More
Java 17

An In-Depth Exploration of the
Java Language and Its Features

Third Edition

Kishori Sharan
Peter Spath

Apress:

More Java 17

An In-Depth Exploration of the Java
Language and Its Features

Third Edition

Kishori Sharan
Peter Spath

Apress’

More Java 17: An In-Depth Exploration of the Java Language and Its Features

Kishori Sharan Peter Spdth
Montgomery, AL, USA Leipzig, Sachsen, Germany
ISBN-13 (pbk): 978-1-4842-7134-6 ISBN-13 (electronic): 978-1-4842-7135-3

https://doi.org/10.1007/978-1-4842-7135-3
Copyright © 2021 by Kishori Sharan, Peter Spith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Ben Kolde on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484271346. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7135-3

To Paulina

Table of Contents

About the AUtROrS.......ccusmmimmmsnmiemmssmssssss s Xix
About the Technical REVIEWErSccsssessssessssssssansssasssssssssssssasssssssssssssassssasssansssans XXi
11T LT 1 Xxiii
Chapter 1: ANNOtations.......cccccccriisssssessnmmmmmmsssssssssss s sssssssss e ssssssnnssesssssnns 1
What Are ANNOTALIONS?........ccceeererererere s ne e nre s 1
Declaring an ANNOtation TYPE......cuccrerrnserrresesese s s 6
Restrictions on ANNOTAtion TYPESccvvrvrierinerinsre s e sr e e 10
RESTICHON #1 ... 10
RESTICHON #2 ... 11
RESHCTION #3 ...t e 12
RESIHCTION H#4 ...ttt 12
RESLHCTION #5 ... e e 13
RESTICHON #6ovvccccre i 13
Default Value of an Annotation Element............cociinnnnns s 14
Annotation Type and IS INSTANCESccecvviirnirir e 15
USING ANNOTALIONS ..o e s e e e 17
Primitive TYPES et e e e bbb e e 17
SHING TYPBS et nan 18
ClaSS TYPES .eueeerreirire st e e s R b e e e e AR e e et R R e e e e e R 19
ENUM TYPE o s e e e e e e p e e e 21
ANNOTALION TYPE ...veveieirerer s s e e e e e nn 23
Array Type Annotation ElIement.............ccocrniinininsnsn s 24

No Null Value in an ANNOTALIONccovciereereerrc e 25
Shorthand ANNOtation SYNTAX.........cccecrvrernrenenrnsre s 25
Marker ANNOTAtioN TYPES......ccovicerirernesiresere s 28

https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3001
https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3002
https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3004
https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3005
https://doi.org/10.1007/978-1-4842-7135-3_1#Sec3006

TABLE OF CONTENTS

Meta-Annotation TYPESccccvveriririirie s e s a e s s s n e e e n 29
The Target AnNotation TYPE......cccvverierririr e 29
The Retention ANNOTation TYPEccceveririrrie s 33
The Inherited ANNOTAtION TYPEcveveererierererir e r e e sae e nnen 35
The Documented ANNOAtIoN TYPEccvceverererreriere e s rese e nnes 36
The Repeatable ANNOtation TYPEcccvcviereverrerierere s e sessesse e e e s s ssesesessesessesessesaes 37

Commonly Used Standard ANNOTAtioNS..........cecvvrveverevenserseressssessese e e ssessessessssessesseseesessensesaes 38
DEPreCatiNg APIScceeceeeee et s a e s e e nae e ae e ae s 39
Suppressing Named Compile-Time Warningsccccvvererererrerseressssessessessessssessessessssessessens 54
OVErriding METNOOScouevveierierere s se e sresaese s e s aesa e e e e saesrena e e nnennens 55
Declaring Functional INTErfaces.........ccccvvvriririninne e 56

ANNOLAtiNG PACKAJEScceverieriecirsire s s sn s b e sr e sr s s e ne e nne s 58

ANNOAtiNg MOTUIESereriicr e e e e s p e nne 58

Accessing Annotations at RUNEIMEcoveirenrns s 59

EvoIvINg ANNOTAtioN TYPES....ccvieerreserrncsesrese s sr s s 66

Annotation Processing at SOUrce CoUe LEVEcccvervvrierierennsensesesss s ssssessessessessssessessens 66

£ 11 4= 7R 76

(] (01T TS 77

Chapter 2: Reflection........cccccurrrrnsssssssssmmmmmmssssssssssssssssesssssssssssssssssesssssssssssnnnssesssssnns 81

What IS REfIECTION?ceeceeecereer s 81

RefleCtion iN JAVA.........ccvierircrirnse e 82

LI o [T T 0 T 84
USING ClAaSS LITEIAlSceuevrereriereresisserese s sesse s sessessesse e e s e ssesaeses e ssesaesaesessessesaessssensesaens 85
Using the Object::getClass() Methodcccccvvrerrrninennsnrere e ssesnens 86
Using the Class:forName() Method............cccviriirnnin e 86

L R 0T T [£ PR 90

RETIECHING 0N CIASSES....cerverrereererrerereresseressessesessessessesaesessessesas e s e saesaessssensessessssssnesaessessnsensesaes 93

Reflecting on Fields ... e 100

Reflecting on EXECULaDIES..........ccoeomreeccrrcrrcreree s e 103
Reflecting on Methods........c.cccereeerencrrscrrese e 106
Reflecting 0n CONSIIUCTIONScovceeeerererrererese e 109

TABLE OF CONTENTS

(=T LT o 00 T R 111
INVOKING METNOUS.......ccvicircrcrcsir e s r e s p s 113
ACCESSING FIEIUS ..ot s ne s 114
Deep REflECHION....c.ccieccere e 117
Deep Reflection Within @ MOdUIE.........c.ccoevrirrninnrr e 119
Deep Reflection ACroSS MOUUIES..........cceceverierierreerererressee e res e sse s sessaessessessesssesaessessenns 124
Deep Reflection and Unnamed ModUIEs...........ccoevvvrinininnsnnne s sessessesnas 132
Deep Reflection on JDK MOQUIESccccceevririnennsir s s snas 132
RefleCtiNG ON AITAYS......cccevecerrresereserre e s nr s 135
EXPANAING @N AITAYcoveeeieeresesessesesse s s se e s se s ss s ss s ss s s s s ssssnssa s nsnssssnns 138
Who Should Use REflECiON?.........cccovriiinmnnissssssss s sesnans 139
£ 1134 7R 140
(] (01T T 141
Chapter 3: GENEIICS .uuuuseesrrsssssnnmmssssannnmsssssnnnmsssssnnnsssssnnnnsssssnnnnsssssnnnnessssnnnsesssnnnnnss 145
WhEL ArE GENEIICS?...cveueereeeresesessesesrese s sesse s se s e sse s e e ses s e s s e e sesssssssssnssanssensesnsenens 145
Supertype-Subtype RelationShipcvveeriiiinics s 151
RAW TYPBS ..ttt sttt e e b e R e e e R e e e e ne R ae 152
Unbounded WiIldCards ... s 153
Upper-Bounded WildCArdscccuirinnneninennsinsese s sessese s sessessessesssses s e sssssssessessesssssssesnens 157
Lower-Bounded WIldCardsccocoreeerrnererenereneren e sessese e se s sse e sessesenns 159
Generic Methods and CONSIIUCIOrS.ccovererrrerenene s 163
Type Inference in Generic Object Creationccvvevresenssernsess e 165
NO Generic EXCEPLioN ClasSSES......ccuirerirrriererinsiresesesessessessessssessessesssssssessesssssssessessesssssssesaens 170
NO GENEric ANONYMOUS CIASSES....ccerrirrrrerersersssersessessessssessessessssessessesssssssessessessssessessesssssnsessens 170
GENEIICS ANA AITAYS .. veererrereerersersersessssessersessessssessesaessssessessesssssssessessessssessessessesessessesssssssensensen 170
Runtime Class Type of GENeric ODJECLS.......cccuviriierennrne s snens 172
HEap POHULION ..ot e e s e e s s b e 173
Varargs Methods and Heap Pollution Warningsccoveeeerenernsesesesmsssssssesssssssssssesessssssseens 174
11T 111 T o OSSOSO 176
(=] (1T R 177

vii

TABLE OF CONTENTS

Chapter 4: Lamhda EXPreSSiOnSuceeurusssssssmsssssssssssssssssssssssnsssssssssnssssssssnsssssssnnnss 183
What Is @ Lambda EXPreSSIiONT?ccccccvirererenereserinsesesesessesesessesessesessesessssessssssessssessssessssenens 183
Why Do We Need Lambda EXPresSions?........cccvrennnnnnnennsinsessesiessssessessesssssssessessesssssssessees 186
Syntax for Lambda EXPreSSiONS.........cvveeererererrereresessesesessesessesessssesesesessssessssssessesssssssssssssenns 188

Omitting Parameter TYPES ... s p s e s 190
Using Local Variable Syntax for Parameters...........ccccoecvnvvrencnnscnniesnse s sesesesessesessenes 191
Declaring @ Single Parameter........covvvrerererinrerenssessesesesessessessessssessessessssessessesasssssessesaes 191
Declaring NO Parameters........cccvvevirininneniniensee s ses s sse s ssessssssessessesssssaessessenns 192
Parameters With MOGIfiIErscccoviinnmnnnnss e 192
Declaring the Body of Lambda EXPreSSioNSccvvververererersersesessssessesesssssssessesssssssessesses 192
LE: L0 1 1 oSS 193
FUNCLIONAl INTEITACEScoveererceree e 204
Using the @Functionalinterface AnNotation..........ccccvevievrvnine s 205
Generic Functional INTErface ..o 206
Intersection Type and Lambda EXPreSSiONScccuvvrriererersenseressssessessessessssessessesssssssessees 208
Commonly Used Functional INterfaces.........ccuvverirrrnieninnnsnsensess s ssssessessessssessesse s 209
Using the Function<T,R> INterface..........ccccrmvrniennisninsssss s 211
Using the Predicate<T> Interface..........ccoucvnvnncnncs s 213
Using FUNCLIONA INTEITACES........ccerveererererrese s se s 215
Method REfErENCES.......cccveerereireer s 221
Static Method REfEreNCESccvcerrerererererese s 224
Instance Method REfEIrENCES.........coevrrererrenernnerere s 227
Supertype Instance Method References..........covvrvrvninnsnsnie s 231
L0] (e (0] g 223 (=] £ e 234
Generic Method REfEreNCES ... 237
(3o LI TeT0] o1 T OSSOSO 239
Variable CapIUNE.........ccocevericirrre e e e e s s 242
JUMPS AN EXIES....viiiiieiccic i e e e e e s 246
Recursive Lambda EXPreSSIONScccuviiriererinninsesesssessese s ssssessessessssessessesssssssessessesssssssessens 247
(01T T ol 0] =T SRS 249
BT 1] 1134 OO 251
(=] (1T RN 252

viil

TABLE OF CONTENTS

Chapter 5: THreadscccccrrrssnmnnmmssssnnnmmssssssnmssssssssssssssnssesssssnnsesssssnnnssssnnnsssssnnnnnss 257
WHaL IS @ TRFEAUAY ...ttt 257
Creating Threads iN JAVA ... e e 262
Specifying Your Code for @ TRrEadcccverrrerenenerescrsere e 265

Inheriting Your Class from the Thread Classcocoorrennensen s 265
Implementing the Runnable Interface...........cooocvvenrerrncsreser s 266
Using @ Method REfEreNnCecoeervererieserreser s 267
A QUICK EXAMPIE.....cveceerecireecirtec s esere et es e sesae e sas e ses e se s e e sas e sessesesse e sas e senseenaenens 267
Using Multiple Threads in @ Program.........cccorenernsesnenesesessss e sssssssssssssssssssssssenns 268
Issues in Using Multiple TRrEadsccoovverrrererinernsesssesese s s sssssse s e sessesenns 270
Java Memory MOGEL.........coiiierir e e s e 274
(0] 141 O 276
VISIDIIEY ..o 276
00 T o O 277
Object’s Monitor and Thread SYNnChronizationccccvvvevrrninienennserse s sesse e sesenees 277
RUIB H1 .ottt bbb 288
RUIB H2 ...ttt bbb 288
The Producer/Consumer Synchronization ProbIemcccveevrvrierennsnsenesesessesesesessessessenes 296
Which Thread IS EXECULING? ..o s s 301
Letting @ Thread SIBEPcccvrererereresc s 302
FWill JOIN YOU iN HEAVEN ...t 304
Be Considerate to Others and Yield...........ccoverrinrniennnesnese s senns 307
L) (=T (=00 = 1 1 - T OO RS 308
Priority 0f @ TRIEAM..........cvirve e a e s 313
IS 1t @ DEMON OF @ DABMONT.......cooeereeceeeereree e ne s 315
AM L INTEITUPIEA? ... e s s e e nne s 318
Threads WOrk in @ GIOUP.......ccucverininire s s s s b st s s st e 323
Volatile Variables.........ccovceienrniessesnse e 324
Stopping, Suspending, and Resuming Threads..........cocvcvvereveerensersesenessensesessssessesessesessessesses 327
B 01T = T 0 5 R 333

ix

TABLE OF CONTENTS

Handling an Uncaught Exception in @ Threadc.cccocvininnnnininnnse e sssssessensenns 335
Thread CONCUITENCY PACKAGEScoerreerirererieserieesissesesseses s e sessesesseses s ssssesessssessssesessessssenens 337
ALOMIC VANADIES ... s se e e e nne e 337
CAS ...ttt E R AR e e e e e s 338
Scalar Atomic Variable CIASSESccoveererererrnererene s s s ssenis 339
ALOMIC ArTay ClAaSSES......cevieruerriirsirere st p s e e e s p e e s 339
Atomic Field Updater CIaSSES........ccuerrrmnnireresinsissesesss s sessessessssesse s sssssssessessesssssssessesnes 340
Atomic Compound Variable CIaSSEScccuerernninneriesnnnsensesesss s ssessssessessesssssssessesnes 340
EXPICIT LOCKS ...ttt sttt 342
B LT 1 (0T (TP £ S 350
R 110 10 OSSR 350
372 LT TS 355
PRASEIS ... e e e e e e e R e 360
I 1< T 372
EXCNANGEIS ..o s n e ne e 375
The EXeCULOr FrameEWOrKcoeieereres e s 381
ReSUIt-Bearing TASKS........cccvvrerrrenmrrenerssesesesessese s sessesssssse s s sessesessssssssssssssessssssssssssssnses 389
SCHEAUING @ TASK....cueeerreererisereserresesese e sse s e s e s e snnns e nsanis 392
Handling Uncaught Exceptions in @ Task EXECULIONcccceererernsesenesnnesesessesesesessesenennes 396
Executor’s Completion SEIVICE........ccuvvrievnrnieni e s 399
The FOrk/Join FrameWOrK.........ccouermiinesnesssessssse s se s ss e e s e s sssssssssssssessessssenens 403
Steps in Using the FOrk/Join Framework ... sessessssssesseses 405
A FOrk/Join EXaMPIE.......ccucerenininiriene s sse s s sae s se s s sns e s snen 406
Thread-Local VariabIEs ... s snsnans 410
Setting Stack Size of @ TRIEAd.......c.ccvvvviererr s enen 414
£ 1134 7 414
(] (01T 416

TABLE OF CONTENTS

Chapter 6: Streams........ccccuiiemnnmnssssnnnmmssssssnmssssssssessssssssessssssnsesssssnnnesssnnnnessssnnnnss 419
What Are STTEAMS?ecccecrerrreeese e e e e nnns 420
Streams Have NO STOFage ...ttt 421
INFINILE SIrEAMSceeecrrere e s 421
Internal Iteration vs. External Heration ... 421
Imperative vs. FUNCHIONAIcccooe i 423
SEream OPEratioNS.......ccvvirrerererrrere s e s s s e aesae s e sr e e e e e e eaesae e e e naenne e 424
Ordered SIEAMSccvviiecrerirrr e 426
Streams Are NOt ReUSADIE..........ccovrieiiir s 427
Architecture of the Streams APl ... 427

A QUICK EXAMPIE ...ttt st st ne e np s 429
Creating SIrBAMScccveecrercre e e e e s e pe e e e e 435
Streams fromM VAIUES ..o e 435
EMPLY SIrEAMS ... s 439
Streams from FUNCHONS ..o e 439
SEreams frOM AITAYS.......ccccveerierisnrine e s s b e e s s ae e e nne s 447
Streams from COIECHONSccoveeeereere e 447
Streams from FlEScoc oo 448
Streams from OtNEr SOUICEScoerercrecreree s 450
Representing an Optional ValUe ... snens 451
Applying Operations t0 SIrEAMS ..o 459
Debugging a Stream PipeliNecoccovverniernnsernse s sennes 460
Applying the ForEach Operation ... 462
Applying the Map Operation ... s 464
FIattening STrEAMScoceeerercrer e 466
Applying the Filter Operation.........c.coccvininininnnsn s snes 469
Applying the Reduce Operation ... s e snes 473
Collecting Data USing COIIECIONSccoveeerrenerinerrsesese s e se e se s sessenenns 485
Collecting SUMMArY STAtiSTICSccvivvrrrierie s aes 491
Collecting Data in MAPScocvvrirerierirrerere e se s sae e s sae s e e s saesae e s saenaes 494
Joining Strings USiNG COIIECIOISivviviererrrrerserersesssseressessssessessessessssessessesssssssessessesesssssesseses 497

xi

TABLE OF CONTENTS

LCT 0107 o] T N D - RS 499
Partitioning Dataccvciiiiincrrs e 504
Adapting the Collector RESUIS..........ccuciiiiininrr e enens 506
Finding and Matching in STreamscoccvrerrenrns e 511
Parallel STrEAMS.......ccveeerierrsesrre s s nr s 514
BT 1] 1134 OO 517
(=] (] S 518
Chapter 7: Implementing SErviCesccusemrrmssssnnnmssssnnnssssssnssssssssnnsssssssssssssssnnnnss 523
WRAL IS @ SEIVICE? ...t se e e s e ne e nnns 523
DiSCOVEIING SEIVICES ...cuevecrercrerseereeseresesessesessesesessesessesesseseses e sessesessssessesesessessssssssenssssssenns 526
Providing Service IMplementationsccouovrenernsmnsnenennesessse s sessesenns 528
Defining the Service INTErfaceccucvvcrniesnis e 530
Obtaining Service Provider INSTANCESccovvvverrreresirrene s sese s sse e s e s ssessssessesnens 531
DefiNiNg The SEIVICE.......ccvcererererrere e se e s aese s s s s ae e e e s e nne e 535
Defining SErvice ProVIAEIS.......cccvcviererersererersssersessesssssssessessesessessessesssssssessesssssssessessesssssnsesaens 539
Defining a Default Prime Service PrOVIErccoccvvverrerererenseresesessesessessssessessessssessessesaes 539
Defining a Faster Prime Service ProVider.........ccocvvrrvrerenennersesessssessessessssessessessssessessesaes 541
Defining a Probable Prime Service ProVIAEr.........ccovvvreriererenrerseressssessesessssessessessssessessenaes 544
Testing the Prime SEIVICE ... e e 546
Testing Prime Service in Legacy MOUEccccoerercrnnenenenmrese s s sessese s s sessesessenens 552
B30T 1117 SR 555
] (0TS SRS 556

Chapter 8: Network Programming.......ccuccemsessssssnsmsssssssssssssssnssssssssssssssssssssssssnssess 399

What Is Network Programming?cceevrevvnmseriesiensssessessesssssssessessessssessessessessssessessesssssssessees 560
NEtWOrk ProtOCOI SUITEc.covrveeccrerirceere e 562
IP AddresSing SCHEMEcc.coiiiciirinrrer e s p s 566
IPv4 AddresSing SCHEME ..o s e 568
IPV6 AddresSing SCHEME ..o e s 571
SPECIAl IP AQAIrESSES.....cverierieiriire st p e e s b e e nnn 573
LOOPDACK IP AQUIESSc.veveirerie ettt sttt e s 574

xii

TABLE OF CONTENTS

UNICAST IP AQAIESS......ceiiicircirce s 576
MUIEICAST IP AUIESScovceircerie e 576
ANYCAST IP AQAIESSeeveeecercer et s s a e s n e e 577
Broadcast IP AQArESS. ... 577
UNSPECITIEU IP AQUIESSvecererrerrererrereresessessesseseese s s sae s e ssessesae e s e saesaesssessesaessessnsesneses 578
L0 N 11] T £ 578
Socket APl and Client-Server Paradigm...........ccocvinennsnnninnnsnssese s s s sessesnes 580
The SOCKET PrMITIVE.coeeeereecrerce e 583
The Bind PHMILIVEcoceoeeeeeeereecserce e 584
The LiSten PrimitiVeccoeeereeeeceeer e 584
The AcCept PrimitiVe. ..ot s 584
The ConNECt PHIMITIVEcccceererircecsiresisssssse e se s 584
The Send/Sendto PriMItIVE..........cccccerrnnenese s ssesens 586
The Receive/ReceiveFrom Primitive..........cccovriencnnnnsssssesess s ssseens 586
ThE ClOSE PHMITIVE......cecueeccririsieecse s 586
Representing @ Maching AdUreSSccccvvrerninnnen s se s s sessesnens 587
Representing @ SOCKET AQArESScoueecrrreererererreneressesesese s ses s sessesenns 590
Creating @ TCP SErver SOCKELcvivevrerrreserrsesssse s sessesesse e s se s sessssnssssssessssenns 592
Creating @ TCP Client SOCKEL.........ccovcevriereriernesine e sr s s 598
Putting a TCP Server and Clients TOGELNEN.........ccvvvereierrnienieses s sessese e sessessessessssessesaens 601
WOrking With UDP SOCKETS.......ccvererirrerseressssenseressessssesessesssssssessessessssessessesssssssessessesssssssesseses 602
Creating @ UDP ECRO SEIVEL ...ttt et sa e 607
A ConNNECted UDP SOCKELccoueeerereereerreesenesese s ses s ses e s e ssssesenns 613
UDP MUItICASt SOCKETSccerercrerrrerieserensesessese s s s nesss e s 614
URIL, URL, @nd URN.......cccitieeeenssssssss s ssss st ssss s es 618
URI and URL AS Java ODJECLSccccverrerrrerieresseseressessesessessessesessessessessssessessessessssessessesssssnsesnens 625
Accessing the Contents 0f @ URLccccocevevririeriennsensesesesessesese s ssssessessessssessessesssssssessessens 630
Non-blocking SOCket Programmingccueevereererrerserssssssessesessssessessessessssessesssssssessessesssssssesaens 641
Socket Security PErMISSIONSccccoiviiiiiniinnrins e s 658
Asynchronous SOCKet ChannelS...........cocoveernnnresr e 660
Setting Up an Asynchronous Server Socket Channelcccovevnenresrnsnnsese e 662

TABLE OF CONTENTS

Setting Up an Asynchronous Client Socket Channel...........ccccvvrvnrninienennsensensesessensensenns 672
Putting the Server and the Client TOGELNEN........c.ccvvvervrierererrere e se e enes 678
Datagram-Oriented SOCKet Channels.........ccccccrecrninnenn s s 679
Creating the Datagram Channel ...t 679
Setting the Channel OPtiONS.........ccvvviererrrerrerere s e s se s s s saesesnesnees 680
ST (o LT[0 D L e 1o O 682
Multicasting Using Datagram Channels............ccccverninnnnniennsnseness s sessessessessssessessens 686
Creating the Datagram Channel ... s 686
Setting the Channel OPtioNS.........ccoucvrnrsninr s 686
Binding the ChannEl ... 686
Setting the Multicast Network Interface........ccccvveererrncnnc s 687
Joining the MUIICASt GrOUPcocveveriicrrcrine e 689
ReCEIVING @ MESSAQEL.....ccueirirrireriesis s p e s s sa e r e s 689
Closing the Channel..........c.cvcrnirncsr e e b 690
FUrther REAUINGcoeviiircirr e s e s p s s 695
£ 7 o TS 695
EXBICISES. . eveerreerrssisesseserraeses e se s e e s e e e e e b e e e e R e e AR e e e e AR e e e e 697

Chapter 9: Java Remote Method Invocation.........ccceennnnmnssssnsmsnnnnnsssssssssssssssssennnss 699

What Is Java Remote Method INvocation?............ccccvvininnnnnnnsssss s 700
The BMI AFCRITECIUNE.eeeee e 702
Developing an RMI APPlICALIONcccoeiiiieriinninrcne s s s se e snens 704
Writing the Remote INterface ... s 705
Implementing the Remote Interface..........cccvvinivrvnini s 706
Writing the RMI Server Program............ccceiinnsnnnesssinsesese s ssssessesesssssssessesnes 709
Writing the RMI Client Program...........coccvinnnsnnnnn s sesesesssssssessesnes 713
Separating the Server and Client COde...........ccvrvrerererrnsesre e 716
Running the RMI APPlICALION........ccoceiiirirere et 717
Running the RMI BEJISTIY.......cccvieerenernesrsesesese s ses s sesse e s e s sesssssssssesenses 718
RuNNing the RMI SEIVEN.........cccoviiereerne e s 719
Running an RMI Client Programccccvmnmnnnmnnsmsnsessssness s sesssessssessssessssessssssssssssssnses 721
Troubleshooting an RMI APPliCAtioNc.ccverernininienn s 721

Xiv

TABLE OF CONTENTS

java.rmi.server.EXPOrtEXCEPLioNccv v 722
java.security. AcCeSSCONTIOIEXCEPLIONcovevvrcerrerrertererrere e e s s se s e s e s s e e sae e s e sseenes 723
java.lang.ClassSNOtFOUNAEXCEPLION......cccvvverrrrere vt serere e sne e s enes 723
Debugging an RMI AppliCation.........cccocivniiinnninsne s sss e snens 725
Dynamic Class DOWNIOAAING........cccccverrrnnieriennnensesese s s e se s sse e s e ssessessssessesnens 727
Garbage Collection of Remote ODJECES.......ccccocrreererererererrnsese s 730
B30T 111 7o SRS 735
o= £ T N 736

Chapter 10: Scripting in Java.........cccimnnemmmmmmsssmmmmsssnmmssssssmssssssssssssssssssssees 139

What IS SCrpting iN JAVA?ccvevivirierere s s e s ss s saesaesessesaesaesasssssesaees 740
Installing Script ENgines in MAVEN.........c.cccvreirinernicrne et se s ses e seens 741
Executing YOUr FirSt SCHPL.......ccoveieeeec e e 743
Using Other Scripting LANQUAGEScccvveererererrenerensesesesessese s sessesessssessesesessssessssesssssssssssenns 746
Exploring the javaXx.SCript PACKagec.cucvvererisernsesnsesess s s e s 749
The ScriptEngine and ScriptEngineFactory Interfaces.........cocovvvrrvsnnssniesnesesssesenseens 749
The AbstractScriptENgGine Class........cocveeererernseninesnsese s s sessesessenens 750
The ScriptEngineManager Class.........c.ccovurernsesenesmnnnesssesessessssse s sessessssssessssesesssssssenens 750
The Compilable Interface and the CompiledScript Class......c..ccvevvnvninennnnsnienesensensennns 750
The INVOCaDIE INTEITACEccerveerrrereree e nne e 750
The Bindings Interface and the SimpleBindings Class..........c.ccovvrmrnnernsesenesennsesensesensenens 750
The ScriptContext Interface and the SimpleScriptContext Class........c.cccvvvvnirivinnnienennn, 751
The SCriptEXCEPLION ClASScoviviiiirerc st e 751
Discovering and Instantiating Script ENGINeS.......c.ccccvvrerrenerssesnsesesesess s sessesesssessssesennes 751
EXECULING SCHIPIS ..viveeireeriee s e 753
PasSing Par@mMetersc.ccveverrierierenensere s ses e ssesss s s e ssessesessessessessssessessessssessessesssssssessesnens 755
Passing Parameters from Java Code t0 SCriptSccvrirvrnrnienennsine s sessennes 755
Passing Parameters from Scripts t0 Java Codecccevvvrvnienennnnienens s sessesseses 758
Advanced Parameter Passing TECHNIQUESccvcevrerrrrerrerersesersersesessssessessessessssessessessessssessessens 760
BINUINGS...cvetrererestrse s s s e s e s a e e e ae e e e e e ae s R e e e e e R e R e e e e e e ae e e e e e nRennn 760
LT - 762

TABLE OF CONTENTS

Defining the SCript CONTEXL.......cccvivverrriererir e s se e eaennes 763
Putting Them TOGETNET ..o 769
Using @ Custom ScriptCoNtext ... e 777
Return Value of the eval() Method...........ccccorinniininnr s 781
Reserved Keys for Engine SCope BiNdINGSccccovveernererenernsesnesese s sesese e sessenenns 783
Changing the Default SCHPtCONTEXL........c.cvverrerrr s 784
Sending Script QUPUL 10 @ FIl ...ccevvevercirere e 785
INVOKING ProCedures in SCHPLSccveveverrerieresissesesessssessessessesessessessessssessessesssssssessessesssssssesnens 787
Implementing Java Interfaces in SCHPLScvvvvvvrierererrere s ssssessesaens 792
UsSing Compiled SCHPLS.....ccceriiiirire s s s nn 798
Using Java in SCripting LANQUAGESccoueererererrenerrnsesesesessesesessesessesessssessesesessssssssssssssssessesenns 801
Declaring Variabhles.........coereeerererenereseresese e 801
IMPOrtiNG JAVA CIASSESc.ceeiereeerercrereerese e 802
Implementing @ SCript ENQINE.........ccvveerrernererese s se s sessesens 802
The EXPression ClaSS.......cucieiiirineniesssinsese s s s st e s sas st se s s sas s sse s 804
The JKSCHPLENGINE ClaSS......ccoveeerererereerreesesesessesesesesesesesesessesessssesessssesssssssssesesssssssenens 811
The JKSCriptENGINEFACIOrY Class.......ccccoeruererenserereneresesessesessesessesessssesessesessesessesesessssessenens 813
Packaging the JKSCIiPt FIlES.......ccovvrrreereresereers s 815
Using the JKScript SCript ENGINE......ccoveoeeererrcrresese s s 815
JAVAFX 0N GROOVY.....cceeeecertee e s nn s e s e s e nnnnene s 819
11T 111 1T o OSSOSO 823
(=] (T 824
Chapter 11: Process APlccccuussmmnnmmssssssnmssssssssssssssssssssssssnssssssssnsssssssnnssssssnnnnss 825
What IS the PrOCESS API? ... se s s s s senneens 825
Knowing the Runtime ENVIrONMENt...........ccovirinrnsnncsene s sessenenns 827
THE CUITENT PIOCESS....ccueeireerensessssessssssesrssessssesessasesrssessssesesss s ssssessssesessasessssessssessssanssessessssenees 830
Querying the Process STate.........ccvvriririnnsinsere e s sae s snes 830
COMPANING PrOCESSES .uvruerrerrerersersersessssessersessessssessessessssessessessssssssssessesssssssessessesessessesssssssessesses 835
Creating @ PrOCESSccciuierirreriree sttt st e et e et 836
Obtaining a Process Handle ... s snas 855

TABLE OF CONTENTS

Terminating PrOCESSES.ciiviiiriiririirie s s ss e s s s e s a e s s e e s ae s e e a e s ae e 858
Managing Process PErMiSSIONS.......c.cccucvrerernsinsesese s s ses s e sss e s e s e ssssessessessesssssssesnens 859
SUMIMANY ..ttt s b e e e e R e b e e e R e A e e e e e Re e Ao b e e e e e Re R e e e e e aenrs 863
(] (o1 ST 864
Chapter 12: Packaging Modules.......cccccuseemmmmssssnnnmmsssssnnmsssssssssssssssnssssssssssssssssnnnss 867
The JAR FOIMALccoeeeeciri e s e s 868
What IS @ Multi-release JAR?cccoverrinernesnnessssse s s s s e ssssesesssssssenens 868
Creating Multi-rele@se JARS.........ccucvmeresinemnsmsrsessss s s ss s ssssssnssssessssssssssssssnnes 871
Rules for Multi-relea@se JARScucuvernserrnesmsesessse s ssssessssssssssssssssessssssssssssssnnes 879
Multi-release JARS @nd JAR URL.........ccocumenmmenernsmnrnesssssesss s ssssesssss s ssssesssssssssssessnss 881
Multi-release Manifest AttribUte..........covcvvcerriesr s 881

The JMOD FOrMAL ..o s 882
USINg the JMO TOOLc..covcirerererirsre e s p e e nae e 882

£ 11134 R 891
(] (01T T 892
Chapter 13: Custom Runtime Imagesccucmmsmmsmsssssssmsnsmsssssssssssssssssssnssssssnnas 893
What Is @ Custom RUNtime IMage? ..o e sesnenens 893
Creating Custom RUNtime IMAGEScocceerermrnrmsrnesmnesesessesesese e sesse s sessssessssesesssenns 894
BiNdiNG SEIVICESucivrreerieiriresire st e ne s 900
Using Plugins with the jlinK TOOIccvvvirnrrrrre s s s ss e ssesnens 904
THE JIMAQE TOO ... e s s a e s e e e e ae e 905
31111117 OO RS 908
(] (0T 908
Chapter 14: Miscellanea........ccccccrnussssnsssnnsmmmssssssssssssssssssssssssssssssnsssesssssssssnnnnnsnness 911
Deleted Chapters from Previous Editions..........ccccvriininnnnsninesssissesess s sesessens 911
MOre JDKT7 NOVEILIES.....ccecerererirresirrese s e s 912
Local Variables with AUOMatiC TYPES.......curveervrmrrnenersse s 912
Launch Single-File Source Code Programs..........c.coverernsessnesesssessssesssssssssssesssssssssssssssses 914
Enhanced switch Statements.........cccvciniincs s 914

TEXE BIOCKS ... s s e e e e nnas 916

TABLE OF CONTENTS

Enhanced instanceof OPErator.......ccovvvirierevnsensene s ses s sese e sss e s saesessesnesnes 917
Value Classes: RECOIUS..........cu e s 918
SEAIEH ClASSESc.cueerererririierr e 922
31111117 OO S 922
Appendix: Solutions t0 the EXerciSesccusmmmsssmmmsssnsmsssnssssssssssssnsssssnsssssnssssnnsnss 923
EXercises in Chapler 1 ... et 923
EXercises in Chapler 2 ... et 924
EXercises in Chapler 3 ... st se s s s 925
EXErcises in CRAPIEE 4coe i st r e s s ae e nne 925
EXErciSes iN ChAPIEE 5ovciiieirere s ser e s e s e s s e s sae e saesae e e e naennens 926
EXErcises in CRAPLEL 6 ...t e e 928
EXErcises in ChaPIEr 7 ... s 929
EXercises in Chapler 8 ... et 929
EXercises in Chapler 9 ... et 930
EXercises in Chapter 10 ... st se e s sae s s sae s 931
EXercises in Chapler 11 ... e s sr s se e saesne st s nne 931
EXErcises in ChAPIEr 12 ...t r e s e s s e sa s e s ss e s saesae e s e saesnesa s e naesaens 932
EXercises in ChApPLer 13 ...t 932
INA@X.ciiieriiesssmsssssssns s s s s ————— 935

Xviii

About the Authors

Kishori Sharan works as a senior software engineer lead at IndraSoft, Inc. He earned

a master of science degree in computer information systems from Troy University,
Alabama. He is a Sun-certified Java 2 programmer and has over 20 years of experience
in developing enterprise applications and providing training to professional developers
using the Java platform.

Peter Spith graduated in 2002 as a physicist and soon afterward became an IT
consultant, mainly for Java-related projects. In 2016, he decided to concentrate on
writing books on various aspects, but with the main focus set on software development.
With two books about graphics and sound processing, three books for Android app
development, and several books about Java and Jakarta EE development, the author
continues his effort in writing software development-related literature.

Xix

About the Technical Reviewers

Massimo Nardone has more than 25 years of experience

in security, web/mobile development, cloud, and IT
architecture. His true IT passions are security and Android.
He has been programming and teaching how to program with
Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for
more than 20 years. He holds a master of science degree in
computing science from the University of Salerno, Italy.

He has worked as a CISO, CSO, security executive, IoT
executive, project manager, software engineer, research
engineer, chief security architect, PCI/SCADA auditor, and
senior lead IT security/cloud/SCADA architect for many years. His technical skills
include security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile
development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,
Django CMS, Jekyll, Scratch, and more.

He worked as a visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas). He is currently working for

Cognizant as head of cyber security and CISO to help both internally and externally with
clients in areas of information and cyber security, like strategy, planning, processes,
policies, procedures, governance, awareness, and so forth. In June 2017, he became a
permanent member of the ISACA Finland Board.

Massimo has reviewed more than 45 IT books for different publishing companies
and is the co-author of Pro Spring Security: Securing Spring Framework 5 and Boot
2-based Java Applications (Apress, 2019), Beginning EJB in Java EE 8 (Apress, 2018), Pro
JPA 2 in Java EE 8 (Apress, 2018), and Pro Android Games (Apress, 2015).

Satej Kumar Sahu works in the role of Senior Enterprise Architect at Honeywell. He is
passionate about technology, people, and nature. He believes through technology and
conscientious decision making, each of us has the power to make this world a better
place. In his free time, he can be found reading books, playing basketball, and having fun
with friends and family.

Introduction

How This Book Came About

My first encounter with the Java programming language was during a one-week Java
training session in 1997. I did not get a chance to use Java in a project until 1999. I read
two Java books and took a Java 2 programmer certification examination. I did very well
on the test, scoring 95%. The three questions that I missed on the test made me realize
that the books that I had read did not adequately cover details of all the topics. I made
up my mind to write a book on the Java programming language. So I formulated a plan
to cover most of the topics that a Java developer needs to use Java effectively in a project,
as well as to become certified. I initially planned to cover all essential topics in Java in
700-800 pages.

As I progressed, I realized that a book covering most of the Java topics in detail could
not be written in 700-800 pages. One chapter alone that covered data types, operators,
and statements spanned 90 pages. I was then faced with the question, “Should I shorten
the content of the book or include all the details that I think a Java developer needs?”

I opted for including all the details in the book, rather than shortening its content to
maintain the original number of pages. It has never been my intent to make lots of
money from this book. I was never in a hurry to finish this book because that rush could
have compromised the quality and coverage. In short, I wrote this book to help the Java
community understand and use the Java programming language effectively, without
having to read many books on the same subject. I wrote this book with the plan that

it would be a comprehensive one-stop reference for everyone who wants to learn and
grasp the intricacies of the Java programming language.

One of my high-school teachers used to tell us that if one wanted to understand
a building, one must first understand the bricks, steel, and mortar that make up the
building. The same logic applies to most of the things that we want to understand in
our lives. It certainly applies to an understanding of the Java programming language. If
you want to master the Java programming language, you must start by understanding
its basic building blocks. I have used this approach throughout this book, endeavoring
to build upon each topic by describing the basics first. In the book, you will rarely find a

xxiii

INTRODUCTION

topic described without first learning about its background. Wherever possible, I tried
to correlate the programming practices with activities in daily life. Most of the books
about the Java programming language available on the market either do not include any
pictures at all or have only a few. I believe in the adage “A picture is worth a thousand
words.” To a reader, a picture makes a topic easier to understand and remember. I

have included plenty of illustrations in the book to aid readers in understanding and
visualizing the concepts. Developers who have little or no programming experience
have difficulty in putting things together to make it a complete program. Keeping them
in mind, I have included over 390 complete Java programs that are ready to be compiled
and run.

I spent countless hours doing research when writing this book. My main sources
were the Java Language Specification, whitepapers and articles on Java topics, and Java
Specification Requests (JSRs). I also spent quite a bit of time reading the Java source
code to learn more about some of the Java topics. Sometimes, it took a few months of
researching a topic before I could write the first sentence on it. Finally, it was always fun
to play with Java programs, sometimes for hours, to add them to the book.

Introduction to the Second Edition

I am pleased to present the second edition of the Java Language Features book. It is the
second book in the three-volume “Beginning Java 9” series. It was not possible to include
all JDK9 changes in one volume. I have included JDK9-specific changes at appropriate
places in the three volumes, including this one. If you are interested in learning only
JDK9-specific topics, I suggest you read my Java 9 Revealed book (ISBN 9781484225912).
There are several changes in this edition, as follows:

o Tadded the following five chapters to this edition: Implementing
Services, The Module API, Breaking Module Encapsulation, Reactive
Streams, and Stack Walking.

o Implementing services in Java is not new to JDKO. I felt this book was
missing a chapter on this topic. A chapter covers in detail how to
define services and service interfaces and how to implement service
interfaces using JDK9-specific and pre-JDK9 constructs. This chapter
shows you how to use them and provides statements in a module
declaration.

XXiv

INTRODUCTION

e Another chapter covers the Module API in detail, which gives you
programmatic access to modules. This chapter also touches on some
of the advanced topics, such as module layers. The first volume
of this series covered basics on modules, such as how to declare
modules and module dependence.

e The following chapter covers how to break module encapsulation
using command-line options. When you migrate to JDK9, there
will be cases requiring you to read the module’s internal APIs or
export non-exported packages. You can achieve these tasks using
command-line options covered in this chapter.

o Reactive Streams is an initiative for providing a standard for
asynchronous stream processing with non-blocking backpressure.
It is aimed at solving the problems processing a stream of items,
including how to pass a stream of items from a publisher to a
subscriber without requiring the publisher to block or the subscriber
to have an unbounded buffer. One more chapter covers the Reactive
Streams API, which was added in JDKO9.

e A new chapter covers the Stack-Walking API, which was added
in JDK9. This API lets you inspect the stack frames of threads and
get the class reference of the caller class of a method. Inspecting a
thread’s stack and getting the caller’s class name were possible before
JDK9. The new Stack-Walking API lets you achieve this easily and
efficiently.

o Ireceived several emails from the readers about the fact that the
books in this series do not include questions and exercises, which are
needed mainly for students and beginners. Students use this series
in their Java classes, and many beginners use it to learn Java. Due to
this popular demand, I spent over 60 hours preparing questions and
exercises at the end of each chapter. My friend Preethi offered her
help and provided the solutions.

Apart from these additions, I updated all the chapters that were part of the first
edition. I edited the contents to make them flow better, changed or added new examples,
and updated the contents to include JDK9-specific features.

It is my sincere hope that this edition will help you learn Java better.

INTRODUCTION

Introduction to the Third Edition

The third edition is the second author Peter Spath’s work. Pleasantly taking over much
of Kishori Sharan’s efforts, the original text was substantially shortened by omitting

a couple of chapters, and instead adding API-related topics from the book Java APIs,
Extensions and Libraries, again from Kishori Sharan. In addition, all topics covered were
hovered to Java 17, in order to maximize the benefit for the reader facing contemporary
Java projects and wishing to use the new features included with the JRE 17.

Caution Oracle changed the licensing with JDK8. You must enter a paid program
if you plan to use Oracle’s JRE or JDK for commercial projects. If you want to avoid
this, consider using OpenJDK.

Structure of the Book

This book contains 14 chapters. The first seven chapters contain language-level topics
of Java such as annotations, reflection, generics, lambda expressions, streams, etc. The
chapters introduce Java topics in increasing order of complexity. The subsequent six
chapters introduce some of the more important Java APIs and modules, like network
programming, remote method invocation, scripting, and more. The last chapter,
“Miscellanea,” gives the rationale for chapters omitted in this edition compared to the
previous one.

In the appendix, solution hints to the exercises are provided.

Audience

This book is designed to be useful to anyone who wants to learn the Java programming
language. If you are a beginner, with little or no programming background in Java, you
are advised to read one of the beginning-level Java books from Apress, and also the
online Java documentation including the Java tutorial will help. This book contains
topics of various degrees of complexity. As a beginner, if you find yourself overwhelmed
while reading a section in a chapter, you can skip to the next section or the next chapter
and revisit it later when you gain more experience.

XxVi

INTRODUCTION

If you are a Java developer with an intermediate or advanced level of experience,
you can jump to a chapter or to a section in a chapter directly. If a section covers an
unfamiliar topic, you need to visit that topic before continuing the current one.

If you are reading this book to get a certification in the Java programming language,
you need to read almost all of the chapters, paying attention to all of the detailed
descriptions and rules. Most of the certification programs test your fundamental
knowledge of the language, not the advanced knowledge. You need to read only those
topics that are part of your certification test. Compiling and running the Java programs
included with the book will help you prepare for your certification.

If you are a student who is attending a class on the Java programming language,
you should read the chapters of this book selectively. Some topics, such as lambda
expressions, collections, and streams, are used extensively in developing Java
applications, whereas other topics are infrequently used. You need to read only those
chapters that are covered in your class syllabus. I am sure that you, as a Java student, do
not need to read the entire book page by page.

How to Use This Book

This book is the beginning, not the end, of learning the Java programming language.
If you are reading this book, it means you are heading in the right direction to learn
the Java programming language, which will enable you to excel in your academic and
professional career. However, there is always a higher goal for you to achieve, and you
must constantly work hard to achieve it. The following quotations from some great
thinkers may help you understand the importance of working hard and constantly
looking for knowledge with both your eyes and mind open.

The learning and knowledge that we have, is, at the most, but little com-
pared with that of which we are ignorant.

—Plato

True knowledge exists in knowing that you know nothing. And in knowing
that you know nothing, that makes you the smartest of all.

—Socrates

Xxvii

INTRODUCTION

Readers are advised to use the API documentation for the Java programming language
as much as possible while reading this book. The Java API documentation includes a
complete list of everything available in the Java class library. You can download (or view)
the Java API documentation from the official website of Oracle Corporation at
www.oracle.com.

While you read this book, you need to practice writing Java programs. You can
also practice by tweaking the programs provided in the book. It does not help much in
your learning process if you just read this book and do not practice writing your own
programs. Remember that “practice makes perfect,” which is also true in learning how to

program in Java.

Source Code and Errata

Source code for this book can be accessed by clicking the Download Source Code
button located at www.apress.com/9781484271346.

xxviii

http://www.oracle.com
http://www.apress.com/9781484271346

CHAPTER 1

Annotations

In this chapter, you will learn:

What annotations are

How to declare annotations

How to use annotations

What meta-annotations are and how to use them

Commonly used annotations that are used to deprecate APIs, to
suppress named compile-time warnings, override methods, and
declare functional interfaces

How to access annotations at runtime

How to process annotations in source code

All example programs in this chapter are a member of a jdojo.annotation module,

as declared in Listing 1-1.

Listing 1-1. The Declaration of a jdojo.annotation Module

// module-info.java
module jdojo.annotation {
exports com.jdojo.annotation;

What Are Annotations?

Before I define annotations and discuss their importance in programming, let’s look

at a simple example. Suppose you have an Employee class, which has a method called

© Kishori Sharan, Peter Spdth 2021
K. Sharan and P. Spath, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_1

https://doi.org/10.1007/978-1-4842-7135-3_1#DOI

CHAPTER 1 ANNOTATIONS

setSalary() that sets the salary of an employee. The method accepts a parameter of
the type double. The following snippet of code shows a trivial implementation for the
Employee class:

public class Employee {
public void setSalary(double salary) {
System.out.println("Employee.setSalary():" +
salary);

A Manager class inherits from the Employee class. You want to set the salary for
managers differently. You decide to override the setSalary() method in the Manager
class. The code for the Manager class is as follows:

public class Manager extends Employee {
// Override setSalary() in the Employee class
public void setSalary(int salary) {
System.out.println("Manager.setSalary():" +
salary);

There is a mistake in the Manager class, when you attempt to override the
setSalary() method. You'll correct the mistake shortly. You have used the int data type
as the parameter type for the incorrectly overridden method. It is time to set the salary
for a manager. The following code is used to accomplish this:

Employee ken = new Manager();
int salary = 200;
ken.setSalary(salary);
Employee.setSalary():200.0

This snippet of code was expected to call the setSalary() method of the Manager
class, but the output does not show the expected result.

What went wrong in your code? The intention of defining the setSalary() method
in the Manager class was to override the setSalary() method of the Employee class, not
to overload it. You made a mistake. You used the type int as the parameter type in the

CHAPTER 1 ANNOTATIONS

setSalary() method, instead of the type double in the Manager class. You put comments
indicating your intention to override the method in the Manager class. However,
comments do not stop you from making logical mistakes. You might spend, as every
programmer does, hours and hours debugging errors resulting from this kind of logical
mistake. Who can help you in such situations? Annotations might help you in a few
situations like this.

Let’s rewrite your Manager class using an annotation. You do not need to know
anything about annotations at this point. All you are going to do is add one word to your
program. The following code is the modified version of the Manager class:

public class Manager extends Employee {
@verride
public void setSalary(int salary) {
System.out.println("Manager.setSalary():" +
salary);

All you have added is an @verride annotation to the Manager class and removed the
“dumb” comments. Trying to compile the revised Manager class results in a compile-time
error that points to the use of the @verride annotation for the setSalary() method of
the Manager class:

Manager.java:2: error: method does not override or
implement a method from a supertype
@Override

N

1 error

The use of the @0verride annotation did the trick. The @0verride annotation is used
with a non-static method to indicate the programmer’s intention to override the method
in the superclass. At the source code level, it serves the purpose of documentation.
When the compiler comes across the @0verride annotation, it makes sure that the
method really overrides the method in the superclass. If the method annotated does not
override a method in the superclass, the compiler generates an error. In your case, the
setSalary(int salary) method in the Manager class does not override any method in
the superclass Employee. This is the reason that you got the error. You may realize that

CHAPTER 1 ANNOTATIONS

using an annotation is as simple as documenting the source code. However, they have
compiler support. You can use them to instruct the compiler to enforce some rules.
Annotations provide benefits much more than you have seen in this example. Let’s go
back to the compile-time error. You can fix the error by doing one of the following two
things:

e You can remove the @0verride annotation from the setSalary(int
salary) method in the Manager class. It will make the method an
overloaded method, not a method that overrides its superclass
method.

o You can change the method signature from setSalary(int salary)
to setSalary(double salary).

Since you want to override the setSalary() method in the Manager class, use the
second option and modify the Manager class as follows:

public class Manager extends Employee {
@verride
public void setSalary(double salary) {
System.out.println("Manager.setSalary():" +
salary);

Now the following code will work as expected:

Employee ken = new Manager();
int salary = 200;
ken.setSalary(salary);
Manager.setSalary():200.0

Note that the @0verride annotation in the setSalary() method of the Manager class
saves you debugging time. Suppose you change the method signature in the Employee
class. If the changes in the Employee class make this method no longer overridden in the
Manager class, you will get the same error when you compile the Manager class again. Are
you starting to understand the power of annotations? With this background in mind, let’s
start digging deep into annotations.

CHAPTER 1 ANNOTATIONS

According to the Merriam-Webster dictionary, the meaning of annotation is

A note added by way of comment or explanation.

This is exactly what an annotation is in Java. It lets you associate (or annotate)
metadata (or notes) to the program elements in a Java program. The program elements
may be a module, a package, a class, an interface, a field of a class, a local variable,
amethod, a parameter of a method, an enum, an annotation, a type parameter in a
generic type/method declaration, a type use, etc. In other words, you can annotate any
declaration or type use in a Java program. An annotation is used as a “modifier” in a
declaration of a program element like any other modifiers (public, private, final, static,
etc.). Unlike a modifier, an annotation does not modify the meaning of the program
elements. It acts like a decoration or a note for the program element that it annotates.

An annotation differs from regular documentation in many ways. A regular
documentation is only for humans to read, and it is “dumb.” It has no intelligence
associated with it. If you misspell a word, or state something in the documentation and
do just the opposite in the code, you are on your own. It is very difficult and impractical
to read the elements of documentation programmatically at runtime. Java lets you
generate Javadocs from your documentation and that’s it for regular documentation.
This does not mean that you do not need to document your programs. You do need
regular documentation. At the same time, you need a way to enforce your intent using
a documentation-like mechanism. Your documentation should be available to the
compiler and the runtime. An annotation serves this purpose. It is human readable,
which serves as documentation. It is compiler readable, which lets the compiler
verify the intention of the programmer; for example, the compiler makes sure that
the programmer has really overridden the method if it comes across an @verride
annotation for a method. Annotations are also available at runtime so that a program
can read and use it for any purpose it wants. For example, a tool can read annotations
and generate boilerplate code. If you have worked with Enterprise JavaBeans (EJB), you
know the pain of keeping all the interfaces and classes in sync and adding entries to
XML configuration files. EJB 3.0 uses annotations to generate the boilerplate code, which
makes EJB development painless for programmers. Another example of an annotation
being used in a framework/tool is JUnit version 4.0. JUnit is a unit test framework for
Java programs. It uses annotations to mark methods that are test cases. Before that, you
had to follow a naming convention for the test case methods. Annotations have a variety
of uses, which are documentation, verification, and enforcement by the compiler, the
runtime validation, code generation by frameworks/tools, etc.

CHAPTER 1 ANNOTATIONS

To make an annotation available to the compiler and the runtime, an annotation
has to follow rules. In fact, an annotation is another type like a class and an interface. As
you have to declare a class type or an interface type before you can use it, you must also
declare an annotation type.

An annotation does not change the semantics (or meaning) of the program element
that it annotates. In that sense, an annotation is like a comment, which does not affect
the way the annotated program element works. For example, the @verride annotation
for the setSalary() method did not change the way the method works. You (or a tool/
framework) can change the behavior of a program based on an annotation. In such
cases, you use the annotation rather than the annotation doing anything on its own. The
point is that an annotation by itself is always passive.

Declaring an Annotation Type

Declaring an annotation type is similar to declaring an interface type, except for some
restrictions. According to Java specification, an annotation type declaration is a special
kind of interface type declaration. You use the interface keyword, which is preceded by
the @ sign (at sign) to declare an annotation type. The following is the general syntax for
declaring an annotation type:

[modifiers] @ interface <annotation-type-name> {
// Annotation type body goes here

[modifiers] for an annotation declaration is the same as for an interface
declaration. For example, you can declare an annotation type at the public or package
level. The @ sign and the interface keyword may be separated by whitespace, or they
can be placed together. By convention, they are placed together as @interface. The
interface keyword is followed by an annotation type name. It should be a valid Java
identifier. The annotation type body is placed within braces.

Suppose you want to annotate your program elements with the version information,
SO you can prepare a report about new program elements added in a specific release
of your product. To use a custom annotation type (as opposed to a built-in annotation,
such as @0verride), you must declare it first. You want to include the major and the
minor versions of the release in the version information. Listing 1-2 contains the
complete code for your first annotation declaration.

6

CHAPTER 1 ANNOTATIONS

Listing 1-2. The Declaration of an Annotation Type Named Version

// Version.java
package com.jdojo.annotation;
public @interface Version {
int major();
int minor();

Compare the declaration of the Version annotation with the declaration of an
interface. It differs from an interface definition only in one aspect: it uses the @ sign
before its name. You have declared two abstract methods in the Version annotation
type: major() and minor (). Abstract methods in an annotation type are known as its
elements. You can think about it in another way: an annotation can declare zero or more
elements, and they are declared as abstract methods. The abstract method names are the
names of the elements of the annotation type. You have declared two elements, major
and minor, for the Version annotation type. The data types of both elements are int.

Note Although you can declare static and default methods in interface types,
they are not allowed in annotation types. Static and default methods are meant

to contain some logic. Annotations are meant to represent just the values for
elements in the annotation type. This is the reason that static and default methods
are not allowed in annotation types.

You need to compile the annotation type. When the Version. java file is compiled, it
will produce a Version.class file. The simple name of your annotation type is Version,
and its fully qualified name is com. jdojo.annotation.Version. Using the simple name
of an annotation type follows the rules of any other types (e.g., classes, interfaces, etc.).
You will need to import an annotation type the same way you import any other types.

How do you use an annotation type? You might be thinking that you will declare a
new class that will implement the Version annotation type, and you will create an object
of that class. You might be relieved to know that you do not need to take any additional
steps to use the Version annotation type. An annotation type is ready to be used as soon
as itis declared and compiled. To create an instance of an annotation type and use it to
annotate a program element, you need to use the following syntax:

@annotationType(namel=valuel, name2=value2, name3=value3...)

CHAPTER 1 ANNOTATIONS

The annotation type is preceded by an @ sign. It is followed by a list of comma-
separated name=value pairs enclosed in parentheses. The name in a name=value pair
is the name of the element declared in the annotation type, and the value is the user-
supplied value for that element. The name=value pairs do not have to appear in the same
order as they are declared in the annotation type, although by convention name=value
pairs are used in the same order as the declaration of the elements in the annotation type.

Let’s use an instance of the Version type, which has the major element value as 1 and
the minor element value as 0. The following is an instance of your Version annotation type:

@Version(major=1, minor=0)

You can rewrite this annotation as @/ersion(minor=0, major=1) without changing
its meaning. You can also use the annotation type’s fully qualified name as

@com.jdojo.annotation.Version(major=0, minor=1)

You use as many instances of the Version annotation type in your program as you
want. For example, you have a VersionTest class, which has been in your application
since release 1.0. You have added some methods and instance variables in release 1.1.
You can use your Version annotation to document additions to the VersionTest class in
different releases. You can annotate your class declaration as

@Version(major=1, minor=0)
public class VersionTest {
// Code goes here

An annotation is added in the same way you add a modifier for a program element.
You can mix the annotation for a program element with its other modifiers. You can
place annotations in the same line as other modifiers or in a separate line. It is a personal
choice whether you use a separate line to place the annotations or you mix them with
other modifiers. By convention, annotations for a program element are placed before all
other modifiers. Let’s follow this convention and place the annotation in a separate line
by itself, as shown. Both of the following declarations are technically the same:

// Style #1
@Version(major=1, minor=0) public class VersionTest {
// Code goes here

CHAPTER 1 ANNOTATIONS

// Style #2
public @Version(major=1, minor=0)
class VersionTest {

// Code goes here

Listing 1-3 shows the sample code for the VersionTest class.

Listing 1-3. A VersionTest Class with Annotated Elements

// VersionTest.java
package com.jdojo.annotation;
// Annotation for class VersionTest
@Version(major=1, minor=0)
public class VersionTest {
// Annotation for instance variable xyz
@Version(major=1, minor=1)
private int xyz = 110;
// Annotation for constructor VersionTest()
@Version(major=1, minor=0)
public VersionTest() {
}
// Annotation for constructor VersionTest(int xyz)
@Version(major=1, minor=1)
public VersionTest(int xyz) {
this.xyz = xyz;

}

// Annotation for the printData() method
@Version(major=1, minor=0)
public void printData() {
}
// Annotation for the setXyz() method
@Version(major=1, minor=1)
public void setXyz(int xyz) {
// Annotation for local variable newValue

CHAPTER 1 ANNOTATIONS

@version(major=1, minor=2)
int newValue = xyz;
this.xyz = xyz;

In Listing 1-3, you use the @Version annotation to annotate the class declaration,
class field, local variables, constructors, and methods. There is nothing extraordinary in
the code for the VersionTest class. You just added the @Version annotation to various
elements of the class. The VersionTest class would work the same, even if you remove
all @Version annotations. It is to be emphasized that using annotations in your program
does not change the behavior of the program at all. The real benefit of annotations
comes from reading it at compile time and runtime.

What do you do next with the Version annotation type? You have declared it as a
type. You have used it in your VersionTest class. Your next step is to read it at runtime.
Let’s defer this step for now; I cover it in detail in a later section. I discuss more on
annotation type declarations first.

Restrictions on Annotation Types

An annotation type is a special type of interface with some restrictions. I cover some of
the restrictions in the sections to follow.

Restriction #1

An annotation type cannot inherit from another annotation type. That is, you cannot
use the extends clause in an annotation type declaration. The following declaration will
not compile because you have used the extends clause to declare the WrongVersion
annotation type:

// Won't compile
public @interface WrongVersion extends BasicVersion {
int extended();

Every annotation type implicitly inherits from the java.lang.annotation.
Annotation interface, which is declared as follows:

10

CHAPTER 1 ANNOTATIONS

package java.lang.annotation;
public interface Annotation {
boolean equals(Object obj);
int hashCode();
String toString();
Class<? extends Annotation> annotationType();

This implies that all of the four methods declared in the Annotation interface are
available in all annotation types.

Caution You declare elements for an annotation type using abstract method
declarations. The methods declared in the Annotation interface do not declare
elements in an annotation type. Your Version annotation type has only two
elements, major and minor, which are declared in the Version type itself. You
cannot use the annotation type Version as @Version(major=1, minor=2,
toString="Hello").The Version annotation type does not declare toString
as an element. It inherits the toString() method from the Annotation interface.

The first three methods in the Annotation interface are the methods from the Object
class. The annotationType() method returns the class reference of the annotation type
to which the annotation instance belongs. The Java creates a proxy class dynamically
at runtime, which implements the annotation type. When you obtain an instance of an
annotation type, that instance class is the dynamically generated proxy class, whose reference
you can get using the getClass () method on the annotation instance. If you get an instance
of the Version annotation type at runtime, its getClass () method will return the class
reference of the dynamically generated proxy class, whereas its annotationType () method
will return the class reference of the com. jdojo.annotation.Version annotation type.

Restriction #2

Method declarations in an annotation type cannot specify any parameters. A method
declares an element for the annotation type. An element in an annotation type lets
you associate a data value to an annotation’s instance. A method declaration in an
annotation is not called to perform any kind of processing. Think of an element as an

instance variable in a class having two methods, a setter and a getter, for that instance
11

CHAPTER 1 ANNOTATIONS

variable. For an annotation, the Java runtime creates a proxy class that implements

the annotation type (which is an interface). Each annotation instance is an object of
that proxy class. The method you declare in your annotation type becomes the getter
method for the value of that element you specify in the annotation. See, for example, the
int major(); and int minor(); method declarations in Listing 1-2. The Java runtime
will take care of setting the specified value for the annotation elements. Since the goal
of declaring a method in an annotation type is to work with a data element, you do not
need to (and are not allowed to) specify any parameters in a method declaration. The
following declaration of an annotation type would not compile because it declares a
concatenate() method, which accepts two parameters:

// Won't compile
public @interface WrongVersion {
// Cannot have parameters
String concatenate(int major, int minor);

Restriction #3

Method declarations in an annotation type cannot have a throws clause. A method in
an annotation type is defined to represent a data element. Throwing an exception to
represent a data value does not make sense. The following declaration of an annotation
type would not compile because the major () method has a throws clause:

// Won't compile
public @interface WrongVersion {
int major() throws Exception; // Cannot have a
// throws clause
int minox(); // OK

Restriction #4

The return type of a method declared in an annotation type must be one of the
following types:

e Any primitive type: byte, short, int, long, float, double, boolean,
and char

12

CHAPTER 1 ANNOTATIONS

e Jjava.lang.String
e Jjava.lang.Class
¢ Anenum type

¢ An annotation type

e An array of any of the previously mentioned types, for example,
String[], int[], etc. The return type cannot be a nested array. For
example, you cannot have a return type of String[][] orint[][].

Note The reason behind these data type restrictions is that all values for allowed
data types must be represented in the source code, which the compiler should be
able to represent for compile-time analysis.

The return type of Class needs a little explanation. Instead of the Class type, you can
use a generic return type that will return a user-defined class type. Suppose you have a
Test class and you want to declare the return type of a method in an annotation type of
type Test. You can declare the annotation method as shown:

public @interface GoodOne {
Class elementi1();
// <- Any Class type
Class<Test> element2();
// <- Only Test class type
Class<? extends Test> element3();
// <- Test or its subclass type

Restriction #5

An annotation type cannot declare a method, which would be equivalent to
overriding a method in the Object class or the Annotation interface.

Restriction #6

An annotation type cannot be generic.

13

CHAPTER 1 ANNOTATIONS

Default Value of an Annotation Element

The syntax for an annotation type declaration lets you specify a default value for its
elements. You are not required to, but you can, specify a value for an annotation element
that has a default value specified in its declaration. The default value for an element can
be specified using the following general syntax:

[modifiers] @interface <annotation-type-name> {
<data-type> <element-name>() default <default-value>;

The keyword default is used to specify the default value. The default value of the
type must be compatible with the data type for the element.

Suppose you have a product that is not frequently released, so it is less likely that it
will have a minor version other than zero. You can simplify your Version annotation type
by specifying a default value for its minor element as zero, as shown:

public @interface Version {
int major();
int minor() default 0; // Set zero as default value
// for minor

Once you set the default value for an element, you do not have to pass its value
when you use an annotation of this type. Java will use the default value for the missing

element:

@Version(major=1) // minor is zero, which is
// its default value

@Version(major=2) // minor is zero, which is

// its default value
@Version(major=2, minor=1) // minor is 1, which is the
// specified value

All default values must be compile-time constants. How do you specify the default
value for an array type? You need to use the array initializer syntax. The following
snippet of code shows how to specify default values for an array and other data types:

14

CHAPTER 1 ANNOTATIONS

// Shows how to assign default values to elements of
// different types
public @interface DefaultTest {
double d() default 12.89;
int num() default 12;
int[] x() default {1, 2};
String s() default "Hello";
String[] s2() default {"abc", "xyz"};
Class c() default Exception.class;
Class[] c2() default {Exception.class,
java.io.IOException.class};

The default value for an element is not compiled with the annotation. It is read from
the annotation type definition when a program attempts to read the value of an element
at runtime. For example, when you use @Version(major=2), this annotation instance is
compiled as is. It does not add the minor element with its default value as zero. In other
words, this annotation is not modified to @Version(major=2, minor=0) at the time of
compilation. However, when you read the value of the minor element for this annotation
at runtime, Java will detect that the value for the minor element was not specified. It will
consult the Version annotation type definition for its default value. The implication of
this mechanism is that if you change the default value of an element, the changed default
value will be read whenever a program attempts to read it, even if the annotated program
was compiled before you changed the default value.

Annotation Type and Its Instances

I use the terms “annotation type” and “annotation” frequently. An annotation type is a
type like an interface. Theoretically, you can use an annotation type wherever you can
use an interface type. Practically, we limit its use only to annotate program elements. You
can declare a variable of an annotation type as shown:

Version v = null; // Here, Version is an annotation type

Like an interface, you can also implement an annotation type in a class. However,
you are never supposed to do that, as it will defeat the purpose of having an annotation
type as a new construct. You should always implement an interface in a class, not an

15

CHAPTER 1 ANNOTATIONS

annotation type. Technically, the code in Listing 1-4 for the DoNotUseIt class is valid.
This is just for the purposes of demonstration. Do not implement an annotation in a
class even if it works.

Listing 1-4. A Class Implementing an Annotation Type

// DoNotUseIt.java
package com.jdojo.annotation;
import java.lang.annotation.Annotation;
public class DoNotUseIt implements Version {
// Implemented method from the Version annotation
// type
@verride
public int major() {
return 0;
}
// Implemented method from the Version annotation
// type
@verride
public int minor() {
return 0;
}
// Implemented method from the Annotation annotation
// type, which is the supertype of the Version
// annotation type
@verride
public Class<? extends Annotation> annotationType() {
return null;

The Java runtime implements the annotation type to a proxy class. It provides you
with an object of a class that implements your annotation type for each annotation you
use in your program. You must distinguish between an annotation type and instances
(or objects) of that annotation type. In your example, Version is an annotation type.
Whenever you use it as @/ersion(major=2, minor=4), you are creating an instance of
the Version annotation type. An instance of an annotation type is simply referred to as

16

CHAPTER 1 ANNOTATIONS

an annotation. For example, we say that @/ersion(major=2, minor=4) is an annotation
or an instance of the Version annotation type. An annotation should be easy to use in a

program. The syntax @/ersion(...) is shorthand for creating a class, creating an object
of that class, and setting the values for its elements. I cover how to get to the object of an
annotation type at runtime later in this chapter.

Using Annotations

In this section, I discuss the details of using different types of elements while declaring
annotation types. Keep in mind that the supplied value for elements of an annotation
must be a compile-time constant expression, and you cannot use null as the value for
any type of elements in an annotation.

Primitive Types

The data type of an element in an annotation type could be any of the primitive data
types: byte, short, int, long, float, double, boolean, and char. The Version annotation
type declares two elements, major and minor, and both are of int data type. The
following code snippet declares an annotation type called PrimitiveAnnTest:

public @interface PrimitiveAnnTest {

byte a();

short b();

int c();

long d();

float e();

double f();

boolean g();

char h();

You can use an instance of the PrimitiveAnnTest type as

@PrimitiveAnnTest(a=1, b=2, c=3, d=4, e=12.34F, f=1.89, g=true, h="Y")

17

CHAPTER 1 ANNOTATIONS

You can use a compile-time constant expression to specify the value for an element
of an annotation. The following two instances of the Version annotation are valid and
have the same values for their elements:

@Version(major=2+1, minor=(int)13.2)
@Version(major=3, minor=13)

String Types

You can use an element of the String type in an annotation type. Listing 1-5 contains the
code for an annotation type called Name. It has two elements, first and last, which are
of the String type.

Listing 1-5. Name Annotation Type, Which Has Two Elements, first and last, of
the String Type

// Name.java
package com.jdojo.annotation;
public @interface Name {
String first();
String last();

The following snippet of code shows how to use the Name annotation type in a
program:

@Name(first="John", last="Jacobs")
public class NameTest {
@Name(first="Wally", last="Inman")
public void aMethod() {
// More code goes here...

It is valid to use the string concatenation operator (+) in the value expression for an
element of a String type. The following two annotations are equivalent:

@Name(first="Jo" + "hn", last="Ja" + "cobs")
@Name(first="John", last="Jacobs")

18

CHAPTER 1 ANNOTATIONS

Typically, you will use string concatenation in an annotation when you want to
use a compile-time constant such as a final class variable as part of the value for an
annotation element. In the following annotation, Test is a class that defines a compile-
time constant String class variable named UNKNOWN:

@Name (first="Mr. " + Test.UNKNWON, last=Test.UNKNOWN)

The following use of the @Name annotation is not valid because the expression new
String("John") is not a compile-time constant expression:

@Name(first=new String("John"), last="Jacobs")

Class Types

The benefits of using the Class type as an element in an annotation type are not obvious.
Typically, it is used where a tool/framework reads the annotations with elements of a
class type and performs some specialized processing on the element’s value or generates
code. Let’s go through a simple example of using a class type element. Suppose you

are writing a test runner tool for running test cases for a Java program. Your annotation
will be used in writing test cases. If your test case must throw an exception when it is
invoked by the test runner, you need to use an annotation to indicate that. Let’s create a
DefaultException class, as shown in Listing 1-6.

Listing 1-6. A DefaultException Class That Is Inherited from the Throwable
Exception Class

// DefaultException.java
package com.jdojo.annotation;
public class DefaultException
extends java.lang.Throwable {
public DefaultException() {

}

public DefaultException(String msg) {
super(msg);

}

Listing 1-7 shows the code for a TestCase annotation type.

19

CHAPTER 1 ANNOTATIONS

Listing 1-7. A TestCase Annotation Type Whose Instances Are Used to Annotate
Test Case Methods

// TestCase.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface TestCase {
Class<? extends Throwable> willThrow() default
DefaultException.class;

The return type of the willThrow element is defined as the wildcard of the Throwable
class, so that the user will specify only the Throwable class or its subclasses as the
element’s value. You could have used the Class<?> type as the type of your willThrow
element. However, that would have allowed the users of this annotation type to pass
any class type as its value. Note that you have used two annotations, @Retention and
@Target, for the TestCase annotation type. The @Retention annotation type specified
that the @TestCase annotation would be available at runtime. It is necessary to use the
retention policy of RUNTIME for your TestCase annotation type because it is meant for the
test runner tool to read it at runtime. The @Target annotation states that the TestCase
annotation can be used only to annotate methods. I cover the @Retention and @Target
annotation types in detail in later sections when I discuss meta-annotations. Listing 1-8
shows the use of your TestCase annotation type.

Listing 1-8. A Test Case That Uses the TestCase Annotations

// PolicyTestCases.java
package com.jdojo.annotation;
import java.io.IOException;
public class PolicyTestCases {
// Must throw IOException

20

CHAPTER 1 ANNOTATIONS

@TestCase(willThrow=IOException.class)
public static void testCase1(){

// Code goes here
}
// We are not expecting any exception
@TestCase()
public static void testCase2(){

// Code goes here

The testCase1() method specifies, using the @TestCase annotation, that it will
throw an IOException. The test runner tool will make sure that when it invokes this
method, the method does throw an IOException. Otherwise, it will fail the test case.
The testCase2() method does not specify that it will throw an exception. If it throws an
exception when the test is run, the tool should fail this test case.

Enum Type

An annotation can have elements of an enum type. Suppose you want to declare an
annotation type called Review that can describe the code review status of a program
element. Let’s assume that it has a status element and it can have one of the four values:
PENDING, FAILED, PASSED, and PASSEDWITHCHANGES. You can declare an enum as an
annotation type member. Listing 1-9 shows the code for a Review annotation type.

Listing 1-9. An Annotation Type That Uses an enum Type Element

// Review.java
package com.jdojo.annotation;
public @interface Review {
ReviewStatus status() default ReviewStatus.PENDING;
String comments() default "";
// ReviewStatus enum is a member of the Review
// annotation type
public enum ReviewStatus {PENDING, FAILED, PASSED,

PASSEDWITHCHANGES};

21

CHAPTER 1 ANNOTATIONS

Note The enum type used as the type of an annotation element need not be
declared as a nested enum type of the annotation type, as you did in this example.
The enum type can also be declared outside the annotation type.

The Review annotation type declares a ReviewStatus enum type, and the four review
statuses are the elements of the enum. It has two elements, status and comments. The
type of the status element is the enum type ReviewStatus. The default value for the
status element is ReviewStatus.PENDING. You have an empty string as the default value
for the comments element.

Here are some of the instances of the Review annotation type. You will need to
import the com. jdojo.annotation.Review.ReviewStatus enum in your program to use
the simple name of the ReviewStatus enum type:

import com.jdojo.annotation.Review.ReviewStatus;

// Have default for status and comments. Maybe the code
// is new.
@Review()
// Leave status as Pending, but add some comments
@Review(comments=

"Have scheduled code review on December 1, 2017")
// Fail the review with comments
@Review(status=ReviewStatus.FAILED,

comments="Need to handle errors")
// Pass the review without comments
@Review(status=ReviewStatus.PASSED)

Here is the sample code that annotates a Test class indicating that it passed the code

review:

import com.jdojo.annotation.Review.ReviewStatus;
import com.jdojo.annotation.Review;
@Review(status=ReviewStatus.PASSED)
public class Test {

// Code goes here

22

CHAPTER 1 ANNOTATIONS

Annotation Type

An annotation type can be used anywhere a type can be used in a Java program. For
example, you can use an annotation type as the return type for a method. You can

also use an annotation type as the type of an element inside another annotation type’s
declaration. Suppose you want to have a new annotation type called Description, which
will include the name of the author, version, and comments for a program element. You
can reuse your Name and Version annotation types as its name and version elements
type. Listing 1-10 shows the code for the Description annotation type.

Listing 1-10. An Annotation Type Using Other Annotation Types As Its Elements

// Description.java
package com.jdojo.annotation;
public @interface Description {
Name name();
Version version();
String comments() default "";

To provide a value for an element of an annotation type, you need to use the syntax
that creates an annotation type instance. For example, @/ersion(major=1, minor=2)
creates an instance of the Version annotation. Note the nesting of an annotation inside
another annotation in the following snippet of code:

@escription(name=@Name(first="John", last="Jacobs"),
version=@Version(major=1, minor=2),
comments="Just a test class")

public class Test {

// Code goes here

23

CHAPTER 1 ANNOTATIONS

Array Type Annotation Element

An annotation can have elements of an array type. The array type could be one of the
following types:

e A primitive type

e java.lang.String type
e java.lang.Class type
¢ Anenum type

e An annotation type

You need to specify the value for an array element inside braces. Elements of the
array are separated by a comma. Suppose you want to annotate your program elements
with a short description of a list of things that you need to work on. Listing 1-11 creates a
ToDo annotation type for this purpose.

Listing 1-11. ToDo Annotation Type with a String Array As Its Sole Element

// ToDo.java
package com.jdojo.annotation;

public @interface ToDo {
String[] items();

The following snippet of code shows how to use a @ToDo annotation:

@ToDo(items={"Add readFile method", "Add error handling"})
public class Test {
// Code goes here

If you have only one element in the array, you can omit the braces.
The following two annotation instances of the ToDo annotation type are equivalent:

@ToDo(items={"Add error handling"})
@ToDo(items="Add error handling")

24

CHAPTER 1 ANNOTATIONS

Note If you do not have valid values to pass to an element of an array type, you
can use an empty array. For example, @ToDo(items={}) is a valid annotation
where the items element has been assigned an empty array.

No Null Value in an Annotation

You cannot use a null reference as a value for an element in an annotation. Note that it
is allowed to use an empty string for the String type element and an empty array for an
array type element. Using the following annotations will result in compile-time errors:

@ToDo(items=null)
@Name(first=null, last="Jacobs")

Shorthand Annotation Syntax

The shorthand annotation syntax is a little easier to use in a few circumstances. Suppose
you have an annotation type Enabled with an element having a default value, as shown:

public @interface Enabled {
boolean status() default true;

If you want to annotate a program element with the Enabled annotation type using
the default value for its element, you can use the @Enabled() syntax. You do not need
to specify the values for the status element because it has a default value. You can use a
shorthand in this situation, which allows you to omit the parentheses. You can just use
@Enabled instead of using @Enabled(). The Enabled annotation can be used in either of
the following two forms:

@Enabled
public class Test {
// Code goes here

25

CHAPTER 1 ANNOTATIONS

@Enabled()
public class Test {
// Code goes here

An annotation type with only one element also has a shorthand syntax.

You can use this shorthand if you adhere to a naming rule for the sole element in
the annotation type. The name of the element must be value. If an annotation type has
only one element that is named value, you can omit the name from the name=value pair
from your annotation. The following snippet of code declares a Company annotation type,
which has only one element named value:

public @interface Company {
String value(); // the element name is value

You can omit the name from the name=value pair when you use the Company
annotation, as shown here. If you want to use the element name with the Company

annotation, you can always do so as

@Company(value="Abc Inc.")
@Company("Abc Inc.")
public class Test {

// Code goes here

You can use this shorthand of omitting the name of the element from annotations,
even if the element data type is an array. Consider the following annotation type called
Reviewers:

public @interface Reviewers {
String[] value(); // the element name is value

26

CHAPTER 1 ANNOTATIONS

Since the Reviewers annotation type has only one element, which is named value,
you can omit the element name when you are using it:

// No need to specify name of the element
@Reviewers({"John Jacobs", "Wally Inman"})
public class Test {

// Code goes here

You can also omit the braces if you specify only one element in the array for the value
element of the Reviewers annotation type:

@Reviewers("John Jacobs")
public class Test {
// Code goes here

You just saw several examples using the name of the element as a value. Here is the
general rule of omitting the name of the element in an annotation: if you supply only one
value when using an annotation, the name of the element is assumed value. This means
that you are not required to have only one element in the annotation type, which is
named value, to omit its name in the annotations. If you have an annotation type, which
has an element named value (with or without a default value) and all other elements
have default values, you can still omit the name of the element in annotation instances of
this type. Here are some examples to illustrate this rule:

public @interface A {
String value();
int id() default 10;

}
// Same as @A(value="Hello", id=10)
@A("Hello")

public class Test {
// Code goes here
}
// Won't compile. Must use only one value to omit the
// element name
@A("Hello", id=16)

27

CHAPTER 1 ANNOTATIONS

public class WontCompile {
// Code goes here
}
// OK. Must use name=value pair when passing more than
// one value
@A(value="Hello", id=16)
public class Test {
// Code goes here

Marker Annotation Types

A marker annotation type does not declare any elements, not even one with a default
value. Typically, a marker annotation is used by annotation processing tools, which
generate some kind of boilerplate code based on the marker annotation type:

public @interface Marker {
// No element declarations

}
@Marker

public class Test {
// Code goes here

An example would be a @onitor annotation for methods to be monitored by some
performance monitoring tool:

public class Calculator {

@Monitor
public void calc() {

The tool would automatically add code for measuring elapse times, call frequency,
and the like.

28

CHAPTER 1 ANNOTATIONS

Meta-Annotation Types

Meta-annotation types are used to annotate other annotation type declarations. The
following are meta-annotation types:

o Target

e Retention
e Inherited
e Documented
o Repeatable

Meta-annotation types are part of the Java class library. They are declared in the
java.lang.annotation package. I discuss meta-annotation types in detail in subsequent
sections.

Note The java.lang.annotation package contains a Native annotation
type, which is not a meta-annotation. It is used to annotate fields indicating that
the field may be referenced from native code. It is a marker annotation. Typically, it
is used by tools that generate some code based on this annotation.

The Target Annotation Type

As a first member of the set of meta-annotations, the Target annotation type is used to
specify the context in which an annotation type can be used. It has only one element
named value, which is an array of the java.lang.annotation.ElementType enum type.
Table 1-1 lists all constants in the ElementType enum.

29

CHAPTER 1 ANNOTATIONS

Table 1-1. List of Constants in the java.lang.annotation.ElementType Enum

Constant Name

Description

ANNOTATION_TYPE

CONSTRUCTOR
FIELD
LOCAL_VARIABLE
METHOD

MODULE

PACKAGE
PARAMETER

TYPE

TYPE_PARAMETER

TYPE_USE

Used to annotate another annotation type declaration. This makes the
annotation type a meta-annotation.

Used to annotate constructors.

Used to annotate fields and enum constants.

Used to annotate local variables.

Used to annotate methods.

Used to annotate modules. It was added in Java 9.
Used to annotate package declarations.

Used to annotate parameters.

Used to annotate class, interface (including annotation type), or enum
declarations.

Used to annotate type parameters in generic classes, interfaces, methods,
etc. It was added in Java 8.

Used to annotate all uses of types. It was added in Java 8. The annotation
can also be used where an annotation with ElementType.TYPE and
ElementType.TYPE_PARAMETER can be used. It can also be used
before constructors, in which case it represents the objects created by the
constructor.

The following declaration of the Version annotation type annotates the annotation

type declaration with the Target meta-annotation, which specifies that the Version

annotation type can be used with program elements of only three types: any type (class,

interface, enum, and annotation types), constructors, and method.

// Version.java

package com.jdojo.annotation;

import java.lang.annotation.Target;

import java.lang.annotation.ElementType;
@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,
ElementType.METHOD})

30

CHAPTER 1 ANNOTATIONS

public @interface Version {
int major();
int minor();

The Version annotation type cannot be used on any program elements other than
the three types specified in its Target annotation. Its following use is incorrect because it
is being used on an instance variable (a field):

public class WontCompile {
// A compile-time error. Version annotation cannot
// be used on a field.
@Version(major = 1, minor = 1)
int id = 110;

The following uses of the Version annotation are valid:

// OK. A class type declaration
@Version(major = 1, minor = 0)
public class VersionTest {
// OK. A constructor declaration
@Version(major = 1, minor = 0)
public VersionTest() {
// Code goes here
}
// OK. A method declaration
@Version(major = 1, minor = 1)
public void doSomething() {
// Code goes here

Prior to Java 8, annotations were allowed on formal parameters of methods and
declarations of packages, classes, methods, fields, and local variables. Java 8 added
support for using annotations on any use of a type and on type parameter declarations.
The phrase “any use of a type” needs a little explanation. A type is used in many contexts,
for example, after the extends clause as a supertype, in an object creation expression

31

CHAPTER 1 ANNOTATIONS

after the new operator, in a cast, in a throws clause, etc. From Java 8, annotations may
appear before the simple name of the types wherever a type is used. Note that the simple
name of the type may be used only as a name, not as a type, for example, in an import
statement. Consider the declarations of the Fatal and NonZero annotation types shown
in Listings 1-12 and 1-13.

Listing 1-12. A Fatal Annotation Type That Can Be Used with Any Type Use

// Fatal.java

package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;
@Target({ElementType.TYPE USE})

public @interface Fatal {

}

Listing 1-13. A NonZero Annotation Type That Can Be Used with Any Type Use

// NonZero.java

package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;
@Target({ElementType.TYPE USE})

public @interface NonZero {

}

The Fatal and NonZero annotation types can be used wherever a type is used. Their
uses in the following contexts are valid:

public class Test {
public void processData() throws @Fatal Exception {

double value = getValue();

int roundedvValue = (@NonZero int) value;
Test t = new @Fatal Test();

// More code goes here

32

CHAPTER 1 ANNOTATIONS

public double getValue() {
double value = 189.98;
// More code goes here
return value;

Note If you do not annotate an annotation type with the Target annotation
type, the annotation type can be used everywhere, except in a type parameter
declaration.

The Retention Annotation Type

You can use annotations for different purposes. You may want to use them solely for
documentation purposes, to be processed by the compiler, and/or to use them at
runtime. An annotation can be retained at three levels:

e Source code only
e C(lass file only (the default)
e (lassfile and runtime

The Retention meta-annotation type is used to specify how an annotation instance
of an annotation type should be retained by Java. This is also known as the retention
policy of an annotation type. If an annotation type has a “source code only” retention
policy, instances of its type are removed when compiled into a class file. If the retention
policy is “class file only,” annotation instances are retained in the class file, but they
cannot be read at runtime. If the retention policy is “class file and runtime” (simply
known as runtime), the annotation instances are retained in the class file, and they are
available for reading at runtime.

The Retention meta-annotation type declares one element, named value, which is of
the java.lang.annotation.RetentionPolicy enum type. The RetentionPolicy enum
has three constants, SOURCE, CLASS, and RUNTIME, which are used to specify the retention
policy of source only, class only, and class-and-runtime, respectively. The following

33

CHAPTER 1 ANNOTATIONS

code uses the Retention meta-annotation on the Version annotation type. It specifies
that the Version annotations should be available at runtime. Note the use of two meta-
annotations on the Version annotation type: Target and Retention.

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Target;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,
ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Version {
int major();
int minor();

Note If you do not use the Retention meta-annotation on an annotation type,
its retention policy defaults to class file only. This implies that you will not be able
to read those annotations at runtime. You will make this common mistake in the
beginning. You would try to read annotations, and the runtime will not return any
values. Make sure that your annotation type has been annotated with the Retention
meta-annotation with the retention policy of RetentionPolicy.RUNTIME before
you attempt to read them at runtime. An annotation on a local variable declaration
is never available in the class file or at runtime irrespective of the retention policy
of the annotation type. The reason for this restriction is that the Java runtime does
not let you access the local variables using reflection at runtime; unless you have
access to the local variables at runtime, you cannot read annotations for them.

34

CHAPTER 1 ANNOTATIONS

The Inherited Annotation Type

The Inherited annotation type is a marker meta-annotation type. If an annotation
type is annotated with an Inherited meta-annotation, its instances are inherited by
a subclass declaration. It has no effect if an annotation type is used to annotate any
program elements other than a class declaration. Let’s consider two annotation type
declarations: Ann2 and Ann3. Note that Ann2 is not annotated with an Inherited
meta-annotation, whereas Ann3 is.

public @interface Ann2 {
int id();

}

@Inherited

public @interface Ann3 {
int id();

Let’s declare two classes, A and B, as follows. Note that class B inherits class A:

@Ann2(id=505)
@Ann3(id=707)
public class A {
// Code for class A goes here
}
// Class B inherits Ann3(id=707) annotation from the
// class A
public class B extends A {
// Code for class B goes here

In this snippet of code, class B inherits the @Ann3(id=707) annotation from
class A because the Ann3 annotation type has been annotated with an Inherited
meta-annotation. Class B does not inherit the @Ann2(id=505) annotation because the
Ann2 annotation type is not annotated with an Inherited meta-annotation.

35

CHAPTER 1 ANNOTATIONS

The Documented Annotation Type

The Documented annotation type is a marker meta-annotation type. If an annotation
type is annotated with a Documented annotation, the Javadoc tool will generate
documentation for all of its instances. Listing 1-14 has the code for the final version
of the Version annotation type, which has been annotated with a Documented
meta-annotation.

Listing 1-14. The Final Version of the Version Annotation Type

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,
ElementType.METHOD, ElementType.MODULE,
ElementType.PACKAGE, ElementType.LOCAL VARIABLE,
ElementType.TYPE USE})

@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface Version {
int major();
int minor();

Suppose you annotate a Test class with your Version annotation type as follows:

package com.jdojo.annotation;
@Version(major=1, minor=0)
public class Test {

// Code for Test class goes here

36

CHAPTER 1 ANNOTATIONS

When you generate documentation for the Test class using the Javadoc tool,
the Version annotation on the Test class declaration is also generated as part of the
documentation. If you remove the Documented annotation from the Version annotation
type declaration, the Test class documentation would not contain information about its
Version annotation.

The Repeatable Annotation Type

An annotation type declaration must be annotated with a @Repeatable annotation if its
repeated use is to be allowed. The Repeatable annotation type has only one element
named value whose type is a class type of another annotation type. Creating a repeatable
annotation type is a two-step process:

e Declare an annotation type (say T) and annotate it with the
Repeatable meta-annotation. Specify the value for the annotation as
another annotation that is known as containing an annotation for the
repeatable annotation type being declared.

o Declare the containing annotation type with one element that is an
array of the repeatable annotation.

Listings 1-15 and 1-16 contain declarations for the ChangeLog and Changelogs
annotation types. ChangelLog is annotated with the @Repeatable(ChangelLogs.class)
annotation, which means that it is a repeatable annotation type and its
containing annotation type is ChangelLogs.

Listing 1-15. A Repeatable Annotation Type That Uses the ChangeLogs As the
Containing Annotation Type

// Changelog.java

package com.jdojo.annotation;

import java.lang.annotation.Repeatable;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
@Retention(RetentionPolicy.RUNTIME)
@Repeatable(ChangelLogs.class)

37

CHAPTER 1 ANNOTATIONS

public @interface Changelog {
String date();
String comments();

}

Listing 1-16. A Containing Annotation Type for the ChangeLog Repeatable
Annotation Type

// Changelogs.java
package com.jdojo.annotation;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
@Retention(RetentionPolicy.RUNTIME)
public @interface Changelogs {

ChangelLog[] value();

You can use the Changelog annotation to log change history for the Test class, as shown:

@ChangeLog(date="08/28/2017",
comments="Declared the class")
@Changelog(date="09/21/2017",
comments="Added the process() method")
public class Test {
public static void process() {
// Code goes here

Commonly Used Standard Annotations

The Java API defines many standard annotation types. This section discusses four of the
most commonly used standard annotations. They are defined in the java.lang package.
They are

o Deprecated

e Override

38

CHAPTER 1 ANNOTATIONS

o SuppressWarnings

e FunctionallInterface

Deprecating APIs

Deprecating APIs in Java is a way to provide information about the lifecycle of the APIs.
You can deprecate modules, packages, types, constructors, methods, fields, parameters,
and local variables. When you deprecate an API, you are telling its users

e Notto use the API because it is dangerous

o To migrate away from the API because a better replacement for the
API exists

o To migrate away from the API because the APIwill be removed in a

future release
The JDK contains two constructs that are used to deprecate APIs:
o The @deprecated Javadoc tag
o The java.lang.Deprecated annotation type

The @deprecated Javadoc tag lets you specify the details about the deprecation with
arich set of text formatting features of HTML. The java.lang.Deprecated annotation
type can be used on the API elements, which are deprecated.

The Deprecated annotation type is retained at runtime.

The @deprecated tag and the @Deprecated annotation are supposed to be used
together. Both should be present or both absent. The @Deprecation annotation does not
let you specify a description of the deprecation, so you must use the @deprecated tag to
provide the description.

Note Using a @deprecated tag, but not a @eprecated annotation, on an API
element generates a compiler warning.

Listing 1-17 contains the declaration for a class named FileCopier. Suppose this
class is shipped as part of a library.

39

CHAPTER 1 ANNOTATIONS

Listing 1-17. A FileCopier Utility Class

// FileCopier.java
package com.jdojo.deprecation;
import java.io.File;

/**

* The class consists of static methods that can be used

* to copy files and directories.

*

* @deprecated Deprecated since 1.4. Not safe to use. Use

* the <code>java.nio.file.Files</code> class instead. This
* class will be removed in a future release of this library.
*

* @since 1.2

*/

@Deprecated

public class FileCopier {

// No direct instantiation supported

private FileCopier() {

}

/**

* Copies the contents of src to dst.

* @param src The source file

* @param dst The destination file

* @return true if the copy is successfully,

* false otherwise.

*/

public static boolean copy(File src, File dst) {
// More code goes here
return true;

}

// More code goes here

40

CHAPTER 1 ANNOTATIONS

The FileCopier class is deprecated using the @Deprecated annotation. Its Javadoc
uses the @deprecated tag to give the deprecation details such as when it was deprecated,
its replacement, and its removal notice. Before JDK9, the @Deprecated annotation type
did not contain any elements, so you had to provide all details about the deprecation
using the @deprecated tag in the Javadoc for the deprecated API. Note that the @since
tag used in the Javadoc indicates that the FileCopier class has existed since version 1.2
of this library, whereas the @deprecated tag indicates that the class has been deprecated
since version 1.4 of the library.

The Javadoc tool moves the contents of the @deprecated tag to the top in the
generated Javadoc to draw the reader’s attention. The compiler generates a warning
when non-deprecated code uses a deprecated API. Annotating an API with @Deprecated
does not generate a warning; however, using an API that has been annotated with a
@Deprecated annotation does. If you used the FileCopier class outside the class itself,
you will receive a compile-time warning about using the deprecated class.

Suppose you compiled your code and deployed it to production. If you upgraded
the JDK version or libraries/frameworks that contain new, deprecated APIs that your
old application uses, you do not receive any warnings, and you would miss a chance
to migrate away from the deprecated APIs. You must recompile your code to receive
warnings. There was no tool to scan and analyze the compiled code (e.g., JAR files)
and report the use of deprecated APIs. Even worse is the case when a deprecated API
is removed from the newer version, and your old, compiled code receives unexpected
runtime errors. Developers were also confused when they looked at a deprecated
element Javadoc—there was no way to express when the API was deprecated and
whether the deprecated API will be removed in a future release. Prior to JDK9, all you
could do was specify these pieces of information in text as part of the @deprecated
tag. For this reason, there are two additional elements enhancing the @Deprecated
annotation (since JDK9): since and forRemoval. They are declared as follows:

o String since() default “”;
¢ boolean forRemoval() default false;

Both new elements have default values specified, so the existing uses of the
annotation do not break. The since element specifies the version in which the annotated
API element became deprecated. It is a string and you are expected to follow the same

41

CHAPTER 1 ANNOTATIONS

version naming convention as the JDK version scheme, for example, “9” for JDK9. It
defaults to the empty string. Note that JDK9 did not add an element to the @Deprecated
annotation type to specify a description of the deprecation. This was done for two

reasons:

o The annotation is retained at runtime. Adding descriptive text to the
annotation would add to the runtime memory.

o The descriptive text cannot be just plain text. For example, it needs to
provide a link to the replacement of the deprecated API. The existing
@deprecated Javadoc tag already provides this feature.

The forRemoval element indicates that the annotated API element is subject to
removal in a future release, and you should migrate away from the API. It defaults to

false.

Note The @since Javadoc tag on an element indicates when the API element
was added, whereas the since element of the @Deprecated annotation indicates
when the API element was deprecated. In JDK9, reasonable efforts have been
made to backfill these two elements’ values in most, if not all, use-sites of the
@Deprecated annotations in the Java SE APIs.

The addition of the forRemoval element in the @Deprecation annotation type has
added five more use cases. When an API is deprecated with forRemoval set to false,
such a deprecation is known as an ordinary deprecation, and the warnings issued in
such cases are called ordinary deprecation warnings. When an API is deprecated with
forRemoval set to true, such a deprecation is known as a terminal deprecation, and
the warnings issued in such cases are called terminal deprecation warnings or removal
warnings. Table 1-2 shows the matrix of deprecation warnings (issued in JDK9).

42

CHAPTER 1 ANNOTATIONS

Table 1-2. Matrix of Deprecation Warnings

API Use-Site API Declaration Site, API Declaration Site, API Declaration Site,
Not Deprecated Terminally Deprecated Ordinarily Deprecated

Not Deprecated No Warning Ordinary Deprecation Removal Deprecation
Warning Warning

Ordinarily No Warning No Warning Removal Deprecation

Deprecated Warning

Terminally No Warning No Warning Removal Deprecation

Deprecated Warning

The warning issued in one case, where both the API and its use-site are terminally
deprecated, needs a little explanation. Both API and the code that uses it have been
deprecated, and both will be removed in the future, so what is the point of getting a
warning in such a case? This is done to cover cases where the terminally deprecated API
and its use-site are in two different codebases and are maintained independently. If the
use-site codebase outlives the API codebase, the use-site will get an unexpected runtime
error because the API it uses no longer exists. Issuing a warning at the use-site will give
its maintainers a chance to plan for alternatives in case the terminally deprecated API
goes away before the code at use-sites.

If you use @SuppresshWarnings("deprecation™), the compiler suppresses only
ordinary deprecation warnings. To suppress removal warnings, you need to use
@SuppressWarnings("removal™). If you want to suppress both ordinary and removal
deprecation warnings, you need to use @SuppressiWarnings({"deprecation”,
"removal"}).

As an example, I show you all use cases of deprecating APIs, using the deprecated
APIwith and without suppressing warnings with a simple example. In the example,

I deprecate only methods and use them to generate compile-time warnings. You are,
however, not limited to deprecating only methods. Comments on the methods should
help you understand the expected behavior. Listing 1-18 contains the code for a class
named Box. The class contains three methods—one in each category of deprecation—
not deprecated, ordinarily deprecated, and terminally deprecated. I have kept the class
simple, so you can focus on the deprecation being used. Compiling the Box class will not
generate any deprecation warnings because the class does not use any deprecated API;
rather, it contains the deprecated APIs.

43

CHAPTER 1 ANNOTATIONS

Listing 1-18. A Box Class with Three Types of Methods: Not Deprecated,
Ordinarily Deprecated, and Terminally Deprecated

// Box.java
package com.jdojo.annotation;
/**
* This class is used to demonstrate how to deprecate APIs.
*/
public class Box {
/**
* Not deprecated
*/
public static void notDeprecated() {
System.out.println("notDeprecated...");

}
/**
* Deprecated ordinarily.
* @deprecated Do not use it.
*/
@Deprecated(since="2")
public static void deprecatedOrdinarily() {
System.out.println("deprecatedOrdinarily...");

}
/**
* Deprecated terminally.
* @deprecated It will be removed in a future release.
* Migrate your code now.
*/
@Deprecated(since="2", forRemoval=true)
public static void deprecatedTerminally() {
System.out.println("deprecatedTerminally...");

Listing 1-19 contains the code for a BoxTest class. The class uses all methods of
the Box class. A few methods in the BoxTest class have been deprecated ordinarily and

44

CHAPTER 1 ANNOTATIONS

terminally. The first nine methods correspond to nine use cases in Table 1-2, which
will generate four deprecation warnings—one ordinary warning and three terminal
warnings. Methods named like m4X(), where X is a digit, show you how to suppress

ordinary and terminal deprecation warnings.

Listing 1-19. A BoxTest Class That Uses Deprecated APIs and Suppresses
Deprecation Warnings

// BoxTest.java
package com.jdojo.annotation;

public class BoxTest {
/**
* API: Not deprecated
* Use-site: Not deprecated
* Deprecation warning: No warning
*/
public static void m11() {
Box.notDeprecated();

}

/**

* API: Ordinarily deprecated

* Use-site: Not deprecated

* Deprecation warning: No warning

*/

public static void m12() {
Box.deprecatedOrdinarily();

}

/**

* API: Terminally deprecated

* Use-site: Not deprecated

* Deprecation warning: Removal warning

*/

public static void m13() {
Box.deprecatedTerminally();

45

CHAPTER 1 ANNOTATIONS

/**
* API: Not deprecated

* Use-site: Ordinarily deprecated
* Deprecation warning: No warning

*

@deprecated Dangerous to use.
*/

@Deprecated(since="1.1")

public static void m21() {

Box.notDeprecated();

}

/**

* API: Ordinarily deprecated

* Use-site: Ordinarily deprecated

* Deprecation warning: No warning

* @deprecated Dangerous to use.

*/

@Deprecated(since="1.1")

public static void m22() {
Box.deprecatedOrdinarily();

}

/**
* API: Terminally deprecated
* Use-site: Ordinarily deprecated
* Deprecation warning: Removal warning
* @deprecated Dangerous to use.
*/
@Deprecated(since="1.1")
public static void m23() {
Box.deprecatedTerminally();

}

/**
* API: Not deprecated
* Use-site: Terminally deprecated
* Deprecation warning: No warning
*

@deprecated Going away.

46

CHAPTER 1

*/
@Deprecated(since="1.1", forRemoval=true)
public static void m31() {
Box.notDeprecated();

}

/**

* API: Ordinarily deprecated

* Use-site: Terminally deprecated
* Deprecation warning: No warning
@deprecated Going away.

*

*/

@Deprecated(since="1.1", forRemoval=true)

public static void m32() {
Box.deprecatedOrdinarily();

}
/**
* API: Terminally deprecated
* Use-site: Terminally deprecated
* Deprecation warning: Removal warning
* @deprecated Going away.
*/
@Deprecated(since="1.1", forRemoval=true)
public static void m33() {
Box.deprecatedTerminally();

}

/**

* API: Ordinarily and Terminally deprecated

* Use-site: Not deprecated

* Deprecation warning: Ordinary and removal warnings

*/

public static void m41() {
Box.deprecatedOrdinarily();
Box.deprecatedTerminally();

ANNOTATIONS

47

CHAPTER 1 ANNOTATIONS

/**
* API: Ordinarily and Terminally deprecated
* Use-site: Not deprecated
* Deprecation warning: Ordinary warnings
*/
@SuppresshWarnings("deprecation™)
public static void m42() {
Box.deprecatedOrdinarily();
Box.deprecatedTerminally();

}
/**
* API: Ordinarily and Terminally deprecated
* Use-site: Not deprecated
* Deprecation warning: Removal warnings
*/
@SuppressWarnings("removal")
public static void m43() {
Box.deprecatedOrdinarily();
Box.deprecatedTerminally();

}
/**
* API: Ordinarily and Terminally deprecated
* Use-site: Not deprecated
* Deprecation warning: Removal warnings
*/
@SuppressWarnings({"deprecation"”, "removal"})
public static void m44() {
Box.deprecatedOrdinarily();
Box.deprecatedTerminally();

You need to compile the BoxTest class using the -X1int:deprecation compiler flag,

so the compiler emits deprecation warnings:

48

C:\Java9languageFeatures>javac -Xlint:deprecation *
-d build\modules\jdojo.annotation *
src\jdojo.annotation\classes\com\jdojo\annotation\
BoxTest.java
src\jdojo.annotation\classes\com\jdojo\annotation\
BoxTest.java:20: warning: [deprecation]
deprecatedOrdinarily() in Box has been deprecated
Box.deprecatedOrdinarily();
src\jdojo.annotation\classes\com\jdojo\annotation\
BoxTest.java:29: warning: [removal]
deprecatedTerminally() in Box has been deprecated
and marked for removal
Box.deprecatedTerminally();
src\jdojo.annotation\classes\com\jdojo\annotation\
BoxTest.java:62: warning: [removal]
deprecatedTerminally() in Box has been deprecated
and marked for removal
Box.deprecatedTerminally();
src\jdojo.annotation\classes\com\jdojo\annotation\
BoxTest.java:95: warning: [removal]
deprecatedTerminally() in Box has been deprecated
and marked for removal
Box.deprecatedTerminally();
src\jdojo.annotation\classes\com\jdojo\annotation\
BoxTest.java:104: warning: [deprecation]
deprecatedOrdinarily() in Box has been deprecated
Box.deprecatedOrdinarily();
src\jdojo.annotation\classes\com\jdojo\annotation\
BoxTest.java:105: warning: [removal]

CHAPTER 1

ANNOTATIONS

49

CHAPTER 1 ANNOTATIONS

deprecatedTerminally() in Box has been deprecated
and marked for removal
Box.deprecatedTerminally();
src\jdojo.annotation\classes\com\jdojo\annotation\
BoxTest.java:116: warning: [removal]
deprecatedTerminally() in Box has been deprecated
and marked for removal
Box.deprecatedTerminally();
src\jdojo.annotation\classes\com\jdojo\annotation\
BoxTest.java:126: warning: [deprecation]
deprecatedOrdinarily() in Box has been deprecated
Box.deprecatedOrdinarily();

A

8 warnings

(No line break and no spaces after “annotation\” in the command.)

Recall that deprecation warnings are compile-time warnings. You will not get any
warnings if compiled code for your deployed application starts using an ordinarily
deprecated API or generates a runtime error because an API that was once valid had
been terminally deprecated and removed. JDK9 and later improve this situation by
providing a static analysis tool called jdeprscan that scans compiled code to give you the
list of deprecated APIs being used. Currently, the tool reports the use of only deprecated
JDK APIs. If your compiled code uses deprecated APIs from other libraries, say, Spring or
Hibernate, or your own libraries, this tool will not report those uses.

The jdeprscan tool is in the JDK_HOME\bin directory. The general syntax to use the
tool is as follows:

jdeprscan [options] {dir|jar|class}

Here, [options] is alist of zero or more options. You can specify a list of
space-separated directories, JARs, fully qualified class names, or class file paths
as arguments to scan. The available options are as follows:

° —1, -1list
o -class-path <CLASSPATH>

50

CHAPTER 1 ANNOTATIONS

e -—for-removal

o -release <6|7/8|9]...|17>
e -Vv,-verbose

e -version

o —full-version

e ~-h,-help

The -1ist option lists the set of deprecated APIs in Java SE. No arguments specifying
the location of compiled classes should be specified when this option is used.

The -class-path specifies the class path to be used to find dependent classes during
the scan.

The -for-removal option restricts the scan or list to only those APIs that have been
deprecated for removal.

The -release option specifies the Java SE release that provides the set of deprecated
APIs during scanning. For example, to list all deprecated APIs in JDK15, you will use the
tool as follows: jdeprscan -list -release 15.

The -verbose option prints additional messages during the scanning process.

The -version and -full-version options print the abbreviated and full versions of
the jdeprscan tool, respectively.

The -help option prints a detailed help message about the jdeprscan tool.

Listing 1-20 contains the code for a JDeprScanTest class. The code is trivial. It is
intended to just compile, not run. Running it will not produce any interesting output.

It creates two threads. One thread is stopped using the stop() method of the Thread
class, and another thread is destroyed using the destroy() method of the Thread class.
The stop() and destroy() methods have been ordinarily deprecated since JDK 1.2 and
JDK 1.5, respectively. JDK9 has terminally deprecated the destroy() method, whereas
it continued to keep the stop() method ordinarily deprecated. I use this class in the
following examples.

51

CHAPTER 1 ANNOTATIONS

Listing 1-20. A JDeprScanTest Class That Uses the Ordinarily Deprecated
Method stop() and the Terminally Deprecated Method destroy() of the Thread
Class

// JDeprScanTest.java
package com.jdojo.annotation;
public class JDeprScanTest {
public static void main(String[] args) {
Thread t = new Thread(() -»>
System.out.println("Test"));
t.start();
t.stop();
Thread t2 = new Thread(() ->
System.out.println("Test"));
t2.start();
t2.destroy();

The following command prints the list of all deprecated APIs in JDK16. The command
takes a few seconds to start printing the results because it scans the entire JDK:

C:\Java9languageFeatures>jdeprscan --list --release 16

@Deprecated(since="16", forRemoval=true)
javax.management.relation.RoleStatus()

@eprecated(since="9") interface
java.beans.AppletInitializer

The following command prints all terminally deprecated APIs in JDK16. That is, it
prints all deprecated APIs that have been marked for removal in a future release:

C:\Java9languageFeatures>jdeprscan --list --for-removal *
--release 16

@Deprecated(since="16", forRemoval=true)
javax.management.relation.RoleStatus()

52

CHAPTER 1 ANNOTATIONS
The following command prints the list of all APIs deprecated in JDK8:

C:\ Java9languageFeatures >jdeprscan --list --release 8
@eprecated class javax.swing.text.TableView.TableCell

The following command prints the list of deprecated APIs in JDK16 used by the
java.lang.Thread class:

C:\Java9languageFeatures>jdeprscan --release 16 *
java.lang.Thread

class java/lang/Thread uses deprecated method
java/lang/Thread: :resume()V (forRemoval=true)

Note that the previous command does not print the list of deprecated APIs in
the Thread class. Rather, it prints the list of APIs in the Thread class that uses those
deprecated APIs.

The following command lists all uses of deprecated JDK APIs in some directory:

C:\Java9languageFeatures>jdeprscan --release 16 *
path/to/folder

class com/test/Jdk17 uses deprecated method
java/lang/Integer::<init>(I)V (forRemoval=true)

The jdeprscan tool is a static analysis tool, so it will skip dynamic uses of deprecated
APIs. For example, you can call a deprecated method using reflection, which this tool
will miss during scanning. You can also call deprecated methods in providers loaded by
a Serviceloader, which will be missed by this tool.

Until JDK9, the compiler generated a warning if you imported deprecated constructs
using import statements, even if you used a @SuppresshWarnings annotation on all
use-sites of the deprecated imported constructs. This was an annoyance if you were
trying to get rid of all deprecation warnings in your code. You just could not get rid
of them because you cannot annotate import statements. JDK9 improved on this by
omitting the deprecation warnings on import statements.

53

CHAPTER 1 ANNOTATIONS

Suppressing Named Compile-Time Warnings

The SuppressiWarnings annotation type is used to suppress named compile-time
warnings. It declares one element named value whose data type is an array of String.
Let’s consider the code for the SuppressWarningsTest class, which uses the raw type for
the ArrayList<T> in the test() method. The compiler generates an unchecked named
warning when you use a raw type. See Listing 1-21.

Listing 1-21. A Class That Will Generate Warnings When Compiled

// SuppressWarningsTest.java
package com.jdojo.annotation;
import java.util.Arraylist;
public class SuppressWarningsTest {
public void test() {
Arraylist list = new ArraylList();
list.add("Hello"); // The compiler issues an
// unchecked warning

Compile the SuppressiWarningsTest class with an option to generate an unchecked
warning using the command:

javac -Xlint:unchecked SuppressWarningsTest.java

com\jdojo\annotation\SuppressWarningsTest.java:10:
warning: [unchecked] unchecked call to add(E) as a
member of the raw type Arraylist

list.add("Hello");
where E is a type-variable

E extends Object declared in class Arraylist

1 warning

As a developer, sometimes you are aware of such compiler warnings,
and you want to suppress them when your code is compiled. You can do so by using a
@SuppresshWarnings annotation on your program element by supplying a list of the
names of the warnings to be suppressed. For example, if you use it on a class declaration,

54

CHAPTER 1 ANNOTATIONS

all specified warnings will be suppressed from all methods inside that class declaration.
It is recommended that you use this annotation on the innermost program element on
which you want to suppress the warnings.

Listing 1-22 uses a @SuppressWarnings annotation on the test() method. It
specifies two named warnings: “unchecked” and “deprecation.” The test() method
does not contain code that will generate a “deprecated” warning. It was included here to
show you that you could suppress multiple named warnings using a SuppressWarnings
annotation. If you recompile the SuppressiWarningsTest class with the same options
shown previously, it will not generate any compiler warnings.

Listing 1-22. The Modified Version of the SuppressWarningsTest Class

// SuppressWarningsTest.java
package com.jdojo.annotation;
import java.util.Arraylist;
public class SuppressWarningsTest {
@SuppressWarnings ({"unchecked", "deprecation"})
public void test() {
Arraylist list = new ArraylList();
list.add("Hello"); // The compiler does not
// issue an unchecked warning

Overriding Methods

The java.lang.Override annotation type is a marker annotation type. It can only be
used on methods. It indicates that a method annotated with this annotation overrides a
method declared in its supertype. This is very helpful for developers to avoid typos that
lead to logical errors in the program. If you mean to override a method in a supertype,
itis recommended to annotate the overridden method with an @0verride annotation.
The compiler will make sure that the annotated method really overrides a method in the
supertype. If the annotated method does not override a method in the supertype, the
compiler will generate an error.

55

CHAPTER 1 ANNOTATIONS

Consider two classes, A and B. Class B inherits from class A. The m1() method in class
B overrides the m1() method in its superclass A. The annotation @verride on the m1()
method in class B just makes a statement about this intention. The compiler verifies this
statement and finds it to be true in this case:

public class A {
public void m1() {

}
}
public class B extends A {
@verride
public void m1() {
}

Let’s consider class C:

// Won't compile because m2() does not override any method
public class C extends A {

@verride

public void m2() {

}

The method m2() in class C has an @0verride annotation. However, there is no m2()
method in its superclass A. The method m2 () is a new method in class C. The compiler
finds out that method m2 () in class C does not override any superclass method, even
though its developer has indicated so. The compiler generates an error in this case.

Declaring Functional Interfaces

An interface with one abstract method declaration is known as a functional interface.
Previously, a functional interface was known as a SAM (Single Abstract Method) type.
The compiler verifies that all interfaces annotated with a @FunctionalInterface really
contain one and only one abstract method. A compile-time error is generated

if the interfaces annotated with this annotation are not functional. It is also a
compile-time error to use this annotation on classes, annotation types, and enums.
The FunctionalInterface annotation type is a marker annotation.

56

CHAPTER 1 ANNOTATIONS

The following declaration of the Runner interface uses a @FunctionalInterface
annotation. The interface declaration will compile fine:

@FunctionalInterface
public interface Runner {
void run();

The following declaration of the Job interface uses a @FunctionalInterface
annotation, which will generate a compile-time error because the Job interface declares
two abstract methods, and therefore it is not a functional interface:

@FunctionalInterface
public interface Job {
void run();
void abort();

The following declaration of the Test class uses a @FunctionalInterface
annotation, which will generate a compile-time error because a @FunctionalInterface

annotation can only be used on interfaces:

@FunctionalInterface
public class Test {
public void test() {
// Code goes here

Note An interface with only one abstract method is always a functional interface
whether it is annotated with a @FunctionalInterface annotation or not. The
use of the annotation instructs the compiler to verify the fact that the interface is
really a functional interface.

57

CHAPTER 1 ANNOTATIONS

Annotating Packages

Annotating program elements such as classes and fields are intuitive, as you annotate
them when they are declared. How do you annotate a package? A package declaration
appears in a compilation unit as part of top-level type declarations. Further, the same
package declaration occurs multiple times in different compilation units. The question
arises: How and where do you annotate a package declaration?

You need to create a file, which should be named package-info.java, and
place the annotated package declaration in it. Listing 1-23 shows the contents of the
package-info.java file. When you compile the package-info. javafile, a class file will
be created.

Listing 1-23. Contents of a package-info.java File

// package-info.java
@version(major=1, minor=0)
package com.jdojo.annotation;

You may need some import statements to import annotation types, or you can
use the fully qualified names of the annotation types in the package-info. java file.
Even though the import statements appear after the package declaration, it should
be okay to use the imported types. You can have contents like the following in a
package-info.java file

// package-info.java
@com.jdojo.myannotations.Author("John Jacobs")
@Reviewer("Wally Inman")

package com.jdojo.annotation;

import com.jdojo.myannotations.Reviewer;

Annotating Modules

You can use annotations on module declarations. For this aim, the java.lang.
annotation.ElementType enum has a value called MODULE. If you use MODULE as a target
type on an annotation declaration, it allows the annotation type to be used on modules.
The two annotations java.lang.Deprecated and java.lang.SuppressWarnings can be
used on module declarations as follows:

58

CHAPTER 1 ANNOTATIONS

@eprecated(since="1.2", forRemoval=true)
@SuppressWarnings("unchecked")
module com.jdojo.myModule {

// Module statements go here

When a module is deprecated, the use of that module in requires, but notin
exports or opens statements, causes a warning to be issued. This rule is based on the
fact that if module Mis deprecated, a “requires M” statement will be used by the module’s
users who need to get the deprecation warnings. Other statements such as exports
and opens are within the module that is deprecated. A deprecated module does not
cause warnings to be issued for uses of types within the module. Similarly, if a warning
is suppressed in a module declaration, the suppression applies to elements within the
module declaration and not to types contained in that module.

Note You cannot annotate individual module statements. For example, you
cannot annotate an exports statement with a @eprecated annotation
indicating that the exported package will be removed in a future release. During
the early design phase, it was considered and rejected on the ground that this
feature will take a considerable amount of time that is not needed at this time. This
could be added in the future, if needed.

Accessing Annotations at Runtime

Accessing annotations on a program element is easy. Annotations on a program
element are Java objects. All you need to know is how to get the reference of objects of
an annotation type at runtime. Program elements that let you access their annotations
implement the java.lang.reflect.AnnotatedElement interface. There are several
methods in the AnnotatedElement interface that let you access annotations of a program
element. The methods in this interface let you retrieve all annotations on a program
element, all declared annotations on a program element, and annotations of a specified
type on a program element. I show some examples of using those methods shortly. The
following classes implement the AnnotatedElement interface:

e java.lang.Class

e Jjava.lang.reflect.Executable

59

CHAPTER 1 ANNOTATIONS

e Jjava.lang.reflect.Constructor

o java.lang.reflect.Field

o java.lang.reflect.Method

e java.lang.reflect.Module

o java.lang.reflect.Parameter

» java.lang.Package

o Jjava.lang.reflect.AccessibleObject

Methods of the AnnotatedElement interface are used to access annotations on these
types of objects.

Caution It is very important to note that an annotation type must be annotated
with the Retention meta-annotation with the retention policy of runtime to
access it at runtime. If a program element has multiple annotations, you would be
able to access only annotations, which have runtime as their retention policy.

Suppose you have a Test class and you want to print all its annotations. The following
snippet of code will print all annotations on the class declaration of the Test class:

// Get the class object reference

Class<Test> cls = Test.class;

// Get all annotations on the class declaration

Annotation[] allAnns = cls.getAnnotations();

System.out.println("Annotation count: " + allAnns.length);

// Print all annotations

for (Annotation ann : allAnns) {
System.out.println(ann.toString());

The toString() method of the Annotation interface returns the string representation
of an annotation. Suppose you want to print the Version annotation on the Test class.
You can do so as follows:

60

CHAPTER 1 ANNOTATIONS

Class<Test> cls = Test.class;
// Get the instance of the Version annotation of Test
// class
Version v = cls.getAnnotation(Version.class);
if (v == null) {

System.out.println(

"Version annotation is not present.");

} else {

int major = v.major();

int minor = v.minor();

System.out.println("Version: major=" + major +

, minor=" + minor);

This snippet of code shows that you can use the major () and minor() methods to
read the value of the major and minor elements of the Version annotation. It also shows
that you can declare a variable of an annotation type (e.g., Version v), which can refer
to an instance of that annotation type. The instances of an annotation type are created
by the Java runtime. You never create an instance of an annotation type using the new
operator.

You will use the Version and Deprecated annotation types to annotate your program
elements and access those annotations at runtime. You will also annotate a package
declaration and a method declaration. You will use the code for the Version annotation
type, as listed in Listing 1-24. Note that it uses the @Retention(RetentionPolicy.
RUNTIME) annotation, which is needed to read its instances at runtime.

Listing 1-24. A Version Annotation Type

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

61

CHAPTER 1 ANNOTATIONS

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,
ElementType.METHOD, ElementType.MODULE,
ElementType.PACKAGE})

@Retention(RetentionPolicy.RUNTIME)

@ocumented

public @interface Version {
int major();
int minor();

Listing 1-25 shows the code that you need to save in a package-info. java file and
compile it along with other programs. It annotates the com. jdojo.annotation package.
Listing 1-26 contains the code for a class for demonstration purposes that has some
annotations.

Listing 1-25. Contents of the package-info.java File

// package-info.java
@Version(major=1, minor=0)
package com.jdojo.annotation;

Listing 1-26. AccessAnnotation Class Has Some Annotations, Which Will Be
Accessed at Runtime

// AccessAnnotation.java
package com.jdojo.annotation;
@Version(major=1, minor=0)
public class AccessAnnotation {
@Version(major=1, minor=1)
public void testMethod1() {
// Code goes here
}
@Version(major=1, minor=2)
@Deprecated
public void testMethod2() {
// Code goes here

62

CHAPTER 1 ANNOTATIONS

Listing 1-27 is the program that demonstrates how to access annotations at runtime.
Its output shows that you are able to read all annotations used in the AccessAnnotation
class successfully. The printAnnotations() method accesses the annotations. It accepts
a parameter of the AnnotatedElement type and prints all annotations of its parameter.
If the annotation is of the Version annotation type, it prints the values for its major and
minor versions.

Listing 1-27. Using the AccessAnnotationTest Class to Access Annotations

// AccessAnnotationTest.java

package com.jdojo.annotation;

import java.lang.annotation.Annotation;
import java.lang.reflect.AnnotatedElement;
import java.lang.reflect.Method;

public class AccessAnnotationTest {
public static void main(String[] args) {

// Read annotations on the class declaration

Class<AccessAnnotation> cls =
AccessAnnotation.class;

System.out.println("Annotations for class: " +
cls.getName());

printAnnotations(cls);

// Read annotations on the package declaration

Package p = cls.getPackage();

System.out.println("Annotations for package: " +
p.getName());

printAnnotations(p);

// Read annotations on the methods declarations

System.out.println("Method annotations:");

Method[] methodlList = cls.getDeclaredMethods();

for (Method m : methodList) {
System.out.println("Annotations for method: " +

m.getName());

printAnnotations(m);

63

CHAPTER 1 ANNOTATIONS

public static void printAnnotations(
AnnotatedElement programElement) {
Annotation[] annList = programElement.
getAnnotations();
for (Annotation ann : annlList) {
System.out.println(ann);
if (ann instanceof Version) {
Version v = (Version) ann;

int major = v.major();
int minor = v.minor();
System.out.println(

"Found Version annotation:

' + major +

+ "major='

, minor=" + minor);

}
System.out.println();

}

Annotations for class:
com.jdojo.annotation.AccessAnnotation
@com.jdojo.annotation.Version(major=1, minor=0)
Found Version annotation: major=1, minor=0
Annotations for package: com.jdojo.annotation
@com.jdojo.annotation.Version(major=1, minor=0)
Found Version annotation: major=1, minor=0
Method annotations:
Annotations for method: testMethod1
@com.jdojo.annotation.Version(major=1, minor=1)
Found Version annotation: major=1, minor=1
Annotations for method: testMethod2
@com.jdojo.annotation.Version(major=1, minor=2)
Found Version annotation: major=1, minor=2
@java.lang.Deprecated(forRemoval=false, since="")

64

CHAPTER 1 ANNOTATIONS

Accessing instances of a repeatable annotation is a little different. Recall that a
repeatable annotation has a companion containing an annotation type. For example,
you declared a Changelogs annotation type that is a containing annotation type for the
Changelog repeatable annotation type. You can access repeated annotations using either
the annotation type or the containing annotation type. Use the getAnnotationsByType()
method, passing it the class reference of the repeatable annotation type to get the
instances of the repeatable annotation in an array. Use the getAnnotation() method,
passing it the class reference of the containing annotation type to get the instances of the
repeatable annotation as an instance of its containing annotation type.

Listing 1-28 contains the code for a RepeatableAnnTest class. The class declaration
has been annotated with the ChangelLog annotation twice. The main() method accesses
the repeated annotations on the class declaration using both of these methods.

Listing 1-28. Accessing Instances of Repeatable Annotations at Runtime

// RepeatableAnnTest.java
package com.jdojo.annotation;
@Changelog(date = "09/18/2017",
comments = "Declared the class")
@ChangeLog(date = "10/22/2017",
comments = "Added the main() method")
public class RepeatableAnnTest {
public static void main(String[] args) {
Class<RepeatableAnnTest> mainClass =
RepeatableAnnTest.class;
Class<Changelog> annClass = Changelog.class;
// Access annotations using the Changelog type
System.out.println("Using the Changelog type...");
ChangeLog[] annList = mainClass.
getAnnotationsByType(Changelog.class);
for (Changelog log : annList) {
System.out.println("Date=" + log.date() +
", Comments=" + log.comments());

}

// Access annotations using the Changelogs
// containing annotation type

65

CHAPTER 1 ANNOTATIONS

System.out.println(
"\nUsing the Changelogs type...");

Class<Changelogs> containingAnnClass =
Changelogs.class;

ChangeLogs logs = mainClass.getAnnotation(
containingAnnClass);

for (ChangelLog log : logs.value()) {
System.out.println("Date=" + log.date() +

", Comments=" + log.comments());

}
Using the Changelog type...

Date=09/18/2017, Comments=Declared the class
Date=10/22/2017, Comments=Added the main() method

Using the Changelogs type...
Date=09/18/2017, Comments=Declared the class
Date=10/22/2017, Comments=Added the main() method

Evolving Annotation Types

An annotation type can evolve without breaking the existing code that uses it. If you add
a new element to an annotation type, you need to supply its default value. All existing
instances of the annotation will use the default value for the new elements. If you add

a new element to an existing annotation type without specifying a default value for the
element, the code that uses the annotation will break.

Annotation Processing at Source Code Level

This section is for experienced programmers. You may skip this section if you are
learning Java for the first time. We discuss in detail how to develop annotation processors
to process an annotation at the source code level when you compile Java programs.

66

CHAPTER 1 ANNOTATIONS

Note The University of Washington developed a Checker Framework that
contains a lot of annotations to be used in programs. It also ships with many
annotation processors. You can download the Checker Framework from https://
checkerframework.org/. It contains a tutorial for using different types of
processors and a tutorial on how to create your own processor.

Java lets you process annotations at runtime as well as at compile time. You have
already seen how to process annotations at runtime. Now, I discuss, in brief, how to
process annotations at compile time (or at the source code level).

Why would you want to process annotations at compile time? Processing
annotations at compile time opens up a wide variety of possibilities that can help Java
programmers during development of applications. It also helps developers of Java tools
immensely. For example, boilerplate code and configuration files can be generated
based on annotations in the source code; custom annotation-based rules can be
validated at compile time, etc.

Annotation processing at compile time is a two-step process. First, you need to write
a custom annotation processor. Second, you need to use the javac command-line utility
tool. You need to specify the module path for your custom annotation processor to the
javac compiler using the -processor-modulepath option. The following command
compiles the Java source file, MySourceFile. java:

javac --processor-module-path <path> MySourceFile.java

Using the -proc option, the javac command lets you specify if you want to
process the annotation and/or compile the source files. You can use the -proc option
as -proc:none or -proc:only. The -proc:none option does not perform annotation
processing. It only compiles source files. The -proc:only option performs only
annotation processing and skips the source file compilation. If the -proc:none
and the -processor options are specified in the same command, the -processor
option is ignored. The following command processes annotations in the source file
MySourceFile.java using custom processors: MyProcessor1 and MyProcessor2. It does
not compile the source code in the MySourceFile. java file:

javac -proc:only --processor-module-path <path> "
MySourceFile.java

67

https://checkerframework.org/
https://checkerframework.org/

CHAPTER 1 ANNOTATIONS

To see the compile-time annotation processing in action, you must write an
annotation processor using the classes in the javax.annotation.processing package,
which is in the java.compiler module.

While writing a custom annotation processor, you often need to access the elements
from the source code, for example, the name of a class and its modifiers, the name of
amethod and its return type, etc. You need to use classes in the javax.lang.model
package and its subpackages to work with the elements of the source code. In your
example, you will write an annotation processor for your @Version annotation. It will
validate all @Version annotations that are used in the source code to make sure the
major and minor values for a Version are always zero or greater than zero. For example,
if@Version(major=-1, minor=0) is used in source code, your annotation processor will
print an error message because the major value for the version is negative.

An annotation processor is an object of a class, which implements the Processor
interface. The AbstractProcessor class is an abstract annotation processor, which
provides a default implementation for all methods of the Processor interface, except an
implementation for the process () method. The default implementation is fine in most
circumstances. To create your own processor, you need to inherit your processor class
from the AbstractProcessor class and provide an implementation for the process()
method. If the AbstractProcessor class does not suit your need, you can create
your own processor class, which implements the Processor interface. Let’s call your
processor class VersionProcessor, which inherits from the AbstractProcessor class,

as shown:

public class VersionProcessor extends AbstractProcessor {
// Code goes here

The annotation processor object is instantiated by the compiler using a no-args
constructor. You must have a no-args constructor for your processor class, so that the
compiler can instantiate it. The default constructor for your VersionProcessor class will
meet this requirement.

The next step is to add two pieces of information to the processor class. The first
one is about what kind of annotation processing is supported by this processor. You
can specify the supported annotation type using the @SupportedAnnotationTypes
annotation at the class level. The following snippet of code shows that the
VersionProcessor supports processing of the com. jdojo.annotation.Version
annotation type:

68

CHAPTER 1 ANNOTATIONS

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})
public class VersionProcessor extends AbstractProcessor {
// Code goes here

You can use an asterisk (*) by itself or as part of the annotation name of the
supported annotation types. The asterisk works as a wildcard. For example, “com.
jdojo.*” means any annotation types whose names start with “com.jdojo.” An asterisk

Usen

only (“*”) means all annotation types. Note that when an asterisk is used as part of

the name, the name must be of the form PartialName.*. For example, “com*” and
“com.*jdojo” are invalid uses of an asterisk in the supported annotation types. You

can pass multiple supported annotation types using the SupportedAnnotationTypes
annotation. The following snippet of code shows that the processor supports processing
for the com. jdojo.Ann1 annotation and any annotations whose name begins with

com.jdojo.annotation:

@SupportedAnnotationTypes({"com.jdojo.Ann1",
"com.jdojo.annotation.*"})

You need to specify the latest source code version that is supported by your
processor using a @SupportedSourceVersion annotation. The following snippet of
code specifies the source code version 17 as the supported source code version for the
VersionProcessor class:

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})

@SupportedSourceVersion(SourceVersion.RELEASE 17)

public class VersionProcessor extends AbstractProcessor {
// Code goes here

The next step is to provide the implementation for the process() method in the
processor class. Annotation processing is performed in rounds. An instance of the
RoundEnvironment interface represents a round. The javac compiler calls the process()
method of your processor by passing all annotations that the processor declares to
support and a RoundEnvironment object. The return type of the process() method is
boolean. If it returns true, the annotations passed to it are considered to be claimed by
the processor. The claimed annotations are not passed to other processors. If it returns

69

CHAPTER 1 ANNOTATIONS

false, the annotations passed to it are considered as not claimed, and other processors
will be asked to process them. The following snippet of code shows the skeleton of the
process() method:

public boolean process(Set<? extends TypeElement>
annotations, RoundEnvironment roundEnv) {
// The processor code goes here

The code you write inside the process() method depends on your requirements. In
your case, you want to look at the major and minor values for each @Version annotation
in the source code. If either of them is less than zero, you want to print an error message.
To process each Version annotation, you will iterate through all Version annotation
instances passed to the process() method as follows:

for (TypeElement currentAnnotation : annotations) {
// Code to validate each Version annotation goes here

You can get the fully qualified name of an annotation using the getQualifiedName()
method of the TypeElement interface:

Name qualifiedName = currentAnnotation.getQualifiedName();
// Check if it is a Version annotation
if (qualifiedName.contentEquals(
"com.jdojo.annotation.Version")) {
// Get Version annotation values to validate

Once you are sure that you have a Version annotation, you need to get all its
instances from the source code. To get information from the source code, you need to
use the RoundEnvironment object. The following snippet of code will get all elements
of the source code (e.g., classes, methods, constructors, etc.) that are annotated with a
Version annotation:

Set<? extends Element> annotatedElements =
roundEnv.getElementsAnnotatedWith(currentAnnotation);

70

CHAPTER 1 ANNOTATIONS

At this point, you need to iterate through all elements that are annotated with a
Version annotation; get the instance of the Version annotation present on them; and
validate the values of the major and minor elements. You can perform this logic as
follows:

for (Element element : annotatedElements) {
Version v

element.getAnnotation(Version.class);

int major = v.major();

int minor = v.minor();
if (major < 0 || minor < 0) {
// Print the error message here

You can print the error message using the printMessage() method of the Messager.
The processingEnv is an instance variable defined in the AbstractProcessor class that
you can use inside your processor to get the Messager object reference, as shown next.
If you pass the source code element’s reference to the printMessage() method, your
message will be formatted to include the source code file name and the line number
in the source code for that element. The first argument to the printMessage() method
indicates the type of the message. You can use Kind.NOTE and Kind.WARNING as the first
argument to print a note and warning, respectively.

String errorMsg = "Version cannot be negative. major=" +

major + " minor=" + minor;
Messager messager = this.processingEnv.getMessager();

messager.printMessage(Kind.ERROR, errorMsg, element);

Finally, you need to return true or false from the process() method. If a processor
returns true, it means it claimed all the annotations that were passed to it. Otherwise,
those annotations are considered unclaimed, and they will be passed to other
processors. Typically, your annotation processors should be packaged in a separate
module. Listing 1-29 contains the declaration for a jdojo.annotation.processor
module, which contains the annotation processor named VersionProcessor for the
Version annotation type, as shown in Listing 1-30.

71

CHAPTER 1

ANNOTATIONS

Listing 1-29. The Declaration for a jdojo.annotation.processor Module

// module-info.java

module jdojo.annotation.processor {

exports com.jdojo.annotation.processor;

requires jdojo.annotation;
requires java.compiler;

provides javax.annotation.processing.Processor

with

com.jdojo.annotation.processor.VersionProcessor;

The module reads the jdojo.annotation module because it uses the Version

annotation type in the VersionProcessor class. It reads the java.compiler module

to use annotation processor-related types. Notice the use of the provides statement

in the module’s declaration. Java will load all annotation processors on the processor

module path mentioned in the with clause of the provides statement. The statement

specifies that the VersionProcessor class provides an implementation for the Processor

service interface. Refer to Chapter 7 for more details on the provides statement and

implementing services.

Listing 1-30. An Annotation Processor to Process Version Annotations

// VersionProcessor.java

package com.jdojo.annotation.processor;

import
import
import
import
import
import
import
import
import
import
import

72

java.util.Set;

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

annotation.
annotation.
annotation.

annotation

lang.model.
lang.model.
lang.model.
lang.model.

processing.AbstractProcessor;
processing.Messager;
processing.RoundEnvironment;

.processing.SupportedAnnotationTypes;
annotation.

processing.SupportedSourceVersion;
SourceVersion;

element.Element;

element.Name;

element.TypeElement;

tools.Diagnostic.Kind;

CHAPTER 1

@SupportedAnnotationTypes({
"com.jdojo.annotation.Version"})
@SupportedSourceVersion(SourceVersion.RELEASE 17)
public class VersionProcessor extends AbstractProcessor {
// A no-args constructor is required for an
// annotation processor
public VersionProcessor() {
}
@0verride
public boolean process(Set<? extends TypeElement>
annotations, RoundEnvironment roundEnv) {
// Process all annotations
for (TypeElement currentAnnotation: annotations) {
Name qualifiedName = currentAnnotation.
getQualifiedName();
// check if it is a Version annotation
if (qualifiedName.contentEquals(
"com.jdojo.annotation.Version")) {
// Look at all elements that have Version
// annotations
Set<? extends Element> annotatedElements;
annotatedElements = roundEnv.
getElementsAnnotatedWith(
currentAnnotation);
for (Element element: annotatedElements) {
Version v = element.getAnnotation(
Version.class);
int major

v.major();
int minor = v.minor();
if (major < 0 || minor < 0) {
// Print the error message
String errorMsg =
"Version cannot be negative." +

major=" + major +

minor=" + minor;

ANNOTATIONS

73

CHAPTER 1 ANNOTATIONS

Messager messager = this.
processingEnv.getMessager();

messager.printMessage(Kind.ERROR,
errorMsg, element);

}

return true;

Now you have an annotation processor. It is time to see it in action. You need to have
a source code that uses invalid values for the major and minor elements in the Version
annotation. You will place the source code in a module named jdojo.annotation.
test, as shown in Listing 1-31. The VersionProcessorTest class in Listing 1-32 uses the
Version annotation three times. It uses negative values for major and minor elements
for the class itself and for the method m2 (). The processor should catch these two errors
when you compile the source code for the VersionProcessorTest class.

Listing 1-31. The Declaration of a jdojo.annotation.test Module

// module-info.java

module jdojo.annotation.test {
exports com.jdojo.annotation.test;
requires jdojo.annotation;

}

Listing 1-32. A Test Class to Test VersionProcessor

// VersionProcessorTest.java
package com.jdojo.annotation.test;
@Version(major = -1, minor = 2)
public class VersionProcessorTest {
@version(major = 1, minor = 1)
public void m1() {
}

74

CHAPTER 1 ANNOTATIONS

@Version(major = -2, minor = 1)
public void m2() {
}

To see the processor in action, you need to run the following command. You need to
specify the path for the VersionProcessor class’s module using the -processor-module-
path option. The modules that the annotation processor depends on should also be
specified in the processor module path. When the command is run, the compiler will
automatically discover the VersionProcessor as an annotation processor, and it will
pass all @Version instances to this processor. The output displays two errors with the

source file name and the line number at which errors were found in the source file:

C:\Java9glanguageFeatures>javac --module-path *

dist\jdojo.annotation.jar *

--processor-module-path *

dist\jdojo.annotation.processor.jar;

dist\jdojo.annotation.jar *

-d build\modules\jdojo.annotation.test
src\jdojo.annotation.test\classes\module-info.java
src\jdojo.annotation.test\classes\com\jdojo\annotation\

test\VersionProcessorTest. java
src\jdojo.annotation.test\classes\com\jdojo\annotation\

test\VersionProcessorTest.java:7:
error: Version cannot be negative. major=-1 minor=2
public class VersionProcessorTest {
A
src\jdojo.annotation.test\classes\com\jdojo\annotation\
test\VersionProcessorTest.java:13:
error: Version cannot be negative. major=-2 minor=1
public void m2() {

N

2 errors

(No line break and no spaces after “dist\jdojo.annotation.processor.jar;”)

75

CHAPTER 1 ANNOTATIONS

Summary

Annotations are types in Java. They are used to associate information to the declarations
of program elements or type uses in a Java program. Using annotations does not change
the semantics of the program.

Annotations can be available in the source code only, in the class files, or at
runtime. Their availability is controlled by the retention policy that is specified when the
annotation types are declared.

There are two types of annotations: regular annotations or simple annotations and
meta-annotations. Annotations are used to annotate program elements, whereas meta-
annotations are used to annotate other annotations. When you declare an annotation,
you can specify its targets that are the types of program elements that it can annotate. It
is possible for annotations to be repeated on the same element.

The Java library contains many annotation types that you can use in your Java
programs—Deprecated, Override, SuppressWarnings, FunctionalInterface, etc.
are a few of the commonly used annotation types. They have compiler support, which
means that the compiler generates errors if the program elements annotated with these
annotations do not adhere to specific rules.

Java lets you write annotation processors that can be plugged into the Java compiler
to process annotations when Java programs are compiled. You can write processors to
enforce custom rules based on annotations.

Deprecation in Java is a way to provide information about the lifecycle of the
API. Deprecating an API tells its users to migrate away because the API is dangerous
to use, a better replacement exists, or it will be removed in a future release. Using
deprecated APIs generates compile-time deprecation warnings. The @deprecated
Javadoc tag and the @Deprecated annotation are used together to deprecate API
elements such as modules, packages, types, constructors, methods, fields, parameters,
and local variables. This annotation is retained at runtime.

The Deprecated annotation type contains since and forRemoval as elements. The
since element defaults to an empty string. Its value denotes the version of the API in
which the API element was deprecated. The forRemoval element’s type is boolean, and
it defaults to false. Its value of true denotes that the API element will be removed in a
future release.

76

CHAPTER 1 ANNOTATIONS

The compiler (starting at JDK9) generates two types of deprecation warnings
depending on the value of the forRemoval element of the @eprecated annotation:
ordinary deprecation warnings when forRemoval=false and removal warnings for
forRemoval=true.

You need to use @SuppressWarnings("deprecation”) to suppress ordinary
warnings, @SuppressiWarnings("removal") to suppress removal warnings, and
@SuppressWarnings({"deprecation”, "removal"}) to suppress both types of warnings.
Just importing a deprecated construct, and not actually using it, does not generate
deprecation warnings.

Exercises

Exercise 1

What are annotations? How do you declare them?

Exercise 2

What are meta-annotations?

Exercise 3

What is the difference between an annotation type and annotation instances?

Exercise 4

Can you inherit an annotation type from another annotation type?

Exercise 5

What are marker annotations? Describe their use. Name two marker annotations
available in Java SE API.

Exercise 6

Name the annotation type whose instances are used to annotate an overridden
method. What is the fully qualified name of this annotation type?

Exercise 7

What are the allowed return types for methods in an annotation type declaration?

Exercise 8

Declare an annotation type named Table. It contains one String element named
name. The sole element does not have any default value. This annotation must be used
only on classes. Its instances should be available at runtime.

77

CHAPTER 1 ANNOTATIONS

Exercise 9
What is wrong with the following annotation type declaration?

public @interface Version extends BasicVersion {
int extended();

Exercise 10
What is wrong with the following annotation type declaration?

public @interface Author {
void name(String firstName, String lastName);

Briefly describe the use of the following built-in meta-annotations: Target,
Retention, Inherited, Documented, Repeatable, and Native.

Exercise 11

Declare an annotation type named ModuleOwner, which contains one element name,
which is of the String type. The instances of the ModuleOwner type should be retained
only in the source code, and they should be used only on module declarations.

Exercise 12

Declare a repeatable annotation type named Author. It contains two elements of
String type: firstName and lastName. This annotation can be used on types, methods,
and constructors. Its instances should be available at runtime. Name the containing
annotation type for the Author annotation type as Authors.

Exercise 13

What annotation type do you use to deprecate your APIs? Describe all the elements
of such an annotation type.

Exercise 14

What annotation type do you use to annotate a functional interface?

Exercise 15

How do you annotate a package?

Exercise 16

Create an annotation type named Owner. It should have one element, name, of the
String type. Its instances should be retained at runtime. It should be repeatable. It
should be used only on types, methods, constructors, and modules. Create a module

78

CHAPTER 1 ANNOTATIONS

named jdojo.annotation.test and create a class named Test in the com. jdojo.
annotation.exercises package. Add a constructor and a method to the class. Annotate
the class, its module, constructor, and method with the Owner annotation type. Add a
main() method to the Test class and write code to access and print the details of these
instances of the Owner annotation.

Exercise 17

Consider the following declaration of an annotation type named Status:

public @interface Status {
boolean approved() default false;
String approvedBy();

Later, you need to add another element to the Status annotation type.

Modify the declaration of the annotation to include a new element named
approvedOn, which is of the String type. The new element will contain a date in ISO
format whose default value may be set to “1900-01-01".

Exercise 18

Consider the declaration of the following annotation type named LuckyNumber:

public @interface LuckyNumber {
int[] value() default {19};

Which of the following uses of the LuckyNumber annotation type is/are invalid?
Explain your answer.

a) @LuckyNumber

b) @LuckyNumber({})

c) @LuckyNumber(10)

d) LuckyNumber({8, 10, 19, 28, 29, 26})

e) LuckyNumber(value={8, 10, 19, 28, 29, 26})
f) @LuckyNumber (null)

79

CHAPTER 1 ANNOTATIONS

Exercise 19
Given a LuckyNumber annotation type, is the following variable declaration valid?

LuckNumber myLuckNumber = null;

Exercise 20
Consider the following declaration for a jdojo.annotation.exercises module:

module jdojo.annotation.exercises {
exports com.jdojo.annotation.exercises;

The module exists since version 1.0. The module has been deprecated and will be
removed in the next version. Annotate the module declaration to reflect these pieces of
information.

80

CHAPTER 2

Reflection

In this chapter, you will learn:
e Whatreflection is
¢ What a class loader is and about the built-in class loaders

o How to use reflection to get information about classes, constructors,
methods, etc. at runtime

o How to access fields of an object and a class using reflection
e How to create objects of a class using reflection
e How to invoke methods of a class using reflection
o How to create arrays using reflection
Most example programs in this chapter are a member of a jdojo.reflection

module, as declared in Listing 2-1. I use more modules in this chapter, which I show later.

Listing 2-1. The Declaration of a jdojo.reflection Module

// module-info.java
module jdojo.reflection {
exports com.jdojo.reflection;

What Is Reflection?

Reflection is the ability of a program to query and modify its state “as data” during the
execution of the program. The ability of a program to query or obtain information about
itself is known as introspection. The ability of a program to modify its execution state,

81
© Kishori Sharan, Peter Spdth 2021

K. Sharan and P. Spéth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_2

https://doi.org/10.1007/978-1-4842-7135-3_2#DOI

CHAPTER 2 REFLECTION

modify its own interpretation or its meaning, or add new behaviors to the program as it is

executing is called intercession. Reflection is further divided into two categories:
o Structural reflection
o Behavioral reflection

The ability of a program to query about the implementation of its data and code is
called structural introspection, whereas its ability to modify or create new data structure
and code is called structural intercession.

The ability of a program to obtain information about its runtime environment is
called behavioral introspection, whereas its ability to modify the runtime environment is
called behavioral intercession.

Providing the ability to a program to query or modify its state requires a mechanism
for encoding the execution state as data. In other words, the program should be able to
represent its execution state as data elements (as objects in object-oriented languages
such as Java) so that it can be queried and modified. The process of encoding the
execution state into data is called reification. A programming language is called reflective
if it provides the programs with reflection capability.

Reflection in Java

The support for reflection in Java is mostly limited to introspection. It supports
intercession in a very limited form. The introspection features provided by Java let
you obtain class information about an object at runtime. Java also lets you obtain
information about the fields, methods, modifiers, and the superclass of a class at
runtime.

The intercession features provided by Java let you create an instance of a class whose
name is not known until runtime, invoke methods on such instances, and get/set its
fields. However, Java does not allow you to change the data structure at runtime. For
example, you cannot add a new field or a method to an object at runtime. All fields of an
object are always determined during the startup of a program. Examples of behavioral
intercession are the ability to change the method execution at runtime or add a new
method to a class at runtime. Java does not provide any of these intercession features.
That is, you cannot change a class’s method code at runtime to change its execution
behavior; neither can you add a new method to a class at runtime.

82

CHAPTER 2 REFLECTION

Java provides reification by providing an object representation for a class and its
methods, constructors, fields, etc. at runtime. In most cases, Java does not support
reification for generic types. Java 5 added support for generic types. Refer to Chapter 3
for more details on generic types. A program can work on the reified objects in order
to get information about the runtime execution. For example, you have been using the
object of the java.lang.Class class to get the information about the class of an object.
A Class object is the reification of the bytecode for the class of an object. When you want
to gather information about the class of an object, you do not have to worry about the
bytecode of the class from which the object was instantiated. Rather, Java provides the
reification of the bytecode as an object of the Class class.

The reflection facility in Java is provided through the reflection API. Most of the
reflection API classes and interfaces are in the java.lang.reflect package. The Class
class, which is central to the reflection in Java, is in the java.lang package. Some of the
frequently used classes in reflection are listed in Table 2-1.

Table 2-1. Commonly Used Classes in Reflection

Class Name Description

Class An object of this class represents a single class loaded by a class loader in the JVM.

Field An object of this class represents a single field of a class or an interface. The field
represented by this object may be a static field or an instance field.

Constructor An object of this class represents a single constructor of a class.

Method An object of this class represents a method of a class or an interface. The method
represented by this object may be a class method or an instance method.

Modifier This class has static methods that are used to decode the access modifiers for a
class and its members.

Parameter An object of this class represents a method’s parameter.

Array This class provides static methods that are used to create arrays at runtime.

83

CHAPTER 2 REFLECTION

Some of the things you can do using the reflection features in Java are as follows:

» Ifyou have an object reference, you can determine the class name of
the object.

e Ifyou have a class name, you can know its full description, for
example, its package name, its access modifiers, etc.

o Ifyou have a class name, you can determine the methods defined
in the class, their return type, access modifiers, parameter type,
parameter names, etc. The support for parameter names was added
in Java 8.

o Ifyou have a class name, you can determine all field descriptions of
the class.

o Ifyou have a class name, you can determine all constructors defined
in the class.

o Ifyou have a class name, you can create an object of the class using
one of its constructors.

o Ifyou have an object reference, you can invoke its method knowing
just the method’s name and method’s parameter types.

e You can get or set the state of an object at runtime.

e You can create an array of a type dynamically at runtime and

manipulate its elements.

Loading a Class

The Class<T> class is central to reflection in Java. The Class<T> class is a generic class.
It takes a type parameter, which is the type of the class represented by the Class object.
For example, Class<String> represents the class object for the String class. Class<?>
represents a class type whose class is unknown.

The Class class lets you discover everything about a class at runtime. An object of
the Class class represents a class in a program at runtime. When you create an object
in your program, Java loads the class’s bytecode and creates an object of the Class class
to represent the bytecode. Java uses that Class object to create any object of that class.

84

CHAPTER 2 REFLECTION

No matter how many objects of a class you create in your program, Java creates only one
Class object for each class loaded by a class loader in a JVM from one module. Each
class from a module is also loaded only once by a particular class loader. In a JVM, a
class is uniquely identified by its fully qualified name, its class loader, and its module. If
two different class loaders load the same class, the two loaded classes are considered two
different classes, and their objects are not compatible with each other.

You can get the reference to the Class object of a class in one of the followings ways:

e Using class literal
o Usingthe getClass() method of the Object class

o Using the forName() static method of the Class class

Using Class Literals

A class literal is the class name or interface name followed by a dot and the word “class.”
For example, if you have a class Test, its class literal is Test.class, and you can write

Class<Test> testClass = Test.class;

Note that the class literal is always used with a class name, not with an object
reference. The following statement to get the class reference is invalid:

Test t = new Test();
Class<Test> testClass = t.class; // A compile-time error.
// Must use Test.class

You can also get the class object for primitive data types and the keyword void using
class literals as boolean.class, byte.class, char.class, short.class, int.class,
long.class, float.class, double.class, and void. class. Each wrapper class for these
primitive data types has a static field named TYPE, which has the reference to the class
object of the primitive data type it represents. Therefore, int.class and Integer.TYPE
refer to the same class object, and the expression int.class == Integer.TYPE evaluates
to true. Table 2-2 shows the class literals for all primitive data types and the void
keyword.

85

CHAPTER 2 REFLECTION

Table 2-2. Class Literals for Primitive Data Types and the void Keyword

Data Type Primitive Class Literal Wrapper Class static Field
boolean boolean.class Boolean.TYPE

Byte byte.class Byte.TYPE

Char char.class Character.TYPE

Short short.class Short.TYPE

Int int.class Integer.TYPE

Long long.class Long.TYPE

Float float.class Float.TYPE

Double double.class Double.TYPE

Void void.class Void.TYPE

Using the Object: :getClass() Method

The Object class contains a getClass () method, which returns the reference to the
Class object of the class of the object. This method is available in every class in Java
because every class in Java, explicitly or implicitly, inherits the Object class. The method
is declared final, so no descendant class can override it. For example, if you have testRef
as a reference to an object of class Test, you can get the reference to the Class object of
the Test class as follows:

Test testRef = new Test();
Class<?> testClass = testRef.getClass();

Using the Class: : forName() Method

The Class class has a forName () static method, which loads a class and returns the
reference to its Class object. It is an overloaded method. Its declarations are as follows:

o (lass<?> forName(String className) throws
ClassNotFoundException

86

CHAPTER 2 REFLECTION

o (lass<?> forName(String className, boolean initialize,
ClassLoader loader) throws ClassNotFoundException

o (lass<?> forName(Module module, String className)

The forName(String className) method takes the fully qualified name of the class
to be loaded. It loads the class, initializes it, and returns the reference to its Class object. If
the class is already loaded, it simply returns the reference to the Class object of that class.

The forName(String className, boolean initialize, ClassLoader loader)
method gives you options to initialize or not to initialize the class when it is loaded, and
which class loader should load the class. The first two versions of the method throw a
ClassNotFoundException if the class could not be loaded.

The forName(Module module, String className) method loads the class with the
specified className in the specified module without initializing the loaded class. If the
class is not found, the method returns null.

To load a class named pkg1.Test, you would write

Class testClass = Class.forName("pkgl.Test");

To get a Class object reference using the forName () method, you do not have to
know the name of the class until runtime. The forName(String className) method
initializes the class if it is not already initialized, whereas the use of a class literal does not
initialize the class. When a class is initialized, all its static initializers are executed, and
all static fields are initialized. Listing 2-2 lists a Bulb class with only one static initializer,
which prints a message on the console. Listing 2-3 uses various methods to load and
initialize the Bulb class.

Listing 2-2. A Bulb Class to Demonstrate Initialization of a Class

// Bulb.java
package com.jdojo.reflection;
public class Bulb {
static {
// This will execute when this class is loaded
// and initialized
System.out.println("Loading class Bulb...");

87

CHAPTER 2 REFLECTION

Listing 2-3. Testing Class Loading and Initialization

// BulbTest.java
package com.jdojo.reflection;
public class BulbTest {

88

public static void main(String[] args) {

/* Uncomment only one of the following statements
at a time. Observe the output to see the
difference in the way the Bulb class is loaded
and initialized.

*/

BulbTest.createObject();

// BulbTest.forNameVersioni();

// BulbTest.forNameVersion2();

// BulbTest.forNameVersion3();

// BulbTest.classlLiteral();

}

public static void classlLiteral() {
// Will load the class, but won't initialize it.
Class<Bulb> c = Bulb.class;

}
public static void forNameVersioni() {
try {
String className = "com.jdojo.reflection.Bulb";
// Will load and initialize the class
Class c = Class.forName(className);
} catch (ClassNotFoundException e) {
System.out.println(e.getMessage());
}
}
public static void forNameVersion2() {
try {

String className = "com.jdojo.reflection.Bulb";
boolean initialize = false;
// Get the classloader for the current class

CHAPTER 2

ClasslLoader clLoader = BulbTest.class.
getClassLoader();

// Will load, but not initialize the class,

// because we have set the initialize variable

// to false

Class c = Class.forName(className, initialize,
clLoader);

} catch (ClassNotFoundException e) {
System.out.println(e.getMessage());

}

public static void forNameVersion3() {
String className = "com.jdojo.reflection.Bulb";
// Get the module reference for the current class
Module m = BulbTest.class.getModule();
// Will load, but not initialize, the class
Class ¢ = Class.forName(m, className);
if(c == null) {
System.out.println(
"The bulb class was not loaded.");
} else {
System.out.println(
"The bulb class was loaded.");

}

public static void createObject() {
// Will load and initialize the Bulb class
new Bulb();

}
Loading class Bulb...

REFLECTION

89

CHAPTER 2 REFLECTION

Class Loaders

At runtime, every type is loaded by a class loader, which is represented by an instance of
the java.lang. Classloader class. You can get the reference of the class loader of a type
by using the getClassLoader () method of the Class class. The following snippet of code
shows how to get the class loader of the Bulb class:

Class<Bulb> cls = Bulb.class;
ClassLoader loader = cls.getClasslLoader();

The Java runtime uses three class loaders to load classes as shown in Figure 2-1.
The direction of the arrows indicates the delegation direction. These class loaders load
classes from different locations and of different types. You can add more class loaders,
which would be a subclass of the ClassLoader class. Using custom class loaders, you can
load classes from custom locations, partition user code, and unload classes. For most
applications, the built-in class loaders are sufficient.

Bootstrap class loader |[<—

[

Platform class loader
A

A4

Application class loader —

Figure 2-1. Class loader hierarchy

Note Since JDK9, the application class loader can delegate to the platform class
loader as well as the bootstrap class loader; the platform class loader can delegate
to the application class loader.

The bootstrap class loader is implemented in the library code and in the virtual
machine. Classes under its custody return null if you call getClassLoader(), as in
Object.class.getClassLoader() == null.Notall Java SE Platform and JDK modules
are loaded by the bootstrap class loader. To name a few, modules loaded by the
bootstrap class loader are java.base, java.logging, java.prefs, and java.desktop.

90

CHAPTER 2 REFLECTION

Other Java SE Platform and JDK modules are loaded by the platform class loader and the
application class loader, which are described next. Use the -Xbootclasspath/a option to
specify additional boot class paths. Its value is stored in the system property jdk.boot.
class.path.append.

The platform class loader may be used to implement a class loading extension
mechanism (the JDK8 extension mechanism for loading classes is no longer supported).
The ClassLoader class contains a new static method named getPlatformClassLoader(),
which returns the reference of the platform class loader. Table 2-3 lists the modules
loaded by the platform class loader.

Table 2-3. The JDK Modules Loaded by the Platform Class Loader

java.compiler java.net.http java.scripting
java.security.jgss java.smartcardio java.sql
java.sql.rowset java.transaction.xa java.xml.crypto
jdk.accessibility jdk.charsets jdk.crypto.cryptoki
jdk.crypto.ec jdk.dynalink jdk.httpserver
jdk.jsobject jdk.localedata jdk.naming.dns
jdk.security.auth jdk.security.jgss jdk.xml.dom
jdk.zipfs

The platform class loader serves another purpose. Classes loaded by the bootstrap
class loader are granted all permissions by default. However, several classes did not need
all permissions. Such classes are loaded by the platform class loader.

The application class loader loads the application modules found on the module
path and a few JDK modules that provide tools or export tool APIs, as listed in Table 2-4.
You can still use the static method named getSystemClassLoader() of the ClassLoader
class to get the reference of the application class loader.

Table 2-4. The JDK Modules Loaded by the Application Class Loader

jdk.compiler jdk.internal.opt jdk.jartool
jdk.javadoc jdk.jdeps jdk.jlink
jdk.unsupported.desktop

91

CHAPTER 2 REFLECTION

Note Before JDK9, the extension class loader and the application class loader
were an instance of the java.net.URLClassLoader class. In JDK9 and later,
the platform class loader (the erstwhile extension class loader) and the application
class loader are an instance of an internal JDK class. If your code relied on the
methods specific to the URLClassLoader class, your pre-JDK9 code may break
in JDK9 or later.

The JDK modules not listed in Tables 2-3 and 2-4 are loaded by the bootstrap class
loader. Listing 2-4 shows you how to print module names and their class loader names.
A partial output is shown. The output depends on the modules resolved by the runtime.
To print all JDK modules and their class loaders, you should add a “requires java.se.ee”
in your module declaration before running this class. I discuss module layers in
Chapter 7.

Listing 2-4. Listing the Names of Loaded Modules by Class Loader

// ModulesByClassLoader. java
package com.jdojo.reflection;
public class ModulesByClassLoader {
public static void main(String[] args) {
// Get the boot layer
ModulelLayer layer = Modulelayer.boot();
// Print all module's names and their class loader
// names in the boot layer
for (Module m : layer.modules()) {
ClassLoader loader = m.getClassLoader();
String moduleName = m.getName();
String loaderName = loader == null ?
"bootstrap” : loader.getName();
System.out.printf("%s: %s¥%n", loaderName,
moduleName);

92

CHAPTER 2 REFLECTION

bootstrap: java.base
platform: java.net.http
bootstrap: java.security.sasl
app: jdk.internal.opt

The three built-in class loaders work in tandem to load classes. When the application
class loader needs to load a class, it searches modules defined to all class loaders. If a
suitable module is defined to one of these class loaders, that class loader loads the class,
implying that the application class loader can now delegate to the bootstrap class loader
and the platform class loader. If a class is not found in a named module defined to these
class loaders, the application class loader delegates to its parent, which is the platform
class loader. If a class is still not loaded, the application class loader searches the class
path. If it finds the class on the class path, it loads the class as a member of its unnamed
module. If it does not find the class on the class path, a ClassNotFoundException is
thrown.

When the platform class loader needs to load a class, it searches modules defined
to all class loaders. If a suitable module is defined to one of these class loaders, that
class loader loads the class, implying that the platform class loader can delegate to the
bootstrap class loader as well as the application class loader. If a class is not found in a
named module defined to these class loaders, the platform class loader delegates to its
parent, which is the bootstrap class loader.

When the bootstrap class loader needs to load a class, it searches its own list of
named modules. If a class is not found, it searches the list of files and directories
specified through the command-line option: Xbootclasspath/a. If it finds a class on the
bootstrap class path, it loads the class as a member of its unnamed module. If a class is
still not found, a ClassNotFoundException is thrown.

Reflecting on Classes

This section demonstrates the features of Java reflection that enable you to get the
description of a class, such as its package name, access modifiers, etc. You will use a
Person class, as listed in Listing 2-5, to demonstrate the reflection features. It is a simple
class with two instance fields, two constructors, and some methods. It implements two
interfaces.

93

CHAPTER 2 REFLECTION

Listing 2-5. A Person Class Used to Demonstrate Reflection

// Person.java
package com.jdojo.reflection;
import java.io.Serializable;
public class Person implements Cloneable, Serializable {
private int id = -1;
private String name = "Unknown";
public Person() {
}
public Person(int id, String name) {
this.id = id;
this.name = name;

}

public int getId() {
return id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
@verride
public Person clone() {
try {
return (Person) super.clone();
} catch (CloneNotSupportedException e) {
throw new RuntimeException(e.getMessage());
}
}
@Override

public String toString() {
return "Person: id=" + this.id +
this.name;

, hame=" +

94

CHAPTER 2 REFLECTION

Listing 2-6 illustrates how to get the description of a class. It lists the class access

modifiers, the class name, its superclass name, and all interfaces implemented by the

class.

Listing 2-6. Reflecting on a Class

// ClassReflection.java
package com.jdojo.reflection;
import java.lang.reflect.Modifier;

import java.lang.reflect.TypeVariable;
public class ClassReflection {
public static void main(String[] args) {

}

// Print the declaration of the Person class
String clsDecl = getClassDescription(Person.class);
System.out.println(clsDecl);

// Print the declaration of the Class class
clsDecl = getClassDescription(Class.class);
System.out.println(clsDecl);

// Print the declaration of the Runnable interface
clsDecl = getClassDescription(Runnable.class);
System.out.println(clsDecl);

// Print the declaration of the class representing
// the int data type

clsDecl = getClassDescription(int.class);
System.out.println(clsDecl);

public static

String getClassDescription(Class<?> cls) {

StringBuilder classDesc = new StringBuilder();
// Prepare the modifiers and construct keyword
// (class, enum, interface etc.)

int modifierBits = 0;

String keyword = 5

95

CHAPTER 2 REFLECTION

// Add keyword @interface, interface or class
if (cls.isPrimitive()) {
// We do not want to add anything
} else if (cls.isInterface()) {
modifierBits = cls.getModifiers() & Modifier.
interfaceModifiers();
// An annotation is an interface
if (cls.isAnnotation()) {
keyword = "@interface";
} else {
keyword = "interface";
}
} else if (cls.isEnum()) {
modifierBits = cls.getModifiers() &
Modifier.classModifiers();
keyword = "enum";
} else {
modifierBits = cls.getModifiers() &
Modifier.classModifiers();
keyword = "class";
}
// Convert modifiers to their string representation
String modifiers = Modifier.toString(modifierBits);
// Append modifiers
classDesc.append(modifiers);
// Append the construct keyword
classDesc.append(" ");
classDesc.append(keyword);
// Append simple name
String simpleName = cls.getSimpleName();
classDesc.append(" ");
classDesc.append(simpleName);
// Append generic parameters
String genericParms = getGenericTypeParams(cls);
classDesc.append(genericParms);

96

}

CHAPTER 2

// Append super class

Class superClass = cls.getSuperclass();

if (superClass != null) {
String superClassSimpleName = superClass.

getSimpleName();

classDesc.append(" extends ");
classDesc.append(superClassSimpleName);

}

// Append Interfaces

String interfaces = ClassReflection.
getClassInterfaces(cls);

if (interfaces != null) {
classDesc.append(" implements ");
classDesc.append(interfaces);

}

return classDesc.toString().trim();

public static String getClassInterfaces(Class<?> cls) {

}

// Get a comma-separated list of interfaces
// implemented by the class
Class<?>[] interfaces = cls.getInterfaces();
if (interfaces.length == 0) {

return null;

}

String[] names = new String[interfaces.length];

for (int i = 0; i < interfaces.length; i++) {
names[i] = interfaces[i].getSimpleName();

}

String interfaceslList = String.join(",

return interfaceslist;

, hames);

public static
String getGenericTypeParams(Class<?> cls) {

StringBuilder sb = new StringBuilder();
TypeVariable<?>[] typeParms = cls.
getTypeParameters();

REFLECTION

97

CHAPTER 2 REFLECTION

if (typeParms.length == 0) {

return "";

}

String[] paramNames = new String[typeParms.
length];

for (int i = 0; i < typeParms.length; i++) {
paramNames[i] = typeParms[i].getTypeName();

}

sb.append('<");

String parmsList = String.join(",", paramNames);

sb.append(parmsList);

sb.append('>");

return sb.toString();

}

public class Person extends Object implements Cloneable,

Serializable
public final class Class<T> extends Object implements

Serializable, GenericDeclaration,
Type, AnnotatedElement
public abstract interface Runnable
int

The getName () method of the Class class returns the fully qualified name of the

class. To get the simple class name, use the getSimpleName() method of the Class class,
like so:

String simpleName = c.getSimpleName();

The modifiers of a class are the keywords that appear before the keyword class in the
class declaration. In the following example, public and abstract are the modifiers for the
MyClass class:

public abstract class MyClass {
// Code goes here

98

CHAPTER 2 REFLECTION

The getModifiers() method of the Class class returns all modifiers for the class.
Note that the getModifiers() method returns an integer. To get the textual form of the
modifiers, you need to call the toString(int modifiers) static method of the Modifier
class, passing the modifiers value in an integer form. Assuming cls is the reference of a
Class object, you get the modifiers of the class as shown:

// You need to AND the returned value from the

// getModifiers() method with appropriate value returned

// from xxxModifiers() method of the Modifiers class

int mod = cls.getModifiers() & Modifier.classModifiers(); String modStr =
Modifier.toString(mod);

It is straightforward to get the name of the superclass of a class. Use the
getSuperclass() method of the Class class to get the reference of the superclass. Note
that every class in Java has a superclass except the Object class. If the getSuperclass()
method is invoked on the Object class, it returns null:

Class superClass = cls.getSuperclass();
if (superClass != null) {
String superClassName = superClass.getSimpleName();

Note The getSuperclass() method of the Class class returns null when it
represents the Object class, a class for an interface such as List.class, and a
class for a primitive type such as int.class, void.class, efc.

To get the names of all interfaces implemented by a class, you use the
getInterfaces() method of the Class class. It returns an array of Class objects. Each
element in the array represents an interface implemented by the class:

// Get all interfaces implemented by cls
Class<?>[] interfaces = cls.getInterfaces();

The getClassDescription() method of the ClassReflection class puts all parts of
a class declaration into a string and returns that string. The main() method of this class
demonstrates how to use this class.

99

CHAPTER 2 REFLECTION

A method called toGenericString() of the Class class returns a string describing the
class. The string contains the modifiers and type parameters for the class. The call Person.
class.toGenericString() will return public class com.jdojo.reflection.Person.

Reflecting on Fields

A field of a class is represented by an object of the java.lang.reflect.Field class. The
following four methods in the Class class can be used to get information about the fields
of a class:

o Field[] getFields()

o Field[] getDeclaredFields()

o Field getField(String name)

o Field getDeclaredField(String name)

The getFields() method returns all the accessible public fields of the class or
interface. The accessible public fields include public fields declared in the class or
inherited from its superclass. The getDeclaredFields () method returns all the fields
that appear in the declaration of the class. It does not include inherited fields. The other
two methods, getField() and getDeclaredField(), are used to get the Field object if
you know the name of the field. Let’s consider the following declarations of classes A and
B and an interface IConstants:

interface IConstants {
int DAYS_IN WEEK = 7;

}

class A implements IConstants {
private int aPrivate;
public int aPublic;
protected int aProtected;

}

class B extends A {
private int bPrivate;
public int bPublic;
protected int bProtected;

100

CHAPTER 2 REFLECTION

If bClass is the reference of the Class object for class B, the expression bClass.
getFields() will return the following three fields that are accessible and public:

e public int B.bPublic
e public int A.aPublic
o public static final int IConstants.DAYS_IN WEEK

The bClass.getDeclaredFields () method will return the three fields that are
declared in class B:

e private int B.bPrivate
e publicint B.bPublic
o protected int B.bProtected

To get all the fields of a class and its superclass, you must get the reference of the
superclass using the getSuperclass() method and use the combinations of these
methods. Listing 2-7 illustrates how to get the information about the fields of a class.
Note that you do not get anything when you call the getFields () method on the Class
object of the Person class because the Person class does not contain any public fields.

Listing 2-7. Reflecting on Fields of a Class

// FieldReflection.java
package com.jdojo.reflection;
import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.util.Arraylist;
public class FieldReflection {
public static void main(String[] args) {
Class<Persony cls = Person.class;
// Print declared fields
Arraylist<String> fieldsDescription =
getDeclaredFieldsList(cls);
System.out.println("Declared Fields for " +
cls.getName());
for (String desc : fieldsDescription) {
System.out.println(desc);

101

CHAPTER 2 REFLECTION

102

// Get the accessible public fields

fieldsDescription = getFieldsList(cls);

System.out.println("\nAccessible Fields for " +
cls.getName());

for (String desc : fieldsDescription) {
System.out.println(desc);

}
public static

Arraylist<String> getFieldsList(Class c) {
Field[] fields = c.getFields();
Arraylist<String> fieldslList =

getFieldsDescription(fields);
return fieldslist;

}

public static

ArraylList<String> getDeclaredFieldsList(Class c) {
Field[] fields = c.getDeclaredFields();
Arraylist<String> fieldslList =

getFieldsDescription(fields);
return fieldslList;

}

public static ArraylList<String>
getFieldsDescription(Field[] fields) {
ArraylList<String> fieldlList = new Arraylist<>();
for (Field f : fields) {
// Get the modifiers for the field
int mod = f.getModifiers() &
Modifier.fieldModifiers();
String modifiers = Modifier.toString(mod);
// Get the simple name of the field type
Class<?> type = f.getType();
String typeName = type.getSimpleName();
// Get the name of the field
String fieldName = f.getName();

CHAPTER 2 REFLECTION

fieldList.add(modifiers + " " + typeName +
" " 4+ fieldName);

}

return fieldlist;

}

Declared Fields for com.jdojo.reflection.Person
private int id

private String name

Accessible Fields for com.jdojo.reflection.Person

Note You cannot use this technique to describe the length field of an array
object. Each array type has a corresponding class. When you try to get the fields of
an array class using the getFields () method, you get an array of Field objects
of zero length. The array length is not part of the array’s class definition. Rather, it
is stored as part of the array object in the object header.

Reflecting on Executables

An instance of the Method class represents a method. An instance of the Constructor
class represents a constructor. Structurally, methods and constructors have a few things
in common. Both use modifiers, parameters, and a throws clause. Both can be executed.
These classes inherit from a common abstract superclass, Executable. Methods to
retrieve information common to both are methods of the Executable class.

A parameter in an Executable is represented by an object of the Parameter class.
The getParameters() method in the Executable class returns all parameters of an
Executable as Parameter|[]. By default, the formal parameter names are not stored in
the class files to keep the file size smaller. The getName () method of the Parameter class
returns synthesized parameter names like argo0, argi, etc. unless the actual parameter
names are retained. If you want to retain the actual parameter names in class files, you
need to compile the source code using the -parameters option with the javac compiler.

103

CHAPTER 2 REFLECTION

The getExceptionTypes() method of the Executable class returns an array of Class
objects, which describes the exceptions thrown by the Executable. If no exceptions are
listed in the throws clause, it returns an array of length zero.

The getModifiers() method of the Executable class returns the modifiers as an int.

The getTypeParameters() method of the Executable class returns an array of
TypeVariable that represents the type parameters for generic methods/constructors.
The examples in this chapter do not include the generic type variable declarations in
methods/constructors.

Listing 2-8 contains a utility class that consists of static methods to get information
about an Executable such as the list of modifiers, parameters, and exceptions. I use this
class when I discuss methods and constructors in the subsequent sections.

Listing 2-8. A Utility Class to Get Information for an Executable

// ExecutableUtil.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Executable;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.lang.reflect.Parameter;
import java.util.Arraylist;

public class ExecutableUtil {
public static
Arraylist<String> getParameters(Executable exec) {
Parameter[] parms = exec.getParameters();
Arraylist<String> parmList = new Arraylist<>();
for (int i = 0; i < parms.length; i++) {
// Get modifiers, type, and name of the
// parameter
int mod = parms[i].getModifiers() &
Modifier.parameterModifiers();
String modifiers = Modifier.toString(mod);
String parmType = parms[i].getType().
getSimpleName();

104

CHAPTER 2

String parmName = parms[i].getName();

String temp = modifiers + " "
" " + parmName;

// Trim it as it may have leading spaces when

// modifiers are absent

parmList.add(temp.trim());

+ parmType +

}

return parmlList;
}
public static
Arraylist<String> getExceptionList(Executable exec) {
ArraylList<String> exceptionlList =
new Arraylist<>();
for (Class<?> c : exec.getExceptionTypes()) {
exceptionList.add(c.getSimpleName());

}

return exceptionlList;
}
public static String
getThrowsClause(Executable exec) {
Arraylist<String> exceptionlist =
getExceptionList(exec);
String exceptions = ExecutableUtil.
arraylListToString(exceptionList, ",");

String throwsClause = "";

if (exceptionList.size() > 0) {

throwsClause = "throws " + exceptions;

}

return throwsClause;

}
public static String getModifiers(Executable exec) {

// Get the modifiers for the class
int mod = exec.getModifiers();

REFLECTION

105

CHAPTER 2 REFLECTION

if (exec instanceof Method) {
mod = mod & Modifier.methodModifiers();
} else if (exec instanceof Constructor) {
mod = mod & Modifier.constructorModifiers();

}

return Modifier.toString(mod);
}
public static String
arraylistToString(ArraylList<String> list,
String saparator) {
String[] tempArray = new String[list.size()];
tempArray = list.toArray(tempArray);
String str = String.join(saparator, tempArray);
return str;

Reflecting on Methods

The following four methods in the Class class can be used to get information about the

methods of a class:
o Method[] getMethods()
o Method[] getDeclaredMethods ()
o Method getMethod(String name, Class... parameterTypes)

o Method getDeclaredMethod(String name, Class...
parameterTypes)

The getMethods () method returns all the accessible public methods of the class. The
accessible public methods include any public method declared in the class or inherited
from the superclass. The getDeclaredMethods () method returns all the methods
declared only in the class. It does not return any methods that are inherited from the
superclass. The other two methods, getMethod() and getDeclaredMethod(), are used to
get the Method object if you know the name of the method and its parameter types.

The getReturnType () method of the Method class returns the Class object, which
contains information about the return type of the method.

106

CHAPTER 2 REFLECTION

Listing 2-9 illustrates how to get information about the methods of a class. You can
uncomment the code in the main() method to print all methods in the Person class—
declared in the Person class and inherited from the Object class.

Listing 2-9. Reflecting on Methods of a Class

// MethodReflection.java
package com.jdojo.reflection;
import java.lang.reflect.Method;
import java.util.Arraylist;
public class MethodReflection {
public static void main(String[] args) {
Class<Persony cls = Person.class;
// Get the declared methods
Arraylist<String> methodsDescription =
getDeclaredMethodsList(cls);
System.out.println("Declared Methods for " +
cls.getName());
for (String desc : methodsDescription) {
System.out.println(desc);
}
/* Uncomment the following code to print all
methods in the Person class
// Get the accessible public methods
methodsDescription = getMethodsList(cls);
System.out.println("\nMethods for " + cls.getName());
for (String desc : methodsDescription) {
System.out.println(desc);
}
*/
}
public static Arraylist<String>
getMethodsList(Class c) {
Method[] methods = c.getMethods();

107

CHAPTER 2 REFLECTION

108

ArraylList<String> methodslList =
getMethodsDescription(methods);
return methodslList;
}
public static ArraylList<String>
getDeclaredMethodsList(Class c) {
Method[] methods = c.getDeclaredMethods();
Arraylist<String> methodslList =
getMethodsDescription(methods);
return methodslList;
}
public static Arraylist<String>
getMethodsDescription(Method[] methods) {

Arraylist<String> methodlList = new ArraylList<>();

for (Method m : methods) {

String modifiers = ExecutableUtil.
getModifiers(m);

// Get the method return type

Class returnType = m.getReturnType();

String returnTypeName =
returnType.getSimpleName();

// Get the name of the method

String methodName = m.getName();

// Get the parameters of the method

ArraylList<String> paramslist =
ExecutableUtil.getParameters(m);

String params = ExecutableUtil.
arraylListToString(paramsList, ",");

// Get the Exceptions thrown by method

String throwsClause = ExecutableUtil.
getThrowsClause(m);

methodList.add(modifiers + " " +

returnTypeName +

"(" + params + ")

+ methodName +
+ throwsClause);

CHAPTER 2 REFLECTION

return methodlList;

}

Declared Methods for com.jdojo.reflection.Person
public String toString()

public Object clone()

public String getName()

public int getId()

public void setName(String argo)

Reflecting on Constructors

Getting information about constructors of a class is similar to getting information
about methods of a class. The following four methods in the Class class are used to get
information about the constructors represented by a Class object:

o Constructor[] getConstructors()
o Constructor[] getDeclaredConstructors()
o Constructor<T> getConstructor(Class... parameterTypes)

o Constructor<T> getDeclaredConstructor(Class...
parameterTypes)

The getConstructors() method returns all public constructors. The
getDeclaredConstructors() method returns all declared constructors. The other
two methods, getConstructor() and getDeclaredConstructor(), are used to get the
Constructor object if you know the parameter types of the constructor. Listing 2-10
illustrates how to get information for the constructors represented by a Class object.

Listing 2-10. Reflecting on Constructors of a Class

// ConstructorReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.util.Arraylist;

109

CHAPTER 2 REFLECTION

public class ConstructorReflection {
public static void main(String[] args) {

Class<Persony> cls = Person.class;

// Get the declared constructors

System.out.println("Constructors for " +
cls.getName());

Constructor[] constructors = cls.getConstructors();

Arraylist<String> constructDesclist =
getConstructorsDescription(constructors);

for (String desc : constructDesclList) {
System.out.println(desc);

}
public static

Arraylist<String> getConstructorsDescription(
Constructor[] constructors) {
Arraylist<String> constructorlist =
new Arraylist<>();
for (Constructor constructor : constructors) {
String modifiers = ExecutableUtil.
getModifiers(constructor);
// Get the name of the constructor
String constructorName = constructor.getName();
// Get the parameters of the constructor
Arraylist<String> paramsList = ExecutableUtil.
getParameters(constructor);
String params = ExecutableUtil.
arraylListToString(paramsList, ",");
// Get the Exceptions thrown by the constructor
String throwsClause = ExecutableUtil.
getThrowsClause(constructor);
constructorList.add(modifiers + " " +
constructorName + "(" + params + ") " +

throwsClause);

110

CHAPTER 2 REFLECTION

return constructorlList;

}

Constructors for com.jdojo.reflection.Person
public com.jdojo.reflection.Person()
public com.jdojo.reflection.Person(int argo,String argl)

Creating Objects

Java lets you use reflection to create objects of a class. The class name need not be known
until runtime. You can create the object by invoking one of the constructors of the class using
reflection. You can also access the values of fields of objects, set their values, and invoke
their methods. If you know the class name and have access to the class code at compile time,
do not use reflection to create its object; rather, use the new operator in your code to create
objects of the class. Typically, frameworks and libraries use reflection to create objects.

You can create an object of a class using reflection. You need to get the reference of
the constructor before you can create an object. The previous section showed you how
to get the reference of a specific constructor of a class. Use the newInstance() method
of the Constructor class to create an object. You can pass the actual parameter to the
constructor to the newInstance() method, which is declared as follows:

public T newInstance(Object... initargs) throws
InstantiationException,
IllegalAccessException,
I1legalArgumentException,
InvocationTargetException

Here, initargs are the actual parameters for the constructor. You will not pass any
parameters for the no-args constructor.

The following snippet of code gets the reference of the no-args constructor of the
Person class and invokes it. I have omitted the exception handling for brevity:

Class<Persony cls = Person.class;

// Get the reference of the Person() constructor
Constructor<Person> noArgsCons = cls.getConstructor();
Person p = noArgsCons.newInstance();

111

CHAPTER 2 REFLECTION

Listing 2-11 contains the complete code to illustrate how to use the Person(int,
String) constructor of the Person class to create a Person object using reflection. Note
that the Constructor<T> class is a generic type. Its type parameter is the class type
that declares the constructor, for example, the Constructor<Person> type represents a
constructor for the Person class.

Listing 2-11. Using a Specific Constructor to Create a New Object

// InvokeConstructorTest.java
package com.jdojo.reflection;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
public class InvokeConstructorTest {
public static void main(String[] args) {
Class<Person> personClass = Person.class;

try {
// Get the constructor "Person(int, String)"
Constructor<Person> cons = personClass.
getConstructor(int.class, String.class);
// Invoke the constructor with values for id
// and name
Person chris = cons.newInstance(1994, "Chris");
System.out.println(chris);
} catch (NoSuchMethodException | SecurityException
| InstantiationException
| I1legalAccessException
| I1legalArgumentException
| InvocationTargetException e) {
System.out.println(e.getMessage());

}

Person: id=1994, name=Chris

112

CHAPTER 2 REFLECTION

Invoking Methods

You can invoke methods of an object using reflection. You need to get the reference to
the method that you want to invoke. Suppose you want to invoke the setName () method
of the Person class. You can get the reference to the setName() method as follows:

Class<Person> personClass = Person.class;
Method setName = personClass.getMethod("setName",
String.class);

To invoke this method, call the invoke() method on the method’s reference, which is
declared as follows:

public Object invoke(Object obj, Object... args)
throws IllegalAccessException,
11legalArgumentException,
InvocationTargetException

The first parameter of the invoke () method is the object on which you want to
invoke the method. If the Method object represents a static method, the first argument
isignored or it may be null. The second parameter is a varargs parameter in which you
pass all the actual parameters in the same order as declared in the method’s declaration.

Since the setName () method of the Person class takes a String argument, you need
to pass a String object as the second argument to the invoke() method. Listing 2-12
illustrates how to invoke a method on a Person object using reflection.

Listing 2-12. Invoking a Method on an Object Reference Using Reflection

// InvokeMethodTest.java

package com.jdojo.reflection;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

public class InvokeMethodTest {
public static void main(String[] args) {
Class<Person> personClass = Person.class;

try {
// Create an object of Person class

Person p = personClass.newInstance();

113

CHAPTER 2 REFLECTION

// Print the details of the Person object
System.out.println(p);
// Get the reference of the setName() method
Method setName = personClass.getMethod(

"setName", String.class);
// Invoke the setName() method on p passing
// passing "Ann" as the actual parameter
setName.invoke(p, "Ann");
// Print the details of the Person object
System.out.println(p);

} catch (InstantiationException

| I1legalAccessException

| NoSuchMethodException

| SecurityException

| I1legalArgumentException

| InvocationTargetException e) {
System.out.println(e.getMessage());

}

Person: id=-1, name=Unknown
Person: id=-1, name=Ann

Accessing Fields

You can read or set the value of a field of an object using reflection. First, you need to get
the reference of the field you want to work with. To read the field’s value, you need to call
the getXxx() method on the field, where Xxx is the data type of the field. For example,

to read a boolean field value, you would call the getBoolean() method, and to read an
int field, you would call the getInt() method. To set the value of a field, you call the
corresponding setXxx () method. The following are the declarations of the getInt() and
setInt() methods where the first argument, obj, is the object’s reference whose field is

being read or written:

114

CHAPTER 2 REFLECTION

« int getInt(Object obj) throws IllegalArgumentException,
IllegalAccessException

« void setInt(Object obj, int newValue) throws
IllegalArgumentException, IllegalAccessException

Note static and instance fields are accessed the same way. In the case of static
fields, the first argument to the get () and set() methods is the reference of the
class/interface.

Note that you can access fields only that have been declared as accessible, such as
a public field. In the Person class, all fields are declared private. Therefore, you cannot
access any of these fields using normal Java programming language rules. To access
a field that is not normally accessible, for example, if it is declared private, refer to the
“Deep Reflection” section later in this chapter. You will use the PublicPerson class listed
in Listing 2-13 to learn the technique to access the fields.

Listing 2-13. A PublicPerson Class with a Public Name Field

// PublicPerson.java
package com.jdojo.reflection;
public class PublicPerson {
private int id = -1;
public String name = "Unknown";
public PublicPerson() {
}
@0verride
public String toString() {
return "Person: id=" + this.id +

, hame=" +
this.name;

Listing 2-14 demonstrates how to get the reference of a field of an object and how to
read and set its value.

115

CHAPTER 2 REFLECTION

Listing 2-14. Accessing Fields Using Reflection

// FieldAccessTest.java
package com.jdojo.reflection;
import java.lang.reflect.Field;
public class FieldAccessTest {
public static void main(String[] args) {

Class<PublicPerson> ppClass = PublicPerson.class;

try {

// Create an object of the PublicPerson class
PublicPerson p = ppClass.newInstance();

// Get the reference of the name field

Field name = ppClass.getField("name");

// Get and print the current value of the

// name field

String nameValue = (String) name.get(p);

System.out.println("Current name is
nameValue);

// Set the value of name to Ann
name.set(p, "Ann");

// Get and print the new value of name field

nameValue = (String) name.get(p);
System.out.println("New name is "
} catch (InstantiationException

| IllegalAccessException

| NoSuchFieldException

| SecurityException

| IllegalArgumentException e) {
System.out.println(e.getMessage());

}

Current name is Unknown
New name is Ann

116

+ nameValue);

CHAPTER 2 REFLECTION

Deep Reflection

There are two things you can do using reflection:
e Describe an entity
e Access the members of an entity

Describing an entity means knowing the entity’s details. For example, describing
a class means knowing its name, modifiers, packages, modules, fields, methods, and
constructors. Accessing the members of an entity means reading and writing fields and
invoking methods and constructors. Describing an entity does not pose any issues of
access control. If you have access to a class file, you should be able to know the details
of the entity represented in that class file. However, accessing members of an entity is
controlled by the Java language access control. For example, if you declare a field of a
class as private, the field should be accessible only within the class. Code outside the
class should not be able to access the private field of the class. However, this is half-true.
The Java language access control rules are applied when you access members statically.
The access control rules can be suppressed when you access members using reflection.

The following snippet of code accesses the private name field of the Person class.
This code will compile only within the Person class:

Person john = new Person();
String name = john.name; // Accessing the private field
// name statically

Java has been allowing access to rather inaccessible members such as a private field
of a class outside the class using reflection. This is called deep reflection. Reflective
access to inaccessible members made it possible to have many great frameworks in Java
such as Hibernate and Spring. These frameworks perform most of their work using deep
reflection. You can access the private name field of the Person class outside the Person
class using deep reflection.

So far in this chapter, I kept the examples simple and stayed away from violating the
Java language access control. I accessed only public fields, methods, and constructors;
the accessed members and the accessing code were in the same module. Before
JDK9, accessing inaccessible members was easy. All you had to do was call the
setAccessible(true) method on the inaccessible Field, Method, and Constructor

117

CHAPTER 2 REFLECTION

objects before accessing them. The introduction of the module system in JDK9 has made
deep reflection a bit complicated. In this section and its subsections, I walk you through
rules and examples for deep reflection in JDK9 and later.

Note If a security manager is present, the code performing deep reflection must
have a ReflectPermission("suppressAccessChecks") permission.

To perform deep reflection, you need to get the reference of the desired field,
method, and constructor using the getDeclaredXxx () method of the Class object,
where Xxx can be Field, Method, or Constructor. Note that using the getXxx()
method to get the reference of an inaccessible field, method, or constructor will throw
an IllegalAccessException. The Field, Method, and Constructor classes have the
AccessibleObject class as their superclass. The AccessibleObject class contains the
following methods to let you work with the accessible flag:

o void setAccessible(boolean flag)

o static void setAccessible(AccessibleObject[] array,
boolean flag)

o boolean trySetAccessible()
o boolean canAccess(Object obj)

The setAccessible(boolean flag) method sets the accessible flag for a member
(Field, Method, and Constructor) to true or false. If you are trying to access an
inaccessible member, you need to call setAccessible(true) on the member object
before accessing the member. The method throws an InaccessibleObjectException
if the accessible flag cannot be set. The static setAccessible(AccessibleObject]]
array, boolean flag) isaconvenience method to set the accessible flag for all
AccessibleObject in the specified array.

The trySetAccessible() method attempts to set the accessible flag to true on the
object on which it is called. It returns true if the accessible flag was set to true and false
otherwise. Compare this method with the setAccessible(true) method. This method
does not throw a runtime exception on failure, whereas the setAccessible(true) does.

The canAccess(Object obj) method returns true if the caller can access the
member for the specified obj object. Otherwise, it returns false. If the member is a
static member or a constructor, the obj must be null.

118

CHAPTER 2 REFLECTION

I discuss accessing rather inaccessible members within a module, across modules, in
unnamed modules, and of JDK modules in the next sections.

Deep Reflection Within a Module

Let’s start with an example. You want to access the private name field of a Person object.
First, you get the reference of the name field in a Field object and try reading its current
value. Listing 2-15 contains the code for the I1legalAccess1 class.

Listing 2-15. Accessing the Private Name Field of the Person Class

// IllegalAccessi.java

package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;

public class IllegalAccessi {
public static void main(String[] args)
throws Exception {
// Get the class reference for the Person class
String className = "com.jdojo.reflection.Person”;
Class<?> cls = Class.forName(className);
// Create a Person object
Constructor<?> cons = cls.getConstructor();
Object person = cons.newInstance();
// Get the reference of the name field
Field nameField = cls.getDeclaredField("name");
// Try accessing the name field by reading its
// value
String name = (String) nameField.get(person);
// Print the person and its name separately
System.out.println(person);
System.out.println("name=" + name);

119

CHAPTER 2 REFLECTION

Exception in thread "main" java.lang.
I1legalAccessException: class com.jdojo.reflection.
I1legalAccess1 (in module jdojo.reflection) cannot access
a member of class com.jdojo.
reflection.Person (in module jdojo.reflection) with
modifiers "private"
at java.base/jdk.internal.reflect.Reflection.
newIllegalAccessException(Reflection.java:361)
at java.base/java.lang.reflect.AccessibleObject.
checkAccess(AccessibleObject. java:589)
at java.base/java.lang.reflect.Field.checkAccess(
Field.java:1075)
at java.base/java.lang.reflect.Field.get(
Field.java:416)
at jdojo.reflection/com.jdojo.reflection.
IllegalAccessi.main(IllegalAccessi.java:21)

In Listing 2-15, I added the Exception class in the throws clause of the main()
method to keep the logic simple inside the method. I keep doing this for all examples
in this section, so you can focus on the illegal access rules rather than on exception
handling. The I1legalAccess1 and the Person class are in the same jdojo.reflection
module. You were able to create a Person object successfully because you used the
public no-args constructor of the Person class. The name field in the Person class
is declared as private, and accessing it from another class failed. Fixing this error is
simple—you set the accessible flag to the Field object using the setAccessible(true)
or the trySetAccessible() method. Listing 2-16 contains the complete code.

Listing 2-16. Accessing the Private Name Field of the Person Class After Making
It Accessible

// IllegalAccess2.java

package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;

120

CHAPTER 2

public class IllegalAccess2 {

}

public static void main(String[] args)

throws Exception {
// Get the class reference for the Person class
String className = "com.jdojo.reflection.Person”;
Class<?> cls = Class.forName(className);
// Create a Person object
Constructor<?> cons = cls.getConstructor();
Object person = cons.newInstance();
// Get the reference of the name field
Field nameField = cls.getDeclaredField("name");
// Try making the name field accessible before
// accessing it
boolean accessEnabled = nameField.
trySetAccessible();
if (accessEnabled) {
// Try accessing the name field by reading
// its value
String name = (String) nameField.get(person);
// Print the person and its name separately
System.out.println(person);
System.out.println("name=" + name);
} else {
System.out.println("The Person.name field " +
"is not accessible.");

Person: id=-1, name=Unknown

name=Unknown

REFLECTION

So far, everything looks fine. You might think that if you cannot access the private

member of a class, you can always use reflection to access them. However, this is not

always true. Access to otherwise inaccessible members of a class is handled through the

Java security manager. By default, when you run your application on your computer,

121

CHAPTER 2 REFLECTION

the security manager is not installed for your application. The absence of the security
manager for your application lets you access all fields, methods, and constructors of
a class in the same module after you set the accessible flag to true as you did in the
previous example. However, if a security manager is installed for your application,
whether you can access an inaccessible class member depends on the permission
granted to your application to access such members. You can check if the security
manager is installed for your application or not by using the following piece of code:

SecurityManager smgr = System.getSecurityManager();
if (smgr == null) {
System.out.println(
"Security manager is not installed.");

You can install a default security manager by passing the -Djava.security.manager
option on the command line when you run the Java application. The security manager
uses a Java security policy file to enforce the rules specified in that policy file. The Java
security policy file is specified using the -Djava.security.policy command-line
option. If you want to run the I1legalAccess2 class with a Java security manager with
the Java policy file stored in the C:\Javal7LanguageFeatures\conf\myjava.policy file,
you would use the following command:

C:\Javai7languageFeatures>java -Djava.security.manager
-Djava.security.policy=conf\myjava.policy --module-path
build\modules\jdojo.reflection
--module jdojo.reflection/com.jdojo.reflection.
IllegalAccess2
Exception in thread "main" java.security.
AccessControlException: access denied
("java.lang.reflect.ReflectPermission”
"suppressAccessChecks™)
at java.base/java.security.AccessControlContext.
checkPermission
(AccessControlContext.java:472)
at java.base/java.security.AccessController.
checkPermission
(AccessController.java:895)

122

CHAPTER 2 REFLECTION

at java.base/java.lang.SecurityManager.
checkPermission(SecurityManager.java:558)

at java.base/java.lang.reflect.AccessibleObject.
checkPermission
(AccessibleObject.java:85)

at java.base/java.lang.reflect.AccessibleObject.
trySetAccessible
(AccessibleObject.java:245)

at jdojo.reflection/com.jdojo.reflection.
IllegalAccess2.main
(I1legalAccess2.java:26)

The myjava.policy file is empty when this command was run, which means that the
application did not have permission to suppress the Java language access control.

If you want to allow your program to access an inaccessible field of a class using
reflection, the contents of the myjava.policy file would look as shown in Listing 2-17.

Listing 2-17. Contents of the conf\myjava.policy File

grant {
// Grant permission to all programs to access
// inaccessible members
permission java.lang.reflect.ReflectPermission
"suppressAccessChecks";

}s

Let’s rerun the I1legalAccessz2 class with a security manager and the Java policy as
shown in Listing 2-17:

C:\Javai7languageFeatures>java -Djava.security.manager "
-Djava.security.policy=conf\myjava.policy "
--module-path build\modules\jdojo.reflection "

--module "
jdojo.reflection/com.jdojo.reflection.IllegalAccess2

Person: id=-1, name=Unknown
name=Unknown

123

CHAPTER 2 REFLECTION

This time, you were able to access the private name field of the Person class when
you granted the appropriate security permission. The rules for accessing the inaccessible
members have just begun. You saw the rules for deep reflection within a module, when
the code gaining illegal access and the code being illegally accessed were in the same
module. The next section describes the illegal access behavior across modules.

Deep Reflection Across Modules

Let’s set up a new module named jdojo.reflection.model, as shown in Listing 2-18,
and a simple class in it called Phone, as shown in Listing 2-19. The module declaration
contains no module statements. The Phone class contains a number instance variable,
two constructors, and a getter and a setter for the number instance variable. The
toString() method returns the phone number.

Listing 2-18. The Declaration of a jdojo.reflection.model Module

// module-info.java
module jdojo.reflection.model {
// No module statements at this time

}

Listing 2-19. A Phone Class

// Phone.java
package com.jdojo.reflection.model;
public class Phone {

private String number = "9999999999";

public Phone() {

}
public Phone(String number) {

this.number = number;

}
public String getNumber() {

return number;

124

CHAPTER 2 REFLECTION

public void setNumber(String number) {
this.number = number;

}

@verride

public String toString() {
return this.number;

Let’s create a class called I1legalAccess3 in the jdojo.reflection module.
The class will try to create an object of the Phone class in the jdojo.reflection.model
module and read the object’s private field, number. The I1legalAccess3 class in
Listing 2-20 contains the complete code. It is very similar to the I1legalAccess2 class.
The only difference is that you are accessing the Phone class and its private instance
variable across the module’s boundary.

Listing 2-20. Accessing the Private Number Field of the Phone Class

// IllegalAccess3.java
package com.jdojo.reflection;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
public class IllegalAccess3 {
public static void main(String[] args)
throws Exception {
// Get the class reference for the Phone class
String className =
"com.jdojo.reflection.model.Phone";
Class<?> cls = Class.forName(className);
// Create a Phone object
Constructor<?> cons = cls.getConstructor();
Object phone = cons.newInstance();
// Get the reference of the number field
Field numberField = cls.getDeclaredField("number");
// try making the number field accessible before

125

CHAPTER 2 REFLECTION

// accessing it
boolean accessEnabled = numberField.
trySetAccessible();
if (accessEnabled) {
// Try accessing the number field by reading
// its value
String number = (String) numberField.
get(phone);
// Print the phone number
System.out.println("number=" + number);
} else {
System.out.println("The Phone.number field " +
"is not accessible.");

Let’s run the I1legalAccess3 class using the following command:

C:\Javai7lLanguageFeatures>java "
--module-path build\modules\jdojo.reflection;build\modules\
jdojo.reflection.model *
--module "
jdojo.reflection/com.jdojo.reflection.IllegalAccess3
Exception in thread "main"
java.lang.ClassNotFoundException:
com.jdojo.reflection.model.Phone
at java.base/jdk.internal.loader.
BuiltinClasslLoader.loadClass(BuiltinClassLoader.
java:582)
at java.base/jdk.internal.loader.ClassLoaders$
AppClassLoader.loadClass(ClassLoaders.
java:185)
at java.base/java.lang.ClasslLoader.loadClass
(ClassLoader.java:496)
at java.base/java.lang.Class.forNameo
(Native Method)

126

CHAPTER 2 REFLECTION

at java.base/java.lang.Class.forName
(Class.java:292)

at jdoj9o.reflection/com.jdojo.reflection.
IllegalAccess3.main(IllegalAccess3.java:11)

(No line break and no spaces after “modules\”)

Can you guess what is wrong with the command? The error is indicating that the
runtime did not find the Phone class. You were able to compile the I1legalAccess3
class because the class does not use the Phone class reference in the source code. It
attempts to use the Phone class using reflection at runtime. You have included the
jdojo.reflection.model module in the module path. However, including a module
in the module path does not resolve the module. The jdojo.reflection module does
not read the jdojo.reflection.model module, so running the I1legalAccess3 did not
resolve the jdojo.reflection.model module, and this is why the runtime did not find
the Phone class. You need to resolve the module manually by using the -addmodules
command-line option:

C:\Javai7languageFeatures>java "
--module-path build\modules\jdojo.reflection;build\modules\
jdojo.reflection.model *
--add-modules jdojo.reflection.model *
--module "
jdojo.reflection/com.jdojo.reflection.IllegalAccess3
Exception in thread "main" java.lang.
I1legalAccessException: class com.jdojo.reflection.
I1legalAccess3 (in module jdojo.reflection) cannot access
class com.jdojo.reflection.model.Phone (in module
jdojo.reflection.model) because module jdojo.
reflection.model does not export com.jdojo.reflection.
model to module jdojo.reflection
at java.base/jdk.internal.reflect.Reflection.
newIllegalAccessException
(Reflection.java:361)
at java.base/java.lang.reflect.AccessibleObject.
checkAccess
(AccessibleObject.java:589)

127

CHAPTER 2 REFLECTION

at java.base/java.lang.reflect.Constructor.
newInstance
(Constructor.java:479)

at jdojo.reflection/com.jdojo.reflection.
I1legalAccess3.main
(I1legalAccess3.java:15)

(No line break and no spaces after “modules\”)

This time, the runtime was able to find the Phone class, but it complained about
accessing the Phone class in the jdojo.reflection.model module from another module,
jdojo.reflection. The error is stating that the jdojo.reflection.model module does
not export the com. jdojo.reflection.model package, so the Phone class is in the com.
jdojo.reflection.model package and is not accessible outside the jdojo.reflection.
model module. Listing 2-21 contains the modified version of the jdojo.reflection.
model module. Now it exports the com. jdojo.reflection.model package.

Listing 2-21. The Modified Declaration of a jdojo.reflection.model Module

// module-info.java
module jdojo.reflection.model {
exports com.jdojo.reflection.model;

Let’s rerun the I11egalAccess3 class using the previous command:

C:\Javai7languageFeatures>java "

--module-path *
build\modules\jdojo.reflection;
build\modules\jdojo.reflection.model

--add-modules jdojo.reflection.model *

--module
jdojo.reflection/com.jdojo.reflection.IllegalAccess3

The Phone.number field is not accessible.

(No line break and no spaces after “reflection;”)

128

CHAPTER 2 REFLECTION

This time, you were able to instantiate the Phone class, but you would not access its
private number field. Notice that the jdojo.reflection module does not read the jdojo.
reflection.model module. Still the I11legalClass3 class is able to access the Phone
class and instantiate it using reflection. If you write the following snippet of code in the
I1legalAccess3 class, it would not compile:

Phone phone = new Phone();

When module M accesses the types in module N using reflection, a read from
module M to module N is granted implicitly. Such a read must be specified explicitly
using a requires statement when such access is needed statically (without reflection).
This is what the previous command did when creating an object of the Phone class.

If you used the setAccessible(true) in the I1legalAccess3 class to make the
number field accessible, the previous command would have produced an error message
similar to the following:

Exception in thread "main" java.lang.reflect.
InaccessibleObjectException: Unable to make field private
java.lang.String com.jdojo.reflection.model.Phone.number
accessible: module jdojo.reflection.model does not "opens
com.jdojo.reflection.model” to module jdojo.reflection

This error message is loud and clear. It is stating that the runtime could not make the
private number field accessible because the jdojo.reflection.model module does not
open the com. jdojo.reflection.model package to the jdojo.reflection module. Here
comes the concept of opening a module’s package and opening an entire module.

Exporting a package of a module grants access to the public types in the package and
the accessible public members of those types to another module. Exporting a package
grants the access at compile time and at runtime. You can use reflection to access the
same accessible public members that you can access without reflection. That is, Java
language access control is always enforced for exported packages of a module.

If you want to allow deep reflection on types of a package in a module by code in
other modules at runtime, you need to open the package of the module using the opens
statement. The syntax for the opens statement is as follows:

opens <package-name> [to <module-name>,<module-name>...];

129

CHAPTER 2 REFLECTION

The syntax allows you to open a package to all other modules or a set of specific
modules. In the following declaration, module M opens its package p to modules S and T:

module M {
opens p to S, T;

In the following declaration, module N opens its package q to all other modules:

module N {
opens q;

It is possible that a module exports and opens the same package. It is needed if other
modules need to access the types in the package statically at compile time and runtime
and using deep reflection at runtime. The following module declaration exports and
opens the same package p to all other modules:

module J {
exports p;
opens p;

}

An opens statement in a module declaration allows you to open one package to all
other modules or selective modules. If you want to open all packages of a module to all
other modules, you can declare the module itself as an open module. You can declare
an open module by using the open modifier in the module declaration. The following
declares an open module named K:

open module K {
// Other module statements go here

An open module cannot contain an opens statement. This is because an open
module means it has opened all its packages to all other modules for deep reflection.
The following declaration of module L is invalid because it declares the module as open
and, at the same time, contains an opens statement:

130

CHAPTER 2 REFLECTION

open module L {
opens p; // A compile-time error
// Other module statements go here

It is fine to export packages in an open module. The following declaration of module
D is valid:

open module D {
exports p;
// Other module statements go here

So, now you know what to do with the jdojo.reflection.model module for the
jdojo.reflection module to perform deep reflection on the Phone class. You need to do
either of the following:

o Openthe com.jdojo.reflection.model package of the jdojo.
reflection.model module to all other modules or at least to the
jdojo.reflection module.

o Declare the jdojo.reflection.model module as an open module.

Listings 2-22 and 2-23 contain the modified module declaration of the jdojo.
reflection.model module. You will need to use one of them, not both. For this example,
you do not need to export the package in the module’s declaration because you are not
accessing the Phone class at compile time in the jdojo.reflection module.

Listing 2-22. The Modified Declaration of a model Module, Which Opens the
com. jdojo.reflection.model Package to All Other Modules

// module-info.java

module jdojo.reflection.model {
exports com.jdojo.reflection.model;
opens com.jdojo.reflection.model;

131

CHAPTER 2 REFLECTION

Listing 2-23. The Modified Declaration of a model Module, Which Declares It As
an Open Module

// module-info.java
open module jdojo.reflection.model {
exports com.jdojo.reflection.model;

Let’s rerun the IllegalAccess3 class using the previous command with the
com.jdojo.reflection.model package open. This time, you will receive the desired
output:

C:\Javail7lLanguageFeatures>java "

--module-path build\modules\jdojo.reflection;
build\modules\jdojo.reflection.model *

--add-modules jdojo.reflection.model *

--module "
jdojo.reflection/com.jdojo.reflection.IllegalAccess3

number=9999999999

(No line break and no spaces after “reflection;”)

Deep Reflection and Unnamed Modules

All packages in an unnamed module are open to all other modules. Therefore, you can
always perform deep reflection on types in unnamed modules.

Deep Reflection on JDK Modules

Prior to JDK9, deep reflection was allowed on members of all types—JDK internals and
your types. One of the main goals of JDK9 is strong encapsulation, and you should not
be able to access rather inaccessible members of an object using deep reflection. Since
JDK9, deep reflection on JDK modules is only possible from the unnamed module. If
applications are modularized, deep reflection on JDK modules is illegal. The weakened
restrictions for unnamed modules are for backward compatibility only; modern
applications should never access JDK internals like private fields.

132

CHAPTER 2 REFLECTION

Let’s walk through an example of this. The java.lang. Long class is immutable. It
contains a private field named value to hold the long value that this object represents.
Listing 2-24 shows you how to access and modify the private value field of the Long class
using deep reflection, which is not possible using the Long class statically.

Listing 2-24. Accessing and Modifying the Private Value Field of the java.lang.
Long Class Using Deep Reflection

// IllegalAccessIDKType.java
package com.jdojo.reflection;
import java.lang.reflect.Field;
public class IllegalAccessIDKType {
public static void main(String[] args)
throws Exception {
// Create a Long object
Long num = 1969L;
System.out.println("#1: num = " + num);
// Get the class reference for the Long class
String className = "java.lang.long";
Class<?> cls = Class.forName(className);
// Get the value field reference
Field valueField = cls.getDeclaredField("value");
// try making the value field accessible before
// accessing it
boolean accessEnabled = valueField.
trySetAccessible();
if (accessEnabled) {
// Get and print the current value of the
// long.value private field of the num object
// that you created in the beginning of this

// method
Long value = (Long) valueField.get(num);
System.out.println("#2: num = " + value);

// Change the value of the Long.value field
valueField.set(num, 1968L);

value = (Long) valueField.get(num);
System.out.println("#3: num = " + value);

133

CHAPTER 2 REFLECTION

} else {
System.out.println("The Long.value field is " +
"not accessible.");

In the beginning of the main() method, you create a Long object, called num, and set
its value to 1969L:

Long num = 1969L;
System.out.println("#1: num = " + num);

Later, you get the reference of the Class object for the Long class and get the
reference of the private value field and try to make it accessible. If you were able to make
the field accessible, you read its current value, which would be 1969L. Now you change
its value to 1968L and read it back in your program.

The I1legalAccessIDKType class is a member of the jdojo.reflection module.
Let’s run it using the following command:

C:\Javal7LanguageFeatures>java "

--module-path build\modules\jdojo.reflection "

--module "
jdojo.reflection/com.jdojo.reflection.IllegalAccessIDKType

#1: num = 1969
The Long.value field is not accessible.

You were not able to make the private value field of the Long class accessible
because the I1legalAccessIDKType class is part of a named module, and code in named
modules is not allowed to have illegal access to the members of the JDK internal types.
The following command reruns the class from the class path (effectively unmodularizing
it and implicitly using the unnamed module), and you get the desired output. Notice the
one-time warnings even though you have accessed the private field three times:

C:\Javail7lLanguageFeatures>java "
--class-path build\modules\jdojo.reflection *
com.jdojo.reflection.IllegalAccessIDKType

134

CHAPTER 2 REFLECTION

#1: num = 1969

WARNING: An illegal reflective access operation has
occurred

WARNING: Illegal reflective access by com.jdojo.reflection.
I1legalAccessIDKType

(file:/C:/Javal7languageFeatures/build/modules/
jdojo.reflection/) to field java.lang.lLong.value

WARNING: Please consider reporting this to the maintainers

of com.jdojo.reflection.IllegalAccessIDKType

WARNING: Use --illegal-access=warn to enable warnings of
further illegal reflective access operations

WARNING: All illegal access operations will be denied in a

future release

1969

1968

#2: num
#3: num

Reflecting on Arrays

Java provides special APIs to work with arrays. The Class class lets you find out if a
Class reference represents an array by using its isArray () method. You can also create
an array and read and modify its element’s values using reflection. The java.lang.
reflect.Array class is used to dynamically create an array and manipulate its elements.
As stated before, you cannot reflect on the length field of an array using a normal
reflection procedure. However, the Array class provides the getLength() method to get
the length value of an array. Note that all methods in the Array class are static, and most
of them have the first argument as the array object’s reference on which they operate.

To create an array, use the newInstance() static method of the Array class. The
method is overloaded and has two versions:

o Object newInstance(Class<?> componentType, int arraylLength)
o Object newInstance(Class<?> componentType, int... dimensions)

One version of the method creates an array of the specified component type and the
array length. The other version creates an array of the specified component type and
dimensions. Note that the return type of the newInstance() method is Object. You need
to use an appropriate cast to convert it to the actual array type.

135

CHAPTER 2 REFLECTION
If you want to create an array of int of length 5, you would write
int[] ids = (int[]) Array.newInstance(int.class, 5);
This statement has the same effect as the following statement:
int[] ids = new int[5];
If you want to create an array of int of dimension 5x8, you would write

int[][] matrix = (int[][]) Array.newInstance(
int.class, 5, 8);

Listing 2-25 illustrates how to create an array dynamically and manipulate its
elements.

Listing 2-25. Reflecting on Arrays

// ArrayReflection.java
package com.jdojo.reflection;
import java.lang.reflect.Array;
public class ArrayReflection {
public static void main(String[] args) {
try {
// Create the array of int of length 2
Object arrayObject = Array.newInstance(
int.class, 2);
// Print the values in array element. Default
// values will be zero
int n1

Array.getInt(arrayObject, 0);
Array.getInt(arrayObject, 1);
System.out.printIn("n1 = " + nl1 +

",n2 =" +n2);
// Set the values to both elements
Array.set(arrayObject, 0, 101);
Array.set(arrayObject, 1, 102);
// Print the values in array element again
nl = Array.getInt(arrayObject, 0);

n2 = Array.getInt(arrayObject, 1);

int n2

136

CHAPTER 2 REFLECTION

System.out.println("nl = " + n1 +
", n2 =" +n2);
} catch (NegativeArraySizeException
| I1legalArgumentException
| ArrayIndexOutOfBoundsException e) {

System.out.println(e.getMessage());

}
}
}
n1=0,n2=0
nl = 101, n2 = 102

Java does not support a truly multidimensional array. Rather, it supports an array of
arrays. The Class class contains a method called getComponentType(), which returns
the Class object for an array’s element type. Listing 2-26 illustrates how to get the

dimension of an array

Listing 2-26. Getting the Dimension of an Array

// ArrayDimension.java
package com.jdojo.reflection;
public class ArrayDimension {
public static void main(String[] args) {
int[][][] intArray = new int[6][3][4];
System.out.println("int[][][] dimension is " +
getArrayDimension(intArray));
}
public static int getArrayDimension(Object array) {
int dimension = 0;
Class ¢ = array.getClass();
// Perform a check that the object is really
// an array
if (lc.isArray()) {
throw new IllegalArgumentException(
"Object is not an array.");

137

CHAPTER 2 REFLECTION

while (c.isArray()) {
dimension++;

c = c.getComponentType();
}

return dimension;

}

int[][][] dimension is 3

Expanding an Array

After you create an array, you cannot change its length. You can create an array of

a bigger size and copy the old array elements to the new one at runtime. The Java
collection classes such as ArraylList apply this technique to let you add elements to

the collection without worrying about its length. You can use the combination of the
getComponentType() method of the Class class and the newInstance() method of the
Array class to create a new array of a given type. You can use the arraycopy() static
method of the System class to copy the old array elements to the new array. Listing 2-27
illustrates how to create an array of a particular type using reflection. All runtime checks
have been left out for clarity.

Listing 2-27. Expanding an Array Using Reflection

// ExpandingArray.java
package com.jdojo.reflection;
import java.lang.reflect.Array;
import java.util.Arrays;
public class ExpandingArray {
public static void main(String[] args) {
// Create an array of length 2
int[] ids = {101, 102};
System.out.println("0ld array length: " +
ids.length);
System.out.println("0ld array elements: " +
Arrays.toString(ids));

138

CHAPTER 2 REFLECTION

// Expand the array by 1
ids = (int[]) expandBy(ids, 1);
// Set the third element to 103
ids[2] = 103; // This is newly added element
System.out.println("New array length: " +
ids.length);
System.out.println("New array elements: " +
Arrays.toString(ids));
}
public static Object
expandBy(Object oldArray, int increment) {
// Get the length of old array using reflection
int oldLength = Array.getlLength(oldArray);
int newLength = oldLength + increment;
// Get the class of the old array
Class<?> cls = oldArray.getClass();
// Create a new array of the new length
Object newArray = Array.newInstance(
cls.getComponentType(), newLength);
// Copy the old array elements to new array
System.arraycopy(oldArray, 0, newArray,
0, oldLength);
return newArray;

}
0ld array length: 2

0ld array elements: [101, 102]
New array length: 3
New array elements: [101, 102, 103]

Who Should Use Reflection?

If you have used any integrated development environment (IDE) to develop a GUI
application using drag-and-drop features, you have already used an application that uses
reflection in one form or another. All GUI tools that let you set the properties of a control,

139

CHAPTER 2 REFLECTION

say a button, at design time use reflection to get the list of the properties for that control.
Other tools such as class browsers and debuggers also use reflection. As an application
programmer, you will not use reflection much unless you are developing advanced
applications that use dynamism provided by the reflection API. It should be noted that
using too much reflection slows down the performance of your application.

Summary

Reflection is the ability of a program to query and modify its state “as data” during the
execution of the program. Java represents the bytecode of a class as an object of the
Class class to facilitate reflection. The class fields, constructors, and methods can be
accessed as an object of the Field, Constructor, and Method classes, respectively.

Using a Field object, you can access and change the value of the field. Using a Method
object, you can invoke the method. Using a Constructor object, you can invoke a given
constructor of a class. Using the Array class, you can also create arrays of a specified type
and dimension using reflection and manipulate the elements of the arrays.

Java has been allowing access to rather inaccessible members such as a private field
of a class outside the class using reflection. This is called deep reflection. Before you
can access the inaccessible member, you need to call the setAccessible(true) on that
member, which could be a Field, aMethod, or a Constructor. The setAccessible()
method throws a runtime exception if the accessibility cannot be enabled. JDK9 added
atrySetAccessible() method for the same purpose, which does not throw a runtime
exception. Rather, it returns true if accessibility is enabled and false otherwise.

Deep reflection in JDK9 and later across modules is prohibited by default. If a
module wants to allow deep reflection on types in a given package, the module must
open that package to at least the module that will use deep reflection. You can open a
package using the opens statement in a module declaration. You can declare a module as
an open module, which opens all packages in the module for deep reflection. If a named
module M uses reflection to access types in another module N, the module M implicitly
reads module N. All packages in an unnamed module open for deep reflection.

JDK9 and later allow deep reflection on JDK internal types by code only from the
unnamed module or unmodularized applications.

140

CHAPTER 2 REFLECTION

Exercises

Exercise 1

What is reflection?

Exercise 2

Name two Java packages that contain the reflection-related classes and interfaces.

Exercise 3

What does an instance of the Class class represent?

Exercise 4

List three ways to get the reference of an instance of the Class class.

Exercise 5

When do you use the forName() method of the Class class to get an instance of the
Class class?

Exercise 6

Name three built-in class loaders. How do you get references of these class loaders?

Exercise 7

If you get a reference of the Class class, how do you know if this reference represents
an interface?

Exercise 8

What do instances of the Field, Constructor, and Method classes represent?

Exercise 9

What is the difference between using the getFields() and getDeclaredFields()
methods of the Class class?

Exercise 10

You need to use setAccessible(true) or trySetAccessible() method of the
AccessibleObject class to make a Field, Constructor, and Method object accessible
even if they are inaccessible (e.g., they are declared private). What is the difference
between these two methods?

Exercise 11

Assume that you have two modules named R and S. Module R contains a public
p.Test class with a public method m(). The code in module S needs to use the class
p.Test to declare variables and create its objects. Module S also needs to use reflection
to access the public method m() of the p.Test class in module R. What is the minimum
you need to do while declaring module R, so module S can perform these tasks?

141

CHAPTER 2 REFLECTION

Exercise 12

What is opening a package in a module? What is an open module?

Exercise 13

What is the difference between exporting and opening a package of a module? Give
an example when you will need to export and open the same package of a module.

Exercise 14

Consider the declarations of a module named jdojo.reflection.exercise.model
and a MagicNumber class in that module as follows:

// module-info.java
module jdojo.reflection.exercises.model {
/* Add your module statements here */
}
// MagicNumber.java
package com.jdojo.reflection.exercises.model;
public class MagicNumber {
private int number;
public int getNumber() {
return number;
}
public void setNumber(int number) {
this.number = number;

Modify the module declaration so that code in other modules can perform
deep reflection on the objects of the MagicNumber class. Create a class named
MagicNumberTest in a module named jdojo.reflection.exercises. The code in the
MagicNumberTest class should use reflection to create an object of the MagicNumber
class, set its private number field directly, and read the current value of the number field
using the getNumber () method.

Exercise 15

Can you access private members of JDK classes in Java 9 or later? If your answer is
yes, describe the rules and restrictions for such access.

142

CHAPTER 2 REFLECTION

Exercise 16

Assume there are two modules, P and Q. Module P is an open module. Module Q
wants to perform deep reflection on types in module P. Is module Q required to read
module P in its module’s declaration?

Exercise 17

Assume there are two modules, M and N. Module M does not open any of its packages
to any modules, but it exports a com. jdojo.m to all other modules. Can module N use
reflection to access publically accessible members of the com. jdojo.m package of
module M?

143

CHAPTER 3

Generics

In this chapter, you will learn:
o What generics are
o How to define generic types, methods, and constructors
e How to define bounds for type parameters
o How to use wildcards as the actual type parameters
o How the compiler infers the actual type parameters for generic type uses
e Generics and their limitations in array creations
o How the incorrect use of generics may lead to heap pollution
All example programs in this chapter are a member of a jdojo.generics module, as

declared in Listing 3-1.

Listing 3-1. The Declaration of a jdojo.generics Module

// module-info.java
module jdojo.generics {
exports com.jdojo.generics;

What Are Generics?

Generics let you write true polymorphic code that works with any type.

Let’s discuss a simple example before I define what generics are and what they do for
you. Suppose you want to create a new class whose sole job is to store a reference to any
type, where “any type” means any reference type. Let’s call this class ObjectWrapper, as
shown in Listing 3-2.

145
© Kishori Sharan, Peter Spdth 2021

K. Sharan and P. Spéth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_3

https://doi.org/10.1007/978-1-4842-7135-3_3#DOI

CHAPTER 3 GENERICS

Listing 3-2. A Wrapper Class to Store a Reference of Any Type

// ObjectWrapper.java

package com.jdojo.generics;

public class ObjectWrapper {
private Object ref;

public ObjectWrapper(Object ref) {
this.ref = ref;

}

public Object get() {
return ref;

}

public void set(Object ref) {
this.ref = ref;

As aJava developer, you would agree that you write this kind of code when you do
not know the type of the objects that you have to deal with. The ObjectWrapper class can
store a reference of any type in Java, such as String, Integer, Person, etc. How do you
use the ObjectWrapper class? The following is one of the ways to use it to work with the
String type:

ObjectWrapper stringWrapper = new ObjectWrapper(“"Hello");
stringWrapper.set("Another string");
String myString = (String) stringWrapper.get();

There’s one problem in this snippet of code. Even though you knew that you stored
(and wanted to) a string in the stringWrapper object, you had to cast the return value of
the get() method to a String type in (String) stringWrapper.get(). Consider writing
the following snippet of code:

ObjectWrapper stringWrapper = new ObjectWrapper(“"Hello");
stringWrapper.set(new Integer(101));
String myString =(String) stringWrapper.get();

146

CHAPTER 3 GENERICS

This snippet of code compiles fine. However, the third statement throws a
ClassCastException at runtime because you stored an Integer in the second statement
and attempted to cast an Integer to a String in the third statement. First, it allowed you
to store an Integer in stringWrapper. Second, it did not complain about the code in the
third statement because it had no knowledge of your intent that you only wanted to use a
String with stringWrapper.

Java has made some progress with the way it helps developers write type-safe
programs. Wouldn't it be nice if the ObjectWrapper class allowed you to specify that
you want to use this class only for a specific type, say, String this time and Integer the
next? Your wish is fulfilled by generics in Java. They let you specify a type parameter
with a type (class or interface). Such a type is called a generic type (more specifically
generic class or generic interface). The type parameter value could be specified when
you declare a variable of the generic type and create an object of your generic type. You
have seen specifying parameters for a method. This time, I am talking about specifying
parameters for types such as classes or interfaces.

Note A type with type parameters in its declaration is called a generic type.

Let’s rewrite the ObjectWrapper class to use generics naming the new class simply
Wrapper. The formal parameters of a generic type are specified in the generic type’s
declaration. Parameter names are valid Java identifiers and are specified in angle
brackets (< »>) after the name of the parameterized type. You will use T as the type
parameter name for the Wrapper class:

public class Wrapper<T> {
}

It is an unwritten convention that type parameter names are one character and
to use T to indicate that the parameter is a type, E to indicate that the parameter is
an element, K to indicate that the parameter is a key, N to indicate the parameter is a
number, and V to indicate that the parameter is a value. In the previous example, you
could have used any name for the type parameter, like so:

public class Wrapper<Hello> {

}
public class Wrapper<MyType> {

}

147

CHAPTER 3 GENERICS

Multiple type parameters are separated by a comma. The following declaration for
MyClass takes four type parameters named T, U, V, and W:

public class MyClass<T, U, V, W> {
}

You will be using your type parameter named T inside the class code in instance
variable declarations, constructors, the get () method, and the set() method. Right
now, T means any type for you, which will be known when you use this class. Listing 3-3
contains the complete code for the Wrapper class.

Listing 3-3. Using a Type Parameter to Define a Generic Class

// Wrapper.java
package com.jdojo.generics;
public class Wrapper<T> {
private T ref;
public Wrapper(T ref) {
this.ref = ref;
}
public T get() {
return ref;
}
public void set(T ref) {
this.ref = ref;

Are you confused about using T in Listing 3-3? Here, T means any class type or
interface type. It could be String, Object, com.jdojo.generics.Person, etc. If you
replace T with Object everywhere in this program and remove <T> from the class name,
it is the same code that you had for the ObjectWrapper class.

How do you use the Wrapper class? Since its class name is not just Wrapper, rather
itis Wrapper<T>, you may specify (but do not have to) the value for T. To store a String
reference in the Wrapper object, you create it as follows:

Wrapper<String> greetingWrapper =
new Wrapper<String>("Hello");

148

CHAPTER 3 GENERICS

How do you use the set() and get () methods of the Wrapper class? Since you have
specified the type parameter for class Wrapper<T> to be String, the set() and get()
methods will work only with String types. This is because you used T as an argument
type in the set() method and T as the return type in the get () method declarations.
Imagine replacing T in the class definition with String, and you should have no problem
understanding the following code:

greetinghrapper.set("Hi");
// <- OK to pass a String

String greeting = greetingWrapper.get();
// <- No need to cast

This time, you did not have to cast the return value of the get () method. The
compiler knows that greetinghWrapper has been declared of type Wrapper<String>,
so its get () method returns a String. Let’s try to store an Integer object in
greetingWrapper:

// A compile-time error. You can use greetingWrapper
// only to store a String.
greetingWrapper.set(new Integer(101));

The statement will generate the following compile-time error:

error: incompatible types: Integer cannot be converted to
String
greetinghrapper.set(new Integer(101));

You cannot pass an Integer to the set() method. The compiler will generate an
error. If you want to use the Wrapper class to store an Integer, your code will be as
follows:

Wrapper<Integer> idWrapper =

new Wrapper<Integer>(new Integer(101));
idWrapper.set(new Integer(897));

// <- OK to pass an Integer
Integer id = idWrapper.get();
// A compile-time error. You can use idWrapper only
// with an Integer.
idWrapper.set("hello");

149

CHAPTER 3 GENERICS

Assuming that a Person class exists that contains a constructor with two parameters,
you store a Person object in Wrapper as follows:

Wrapper<Person> personWrapper = new Wrapper<Person>(
new Person(1, "Chris"));

personhrapper.set(new Person(2, "Laynie"));

Person laynie = personWrapper.get();

The parameter that is specified in the type declaration is called a formal type
parameter; for example, T is a formal type parameter in the Wrapper<T> class
declaration. When you replace the formal type parameter with the actual type (e.g.,
in Wrapper<String> you replace the formal type parameter T with String), it is
called a parameterized type. A reference type in Java, which accepts one or more
type parameters, is called a generic type. A generic type is mostly implemented in the
compiler. The JVM has no knowledge of generic types. All actual type parameters are
erased at compile time using a process known as erasure. Compile-time type-safety is
the benefit that you get when you use a parameterized generic type in your code without
the need to use casts.

Polymorphism is about writing code in terms of a type that also works with
many other types. In any introductory level book about Java, you learn how to write
polymorphic code using inheritance and interfaces. Inheritance in Java offers inclusion
polymorphism where you write code in terms of the base type, and the code also works
with all subtypes of that base type. In this case, you are forced to have all other types fall
under a single inheritance hierarchy. That is, all types for which the polymorphic code
works must inherit from the single base type. Interfaces in Java lift this restriction and
let you write code in terms of an interface. The code works with all types that implement
the interface. This time, all types for which the code works do not have to fall under one
type hierarchy. Still, you had one constraint that all those types must implement the
same interface. Generics in Java take you a step closer to writing “true” polymorphic
code. The code written using generics works for any type. Generics in Java do have some
restrictions as to what you can do with the generic type in your code. Showing you what
you can do with generics in Java and elaborating on the restrictions are the topics of
discussion in this chapter.

150

CHAPTER 3 GENERICS

Supertype-Subtype Relationship

Let’s play a trick. The following code creates two parameterized instances of the
Wrapper<T> class, one for the String type and one for the Object type:

Wrapper<String> stringWrapper =

new Wrapper<String>("Hello");
stringWrapper.set("a string");
Wrapper<Object> objectWrapper =

new Wrapper<Object>(new Object());
objecthrapper.set(new Object());
// Use a String object with objectWrapper
objectWrapper.set("a string"); // OK

Itis fine to store a String object in objectWrapper. After all, if you intended to store
an Object in objectWrapper, a String is also an Object. Is the following assignment
allowed?

objectWrapper = stringWrapper;

No, this assignment is not allowed. That is, a Wrapper<String> is not assignment
compatible to a Wrapper<Object>. To understand why this assignment is not allowed,
let’s assume for a moment that it was allowed and you could write code like the
following:

// Now objectWrapper points to stringWrapper
objectWrapper = stringWrapper;

// We could store an Object in stringWrapper using
// objectWrapper

objectWrapper.set(new Object());

// The following statement will throw a runtime

// ClassCastException

String s = stringWrapper.get();

Do you see the danger of allowing an assignment like objectWrapper=
stringhWrapper? The compiler cannot make sure that stringWrapper will store only a
reference of String type if this assignment was allowed.

151

CHAPTER 3 GENERICS

Remember that a String is an Object because String is a subclass of Object.
However, a Wrapper<String> is not a Wrapper<Object>. The normal supertype/subtype
rules do not apply to parameterized types. Don’t worry about memorizing this rule if you
do not understand it. If you attempt such assignments, the compiler will tell you that you
can'’t.

Raw Types

The implementation of generic types in Java is backward compatible. If an existing non-
generic class is rewritten to take advantage of generics, the existing code that uses the
non-generic version of the class should keep working. The code may use (though it is
not recommended) a non-generic version of a generic class by just omitting references
to the generic type parameters. The non-generic version of a generic type is called a raw
type. Using raw types is discouraged. If you use raw types in your code, the compiler will
generate unchecked warnings, as shown in the following snippet of code:

// Use the Wrapper<T> generic type as a raw type Wrapper
Wrapper rawType = new Wrapper("Hello"); // An unchecked

// warning
// Using the Wrapper<T> generic type as a parameterized
// type Wrapper<String>
Wrapper<String> genericType = new Wrapper<String>("Hello");
// Assigning the raw type to the parameterized type
genericType = rawType; // An unchecked warning
// Assigning the parameterized type to the raw type
rawType = genericType;

The compiler generates the following warnings when this snippet of code is
compiled:

warning: [unchecked] unchecked call to Wrapper(T) as a
member of the raw type Wrapper
Wrapper rawType = new Wrapper(“Hello");
where T is a type-variable:
T extends Object declared in class Wrapper

152

CHAPTER 3 GENERICS

warning: [unchecked] unchecked conversion
genericType = rawType;
required: Wrapper<String>
found: Wrapper
2 warnings

Unbounded Wildcards

Let’s start with an example. It will help you understand the need for as well as the use
of wildcards in generic types. Let’s build a utility class for the Wrapper class and call it
WrapperUtil. Add a static utility method called printDetails() to this class, which
will take an object of the Wrapper<T> class. How should you define the argument of this
method? The following is the first attempt:

public class WrapperUtil {
public static
void printDetails(Wrapper<Object> wrapper){
// More code goes here

Since your printDetails() method is supposed to print details about a Wrapper<T>
of any type, Object as the type parameter seems to be more suitable. Let’s use your new
printDetails() method, as shown:

Wrapper<Object> objectWrapper =
new Wrapper<Object>(new Object());
WrapperUtil.printDetails(objectWrapper); // OK
Wrapper<String> stringWrapper =
new Wrapper<String>("Hello");
WrapperUtil.printDetails(stringWrapper); // A compile-time
// error

153

CHAPTER 3 GENERICS
The compile-time error is as follows:

error: method printDetails in class WrapperUtil cannot be
applied to given types;
WrapperUtil.printDetails(stringWrapper);
required: Wrapper<Object>
found: Wrapper<String>
reason: argument mismatch; Wrapper<String> cannot be
converted to Wrapper<Object>
1 error

You are able to call the printDetails () method with the Wrapper<Object> type, but
not with the Wrapper<String> type because they are not assignment compatible, which
is contradictory to what your intuition tells you. To understand it fully, you need to know
about the wildcard type in generics. A wildcard type is denoted by a question mark, as in
<?>. For a generic type, a wildcard type is what an Object type is for a raw type. You can
assign a generic of known type to a generic of wildcard type. Here is the sample code:

// Wrapper of String type

Wrapper<String> stringWrapper = new Wrapper<String>("Hi");
// You can assign a Wrapper<String> to Wrapper<?> type
Wrapper<?> wildCardWrapper = stringWrapper;

The question mark in a wildcard generic type (e.g., <?>) denotes an unknown
type. When you declare a parameterized type using a wildcard (means unknown) as a
parameter type, it means that it does not know about its type:

// wildCardWrapper has unknown type
Wrapper<?> wildCardWrapper;

// Better to name it as an unknownWrapper
Wrapper<?> unknownWrapper;

Can you create a Wrapper<T> object of an unknown type? Let’s assume that John
cooks something for you. He packs the food in a packet and hands it over to you. You
hand over the packet to Donna. Donna asks you what is inside the packet. Your answer is
that you do not know. Can John answer the same way you did? No. He must know what
he cooked because he was the person who cooked the food. Even if you did not know

154

CHAPTER 3 GENERICS

what was inside the packet, you had no problem in carrying it and giving it to Donna.
What would be your answer if Donna asked you to give her the vegetables from the
packet? You would say that you do not know if vegetables are inside the packet.

Here are the rules for using a wildcard (unknown) generic type. Since it does not
know its type, you cannot use it to create an object of its unknown type. The following
code is illegal:

// Cannot use <?> with new operator. It is a compile-time
// error.
new Wrapper<?>("");
error: unexpected type
new Wrapper<?>("");
A
required: class or interface without bounds
found: ?

1 error

As you were holding the packet of unknown food type (John knew the type of food
when he cooked it), a wildcard generic type can refer to a known generic type object, as
shown:

Wrapper<?> unknownWrapper = new Wrapper<String>(“"Hello");

There is a complicated list of rules as to what a wildcard generic type reference can
do with the object. However, there is a simple rule of thumb to remember. The purpose
of using generics is to have compile-time type-safety. As long as the compiler is satisfied
that the operation will not produce any surprising results at runtime, it allows the
operation on the wildcard generic type reference.

Let’s apply the rule of thumb to your unknownWrapper reference variable. One
thing that this unknownWrapper variable is sure about is that it refers to an object of the
Wrapper<T> class of a known type. However, it does not know what that known type is.
Can you use the following get () method? The following statement generates a
compile-time error:

155

CHAPTER 3 GENERICS

String str = unknownWrapper.get();
error: incompatible types: CAP#1 cannot be converted
to String
String str = unknownWrapper.get();
where CAP#1 is a fresh type-variable:
CAP#1 extends Object from capture of ?
1 error

The compiler knows that the get() method of the Wrapper<T> class returns an object
of type T. However, for the unknownWrapper variable, type T is unknown. Therefore,
the compiler cannot ensure that the method call, unknownWrapper.get(), will return
a String and its assignment to str variable is fine at runtime. All you have to do is
convince the compiler that the assignment will not throw a ClassCastException at
runtime. Will the following line of code compile?

Object obj = unknownWrapper.get(); // OK

This code will compile because the compiler is convinced that this statement will
not throw a ClassCastException at runtime. It knows that the get () method returns
an object of a type, which is not known to the unknownWrapper variable. No matter what
type of object the get () method returns, it will always be assignment compatible with
the Object type. After all, all reference types in Java are subtypes of the Object type. Will
the following snippet of code compile?

unknownWrapper.set("Hello"); // A compile-time error
unknownWrapper.set(new Integer()); // A compile-time error
unknownWrapper.set(new Object()); // A compile-time error
unknownWrapper.set(null); // 0K

Were you surprised by errors in this snippet of code? You will find out that it is not
as surprising as it seems. The set (T a) method accepts the generic type argument. This
type, T, is not known to unknownWrapper, and therefore the compiler cannot make sure
that the unknown type is a String type, an Integer type, or an Object type. This is why
the first three calls to set() are rejected by the compiler. Why is the fourth call to the
set() method correct? A null is assignment compatible to any reference type in Java.
The compiler thought that no matter what type T would be in the set(T a) method for

156

CHAPTER 3 GENERICS

the object to which unknownWrapper reference variable is pointing to, a null can always
be safe to use. The following is your printDetails() method’s code. If you pass a null
Wrapper object to this method, it will throw a NullPointerException:

public class WrapperUtil {
public static void printDetails(Wrapper<?> wrapper) {
// Can assign get() return value to an Object
Object value = wrapper.get();
String className = null;
if (value != null) {
className = value.getClass().getName();

}
System.out.println("Class:
System.out.println("Value:

+ className);

+ value);

Note Using only a question mark as a parameter type (< ?>) is known as an
unbounded wildcard. It places no bounds as to what type it can refer. You can
also place an upper bound or a lower bound with a wildcard. | discuss bounded
wildcards in the next two sections.

Upper-Bounded Wildcards

Suppose you want to add a method to your WrapperUtil class. The method should
accept two numbers that are wrapped in your Wrapper objects, and it will return their
sum. The wrapped objects may be an Integer, Long, Byte, Short, Double, or Float. Your
first attempt is to write the sum() method as shown:

public static double sum(Wrapper<?> ni, Wrapper<?> n2) {
//Code goes here

157

CHAPTER 3 GENERICS

There are some obvious problems with this method signature. The parameters
n1 and n2 could be of any parameterized type of Wrapper<T> class. For example, the
following call would be a valid call for the sum() method:

// Try adding an Integer and a String
sum(new Wrapper<Integer>(new Integer(125)),
new Wrapper<String>("Hello"));

Computing the sum of an Integer and a String does not make sense. However, the
code will compile, and you should be ready to get some runtime exceptions depending
on the implementation of the sum() method. You must restrict this kind of code from
compiling. It should accept two Wrapper objects of type Number or its subclasses, not just
anything. Therefore, you know the upper bound of the type of the actual parameter that
the Wrapper object should have. The upper bound is the Number type. If you pass any
other type, which is a subclass of the Number type, it is fine. However, anything that is not
a Number type or its subclass type should be rejected at compile time. You express the
upper bound of a wildcard as

<? extends T>

Here, T is a type. <? extends T> means anything that is of type T or its subclass is
acceptable. Using your upper bound as Number, you can define your method as

public static double sum(Wrapper<? extends Number> ni,
Wrapper<? extends Number> n2) {
Number numl = nil.get();
Number num2 = n2.get();
double sum = numi.doubleValue() + num2.doubleValue();
return sum;

The following snippet of code inside the method compiles fine:

Number numi = ni.get();
Number num2 = n2.get();

No matter what you pass for n1 and n2, they will always be assignment compatible
with Number because the compiler will make sure that the parameters passed to the

158

CHAPTER 3 GENERICS

sum() method follow the rules specified in its declaration of <? extends Number>. The
attempt to compute the sum of an Integer and a String will be rejected by the compiler.
Consider the following snippet of code:

Wrapper<Integer> intWrapper =
new Wrapper<Integer>(new Integer(10));
Wrapper<? extends Number> numberWrapper = intWrapper;
// <- OK
numberhWrapper.set(new Integer(1220));
// <- A compile-time error
numberWrapper.set(new Double(12.20));
// <- A compile-time error

Can you figure out the problem with this snippet of code? The type of numberWrapper
is<? extends Number>, which means it can refer to (or it is assignment compatible with)
anything that is a subtype of the Number class. Since Integer is a subclass of Number,
the assignment of intWrapper to numberWrapper is allowed. When you try to use the
set() method on numberWrapper, the compiler starts complaining because it cannot
make sure at compile time that numberWrapper is a type of Integer or Double, which are
subtypes of a Number. Be careful with this kind of compile-time error when working with
generics. On the surface, it might look obvious to you, and you would think that code
should compile and run fine. Unless the compiler ensures that the operation is type-safe,
it will not allow you to proceed. After all, compile-time and runtime type-safety is the
primary goal of generics!

Lower-Bounded Wildcards

Specifying a lower-bounded wildcard is the opposite of specifying an upper-bounded
wildcard. The syntax for using a lower-bounded wildcard is <? super T>, which means
“anything that is a supertype of T Let’s add another method to the WrapperUtil class.
You will call the new method copy(), and it will copy the value from a source wrapper
object to a destination wrapper object. Here is the first attempt. The <T> is the formal
type parameter for the copy () method. It specifies that the source and dest parameters
must be of the same type. I explain generic methods in detail in the next section.

159

CHAPTER 3 GENERICS

public class WrapperUtil {
public static <T> void
copy (Wrapper<T> source, Wrapper<T> dest) {
T value = source.get();
dest.set(value);

Copying the content of a Wrapper<String> to a Wrapper<Object> using your copy()
method will not work:

Wrapper<Object> objectWrapper =

new Wrapper<Object>(new Object());
Wrapper<String> stringWrapper =

new Wrapper<String>("Hello");
WrapperUtil.copy(stringWrapper, objectWrapper);

// <- A compile-time error

This code will generate a compile-time error because the copy () method requires
the source and the dest arguments be of the same type. However, for all practical
purposes, a String is always an Object. Here, you need to use a lower-bounded
wildcard, as shown:

public class WrapperUtil {
// New definition of the copy() method
public static <T> void
copy (Wrapper<T> source, Wrapper<? super T> dest){
T value = source.get();
dest.set(value);

Now you are saying that the dest argument of the copy () method could be either T,
same as source, or any of its supertype. You can use the copy() method to copy the
contents of a Wrapper<String> to a Wrapper<Object> as follows:

160

CHAPTER 3 GENERICS

Wrapper<Object> objectWrapper =

new Wrapper<Object>(new Object());
Wrapper<String> stringWrapper =

new Wrapper<String>("Hello");
WrapperUtil.copy(stringWrapper, objectWrapper);

// <- OK with the new copy() method

Since Object is the supertype of String, the new copy() method will work. However,

you cannot use it to copy from an Object type wrapper to a String type wrapper,

because “an Object is a String” is not always true. Listing 3-4 shows the complete code
for the WrapperUtil class.

Listing 3-4. A WrapperUtil Utility Class That Works with Wrapper Objects

// WrapperUtil.java

package com.jdojo.generics;
public class WrapperUtil {
public static void printDetails(Wrapper<?> wrapper) {

}

// Can assign get() return value to Object
Object value = wrapper.get();
String className = null;
if (value != null) {
className = value.getClass().getName();

}
System.out.println("Class:

+ className);

System.out.println("Value: " + value);

public static double sum(Wrapper<? extends Number> ni,

Wrapper<? extends Number> n2) {
Number numl = nl.get();
Number num2 = n2.get();
double sum = numi.doubleValue() +
num2.doubleValue();
return sum;

161

CHAPTER 3 GENERICS

public static <T> void copy(Wrapper<T> source,
Wrapper<? super T> dest) {
T value = source.get();
dest.set(value);

Listing 3-5 shows you how to use the Wrapper and WrapperUtil classes.

Listing 3-5. Using the WrapperUtil Class

// WrapperUtilTest.java
package com.jdojo.generics;

public class WrapperUtilTest {

public static void main(String[] args) {
Wrapper<Integer> n1 = new Wrapper<>(10);
Wrapper<Double> n2 = new Wrapper<>(15.75);
// Print the details
WrapperUtil.printDetails(n1);
WrapperUtil.printDetails(n2);
// Add numeric values in two WrapperUtil
double sum = WrapperUtil.sum(ni, n2);

System.out.println("sum: " + sum);

// Copy the value of a Wrapper<Double> to a

// Wrapper<Number>

Wrapper<Number> holder = new Wrapper<>(45);

System.out.println("Original holder: " +
holder.get());

WrapperUtil.copy(n2, holder);

System.out.println("After copy holder: " +

holder.get());

162

CHAPTER 3 GENERICS

Class: java.lang.Integer
Value: 10

Class: java.lang.Double
Value: 15.75

sum: 25.75

Original holder: 45
After copy holder: 15.75

Generic Methods and Constructors

You can define type parameters in a method declaration. They are specified in angle
brackets before the return type of the method. The type that contains the generic method
declaration does not have to be a generic type, so you can have generic methods in a
non-generic type. It is also possible for a type and its methods to define different type
parameters.

Note Type parameters defined for a generic type are not available in static
methods of that type. Therefore, if a static method needs to be generic, it must
define its own type parameters. If a method needs to be generic, define just that
method as generic rather than defining the entire type as generic.

The following snippet of code defines a generic type Test with its type parameter
named T. It also defines a generic instance method m1() that defines its own generic type
parameter named V. The method also uses the type parameter T, which is defined by
its class. Note the use of <V> before the return type void of the m1() method. It defines a
new generic type named V for the method.

public class Test<T> {
public <V> void mi(Wrapper<V> a, Wrapper<V> b, T c) {
// Do something

163

CHAPTER 3 GENERICS

Can you think of the implication of defining and using the generic type parameter
V for the m1() method? Look at its use in defining the first and second parameters of
the method as Wrapper<V>. It forces the first and the second parameters to be of the
same type. The third argument must be of the same type T, which is the type of the class
instantiation.

How do you specify the generic type for a method when you want to call the method?
Usually, you do not need to specify the actual type parameter when you call the method.
The compiler figures it out for you using the value you pass to the method. However, if
you ever need to pass the actual type parameter for the method’s formal type parameter,
you must specify it in angle brackets (< >) between the dot and the method name in the
method call, as shown:

Test<String> t = new Test<String>();
Wrapper<Integer> iwl =

new Wrapper<Integer>(new Integer(201));
Wrapper<Integer> iw2 =

new Wrapper<Integer>(new Integer(202));
// Specify that Integer is the actual type for the type
// parameter for mi()
t.<Integer>mi(iwl, iw2, "hello");
// Let the compiler figure out the actual type parameters
// using types for iwl and iw2
t.m1(iw1, iw2, "hello"); // OK

Listing 3-4 demonstrated how to declare a generic static method. You cannot refer to
the type parameters of the containing class inside the static method. A static method can
refer only to its own declared type parameters.

Here is the copy of your copy() static method from the WrapperUtil class. It defines
a type parameter T, which is used to constrain the type of arguments source and dest:

public static <T> void copy(Wrapper<T> source,
Wrapper<? super T> dest) {
T value = source.get();
dest.set(value);

164

CHAPTER 3 GENERICS

The compiler will figure out the actual type parameter for a method whether the
method is non-static or static. However, if you want to specify the actual type parameter
for a static method call, you can do so as follows:

WrapperUtil.<Integer>copy(iwl, iw2);

You can also define type parameters for constructors the same way as you do for
methods. The following snippet of code defines a type parameter U for the constructor
of class Test. It places a constraint that the constructor’s type parameter U must be the
same or a subtype of the actual type of its class type parameter T:

public class Test<T> {
public <U extends T> Test(U k) {
// Do something

The compiler will figure out the actual type parameter passed to a constructor by
examining the arguments you pass to the constructor. If you want to specify the actual
type parameter value for the constructor, you can specify it in angle brackets between the
new operator and the name of the constructor, as shown in the following snippet of code:

// Specify the actual type parameter for the constructor
// as Double
Test<Number> t1 = new <Double>Test<Number>(

new Double(12.89));
// Let the compiler figure out that we are using Integer
// as the actual type parameter for the constructor
Test<Number> t2 = new Test<Number>(new Integer(123));

Type Inference in Generic Object Creation

In many cases, the compiler can infer the value for the type parameter in an object
creation expression when you create an object of a generic type. Note that the type
inference support in the object creation expression is limited to the situations where the
type is obvious. Consider the following statement:

List<String> list = new ArraylList<String>();

165

CHAPTER 3 GENERICS

With the declaration of list as List<String>, it is obvious that you want to create
an ArraylList with the type parameter as <String>. In this case, you can specify empty
angle brackets, <> (known as the diamond operator or simply the diamond), as the type
parameter for ArraylList. You can rewrite this statement as shown:

List<String> list = new ArraylList<>();

Note that if you do not specify a type parameter for a generic type in an object
creation expression, the type is the raw type, and the compiler generates unchecked
warnings. For example, the following statement will compile with an unchecked

warning:

// Using ArraylList as a raw type, not a generic type
List<String> list = new Arraylist(); // Generates an
// unchecked warning
warning: [unchecked] unchecked conversion
List<String> list = new Arraylist();
A

required: List<String>

found: Arraylist
1 warning

Sometimes, the compiler cannot correctly infer the parameter type of a type in
an object creation expression. In those cases, you need to specify the parameter type
instead of using the diamond operator (<>). Otherwise, the compiler will infer a wrong
type, which will generate an error.

When the diamond operator is used in an object creation expression, the compiler
uses a four-step process to infer the parameter type for the parameterized type. Let’s
consider a typical object creation expression:

T1<T2> var = new T3<>(constructor-arguments);
1. First, it tries to infer the type parameter from the static type of the
constructor arguments. Note that constructor arguments may be

empty, for example, new ArraylList<>().If the type parameter is
inferred in this step, the process continues to the next step.

166

CHAPTER 3 GENERICS

2. Ttuses the left side of the assignment operator to infer the type. In
the previous statement, it will infer T2 as the type if the constructor
arguments are empty. Note that an object creation expression may
not be part of an assignment statement. In such cases, it will use
the next step.

3. Ifthe object creation expression is used as an actual parameter for
amethod call, the compiler tries to infer the type by looking at the
type of the formal parameter for the method being called.

4. Ifall else fails and it cannot infer the type using these steps, it
infers Object as the type parameter.

Let’s discuss a few examples that involve all steps in the type inference process.
Create the two lists, 1ist1 of List<String> type and list2 of List<Integer> type:

import java.util.Arrays;

import java.util.list;

// More code goes here...

List<String> list1 = Arrays.asList("A", "B");
List<Integer> list2 = Arrays.asList(9, 19, 1969);

Consider the following statement that uses the diamond operator:

List<String> list3 = new Arraylist<>(list1);
// <- Inferred type is String

The compiler used the constructor argument 1ist1 to infer the type. The static type
of list1is List<String>, so the type String was inferred by the compiler. The previous
statement compiles fine. The compiler did not use the left side of the assignment
operator, List<String> list3, during the inference process. You may not trust this
argument. Consider the following statement to prove this:

List<String> list4 = new ArraylList<>(list2);
// <- A compile-time error

required: List<String>
found: ArraylList<Integer>
1 error

167

CHAPTER 3 GENERICS

Do you believe it now? The constructor argument is 1ist2 whose static type is
List<Integer>. The compiler inferred the type as Integer and replaced ArrayList<>
with Arraylist<Integer>. The type of variable 1ist4 is List<String>, which is not
assignment compatible with the ArrayList<Integer>, which resulted in the compile-
time error.

Consider the following statement:

List<String> list5 = new ArraylList<>();
// <- Inferred type is String

This time, there is no constructor argument. The compiler uses the second step to
look at the left side of the assignment operator to infer the type. On the left side, it finds
List<String>, and it correctly infers the type as String. Consider a process () method
that is declared as follows:

public static void process(List<String> list) {
// Code goes here

The following statement makes a call to the process () method, and the inferred type
parameter is String:

// The inferred type is String
process(new ArraylList<>());

The compiler looks at the type of the formal parameter of the process () method,
finds List<String>, and infers the type as String.

Note Using the diamond operator saves some typing. Use it when the type
inference is obvious. However, it is better, for readability, to specify the type,
instead of the diamond operator, in a complex object creation expression. Always
choose readability over brevity.

JDK9 added support for the diamond operator in anonymous classes if the inferred
types are denotable. You cannot use the diamond operator with anonymous classes—
even in JDK9 or later—if the inferred types are non-denotable. The Java compiler

168

CHAPTER 3 GENERICS

uses types that cannot be written in Java programs. Types that can be written in Java
programs are known as denotable types. Types that the compiler knows but cannot
be written in Java programs are known as non-denotable types. For example, String
is a denotable type because you can use it in programs to denote a type; however,
Serializable & CharSequence is not a denotable type, even though it is a valid type
for the compiler. It is an intersection type that represents a type that implements both
interfaces, Serializable and CharSequence. Intersection types are allowed in generic
type definitions, but you cannot declare a variable using this intersection type:

// Not allowed in Java code. Cannot declare a variable

// of an intersection type.

Serializable & CharSequence var;

// Allowed in Java code

class Magic<T extends Serializable & CharSequence> {
// More code goes here

Java contains a generic Callable<V> interface in the java.util.concurrent
package. It is declared as follows:

public interface Callable<V> {
V call() throws Exception;

In JDK9 and later, the compiler will infer the type parameter for the anonymous class
as Integer in the following snippet of code:

// A compile-time error in JIDK8, but allowed in JDK9.
Callable<Integer> c = new Callable<>() {
@0verride
public Integer call() {
return 100;

};

169

CHAPTER 3 GENERICS

No Generic Exception Classes

Exceptions are thrown at runtime. The compiler cannot ensure the type-safety of
exceptions at runtime if you use a generic exception class in a catch clause, because the
erasure process erases the mention of any type parameter during compilation. This is
the reason that it is a compile-time error to attempt to define a generic class, which is a
direct or indirect subclass of java.lang.Throwable.

No Generic Anonymous Classes

An anonymous class is a one-time class. You need a class name to specify the actual
type parameter. An anonymous class does not have a name. Therefore, you cannot

have a generic anonymous class. However, you can have generic methods inside an
anonymous class. Your anonymous class can inherit a generic class. An anonymous
class can implement generic interfaces. Any class, except an exception type, enums, and
anonymous inner classes, can have type parameters.

Generics and Arrays

Let’s look at the following code for a class called GenericArrayTest:

public class GenericArrayTest<T> {
private T[] elements;
public GenericArrayTest(int howMany) {
elements = new T[howMany]; // A compile-time error

}

// More code goes here

The GenericArrayTest class declares a type parameter T. In the constructor, it
attempts to create an array of the generic type. You cannot compile the previous code.
The compiler will complain about the following statement:

elements = new T[howMany]; // A compile-time error

170

CHAPTER 3 GENERICS

Recall that all references to the generic type parameter are erased from the code
when a generic class or code using it is compiled. An array needs to know its type when
itis created, so that it can perform a check at runtime when an element is stored in it to
make sure that the element is assignment compatible with the array type. An array’s type
information will not be available at runtime if you use a type parameter to create the
array. This is the reason that the statement is not allowed.

You cannot create an array of a generic type because the compiler cannot ensure the
type-safety of the assignment to the array element. You cannot write the following code:

Wrapper<String>[] gsArray = null;
// Cannot create an array of generic type
gsArray = new Wrapper<String>[10]; // A compile-time error

It is allowed to create an array of unbounded wildcard generic types, as shown:
Wrapper<?>[] anotherArray = new Wrapper<?>[10]; // Ok

Suppose you want to use an array of a generic type. You can do so by using the
newInstance() method of the java.lang.reflect.Array class as follows. You will have
to deal with the unchecked warnings at compile time because of the cast used in the
array creation statement. The following snippet of code shows that you can still bypass
the compile-time type-safety check when you try to sneak in an Object into an array of
Wrapper<String>. However, this is the consequence you have to live with when using
generics, which does not carry its type information at runtime. Java generics are as skin-
deep as you can imagine.

Wrapper<String>[] a = (Wrapper<String>[]) Array.
newInstance(Wrapper.class, 10);
Object[] objArray = (Object[]) a;
objArray[0] = new Object();
// <- Will throw a java.lang.
// ArrayStoreExceptionxception
a[0] = new Wrapper<String>("Hello");
// <- OK. Checked by compiler

171

CHAPTER 3 GENERICS

Runtime Class Type of Generic Objects

What is the class type of the object for a parameterized type? Consider the program in
Listing 3-6.

Listing 3-6. All Objects of a Parameterized Type Share the Same Class at
Runtime

// GenericsRuntimeClassTest.java
package com.jdojo.generics;
public class GenericsRuntimeClassTest {
public static void main(String[] args) {
Wrapper<String> a =
new Wrapper<String>("Hello");
Wrapper<Integer> b =
new Wrapper<Integer>(new Integer(123));

Class aClass = a.getClass();

Class bClass = b.getClass();

System.out.println("Class for a: " +
aClass.getName());

System.out.println("Class for b: " +
bClass.getName());

System.out.println("aClass == bClass: " +
(aClass == bClass));

}

Class for a: com.jdojo.generics.Wrapper
Class for b: com.jdojo.generics.Wrapper
aClass == bClass: true

The program creates objects of the Wrapper<String> and Wrapper<Integer>. It
prints the class names for both objects, and they are the same. The output shows that all
parameterized objects of the same generic type share the same class object at runtime.
As mentioned earlier, the type information you supply to the generic type is removed
from the code during compilation. The compiler changes the Wrapper<String> a;
statement to Wrapper a;. For the JVM, it’s business as usual (before generics)!

172

CHAPTER 3 GENERICS

Heap Pollution

Representing a type at runtime is called reification. A type that can be represented at
runtime is called a reifiable type. A type that is not completely represented at runtime
is called a non-reifiable type. Most generic types are non-reifiable because generics are
implemented using erasure, which removes the type’s parameter information at compile
time. For example, when you write Wrapper<String>, the compiler removes the type
parameter <String>, and the runtime sees only Wrapper instead of Wrapper<String>.
Heap pollution is a situation that occurs when a variable of a parameterized type
refers to an object not of the same parameterized type. The compiler issues an unchecked
warning if it detects possible heap pollution. If your program compiles without any
unchecked warnings, heap pollution will not occur. Consider the following snippet of code:

Wrapper nWrapper = new Wrapper<Integer>(101); /1 #1
// Unchecked warning at compile-time and heap pollution
// at runtime
Wrapper<String> sWrapper = nWrapper; // #2
String str = sWrapper.get(); /1 #3
// ClassCastException

The first statement (labeled #1) compiles fine. The second statement (labeled #2)
generates an unchecked warning because the compiler cannot determine if nWrapper
is of the type Wrapper<String>. Since parameter type information is erased at compile
time, the runtime has no way of detecting this type mismatch. The heap pollution in the
second statement makes it possible to get a ClassCastException in the third statement
(labeled #3) at runtime. If the second statement was not allowed, the third statement will
not cause a ClassCastException

Heap pollution may also occur because of an unchecked cast operation. Consider
the following snippet of code:

Wrapper<? extends Number> nW = new Wrapper<Long>(1L); // #1
// Unchecked cast and unchecked warning occurs when the
// following statement #2 is compiled. Heap pollution
// occurs, when it is executed.
Wrapper<Short> sw = (Wrapper<Short>) nW; // #2
short s = sw.get(); // #3
// ClassCastException

173

CHAPTER 3 GENERICS

The statement labeled #2 uses an unchecked cast. The compiler issues an unchecked
warning. At runtime, it leads to heap pollution. As a result, the statement labeled #3
generates a runtime ClassCastException.

Varargs Methods and Heap Pollution Warnings

Java implements the varargs parameter of a varargs method by converting the varargs
parameter into an array. If a varargs method uses a generic type varargs parameter, Java
cannot guarantee the type-safety. A non-reifiable generic type varargs parameter may
possibly lead to heap pollution. Consider the following snippet of code that declares a
process() method with a parameterized type parameter. The comments in the method’s
body indicate the heap pollution and other types of problems:

public static void process(Wrapper<Long>...nums) {
Object[] obj = nums; // Heap pollution
obj[0] = new Wrapper<>("Hello"); // An array
// corruption
Long 1v = nums[0].get(); // A ClassCastException
// Other code goes here

Note You need to use the -X1int:unchecked,varargs option with the javac
compiler to see the unchecked and varargs warnings.

When the process() method is compiled, the compiler removes the type
information <Long> from its parameterized type parameter and changes its signature
to process(Wrapper[] nums).When you compile the declaration of the process()
method, you get the following unchecked warning:

warning: [unchecked] Possible heap pollution from
parameterized vararg type Wrapper<Long>
public static void process(Wrapper<Long>...nums) {

A

1 warning

174

CHAPTER 3 GENERICS
Consider the following snippet of code that calls the process () method:

Wrapper<Long> v1 = new Wrapper<>(10L);
Wrapper<Long> v2 = new Wrapper<>(11L);
process(vl, v2); // An unchecked warning

When this snippet of code is compiled, it generates the following compiler
unchecked warning:

warning: [unchecked] unchecked generic array creation for
varargs parameter of type
Wrapper<Long>[]
process(vl, v2);

N

1 warning

Warnings are generated at the method declaration as well as at the location of the
method call. If you create such a method, it is your responsibility to ensure that heap
pollution does not occur inside your method’s body.

If you create a varargs method with a non-reifiable type parameter, you can suppress
the unchecked warnings at the location of the method’s declaration as well as the
method’s call by using the @SafeVarargs annotation. By using @SafeVarargs, you are
asserting that your varargs method with non-reifiable type parameter is safe to use.

The following snippet of code uses the @SafeVarargs annotation with the process ()
method:

@SafeVarargs
public static void process(Wrapper<Long>...nums) {
Object[] obj = nums;
// <- Heap pollution
obj[0] = new Wrapper<String>("Hello");
// <- An array corruption
Long 1v = nums[0].get();
// <- A ClassCastException
// Other code goes here

175

CHAPTER 3 GENERICS

When you compile this declaration of the process() method, you do not get an
unchecked warning. However, you get the following varargs warning because the
compiler sees possible heap pollution when the varargs parameter nums is assigned to
the Object array obj:

warning: [varargs] Varargs method could cause heap
pollution from non-reifiable varargs
parameter nums
Object[] obj = nums;

N

1 warning

You can suppress the unchecked and varargs warnings for a varargs method with a
non-reifiable type parameter by using the @SuppressWarnings annotation as follows:

@SuppressWarnings({"unchecked", "varargs"})
public static void process(Wrapper<Long>...nums) {
// Code goes here

Note that when you use the @SuppressWarnings annotation with a varargs method, it
suppresses warnings only at the location of the method’s declaration, not at the locations
where the method is called.

Summary

Generics are the Java language features that allow you to declare types (classes and
interfaces) that use type parameters. Type parameters are specified when the generic
type is used. The type when used with the actual type parameter is known as a
parameterized type. When a generic type is used without specifying its type parameters,
itis called a raw type. For example, if Wrapper<T> is a generic class, Wrapper<String> is
a parameterized type with String as the actual type parameter and Wrapper as the raw
type. Type parameters can also be specified for constructors and methods. Generics
allow you to write true polymorphic code in Java code using a type parameter that works
for all types.

176

CHAPTER 3 GENERICS

By default, a type parameter is unbounded, meaning that you can specify any
type for the type parameter. For example, if a class is declared with a type parameter
<T>, you can specify any type available in Java, such as <String>, <Object>, <Person>,
<Employee>, <Integer>, etc., as the actual type for T. Type parameters in a type
declaration can also be specified as having upper bounds or lower bounds. The
declaration Wrapper<U extends Person> is an example of specifying an upper bound
for the type parameter U that specifies that U can be of a type that is Person or a subtype
of Person. The declaration Wrapper<?super Person> is an example of specifying a lower
bound; it specifies that the type parameter is the type Person or a supertype of Person.

Java also lets you specify the wildcard, which is a question mark, as the actual type
parameter. A wildcard as the actual parameter means the actual type parameter is
unknown; for example, Wrapper<?> means that the type parameter T for the generic type
Wrapper<T> is unknown.

The compiler attempts to infer the type of an expression using generics, depending
on the context in which the expression is used. If the compiler cannot infer the type, it
generates a compile-time error, and you will need to specify the type explicitly.

The supertype-subtype relationship does not exist with parameterized types. For
example, Wrapper<Long> is not a subtype of Wrapper<Number>.

The generic type parameters are erased by the compiler using a process called
type erasure. Therefore, the generic type parameters are not available at runtime. For
example, the runtime type of Wrapper<Long> and Wrapper<String> are the same, which
is Wrapper.

Exercises

Exercise 1

What are generics (or generic types), parameterized types, and raw types? Give an
example of a generic type and its parameterized type.

Exercise 2

The Number class is the superclass of the Long class. The following snippet of code
does not compile. Explain.

List<Number> listi= new Arraylist<>();
List<Long> list2= new ArraylList<>();
list1 = list2; // A compile-time error

177

CHAPTER 3 GENERICS

Exercise 3
Write the output when the following ClassNamePrinter class is run. Rewrite the
code for the print () method of this class after the compiler erases the type parameter T

during compilation:

// ClassNamePrinter.java
package com.jdojo.generics.exercises;
public class ClassNamePrinter {
public static void main(String[] args) {
ClassNamePrinter.print(10);
ClassNamePrinter.print(1oL);
ClassNamePrinter.print(10.2);
}
public static <T extends Number> void
print(T obj) {
String className = obj.getClass().

getSimpleName();
System.out.println(className);
}
}
Exercise 4
What are unbounded wildcards? Why does the following snippet of code not
compile?

List<?> list = new ArraylList<>();
list.add("Hello"); // A compile-time error

Exercise 5
Consider the following incomplete declaration of the Util class:

// Util.java
package com.jdojo.generics.exercises;

import java.lang.reflect.Array;
import java.util.Arraylist;
import java.util.Arrays;

import java.util.list;

178

CHAPTER 3

public class Util {
public static void main(String[] args) {

}

Integer[] n1 = {1, 2};

Integer[] n2 = {3, 4};

Integer[] m = merge(ni, n2);
System.out.println(Arrays.toString(m));
String[] s1 = {"one", "two"};

String[] s2 = {"three", "four"};
String[] t = merge(s1, s2);
System.out.println(Arrays.toString(t));
List<Number> list = new ArraylList<>();
add(list, 10, 20, 30L, 40.5F, 50.9);
System.out.println(list);

public static <T> T[] merge(T[] a, T[] b) {

}

public static /* Add type parameters here */ void
add(List<T> list, U... elems) {

/* Your code to add elems to list goes here */

GENERICS

Complete the body of the merge () method, so it can concatenate the two arrays

passed in as its parameters and return the concatenated array. Complete the add()

method by specifying its type parameters and adding the code in its body. The first

parameter to the method is a parameterized List<T>, and the second parameter is a

varargs parameter of the type T or its descendant. That is, the second parameter type
is any type whose objects can be added to the List<T>. Running the Util class should
produce the following output:

[1J 2) 3’ 4]
[one, two, three, four]
[10, 20, 30, 40.5, 50.9]

179

CHAPTER 3 GENERICS

Exercise 6

Create a generic Stack<E> class. Its objects represent a stack that can store elements
of its type parameter E. The following is a template for the class. You need to provide
implementation for all its methods. Write test code to test all methods. Method names
are standard method names for a stack. Any illegal access to the stack should throw a
runtime exception.

// Stack.java
package com.jdojo.generics.exercises;
import java.util.linkedlist;
import java.util.list;
public class Stack<E> {
// Use LinkedlList instead of Arraylist
private final List<E> stack = new LinkedlList<>();
public void push(E e) {}
public E pop() { }
public E peek() { }
public boolean iskmpty() { }
public int size() { }

Exercise 7

What is heap pollution? What types of warnings does the compiler generate when
it detects a possibility of heap pollution? How do you print such warnings during
compilation? How do you suppress such warnings?

Exercise 8

Describe the reasons that the following declaration of the Test class does not
compile:

public class Test {
public <T> void test(T t) {
// More code goes here

}
public <U> void test(U u) {

// More code goes here

180

CHAPTER 3 GENERICS

}public class Test {
public <T> void test(T t) {
// More code goes here

}
public <U> void test(U u) {

// More code goes here

181

CHAPTER 4

Lambda Expressions

In this chapter, you will learn:
¢ What lambda expressions are
o Why we need lambda expressions
e The syntax for defining lambda expressions
o Target typing for lambda expressions
o Commonly used built-in functional interfaces
e Method and constructor references
o Lexical scoping of lambda expressions
All example programs in this chapter are a member of a jdojo.lambda module, as

declared in Listing 4-1.

Listing 4-1. The Declaration of a jdojo.lambda Module

// module-info.java
module jdojo.lambda {
exports com.jdojo.lambda;

What Is a Lambda Expression?

Alambda expression is an unnamed block of code (or an unnamed function) with a list
of formal parameters and a body. Sometimes, a lambda expression is simply called a
lambda. The body of a lambda expression can be a block statement or an expression.

183
© Kishori Sharan, Peter Spdth 2021

K. Sharan and P. Spéth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_4

https://doi.org/10.1007/978-1-4842-7135-3_4#DOI

CHAPTER 4 LAMBDA EXPRESSIONS

An arrow (->) is used to separate the list of parameters and the body. The term “lambda”
has its origin in Lambda calculus that uses the Greek letter lambda (1lambda) to denote a
function abstraction. The following are some examples of lambda expressions in Java:

// Takes an int parameter and returns the parameter value
// incremented by 1
(int x) -> x + 1
// Takes two int parameters and returns their sum
(int x, int y) -> x +y
// Takes two int parameters and returns the maximum of
// the two
(int x, inty) -> { intmax = x >y ? x : y;
return max;

}
// Takes no parameters and returns void
0 ->1{}
// Takes no parameters and returns a string "OK"
() -> "ok"
// Takes a String parameter and prints it on the standard
// output
(String msg) -> { System.out.println(msg); }
// Takes a parameter and prints it on the standard output
msg -> System.out.println(msg)
// Takes a String parameter and returns its length
(String str) -> str.length()

At this point, you will not be able to understand the syntax of lambda expressions
completely. I cover the syntax in detail shortly. For now, just get the feel of it, keeping
in mind that the syntax for lambda expressions is similar to the syntax for declaring
methods.

Note A lambda expression is not a method, although its declaration looks similar
to a method. As the name suggests, a lambda expression is an expression that
represents an instance of a functional interface.

184

CHAPTER 4 LAMBDA EXPRESSIONS

Every expression in Java has a type, and so does a lambda expression. The type of
alambda expression is a functional interface type. When the abstract method of the
functional interface is called, the body of the lambda expression is executed. Consider
the lambda expression that takes a String parameter and returns its length:

(String str) -> str.length()

What is the type of this lambda expression? The answer is that we do not know. By
looking at the lambda expression, all you can say is that it takes a String parameter
and returns an int, which is the length of the String parameter. Its type can be any
functional interface type with an abstract method that takes a String as a parameter and
returns an int. The following is an example of such a functional interface:

@FunctionalInterface
interface StringToIntMapper {
int map(String str);

The lambda expression represents an instance of the StringToIntMapper functional
interface when it appears in the assignment statement, like so:

StringToIntMapper mapper =
(String str) -> str.length();

In this statement, the compiler finds that the right side of the assignment operator
is a lambda expression. To infer its type, it looks at the left side of the assignment
operator that expects an instance of the StringToIntMapper interface; it verifies
that the lambda expression conforms to the declaration of the map() method in the
StringToIntMapper interface; finally, it infers that the type of the lambda expression is
the StringToIntMapper interface type. When you call the map() method on the mapper
variable passing a String, the body of the lambda expression is executed as shown in the
following snippet of code:

StringToIntMapper mapper = (String str) -> str.length();
String name = "Kristy";
int mappedValue = mapper.map(name);

System.out.println("name=" + name +

, mapped value=" + mappedValue);

name=Kristy, mapped value=6

185

CHAPTER 4 LAMBDA EXPRESSIONS

So far, you have not seen anything that you could not do in Java without using
lambda expressions. The following snippet of code uses an anonymous class to achieve
the same result as the lambda expression used in the previous example:

StringToIntMapper mapper = new StringToIntMapper() {
@verride
public int map(String str) {
return str.length();

}s
String name = "Kristy";
int mappedValue = mapper.map(name);

System.out.println("name=" + name +

, mapped value=" + mappedValue);
name=Kristy, mapped value=6

At this point, a lambda expression may seem to be a concise way of writing an
anonymous class, which is true as far as the syntax goes. There are some subtle
differences in semantics between the two. I discuss those differences when I discuss
more details later.

Note Javais a strongly typed language, which means that the compiler must
know the type of all expressions used in a Java program. A lambda expression

by itself does not have a type, and, therefore, it cannot be used as a standalone
expression. The type of a lambda expression is always inferred by the compiler by
the context in which it is used.

Why Do We Need Lambda Expressions?

Java has supported object-oriented programming since the beginning. In object-oriented
programming, the program logic is based on mutable objects. Methods of classes
contain the logic. Methods are invoked on objects, which typically modify objects’

states. In object-oriented programming, the order of method invocation matters as each
method invocation may potentially modify the state of the object, thus producing side

186

CHAPTER 4 LAMBDA EXPRESSIONS

effects. Static analysis of the program logic is difficult as the program state depends on
the order in which the code will be executed. Programming with mutating objects also
poses a challenge in concurrent programming in which multiple parts of the program

may attempt to modify the state of the same object concurrently.

As the processing power of computers has increased in recent years, so has the
amount of data to be processed. Nowadays, it is common to process data as big as
terabytes in size, requiring the need for parallel programming. Now it is common for
computers to have a multicore processor that gives users the opportunity to run software
programs faster; at the same time, this poses a challenge to programmers to write more
parallel programs, taking advantage of all the available cores in the processor. Java has
supported concurrent programming since the beginning. It added support for parallel
programming in Java 7 through the fork/join framework, which was not easy to use.

Functional programming, which is based on Lambda calculus, existed long before
object-oriented programming. It is based on the concept of functions, a block of code
that accepts values, known as parameters, and the block of code is executed to compute
aresult. A function represents a functionality or operation. Functions do not modify
data, including its input, thus producing no side effects; for this reason, the order of
the execution of functions does not matter in functional programming. In functional
programming, a higher-order function is an anonymous function that can be treated as
a data object. That is, it can be stored in a variable and passed around from one context
to another. It might be invoked in a context that did not necessarily define it. Note that
a higher-order function is an anonymous function, so the invoking context does not
have to know its name. A closure is a higher-order function packaged with its defining
environment. A closure carries with it the variables in scope when it was defined, and it
can access those variables even when it is invoked in a context other than the context in
which those variables were defined.

In recent years, functional programming has become popular because of
its suitability in concurrent, parallel, and event-driven programming. Modern
programming languages such as C#, Groovy, Python, and Scala support functional
programming. Java did not want to be left behind, and, hence, it introduced lambda
expressions to support functional programming, which can be mixed with its already
popular object-oriented features to develop robust, concurrent, parallel programs. Java
adopted the syntax for lambda expressions that is very similar to the syntax used in other
programming languages, such as C# and Scala.

187

CHAPTER 4 LAMBDA EXPRESSIONS

In object-oriented programming, a function is called a method, and it is always
part of a class. If you wanted to pass functionality around in Java, you needed to create
a class, add a method to the class to represent the functionality, create an object of the
class, and pass the object around. A lambda expression in Java is like a higher-order
function in functional programming, which is an unnamed block of code representing a
functionality that can be passed around like data. A lambda expression may capture the
variables in its defining scope, and it may access those variables later in a context that
did not define the captured variable. These features let you use lambda expressions to
implement closures in Java.

So why and where do we need lambda expressions? Anonymous classes use a
bulky syntax. Lambda expressions use a very concise syntax to achieve the same
result. Lambda expressions are not a complete replacement for anonymous classes.
You will still need to use anonymous classes in a few situations. Just to appreciate the
conciseness of the lambda expressions, compare the following two statements from the
previous section that create an instance of the StringToIntMapper interface; one uses an
anonymous class, taking six lines of code, and another uses alambda expression, taking
just one line of code:

// Using an anonymous class
StringToIntMapper mapper = new StringToIntMapper() {
@0verride
public int map(String str) {
return str.length();

b5
// Using a lambda expression
StringToIntMapper mapper = (String str) -> str.length();

Syntax for Lambda Expressions

A lambda expression describes an anonymous function. The general syntax for using
lambda expressions is very similar to declaring a method. The general syntax is

(<LambdaParametersList>) -> { <LambdaBody> }

188

CHAPTER 4 LAMBDA EXPRESSIONS

A lambda expression consists of a list of parameters and a body separated by an
arrow (->). The list of parameters is declared the same way as the list of parameters for
methods. The list of parameters is enclosed in parentheses, as is done for methods. The
body of a lambda expression is a block of code enclosed in braces. Like a method’s body,
the body of a lambda expression may declare local variables; use statements including
break, continue, and return; throw exceptions; etc. Unlike a method, a lambda
expression does not have the following four parts:

e Alambda expression does not have a name.

e Alambda expression does not have a return type. It is inferred by the
compiler from the context of its use and from its body.

e Alambda expression does not have a throws clause. It is inferred
from the context of its use and its body.

e Alambda expression cannot declare type parameters. That is, a
lambda expression cannot be generic.

Table 4-1 contains some examples of lambda expressions and equivalent methods. I
have given a suitable name to methods as you cannot have a method without a name in
Java. The compiler infers the return type of lambda expressions.

Table 4-1. Examples of Lambda Expressions and Equivalent Methods

Lambda Expression Equivalent Method

(int x, int y) -> { int sum(int x, int y) {
return x + y; return x + y;

} }

(Object x) -> { Object identity(Object x)
return x; return x;

} }

(continued)

189

CHAPTER 4 LAMBDA EXPRESSIONS

Table 4-1. (continued)

Lambda Expression

Equivalent Method

(int x, int y) -> {
if (x >y)
return x;
} else {
return y;
}
}

(String msg) -> {
System.out.println(msg);
}

0 ->{

System.out.println(LocalDate.

now());
}

0 ->{

// No code goes here

}

int getMax(int x, int y) {
if (x > y)
return x;
} else {
return y;
}
}

void print(String msg) {
System.out.println(msg);
}

void printCurrentDate() {
System.out.println(LocalDate.

now());
}

void doNothing() {
// No code goes here

}

One of the goals of lambda expressions is to keep its syntax concise and let the

compiler infer the details. The following sections discuss the shorthand syntax for

declaring lambda expressions.

Omitting Parameter Types

You can omit the declared type of the parameters. The compiler will infer the types of

parameters from the context in which the lambda expression is used:

// Types of parameters are declared
(int x, int y) -> { return x +y; }
// Types of parameters are omitted

(x, y) -> { return x +vy; }

190

CHAPTER 4 LAMBDA EXPRESSIONS

If you omit the types of parameters, you must omit it for all parameters or for none.
You cannot omit for some and not for others. The following lambda expression will not
compile because it declares the type of one parameter and omits for the other:

// A compile-time error
(int x, y) -> { return x + y; }

Note A lambda expression that does not declare the types of its parameters is
known as an implicit lambda expression or an implicitly typed lambda expression.
A lambda expression that declares the types of its parameters is known as an
explicit lambda expression or an explicitly typed lambda expression.

Using Local Variable Syntax for Parameters

You can use the local variable syntax for the parameters in a lambda expression:

// A compile-time error
(var x, var y) -> { return x +vy; }

The compiler will infer the types of parameters from the context in which the lambda
expression is used, and it will remember each variable’s type. The local variable syntax
for lambda expression parameters was added to Java in JDK11.

Declaring a Single Parameter

Sometimes, a lambda expression takes only one parameter. You can omit the parameter
type for a single parameter lambda expression as you can do for a lambda expression
with multiple parameters. You can also omit the parentheses if you omit the parameter
type in a single parameter lambda expression. The following are three ways to declare a
lambda expression with a single parameter:

// Declares the parameter type

(String msg) -> { System.out.println(msg); }
// Omits the parameter type

(msg) -> { System.out.println(msg); }

// Omits the parameter type and parentheses
msg -> { System.out.println(msg); }

191

CHAPTER 4 LAMBDA EXPRESSIONS

The parentheses can be omitted only if the single parameter also omits its type. The
following lambda expression will not compile:

// Omits parentheses, but not the parameter type, which is not allowed.
String msg -> { System.out.println(msg); }

Declaring No Parameters

If alambda expression does not take any parameters, you need to use empty
parentheses:

// Takes no parameters
() -> { System.out.println("Hello"); }

It is not allowed to omit the parentheses when the lambda expression takes no
parameter. The following declaration will not compile:

-> { System.out.println("Hello"); }

Parameters with Modifiers

You can use modifiers, such as final, in the parameter declaration for explicit lambda
expressions. The following two lambda expressions are valid:

(final int x, final int y) -> { return x +vy; }
(int x, final int y) -> { return x + y; }

The following lambda expression will not compile because it uses the final modifier
in parameter declarations, but omits the parameter type:

(final x, final y) -> { return x + y; }

Declaring the Body of Lambda Expressions

The body of a lambda expression can be a block statement or a single expression. A block
statement is enclosed in braces; a single expression is not enclosed in braces.

The body of alambda expression is executed the same way as a method’s body. A
return statement or the end of the body returns the control to the caller of the lambda
expression.

192

CHAPTER 4 LAMBDA EXPRESSIONS

When an expression is used as the body, it is evaluated and returned to the caller.
If the expression evaluates to void, nothing is returned to the caller. The following
two lambda expressions are the same; one uses a block statement and the other an

expression:

/ Uses a block statement. Takes two int parameters and
// returns their sum.

(int x, int y) -> { return x + y; }

// Uses an expression. Takes two int parameters and

// returns their sum.

(int x, int y) -> x +y

The following two lambda expressions are the same; one uses a block statement as
the body and the other an expression that evaluates to void:

// Uses a block statement

(String msg) -> { System.out.println(msg); }
// Uses an expression

(String msg) -> System.out.println(msg)

Target Typing

Every lambda expression has a type, which is a functional interface type. In other words,
alambda expression represents an instance of a functional interface. Consider the
following lambda expression:

(X, y) -> x +y

What is the type of this lambda expression? In other words, an instance of which
functional interface does this lambda expression represent? We do not know the type of
this lambda expression at this point. All we can say about this lambda expression with
confidence is that it takes two parameters named x and y. We cannot tell its return type
as the expression x + y, depending on the type of x and y, may evaluate to a number
(int, long, float, or double) or a String. This is an implicit lambda expression, and,
therefore, the compiler has to infer the types of two parameters using the context in
which the expression is used. This lambda expression may be of different functional
interface types depending on the context in which it is used.

193

CHAPTER 4 LAMBDA EXPRESSIONS

There are two types of expressions in Java:
o Standalone expressions
o Poly expressions

A standalone expression is an expression whose type can be determined without
knowing the context of its use. The following are examples of standalone expressions:

// The type of expression is String

new String("Hello")

// The type of expression is String (a String literal
// is also an expression)

"Hello"

// The type of expression is Arraylist<String>

new ArraylList<String>()

A poly expression is an expression that has different types in different contexts. The
compiler determines the type. The contexts that allow the use of poly expressions are
known as poly contexts. All lambda expressions in Java are poly expressions. You must
use it in a context to know its type. For example, the expression new Arraylist<>() is
a poly expression. You cannot tell its type unless you provide the context of its use. This
expression is used in the following two contexts to represent two different types:

// The type of new ArraylList<>() is ArraylList<Long>
Arraylist<lLong> idlList = new ArraylList<>();

// The type of new ArraylList<>() is ArraylList<String>
Arraylist<String> namelist = new ArraylList<>();

The compiler infers the type of alambda expression. The context in which a lambda
expression is used expects a type, which is called the target type. The process of inferring
the type of alambda expression from the context is known as target typing. Consider
the following pseudocode for an assignment statement, where a variable of type T is
assigned a lambda expression:

T t = <LambdaExpression>;

The target type of the lambda expression in this context is T. The compiler uses the
following rules to determine whether the <LambdaExpression> is assignment compatible
with its target type T:

194

CHAPTER 4 LAMBDA EXPRESSIONS

e Tmustbe a functional interface type.

e Thelambda expression has the same number and type of
parameters as the abstract method of T. For an implicit lambda
expression, the compiler will infer the types of parameters from the
abstract method of T.

o The type of the returned value from the body of the lambda
expression is assignment compatible to the return type of the abstract
method of T.

o Ifthe body of the lambda expression throws any checked exceptions,
those exceptions must be compatible with the declared throws
clause of the abstract method of T. It is a compile-time error to throw
checked exceptions from the body of a lambda expression, if its target
type’s method does not contain a throws clause.

Let’s look at a few examples of target typing. Consider two functional interfaces,
Adder and Joiner, as shown in Listings 4-2 and 4-3, respectively.

Listing 4-2. A Functional Interface Named Adder

// Adder.java
package com.jdojo.lambda;
@FunctionalInterface
public interface Adder {
double add(double n1, double n2);

}

Listing 4-3. A Functional Interface Named Joiner

// Joiner.java
package com.jdojo.lambda;
@FunctionalInterface
public interface Joiner {
String join(String si1, String s2);

195

CHAPTER 4 LAMBDA EXPRESSIONS

The add() method of the Adder interface adds two numbers. The join() method
of the Joiner interface concatenates two strings. Both interfaces are used for trivial
purposes; however, they will serve the purpose of demonstrating the target typing for
lambda expressions very well. Consider the following assignment statement:

Adder adder = (x, y) -> x + y;

The type of the adder variable is Adder. The lambda expression is assigned to
the variable adder, and, therefore, the target type of the lambda expression is Adder.
The compiler verifies that Adder is a functional interface. The lambda expression is
an implicit lambda expression. The compiler finds that the Adder interface contains
adouble add(double, double) abstract method. It infers the types for x and y
parameters as double and double, respectively. At this point, the compiler treats this

statement as shown:

Adder adder = (double x, double y) -> x + y;
If you write

Adder adder = (var x, var y) -> X + y;

the compiler will again know from the context that x and y are doubles. So we again have
an implicit lambda expression. Compared to completely omitting the types the var name
syntax a little better expresses that for the lambda expressions local variables get created,
even though we are not interested in actually declaring the types.

The compiler now verifies the compatibility of the returned value from the lambda
expression and the return type of the add () method. The return type of the add()
method is double. The lambda expression returns x + y, which would be of a double as
the compiler already knows that the types of x and y are double. The lambda expression
does not throw any checked exceptions. Therefore, the compiler does not have to verify
anything for that. At this point, the compiler infers that the type of the lambda expression
is the type Adder.

Apply the rules of target typing for the following assignment statement:

Joiner joiner = (X, y) -> X +y;

This time, the compiler infers the type for the lambda expression as Joiner. Do you
see an example of a poly expression where the same lambda expression (x, y) -> x +y
is of the type Adder in one context and of the type Joiner in another?

Listing 4-4 shows how to use these lambda expressions in a program.

196

CHAPTER 4
Listing 4-4. Examples of Using Lambda Expressions

// TargetTypeTest.java
package com.jdojo.lambda;
public class TargetTypeTest {
public static void main(String[] args) {
// Creates an Adder using a lambda expression
Adder adder = (x, y) -> X + y;
// Creates a Joiner using a lambda expression
Joiner joiner = (x, y) -> X +y;
// Adds two doubles
double suml = adder.add(10.34, 89.11);
// Adds two ints
double sum2 = adder.add(10, 89);
// Joins two strings
String str = joiner.join("Hello", " lambda");
System.out.println("sumi = " + suml);
System.out.println("sum2 = " + sum2);

System.out.println("str = " + str);

}
}
suml = 99.45
sum2 = 99.0

str = Hello lambda

LAMBDA EXPRESSIONS

I now discuss the target typing in the context of method calls. You can pass lambda

expressions as arguments to methods. Consider the code for the LambdaUtil class shown

in Listing 4-5.

Listing 4-5. A LambdaUtil Class That Uses Functional Interfaces As an Argument

in Methods

// LambdaUtil.java
package com.jdojo.lambda;

197

CHAPTER 4 LAMBDA EXPRESSIONS

public class LambdaUtil {
public void testAdder(Adder adder) {
double x = 190.90;
double y = 8.50;
adder.add(x, y);
System.out.print("Using an Adder:");

System.out.println(x + " + " +y + " =" + sum);

double sum

}

public void testJoiner(Joiner joiner) {
String s1 = "Hello";
String s2 = "World";
String s3 = joiner.join(s1,s2);
System.out.print("Using a Joiner:");
System.out.printIn("\"" + s1 + "\" + \"" + s2 +
\" = \"" 4+ 53+ "\"");

The LambdaUtil class contains two methods: testAdder() and testJoiner(). One
method takes an Adder as an argument and another a Joiner as an argument. Both
methods have simple implementations. Consider the following snippet of code:

LambdaUtil util = new LambdaUtil();
util.testAdder((x, y) -> x +y);

The first statement creates an object of the LambdaUtil class. The second statement
calls the testAdder () method on the object, passing a lambda expression of (x, y) ->
X + Y. The compiler must infer the type of the lambda expression. The target type of the
lambda expression is the type Adder because the argument type of the testAdder (Adder
adder) is Adder. The rest of the target typing process is the same as you saw in the
assignment statement before. Finally, the compiler infers that the type of the lambda
expression is Adder.

The program in Listing 4-6 creates an object of the LambdaUtil class and calls the
testAdder() and testJoiner() methods.

198

CHAPTER 4 LAMBDA EXPRESSIONS

Listing 4-6. Using Lambda Expressions As Method Arguments

// LambdaUtilTest.java

package com.jdojo.lambda;

public class LambdaUtilTest {

public static void main(String[] args) {

LambdaUtil util = new LambdaUtil();
// Call the testAdder() method
util.testAdder((x, y) -> x +y);
// Call the testJoiner() method
util.testJoiner((x, y) -> x + y);
// Call the testJoiner() method. The Joiner will
// add a space between the two strings
util.testJoiner((x, y) -> x + +Y);
// Call the testJoiner() method. The Joiner will
// reverse the strings and join resulting

// strings in reverse order adding a comma in
//between
util.testJoiner((x, y) -> {
StringBuilder sbx = new StringBuilder(x);
StringBuilder sby = new StringBuilder(y);
sby.reverse().append(","
append(sbx.reverse());

return sby.toString();

1);
}
}
Using an Adder:190.9 + 8.5 = 199.4
Using a Joiner:"Hello" + "World" = "HelloWorld"
Using a Joiner:"Hello" + "World" = "Hello World"
Using a Joiner:"Hello" + "World" = "dlroW,olleH"

Notice the output of the LambdaUtilTest class. The testJoiner () method was
called three times, and every time it printed a different result of joining the two strings
“Hello” and “World”. This is possible because different lambda expressions were passed
to this method. At this point, you can say that you have parameterized the behavior of

199

CHAPTER 4 LAMBDA EXPRESSIONS

the testJoiner () method. That is, how the testJoiner () method behaves depends on
its parameter. Changing the behavior of a method through its parameters is known as
behavior parameterization. This is also known as passing code as data because you pass
code (logic, functionality, or behavior) encapsulated in lambda expressions to methods
as if it were data.

It is not always possible for the compiler to infer the type of a lambda expression. In
some contexts, there is no way the compiler can infer the type of alambda expression;
those contexts do not allow the use of lambda expressions. Some contexts may allow
using lambda expressions, but the use itself may be ambiguous to the compiler; one
such case is passing lambda expressions to overloaded methods.

Consider the code for the LambdaUtil2 class shown in Listing 4-7. The code for this
class is the same as for the LambdaUtil class in Listing 4-5, except that this class changed
the names of the two methods to the same name, test (), making it an overloaded method.

Listing 4-7. A LambdaUtil2 Class That Uses Functional Interfaces As an
Argument in Methods

// LambdaUtil2.java
package com.jdojo.lambda;
public class LambdaUtil2 {
public void test(Adder adder) {

double x = 190.90;

double y = 8.50;
adder.add(x, y);
System.out.print("Using an Adder:");

double sum

System.out.println(x + " + " +y + " =" + sum);
}
public void test(Joiner joiner) {
String s1 = "Hello";
String s2 = "World";
String s3 = joiner.join(s1,s2);
System.out.print("Using a Joiner:");
System.out.printIn("\"" + s1 + "\" + \"" + s2 +
\" = \"" 4+ 53+ "\"");
}

200

CHAPTER 4 LAMBDA EXPRESSIONS
Consider the following snippet of code:

LambdaUtil2 util = new LambdaUtil2();
util.test((x, y) -> x + y); // A compile-time error

The second statement results in the following compile-time error:

Reference to test is ambiguous. Both method test(Adder) in
LambdaUtil2 and method test(Joiner) in LambdaUtil2 match.

The call to the test () method fails because the lambda expression is implicit, and
it matches both versions of the test () method. The compiler does not know which
method to use: test(Adder adder) or test(Joiner joiner).In such circumstances,
you need to help the compiler by providing some more information. The following are
some of the ways to help the compiler resolve the ambiguity:

o Ifthe lambda expression is implicit, make it explicit by specifying the
type of the parameters.

e Use acast.

e Do notuse the lambda expression directly as the method argument.
First, assign it to a variable of the desired type, and then pass the
variable to the method.

Let’s discuss all three ways to resolve the compile-time error. The following snippet
of code changes the lambda expression to an explicit lambda expression:

LambdaUtil2 util = new LambdaUtil2();
util.test((double x, double y) -> x + y);
// <- OK. Will call test(Adder adder)

Specifying the type of parameters in the lambda expression resolved the issue. The
compiler has two candidate methods: test(Adder adder) and test(Joiner joiner).
With the (double x, double y) parameter information, only the test(Adder adder)
method matches.

The following snippet of code uses a cast to cast the lambda expression to the type
Adder:

LambdaUtil2 util = new LambdaUtil2();
util.test((Adder)(x, y) -> x +y);
// <- OK. Will call test(Adder adder)

201

CHAPTER 4 LAMBDA EXPRESSIONS

Using a cast tells the compiler that the type of the lambda expression is Adder and,
therefore, helps it choose the test (Adder adder) method.

Consider the following snippet of code that breaks down the method call into two
statements:

LambdaUtil2 util = new LambdaUtil2();
Adder adder = (x, y) -> X + y;
util.test(adder);

// <- OK. Will call test(Adder adder)

The lambda expression is assigned to a variable of type Adder, and the variable
is passed to the test() method. Again, it helps the compiler choose the test(Adder
adder) method based on the compile-time type of the adder variable.

The program in Listing 4-8 is similar to the one shown in Listing 4-6, except that it
uses the LambdaUtil2 class. It uses explicit lambda expressions and a cast to resolve the
ambiguous matches for lambda expressions.

Listing 4-8. Resolving Ambiguity During Target Typing

// LambdaUtil2Test.java
package com.jdojo.lambda;
public class LambdaUtil2Test {
public static void main(String[] args) {
LambdaUtil2 util = new LambdaUtil2();
// Calls the testAdder() method
util.test((double x, double y) -> x + y);
// Calls the testJoiner() method
util.test((String x, String y) -> x +y);
// Calls the testJoiner() method. The Joiner will
// add a space between the two strings
util.test((Joiner) (x, y) -> x + " " +y);
// Calls the testJoiner() method. The Joiner will
// reverse the strings and join resulting strings
// in reverse order adding a comma in between
util.test((Joiner) (x, y) -> {
StringBuilder sbx = new StringBuilder(x);
StringBuilder sby = new StringBuilder(y);

202

}

CHAPTER 4 LAMBDA EXPRESSIONS

sby.reverse().append(",
append(sbx.reverse());
return sby.toString();

};

Using an Adder:190.9 + 8.5 = 199.4

Using a Joiner:"Hello" + "World" = "HelloWorld"
Using a Joiner:"Hello" + "World" = "Hello World"
Using a Joiner:"Hello" + "World" = "dlroW,olleH"

Lambda expressions can be used only in the following contexts:

Assignment context: A lambda expression may appear to the right
side of the assignment operator in an assignment statement. For
example:

ReferenceType variablel = LambdaExpression;

Method invocation context: A lambda expression may appear as an
argument to a method or constructor call. For example:

util.testJoiner(LambdaExpression);

Return context: A lambda expression may appear in a return
statement inside a method, as its target type is the declared return
type of the method. For example:

return LambdaExpression;

Cast context: A lambda expression may be used if it is preceded by a
cast. The type specified in the cast is its target type. For example:

(Joiner) LambdaExpression;

203

CHAPTER 4 LAMBDA EXPRESSIONS

Functional Interfaces

A functional interface is simply an interface that has exactly one abstract method.
The following types of methods in an interface do not count for defining a functional
interface:

o Default methods
o static methods
o Public methods inherited from the Object class

Note that an interface may have more than one abstract method and can still be a
functional interface if all but one of them is a redeclaration of the methods in the Object
class. Consider the declaration of the Comparator class that is in the java.util package,
as shown:

package java.util;

@FunctionalInterface

public interface Comparator<T> {
// An abstract method declared in the interface
int compare(T o1, T 02);
// Re-declaration of the equals() method in the
// Object class
boolean equals(Object obj);
// Many more static and default methods that are
// not shown here.

The Comparator interface contains two abstract methods: compare() and equals().
The equals() method in the Comparator interface is a redeclaration of the equals()
method of the Object class, and therefore it does not count against the one abstract
method requirement for it to be a functional interface. The Comparator interface
contains several default and static methods that are not shown here.

A lambda expression is used to represent an unnamed function as used in functional
programming. A functional interface represents one type of functionality/operation in
terms of its lone abstract method. This commonality is the reason why the target type of
a lambda expression is always a functional interface.

204

CHAPTER 4 LAMBDA EXPRESSIONS

Using the @FunctionalInterface Annotation

The declaration of a functional interface may optionally be annotated with the
annotation @FunctionalInterface, which is in the java.lang package. So far, all
functional interfaces declared in this chapter, such as Adder and Joiner, have been
annotated with @FunctionalInterface. The presence of this annotation tells the
compiler to make sure that the declared type is a functional interface. If the
annotation @FunctionalInterface is used on a non-functional interface or other types
such as classes, a compile-time error occurs. If you do not use the annotation
@FunctionalInterface on an interface with one abstract method, the interface is still
a functional interface, and it can be the target type for lambda expressions. Using this
annotation gives you an additional assurance from the compiler. The presence of the
annotation also protects you from inadvertently changing a functional interface into a
non-functional interface, as the compiler will catch it.

The following declaration for an Operations interface will not compile, as the
interface declaration uses the @FunctionalInterface annotation, and itis not a
functional interface (defines two abstract methods):

@FunctionalInterface

public interface Operations {
double add(double n1, double n2);
double mult(double n1, double n2);

To compile the Operations interface, either remove one of the two abstract methods
or remove the @FunctionalInterface annotation. The following declaration for a Test
class will not compile, as @FunctionalInterface cannot be used on a type other than a
functional interface:

@FunctionalInterface
public class Test {
// Code goes here

205

CHAPTER 4 LAMBDA EXPRESSIONS

Generic Functional Interface

A functional interface can have type parameters. That is, a functional interface can be
generic. An example of a generic functional parameter is the Comparator interface with
one type parameter T:

@FunctionalInterface
public interface Comparator<T> {
int compare(T o1, T 02);

A functional interface may have a generic abstract method. That is, the abstract
method may declare type parameters. The following is an example of a non-generic
functional interface called Processor whose abstract method process() is generic:

@FunctionalInterface
public interface Processor {
<T> void process(T[] list);

A lambda expression cannot declare type parameters, and, therefore, it cannot have
a target type whose abstract method is generic. For example, you cannot represent the
Processor interface using a lambda expression. In such cases, you need to use a method
reference, which I discuss in the next section, or an anonymous class.

Let’s look at a short example of a generic functional interface and instantiate it using
lambda expressions. Listing 4-9 shows the code for a functional interface named Mapper.

Listing 4-9. A Mapper Functional Interface

// Mapper.java
package com.jdojo.lambda;
@FunctionalInterface
public interface Mapper<T> {
// An abstract method
int map(T source);
// A generic static method

206

CHAPTER 4 LAMBDA EXPRESSIONS

public static <U> int[] mapToInt(U[] list,
Mapper<? super U> mapper) {
int[] mappedValues = new int[list.length];
for (int i = 0; i < list.length; i++) {
// Map the object to an int
mappedValues[i] = mapper.map(list[i]);
}

return mappedValues;

Mapper is a generic functional interface with a type parameter T. Its abstract method
map () takes an object of type T as a parameter and returns an int. The mapToInt()
method is a generic static method that accepts an array of type U and a Mapper of a type
that is U itself or a supertype of U. The method returns an int array whose elements
contain the mapped value for the corresponding elements passed as an array.

The program in Listing 4-10 shows how to use lambda expressions to instantiate
the Mapper<T> interface. The program maps a String array and an Integer array to int
arrays.

Listing 4-10. Using the Mapper Functional Interface

// MapperTest.java
package com.jdojo.lambda;
public class MapperTest {
public static void main(String[] args) {
// Map names using their length
System.out.println(
"Mapping names to their lengths:");
String[] names = {"David", "Li", "Doug"};
int[] lengthMapping = Mapper.mapToInt(names,
(String name) -> name.length());
printMapping(names, lengthMapping);
System.out.println("\nMapping integers to " +
"their squares:");
Integer[] numbers = {7, 3, 67};

207

CHAPTER 4 LAMBDA EXPRESSIONS

int[] countMapping = Mapper.mapToInt(numbers,
(Integer n) -> n * n);
printMapping(numbers, countMapping);

}
public static void printMapping(Object[] from,
int[] to) {
for (int i = 0; i < from.length; i++) {
System.out.println(from[i] + " mapped to " +
to[i]);
}
}

}

Mapping names to their lengths:
David mapped to 5

Li mapped to 2

Doug mapped to 4

Mapping integers to their squares:
7 mapped to 49

3 mapped to 9

67 mapped to 4489

Intersection Type and Lambda Expressions

It is possible to declare an intersection type that is an intersection (or subtype) of
multiple types (since Java 8). An intersection type may appear as the target type in a cast.
An ampersand (&) is used between two types, such as (Typel & Type2 & Type3), and
itrepresents a new type that is an intersection of Type1, Type2, and Type3. Consider a
marker interface called Sensitive, shown in Listing 4-11.

Listing 4-11. A Marker Interface Named Sensitive

// Sensitive.java
package com.jdojo.lambda;
public interface Sensitive {
// It is a marker interface. So, no methods exist.

208

CHAPTER 4 LAMBDA EXPRESSIONS

Suppose you have a lambda expression assigned to a variable of the Sensitive type:

Sensitive sen = (X, y) -> X +Y;
// <- A compile-time error

This statement does not compile. The target type of a lambda expression must be
a functional interface; Sensitive is not a functional interface. However, you should be
able to make such an assignment, as a marker interface does not contain any methods.
In such cases, you need to use a cast with an intersection type that creates a new
synthetic type that is a subtype of all types. The following statement will compile:

Sensitive sen = (Sensitive & Adder) (x, y) -> x +y;
// <- OK

The intersection type Sensitive & Adder is still a functional interface, and,
therefore, the target type of the lambda expression is a functional interface with one
method from the Adder interface.

In Java, you can convert an object to a stream of bytes and restore the object back
later. This is called serialization. A class must implement the java.io.Serializable
marker interface for its objects to be serialized. If you want a lambda expression to be
serialized, you will need to use a cast with an intersection type. The following statement
assigns a lambda expression to a variable of the Serializable interface:

Serializable ser = (Serializable & Adder) (x, y) -> X + y;

Commonly Used Functional Interfaces

The java.util.function package contains many useful functional interfaces. They are
listed in Table 4-2.

209

CHAPTER 4 LAMBDA EXPRESSIONS

Table 4-2. Functional Interfaces Declared in the java.util. function Package

Interface Name Method Description

Function<T,R> R apply(T t) Represents a function that takes an
argument of type T and returns a result of
type R.

BiFunction<T,U,R> R apply(T t, U u) Represents a function that takes two

arguments of types T and U and returns a
result of type R.

Predicate<T> boolean test(T t) In mathematics, a predicate is a boolean-
valued function that takes an argument
and returns true or false. The function
represents a condition that returns true or
false for the specified argument.

BiPredicate<T,U> boolean test(T t, U u) Represents a predicate with two arguments.

Consumer<T> void accept(T t) Represents an operation that takes an
argument, operates on it to produce some
side effects, and returns no result.

BiConsumer<T,U> void accept(T t, U u) Represents an operation that takes two
arguments, operates on them to produce
some side effects, and returns no result.

Supplier<T> T get() Represents a supplier that returns a value.

UnaryOperator<T> T apply(T t) Inherits from Function<T, T>. Represents a
function that takes an argument and returns
a result of the same type.

BinaryOperator<T> T apply(T t1, T t2) Inherits from BiFunction<T, T, T>.
Represents a function that takes two
arguments of the same type and returns a
result of the same.

The table shows only the generic versions of the functional interfaces. Several
specialized versions of these interfaces exist. They have been specialized for frequently
used primitive data types; for example, IntConsumer is a specialized version of

210

CHAPTER 4 LAMBDA EXPRESSIONS

Consumer<T>. Some interfaces in the table contain convenience default and static
methods. The table lists only the abstract method, not the default and static methods.

Using the Function<T,R» Interface

Six specializations of the Function<T,R> interface exist:
o IntFunction<R>
e LongFunction<R>
o DoubleFunction<R>
o ToIntFunction<T>
e TolongFunction<T>
o ToDoubleFunction<T>

IntFunction<R>, LongFunction<R>, and DoubleFunction<R> take an int, a long, and
a double as an argument, respectively, and return a value of type R. ToIntFunction<T>,
ToLongFunction<T>, and ToDoubleFunction<T> take an argument of type T and return
an int, a long, and a double, respectively. Similar specialized functions exist for other
types of generic functions listed in the table.

Note Your com.jdojo.lambda.Mapper<T> interface represents the same
function type as ToIntFunction<T> in the java.util.function package.
You created the Mapper<T> interface to learn how to create and use a generic
functional interface. From now on, look at the built-in functional interfaces before
creating your own; use them if they meet your needs.

The following snippet of code shows how to use the same lambda expression to
represent a function that accepts an int and returns its square, using four variants of the
Function<T, R> function type:

// Takes an int and returns its square
Function<Integer, Integer> squarel = x -> x * x;
IntFunction<Integer> square2 = x -> x * x;
ToIntFunction<Integer> square3 = x -> x * x;
UnaryOperator<Integer> square4 = x -> x * x;

211

CHAPTER 4 LAMBDA EXPRESSIONS

System.out.println(squarel.apply(5));
System.out.println(square2.apply(5));
System.out.println(square3.applyAsInt(5));
System.out.println(squared.apply(5));

25
25
25
25

The Function interface contains the following default and static methods:

o default <V> Function<T,V> andThen(Function<? super R,?
extends V> after)

o default <V> Function<V,R> compose(Function<? super V,?
extends T> before)

o static <T> Function<T,T> identity()

The andThen() method returns a composed Function that applies this function to
the argument and then applies the specified after function to the result. The compose()
function returns a composed function that applies the specified before function to the
argument and then applies this function to the result. The identify() method returns a
function that always returns its argument.

The following snippet of code demonstrates how to use default and static methods of
the Function interface to compose new functions:

// Create two functions
Function<Long, Long> square
Function<Long, Long> addOne

X => X * x;

X -> X+ 1;

// Compose functions from the two functions

Function<Long, Long> squareAddOne = square.andThen(addOne);
Function<Long, Long> addOneSquare = square.compose(addOne);
// Get an identity function

Function<Long, Long> identity = Function.<Long>identity();
// Test the functions

long num = 5L;

212

CHAPTER 4 LAMBDA EXPRESSIONS

System.out.println("Number: " + num);

System.out.println("Square and then add one: " +
squareAddOne.apply(num));

System.out.println("Add one and then square: " +
addOneSquare.apply(num));

System.out.println("Identity:

+ identity.apply(num));

Number: 5

Square and then add one: 26
Add one and then square: 36
Identity: 5

You are not limited to composing a function that consists of two functions that
are executed in a specific order. A function may be composed of as many functions
as you want. You can chain lambda expressions to create a composed function in one
expression. Note that when you chain lambda expressions, you may need to provide
hints to the compiler to resolve the target type ambiguity that may arise. The following
is an example of a composed function by chaining three functions. A cast is provided to
help the compiler. Without the cast, the compiler will not be able to infer the target type:

// Square the input, add one to the result, and square
// the result
Function<lLong, Long> chainedFunction =
((Function<Long, Long>)(x -> x * x))
.andThen(x -> x + 1)
.andThen(x -> x * x);
System.out.println(chainedFunction.apply(3L));

100

Using the Predicate<T» Interface

A predicate represents a condition that is either true or false for a given input. The
Predicate interface contains the following default and static methods that let you
compose a predicate based on other predicates using logical NOT, AND, and OR:

o default Predicate<T> negate()

o default Predicate<T> and(Predicate<? super T> other)

213

CHAPTER 4 LAMBDA EXPRESSIONS

o default Predicate<T> or(Predicate<? super T> other)
o static <T> Predicate<T> isEqual(Object targetRef)

The negate() method returns a Predicate that is a logical negation of the original
predicate. The and() method returns a short-circuiting logical AND predicate of this
predicate and the specified predicate. The or () method returns a short-circuiting logical
OR predicate of this predicate and the specified predicate. The isEqual() method
returns a predicate that tests if the specified targetRef is equal to the specified argument
for the predicate according to Objects.equals(Object o1, Object o02);if two inputs
are null, this predicate evaluates to true. You can chain the calls to these methods
to create complex predicates. The following snippet of code shows some examples of
creating and using predicates:

// Create some predicates

Predicate<Integer> greaterThanTen = x -> x > 10;

Predicate<Integer> divisibleByThree = x -> x % 3 == 0;

Predicate<Integer> divisibleByFive = x -> x % 5 == 0;

Predicate<Integer> equalToTen = Predicate.isEqual(null);

// Create predicates using NOT, AND, and OR on other

// predicates

Predicate<Integer> lessThanOrEqualToTen =
greaterThanTen.negate();

Predicate<Integer> divisibleByThreeAndFive =
divisibleByThree.and(divisibleByFive);

Predicate<Integer> divisibleByThreeOrFive =
divisibleByThree.or(divisibleByFive);

// Test the predicates

int num = 10;

System.out.println("Number:

+ num);
System.out.println("greaterThanTen: " +
greaterThanTen.test(num));
System.out.println("divisibleByThree: " +
divisibleByThree.test(num));
System.out.println("divisibleByFive: " +

divisibleByFive.test(num));

214

CHAPTER 4 LAMBDA EXPRESSIONS

System.out.println("lessThanOrEqualToTen: " +
lessThanOrEqualToTen.test(num));

System.out.println("divisibleByThreeAndFive: " +
divisibleByThreeAndFive.test(num));

System.out.println("divisibleByThreeOrFive: " +
divisibleByThreeOrFive.test(num));

System.out.println("equalsToTen: " +
equalToTen.test(num));

Number: 10

greaterThanTen: false
divisibleByThree: false
divisibleByFive: true
lessThanOrEqualToTen: true
divisibleByThreeAndFive: false
divisibleByThreeOrFive: true
equalsToTen: false

Using Functional Interfaces

Functional interfaces are used in two contexts by two different types of users:
e Bylibrary designers for designing APIs
o Bylibrary users for using the APIs

Functional interfaces are used to design APIs by library designers. They are used to
declare a parameter’s type and return type in method declarations. They are used the
same way non-functional interfaces are used (functional interfaces existed in Java since
the beginning).

Library users use functional interfaces as target types for lambda expressions. That
is, when a method in the API takes a functional interface as an argument, the user of the
API should use a lambda expression to pass the argument. Using lambda expressions
has the benefit of making the code concise and more readable.

In this section, I show you how to design APIs using functional interfaces and how to
use lambda expressions to use the APIs. Functional interfaces have been used heavily in
designing the Java library for the Collections and Streams APIs.

215

CHAPTER 4 LAMBDA EXPRESSIONS

I use one enum and two classes in subsequent examples. The Gender enum, shown
in Listing 4-12, contains two constants to represent the gender of a person. The Person
class, shown in Listing 4-13, represents a person; it contains, apart from other methods, a
getPersons() method that returns a list of persons.

Listing 4-12. A Gender enum

// Gender.java

package com.jdojo.lambda;

public enum Gender {
MALE, FEMALE

}

Listing 4-13. A Person Class

// Person.java

package com.jdojo.lambda;

import java.time.localDate;

import java.util.Arraylist;

import java.util.Llist;

import static com.jdojo.lambda.Gender.MALE;
import static com.jdojo.lambda.Gender.FEMALE;

public class Person {

private String firstName;

private String lastName;

private LocalDate dob;

private Gender gender;

public Person(String firstName, String lastName,

LocalDate dob, Gender gender) {

this.firstName = firstName;
this.lastName = lastName;
this.dob = dob;
this.gender = gender;

216

CHAPTER 4

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getlLastName() {
return lastName;

}

public void setlLastName(String lastName) {
this.lastName = lastName;

}

public LocalDate getDob() {
return dob;

}

public void setDob(LocalDate dob) {
this.dob = dob;

}

public Gender getGender() {
return gender;

}

public void setGender(Gender gender) {
this.gender = gender;

}

@verride

public String toString() {
return firstName + " "

+ lastName + ", " +
gender + ", " + dob;

}

// A convenience method

public static List<Person> getPersons() {
ArraylList<Person> list = new Arraylist<>();
list.add(new Person("John", "Jacobs",

LocalDate.of(1975, 1, 20), MALE));

LAMBDA EXPRESSIONS

217

CHAPTER 4 LAMBDA EXPRESSIONS

list.add(new Person("Wally",
LocalDate.of(1965, 9, 12),
list.add(new Person("Donna",
LocalDate.of(1970, 9, 12),
return list;

The FunctionUtil class in Listing 4-14 is a utility class. Its methods apply a
function on a List. List is an interface that is implemented by the ArrayList class.
The forEach() method applies an action on each item in the list, typically producing
side effects; the action is represented by a Consumer. The filter() method filters a list
based on a specified Predicate. The map() method maps each item in the list to a value
using a Function. As a library designer, you will design these methods using functional

interfaces.

Listing 4-14. A FunctionUtil Class

// FunctionUtil.java

package com.
import java.
import java.
import java.
import java.
import java.

jdojo.lambda;
util.Arraylist;
util.List;
util.function.Consumer;
util.function.Function;
util.function.Predicate;

public class FunctionUtil {

// Applies an action on each item in a list
public static <T> void forEach(List<T> list,
Consumer<? super T> action) {

for

}

// Applies a filter to a list and returns the

(T item : list) {
action.accept(item);

// filtered list items

218

CHAPTER 4

public static <T> List<T> filter(List<T> list,
Predicate<? super T> predicate) {
List<T> filteredlList = new ArraylList<>();
for (T item : list) {
if (predicate.test(item)) {
filteredlList.add(item);

}

return filteredList;
}
// Maps each item in a list to a value
public static <T, R> List<R> map(List<T> list,
Function<? super T, R> mapper) {
List<R> mappedList = new ArraylList<>();
for (T item : list) {
mappedList.add(mapper.apply(item));
}

return mappedlList;

LAMBDA EXPRESSIONS

You will now use the FunctionUtil class as a library user and use the functional

FunctionUtil class.

Expressions As Library Users

// FunctionUtilTest.java

package com.jdojo.lambda;

import static com.jdojo.lambda.Gender.MALE;
import java.util.list;

public class FunctionUtilTest {

public static void main(String[] args) {
List<Person> list = Person.getPersons();
// Use the forEach() method to print each person
// in the list

interfaces as target types of lambda expressions. Listing 4-15 shows how to use the

Listing 4-15. Using Functional Interfaces As Target Types of Lambda

219

CHAPTER 4 LAMBDA EXPRESSIONS

System.out.println("Original list of persons:");
FunctionUtil.forEach(list, p ->
System.out.println(p));
// Filter only males
List<Person> malelList = FunctionUtil.filter(list,
p -> p.getGender() == MALE);
System.out.println("\nMales only:");
FunctionUtil.forEach(malelist,
p -> System.out.println(p));
// Map each person to his/her year of birth
List<Integer> dobYearlList = FunctionUtil.map(list,
p -> p.getDob().getYear());
System.out.println("\nPersons mapped to year of " +
"their birth:");
FunctionUtil.forEach(dobYearlList,
year -> System.out.println(year));
// Apply an action to each person in the list.
// Add one year to each male's dob
FunctionUtil.forEach(malelist,
p -> p.setDob(p.getDob().plusYears(1)));
System.out.println("\nMales only after adding " +
"1 year to DOB:");
FunctionUtil.forEach(malelist,
p -> System.out.println(p));

}

Original list of persons:

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12
Males only:

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12

220

CHAPTER 4 LAMBDA EXPRESSIONS

Persons mapped to year of their birth:
1975

1965

1970

Males only after adding 1 year to DOB:
John Jacobs, MALE, 1976-01-20

Wally Inman, MALE, 1966-09-12

The program gets a list of persons, applies a filter to the list to get a list of only males,
maps persons to the year of their birth, and adds one year to each male’s date of birth. It
performs each of these actions using lambda expressions. Note the conciseness of the
code; it uses only one line of code to perform each action. Most notable is the use of the
forEach() method. This method takes a Consumer function. Then each item is passed to
this function. The function can take any action on the item. You passed a Consumer that
prints the item on the standard output as shown:

FunctionUtil.forEach(list,
p -> System.out.println(p));

Typically, a Consumer applies an action on the item it receives to produce side effects.
In this case, it simply prints the item, without producing any side effects.

Method References

A lambda expression represents an anonymous function that is treated as an instance

of a functional interface. A method reference is a shorthand way to create a lambda
expression using an existing method. Using method references makes your lambda
expressions more readable and concise; it also lets you use the existing methods as
lambda expressions. If a lambda expression contains a body that is an expression using a
method call, you can use a method reference in place of that lambda expression.

Note A method reference is not a new type in Java. It is not a function pointer as
used in some other programming languages. It is simply shorthand for writing a
lambda expression using an existing method. It can only be used where a lambda
expression can be used.

221

CHAPTER 4 LAMBDA EXPRESSIONS

Let’s consider an example before I explain the syntax for method references.
Consider the following snippet of code:

import java.util.function.ToIntFunction;

ToIntFunction<String> lengthFunction = str ->
str.length();

String name = "Ellen";

int len = lengthFunction.applyAsInt(name);

System.out.println("Name = " + name +
", length = " + len);

Name = Ellen, length =5

The code uses alambda expression to define an anonymous function that takes
a String as an argument and returns its length. The body of the lambda expression
consists of only one method call that is the 1length() method of the String class. You can
rewrite the lambda expression using a method reference to the length() method of the
String class, as shown:

import java.util.function.ToIntFunction;

ToIntFunction<String> lengthFunction = String::length;
String name = "Ellen";
int len = lengthFunction.applyAsInt(name);
System.out.println("Name = " + name +

", length = " + len);

Name = Ellen, length =5
The general syntax for a method reference is
<Qualifiery::<MethodName>

The <Qualifier> depends on the type of the method reference. Two consecutive
colons act as a separator. The <MethodName> is the name of the method. For example, in
the method reference String: : length, String is the qualifier and length is the method

name.

222

CHAPTER 4 LAMBDA EXPRESSIONS

Note A method reference does not call the method when it is declared. The
method is called later when the method of its target type is called.

The syntax for method references allows specifying only the method name. You

cannot specify the parameter types and return type of the method. Recall that a method

reference is shorthand for alambda expression. The target type, which is always a

functional interface, determines the method’s details. If the method is an overloaded

method, the compiler will choose the most specific method based on the context. See

Table 4-3.

Table 4-3. Types of Method References

Syntax

Description

TypeName: : staticMethod

objectRef::instanceMethod

ClassName: :instanceMethod

TypeName.
super::instanceMethod

ClassName: :new

ArrayTypeName: :new

A method reference to a static method of a class, an interface, or
an enum.

A method reference to an instance method of the specified object.

A method reference to an instance method of an arbitrary object
of the specified class.

A method reference to an instance method of the supertype of a
particular object.

A constructor reference to the constructor of the specified class.

An array constructor reference to the constructor of the specified
array type.

Using method references may be a little confusing in the beginning. The main

point of confusion is the process of mapping the number and type of arguments in the

actual method to the method reference. To help understand the syntax, I use a method

reference and its equivalent lambda expression in all examples.

223

CHAPTER 4 LAMBDA EXPRESSIONS

Static Method References

A static method reference uses a static method of a type as a lambda expression. The
type could be a class, an interface, or an enum. Consider the following static method of
the Integer class:

static String toBinaryString(int i)

The toBinaryString() method represents a function that takes an int as an
argument and returns a String. You can use it in a lambda expression as shown:

// Using a lambda expression
Function<Integer,String> funci =

x -> Integer.toBinaryString(x);
System.out.println(funci.apply(17));

10001

The compiler infers the type of x as Integer and the return type of the lambda
expression as String, by using the target type Function<Integer,String>.
You can rewrite this statement using a static method reference, as shown:

// Using a method reference

Function<Integer, String> func2 =
Integer::toBinaryString;

System.out.println(func2.apply(17));

10001

The compiler finds a static method reference to the toBinaryString() method of
the Integer class on the right side of the assignment operator. The toBinaryString()
method takes an int as an argument and returns a String. The target type of the method
reference is a function that takes an Integer as an argument and returns a String. The
compiler verifies that after unboxing the Integer argument type of the target type to int,
the method reference and target type are assignment compatible.

Consider another static method sum() in the Integer class:

static int sum(int a, int b)

224

CHAPTER 4 LAMBDA EXPRESSIONS

The method reference would be Integer: :sum. Let’s use it in the same way you used
the toBinaryString() method in the previous example:

Function<Integer,Integer> func2 = Integer::sum;
// <- A compile-time error

Error: incompatible types: invalid
Function<Integer, Integer>

method sum in class Integer cannot

required: int,int

found: Integer

reason: actual and formal argument

method reference
func2 = Integer::sum;
be applied to given types

lists differ in length

The error message is stating that the method reference Integer: : sumis not
assignment compatible with the target type Function<Integer,Integer>. The sum(int,
int) method takes two int arguments, whereas the target type takes only one Integer
argument. The mismatch in the number of arguments caused the compile-time error.

To fix the error, the target type of the method reference Integer: : sum should be a
functional interface whose abstract method takes two int arguments and returns an
int. Using a BiFunction<Integer,Integer, Integer> asthe target type will work. The
following snippet of code shows how to use a method reference Integer: : sumas well as
the equivalent lambda expression:

// Uses a lambda expression

BiFunction<Integer,Integer,Integer> funci
(x, y) -> Integer.sum(x, y);
System.out.println(funci.apply(17, 15));
// Uses a method reference
BiFunction<Integer,Integer,Integer> func2

Integer::sum;
System.out.println(func2.apply(17, 15));
32
32
225

CHAPTER 4 LAMBDA EXPRESSIONS

Let's try using a method reference of the overloaded static method valueOf() of the
Integer class. The method has three versions:

o static Integer valueOf(int i)
o static Integer valueOf(String s)
o static Integer valueOf(String s, int radix)

The following snippet of code shows how different target types will use the three
different versions of the Integer.valueOf() static method. It is left as an exercise for
readers to write the following snippet of code using lambda expressions:

// Uses Integer.valueOf(int)
Function<Integer,Integer> funcl = Integer::valueOf;

// Uses Integer.valueOf(String)
Function<String,Integer> func2 = Integer::valueOf;

// Uses Integer.valueOf(String, int)
BiFunction<String,Integer,Integer> func3 =
Integer: :valueOf;

System.out.println(funci.apply(17));
System.out.println(func2.apply("17"));
System.out.println(func3.apply("10001", 2));

17
17
17

The following is the last example in this category. The Person class, shown in
Listing 4-13, contains a getPersons () static method that is declared as follows:

static List<Person> getPersons()

The method takes no argument and returns a List<Person>. A Supplier<T>
represents a function that takes no arguments and returns a result of type T. The
following snippet of code uses the method reference Person: :getPersons asa
Supplier<List<Person>>:

226

CHAPTER 4 LAMBDA EXPRESSIONS

Supplier<List<Person>> supplier = Person::getPersons;
List<Person> personList = supplier.get();
FunctionUtil.forEach(personList,

p -> System.out.println(p));

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12

Instance Method References

An instance method is invoked on an object’s reference. The object reference on which
an instance method is invoked is known as the receiver of the method invocation.

The receiver of a method invocation can be an object reference or an expression that
evaluates to an object’s reference. The following snippet of code shows the receiver of
the length() instance method of the String class:

String name = "Kannan";

// name is the receiver of the length() method

int lenl = name.length();

// "Hello" is the receiver of the length() method

int len2 = "Hello".length();

// (new String("Kannan")) is the receiver of the length()
// method

int len3 = (new String("Kannan")).length();

In a method reference of an instance method, you can specify the receiver of the
method invocation explicitly, or you can provide it implicitly when the method is
invoked. The former is called a bound receiver, and the latter is called an unbound
receiver. The syntax for an instance method reference supports two variants:

o objectRef::instanceMethod

e (ClassName::instanceMethod

227

CHAPTER 4 LAMBDA EXPRESSIONS

For a bound receiver, use the objectRef: :instanceMethod syntax. Consider the
following snippet of code:

Supplier<Integer> supplier = () -> "Ellen".length();
System.out.println(supplier.get());

5

This statement uses a lambda expression that represents a function that takes no
arguments and returns an int. The body of the expression uses a String object called
“Ellen” to invoke the length() instance method of the String class. You can rewrite
this statement using an instance method reference with the “Ellen” object as the bound
receiver and using a Supplier<Integer> as the target type, as shown:

Supplier<Integer> supplier = "Ellen"::length;
System.out.println(supplier.get());

5

Consider the following snippet of code to represent a Consumer<String> that takes a
String as an argument and returns void:

Consumer<String> consumer = str -> System.out.println(str);
consumer.accept("Hello");

Hello

This lambda expression invokes the print1ln() method on the System.out object.
This can be rewritten using a method reference with System.out as the bound receiver,
as shown:

Consumer<String> consumer = System.out::println;
consumer.accept("Hello");

Hello

When the method reference System.out: :println is used, the compiler looks at its
target type, which is Consumer<String>. It represents a function type that takes a String
as an argument and returns void. The compiler finds a println(String) method in
the PrintStream class of the System.out object and uses that method for the method
reference.

228

CHAPTER 4 LAMBDA EXPRESSIONS

As the last example in this category, you will use the method reference System.
out::println to print the list of persons, as shown:

List<Person> list = Person.getPersons();
FunctionUtil.forEach(list, System.out::println);

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12

For an unbound receiver, use the ClassName: : instanceMethod syntax. Consider the
following statement in which the lambda expression takes a Person as an argument and
returns a String:

Function<Person,String> fNameFunc =
(Person p) -> p.getFirstName();

This statement can be rewritten using the instance method reference, as shown:
Function<Person,String> fNameFunc = Person::getFirstName;

In the beginning, this is confusing for two reasons:

e The syntax is the same as the syntax for a method reference to a static
method.

o [Itraises a question: Which object is the receiver of the instance
method invocation?

The first confusion can be cleared up by looking at the method name and checking
whether it is a static or an instance method. If the method is an instance method, the
method reference represents an instance method reference.

The second confusion can be cleared up by keeping a rule in mind that the first
argument to the function represented by the target type is the receiver of the method
invocation. Consider an instance method reference called String: : length that uses an
unbound receiver. The receiver is supplied as the first argument to the apply () method,
as shown:

Function<String,Integer> strlengthFunc = String::length;
String name = "Ellen";
// name 1is the receiver of String::length

229

CHAPTER 4 LAMBDA EXPRESSIONS

int len = strlLengthFunc.apply(name);
System.out.println("name = " + name +
", length = " + len);

name = Ellen, length = 5
The instance method concat () of the String class has the following declaration:
String concat(String str)

The method reference String: : concat represents an instance method reference for
a target type whose function takes two String arguments and returns a String. The first
argument will be the receiver of the concat () method, and the second argument will be
passed to the concat() method. The following snippet of code shows an example:

String greeting = "Hello";
String name = " Laynie";
// Uses a lambda expression
BiFunction<String,String,String> funci =
(s1, s2) -> sil.concat(s2);
System.out.println(funci.apply(greeting, name));
// Uses an instance method reference on an unbound
// receiver
BiFunction<String,String,String> func2 = String::concat;

System.out.println(func2.apply(greeting, name));

Hello Laynie
Hello Laynie

As the last example in this category, you will use the method reference
Person::getFirstName thatis an instance method reference on an unbound receiver, as
shown:

List<Person> personList = Person.getPersons();

// Maps each Person object to its first name

List<String> firstNamelList = FunctionUtil.map(personlList,
Person::getFirstName);

// Prints the first name list

FunctionUtil.forEach(firstNamelList, System.out::println);

230

CHAPTER 4 LAMBDA EXPRESSIONS

John
Wally
Donna

Supertype Instance Method References

The keyword super is used as a qualifier to invoke the overridden method in a class or an
interface. The keyword is available only in an instance context. Use the following syntax
to construct a method reference that refers to the instance method in the supertype and
the method that’s invoked on the current instance:

TypeName. super: :instanceMethod

Consider the Priced interface and the Item class in Listings 4-16 and 4-17. The
Priced interface contains a default method that returns 1.0. The Item class implements
the Priced interface. It overrides the toString() method of the Object class and the
getPrice() method of the Priced interface. I added three constructors to the Item
class that display a message on the standard output. I use them in examples in the next
section.

Listing 4-16. A Priced Interface with a Default Method of getPrice()

// Priced.java
package com.jdojo.lambda;
public interface Priced {
default double getPrice() {
return 1.0;

}

Listing 4-17. An Item Class That Implements the Priced Interface

// Ttem.java

package com.jdojo.lambda;

import java.util.function.Supplier;

public class Item implements Priced {
private String name = "Unknown";
private double price = 0.0;

231

CHAPTER 4 LAMBDA EXPRESSIONS

public Item() {
System.out.println("Constructor Item() called.");
}
public Item(String name) {
this.name = name;
System.out.println("Constructor Item(String) " +
"called.");
}
public Item(String name, double price) {
this.name = name;
this.price = price;
System.out.println("Constructor " +
"Item(String, double) called.");
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public void setPrice(double price) {
this.price = price;
}
@verride
public double getPrice() {
return price;
}
@0Override
public String toString() {
return "name = " + getName() +
", price = " + getPrice();
}
public void test() {
// Uses the Item.toString() method
Supplier<String> s1 = this::toString;

232

CHAPTER 4 LAMBDA EXPRESSIONS

// Uses the Object.toString() method
Supplier<String> s2 = Item.super::toString;

// Uses the Item.getPrice() method
Supplier<Double> s3 = this::getPrice;

// Uses the Priced.getPrice() method
Supplier<Double> s4 = Priced.super::getPrice;

// Uses all method references and prints the

// results

System.out.println("this::toString: " + si.get());

System.out.println("Item.super::toString: " +

s2.get());
System.out.println("this::getPrice: " + s3.get());

System.out.println("Priced.super::getPrice: " +
s4.get());

The test() method in the Item class uses four method references with a bound
receiver. The receiver is the Item object on which the test() method is called.

o The method reference this: :toString refers to the toString()
method of the I'tem class.

o The method reference Item.super: :toString refers to the
toString() method of the Object class, which is the superclass
of the Item class.

o The method reference this: :getPrice refers to the getPrice()
method of the I'tem class.

o The method reference Priced.super: :getPrice refers to
the getPrice() method of the Priced interface, which is the
superinterface of the Item class.

The program in Listing 4-18 creates an object of the Item class and calls its test ()
method. The output shows the method being used by the four method references.

233

CHAPTER 4 LAMBDA EXPRESSIONS

Listing 4-18. Testing the Item Class

// ItemTest.java
package com.jdojo.lambda;
public class ItemTest {
public static void main(String[] args) {
Item apple = new Item("Apple", 0.75);
apple.test();

}

Constructor Item(String, double) called.
this::toString: name = Apple, price = 0.75
Item.super::toString: com.jdojo.lambda.Item@24d46cab
this::getPrice: 0.75

Priced.super::getPrice: 1.0

Constructor References

Sometimes, the body of a lambda expression may be just an object creation expression.
Consider the following two statements that use a String object creation expression as
the body for lambda expressions:

Supplier<String> funcl = () -> new String();
Function<String,String> func2 = str -> new String(str);

You can rewrite these statements by replacing the lambda expressions with
constructor references as shown:

Supplier<String> funcl = String::new;
Function<String,String> func2 = String::new;

The syntax for using a constructor is as follows:
o (ClassName::new

e ArrayTypeName: :new

234

CHAPTER 4 LAMBDA EXPRESSIONS

The ClassName in ClassName: :new is the name of the class that can be instantiated;
it cannot be the name of an abstract class. The keyword new refers to the constructor of
the class. A class may have multiple constructors. The syntax does not provide a way to
refer to a specific constructor. The compiler selects a specific constructor based on the
context. It looks at the target type and the number of arguments in the abstract method
of the target type. The constructor whose number of arguments matches the number of
arguments in the abstract method of the target type is chosen. Consider the following
snippet of code that uses three constructors of the I'tem class, shown in Listing 4-17, in
lambda expressions:

Supplier<Item> funci = () -> new Item();
Function<String,Item> func2 = name -> new Item(name);
BiFunction<String,Double,Item> func3 =

(name, price) -> new Item(name, price);
System.out.println(funci.get());
System.out.println(func2.apply("Apple"));
System.out.println(func3.apply("Apple", 0.75));

Constructor Item() called.

name = Unknown, price = 0.0

Constructor Item(String) called.

name = Apple, price = 0.0

Constructor Item(String, double) called.
name = Apple, price = 0.75

The following snippet of code replaces the lambda expressions with a constructor
reference Item: :new. The output shows the same constructors as before:

Supplier<Item> funcil = Item::new;
Function<String,Item> func2 = Item::new;
BiFunction<String,Double,Item> func3 = Item::new;
System.out.println(funci.get());
System.out.println(func2.apply("Apple"));
System.out.println(func3.apply("Apple", 0.75));

235

CHAPTER 4 LAMBDA EXPRESSIONS

Constructor Item() called.

name = Unknown, price = 0.0

Constructor Item(String) called.

name = Apple, price = 0.0

Constructor Item(String, double) called.
name = Apple, price = 0.75

When the statement
Supplier<Item> funci = Item::new;

is executed, the compiler finds that the target type Supplier<Item> does not accept
an argument. Therefore, it uses the no-args constructor of the Item class. When the
statement

Function<String,Item> func2 = Item::new;

is executed, the compiler finds that the target type Function<String, Item> takes a
String argument. Therefore, it uses the constructor of the Item class that takes a String
argument. When the statement

BiFunction<String,Double,Item> func3 = Item::new;

is executed, the compiler finds that the target type BiFunction<String,Double, Item>
takes two arguments: a String and a Double. Therefore, it uses the constructor of the
Item class that takes a String and a double argument.

The following statement generates a compile-time error, as the compiler does not
find a constructor in the Item class that accepts a Double argument:

Function<Double,Item> func4 = Item::new;
// <- A compile-time error

Arrays in Java do not have constructors. There is a special syntax to use constructor
references for arrays. Array constructors are treated to have one argument of int type that
is the size of the array. The following snippet of code shows the lambda expression and
its equivalent constructor reference for an int array:

// Uses a lambda expression
IntFunction<int[]> arrayCreatorl = size -> new int[size];
int[] empIdsi = arrayCreatori.apply(5);

236

CHAPTER 4 LAMBDA EXPRESSIONS

// <- Creates an int array of five elements
// Uses an array constructor reference
IntFunction<int[]> arrayCreator2 = int[]::new;
int[] empIds2 = arrayCreator2.apply(5);

// <- Creates an int array of five elements

You can also use a Function<Integer,R> type to use an array constructor reference,
where R is the array type:

// Uses an array constructor reference
Function<Integer,int[]> arrayCreator3 = int[]::new;
int[] empIds3 = arrayCreator3.apply(5);

// <- Creates an int array of five elements

The syntax for the constructor reference for arrays supports creating an array of
multiple dimensions. However, you can specify the length for only the first dimension.
The following statement creates a two-dimensional int array with the first dimension
having the length of 5:

// Uses an array constructor reference
IntFunction<int[][]> TwoDimArrayCreator = int[][]::new;
int[][] matrix = TwoDimArrayCreator.apply(5);

// <- Creates an int[5][] array

You might be tempted to use a BiFunction<Integer, Integer,int[][]> to use
a constructor reference for a two-dimensional array to supply the length for both
dimensions. However, the syntax is not supported. Array constructors are supposed to
accept only one parameter—the length of the first dimension. The following statement
generates a compile-time error:

BiFunction<Integer,Integer,int[][]> arrayCreator =
int[][]: :new;

Generic Method References

Typically, the compiler figures out the actual type for generic type parameters when a
method reference refers to a generic method. Consider the following generic method in
the java.util.Arrays class:

static <T> List<T> asList(T... a)
237

CHAPTER 4 LAMBDA EXPRESSIONS

The asList() method takes a varargs argument of type T and returns a List<T>.
You can use Arrays: :asList as a method reference. The syntax for the method
reference allows you to specify the actual type parameter for the method just after the
two consecutive colons. For example, if you are passing String objects to the asList()
method, its method reference can be written as Arrays: :<String>asList.

Note The syntax for a method reference also supports specifying the actual
type parameters for generic types. The actual type parameters are specified
just before the two consecutive colons. For example, the constructor reference
ArraylList<Long>: :new specifies Long as the actual type parameter for the
generic ArrayList<T> class.

The following snippet of code contains an example of specifying the actual type
parameter for the generic method Arrays.asList(). In the code, Arrays: :asList will
work the same, as the compiler will infer String as the type parameter for the asList()
method by examining the target type:

import java.util.Arrays;
import java.util.Llist;
import java.util.function.Function;

Function<String[],List<String>> asList =
Arrays::<String>aslist;

String[] namesArray = {"Jim", "Ken", "Li"};

List<String> namesList = asList.apply(namesArray);

for(String name : namesList) {
System.out.println(name);

Jim
Ken
Li

238

CHAPTER 4 LAMBDA EXPRESSIONS

Lexical Scoping

A scope is the part of a Java program within which a name can be used without a
qualifier. Classes and methods define their own scope. Scopes may be nested. For
example, a method scope does not exist independently, as a method is always part
of another construct, for example, a class; an inner class appears inside the scope of
another class; a local and an anonymous class appear inside the scope of a method.

Even though a lambda expression looks like a method declaration, it does not define
a scope of its own. It exists in its enclosing scope. This is known as lexical scoping for
lambda expressions. For example, when a lambda expression is used inside a method,
the lambda expression exists in the scope of the method.

The meanings of the keywords this and super are the same inside the lambda
expression and its enclosing method. Note that this is different from the meanings of
these keywords inside a local and anonymous inner class in which the keyword this
refers to the current instance of the local and anonymous inner class, not its enclosing
class.

Listing 4-19 contains code for a functional interface named Printer that you will use
to print messages in the examples in this section.

Listing 4-19. A Printer Functional Interface

// Printer.java

package com.jdojo.lambda;

@FunctionalInterface

public interface Printer {
void print(String msg);

The program in Listing 4-20 creates two instances of the Printer interface: one using
alambda expression in the getLambdaPrinter() method and one using an anonymous
inner class in the getAnonymousPrinter () method. Both instances use the keyword
this inside the print() method. Both methods print the class name that the keyword
this refers to. The output shows that the keyword this has the same meaning inside the
getLambdaPrinter () method and the lambda expression. However, the keyword this
has different meanings inside the getAnonymousPrinter() method and the anonymous
class.

239

CHAPTER 4 LAMBDA EXPRESSIONS

Listing 4-20. Testing Scope of a Lambda Expression and an Anonymous Class

// ScopeTest.java
package com.jdojo.lambda;
public class ScopeTest {
public static void main(String[] args) {
ScopeTest test = new ScopeTest();
Printer lambdaPrinter = test.getlLambdaPrinter();
lambdaPrinter.print("Lambda Expressions”);
Printer anonymousPrinter = test.
getAnonymousPrinter();
anonymousPrinter.print("Anonymous Class");
}
public Printer getlLambdaPrinter() {
System.out.println("getLambdaPrinter(): " +
this.getClass());
// Uses a lambda expression
Printer printer = msg -> {
// Here, this refers to the current object
// of the ScopeTest class
System.out.println(msg + ": " +
this.getClass());
};
return printer;
}
public Printer getAnonymousPrinter() {
System.out.println("getAnonymousPrinter(): " +
this.getClass());
// Uses an anonymous class
Printer printer = new Printer() {
@Override
public void print(String msg) {
// Here, this refers to the current
// object of the anonymous class

240

CHAPTER 4 LAMBDA EXPRESSIONS

System.out.println(msg + ": " +
this.getClass());

};

return printer;

}

getLambdaPrinter(): class com.jdojo.lambda.ScopeTest
Lambda Expressions: class com.jdojo.lambda.ScopeTest
getAnonymousPrinter(): class com.jdojo.lambda.ScopeTest
Anonymous Class: class com.jdojo.lambda.ScopeTest\$1

Lexical scoping of alambda expression means that variables declared in the lambda
expression, including its parameters, exist in the enclosing scope. Simple names in a
scope must be unique. It means that a lambda expression cannot redefine variables with
the name that already exists in the enclosing scope.

The following code for a lambda expression inside the main() method generates a
compile-time error, as its parameter name msg is already defined in the main() method’s

scope:

public class Test {
public static void main(String[] args) {
String msg = "Hello";
// A compile-time error. The msg variable is
// already defined and the lambda parameter is
// attempting to redefine it.
Printer printer = msg -> System.out.println(msg);

The following code generates a compile-time error for the same reason that the
local variable named msg is in scope inside the body of the lambda expression, and the
lambda expression is attempting to declare a local variable with the same name msg:

241

CHAPTER 4 LAMBDA EXPRESSIONS

public class Test {
public static void main(String[] args) {
String msg = "Hello";
Printer printer = msgl -> {
String msg = "Hi"; // A compile-time error
System.out.println(msgi);
};

Variable Gapture

Like a local and anonymous inner class, alambda expression can access effectively final
local variables. A local variable is effectively final in the following two cases:

o Itisdeclared final.
e Itisnotdeclared final, but initialized only once.

In the following snippet of code, the msg variable is effectively final, as it has been
declared final. The lambda expression accesses the variable inside its body:

public Printer test() {
final String msg = "Hello"; // msg is effectively final
Printer printer = msgl -> System.out.println(msg +
"M+ msgl);
return printer;

In the following snippet of code, the msg variable is effectively final, as it is initialized
once. The lambda expression accesses the variables inside its body:

public Printer test() {
String msg = "Hello"; // msg is effectively final
Printer printer = msg1 ->

System.out.println(msg +
return printer;

+ msgl);

242

CHAPTER 4 LAMBDA EXPRESSIONS

The following snippet of code is a slight variation of the previous example. The msg
variable is effectively final, as it has been initialized only once:

public Printer test() {
String msg;
msg = "Hello"; // msg is effectively final
Printer printer = msg1 ->
System.out.println(msg +
return printer;

+ msgl);

In the following snippet of code, the msg variable is not effectively final, as it is
assigned a value twice. The lambda expression is accessing the msg variable that
generates a compile-time error:

public Printer test() {

// msg is not effectively final as it is changed later

String msg = "Hello";

// A compile-time error

Printer printer = msg1i ->
System.out.println(msg +

msg = "Hi";

// <- msg is changed making it effectively non-final

return printer;

+ msgl);

The following snippet of code generates a compile-time error because the lambda
expression accesses the msg variable that is declared lexically after its use. In Java,
forward referencing of variable names in a method’s scope is not allowed. Note that the
msg variable is effectively final.

public Printer test() {
// A compile-time error. The msg variable is not
// declared yet.
Printer printer = msgl ->
System.out.println(msg + + msgl);
String msg = "Hello"; // msg is effectively final
return printer;

243

CHAPTER 4 LAMBDA EXPRESSIONS

Can you guess why the following snippet of code generates a compile-time error?

public Printer test() {
String msg = "Hello";
Printer printer = msgl -> {
msg = "Hi " + msgl; // A compile-time error.
// Attempting to modify msg.
System.out.println(msg);
};

return printer;

The lambda expression accesses the local variable msg. Any local variable accessed
inside a lambda expression must be effectively final. The lambda expression attempts to
modify the msg variable inside its body, and that causes the compile-time error.

Note A lambda expression can access instance and class variables of a class
whether they are effectively final or not. If instance and class variables are not
final, they can be modified inside the body of the lambda expressions. A lambda
expression keeps a copy of the local variables used in its body. If the local variables
are reference variables, a copy of the references is kept, not a copy of the objects.

The program in Listing 4-21 demonstrates how to access the local and instance
variables inside lambda expressions.

Listing 4-21. Accessing Local and Instance Variables Inside Lambda Expressions

// VariableCapture.java
package com.jdojo.lambda;
public class VariableCapture {
private int counter = 0;
public static void main(String[] args) {
VariableCapture vcl = new VariableCapture();
VariableCapture vc2 = new VariableCapture();
// Create lambdas
Printer p1 = vcl.createlLambda(1);
Printer p2 = vc2.createlambda(100);

244

CHAPTER 4 LAMBDA EXPRESSIONS

// Execute the lambda bodies
pl.print("Lambda #1");
p2.print("Lambda #2");
pl.print("Lambda #1");
p2.print("Lambda #2");
pl.print("Lambda #1");
p2.print("Lambda #2");
}
public Printer createlLambda(int incrementBy) {
Printer printer = msg -> {
// Accesses instance and local variables
counter += incrementBy;
System.out.println(msg +

: counter = " +
counter);
};

return printer;

}

Lambda #1: counter = 1
Lambda #2: counter = 100
Lambda #1: counter = 2
Lambda #2: counter = 200
Lambda #1: counter = 3
Lambda #2: counter = 300

The createLambda() method uses a lambda expression to create an instance of
the Printer functional interface. The lambda expression uses the method’s parameter
incrementBy. Inside the body, it increments the instance variable counter and prints its
value. The main() method creates two instances of the VariableCapture class and calls
the createLambda() method on those instances by passing 1 and 100 as incrementBy
values. The print() methods of the Printer objects are called three times for both
instances. The output shows that the lambda expression captures the incrementBy value
and increments the counter instance variable every time it is called.

245

CHAPTER 4 LAMBDA EXPRESSIONS

Jumps and Exits

Statements such as break, continue, return, and throw are allowed inside the body of a
lambda expression. These statements indicate jumps inside a method and exits from a
method. Inside a lambda expression, they indicate jumps inside the body of the lambda
expression and exits from the body of the lambda expressions. They indicate local jumps
and exits in the lambda expressions. Non-local jumps and exits in lambda expressions
are not allowed. The program in Listing 4-22 demonstrates the valid use of the break and
continue statements inside the body of alambda expression.

Listing 4-22. Using break and continue Statements Inside the Body of a Lambda
Expression

// LambdaJumps.java
package com.jdojo.lambda;
import java.util.function.Consumer;
public class LambdaJumps {
public static void main(String[] args) {
Consumer<int[]> printer = ids -> {
int printedCount = 0;
for (int id : ids) {
if (id % 2 1= 0) {
continue;
}
System.out.println(id);
printedCount++;
// Break out of the loop after printing 3
// ids
if (printedCount == 3) {
break;

};
// Print an array of 8 integers
printer.accept(new int[]{1, 2, 3, 4, 5, 6, 7, 8});

246

CHAPTER 4 LAMBDA EXPRESSIONS

In the following snippet of code, the break statement is inside a for loop statement,
and it is also inside the body of a lambda statement. If this break statement is allowed,
it will jump out of the body of the lambda expression. This is the reason that the code

generates a compile-time error:

public void test() {
for(int i = 0; 1 < 5; i++) {
Consumer<Integer> evenIdPrinter = id -> {
if (id < 0) {
// A compile-time error. Attempting to
// break out of the lambda body
break;

};

Recursive Lambda Expressions

Sometimes, a function may invoke itself from its body. Such a function is called a
recursive function. A lambda expression represents a function. However, a lambda
expression does not support recursive invocations. If you need a recursive function, you
need to use a method reference or an anonymous inner class.

The program in Listing 4-23 shows how to use a method reference when a recursive
lambda expression is needed. It defines a recursive method called factorial() that
computes the factorial of an integer. In the main() method, it uses the method reference

RecursiveTest::factorial in place of a lambda expression.

247

CHAPTER 4 LAMBDA EXPRESSIONS

Listing 4-23. Using a Method Reference When a Recursive Lambda Expression
Is Needed

// RecursiveTest.java
package com.jdojo.lambda;
import java.util.function.IntFunction;
public class RecursiveTest {
public static void main(String[] args) {
IntFunction<long> factorialCalc =
RecursiveTest::factorial;
int n = 5;
long fact = factorialCalc.apply(n);
System.out.println("Factorial of " + n +

is " + fact);

}
public static long factorial(int n) {
if (n < 0) {
String msg = "Number must not be negative.";
throw new IllegalArgumentException(msg);
}
if (n ==0) {
return 1;
} else {
return n * factorial(n - 1);
}
}

}

factorial of 5 is 120
You can achieve the same results using an anonymous inner class as shown:

IntFunction<Long> factorialCalc = new IntFunction<Long>() {
@verride
public Long apply(int n) {
if (n < 0) {
String msg = "Number must not be negative.";

248

CHAPTER 4 LAMBDA EXPRESSIONS

throw new IllegalArgumentException(msg);

}
if (n ==0) {
return 1L;
} else {
return n * this.apply(n - 1);
}

b

Comparing Objects
The Comparator interface is a functional interface with the following declaration:

package java.util;
@FunctionalInterface
public interface Comparator<T> {

int compare(T o1, T 02);

/* Other methods are not shown. */

The Comparator<T> interface contains many default and static methods that can be
used along with lambda expressions to create its instances. It is worth exploring the API
documentation for the interface. In this section, I discuss the following two methods of
the Comparator interface:

o static <T,U extends Comparable<? super U» Comparator<T>
comparing(Function<? super T,? extends U> keyExtractor)

o default <U extends Comparable<? super U» Comparator<T>
thenComparing(Function<? super T,? extends U> keyExtractor)

The comparing() method takes a Function and returns a Comparator. The Function
should return a Comparable that is used to compare two objects. You can create a
Comparator object to compare Person objects based on their first names, as shown:

Comparator<Person> firstNameComp =
Comparator.comparing(Person: :getFirstName);

249

CHAPTER 4 LAMBDA EXPRESSIONS

The thenComparing() method is a default method. It is used to specify a secondary
comparison if two objects are the same in sorting order based on the primary
comparison. The following statement creates a Comparator<Person> that sorts Person
objects based on their last names, first names, and DOBs:

Comparator<Person> lastFirstDobComp =
Comparator.comparing(Person: :getLastName)
.thenComparing(Person: :getFirstName)
.thenComparing(Person: :getDob);

The program in Listing 4-24 shows how to use the method references to create
a Comparator object to sort Person objects. It uses the sort () default method of the
List interface to sort the list of persons. The sort () method takes a Comparator as an
argument. Thanks to lambda expressions and default methods in interfaces for making
the sorting task so easy!

Listing 4-24. Sorting a List of Person Objects

/ ComparingObjects.java
package com.jdojo.lambda;
import java.util.Comparator;
import java.util.list;
public class ComparingObjects {
public static void main(String[] args) {
List<Person> persons = Person.getPersons();
// Sort using the first name
persons.sort(Comparator.comparing(
Person::getFirstName));
// Print the sorted list
System.out.println("Sorted by the first name:");
FunctionUtil.forEach(persons, System.out::println);
// Sort using the last name, first name, and then
// DOB
persons.sort(Comparator.comparing(
Person::getLastName)
.thenComparing(Person: :getFirstName)
.thenComparing(Person::getDob));

250

CHAPTER 4 LAMBDA EXPRESSIONS

// Print the sorted list

System.out.println("\nSorted by the last name, " +
"first name, and dob:");

FunctionUtil.forEach(persons, System.out::println);

}

Sorted by the first name:

Donna Jacobs, FEMALE, 1970-09-12

John Jacobs, MALE, 1975-01-20

Wally Inman, MALE, 1965-09-12

Sorted by the last name, first name, and dob:
Wally Inman, MALE, 1965-09-12

Donna Jacobs, FEMALE, 1970-09-12

John Jacobs, MALE, 1975-01-20

Summary

A lambda expression is an unnamed block of code (or an unnamed function) with a
list of formal parameters and a body. A lambda expression provides a concise way, as
compared to anonymous inner classes, to create instances of functional interfaces.
Lambda expressions and default methods in interfaces have given new life to the Java
programming languages as far as expressiveness and fluency in Java programming go.
The Java collection library has benefited the most from lambda expressions.

The syntax for defining lambda expressions is similar to declaring a method.

A lambda expression may have a list of formal parameters and a body. A lambda
expression is evaluated to an instance of a functional interface. The body of the lambda
expression is not executed when the expression is evaluated. The body of the lambda
expression is executed when the method of the functional interface is invoked.

One of the design goals of lambda expressions was to keep it concise and readable.
The lambda expression syntax supports shorthand for common use cases. Method
references are shorthand to specify lambda expressions that use existing methods.

A poly expression is an expression whose type depends on the context of its use. A
lambda expression is always a poly expression. A lambda expression cannot be used by
itself. Its type is inferred by the compiler from the context. A lambda expression can be
used in assignments, method invocations, returns, and casts.

251

CHAPTER 4 LAMBDA EXPRESSIONS

When a lambda expression occurs inside a method, it is lexically scoped. That is, a
lambda expression does not define a scope of its own; rather, it occurs in the method’s
scope. A lambda expression may use the effectively final local variables of a method. A
lambda expression may use the statements such as break, continue, return, and throw.
The break and continue statements specify local jumps inside the body of the lambda
expression. Attempting to jump outside the body of the lambda expression generates
a compile-time error. The return and throw statements exit the body of the lambda
expression.

Exercises

Exercise 1
What are lambda expressions and how are they related to functional interfaces?
Exercise 2
How does a lambda expression differ from an anonymous class? Can you always
replace a lambda expression with an anonymous class and vice versa?
Exercise 3
Are the following two lambda expressions different?

a. (int x, int y) -> { return x + y; }
b. (int x, inty) -> x +y

Exercise 4
If someone shows you the following lambda expressions, explain the possible
functions they may represent:

a. (int x, int y) -> x +y \\
b. (X, y) -> x +y \\
c. (String msg) -> { System.out.println(msg); }\\
d. () -> {}
Exercise 5
What kind of function the following lambda expression may represent?
X => X;

252

CHAPTER 4 LAMBDA EXPRESSIONS

Exercise 6
Will the following declaration of a MathUtil interface compile? Explain your answer.

@FunctionalInterface

public interface Operations {
int factorial(int n);
int abs(int n);

Exercise 7
Will the following statement compile? Explain your answer.

Object obj = x -> x + 1;

Exercise 8
Will the following statements compile? Explain your answer.

Function<Integer,Integer> f = x -> x + 1;
Object obj = f;

Exercise 9
What will be the output when you run the following Scope class?

// Scope.java
package com.jdojo.lambda.exercises;
import java.util.function.Function;
public class Scope {
private static long n = 100;
private static Function<lLong,lLong> f = n -> n + 1;
public static void main(String[] args) {
System.out.println(n);
System.out.println(f.apply(n));
System.out.println(n);

253

CHAPTER 4 LAMBDA EXPRESSIONS

Exercise 10
Why does the following method declaration not compile?

public static void test() {
int n = 100;
Function<Integer,Integer> f = n -> n + 1;
System.out.println(f.apply(100));

Exercise 11
What will be the output when the following Capture class is run?

// Capture.java
package com.jdojo.lambda.exercises;
import java.util.function.Function;
public class Capture {
public static void main(String[] args) {

test();
test();
}
public static void test() {
int n = 100;
Function<Integer,Integer> f = x -> n + 1;
System.out.println(f.apply(100));
}

Exercise 12

Assume that there is a Person class, which contains four constructors. One of the
constructors is a no-args constructor. Given a constructor reference, Person: :new, can
you tell which constructor of the Person it refers to?

Exercise 13

Will the following declaration of the FeelinglLucky interface compile? Notice that it
has been annotated with @FunctionalInterface.

@FunctionalInterface
public interface FeelinglLucky {
void gamble();

254

CHAPTER 4 LAMBDA EXPRESSIONS

public static void hitJackpot() {
System.out.println("You have won 80M dollars.");

}
}
Exercise 14
Why does the following declaration of the Mystery interface not compile?
@FunctionalInterface
public interface Mystery {
@verride
String toString();
}

Exercise 15
What will be the output when the following PredicateTest class is run?

// PredicateTest.java
package com.jdojo.lambda.exercises;
import java.util.function.Predicate;
public class PredicateTest {
public static void main(String[] args) {
int[] nums = {1, 2, 3, 4, 5};
filterThenPrint(nums, n -> n%2 == 0);
filterThenPrint(nums, n -> n%2 == 1);
}
static void filterThenPrint(int[] nums,
Predicate<Integer> p) {
for(int x : nums) {
if(p.test(x)) {
System.out.println(x);

255

CHAPTER 4 LAMBDA EXPRESSIONS

Exercise 16
What will be the output when the following SupplierTest class is run? Explain your

answer.

/ SupplierTest.java
package com.jdojo.lambda.exercises;
import java.util.function.Supplier;
public class SupplierTest {
public static void main(String[] args) {
Supplier<Integer> supplier = () -> {
int counter = 0;
return ++counter;
};
System.out.println(supplier.get());
System.out.println(supplier.get());

Exercise 17
What will be the output when the following ConsumerTest class is run?

// ConsumerTest.java

package com.jdojo.lambda.exercises;

import java.util.function.Consumer;

public class ConsumerTest {

public static void main(String[] args) {

Consumer<String> c1 = System.out::println;
Consumer<String> c2 = s -> {};
consume(c1, "Hello");
consume(c2, "Hello");

}
static <T> void consume(Consumer<T> consumer,
T item) {
consumer.accept(item);
}

256

CHAPTER 5

Threads

In this chapter, you will learn:
e What threads are
o How to create threads in Java
o How to execute your code in separate threads
e What the Java Memory Model is
o Thelifecycle of threads

e How to use object monitors to synchronize access to a critical section
by threads

e How to interrupt, stop, suspend, and resume threads

e Atomic variables, explicit locks, synchronizer, executor framework,
fork/join framework, and thread-local variables

All example programs in this chapter are members of a jdojo.threads module, as

declared in Listing 5-1.

Listing 5-1. The Declaration of a jdojo.threads Module

// module-info.java
module jdojo.threads {
exports com.jdojo.threads;

What Is a Thread?

Threads are a vast topic. They deserve an entire book. This chapter does not discuss the
concept of threads in detail. Rather, it discusses how to work with threads using Java

257
© Kishori Sharan, Peter Spdth 2021

K. Sharan and P. Spéth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_5

https://doi.org/10.1007/978-1-4842-7135-3_5#DOI

CHAPTER5 THREADS

constructs. Before I define the term thread, it is necessary to understand the meaning of
some related terms, such as program, process, multitasking, sequential programming,
concurrent programming, etc.

A program is an algorithm expressed in a programming language. A process is a
running instance of a program with all system resources allocated by the operating
system to that instance of the program. Typically, a process consists of a unique
identifier, a program counter, executable code, an address space, open handles to system
resources, a security context, and many other things. A program counter, also called
an instruction pointer, is a value maintained in the CPU register that keeps track of the
instruction being executed by the CPU. It is automatically incremented at the end of the
execution of an instruction. You can also think of a process as a unit of activity (or a unit
of work, or a unit of execution, or a path of execution) within an operating system. The
concept of process allows one computer system to support multiple units of executions.

Multitasking is the ability of an operating system to execute multiple tasks (or
processes) at once. On a single CPU machine, multitasking is not possible in a true
sense because one CPU can execute instructions for only one process at a time. In such
a case, the operating system achieves multitasking by dividing the single CPU'’s time
among all running processes and switching between processes quickly enough to give
an impression that all processes are running simultaneously. The switching of the CPU
among processes is called a context switch. In a context switch, the running process is
stopped, its state is saved, the state of the process that is going to get the CPU is restored,
and the new process is run. It is necessary to save the state of the running process before
the CPU is allocated to another process, so when this process gets the CPU again, it
can start its execution from the same point where it left. Typically, the state of a process
consists of a program counter, register values used by the process, and any other pieces
of information that are necessary to restore the process later. An operating system
stores a process state in a data structure, which is called a process control block or a
switchframe. A context switch is rather an expensive task.

There are two types of multitasking: cooperative and preemptive. In cooperative
multitasking, the running process decides when to release the CPU so that other
processes can use the CPU. In preemptive multitasking, the operating system allocates
a time slice to each process. Once a process has used up its time slice, it is preempted,
and the operating system assigns the CPU to another process. In cooperative
multitasking, a process may monopolize the CPU for a long time, and other processes
may not get a chance to run. In preemptive multitasking, the operating system makes

258

CHAPTER5 THREADS

sure all processes get CPU time. UNIX, OS/2, and Windows (except Windows 3.x) use
preemptive multitasking. Windows 3.x used cooperative multitasking.
Multiprocessing is the ability of a computer to use more than one processor
simultaneously. Parallel processing is the ability of a system to simultaneously execute
the same task on multiple processors. You may note that, for parallel processing, the
task must be split up into subtasks, so that the subtasks can be executed on multiple
processors simultaneously. Let’s consider a program that consists of six instructions:

Instruction-1
Instruction-2
Instruction-3
Instruction-4
Instruction-5
Instruction-6

To execute this program completely, the CPU has to execute all six instructions.
Suppose the first three instructions depend on each other. Assume that Instruction-2
uses the result of Instruction-1; Instruction-3 uses the result of Instruction-2.
Assume that the last three instructions also depend on each other the same way the
first three depend on each other. Suppose the first three and the last three instructions,
as two groups, do not depend on each other. How would you like to execute these six
instructions to get the best result? One of the ways to execute them is sequentially as
they appear in the program. This gives you one sequence of execution in your program.
Another way of executing them is to have two sequences of executions. One sequence of
execution will execute Instruction-1, Instruction-2, and Instruction-3, and at the
same time, another sequence of execution will execute Instruction-4, Instruction-5,
and Instruction-6. The phrases “unit of execution” and “sequence of execution” mean
the same; I use them interchangeably. These two scenarios are depicted in Figure 5-1.

One unit of execution Two units of executions
Instruction-1 Instruction-1 Instruction-4
Instruction-2 Instruction-2 Instruction-5
Instruction-3 Instruction-3 Instruction-6

Instruction-4
Instruction-5
Instruction-6

Figure 5-1. Dividing a program into multiple units of execution

259

CHAPTER5 THREADS

Note that a process is also a unit of execution. Therefore, the two sets of instructions
can be run as two processes to achieve concurrency in their execution. So far, we have
assumed that the two sets of instructions are independent of each other. Suppose
this assumption still holds true. What if the two sets of instructions access a shared
memory; or, when both sets of instructions finish running, you need to combine the
results from both to compute the final result? Processes are generally not allowed to
access another process’s address space. They must communicate using interprocess
communication facilities such as sockets, pipes, etc. The very nature of a process—that
itruns independent of other processes—may pose problems when multiple processes
need to communicate or share resources. All modern operating systems let you solve this
problem by allowing you to create multiple units of execution within a process, where all
units of execution can share address space and resources allocated to the process. Each
unit of execution within a process is called a thread.

Every process has at least one thread. A process can create multiple threads, if
needed. The resources available to the operating system and its implementation
determine the maximum number of threads a process can create. All threads within a
process share all resources including the address space; they can also communicate with
each other easily because they operate within the same process and they share the same
memory. Each thread within a process operates independent of the other threads within
the same process.

A thread maintains two things: a program counter and a stack. The program counter
lets a thread keep track of the instruction that it is currently executing. It is necessary
to maintain a separate program counter for each thread because each thread within a
process may be executing different instructions at the same time. Each thread maintains
its own stack to store the values of the local variables. A thread can also maintain its
private memory, which cannot be shared with other threads, even if they are in the same
process. The private memory maintained by a thread is called thread-local storage (TLS).
Figure 5-2 depicts threads represented within a process.

260

CHAPTER5 THREADS

An operating system

Process Process Process

v v \l\ v Y

A thread within a process

-

Figure 5-2. Processes and threads

In all modern operating systems, threads are scheduled on the CPU for execution,
not the processes. Therefore, the CPU context switch occurs between the threads.
The context switch between threads is less expensive compared to the context switch
between processes. Because of the ease of communication, sharing resources among
threads within a process, and a cheaper context switch, it is preferred to split a program
into multiple threads, rather than multiple processes. Sometimes, a thread is also called
a lightweight process. The program with six instructions as discussed previously can also
be split into two threads within a process, as depicted in Figure 5-3. On a multiprocessor
machine, multiple threads of a process may be scheduled on different processors, thus
providing true concurrent executions of a program. A program that uses multiple threads
is called a multi-threaded program.

A process with one thread A process with two threads
Instruction-1 Instruction-1 Instruction-4
Instruction-2 Instruction-2 Instruction-5
Instruction-3 Instruction-3 Instruction-6

Instruction-4 ’—M‘
Instruction-5 a ,_/ Z‘
Instruction-6 Thread 1 T'hread 2

Figure 5-3. Dividing the program logic to use two threads within a process

You can think of the relationship between a process and threads as Process =
address space + resources + threads where threads are units of execution within

261

CHAPTER5 THREADS

the process; they maintain their own unique program counter and stack; they share the
process address space and resources; they are scheduled on a CPU independently and
may execute on different CPUs, if available.

Creating Threads in Java

The Java API makes it easy to work with threads. It lets you represent a thread as an
object. An object of the java.lang.Thread class represents a thread. Creating and using
a thread in Java is as simple as creating an object of the Thread class and using that
object in a program. Let’s start with the simplest example of creating a thread in Java.
There are at least two steps involved in working with a thread:

o Creating an object of the Thread class
o Invoking the start() method of the Thread class to start the thread

Creating an object of the Thread class is the same as creating an object of any other
classes in Java. In its simplest form, you can use the no-args constructor of the Thread
class to create a Thread object:

// Creates a thread object
Thread simplestThread = new Thread();

Creating an object of the Thread class allocates memory for that object on the heap.
It does not start or run the thread. You must call the start() method of the Thread
object to start the thread:

// Starts the thread
simplestThread.start();

The start() method returns after doing some housekeeping work. It puts the thread
in the runnable state. In this state, the thread is ready to receive the CPU time. Note that
invoking the start() method of a Thread object does not guarantee “when” this thread
will start getting the CPU time. That is, it does not guarantee when the thread will start
running. It just schedules the thread to receive the CPU time.

Let’s write a simple Java program with these two statements, as shown in Listing 5-2.
The program will not do anything useful. However, it will get you started using threads.

262

CHAPTER5 THREADS

Listing 5-2. The Simplest Thread in Java

// SimplestThread.java

package com.jdojo.threads;
public class SimplestThread {
public static void main(String[] args) {

// Creates a thread object

Thread simplestThread = new Thread();

// Starts the thread
simplestThread.start();

When you run the SimplestThread class, you do not see any output. The program

will start and finish silently. Even though you did not see any output, here are a few

things the JVM did when the two statements in the main() method were executed:

When the second statement, simplestThread.start(), is executed,
the JVM scheduled this thread for execution.

At some point in time, this thread got the CPU time and started
executing. What code does a thread in Java start executing when it
gets the CPU time?

A thread in Java always starts its execution in a run() method. You
can define the run() method to be executed by a thread when you
create an object of the Thread class. In your case, you created an
object of the Thread class using its no-args constructor. When you use
the no-args constructor of the Thread class to create its object (as in
new Thread()), the run() method of the Thread class is called when
the thread starts its execution. The following sections in this chapter
explain how to define your own run() method for a thread.

The run() method of the Thread class checks how the object of the
Thread class was created. If the thread object was created using the
no-args constructor of the Thread class, it does not do anything and
immediately returns. Therefore, in your program, when the thread
got the CPU time, it called the run() method of the Thread class,
which did not execute any meaningful code, and returned.

263

CHAPTER5 THREADS

e When the CPU finishes executing the run() method, the thread is
dead, which means the thread will not get the CPU time again.

Figure 5-4 depicts how the simplest thread example works.

Thread simplestThread = new Thread();

Y

simplest;m simplestThread.start();

object in
memory

Gets CPU time Created a thread and

scheduled it for
execution

Starts executing the run() L
method of the Thread class

The run() method finishes

Thread is dead

Figure 5-4. The simplest thread execution

There are two important points to add to the current discussion:

e When a thread is dead, it does not mean the thread object is garbage
collected. Note that a thread is a unit of execution. “A thread is dead”
means that the unit of execution that the thread represented has
finished its work. However, the thread object representing the unit of
execution still exists in memory. After the thread is dead, the object
will be garbage collected based on the same garbage collection rules
that are used for any other Java objects. Some restrictions exist that
dictate the methods you can call on a dead thread. For example, you
cannot call its start () method again. That is, a thread object can be
started only once. However, you can still check if the thread is dead
by calling the isAlive() method of the thread object.

264

CHAPTER5 THREADS

o The thread does not get the CPU time in one go to execute the run()
method. The operating system decides on the amount of time to
allocate and when to allocate that time to the thread. This means that
the multiple context switches may occur before the thread finishes
executing the run() method.

Specifying Your Code for a Thread

There are three ways you can specify your code to be executed by a thread:
e Byinheriting your class from the Thread class
o Byimplementing the Runnable interface in your class

¢ By using the method reference to a method that takes no parameters
and returns void

Note Inheriting your class from the Thread class may not be possible if your
class already inherits from another class. In that case, you need to use the second
method. You can use the third method from Java 8. Before Java 8, it was common
to use an anonymous class to define a thread object where the anonymous class
would either inherit from the Thread class or implement the Runnable interface.

Inheriting Your Class from the Thread Class

When you inherit your class from the Thread class, you should override the run()
method and provide the code to be executed by the thread:

public class MyThreadClass extends Thread {
@0verride
public void run() {
System.out.println("Hello Java threads!");
}

// More code goes here

265

CHAPTER5 THREADS
The steps to create a thread object and start the thread are the same:

MyThreadClass myThread = new MyThreadClass();
myThread.start();

The thread will execute the run() method of the MyThreadClass class.

Implementing the Runnable Interface

You can create a class that implements the java.lang.Runnable interface. Runnable is a
functional interface, and it is declared in the java. lang package as follows:

@FunctionalInterface
public interface Runnable {
void run();

A simple example implementation of Runnable would read

public class HelloRunnable implements Runnable {
@verride
public void run() {
System.out.println("Hello Java threads!");

}

// Creating an instance:
Runnable aRunnableObject = new HelloRunnable();

Instead, you can also use a lambda expression to create an instance of the Runnable

interface:

Runnable aRunnableObject = () ->
System.out.println("Hello Java threads!");

Create an object of the Thread class using the constructor that accepts a Runnable
object:

Thread myThread = new Thread(aRunnableObject);

266

CHAPTER 5 THREADS
Start the thread by calling the start() method of the thread object:
myThread.start();

The thread will execute the code contained in the body of the lambda expression.

Using a Method Reference

To even further increase conciseness, you can use the method reference of a method
(static or instance) that takes no parameters and returns void as the code to be executed
by a thread. The following code declares a ThreadTest class that contains an execute()
method. The method contains the code to be executed in a thread:

public class ThreadTest {
public static void execute() {
System.out.println("Hello Java threads!");

The following snippet of code uses the method reference of the execute() method of
the ThreadTest class to create a Runnable object:

Thread myThread = new Thread(ThreadTest::execute);
myThread.start();

The thread will execute the code contained in the execute() method of the
ThreadTest class.

A Quick Example

Let’s look at a simple example to print integers from 1 to 500 in a new thread. Listing 5-3
contains the code for the PrinterThread class that performs this task. When the class is
run, it prints integers from 1 to 500 on the standard output.

Listing 5-3. Printing Integers from 1 to 500 in a New Thread

// PrinterThread.java
package com.jdojo.threads;

267

CHAPTER5 THREADS

public class PrinterThread {

public static void main(String[] args) {
// Create a Thread object
Thread t = new Thread(PrinterThread::print);
// Start the thread
t.start();

}

public static void print() {
for (int i = 1; i <= 500; i++) {

System.out.print(i + " ");

}
12345678910 11 12 13 14 ... 497 498 499 500

I used a method reference to create the thread object in the example. You can use
any of the other ways discussed earlier to create a thread object.

Using Multiple Threads in a Program

Using multiple threads in a Java program is as simple as creating multiple Thread objects
and calling their start() method. Java does not have any upper limit on the number

of threads that can be used in a program. It is limited by the operating system and the
memory available to the program. Listing 5-4 uses two threads. Both threads print
integers from 1 to 500. The code prints a new line after each integer. However, the output
shows a space after each integer to keep the output short. Only partial output is shown.

Listing 5-4. Running Multiple Threads in a Program

// MultiPrinterThread.java
package com.jdojo.threads;
public class MultiPrinterThread {
public static void main(String[] args) {
// Create two Thread objects
Thread t1 = new Thread(MultiPrinterThread: :print);
Thread t2 = new Thread(MultiPrinterThread::print);

268

CHAPTER5 THREADS

// Start both threads
t1.start();
t2.start();
}
public static void print() {
for (int i = 1; i <= 500; i++) {
System.out.println(i);

}

12 3 4 5 1 2 3 456 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23 24 25 26 6 7
27 28 8 9 10 11 12 29 30 31 13 14 32 15 16
17 ... 496 497 498 499 500 424 425 ... 492 493
494 495 496 497 498 499 500

You will find some interesting things in the output. Every time you run this program,
you may get different output. However, the nature of the output on your computer can be
compared to the output shown here. On a very fast machine, the output may print 1 to
500 and 1 to 500. However, let’s focus on the discussion assuming that your output is like
the one shown.

The program created two threads. Each thread prints integers from 1 to 500. It starts
the thread t1 first and the thread t2 second. You might expect that the thread t1 will
start first to print integers from 1 to 500, and then the thread t2 will start to print integers
from 1 to 500. However, it is obvious from the output that the program did not run the
way you might have expected.

The start() method of the Thread class returns immediately. That is, when you
call the start() method of a thread, the JVM takes note of your instruction to start the
thread. However, it does not start the thread right away. It has to do some housekeeping
before it can really start a thread. When a thread starts, it is up to the operating system
to decide when and how much CPU time it will give to that thread. Therefore, as soon as
the t1.start() and t2.start() methods return, your program enters the indeterminate
realm. That is, both threads will start running; however, you do not know when they will
start running and in what sequence they will run to execute their code. When you start
multiple threads, you do not even know which thread will start running first. Looking at
the output, you can observe that one of the threads started, and it got enough CPU time

269

CHAPTER5 THREADS

to print integers from 1 to 5 before it was preempted. Another thread got CPU time to
print from 1 to 26 before it was preempted. The second time, the first thread (the thread
that started printing integers first) got the CPU time, and it printed only two integers, 6
and 7, and so on. You can see that both threads got CPU time. However, the amount of
CPU time and the sequence in which they got the CPU time are unpredictable. Each time
you run this program, you may get different output. The only guarantee that you get from
this program is that all integers between 1 and 500 will be printed twice in some order.

Issues in Using Multiple Threads

Some issues are involved when you use multiple threads in a program. You need
to consider these issues only if multiple threads have to coordinate based on some
conditions or some shared resources.

In the previous sections, the examples involving threads were trivial. They simply
printed some integers on the standard output. Let’s look at a different kind of example
that uses multiple threads, which access and modify the value of a variable. Listing 5-5
shows the code for the BalanceUpdate class.

Listing 5-5. Multiple Threads Modifying the Same Variable

// BalanceUpdate.java
package com.jdojo.threads;
public class BalanceUpdate {
// Initialize balance to 100
private static int balance = 100;
public static void main(String[] args) {
startBalanceUpdateThread();
// <- Thread to update the balance value
startBalanceMonitorThread();
// <- Thread to monitor the balance value
}
public static void updateBalance() {
// Add 10 to balance and subtract 10 from balance
balance = balance + 10;
balance = balance - 10;

270

CHAPTER 5

public static void monitorBalance() {
int b = balance;
if (b != 100) {
System.out.println("Balance changed: " + b);
System.exit(0); // Exit the program

}
public static void startBalanceUpdateThread() {

// Start a new thread that calls the
// updateBalance() method in an infinite loop
Thread t = new Thread(() -> {

while (true) {

updateBalance();

}
D;
t.start();

}

public static void startBalanceMonitorThread() {
// Start a thread that monitors the balance value
Thread t = new Thread(() -> {
while (true) {
monitorBalance();
}

D;
t.start();

}

Balance changed: 110
A brief description of each component of this class follows:
e balance:Itis a static variable of type int. It is initialized to 100.

o updateBalance():Itis a static method that adds 10 to the static
variable balance and subtracts 10 from it. Upon completion of this

method, the value of the static variable balance is expected to remain

the same as 100.

THREADS

271

CHAPTER5 THREADS

o startBalanceUpdateThread(): It starts a new thread that keeps
calling the updateBalance() method in an infinite loop. That is, once
you call this method, a thread keeps adding 10 to the balance variable
and subtracting 10 from it.

o startBalanceMonitorThread(): It starts a new thread that monitors
the value of the balance static variable by repeatedly calling the
monitorBalance() method. When the thread detects that the value of
the balance variable is other than 100, it prints the current value and
exits the program.

o main(): This method is used to run the program. It starts a
thread that updates the balance class variable in a loop using the
updateBalance() method. It also starts another thread that monitors
the value of the balance class variable.

The program consists of two threads. One thread calls the updateBalance() method,
which adds 10 to balance and subtracts 10 from it. That is, after this method finishes
executing, the value of the balance variable is expected to remain unchanged. Another
thread monitors the value of the balance variable. When it detects that the value of
the balance variable is anything other than 100, it prints the new value and exits the
program. Specifying zero in System.exit(0) method call indicates that you want to
terminate the program normally.

Intuitively, the balance monitor thread should not print anything because the
balance should always be 100, and the program should never end because both threads
are using infinite loops. However, that is not the case. If you run this program, you will
find, in a short time, the program prints the balance value other than 100 and exits.

Suppose on a particular machine the statement balance = balance + 10; is
implemented as the following machine instructions assuming register-1 as a CPU
register:

register-1 = balance;
register-1 = register-1 + 10;
balance = register-1;

272

CHAPTER5 THREADS

Similarly, assume that the statement balance = balance - 10; is implemented as
the following machine instructions assuming register-2 as another CPU register:

register-2 = balance;
register-2 = register-2 - 10;
balance = register-2;

When the updateBalance() method is invoked, the CPU has to execute six
instructions to add 10 to and subtract 10 from the balance variable. When the balance
update thread is in the middle of executing any of the first three instructions, the balance
monitor thread will read the balance value as 100. When the balance update thread has
finished executing the third instruction, the balance monitor thread will read its value
as 110. The value 110 for the balance variable will be restored to 100 only when the
balance update thread executes the sixth instruction. Note that if the balance monitor
thread reads the value of the balance variable any time after the execution of the third
instruction and before the execution of the sixth instruction by the balance update
thread, it will read a value that is not the same as the value that existed at the start of
the updateBalance() method execution. Table 5-1 shows how the value of the balance
variable will be modified and read by the two threads.

In your program, the monitor thread was able to read the value of the balance
variable as 110 because you allowed two threads to modify and read the value of the
balance variable concurrently. If you allowed only one thread at a time to work with
(modify or read) the balance variable, the balance monitor thread would never read the
value of the balance variable other than 100.

Table 5-1. Instruction Executions for Multiple Threads

Statement (Suppose Balance Instructions Being Executed by the The Value of Balance Read by

Value Is 100 to Start With) Balance Update Thread the Balance Monitor Thread
balance = balance + 10; register-1 = balance; 100
register-1 = register-1 + 10; Before execution: 100
balance = register-1; After execution: 110
balance = balance - 10; register-2 = balance; 110

register-2 = register-2 - 10; 110
balance = register-2; Before execution: 110
After execution: 100

273

CHAPTER5 THREADS

The situation where multiple threads manipulate and access a shared data
concurrently and the outcome depends on the order in which the execution of threads
take place is known as a race condition. A race condition in a program may lead to
unpredictable results. Listing 5-5 is an example of a race condition where the program
output depends on the sequence of execution of the two threads.

To avoid a race condition in a program, you need to make sure that only one of the
racing threads works with the shared data at a time. To solve this problem, you need to
synchronize the access to the two methods updateBalance() and monitorBalance()
of the BalanceUpdate class. That is, only one thread should access one of these two
methods at a time. In other words, if one thread is executing the updateBalance()
method, another thread that wants to execute the monitorBalance() method must
wait until the thread executing the updateBalance() method is finished. Similarly,
if one thread is executing the monitorBalance() method, another thread that wants
to execute the updateBalance() method must wait until the thread executing the
monitorBalance() method is finished. This will ensure that when a thread is in the
process of updating the balance variable, no other threads will read the inconsistent
value of the balance variable, and if a thread is reading the balance variable, no other
threads will update the balance variable at the same time.

This kind of problem that needs synchronizing the access of multiple threads to a
section of code in a Java program can be solved using the synchronized keyword. To
understand the use of the synchronized keyword, I need to discuss the Java Memory
Model in brief and the lock and wait sets of an object.

Java Memory Model

All program variables (instance fields, static fields, and array elements) in a program
are allocated memory from the main memory of a computer. Each thread has a working
memory (processor cache or registers). The Java Memory Model (J]MM) describes

how, when, and in what order program variables are stored to, and read from, the main
memory. The JMM is described in the Java Language Specification in detail. You may
visualize the JMM as depicted in Figure 5-5.

274

CHAPTER5 THREADS

Thread-1 Thread-2
Main memory
Object-1
Working Object-2 Working
memory Object-3 memory

Figure 5-5. The Java Memory Model

Figure 5-5 shows two threads sharing the main memory. Let’s assume that you have
a Java program that is running two threads, thread-1 and thread-2, and each thread
is running on different processors. Suppose thread-1 reads the value of an instance
variable of object-1 in its working memory, updates the value, and does not write the
updated value back to the main memory. Let’s run through a few possible scenarios:

e What happens if thread-2 tries to read the value of the same instance
variable of object-1 from the main memory? Would thread-2 read
the old value from the main memory, or would it be able to read the
updated value from the working memory of thread-1?

e Suppose thread-1 is in the middle of writing the updated value to
the main memory, and at the same time, thread-2 is trying to read
the same value from the main memory. Would thread-2 read the
old value or some garbage value from the main memory because the
value is not written back to the main memory completely?

The JMM answers all such questions. In essence, the JMM describes three important
aspects of the execution of instructions in a Java program. They are as follows:

o Atomicity
o Visibility

e Ordering

275

CHAPTER5 THREADS

Atomicity

The JMM describes actions that should be executed atomically. It describes atomicity
rules about read and write actions on instance variables, static variables, and array
elements. It guarantees that read and write on an object’s field of any type, except long
and double, are always atomic. However, if a field of type long or double is declared
volatile (I discuss the volatile keyword in detail later in this chapter), read and write
on that field are also guaranteed to be atomic.

Visibility

The JMM describes the conditions under which the effects produced by actions in one
thread are visible to other threads. Mainly, it determines when a thread writes a value to
a field, at what point the new value of that field can be visible to other threads. I discuss
more about the visibility aspect of the JMM when I discuss locks, synchronization, and

volatile variables later in this chapter. For completeness, the following are some of the
visibility rules:

o When a thread reads the value of a field for the first time, it will read
either the initial value of the field or some value that was written to
that field by some other thread.

e Awrite to a volatile variable is always written to the main memory.

e Aread on avolatile variable is always read from the main memory.
That is, a volatile variable is never cached in the working memory of a
thread. In effect, any write to a volatile variable is flushed to the main
memory, immediately making the new value visible to other threads.

e When a thread terminates, the working memory of the thread is
written to the main memory immediately. That is, after a thread
terminates, all variables’ values visible only to the terminated thread
are made visible to all threads.

e When a thread enters a synchronized block, that thread reloads the
values of all variables in its working memory. When a thread leaves
a synchronized block, it writes all variables’ values from its working
memory to the main memory.

276

CHAPTER5 THREADS

Ordering

The JMM describes in what order actions are performed within a thread and among
threads. It guarantees that all actions performed within a thread are ordered. Actions
in different threads are not guaranteed to be performed in any order. You may achieve
some ordering while working with multiple threads by using the synchronization

technique described later in this chapter.

Note Each thread in a Java program uses two kinds of memory: working
memory and main memory. A thread cannot access the working memory of
another thread. Main memory is shared among the threads. Threads communicate
with each other using the main memory. Every thread has its own stack, which is
used to store local variables.

Object’s Monitor and Thread Synchronization

In a multi-threaded program, a section of code that may have undesirable effects on the
outcome of the program if executed by multiple threads concurrently is called a critical
section. Often, the undesirable effects result from the concurrent use of a resource by
multiple threads in the critical section. It is necessary to control the access to a critical
section in a program so only one thread can execute the critical section at a time.

In a Java program, a critical section can be a block of statements or a method. Java
has no built-in mechanism to identify a critical section in a program. However, Java
has many built-in constructs that allow programmers to declare a critical section and
to control and coordinate access to it. It is the programmer’s responsibility to identify
critical sections in a program and control the access to those critical sections by multiple
threads. Controlling and coordinating the access to a critical section by multiple threads
is known as thread synchronization. Thread synchronization is always a challenging
task when writing a multi-threaded program. In Listing 5-5, the updateBalance()
and monitorBalance() methods are critical sections, and you must synchronize the
threads’ access to these two methods to get a consistent output. Two kinds of thread
synchronizations are built into the Java programming language:

e Mutual exclusion synchronization

o Conditional synchronization

277

CHAPTER5 THREADS

In mutual exclusion synchronization, only one thread is allowed to have access
to a section of code at a point in time. Listing 5-5 is an example of a program where
mutual exclusion synchronization is needed so that only one thread can execute
updateBalance() and monitorBalance() at a point in time. In this case, you can think of
the mutual exclusion as an exclusive access to the balance variable by a thread.

The conditional synchronization allows multiple threads to work together to achieve
aresult. For example, consider a multi-threaded program to solve a producer/consumer
problem. There are two threads in a program: one thread produces data (the producer
thread), and another thread consumes the data (the consumer thread). The consumer
thread must wait until the producer thread produces data and makes it available for
consuming. The producer thread must notify the consumer thread when it produces
data so the consumer thread can consume it. In other words, producer and consumer
threads must coordinate/cooperate with each other to accomplish the task. During
conditional synchronization, mutual exclusion synchronization may also be needed.
Suppose the producer thread produces data one byte at a time and puts the data into
a buffer whose capacity is also one byte. The consumer thread consumes data from
the same buffer. In this case, only one of the threads should have access to the buffer
at a time (a mutual exclusion). If the buffer is full, the producer thread must wait for
the consumer thread to empty the buffer; if the buffer is empty, the consumer thread
must wait for the producer thread to produce a byte of data and put it into the buffer (a
conditional synchronization).

The mutual exclusion synchronization is achieved through a lock. A lock supports
two operations: acquire and release. A thread that wants exclusive access to a resource
must acquire the lock associated with that resource. As long as a thread possesses the
lock to a resource, other threads cannot acquire the same lock. Once the thread that
possesses the lock is finished with the resource, it releases the lock so another thread can
acquire it.

The conditional synchronization is achieved through condition variables and three
operations: wait, signal, and broadcast. Condition variables define the conditions on
which threads are synchronized. The wait operation makes a thread wait on a condition
to become true so it can proceed. The signal operation wakes up one of the threads that
was waiting on the condition variables. The broadcast operation wakes up all threads
that were waiting on the condition variables. Note that the difference between the signal
operation and broadcast operation is that the former wakes up only one waiting thread,
whereas the latter wakes up all waiting threads.

278

CHAPTER5 THREADS

A monitor is a programming construct that has a lock, condition variables, and
associated operations on them. Thread synchronization in a Java program is achieved
using monitors. Every object in a Java program has an associated monitor.

A critical section in a Java program is defined with respect to an object’s monitor.

A thread must acquire the object’s monitor before it can start executing the piece of code
declared as a critical section. The synchronized keyword is used to declare a critical
section. There are two ways to use the synchronized keyword:

o To declare a method as a critical section
o« To declare a block of statements as a critical section

You can declare a method as a critical section by using the keyword synchronized
before the method’s return type, as shown:

public class CriticalSection {
public synchronized void someMethod 1() {
// Method code goes here
}
public static synchronized void someMethod 2() {
// Method code goes here

Note You can declare both an instance method and a static method as
synchronized. A constructor cannot be declared as synchronized. A constructor
is called only once by only one thread, which is creating the object. So it makes no
sense to synchronize access to a constructor.

In the case of a synchronized instance method, the entire method is a critical section,
and it is associated with the monitor of the object for which this method is executed.
That is, a thread must acquire the object’s monitor lock before executing the code inside
a synchronized instance method of that object. For example:

// Create an object called cs1
CriticalSection cs1 = new CriticalSection();
// Execute the synchronized instance method. Before this

279

CHAPTER5 THREADS

// method execution starts, the thread that is executing
// this statement must acquire the monitor lock of the csi1
// object

cs1.someMethod 1();

In the case of a synchronized static method, the entire method is a critical section,
and it is associated with the class object that represents that class. That is, a thread must
acquire the class object’s monitor lock before executing the code inside a synchronized
static method of that class. For example:

// Execute the synchronized static method. Before this
// method execution starts, the thread that is executing
// this statement must acquire the monitor lock of the
// CriticalSection.class object
CriticalSection.someMethod 2();

The syntax for declaring a block of code as a critical section is as follows:

synchronized(<objectReference>) {
// one or more statements of the critical section

The <objectReference> is the reference of the object whose monitor lock will be
used to synchronize the access to the critical section. This syntax is used to define part
of a method body as a critical section. This way, a thread needs to acquire the object’s
monitor lock only, while executing a smaller part of the method’s code, which is declared
as a critical section.

Other threads can still execute other parts of the body of the method concurrently.
Additionally, this method of declaring a critical section lets you declare a part or whole of
a constructor as a critical section. Recall that you cannot use the keyword synchronized
in the declaration part of a constructor. However, you can use it inside a constructor’s
body to declare a block of code as synchronized. The following snippet of code illustrates
the use of the keyword synchronized:

public class CriticalSection2 {
public synchronized void someMethod10() {
// Method code goes here. Only one thread can
// execute here at a time.

280

CHAPTER5 THREADS

public void someMethod11() {
synchronized(this) {
// Method code goes here. Only one thread
// can execute here at a time.

}
public void someMethod12() {

// Some statements go here. Multiple threads can
// execute here at a time.
synchronized(this) {
// Some statements go here. Only one thread
// can execute here at a time.
}
// Some statements go here. Multiple threads can
// execute here at a time.
}
public static synchronized void someMethod20() {
// Method code goes here. Only one thread can
// execute here at a time.
}
public static void someMethod21() {
synchronized(CriticalSection2.class) {
// Method code goes here. Only one thread can
// execute here at a time.

}

public static void someMethod 22() {
// Some statements go here: section 1. Multiple
// threads can execute here at a time.
synchronized(CriticalSection2.class) {
// Some statements go here: section 2. Only
// one thread can execute here at a time.
}
// Some statements go here: section 3. Multiple
// threads can execute here at a time

281

CHAPTER5 THREADS

The CriticalSection2 class has six methods: three instance methods and three
class methods. The someMethod10() method is synchronized as the synchronized
keyword is used in the method declaration. The someMethod11() method differs from the
someMethod10() method only in the way it uses the synchronized keyword. It puts the
entire method body inside the synchronized keyword as a block, which has practically
the same effect as declaring the method synchronized. The method someMethod12() is
different. It declares only part of the method’s body as a synchronized block. There can
be more than one thread that can execute someMethod12() concurrently. However, only
one of them can be executing inside the synchronized block at one point in time. Other
methods—someMethod20(), someMethod21(), and someMethod22()—are class methods,
and they will behave the same way, except that the class’s object monitor will be used to
achieve the thread synchronization.

The process of acquiring and releasing an object’s monitor lock is handled by the
JVM. The only thing you need to do is declare a method (or a block) as synchronized.
Before entering a synchronized method or block, the thread acquires the monitor
lock of the object. On exiting the synchronized method or block, it releases the object’s
monitor lock. A thread that has acquired an object’s monitor lock can acquire it again as
many times as it wants. However, it must release the object’s monitor lock as many times
as it had acquired it in order for another thread to acquire the same object’s monitor
lock. Let’s consider the following code for a Multilocks class:

public class Multilocks {

public synchronized void method1() {
// Some statements go here
this.method2();
// Some statements go here

}

public synchronized void method2() {
// Some statements go here

}

public static synchronized void method3() {
// Some statements go here
MultilLocks.method4();
// Some statements go here

282

CHAPTER5 THREADS

public static synchronized void method4() {
// Some statements go here

The Multilocks class has four methods, and all of them are synchronized. Two of
them are instance methods, which are synchronized using the reference of the object
on which the method call will be made. Two of them are class methods, which are
synchronized using the reference of the class object of the Multilocks class. If a thread
wants to execute method1() or method2(), it must first acquire the monitor lock of the
object on which the method is called. You are calling method2() from inside the method
method1(). Since a thread that is executing method1() must already have acquired the
object’s monitor lock and a call to method2 () requires the acquisition of the same lock,
that thread will reacquire the same object’s monitor lock automatically when it executes
method2 () from inside method1() without competing with other threads to acquire the
object’s monitor lock.

Therefore, when a thread executes method2() from inside method1(), it will have
acquired the object’s monitor lock twice. When it exits method2 (), it will release the
lock once; when it exits method1 (), it will release the lock the second time; and then
the object’s monitor lock will be available for other threads for acquisition. The same
argument applies to the call to method4 () from inside method3 () except that, in this case,
the Multilocks class object’s monitor lock is involved in the synchronization. Consider
calling method3 () from method1(), like so:

public class Multilocks {
public synchronized void method1() {
// Some statements go here
this.method2();
MultilLocks.method3();
// Some statements go here

}

// Rest of the code remains the same as shown before

Suppose you call method1(), like so:

MultilLocks ml = new MultilLocks();
ml.method1();

283

CHAPTER5 THREADS

When ml.method1() is executed, the executing thread must acquire the monitor
lock of the object ml. However, the executing thread must acquire the monitor lock of
the Multilocks.class object to execute the MultilLocks.method3() method. Note that
ml and Multilocks.class are two different objects. The thread that wants to execute the
MultilLocks.method3() method from the method1() method must possess both objects’
monitor locks at the same time.

You can apply the same arguments to work with synchronized blocks. For example,
you can have a snippet of code like this:

synchronized (objectReference) {
// Trying to synchronize again on the same object is ok
synchronized(objectReference) {
// Some statements go here

It is time to take a deeper look into the workings of thread synchronization using an
object’s monitor. Figure 5-6 depicts how multiple threads can use an object’s monitor.

I use a doctor-patient analogy while discussing thread synchronization. Suppose a
doctor has a clinic to treat patients. We know that it is very important to allow only one
patient access to the doctor at a time. Otherwise, the doctor may mix up one patient’s
symptoms with another patient’s symptoms; a patient with fever may get a prescription
for a headache! Therefore, we will assume that only one patient can have access to the
doctor at any point in time. It is the same assumption that only one thread (patient) can
have access to an object’s monitor (doctor) at a time.

Any patient who wants an access to the doctor must sign in and wait in the waiting
room. Similarly, each object monitor has an entry set (waiting room for newcomers),
and any thread that wants to acquire the object’s monitor lock must enter the entry set
first. If the patient signs in, they may get access to the doctor immediately, if the doctor
is not treating a patient and there were no patients waiting for their turn in the waiting
room. Similarly, if the entry set of an object’s monitor is empty and there is no other
thread that possesses the object’s monitor lock, the thread entering the entry set acquires
the object’s monitor lock immediately. However, if there were patients waiting in the
waiting room or one being treated by the doctor, the patient who signs in is blocked and
must wait for the doctor to become available again. Similarly, if a thread enters the entry

284

CHAPTER5 THREADS

set, and other threads are already blocked in the entry set, or another thread already
possesses the object’s monitor lock, the thread that just signed in is said to be blocked
and must wait in the entry set.

A thread entering the entry set is shown by the arrow labeled Enter. A thread itself is
shown in Figure 5-6 using a circle. A circle with the text B shows a thread that is blocked
in the entry set. A circle with the text R shows a thread that has acquired the object’s
monitor.

Wait set ()hJLLl s monitor
Entry set @ @
@ @ Release and exit >

@ A blocked thread
@ A running thread (owns the object’s monitor)
@ A waiting thread

Figure 5-6. Multiple threads using an object’s monitor

What happens to the threads that are blocked in the entry set? When do they get
a chance to acquire the object’s monitor? You can think about the patients blocked in
the waiting room and getting their turn to be treated by the doctor. Many factors decide
which patient will be treated next. First, the patient being treated must free the doctor
before another patient can have access to the doctor. In Java, the thread that has the
ownership of the object’s monitor must release the object’s monitor before any threads
that are blocked in the entry set can have the ownership of the object’s monitor. A patient
may free the doctor for one of two reasons:

e The patient is done with their treatment and is ready to go home.
This is a straightforward case of a patient freeing the doctor after their
treatment is over.

285

CHAPTER5 THREADS

e A patient is in the middle of their treatment. However, they must
wait for some time in order for the doctor to resume their treatment.
Let’s assume that the clinic has a special waiting room (separate
from the one where patients who just signed in wait) for those
patients who are in the middle of their treatment. This case needs
some explanation. Let’s say that the doctor is an eye specialist and
has some patients in their clinic. The patient who is being treated
needs an eye examination for which their pupils must be dilated
first. It takes about 30 minutes after the patient receives eye drops
for full pupil dilation, which is required for the examination. Should
the doctor be waiting for 30 minutes for the patient’s pupils to
dilate? Should this patient release the doctor for 30 minutes and let
other patients have access to the doctor? You would agree that if the
doctor’s time can be used to treat other patients while this patient’s
pupils are being dilated, it is fine for this patient to release the
doctor. What should happen when this patient’s pupils are dilated,
however, and the doctor is still busy treating another patient?

The doctor cannot leave any patient in the middle of treatment.
Therefore, the patient who released the doctor and waited for some
condition to be true (here, the dilation process to complete) must
wait until the doctor is free again. I explain this issue more later in
this chapter, and I try to correlate this situation with threads and the
object’s monitor lock.

I must discuss another issue in the context of the doctor-patient example before I
can compare this with the monitor-threads case. When the doctor is free and only one
patient is waiting to get access to them, there is no problem. The sole patient waiting for
the doctor will get access to them immediately. However, what happens when the doctor
becomes available and there is more than one patient waiting to get access to them?
Which one of the waiting patients should get access to the doctor first? Should it be the
patient who came first (first in, first out or FIFO)? Should it be the patient who came in
last (last in, first out or LIFO)? Should it be the patient who needs the least (or the most)
amount of time for their treatment? Should it be the patient who is in the most serious
condition? The answer depends on the policy followed by the clinic management.

286

CHAPTER5 THREADS

Similar to a patient in the doctor-patient example, a thread can also release an

object’s monitor lock for two reasons:

At this time, the thread has completed the work for which it had
acquired the object’s monitor lock. The arrow labeled “Release and
Exit” in Figure 5-6 indicates this scenario in the diagram. When a
thread simply exits a synchronized method/block, it releases the
object’s monitor lock it had acquired.

The thread is in the middle of a task, and it needs to wait for some
condition to be true to complete its remaining task. Let’s consider the
producer/consumer problem. Suppose the producer acquires the
buffer object’s monitor lock and wants to write some data into the
buffer. However, it finds that the buffer is full and the consumer must
consume the data and make the buffer empty before it can write to

it. In this case, the producer must release the buffer object’s monitor
lock and wait until the consumer acquires the lock and empties the
buffer. The same logic applies for the consumer when it acquires

the buffer’s monitor lock and finds that the buffer is empty. At that
time, the consumer must release the lock and wait until the producer
produces some data. This kind of temporarily releasing of the object’s
monitor lock and waiting for some condition to occur is shown in the
diagram labeled as the “Release and Wait” arrow. An object can have
multiple threads that can be in a “Release and Wait” state at the same
time. All threads that have released the object’s monitor lock and are
waiting for some conditions to occur are put in a set called a wait set.

How is a thread placed in the wait set? Note that a thread can be placed in the wait

set of an object monitor only if it once acquired the object’s monitor lock. Once a thread

has acquired the object’s monitor lock, it must call the wait() method of the object in

order to place itself into the wait set. This means a thread must always call the wait()

method from inside a synchronized method or a block. The wait() method is defined

in the java.lang.Object class, and it is declared final; that is, no other class in Java can

override this method. You must consider the following two rules before you call the

wait() method of an object.

287

CHAPTER5 THREADS

Rule #1

The call to the wait () method must be placed inside a synchronized method (static or
non-static) or a synchronized block.

Rule #2

The wait() method must be called on the object whose monitor the current

thread has acquired. It throws a java.lang.InterruptedException. The code

that calls this method must handle this exception. The wait() method throws an
IllegalMonitorStateException when the current thread is not the owner of the object’s
monitor. The following snippet of code does not place the wait() method call inside

a try-catch to keep the code simple and readable. For example, inside a synchronized
non-static method, the call to the wait() method may look like the following:

public class WaitMethodCall {

// Object that is used to synchronize a block

private Object objectRef = new Object();

public synchronized void someMethod 1() {
// The thread running here has already acquired
// the monitor lock on the object represented by
// the reference this because it is a
// synchronized non-static method

// other statements go here
while (some condition is true) {
// It is ok to call the wait() method on this,
// because the current thread possesses
// monitor lock on this
this.wait();
}

// other statements go here

}

public static synchronized void someMethod 2() {
// The thread executing here has already acquired
// the monitor lock on the class object represented

288

CHAPTER5 THREADS

// by the WaitMethodCall.class reference because it
// is a synchronized static method

while (some condition is true) {
// It is ok to call the wait() method on
// WaitMethodCall.class because the current
// thread possesses monitor lock on
// WaitMethodCall.class object
WaitMethodCall.class.wait();

}

// other statements go here
}
public void someMethod 3() {
// other statements go here
synchronized(objectRef) {
// Current thread possesses monitor lock of
// objectRef
while (some condition is true) {
// It is ok to call the wait() method on
// objectRef because the current thread
// possesses monitor lock on objectRef
objectRef.wait();

}

// other statements go here

Note that objectRef is an instance variable, and it is of the type java.lang.0Object.
Its only use is to synchronize threads’ access to a block inside the someMethod 3()
method. Since it is declared an instance variable, all threads calling someMethod_3()
will use its monitor to execute the synchronized block. A common mistake made by
beginners is to declare objectRef as a local variable inside a method and use itin a
synchronized block. The following snippet of code shows such a mistake:

289

CHAPTER5 THREADS

public void wrongSynchronizationMethod {
// This objectRef is created every time a thread calls
// this method
Object objectRef = new Object();
// It is a blunder to use objectRef for
// synchronization below
synchronized(objectRef) {
// In fact, this block works as if there is no
// synchronization, because every thread creates a
// new objectRef and acquires its monitor lock
// immediately.

With this snippet of code in mind, you must use an object reference that is common
to all threads to synchronize access to a block.

Let’s get back to the question of which patient will get access to the doctor when
they become available again. Will it be a patient from the waiting room who is waiting
after signing in or a patient from another waiting room who was waiting in the middle
of their treatment? Before you answer this question, let’s make it clear that there is a
difference between the patients in the waiting room who are waiting after signing in and
the patients waiting for some condition (e.g., dilation to complete) to occur in another
waiting room. After signing in, patients wait on the availability of the doctor, whereas
patients in the middle of their treatments wait on a particular condition to occur. For
patients in the second category, a particular condition must hold before they can seek
access to the doctor, whereas patients in the first category are ready to grab access to
the doctor as soon as possible. Therefore, someone must notify a patient in the second
category that a particular condition has occurred, and it is time for them to seek access
to the doctor again to continue their treatment. Let’s assume that this notification must
come from a patient being currently treated by the doctor. That is, the patient who
currently has access to the doctor notifies the patients waiting in the middle of their
treatments to get ready to gain access to the doctor again. Note that it is just a notification
that some condition has occurred, and it is delivered only to the patients waiting in the
middle of their treatments. Whether the patient in the middle of their treatment will
get access to the doctor right after the current patient is done with the doctor is not
guaranteed. It only guarantees that the condition on which a patient was waiting holds

290

CHAPTER5 THREADS

at the time of notification, and the waiting patient may try to get access to the doctor to
continue their treatment. Let’s correlate this example to the monitor-threads example.
The threads in the entry set are blocked, and they are ready to grab access to the
monitor as soon as possible. The threads in the wait set are waiting for some condition
to occur. A thread that has ownership of the monitor must notify the threads waiting
in the wait set about the fulfillment of the conditions on which they are waiting. In
Java, the notification is made by calling the notify() and notifyAll() methods of
the Object class. Like the wait() method, the notify() and notifyAll() methods
are also declared final. Like the wait () method, these two methods must be called
by a thread using an object whose monitor has already been acquired by the thread.
If a thread calls these methods on an object before acquiring the object’s monitor, an
I1legalMonitorStateException is thrown. The call to the notify() method wakes up
one thread from the wait set, whereas the call to the notifyAll() method wakes up all
threads in the wait set. In the case of the notify() method call, the thread that is woken
up is chosen arbitrarily. Note that when a thread calls the notify() or notifyAll()
method, it still holds the lock on the object’s monitor. Threads in the wait set are
only woken up by the notify() or notifyAll() call. They do not acquire the object’s
monitor lock immediately. When the thread that called the notify() or notifyAll()
method releases the object’s monitor lock by “Release and Exit” or “Release and Wait,”
the woken up threads in the wait set compete with the threads in the entry set to
acquire the object’s monitor again. Therefore, a call to the notify() and notifyAll()
serves only as a wake-up call for threads in the wait set, and it does not guarantee
access to the object’s monitor.

Note There is no way to wake up a specific thread in the wait set. The call to
notify() chooses a thread arbitrarily, whereas the call to notifyAll() wakes up
all threads. Use notifyAl1l() when you are in doubt about which method to use.

The following snippet of code shows pseudocode for using the notifyAll() method
along with the wait() method. You may observe that the call to the wait() and notify()
methods is made on the same object, because if objectRef.wait() puts a thread in the
wait set of the objectRef object, the objectRef.notify() orobjectRef.notifyAll()
method will wake that thread from the wait set of the objectRef object:

291

CHAPTER5 THREADS

public class WaitAndNotifyMethodCall {

292

private Object objectRef = new Object();
public synchronized void someMethod 1() {
while (some condition is true) {
this.wait();
}
if (some other condition is true) {
// Notify all waiting threads
this.notifyAll();

}

public static synchronized void someMethod 2() {
while (some condition is true) {
WaitAndNotifyMethodCall.class.wait();
}
if (some other condition is true) {
// Notify all waiting threads
WaitAndNotifyMethodCall.class.notifyAll();

}

public void someMethod 3() {
synchronized(objectRef) {
while (some condition is true) {
objectRef.wait();
}
if (some other condition is true) {
// Notify all waiting threads
objectRef.notifyAll();

CHAPTER5 THREADS

Once a thread is woken up in the wait set, it has to compete with the threads in the
entry set to acquire the monitor lock of the object. After a thread is woken up in the wait
set and acquires the object’s monitor lock, it has choices: to do some work and release
the lock by invoking the wait () method (release and wait) again or to release the lock by
exiting the synchronized section (release and exit). One important point to remember
about the call to the wait () method is that, typically, a call to the wait() method is placed
inside a loop. Here is the reason why it is necessary to do so. A thread looks for a condition
to hold. It waits by calling the wait () method and placing itself in the wait set if that
condition does not hold. The thread wakes up when it is notified by another thread, which
calls the notify() or notifyAll() method. When the thread that woke up acquires the
lock, the condition that held at the time of notification may not still hold. Therefore, it is
necessary to check for the condition again, when the thread wakes up and acquires the
lock, to make sure the condition it was looking for is true, and it can continue its work. For
example, consider the producer/consumer problem. Suppose there is one producer and
many consumers. Suppose a consumer calls the wait() method as follows:

if (buffer is empty) {
buffer.wait();
}

buffer.consume();

Suppose the buffer is empty and all consumers are waiting in the wait set. The
producer produces some data, and it calls the buffer.notifyAll() method to wake up
all consumer threads in the wait set. All consumer threads wake up; however, only one
will get a chance to acquire the monitor lock next. The first one acquires the lock and
executes the buffer.consume() method to empty the buffer. When the next consumer
acquires the monitor lock, it will also execute the buffer.consume() statement.
However, the consumer that woke up and acquired the lock before this one had already
emptied the buffer. The logical mistake in the previous snippet of code is that the call to
the wait() method is placed inside an if statement instead of inside a loop. That is, after
a thread wakes up, it is not checking if the buffer contains some data or not, before trying
to consume the data. The corrected snippet of code is the following:

while (buffer is empty) {
buffer.wait();

}

buffer.consume();

293

CHAPTER5 THREADS

I answer one more question before you can see this big discussion about thread
synchronization in action. The question is, “Which thread gets a chance to acquire
the object’s monitor lock when there are some blocked threads in the entry set and
some woken up threads in the wait set?” Note that the threads that are in the wait set
do not compete for the object’s monitor until they are woken up by the notify() or
notifyAll() call. The answer to this question is that it depends on the scheduler’s
algorithm of the operating system.

Listing 5-6 contains the code for the BalanceUpdateSynchronized class, which is a
modified version of the BalanceUpdate class listed in Listing 5-5. The only difference
between the two classes is the use of the synchronized keyword to declare the
updateBalance() and monitorBalance() methods in the new class, so only one thread
can enter one of the methods at a time. When you run the new class, you will not see any
output because the monitorBalance() method will never see the value of the balance
variable other than 100. You will need to terminate the program manually, for example,
using Ctr1+C on Windows.

Listing 5-6. Synchronized Balance Update

// BalanceUpdateSynchronized.java
package com.jdojo.threads;
public class BalanceUpdateSynchronized {
// Initialize balance to 100
private static int balance = 100;
public static void main(String[] args) {
startBalanceUpdateThread();
// <- Thread to update the balance value
startBalanceMonitorThread();
// <- Thread to monitor the balance value
}
public static synchronized void updateBalance() {
// Add 10 to balance and subtract 10 from balance
balance

balance + 10;

balance = balance - 10;

294

CHAPTER 5

public static synchronized void monitorBalance() {
int b = balance;
if (b !'= 100) {
System.out.println("Balance changed: " + b);
System.exit(1); // Exit the program

}
public static void startBalanceUpdateThread() {

// Start a new thread that calls the
// updateBalance() method in an infinite loop
Thread t = new Thread(() -> {

while (true) {

updateBalance();

}
D;
t.start();

}

public static void startBalanceMonitorThread() {
// Start a thread that monitors the balance value
Thread t = new Thread(() -> {
while (true) {
monitorBalance();
}

D;
t.start();

THREADS

I show examples of using the wait() and notify() methods in the next section,

which discusses the producer/consumer problem. The wait() method in the Object

class is overloaded, and it has three versions:

o wait(): The thread waits in the object’s wait set until another thread
calls the notify() or notifyAll() method on the same object.

295

CHAPTER5 THREADS

o wait(long timeinMillis): The thread waits in the object’s wait set
until another thread calls the notify() or notifyAll() method on
the same object or the specified amount of timeinMillis time has
elapsed.

o wait(long timeinMillis, long timeinNanos): This version lets
you specify time in milliseconds and nanoseconds.

The Producer/Consumer Synchronization Problem

The producer/consumer is a typical thread synchronization problem that uses the
wait() and notify() methods.Ikeep it simple.

The problem statement goes like this. There are four classes: Buffer, Producer,
Consumer, and ProducerConsumerTest. An object of the Buffer class will have an integer
data element that will be produced by the producer and consumed by the consumer.
Therefore, in this example, a Buffer object can hold only one integer at a point in time.
Your goal is to synchronize the access to the buffer, so the Producer produces a new data
element only when the Buffer is empty, and the Consumer consumes the buffer’s data
only when it is available. The ProducerConsumerTest class is used to test the program.

Listings 5-7 to 5-10 contain the code for the four classes.

Listing 5-7. A Buffer Class for Producer/Consumer Synchronization

// Buffer.java

package com.jdojo.threads;

public class Buffer {
private int data;
private boolean empty;

public Buffer() {

this.empty = true;
}
public synchronized void produce(int newData) {

// Wait until the buffer is empty

while (!this.empty) {

try {
this.wait();

296

}

CHAPTER 5

} catch (InterruptedException e) {
e.printStackTrace();

}
// Store the new data produced by the producer

this.data = newData;
// Set the empty flag to false, so the consumer
// may consume the data

this.empty = false;

// Notify the waiting consumer in the wait set
this.notify();
System.out.println("Produced:

+ newData);

public synchronized int consume() {

// Wait until the buffer gets some data
while (this.empty) {
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();

}
// Set the empty flag to true, so that the

// producer can store new data

this.empty = true;

// Notify the waiting producer in the wait set
this.notify();

System.out.println("Consumed: " + data);
return data;

THREADS

297

CHAPTER5 THREADS

Listing 5-8. A Producer Class for Producer/Consumer Synchronization

// Producer.java
package com.jdojo.threads;
import java.util.Random;
public class Producer extends Thread {
private final Buffer buffer;
public Producer(Buffer buffer) {
this.buffer = buffer;
}
@verride
public void run() {
Random rand = new Random();
while (true) {
// Generate a random integer and store it in
// the buffer
int n = rand.nextInt();
buffer.produce(n);

}

Listing 5-9. A Consumer Class for Producer/Consumer Synchronization

// Consumer.java
package com.jdojo.threads;
public class Consumer extends Thread {
private final Buffer buffer;
public Consumer(Buffer buffer) {
this.buffer = buffer;
}
@verride
public void run() {
int data;

298

CHAPTER5 THREADS

while (true) {
// Consume the data from the buffer. We are
// not using the consumed data for any other
// purpose here
data = buffer.consume();

}

Listing 5-10. A ProducerConsumerTest Class to Test the Producer/Consumer
Synchronization

// ProducerConsumerTest.java

package com.jdojo.threads;

public class ProducerConsumerTest {

public static void main(String[] args) {

// Create Buffer, Producer and Consumer objects
Buffer buffer = new Buffer();
Producer p = new Producer(buffer);
Consumer ¢ = new Consumer (buffer);
// Start the producer and consumer threads
p.start();
c.start();

}
Produced: 1872733184

Consumed: 1872733184

When you run the ProducerConsumerTest class, you may get different output.
However, your output will look similar in the sense that two lines printed will be always
of the following form, where XXX indicates an integer:

Produced: XXX
Consumed: XXX

299

CHAPTER5 THREADS

In this example, the Buffer class needs some explanation. It has two instance
variables:

e private int data
e private boolean empty

The producer uses the data instance variable to store the new data. The consumer
reads it. The empty instance variable is used as an indicator whether the buffer is empty
or not. In the constructor, it is initialized to true, indicating that the new buffer is empty.

It has two synchronized methods: produce() and consume(). Both methods are
declared synchronized because the goal is to protect the Buffer object to be used by
multiple threads concurrently. If the producer is producing new data by calling the
produce() method, the consumer must wait to consume the data until the producer is
done and vice versa. The producer thread calls the produce() method, passing the newly
generated data to it. However, before the new data is stored in the data instance variable,
the producer makes sure that the buffer is empty. If the buffer is not empty, it calls the
this.wait() method to place itself in the wait set of the buffer object until the consumer
notifies it using the this.notify() method inside the consume() method.

Once the producer thread detects that the buffer is empty, it stores the new data in
the data instance variable, sets the empty flag to false, and calls this.notify() to wake
up the consumer thread in the wait set to consume the data. At the end, it also prints a
message on the console that data has been produced.

The consume () method of the Buffer class is similar to its counterpart, the
produce() method. The only difference is that the consumer thread calls this method,
and it performs logic that’s opposite of the produce () method. For example, it checks if
the buffer is not empty before consuming the data.

The Producer and Consumer classes inherit from the Thread class. They override the
run() method of the Thread class. Both of them accept an object of the Buffer class in
their constructor to use it in their run() method. The Producer class generates a random
integer in its run() method inside an infinite loop and keeps writing it to the buffer. The
Consumer class keeps consuming data from the buffer in an infinite loop.

The ProducerConsumerTest class creates all three objects (a buffer, a producer, and a
consumer) and starts the producer and consumer threads. Since both classes (Producer
and Consumer) use infinite loops inside the run() method, you have to terminate the
program forcibly, such as by pressing Ctr1+C, if you are running this program from a
Windows command prompt.

300

CHAPTER5 THREADS

Which Thread Is Executing?

The Thread class has some useful static methods; one of them is the currentThread()
method. It returns the reference of the Thread object that calls this method. Consider the
following statement:

Thread t = Thread.currentThread();

The statement will assign the reference of the thread object that executes this statement
to the variable t. Note that a statement in Java can be executed by different threads at
different points in time during the execution of a program. Therefore, t may be assigned
the reference of a different Thread object when the statement is executed at different times
in the same program. Listing 5-11 demonstrates the use of the currentThread() method.
You may get the same text in the output, but in a different order.

Listing 5-11. Using the Thread.currentThread() Method

// CurrentThread.java
package com.jdojo.threads;
public class CurrentThread extends Thread {
public CurrentThread(String name) {
super (name);
}
@0Override
public void run() {
Thread t = Thread.currentThread();
String threadName = t.getName();
System.out.println("Inside run() method: " +
threadName);
}
public static void main(String[] args) {
CurrentThread ctl = new CurrentThread(
"Thread #1");
CurrentThread ct2 = new CurrentThread(
"Thread #2");
cti.start();
ct2.start();

301

CHAPTER5 THREADS

// Let's see which thread is executing the
// following statement

Thread t = Thread.currentThread();

String threadName = t.getName();

System.out.println("Inside main() method: " +
threadName);

}

Inside main() method: main
Inside run() method: Thread #1
Inside run() method: Thread #2

Two different threads call the Thread. currentThread() method inside the run()
method of the CurrentThread class. The method returns the reference of the thread
executing the call. The program simply prints the name of the thread that is executing.

It is interesting to note that when you called the Thread. currentThread() method inside
the main() method, a thread named main executed the code. When you run a class, the
JVM starts a thread named main, which is responsible for executing the main() method.

Letting a Thread Sleep

The Thread class contains a static sleep() method, which makes a thread sleep for a
specified duration. It accepts a timeout as an argument. You can specify the timeout in
milliseconds, or milliseconds and nanoseconds. The thread that executes this method
sleeps for the specified amount of time. A sleeping thread is not scheduled by the
operating system scheduler to receive the CPU time. If a thread has the ownership of an
object’s monitor lock before it goes to sleep, it continues to hold those monitor locks.
The sleep() method may throw an InterruptedException, and your code should be
ready to handle it. Listing 5-12 demonstrates the use of the sleep() method.

Listing 5-12. A Sleeping Thread

// LetMeSleep.java
package com.jdojo.threads;

302

CHAPTER5 THREADS

public class LetMeSleep {
public static void main(String[] args) {
try {
System.out.println(
"I am going to sleep for 5 seconds.");
Thread.sleep(5000);
// <- The "main" thread will sleep
System.out.println("I woke up.");
} catch (InterruptedException e) {
System.out.println(
"Someone interrupted me in my sleep.");

}
System.out.println("I am done.");

}

I am going to sleep for 5 seconds.
I woke up.
I am done.

Note The TimeUnit enumin the java.util.concurrent package
represents a measurement of time in various units such as milliseconds, seconds,
minutes, hours, days, etc. It has some convenience methods. One of them is the
sleep() method. The Thread. sleep() method accepts time in milliseconds.
If you want a thread to sleep for five seconds, you need to call this method as
Thread.sleep(5000) by converting the seconds into milliseconds. You can use
the sleep() method of TimeUnit instead to avoid the time duration conversion,
like so:

TimeUnit.SECONDS.sleep(5); // Same as Thread.sleep(5000)

303

CHAPTER5 THREADS

| Will Join You in Heaven

I can rephrase this section heading as “I will wait until you die.” That’s right. A thread can
wait for another thread to die (or terminate). Suppose there are two threads, t1 and t2. If
the thread t1 executes t2.join(), thread t1 starts waiting until thread t2 is terminated.
In other words, the call t2.join() blocks until t2 terminates. Using the join() method
in a program is useful if one of the threads cannot proceed until another thread has
finished executing

Listing 5-13 has an example where you want to print a message on the standard
output when the program has finished executing. The message to print is “We are done.”

Listing 5-13. An Incorrect Way of Waiting for a Thread to Terminate

// JoinWrong.java
package com.jdojo.threads;
public class JoinWrong {
public static void main(String[] args) {
Thread t1 = new Thread(JoinWrong::print);
ti.start();
System.out.println("We are done.");
}
public static void print() {
for (int i = 1; i <= 5; i++) {
try {
System.out.println("Counter:
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();

+1);

304

CHAPTER5 THREADS

We are done.

Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5

In the main() method, a thread is created and started. The thread prints integers
from 1 to 5. It sleeps for one second after printing an integer. In the end, the main()
method prints a message. It seems that this program should print the numbers from 1
to 5, followed by your last message. However, if you look at the output, it is in the reverse
order. What is wrong with this program?

The JVM starts a new thread called main that is responsible for executing the main()
method of the class that you run. In your case, the main() method of the JoinWrong class
is executed by the main thread. This thread will execute the following statements:

Thread t1 = new Thread(JoinWrong::print);
t1.start();
System.out.println("We are done.");

When the t1.start() method call returns, you have one more thread running in
your program (thread t1) in addition to the main thread. The t1 thread is responsible for
printing the integers from 1 to 5, whereas the main thread is responsible for printing the
message “We are done.” Since there are two threads responsible for two different tasks, it
is not guaranteed which task will finish first. What is the solution? You must make your
main thread wait on the thread t1 to terminate. This can be achieved by calling the t1.
join() method inside the main() method.

Listing 5-14 contains the correct version of Listing 5-13 by using the t1.join()
method call before printing the final message. When the main thread executes the
join() method call, it waits until the t1 thread is terminated. The join() method of the
Thread class may throw an InterruptedException, and your code should be ready to
handle it.

305

CHAPTER5 THREADS

Listing 5-14. A Correct Way of Waiting for a Thread to Terminate

// JoinRight.java
package com.jdojo.threads;
public class JoinRight {
public static void main(String[] args) {
Thread t1 = new Thread(JoinRight::print);
t1.start();
try {
t1.join();
// <- "main" thread waits until t1 is
// terminated
} catch (InterruptedException e) {
e.printStackTrace();
}

System.out.println("We are done.");

}

public static void print() {
for (int i = 1; 1 <= 5; i++) {

try {
System.out.println("Counter: " + i);
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5

We are done.

306

CHAPTER5 THREADS

The join() method of the Thread class is overloaded. Its other two versions accept
a timeout argument. If you use the join() method with a timeout, the caller thread will
wait until the thread on which it is called is terminated or the timeout has elapsed. If you
replace the t1.join() statement in the JoinRight class with t1.join(1000), you will
find that the output is not in the same order because the main thread will wait only for a
second for the t1 thread to terminate before it prints the final message.

Can a thread join multiple threads? The answer is yes. A thread can join multiple
threads like so:

t1.join(); // Join t1
t2.join(); // Join t2
t3.join(); // Join t3

You should call the join() method of a thread after it has been started. If you call the
join() method on a thread that has not been started, it returns immediately. Similarly,
if you invoke the join() method on a thread that is already terminated, it returns
immediately.

Can a thread join itself? The answer is yes and no. Technically, it is allowed for a
thread to join itself. However, a thread should not join itself in most circumstances. In
such a case, a thread waits to terminate itself. In other words, the thread waits forever.

// "Bad" call (not if you know what you are doing) to

// join. It waits forever until another thread interrupts
/1 it.

Thread.currentThread().join();

If you write this statement, make sure that your program interrupts the waiting
thread using some other threads. In such a case, the waiting thread will return from the
join() method call by throwing an InterruptedException.

Be Considerate to Others and Yield

A thread may voluntarily give up the CPU by calling the static yield() method of the
Thread class. The call to the yield() method is a hint to the scheduler that it may

pause the running thread and give the CPU to other threads. A thread may want to call
this method only if it executes in a long loop without waiting or blocking. If a thread
frequently waits or blocks, the yield() method call is not very useful because this thread

307

CHAPTER5 THREADS

does not monopolize the CPU and other threads will get the CPU time when this thread
is blocked or waiting. It is advisable not to depend on the yield() method because it is
just a hint to the scheduler. It is not guaranteed to give a consistent result across different
platforms. A thread that calls the yield() method continues to hold the monitor locks.
Note that there is no guarantee as to when the thread that yields will get the CPU time
again. You may use it like so:

// The run() method of a thread class
public void run() {
while(true) {
// do some processing here...
Thread.yield(); // Let's yield to other threads

Lifecycle of a Thread

A thread is always in one of the following six states:
o New
e Runnable
o Blocked
o Waiting
o Timed-waiting
e Terminated

All these states of a thread are JVM states. They do not represent the states assigned
to a thread by an operating system.

When a thread is created and its start () method is not yet called, it is in the new
state:

Thread t = new SomeThreadClass();
// <- t is in the new state

A thread that is ready to run or running is in the runnable state. In other words, a
thread that is eligible for getting the CPU time is in a runnable state.

308

CHAPTER5 THREADS

Note

The JVM combines two 0S-level thread states: ready-to-run and running

into a state called the runnable state. A thread in the ready-to-run OS state means
it is waiting for its turn to get the CPU time. A thread in the running OS state means
it is running on the CPU.

A thread is said to be in a blocked state if it was trying to enter (or reenter) a

synchronized method or block, but the monitor is being used by another thread.

A thread in the entry set that is waiting to acquire a monitor lock is in the blocked state.

A thread in the wait set that is waiting to reacquire the monitor lock after it has been

woken up is also in a blocked state.

A thread may place itself in a waiting state by calling one of the methods listed

in Table 5-2. A thread may place itself in a timed-waiting state by calling one of the
methods listed in Table 5-3. I discuss the parkNanos () and parkUntil() methods later in
this chapter.

Table 5-2. Methods That Place a Thread in Waiting State

Method

Description

wait()

join()

park()

This is the wait() method of the Object class, which a thread may call if it wants
to wait for a specific condition to hold. Recall that a thread must own the monitor’s lock
of an object to call the wait () method on that object. Another thread must call the
notify() or notifyAll() method on the same object in order for the waiting thread
to transition to the runnable state.

This is the join() method of the Thread class. A thread that calls this method wants
to wait until the thread on which this method is called terminates.

This is the park () method of the LockSupport class, which is in the java.util.
concurrent.locks package. A thread that calls this method may wait until a permit
is available by calling the unpark () method on a thread. | cover the LockSupport
class later in this chapter.

309

CHAPTER5 THREADS

Table 5-3. Methods That Place a Thread in a Timed-Waiting State

Method

Description

sleep()

wait (long millis)

wait(long millis, int nanos)
join(long millis)

join(long millis, int nanos)
parkNanos (long nanos)

parkNanos (Object blocker,
long nanos)

parkUntil (long deadline)
parkUntil (Object blocker,
long nanos)

This method is in the Thread class.

These methods are in the Object class.

These methods are in the Thread class.

These methods are in the LockSupport class, which is
in the java.util.concurrent.locks package.

These methods are in the LockSupport class, which
isin the java.util.concurrent.locks package.

A thread that has completed its execution is said to be in the terminated state.

A thread is terminated when it exits its run() method or its stop() method is called.

A terminated thread cannot transition to any other state. You can use the isAlive()

method of a thread after it has been started to know if it is alive or terminated.

You can use the getState() method of the Thread class to get the state of a thread

at any time. This method returns one of the constants of the Thread. State enum type.

Listings 5-15 and 5-16 demonstrate the transition of a thread from one state to another. The

output of Listing 5-16 shows some of the states the thread transitions to during its lifecycle.

Listing 5-15. A ThreadState Class

// ThreadState.java
package com.jdojo.threads;

public class ThreadState extends Thread {
private boolean keepRunning = true;
private boolean wait = false;

private final Object syncObject;
public ThreadState(Object syncObject) {
this.syncObject = syncObject;

310

}

CHAPTER 5

@verride
public void run() {
while (keepRunning) {
synchronized (syncObject) {

if (wait) {
try {
syncObject.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

}

public void setKeepRunning(boolean keepRunning) {
this.keepRunning = keepRunning;

}

public void setWait(boolean wait) {
this.wait = wait;

THREADS

Listing 5-16. A ThreadStateTest Class to Demonstrate the States of a Thread

// ThreadStateTest.java
package com.jdojo.threads;
public class ThreadStateTest {

public static void main(String[] args) {

Object syncObject = new Object();

ThreadState ts = new ThreadState(syncObject);

System.out.println(
"Before start()-ts.isAlive(): " +
ts.isAlive());

System.out.println("#1: " + ts.getState());

// Start the thread

ts.start();

311

CHAPTER5 THREADS

System.out.println(
"After start()-ts.isAlive(): " +
ts.isAlive());

System.out.println("#2: " + ts.getState());

ts.setWait(true);

// Make the current thread sleep, so the thread

// starts waiting

sleepNow(100);

synchronized (syncObject) {
System.out.println("#3: " + ts.getState());
ts.setWait(false);
// Wake up the waiting thread
syncObject.notifyAll();

}

// Make the current thread sleep, so ts thread

// wakes up

sleepNow(2000);

System.out.println("#4: " + ts.getState());

ts.setKeepRunning(false);

// Make the current thread sleep, so the ts thread

// will wake up

sleepNow(2000);

System.out.println("#5: " + ts.getState());

System.out.println("At the end. ts.isAlive(): " +

ts.isAlive());
}
public static void sleepNow(long millis) {
try {
Thread.currentThread().sleep(millis);
} catch (InterruptedException e) {
}
}

312

CHAPTER5 THREADS

Before start()-ts.isAlive(): false
#1: NEW

After start()-ts.isAlive(): true
#2: RUNNABLE

#3: WAITING

#4: RUNNABLE

#5: TERMINATED

At the end. ts.isAlive(): false

Priority of a Thread

A thread has a priority. The priority is indicated by an integer between 1 and 10. A thread
with the priority of 1 is said to have the lowest priority. A thread with the priority of 10 is
said to have the highest priority. There are three constants defined in the Thread class to
represent three different thread priorities, as listed in Table 5-4.

Table 5-4. Thread’s Priority Constants
Defined in the Thread Class

Thread Priority Constant Integer Value
MIN_PRIORITY 1
NORM_PRIORITY 5
MAX_PRIORITY 10

The priority of a thread is a hint to the scheduler that indicates the importance (or
the urgency) with which it should schedule the thread. The higher priority of a thread
indicates that the thread is of higher importance, and the scheduler should give priority
in giving the CPU time to that thread. Note that the priority of a thread is just a hint to
the scheduler; it is up to the scheduler to respect that hint. It is not recommended to
depend on the thread priority for the correctness of a program. For example, if there are
ten maximum priority threads and one minimum priority thread, that does not mean
that the scheduler will schedule the minimum priority thread after all ten maximum
priority threads have been scheduled and finished. This scheduling scheme will result
in a thread starvation, where a lower priority thread will have to wait indefinitely or for a
long time to get CPU time.

313

CHAPTER5 THREADS

The setPriority() method of the Thread class sets a new priority for the thread.
The getPriority() method returns the current priority for a thread. When a thread
is created, its priority is set by default to the priority of the thread that creates the new
thread.

Listing 5-17 demonstrates how to set and get the priority of a thread. It also
demonstrates how a new thread gets the priority of the thread that creates it. In the
example, threads t1 and t2 get the priority of the main thread at the time they are
created.

Listing 5-17. Setting and Getting a Thread’s Priority

// ThreadPriority.java
package com.jdojo.threads;
public class ThreadPriority {
public static void main(String[] args) {
// Get the reference of the current thread
Thread t = Thread.currentThread();
System.out.println("main Thread Priority: " +
t.getPriority());
// Thread t1 gets the same priority as the main
// thread at this point
Thread t1 = new Thread();
System.out.println("Thread(t1) Priority: " +
t1.getPriority());
t.setPriority(Thread.MAX PRIORITY);
System.out.println("main Thread Priority: " +
t.getPriority());
// Thread t2 gets the same priority as main
// thread at this point, which is
// Thread.MAX_PRIORITY (10)
Thread t2 = new Thread();
System.out.println("Thread(t2) Priority: " +
t2.getPriority());
// Change thread t2 priority to minimum
t2.setPriority(Thread.MIN_PRIORITY);

314

CHAPTER5 THREADS

System.out.println("Thread(t2) Priority: " +
t2.getPriority());

}

main Thread Priority: 5
Thread(t1) Priority: 5
main Thread Priority: 10
Thread(t2) Priority: 10
Thread(t2) Priority: 1

Is It a Demon or a Daemon?

A thread can be a daemon thread or a user thread. The word “daemon” is pronounced
the same as “demon.” However, the word daemon in a thread’s context has nothing to do
with a demon!

A daemon thread is a kind of a service provider thread, whereas a user thread (or
non-daemon thread) is a thread that uses the services of daemon threads. A service
provider should not exist if there is no service consumer. The JVM applies this logic.
When the JVM detects that all threads in an application are only daemon threads, it exits
the application. Note that if there are only daemon threads in an application, the JVM
does not wait for those daemon threads to finish before exiting the application.

You can make a thread a daemon thread by using the setDaemon () method by
passing true as an argument. You must call the setDaemon () method of a thread before
you start the thread. Otherwise, an I1legalThreadStateException is thrown. You can
use the isDaemon () method to check if a thread is a daemon thread.

Note The JVM starts a garbage collector thread to collect all unused object’s
memory. The garbage collector thread is a daemon thread.

When a thread is created, its daemon property is the same as the thread that creates
it. In other words, a new thread inherits the daemon property of its creator thread.

Listing 5-18 creates a thread and sets the thread as a daemon thread. The thread
prints an integer and sleeps for some time in an infinite loop. At the end of the main()
method, the program prints a message to the standard output stating that it is exiting

315

CHAPTER5 THREADS

the main() method. Since thread t is a daemon thread, the JVM will terminate the
application when the main() method is finished executing. You can see this in the
output. The application prints only one integer from the thread before it exits. You may

get different output when you run this program.

Listing 5-18. A Daemon Thread Example

// DaemonThread.java
package com.jdojo.threads;
public class DaemonThread {

public static void main(String[] args) {

}

Thread t = new Thread(DaemonThread: :print);
t.setDaemon(true);

t.start();

System.out.println("Exiting main method");

public static void print() {

}

int counter = 1;
while (true) {
try {
System.out.println("Counter: " +
counter++);
Thread.sleep(2000); // sleep for 2 seconds
} catch (InterruptedException e) {
e.printStackTrace();

Exiting main method

Counter: 1

Listing 5-19 is the same program as Listing 5-18, except that it sets the thread as a
non-daemon thread. Since this program has a non-daemon (or a user) thread, the JVM
will keep running the application, even after the main() method finishes. You have to
stop this application manually because the thread runs in an infinite loop.

316

CHAPTER 5

Listing 5-19. A Non-daemon Thread Example

// NonDaemonThread. java

package com.jdojo.threads;

public class NonDaemonThread {
public static void main(String[] args) {

}

Thread t = new Thread(NonDaemonThread: :print);

// t is already a non-daemon thread because the
// "main" thread that runs the main() method is a
// non-daemon thread. You can verify it by using
// t.isDaemon() method. It will return false.

// Still we will use the following statement to
// make it clear that we want t to be a non-daemon
// thread.

t.setDaemon(false);

t.start();

System.out.println("Exiting main method");

public static void print() {

}

int counter = 1;
while (true) {
try {
System.out.println("Counter: " +
counter++);
Thread.sleep(2000); // sleep for 2 seconds
} catch (InterruptedException e) {
e.printStackTrace();

Exiting main method
Counter: 1

Counter: 2

THREADS

317

CHAPTER5 THREADS

Am | Interrupted?

You can interrupt a thread that is alive by using the interrupt() method. This method
invocation on a thread is just an indication to the thread that some other part of the
program is trying to draw its attention. It is up to the thread how it responds to the
interruption. Java implements the interruption mechanism using an interrupted status
flag for every thread.

A thread could be in one of the two states when it is interrupted: running or blocked.
If a thread is interrupted when it is running, its interrupted status is set by the JVM. The
running thread can check its interrupted status by calling the Thread. interrupted()
static method, which returns true if the current thread was interrupted. The call to
the Thread. interrupted() method clears the interrupted status of a thread. That is,
if you call this method again on the same thread and if the first call returned true, the
subsequent calls will return false, unless the thread is interrupted after the first call but
before the subsequent calls.

Listing 5-20 shows the code that interrupts the main thread and prints the
interrupted status of the thread. Note that the second call to the Thread. interrupted()
method returns false, as indicated in the output #3: false. This example also shows
that a thread can interrupt itself. The main thread that is responsible for running the
main() method is interrupting itself in this example.

Listing 5-20. A Simple Example of Interrupting a Thread

// SimpleInterrupt.java

package com.jdojo.threads;

public class SimpleInterrupt {

public static void main(String[] args) {

System.out.println("#1: " + Thread.interrupted());
// Now interrupt the main thread
Thread.currentThread().interrupt();
// Check if it has been interrupted
System.out.println("#2: " + Thread.interrupted());
// Check again if it has been interrupted
System.out.println("#3: " + Thread.interrupted());

318

CHAPTER5 THREADS

#1: false
#2: true
#3: false

Let’s look at another example of the same kind. This time, one thread will interrupt
another thread. Listing 5-21 starts a thread that increments a counter until the thread is
interrupted. At the end, the thread prints the value of the counter. The main() method
starts the thread; it sleeps for one second to let the counter thread do some work; it
interrupts the thread. Since the thread checks whether it has been interrupted or not
before continuing in the while loop, it exits the loop once it is interrupted. You may get
different output when you run this program.

Listing 5-21. A Thread Interrupting Another Thread

// SimpleInterruptAnotherThread.java
package com.jdojo.threads;
public class SimpleInterruptAnotherThread {
public static void main(String[] args) {
Thread t = new Thread(
SimpleInterruptAnotherThread::run);
t.start();
try {
// Let the main thread sleep for 1 second
Thread.currentThread().sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// Now interrupt the thread
t.interrupt();
}
public static void run() {
int counter = 0;
while (!Thread.interrupted()) {
counter++;

319

CHAPTER5 THREADS

System.out.println("Counter: " + counter);

}
Counter: 1313385352

The Thread class has a non-static isInterrupted() method that can be used to test
if a thread has been interrupted. When you call this method, unlike the interrupted()
method, the interrupted status of the thread is not cleared. Listing 5-22 demonstrates the
difference between these methods.

Listing 5-22. Difference Between the interrupted() and isInterrupted()
Methods

// SimpleIsInterrupted.java
package com.jdojo.threads;
public class SimpleIsInterrupted {
public static void main(String[] args) {
// Check if the main thread is interrupted
System.out.println("#1: " +
Thread.interrupted());
// Now interrupt the main thread
Thread mainThread = Thread.currentThread();
mainThread. interrupt();
// Check if it has been interrupted
System.out.println("#2: " +
mainThread.isInterrupted());
// Check if it has been interrupted
System.out.println("#3: " +
mainThread.isInterrupted());
// Now check if it has been interrupted using the
// static method which will clear the interrupted
// status
System.out.println("#4: " +

Thread.interrupted());

320

CHAPTER5 THREADS

// Now, isInterrupted() should return false,
// because previous statement Thread.interrupted()
// has cleared the flag

System.out.println("#5: " +
mainThread.isInterrupted());

}
}
#1: false
#2: true
#3: true
#4: true
#5: false

You may interrupt a blocked thread. Recall that a thread may block itself by
executing one of the sleep(), wait(), and join() methods. If a thread blocked on these
three methods is interrupted, an InterruptedException is thrown, and the interrupted
status of the thread is cleared because the thread has already received an exception to
signal the interruption.

Listing 5-23 starts a thread that sleeps for one second and prints a message until
itis interrupted. The main thread sleeps for five seconds, so the sleeping thread gets
a chance to sleep and print messages a few times. When the main thread wakes up, it
interrupts the sleeping thread. You may get different output when you run the program.

Listing 5-23. Interrupting a Blocked Thread

// BlockedInterrupted.java
package com.jdojo.threads;
public class BlockedInterrupted {
public static void main(String[] args) {
Thread t = new Thread(BlockedInterrupted::run);
t.start();
// main thread sleeps for 5 seconds

try {
Thread.sleep(5000);

321

CHAPTER5 THREADS

}

} catch (InterruptedException e) {

}

e.printStackTrace();

// Interrupt the sleeping thread
t.interrupt();

public static void run() {
int counter = 1;
while (true) {

}

Counter:
Counter:
Counter:
Counter:

1
2
3

4

try {
Thread.sleep(1000);
System.out.println("Counter: " +

counter++);

} catch (InterruptedException e) {
System.out.println("I got interrupted!");
// Terminate the thread by returning
return;

I got interrupted!

If a thread is blocked on an I/0, interrupting a thread does not really do anything if
you are using the old I/O API. However, if you are using the new I/O API, your thread will
receive a ClosedByInterruptException, which is declared in the java.nio.channels

package.

322

CHAPTER5 THREADS

Threads Work in a Group

A thread is always a member of a thread group. By default, the thread group of a thread is
the group of its creator thread. The JVM creates a thread group called main and a thread
in this group called main, which is responsible for running the main() method of the
main class at startup. A thread group in a Java program is represented by an object of

the ThreadGroup class. The getThreadGroup() method of the Thread class returns the
reference to the ThreadGroup of a thread. Listing 5-24 demonstrates that, by default, a
new thread is a member of the thread group of its creator thread.

Listing 5-24. Determining the Default Thread Group of a Thread

// DefaultThreadGroup.java
package com.jdojo.threads;
public class DefaultThreadGroup {
public static void main(String[] args) {
// Get the current thread, which is called "main"
Thread t1 = Thread.currentThread();
// Get the thread group of the main thread
ThreadGroup tgl = ti.getThreadGroup();
System.out.println(
"Current thread's name: " +
t1.getName());
System.out.println(
"Current thread's group name: " +
tgl.getName());
// Creates a new thread. Its thread group is the
// same that of the main thread.
Thread t2 = new Thread("my new thread");
ThreadGroup tg2 = t2.getThreadGroup();
System.out.println("New thread's name: " +
t2.getName());
System.out.println("New thread's group name: " +

tg2.getName());

323

CHAPTER5 THREADS

Current thread's name: main
Current thread's group name: main
New thread's name: my new thread
New thread's group name: main

You can also create a thread group and place a new thread in that thread group. To
place a new thread in your thread group, you must use one of the constructors of the
Thread class that accepts a ThreadGroup object as an argument. The following snippet of
code places a new thread in a particular thread group:

// Create a new ThreadGroup

ThreadGroup myGroup = new ThreadGroup("My Thread Group");
// Make the new thread a member of the myGroup thread group
Thread t = new Thread(myGroup, "myThreadName");

Thread groups are arranged in a tree-like structure. A thread group can contain
another thread group. The getParent () method of the ThreadGroup class returns the
parent thread group of a thread group. The parent of the top-level thread group is null.

The activeCount() method of the ThreadGroup class returns an estimate of the
number of active threads in the group. The enumerate(Thread[] 1list) method of the
ThreadGroup class can be used to get the threads in a thread group.

A thread group in a Java program can be used to implement a group-based policy
that applies to all threads in a thread group. For example, by calling the interrupt()
method of a thread group, you can interrupt all threads in the thread group and its
subgroups.

Volatile Variables

I discussed the use of the synchronized keyword in previous sections. Two things
happen when a thread executes a synchronized method/block:

e The thread must obtain the monitor lock of the object on which the
method/block is synchronized.

o The thread’s working copy of the shared variables is updated with
the values of those variables in the main memory just after the
thread gets the lock. The values of the shared variables in the main
memory are updated with the thread’s working copy value just before

324

CHAPTER5 THREADS

the thread releases the lock. That is, at the start and at the end of a
synchronized method/block, the values of the shared variables in the
thread’s working memory and the main memory are synchronized.

What can you do to achieve only the second point without using a synchronized
method/block? That is, how can you keep the values of variables in a thread’s working
memory in sync with their values in the main memory? The answer is the keyword
volatile. You can declare a variable volatile like so:

volatile boolean flag = true;

For every read request for a volatile variable, a thread reads the value from the main
memory. For every write request for a volatile variable, a thread writes the value to the
main memory. In other words, a thread does not cache the value of a volatile variable in
its working memory. Note that using a volatile variable is useful only in a multi-threaded
environment for variables that are shared among threads. It is faster and cheaper than
using a synchronized block.

You can declare only a class member variable (instance or static fields) as volatile.
You cannot declare a local variable as volatile because a local variable is always private
to the thread, which is never shared with other threads. You cannot declare a volatile
variable final because the volatile keyword is used with a variable that changes.

You can use a volatile variable to stop a thread by using the variable’s value as a
flag. If the flag is set, the thread can keep running. If another thread clears the flag, the
thread should stop. Since two threads share the flag, you need to declare it volatile, so
that on every read the thread will get its updated value from the main memory.

Listing 5-25 demonstrates the use of a volatile variable. If the keepRunning variable
is not declared volatile, the JVM is free to run the while loop in the run() method
forever, as the initial value of keepRunning is set to true and a thread can cache this
value in its working memory. Since the keepRunning variable is declared volatile,
the JVM will read its value from the main memory every time it is used. When another
thread updates the keepRunning variable’s value to false using the stopThread()
method, the next iteration of the while loop will read its updated value and stop the loop.
Your program may work the same way as in Listing 5-25 even if you do not declare the
keepRunning as volatile. However, according to the JVM specification, this behavior
is not guaranteed. If the JVM specification is implemented correctly, using a volatile
variable in this way ensures the correct behavior for your program.

325

CHAPTER5 THREADS

Listing 5-25. Using a volatile Variable in a Multi-threaded Program

// VolatileVariable.java
package com.jdojo.threads;
public class VolatileVariable extends Thread {
private volatile boolean keepRunning = true;
@verride
public void run() {
System.out.println("Thread started...");
// keepRunning is volatile. So, for every read,
// the thread reads its latest value from the main
// memory
while (keepRunning) {
try {
System.out.println("Going to sleep ...");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();

}
System.out.println("Thread stopped...");

}
public void stopThread() {

this.keepRunning = false;
}
public static void main(String[] args) {
// Create the thread
VolatileVariable vv = new VolatileVariable();
// Start the thread
vv.start();
// Let the main thread sleep for 3 seconds
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();

326

CHAPTER5 THREADS

// Stop the thread
System.out.println(

"Going to set the stop flag to true...");
vv.stopThread();

}

Thread started...

Going to sleep ...

Going to sleep ...

Going to sleep ...

Going to set the stop flag to true...
Thread stopped...

Note A volatile variable of long and double types is treated atomically for
read and write purposes. Recall that a non-volatile variable of Long and double
types is treated non-atomically. That is, if two threads are writing two different
values, say v1 and v2, to a non-volatile Long or double variable, respectively,
your program may see a value for that variable that is neither v1 nor v2. However,
if that Long or double variable is declared volatile, your program sees

the value v1 or v2 at a given point in time. You cannot make array elements
volatile.

Stopping, Suspending, and Resuming Threads

The stop(), suspend(), and resume () methods in the Thread class let you stop a thread,
suspend a thread, and resume a suspended thread, respectively. These methods have
been deprecated because their use is error-prone.

You can stop a thread by calling the stop() method. When the stop() method of
a thread is called, the JVM throws a ThreadDeath error. Because of throwing this error,
all monitors locked by the thread being stopped are unlocked. Monitor locks are used
to protect some important shared resources (typically Java objects). If any of the shared
resources protected by the monitors were in inconsistent states when the thread was

327

CHAPTER5 THREADS

stopped, other threads may see that inconsistent state of those resources. This will result
in incorrect behavior of the program. This is the reason why the stop() method has been
deprecated; you are advised not to use it in your program.

How can you stop a thread without using its stop () method? You can stop a thread
by setting a flag that the running thread will check regularly. If the flag is set, the thread
should stop executing. This way of stopping a thread was illustrated in Listing 5-25 in the
previous section.

You can suspend a thread by calling its suspend() method. To resume a suspended
thread, you need to call its resume () method. However, the suspend() method has been
deprecated because it is error-prone, and it may cause a deadlock. Let’s assume that
the suspended thread holds the monitor lock of an object. The thread that will resume
the suspended thread is trying to obtain the monitor lock of the same object. This will
result in a deadlock. The suspended thread will remain suspended because there is no
thread that will resume it, and the thread that will resume it will remain blocked because
the monitor lock it is trying to obtain is held by the suspended thread. This is why the
suspend() method has been deprecated. The resume() method is also deprecated
because it is called in conjunction with the suspend() method. You can use a similar
technique to simulate the suspend() and resume() methods of the Thread class in your
program as you did to simulate the stop() method.

Listing 5-26 demonstrates how to simulate the stop(), suspend(), and resume()
methods of the Thread class in your thread.

Listing 5-26. Stopping, Suspending, and Resuming a Thread

// StopSuspendResume.java
package com.jdojo.threads;
public class StopSuspendResume extends Thread {
private volatile boolean keepRunning = true;
private boolean suspended = false;
public synchronized void stopThread() {
this.keepRunning = false;
// Notify the thread in case it is suspended when
// this method is called, so it will wake up and
// stop.
this.notify();

328

CHAPTER5 THREADS

public synchronized void suspendThread() {
this.suspended = true;
}
public synchronized void resumeThread() {
this.suspended = false;
this.notify();
}
@verride
public void run() {
System.out.println("Thread started...");
while (keepRunning) {
try {
System.out.println("Going to sleep...");
Thread.sleep(1000);
// Check for a suspended condition must be
// made inside a synchronized block to call
// the wait() method
synchronized (this) {
while (suspended) {
System.out.println("Suspended...");
this.wait();
System.out.println("Resumed...");

}
} catch (InterruptedException e) {

e.printStackTrace();

}
System.out.println("Thread stopped...");

}

public static void main(String[] args) {
StopSuspendResume t = new StopSuspendResume();
// Start the thread
t.start();
// Sleep for 2 seconds

329

CHAPTER5 THREADS

try {
Thread.sleep(2000);

} catch (InterruptedException e) {
e.printStackTrace();

}

// Suspend the thread

t.suspendThread();

// Sleep for 2 seconds

try {
Thread.sleep(2000);

} catch (InterruptedException e) {
e.printStackTrace();

}

// Resume the thread

t.resumeThread();

try {
Thread.sleep(2000);

} catch (InterruptedException e) {
e.printStackTrace();

}

// Stop the thread

t.stopThread();

}

Thread started...
Going to sleep...
Going to sleep...
Going to sleep...
Suspended. ..
Resumed. ..

Going to sleep...
Going to sleep...
Going to sleep...
Thread stopped...

330

CHAPTER5 THREADS

Note that you have two instance variables in the StopSuspendResume class. The
suspended instance variable is not declared volatile. It is not necessary to declare
itvolatile because it is always accessed inside a synchronized method/block. The
following code in the run() method is used to implement the suspend and resume
features:

synchronized (this) {
while (suspended) {
System.out.println("Suspended...");
this.wait();
System.out.println("Resumed...");

When the suspended instance variable is set to true, the thread calls the wait()
method on itself to wait. Note the use of the synchronized block. It uses this as the
object to synchronize. This is the reason that you can call this.wait() inside the
synchronized block because you have obtained the lock on this object before entering
the synchronized block. Once the this.wait() method is called, the thread releases
the lock on this object and keeps waiting until another thread calls the resumeThread()
method to notify it. I also use the this.notify() method call inside the stopThread()
method because if the thread is suspended when the stopThread() method is called, the
thread will not stop; rather, it will remain suspended.

The thread in this example sleeps for only one second in its run() method. Suppose
your thread sleeps for an extended period. In such a case, calling the stopThread()
method will not stop the thread immediately because the thread will stop only when it
wakes up and checks its keepRunning instance variable value in its next loop iteration.
In such cases, you can use the interrupt () method inside the stopThread() method to
interrupt sleeping/waiting threads, and when an InterruptedException is thrown, you
need to handle it appropriately.

If you use the technique used in Listing 5-26 to stop a thread, you may run into
problems in some situations. The while loop inside the run() method depends on the
keepRunning instance variable, which is set in the stopThread() method. The example

331

CHAPTER5 THREADS

in this listing is simple. It is just meant to demonstrate the concept of how to stop,
suspend, and resume a thread. Suppose inside the run() method, your code waits for
other resources like calling a method someBlockingMethodCall() as shown:

while (keepRunning) {
try {
someBlockingMethodCall();
} catch (InterruptedException e) {
e.printStackTrace();

If you call the stopThread() method while this thread is blocked on the method call
someBlockingMethodCall(), this thread will not stop until it returns from the blocked
method call or it is interrupted. To overcome this problem, you need to change the
strategy for how to stop a thread. It is a good idea to rely on the interruption technique of
a thread to stop it prematurely. The stopThread() method can be changed as follows:

public void stopThread() {
// interrupt this thread
this.interrupt();

In addition, the while loop inside the run() method should be modified to check
if the thread is interrupted. You need to modify the exception handling code to exit
the loop if this thread is interrupted while it is blocked. The following snippet of code
illustrates this logic:

public void run() {
while (Thread.currentThread().isInterrupted())) {
try {
// Do the processing
} catch (InterruptedException e) {
// Stop the thread by exiting the loop
break;

332

CHAPTER5 THREADS

Spin-Wait Hints

Sometimes, one thread may have to wait for another thread to update a volatile
variable. When the volatile variable is updated with a certain value, the first thread
may proceed. If the wait could be longer, it is suggested that the first thread relinquish
the CPU by sleeping or waiting and it be notified when it can resume work. However,
making a thread sleep or wait has latency. For a short time wait and to reduce latency,
itis common for a thread to wait in a loop by checking for a certain condition to be
true. Consider the code in a class that uses a loop to wait for a volatile variable named
dataReady to be true: volatile boolean dataReady;

@0verride
public void run() {
// Wait in a loop until data is ready
while (!dataReady) {
// No code
}

processData();
}
private void processData() {
// Data processing logic goes here

The while loop in this code is called a spin-loop, busy-spin, busy-wait, or spin wait.
The while loop keeps looping until the value of the dataReady variable becomes true.

While spin-wait is discouraged because of its unnecessary use of resources, it is
commonly needed. In this example, the advantage is that the thread will start processing
data as soon as the dataReady variable becomes true. However, you pay for performance
and power consumption because the thread is actively looping.

Certain processors can be hinted that a thread is in a spin-wait and, if possible, can
optimize the resource usage. For example, x86 processors support a PAUSE instruction to
indicate a spin-wait. The instruction delays the execution of the next instruction for the
thread for a finite small amount of time, thus improving resource usage.

333

CHAPTER5 THREADS

The static onSpinWait () method of the Thread class can be used to give a hint to the
processor that the caller thread is momentarily not able to proceed, so resource usage
can be optimized. A possible implementation of this method may be no-op when the
underlying platform does not support such hints.

Listing 5-27 contains sample code. Note that your program’s semantics do not
change by using a spin-wait hint. It may perform better if the underlying hardware
supports the hint.

Listing 5-27. Sample Code for Using a Spin-Wait Hint to the Processor Using the
static Thread.onSpinWait() Method

// SpinWaitTest.java
package com.jdojo.misc;
public class SpinWaitTest implements Runnable {
private volatile boolean dataReady = false;
@0verride
public void run() {
// Wait while data is ready
while (!dataReady) {
// use a spin-wait hint
Thread.onSpinhWait();
}

processData();

}

private void processData() {
// Data processing logic goes here

}
public void setDataReady(boolean dataReady) {

this.dataReady = dataReady;

334

CHAPTER5 THREADS

Handling an Uncaught Exception in a Thread

You can handle an uncaught exception thrown in your thread. It is handled using
an object of a class that implements the nested Thread.UncaughtExceptionHandler
interface. The interface contains one method: void uncaughtException(Thread t,
Throwable e).

Here, t is the thread object reference that throws the exception, and e is the
uncaught exception thrown. Listing 5-28 contains the code for a class whose object can
be used as an uncaught exception handler for a thread.

Listing 5-28. An Uncaught Exception Handler for a Thread

// CatchAllThreadExceptionHandler.java
package com.jdojo.threads;
public class CatchAllThreadExceptionHandler
implements Thread.UncaughtExceptionHandler {
@verride
public void uncaughtException(Thread t,
Throwable e) {
System.out.println(

"Caught Exception from Thread: " +
t.getName());

The class simply prints a message and the thread name stating that an uncaught
exception from a thread has been handled. Typically, you may want to do some cleanup
work or log the exception to a file or a database in the uncaughtException() method
of the handler. The Thread class contains two methods to set an uncaught exception
handler for a thread: one is a static setDefaultUncaughtExceptionHandler() method,
and another is a non-static setUncaughtExceptionHandler() method. Use the static
method to set a default handler for all threads in your application. Use the non-static
method to set a handler for a particular thread. When a thread has an uncaught
exception, the following steps are taken:

o Ifthe thread sets an uncaught exception handler using
the setUncaughtExceptionHandler() method, the
uncaughtException() method of that handler is invoked.

335

CHAPTER5 THREADS

o Ifathread does not have an uncaught exception handler set, its
thread group’s uncaughtException() method is called. If the thread
group has a parent thread group, it calls the uncaughtException()
method of its parent. Otherwise, it checks if there is a default
uncaught exception handler set. If it finds a default uncaught
exception handler, it calls the uncaughtException() method on it.
If it does not find a default uncaught exception handler, a message
is printed on the standard error stream. It does not do anything
ifit does not find a default uncaught exception handler and a
ThreadDeath exception is thrown.

Listing 5-29 demonstrates how to set a handler for uncaught exceptions in a thread.
It creates an object of class CatchAllThreadExceptionHandler and sets it as a handler
for the uncaught exceptions for the main thread. The main thread throws an unchecked
exception in its last statement. The output shows that the handler handles the exception
thrown in the main() method.

Listing 5-29. Setting an Uncaught Exception Handler for a Thread

// UncaughtExceptionInThread. java
package com.jdojo.threads;
public class UncaughtExceptionInThread {
public static void main(String[] args) {
CatchAllThreadExceptionHandler handler =
new CatchAllThreadExceptionHandler();
// Set an uncaught exception handler for the
// main thread
Thread.currentThread().
setUncaughtExceptionHandler (handler);
// Throw an exception
throw new RuntimeException();

}

Caught Exception from Thread: main

336

CHAPTER5 THREADS

Thread Concurrency Packages

Although Java had support for multi-threading built into the language from the very
beginning, it was not easy to develop a multi-threaded Java program that used an
advanced level of concurrency constructs. For example, the synchronized keyword,
used to lock an object’s monitor, has existed since the beginning. However, a thread that
tries to lock an object’s monitor simply blocks if the lock is not available. In this case,
developers had no choice but to back out. Wouldn't it be nice to have a construct that is
based on a “try and lock” philosophy rather than a “lock or block” philosophy? In this
strategy, if an object’s monitor lock is not available, the call to lock the monitor returns
immediately.

The java.util.concurrent package and its two subpackages, java.util.
concurrent.atomic and java.util.concurrent.locks, include very useful
concurrency constructs. You use them only when you are developing an advanced level
multi-threaded program. I don’t cover all concurrency constructs in this section because
describing everything available in these packages could take more than a hundred
pages. I briefly cover some of the most useful concurrency constructs available in these
packages. You can broadly categorize these concurrency features into four categories:

e Atomic variables
e Locks
e Synchronizers

e Concurrent collections

Atomic Variables

Typically, when you need to share an updateable variable among threads,
synchronization is used. Synchronization among multiple threads used to be achieved
using the synchronized keyword, and it was based on an object’s monitor. If a thread

is not able to acquire an object’s monitor, that thread is suspended and it has to be
resumed later. This way of synchronization (suspending and resuming) uses a great deal
of system resources. The problem is not in locking and unlocking the mechanism of the
monitor lock; rather, it is in suspending and resuming threads. If there is no contention
for acquiring a lock, using the synchronized keyword to synchronize threads does not
hurt much.

337

CHAPTER5 THREADS

An atomic variable uses a lock-free synchronization of a single variable. Note that if
your program needs to synchronize on more than one shared variable, you still need to
use the old synchronization methods. By lock-free synchronization, I mean that multiple
threads can access a shared variable safely using no object monitor lock. JDK takes
advantage of a hardware instruction called “compare and swap” (CAS) to implement the
lock-free synchronization for one variable.

CAS

Compare And Swap is an internal instruction to maintain lock-free synchronization for
single atomic variables.

CAS is based on three operands: a memory location M, an expected old value V, and
anew value N. If the memory location M contains a value V, CAS updates it atomically
to N; otherwise, it does not do anything. CAS always returns the current value at the
location M that existed before the CAS operation started. The pseudocode for CAS is as
follows:

CAS(M, V, N) {
currentValueAtM = get the value at Location M;
if (currentValueAtM == V) {
set value at M to N;

}

return currentValueAtM;

1}

The CAS instruction is lock-free. It is directly supported in most modern computer
hardware. However, CAS is not always guaranteed to succeed in a multi-threaded
environment. CAS takes an optimistic approach by assuming that there are no other
threads updating the value at location M; if location M contains value V, update it to N; if
the value at location Mis not V, do not do anything. Therefore, if multiple threads attempt
to update the value at location M to different values simultaneously, only one thread will
succeed, and the others will fail.

The synchronization using locks takes a pessimistic approach by assuming that
other threads may be working with location M and acquires a lock before it starts working
atlocation M, so that other threads will not access location M while one is working with
it. In case CAS fails, the caller thread may try the action again or give up; the caller

338

CHAPTER5 THREADS

thread using CAS never blocks. However, in the case of synchronization using a lock,
the caller thread may have to be suspended and resumed if it could not acquire the
lock. Using synchronization, you also run the risk of a deadlock, a livelock, and other
synchronization-related failures.

Atomic variable classes are named like AtomicXxx and can be used to execute
multiple instructions on a single variable atomically without using any lock. Here, Xxx
is replaced with different words to indicate different classes that are used for different
purposes; for example, the AtomicInteger class is used to represent an int variable,
which is supposed to be manipulated atomically. Twelve classes in the Java class library
support read-modify-write operations on a single variable atomically. They are in the
java.util.concurrent.atomic package. They can be categorized in four categories,
which are discussed in the following sections.

Scalar Atomic Variable Classes

The AtomicInteger, AtomiclLong, and AtomicBoolean classes support operations on
primitive data types int, long, and boolean, respectively.

If you need to work with other primitive data types, use the AtomicInteger class.
You can use it directly to work with the byte and short data types. Use it to work with the
float data type by using the Float.floatToIntBits() method to convert a float value
to the int data type and the AtomicInteger.floatValue() method to convertan int
value to the float data type.

You can use the AtomicLong class to work with the double data type by using the
Double.doubleToLongBits() method to convert a double value to the long data type
and the AtomicLong.doubleValue() method to convert the long value to the double
data type.

The AtomicReference<V> class is used to work with a reference data type when a
reference variable needs to be updated atomically.

Atomic Array Classes

There are three classes—called AtomicIntegerArray, AtomicLongArray, and
AtomicReferenceArray <E>—thatrepresent an array of int, long, and reference types
whose elements can be updated atomically.

339

CHAPTER5 THREADS

Atomic Field Updater Classes

There are three classes—called AtomicLongFieldUpdater, AtomicIntegerFieldUpdater,
and AtomicReferenceFieldUpdater<T,V>—that can be used to update a volatile field of
a class atomically using reflection. These classes have no constructors. To get a reference
to an object of these classes, you need to use their factory method called newUpdater ().

Atomic Compound Variable Classes

CAS works by asking “Is the value at location M still V?” If the answer is yes, it updates
the value atlocation M from V to N. In a typical scenario, one thread may read the value
from location M as V. By the time this thread tries to update the value from V to N, another
thread has changed the value at location M from V to P, and back from P to V. Therefore,
the call CAS(M, V, N) will succeed because the value at location Mis still V, even though
it was changed (v to P and back to V) twice after the thread read the value V last time. In
some cases, it is fine. The thread that wants to update the value at location M does not
care if the old value V that it read last time was updated before its own update as long
as the value at location Mis V at the time it is updating the value to N. However, in some
cases, it is not acceptable. If a thread reads the value V from a location M, this thread
wants to make sure that after it read the value, no other thread has updated the value. In
such cases, CAS needs to ask “Has the value at location M changed since I last read it
as V?” To achieve this functionality, you need to store a pair of values: the value you want
to work with and its version number. Each update will also update the version number.
The AtomicMarkableReference and AtomicStampedReference classes fall into this
category of atomic compound variable class.

Let’s look at a simple example that uses an atomic class. If you want to write a class to
generate a counter using built-in Java synchronization, it will resemble the code shown
in Listing 5-30.

Listing 5-30. A Counter Class That Uses Synchronization

// SynchronizedCounter.java

package com.jdojo.threads;

public class SynchronizedCounter {
private long value;

340

CHAPTER5 THREADS

public synchronized long next() {
return ++value;

You would rewrite the SynchronizedCounter class using the AtomicLong class, as
shown in Listing 5-31.

Listing 5-31. A Counter Class Using an Atomic Variable

// AtomicCounter.java
package com.jdojo.threads;
import java.util.concurrent.atomic.Atomiclong;
public class AtomicCounter {
private final Atomiclong value = new AtomiclLong(OL);
public long next() {
return value.incrementAndGet();

Note that the AtomicCounter class does not use any explicit synchronization. It takes
advantage of CAS hardware instruction. The call to the incrementAndGet () method
inside the next () method of the AtomicCounter class is performed atomically for you.

You can also use an object of the AtomicLong class as a thread-safe counter object
like so:

AtomicLong aCounter = new AtomicLong(oL);

Then you can use the aCounter.incrementAndGet () method to generate a new
counter. The incrementAndGet () method of the AtomicLong class increments its
current value and returns the new value. You also have its counterpart method called
getAndIncrement(), which increments its value and returns its previous value.

The AtomicXxx variable classes have a compareAndSet () method. It is a variant of
compare and swap (CAS). The only difference is that the compareAndSet () method
returns a boolean. It returns true if it succeeds; otherwise, it returns false. The
following is the pseudocode representation of the compareAndSet () method:

341

CHAPTER5 THREADS

compareAndSet (M, V, N) {
// Call CAS (see CAS pseudocode) if CAS succeeded,
// return true; otherwise, return false.
return (CAS(M, V, N) == V)

Explicit Locks

The explicit locking mechanism can be used to coordinate access to shared resources

in a multi-threaded environment without using the synchronized keyword. The Lock
interface, which is declared in the java.util.concurrent.locks package, defines

the explicit locking operations. The ReentrantLock class, in the same package, is the
concrete implementation of the Lock interface. The Lock interface contains the following
methods:

o void lock();

o Condition newCondition();

o void lockInterruptibly() throws InterruptedException;
o boolean trylLock();

o boolean trylLock(long time, TimeUnit unit) throws
InterruptedException;

e void unlock();

The use of the lock () method to acquire a lock behaves the same as the use of the
synchronized keyword. The use of the synchronized keyword requires that a thread
should acquire and release an object’s monitor lock in the same block of code. When you
use the synchronized keyword to acquire an object’s monitor lock, the lock is released
by the JVM when the program leaves the block in which the lock was acquired. This
feature makes working with intrinsic locks very simple and less error-prone. However,
in the case of the Lock interface, the restriction of acquiring and releasing the lock in
the same block of code does not apply. This makes it a little flexible to use; however, it is
more error-prone because the responsibility of acquiring as well as releasing the lock is

342

CHAPTER5 THREADS

on the developer. It is not difficult to acquire the lock and forget to release it, resulting in
hard-to-find bugs. You must make sure that you release the lock by calling the unlock()
method of the Lock interface after you are done with the lock. You can use the lock()
and unlock() methods in their simplest form, shown in Listing 5-32.

Listing 5-32. Using an Explicit Lock in Its Simplest Form

// SimpleExplicitlock.java
package com.jdojo.threads;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.Reentrantlock;
public class SimpleExplicitlock {
// Instantiate the lock object
private final Lock myLock = new ReentrantLock();
public void updateResource() {
// Acquire the lock
myLock.lock();
try {
// Logic for updating/reading the shared
// resource goes here

} finally {
// Release the lock
myLock.unlock();

}

Note the use of a try-finally block to release the lock in the updateResource()
method. The use of a try-finally block is necessary in this case because no matter how
you finish returning from this method after you call myLock.lock(), you would like to
release the lock. This can be assured only if you place the call to the unlock() method
inside the finally block.

343

CHAPTER5 THREADS

You may wonder why you would use the code structure listed in Listing 5-32 when
you could have used the synchronized keyword to achieve the same effect, like so:

public void updateResource() {
// Acquire the lock and the lock will be released
// automatically by the JVM when your code exits the
// block
synchronized (this) {
// Logic for updating/reading the shared
// resource goes here

You are correct in thinking that using the synchronized keyword would have been
better in this case. It is much simpler and less error-prone to use the synchronized
keyword in such situations. The power of using the new Lock interface becomes
evident when you come across situations where using the synchronized keyword is
not possible or very cumbersome. For example, if you want to acquire the lock in the
updateResource() method and release it in some other methods, you cannot use the
synchronized keyword. If you need to acquire two locks to work with a shared resource
and if only one lock is available, you want to do something else rather than waiting for
the other lock to become available. If you use the synchronized keyword or the lock()
method of the Lock interface to acquire a lock, the call blocks if the lock is not available
immediately, which gives you no option to back off once you asked for the lock. Such
blocked threads cannot be interrupted either. The two methods of the Lock interface,
tryLock() and lockInterruptibly(), give you the ability to try to acquire a lock (rather
than acquire a lock or block). The thread that has acquired the lock can be interrupted if
itis blocked. The syntax to acquire and release a lock using the Lock interface should use
a try-finally or a try-catch-finally block structure, to avoid unintended bugs, by placing
the unlock() call in a finally block.

You will solve a classic synchronization problem known as the dining philosophers
problem using the explicit lock constructs. The problem goes like this: five philosophers
spend all of their time either thinking or eating. They sit around a circular table with
five chairs and five forks, as shown in Figure 5-7. There are only five forks, and all five
philosophers need to pick the two nearest (one from their left and one from their right)
forks to eat.

344

CHAPTER5 THREADS

O O
\ /

/NS

Figure 5-7. Five philosophers at a dining table

Once a philosopher finishes eating, he puts down both forks and starts thinking.
A philosopher cannot pick up a fork if his neighbor is using it. What happens if each
of the five philosophers picks up one fork from his right and waits for his left fork to be
released by his neighbor? This would be a deadlock situation, and no philosopher would
be able to eat. This deadlock condition can be avoided easily by using the tryLock()
method of the Lock interface. This method returns immediately, and it never blocks. If
the lock is available, it gets the lock and returns true. If the lock is not available, it returns
false. The class in Listing 5-33 can be used to model the philosophers assuming that an
object of the ReentrantLock class represents a fork.

345

CHAPTER5 THREADS

Listing 5-33. A Philosopher Class to Represent a Philosopher

// Philosopher.java
package com.jdojo.threads;
import java.util.concurrent.locks.Lock;
public class Philosopher {
private final Lock leftFork;
private final Lock rightFork;
private final String name; // Philosopher's name
public Philosopher(Lock leftFork, Lock rightFork,
String name) {
this.leftFork = leftFork;
this.rightFork = rightFork;
this.name = name;
}
public void think() {
System.out.println(name +

is thinking...");
}
public void eat() {
// Try to get the left fork
if (leftFork.trylLock()) {
try {
// try to get the right fork
if (rightFork.tryLock()) {
try {
// Got both forks. Eat now
System.out.println(name +
" is eating...");
} finally {
// release the right fork
rightFork.unlock();

346

CHAPTER5 THREADS

} finally {
// release the left fork
leftFork.unlock();

}

}

To create philosophers, you would use code like:
Lock forki = new ReentrantlLock();
Lock fork2 = new ReentrantlLock();

Lock fork5 = new ReentrantlLock();
Philosopher p1 = new Philosopher(forki, fork2, "John");

Philosopher p2 = new Philosopher(fork2, fork3, "Wallace");

Philosopher p5 = new Philosopher(fork5, forki, "Charles");

It is left for the reader as an exercise to complete the code and run all five
philosophers in five different threads to simulate the dining philosophers problem. You
can also think about how to use the synchronized keyword to solve the same problem.
Read the code in the eat() method carefully. It tries to get the left and right forks one at
atime. If you can get only one fork and not the other, you put down the one you got so
others can have it. The code in the eat () method has only the logic to get the forks. In a
real program, if you cannot get both forks, you would like to wait for some time and try
again to pick up the forks. You will have to write that logic.

You can specify the fairness of a lock when you instantiate the ReentrantLock class.
The fairness indicates the way of allocating the lock to a thread when multiple threads
are waiting to get the lock. In a fair lock, threads acquire the lock in the order they
request it. In a non-fair lock, jumping ahead by a thread is allowed. For example, in a
non-fair lock, if some threads are waiting for a lock and another thread, which requests
the same lock later, gets the lock before the waiting threads, if the lock becomes available
at the time the second thread requested it. This may sound a little strange because it is
not fair to the waiting threads to leave them waiting and granting the lock to the thread

347

CHAPTER5 THREADS

that requested it later. However, it has a performance gain. The overhead of suspending
and resuming a thread is reduced using non-fair locking. The tryLock() method of the
ReentrantLock class always uses a non-fair lock. You can create fair and non-fair locks
as follows:

Lock nonFairLockl = new ReentrantlLock();
// <- A non-fair lock (Default is non-fair)
Lock nonFairLock2 = new ReentrantLock(false);
// <- A non-fair lock
Lock fairLock2 = new ReentrantLock(true);
// <- A fair lock

A ReentrantlLock provides a mutually exclusive locking mechanism. That is, only
one thread can own the ReentrantLock at a time. If you have a data structure guarded by
a Reentrantlock, a writer thread as well as a reader thread must acquire the lock one at
a time to modify or to read the data. This restriction of ReentrantLock, to be owned by
only one thread at a time, may downgrade the performance if your data structure is read
frequently and modified infrequently. In such situations, you may want multiple reader
threads to have concurrent access to the data structure. However, if the data structure
is being modified, only one writer thread should have the access to the data structure.
The read-write lock allows you to implement this kind of locking mechanism using an
instance of the ReadWritelock interface. It has two methods: one to get the reader lock
and another to get the writer lock, as shown:

public interface ReadWritelock {
Lock readLock();
Lock writeLock();

A ReentrantReadWritelock class is an implementation of the ReadWritelLock
interface. Only one thread can hold the write lock of ReentrantReadWritelock,
whereas multiple threads can hold its read lock. Listing 5-34 demonstrates the usage of
ReentrantReadWriteLock. Note that in the getValue() method, you use read lock so
multiple threads can read the data concurrently. The setValue() method uses a write
lock so only one thread can modify the data at a given time.

348

CHAPTER5 THREADS

Note The ReadWriteLock allows you to have a read and a write version of the
same lock. Multiple threads can own a read lock as long as another thread does
not own the write lock. However, only one thread can own the write lock at a time.

Listing 5-34. Using a ReentrantReadWritelock to Guard a Read-Mostly Data
Structure

// ReadMostlyData.java
package com.jdojo.threads;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWritelock;
public class ReadMostlyData {
private int value;
private final ReentrantReadWritelock rwlock =
new ReentrantReadWritelLock();
private final Lock rLock = rwLock.readlLock();
private final Lock wLock = rwLock.writelock();
public ReadMostlyData(int value) {
this.value = value;
}
public int getValue() {
// Use the read lock, so multiple threads may
// read concurrently
rLock.lock();
try {
return this.value;
} finally {
rLock.unlock();

}
public void setValue(int value) {

// Use the write lock, so only one thread can
// write at a time
wLock.lock();

349

CHAPTER5 THREADS

try {
this.value = value;
} finally {
wLock.unlock();
}

Synchronizers

I discussed how to coordinate access to a critical section by multiple threads using a
mutually exclusive mechanism of intrinsic locks and explicit locks. Some classes known
as synchronizers are used to coordinate the control flow of a set of threads in a situation
that needs other than mutually exclusive access to a critical section. A synchronizer
object is used with a set of threads. It maintains a state, and depending on its state, it lets
a thread pass through or forces it to wait. This section discusses the following types of

synchronizers:

e Semaphores

e Barriers
o Phasers
e Latches

o Exchangers

Other classes can also act as synchronizers, such as a blocking queue.

Semaphores

A semaphore is used to control the number of threads that can access a resource.

A synchronized block also controls the access to a resource that is the critical section.
So, how is a semaphore different from a synchronized block? A synchronized block
allows only one thread to access a resource (a critical section), whereas a semaphore
allows N threads (N can be any positive number) to access a resource.

350

CHAPTER5 THREADS

If N is set to one, a semaphore can act as a synchronized block to allow a thread to
have mutually exclusive access to a resource. A semaphore maintains a number of virtual
permits. To access a resource, a thread acquires a permit, and it releases the permit
when it is done with the resource. If a permit is not available, the requesting thread is
blocked until a permit becomes available. You can think of a semaphore’s permit as a
token.

Let’s discuss a daily life example of using a semaphore. Suppose there is a restaurant
with three dining tables. Only three people can eat in that restaurant at a time. When
a person arrives at the restaurant, they must take a token for a table. When they are
done eating, they will return the token. Each token represents a dining table. If a person
arrives at the restaurant when all three tables are in use, they must wait until a table
becomes available. If a table is not available immediately, you have a choice to wait until
one becomes available or to go to another restaurant. Let’s simulate this example using a
semaphore. You will have a semaphore with three permits. Each permit will represent a
dining table. The Semaphore class in the java.util.concurrent package represents the
semaphore synchronizer. You create a semaphore using one of its constructors:

final int MAX_PERMITS = 3;
Semaphore s = new Semaphores(MAX_PERMITS);

Another constructor for the Semaphore class takes fairness as the second argument:

final int MAX_PERMITS = 3;
Semaphore s = new Semaphores(MAX PERMITS, true);
// <- A fair semaphore

The fairness of a semaphore has the same meaning as that for locks. If you create
a fair semaphore, in the situation of multiple threads asking for permits, the semaphore
will guarantee first in, first out (FIFO). That is, the thread that asked for the permit first
will get the permit first.

To acquire a permit, use the acquire() method. It returns immediately if a permit is
available. It blocks if a permit is not available. The thread can be interrupted while it is
waiting for the permit to become available. Other methods of the Semaphore class let you
acquire one or multiple permits in one go.

To release a permit, use the release() method.

Listing 5-35 contains the code for a Restaurant class. It takes the number of tables

available in a restaurant as an argument in its constructor and creates a semaphore,

351

CHAPTER5 THREADS

which has the number of permits that is equal to the number of tables. A customer uses
its getTable() and returnTable() methods to get and return a table, respectively.
Inside the getTable() method, you acquire a permit. If a customer calls the getTable()
method and no table is available, they must wait until one becomes available. This class
depends on a RestaurantCustomer class that is declared in Listing 5-36.

Listing 5-35. A Restaurant Class, Which Uses a Semaphore to Control Access to

Tables

// Restaurant.java

package com.jdojo.threads;

import java.util.concurrent.Semaphore;
public class Restaurant {

352

private final Semaphore tables;
public Restaurant(int tablesCount) {
// Create a semaphore using number of tables we
// have
this.tables = new Semaphore(tablesCount);
}
public void getTable(int customerID) {
try {
System.out.println("Customer #" + customerID
+ " is trying to get a table.");
// Acquire a permit for a table
tables.acquire();
System.out.println("Customer #" + customerID
+ " got a table.");
} catch (InterruptedException e) {
e.printStackTrace();

}
public void returnTable(int customerID) {
System.out.println("Customer #" + customerID +
" returned a table.");
tables.release();

CHAPTER5 THREADS

public static void main(String[] args) {
// Create a restaurant with two dining tables
Restaurant restaurant = new Restaurant(2);
// Create five customers
for (int i = 1; 1 <= 5; i++) {
RestaurantCustomer c = new RestaurantCustomer(
restaurant, i);
c.start();

}

Customer #4 is trying to get a table.
Customer #5 is trying to get a table.
Customer #1 is trying to get a table.
Customer #3 is trying to get a table.

Listing 5-36 contains the code for a RestaurantCustomer class whose object
represents a customer in a restaurant. The run() method of the customer thread gets a
table from the restaurant, eats for a random amount of time, and returns the table to the
restaurant. When you run the Restaurant class, you may get similar but not the same
output. You may observe that you have created a restaurant with only two tables, and five
customers are trying to eat. At any given time, only two customers are eating, as shown
by the output.

Listing 5-36. A RestaurantCustomer Class to Represent a Customer in a
Restaurant

// RestaurantCustomer.java
package com.jdojo.threads;
import java.util.Random;
class RestaurantCustomer extends Thread {
private final Restaurant r;
private final int customerID;
private static final Random random = new Random();

353

CHAPTER5 THREADS

public RestaurantCustomer(Restaurant r,
int customerID) {
this.r = 1;
this.customerID = customerlID;
}
@0Override
public void run() {
r.getTable(this.customerID); // Get a table
try {
// Eat for some time. Use number between 1
// and 30 seconds
int eatingTime = random.nextInt(30) + 1;
System.out.println("Customer #"
+ this.customerID

+ " will eat for

+ eatingTime + " seconds.");
Thread.sleep(eatingTime * 1000);
System.out.println("Customer #"

+ this.customerID

+ " is done eating.");

} catch (InterruptedException e) {
e.printStackTrace();
} finally {

r.returnTable(this.customerID);

A semaphore is not limited to the number of permits it was created with. Each
release() method adds one permit to it. Therefore, if you call the release() method
more than the times you call its acquire() method, you end up having more permits
than the one you started with. A permit is not acquired on a per-thread basis. One
thread can acquire a permit from a semaphore, and another can return it. This leaves
the burden of the correct usage of acquiring and releasing a permit on the developers.
A semaphore has other methods to acquire a permit, which will let you back off instead
of forcing you to wait if a permit is not immediately available, such as the tryAcquire()
and acquireUninterruptibly() methods.

354

CHAPTER5 THREADS

Barriers

A barrier is used to make a group of threads meet at a barrier point. A thread from a
group arriving at the barrier waits until all threads in that group arrive. Once the last
thread from the group arrives at the barrier, all threads in the group are released. You can
use a barrier when you have a task that can be divided into subtasks; each subtask can
be performed in a separate thread, and each thread must meet at a common point to
combine their results. Figures 5-8 through 5-11 depict how a barrier synchronizer lets a
group of three threads meet at the barrier point and lets them proceed.

\
Wom o= W

Figure 5-8. Three threads arriving at a barrier

A 4
Tm—" T =

Figure 5-9. One thread waits for the two other threads to arrive at the barrier

355

CHAPTER5 THREADS

A 4
W M= D>

Figure 5-10. All three threads arrive at the barrier and are then released at once

WM — o > W
\ 4

Figure 5-11. All three threads pass the barrier successfully

The CyclicBarrier class in the java.util.concurrent package provides the
implementation of the barrier synchronizer. It is called a cyclic barrier because once all
waiting threads at the barrier point are released, you can reuse the barrier by calling its
reset() method. It also allows you to associate a barrier action to it, which is a Runnable
task (an object of a class that implements the Runnable interface). The barrier action

356

CHAPTER5 THREADS

is executed just before all threads are released. You can think of the barrier action as a

“party time” when all threads meet at the barrier, but before they are released. Here are

the steps you need to perform to use a barrier in a program:

1.

2.

Create an object of the CyclicBarrier class with the number of
threads in the group:

CyclicBarrier barrier = new CyclicBarrier(5);
// <- 5 threads

If you want to execute a barrier action when all threads
meet at the barrier, you can use another constructor of the
CyclicBarrier class:

// Assuming a BarrierAction class implements the
// Runnable interface
Runnable barrierAction = new BarrierAction();
CyclicBarrier barrier = new CyclicBarrier(

5, barrierAction);

When a thread is ready to wait at the barrier, the thread executes
the await() method of the CyclicBarrier class. The await()
method comes in two flavors. One lets you wait for all other
threads unconditionally, and the other lets you specify a timeout.

The program in Listing 5-37 demonstrates how to use a cyclic barrier. You may get

different output. However, the sequence of events will be the same: all three threads will

work for some time, wait at the barrier for others to arrive, have a party time, and pass

the barrier.

Listing 5-37. A Class That Demonstrates How to Use a CyclicBarrierina

Program

// MeetAtBarrier.java

package com.jdojo.threads;

import java.util.Random;

import java.util.concurrent.CyclicBarrier;

import java.util.concurrent.BrokenBarrierException;

357

CHAPTER5 THREADS

public class MeetAtBarrier extends Thread {
private final CyclicBarrier barrier;
private final int ID;
private static final Random random = new Random();
public MeetAtBarrier(int ID, CyclicBarrier barrier) {
this.ID = ID;
this.barrier = barrier;
}
@0verride
public void run() {
try {
// Generate a random number between 1 and 30
// to wait
int workTime = random.nextInt(30) + 1;
System.out.println("Thread #" + ID
+ " 1s going to work for "

+ workTime + " seconds");
// Yes. Sleeping is working for this thread!!!
Thread.sleep(workTime * 1000);
System.out.println("Thread #" + ID
+ " is waiting at the barrier...");
// Wait at barrier for other threads in group
// to arrive
this.barrier.await();
System.out.println("Thread #" + ID
+ " passed the barrier...");
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {

System.out.println("Barrier is broken...");

358

CHAPTER 5

public static void main(String[] args) {

}

Thread
Thread
Thread
Thread
Thread
Thread
We are
Thread
Thread
Thread

// Create a barrier for a group of three threads
// with a barrier action
String msg =
"We are all together. It's party time...";
Runnable barrierAction = () ->
System.out.println(msg);
CyclicBarrier barrier =
new CyclicBarrier(3, barrierAction);
for (int i = 1; 1 <= 3; i++) {
MeetAtBarrier t =
new MeetAtBarrier(i, barrier);
t.start();

#2 is going to work for 15 seconds
#3 1is going to work for 2 seconds
#1 is going to work for 30 seconds
#3 is waiting at the barrier...

#2 is waiting at the barrier...

#1 is waiting at the barrier...
all together. It's party time...
#3 passed the barrier...

#2 passed the barrier...

#1 passed the barrier...

THREADS

You might have noticed that inside the run() method of the MeetAtBarrier class,
you are catching BrokenBarrierException. If a thread times out or it is interrupted while

waiting at the barrier point, the barrier is considered broken. The thread that times out is

released with a TimeoutException, whereas all waiting threads at the barrier are released
with a BrokenBarrierException.

359

CHAPTER5 THREADS

Note The await() method of the CyclicBarrier class returns the arrival index of
the thread calling it. The last thread to arrive at the barrier has an index of zero,
and the first has an index of the number of threads in the group minus one. You
can use this index to do any special processing in your program. For example,
the last thread to arrive at the barrier may log the time when a particular round of
computation is finished by all participating threads.

Phasers

The Phaser class in the java.util.concurrent package provides an implementation for
another synchronization barrier called phaser. A Phaser provides functionality similar
to the CyclicBarrier and CountDownLatch synchronizers. I cover the CountDownLatch
synchronizer in the next section. However, it is more powerful and flexible. It provides
the following features:

o LikeaCyclicBarrier, a Phaser is also reusable.

e Unlike a CyclicBarrier, the number of parties to synchronize on a
Phaser can change dynamically. In a CyclicBarrier, the number
of parties is fixed at the time the barrier is created. However, in a
Phaser, you can add or remove parties at any time.

e APhaser has an associated phase number, which starts at zero.
When all registered parties arrive at a Phaser, the Phaser advances
to the next phase, and the phase number is incremented by one. The
maximum value of the phase number is Integer.MAX VALUE. After its

maximum value, the phase number restarts at zero.

e APhaser has a termination state. All synchronization methods
called on a Phaser in a termination state return immediately without
waiting for an advance. The Phaser class provides different ways to
terminate a phaser.

360

CHAPTER5 THREADS

e APhaser has three types of parties count: a registered parties count,
an arrived parties count, and an unarrived parties count. The
registered parties count is the number of parties that are registered
for synchronization. The arrived parties count is the number of
parties that have arrived at the current phase of the phaser. The
unarrived parties count is the number of parties that have not yet
arrived at the current phase of the phaser. When the last party arrives,
the phaser advances to the next phase. Note that all three types of
party counts are dynamic.

e Optionally, a Phaser lets you execute a phaser action when all
registered parties arrive at the phaser. Recall that a CyclicBarrier
lets you execute a barrier action, which is a Runnable task. Unlike a
CyclicBarrier, you specify a phaser action by writing code in the
onAdvance() method of your Phaser class. It means you need to
use your own phaser class by inheriting it from the Phaser class and
override the onAdvance() method to provide a Phaser action.

I discuss an example of this kind shortly.

Phase-0 Phase-1 Phase-2
—_—> | P — P | T— | p
H H ——3| H
—_— | A A A
S — S —» S
—i E E > E
R R R

Figure 5-12. A Phaser with three phases with a different number of parties
in each phase

Figure 5-12 shows a phaser with three phases. It synchronizes on a different number
of parties in each phase. An arrow in the figure represents a party.

There are several steps to work with a Phaser. You can create a Phaser with no
initially registered party using its default constructor:

// A phaser with no registered parties
Phaser phaser = new Phaser();

361

CHAPTER5 THREADS
Another constructor lets you register parties when the Phaser is created:

// A phaser with 5 registered parties
Phaser phaser = new Phaser(5);

A Phaser may be arranged in a tree-like structure. Other constructors let you create
a Phaser by specifying the parent of the newly created Phaser. Once you have created
a Phaser, the next step is to register parties that are interested in synchronizing on the
phaser. You can register a party in the following ways:

o By specifying the number of parties to register in the constructor of
the Phaser class when you create a Phaser object

e Byusingthe register() method of the Phaser class to register one
party at a time

e Byusingthe bulkRegister(int parties) method of the Phaser
class to register the specified number of parties in bulk

The registered parties of a Phaser may change at any time by registering new parties
or deregistering the already registered parties. You can deregister a registered party
using the arriveAndDeregister () method of the Phaser class. This method lets a party
arrive at the Phaser and deregister without waiting for other parties to arrive. If a party is
deregistered, the number of parties is reduced by one in the next phase of the Phaser.

Typically, a party in a Phaser means a thread. However, a Phaser does not associate
the registration of a party with a specific thread. It simply maintains a count that is
increased by one when a party is registered and decreased by one when a party is
deregistered.

The most important part of a Phaser is the way multiple parties synchronize on it.

A typical way to synchronize on a Phaser is to let the registered number of parties arrive
and wait at the Phaser for other registered parties to arrive. Once the last registered party
arrives at the Phaser, all parties advance to the next phase of the Phaser.

The arriveAndAwaitAdvance() method of the Phaser class lets a party arrive at the
Phaser and waits for other parties to arrive before it can proceed.

The arriveAndDeregister () method of the Phaser class lets a party arrive at the
Phaser and deregister without waiting for other parties to arrive. Upon deregistration,
the number of parties required to advance to the future phase reduces by one. Typically, the
arriveAndDeregister() method is used by a controller party whose job is to control
the advance of other parties without participating in the advance itself. Typically, the

362

CHAPTER5 THREADS

controller party registers itself with the Phaser and waits for some conditions to occur;
when the required condition occurs, it arrives and deregisters itself from the Phaser so
parties can synchronize on the Phaser and advance.

Let’s walk through an example of using a Phaser to synchronize a group of tasks so
they can all start at the same time. An instance of the StartTogetherTask class, shown in
Listing 5-38, represents a task in this example.

Listing 5-38. A StartTogetherTask Class to Represent Tasks That Start Together
by Synchronizing on a Phaser

// StartTogetherTask.java
package com.jdojo.threads;
import java.util.Random;
import java.util.concurrent.Phaser;
public class StartTogetherTask extends Thread {
private final Phaser phaser;
private final String taskName;
private static Random rand = new Random();
public StartTogetherTask(String taskName,
Phaser phaser) {
this.taskName = taskName;
this.phaser = phaser;
}
@verride
public void run() {
System.out.println(taskName +

:Initializing...");
// Sleep for some time between 1 and 5 seconds
int sleepTime = rand.nextInt(5) + 1;
try {
Thread.sleep(sleepTime * 1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(taskName + ":Initialized...");
// Wait for all parties to arrive to start the task

363

CHAPTER5 THREADS

phaser.arriveAndAwaitAdvance();
System.out.println(taskName + ":Started...");

The StartTogetherTask class inherits from the Thread class. Its constructor accepts
a task name and a Phaser instance. In its run() method, it prints a message that it is
initializing. It fakes its initialization by sleeping for a random period of 1 to 5 seconds.
After that, it prints a message that it is initialized. At this stage, it waits on a Phaser
advance by calling the arriveAndAwaitAdvance() method of the Phaser. This method
will block until all registered parties arrive at the Phaser. When this method returns, it
prints a message that the task has started. Listing 5-39 contains the code to test three
tasks of StartTogetherTask type.

Listing 5-39. Testing Some Objects of the StartTogetherTask Class with a
Phaser

// StartTogetherTaskTest.java
package com.jdojo.threads;
import java.util.concurrent.Phaser;
public class StartTogetherTaskTest {
public static void main(String[] args) {
// Start with 1 registered party
Phaser phaser = new Phaser(1);
// Let's start three tasks
final int TASK COUNT = 3;
for (int i = 1; i <= TASK COUNT; i++) {
// Register a new party with the phaser for
// each task
phaser.register();
// Now create the task and start it
String taskName = "Task #" + 1i;
StartTogetherTask task =
new StartTogetherTask(taskName, phaser);
task.start();

364

CHAPTER5 THREADS

// Now, deregister the self, so all tasks can
// advance
phaser.arriveAndDeregister();

}

Task #3:Initializing...
Task #2:Initializing...
Task #1:Initializing...
Task #3:Initialized...

Task #1:Initialized...

Task #2:Initialized...

Task #2:Started...

Task #1:Started...

Task #3:Started...

First, the program creates a Phaser object by specifying 1 as the initially registered
party:

// Start with 1 registered party
Phaser phaser = new Phaser(1);

You register a task with the Phaser one at a time. If a task (or a party) is registered and
started before other tasks are registered, the first task will advance the phaser because
there will be one registered party and it will arrive at the phaser by itself. Therefore, you
need to start with one registered party in the beginning. It acts like the controller party
for other tasks.

You create three tasks in a loop. Inside the loop, you register a party (that represents
a task) with the Phaser, create a task, and start it. Once you are done setting up the
tasks, you call the arriveAndDeregister () method of the Phaser. This takes care of one
extra party that you had registered when you created the Phaser. This method makes a
party arrive at the Phaser and deregister without waiting for other registered parties to
arrive. After this method call is over, it is up to the three tasks to arrive at the Phaser and
advance. Once all three tasks arrive at the Phaser, they will all advance at the same time,
thus making them start at the same time. You may get different output. However, the last
three messages in the output will always be about starting the three tasks.

365

CHAPTER5 THREADS

If you do not want to use an additional party to act as a controller, you need to
register all tasks in advance to make this program work correctly. You can rewrite the
code in the main() method of the StartTogetherTaskTest class as follows:

public static void main(String[] args) {

// Start with 0 registered party

Phaser phaser = new Phaser();

// Let's start three tasks

final int TASK_COUNT = 3;

// Initialize all tasks in one go

phaser.bulkRegister (TASK _COUNT);

for(int i = 1; i <= TASK COUNT; i++) {
// Now create the task and start it
String taskName = "Task #" + i;
StartTogetherTask task =

new StartTogetherTask(taskName, phaser);

task.start();

This time, you create a Phaser with no registered party. You register all the parties
using the bulkRegister () method in one go. Note that you do not register a party inside
the loop anymore. The new code has the same effect as the old one. It is just a different
way to write the same logic.

Like a CyclicBarrier, a Phaser lets you execute an action upon a phase advance
using its onAdvance () method. You will need to create your own phaser class by
inheriting it from the Phaser class and override the onAdvance() method to write your
custom Phaser action. On each phase advance, the onAdvance() method of the phaser
is invoked. The onAdvance() method in the Phaser class is declared as follows. The
first argument is the phase number, and the second is the number of registered parties:
protected boolean onAdvance(int phase, int registeredParties)

Besides defining a phase advance action, the onAdvance() method of the Phaser
class also controls the termination state of a Phaser. A Phaser is terminated if its
onAdvance() method returns true. You can use the isTerminated() method of the
Phaser class to check if a phaser is terminated or not. You can also terminate a phaser
using its forceTermination() method.

366

CHAPTER5 THREADS

Listing 5-40 demonstrates how to add a Phaser action. This is a trivial example.
However, it demonstrates the concept of adding and executing a Phaser action. It uses
an anonymous class to create a custom Phaser class. The anonymous class overrides
the onAdvance() method to define a Phaser action. It simply prints a message in the
onAdvance() method as the Phaser action. It returns false, which means the phaser
will not be terminated from the onAdvance() method. Later, it registers itself as a party
and triggers a phase advance using the arriveAndDeregister() method. On every phase
advance, the Phaser action that is defined by the onAdvance() method is executed.

Listing 5-40. Adding a Phaser Action to a Phaser

// PhaserActionTest.java
package com.jdojo.threads;
import java.util.concurrent.Phaser;
public class PhaserActionTest {
public static void main(String[] args) {
// Create a Phaser object using an anonymous class
// and override its onAdvance() method to define a
// phaser action
Phaser phaser = new Phaser() {
@verride
protected boolean onAdvance(int phase,
int parties) {
System.out.println(
"Inside onAdvance(): phase =
+ phase + ", Registered Parties =

+ parties);
// Do not terminate the phaser by returning

// false
return false;

};

// Register the self (the "main" thread) as a party
phaser.register();

// Phaser is not terminated here

367

CHAPTER5 THREADS

System.out.println("#1: isTerminated(): " +
phaser.isTerminated());

// Since we have only one party registered, this

// arrival will advance the phaser and registered

// parties reduces to zero

phaser.arriveAndDeregister();

// Trigger another phase advance

phaser.register();

phaser.arriveAndDeregister();

// Phaser is still not terminated

System.out.println("#2: isTerminated(): " +
phaser.isTerminated());

// Terminate the phaser

phaser.forceTermination();

// Phaser is terminated

System.out.println("#3: isTerminated(): " +
phaser.isTerminated());

}

#1: isTerminated(): false
Inside onAdvance(): phase = 0, Registered Parties = 0
Inside onAdvance(): phase = 1, Registered Parties = 0
#2: isTerminated(): false
#3: isTerminated(): true

Let’s consider using a Phaser to solve a complex task. This time, the Phaser works in
multiple phases by synchronizing multiple parties in each phase. Multiple tasks generate
random integers in each phase and add them to a List. After the Phaser is terminated,
you compute the sum of all the randomly generated integers.

Listing 5-41 contains the code for a task. Let’s call this task AdderTask. In its run()
method, it creates a random integer between 1 and 10, adds the integer to a List, and
waits for a Phaser to advance. It keeps adding an integer to the list in each phase of the
Phaser until the Phaser is terminated.

368

CHAPTER5 THREADS

Listing 5-41. An AdderTask Class Whose Instances Can Be Used with a Phaser to
Generate Some Integers

// AdderTask.java
package com.jdojo.threads;
import java.util.list;
import java.util.Random;
import java.util.concurrent.Phaser;
public class AdderTask extends Thread {
private final Phaser phaser;
private final String taskName;
private final List<Integer> list;
private static Random rand = new Random();
public AdderTask(String taskName, Phaser phaser,
List<Integer> list) {
this.taskName = taskName;
this.phaser = phaser;
this.list = list;
}
@verride
public void run() {
do {
// Generate a random integer between 1 and 10
int num = rand.nextInt(10) + 1;
System.out.println(taskName + " added " +
num);
// Add the integer to the list
list.add(num);
// Wait for all parties to arrive at the phaser
phaser.arriveAndAwaitAdvance();
} while (!phaser.isTerminated());

369

CHAPTER5 THREADS

Listing 5-42 creates a Phaser by inheriting an anonymous class from the Phaser
class. In its onAdvance () method, it terminates the phaser after the second advance,
which is controlled by the PHASE_COUNT constant, or if the registered parties reduce to
zero. You use a synchronized List to gather the random integers generated by the adder
tasks. You plan to use three adder tasks, so you register four parties (one more than the
number of tasks) with the phaser. The additional party will be used to synchronize each
phase. It waits for each phase advance until the Phaser is terminated. At the end, the
sum of the random integers generated by all adder tasks is computed and displayed on
the standard output. You may get different output.

Listing 5-42. A Program to Use Multiple AdderTask Tasks with a Phaser

// AdderTaskTest.java
package com.jdojo.threads;

import java.util.list;

import java.util.Arraylist;

import java.util.Collections;
import java.util.concurrent.Phaser;

public class AdderTaskTest {
public static void main(String[] args) {
final int PHASE_COUNT = 2;
Phaser phaser = new Phaser() {
@verride
public boolean onAdvance(int phase,
int parties) {
// Print the phaser details
System.out.println("Phase:"

+ ", Parties:"

+ phase

+ parties

+ ", Arrived:"

+ this.getArrivedParties());
boolean terminatePhaser = false;
// Terminate the phaser when we reach the
// PHASE_COUNT or there is no registered
// party

370

CHAPTER 5

if (phase >= PHASE COUNT - 1 ||
parties == 0) {
terminatePhaser = true;

}

return terminatePhaser;

};
// Use a synchronized List
List<Integer> list = Collections.synchronizedList(
new ArraylList<>());
// Let's start three tasks
final int ADDER_COUNT = 3;
// Register parties one more than the number of
// adder tasks. The extra party will synchronize to
// compute the result of all generated integers by
// all adder tasks
phaser.bulkRegister (ADDER_COUNT + 1);
for (int i = 1; i <= ADDER _COUNT; i++) {
// Create the task and start it
String taskName = "Task #" + 1i;
AdderTask task = new AdderTask(taskName,
phaser, list);
task.start();
}
// Wait for the phaser to terminate, so we can
// compute the sum of all generated integers by the
// adder tasks
while (!phaser.isTerminated()) {
phaser.arriveAndAwaitAdvance();
}
// Phaser is terminated now. Compute the sum
int sum = 0;
for (Integer num : list) {
sum = sum + num;

THREADS

371

CHAPTER5 THREADS

System.out.println("Sum = " + sum);

}

Task #2 added 2

Task #1 added 2

Task #3 added 5

Phase:0, Parties:4, Arrived:4
Task #3 added 5

Task #1 added 1

Task #2 added 7

Phase:1, Parties:4, Arrived:4
Sum = 22

Latches

A latch works similar to a barrier in the sense that it also makes a group of threads wait
until it reaches its terminal state. Once a latch reaches its terminal state, it lets all threads
pass through. Unlike a barrier, it is a one-time object. Once it has reached its terminal
state, it cannot be reset and reused. A latch can be used in situations where a number of
activities cannot proceed until a certain number of one-time activities have completed.
For example, a service should not start until all services that it depends on have started.

The CountDownLatch class in the java.util.concurrent package provides the
implementation of a latch. It is initialized to a count using its constructor. All threads
that call the await() method of the latch object are blocked until the latch’s countDown ()
method is called as many times as its count is set. When the number of calls to the
countDown () method is the same as its count, it reaches its terminal state, and all
blocked threads are released. Once a latch reaches its terminal state, its await() method
returns immediately. You can think of the count that is set for the latch as the same as the
number of events that a group of thread will wait to occur. Each occurrence of an event
will call its countDown () method.

Listings 5-43 and 5-44 contain classes that represent a helper service and a main
service, respectively. The main service depends on helper services to start. After all
helper services have started, only then can the main service start.

372

CHAPTER 5
Listing 5-43. A Class to Represent a Helper Service

// LatchHelperService.java
package com.jdojo.threads;
import java.util.concurrent.CountDownlatch;
import java.util.Random;
public class LatchHelperService extends Thread {
private final int ID;
private final CountDownlLatch latch;
private final Random random = new Random();
public LatchHelperService(int ID,
CountDownlLatch latch) {
this.ID = ID;
this.latch = latch;

}
@verride
public void run() {
try {
int startupTime = random.nextInt(30) + 1;
System.out.println("Service #" + ID

+ " starting in "

+ startupTime + " seconds...");
Thread.sleep(startupTime * 1000);
System.out.println("Service #" + ID

+ " has started...");

} catch (InterruptedException e) {
e.printStackTrace();

} finally {
// Count down on the latch to indicate that
// it has started
this.latch.countDown();

}

}

THREADS

373

CHAPTER5 THREADS

Listing 5-44. A Class to Represent the Main Service That Depends on Helper
Services to Start

// LatchMainService.java
package com.jdojo.threads;
import java.util.concurrent.CountDownlatch;
public class LatchMainService extends Thread {
private final CountDownLatch latch;
public LatchMainService(CountDownlLatch latch) {
this.latch = latch;

}
@0verride
public void run() {
try {
System.out.println(
"Main service is waiting for helper " +
"services to start...");
latch.await();
System.out.println(
"Main service has started...");
} catch (InterruptedException e) {
e.printStackTrace();
}
}

Listing 5-45 lists a program to test the concept of helper and main services with a
latch. You create a latch that is initialized to two. The main service thread is started first,
and it calls the latch’s await () method to wait for the helper service to start. Once both
helper threads call the countDown () method of the latch, the main service starts. The
output explains the sequence of events clearly.

374

CHAPTER5 THREADS

Listing 5-45. A Class to Test the Concept of a Latch with Helper and Main

Services

// LatchTest.java
package com.jdojo.threads;
import java.util.concurrent.CountDownlatch;
public class LatchTest {
public static void main(String[] args) {
// Create a countdown latch with 2 as its counter
CountDownLatch latch = new CountDownLatch(2);
// Create and start the main service
LatchMainService ms = new LatchMainService(latch);
ms.start();
// Create and start two helper services
for (int i = 1; 1 <= 2; i++) {
LatchHelperService lhs =
new LatchHelperService(i, latch);
lhs.start();

}

Main service is waiting for helper services to start...
Service #1 starting in 12 seconds...

Service #2 starting in 2 seconds...

Service #2 has started...

Service #1 has started...

Main service has started...

Exchangers

An exchanger is another form of a barrier. Like a barrier, an exchanger lets two threads
wait for each other at a synchronization point. When both threads arrive, they exchange
an object and continue their activities. This is useful in building a system where two
independent parties need to exchange information from time to time. Figures 5-13
through 5-15 depict how an exchanger works with two threads and lets them exchange
an object.

375

CHAPTER5 THREADS

L ORI

.
—_—

TEOZ >

Figure 5-13. Two threads perform their work independently

O m

TmOZ =

Figure 5-14. One thread arrives at the exchange point and waits for another
thread to arrive

g An object

>

Anobject |1

Figure 5-15. Two threads meet at the exchange point and exchange objects

376

CHAPTER5 THREADS

The Exchanger<V> class provides an implementation for an exchanger synchronizer.
It has one constructor, which takes no arguments. The type parameter V is the type of
Java object that will be exchanged between two parties. You can create an exchanger that
will let two threads exchange a Long as follows:

Exchanger<Long> exchanger = new Exchanger<>();

The Exchanger class has only one method, exchange(). When a thread is ready to
exchange an object with another thread, it calls the exchange () method of the exchanger
and waits for another thread to exchange the object. A thread that is waiting to exchange
an object may be interrupted.

Another overloaded version of the exchange () method accepts a timeout period.

If the timeout period is specified, the thread calling this method will wait for another
thread to exchange an object until the timeout period is elapsed. The exchange()
method takes the object to pass on to another thread as an argument, and it returns the
object passed by another thread. You call the exchange () method like so:

objectReceived = exchanger.exchange(objectedPassed);

Listings 5-46 to 5-48 demonstrate the use of an exchanger in building a producer/
consumer system that exchanges a buffer, which is an ArrayList of Integer objects. To
declare an array list of integer objects, you have to declare it as follows:

Arraylist<Integer> buffer = new ArraylList<Integer>();
In Listing 5-48, you have created an exchanger as

Exchanger<ArraylList<Integer>> exchanger =
new Exchanger<Arraylist<Integer>>();

The type declaration Exchanger<ArraylList<Integer» indicates that the exchanger
will let two threads exchange objects of type ArrayList<Integer>. You can also note
that the type declarations in the ExchangerProducer and ExchangerConsumer classes
match the previous declaration. The producer fills up the data and waits for some time to
give the users the impression that it is really filling up data. It waits for the consumer to
exchange the filled buffer with an empty buffer from the consumer. The consumer does
the opposite. It waits for the producer to exchange the buffer. When it gets a full buffer
from the producer, it empties the buffer and again waits for the producer to exchange its

377

CHAPTER5 THREADS

empty buffer for a full one. Since the producer and consumer run in infinite loops, the
program will not end. You will have to end the program manually. You will get a similar
output to that shown in Listing 5-48.

Listing 5-46. A Producer Thread That Will Use an Exchanger to Exchange Data
with a Consumer

// ExchangerProducer.java
package com.jdojo.threads;
import java.util.concurrent.Exchanger;
import java.util.Arraylist;
import java.util.Random;
public class ExchangerProducer extends Thread {
private final Exchanger<ArraylList<Integer>> exchanger;
private ArraylList<Integer> buffer = new Arraylist<>();
private final int bufferLimit;
private final Random random = new Random();
private int currentValue = 0; // to produce values
public ExchangerProducer(
Exchanger<ArraylList<Integer>> exchanger,
int bufferLimit) {
this.exchanger = exchanger;
this.bufferLimit = bufferLimit;
}
@verride
public void run() {
// keep producing integers
while (true) {
try {
System.out.println(
"Producer is filling the buffer" +
" with data...");
// Wait for some time by sleeping
int sleepTime = random.nextInt(20) + 1;
Thread.sleep(sleepTime * 1000);

378

CHAPTER 5

// Fill the buffer
this.fillBuffer();
System.out.println(
"Producer has produced:" + buffer);
// Let's wait for the consumer to
// exchange data
System.out.println(
"Producer is waiting to exchange" +
" the data...");
buffer = exchanger.exchange(buffer);
} catch (InterruptedException e) {
e.printStackTrace();

}
public void fillBuffer() {

for (int i = 1; i <= bufferLimit; i++) {
buffer.add(++currentValue);

// ExchangerConsumer.java

package com.jdojo.threads;

import java.util.concurrent.Exchanger;

import java.util.Arraylist;

import java.util.Random;

public class ExchangerConsumer extends Thread {

private final Exchanger<Arraylist<Integer>> exchanger;
private ArraylList<Integer> buffer = new ArraylList<>();
private final Random random = new Random();

THREADS

Listing 5-47. A Consumer Thread That Will Use an Exchanger to Exchange Data
with a Producer

379

CHAPTER5 THREADS

public ExchangerConsumer (
Exchanger<ArraylList<Integer>> exchanger) {

this.exchanger = exchanger;

}

@0verride

public void run() {
// keep consuming the integers
while (true) {

try {

// Let's wait for the consumer to exchange
// data
System.out.println(

"Consumer is waiting to exchange" +

" the data...");
buffer = exchanger.exchange(buffer);
System.out.println(

"Consumer has received:" + buffer);
System.out.println(

"Consumer is emptying data from" +
" the buffer...");
// Wait for some time by sleeping
int sleepTime = random.nextInt(20) + 1;
// Sleep for some time
Thread.sleep(sleepTime * 1000);
// Empty the buffer
this.emptyBuffer();
} catch (InterruptedException e) {
e.printStackTrace();

}
public void emptyBuffer() {

buffer.clear();

380

CHAPTER5 THREADS

Listing 5-48. A Class to Test a Producer/Consumer System with an Exchanger

// ExchangerProducerConsumerTest.java
package com.jdojo.threads;
import java.util.concurrent.Exchanger;
import java.util.Arraylist;
public class ExchangerProducerConsumerTest {
public static void main(String[] args) {
Exchanger<ArraylList<Integer>> exchanger =
new Exchanger<>();
// The producer will produce 5 integers at a time
ExchangerProducer producer =
new ExchangerProducer(exchanger, 5);
ExchangerConsumer consumer =
new ExchangerConsumer (exchanger);
producer.start();
consumer.start();

}

Producer is filling the buffer with data...
Consumer is waiting to exchange the data...
Producer has produced:[1, 2, 3, 4, 5]
Producer is waiting to exchange the data...
Producer is filling the buffer with data...
Consumer has received:[1, 2, 3, 4, 5]
Consumer is emptying data from the buffer...

The Executor Framework

A task is a logical unit of work, and typically a thread is used to represent and execute
a task. Many aspects of task execution should be considered before modeling itin a
program. A few aspects of a task are as follows:

o Howitis created.

¢ How itis submitted for execution.
381

CHAPTER5 THREADS

o Howitis executed. Is it executed synchronously or asynchronously?

o The time at which it is executed. Is it executed immediately upon
submission or queued?

« Which thread executes it? Is it executed in the thread that submits it

or in another thread?
e How do we get the result of a task when it is finished executing?
e How do we know the error that occurs during its execution?
e Does it depend on other tasks to finish its execution?

A task may be represented as a Runnable. If you want to manage tasks using threads,
follow the steps described next. You can create a class to represent a task:

public class MyTask implements Runnable {
public void run() {
// Task processing logic goes here

You create tasks as follows:

MyTask task1
MyTask task2
MyTask task3

new MyTask();
new MyTask();
new MyTask();

To execute the tasks, you use threads as follows:

Thread t1
Thread t2
Thread t3
t1.start();
t2.start();
t3.start();

new Thread(taski);
new Thread(task2);
new Thread(task3);

If you want to get the result of a task execution, you have to write additional code.
You may notice that managing tasks like this is difficult, if not impossible. There is

382

CHAPTER5 THREADS

another aspect of task execution that is very important: how many threads should be

created to execute a group of tasks? One approach would be to create a thread per task.

Creating a thread per task has the following disadvantages:

Creating and destroying threads requires overhead and takes time,
which in turn delays the start of the execution of the tasks.

Each thread consumes resources. If the number of threads is more
than the available CPUs, other threads will be sitting idle and will
consume resources.

Each platform has a limit on how many maximum threads it can
support. If an application exceeds that limit, it may even crash!
Another approach is to create one thread and let it handle the
execution of all tasks. This is another extreme case, which has the
following disadvantages:

Having one thread executing all tasks makes it a sequential executor.

This policy is deadlock-prone if one task submits another task and it
depends on the result of the task it has submitted.

If you have long-running tasks, other tasks waiting for their execution
seem to be unresponsive because of the long time it will take to start
the pending tasks.

The executor framework attempts to solve all of these problems of task execution.

The framework provides a way to separate task submission from task execution. You

create a task and submit it to an executor. The executor takes care of the execution

details of the task. It provides configurable policies to control many aspects of the task

execution.

The Executor interface in the java.util.concurrent package is the foundation for

the executor framework. The interface contains only one method, as shown:

public interface Executor {

void execute (Runnable command);

383

CHAPTER5 THREADS

You can use the executor framework to execute the previously mentioned three tasks
as follows:

// Get an executor instance.

Executor executor = Executors.newCachedThreadPool();
// Submit three tasks to the executor
executor.execute(task1);

executor.execute(task2);

executor.execute(task3);

Note that when you used an executor, you did not create three threads to execute the
three tasks. The executor will decide that for you. You just called the execute () method
of the executor to submit a task. The executor will manage the threads that will execute
the tasks and other details about the task execution.

The executor framework provides a class library to select the policies on the thread
usage to execute the tasks. You can choose to run all tasks in one thread, in a fixed
number of threads, or in a variable number of threads. In fact, you can choose a thread
pool to execute your tasks, and the thread pool is configurable as to how many threads
will be in the pool and how those threads will be maintained. In any case, all threads
in the pool are reused as they become available. Using a thread pool to execute the
submitted tasks has two important advantages:

e The overhead of creating new threads and destroying them when you
are done with them is reduced. The executor reuses the threads from
the thread pool.

o Ifathread is available in the thread pool at the time of a task
submission, the task may start immediately. This eliminates the time
delay between the thread creation and the task execution.

It is important to mention another interface called ExecutorService at this point. It
provides some advanced features of an executor, which include managing the shutdown
of the executor and checking the status of the submitted tasks. It inherits from the
Executor interface. Some of the important methods of this interface are shutdown(),
shutdownNow(), submit(), and awaitTermination(). I discuss them shortly.

It is important that you shut down the executor when it is no longer needed. The
executor framework creates non-daemon threads to execute the tasks. Generally, when a
thread is done executing a task, it is not destroyed. Rather, it is kept in the thread pool for

384

CHAPTER5 THREADS

reuse in the future—whether a thread is destroyed or kept depends on the thread pool
configuration. A Java application will not exit if some non-daemon threads are still alive.
Therefore, if you forget to shut down the executor, your application may never exit.

How does an executor handle a task execution? To avoid a detailed and lengthy
discussion, here is a simple explanation. You specify the type of thread pool that the
executor should use to manage the tasks at the time you create the executor. All tasks
that you submit to an executor are queued in a queue known as the work queue. As a
thread becomes available, it removes a task from the work queue and executes it. When
a thread is done executing a task, depending on your thread pool type, your executor
either destroys the thread or puts it back into the pool so it can be reused to execute
another task. You have a number of options to decide on what kind of thread pool to use
for an executor:

e You can use one of the factory methods of the Executors class to
get an executor, which has a preconfigured thread pool and lets
you reconfigure it, if you desire so. You will use this approach to get
an executor in your examples. You can also use this class to get a
preconfigured executor that cannot be reconfigured. The comm
only used methods of the Executors class to get an executor service
are as follows:

— newCachedThreadPool(): It returns an ExecutorService object.
The thread pool reuses the previously created threads if they are
available. Otherwise, it creates a new thread to execute a task. It
destroys and removes idle threads from the pool. The thread pool
has characteristics of expanding and shrinking depending on the
workload.

— newFixedThreadPool(int nThreads): It returns an
ExecutorService object. The thread pool maintains a fixed
number of threads. At any time, the thread pool will have the
maximum nThread number of threads. If a task arrives in the work
queue and all threads are busy executing other tasks, the task has
to wait for its execution until a thread becomes available. If a
thread is terminated because of an unexpected failure during a
task execution, it is replaced with a new thread.

385

CHAPTER5 THREADS

— newSingleThreadExecutor(): It returns an ExecutorService
object. The thread pool maintains only one thread to execute all
tasks. It guarantees that only one task will be executed at a time. If
the lone thread dies unexpectedly, it is replaced with a new one.

e You can instantiate the ThreadPoolExecutor class and configure the
thread pool.

¢ You can create your own executor from scratch.

Listing 5-49 contains the complete code for a RunnableTask class.

Listing 5-49. A Runnable Task

// RunnableTask.java
package com.jdojo.threads;
import java.util.Random;
public class RunnableTask implements Runnable {
private final int taskId;
private final int loopCounter;
private final Random random = new Random();
public RunnableTask(int taskId, int loopCounter) {
this.taskId = taskId;
this.loopCounter = loopCounter;
}
@0verride
public void run() {
for (int i = 1; i <= loopCounter; i++) {
try {
int sleepTime = random.nextInt(10) + 1;
System.out.println("Task #" + this.taskId

+ " - Iteration #" + i
+ " is going to sleep for "
+ sleepTime + " seconds.");

Thread.sleep(sleepTime * 1000);

386

CHAPTER5 THREADS

} catch (InterruptedException e) {
System.out.println("Task #" + this.taskId
+ " has been interrupted.");
break;

An object of the RunnableTask class represents a task in your program. You will have
a task that will sleep for some time and print a message on the standard output. The
time to sleep will be determined randomly between 1 and 10 seconds. Every task will be
assigned a task ID and a loop counter. The task ID is used to identify the task. The loop
counter is used to control the loop inside the run() method. Listing 5-50 contains the
complete code to test the Runnable task class.

Listing 5-50. A Class to Test an Executor to Run Some Runnable Tasks

// RunnableTaskTest.java
package com.jdojo.threads;
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
public class RunnableTaskTest {
public static void main(String[] args) {
final int THREAD COUNT = 3;
final int LOOP_COUNT = 3;
final int TASK_COUNT = 5;
// Get an executor with three threads in its
// thread pool
ExecutorService exec =
Executors.newFixedThreadPool (THREAD COUNT);
// Create five tasks and submit them to the
// executor

387

CHAPTER5 THREADS

exec.submit(task);

}

// Let's shutdown the executor

exec.shutdown();

}

}
Task #1 - Iteration #1 is going to sleep for 9 seconds.
Task #2 - Iteration #1 is going to sleep for 2 seconds.
Task #3 - Iteration #1 is going to sleep for 7 seconds.
Task #2 - Iteration #2 is going to sleep for 5 seconds.
Task #2 - Iteration #3 is going to sleep for 7 seconds.
Task #3 - Iteration #2 is going to sleep for 2 seconds.

for (int i = 1; i <= TASK COUNT; i++) {

RunnableTask task =
new RunnableTask(i, LOOP_COUNT);

The RunnableTaskTest class creates an Executor with three threads. It creates five
instances of the RunnableTask class—each task making three iterations in its run()
method. All five tasks are submitted to the Executor. You have used an executor with its
thread pool with a fixed number of threads. Your executor will have only three threads in
its thread pool to execute only three tasks at a time. When the executor is done with one
of the first three tasks, it starts the fourth one. Note the exec. shutdown() method call to
shut down the executor after submitting all tasks. The shutdownNow() method call of the
executor attempts to stop the executing tasks by interrupting it and discards the pending
tasks. It returns the list of all pending tasks that were discarded. If you replace the exec.
shutdown() to exec.shutdownNow() in the main() method, you may get an output
similar to the one shown:

Task #1 - Iteration #1 is going to sleep for 7 seconds.
Task #2 - Iteration #1 is going to sleep for 10 seconds.
Task #3 - Iteration #1 is going to sleep for 9 seconds.
Task #2 has been interrupted.
Task #3 has been interrupted.
Task #1 has been interrupted.

388

CHAPTER5 THREADS

Result-Bearing Tasks

How do you get the result of a task when it is complete? The task that can return a result
upon its execution has to be represented as an instance of the Callable<V> interface:

public interface Callable<V> {
V call() throws Exception;

The type parameter V is the type of the result of the task. Note that the run() method
of the Runnable interface cannot return a value, and it cannot throw any checked
exception. The call() method of the Callable interface can return a value of any type.
It also allows you to throw an exception.

Let’s redo your RunnableTask class from Listing 5-49 as CallableTask, which is
shown in Listing 5-51.

Listing 5-51. A Callable Task

// CallableTask.java
package com.jdojo.threads;
import java.util.Random;
import java.util.concurrent.Callable;
public class CallableTask implements Callable<Integer> {
private final int taskId;
private final int loopCounter;
private final Random random = new Random();
public CallableTask(int taskId, int loopCounter) {
this.taskId = taskId;
this.loopCounter = loopCounter;
}
@verride
public Integer call() throws InterruptedException {
int totalSleepTime = 0;
for (int i = 1; i <= loopCounter; i++) {
try {
int sleepTime = random.nextInt(10) + 1;

389

CHAPTER5 THREADS

System.out.println("Task #" + this.taskId
+ " - Iteration #" + i
+ " is going to sleep for
+ sleepTime + " seconds.");
Thread.sleep(sleepTime * 1000);
totalSleepTime = totalSleepTime +

sleepTime;

} catch (InterruptedException e) {
System.out.println("Task #" + this.taskId
+ " has been interrupted.");
throw e;

}

return totalSleepTime;

The call() method of the task returns the sum of all its sleeping periods. Listing 5-52
illustrates the use of the Callable task. You may get different output every time you run
the program.

Listing 5-52. A Class to Demonstrate How to Use a Callable Task with an
Executor

// CallableTaskTest.java
package com.jdojo.threads;

import java.util.concurrent.Executors;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;

import java.util.concurrent.ExecutionException;

public class CallableTaskTest {
public static void main(String[] args) {
// Get an executor with three threads in its
// thread pool
ExecutorService exec =
Executors.newFixedThreadPool(3);

390

}

CHAPTER 5

// Create the callable task with loop counter as 3
CallableTask task = new CallableTask(1, 3);
// Submit the callable task to executor
Future<Integer> submittedTask = exec.submit(task);
try {
Integer result = submittedTask.get();
System.out.println(

"Task's total sleep time: " + result +
" seconds");
} catch (ExecutionException e) {
System.out.println(
"Error in executing the task.");
} catch (InterruptedException e) {
System.out.println(
"Task execution has been interrupted.");
}

// Let's shutdown the executor
exec.shutdown();

Task #1 - Iteration #1 is going to sleep for 6 seconds.

Task #1 - Iteration #2 is going to sleep for 5 seconds.
Task #1 - Iteration #3 is going to sleep for 4 seconds.
Task's total sleep time: 15 seconds

I explain the logic in the two listings step by step.
The CallableTask class defines the call() method, which contains the logic for task

processing. It sums up all the sleep times for the task and returns it.

THREADS

The CallableTaskTest class uses an executor with three threads in its thread pool.
The ExecutorService.submit() method returns a Future<V> object. Future is

an interface that lets you track the progress of the task that you submit. It contains the

following methods:

boolean cancel(boolean mayInterruptIfRunning)

V get() throws InterruptedException, ExecutionException

391

CHAPTER5 THREADS

o V get(long timeout, TimeUnit unit) throws
InterruptedException, ExecutionException, TimeoutException

e boolean isCancelled()
e boolean isDone()

The get () method returns the result of the task execution, which is the same as
the returned value from the call() method of a Callable object. If the task has not yet
finished executing, the get () method blocks. You can use another version of the get()
method to specify a timeout period for waiting for the result of a task execution.

The cancel() method cancels a submitted task. Its call has no effect on a completed
task. It accepts a boolean argument to indicate if the executor should interrupt the task
if the task is still running. If you use cancel(true) to cancel a task, make sure the task
responds to the interruption properly.

The isDone () method tells you if the task has finished executing. It returns true
if the task is finished executing normally, it has been cancelled, or it had an exception
during its execution.

In the CallableTaskTest class, you keep the returned Future object in the
submittedTask variable. The Future<Integer> declaration indicates that your task
returns an Integer object as its result:

Future<Integer> submittedTask = exec.submit(task);
Another important method call is the get () method on submittedTask:
Integer result = submittedTask.get();

I placed the call to the get () method in a try-catch block because it may throw
an exception. If the task has not finished executing, the get () method will block. The
program prints the result of the task execution, which is the total time that the task spent
sleeping during its execution.

Finally, you shut down the executor using its shutdown () method.

Scheduling a Task

The executor framework lets you schedule a task that will run in the future. You can
run a task to execute after a given delay or periodically. Scheduling a task is done using
an instance of the ScheduledExecutorService interface, which you can get using one

392

CHAPTER5 THREADS

of the static factory methods of the Executors class. You can also use the concrete
implementation of this interface, which is the ScheduledThreadPoolExecutor class.
To get an instance of the ScheduledExecutorService interface, use the following
snippet of code:

// Get scheduled executor service with 3 threads
ScheduledExecutorService sexec =
Executors.newScheduledThreadPool(3);

To schedule a task (say task1) after a certain delay (say 10 seconds), use
sexec.schedule(task1, 10, TimeUnit.SECONDS);

To schedule a task (say task2) after a certain delay (say 10 seconds), and repeat after
a certain period (say 25 seconds), use

sexec.scheduleAtFixedRate(task2, 10, 25,
TimeUnit.SECONDS);

After a 10-second delay, task2 will execute for the first time. Subsequently, it will
keep executing after 10 + 25 seconds, 10 + 2 * 25seconds, 10 + 3 * 25 seconds, and
SO on.

You can also schedule a task with a set delay period between the end of an execution
and the start of the next execution. To schedule task3 for the first time after 40 seconds,
and every 60 seconds after every execution finishes, use

sexec.scheduleWithFixedDelay(task3, 40, 60,
TimeUnit.SECONDS);

The ScheduledExecutorService interface does not provide a method to schedule a
task using an absolute time. However, you can schedule a task to execute at an absolute
time using the following technique. Suppose scheduledDateTime is the date and time at
which you want to execute the task:

import java.time.localDateTime;
import static java.time.temporal.ChronoUnit.SECONDS;
import java.util.concurrent.TimeUnit;

LocalDateTime scheduledDateTime =
get the scheduled date and time for the task...

393

CHAPTER5 THREADS

// Compute the delay from the time you schedule the task

long delay = SECONDS.between(LocalDateTime.now(),
scheduledDateTime);

// Schedule the task

sexec.schedule(task, delay, TimeUnit.MILLISECONDS);

Note The submit() method of ExecutorService submits the task for

immediate execution. You can submit a task for immediate execution using the
ScheduledExecutorService.schedule() method by specifying an initial
delay of zero. A negative initial delay schedules a task for immediate execution.

Listing 5-53 contains the code for a Runnable task. It simply prints the date and time
when it is run.

Listing 5-53. A Scheduled Task

// ScheduledTask.java
package com.jdojo.threads;
import java.time.localDateTime;
public class ScheduledTask implements Runnable {
private final int taskId;
public ScheduledTask(int taskId) {
this.taskId = taskId;
}
@verride
public void run() {
LocalDateTime now = LocalDateTime.now();
System.out.println("Task #" + this.taskId +

ran at " + now);

Listing 5-54 demonstrates how to schedule a task. The second task has been
scheduled to run repeatedly. To let it run a few times, make the main thread sleep for
60 seconds before you shut down the executor. Shutting down an executor discards any

394

CHAPTER5 THREADS

pending tasks. A good way to stop a scheduled task that repeats is to cancel it after a
certain delay using another scheduled task. You may get different output when you run
the ScheduledTaskTest class.

Listing 5-54. A Class to Test Scheduled Task Executions Using the Executor
Framework

// ScheduledTaskTest.java
package com.jdojo.threads;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
public class ScheduledTaskTest {
public static void main(String[] args) {
// Get an executor with 3 threads
ScheduledExecutorService sexec =
Executors.newScheduledThreadPool(3);
// Task #1 and Task #2
ScheduledTask taski = new ScheduledTask(1);
ScheduledTask task2 = new ScheduledTask(2);
// Task #1 will run after 2 seconds
sexec.schedule(task1, 2, TimeUnit.SECONDS);
// Task #2 runs after 5 seconds delay and keep
// running every 10 seconds
sexec.scheduleAtFixedRate(task2, 5, 10,
TimeUnit.SECONDS);
// Let the current thread sleep for 60 seconds
// and shut down the executor that will cancel
// the task #2 because it is scheduled
// to run after every 10 seconds
try {
TimeUnit.SECONDS.sleep(60);
} catch (InterruptedException e) {
e.printStackTrace();

395

CHAPTER5 THREADS

// Shut down the executor
sexec.shutdown();

}

Task #1 ran at 2020-10-07T10:47:48.800387200
Task #2 ran at 2020-10-07T10:47:51.753682400
Task #2 ran at 2020-10-07T10:48:01.754210400
Task #2 ran at 2020-10-07T10:48:11.754739100
Task #2 ran at 2020-10-07T10:48:21.755259400
Task #2 ran at 2020-10-07T10:48:31.755795600
Task #2 ran at 2020-10-07T10:48:41.756322800

Handling Uncaught Exceptions in a Task Execution

What happens when an uncaught exception occurs during a task execution? The
executor framework handles occurrences of such uncaught exception nicely for you. If
you execute a Runnable task using the execute() method of an Executor, any uncaught
runtime exceptions will halt the task execution, and the exception stack trace will be
printed on the console, as shown in the output of Listing 5-55.

Listing 5-55. Printing the Runtime Stack Trace from the execute() Method of
the Executor

// BadRunnableTask.java
package com.jdojo.threads;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class BadRunnableTask {
public static void main(String[] args) {
Runnable badTask = () -> {
throw new RuntimeException(
"The task threw an exception...");
};
ExecutorService exec = Executors.
newSingleThreadExecutor();

396

CHAPTER5 THREADS

exec.execute(badTask);
exec.shutdown();

}

Exception in thread "pool-1-thread-1" java.lang.
RuntimeException: The task threw an exception...

at jdojo.threads/com.jdojo.threads.
BadRunnableTask.
lambda$main$o(BadRunnableTask.java:10)

at java.base/java.util.concurrent.
ThreadPoolExecutor.runWorker (
ThreadPoolExecutor.java:1167)

at java.base/java.util.concurrent.
ThreadPoolExecutor\$Worker.
run(ThreadPoolExecutor.java:641)

at java.base/java.lang.Thread.run(
Thread. java:844)

If you are submitting a task using the submit () method of the ExecutorService,
the executor framework handles the exception and indicates that to you when you
use the get() method to get the result of the task execution. The get() method of the
Future instance throws an ExecutionException, wrapping the actual exception as its
cause. Listing 5-56 illustrates this kind of example. You can use the get () method of the
Future instance even if you submit a Runnable task. On successful execution of the task,
the get () method will return null. If an uncaught exception is thrown during the task
execution, it throws an ExecutionException.

Listing 5-56. Future’s get() Method Throws ExecutionException, Wrapping
the Actual Exception Thrown in Task Execution As Its Cause

// BadCallableTask.java
package com.jdojo.threads;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import java.util.concurrent.Callable;

import java.util.concurrent.Future;

import java.util.concurrent.ExecutionException;

397

CHAPTER5 THREADS

public class BadCallableTask {
public static void main(String[] args) {
Callable<Object> badTask = () -> {
throw new RuntimeException(

"The task threw an exception..

}s

// Create an executor service

ExecutorService exec = Executors.
newSingleThreadExecutor();

// Submit a task

-");

Future submittedTask = exec.submit(badTask);

try {
// The get method should throw

// ExecutionException

Object result = submittedTask.get();

} catch (ExecutionException e) {
System.out.println(

"Execution exception has occurred:

+ e.getMessage());
System.out.println(

"Execution exception cause is:

+ e.getCause().getMessage());
} catch (InterruptedException e) {
e.printStackTrace();
}

exec.shutdown();

}

Execution exception has occurred:
java.lang.RuntimeException:
The task threw an exception...

Execution exception cause is:

The task threw an exception...

398

CHAPTER5 THREADS

Executor’s Completion Service

In the previous sections, I explained how to fetch the result of a task execution using a

Future object. To fetch the result of a submitted task, you must keep the reference of the

Future object returned from the executor, as demonstrated in Listing 5-52. However,

if you have a number of tasks that you have submitted to an executor and you want to

know their results as they become available, you need to use the completion service of

the executor. It is represented by an instance of the CompletionService<V> interface.

It combines an executor and a blocking queue to hold the completed task references.

The ExecutorCompletionService<V> class is a concrete implementation of the

CompletionService<V> interface. Here are the steps to use it:

1.

Create an executor object:

ExecutorService exec = Executors.
newScheduledThreadPool(3);

Create an object of the ExecutorCompletionService class, passing
the executor created in the previous step to its constructor:

ExecutorCompletionService CompletionService =
new ExecutorCompletionService(exec);

The executor completion service uses a blocking queue internally
to hold the completed task. You can also use your own blocking
queue to hold the completed tasks.

The take () method of the completion service returns the
reference of a completed task. It blocks if no completed task is
present. If you do not want to wait, in case there is no completed
task, you can use the pol1() method, which returns null if there
is no completed task in the queue. Both methods remove the
completed task from the queue if they find one.

Listings 5-57 to 5-59 illustrate the use of the completion service. An instance of the

TaskResult class represents the result of a task. It was necessary to have a custom object

like a TaskResult to represent the result of a task because the completion service just

tells you that a task is completed and you get its result. It does not tell you which task is

399

CHAPTER5 THREADS

completed. To identify the task that was completed, you need to identify the task in the
result of the task. Your SleepingTask returns a TaskResult from its call() method by
embedding the task ID and the total sleeping time for the task.

Listing 5-57. A Class to Represent the Result of a Task

// TaskResult.java
package com.jdojo.threads;
public class TaskResult {
private final int taskId;
private final int result;
public TaskResult(int taskId, int result) {
this.taskId = taskId;
this.result = result;
}
public int getTaskId() {
return taskld;
}
public int getResult() {
return result;
}
@verride
public String toString() {
return "Task Name: Task #" + taskId +
", Task Result:" + result + " seconds";

}

Listing 5-58. A Class Whose Object Represents a Callable Task and Produces a
TaskResult As Its Result

// SleepingTask.java

package com.jdojo.threads;

import java.util.Random;

import java.util.concurrent.Callable;

400

CHAPTER 5

public class SleepingTask implements Callable<TaskResult> {
private int taskId,
private int loopCounter;
private Random random = new Random();
public SleepingTask(int taskId, int loopCounter) {
this.taskId = taskId;
this.loopCounter = loopCounter;
}
@0verride
public TaskResult call() throws InterruptedException {
int totalSleepTime = 0;
for (int i = 1; i <= loopCounter; i++) {
try {
int sleepTime = random.nextInt(10) + 1;
System.out.println("Task #" + this.taskId

+ " - Iteration #" + i

+ " is going to sleep for

+ sleepTime + " seconds.");
Thread.sleep(sleepTime * 1000);
totalSleepTime = totalSleepTime +

sleepTime;

} catch (InterruptedException e) {
System.out.println("Task #" + this.taskId
+ " has been interrupted.");
throw e;

}
return new TaskResult(taskId, totalSleepTime);

THREADS

401

CHAPTER5 THREADS

Listing 5-59. A Class to Test the Completion Service

// CompletionServiceTest.java

package com.jdojo.threads;

import java.util.concurrent.Future;

import java.util.concurrent.Executors;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.ExecutionException;

import java.util.concurrent.ExecutorCompletionService;

public class CompletionServiceTest {

402

public static void main(String[] args) {

// Get an executor with three threads in its thread

// pool

ExecutorService exec = Executors.
newFixedThreadPool(3);

// Completed task returns an object of the
// TaskResult class
ExecutorCompletionService<TaskResult>
completionService
= new ExecutorCompletionService<>(exec);
// Submit five tasks and each task will sleep three
// times for a random period between 1 and 10
// seconds
for (int i = 1; 1 <= 5; i++) {
SleepingTask task = new SleepingTask(i, 3);
completionService.submit(task);
}
// Print the result of each task as they are
// completed
for (int i = 1; i <= 5; i++) {
try {
Future<TaskResult> completedTask =
completionService.take();
TaskResult result = completedTask.get();

CHAPTER5 THREADS

System.out.println("Completed a task - " +
result);
} catch (ExecutionException ex) {
System.out.println(
"Error in executing the task.");
} catch (InterruptedException ex) {
System.out.println("Task execution" +
" has been interrupted.");

}

// Let's shut down the executor
exec.shutdown();

}

Task #3 - Iteration #1 is going to sleep for 3 seconds.

Task #4 - Iteration #1 is going to sleep for 5 seconds.
Completed a task - Task Name: Task #2, Task Result:15
seconds

Completed a task - Task Name: Task #4, Task Result:15
seconds

Completed a task - Task Name: Task #5, Task Result:18
seconds

The Fork/Join Framework

The fork/join framework is an implementation of the executor service whose focus is
to solve those problems efficiently, which may use the divide-and-conquer algorithm
by taking advantage of the multiple processors or multiple cores on a machine. The
framework helps solve the problems that involve parallelism. Typically, the fork/join
framework is suitable in a situation where

e Atask can be divided in multiple subtasks that can be executed in
parallel.

403

CHAPTER5 THREADS

e When subtasks are finished, the partial results can be combined to
get the final result.

The fork/join framework creates a pool of threads to execute the subtasks. When a
thread is waiting on a subtask to finish, the framework uses that thread to execute other
pending subtasks of other threads. The technique of an idle thread executing other
threads’ task is called work-stealing. The framework uses the work-stealing algorithm
to enhance the performance. The following four classes in the java.util.concurrent
package are central to learning the fork/join framework:

e ForkJoinPool

e ForkJoinTask<V>
e RecursiveAction
e RecursiveTask<V>

An instance of the ForkJoinPool class represents a thread pool. An instance of the
ForkJoinTask class represents a task. The ForkJoinTask class is an abstract class. It has
two concrete subclasses: RecursiveAction and RecursiveTask. Java 8 added an abstract
subclass of the ForkJoinTask class that is called CountedCompleter<T>. The framework
supports two types of tasks:

o Atask that does not yield a result and a task that yields a result.
An instance of the RecursiveAction class represents a task that
does notyield a result.

e Aninstance of the RecursiveTask class represents a task that yields
aresult.

A CountedCompleter task may or may not yield a result. Both classes,
RecursiveAction and RecursiveTask, provide an abstract compute() method. Your
class whose object represents a fork/join task should inherit from one of these classes
and provide an implementation for the compute () method. Typically, the logic inside the
compute() method is written similar to the following:

if (Task is small) {
Solve the task directly.
} else {
Divide the task into subtasks.
Launch the subtasks asynchronously (the fork stage).

404

CHAPTER5 THREADS

Wait for the subtasks to finish (the join stage).
Combine the results of all subtasks.

The following two methods of the ForkJoinTask class provide two important features
during a task execution:

e The fork() method launches a new subtask from a task for an
asynchronous execution.

e The join() method lets a task wait for another task to complete.

Steps in Using the Fork/Join Framework

Using the fork/join framework involves the following five steps.

Step 1: Declaring a Class to Represent a Task

Create a class inheriting from the RecursiveAction or RecursiveTask class. An instance
of this class represents a task that you want to execute. If the task yields a result, you
need to inherit it from the RecursiveTask class. Otherwise, you will inherit it from the
RecursiveAction class. The RecursiveTask is a generic class. It takes a type parameter,
which is the type of the result of your task. A MyTask class that returns a Long result may
be declared as follows:

public class MyTask extends RecursiveTask<Long> {
// Code for your task goes here

}
Step 2: Implementing the compute() Method

The logic to execute your task goes inside the compute() method of your class. The return
type of the compute () method is the same as the type of the result that your task returns.
The declaration for the compute() method of the MyTask class looks like the following:

public class MyTask extends RecursiveTask<Long> {
public Long compute() {
// Logic for the task goes here

405

CHAPTER5 THREADS

Step 3: Creating a Fork/Join Thread Pool

You can create a pool of worker threads to execute your task using the ForkJoinPool
class. The default constructor of this class creates a pool of threads, which has the same
parallelism as the number of processors available on the machine:

ForkJoinPool pool = new ForkJoinPool();

Other constructors let you specify the parallelism and other properties of the pool.

Step 4: Creating the Fork/Join Task

You need to create an instance of your task:

MyTask task = MyTask();

Step 5: Submitting the Task to the Fork/Join Pool for Execution

You need to call the invoke () method of the ForkJoinPool class, passing your task as an
argument. The invoke () method will return the result of the task if your task returns a
result. The following statement will execute your task:

long result = pool.invoke(task);

A Fork/Join Example

Let’s consider a simple example of using the fork/join framework. Your task will generate
a few random integers and compute their sum. Listing 5-60 shows the complete code for
your task.

Listing 5-60. A ForkJoinTask Class to Compute the Sum of a Few Random
Integers

// RandomIntSum.java
package com.jdojo.threads;

import java.util.Arraylist;

import java.util.Llist;

import java.util.Random;

import java.util.concurrent.RecursiveTask;

406

CHAPTER 5

public class RandomIntSum extends RecursiveTask<Long> {
private static final Random randGenerator =
new Random();
private final int count;
public RandomIntSum(int count) {
this.count = count;
}
@verride
protected Long compute() {
long result = 0;
if (this.count <= 0) {
return OL; // We do not have anything to do
}
if (this.count == 1) {
// Compute the number directly and return the
// result
return (long) this.getRandomInteger();
}
// Multiple numbers. Divide them into many single
// tasks. Keep the references of all tasks to call
// their join() method later
List<RecursiveTask<Long>> forks =
new ArraylList<>();
for (int i = 0; i < this.count; i++) {
RandomIntSum subTask = new RandomIntSum(1);
subTask.fork(); // Launch the subtask
// Keep the subTask references to combine the
// results later
forks.add(subTask);
}
// Now wait for all subtasks to finish and combine
// the results
for (RecursiveTask<Long> subTask : forks) {
result = result + subTask.join();

THREADS

407

CHAPTER5 THREADS

return result;
}
public int getRandomInteger() {
// Generate the next random integer between
// 1 and 100
int n = randGenerator.nextInt(100) + 1;
System.out.println("Generated a random integer: " +
n);
return n;

The RandomIntSum class inherits from the RecursiveTask<Long> class because it
yields a result of the type Long. The result is the sum of all random integers. It declares a
randGenerator instance variable that is used to generate random numbers. The count
instance variable stores the number of random numbers that you want to use. The value
for the count instance variable is set in the constructor.

The getRandomInteger() method generates a random integer between 1 and 100,
prints the integer value on the standard output, and returns the random integer.

The compute() method contains the main logic to perform the task. If the number
of random numbers to use is one, it computes the result and returns it to the caller. If
the number of random numbers is more than one, it launches as many subtasks as the
number of random numbers. Note that if you use ten random numbers, it will launch ten
subtasks because each random number can be computed independently. Finally, you
need to combine the results from all subtasks. Therefore, you need to keep the references
of the subtask for later use. You used a List to store the references of all subtasks.

Note the use of the fork() method to launch a subtask. The following snippet of code
performs this logic:

List<RecursiveTask<Long>> forks = new ArraylList<>();
for(int i = 0; 1 < this.count; i++) {
RandomIntSum subTask = new RandomIntSum(1);
subTask.fork(); // Launch the subtask
// Keep the subTask references to combine the
// results at the end
forks.add(subTask);

408

CHAPTER5 THREADS

Once all subtasks are launched, you need to wait for all subtasks to finish and
combine all random integers to get the sum. The following snippet of code performs this
logic. Note the use of the join() method, which will make the current task wait for the
subtask to finish:

for(RecursiveTask<Long> subTask : forks) {
result = result + subTask.join();

Finally, the compute() method returns the result, which is the sum of all the
random integers. Listing 5-61 has the code to execute a task, which is an instance of the
RandomIntSum class. You may get different output.

Listing 5-61. Using a Fork/Join Pool to Execute a Fork/Join Task

// ForkJoinTest.java

package com.jdojo.threads;

import java.util.concurrent.ForkJoinPool;

public class ForkJoinTest {

public static void main(String[] args) {

// Create a ForkJoinPool to run the task
ForkJoinPool pool = new ForkJoinPool();
// Create an instance of the task
RandomIntSum task = new RandomIntSum(3);
// Run the task

pool.invoke(task);

long sum

System.out.println("Sum is " + sum);

}

Generated a random integer: 26
Generated a random integer: 5
Generated a random integer: 68
Sum is 99

This is a very simple example of using the fork/join framework. You are advised to
explore the fork/join framework classes to know more about the framework. Inside the

409

CHAPTER5 THREADS

compute() method of your task, you can have complex logic to divide tasks into subtasks.
Unlike in this example, you may not know in advance how many subtasks you need to
launch. You may launch a subtask that may launch another subtask and so on.

Thread-Local Variables

A thread-local variable provides a way to maintain a separate value for a variable
for each thread. The ThreadLocal<T> class in the java.lang package provides the
implementation of a thread-local variable. It has five methods:

o T get()

o protected T initialValue()
e void remove()

e void set(T value)

o static <S> ThreadLocal<S> withInitial(Supplier<? extends
S> supplier)

The get () and set() methods are used to get and set the value for a thread-local
variable, respectively. The initialValue() method is used to set the initial value of the
variable, and it has a protected access. To use it, you need to subclass the ThreadLocal
class and override this method. You can remove the value by using the remove()
method. The withInitial() method lets you create a ThreadLocal with an initial value.

Let’s create a CallTracker class, shown in Listing 5-62, to keep track of the number
of times a thread calls its call() method.

Listing 5-62. A Class That Uses a ThreadLocal Object to Track Calls to Its
Method

// CallTracker.java
package com.jdojo.threads;
public class CallTracker {
// threadlLocal variable is used to store counters for
// all threads
private static final ThreadlLocal<Integer>
threadLocal = new ThreadlLocal<Integer>();

410

CHAPTER5 THREADS

public static void call() {
Integer counterObject = threadlLocal.get();
// Initialize counter to 1
int counter = 1;
if (counterObject != null) {
counter = counterObject + 1;
}
// Set the new counter
threadlLocal.set(counter);
// Print how many times this thread has called
// this method
String threadName = Thread.currentThread().

getName();
System.out.println("Call counter for " +
threadName + " = " + counter);

The get () method of the ThreadLocal class works on a thread basis. It returns the
value set by the set() method by the same thread, which is executing the get () method.
If a thread calls the get () method the very first time, it returns null. The program sets the
call counter for the caller thread to 1 if it is its first call. Otherwise, it increments the call
counter by 1. It sets the new counter back in the threadLocal object. In the end, the call()
method prints a message about how many times the current thread has called this method.

Listing 5-63 uses the CallTracker class in three threads. Each thread calls this
method a random number of times between 1 and 5. You can observe in the output that
the counter is maintained for each thread’s call separately. You may get different output.

Listing 5-63. A Test Class for the CallTracker Class

// CallTrackerTest.java
package com.jdojo.threads;
import java.util.Random;
public class CallTrackerTest {
public static void main(String[] args) {
// Let's start three threads to the
// CallTracker.call() method

411

CHAPTER5 THREADS

new Thread(CallTrackerTest::run).start();
new Thread(CallTrackerTest::run).start();
new Thread(CallTrackerTest::run).start();
}
public static void run() {
Random random = new Random();
// Generate a random value between 1 and 5
int counter = random.nextInt(5) + 1;
// Print the thread name and the generated random
// number by the thread
System.out.println(Thread.currentThread().getName()
+ " generated counter: " + counter);
for (int i = 0; i < counter; i++) {
CallTracker.call();

}

Thread-0 generated counter:
Thread-1 generated counter:
Thread-2 generated counter:
Call counter for Thread-0
Call counter for Thread-2 =

4
2
3
1
1
Call counter for Thread-1 = 1
Call counter for Thread-2 = 2
Call counter for Thread-0 = 2
Call counter for Thread-2 = 3
Call counter for Thread-1 = 2
Call counter for Thread-0 = 3
Call counter for Thread-0 = 4
The initialValue() method sets the initial value of the thread-local variable for
each thread. If you have set the initial value, the call to the get () method, before you
call the set() method, will return that initial value. It is a protected method. You must
override it in a subclass. You can set the initial value for the call counter to 1000 by using

an anonymous class as shown:

412

CHAPTER5 THREADS

// Create an anonymous subclass ThreadlLocal class and
// override its initialvalue()
// method to return 1000 as the initial value
private static ThreadlLocal<Integer> threadlLocal =
new ThreadlLocal<Integer>() {
@0verride
public Integer initialValue() {
return 1000;

};

Subclassing the ThreadLocal class just to have an instance of ThreadLocal with an
initial value was overkill. Finally, the class designers realized it (in Java 8) and provided a
factory method called withInitial() in the ThreadLocal class that can specify an initial
value. The method is declared as follows:

public static <S> ThreadlLocal<S> withInitial(Supplier<? extends S> supplier)

The specified supplier provides the initial value for the ThreadLocal. The get()
method of the supplier is used to get the initial value. You can rewrite this logic and
replace the anonymous class with a lambda expression as follows:

// Create a ThreadlLocal with an initial value of 1000
Threadlocal<Integer> threadlocal = T
hreadLocal.withInitial(() -> 1000);

Having a Supplier as the supplier for the initial value, you can generate the initial
value lazily and based on some logic. The following statement creates a ThreadLocal
with the initial value as the second part of the current time when the initial value is
retrieved:

// Return the second part of the current time as the
// initial value
Threadlocal<Integer> threadlocal =
Threadlocal.withInitial(() -»>
LocalTime.now().getSecond()

)5

413

CHAPTER5 THREADS

You can use the remove() method to reset the value of the thread-local variable for a
thread. After the call to the remove () method, the first call to the get () method works as
if it were called the first time by returning the initial value.

The typical use of a thread-local variable is to store user ID, transaction ID,
or transaction context for a thread. The thread sets those values in the beginning,
and any code during the execution of that thread can use those values. Sometimes,

a thread may start child threads that may need to use the value set for a thread-

local variable in the parent thread. You can achieve this by using an object of the
InheritableThreadlLocal<Ty class, which is inherited from the ThreadlLocal class. The
child thread inherits its initial value from the parent thread. However, the child thread
can set its own value using the set () method.

Setting Stack Size of a Thread

Each thread in a JVM is allocated its own stack. A thread uses its stack to store all local
variables during its execution. Local variables are used in constructors, methods, or
blocks (static or non-static). The stack size of each thread will limit the number of
threads that you can have in a program. Local variables are allocated memory on stack
during their scope. Once they are out of scope, the memory used by them is reclaimed.
It is essential to optimize the stack size of a thread in your program if it uses too many
threads. If the stack size is too big, you can have a fewer number of threads in your
program. The number of threads will be limited by the available memory to the JVM. If
the stack size is too small to store all local variables used at a time, you may encounter a
StackOverflowError. To set the stack size for each thread, you can use a non-standard
JVM option called -Xss<size>, where <size> is the size of the thread stack. To set the
stack size to 512 KB, you can use a command, like so:

java -Xss512k <other-arguments>

Summary

A thread is a unit of execution in a program. An instance of the Thread class represents
a thread in a Java program. The thread starts its execution in the run() method of the
Thread class or its subclass. To execute your code in a thread, you need to subclass

the Thread class and override its run() method; you can also use an instance of the

414

CHAPTER5 THREADS

Runnable interface as the target for a thread. Beginning with Java 8, you can use a
method reference of any method that takes no parameters and returns void as the target
for a thread. A thread is scheduled by using the start() method of the Thread class.

There are two types of threads: daemon and non-daemon. A non-daemon thread is
also known as a user thread. The JVM exits when only threads running in the JVM are all
daemon threads.

Each thread in Java has a priority that is an integer between 1 and 10, 1 being the
lowest priority and 10 being the highest priority. The priority of a thread is a hint, which
can be ignored, to the operating system about its importance for getting the CPU time.

In a multi-threaded program, a section of code that may have undesirable effects
on the outcome of the program if executed by multiple threads concurrently is called a
critical section. You can mark a critical section in a Java program using the synchronized
keyword. Methods can also be declared as synchronized. Only one synchronized
instance method of an object can be executed at a time by any threads. Only one
synchronized class method of a class can be executed at a time by any threads.

A thread in a Java program goes through a set of states that determines its lifecycle.

A thread can be in any one of these states: new, runnable, blocked, waiting, timed-waiting,
or terminated. States are represented by constants of the Thread.State enum. Use the
getState() method of the Thread class to get the current state of the thread.

A thread can be interrupted, stopped, suspended, and resumed. A stopped thread or
a thread that has finished executing cannot be restarted.

Atomic variables, explicit locks, the synchronizer, the executor framework, and
the fork/join framework are provided as class libraries to the Java developers to assist
in developing concurrent applications. Atomic variables are variables that can be
atomically updated without using explicit synchronization. Explicit locks have features
that let you acquire locks and back off if the locks are not available. The executor
framework helps schedule tasks. The fork/join framework is written on top of the
executor framework to assist in working with tasks that can be divided in subtasks, and
finally their results can be combined.

Thread-local variables are implemented through the ThreadLocal<T> class. They
store values based on threads. They are suitable for values that are local to threads and
that cannot be seen by other threads.

415

CHAPTER5 THREADS

Exercises

Exercise 1
What is a thread? Can threads share memory? What is thread-local storage?
Exercise 2
What is a multi-threaded program?
Exercise 3
What is the name of the class whose objects represent threads in Java programs?
Exercise 4
Suppose you create an object of the Thread class:

Thread t = new Thread();

What do you need to do next so that this Thread object will get CPU time?

Exercise 5

What is a race condition when using multiple threads? How do you avoid a race
condition in your program?

Exercise 6

What is a critical section in a program?

Exercise 7

What is the effect of using the synchronized keyword in a method’s declaration?

Exercise 8

What is thread synchronization? How is thread synchronization achieved in a Java
program?

Exercise 9

What are an entry set and a wait set of an object?

Exercise 10

Describe the user of thewait(), notify(), and notifyAll() methods in thread
synchronization.

Exercise 11

What method of the Thread class do you use to check if a thread is terminated or
alive?

Exercise 12

Describe the following six states of a thread: new, runnable, blocked, waiting, timed-
waiting, and terminated. What method in the Thread class returns the state of a thread?

Exercise 13

Can you restart a thread by calling its start() method after the thread is terminated?

416

CHAPTER5 THREADS

Exercise 14

What is thread starvation?

Exercise 15

What is a daemon thread? What happens when the JVM detects that there are only
daemon threads running in the application? Are the main thread and garbage collector
thread daemon threads?

Exercise 16

How do you interrupt a thread? What is the difference in calling the instance
isInterrupted() method and static interrupted() method of the Thread class?
What happens when a blocked thread is interrupted?

Exercise 17

What is a thread group? What is the default thread group of a thread? How do you get
an estimate of active threads in a thread group?

Exercise 18

Describe the use of volatile variables in Java programs.

Exercise 19

What is the difference between using an AtomiclLong variable and a long variable
with a synchronized getter and setter?

Exercise 20

What are semaphores, barriers, phasers, latches, and exchangers? Name the classes
in Java that represent instances of these synchronizers.

Exercise 21

What is the executor framework? What is the difference between an instance of the
Executor interface and an instance of the ExecutorService interface? What class do you
use to get a preconfigured Executor instance?

Exercise 22

If you want to submit a result-bearing task to an Executor, the task needs to be an
instance of which interface: Runnable or Callable<T>?

Exercise 23

What does an instance of the Future<T> interface represent?

Exercise 24

What is the difference in using the shutdown () and shutdownNow() methods to shut
down an executor?

Exercise 25

What is the fork/join framework?

417

CHAPTER5 THREADS

Exercise 26

Describe the use of the ThreadLocal<T> class.

Exercise 27

What JVM option do you use to set the Java thread’s stack size?

Exercise 28

Create a class inheriting it from the Thread class. When an instance of the class is
run as a thread, it should print text like 1<name> 2<name> ...N<name> where <name> is
the name of the thread you specify and N is the upper limit on the number of integers
starting from 1 to be printed. For example, if you create an instance of your class with 100
and “A;” it should print 1A 2A 3A ...100A. Create three threads of your class and run
them simultaneously.

Exercise 29

Create a class named BankAccount. An instance of this class represents a bank
account. It should contain three methods: deposit(), withdraw(), and balance(). They
deposit, withdraw, and return the balance in the account. Its balance instance variable
should store the balance in the account, and it is initialized to 100. The balance in the
account must not go below 100. Do not use any thread synchronization constructs or
keywords in this class. Create an instance of the BankAccount class. Pass this instance to
four threads—two threads should deposit money, and two should withdraw money. The
deposit and withdrawal amount should be selected randomly between 1 and 10. Start
another thread, a monitor thread, that keeps calling the balance () method to check if
the balance goes below 100. When the balance goes below 100, it should print a message
and exit the application.

Exercise 30

Create another copy of the BankAccount class and name it Account. Use thread
synchronization to guard the access to the balance instance variable in the Account
class, so its value never goes below 100. Run the same number of threads as in the
previous exercise for five minutes. This time, the monitor thread should not print any
message. After five minutes, all your threads should be interrupted, and your threads
should respond to the interruption by finishing its task. This way, your application
should exit normally after five minutes.

418

CHAPTER 6

Streams

In this chapter, you will learn:
e What streams are
o Differences between collections and streams
o How to create streams from different types of data sources
o How to represent an optional value using the Optional class
e Applying different types of operations on streams
e Collecting data from streams using collectors
e Grouping and partitioning a stream’s data
o Finding and matching data in streams
e How to work with parallel streams
All example programs in this chapter are members of a jdojo.streams module, as

declared in Listing 6-1.

Listing 6-1. The Declaration of a jdojo.streams Module

// module-info.java
module jdojo.streams {
exports com.jdojo.streams;

419
© Kishori Sharan, Peter Spdth 2021

K. Sharan and P. Spéth, More Java 17, https://doi.org/10.1007/978-1-4842-7135-3_6

https://doi.org/10.1007/978-1-4842-7135-3_6#DOI

CHAPTER6 STREAMS

What Are Streams?

An aggregate operation computes a single value from a collection of values. The result of
an aggregate operation may be simply a primitive value, an object, or a void. Note that
an object may represent a single entity such as a person or a collection of values such as
alist, a set, a map, etc.

A stream is a sequence of data elements supporting sequential and parallel aggregate
operations. Computing the sum of all elements in a stream of integers, mapping all
names in a list to their lengths, etc. are examples of aggregate operations on streams.

Looking at the definition of streams, it seems that they are like collections. So,
how do streams differ from collections? Both are abstractions for a collection of data
elements. Collections focus on storage of data elements for efficient access, whereas
streams focus on aggregate computations on data elements from a data source that is
typically, but not necessarily, collections.

In this section, I discuss the following features of streams, comparing them with

collections when necessary:
o Streams have no storage.
o Streams can represent a sequence of infinite elements.
o The design of streams is based on internal iteration.

o Streams are designed to be processed in parallel with no additional
work from the developers.

e Streams are designed to support functional programming.
o Streams support lazy operations.

e Streams can be ordered or unordered.

¢ Streams cannot be reused.

The following sections present brief snippets of code using streams. The code is
meant to give you a feel for the Streams API and to compare the Streams API with the
Collections API. You do not need to understand the code fully at this point. I explain it
later in detail.

420

CHAPTER6 STREAMS

Streams Have No Storage

A collection is an in-memory data structure that stores all its elements. All elements
must exist in memory before they are added to the collection. A stream has no storage;
it does not store elements. A stream pulls elements from a data source on demand and
passes them to a pipeline of operations for processing.

Infinite Streams

A collection cannot represent a group of infinite elements, whereas a stream can. A
collection stores all its elements in memory, and therefore it is not possible to have an
infinite number of elements in a collection. Having a collection of an infinite number
of elements will require an infinite amount of memory, and the storage process will
continue forever. A stream pulls its elements from a data source that can be a collection,
a function that generates data, an I/0O channel, etc. Because a function can generate an
infinite number of elements and a stream can pull data from it on demand, it is possible
to have a stream representing a sequence of infinite data elements.

Internal Iteration vs. External Iteration

Collections are based on external iteration. You obtain an iterator for a collection and
process elements of the collections in serial using the iterator. Suppose you have a list of
integers from 1 to 5. You would compute the sum of the squares of all odd integers in the
list as follows:

List<Integer> numbers = List.of(1, 2, 3, 4, 5);
int sum = 0;
for (int n : numbers) {
if (n%2==1) {
int square = n * n;
sum = sum + square;

421

CHAPTER6 STREAMS

This example uses a for-each loop that performs an external iteration on the list of
integers. Simply put, the client code (the for loop in this case) pulls the elements out
of the collection and applies the logic to get the result. Consider the following snippet
of code that uses a stream to compute the sum of the squares of all odd integers in the
same list:

int sum = numbers.stream()
filter(n -> n % 2 == 1)
.map(n -> n * n)
.reduce(0, Integer::sum);

Did you notice the power and the simplicity of streams? You replaced five statements
with just one statement. However, the code brevity is not the point that I want to make.
The point is that you did not iterate over the elements in the list when you used the
stream. The stream did that for you internally. This is what I meant by internal iteration
supported by streams. You specify to a stream what you want by passing an algorithm
using lambda expressions to the stream, and the stream applies your algorithm to its
data element by iterating over its elements internally and gives you the result.

Using external iteration, typically, produces sequential code; that is, the code can
be executed only by one thread. For example, when you wrote the logic to compute the
sum using a for-each loop, the loop must be executed only by one thread. All modern
computers come with a multicore processor. Wouldn’t it be nice to take advantage of the
multicore processor to execute the logic in parallel? The Java library provides a fork/join
framework to divide a task into subtasks recursively and execute the subtasks in parallel,
taking advantage of a multicore processor. However, the fork/join framework is not so
simple to use, especially for beginners.

Streams come to your rescue! They are designed to process their elements in parallel
without you even noticing it! This does not mean that streams automatically decide for
you when to process their elements in serial or parallel. You just need to tell a stream
that you want to use parallel processing, and the stream will take care of the rest. Streams
take care of the details of using the fork/join framework internally. You can compute the
sum of squares of odd integers in the list in parallel, like so:

int sum = numbers.parallelStream()
filter(n -> n % 2 == 1)
.map(n -> n * n)
.reduce(0, Integer::sum);

422

CHAPTER6 STREAMS

All you had to do was replace the method called stream() with parallelStream().
The Streams API uses multiple threads to filter the odd integers, compute their squares,
and add them to compute partial sums. Finally, it joins the partial sums to give you
the result. In this example, you have only five elements in the list, and using multiple
threads to process them is overkill. You will not use parallel processing for such a trivial
computation. I have presented this example to drive home the point that parallelizing
your computation using streams is free; you get it by just using a different method name!
The second point is that parallelizing the computation was made possible because of the
internal iteration provided by the stream.

Streams are designed to use internal iteration. They provide an iterator() method
that returns an Iterator to be used for external iteration of its elements. You will “never”
need to iterate elements of a stream yourself using its iterator. If you ever need it, here is
how to use it:

// Get a list of integers from 1 to 5
List<Integer> numbers = List.of(1, 2, 3, 4, 5);

// Get an iterator from the stream
Iterator<Integer> iterator = numbers.stream().iterator();

// That's not normally the way you'd use streams!
while(iterator.hasNext()) {
int n = iterator.next();

Imperative vs. Functional

Collections support imperative programming, whereas streams support declarative
programming. This is an offshoot of collections supporting external iteration, whereas
streams support internal iteration. When you use collections, you need to know “what”
you want and “how” to get it; this is the feature of imperative programming. When

you use streams, you specify only “what” you want in terms of stream operations; the
“how” part is taken care of by the Streams API. The Streams API supports functional
programming. Operations on a stream produce a result without modifying the data
source. Like in functional programming, when you use streams, you specify “what”

423

CHAPTER6 STREAMS

operations you want to perform on its elements using the built-in methods provided by
the Streams AP], typically by passing a lambda expression to those methods, customizing
the behavior of those operations.

Stream Operations

A stream supports two types of operations:
o Intermediate operations
e Terminal operations

Intermediate operations are also known as lazy operations. Terminal operations are
also known as eager operations. Operations are known as lazy and eager based on the
way they pull the data elements from the data source. A lazy operation on a stream does
not process the elements of the stream until another eager operation is called on the
stream.

Streams connect through a chain of operations forming a stream pipeline. A stream
is inherently lazy until you call a terminal operation on it. An intermediate operation
on a stream produces another stream. When you call a terminal operation on a stream,
the elements are pulled from the data source and pass through the stream pipeline.
Each intermediate operation takes elements from an input stream and transforms the
elements to produce an output stream. The terminal operation takes inputs from a
stream and produces the result. Figure 6-1 shows a stream pipeline with a data source,
three streams, and three operations. The filter and map operations are intermediate
operations, and the reduce operation is a terminal operation.

Data 55571 filter —> map —p | reduce

source T

Terminal operation

Intermediate operations

Figure 6-1. A stream pipeline

424

CHAPTER6 STREAMS

In the figure, the first stream (on the left) pulls data from the data source and becomes
the input source for the filter operation. The filter operation produces another stream
containing data for which the filter condition is true. The stream produced by the filter
operation becomes the input for the map operation. The map operation produces
another stream that contains the mapped data. The stream produced by the map
operation becomes the input for the reduce operation. The reduce operation is a terminal
operation. It computes and returns the result, and then the stream processing is over.

Note | use the phrase “a stream pulls/consumes elements from its data source”
in the preceding discussion. This does not mean that the stream removes the
elements from the data source; it only reads them. Streams are designed to
support functional programming in which data elements are read and operations
on the read data elements produce new data elements. However, the data
elements are not modified (or at least should not be modified).

Stream processing does not start until a terminal operation is called. If you just call
intermediate operations on a stream, nothing exciting happens, except that they create
another stream of objects in memory, without reading data from the data source. This
implies that you must use a terminal operation on a stream for it to process the data to
produce a result. This is also the reason that the terminal operation is called a result-
bearing operation, and intermediate operations are also called nonresult-bearing
operations.

You saw the following code that uses a pipeline of stream operations to compute the
sum of the squares of odd integers from 1 to 5:

List<Integer> numbers = List.of(1, 2, 3, 4, 5);
int sum = numbers.stream()
filter(n -> n % 2 == 1)
.map(n -> n * n)
.reduce(0, Integer::sum);

Figures 6-2 through 6-5 show the states of the stream pipeline as operations are
added. Notice that no data flows through the stream until the reduce operation is called.
The last figure shows the integers in the input stream for an operation and the mapped
(or transformed) integers produced by the operation. The reduce terminal operation
produces the result 35.

425

CHAPTER6 STREAMS

—
» ———

numbers. stream()

Figure 6-2. The stream pipeline after the stream object is created

filter

\

Il

Il

=
N~—

numbers.stream().filter(n -> n % 2

Figure 6-3. The stream pipeline after the filter operation is called

, filter map

Figure 6-4. The stream pipeline after the map operation is called

—$5,4,3,2,1 b reduce [35

numbers.stream().filter(n -> n % 2 == 1).map(n -> n * n).reduce(0, Integer::sum)

Figure 6-5. The stream pipeline after the reduce operation is called

Ordered Streams

A stream can be ordered or unordered. An ordered stream preserves the order of its
elements. The Streams API lets you convert an ordered stream into an unordered stream.
A stream can be ordered because it represents an ordered data source such as a list or a

426

CHAPTER6 STREAMS

sorted set. You can also convert an unordered stream into an ordered stream by applying
an intermediate operation such as sorting.

A data source is said to have an encounter order if the order in which the elements
are traversed by an iterator is predictable and meaningful. For example, arrays and lists
always have an encounter order that is from the element at index 0 to the element at the
last index. All ordered data sources have an encounter order for their elements. Streams
based on data sources having an encounter order also have an encounter order for
their elements. Sometimes, a stream operation may impose an encounter order on an
otherwise unordered stream. For example, a HashSet does not have an encounter order
for its elements. However, applying a sort operation on a stream based on a HashSet
imposes an encounter order so that elements are yielded in sorted order.

Streams Are Not Reusable

Unlike collections, streams are not reusable. They are one-shot objects. A stream cannot
be reused after calling a terminal operation on it. If you need to perform a computation
on the same elements from the same data source again, you must recreate the stream
pipeline. A stream implementation may throw an I1legalStateException ifit detects
that the stream is being reused.

Architecture of the Streams API

Figure 6-6 shows a class diagram for the stream-related interfaces. Stream-related
interfaces and classes are in the java.util.stream package.

=

AutoCloseable l

[

BaseStream<T, S extends BaseStream<T, S>>

SEa=—

IntStream S!ream<T5 Doubisstream

]

LongStream ‘
Figure 6-6. A class diagram for stream-related interfaces in the Streams API

427

CHAPTER6 STREAMS

All stream interfaces inherit from the BaseStream interface, which inherits from the

AutoCloseable interface from the java.lang package. In practice, most streams use

collections as their data source, and collections do not need to be closed. When a stream

is based on a closeable data source such as a file I/O channel, you may create the instance

of the stream using a try-with-resources statement to get it closed automatically. Methods

common to all types of streams are declared in the BaseStream interface as follows:

Iterator<T> iterator():Itreturns an iterator for the stream. You
will almost never need to use this method in your code. This is a
terminal operation. After calling this method, you cannot call any
other methods on the stream.

S sequential(): It returns a sequential stream. If the stream is
already sequential, it returns itself. Use this method to convert a
parallel stream into a sequential stream. This is an intermediate
operation.

S parallel(): It returns a parallel stream. If the stream is already
parallel, it returns itself. Use this method to convert a parallel stream
into a sequential stream. This is an intermediate operation.

boolean isParallel():Itreturns true if the stream is parallel, false
otherwise. The result is unpredictable when this method is called
after invoking a terminal stream operation method.

S unordered(): It returns an unordered version of the stream. If the
stream is already unordered, it returns itself. This is an intermediate
operation.

void close():It closes the stream. You do not need to close
collection-based streams. Operating on a closed stream throws an
IllegalState-Exception.

S onClose(Runnable closeHandler): It returns an equivalent
stream with an additional close handler. Close handlers are run when
the close() method is called on the stream and are executed in the
order they were added.

The Stream<T> interface represents a stream of the element type T; for example, a

Stream<Person> represents a stream of Person objects. The interface contains methods

428

CHAPTER6 STREAMS

representing intermediate and terminal operations such as filter(), map(), reduce(),
collect(), max(), min(), etc. When you work with streams, you will use these methods
most of the time. I discuss each method in detail shortly.

Note that the Stream<T> interface takes a type parameter T, which means that you
can use it only to work with the elements of the reference type. If you have to work
with a stream of primitive type such as int, long, etc., using Stream<T> will involve
an additional cost of boxing and unboxing the elements when primitive values are
needed. For example, adding all elements of a Stream<Integer> will require unboxing
all Integer elements to int. The designers of the Streams API realized this, and they
provided three specialized stream interfaces called IntStream, LongStream, and
DoubleStream to work with primitives; these interfaces contain methods to deal with
primitive values. Note that you do not have stream interfaces representing other
primitive types such as float, short, etc. because the three stream types can be used to
work with other primitive type values.

A Quick Example

Let’s look at a quick example of using streams. The code reads a list of integers and
computes the sum of the squares of all odd integers in the list.

The stream() method in the Collection interface returns a sequential stream
where the Collection acts as the data source. The following snippet of code creates a
List<Integer> and obtains a Stream<Integer> from the list:

// Get a list of integers from 1 to 5

List<Integer> numbersList = List.of(1, 2, 3, 4, 5);
// Get a stream from the list

Stream<Integer> numbersStream = numbersList.stream();

The filter() method of the Stream<T> interface takes a Predicate<? super T>as
an argument and returns a Stream<T> with elements of the original stream for which the
specified Predicate returns true. The following statement obtains a stream of only odd
integers:

// Get a stream of odd integers
Stream<Integer> oddNumbersStream =
numbersStream.filter(n -> n % 2 == 1);

429

CHAPTER6 STREAMS

Notice the use of the lambda expression as the argument for the filter() method.
The lambda expression returns true if the element in the stream is not divisible by 2.

The map() method of the Stream<T> interface takes Function<? super T,? extends
R> as an argument. Each element in the stream is passed to this Function, and a new
stream is generated containing the returned values from the Function. The following
statement takes all odd integers and maps them to their squares:

// Get a stream of the squares of odd integers
Stream<Integer> squaredNumbersStream =
oddNumbersStream.map(n -> n * n);

Finally, you need to add the squares of all odd integers to get the result. The
reduce(T identity, BinaryOperator<T> accumulator) method of the Stream<T>
interface performs a reduction operation on the stream to reduce the stream to a single
value. It takes an initial value and an accumulator that is a BinaryOperator<T> as
arguments. The first time, the accumulator receives the initial value and the first element
of the stream as arguments and returns a value. The second time, the accumulator
receives the value returned from its previous call and the second element from the
stream. This process continues until all elements of the stream have been passed to the
accumulator. The returned value from the last call of the accumulator is returned from
the reduce() method. The following snippet of code performs the sum of all integers in
the stream:

// Sum all integers in the stream
int sum = squaredNumbersStream.
reduce(0, (n1, n2) -> n1 + n2);

The Integer class contains a static sum() method to perform the sum of two integers.
You can rewrite the previous statement using a method reference, like so:

// Sum all integers in the stream
int sum = squaredNumbersStream.
reduce(0, Integer::sum);

In this example, I break down each operation on the stream into a single statement.
You cannot use the returned streams from intermediate operations, except to apply
other operations on them. Typically, you care about the result of the terminal operation,

430

CHAPTER6 STREAMS

not the intermediate streams. Streams are designed to support method chaining to avoid
temporary variables, which you used in this example. You can combine these statements
into one statement as follows:

// Sum the squares of all odd integers in the numbers list
int sum = numbersList.stream()

filter(n -> n % 2 == 1)

.map(n -> n * n)

.reduce(0, Integer::sum);

I chain all method calls on streams to form only one statement in subsequent
examples. Listing 6-2 contains the complete program for this example. Note that you are
working with only integers in this example. For better performance, you could have used
an IntStreamin this example. I show you how to use an IntStreamlater.

Listing 6-2. Computing the Sum of the Squares of All Odd Integers from 1to 5

// SquaredIntsSum.java
package com.jdojo.streams;
import java.util.list;
public class SquaredIntsSum {
public static void main(String[] args) {
// Get a list of integers from 1 to 5
List<Integer> numbers = List.of(1, 2, 3, 4, 5);
// Compute the sum of the squares of all odd
// integers in the list
int sum = numbers.stream()
filter(n -> n % 2 == 1)
.map(n -> n * n)
.reduce(0, Integer::sum);

System.out.println("Sum = " + sum);

Sum = 35

431

CHAPTER6 STREAMS

I show many examples of performing aggregate operations on different types of
streams. Most of the time, it is easier to explain the stream operations using streams
of numbers and strings. I show some real-world examples of using streams by using a
stream of Person objects. Listing 6-3 contains the declaration for the Person class.

Listing 6-3. A Person Class

// Person.java
package com.jdojo.streams;
import java.time.localDate;
import java.time.Month;
import java.util.list;
public class Person {
// An enum to represent the gender of a person
public static enum Gender {
MALE, FEMALE
}
private long id;
private String name;
private Gender gender;
private LocalDate dob;
private double income;

public Person(long id, String name, Gender gender,
LocalDate dob, double income) {
this.id = id;
this.name = name;
this.gender = gender;
this.dob = dob;
this.income = income;
}
public long getId() {
return id;
}
public void setId(long id) {
this.id = id;

432

public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Gender getGender() {
return gender;
}
public boolean isMale() {
return this.gender == Gender.MALE;

}

public boolean isFemale() {
return this.gender == Gender.FEMALE;

}

public void setGender(Gender gender) {
this.gender = gender;

}

public LocalDate getDob() {
return dob;

}

public void setDob(LocalDate dob) {
this.dob = dob;

}

public double getIncome() {
return income;

}

public void setIncome(double income) {
this.income = income;

}

public static List<Person> persons() {
Person ken = new Person(1, "Ken",

Gender.MALE,
LocalDate.of(

1970, Month.MAY, 4), 6000.0);

CHAPTER 6

STREAMS

433

CHAPTER6 STREAMS

}

Person jeff = new Person(2, "Jeff",
Gender.MALE,
LocalDate.of(
1970, Month.JULY, 15), 7100.0);
Person donna = new Person(3, "Donna",
Gender.FEMALE,
LocalDate.of(
1962, Month.JULY, 29), 8700.0);
Person chris = new Person(4, "Chris",
Gender.MALE,
LocalDate.of(
1993, Month.DECEMBER, 16), 1800.0);
Person laynie = new Person(5, "Laynie",
Gender.FEMALE,
LocalDate.of(
2012, Month.DECEMBER, 13), 0.0);
Person lee = new Person(6, "Li",
Gender.MALE,
LocalDate.of(
2001, Month.MAY, 9), 2400.0);
// Create a list of persons
List<Person> persons = List.of(
ken, jeff, donna, chris, laynie, lee);
return persons;

@verride
public String toString() {

434

String str = String.format(

“"(%s, %s, %s, %s, %h.2f)",

id, name, gender, dob, income);
return str;

CHAPTER6 STREAMS

The Person class contains a static Gender enum to represent the gender of a person.
The class declares five instance variables (id, name, gender, dob, and income), getters,
and setters. The isMale() and isFemale() methods have been declared to be used as
method references in lambda expressions. You will use a list of people frequently, and,
for that purpose, the class contains a static method called persons() to get a list of
people.

Creating Streams

There are many ways to create streams. Many existing classes in the Java libraries have
received new methods that return a stream. Based on the data source, stream creation
can be categorized as follows:

¢ Streams from values

o Empty streams

¢ Streams from function

e Streams from arrays

e Streams from collection
e Streams from files

¢ Streams from other sources

Streams from Values

The Stream interface contains the following three static methods to create a sequential
Stream from a single value and multiple values:

o <T> Stream<T> of(T t)
e <T> Stream<T> of(T...values)

o <T> Stream<T> ofNullable(T t)

435

CHAPTER6 STREAMS
The following snippet of code creates two streams:

// Creates a stream with one string element
Stream<String> stream = Stream.of("Hello");
// Creates a stream with four string elements
Stream<String> stream = Stream.of(

"Ken", "Jeff", "Chris", "Ellen");

The ofNullable() method returns a stream with a single value if the specified value
is non-null. Otherwise, it returns an empty stream:

String str = "Hello";

// Stream s1 will have one element "Hello"
Stream<String> s1 = Stream.ofNullable(str);

str = null;

// Stream s2 is an empty stream because str is null
Stream<String> s2 = Stream.ofNullable(str);

You created a List<Integer> and called its stream() method to get a stream object
in Listing 6-2. You can rewrite that example using the Stream.of () method as follows:

import java.util.stream.Stream;
// Compute the sum of the squares of all odd integers in
// the list
int sum = Stream.of(1, 2, 3, 4, 5)
filter(n -> n % 2 == 1)
.map(n -> n * n)
.reduce(0, Integer::sum);

System.out.println("Sum = " + sum);
Sum = 35

Note that the second version of the of () method takes a varargs argument, and you
can use it to create a stream from an array of objects as well. The following snippet of
code creates a stream from a String array:

String[] names = {"Ken", "Jeff", "Chris", "Ellen"};
// Creates a stream of four strings in the names array
Stream<String> stream = Stream.of(names);

436

CHAPTER6 STREAMS

Note The Stream.of() method creates a stream whose elements are of
reference type. If you want to create a stream of primitive values from an array of
primitive types, you need to use the Arrays.stream() method, which | explain
shortly.

The following snippet of code creates a stream of strings from a String array
returned from the split() method of the String class:

String str = "Ken,Jeff,Chris,Ellen";

// The stream will contain 4 elements:

// "Ken", "Jeff", "Chris", and "Ellen"
Stream<String> stream = Stream.of(str.split(","));

The Stream interface also supports creating a stream using the builder pattern using
the Stream.Builder<T> interface whose instance represents a stream builder. The
builder() static method of the Stream interface returns a stream builder:

// Gets a stream builder
Stream.Builder<String> builder = Stream.builder();

The Stream.Builder<T> interface contains the following methods:
e void accept(T t)
o Stream.Builder<T> add(T t)
o Stream<T> build()

The accept() and add() methods add elements to the stream being built. You might
wonder about the existence of two methods in the builder to add elements. The Stream.
Builder<T> interface inherits from the Consumer<T> interface, and therefore it inherits
the accept () method from the Consumer<T> interface. You can pass a builder’s instance
to a method that accepts a consumer, and the method can add elements to the builder
using the accept() method.

The add () method returns the reference to the builder that makes it suitable for
adding multiple elements using method chaining. Once you are done adding elements,
call the build() method to create the stream. You cannot add elements to the stream

437

CHAPTER6 STREAMS

after you call the build() method; doing so results in an I1legalStateException
runtime exception. The following snippet of code uses the builder pattern to create a
stream of four strings:

Stream<String> stream = Stream.<String>builder()
.add("Ken")
.add("Jeff")
.add("Chris")
.add("Ellen")
.build();

Note that the code specifies the type parameter as String when it obtains the builder
Stream.<String>builder(). The compiler fails to infer the type parameter if you do not
specify it. If you obtain the builder separately, the compiler will infer the type as String,
as shown:

// Obtain a builder
Stream.Builder<String> builder = Stream.builder();
// Add elements and build the stream
Stream<String> stream = builder.add("Ken")
.add("Jeff")
.add("Chris")
.add("Ellen")
.build();

The IntStreaminterfaces contain four static methods that let you create IntStream
from values:

o IntStream of(int value)

o IntStream of(int... values)

o IntStream range(int start, int end)

o IntStream rangeClosed(int start, int end)

The of () methods let you create an IntStream by specifying individual values. The
range() and rangeClosed() methods produce an IntStream that contains ordered
integers between the specified start and end. The specified end is exclusive in the

438

CHAPTER6 STREAMS

range() method, whereas it is inclusive in the rangeClosed() method. The following
snippet of code uses both methods to create an IntStream having integers 1, 2, 3, 4, and 5
as their elements:

// Create an IntStream containing 1, 2, 3, 4, and 5
IntStream oneToFive = IntStream.range(1, 6);

// Create an IntStream containing 1, 2, 3, 4, and 5
IntStream oneToFive = IntStream.rangeClosed(1, 5);

The LongStream interface also contains range() and rangeClosed() methods,
which take arguments of type long and return a LongStream. The LongStream and
DoubleStream interfaces also contain of () methods, which work with the long and
double values and return a LongStream and a DoubleStream, respectively.

Empty Streams

An empty stream is a stream with no elements. The Stream interface contains an empty ()
static method to create an empty sequential stream:

// Creates an empty stream of strings
Stream<String> stream = Stream.empty();

The IntStream, LongStream, and DoubleStream interfaces also contain an empty()
static method to create an empty stream of primitive types. Here is one example:

// Creates an empty stream of integers
IntStream numbers = IntStream.empty();

Streams from Functions

An infinite stream is a stream with a data source capable of generating an infinite
number of elements. Note that I am saying that the data source should be “capable of
generating” an infinite number of elements, not that the data source should have or
contain an infinite number of elements. It is impossible to store an infinite number of
elements of any kind because of memory and time constraints. However, it is possible to
have a function that can generate an infinite number of values on demand. The Stream
interface contains the following two static methods to generate an infinite stream:

439

CHAPTER6 STREAMS

o <T> Stream<T> iterate(T seed, Predicate<? super T> hasNext,
Unary-Operator<T> next)

o <T> StreamT> iterate(T seed, UnaryOperator<T> f)
o <T> StreamT> generate(Supplier<? extends T> s)

The iterate() method creates a sequential ordered stream, whereas the generate()
method creates a sequential unordered stream. The following sections show you how to
use these methods.

The stream interfaces for primitive values IntStream, LongStream, and
DoubleStream also contain iterate() and generate() static methods that take
parameters specific to their primitive types. For example, these methods are defined as
follows in the IntStream interface:

e static IntStream iterate(int seed, IntPredicate hasNext,
IntUnaryOperator next)

o IntStream iterate(int seed, IntUnaryOperator f)
o IntStream generate(IntSupplier s)

The first version of the iterate() method is declared as follows:

static <T> Stream<T> iterate(
T seed,
Predicate<? super T> hasNext,
UnaryOperator<T> next)

The method takes three arguments: a seed, a predicate, and a function. It produces
elements by iteratively applying the next function as long as the hasNext predicate is
true. The seed argument is the initial element. Calling this method is similar to using a

for loop as follows:

for (int index = seed;
hasNext.test(index);
index = next.applyAsInt(index)) {
// index is the next element in the stream

440

CHAPTER 6 STREAMS
The following snippet of code produces a stream of integers from 1 to 10:

Stream<Integer> nums =
Stream.iterate(1, n -> n <= 10, n -> n + 1);

The second version of the iterate() method is declared as follows:
static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

The method takes two arguments: a seed and a function. The first argument is a
seed that is the first element of the stream. The second element is generated by applying
the function to the first element. The third element is generated by applying the
function on the second element and so on. Its elements are seed, f(seed), f(f(seed)),
f(f(f(seed))), and so on. The following statement creates an infinite stream of natural

numbers and an infinite stream of all odd natural numbers:

// Creates a stream of natural numbers

Stream<Long> naturalNumbers =
Stream.iterate(il, n -> n + 1);

// Creates a stream of odd natural numbers

Stream<Long> oddNaturalNumbers =
Stream.iterate(iL, n -> n + 2);

What do you do with an infinite stream? You understand that it is not possible to
consume all elements of an infinite stream. This is simply because the stream processing
will take forever to complete. Typically, you convert the infinite stream into a fixed-size
stream by applying a limit operation that truncates the input stream to be no longer than
a specified size. The limit operation is an intermediate operation that produces another
stream. You apply the limit operation using the 1imit(long maxSize) method of the
Stream interface. The following snippet of code creates a stream of the first 10 natural
numbers:

// Creates a stream of the first 10 natural numbers
Stream<Long> tenNaturalNumbers =

Stream.iterate(1L, n -> n + 1).

limit(10);

You can apply a forEach operation on a stream using the forEach(Consumer<?
super T> action) method of the Stream interface. The method returns void.

441

CHAPTER6 STREAMS

It is a terminal operation. The following snippet of code prints the first five odd
natural numbers on the standard output:

Stream.iterate(1L, n -> n + 2)
.limit(5)
.forEach(System.out::println);

O N U1 W =

Let’s look at a realistic example of creating an infinite stream of prime numbers.
Listing 6-4 contains a utility class called PrimeUtil. The class contains two utility
methods. The next () instance method returns the next prime number after the last
found prime number. The next(long after) static method returns the prime number
after the specified number. The isPrime() static method checks if a number is a prime
number.

Listing 6-4. A Utility Class to Work with Prime Numbers

// PrimeUtil.java
package com.jdojo.streams;
public class PrimeUtil {
// Used for a stateful PrimeUtil
private long lastPrime = OL;
// Computes the prime number after the last generated
// prime
public long next() {
lastPrime = next(lastPrime);
return lastPrime;
}
// Computes the prime number after the specified
// number
public static long next(long after) {
long counter = after;
// Keep looping until you find the next prime

442

CHAPTER 6

// number
while (!isPrime(++counter));
return counter;
}
// Checks if the specified number is a prime number
public static boolean isPrime(long number) {
// <= 1 is not a prime number
if (number <= 1) {
return false;
}
// 2 is a prime number
if (number == 2) {
return true;
}
// Even numbers > 2 are not prime numbers
if (number % 2 == 0) {
return false;

}

long maxDivisor = (long) Math.sqrt(number);
for (int counter = 3;
counter <= maxDivisor;
counter += 2) {
if (number % counter == 0) {
return false;

}

return true;

STREAMS

The following snippet of code creates an infinite stream of prime numbers and prints

the first five prime numbers on the standard output:

Stream.iterate(2L, PrimeUtil::next)
.1imit(s)
.forEach(System.out::println);

443

CHAPTER6 STREAMS

2
3
5
7
11

There is another way to get the first five prime numbers. You can generate an infinite
stream of natural numbers, apply a filter operation to pick only the prime numbers, and
limit the filtered stream to five. The following snippet of code shows this logic using the
isPrime() method of the PrimeUtil class:

// Print the first 5 prime numbers

Stream.iterate(2L, n -> n + 1)
.filter(PrimeUtil::isPrime)
.1imit(s)
.forEach(System.out::println);

~N U1 W N

Sometimes, you may want to discard some elements of a stream. This is
accomplished using the skip operation. The skip(long n) method of the Stream
interface discards (or skips) the first n elements of the stream. This is an intermediate
operation. The following snippet of code uses this operation to print five prime numbers,
skipping the first 100 prime numbers:

Stream.iterate(2L, PrimeUtil::next)

.skip(100)
limit(5)
.forEach(System.out: :println);
547
557
563
569
571

444

CHAPTER6 STREAMS

Using everything you have learned about streams, can you write a stream pipeline
to print five prime numbers that are greater than 3000? This is left as an exercise for the
readers.

The generate(Supplier<? extends T> s) method uses the specified Supplier to
generate an infinite sequential unordered stream. The following snippet of code prints
five random numbers greater than or equal to 0.0 and less than 1.0 using the random()
static method of the Math class. You may get different output:

Stream.generate(Math: :random)
.limit(s)
.forEach(System.out::println);

0.05958352209327644
0.8122226657626394
0.5073323815997652
0.9327951597282766
0.4314430923877808

If you want to use the generate() method to generate an infinite stream in which
the next element is generated based on the value of the previous element, you need
to use a Supplier that stores the last generated element. Note that a PrimeUtil object
can act as a Supplier whose next () instance method remembers the last generated
prime number. The following snippet of code prints five prime numbers after skipping
the first 100:

Stream.generate(new PrimeUtil()::next)

.skip(100)
.limit(5)
.forEach(System.out: :println);
547
557
563
569
571

445

CHAPTER6 STREAMS

The Random class in the java.util package contains specially tailored methods to work
with streams. So we have methods like ints(), longs(), and doubles() that return infinite
IntStream, LongStream, and DoubleStream, respectively, which contain random numbers of
the int, long, and double types. The following snippet of code prints five random int values
from an IntStream returned from the ints() method of the Random class:

// Print five random integers
new Random().ints()
Llimit(5)
.forEach(System.out: :println);

-1147567659
285663603
-412283607
412487893
-22795557

You may get different output every time you run the code. You can use the nextInt()
method of the Random class as the Supplier in the generate() method to achieve the

same result:

// Print five random integers
Stream.generate(new Random()::nextInt)
limit(5)
.forEach(System.out: :println);

If you want to work with only primitive values, you can use the generate() method
of the primitive type stream interfaces. For example, the following snippet of code prints
five random integers using the generate() static method of the IntStream interface:

IntStream.generate(new Random()::nextInt)
limit(5)
.forEach(System.out::println);

How would you generate an infinite stream of repeating values? For example, how
would you generate an infinite stream of zeroes? The following snippet of code shows
you how to do this:

IntStream zeroes = IntStream.generate(() -> 0);

446

CHAPTER6 STREAMS

Streams from Arrays

The Arrays class in the java.util package contains an overloaded stream() static
method to create sequential streams from arrays. You can use it to create an IntStream
from an int array, a LongStream from a long array, a DoubleStream from a double array,
and a Stream<T> from an array of the reference type T. The following snippet of code
creates an IntStreamand a Stream<String> from an int array and a String array:

// Creates a stream from an int array with elements
// 1, 2, and 3
IntStream numbers = Arrays.stream(new int[]{1, 2, 3});
// Creates a stream from a String array with elements
// "Ken", and "Jeff"
Stream<String> names = Arrays.stream(

new String[] {"Ken", "Jeff"});

Note You can create a stream from a reference type array using two methods:
Arrays.stream(T[] t) and Stream.of(T...t).Providing two methods in
the library to accomplish the same thing is intentional.

Streams from Collections

The Collection interface contains the stream() and parallelStream() methods that
create sequential and parallel streams from a Collection, respectively. The following
snippet of code creates streams from a set of strings:

import java.util.HashSet;
import java.util.Set;
import java.util.stream.Stream;

// Create and populate a set of strings

Set<String> names = Set.of("Ken", "jeff");

// Create a sequential stream from the set
Stream<String> sequentialStream = names.stream();

// Create a parallel stream from the set

Stream<String> parallelStream = names.parallelStream();

447

CHAPTER6 STREAMS

Streams from Files

There are many methods in the classes of the java.io and java.nio.file packages to
support I/O operations using streams. For example:

e You can read text from a file as a stream of strings in which each
element represents one line of text from the file.

e You can obtain a stream of JarEntry from a JarFile.
e You can obtain the list of entries in a directory as a stream of Path.

o You can obtain a stream of Path that is a result of a file search in a
specified directory.

¢ You can obtain a stream of Path that contains the file tree of a
specified directory.

I show some examples of using streams with file I/O in this section. Refer to the API
documentation for the java.nio.file.Files, java.io.BufferedReader, and java.
util.jar.JarFile classes for more details on the stream-related methods.

The BufferedReader and Files classes contain a 1ines() method that reads a
file lazily and returns the contents as a stream of strings. Each element in the stream
represents one line of text from the file. The file needs to be closed when you are done
with the stream. Calling the close() method on the stream will close the underlying
file. Alternatively, you can create the stream in a try-with-resources statement so the
underlying file is closed automatically.

The program in Listing 6-5 shows how to read contents of a file using a stream. It
also walks the entire file tree for the current working directory and prints the entries in
the directory. The program assumes that you have the lucii.txt file, which is supplied
with the source code, in the current working directory. If the file does not exist, an error
message with the absolute path of the expected file is printed. You may get different
output when you run the program.

Listing 6-5. Performing File I/0 Using Streams

// I0Stream.java
package com.jdojo.streams;

448

import java.
import java.
import java.
import java.
import java.

io.IOException;
nio.file.Files;
nio.file.Path;
nio.file.Paths;
util.stream.Stream;

public class IOStream {

CHAPTER 6

public static void main(String[] args) {
// Read the contents of the file luci1.txt
readFileContents("lucil.txt");
// Print the file tree for the current working
// directory
listFileTree();
}
public static void readFileContents(String filePath) {
Path path = Paths.get(filePath);
if (!Files.exists(path)) {
System.out.println("The file
+ path.toAbsolutePath()
+ " does not exist.");
return;

}
try (Stream<String> lines = Files.lines(path)) {

// Read and print all lines

lines.forEach(System.out::println);
} catch (IOException e) {

e.printStackTrace();

}
public static void listFileTree() {

Path dir = Paths.get("");

System.out.printf("%nThe file tree for %s%n",
dir.toAbsolutePath());

try (Stream<Pathy fileTree = Files.walk(dir)) {
fileTree.forEach(System.out::println);

} catch (IOException e) {

STREAMS

449

CHAPTER6 STREAMS

e.printStackTrace();

}

STRANGE fits of passion have I known:
And I will dare to tell,

But in the lover's ear alone,

What once to me befell.

The file tree for C:\Java9languageFeatures
build

build\modules

build\modules\com

build\modules\com\jdojo

Streams from Other Sources

Many classes that hold some kind of contents provide methods that return the data they
represent in a stream. Two such methods that you may use frequently are explained
next:

o The chars() method in the CharSequence interface returns an
IntStream whose elements are int values representing the characters
of the CharSequence. You can use the chars() method on a String, a
StringBuilder, and a StringBuffer to obtain a stream of characters
of their contents as these classes implement the CharSequence
interface.

o The splitAsStream(CharSequence input) method of the java.
util.regex. Pattern classreturns a stream of String whose
elements match the pattern.

Let’s look at an example in both categories. The following snippet of code creates
a stream of characters from a string, filters out all digits and whitespace, and prints the
remaining characters:

450

CHAPTER6 STREAMS

String str = "5 apples and 25 oranges";
str.chars()
.filter(n -> !Character.isDigit((char)n)
88 !Character.isWhitespace((char)n))
.forEach(n -> System.out.print((char)n));

applesandoranges

The following snippet of code obtains a stream of strings by splitting a string using a

wn

regular expression (”). The matched strings are printed on the standard output:

String str = "Ken,Jeff,Lee";
Pattern.compile(","
.splitAsStream(str)

.forEach(System.out::println);

Ken
Jeff
Lee

Representing an Optional Value

In Java, null is used to represent “nothing” or an “empty” result. Most often, a method
returns null if it does not have a result to return. This has been a source of frequent
NullPointerException in Java programs. Consider printing a person’s year of birth,
like so:

Person ken = new Person(1, "Ken", Person.Gender.MALE,
null, 6000.0);

int year = ken.getDob().getYear();

// <- Throws a NullPointerException

System.out.println("Ken was born in the year " + year);

The code throws a NullPointerException at runtime. The problem is in the return
value of the ken.getDob () method that returns null. Calling the getYear () method
on a null reference results in the Nul1PointerException. So, what is the solution?
In fact, unless you want to replace Java by a new language, there is no real solution
to this on a language level. But Java provides a library construct which helps to avoid

451

CHAPTER6 STREAMS

NullPointerExceptions. There exists an Optional<T> classin the java.util package to
deal with NullPointerExceptions gracefully. Methods that may return nothing should
return an Optional instead of null.

An Optional is a container object that may or may not contain a non-null value.
Its isPresent () method returns true if it contains a non-null value, and false
otherwise. Its get () method returns the non-null value if it contains a non-null
value, and throws a NoSuchElementException otherwise. This implies that when a
method returns an Optional, you must, as a practice, check if it contains a non-null
value before asking it for the value. If you use the get () method before making sure it
contains a non-null value, you may get a NoSuchElementException instead of getting a
NullPointerException. This is why I said in the previous paragraph that there is no real
solution to the NullPointerException. However, returning an Optional is certainly a
better way to deal with null, as developers will get used to using the Optional objects in
the way they are designed to be used.

How do you create an Optional<T> object? The Optional<T> class provides the
following static factory methods to create its objects:

o <T> Optional<T> empty(): Returns an empty Optional. That is,
the Optional returned from this method does not contain a

non-null value.

o <T> Optional<T> of(T value): Returns an Optional containing
the specified value as the non-null value. If the specified value is
null, it throws a NullPointerException.

o <T> Optional<T> ofNullable(T value): Returnsan Optional
containing the specified value if the value is non-null. If the specified
value is null, it returns an empty Optional.

The following snippet of code shows how to create Optional objects:

// Create an empty Optional

Optional<String> empty = Optional.empty();

// Create an Optional for the string "Hello"
Optional<String> str = Optional.of("Hello");

// Create an Optional with a String that may be null
String nullableString = "";

// <- get a string that may be null...

Optional<String> str2 = Optional.of(nullableString);
452

CHAPTER6 STREAMS

The following snippet of code prints the value in an Optional if it contains a non-
null value:

// Create an Optional for the string "Hello"
Optional<String> str = Optional.of("Hello");
// Print the value in Optional
if (str.isPresent()) {
String value = str.get();
System.out.println("Optional contains
} else {
System.out.println("Optional is empty.");

+ value);

}

Optional contains Hello

You can use the ifPresent(Consumer<? super T> action) method of the Optional
class to take an action on the value contained in the Optional. If the Optional is empty,
this method does not do anything. You can rewrite the previous code to print the value in
an Optional as follows. Note that if the Optional were empty, the code would not print
anything:

// Create an Optional for the string "Hello"
Optional<String> str = Optional.of("Hello");
// Print the value in the Optional, if present
str.ifPresent(value ->

System.out.println("Optional contains " + value));

Optional contains Hello

The following are four methods to get the value of an Optional:

o T get(): Returns the value contained in the Optional. If the
Optional is empty, it throws a NoSuchElementException.

e T orklse(T defaultValue): Returns the value contained in
the Optional. If the Optional is empty, it returns the specified
defaultValue.

453

CHAPTER6 STREAMS

o T orElseGet(Supplier<? extends T> defaultSupplier): Returns
the value contained in the Optional. If the Optional is empty, it
returns the value returned from the specified defaultSupplier.

o <X extends Throwable> T orElseThrow(Supplier<? extends X>
exceptionSupplier) throws X extends Throwable: Returns the
value contained in the Optional. If the Optional is empty, it throws
the exception returned from the specified exceptionSupplier.

The Optional<T> class describes a non-null reference type value or its absence. The
java.util package contains three more classes named OptionalInt, Optionallong,
and OptionalDouble to deal with optional primitive values. They contain similarly
named methods that apply to primitive data types, except for getting their values. They
do not contain a get () method. To return their values, the OptionalInt class contains a
getAsInt(), the Optionallong class contains a getAsLong(), and the OptionalDouble
class contains a getAsDouble () method. Like the get () method of the Optional class,
the getters for primitive optional classes also throw a NoSuchElementException when
they are empty. Unlike the Optional class, they do not contain an ofNullable() factory
method because primitive values cannot be null. The following snippet of code shows
how to use the OptionalInt class:

// Create an empty Optionallnt
OptionalInt empty = Optionallnt.empty();
// Use an Optionallnt to store 287
OptionalInt number = Optionallnt.of(287);
if (number.isPresent()){
int value = number.getAsInt();
System.out.println("Number is " + value);
} else {
System.out.println("Number is absent.");

}

Number is 287

Several methods in the Streams API return an instance of the Optional,
OptionalInt, Optionallong, and OptionalDouble when they do not have anything
to return. For example, all types of streams let you compute the maximum element in
the stream. If the stream is empty, there is no maximum element. Note that in a stream

454

CHAPTER6 STREAMS

pipeline, you may start with a non-empty stream and end up with an empty stream
because of filtering or other operations such as limit, skip, etc. For this reason, the max()
method in all stream classes returns an optional object. The program in Listing 6-6
shows how to get the maximum integer from IntStream.

Listing 6-6. Working with Optional Values

// OptionalTest.java
package com.jdojo.streams;

import java.util.Comparator;
import java.util.Optional;

import java.util.Optionallnt;
import java.util.stream.IntStream;
import java.util.stream.Stream;

public class OptionalTest {
public static void main(String[] args) {
// Get the maximum of odd integers from the stream
OptionalInt max0dd = IntStream.of(10, 20, 30)
filter(n -> n % 2 == 1)
.max();
if (max0dd.isPresent()) {
int value = max0dd.getAsInt();
System.out.println("Maximum odd integer is " +
value);
} else {
System.out.println("Stream is empty.");

}

// Get the maximum of odd integers from the stream
OptionalInt numbers = IntStream.of(
1, 10, 37, 20, 31)
filter(n -> n % 2 == 1)
.max();

455

CHAPTER6 STREAMS

if (numbers.isPresent()) {
int value = numbers.getAsInt();
System.out.println("Maximum odd integer is " +
value);
} else {
System.out.println("Stream is empty.");
}
// Get the longest name
Optional<String> name =
Stream.of("Ken", "Ellen", "Li")
.max(Comparator.comparingInt(String::length));
if (name.isPresent()) {
String longestName = name.get();
System.out.println("Longest name is " +
longestName);
} else {
System.out.println("Stream is empty.");

}

Stream is empty.
Maximum odd integer is 37
Longest name is Ellen

In addition, the Optional<T> class contains the following methods:

o void ifPresentOrElse(Consumer<? super T> action, Runnable
empty-Action)

o Optional<T> or(Supplier<? extends Optional<? extends T»
supplier)

o Stream<T> stream()

456

CHAPTER6 STREAMS

Before I describe these methods and present a complete program showing their use,
consider the following list of an Optional<Integer>:

List<Optional<Integer>> optionallist = List.of(
Optional.of(1),
Optional.empty(),
Optional.of(2),
Optional.empty(),
Optional.of(3));

The list contains five Optional elements, two of which are empty and three contain
values as 1, 2, and 3. I refer to this list in the subsequent discussion.

The ifPresentOrElse() method lets you provide two alternate courses of actions. If
avalue is present, it performs the specified action with the value.

Otherwise, it performs the specified emptyAction. The following snippet of code
iterates over all the elements in the list using a stream to print the value if Optional
contains a value and an “Empty” string if Optional is empty:

optionallList.stream()
.forEach(p -> p.ifPresentOrElse(
System.out::println,
() -> System.out.println("Empty")));

1
Empty
2
Empty
3

The or () method returns the Optional itself if the Optional contains a non-null
value. Otherwise, it returns the Optional returned by the specified supplier. The
following snippet of code creates a stream from a list of Optional and uses the or ()
method to map all empty Optionals to an Optional with a value of zero:

optionallist.stream()
.map(p -> p.or(() -> Optional.of(0)))
.forEach(System.out::println);

457

CHAPTER6 STREAMS

Optional[1]
Optional[o]
Optional[2]
Optional[o]
Optional[3]

The stream() method returns a sequential stream of elements containing the value
present in the Optional. If the Optional is empty, it returns an empty stream. Suppose
you have a list of Optional and you want to collect all present values in another list. You
can achieve this as follows:

// Print the values in all non-empty Optionals

optionallist.stream()
.filter(Optional::isPresent)
.map(Optional::get)
.forEach(System.out::println);

You had to use a filter to filter out all empty Optionals and map the remaining
Optionals to their values. With the new stream() method, you can combine the
filter() and map() operations into one flatMap() operation as shown. I discuss
flattening streams in detail in the “Flattening Streams” section later in this chapter.

// Print the values in all non-empty Optionals

optionallList.stream()
.flatMap(Optional::stream)
.forEach(System.out: :println);

458

CHAPTER6 STREAMS

Applying Operations to Streams

Table 6-1 lists some of the commonly used stream operations, their types, and

descriptions. The Stream interface contains a method with the same name as the

name of the operation in the table. You have seen some of these operations in previous

sections. Subsequent sections cover them in detail.

Table 6-1. List of Commonly Used Stream Operations Supported by the

Streams API

Operation Type

Description

Distinct Intermediate

Filter Intermediate

flatMap Intermediate

Limit Intermediate
Map Intermediate
peek Intermediate
Skip Intermediate

dropWhile Intermediate

Returns a stream consisting of the distinct elements of this stream.
Elements e1 and e2 are considered equal if e1.equals(e2)
returns true.

Returns a stream consisting of the elements of this stream that
match the specified predicate.

Returns a stream consisting of the results of applying the specified
function to the elements in this stream. The function produces a
stream for each input element, and the output streams are flattened.
Performs one-to-many mapping.

Returns a stream consisting of the elements in this stream, truncated
to be no longer than the specified size.

Returns a stream consisting of the results of applying the specified
function to the elements in this stream. Performs one-to-one mapping.

Returns a stream whose elements consist of this stream. It applies
the specified action as it consumes elements of this stream. It is
mainly used for debugging purposes.

Discards the first N elements in the stream and returns the remaining
stream. If this stream contains fewer than N elements, an empty
stream is returned.

Returns the elements of the stream, discarding the elements from
the beginning for which a predicate is true. This operation was added
to the Streams API in Java 9.

(continued)

459

CHAPTER6 STREAMS

Table 6-1. (continued)

Operation Type

Description

takeWhile Intermediate

sorted Intermediate

allMatch Terminal

anyMatch Terminal

findAny Terminal

findFirst Terminal

noneMatch Terminal

forEach Terminal

Reduce Terminal

Returns elements from the beginning of the stream, which match a
predicate, discarding the rest of the elements. This operation was
added to the Streams APl in Java 9.

Returns a stream consisting of the elements in this stream, sorted
according to natural order or the specified Comparator. For an
ordered stream, the sort is stable.

Returns true if all elements in the stream match the specified
predicate, false otherwise. Returns true if the stream is empty.

Returns true if any element in the stream matches the specified
predicate, false otherwise. Returns false if the stream is empty.

Returns any element from the stream. An empty Optional is
returned for an empty stream.

Returns the first element of the stream. For an ordered stream, it
returns the first element in the encounter order; for an unordered
stream, it returns any element.

Returns true if no elements in the stream match the specified
predicate, false otherwise. Returns true if the stream is empty.

Applies an action for each element in the stream.

Applies a reduction operation to compute a single value from the
stream.

Debugging a Stream Pipeline

You apply a sequence of operations on a stream. Each operation transforms the elements

of the input stream, either producing another stream or a result. Sometimes, you may

need to look at the elements of the streams as they pass through the pipeline. You can do

so by using the peek (Consumer<? super T> action) method of the Stream<T> interface

that is meant only for debugging purposes. It produces a stream after applying an

460

CHAPTER6 STREAMS

action on each input element. The IntStream, LongStream, and DoubleStream methods
also contain a peek () method that takes an IntConsumer, a LongConsumer, and a
DoubleConsumer as an argument. Typically, you use a lambda expression with the peek ()
method to log messages describing elements being processed. The following snippet of
code uses the peek() method at three places to print the elements passing through the
stream pipeline:

int sum = Stream.of(1, 2, 3, 4, 5)

.peek(e -> System.out.println("Taking integer:
+e))

filter(n -> n % 2 == 1)

.peek(e -> System.out.println("Filtered integer:
+e))

.map(n -> n * n)

.peek(e -> System.out.println("Mapped integer:

+e))
.reduce(0, Integer::sum);
System.out.println("Sum = " + sum);

Taking integer: 1
Filtered integer: 1
Mapped integer: 1
Taking integer: 2
Taking integer: 3
Filtered integer: 3
Mapped integer: 9
Taking integer: 4
Taking integer: 5
Filtered integer: 5
Mapped integer: 25
Sum = 35

Notice that the output shows the even numbers being taken from the data source,
but not passing the filter operation.

461

CHAPTER6 STREAMS

Applying the ForEach Operation

The forEach operation takes an action for each element of the stream. The action may
simply print each element of the stream to the standard output or increase the income
of every person in a stream by 10%. The Stream<T> interface contains two methods to
perform the forEach operation:

o void forEach(Consumer<? super T> action)
o void forEachOrdered(Consumer<? super T> action)

IntStream, LongStream, and DoubleStream also contain the same methods, except
that their parameter type is the specialized consumer types for primitives; for example,
the parameter type for the forEach() method in the IntStream is IntConsumer.

Why do you have two methods to perform the forEach operation? Sometimes,
the order in which the action is applied for the elements in a stream is important, and
sometimes it is not. The forEach() method does not guarantee the order in which
the action for each element in the stream is applied. The forEachOrdered() method
performs the action in the encounter order of elements defined by the stream. Use the
forEachOrdered() method for a parallel stream only when necessary because it may
slow down processing. The following snippet of code prints the details of females in the
person list:

Person.persons()
.stream()
.filter(Person::isFemale)
.forEach(System.out::println);

(3, Donna, FEMALE, 1962-07-29, 8700.00)
(5, Laynie, FEMALE, 2012-12-13, 0.00)

The program in Listing 6-7 shows how to use the forEach() method to increase the
income of all females by 10%. The output shows that only Donna got an increase because
another female named Laynie had 0.0 income before.

Listing 6-7. Applying the ForEach Operation on a List of Persons

// ForkachTest.java
package com.jdojo.streams;
import java.util.Llist;

462

CHAPTER 6

public class ForEachTest {
public static void main(String[] args) {

}

// Get the list of persons
List<Person> persons = Person.persons();
// Print the list
System.out.println(

"Before increasing the income: " + persons);
// Increase the income of females by 10%
persons.stream()

.filter(Person::isFemale)

.forkach(-»>

p.setIncome(p.getIncome() * 1.10));

// Print the list again
System.out.println(

"After increasing the income: " + persons);

Before increasing the income:

[(1)
(2,
(3,
(4)
(5)
(6,

Ken, MALE, 1970-05-04, 6000.00),
Jeff, MALE, 197007-15, 7100.00),
Donna, FEMALE, 1962-07-29, 8700.00),
Chris, MALE, 1993-12-16,1800.00),
Laynie, FEMALE, 2012-12-13, 0.00),
Li, MALE, 2001-05-09, 2400.00)]

After increasing the income:

[(1,
(2,
(3)
(4)
(5’
(6,

Ken, MALE, 1970-05-04, 6000.00),
Jeff, MALE, 197007-15, 7100.00),
Donna, FEMALE, 1962-07-29, 9570.00),
Chris, MALE, 1993-12-16,1800.00),
Laynie, FEMALE, 2012-12-13, 0.00),
Li, MALE, 2001-05-09, 2400.00)]

STREAMS

463

CHAPTER6 STREAMS

Applying the Map Operation

A map operation (also known as mapping) applies a function to each element of the input
stream to produce another stream (also called an output stream or a mapped stream).
The number of elements in the input and output streams is the same. The operation does
not modify the elements of the input stream—at least it is not supposed to.

Figure 6-7 depicts the application of the map operation on a stream. It shows
element el from the input stream being mapped to element et1 in the mapped stream,
element e2 mapped to et2, etc.

map(e)

el

e2

e3

en

Input stream Output stream

Figure 6-7. A pictorial view of the map operation

Mapping a stream to another stream is not limited to any specific type of elements.
You can map a stream of T to a stream of type S, where T and S may be the same or
different types. For example, you can map a stream of Person to a stream of int where
each Person element in the input stream maps to the Person’s ID in the mapped stream.
You can apply the map operation on a stream using one of the following methods of the
Stream<T> interface:

o <R> Stream<R> map(Function<? super T,? extends R> mapper)
o DoubleStream mapToDouble(ToDoubleFunction<? super T>

mapper)

464

CHAPTER6 STREAMS

o IntStream mapToInt(ToIntFunction<? super T> mapper)
o LongStream mapToLong(ToLongFunction<? super T> mapper)

The map operation takes a function as an argument. Each element from the input
stream is passed to the function. The returned value from the function is the mapped
element in the mapped stream. Use the map () method to perform the mapping to
reference type elements. If the mapped stream is of a primitive type, use other methods;
for example, use the mapToInt() method to map a stream of a reference type to a stream
of int. The IntStream, LongStream, and DoubleStream interfaces contain similar
methods to facilitate mapping of one type of stream to another. The methods supporting
the map operation on an IntStream are as follows:

o IntStream map(IntUnaryOperator mapper)

o DoubleStream mapToDouble(IntToDoubleFunction mapper)

o LongStream mapToLong(IntToLongFunction mapper)

o <U> Stream<U> mapToObj(IntFunction<? extends U> mapper)

The following snippet of code creates an IntStream whose elements are integers
from 1 to 5, maps the elements of the stream to their squares, and prints the mapped
stream on the standard output. Note that the map() method used in the code is the map ()
method of the IntStream interface:

IntStream.rangeClosed(1, 5)
.map(n -> n * n)
.forEach(System.out: :println);

9
16

25

The following snippet of code maps the elements of a stream of people to their
names and prints the mapped stream. Note that the map() method used in the code is
the map () method of the Stream interface:

465

CHAPTER6 STREAMS

Person.persons()
.stream()
.map(Person: :getName)
.forEach(System.out: :println);

Ken
Jeff
Donna
Chris
Laynie
Li

Flattening Streams

In the previous section, you saw the map operation that facilitates a one-to-one
mapping. Each element of the input stream is mapped to an element in the output
stream. The Streams API also supports one-to-many mapping through the flatMap
operation. It works as follows:

1. TIttakes an input stream and produces an output stream using a
mapping function.

2. The mapping function takes an element from the input stream
and maps the element to a stream. The type of input element
and the elements in the mapped stream may be different. This
step produces a stream of streams. Suppose the input stream is a
Stream<T> and the mapped stream is Stream<Stream<R» where T
and R may be the same or different.

3. Finally, it flattens the output stream (i.e., a stream of streams) to
produce a stream. That is, the Stream<Stream<R» is flattened to
Stream<R>.

It takes some time to understand the flat map operation. Suppose that you have a
stream of three numbers: 1, 2, and 3. You want to produce a stream that contains the
numbers and the squares of the numbers. You want the output stream to contain 1, 1, 2,
4, 3, and 9. The following is the first, incorrect attempt to achieve this:

466

CHAPTER6 STREAMS

Stream.of(1, 2, 3)
.map(n -> Stream.of(n, n * n))
.forEach(System.out::println);

java.util.stream.ReferencePipeline$Head@372f7a8d
java.util.stream.ReferencePipeline$Head@2192e0f4
java.util.stream.ReferencePipeline\$Head®28a418fc

Are you surprised by the output? You do not see numbers in the output. The
input stream to the map () method contains three integers: 1, 2, and 3. The map()
method produces one element for each element in the input stream. In this case,
the map() method produces a Stream<Integer> for each integer in the input stream.
It produces three Stream<Integer>s. The first stream contains 1 and 1; the second
one contains 2 and 4; the third one contains 3 and 9. The forEach() method receives
the Stream<Integer> object as its argument and prints the string returned from the
toString() method of each Stream<Integer>. You can call the forEach() on a stream,
so let’s nest its call to print the elements of the stream of streams, like so:

Stream.of(1, 2, 3)
.map(n -> Stream.of(n, n * n))
.forEach(e -> e.forEach(System.out::println));

© W A N R R

You were able to print the numbers and their squares. But you have not achieved
the goal of getting those numbers in a Stream<Integer>. They are still in the
Stream<Stream<Integer». The solution is to use the flatMap() method instead of the
map () method. The following snippet of code does this:

Stream.of(1, 2, 3)
.flatMap(n -> Stream.of(n, n * n))
.forEach(System.out::println);

467

CHAPTER6 STREAMS

O WA N R R

Figure 6-8 shows the pictorial view of how the flatMap() method works in this
example. If you still have doubts about the workings of the flatMap operation, you
can think of its name in the reverse order. Read it as mapFlat, which means “map the
elements of the input stream to streams, and then flatten the mapped streams.”

1> T

3,2,1 29 4,2 |} 9,3,4,2,1,1 4p forEach
3% 9,3 |

1, 2,

flatMap

Figure 6-8. Flattening a stream using the flatMap method

Let’s take another example of the flat map operation. Suppose you have a stream of
strings. How will you count the number of the Es in the strings? The following snippet of
code shows you how to do it:

long count = Stream.of("Ken", "Jeff", "Ellen")
.map(name -> name.chars())
.flatMap(intStream -> intStream.
mapToObj(n -> (char)n))
filter(ch -> ch == 'e' || ch == "E")
.count();
System.out.println("Es count:

+ count);

Es count: 4

468

CHAPTER6 STREAMS

The code maps the strings to IntStream. Note that the chars() method of the
String class returns an IntStream, not a Stream<Character>. The output of the map()
method is Stream<IntStream>. The flatMap() method maps the Stream<IntStream>
to Stream<Stream<Character» and, finally, flattens it to produce a Stream<Character>
So, the output of the flatMap() method is Stream<Character>. The filter() method
filters out any characters that are not an E or e. Finally, the count () method returns the
number of elements in the stream. The main logic is to convert the Stream<String> to a
Stream<Character>. You can achieve the same using the following code as well:

long count = Stream.of("Ken", "Jeff", "Ellen")
.flatMap(name ->
IntStream.range(0, name.length())
.mapToObj(name: : charAt))
.filter(ch -> ch == 'e' || ch == "E")
.count();

The IntStream.range() method creates an IntStream that contains the indexes of
all characters in the input string. The mapToObj () method converts the IntStreaminto a
Stream<Character> whose elements are the characters in the input string.

Applying the Filter Operation

The filter operation is applied on an input stream to produce another stream, which

is known as the filtered stream. The filtered stream contains all elements of the input
stream for which a predicate evaluates to true. A predicate is a function that accepts an
element of the stream and returns a boolean value. Unlike a mapped stream, the filtered
stream is of the same type as the input stream.

The filter operation produces a subset of the input stream. If the predicate evaluates
to false for all elements of the input stream, the filtered stream is an empty stream.
Figure 6-9 shows a pictorial view of applying a filter operation to a stream. The figure
shows that two elements (el and en) from the input stream made it to the filtered stream,
and the other two elements (e2 and e3) were filtered out.

469

CHAPTER6 STREAMS

filter(e)
el J » el
e2 — X
e3 7— X
en en
Input stream Filtered stream

Figure 6-9. A pictorial view of the filter operation

You can apply a filter operation to a stream using the filter() method of the
Stream, IntStream, LongStream, and DoubleStream interfaces. The method accepts
a Predicate. The Streams API offers different flavors of the filter operations, which
I discuss after a few examples of using the filter () method.

Note In a map operation, the new stream contains the same number of elements
with different values from the input stream. In a filter operation, the new stream
contains a different number of elements with the same values from the input
stream.

The following snippet of code uses a stream of people and filters in only females.
It maps the females to their names and prints them to the standard output:

Person.persons()
.stream()
.filter(Person::isFemale)
.map(Person: :getName)
.forEach(System.out: :println);

Donna

Laynie

470

CHAPTER6 STREAMS

The following snippet of code applies two filter operations to print the names of all
males having income more than 5000.0:

Person.persons()
.stream()
.filter(Person::isMale)
.filter(p -> p.getIncome() > 5000.0)
.map(Person: :getName)
.forEach(System.out::println);

Ken
Jeff

You could have accomplished the same using the following statement that uses only
one filter operation that includes both predicates for filtering into one predicate:

Person.persons()
.stream()
.filter(p -> p.isMale() && p.getIncome() > 5000.0)
.map(Person: :getName)
.forEach(System.out::println);

Ken
Jeff

The following methods can be used to apply filter operations to streams:
o Stream<T> skip(long count)
o Stream<T> limit(long maxCount)
o default Stream<T> dropWhile(Predicate<? super T> predicate)
o default Stream<T> takeWhile(Predicate<? super T> predicate)

The skip() method returns the elements of the stream after skipping the specified
count elements from the beginning. The 1imit () method returns elements from the
beginning of the stream that are equal to or less than the specified maxCount. One of
these methods drops elements from the beginning, and another takes elements from
the beginning dropping the remaining. Both work based on the number of elements.
The dropWhile() and takeWhile() are like skip() and 1imit() methods, respectively;
however, they work on a Predicate rather than on the number of elements.

471

CHAPTER6 STREAMS

You can think of the dropWhile() and takeWhile() methods similar to the filter()
method with an exception. The filter () method evaluates the predicate on all
elements, whereas the dropWhile() and takeWhile() methods evaluate the predicate on
elements from the beginning on the stream until the predicate evaluates to false.

For an ordered stream, the dropiWhile() method returns the elements of the stream
discarding the elements from the beginning for which the specified predicate is true.
Consider the following ordered stream of integers:

1, 2, 3, 4, 5, 6; 7

If you use a predicate in the dropWhile() method that returns true for an integer less
than 5, the method will drop the first four elements and return the rest:

Stream.of(1, 2, 3, 4, 5, 6, 7)
.dropWhile(e -> e < 5)
.forEach(System.out: :println);

For an unordered stream, the behavior of the dropWhile() method is
non-deterministic. It may choose to drop any subset of elements matching the
predicate. The current implementation drops the matching elements from the
beginning until it finds a non-matching element. The following snippet of code uses the
dropWhile() method on an unordered stream, and only one of the elements matching
the predicate is dropped:

Stream.of(1, 5, 6, 2, 3, 4, 7)
.dropWhile(e -> e < 5)
.forEach(System.out::println);

~N B W NN Oy U,

472

CHAPTER6 STREAMS

There are two extreme cases for the dropWhile() method. If the first element does
not match the predicate, the method returns the original stream. If all elements match
the predicate, the method returns an empty stream.

The takehWhile() method works the same way as the dropWhile() method, except
that it returns the matching elements from the beginning of the stream and discards the
rest.

Caution Use the dropWhile() and takeWhile() methods with ordered,
parallel streams with great care because you may see a performance hit. In an
ordered, parallel stream, elements must be ordered and returned from all threads
before these methods can return. These methods perform best with sequential
streams.

Applying the Reduce Operation

The reduce operation combines all elements of a stream to produce a single value by
applying a combining function repeatedly. It is also called a reduction operation or a
fold. Computing the sum, maximum, average, count, etc. of elements of a stream of
integers are examples of reduce operations. Collecting elements of a stream in a List,
Set, or Map is also an example of the reduce operation.

The reduce operation takes two parameters called a seed (also called an initial
value) and an accumulator. The accumulator is a function. If the stream is empty, the
seed is the result. Otherwise, the seed represents a partial result. The partial result and
an element are passed to the accumulator, which returns another partial result. This
repeats until all elements are passed to the accumulator. The last value returned from
the accumulator is the result of the reduce operation. Figure 6-10 shows a pictorial view
of the reduce operation.

473

CHAPTER6 STREAMS

seed reduce(seed, op)

el

e2

e3 result

en

Input stream
Figure 6-10. A pictorial view of applying the reduce operation

The stream-related interfaces contain two methods called reduce() and collect()
to perform generic reduce operations. Methods such as sum(), max(), min(), count(),
etc. are also available to perform specialized reduce operations. Note that the specialized
methods are not available for all types of streams. For example, having a sum() method
in the Stream<T> interface does not make sense because adding reference type elements,
such as adding two people, is meaningless. So, you will find methods like sum() only in
IntStream, LongStream, and DoubleStream interfaces. Counting the number of elements
in a stream makes sense for all types of streams. So, the count () method is available
for all types of streams. I discuss the reduce() method in this section. I discuss the
collect() method in several subsequent sections

Let’s consider the following snippet of code, which performs the reduce operation in
the imperative programming style. The code computes the sum of all integers in a list:

// Create the list of integers

List<Integer> numbers = List.of(1, 2, 3, 4, 5);

// Declare an accumulator called sum and initialize
// (or seed) it to zero

int sum = 0;

474

CHAPTER6 STREAMS

for(int num : numbers) {
// Accumulate the partial result in sum
sum = sum + num;
}
// Print the result
System.out.println(sum);

15

The code declares a variable named sum and initializes the variable to 0. If there
is no element in the list, the initial value of sum becomes the result. The for-each
loop traverses the list and keeps storing the partial results in the sum variable, using
it as an accumulator. When the for-each loop finishes, the sum variable contains the
result. As pointed out at the beginning of this chapter, such a for loop has no room for
parallelization; the entire logic must be executed in a single thread.

Consider another example that computes the sum of incomes of persons in a list:

// Declare an accumulator called sum and initialize
// it to zero
double sum = 0.0;
for(Person person : Person.persons()) {
// Map the Person to his income double
double income = person.getIncome();
// Accumulate the partial result in sum
sum = sum + income;

}

System.out.println(sum);

This time, you had to perform an additional step to map the Person to their income
before you could accumulate the partial results in the sum variable.

The Stream<T> interface contains a reduce () method to perform the reduce
operation. The method has three overloaded versions:

o T reduce(T identity, BinaryOperator<T> accumulator)

e <U> U reduce(U identity, BiFunction<U,? super T,U>
accumulator, BinaryOperator<U> combiner)

o Optional<T> reduce(BinaryOperator<T> accumulator)

475

CHAPTER6 STREAMS

The first version of the reduce() method takes an identity and an accumulator as
arguments and reduces the stream to a single value of the same type. You can rewrite the
example of computing the sum of integers in a list as follows:

List<Integer> numbers = List.of(1, 2, 3, 4, 5);
int sum = numbers.stream()

.reduce(0, Integer::sum);
System.out.println(sum);

15

Let’s attempt to do the same with the second example, which computes the sum of
the incomes. The following code generates a compile-time error. Only the relevant part
of the error message is shown:

double sum = Person.persons()
.stream()
.reduce(0.0, Double::sum);

error: no suitable method found for
reduce(double,Double: : sum)
.reduce(0.0, Double::sum);
method Stream.reduce(Person,BinaryOperator
<Person>) is not applicable
(argument mismatch;
double cannot be converted to Person) ...

The stream() method in Person.persons().stream() returns a Stream<Person>,
and, therefore, the reduce() method is supposed to perform a reduction on the Person
objects. However, the first argument to the method is 0.0, which implies that the method
is attempting to operate on the Double type, not the Person type. This mismatch in the
expected argument type Person and the actual argument type Double resulted in the

€rTor.

476

CHAPTER6 STREAMS

You wanted to compute the sum of the incomes of all people. You need to map the
stream of people to a stream of their incomes using the map operation as follows:

double sum = Person.persons()
.stream()
.map(Person: :getIncome)
.reduce(0.0, Double::sum);
System.out.println(sum);

26000.0

Performing a map-reduce operation is typical in functional programming. The
second version of the reduce method, shown again for easy reference, lets you perform a
map operation, followed by a reduce operation.

<U> U reduce(U identity,
BiFunction<U,? super T,U> accumulator,
BinaryOperator<U> combiner)

Note that the second argument, which is the accumulator, takes an argument whose
type may be different from the type of the stream. This is used for the map operation as
well as for accumulating the partial results. The third argument is used for combining
the partial results when the reduce operation is performed in parallel, which I elaborate
on shortly. The following snippet of code prints the sum of the incomes of all people:

double sum = Person.persons()
.stream()
.reduce(0.0, (partialSum, person) ->
partialSum + person.getIncome(), Double::sum);
System.out.println(sum);

26000.0

If you examine the code, the second argument to the reduce () method is sufficient
to produce the desired result in this case. So, what is the purpose of the third argument,
Double: : sum, which is the combiner? In fact, the combiner was not used in the reduce()
operation at all, even if you specified it. You can verify that the combiner was not used
using the following code, which prints a message from the combiner:

477

CHAPTER6 STREAMS

double sum = Person.persons()
.stream()
.reduce(0.0, (partialSum, person) ->
partialSum + person.getIncome(),
(a) b) -2 {
System.out.println(
"Combiner called: a =

+a+"b="4+b);
return a + b;

D;
System.out.println(sum);

26000.0

The output proves that the combiner was not called. Why do you need to provide
the combiner when it is not used? It is used when the reduce operation is performed
in parallel. In that case, each thread will accumulate the partial results using the
accumulator. At the end, the combiner is used to combine the partial results from all
threads to get the result. The following snippet of code shows how the sequential reduce
operation works. The code prints a message at several steps along with the current
thread name that is performing the operation:

double sum = Person.persons()
.stream()
.reduce(0.0,
(Double partialSum, Person p) -> {
double accumulated = partialSum + p.getIncome();
System.out.println(
Thread.currentThread().getName() +

- Accumulator: partialSum = " +
partialSum + ", person = " + p +
", accumulated = " + accumulated);

return accumulated;

}s
(a) b) -2 {

double combined = a + b;

478

CHAPTER 6

System.out.println(
Thread.currentThread().getName() +
" - Combiner: a="+a+",b="+b+

, combined = " + combined);

return combined;

D;
System.out.println(sum);

main - Accumulator: partialSum = 0.0,
person = (1, Ken, MALE, 1970-05-04, 6000.00),
accumulated = 6000.0

main - Accumulator: partialSum = 6000.0,
person = (2, Jeff, MALE, 1970-07-15, 7100.00),
accumulated = 13100.0

main - Accumulator: partialSum = 13100.0,
person = (3, Donna, FEMALE, 1962-07-29, 8700.00),
accumulated = 21800.0

main - Accumulator: partialSum = 21800.0,
person = (4, Chris, MALE, 1993-12-16, 1800.00),
accumulated = 23600.0

main - Accumulator: partialSum = 23600.0,
person = (5, Laynie, FEMALE, 2012-12-13, 0.00),
accumulated = 23600.0

main - Accumulator: partialSum = 23600.0,
person = (6, Li, MALE, 2001-05-09, 2400.00),
accumulated = 26000.0

26000.0

STREAMS

The output shows that the accumulator was sufficient to produce the result, and

the combiner was never called. Notice that there was only one thread named main that

processed all people in the stream.

Let’s turn the stream into a parallel stream, keeping all the debugging messages. The

following code uses a parallel stream to get the sum of the incomes of all people. You

may get different output containing a different message, but the sum value would be the

same as 26000.0.

479

CHAPTER6 STREAMS

double sum = Person.persons()
.parallelStream()
.reduce(0.0,
(Double partialSum, Person p) -> {
double accumulated = partialSum + p.getIncome();
System.out.println(
Thread.currentThread().getName() +

" - Accumulator: partialSum = " +
partialSum + ", person = " + p +
", accumulated = " + accumulated);
return accumulated;
}s
(a) b) -> {

double combined = a + b;

System.out.println(
Thread.currentThread().getName() +
" - Combiner: a ="

+a+",b="4+b+
, combined = " + combined);
return combined;

D;
System.out.println(sum);

ForkJoinPool.commonPool-worker-4 -

Accumulator: partialSum = 0.0,

person = (5, Laynie, FEMALE, 2012-12-13, 0.00),

accumulated = 0.0
ForkJoinPool.commonPool-worker-2 -

Accumulator: partialSum = 0.0,

person = (6, Li, MALE, 2001-05-09, 2400.00),

accumulated = 2400.0
ForkJoinPool.commonPool-worker-1 -

Accumulator: partialSum = 0.0,

person = (2, Jeff, MALE, 1970-07-15, 7100.00),

accumulated = 7100.0
ForkJoinPool.commonPool-worker-2 -

Combiner: a = 0.0, b = 2400.0, combined = 2400.0

480

CHAPTER6 STREAMS

ForkJoinPool.commonPool-worker-5 -
Accumulator: partialSum = 0.0,
person = (3, Donna, FEMALE, 1962-07-29, 8700.00),
accumulated = 8700.0
main - Accumulator: partialSum = 0.0,
person = (4, Chris, MALE, 1993-12-16, 1800.00),
accumulated = 1800.0
ForkJoinPool.commonP