of-file if there is no next
component)) 3 e

NTANA VENTANA™
RESET(binfile); g ':;2;§E|BIEQTA EA?;RTA
IF_NOT EOF(binfile) Z;QSP &, |
THEN SOMEORE | TRy, || ZomEoNe
BEGIN read |§L3F 2
WITH binfile4 DO P &
BEGIN o."(
s := surname; e
f := forename; ,{)\
a = age; i
9 = grade_Zzr indow = N
ENDs over next cpt. @E? Q 1aIme ;¢ D
NGET(binfile) Y¢or o e.of)
END;

[Procedures PuT and GeT are "low level* procedures. WRITE and READ may
be described in ferms of PUT and GET 4» and the window variables as follows:

WRITE (filename, item) = filename4 := item ; PUT(filename)
READ (filename, item) = item := filenamet; GET (filename)

[ﬁ'urbo Poscal does not define PUT or GET; it has extended WRITE & READ jnstead.

129

(YT EAY)Y\ AN EXAMPLE 70 [LLUSTRATE HANDLING

&this progrom is designed fo read a
text file and write a corresponding
binary file, so compressing the
information held.

[ssume the text file has already been
verified by another program so that
no checks on form or completeness need
be made on input; the file is known to be
strictly of the form illustrated 53,

SUN-ROOM temperature 1og b

A algr—s

Day | Month{Noon | Remarks
No. temp
2| fEB| 25 |, coLD
4| E£8| 10 | B1TTER
17| FE |15 | BHONKEYS,
E::Lu'-g,,__

CONST
monthchars = 3;
remchars = 83

TYPE

grouptype = RECORD
day: 1..31;

temp: REAL;
remark: remtype
END;

VAR
textin: TEXT;
binaryout : FILE OF grouptype;
count: INTEGER; i: {1.. monthchars;

BEGIN

count := 03

RESET (textin);

REWRITE (binaryout);

WITH binaryoutt DO

WHILE NOT EOF (textin) DO
BEGIN
READ (textin, day);

READ (textin, month[il);
READ (textin, temp);
FOR j:= 1 TO remchars DO
T READ(textin, remarklj1);
count := count + 1;
READLN (textin);
PUT (binaryout)
END { wWHILE}
{end of WITH }

END.

month: monthtype ;

(/FOR 1:= 1 TO monthchars DO

PROGRAM compressor (textin, binaryout, OUTPUT);

grouptype

monthtype = PACKED ARRAY [1!..monthchars] OF CHAR;
remtype = PACKED ARRAY [[..remchars] OF CHAR;

j: t..vremchars;

binaryoul

window

binaryout4

binaryout4. month m
binaryout#.

binaryoutt, remark R

- day D
temp R

PUT

WRITELN (OUTPUT, count, ' lines of data transferred')

126

SUNMARYZOFIPROFE RTAESYOFRFALES!

TYPE TEXT FILES PR Other types
‘F)r L | 7€ standard| Names HL/?COA;'E Dﬁ AR (e.g. files of
TEXT files: ?iven by c ARRAYS; files of
PROPERTY WPUT and | the (rot TEXT files) | RECORDS of
oUTPUT programmer mixed type)
. INPUT is optional | In general the file should be nominated in the
){n_[clu.szon o lbutouTPUT must | PROGRAM statement.
'L efﬁnames be included if
L:ROG,:A " only to give a | Some compilers permit *temporary” files, these
destination for | * not being nominated in the PROGRAM statement)
statement | oeror reporls
Definition of |implicitly of | In general the file variable shoula be declared in
file variabk |type TEXT the marin VAR section ® a /[ocal VAR section
in VAR section if the compiler allows *temporary" files)
Implicit: do | Files to be read must be opened using RESET(filename),
RES&Z gna’ not use RESET | Files fo be written must first be opened vsing
REWRIT] or REWRITE REWRITE (filename)
READ,READLN |READ,READWN | READ and GET but /70t READLN
Input and GET: and GET:
statemerits |Omilting first | No default
available |parameter parameter
implies INPUT
. Each character-string encoded |Binary codeon | Binary code on file
Conersians outomatically as CHAR, INTEGER, |file converted fo |converted to INTEGER,
Y ut or REAL o malch the basic type |items of type | REAL or CHAR accordiing
Lipu of the receiving parameter CHAR only to type of filevariable
Output WRITE, WRITELN, PUT and PAGE WRITE and PUT but 770t WRITELN
statements | {but some Pascal compilers
avaclable do not offer PUT))
. Items of type CHAR, INTEGER, |Items of type |ltems of all types
CZ”D ErSLonS | BoOLEAN - also PACKED ARRAY OF |CHAR converted fo| converted to binary
o fout CHAR - are converted fo print- |binary code on | code on output
outpu oble character strings output file file
EOLN The end-of-line charocter is | End of line is not detectable ;
read as a ce but causes the EOLN() function is relevant
EOLN() fo return TRUE whilst |only to TEXT Files
the end-of-line character fs in
the file window
EOLN implies | No default
EoLN(INPUT) | parameter .
EOF The EoF function returns TRUE if invoked whilst the end-of-file

mark is in the file window ,;orherwise it returns FALsE

EOF implies
EOF (INPUT)

No default parameler for EOF()

With inferactive input the EOF sig-

nal is installation dependent

Interoctive input is infeasible

127

ENERCISES!

1.

2

128

ﬂmplemenf the saferead program. Experiment by trying to
*‘break" it from the keyboard. It should be found impossible
to make the program lose control; on each attempt the
erroneous string would be displayed for inspection

[m\ake the personnel program on page 102 Ffile the array of
personnel records (array @)) as a binary file. The file
should be written when all the data have been read and before
they have been sorted. Similarly make the program start by
reading such o file before the inpul of each new batch of
records. Wilh these facilities the program begins to look like
a rudimentary management system.

hflake any of the programs in earlier chapters { for example
the loanrate program on page 62) and replace its primitive
input statements with invocations of the grmab frOcedure.
If your Pascal permits interactive programs add suitable
prompts and error diagnostics to make the resulting pro-
gram reasonably friendly towards its intended user

i
INTERACTIVERINEV Ty

INTERACTION
PEEP-AHEAD PROBLEM
BUFFER PROBLEM
EOF PROBLEM

VAR ELASIN LN A iireracrive Lavsonee

[\ user of many modern programs takes part in a dialogue, the
program displaying questions or prompts on the screen, the user
responding by typing at the keyboard. Each response is made in
the light of results so far displayed on the screen. There might be
a different result if the user haa to supply all informaton in ad-
vance. In other words the user and the progmam *interact" to
achieve a result. The concept of interaction is commonplace now
but its achievement is comparatively recent in the history of
computing.

[Pascal was designed before interaction became commonplace. It was
designed in the days when programmers punched programs into
cards, surrendering a "progrom deck' fo computer operators for
loading into the card reader. The data were also punched mnto
cards ‘and handed to the operators as a "data deck". Both decks
were later returned to the programmer wrapped in ‘music paper"
with results @ or woeful diagnostics)) from the line printer.
Because it was usual for the operators to wait until they had
acquired several such programs before loading them, this mode of
operation was called "batch mode" .

4fthe ReAD procedure of Pascol was designed for the convenience of
programmers working in batch mode. The logic of the READ pro-

cedure in the context of punched cards is: (i) read the specified
item or items from the current card, then (ii) peep ahead to see
if there is a further charocter position on the current card; make
EOLN Zrue if not. This logic enables the programmer fo precede
each READ with:

IF NOT EOLN THEN ...

Hhe logic for reading a whole line { READLN) {s similar: (i) read the

specified item or items from the current card, ignoring any remaining

character positions, then (ii) peep ahead to see if there s a further ard;

g:ikoe EOF éﬁe if not, This logic enabled the programmer to precede each
LN with:

IF NOT EOF THEN ...

@ut when input is interactive, peeping ahead is nonsense; a program can't
know what its user intends to fype next. So the logic of READ and READLN
has to be modified wherever the source of input is to be a human being
responding to prompts.

ﬂ popular modification § Acornsofts [S0 Pascal, Prospero: ProFascal)) 13
"lazy i/0" which means delaying the peep ahead until the program makes
a further reference s e.g. by READ or EOF = to the keyboard. Another tech-
nique @ Borland: Turbo Pascal)) is fo treat the current character from a
keyboard as the result of the peep ahead. Both methods solve the peep
ahead problem demonstrated opposite. Other problems follow .

130

PROBLE A THIS PROBLEM PRECLUDES
INTERACTIVE WORKING
unfemcﬁve hiccups are caused by the logic of peeping ahead as dliscussed
in general opposite. The RESET procedure {implicit in the case of INPUT)
places o window over the first item of the file; the subsequent READ or
READLN procedure copies what is in the window then moves the window to the
next character or past the riext ena'}of-l/he respeclively. This logic is Sofh
- undamental to Pascal that it is wor
PROGRAM htl)CfUPSA(INPUT, OUTPUT)3 exploring what would happen if an
B;./GAFN Q, O: CHAR3 attempt were made to run this litte
e . program s if compiled by a
WRITELN (' first please’); rmogih‘onal Pascal compiler ==
P

READLN (@)} ' .
WRITELN (' second please'); inferactively .

READLN (b);
WRITEIN(a, b, '1')
END. Sontrof begins at WRITELN(' first plense")
and goes straight on fo READLN (a),
making the program wait for some-
first please thing to be typed and entered.

':t}ype U and press the RETurN key,

/READLN(a) picks up the U but is nof

st please satisfied until it has peeped ahead ot
H [oreme] the first characler of the next line. So we

are hung up. The obvious thing fo do is
offer the first character of the next line.

; jease
first P / Gtill hanging! In most systems the pro-
y [F] Erom receives no data until the Rerurn
P ey is pressed. Press if.

4Phat satisfied READLN(a) so control went
on to WRITELN (' second please') and so to
READLN(b). READLN(b) picked up the P but

won't be satisfied until it has peeped
ahead fo the first character of the next
line. Hung up again!

il'here is no next line. Nevertheless enter
/ something. Anything !
ﬁ'haf satisfied READLN(b) so control went

HcIel®] on to WRITELN(a,b,'!') and so to the end
of the program. Messy result.

[Pascal compilers such as those quoted
opposite do not cause hiccups; the
result would be as one would expect
from reading the text of the program.
% In other words as illustrated here.

131

PROBL!' IF YOUR PASCAL HAS THIS TROUBLE
DON'T WRITE INTERACTIVE PROGRAMS

gn the days when the word "file" implied "magnetic-tape file" it wos customary

r the Pascal processor to employ buffers for input and output. A buffer is
an area of memory. Characters fo be sent to the output file would be sent
as far as the buffer; only when the buffer was full would its contents be
copied to the magnetic tape. The same idea was employed for input. Such
buffering is essential when filing on magnetic tapes, useful when filing
on disks, but if the "file" is a person typing at a keyboard buffering s
disastrous. The following analysis illustrates such a disaster.

PROGRAM flush (INPUT, OUTPUT)3
VAR @, b: CHAR; Gonh’ol starts at WRITELN('first please'),
BEGIN L . The words ‘first please' are faithfully
WRITELN (‘first please'); written, but written to the output
READ(o)';' . buffer ss which has plenty of room
WRITELN ('second please'); so its contents are not vet copied to the
READ (b); . screen. The screen reveals nothing. But
ENV\{I)RITELN (a,b,"!") the program is waiting.

ﬁype a line of data and press the
RETURN key. The data are *echoed” fo

the screen, but this does not mean

M the program has received them.
f nothing else happens it meons the

o] |] [rerom] Qohq have gone to the input buffer

and won't come out until the buffer

is full or until you send an e.o.£ from

the keyboard. { The e.o-f signal is

installation dependent.)

Lssume there is just a line bufer for
input and that the RETURN key activates
it. That means READ(a) is satisfied;
WRITELN (' second please') sends the words
'second please' to the output buffers
READ(Db) is satisfied; WRITELN(a,b,"!")
sends the word 'OH!' to the output
buffer.

Finolly control reaches END. alt which
stage the output buffer is copied to

&g the screen.

¢ your programs behave like this it means your Pascal compiler was not
designed to compile interactive programs. Programs to be compiled by such
a compiler should be designed to read data from a disk file.

@ro Pascal, Turbo Poscal and Acornsoft 130 Pascal do not exhibit the
difficulties described above; interactive programs may be compiled by them.

132

EOFJPROBLE MR- A e

?his is the standard Pascal model for WHILE NOT EOF(f) THEN
non-interactive input. But what does fa’l BEGIN

mearn in an interactive program? Typically . "
end-of-file is signalled from the keyboard a’%ﬁﬁr xt%i;”w/?at (s in the

a special character particular to . .
each iﬁifa(lah‘on. An example end-of-file * move the window to rext item
signal is pressing and |Z] fogether. | END I

PROGRAM pardon (INPUT, OUTPUT)3
VAR 1i:INTEGER
BEGIN
WHILE NOT EOF(INPUT) DO
BEGIN
WRITELN (‘next please')s
READLN (INPUT, i)3
WRITELN('times 2=', 2%i)
END
END.

[AJere is what happens if you write an
interactive program using this mode! .

@onfrol begins at WHILE NOT EOF (INPUT)
where it hangs. Nothing has yet been

so there is nothing for EOF fo test.
{(The READLN stalement is not to blame
becowse control has not reached a READLN
starement yet.) Help the progrom by
enfering the first number.

[ﬁ‘he "11' satisfied the EoF fest, EOF(INPUT)
returned false so control went to
WRITELN('next please') and so to the

ReToRT READLN(INPUT, 1), The READLN(INPUT,i)
e picked up the '{t' but won't be satisfied
until it has peeped ahead { more about
this at the botfom of the page) «

(g

:,éxt please

- What satisfied READLN(INPUT, i) for the first
L2 rerum(number i1 so control went to WRITELN
(‘times 2=', 2#1) which wrote 22, then
back round the loop to WRITELN('next please'),
and so to READLN(INPUT,1). The READLN (INPUT,
i) picks up the '12' and waits for the
next chance to peep ahead.

Uhus the program would continue to print the solution b
the problem-before-last, then ask for the number it has
Jjust been given.

Ontil you press the combination of keys that signals
end-of-file on your particular installation §shown here as B).

With “lazy input" the
results look a little less
silly but remain ouf of

phase 13

12
times 2=22

next please

[]
times 2= 24

Don't use WHILE NOT EOF in interactive programs.

133

2
DYNRMICESTORACE:

DYNAMIC STORAGE

NEW AND D/SPOSE

STAQUES ({STACKS AND QUEUES)
REVERSE POLISH NOTATION
H21J09 QEXAMPLE)

SIMPLE CHAINS

SHORTEST ROUTE ({ EXAMPLE))
INTRODUCING RINGS

ROSES ({ EXAMPLE)
INTRODUCING BINARY TREES
MONKEY-PUZZLE SORT { EXAMPLE)

INTRODUCING POINTERS AND
DYNAMC RECORDS

e concept of a pointer has already been pl1] [5 1187 array
infroduced in the context of sorting anarray. pl2] [1
The pointers cire exchanged rather than the pl3l[&
components they point fo. In this context pl4ll 3
the pointers are (nfegers confined fo the pl53 [24

subrange of the array subscripts. FOR i == 1 70 5 DO WRIELNCaL PLiT])

Wherever the things to be sorted may be held in a simple array the
pointers to thase things may be integers as demonstrated above. But the
use of arrays is not always convenient beaause the array structure is too
rigid. Moss Bros does not stock a morning suit and a dinner jacket for hire
to every customer on its books because it is unusual for them all to wed
on the same day or dine extravagantly on the same evening. By analogy
it is not practicable to declare an array of maximum possible size for every
array variable. On the hypothesis of the more sheep the less goats Pascal
rovides a "heap" of storage boxes. As data arrive, boxes may be taken
rom the heap and assembled infto records. If the first item of data isa
temperature reading, for example, a container of type REAL is assembled
for storing the value. If the next item comprises a complicated personnel
record then boxes from the heap are assembled into a container of
corresponding TYPE. When a record is no longer wanted ifs container may
be disposed of by throwing its component storage boxes back on the heap.
Such records, becavse they come and go, are called dyranmic records.

[Dynamic records are now infroduced by analogy B
wir\é a file. Recall that every file is associated with
a file variable in the form of a wirndow. If the file S
is named £ then the window is referred to as £4, G |[B
In other words a window has no name of its own; 2 ~-
it is referred to by the name of the file which com- chan
prises a *chain' of such windows =,
P Lo
‘pointer PHILBEAN ~
P H Similarly a pointer is associated with every
(26 dynarmic record. If the pointer is named p the
“next dynamic record is referred to as p#. In other
-surname] TownLey | \ words a dynamic record has no name of its
current){aoams | -initial |5 own; it may be referred fo by the name of any
record) (B -age f 64 pointer which points directly to it. A "chain"
pt) [z] ‘ may be constructed by giving each record a

component for containing the pointer to another

ﬂfems in the current record are referred to in the same way as those in the
current window

| WRITELN(f4.initial); | & | wriTELN(p#. initial); | ﬂ}.

?he pointers illustraled here are 70f of type INTEGER, they are items of a
special pointer type {you can't WRITE a pointer fo see what it looks like). The
synfox for declaring pointers of pointer type is now defined:

136

> TYPE

POINTER
71017 type pointertype = ¥ persontype
spaces

(Bompare the above syntax of pointer type with that of file type:

A LA

A > FILE' > TYPE
PACKED FILE OF Zype %TYPE Fi]etype-persontype

[Notice that the words FLE OF are matched ot by the words Rowrer 70 as ore
might expect) but by an upward arrow. In this context the upward arrow should be
pronounced “pointer to* and thought of as shorthand for POINTER 70 .

@omparing syntax, the words FLE OF may | TYPE

be followed by the name of a type or ;
by the full definition of a type. In this
example the name persontype could be
eliminated by plocing the RECORD defin- age: 18..65
ition directly after FILE oF, But this E M
short cut is 70t allowed with pointers ; fletype = FILE OF o

the item after the upward arrow must

be the rzame of a type previously defined, | pointertype =4 persontype

JA| pointer fo a record is of most use if the record itself contains o pointer

pointing to another record. The simplest data structure linked by such pointers

is the "chain” illustrated opposite. It needs the following pair of declarations:
persontype = RECORD

next: pointertype ;

surname: PACKED ARRAY[1..10]OF CHAR;
initial : CHAR;

oge: 1865 Which should come first? If we

END; declared persontype first it would refer forward
to pointertype; conversely pointertype declared first would refer forward to
persontype. But no Calch 22; declare first the one with the upward arrow. A
forward reference from a Powrer 70 is permitted as a necessary exception to
the rule forbidding references to things yet fo be defined.

surname : PACKED ARRAY [1..10] OF CHAR;
initial: CHAR;

POINTER TO

pointertype =4 persontype;

Dﬂaving named one or more pointer fypes, pointer variables may be de-
clored in the VAR section in the usual way. The example on the next double
page shows the declaration of pointer variables named Aead and p; both
are of the pointer type named pointertype.

A standard pointer constant is provided, needing no declaration

there is no way fo declare pointer constants of one's own). The slandard
pointer constant is named NIL and is defined below. IFis analogous to
zero when manipulating pointers and is useful for marking the end of
a chain as illustrated on the next double page.

=} standarad constarit
NIL of pointer type

137

INTRODUCED /N THE CONTEXT OF
NEW ~ DISIPOSE 2IWes i Taciany

%o explain what the program on the opposite page does it is easiest fo
start the explanation part way through. The user entered an 'A', then a
'8' and the program did this:

A —{ &/% Of a
NIL d
top T [B A

?he user now plans to enter a ‘c' for linking ho the chain illustrated.
The four steps for linking {already employed to link A and B)) are:

(i) create a new record pointed fo by i
p. This is achieved by invoking

a standard procedure named New: P [« [
NEW(p); 7

(ii) put data in the record; e.g. p E/ c/

READLN (pt. data);

(ili) copy the pointer from fop into
the new record, causing the new
record { as well as £op) to head
the old chain:

pt . next := top;

(iv) copy the pointer from p infofop
causing top {os well as p) fo heod
the augmented chain:

top = p;

Whe result is:

] - g ™ NG @79 of
top C B A chain

o unlink the record currently at the head of the chain requires only ore
step if a bit of memory may be wasted { as often it may)t

(i) copy the pointer of the doomed
record into top, causing oo to 1P LT, : 4 ; nL

NIL

NIL

point to the subsequent record:
top := top?t.next;

4

But if Flying Dutchmen cannot be afforded, their hulks may be returned to
the heap for re-use. To do this (i) point to the doomed record, (i) un-
link as above, (iii) invoke the standard procedure named DISPOSE.

Three steps instead of one: top (o> [N
p := top; VWi, (B A
top := top%. next; PE’*

DISPOSE(p)

"~ DISPOSED OF
[ﬁ'he 'c' has now vanished; L is undefined.)

138

?rom the explanation opposite it is evident that the last record to be
inked is the first to be unlinked. So we can change the metaphor from
linking and unlinking a chain to "

pushing and popping a stock".

»JN,WA'
A ana out
1¢)) (ii) aii) (iv))

"l?o operate the program below: Enter +L (or plus omtI letter)) to push that
lefter onto the stack ; enter a lone minus sign § at tne start of a line) to
pop the stack. Enter a [one asterisk § at the start of a line)) to stop.

PROGRAM stack (INPUT, OUTPUT)3

TYPE
pointertype = 4 recordtype;

recordtype = RECORD
next : pointertype;
letter: CHAR
END;

7L
+T

; Popped

VAR
top, p: pointertype; ch: CHAR;

BE‘;:)N = NIL: W initialize an
REPEAT | (emply stack

READ(ch)

L popped

Nothing to pop
*Q

IF ch IN['+', '] standard procedure

THEN
CASE ch OF NEW (rame, .,)
'+'t BEGIN { PUSH }

NEW (p)3
READLN (pt.letter);
pt.next := top;
top := p

END

'~': BEGIN { POP }
A4 Lest for an
IFT’EE&J <> NIL emptystac/:

BEGIN
WRITELN (top+t. letter,' popped');
:= top

p 3
d:;spwa top := topt.next;

7>DISPOSE (p)
END
ELSE
WRITELN (' nothing to pop')

END %NEASE } standard procedure
T _ .
NI ch = ' DISPOSE (10 1,1,)

139

STACKS AND QUEUES <% INTRODUCING
RECURS/ION TO TRAVERSE A LINKED LIST

l'l_.\]he program on the previous page was kept as simple as possible to show
without distraction the mechanism of linking and unlinking a record fo the
head of a chain. The program below employs the same tfechniques but
parcelled as functions and procedures fo be invoked as follows:

push (ptr, ch) and ch := pop(ptr)

Without altering the simple chain structure of the srack, fwo further utilities
are added:

pushtail (ptr, ch) and ch := poptail(ptr)

for pushing an item on the boktorm of a stack and popping an item from
the bottom of a stack respectively.

@sing only push and poptail means
using a chain as a gueve. ltems are
pushed on at one end, wait in the queve,
get popped from the other end for
service, Using only pushlail and pgo
implies a similar queue in the opposite
direction.

@ecursion is employed fo reach the bottom of the stack. When pushtail is
invoked the current link of the chain appears in one of two states:

ptr[NiL_] or else ptr[_—F—>» Q ptrt.next

If ptr=NIL we are at the end of a chain, so the NIL has fo be replaced by
a pointer to a new record. If ptr<> NIL we are 0t ot the end of a chain
so we invoke pushtail (ptrt.next , ch) to do the work.

[Recursion is also used in poptail, but here there are three possible states:

ptr[NIT] or ptrE—» ptrt.next or ptr[E—»@

If ptr=NIL the queue is emply. If ptrt.next= NiL there is a solitary item which
Mmay be popped as though the queue were a stack. If ptra.next <> NIL we
invoke poptail (ptrt. next) to do the work.

PROGRAM staque (INPUT, OUTPUT);
TYPE
pointertype = 4 recordtype;

recordtype = RECORD
next : pointertype;

Arst set up the
data structure

next| e—f—>

data: CHAR «data
END;
VAR
top: pointertype;
ch: CHAR;

Pt et e I e T e e e PP e A~ g]

140

(lere are the four
utilities; they are used
fo good effect in the
program on poge 44.

PROCEDURE push(VAR ptr: pointertype; c: CHAR);
VAR
p: pointertype;

BEGIN
NEW(p);
pt. data := ¢;
pt. next := ptr; FUNCTION pop (VAR ptr: pointertype): CHAR;
ptr = p BEGIN eI :
% o . pop’ returns this
END; pop := CHR(9); invisible character

IF ptr <> NIL

THEN If stack (s empty

dlispase of the BEGIN
Flying Dutchman P pop := ptr4. data;
if you wish ptr := ptrt. next
END

END;

PROCEDURE pushtail (VAR ptr: pointertype; c: CHAR)3

BEGIN
IF ptr = NIL
THEN
BEGIN . FUNCTION poptail (VAR ptr:pointertype): CHARy
NEW(ptr)s BEGIN B ;
ptr'r.%ata = Cj poptail := CHR(¢)
ptrt.next := NIL IF ptr <> NIL
END THEN
ELSE IF ptrt.next = NiL
pushtail(ptra.next, c¢) THENt | (btr) ‘
END; optail := po r
N réeuinicn) LSt POPTP
poptail := poptail (ptrt.next) }

END; m
BE(;;N { staque } 2l
op = NIL3 ”’M, pshtadPoptarl)
REPEAT @a
READ(ch); o’ W

use this progrom in the same

IF ch IN L'+,'=","'>", '<"]
THEN lgzg 33_ thati on ,;age@{&‘../?'tg .
CASE ch OF oy two extra facilities: J
'+': BEGIN #L Lo push L' {or any leber)
READLN(ch); on the stack
push(top, ch) S to push letter on e boltom
END; of the stack
'='s WRITELN (pop(top)) - to pop the stack
‘>': BEGIN
READLN(ch); < (o pop the bottom of
pushtail (top, ch) the stack
END; ¥ to stop
'<'s WRITELN (poptail (top))
END
UNTIL ch = 'x'
END.

141

ILLUSTRATING THE

USE OF STACKS
Algebraic expressions in conventional form may be expressed in Reverse Polish
Notation which has no parentheses ({ "Polish" because the notation was devised by
the Polish logician Jan Lukaciewicz which only Poles can pronounce; "Reverse" because

his original order of operators and operands has been reversed D, As an
example of reverse Polish nofation:

A+ (B-c)xD — F/(G+H) transformsfo ABC-Dx+FGH+/~
“Phe reverse Polish expression is easier fo evaluate than might appear, For example

let A=6, B=4, C=1, D=2, F=3, G=7, H=5. With these values the exp-
ression to be ewaluated is :

6 4 L - 2 x + 3 7§85 + / -

Work from left to right taking each item in turn. Whenever you come fo an
operator apply i to the previous two terms, reducing two terms to one:

6 4 1 - < 4-1=3)
$hd T . T

che(:k:6 @ ! 75

12 3
6+(4-1¥2-3/(1+5) 12 3 / «W
20 e’ - e

‘?he above should demonstrate that reverse Polish notation would be useful for
evaluating expressions by computer. So how do you transform an expression
such as A+(8-C)*¥D -F/(G+H) in the first place? The process employs two
stacks; the steps are explained below.

A+(B-c)*D - F/ (G+H) =

<34 ork from [eft to right of the expression.
In general: stack the operanas on X 3 stack left
brackets and operators on ¥

L &

ack
=l R when you Find a right bracket,
v e @ dig out the matching left ore,
popping the diggings and
pushing them on X

qperator | precederce
x 3 (high)

-e Ut do not stack one qperator / 13

on top of another unless the one

below has lower precedernce s o2

or (s a left brucket. Dig down, — 2

paoing Y and pushing on X , C {

until you reach a (eft bracket - 1o

R TS or the floor. =

[otice that the left bracket is included in the precedence fable and allocafed
low precedence. This is a trick to avoid having to treat explicitly the
condition "5z oris a left bracket ", Clever.

142

dig out matching
bracket as before

dig to the floor because the
equals sign & the terminator)
is treated as an operator

with lowest precedence of al;
see table opposite

ﬂn addition to the procedure push (stack, ch) and the functions pop(stack)
and poptacl (stack) a function is needed to return the precedence of
an operator. The function shown below is given a character as its
parameter and returns the corresponding integer from the little table
opposite :

N WM
FUNCTION prec(c : CHAR): INTEGER}

BEGIN
CASE ¢ OF
'x', '/' : prec:= 3; <4 see Little table
'+'y '=' 1 prec:= 2; opposite
'¢': prec = 1;
'=': prec := ©
END

ENDs

On the next page is a program to transform conventional expressions

to reverse Polish. To use the program type the expression and terminate
with an equals sign:

é

1 4(B-OxD /LG
Asc—ox+FGH*/’

Ta2D

143

AN EXAMPLE TO ILLUSTRATE THE USE OF STACKS
@ operating instructions at foot of previous page)

PROGRAM hsilop (INPUT, OUTPUT);
TYPE

pointertype = 7 recordtype;
recordtype = RECORD
next: pointertype;

data: CHAR
END;

x, y: pointertype;
ch: CHAR; it ..Zo; exit : BOOLEAN;

insert procedures and functions here: use
push, pop, poptail, prec from previous pages

BEGIN { hsilop }

x = NILy y := NIL; <tfincbialize stacks

REPEAT
READ (ch);

(F ch IN ['A'..'2'] THEN push(x, ch);
IF ch ="'C'" THEN push(y, ch);
IF ch=")'

THEN re—Jdrig out the maltchi
BEGIN le?‘t bracket jd

WHILE yt.data <> 'C' DO

push(x, pop(y)); _
b

IF ch ‘N[l+',l—.,'*',./',.=.]

THEN
BEGIN
REPEAT .
A) if the precedence of the
exit := TRUE’ operator on £op... ,

] Y &= prececernce

of théo operator

or leff bracket !

IF y <> Nit
beneath

IF prec(ch) <= prec(y#*.data)
THEN

BEGIN
push(x, pop(y))s
exit := FALSE

END;

. E Aonly then s it
UD:LLL(eyx1téh) > [right ko push
Ng) &he new operator ;
E wrtte out stack

UNTIL ch = '='; L7 om bottom to

WHILE x <> NIL DO WRITE (poptail(x))3 top
WRITELN
END.

14-4

MODELS FOR " TRAVERSAL" AND
"INSERT AFTER”

“he essence of a stack or queve is that referring to a record means
remouving that record. { There is cheating in the previous example where
the program peeps at the record on top of the stack before deciding
fo pop it.) But there are many applications in which sequential
records of a chain are referred to without removing them. Referring
to sequential records in this way is called £raversal.

%elow are shown a conventional chain and a fragment of program for
irs ftraversal. "Referring to a record" in this example involves no more
than printing an item from one of its components but would, in gen-
eral, be o more complicated procedure.

L
Tl A 2.
temp { o=} temp?. aata MODEL FOR TRAVERSAL

q wow-gecursive)

{ traversal }

temp := head;
WHILE temp <> NIL DO

BEGIN
wRITE (temp?t. data);
temp := temp?. next
END

point to
L next record,

MODEL FOR
"INSERT AFTER"
{insert 'B' after 'N'} e
temp := head;

WHILE temp?.data <> 'N' DO
temp := tempt.next;

()

pt.data := 'BY

E4.next := tempt.next;
empt. next :=p

[‘—L,?o delete an item:

[delete W 1

IF head#t.data = 'N' / .
THEN SN temp [o> > =4
ead := head?.data
ELSE {case 2} tempt temph nexts
BEGIN 4balessy! Where selective deletion
temp := head or "insert before' becomes
WHILE tempf.nextt.data<>'N' DO | necessary it is better to use
temp := tempt. next s doubly linked rings (see
tempt.next :=tempt.next4, next later) than simple chains.

END

145

" AN EXAMPLE TO ILLUSTRATE
THE USE OF CHAINS

Einding the shortest ¢ or longest) route through a network is a problem
that crops up in various disciplines ss one of which is critical path
scheduling E)r the control and monitoring of construction projects. Given a
network such as that below, the problem is fo find the shortest route
from the node marked S7ART to that marked £¥0. The journey must follow
the direction of the arrow. The number against each arrow shows the joumey time

Sfhe dafa structure needed for a shorlest-route program is depicted below.
There is o record for each node and a chain runs from each such record.

Each chain comprises eage records which store data describing all the edges
which run out of that node,

-hend
‘bestime | Au «link Jink NI
5
8.0

switch [av -tip tip| 4
‘route [0 | ‘time | -time
record for record for record for
node (%) edge D—(5) edge @@

[i3ecords for all nodes are held in an array named rodefacts. The record
for node 2 is annotated more fully below. In the component named

bestime is the value Auge § o con-
nodefg‘cxtj:gc]tstggt:?rfg T stant set to 102°). 1In the component
nodeFocts[;].switch o named switch is a Boolean value,
nodefocts(2]. route | @ initially switched to or2. Use of these

items is explained later.

“Phe records for edges running oul of a node are created dynamically.
Each record has a component for storing the link, another for stori

nodefactsfz]. head4 . link | the node number at the tip, another

for storing the journey time along
ettty [T SR R T e
: | is for edge @—>()-

?he shortest route is found by an iterative process. Before the process can
start the chains must be formed and initial values placed in the com-
ponents that will eventually hold changing values. The component named
bestime is to hold the best fime so for achieved to this node by different
trial routess; the initial time in this component is set so high that the Ffirst
feasible route, however slow, has to be an improvement. "An exception

is H:le starting node; the best time to the starting node is, by definition,
nothing.

Al switches are turned o initially. A switch that is on implies that the
edges leading out of that node must be explored {or re-explored)) o

146

Qf'he iterative process starts at the starting node, then cycles the array
of node records until terminated. The process terminates on detection
of all switches being off.

&’r each node the chain of edge records is traversed. For each edge
in the chain the time to reach its tip is found by adding the best time
so far achieved at the tail to the journey fime for that edge. The
result is compared with the best fime so far recorded in the rode
record for the tip. Lf the new time is better, several things must be
recorded. These are depicted below:

eage @+

nock (2)

olink
‘ tip

‘head -
bestime ‘time

swifch
-route

Jowney kime ey
fonode 5§ foood I4@ + 8.0= 26.0)O

Whenever a better route to a node is found, the faster fime is substit-
uted and the node switched o7 as depicted for node 5 above. To be

able to trace this improved route subsequently, the route component is
mode to contain the number of the node through which the route came.
So the outcome of dealing with the edge from ® to ® is:

-head e better time
~on)

[]
/70&@ -bestime! 2¢.0
switchfoz] — <ddts
croute | 2 K] ,,’Z,’d,_,fg‘“
[\fter traversing the chain of edges from node 2 the switch af node 2
is turned off. However, the action at node 2 included turning om the
switch at node § so the iteration is not yet finished. The process
continves until all switches are off % in other words until a complete
cycle through the nodes fails to make a single improvement to the route.

9fhe node-records are assembled as an arroy rather Han being created
dynamically and linked as a chain. The array structure was chosen
because node-records are accessed in a ‘random” way ({ ¢.g. when
dealing with node 2 you have to refer fo nodes 5 and 4 J). Using an
array “such references are resolved quickly by a simple change of
subscript.

Endnode
6

Startnode
F'ij"ried with the network sketched - g 3 "

opposite, data and results 6 (00
{assuming interactive use) would 3 zl (6.0
be as shown here. 2> 13 2 5o
{ 5 12.0
2 4 60
2 5 8.0
5 6 9.0
4 6 10.0
45 1.0
Route from & to 3
Gueeltere2.i10l3

Time token is 31.0__

147

SHORTESTJROVTE S CATEEip

PROGRAM network (INPUT, OUTPUT);
CONST
on = TRUE; Off = FALSE;
huge = 1E20; nothing = 0.0;
maxnodes = 3@; maxedges = 50;

TYPE

nodetype = ®.. maxnodes; edgetype = @.. maxedges;
peintertype = 4 chaintype;
chaintype = RECORD

link: pointertype;

tip: nodetype;

time: REAL

END¢

rectype = RECORD i
heod : pointertype;
bestime: REAL;
switch: BOOLEAN;
route: nodetype
END;

arroytype = ARRAY [nodetypel OF rectype;

VAR
nodes, startnode, endnode, i, n, tail : nodetype;
edges,) : edgetype;

edge, p: pointertype; A o
nodefacts: arraytype; <o 27
CyC'CS P 0.2 tr‘y : REAL; rnode records

BEGIN

WRITELN ('No.nodes, No.edges, Startnode, Endnode ‘)3
READLN (nodes, edges, startnode, endnode);

FOR i :=1 TO nodes DO
WITH nodefacts[i] Do
BEGIN

head := NiL3
bestime := huge;

switch := ong)
replace time
route := @ /A
END; { WITH? at start node

nodefacts [startnodel. bestime := nothing;

FOR j =1 TO edges DO <& form all chains

BEGIN
NEW (p)s _=qread data

READLN (tail, pt.tip, ps.time);

pt.link := nodefacts [tail]. head; <&k new recoro

nodefacts [taill.heod := p = to chain
END;

148

cycles := @;
n := startnode — 1;

77 5 augmented by +1 before use,
kence —1 in preparation

WHILE cycles < 2 DO
BEGIN
cycles := SUCC(cycles); = omit the "=on" (f
n = n MOD nodes + 1 You find i clearer
IF nodefacts [n]. switch = on
THEN
BEGIN { IF switch}
cycles = 0;
edge := nodefacts [n]. head;

WHILE edge <> NIL DO
BEGIN { WHILE edge }
Lry := nodefacts[n]. bestime + edget.time ;
IF try < nodefacts [edge4.tip1. bestime

THEN
WITH nodefacts [edge +.tipl DO
BEGIN
bestime := try;
route := nj
switch := on
END

edge := edget.link
END; { wHILE edge }
nodefacts [nl. switch := off
END {IF switch }
END; { WHILE cycles }

WITH nodefacts [endnodel DO
IF (bestime <> huge) AND (bestime <> nothing)

THEN
BEGIN
WRITELN ('Route from', endnode:3, ' to', startnode:3) ;
n := endnode;

WHILE =~ n <> 0 DO _iburs width expancts to 2
WRITE (sty /F node number has 2 digifs
< T

n = nodefacts[nl. route;
IF n<> 0 THEN WRITE ('...")
END;
WRITELN;
WRITELN ('Time taken is', bestime:6:2)

END

ELSE
WRITELN('No way through - or going nowhere')

previovs
node

END.

149

INTRODUCING m AN ELEGANT DATA STRUCTURE

li_—llhe fundamental record of a fore[e —>»
doubly linked ring has pointers <« |.aft
pointing fore and aft fhus: 3> @

ﬂccess to records in a ring is simplified by employing cne record as a
dummy head as illustrated below. This device makes it unnecessary to
check whether the record to be added or deleted is next to the fixed head,
taking special action accordingly. Very messy.

head I_+—I head @
—» 1> | o1 > | 1> . "]
* <—— <+ <— |- -

(Al L

headt with four records linked

& dummy)

ﬂ ring is depicted above with four records; it is also depicted empty.

[Flere is the definition of a record | TYPE

suitable for constructing a ring. To pointertype = 4 recordtype;
keep everything simple this record
is made capable of storing just a recordtype = R?CORDf . pointert
single character. = ore,aft: pomntertype;

data : CHAR
[n the main program an empty ENDs
ring may be set up as follows. VAR :
9 may set up head, temp : pointertype;
NEw (head);

head 4. fore := head;
head#+.aft := head;

ﬂ new record moy be inserted before or after the record currently
pointed to. Procedures for both these operations are given below:

PROCEDURE inafter (old, young: pointertype);
BEGIN

young#. fore old . fore;
young?t. aft old;

old¢. foret. aft := young;
old+. fore := young

W

pointers:
mitially
_—

finally

e

INSERT yourng
AFTER ~old

150

PROCEDURE inbefore (VAR old, young: pointertype);
BEGIN
young®. fore := old;
youngt. aft := old4.aft;
old+. aftt. fore := young;
oldt. aft := young
END;

old the
pointers:

-t initially
5

INSERT yourig
BEFORE old

finally

------- >

Deleﬁon is simple and elegant:

PROCEDURE delete (VAR old: pointertype);
BEGIN

old+ . foret. aft
old+. aft+. fore

END;

the

old [e]

oy
old+. aft; operations

old 4. fore [0 =] B
L] o] ——=re |
| ard A A

old4. aft 4 oldt.fore

Won

old+

l‘l/_f'raversal is simple in either direction; the only difficulty is stopping in
time. If the aim is to traverse the ring precisely once, start by pointing
to the first record and arrange to stop as soon as the pointer points to
the dummy head { before trying to refer to data in the dummy head)).

temp!"3:1 head[9] temp{ s s(t)iréé'/;fgn ;fate

_______ *V 1-*
~—tPp 0-—> r—]—b o]
-
i Al B [[E
head 4

temp := head#*. fore;
WHILE temp <> head Do

BEGIN
WRITE temp#t. datas
temp := tempt.fore

END;

WRITELN

[f both occurrences of "fore" were changed to "aft" the result of
the above piece of progrom would be ELBA rather than ABLE.

(Dverleaf is a demonstration program designed to exercise the principles
and procedures introduced on this double page.

151

AN EXAMPLE PROGRAM TO DEMONSTRATE THE WORKING
OF A DOUBLY-LINKED RING

ﬁhe following program maintains a doubly-linked ring organized

alphabetically. To introduce a letter enter +L @ or + any other lefter))
at the start of a line. To remove a letter enter -L § or - whatever
the letter D. To display the stored data in alphabetical order enter >
at the start of o line. To display in reverse order enter <. To stop
enter * at the start of a line.

PROGRAM roses (INPUT, OUTPUT);
TYPE

pointertype = 4 recordtype;
recordtype = RECORD
fore, aft: pointertype;
data : CHA&>o
END;
VAR
ch: CHAR;
heaod, p, temp: pointertype;
caps, operators : SET OF CHAR;

PROCEDURE inbefore (VAR old, young: pointertype);
BEGIN

young*. fore := old;
youngt. aft := old#t. aft;
old+. aft4. fore := young;
oldt.aft := young

END;

N4 procectures
inbefore and
delete as on

PROCEDURE delete (VAR old: pointertype); previous page

BEGIN

old4. foret. aft := oldt.aft;
old+. aftt. fore := oldt. fore
END;
BEGIN
caps := ['A'..'Z'];
operators = ['+','=', >', '];
NEW (head); set .

') up an emply rirng.
fr:eeagl:. g?';e ,;" hhecac.i, x5~ put a dvmmy character
headt data = :r?RE . chr(®) into dvmmy head

eadt. = 5 to avoid the crash warned
REPEAT about on the next page
READ(ch);
IF ch IN operators
THEN

e

152

CASE ch OF
'+': BEGIN

IF ch
THEN

END
END3

BEGIN

IF ch
THEN

&

END
END;

BEGIN
temp :=

BEGIN

tem

< END;

WRITELN
END;

BEGIN
temp :=
WHILE ¢t

(BEGIN

END
END { CASE }

tem
END;

UNTIL ch = '*!

END. {roses}

READ C ch);

BEGIN
NEW(p)3
pt. data :
temp
dmLE (temp<>head) AND (temp+.data< ch) DO

inbefore (temp, p)

WRITE (temp+. data)

WRITE (temp4. data) 3

MWMMMM

Beware of a potential crash.
The condition temp?.data< ch
will be evaluated even when the
condition temp<>head /s false.
So tempt.data must not be left
undefined in the dummy head.
Hernce the CHR(®)

N caps

ch;
head+4. fore;

=
o=

temp := temp+.fore;

READ C ch);
IN caps

BEGIN
temp

= head+. fore;
HILE (temp<>head) AND (tempt.data<>ch) DO

temp := tempt. fore;

IF temp <> head

THEN
delete(temp)

head +. fore;

WHILE temp <> head DO

display
ascending
oraer

p = temp4. fore

head#+. afts

emp <> head DO

display n
descenaing

p = tempt.aft order

WRITELN

stap work
on *

153

INTRODUCINCYBINARYAT REES Parsisrd

qj.ake some letters to sort: e
D, Z, B, E, A, F, C a "noae” /E “rool”

Bring the first letter, D, fo the root of a %
tree and store it in a node. { Trees
grow upside down as do several meta-

phors in computer science.) Now lake the next letter, z, and bring it fo
the root node. It is "bigger* than D sogo

%\A right and make a new node fo contain
Z as shown
<& here.

Llow the third letter, B. 1t (s smaller
’ o ez

than D so go /eft and make a new node.

Whe next letter, E, is bigger than Dsogﬁn
right. 1t is smaller than Z so go /eA. T
o] Ln:fl;e a new node fo contain E as shown
B A .
%] On general; bring the next letter to the
root node and compare. If the new letter
is smaller go /eft , if bigger go right. Do

the same thing as you reach each node until there are no more nodes
to supply letters for comparison. Then maoke a new node to contain

the new letter. /@\
AN 4
[]

mnf Gy
Gap o

l | | [1]
At any stage the tree may -

be traversed { or séripoed))

as shown below. Notice that
the arrow runs through the
letters in alphabetical order. ¥

N
N
On

:
*
X

e order may be reversed by troversing the other way.

154

“'he type of node record depicted opposite s easily defined:

TYPE .
pointertype = 4 nodetype; -ledfzta -right
nodetype = RECORD

left, right : pointertype;
data: CHAR
END;

[ﬂanging letters on a ftree 5% depicted in stages opposite s is best done
recursively. If the current node is NiL make a new node to contain the new
lefter; otherwise invoke the "hang" procedure with the parameter specifying the
left or right pointer according to how the new letter compares with that pointea fo:

PROCEDURE hang(VAR nptr: pointertype; ch: CHAR)3

BE?":N nptr = NIL NSFVAR essential: b "pt'::}
nptr changed
THEN {case 11 CASE 1
BEGIN oo NEwW (nptr) nptr .,.i
NEW (nptr); NILINIL -
nptr4t. left := NIL; h m
nptr4.right = NIL3
nptr4.data := ch nptr[s]
END N
ELSE { casE 2}

IF ¢ch <h nptr+. data h nptrs. left [ofa]nptr4.right
THEN hang(nptre.left, c o] A

ELSE IF ch > nptré.data 2] Fitrt. cata
THEN hang (nptr#.right, ch)

ELSE WRITELN ('Duplicate entry')

END;

he tree may be traversed recursively :

PROCEDURE strip (VAR nptr : pointertype);
BEGIN
IF nptr <> NIL

THEEGIN strip the left subtree

strip (nptrt. left); -
WRITE (nptr+. data)3 L;/;eg :ggi with

strip (nptra. right) o
END then strip the right subtree

y

END;

[n both the above procedures " wiTh nptrt Do* could be used to reciuce the
number of occurrences of "nptr4" at the cost of extra lines and less clarity.
The VAR in the troversal procedure, though not logically necessary, prevents
the processor taking a copy of the data structure on each invocation. Ouch

@ver the page is a program based on a binary tree. It reads letters typed
in any order and displays them in alphabetical order. It is left as an
exercise fo add a facility for display in reverse order.

Binary trees are useful for all sorts of things besides sorting.

155

AMOTHER NAME FOR

- BINARY-TREE SORT
“fhis program maintains @ binary tree in much the same way as Roses
maintains a doubly-linked ring. To hang a new letter on the tree enter
+L ({ or + any letter). To remove a letter enter —L q or minus whatever the

letter). To display the lefters on the tree in alphabelical order enter >
at the start of a line. Enter x at the start of a line fo stop.

ﬂdding fo the tree is elegantly simple bul deleting a node which is not a
"leaf" s especially when duplicated items are allowed on the tree = is
not easy at alt. This program simply keeps a count of like items, reducing
the count when an item is deleted.

PROGRAM monkey (INPUT, OUTPUT);

TYPE
pointertype =4 nodetype;

nodetype = RECORD
left, right: pointertype;

data: CHAR3:
count : INTEGER
END;
VAR
root, p: pointertype;
ch: CHAR;
PROCEDURE hang (VAR nptr: pointertype; ch: CHAR);
BEGIN
IF nptr = NIL
THEN
BEGIN
NEW ¢ nptr);
nptrt.left = NIL;
nptr #.right = NIL;
nptr4.data := ch;
nptra.count := 1
END
ELSE
IF ch < nptrt.data
THEN

hang (nptr4. left, ch)
ELSE IF ch > nptr4, data
THEN
hang (nptrt.right, ch)
ELSE
nptrt. count := nptr4.count + 1

END;

ﬁhe following function is for finding a letter to be deleted. The function
is writlen recursively using the some logic as in harng.

156

FUNCTION find (VAR nptr: pointertype; ch: CHAR): pointertype;

BEGIN return NIL

1F nptr = NIL :
THEN find = NiL L0t foung

ELSE IF ch < nptrt.data
THEN find := find (nptr4. left, ch)
ELSE IF ch > nptr4.data
THEN find := find (nptra.right, ch)

ELSE find := nptr
END; "'

PROCEDURE strip (VAR nptr: pointertype);

VAR
i: 0..MAXINT;
BEGIN
IF nptr <> NIL
THEN
BEGIN ,
. . Q. "
FOR i:=1{ TO nptrt.count DO twice; if the count
O thlTE(< n;gt;hcj:la’s%g; (s @ don't write
strip (nptrt.rig :
D ptnp anything
END;
BEGIN { monkey }
root := NIL;
REPEAT
READ(ch)3
IF ch IN ['4','=","'>"1]
THEN
CASE ch OF
‘+': BEGIN
READ (ch)3
IF ch IN ['A'"..'2Z']
THEN
hang(root, ch)
END3
‘~': BEGIN
READC c¢h)3
p := find(root, ch);
IFTE! <> NIL
EN IF pt.count > 0@
THEN p+t.count := pt.count -1
END3
N BEGtI; N (s eé‘nf:cgovzzg oc/r’re/eée
stri root)3
VRITELN Letter
END
END { CASE }
UNTIL ch= ‘x'
END.

157

EXERCISES

1.

Z

158

Write a program to read an arithmetic expression such as:

3.5*% (7+(4-6.2)/32)

and display the answer. Use an input procedure such as
grab (pages 118-23)) to read the numbers and operators
which comprise the expression. Employ the logic of the
reverse Polish program (pages 2-4) but with an importont
difference; when you are about to transfer an operator
from stack ¥ to stack X do the following instead:

¢ pop two numbers from stack X
e apply the operator to them
e push the result on stack X

By this device you should end up with a single number in
stack X; this is the value of the expression.

Write an adventure game. The player explores a mystic
palace or smelly dungeon, walking from room to room,
picking things up, putting things down, whilst contending
with monsters. To write such a progrom you need the string-
handling facilities developed in the next chapter because
the player expects to type:

TAKE POISON
or
GO WEST

and have the computer respond intelligently. There is a
simple bul complete adventure game described in my book:

lllvstrating Super-BASIC C.U.P. 1985

which exploits ring structures for picking things up in one
room and dropping them in another, stafe matrices for
mapping the topology of rooms and doors, and symbol-
state tables for encoding the rules of play. Enough
techniques are described for constructing a complete and
worthwhile adventure game.

1B
DYRAMICHSTRIRCS

STRING UTILITIES

® READSTRING
® WRITESTRING
e MIDDLE

® CONCAT

© COMPARE

® INSTR

® PEEK

® POKE

BACKSLANG ({EXAMPLE))
HASHING TECHNIQUE
HASHER ({ EXAMPLE)

MAY BE USEFUL EVEN IF YOoU
HAVE PASCAL WITH 'TYPE STRING'

Standard Pascal defines few string-handling facilities; as a consequence
modern compilers offer non-standard ones. The disadvantage of using non-
standard facilities is loss of portability. One way round the portability
problem is to define one's own set of utilities built strictly from standard
parts. This course is followed below. Ifs purpose is fo suggest and illustrate
a methodical approach rather than attempl the standardization of string
utilities; the reader is sure fo want different facilities and befter written
procedures than those to be found here.

I?he utilities are based on a record of the form depicted below:

sub records

.strzhg ‘length e NIL] *next
S| heaa I_T:‘—/ 5] [h] [o] [e]tetter

[Because dynamic storage is employed every string may have a different
length and there is no arbitrary limit placed on length. Here is the type
definition, { Also included is a definition of enumerated type for later use
in the comparison of strings.)

PROGRAM strings (INPUT, OUTPUT);

TYPE A .
stringrange @ .. MAXINT 3 con”;rf(::;:é'ovebe

pointertype 4 lettertype;

Jettertype = RECORD
next: pointertype; 1=
letter: CHAR
END;

stringtype = RECORD
length: stringrange;
head: pointertype
END;

relation = (eq, ne, gt, ge,1t, le);

S eguivalent to:{=,<>,>,>%,<,4=)

? he first two procedures are recursive. Append is for appending a new
character to the end of a string; reclaim is for disposing of subrecords
when a record is to store a new string. These are "low-level" procedures
used by the main string utilities. The programmer who uses the main
string utilities need not know about the low-level ones.

i

‘letter may contain
any character s# ot
Just alphabetic
ones

IElflroughox.at all procedures the parameters which nominate string records
are mdde VAR parameters. The idea is to prevent the processor having b
make copies of strings s which could be very long.

160

PROCEDURE append (VAR p: pointertype; c: CHAR)3

BEGIN
IF p = NiL
THEN
BEGIN
NEW(p s
pt.letter := ¢
pt.next := NIL
END
ELSE

append (pt.next, ¢)
END;

PROCEDURE reclaim (VAR p: pointertype);

BEGIN
IF p <> NIL
THEN
BEGIN
1IF p4.next <> NiL .W
THEN f
reclaim (p#. next)%;
DISPOSE (p);
p := NIL
END
END;

QAssume a string nomed st
VAR st: stringtype;

st.length[2 o> [NIL
st.head a—-/ 0 h
LllTl"he effect of apoend (st.head, '?’) would be:
not updated st.length [2 A LA [
by append 7 st.head o] 0] (h | !
?he effect of reclaim (st. heada’) would be: gne hea

)
S
not st.length [2 ‘{}",,4\‘
fmdewo st.head [NiL et ST T

%fhe following depicts an empty string. Before any string is used by
name in the procedures that follow, that string must be initialized.
You could write a formal procedure to do this bul it’s not worth the effort
and complication.

st.head := NIL; st.length[o
st.length := @ st.head|NIL
THIS IS HOW TO INITIALIZE THIS IS THE EMPTY STRING DEPICTED

164

RLESTL B 797string) CHECK EOLN BEFORE INVOCATION

Whe following procedure reads a string and stores it under the specified name.
The specified name may be the name of an empty string or of a non-empty
string, the previous content being lost. It is an error to invoke the procedure
with the name of a string not yet initialized. A string is considered term-
inated by a space or £oLN {i.e. the ReTuRN key pressed), Leading spaces
are ignored by this procedure.

PROCEDURE readstring (VAR newstring: stringtype);

CONST
space = ' '3
VAR reclaim does nothing
ch: CHAR; if newstring /s alreacly
BEGIN eqpty,

reclaim (newstring.head);
newstring.length := 0;

REPEAT _ = ignore leading
{ READC ch) soaces
UNTIL (ch <> space) OR EOLN;

IF ¢ch <> space
THEN
REPEAT count
append (newstring.head, ch); hamcter:s
newstring.length := newstring.length + 1;
ch := space;
IF NOT EOLN THEN READ(ch)
UNTIL ch = space
ENDj;

WIS § 779Mspring) DOES NOTHING WITH AN EMPTY STRING

rhe following procedure writes a copy of the nominated string with no
leading spaces and no trailing spaces or new-line characters. 1If the
nominated string is empty the procedure does nothing .

e e P N P i) WV N SO |
PROCEDURE writestring (VAR oldstring: stringtype);
VAR
p: pointertype;
BEGIN

p := oldstring.head;
WHILE p <> NIL DO

BEGIN
(WRITE (p*.letter);
p = pt.next
END

END;

WMMWW\MW——'V‘J

162

AQCEIIH}(1”um?mwﬁMy’”a”@mﬁmanQVQmwm’qa”%mwam D

his procedure creates a string by copying part of another. The new string
is made a copy of the "middle' of the old string starting at a specified

position and having a specified number of characters. Use of parameters
is best explained pictorially:

middle (new, old, 4, 7))
1234%

string nameq
ABCDEFGHIJKL «

number of chars = 7

resull: a new string named “new" [z DEFGHIJ

i?hls procedure is modelled on the popular 84skc command MID#(,,,).

';I?he fourth parameter may specify an impossibly high valve, in which case
the new string is truncated where the old string ends. The procedure may

be used fo copy a complete string. A new string may be maode to overwrite
the old string.

PROCEDURE middle (VAR newstring,oldstring: stringtype;
start, span : stringronge);
VAR

i: stringrange; p, temp: pointertype;

BEGIN

IF (start > @) AND (start <= oldstring.length)
THEN
BEGIN
temp := NiL;

p := oldstring. head;
L= 15 [0 oty
WHILE 1 < start DO

BEGIN

(p = pt. next; truncate if
. ENDI; : succC (i) ’span"/;st‘oob/'g

1 = 1;
WHILE (p<> NIL) AND (1 <= span) DO

BEGIN
append (temp, pt.letter);
p := ptnext;

i i+t
END;
newstring.length := 1 - 1;
reclaim (newstring. head);
newstring.head := temp
END

nn

build result
as a temporar
string)

wn

reclaim space,
then point to

“ temporary
string

END;

163

@m @ 4 amenews/.‘rmg » f1ame leftstring nam € rightstring D

?his procedure creates a new siring as a copy of two nominated strings
joined end to end ss in other words concatenated. The left and right
strings nominated for concatenation remain undisturbed unless the
new sfring is to overwrite one of them.

PROCEDURE concat (VAR newstring, left, right: stringtype);

VAR

p, temp : pointertype;
BEGIN

temp := NIL;

p := left.head;
WHILE p <> NIL Do

BEGIN
(append (temp, p#t.letter);
p := pt.next
END;

p := right.head;
WHILE p <> NIL DO

BEGIN
(append(temp, pt.letter);
p = pt.next
ENDs

newstring.length := left.length + right.length;
reclaim (newstring. head);
newstring. head := temp

END;

Afhe next function is for comparing strings. The criteria for equality and
relative size are those commonly used for alphabetical directories. Upper
case lefters are considered "equal" fto corresponding lower-case letters.
Strings are "equal' if they have identical length and all characters mafch
in pairs from left to right:

AbcCd s consicered 'equal” to aBcd

When stri ngs are unequal their relative order in a directory is determined
by the first mismatching character from the left. The one with the higher
ordinal value indicates the greater string:

AbCdg s considered “grealer than” aBCdefg
First mismatching character 2V

When one stri ng is shorter than another imagine a “null" character of
zero ordinal value appended to the shorter. The rule above then still applies:

AbCde s consicerea ‘greater than' QBCE<IY imaginary
n "
NK§first mismatching character = nud

164

o AR name . cry, name., . FUNCTION RETURNS BOOLEAN
COMPARER(KCLLER string) Ve ToUlE ok ALSE

criterion for returning true:
eg, ne, g¢, ge, it, le
=,<>y >y 2=, <, &=

IF compare (response, eq , affirm) THEN...

examples :
IF compare(left, ge, right) THEN...

FUNCTION compare (VAR left: stringtype; r: relation;
VAR right: stringtype): BOOLEAN;

VAR
cpy €q: CHAR;
same, pmore, gmore : BOOLEAN;

p, q : pointertype;
FUNCTION upper (¢: CHAR): CHAR}

when comparing
%= 5trings any lower-
case letter (s (reated

BEGIN as a capital letter
IFcIN ['a'..'2"]
THEN
upper := CHR(ORD(c)- ORD('a')+ ORD('A'))
ELSE
END; upper := ¢ assume this offset

(s constant :
froma-~>2zZ
Az

BEGIN { compare }

p = left.head; q = right.head;
pmore := p <> NIL; gmore := g<> NIL;
same := TRUE;
WHILE (pmore AND gmore) AND same DO
BEGIN

cp := upper(pt.letter);

cq = upper(gt.letter);

same = cp=cq;

:= pt.next; pmore :

p := <> NIL;
:= gA.next; more :
EN%; 4

p
g <> NiL

IF (same AND gmore) AND (NOT pmore)
THEN c¢cp = CHR(®);

IF (same AND pmore) AND (NOT gmore)
THEN cq = CHR(0);

CHR(D) /s boum
< £o be less

CASE r OF

eq : compare := cp = CGq;

ne : compare ;= p <> cqs

gt : compare := cp > cqg;

q ¢ compare = Cp >= Cq;
t : compare := cp < cqy

le : compare = cp <= ¢q

END {casE}

END; { compare}
N NESS S I N USSP VR N |

165

name . name . FUNCT/ON RETURNS POSITION OF
AHSTRI({ supersiring 2 SUBIG o ATCH 53 OR ZERO FOR NO MATCH

q}hls function is modelled on a popular function of 84sic. It seeks the

first occurrence of substring within sypersiring, returning its position
as an integer counting from 1 4 or zero if no maich is Found

M]‘ AECdchD
‘aaﬂib 4 does not find subsequent match

FUNCTION instr (VAR super, sub: stringtype): stringrange ;
VAR
tempstring: stringtype;
i,j: stringrange;
match : BOOLEAN
BEGIN
instr := 03
tempstrmg head := NiL;
= Q3
j = super.length — sub.length + 13
W j >=1
THEN take a short temporary
BEGIN slring from successive positions
RE'.’EAT . (n super
i == succ(1)
middle (tempstring, super, i1, sub.length);
match := compare (tempstring, eq, sub)
UNTIL mﬁtch OR (i=j);
IF match THEN instr := 1i; compare the temporary
reclaim (tempstring. head) W
END
END;

FIFR Q797 string > Mposition]) FUNCTION RETURNS 1 Eh CHARACTER

%fhis function returns the character at position 72 of the nominated string, or
CHR(®) If n is beyond the range of that string.

FUNCTION peek (VAR old: stringtype; n: stringrange): CHAR;
VAR
i: stringrange; p: pointertype; 2
BEGIN str >’ ABCD
b - ?Id heads peek (str, 2)
WS T
WHILE C i<n) AND (p <> NIL) DO returns ‘B
BEGIN
i = succ (i) EXAMPLE
p := pt.next
END;
IF p <> NIL
THEN
EL:: ek = pt.letter p#‘?fé’ given
eek := CHR(O outsiae range
W&ww

166

name , .. N i c REPLACES nth CHARACTER
m Q string ? ' position ® “character D WITH ©

9Phis procedure is versatile:

e when 1< 1< length the procedure replaces the nth
character of the nominated string with the given character :

@ asKa Poke(str, 3, 'c') @ asco

e when 7= the given character is pushed on the front:

Gt pi>asca Pk (str,0,'P) (37 3> Pasca

e when 75> /length the given character is appended:

@ Pasca POKE (str, 6,'l") @ Pascal

Btring *constants” may be built from empty strings in this manner. For long
string constants it would be better to write a procedure fo build strings
from Pascal string constants assigned to packed arrays of characters.

PROCEDURE poke (VAR old: stringtype; n: stringrange; c: CHAR;
VAR
p: pointertype ;
i: stringrange;

BEGIN
n > length ;
[FTHEN > old.length <—-

BEGIN
append (old.head, ¢);
old.length := old.length + 1
END

ELSE IF n= 0 X4 n=a;
THEN push on front
BEGIN

NEW(p)
pt.next := old.head;
pt. letter := c;

old.head := p;
old.length := old.length + 1
END
ELSE < n £ length;
BEGIN
reploce nth
p = Tld.head; Z charactern
I := {3

WHILE (i< n) AND (p <> NIL)

BEGIN .
(i:=succ(i);

p := pt.next
END3
IF p <> NL
THEN
pt.letter = ¢
END

L‘V-E—N'D\;/‘“—Mwh

167

Isthay isay Ackslangbay! Ancay ouvyay
wgm eadray itoy? Erhapspay otnay afayy irst)flay.
@ac,é.r/ang is a secret language spoken in boarding schools. 1t is suitably
incomprehensible when heard for the first time but easy to master once
you know the grammatical rules. There are probably many dialects of
backslang (also called pig Latin) ; this one is remembered from school
days. Each English word is folded about its first vowel and ayis a

ea - eatay , fomato»omatotay), 1If a word begins with a vowel, the
second vowel becomes the pivot item > emitay)) unless there is no second
vowel in which case there is no fold §iéch> itchay), A diphthong at the
beginning of a word is treated as a single vowel oil »oilay not iloay;
earwig > tgearway not arwigeay).

[\ capital letter at the beginning of a word has to be transformed

§ Godfather > Odfathergay not odfatherGay)« The w after g demands
special treatment { Queen > Eenguay not veen@ay). A trailing punctuation
mark has to remain trailing § Crumbs! > Umbscray! not Umbsicray).

qrb make all this work properly the input file for the following program should
be typed without pressing the ReTRN key wntil the end. Type in lower-case
but capitalize words wherever appropriate. There should be a space
after s and not before s each punctuation mark. Quotation marks,
double or single, are not catered for so should be omitted; embedded
punctuation marks such as apostrophes are freated as consonants.

“?ry the following input file which should make the program encipher
and display the text shown at the very top of this page:

This is Backslang! can you read it? Perhaps not at first.

N I G N N o T . VPV
PROCEDURE colossus;

VAR
puncmark: CHAR;
recap: BOOLEAN;
btm: 2..33
fold, k, quin: stringrange ;
offset : INTEGER;
word, fore, aft, qu, ay, stringtype;

the real purpose of this
example (s to show how to
apply the string facilities
developed on earlier pages

BEGIN
word. head := NiL3 word.length := @; mz'j[t[a[zze
fore. head := NiL; fore.length:= @;

String
variables

aft.head := NIL; aft.length := @;
ay. head NIL; ay.length := @;

qu-head := NiL; qu.length:= @;
" string constants”
offset := ORD('a') - ORD('A'); ‘ay ‘and 'qu’

poke(ay,1,'a'); poke(ay,2,'y'); poke(ay, 3,' ');

poke (qu, 0,'w); poke(qu,?,'q");

w o

168

WRILE NOT EOLN DO
BEGIN

readstring(word);

recap := peek(word, 1) IN ['A'..'Z"];
""T;‘f:i‘ap _Lif initial lefler is @ capital, reduce fo Le

poke (word, 1, CHR(ORD (peek (word, 1)) + offset))3
IF NOT (peek (word, word.length) IN ['A'..'Z', 'a"..'2'])
THEN

BEGIN
puncmark := peek(word, word.length);
IF word.length = 1
THEN

poke (word, @, "' ');
middle (word, word, 1, word.length -1)

ng o 1f last character /s not a
E lefter remember it as a

puncmark := CHR(@); .
quin := instr (word, qu); pyzclugtion magk

IF quin > @
THEN
poke (word, quin+1, 's');
IF peek(word, 1) IN ['A','a','E',e','1','i","'0",'0','V", 'u"]

If word confains ‘qu’
change fo ‘gx’

THEN btm:= 3 géar earwig
ELSE btm:= 2; btm=a O btm=3s
fold := 13

FOR k := word.length DOWNTO btm DO
(IF peek (word, k) IN ['A'a','E','e",'T",'i",'0"'0','V', 'u"]

fold := k;
THEN

poke (word, quin+1, 'u');
middle (fore, word, fold, word.length-fold + 1);

middle (aft, word, 1, fold-1);
concat (word, fore, aft); fold word;
concat (word, word, ay)3 append 'ay’

IF puncmark <> CHR(@)
THEN
BEGIN
poke (word, word.length, puncmark) ;
poke (word, 1 + word.length,' ')
END; -
IF recap AND (peek(word,1) IN [‘a'..'2'])
THEN
poke (word, [, CHR(ORD(peek (word, 1))- offset));
writestring (word)

append punctuation mark if there
was one

recapitalize
Y /f necessary

g

END; { WHILE }
WRITELN

END; { colossus }

BEGIN { strings }

colossus <kKi the macn program
END. { strings }

169

FOR LOOKING THINGS UP
QUICKLY

e I e

ow do you locate a word in a list . list[11 [P’
E'] wordsx? The simplest solution is FOR 1:=1 TO 9 DO list[21]'0']
to scan the list from top to bottom, BEGIN list[31{'L']
arranging to do something when a IF list[i] ='c' list{al ['T"]
match is found. Here is a trivial THIESN 1= list[53 ['C’
piece of program to locate the letter WRITELN(Cat',1); list{el ['E]
'c' in a list of letters. There is lastposition 1= -OU 150 st [w]
nothing wrong with such anapproach | | _ [S-PosEEion 1= 4 list[8] [A’
provided that the list of words is short. ND listLo] ['N']

ﬂn long lists the trick is to go straight to the place where the match ought
fo be found. In a list of letters having a length of 26 the technique would
be perfect; such a list would be arranged in alphabetical order, so fo
find if ‘C' is there you would ook in list[31. To find any lelter x you
would look in list [ORD(x)-ORD('A')+1]. The expression ORD(x)-ORD(‘A')
+1 in mathematical terminology is a function of x . This function returns
the correct address for any letter x.

But it would be impractical to provide a list of words in which every
conceivable word had an exclusive address. The practical solution is fo
set a limit fo the length of list and devise a function { similar to the
one illustrated above) to give the probable address of the word sought.
Such a function is called a hash function.

£\ hash function looks and behaves like a function for generating random
numbers. Just as a random-number function involves the use of MoD

fo constrain the result fo a particular range, so does a hash function
employ MOD to constrain the address to lie within the length of list.The
hash function shown below is based on one given by Kernighan and Plauger<.

Bfake the word ANT which is fo find its place in a list of 17 components, @
fo t6. Ordinal values of the letters are used in the hash function; those
below are in AsCll code but the method would work on computers with other codes.
MA“ 'lNIl HTII
ordinal value 3> 8
2

©5 7 84

3x carry 5> 020 WEU2 ye—> 3
add together &> y 65 /: 20 f 87
sum MoD 1F &> 0‘.W14 t 2 +tsee Bibliography

Eby the same algorithm AARDVARK would generate a hash code of 7 and so
belong in list[7]. From the addresses of ANT and ARRDVARK it is evident that
hash codes do nol arrange words in alphabetical order. Hashing STOAT yields a
hash code of 2 in competition with ANT, Clashes such as this are resolved by
the logic explained opposite.

50 ANT belongs
i Iist[2]

':I:['he 3 is a "magic number"; you could try 5 or'7 or other small prime. The length of
list @ 17 in the example) should also be a prime number for best effect. *Best"
means distributing the hash codes evenly over the list so that it is not filled
in clumps . On page I72 is a program to demonstrate the hash function
described above; fry it to see if you get clumping ¢ I don't).

170

% put a new word into a list: l list[0]
. list[1]
Hash the new word
—
no Is the component es listlhashl[FullOp
“list [hash1" empty? list[hash+11{ TryNextDoor
list[hash+2]
Increase Store the new word .
hash by in component "list [hash]
Y list[lost]

"-l?he list should be made “circular” so that when Aash reaches (ast an
increase of 1 makes Aash revert to zero. There should also be a mechanism
to stop the search going round indefinitely when the list is full.

?o locate a word:

| Hash the word sought |
f a

Is the component es
* list[hash] empty ?

yes

/770

unsuaessful: worc
was not in the list

\ | 'I'ncreclllsg Successtul: word found
hash" by 1 at component list[hash]

'ﬂ"he program over the page is designed to demonstrate the effect of
hashing. To use it, simply enfer words. Each "new" word is stored in
the list and the list displayed in full, showing where the word is stored.
When an *old" word is found its location is reported. The program
initially assumes that a given word is 'old" and goes searching for it.
If the search proves unsuccessful the program stores the given word as
a 'new" one.

Urhe program relies upon the string utilities developed earlier s thus capital
letters” are treated as equal to corresponding lower-case letlers: ANT = Ant.

e et
Jength[3] Tetter (A

oo [3’ e E-‘E—‘
-letter
Length [Z] L

Phe data structure list[0]
comprises an array list[11]
of poinfers pointing listL2]
fo records of Stringlype. 1istl13]
The array of pointers list[4]
has to be dimensioned list(51
and initialized but

the rest of the data

are created dynamically.

list 1143
list [151
listfiel

171

m&@ AN EXAMPLE PROGRAM 7O DEMONSTRATE HASHING

Eﬂere is the progrom based on the principles introduced on the previous
To use the program simply enter words and watch the

double page.
screen fo see where the words are stored. Enter some words previously
entered and notice thaft duplicate copies are not stored; their location

is reported instead.

PROGRAM hasher (INPUT, OUTPUT);

include here the declarations and utilities employed in the
strings program on pages (60-7 §i.e. omil procedure colossus

and the main program on pages /68-9). Procedures middle,
concat, instr and poke are not inwokea by the hashing

proceaure so may also be omitted (f desired.
A i NI N S A N B i T I e
PROCEDURE hashplay;
WL ITED
5iz = 16 keep one [ess than site

size = 17y
TYPE
sizerange = @..siz;
nametype = 4 stringtype;
arraytype = ARRAY [sizerange] OF nametype;
VAR
name : stringtype;
i, hash, recall : sizerange;
full, found, ahole : BOOLEAN; Hill
list : arraytype;
N : INTEGER; o x
show on 1 x
PROCEDURE show; ((. 2
VAR 3 x
1 : sizerange; 4 %
BEGIN . >
FOR i1 := @ TO siz DO 7 %
IF list [i] <> NL 8 «
THEN / o
BEGIN 10 %
WRITE(i,' ') :
*
X

writestring (Tist[i14);

WRITELN
END
ELSE .
*l

WRITELN (1,

END;
BEGIN { hashplay }

name.head := NIL;
:= FALSE ;

full .
FOR i := @ TO siz DO
C/Iist[i] = NiLj

172

REPEAT
readstring (name);
hash := B}
FOR 1 := { TO name.length DO
BEGIN _
n := ORD(peek (name, 1));
IF n IN [ORD('a").. ORD('2') 1
THEN
n := n-ORD('a') + ORD('A");
hash := (3 x hash + n) MOD size

570; list[hash] XY

ahole := list[hashl= NiL; .

IF NOT ahole ”’;; ,Zatfz‘,’”g
THEN

change lower-case
to capital for
comparing

BEGIN
recall := hash;
REPEAT
found = compare(name, eq, list[hashlt);
IF found
THEN
WRITELN ('Found at ', hash:4)
ELSE
BEGIN
hash := ({+hash) MOD size;
ahole := list [hash]l = NIL;
full := hash = recall
END
UNTIL (chole OR found) OR full
END; list[hastif o] Hength 72
IF ahole ﬁ
THEEGIN “heod [i
X C i
NEw ([ist [hash])3 lengh 3 H

list [hashl® = name;
WRITELN ('Stored at', hash:3);

WRITELN 3 important ! fallure fo
show; head := do this would allow
name.head := NiL readstring fo dispose
ELsE JF full of the word thal
THEN name still points fo
BEGIN
WRITELN ('List Full');
show
END
UNTIL full

END; { hashplay }

BEGIN {main program }
hashplay
END. {main program }

173

BABLAOLRAPHY,

BSI Specification for Computer programming language Fascal BS6192: 1982

"he British Standard defines the dialect of Pascal presented in my becok.
BS6192 is not bed-time reading but if you are looking for precise syntax
or the defined behaviour of a Bascal processor under rare circumstances
then BS6192 is whal you need. Its preface tries to explain a complicated
relationship befween 856192 and 150 7185 bul I have not yet deciphered it.
Apparently Bs6192 and 107185 were supposed to be the same buf aren't quite.

Jensen, k. & Wirth, N. (1975). Pascal user manual and report. (Springer-Verlag)

['l?his was the first book on Pascal; this book's co-author, Niklaus Wirth,
being the inventor of the language. The user manual by Kathleen
Jensen is a model of conciseness and makes fine historical reading.

Grogono, Peter (1980). Programming in PASCAL (Addison-Wesley)

F'L?his is the classic; first published in 1978 with word-processed text but
now nicely type-set. It is still the best book I have seen for a full course
on programming in Pascal. The writing is clear and the examples
imaginative. To get the best from the book you have to work hard and
get stuck into the long examples. Gro?ono gives a long and authoritatie
bibliography for the reader who wants fo dig deeper still.

Brown, P.J. (1982). Pascal from BASIC (Addison-Wesley)

A good self-teach book, easy to understand yet does not dodge awkward
issues. Strange characters like Prof. Primple § archetypal academic)) and
Bill Mudd { enthusiastic bodger) keep appearing to emphasize different altitudes
fo programming but one learns to forgive their intrusion. Advanced data
structures and dynomic storage are dealt with briefly. This book should help
the erstwhile BAsSIC enthusiast fo swilch allegiance to Pascal and clean habits.

Kernighan, 8.w. & Plauger, P.J. (1981). Software tools in Fascal (Addison-Wesley)

A book full of tested and practical applications of Pascal. The sentence:
“A picture is worth about a thousand words" appears next to one of only two
pictures in the whole book; the rest is 95,000 words of ftext. The prose, to

me, reads awkwardly but perseverance is rewarded with lots and lots
of information.

175

A SUMMARY OF STANDARD
PROCEDURES, FUNCTIONS & SYNTAX
“he summaries of standard procedures and standard functions are each in

alphabetical order. A page reference is given on the right of the page for
every procedure and function summarized. The summary of synfax is " fopdown®,

STAMNDAR DIPROCEDWRES Yt Stmtsnis

DISPOSE (AT e) ® return an unwanted record to the heap 139
GET “(name 4,) ® advance the window on the nominated input file 725
NEW (7ame, ;e) ® create a new and empty record 139

® pack the contents

PACK (rrarme s, » SUBSCIIDE o » NOME 1y) of one array in &
another
PAGE @ @ write a form-feed character to nominated 116
output file ¢ if printer can respond fo it)
PUT (name,,,) ® advance the window on the nominated output file 125
READ (@ variable,) ® read from nominaled file; items 117
\@/ on TEXT files are separafed by

spaces or newlines or both

READLN | (e, \ | variable,) ® a5 READ but only for TEAT files: 117
\@/ skip fo next line of input when
the final parameter has been

(rname,,) satisfied
RESET (name;,,) ® prepare the nominated file for reading 114
(never reset INPUT or rewrite oUTPUT)
REWRITE (names;,) @ prepare the nominated file for writing 14

UNPACK (narne, ight» name j,se » sub.scrz'ptlmse) ® ftheconverse of Pack 88

WRITE (@ expression @) 116

WRITELN | (%ne\-‘ expression : ~width ~: places™) 116
file ? P
\ o T

Cr AME L} e)

® width and places are integer expressions. places is applicable only if the
expression whose value is to be written is of lype REAL.

177

[YOUR PASCAL PROBABLY HAS
STANDARDIFUNCTIONSY s snifr
Z denotes an expression thal reduces fo an integer value , r denotes an

expression reducing fo a real value, m denotes a parameter which has
an ordinal value: e.g. integer, characler or member of enumerated type.

ABS(¢) ® absolute valve : ABS(-6) returns 6 ({an integer) 36
ABS(r) ® absolute valve: ABs(-6.5) returns 6.5 ({a real) 26
ARCTANC r) @ arctangent : ARCTAN (1.0) returns 0.185398 (/4)) 37
CHR(7) ® character : CHR(65) returns ‘A’ if code is ASCIl 41
cos(r) ® cosine: 03(3.141593/3) returns 8.5 37
o
WL TRy ® refurns TRUE if READ would fail on its 39
EOF “(name sy,) next attempt because of meeting end-of-file
1 implie
e < ® refurns TRUE if READ would next read the 39
EOLN (rame,,,) space signifying an end of line
EXP(r) ® exponent , or natural antilogarithm : 36
EXP(1) returns 2.7182818 fr.e. ')
INCr) ® natural logarithm - 36
IN(2.82818) returns 1 (re. Ince))
oon() ® oo/: 0DD(-3) returns TRUE; 0ODD(®) returns TRUE 39
ORD(m) ® ordinal valve : ORD('A") returns 65 if ASCII code; 40
ORD(TRUE) returns t; ORD(FALSE) returns @
PRED(m) ® pregecessor: PRED('B') returns'A'; PRED(6) 41
refurns 53 PRED(TRUE) returns FALSE
ROUND () @ round torearest integer: ROUND(3.5) returns 4; 38
ROUND(-3.8) returns —4
SINC 7) ® sine : SIN(3.141593/6) returns @-5 37
SQR(¢) ® square: sar(-3) returns 9 (an integer) 36
SQR(r) ® square: SQER(-3.0) returns 9.0 (areal) 36
SQRT(r) @ sguare root: saRT(81) returns 9-¢ (a real) 3
succ(m) @ successor: succ('A') returns B; Succ(s) returns é; 4l

SUCC(FALSE) returns TRUE

TRUNC(r) @ fruncate to cnteger: TRUNC(-3.8) returns -3 38
¢ an integer)

178

CHAPTER 3 DEFINES THE NOTATION USED /N THE
FOLLOWING TOP-DOWN SUMMARY OF SYNTAX DIAGRAMS
program == PROGRAM name (name); block ,
block = LABEL | digits , 3

_C}//

CONST @

m
TYPE

-—

G

VAR W?

—_

A

FUNCTION name ‘parameters" : namey,, T
_ s block

PROCEDURE nzame ~parameters /

\

BEGIN ‘st\atg}n_ey END

parameters = (@ ‘ngj: name; o,)
/_\
FUNCTION name “parameters™ : name,

—_ T T
PROCEDURE rname “parameters

type = name,, .,
ordinal

'I‘nametype

PACKED | SET OF oroinal
ARRAY [\ ordinal ;1 OF fype

RECORD “Frelda pariant™ ™

partant™ ;: END
FILE OF fype

ordinal = name

(,ch)ne/)

constant .. constant

179

SYNTAE)

fields == W
s Yl
varéant == CASE @ namey,,, OF\ycon ant,: (fields variant)

statement = 'digi

/A

expression = l+ term —comparator |+

variable := expression

name,, = expression
namepmc (| expression |)
name .,

BEGIN w END

. A
IF condition THEN statement ELSE statement

REPEATW UNTIL condition

WHILE condition DO Statement

FOR name,,, = expression DOWN TO expresson
DO statement

CASE expression OF \ \ constant , ; statement
Ty —
WITH W DO statement

GOTO digits

/f—‘l\k

term

condition = e ssion < regucing o Boolear? valve
Z exceétionfg in WRITE and WRITELN, exoression may be .e\xp@m‘}

180

term ==| name,, .. m@?
number RESERVEDAWORDS!
NIL

: AND END NIL SET
sring ARRAY FILE NOT THEN
variable BEGIN FOR OF TO

T CASE FUNCTION OR TYPE
name,, ‘(expression,) CONST GOTO PACKED UNTIL
NG DIV IF PROCEDURE VAR
. DO N PROGRAM WHILE
C expression) DOWNTO LABEL RECORD WITH
m ELSE MOD REPEAT
NOT Zerm ultra /7(9/7

N a——

precedence
operator = j high comparator = | < itra-
precegence <= K~ low
DIV _ precedgenae
o :
o=
+ J low <>
- precedernce IN
OR

string ::= "| letter |’ variable = name | L[y expression,]
acgit \Q’/
symbol s reame
1" ¢
space
{ A
} constant := l + l number
o - name ., ,st
name := letter | (etter string
aigit
A
digits == | digit
N
/—\

number = digits *. digits E |/+T digits

é end 2 sgnZax summary§

181

FOR QUICK REFERENCE 70 STANDARD PROCEDURES,
FUNCT/IONS AND SYNTAX SEE ALSO PAGES [77- 81

A

ABS function, 36
AND operator, 32
ARCTAN funcftion, 37
area

functions, 54-5

of a tank, 2-4

of a polygon, 82
arguments, 36
ARRAY OF type, 8
arrays, 80-1

of CHAR, 89

packed, 88
AsCII characters, 40, 83, 115
assignment, (4

entire, 81, {of

®

Back-slang & example) 168-9
base type, 74, 80
batch mode, 6, 130
BEGIN.. END structure, (0
binary trees, 154-7
Boolean
expressions, 14,16, 33, 35
functions, 39
values, 16
BOOLEAN type, (3
Bubble sort example)) 84-5
buffer problem, 132

C

Cables ¢ example) 83
CASE .. OF structure

for control, 45

in variants, 109
chains, 136, 138, 145-7
CHAR type, 13
charocters, 13
CHR function, 41
commands, 6-7
comparators, 24,35

with sets, 75
compilation, 4-6
components

of arrays, 80

of records, (00
Compression ¢ example) 126
concatenation, 164
conditions, 14, 16, 26, 46

182

conformant array parameters, 96-7
CONST declaration, 10-13, 28, 70
constants, 3, 12-13

pointer, 137

string, 89

types of, 70
Co0S function, 37

D

decisions, 16-17, 46
digits, 24

disk files, 6-7
disposal, 138, 161, 173
DISPOSE procedure, 139
DIV operator, 32

DO, see FOR, WHILE or WITH
DOWNTO, see FOR
dynamic storage, 136-7

E

editor, 4-5, 115
ELSE, see IF
END, see BEGIN, CASE or RECORD
end-of-file problem, 133
end-of-line, 113, 130-1
EOF function, 39
EOLN function, 39
EXP function, 36
expressions 14
Boolean, 33
syntax of , 26

H

field names, 100-1
fields, for output, te, 19, 116
FILE OF type, 125
files, 112-27

binary, 124-5

opening of, 14

properties of, 127

standard, {12-17

temporary, 121

text, 113, 115-17

type of, 125

window to, {13, 124,134
Filter @ example) 49
Filter2 @ example) 7e
flow charts, 17, 445
FOR.-T0..DO loop structure, 47
forward reference, 64, (37
FUNCTION definition, 54-5

functions
arithmetical, 36
Boolean, 39
definition of, 54-5
ordinal, 40-1
summary of, 178
transfer, 38
trigonometrical, 37
typical definitions of, %6

G

GET procedure, 125
GOTO control structure, 27, 45
GRAB procedure {example)) 120-3

A

Hasher @ example) 172
hashing technique, (70
21109 @ example) 144

q

IF-THEN-ELSE control structure, 46
IN comparator, 35

indentafion, i1

INPUT, standard file, [12-5
INTEGER type, 2, 13

interaction, 130-3

intersection of sets, 75

X

keyboard layout, 5

&

LABEL declaration, 27, 45
lazy input, 130, 133

letters, 24

linking, 138, 150-1

LN function, 36

Loans qexample) 15

Loans again ¢ example) 62
loops, 18, 44, 47-8

M

Matrix multiplication qexample)) 95
MOD operator, 32

Monkey puzzle @ example) (56-7
MOoO § example) 77

A

name
equivalence, 81, 88
syntax of, 25

NEW procedure, 139

NIL constant, (37
NOT, super operator,
notation, 23

Number bases { example)) 92-4

O]

ODD function, 39
OF, see ARRAY, CASE, FILE or RECORD
Oid Glory { example) 19
operators, {4, 24, 32-3

relational, 24, 35
OR operator, 32
ORD function, 40
ordinal values, 13,29, 40,70,72, 89, 116
ouTPUT, sfandard file, 1§2-5

P

PACK procedure, 88
PACKED types, 81, 101, {25
packing procedures, 88
PAGE procedure, 116
Painter (example) 2-4
parameters
actual versus formal, 54-5
function names as, 63
syntax of, 28
types of, 7o
VAR persus value, %8-9
Parlour trick example) 90-1
Personnel records { example) 102-5
pointers, 136-7
Polygon ¢ example)) 82
precedence, 4, 24
precision, 34
PRED function, 41
PROCEDURE definition, 59
procedures, definition of, 58-9
PROGRAM heading, l0-11, 28
programs
layout of, i1, 64
object & source, 6
syntax of, 28
punctuation, 4, 10-11
PUT procedure, 125

@

Quicksort ¢ example) 86-7

&

Random numbers § example) 60-1
READ & READLN procedures, {17
REAL type, 2,13

RECORD type, fof

26

183

records, 100-9 T
recursion, 57,65, 84-7, 94,140, 155, 160-1

REPEAT.. UNTIL loop structure, 48 tag field, tos-9
reserved words, i, 22 text files, 39, 115, 17, 127
list of, 181 THEN, see IF
RESET procedure, 114 TO, see FOR
Reverse Polish notation, 142-4 traversal, 145, 151, 154-5
REWRITE procedure, 114 TRUNC function, 38
rings, linked, 150-3 truth tables, 33
Roses {example)) 152-3 type
ROUND function, 38 array, 81
8 enumerated, -2
file, 125
Safe reading (example))ie-23 ordered, T4
scope rules, 67 pointer, 137
semicolon, 10 record, (0t
SET OF type, 74 set, 7L, T4
sets, 74-5 standard, 13, 70
Shapes q example) 17 subrange, Ti. 73
Shortest route example)) 146-9 syntax of, 29
side effecls, &6 TYPE
SIN function, 37 declaration, 28
Sinuous ¢ example)) 19 definition, T, 81, lo1, 125
size of numbers, 34 typestyles, 22
sorting techniques @
binary tree, 154-7
bubble, 84-5 union, free, 109
linked ring, 152-3 UNPACK procedure, 88
Quicksort, 8e6-7 UNTIL, see REPEAT
source program, 6
SQR Funation, 36 w
SQRT function, 36 VAR declaration, 10-13, 28, 70
stacks & queues { staques), 140-1 variables, 12
statements, 1o, 27 control, 47
strings, 89 local, 55,59, 65
comparison of, 89, 164 pointer, 137
hashing, (70-3 set, 74
utilities, 160-7 string, 89
subranges, 73 types of, 70
subscripts, 80 window, 124-5
succ function, 4t variants, 29, 108-9
symbol, 24 W
symbol-state tables, 51, 119
syntax WHILE.. DO loop structure, 48
definition of, 24 window , 13, {24-5, 131-3, {36
notation for, 23 WITH..DO structure, 106-7
of o program, 28 WRITE & WRITELN procedures, (16

of a statement, 27
of an expression, 26
of compounds, 25
of elements, 24

of type, 29
summary of, 177-9

184

