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Foreword

A lot can happen in four years.

This is as true of programming languages as it is of anything else.

Java 11, the first post-8 Java release with long-term support, arrived in September
2018 and the seventh edition of Java in a Nutshell came out a few months later.

Since then, both the wider world and the Java ecosystem have seen major upheavals
that were largely unpredictable at that time.

The new release cadence, of a LTS release every three years (now changed to every
two years), has found favor with the Java ecosystem—very few companies have
chosen to adopt the interim, feature releases, and instead everyone prefers to stay on
an upgrade path where only the LTS releases are productionized.

Java 11 has proved to be an excellent release and a worthy successor to the now-
legacy Java 8.

With the release of Java 17, the language has moved forward yet again, with new
features such as switch expressions and the introduction of Java’s version of alge‐
braic data types, in the form of records and sealed types.

Java performance continues to improve, and Java 17 is the fastest release yet.

In all, this is a great time to be joining (or returning to) application development
in Java. Looking forward, the future holds some major changes that will alter the
character of Java development in fundamental ways.

The next year or two will start to see these changes arrive and become part of the
Java developer’s everyday experience.
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Once again, in working on this new edition of a classic text, if we have preserved
the feel of Java in a Nutshell, while updating it to bring it to the attention of a new
generation of developers, then we shall be well satisfied.

—Ben Evans,
Barcelona, Spain, 2022

Jason Clark, Portland, Oregon
(& Barcelona, Spain), 2022
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Preface

This book is a desktop Java reference, designed to sit faithfully by your keyboard
while you program. Part I, “Introducing Java” is a fast-paced, “no-fluff ” introduc‐
tion to the Java programming language and the core runtime aspects of the Java
platform. Part II, “Working with the Java Platform” is a reference section that blends
elucidation of core concepts with examples of important core APIs. The book covers
Java 17, but we recognize that some shops may not have adopted it yet—so where
possible we call out if a feature was introduced after Java 8. We use Java 17 syntax
throughout, including var and lambda expressions.

Changes in the Eighth Edition
The seventh edition of this book covers Java 11, whereas this edition covers Java 17.
However, the release process of Java changed significantly with the arrival of Java 9,
and certain releases of Java are now badged as long-term support (LTS) releases. So,
Java 17 is the next LTS release of Java after Java 11.

With the eighth edition we have tried to update the concept of what it means to be
a “Nutshell” guide. The modern Java developer needs to know more than just syntax
and APIs. As the Java environment has matured, such topics as concurrency, object-
oriented design, memory, and the Java type system have all grown in importance for
all developers.

In this edition, we have taken the approach that only the most recent versions of
Java are likely to be of interest to the majority of Java developers, so we usually only
call out when new features arrived after Java 8.

For example, the module system (that arrived with Java 9) is still likely to be new
for at least some developers, and it represents a major change. However, it is also
something of an advanced topic and is in someways separate from the rest of the
language, so we have restricted our treatment of it to a single chapter.
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Contents of This Book
The first six chapters document the Java language and the Java platform—they
should all be considered essential reading. The book is biased toward the Ora‐
cle/OpenJDK (Open Java Development Kit) implementation of Java but not greatly
so. Developers working with other Java environments will still find plenty to occupy
them. Part I includes:

Chapter 1, “Introduction to the Java Environment”
This chapter is an overview of the Java language and the Java platform. It
explains the important features and benefits of Java, including the lifecycle of
a Java program. We also touch on Java security and answer some criticisms of
Java.

Chapter 2, “Java Syntax from the Ground Up”
This chapter explains the details of the Java programming language, including
the Java 8 language changes. It is a long and detailed chapter that does not
assume substantial programming experience. Experienced Java programmers
can use it as a language reference. Programmers with substantial experience
with languages such as C and C++ should be able to pick up Java syntax
quickly by reading this chapter; beginning programmers with only a modest
amount of experience should be able to learn Java programming by studying
this chapter carefully, although it is best read in conjunction with an introduc‐
tory text (such as O’Reilly’s Head First Java by Kathy Sierra, Bert Bates, and
Trisha Gee).

Chapter 3, “Object-Oriented Programming in Java”
This chapter describes how the basic Java syntax documented in Chapter 2 is
used to write simple object-oriented programs using classes and objects in Java.
The chapter assumes no prior experience with object-oriented programming. It
can be used as a tutorial by new programmers or as a reference by experienced
Java programmers.

Chapter 4, “The Java Type System”
This chapter builds on the basic description of object-oriented programming
in Java and introduces the other aspects of Java’s type system, such as generic
types, enumerated types, and annotations. With this more complete picture, we
can discuss the biggest change in Java 8—the arrival of lambda expressions.

Chapter 5, “Introduction to Object-Oriented Design in Java”
This chapter is an overview of some basic techniques used in the design of
sound object-oriented programs, and it briefly touches on the topic of design
patterns and their use in software engineering.

Chapter 6, “Java’s Approach to Memory and Concurrency”
This chapter explains how the Java Virtual Machine manages memory on
behalf of the programmer, and how memory and visibility are intimately
entwined with Java’s support for concurrent programming and threads.
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These first six chapters teach you the Java language and get you up and running
with the most important concepts of the Java platform. Part II is all about how
to get real programming work done in the Java environment. It contains plenty of
examples and is designed to complement the cookbook approach found in some
other texts. This part includes:

Chapter 7, “Programming and Documentation Conventions”
This chapter documents important and widely adopted Java programming
conventions. It also explains how you can make your Java code self-
documenting by including specially formatted documentation comments.

Chapter 8, “Working with Java Collections”
This chapter introduces Java’s standard collections libraries. These contain data
structures that are vital to the functioning of virtually every Java program—
such as List, Map, and Set. The new Stream abstraction and the relationship
between lambda expressions and the collections are explained in detail.

Chapter 9, “Handling Common Data Formats”
This chapter discusses how to use Java to work effectively with very common
data formats, such as text, numbers, and temporal (date and time) information.

Chapter 10, “File Handling and I/O”
This chapter covers several different approaches to file access—from the more
classic approach found in older versions of Java, to more modern and even
asynchronous styles. The chapter concludes with a short introduction to net‐
working with the core Java platform APIs.

Chapter 11, “Classloading, Reflection, and Method Handles”
This chapter introduces the subtle art of metaprogramming in Java—first intro‐
ducing the concept of metadata about Java types, then turning to the subject
of classloading and how Java’s security model is linked to the dynamic loading
of types. The chapter concludes with some applications of classloading and the
relatively new feature of method handles.

Chapter 12, “Java Platform Modules”
This chapter describes Java Platform Module System (JPMS), the major feature
that was introduced as part of Java 9, and provides an introduction to the
wide-ranging changes that it brings.

Chapter 13, “Platform Tools”
Oracle’s JDK (as well as OpenJDK) includes a number of useful Java devel‐
opment tools, most notably the Java interpreter and the Java compiler. This
chapter documents those tools, as well as the jshell interactive environment
and new tools for working with modular Java.

Appendix
This appendix covers Java beyond version 17, including the releases Java 18
and 19 as well as ongoing research and development projects to enhance the
language and JVM.
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Related Books
O’Reilly publishes an entire series of books on Java programming, including several
companion books to this one:

Learning Java by Patrick Niemeyer and Daniel Leuck
This book is a comprehensive tutorial introduction to Java and includes topics
such as XML and client-side Java programming.

Java 8 Lambdas by Richard Warburton
This book documents the new Java 8 feature of lambda expressions in detail
and introduces concepts of functional programming that may be unfamiliar to
Java developers coming from earlier versions.

Head First Java by Kathy Sierra, Bert Bates, and Trisha Gee
This book uses a unique approach to teaching Java. Developers who think
visually often find it a great accompaniment to a traditional Java book.

You can find a complete list of Java books from O’Reilly at http://java.oreilly.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.
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This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/kittylyst/javanut8.

If you have a technical question or a problem using the code examples, please send
an email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You do
not need to contact us for permission unless you’re reproducing a significant por‐
tion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Java in a Nutshell,
Eighth Edition by Ben Evans, Jason Clark, and David Flanagan (O’Reilly). Copy‐
right 2023 Benjamin J. Evans and Jason Clark, 978-1-098-13100-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has pro‐
vided technology and business training, knowl‐
edge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/java-in-a-nutshell-8e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia
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I
Introducing Java

Part I is an introduction to the Java language and the Java platform. These chapters
provide enough information for you to get started using Java right away:

Chapter 1, “Introduction to the Java Environment”
Chapter 2, “Java Syntax from the Ground Up”
Chapter 3, “Object-Oriented Programming in Java”
Chapter 4, “The Java Type System”
Chapter 5, “Introduction to Object-Oriented Design in Java”
Chapter 6, “Java’s Approach to Memory and Concurrency”





1
Introduction to the Java

Environment

Welcome to Java in 2023.

You may be coming to the Java world from another tradition, or maybe this is your
first taste of computer programming. Whatever road you may have traveled to get
here, welcome—we’re glad you’ve arrived.

Java is a powerful, general-purpose programming environment. It is one of the most
widely used programming environments in the world and has been exceptionally
successful in business and enterprise computing for over 25 years.

In this chapter, we’ll set the scene by describing the Java language (which program‐
mers write their applications in), the Java execution environment (known as the “Java
Virtual Machine,” which actually runs those applications), and the Java ecosystem
(which provides a lot of the value of the programming environment to development
teams).

All three of these concepts (language, execution environment, and ecosystem) are
habitually referred to just as “Java,” with the precise usage inferred from context. In
practice, they are such connected ideas that this isn’t as confusing as it might first
seem.

We’ll briefly cover the history of the Java language and virtual machine, move on to
discuss the lifecycle of a Java program, and then clear up some common questions
about the differences between Java and other environments.

The Language, the JVM, and the Ecosystem
The base Java programming environment has been around since the late 1990s.
It is composed of the Java language and the supporting runtime, the Java Virtual

3



1 Java ME was an older standard for feature phones and first-generation smartphones. Android
and iOS dominate the market on phones today, and Java ME is no longer being updated.

2 Java EE has now been transferred to the Eclipse Foundation, where it continues its life as the
Jakarta EE project.

Machine (JVM). The third leg—the Java ecosystem beyond the standard library that
ships with Java—is provided by third parties, such as open-source projects and Java
technology vendors.

At the time that Java was initially developed, this split was considered novel, but
trends in software development in the intervening years have made it more com‐
monplace. Notably, Microsoft’s .NET environment, announced a few years after
Java, adopted a very similar approach to platform architecture.

One important difference between Microsoft’s .NET platform and Java is that Java
was always conceived as a relatively open ecosystem of multiple vendors, albeit led
by a steward who owns the technology. Throughout Java’s history, these vendors
have both cooperated and competed on aspects of Java technology.

One of the main reasons for Java’s success is that this ecosystem is a standardized
environment. This means there are specifications for the technologies that comprise
the environment. These standards give the developer and consumer confidence that
the technology will be compatible with other components, even if they come from a
different technology vendor.

The current steward of Java is Oracle Corporation (which acquired Sun Microsys‐
tems, the originator of Java). Other corporations, such as Red Hat, IBM, Amazon,
Microsoft, AliBaba, SAP, Azul Systems, and Bellsoft, are also involved in producing
implementations of standardized Java technologies.

From Java 7 onwards, the reference implementation of Java
is the open source OpenJDK (Java Development Kit), which
many of these companies collaborate on and base their ship‐
ping products upon.

Java was originally composed of several different, but related, environments and
specifications, such as Java Mobile Edition (Java ME),1 Java Standard Edition (Java
SE), and Java Enterprise Edition (Java EE).2 In this book, we’ll only cover Java
SE, version 17, with some historical notes related to when certain features were
introduced into the platform. Generally speaking, if someone says “Java” without
any further clarification, they usually mean Java SE.

We will have more to say about standardization later, so let’s move on to discuss the
Java language and JVM as separate but related concepts.

4 | Chapter 1: Introduction to the Java Environment



What Is the Java Language?
Java programs are written as source code in the Java language. This is a human-
readable programming language, which is strictly class based and object-oriented.
The language syntax is deliberately modeled on that of C and C++, and it was
explicitly intended to be familiar to programmers coming from those languages,
which were very dominant languages at the time Java was created.

Although the source code is similar to C++, in practice Java
includes features and a managed runtime that has much more
in common with dynamic languages such as Smalltalk.

Java is considered to be relatively easy to read and write (if occasionally a bit
verbose). It has a rigid grammar and simple program structure and is intended to
be easy to learn and to teach. It is built on industry experience with languages like
C++ and tries to remove complex features as well as preserving “what works” from
previous programming languages.

The Java language is governed by the Java Language Specification (JLS), which
defines how a conforming implementation must behave.

Overall, Java is intended to provide a stable, solid base for companies to develop
business-critical applications. As a programming language, it has a relatively conser‐
vative design and a slow rate of change. These properties are a conscious attempt
to serve the goal of protecting the investment that organizations have made in Java
technology.

The language has undergone gradual revision (but no complete rewrites) since its
inception in 1996. This does mean that some of Java’s original design choices, which
were expedient in the late 1990s, are still affecting the language today—see Chapters
2 and 3 for more details.

On the other hand, in the last 10 or so years, Java has modernized its language
syntax somewhat, to address concerns about verbosity and provide features more
familiar to programmers coming from other popular languages.

For example, in 2014, Java 8 added the most radical changes seen in the language
for almost a decade. Features like lambda expressions and the introduction of
the Streams API were enormously popular and changed forever the way that Java
developers write code.

As we’ll discuss later in this chapter, the Java project has transitioned to a new
release model. In this new model Java versions are released every 6 months but
only certain versions (8, 11, and 17) are considered eligible for LTS. All other
versions are supported for only 6 months and have not seen widespread adoption
by development teams.

The Language, the JVM, and the Ecosystem | 5
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What Is the JVM?
The JVM is a program that provides the runtime environment necessary for Java
programs to execute. Java programs cannot run unless there is a JVM available for
the appropriate hardware and OS platform we wish to execute on.

Fortunately, the JVM has been ported to run on a large number of hardware
environments—anything from a set-top box or Blu-ray player to a huge mainframe
will probably have a JVM available for it. The JVM has its own specification, the
Java Virtual Machine Specification, and every implementation must conform to
the rules of the specification. When new hardware types arrive in the mainstream
market then it is likely that companies or individuals interested in the hardware
will start a project to port OpenJDK to the new chip. A recent example of this was
the new Apple M1 chip—Red Hat ported the JVM to the AArch64 architecture and
then Microsoft ported the build changes needed to build on Apple’s silicon.

Java programs can be started in several ways, but the simplest (and oldest) method
is to start from a command line:

java <arguments> <program name>

This brings up the JVM as an operating system process that provides the Java
runtime environment and then executes our program in the context of the freshly
started (and empty) virtual machine.

It is important to understand that when the JVM takes in a Java program for
execution, the program is not provided as Java language source code. Instead,
the Java language source must be compiled into a form known as Java bytecode.
Java bytecode is then supplied to the JVM in a format called class files (which
always have a .class extension). The Java platform has always emphasized backward
compatibility, and code written for Java 1.0 will still run on today’s JVMs without
modification or recompilation.

The JVM provides an execution environment for the program. It starts an interpreter
for the bytecode form of the program that steps through one bytecode instruction
at a time. However, production-quality JVMs also provide a special compiler that
operates while the Java program is running. This compiler (known as a “JIT” or
just-in-time) will accelerate the important parts of the program by replacing them
with equivalent compiled (and heavily optimized) machine code.

You should also be aware that both the JVM and the user program are capable of
spawning additional threads of execution, so that a user program may have many
different functions running simultaneously.

The original design of the JVM was built on many years of experience with earlier
programming environments, notably C and C++, so we can think of it as having
several different goals—all intended to make life easier for the programmer:

• Comprise a standard execution environment for application code to run inside•
• Facilitate secure and reliable code execution (as compared to C/C++)•
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• Take low-level memory management out of the hands of developers•
• Provide a cross-platform execution environment•

These objectives are often mentioned together in discussions of the platform.

We’ve already mentioned the first of these goals, when we discussed the JVM and its
bytecode interpreter—it functions as the container for application code.

We’ll discuss the second and third goals in Chapter 6, when we talk about how the
Java environment deals with memory management.

The fourth goal, sometimes called “write once, run anywhere” (WORA), is the
property that Java class files can be moved from one execution platform to another,
and they will run unaltered provided a JVM is available.

This means that a Java program can be developed (and converted to class files) on
a machine running macOS on an M1 chip, and then the class files can be moved to
Linux or Microsoft Windows on Intel hardware (or other platforms) and the Java
program will run without any further work needed.

The Java environment has been very widely ported, includ‐
ing to platforms that are very different from mainstream plat‐
forms like Linux, macOS, and Windows. In this book, we
use the phrase “most implementations” to indicate those plat‐
forms that the majority of developers are likely to encounter;
macOS, Windows, Linux, BSD Unix, and the like are all
considered “mainstream platforms” and count within “most
implementations.”

In addition to these four primary goals, there is another aspect of the JVM’s
design that is not always recognized or discussed—it uses runtime information to
self-manage.

Software research in the 1970s and 1980s revealed that the runtime behavior of
programs has a large number of interesting and useful patterns that cannot be
deduced at compile time. The JVM was the first truly mainstream programming
environment to use the results of this research.

It collects runtime information to make better decisions about how to execute code.
That means that the JVM can monitor and optimize a program running on it in a
manner not possible for platforms without this capability.

A key example is the runtime fact that not all parts of a Java program are equally
likely to be called during the lifetime of the program—some portions will be called
far, far more often than others. The Java platform takes advantage of this fact with a
technology called just-in-time (JIT) compilation.

In the HotSpot JVM (which was the JVM that Sun first shipped as part of Java 1.3,
and is still in use today), the JVM first identifies which parts of the program are
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called most often—the “hot methods.” Then the JVM compiles these hot methods
directly into machine code, bypassing the JVM interpreter.

The JVM uses the available runtime information to deliver higher performance than
would be possible from purely interpreted execution. In fact, the optimizations that
the JVM uses now in many cases produce performance that surpasses compiled C
and C++ code.

The standard that describes how a properly functioning JVM must behave is called
the JVM Specification.

What Is the Java Ecosystem?
The Java language is easy to learn and contains relatively few abstractions, com‐
pared to other programming languages. The JVM provides a solid, portable, high-
performance base for Java (or other languages) to execute on. Taken together, these
two connected technologies provide a foundation that businesses can feel confident
about when choosing where to base their development efforts.

The benefits of Java do not end there, however. Since Java’s inception, an extremely
large ecosystem of third-party libraries and components has grown up. This means
that a development team can benefit hugely from the existence of connectors and
drivers for practically every technology imaginable—both proprietary and open
source.

In the modern technology ecosystem, it is now rare indeed to find a technology
component that does not offer a Java connector. From traditional relational data‐
bases, to NoSQL, to every type of enterprise monitoring system, to messaging
systems, to Internet of Things (IoT)—everything integrates with Java.

It is this fact that has been a major driver of adoption of Java technologies by
enterprises and larger companies. Development teams have been able to unlock
their potential by making use of preexisting libraries and components. This has
promoted developer choice and encouraged open, best-of-breed architectures with
Java technology cores.

Google’s Android environment is sometimes thought of as
being “based on Java.” However, the picture is actually rather
more complicated. Android code is written in Java (or the
Kotlin language) but originally used a different implementa‐
tion of Java’s class libraries along with a cross compiler to con‐
vert to a different file format for a non-Java virtual machine.

The combination of a rich ecosystem and a first-rate virtual machine with an open
standard for program binaries makes the Java platform a very attractive execution
target. In fact, there are a large number of non-Java languages that target the JVM
and also interoperate with Java (which allows them to piggyback off the platform’s
success). These languages include Kotlin, JRuby, Scala, Clojure, and many others.
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While all of them are small compared to Java, they have distinct niches within the
Java world and provide a source of innovation and healthy competition to Java.

The Lifecycle of a Java Program
To better understand how Java code is compiled and executed, and the difference
between Java and other types of programming environments, consider the pipeline
in Figure 1-1.

Figure 1-1. How Java code is compiled and loaded

This starts wth Java source and passes it through the javac program to produce
class files—which contain the source code compiled to Java bytecode. The class file
is the smallest unit of functionality the platform will deal with and the only way to
get new code into a running program.

New class files are onboarded via the classloading mechanism (see Chapter 10 for a
lot more detail on how classloading works). This makes the new code (represented
as a type) available to the interpreter for execution, and execution begins in the
main() method.

The performance analysis and optimization of Java program is a major topic,
and interested readers should consult a specialist text, such as Optimizing Java
(O’Reilly).

Frequently Asked Questions
In this section, we’ll discuss some of the most frequently asked questions about Java
and the lifecycle of programs written in the Java environment.

What is a virtual machine?
When developers are first introduced to the concept of a virtual machine, they
sometimes think of it as “a computer inside a computer” or “a computer simulated
in software.” It’s then easy to imagine bytecode as “machine code for the CPU of
the internal computer” or “machine code for a made-up processor.” However, this
simple intuition can be misleading.
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What is bytecode?
In fact, JVM bytecode is actually not very similar to machine code that would
run on a real hardware processor. Instead, computer scientists would call bytecode
a type of intermediate representation—a halfway house between source code and
machine code.

Is javac a compiler?
Compilers usually produce machine code, but javac produces bytecode, which is
not that similar to machine code. However, class files are a bit like object files (like
Windows .dll files, or Unix .so files)—and they are certainly not human readable.

In theoretical computer science terms, javac is most similar to the front half of a
compiler—it creates the intermediate representation that can then be used later to
produce (emit) machine code.

However, because creation of class files is a separate build-time step that resembles
compilation in C/C++, many developers consider running javac to be compilation.
In this book, we will use the terms “source code compiler” or "javac compiler” to
mean the production of class files by javac.

We will reserve “compilation” as a standalone term to mean JIT compilation—as it’s
JIT compilation that actually produces machine code.

Why is it called “bytecode”?
The instruction code (opcode) is just a single byte (some operations also have
parameters that follow them in the bytestream), so there are only 256 possible
instructions. In practice, some are unused—about 200 are in use, but some of them
aren’t emitted by recent versions of javac.

Is bytecode optimized?
In the early days of the platform, javac produced heavily optimized bytecode. This
turned out to be a mistake.

With the advent of JIT compilation, the important methods are going to be com‐
piled to very fast machine code. It’s therefore very important to make the job of the
JIT compiler easier—as there are much bigger gains available from JIT compilation
than there are from optimizing bytecode, which will still have to be interpreted.

Is bytecode really machine independent? What about things like endianness?
The format of bytecode is always the same, regardless of what type of machine it
was created on. This includes the byte ordering (sometimes called “endianness”)
of the machine. For readers who are interested in the details, bytecode is always
big-endian.
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Is Java an interpreted language?
The JVM is basically an interpreter (with JIT compilation to give it a big perfor‐
mance boost). However, most interpreted languages directly interpret programs
from source form (usually by constructing an abstract syntax tree from the input
source file). The JVM interpreter, on the other hand, requires class files—which, of
course, require a separate source code compilation step with javac.

In fact, the modern version of many languages that were traditionally interpreted
(such as PHP, Ruby, and Python) now also have JIT compilers, so the divide
between “interpreted” and “compiled” languages is increasingly blurred. Once again,
Java’s design decisions have been validated by their adoption in other programming
environments.

Can other languages run on the JVM?
Yes. The JVM can run any valid class file, so this means that non-Java languages
can run on the JVM in several ways. First, they could have a source code compiler
(similar to javac) that produces class files, which would run on the JVM just like
Java code (this is the approach taken by languages like Kotlin and Scala).

Alternatively, a non-Java language could implement an interpreter and runtime in
Java and then interpret the source form of their language directly. This second
option is the approach taken by languages like JRuby (but JRuby has a very sophisti‐
cated runtime that is capable of secondary JIT compilation in some circumstances).

Comparing Java to Other Languages
In this section, we’ll briefly highlight some differences between the Java platform
and other programming environments you may be familiar with.

Java Compared to JavaScript

• Java is statically typed; JavaScript is dynamically typed.•
• Java uses class-based objects; JavaScript is prototype based (the JS keyword•
class is syntactic sugar).

• Java provides good object encapsulation; JavaScript does not.•
• Java has namespaces; JavaScript does not.•
• Java is multithreaded; JavaScript is not.•

Java Compared to Python

• Java is statically typed; Python is dynamically typed (with optional, gradual•
typing).
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• Java is an OO language with functional programming (FP) features; Python is a•
hybrid OO / procedural language with some FP support.

• Java and Python both have a bytecode format—Java uses JVM class files;•
Python uses Python bytecode.

• Java’s bytecode has extensive static checks; Python’s bytecode does not.•
• Java is multithreaded; Python allows only one thread to execute Python byte‐•

code at once (the Global Interpreter Lock).

Java Compared to C

• Java is object-oriented; C is procedural.•
• Java is portable as class files; C needs to be recompiled.•
• Java provides extensive instrumentation as part of the runtime.•
• Java has no pointers and no equivalent of pointer arithmetic.•
• Java provides automatic memory management via garbage collection.•
• Java currently has no ability to lay out memory at a low level (no structs).•
• Java has no preprocessor.•

Java Compared to C++

• Java has a simplified object model compared to C++.•
• Java’s method dispatch is virtual by default.•
• Java is always pass-by-value (but one of the only possibilities for Java values is•

object references).
• Java does not support full multiple inheritance.•
• Java’s generics are less powerful (but also less dangerous) than C++ templates.•
• Java has no operator overloading.•

Answering Some Criticisms of Java
Java has had a long history in the public eye and, as a result, has attracted its fair
share of criticism over the years. Some of this negative press can be attributed to
some technical shortcomings combined with rather overzealous marketing in the
first versions of Java.

Some criticisms have, however, entered technical folklore despite no longer being
very accurate. In this section, we’ll look at some common grumbles and the extent
to which they’re true for modern versions of the platform.
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Overly Verbose
The Java core language has sometimes been criticized as overly verbose. Even simple
Java statements such as Object o = new Object(); seem to be repetitious—the
type Object appears on both the left and right side of the assignment. Critics
point out that this is essentially redundant, that other languages do not need this
duplication of type information, and that many languages support features (e.g.,
type inference) that remove it.

The counterpoint to this argument is that Java was designed from the start to be
easy to read (code is read more often than written) and that many programmers,
especially novices, find the extra type information helpful when reading code.

Java is widely used in enterprise environments, which often have separate dev and
ops teams. The extra verbosity can often be a blessing when you are responding to
an outage call, or when you need to maintain and patch code that was written by
developers who have long since moved on.

In recent versions of Java, the language designers have attempted to respond to
some of these points by finding places where the syntax can become less verbose
and by making better use of type information. For example:

// Files helper methods
byte[] contents =
  Files.readAllBytes(Paths.get("/home/ben/myFile.bin"));

// Diamond syntax for repeated type information
List<String> l = new ArrayList<>();

// Local variables can be type inferred
var threadPool = Executors.newScheduledThreadPool(2);

// Lambda expressions simplify Runnables
threadPool.submit(() -> { System.out.println("On Threadpool"); });

However, Java’s overall philosophy is to make changes to the language only very
slowly and carefully, so the pace of these changes may not satisfy detractors
completely.

Slow to Change
The original Java language is now well over 20 years old and has not undergone
a complete revision in that time. Many other languages (e.g., Microsoft’s C#) have
released backward-incompatible versions in the same period, and some developers
criticize Java for not doing likewise.

Furthermore, in recent years, the Java language has come under fire for being slow
to adopt language features that are now commonplace in other languages.

The conservative approach to language design that Sun (and now Oracle) has taken
is an attempt to avoid imposing the costs and externalities of misfeatures on a very
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large user base. Many Java shops have made major investments in the technology,
and the language designers have taken seriously the responsibility of not disrupting
the existing user and install base.

Each new language feature needs to be very carefully thought about—not only in
isolation but in terms of how it will interact with all the existing features of the
language. New features can sometimes have impacts beyond their immediate scope
—and Java is widely used in very large codebases, where there are more potential
places for an unexpected interaction to manifest.

It is almost impossible to remove a feature that turns out to be incorrect after it has
shipped. Java has a couple of misfeatures (such as the serialization mechanism) that
have been all-but-impossible to remove safely without impacting the install base.
The language designers have taken the view that extreme caution is required when
evolving the language.

Having said that, the new language features that have arrived in recent versions are
a significant step toward addressing the most common complaints about missing
features, and they should cover many of the idioms that developers have been
asking for.

Performance Problems
The Java platform is still sometimes criticized for being slow—but of all the criti‐
cisms that are leveled at the platform, this is probably the one that is least justified. It
is a genuine myth about the platform.

Release 1.3 of Java brought in the HotSpot Virtual Machine and its JIT compiler.
Since then, there have been over 15 years of continual innovation and improvement
in the virtual machine and its performance. The Java platform is now blazingly
fast, regularly winning performance benchmarks on popular frameworks, and even
beating native-compiled C and C++.

Criticism in this area appears to be largely caused by a folk memory that Java was
slow at some point in the past. Some of the larger, more sprawling architectures that
Java has been used within may also have contributed to this impression.

The truth is that any large architecture will require benchmarking, analysis, and
performance tuning to get the best out of it—and Java is no exception.

The core of the platform—language and JVM—was and remains one of the fastest
general-use environments available to the developer.

Insecure
Some people have historically criticized Java’s record of security vulnerabilities.

Many of these vulnerabilities involved the desktop and GUI components of the Java
system and wouldn’t affect websites or other server-side code written in Java.
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The truth is that Java has been designed from the ground up with security in mind;
this gives it a great advantage over many other existing systems and platforms. The
Java security architecture was designed by security experts and has been studied and
probed by many other security experts since the platform’s inception. The consensus
is that the architecture itself is strong and robust, without any security holes in the
design (at least none that have been discovered yet).

Fundamental to the design of the security model is that bytecode is heavily restric‐
ted in what it can express—there is no way, for example, to directly address mem‐
ory. This cuts out entire classes of security problems that have plagued languages
like C and C++. Furthermore, the VM goes through a process known as bytecode
verification whenever it loads an untrusted class, which removes a further large class
of problems (see Chapter 10 for more about bytecode verification).

Despite all this, however, no system can guarantee 100% security, and Java is no
exception.

While the design is still theoretically robust, the implementation of the security
architecture is another matter, and there is a long history of security flaws being
found and patched in particular implementations of Java. In all likelihood, security
flaws will continue to be discovered (and patched) in Java VM implementations.

All programming platforms have security issues at times, and many other languages
have a comparable history of security vulnerabilities that have been significantly
less well publicized. For practical server-side coding, Java remains perhaps the most
secure general-purpose platform currently available, especially when kept patched
up to date.

Too Corporate
Java is a platform that is extensively used by corporate and enterprise developers.
The perception that it is too corporate is therefore not surprising—Java has often
been perceived as lacking the “freewheeling” style of languages that are deemed to
be more community oriented.

In truth, Java has always been, and remains, a very widely used language for com‐
munity and free or open source software development. It is one of the most popular
languages for projects hosted on GitHub and other project-hosting sites. Not only
that, but the Java community is regularly held up as one of the real strengths of the
ecosystem—with user groups, conferences, journals, and all of the most visible signs
of an active and healthy user community.

Finally, the most widely used implementation of the language itself is based on
OpenJDK—which is itself an open-source project with a vibrant and growing
community.
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A Brief History of Java and the JVM
Java 1.0 (1996)

This was the first public version of Java. It contained just 212 classes organized
in eight packages.

Java 1.1 (1997)
This release of Java more than doubled the size of the Java platform. This
release introduced “inner classes” and the first version of the Reflection API.

Java 1.2 (1998)
This was a very significant release of Java; it tripled the size of the Java plat‐
form. This release marked the first appearance of the Java Collections API
(with sets, maps, and lists). The many new features in the 1.2 release led Sun to
rebrand the platform as “the Java 2 Platform.” The term “Java 2” was simply a
trademark, however, and not an actual version number for the release.

Java 1.3 (2000)
This was primarily a maintenance release, focused on bug fixes, stability, and
performance improvements. This release also brought in the HotSpot Java
Virtual Machine, which is still in use today (although heavily modified and
improved since then).

Java 1.4 (2002)
This was another fairly big release, adding important new functionality such
as a higher-performance, low-level I/O API; regular expressions for text han‐
dling; XML and XSLT libraries; SSL support; a logging API; and cryptography
support.

Java 5 (2004)
This large release of Java introduced a number of changes to the core language
itself, including generic types, enumerated types (enums), annotations, varargs
methods, autoboxing, and a new for loop. These changes were considered
significant enough to change the major version number and to start numbering
as major releases. This release included 3,562 classes and interfaces in 166
packages. Notable additions included utilities for concurrent programming, a
remote management framework, and classes for the remote management and
instrumentation of the Java VM itself.

Java 6 (2006)
This release was also largely a maintenance and performance release. It intro‐
duced the Compiler API, expanded the usage and scope of annotations, and
provided bindings to allow scripting languages to interoperate with Java. There
were also a large number of internal bug fixes and improvements to the JVM
and the Swing GUI technology.

Java 7 (2011)
The first release of Java under Oracle’s stewardship included a number of
major upgrades to the language and platform, as well as being the first release
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to be based on the Open Source reference implementation. The introduction
of try-with-resources and the NIO.2 API enabled developers to write much
safer and less error-prone code for handling resources and I/O. The Method
Handles API provided a simpler and safer alternative to reflection; in addition,
it opened the door for invokedynamic (the first new bytecode since version 1.0
of Java).

Java 8 (2014) (LTS)
This was a huge release—potentially the most significant changes to the lan‐
guage since Java 5 (or possibly ever). The introduction of lambda expressions
provided the ability to significantly enhance the productivity of developers,
the Collections were updated to make use of lambdas, and the machinery
required to achieve this marked a fundamental change in Java’s approach to
object orientation. Other major updates include a new date and time API and
major updates to the concurrency libraries.

Java 9 (2017)
Significantly delayed, this release introduced the new platform modularity fea‐
ture, which allows Java applications to be packaged into deployment units and
modularize the platform runtime. Other changes include a new default garbage
collection algorithm, a new API for handling processes, and some changes to
the way that frameworks can access the internals. This release also changed the
release cycle itself, so that new versions arrive every 6 months, but only the
LTS releases have gained traction. Accordingly, we only record the LTS releases
beyond this point.

Java 11 (September 2018) (LTS)
This release was the first modular Java to be considered as a long-term sup‐
port (LTS) release. It adds a few new features that are directly visible to the
developer—primarily improved support for type inference (var), JDK Flight
Recorder (JFR), and the new HTTP/2 API. There were some additional inter‐
nal changes and substantial performance improvements, but this LTS release
was primarily intended for stabilization after Java 9.

Java 17 (September 2021) (LTS)
The current version LTS release. Includes important changes to Java’s OO
model (Sealed classes, Records, and Nestmates) as well as Switch Expressions,
Text Blocks, and a first version of language Pattern Matching. The JVM had
additional performance improvements and better support for running in con‐
tainers. The internal upgrades continued, and two new garbage collectors were
added.

As it stands, the only current production versions are the LTS releases, 11 and 17.
Due to the highly significant changes that are introduced by modules, Java 8 was
retrospectively declared to be an LTS release to provide extra time for teams and
applications to migrate to a supported modular Java. It is now considered a “classic”
release, and teams are strongly encouraged to migrate to one of the modern LTS
versions.

A Brief History of Java and the JVM | 17

Intro
d

uctio
n



Summary
In this introductory chapter, we’ve placed Java in context within the overall land‐
scape and history of programming languages. We’ve compared the language to
other popular alternatives, taken a first look at the basic anatomy of how a Java
program is compiled and executed, and tried to dispel some of the popular myths
about Java.

The next chapter covers Java’s language syntax—primarily from a bottom-up per‐
spective, focusing on the individual basic units of lexical syntax and building
upwards. If you are already familiar with the syntax of a language similar to Java
(such as JavaScript, C or C++), you may choose to skim or skip this chapter and
refer to it when you encounter any syntax that is unfamiliar to you.
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2
Java Syntax from the Ground Up

This chapter is fairly dense but should provide a comprehensive introduction to
Java syntax. It is written primarily for readers who are new to the language but
have some previous programming experience. Determined novices with no prior
programming experience may also find it useful. If you already know Java, you
should find it a useful language reference. The chapter includes some comparisons
of Java to JavaScript, C, and C++ for the benefit of programmers coming from those
languages.

This chapter documents the syntax of Java programs by starting at the very lowest
level of Java syntax and building from there, moving on to increasingly higher
orders of structure. It covers:

• The characters used to write Java programs and the encoding of those•
characters.

• Literal values, identifiers, and other tokens that comprise a Java program.•
• The data types that Java can manipulate.•
• The operators used in Java to group individual tokens into larger expressions.•
• Statements, which group expressions and other statements to form logical•

chunks of Java code.
• Methods, which are named collections of Java statements that can be invoked•

by other Java code.
• Classes, which are collections of methods and fields. Classes are the central•

program element in Java and form the basis for object-oriented programming.
Chapter 3 is devoted entirely to a discussion of classes and objects.

19



• Packages, which are collections of related classes.•
• Java programs, which consist of one or more interacting classes that may be•

drawn from one or more packages.

The syntax of most programming languages is complex, and Java is no exception. In
general, it is not possible to document all elements of a language without referring
to other elements that have not yet been discussed. For example, it is not really
possible to explain in a meaningful way the operators and statements supported by
Java without referring to objects. But it is also not possible to document objects
thoroughly without referring to the operators and statements of the language. The
process of learning Java, or any language, is therefore an iterative one.

Java Programs from the Top Down
Before we begin our bottom-up exploration of Java syntax, let’s take a moment for
a top-down overview of a Java program. Java programs consist of one or more files,
or compilation units, of Java source code. Near the end of the chapter, we describe
the structure of a Java file and explain how to compile and run a Java program.
Each compilation unit begins with an optional package declaration followed by
zero or more import declarations. These declarations specify the namespace within
which the compilation unit will define names and the namespaces from which the
compilation unit imports names. We’ll see package and import again later in this
chapter in “Packages and the Java Namespace” on page 98.

The optional package and import declarations are followed by zero or more refer‐
ence type definitions. We will meet the full variety of possible reference types in
Chapters 3 and 4, but for now, we should note that these are most often either class
or interface definitions.

Within the definition of a reference type, we will encounter members such as
fields, methods, and constructors. Methods are the most important kind of member.
Methods are blocks of Java code composed of statements.

With these basic terms defined, let’s start by approaching a Java program from
the bottom up by examining the basic units of syntax—often referred to as lexical
tokens.

Lexical Structure
This section explains the lexical structure of a Java program. It starts with a discus‐
sion of the Unicode character set in which Java programs are written. It then covers
the tokens that comprise a Java program, explaining comments, identifiers, reserved
words, literals, and so on.
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The Unicode Character Set
Java programs are written using Unicode. You can use Unicode characters anywhere
in a Java program, including comments and identifiers such as variable names.
Unlike the 7-bit ASCII character set, which is useful only for English, and the
8-bit ISO Latin-1 character set, which is useful only for major Western European
languages, the Unicode character set can represent virtually every written language
in common use on the planet.

If you do not use a Unicode-enabled text editor, or if you
do not want to force other programmers who view or edit
your code to use a Unicode-enabled editor, you can embed
Unicode characters into your Java programs using the special
Unicode escape sequence \uxxxx—that is, a backslash and
a lowercase u, followed by four hexadecimal characters. For
example, \u0020 is the space character, and \u03c0 is the
character π.

Java has invested a large amount of time and engineering effort in ensuring that its
Unicode support is first class. If your business application needs to deal with global
users, especially in non-Western markets, then the Java platform is a great choice.
Java also has support for multiple encodings and character sets, in case applications
need to interact with non-Java applications that do not speak Unicode.

Case Sensitivity and Whitespace
Java is a case-sensitive language. Its keywords are written in lowercase and must
always be used that way. That is, While and WHILE are not the same as the while
keyword. Similarly, if you declare a variable named i in your program, you may not
refer to it as I.

In general, relying on case sensitivity to distinguish identifiers
is a terrible idea. The more similar identifiers there are, the
more difficult the code is to read and understand. Do not use
it in your own code, and in particular never give an identifier
the same name as a keyword but differently cased.

Java ignores spaces, tabs, newlines, and other whitespace, except when they appear
within quoted characters and string literals. Programmers typically use whitespace
to format and indent their code for easy readability, but it has no influence on
the program’s behavior as indents do in Python. You will see common indentation
conventions in this book’s code examples.

Comments
Comments are natural-language text intended for human readers of a program.
They are ignored by the Java compiler. Java supports three types of comments.
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The first type is a single-line comment, which begins with the characters // and
continues until the end of the current line. For example:

int i = 0;   // Initialize the loop variable

The second kind of comment is a multiline comment. It begins with the charac‐
ters /* and continues, over any number of lines, until the characters */. Any text
between the /* and the */ is ignored by javac. Although this style of comment is
typically used for multiline comments, it also can be used for single-line comments.
This type of comment cannot be nested (i.e., one /* */ comment cannot appear
within another). When writing multiline comments, programmers often use extra *
characters to make the comments stand out. Here is a typical multiline comment:

/*
 * First, establish a connection to the server.
 * If the connection attempt fails, quit right away.
 */

The third type of comment is a special case of the second. If a comment begins
with /**, it is regarded as a special doc comment. Like regular multiline comments,
doc comments end with */ and cannot be nested. When you write a Java class you
expect other programmers to use, provide doc comments to embed documentation
about the class and each of its methods directly into the source code. A program
named javadoc extracts these comments and processes them to create online doc‐
umentation for your class. A doc comment can contain HTML tags and can use
additional syntax understood by javadoc. For example:

/**
 * Upload a file to a web server.
 *
 * @param file The file to upload.
 * @return <tt>true</tt> on success,
 *         <tt>false</tt> on failure.
 * @author David Flanagan
 */

See Chapter 7 for more information on the doc comment syntax and Chapter 13 for
more information on the javadoc program.

Comments may appear between any tokens of a Java program but may not appear
within a token. In particular, comments may not appear within double-quoted
string literals. A comment within a string literal simply becomes a literal part of that
string.

Reserved Words
The following words are reserved in Java (they are part of the syntax of the language
and may not be used to name variables, classes, and so forth):

abstract   const      final        int         public        throw
assert     continue   finally      interface   return        throws
boolean    default    float        long        short         transient
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break      do         for          native      static        true
byte       double     goto         new         strictfp      try
case       else       if           null        super         void
catch      enum       implements   package     switch        volatile
char       extends    import       private     synchronized  while
class      false      instanceof   protected   this
_ (underscore)

Of these, true, false, and null are technically literals.

Note that const and goto are reserved but aren’t actually used in the language and
that interface has an additional variant form—@interface, which is used when
defining types known as annotations. Some of the reserved words (notably final
and default) have a variety of meanings depending on context.

Other keywords exist that are not reserved in general and are known as contextual
keywords.

exports      opens      requires     uses
module       permits    sealed       var
non-sealed   provides   to           with
open         record     transitive   yield

var indicates a local variable that should be type-inferred. sealed, non-sealed,
and record are used when defining classes, which we’ll meet in Chapter 3. yield
appears within switch expressions we’ll meet later in this chapter, while the remain‐
ing contextual keywords deal with modules, the syntax and use of which are covered
in Chapter 12.

Using contextual keywords as variable names, while allowed
for compatibility, is discouraged. var var = "var"; may be
a valid statement, but it is a valid statement that ought to be
viewed with suspicion.

Identifiers
An identifier is simply a name given to some part of a Java program, such as a class,
a method within a class, or a variable declared within a method. Identifiers may
be of any length and may contain letters and digits drawn from the entire Unicode
character set. An identifier may not begin with a digit.

In general, identifiers may not contain punctuation characters. Exceptions include
the dollar sign ($) as well as other Unicode currency symbols such as £ and ¥.

Currency symbols are intended for use in automatically gener‐
ated source code, such as code produced by javac. By avoid‐
ing the use of currency symbols in your own identifiers, you
don’t have to worry about collisions with automatically gener‐
ated identifiers.
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The ASCII underscore (_) also deserves special mention. Originally, the underscore
could be freely used as an identifier or part of one. However, in recent versions of
Java, including Java 17, the underscore may not be used as an identifier.

The underscore character can still appear in a Java identifier, but it is no longer legal
as a complete identifier by itself. This is to support an expected forthcoming lan‐
guage feature whereby the underscore will acquire a special new syntactic meaning.

The usual Java convention is to name variables using camel case. This means that
the first letter of a variable should be lowercase but that the first letter of any other
words in the identifier should be uppercase.

Formally, the characters allowed at the beginning of and within an identifier are
defined by the methods isJavaIdentifierStart() and isJavaIdentifierPart()
of the class java.lang.Character.

The following are examples of legal identifiers:

i    x1    theCurrentTime    current    獺

Note in particular the example of a UTF-8 identifier, 獺. This is the Kanji character
for “otter” and is perfectly legal as a Java identifier. The use of non-ASCII identifiers
is unusual in programs predominantly written by Westerners, but it is sometimes
seen.

Literals
Literals are sequences of source characters that directly represent constant values
that appear as is in Java source code. They include integer and floating-point
numbers, single characters within single quotes, strings of characters within double
quotes, and the reserved words true, false, and null. For example, the following
are all literals:

1    1.0    '1'    1L    "one"    true    false    null

The syntax for expressing numeric, character, and string literals is detailed in
“Primitive Data Types” on page 25.

Punctuation
Java also uses a number of punctuation characters as tokens. The Java Language
Specification divides these characters (somewhat arbitrarily) into two categories,
separators and operators. The 12 separators are:

(   ) {   } [   ]

... @ ::

; , .
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The operators are:

+ — * / % & | ^ << >> >>>

+= -= *= /= %= &= |= ^= <<= >>= >>>=

= == != < <= > >=

! ~ && || ++ -- ? : ->

We’ll see separators throughout the book and will cover each operator individually
in “Expressions and Operators” on page 34.

Primitive Data Types
Java supports eight basic data types known as primitive types as described in
Table 2-1. The primitive types include a boolean type, a character type, four
integer types, and two floating-point types. The four integer types and the two
floating-point types differ in the number of bits that represent them and therefore
in the range of numbers they can represent. Note that the size of these types is the
notional size in the Java language. Different JVM implementations may use more
actual space to hold these values due to padding, alignment, and the like.

Table 2-1. Java primitive data types

Type Contains Default Size Range

boolean true or false false 1 bit NA

char Unicode character \u0000 16 bits \u0000 to \uFFFF

byte Signed integer 0 8 bits –128 to 127

short Signed integer 0 16 bits –32768 to 32767

int Signed integer 0 32 bits –2147483648 to 2147483647

long Signed integer 0 64 bits –9223372036854775808 to 9223372036854775807

float IEEE 754 floating point 0.0 32 bits 1.4E–45 to 3.4028235E+38

double IEEE 754 floating point 0.0 64 bits 4.9E–324 to 1.7976931348623157E+308
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The next section summarizes these primitive data types. In addition to these primi‐
tive types, Java supports nonprimitive data types known as reference types, which
are introduced in “Reference Types” on page 94.

The boolean Type
The boolean type represents truth values. This type has only two possible values,
representing the two Boolean states: on or off, yes or no, true or false. Java reserves
the words true and false to represent these two Boolean values.

Programmers coming to Java from other languages (especially JavaScript, Python,
or C) should note that Java is much stricter about its Boolean values than other
languages; in particular, a boolean is neither an integral nor an object type, and
incompatible values cannot be used in place of a boolean. In other words, you
cannot take shortcuts such as the following in Java:

Object o = new Object();
int i = 1;

if (o) {     // Invalid!
  while(i) {
    //...
  }
}

Instead, Java forces you to write cleaner code by explicitly stating the comparisons
you want:

if (o != null) {
  while(i != 0) {
    // ...
  }
}

The char Type
The char type represents Unicode characters. Java has a slightly unique approach to
representing characters—javac accepts identifiers and literals as UTF-8 (a variable-
width encoding) in input. However, internally, Java represents chars in a fixed-width
encoding—either a 16-bit encoding (before Java 9) or as ISO-8859-1 (an 8-bit
encoding, used for Western European languages, also called Latin-1) if possible
(Java 9 and later).

This distinction between external and internal representation does not normally
need to concern the developer. In most cases, all that is required is to remember
the rule that to include a character literal in a Java program, simply place it between
single quotes (apostrophes):

char c = 'A';

You can, of course, use Unicode characters as character literals with the \u Unicode
escape sequence. In addition, Java supports a number of other escape sequences that
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make it easy both to represent commonly used nonprinting ASCII characters, such
as newline, and to escape certain punctuation characters that have special meaning
in Java. For example:

char tab = '\t', nul = '\000', aleph = '\u05D0', backslash = '\\';

Table 2-2 lists the escape characters that can be used in char literals. These charac‐
ters can also be used in string literals, which are covered in the next section.

Table 2-2. Java escape characters

Escape
sequence

Character value

\b Backspace

\t Horizontal tab

\n Newline

\f Form feed

\r Carriage return

\" Double quote

\' Single quote

\\ Backslash

\xxx The Latin-1 character with the encoding xxx, where xxx is an octal (base 8) number
between 000 and 377. The forms \x and \xx are also legal, as in \0, but are not
recommended because they can cause difficulties in string constants where the escape
sequence is followed by a regular digit. This form is generally discouraged in favor of the
\uXXXX form.

\uxxxx The Unicode character with encoding xxxx, where xxxx is four hexadecimal digits. Unicode
escapes can appear anywhere in a Java program, not only in character and string literals.

char values can be converted to and from the various integral types, and the char
data type is a 16-bit integral type. Unlike byte, short, int, and long, however,
char is an unsigned type and may receive values only in the range 0 to 65535. The
Character class defines a number of useful static methods for working with char‐
acters, including isDigit(), isJavaLetter(), isLowerCase(), and toUpperCase().

The Java language and its char type were designed with Unicode in mind. The
Unicode standard is evolving, however, and each new version of Java adopts a new
version of Unicode. Java 11 uses Unicode 10.0.0 and Java 17 uses Unicode 13.0.
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A complication in recent Unicode releases is the introduction of characters whose
encodings, or codepoints, do not fit in 16 bits. These supplementary characters,
which are mostly infrequently used Han (Chinese) ideographs, occupy 21 bits and
cannot be represented in a single char value. Instead, you must use an int value
to hold the codepoint of a supplementary character, or you must encode it into a
so-called “surrogate pair” of two char values.

Unless you commonly write programs that use Asian languages, you are unlikely
to encounter any supplementary characters. If you do anticipate having to process
characters that do not fit into a char, methods have been added to the Character,
String, and related classes for working with text using int codepoints.

String literals
In addition to the char type, Java also has a data type for working with strings of
text (usually simply called strings). The String type is a class, however, and is not
one of the primitive types of the language. Because strings are so commonly used,
though, Java does have syntax for including string values literally in a program. A
String literal consists of arbitrary text within double quotes (as opposed to the
single quotes for char literals). For example:

"Hello World"
"'This' is a string!"

Recent versions of Java also introduced a multiline string literal syntax called text
blocks. A text block begins with a """ and a newline and ends when another
sequence of """ is seen. These are handled entirely by the javac compiler and result
in identical string literals to normal " strings in bytecode.

"""
Multi-line text blocks
Can use "double quotes" without escaping
"""

String literals can contain any of the escape sequences that can appear as char
literals (see Table 2-2). Use the \" sequence to include a double quote within a
standard String literal. Text blocks allow such escape sequences but do not require
them for newlines or double quotes.

Because String is a reference type, string literals are described in more detail later
in this chapter in “String literals” on page 84. Chapter 9 contains more details on
some of the ways you can work with String objects in Java.

Integer Types
The integer types in Java are byte, short, int, and long. As shown in Table 2-1,
these four types differ only in the number of bits and, therefore, in the range of
numbers each type can represent. All integral types represent signed numbers; there
is no unsigned keyword as there is in C and C++.
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1 Technically, the minus sign is an operator that operates on the literal and not part of the literal
itself.

Literals for each of these types are written exactly as you would expect: as a
sequence of decimal digits, optionally preceded by a minus sign.1 Digits in any
of these literals may be separated by an underscore (_) for better readability. Here
are some legal integer literals:

0
1
123
9_000
-42000

Integer literals are 32-bit values (and so are taken to be the Java type int) unless
they end with the character L or l, in which case they are 64-bit values (and are
understood to be the Java type long):

1234        // An int value
1234L       // A long value
0xffL       // Another long value

Integer literals can also be expressed in hexadecimal, binary, or octal notation. A
literal that begins with 0x or 0X is taken as a hexadecimal number, using the letters A
to F (or a to f) as the additional digits required for base-16 numbers.

Integer binary literals start with 0b and may, of course, feature only the digits 1 or 0.
Use of the underscore separator in binary literals is very common, as binary literals
can be very long.

Java also supports octal (base-8) integer literals. These literals begin with a leading 0
and cannot include the digits 8 or 9. They are not often used and should be avoided
unless needed. Legal hexadecimal, binary, and octal literals include:

0xff              // Decimal 255, expressed in hexadecimal
0377              // The same number, expressed in octal (base 8)
0b0010_1111       // Decimal 47, expressed in binary
0xCAFEBABE        // A magic number used to identify Java class files

Integer arithmetic in Java never produces an overflow or an underflow when you
exceed the range of a given integer type. Instead, numbers just wrap around. For
example, let’s look at an overflow:

byte b1 = 127, b2 = 1;        // Largest byte is 127
byte sum = (byte)(b1 + b2);   // Sum wraps to -128, the smallest byte

and the corresponding underflow behavior:

byte b3 = -128, b4 = 5;        // Smallest byte is -128
byte sum2 = (byte)(b3 - b4);   // Sum wraps to a large byte value, 123
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Neither the Java compiler nor the Java interpreter warns you in any way when this
occurs. When doing integer arithmetic, you simply must ensure that the type you
are using has a sufficient range for the purposes you intend. Integer division by zero
and modulo by zero are illegal and cause an ArithmeticException to be thrown.
(We’ll see more about exceptions soon in “Checked and Unchecked Exceptions” on
page 79).

Each integer type has a corresponding wrapper class: Byte, Short, Integer, and
Long. Each of these classes defines MIN_VALUE and MAX_VALUE constants that describe
the range of the type. Each class also provides a static valueOf() method that is
strongly preferred for creating an instance of the wrapper class from a primitive
value. While the wrapper classes have plain constructors that take the primitives,
they are deprecated and should be avoided. The wrapper classes also define useful
static methods, such as Byte.parseByte() and Integer.parseInt(), for converting
strings to integer values.

Floating-Point Types
Real numbers in Java are represented by the float and double data types. As
shown in Table 2-1, float is a 32-bit, single-precision, floating-point value, and
double is a 64-bit, double-precision, floating-point value. Both types adhere to the
IEEE 754-1985 standard, which specifies both the format of the numbers and the
behavior of arithmetic for the numbers.

Floating-point values can be included literally in a Java program as an optional
string of digits, followed by a decimal point and another string of digits. Here are
some examples:

123.45
0.0
.01

Floating-point literals can also use exponential, or scientific, notation, in which a
number is followed by the letter e or E (for exponent) and another number. This
second number represents the power of 10 by which the first number is multiplied.
For example:

1.2345E02    // 1.2345 * 10^2 or 123.45
1e-6         // 1 * 10^-6 or 0.000001
6.02e23      // Avogadro's Number: 6.02 * 10^23

Floating-point literals are double values by default. To include a float value literally
in a program, follow the number with f or F:

double d = 6.02E23;
float f = 6.02e23f;

Floating-point literals cannot be expressed in hexadecimal, binary, or octal notation.
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Floating-Point Representations
Most real numbers, by their very nature, cannot be represented exactly in any finite
number of bits. Thus, it is important to remember that float and double values are
only approximations of the numbers they are meant to represent. A float is a 32-bit
approximation, which results in at least six significant decimal digits, and a double
is a 64-bit approximation, which results in at least 15 significant digits. In Chapter 9,
we will cover floating-point representations in more detail.

In addition to representing ordinary numbers, the float and double types can
also represent four special values: positive and negative infinity, zero, and NaN.
The infinity values result when a floating-point computation produces a value that
overflows the representable range of a float or double.

When a floating-point computation underflows the representable range of a float
or a double, a zero value results.

We can imagine repeatedly dividing the double value 1.0 by
2.0 (e.g., in a while loop). In mathematics, no matter how
often we perform the division, the result will never become
equal to zero. However, in a floating-point representation,
after enough divisions, the result will eventually be so small as
to be indistinguishable from zero.

The Java floating-point types make a distinction between positive zero and negative
zero, depending on the direction from which the underflow occurred. In practice,
positive and negative zero behave pretty much the same. Finally, the last special
floating-point value is NaN, which stands for “Not a Number.” The NaN value
results when an illegal floating-point operation, such as 0.0/0.0, is performed. Here
are examples of statements that result in these special values:

double inf = 1.0/0.0;             // Infinity
double neginf = -1.0/0.0;         // Negative infinity
double negzero = -1.0/inf;        // Negative zero
double NaN = 0.0/0.0;             // Not a Number

The float and double primitive types have corresponding classes, named Float
and Double. Each of these classes defines the following useful constants: MIN_VALUE,
MAX_VALUE, NEGATIVE_INFINITY, POSITIVE_INFINITY, and NaN. Much like the inte‐
ger wrapper classes, the floating-point wrappers also have a static valueOf() for
constructing instances.
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Java floating-point types can handle overflow to infinity and
underflow to zero and have a special NaN value. This means
floating-point arithmetic never throws exceptions, even when
performing illegal operations, like dividing zero by zero or
taking the square root of a negative number.

The infinite floating-point values behave as you would expect. Adding or subtract‐
ing any finite value to or from infinity, for example, yields infinity. Negative zero
behaves almost identically to positive zero, and, in fact, the == equality operator
reports that negative zero is equal to positive zero. One way to distinguish negative
zero from positive, or regular, zero is to divide by it: 1.0/0.0 yields positive infinity,
but 1.0 divided by negative zero yields negative infinity. Finally, because NaN is Not
a Number, the == operator says that it is not equal to any other number, including
itself!

double NaN = 0.0/0.0;             // Not a Number
NaN == NaN;                       // false
Double.isNaN(NaN);                // true

To check whether a float or double value is NaN, you must use the Float.isNaN()
and Double.isNaN() methods.

Primitive Type Conversions
Java allows conversions between integer values and floating-point values. In addi‐
tion, because every character corresponds to a number in the Unicode encoding,
char values can be converted to and from the integer and floating-point types. In
fact, boolean is the only primitive type that cannot be converted to or from another
primitive type in Java.

There are two basic types of conversions. A widening conversion occurs when a
value of one type is converted to a wider type—one that has a larger range of legal
values. For example, Java performs widening conversions automatically when you
assign an int literal to a double variable or a char literal to an int variable.

Narrowing conversions are another matter, however. A narrowing conversion occurs
when a value is converted to a type that is not wider than it is. Narrowing conver‐
sions are not always safe: it is reasonable to convert the integer value 13 to a byte,
for example, but it is not reasonable to convert 13,000 to a byte, because byte can
hold only numbers between –128 and 127. Because you can lose data in a narrowing
conversion, javac complains when you attempt any narrowing conversion, even if
the value being converted would in fact fit in the narrower range of the specified
type:

int i = 13;
// byte b = i;    // Incompatible types: possible lossy conversion
                  // from int to byte
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The one exception to this rule is that you can assign an integer literal (an int value)
to a byte or short variable if the literal falls within the range of the variable.

byte b = 13;

If you need to perform a narrowing conversion and are confident you can do so
without losing data or precision, you can force Java to perform the conversion using
a language construct known as a cast. Perform a cast by placing the name of the
desired type in parentheses before the value to be converted. For example:

int i = 13;
byte b = (byte) i;   // Force the int to be converted to a byte
i = (int) 13.456;    // Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point values to
integers. When you do this, the fractional part of the floating-point value is simply
truncated (i.e., the floating-point value is rounded toward zero, not toward the near‐
est integer). The static methods Math.round(), Math.floor(), and Math.ceil()
perform other types of rounding.

The char type acts like an integer type in most ways, so a char value can be used
anywhere an int or long value is required. Recall, however, that the char type is
unsigned, so it behaves differently than the short type, even though both are 16 bits
wide:

short s = (short) 0xffff; // These bits represent the number -1
char c = '\uffff';        // The same bits, as a Unicode character
int i1 = s;               // Converting the short to an int yields -1
int i2 = c;               // Converting the char to an int yields 65535

Table 2-3 shows which primitive types can be converted to which other types
and how the conversion is performed. The letter N in the table means that the
conversion cannot be performed. The letter Y means that the conversion is a
widening conversion and is therefore performed automatically and implicitly by
Java. The letter C means that the conversion is a narrowing conversion and requires
an explicit cast.

Finally, the notation Y* means that the conversion is an automatic widening conver‐
sion, but some of the least significant digits of the value may be lost in the conver‐
sion. This can happen when you are converting an int or long to a floating-point
type—see the table for details. The floating-point types have a larger range than the
integer types, so any int or long can be represented by a float or double. However,
the floating-point types are approximations of numbers and cannot always hold as
many significant digits as the integer types (see Chapter 9 for some more detail
about floating-point numbers).
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Table 2-3. Java primitive type conversions

 Convert to:        

Convert from: boolean byte short char int long float double

boolean - N N N N N N N

byte N - Y C Y Y Y Y

short N C - C Y Y Y Y

char N C C - Y Y Y Y

int N C C C - Y Y* Y

long N C C C C - Y* Y*

float N C C C C C - Y

double N C C C C C C -

Expressions and Operators
So far in this chapter, we’ve learned about the primitive types that Java programs can
manipulate and seen how to include primitive values as literals in a Java program.
We’ve also used variables as symbolic names that represent, or hold, values. These
literals and variables are the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java program. The Java inter‐
preter evaluates an expression to compute its value. The very simplest expressions
are called primary expressions and consist of literals and variables. So, for example,
the following are all expressions:

1.7         // A floating-point literal
true        // A Boolean literal
sum         // A variable

When the Java interpreter evaluates a literal expression, the resulting value is the
literal itself. When the interpreter evaluates a variable expression, the resulting value
is the value stored in the variable.

Primary expressions are not very interesting. More complex expressions are made
by using operators to combine primary expressions. For example, the following
expression uses the assignment operator to combine two primary expressions—a
variable and a floating-point literal—into an assignment expression:

sum = 1.7
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But operators are used not just with primary expressions; they also can be used with
expressions at any level of complexity. The following are all legal expressions:

sum = 1 + 2 + 3 * 1.2 + (4 + 8)/3.0
sum/Math.sqrt(3.0 * 1.234)
(int)(sum + 33)

Operator Summary
The kinds of expressions you can write in a programming language depend entirely
on the set of operators available to you. Java has a wealth of operators, but to work
effectively with them, you must understand two important concepts: precedence and
associativity. These concepts—and the operators themselves—are explained in more
detail in the following sections.

Precedence
The P column of Table 2-4 specifies the precedence of each operator. Precedence
specifies the order in which operations are performed. Operations that have higher
precedence are performed before those with lower precedence. For example, con‐
sider this expression:

a + b * c

The multiplication operator has higher precedence than the addition operator, so a
is added to the product of b and c, just as we expect from elementary mathematics.
Operator precedence can be thought of as a measure of how tightly operators bind
to their operands. The higher the number, the more tightly they bind.

Default operator precedence can be overridden through the use of parentheses that
explicitly specify the order of operations. The previous expression can be rewritten
to specify that the addition should be performed before the multiplication:

(a + b) * c

The default operator precedence in Java was chosen for compatibility with C; the
designers of C chose this precedence so that most expressions can be written
naturally without parentheses. Only a few common Java idioms require parentheses.
Examples include:

// Class cast combined with member access
((Integer) o).intValue();

// Assignment combined with comparison
while((line = in.readLine()) != null) { ... }

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) != 0) { ... }

Expressions and Operators | 35

Java Syntax



Associativity
Associativity is a property of operators that defines how to evaluate expressions that
would otherwise be ambiguous. This is particularly important when an expression
involves several operators that have the same precedence.

Most operators are left-to-right associative, which means that the operations are
performed from left to right. The assignment and unary operators, however, have
right-to-left associativity. The A column of Table 2-4 specifies the associativity of
each operator or group of operators. The value L means left to right, and R means
right to left.

The additive operators are all left-to-right associative, so the expression a+b-c is
evaluated from left to right: (a+b)-c. Unary operators and assignment operators are
evaluated from right to left. Consider this complex expression:

a = b += c = -~d

This is evaluated as follows:

a = (b += (c = -(~d)))

As with operator precedence, operator associativity establishes a default order of
evaluation for an expression. This default order can be overridden through the use
of parentheses. However, the default operator associativity in Java has been chosen
to yield a natural expression syntax.

Operator summary table
Table 2-4 summarizes the operators available in Java. The P and A columns of the
table specify the precedence and associativity of each group of related operators,
respectively. The table is ordered from highest precedence to lowest. Use this table
as a quick reference for operators (especially their precedence) when required.

Table 2-4. Java operators

P A Operator Operand type(s) Operation performed

16 L . object, member Object member access

[ ] array, int Array element access

( args ) method, arglist Method invocation

++, -- variable Post-increment, post-decrement

15 R ++, -- variable Pre-increment, pre-decrement

+, - number Unary plus, unary minus
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P A Operator Operand type(s) Operation performed

~ integer Bitwise complement

! boolean Boolean NOT

14 R new class, arglist Object creation

( type ) type, any Cast (type conversion)

13 L *, /, % number, number Multiplication, division, remainder

12 L +, - number, number Addition, subtraction

+ string, any String concatenation

11 L << integer, integer Left shift

>> integer, integer Right shift with sign extension

>>> integer, integer Right shift with zero extension

10 L <, <= number, number Less than, less than or equal

>, >= number, number Greater than, greater than or equal

instanceof reference, type Type comparison

9 L == primitive, primitive Equal (have identical values)

!= primitive, primitive Not equal (have different values)

== reference, reference Equal (refer to same object)

!= reference, reference Not equal (refer to different objects)

8 L & integer, integer Bitwise AND

& boolean, boolean Boolean AND

7 L ^ integer, integer Bitwise XOR

^ boolean, boolean Boolean XOR

6 L ǀ integer, integer Bitwise OR
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P A Operator Operand type(s) Operation performed

ǀ boolean, boolean Boolean OR

5 L && boolean, boolean Conditional AND

4 L ǀǀ boolean, boolean Conditional OR

3 R ? : boolean, any Conditional (ternary) operator

2 R = variable, any Assignment

*=, /=, %=, variable, any Assignment with operation

+=, -=, <<=,

>>=, >>>=,

&=, ^=, ǀ=

1 R → arglist, method body lambda expression

Operand number and type
The fourth column of Table 2-4 specifies the number and type of the operands
expected by each operator. Some operators operate on only one operand; these are
called unary operators. For example, the unary minus operator changes the sign of a
single number:

-n             // The unary minus operator

Most operators, however, are binary operators that operate on two operand values.
The – operator actually comes in both forms:

a – b          // The subtraction operator is a binary operator

Java also defines one ternary operator, often called the conditional operator. It is like
an if statement inside an expression. Its three operands are separated by a question
mark and a colon; the second and third operands must be convertible to the same
type:

x > y ? x : y  // Ternary expression; evaluates to larger of x and y

In addition to expecting a certain number of operands, each operator also expects
particular types of operands. The fourth column of the table lists the operand types.
Some of the codes used in that column require further explanation:

Number
An integer, floating-point value, or character (i.e., any primitive type except
boolean). Auto-unboxing (see “Boxing and Unboxing Conversions” on page
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98) means that the wrapper classes (such as Character, Integer, and Double)
for these types can be used in this context as well.

Integer
A byte, short, int, long, or char value (long values are not allowed for the
array access operator [ ]). With auto-unboxing, Byte, Short, Integer, Long,
and Character values are also allowed.

Reference
An object or array.

Variable
A variable or anything else, such as an array element, to which a value can be
assigned.

Return type
Just as every operator expects its operands to be of specific types, each operator
produces a value of a specific type. The arithmetic, increment and decrement,
bitwise, and shift operators return a double if at least one of the operands is a
double. They return a float if at least one of the operands is a float. They return a
long if at least one of the operands is a long. Otherwise, they return an int, even if
both operands are byte, short, or char types that are narrower than int.

The comparison, equality, and Boolean operators always return boolean values.
Each assignment operator returns whatever value it assigned, which is of a type
compatible with the variable on the left side of the expression. The conditional
operator returns the value of its second or third argument (which must both be
convertible to the same type).

Side effects
Every operator computes a value based on one or more operand values. Some
operators, however, have side effects in addition to their basic evaluation. If an
expression contains side effects, evaluating it changes the state of a Java program in
such a way that evaluating the expression again may yield a different result.

For example, the ++ increment operator has the side effect of incrementing a
variable. The expression ++a increments the variable a and returns the newly incre‐
mented value. If this expression is evaluated again, the value will be different. The
various assignment operators also have side effects. For example, the expression
a*=2 can also be written as a=a*2. The value of the expression is the value of a
multiplied by 2, but the expression has the side effect of storing that value back
into a.

The method invocation operator () has side effects if the invoked method has side
effects. Some methods, such as Math.sqrt(), simply compute and return a value
without side effects of any kind. Typically, however, methods do have side effects.
Finally, the new operator has the profound side effect of creating a new object.
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Order of evaluation
When the Java interpreter evaluates an expression, it performs the various opera‐
tions in an order specified by the parentheses in the expression, the precedence
of the operators, and the associativity of the operators. Before any operation is
performed, however, the interpreter first evaluates the operands of the operator.
(The exceptions are the &&, ||, and ?: operators, which do not always evaluate all
their operands.) The interpreter always evaluates operands in order from left to
right. This matters if any of the operands are expressions that contain side effects.
Consider this code, for example:

int a = 2;
int v = ++a + ++a * ++a;

Although the multiplication is performed before the addition, the operands of the +
operator are evaluated first. As the operand of ++ are both ++a, these are evaluated
to 3 and 4, and so the expression evaluates to 3 + 4 * 5, or 23.

Arithmetic Operators
The arithmetic operators can be used with integers, floating-point numbers, and
even characters (i.e., they can be used with any primitive type other than boolean).
If either of the operands is a floating-point number, floating-point arithmetic is
used; otherwise, integer arithmetic is used. This matters because integer arithmetic
and floating-point arithmetic differ in the way division is performed and in the way
underflows and overflows are handled, for example. The arithmetic operators are:

Addition (+)
The + operator adds two numbers. As we’ll see shortly, the + operator can also
be used to concatenate strings. If either operand of + is a string, the other one
is converted to a string as well. Be sure to use parentheses when you want to
combine addition with concatenation. For example:

System.out.println("Total: " + 3 + 4);   // Prints "Total: 34", not 7!

The + operator can also be used in unary form to express a positive number,
such as +42.

Subtraction (-)
When the - operator is used as a binary operator, it subtracts its second
operand from its first. For example, 7-3 evaluates to 4. The - operator can also
perform unary negation.

Multiplication (*)
The * operator multiplies its two operands. For example, 7*3 evaluates to 21.

Division (/)
The / operator divides its first operand by its second. If both operands are
integers, the result is an integer, and any remainder is lost. If either operand
is a floating-point value, however, the result is a floating-point value. When
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you divide two integers, division by zero throws an ArithmeticException. For
floating-point calculations, however, division by zero simply yields an infinite
result or NaN:

7/3          // Evaluates to 2
7/3.0f       // Evaluates to 2.333333f
7/0          // Throws an ArithmeticException
7/0.0        // Evaluates to positive infinity
0.0/0.0      // Evaluates to NaN

Modulo (%)
The % operator computes the first operand modulo the second operand (i.e., it
returns the remainder when the first operand is divided by the second operand
an integral number of times). For example, 7%3 is 1. The sign of the result
is the same as the sign of the first operand. While the modulo operator is
typically used with integer operands, it also works for floating-point values.
For example, 4.3%2.1 evaluates to 0.1. When you are operating with integers,
trying to compute a value modulo zero causes an ArithmeticException. When
you are working with floating-point values, anything modulo 0.0 evaluates to
NaN, as does infinity modulo anything.

Unary minus (-)
When the - operator is used as a unary operator—that is, before a single
operand—it performs unary negation. In other words, it converts a positive
value to an equivalently negative value, and vice versa.

String Concatenation Operator
In addition to adding numbers, the + operator (and the related += operator) also
concatenates, or joins, strings. If either of the operands to + is a string, the operator
converts the other operand to a string. For example:

// Prints "Quotient: 2.3333333"
System.out.println("Quotient: " + 7/3.0f);

As a result, you must be careful to put any addition expressions in parentheses when
combining them with string concatenation. If you do not, the addition operator is
interpreted as a concatenation operator.

Java has built-in string conversions for all primitive types. An object is converted
to a string by invoking its toString() method. Some classes define custom
toString() methods so that objects of that class can easily be converted to
strings in this way. Sadly not all classes return friendly results when converted
to strings. For example, the built-in toString() for an array doesn’t return a useful
string representation of its contents, only information about the array object itself.

Increment and Decrement Operators
The ++ operator increments its single operand, which must be a variable, an element
of an array, or a field of an object, by 1. The behavior of this operator depends
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on its position relative to the operand. When used before the operand, where it is
known as the pre-increment operator, it increments the operand and evaluates to the
incremented value of that operand. When used after the operand, where it is known
as the post-increment operator, it increments its operand but evaluates to the value
of that operand before it was incremented.

For example, the following code sets both i and j to 2:

i = 1;
j = ++i;

But these lines set i to 2 and j to 1:

i = 1;
j = i++;

Similarly, the -- operator decrements its single numeric operand, which must be
a variable, an element of an array, or a field of an object, by one. Like the ++
operator, the behavior of -- depends on its position relative to the operand. When
used before the operand, it decrements the operand and returns the decremented
value. When used after the operand, it decrements the operand but returns the
undecremented value.

The expressions x++ and x-- are equivalent to x = x + 1 and x = x - 1, respec‐
tively, except that when you are using the increment and decrement operators, x
is evaluated only once. If x is itself an expression with side effects, this makes a
big difference. For example, these two expressions are not equivalent, as the second
form increments i twice:

a[i++]++;             // Increments an element of an array

// Adds 1 to an array element and stores new value in another element
a[i++] = a[i++] + 1;

These operators, in both prefix and postfix forms, are most commonly used to
increment or decrement the counter that controls a loop. However, an increasing
number of programmers prefer to avoid using the increment and decrement oper‐
ators altogether, preferring to use explicit code. This view is motivated by the
large number of bugs that have, historically, been caused by incorrect usage of the
operators.

Comparison Operators
The comparison operators consist of the equality operators that test values for
equality or inequality and the relational operators used with ordered types (num‐
bers and characters) to test for greater than and less than relationships. Both types
of operators yield a boolean result, so they are typically used with if statements,
the ternary conditional operator, or while and for loops to make branching and
looping decisions. For example:
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if (o != null) ...;           // The not equals operator
while(i < a.length) ...;      // The less than operator

Java provides the following equality operators:

Equals (==)
The == operator evaluates to true if its two operands are equal and false
otherwise. With primitive operands, it tests whether the operand values them‐
selves are identical. For operands of reference types, however, it tests whether
the operands refer to the same object or array. In other words, it does not test
the equality of two distinct objects or arrays. In particular, note that you cannot
test two distinct strings for equality with this operator.

If you experiment comparing strings via == you may
see results that suggest it works properly. This is a side
effect of Java’s internal caching of strings, known as
interning. The only reliable way to compare strings (or
any other reference type for that matter) for equality is
the equals() method.
The same applies with primitive wrapper classes, so
new Integer(1) != new Integer(1), while the prefer‐
red Integer.valueOf(1) == Integer.valueOf(1) does.
The lesson is clearly that looking at equality on any
nonprimitive type should be done with equals(). More
discussion of object equality can be found in “equals()”
on page 209.

If == is used to compare two numeric or character operands that are not of the
same type, the narrower operand is converted to the type of the wider operand
before the comparison is done. For example, when you are comparing a short
to a float, the short is first converted to a float before the comparison is
performed. For floating-point numbers, the special negative zero value tests
equal to the regular, positive zero value. Also, the special NaN (Not a Number)
value is not equal to any other number, including itself. To test whether a
floating-point value is NaN, use the Float.isNan() or Double.isNan() method.

Not equals (!=)
The != operator is exactly the opposite of the == operator. It evaluates to true if
its two primitive operands have different values or if its two reference operands
refer to different objects or arrays. Otherwise, it evaluates to false.

The relational operators can be used with numbers and characters but not with
boolean values, objects, or arrays because those types are not ordered.

Java provides the following relational operators:

Less than (<)
Evaluates to true if the first operand is less than the second.
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Less than or equal (<=)
Evaluates to true if the first operand is less than or equal to the second.

Greater than (>)
Evaluates to true if the first operand is greater than the second.

Greater than or equal (>=)
Evaluates to true if the first operand is greater than or equal to the second.

Boolean Operators
As we’ve just seen, the comparison operators compare their operands and yield a
boolean result, which is often used in branching and looping statements. In order
to make branching and looping decisions based on conditions more interesting
than a single comparison, you can use the Boolean (or logical) operators to com‐
bine multiple comparison expressions into a single, more complex expression. The
Boolean operators require their operands to be boolean values and they evaluate to
boolean values. The operators are:

Conditional AND (&&)
This operator performs a Boolean AND operation on its operands. It evaluates
to true if and only if both its operands are true. If either or both operands are
false, it evaluates to false. For example:

if (x < 10 && y > 3) ... // If both comparisons are true

This operator (and all the Boolean operators except the unary ! operator) have
a lower precedence than the comparison operators. Thus, it is perfectly legal
to write a line of code like the one just shown. However, some programmers
prefer to use parentheses to make the order of evaluation explicit:

if ((x < 10) && (y > 3)) ...

You should use whichever style you find easier to read.

This operator is called a conditional AND because it conditionally evaluates
its second operand. If the first operand evaluates to false, the value of the
expression is false, regardless of the value of the second operand. Therefore,
to increase efficiency, the Java interpreter takes a shortcut and skips the second
operand. The second operand is not guaranteed to be evaluated, so you must
use caution when using this operator with expressions that have side effects.
On the other hand, the conditional nature of this operator allows us to write
Java expressions such as the following:

if (data != null && i < data.length && data[i] != -1)
    ...

The second and third comparisons in this expression would cause errors if the
first or second comparisons evaluated to false. Fortunately, we don’t have to
worry about this because of the conditional behavior of the && operator.
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Conditional OR (||)
This operator performs a Boolean OR operation on its two boolean operands.
It evaluates to true if either or both of its operands are true. If both operands
are false, it evaluates to false. Like the && operator, || does not always
evaluate its second operand. If the first operand evaluates to true, the value of
the expression is true, regardless of the value of the second operand. Thus, the
operator simply skips the second operand in that case.

Boolean NOT (!)
This unary operator changes the boolean value of its operand. If applied to a
true value, it evaluates to false, and if applied to a false value, it evaluates to
true. It is useful in expressions like these:

if (!found) ...          // found is a boolean declared somewhere
while (!c.isEmpty()) ... // The isEmpty() method returns a boolean

Because ! is a unary operator, it has a high precedence and often must be used
with parentheses:

if (!(x > y && y > z))

Boolean AND (&)
When used with boolean operands, the & operator behaves like the && operator,
except that it always evaluates both operands, regardless of the value of the first
operand. This operator is almost always used as a bitwise operator with integer
operands, however, and many Java programmers would not even recognize its
use with boolean operands as legal Java code.

Boolean OR (|)
This operator performs a Boolean OR operation on its two boolean operands.
It is like the || operator, except that it always evaluates both operands, even if
the first one is true. The | operator is almost always used as a bitwise operator
on integer operands; its use with boolean operands is very rare.

Boolean XOR (^)
When used with boolean operands, this operator computes the exclusive OR
(XOR) of its operands. It evaluates to true if exactly one of the two operands
is true. In other words, it evaluates to false if both operands are false or if
both operands are true. Unlike the && and || operators, this one must always
evaluate both operands. The ^ operator is much more commonly used as a
bitwise operator on integer operands. With boolean operands, this operator is
equivalent to the != operator.

Bitwise and Shift Operators
The bitwise and shift operators are low-level operators that manipulate the individ‐
ual bits that make up an integer value. The bitwise operators are not commonly
used in modern Java except for low-level work (e.g., network programming). They
are used for testing and setting individual flag bits in a value. To understand their
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behavior, you must understand binary (base-2) numbers and the two’s complement
format used to represent negative integers.

You cannot use these operators with floating-point, boolean, array, or object
operands. When used with boolean operands, the &, |, and ^ operators perform
a different operation, as described in the previous section.

If either of the arguments to a bitwise operator is a long, the result is a long.
Otherwise, the result is an int. If the left operand of a shift operator is a long, the
result is a long; otherwise, the result is an int. The operators are:

Bitwise complement (~)
The unary ~ operator is known as the bitwise complement, or bitwise NOT,
operator. It inverts each bit of its single operand, converting 1s to 0s and 0s to
1s. For example:

byte b = ~12;           // ~00001100 =  => 11110011 or -13 decimal
flags = flags & ~f;     // Clear flag f in a set of flags

Bitwise AND (&)
This operator combines its two integer operands by performing a Boolean
AND operation on their individual bits. The result has a bit set only if the
corresponding bit is set in both operands. For example:

10 & 7                   // 00001010 & 00000111 =  => 00000010 or 2
if ((flags & f) != 0)    // Test whether flag f is set

When used with boolean operands, & is the infrequently used Boolean AND
operator described earlier.

Bitwise OR (|)
This operator combines its two integer operands by performing a Boolean OR
operation on their individual bits. The result has a bit set if the corresponding
bit is set in either or both of the operands. It has a zero bit only where both
corresponding operand bits are zero. For example:

10 | 7                   // 00001010 | 00000111 =  => 00001111 or 15
flags = flags | f;       // Set flag f

When used with boolean operands, | is the infrequently used Boolean OR
operator described earlier.

Bitwise XOR (^)
This operator combines its two integer operands by performing a Boolean
XOR (exclusive OR) operation on their individual bits. The result has a bit set
if the corresponding bits in the two operands are different. If the correspond‐
ing operand bits are both 1s or both 0s, the result bit is a 0. For example:

10 ^ 7               // 00001010 ^ 00000111 =  => 00001101 or 13

When used with boolean operands, ^ is the seldom used Boolean XOR
operator.
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Left shift (<<)
The << operator shifts the bits of the left operand left by the number of places
specified by the right operand. High-order bits of the left operand are lost, and
zero bits are shifted in from the right. Shifting an integer left by n places is
equivalent to multiplying that number by 2n. For example:

10 << 1    // 0b00001010 << 1 = 00010100 = 20 = 10*2
7 << 3     // 0b00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2    // 0xFFFFFFFF << 2 = 0xFFFFFFFC = -4 = -1*4
           // 0xFFFF_FFFC == 0b1111_1111_1111_1111_1111_1111_1111_1100

If the left operand is a long, the right operand should be between 0 and
63. Otherwise, the left operand is taken to be an int, and the right operand
should be between 0 and 31. If either of these ranges is exceeded, you may see
unintuitive wrapping behavior from these operators.

Signed right shift (>>)
The >> operator shifts the bits of the left operand to the right by the number
of places specified by the right operand. The low-order bits of the left operand
are shifted away and are lost. The high-order bits shifted in are the same as the
original high-order bit of the left operand. In other words, if the left operand is
positive, 0s are shifted into the high-order bits. If the left operand is negative,
1s are shifted in instead. This technique is known as sign extension; it is used to
preserve the sign of the left operand. For example:

10 >> 1      // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3      // 00011011 >> 3 = 00000011 = 3 = 27/8
-50 >> 2     // 11001110 >> 2 = 11110011 = -13 != -50/4

If the left operand is positive and the right operand is n, the >> operator is the
same as integer division by 2n.

Unsigned right shift (>>>)
This operator is like the >> operator, except that it always shifts zeros into the
high-order bits of the result, regardless of the sign of the lefthand operand.
This technique is called zero extension; it is appropriate when the left operand
is being treated as an unsigned value (despite the fact that Java integer types are
all signed). These are examples:

0xff >>> 4    // 11111111 >>> 4 = 00001111 = 15  = 255/16
-50 >>> 2     // 0xFFFFFFCE >>> 2 = 0x3FFFFFF3 = 1073741811

Assignment Operators
The assignment operators store, or assign, a value into a piece of the computer’s
memory--often referred to as a storage location. The left operand must evaluate to
an appropriate local variable, array element, or object field.

Expressions and Operators | 47

Java Syntax



The lefthand side of an assignment expression is sometimes
called an lvalue. In Java it must refer to some assignable
storage (i.e., memory that can be written to).

The righthand side (the rvalue) can be any value of a type compatible with the
variable. An assignment expression evaluates to the value that is assigned to the
variable. More importantly, however, the expression has the side effect of actually
performing the assignment—storing the rvalue in the lvalue.

Unlike all other binary operators, the assignment operators
are right-associative, which means that the assignments in
a=b=c are performed right to left, as follows: a=(b=c).

The basic assignment operator is =. Do not confuse it with the equality operator, ==.
To keep these two operators distinct, we recommend that you read = as “is assigned
the value.”

In addition to this simple assignment operator, Java also defines 11 other operators
that combine assignment with the 5 arithmetic operators and the 6 bitwise and shift
operators. For example, the += operator reads the value of the left variable, adds
the value of the right operand to it, stores the sum back into the left variable as a
side effect, and returns the sum as the value of the expression. Thus, the expression
x+=2 is almost the same as x=x+2. The difference between these two expressions is
that when you use the += operator, the left operand is evaluated only once. This
makes a difference when that operand has a side effect. Consider the following two
expressions, which are not equivalent:

a[i++] += 2;
a[i++] = a[i++] + 2;

The general form of these combination assignment operators is:

lvalue op= rvalue

This is equivalent (unless there are side effects in lvalue) to:

lvalue = lvalue op rvalue

The available operators are:

+=    -=    *=    /=    %=    // Arithmetic operators plus assignment

&=    |=    ^=                // Bitwise operators plus assignment

<<=   >>=   >>>=              // Shift operators plus assignment
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The most commonly used operators are += and -=, although &= and |= can also be
useful when you are working with boolean or bitwise flags. For example:

i += 2;          // Increment a loop counter by 2
c -= 5;          // Decrement a counter by 5
flags |= f;      // Set a flag f in an integer set of flags
flags &= ~f;     // Clear a flag f in an integer set of flags

The Conditional Operator
The conditional operator ?: is a somewhat obscure ternary (three-operand) opera‐
tor inherited from C. It allows you to embed a conditional within an expression.
You can think of it as the operator version of the if/else statement. The first and
second operands of the conditional operator are separated by a question mark (?),
while the second and third operands are separated by a colon (:). The first operand
must evaluate to a boolean value. The second and third operands can be of any
type, but they must be convertible to the same type.

The conditional operator starts by evaluating its first operand. If it is true, the
operator evaluates its second operand and uses that as the value of the expression.
On the other hand, if the first operand is false, the conditional operator evaluates
and returns its third operand. The conditional operator never evaluates both its
second and third operand, so be careful when using expressions with side effects
with this operator. Examples of this operator are:

int max = (x > y) ? x : y;
String name = (value != null) ? value : "unknown";

Note that the ?: operator has lower precedence than all other operators except the
assignment operators, so parentheses are not usually necessary around the operands
of this operator. Many programmers find conditional expressions easier to read
if the first operand is placed within parentheses, however. This is especially true
because the conditional if statement always has its conditional expression written
within parentheses.

The instanceof Operator
The instanceof operator is intimately bound up with objects and the operation
of the Java type system. If this is your first look at Java, it may be preferable to
skim this definition and return to this section after you have a decent grasp of Java’s
objects.

instanceof requires an object or array value as its left operand and the name of a
reference type as its right operand. In its basic form, it evaluates to true if the object
or array is an instance of the specified type; it returns false otherwise. If the left
operand is null, instanceof always evaluates to false. If an instanceof expression
evaluates to true, it means that you can safely cast and assign the left operand to a
variable of the type of the right operand.
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The instanceof operator can be used only with reference types and objects, not
primitive types and values. Examples of instanceof are:

// True: all strings are instances of String
"string" instanceof String
// True: strings are also instances of Object
"" instanceof Object
// False: null is never an instance of anything
null instanceof String

Object o = new int[] {1,2,3};
o instanceof int[]   // True: the array value is an int array
o instanceof byte[]  // False: the array value is not a byte array
o instanceof Object  // True: all arrays are instances of Object

// Use instanceof to make sure that it is safe to cast an object
if (object instanceof Account) {
   Account a = (Account) object;
}

In Java 17 instanceof has an extended form known as pattern matching. The final
example above demonstrates a common pattern-checking instanceof and then
casting to the type within a conditional. With pattern matching we can express this
all at once by including a variable after the reference type. If instanceof sees the
type is compatible, the variable is assigned the casted object.

if (object instanceof Account a) {
   // variable a is available in this scope
}

This sort of pattern matching is a recent addition in Java. Upcoming releases are
expected to provide more of these sorts of convenience throughout the language.

Historically using instanceof was discouraged in favor of other more object-
oriented solutions we’ll see in Chapter 5. Java’s increasing adoption of pattern
matching, though, is changing attitudes about this operator. instanceof is espe‐
cially well suited to the common scenarios around receiving data in unpredictable
formats through an API and is often a pragmatic option these days rather than a last
resort.

Special Operators
Java has six language constructs that are sometimes considered operators and some‐
times considered simply part of the basic language syntax. These “operators” were
included in Table 2-4 to show their precedence relative to the other true operators.
The use of these language constructs is detailed elsewhere in this book, but it is
described briefly here so that you can recognize them in code examples:

Member access (.)
An object is a collection of data and methods that operate on that data; the data
fields and methods of an object are called its members. The dot (.) operator
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accesses these members. If o is an expression that evaluates to an object refer‐
ence (or a class name), and f is the name of a field of the class, o.f evaluates to
the value contained in that field. If m is the name of a method, o.m refers to that
method and allows it to be invoked using the () operator shown later.

Array element access ([])
An array is a numbered list of values. Each element of an array can be referred
to by its number, or index. The [ ] operator allows you to refer to the individ‐
ual elements of an array. If a is an array, and i is an expression that evaluates
to an int, a[i] refers to one of the elements of a. Unlike other operators that
work with integer values, this operator restricts array index values to be of type
int or narrower.

Method invocation (())
A method is a named collection of Java code that can be run, or invoked, by
following the name of the method with zero or more comma-separated expres‐
sions contained within parentheses. The values of these expressions are the
arguments to the method. The method processes the arguments and optionally
returns a value that becomes the value of the method invocation expression. If
o.m is a method that expects no arguments, the method can be invoked with
o.m(). If the method expects three arguments, for example, it can be invoked
with an expression such as o.m(x,y,z). o is referred to as the receiver of the
method—if o is an object, then it is said to be the receiver object. Before the Java
interpreter invokes a method, it evaluates each of the arguments to be passed
to the method. These expressions are guaranteed to be evaluated in order from
left to right (which matters if any of the arguments have side effects).

Lambda expression (->)
A lambda expression is an anonymous collection of executable Java code, essen‐
tially a method body. It consists of a method argument list (zero or more
comma-separated expressions contained within parentheses) followed by the
lambda arrow operator followed by a block of Java code. If the block of code
comprises just a single statement, then the usual curly braces to denote block
boundaries can be omitted. If the lambda takes only a single argument, the
parentheses around the argument can be omitted.

Object creation (new)
In Java, objects are created with the new operator, which is followed by the type
of the object to be created and a parenthesized list of arguments to be passed to
the object constructor. A constructor is a special block of code that initializes a
newly created object, so the object creation syntax is similar to the Java method
invocation syntax. For example:

new ArrayList<String>();
new Account("Jason", 0.0, 42);
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Array creation (new)
Arrays are a special case of objects and they too are created with the new
operator, with a slightly different syntax. The keyword is followed by the type
of the array to be created and the size of the array encased in square brackets—
for example, as new int[5]. In some circumstances, arrays can also be created
using the array literal syntax.

Type conversion or casting (())
As we’ve already seen, parentheses can also be used as an operator to perform
narrowing type conversions, or casts. The first operand of this operator is
the type to be converted to; it is placed between the parentheses. The second
operand is the value to be converted; it follows the parentheses. For example:

(byte) 28          // An integer literal cast to a byte type
(int) (x + 3.14f)  // A floating-point sum value cast to an integer
(String)h.get(k)   // A generic object cast to a string

Statements
A statement is a basic unit of execution in the Java language—it expresses a single
piece of intent by the programmer. Unlike expressions, Java statements do not
have a value. Statements also typically contain expressions and operators (especially
assignment operators) and are frequently executed for the side effects that they
cause.

Many of the statements defined by Java are flow-control statements, such as condi‐
tionals and loops, that can alter the default, linear order of execution in well-defined
ways. Table 2-5 summarizes the statements defined by Java.

Table 2-5. Table 2-5. Java statements

Statement Purpose Syntax

expression side effects variable = expr ; expr ++; method (); new Type ( );

compound group statements { statements }

empty do nothing ;

labeled name a statement label : statement

variable declare a variable [final] type name [= value ] [, name [= value ]] …;

if conditional if ( expr ) statement [ else statement ]

switch conditional switch ( expr ) { [ case expr : statements ] …
[ default: statements ] }
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Statement Purpose Syntax

switch conditional
expression

switch ( expr ) { [ case expr , [ expr …] ->
expr ;] … [ default -> expr ;] }

while loop while ( expr ) statement

do loop do statement while ( expr );

for simplified loop for ( init ; test ; increment ) statement

foreach collection iteration for ( variable : iterable ) statement

break exit block break [ label ] ;

continue restart loop continue [ label ] ;

return end method return [ expr ] ;

synchron

ized

critical section synchronized ( expr ) { statements }

throw throw exception throw expr ;

try handle exception try { statements } [ catch ( type name ) 
{ statements } ] … [ finally { statements } ]

try handle exception,
closing resources

try ([ variable = expr ]) { statements } [ catch 
( type name ) { statements } ] … [ finally 
{ statements } ]

assert verify invariant assert invariant [ error ];

Expression Statements
As we saw earlier in the chapter, certain types of Java expressions have side effects.
In other words, they do not simply evaluate to some value; they also change the
program state in some way. You can use any expression with side effects as a
statement simply by following it with a semicolon. The legal types of expression
statements are assignments, increments and decrements, method calls, and object
creation. For example:

a = 1;                             // Assignment
x *= 2;                            // Assignment with operation
i++;                               // Post-increment
--c;                               // Pre-decrement
System.out.println("statement");   // Method invocation
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Compound Statements
A compound statement is any number and kind of statements grouped together
within curly braces. You can use a compound statement anywhere a statement is
required by Java syntax:

for(int i = 0; i < 10; i++) {
   a[i]++;           // Body of this loop is a compound statement.
   b[i]--;           // It consists of two expression statements
}                    // within curly braces.

The Empty Statement
An empty statement in Java is written as a single semicolon. The empty statement
doesn’t do anything, but the syntax is occasionally useful. For example, you can use
it to indicate an empty loop body in a for loop:

for(int i = 0; i < 10; a[i++]++)  // Increment array elements
     /* empty */;                 // Loop body is empty statement

Labeled Statements
A labeled statement is simply a statement that you have given a name by prepend‐
ing an identifier and a colon to it. Labels are used by the break and continue
statements. For example:

rowLoop: for(int r = 0; r < rows.length; r++) {        // Labeled loop
   colLoop: for(int c = 0; c < columns.length; c++) {  // Another one
     break rowLoop;                                    // Use a label
   }
}

Local Variable Declaration Statements
A local variable, often simply called a variable, is a symbolic name for a location to
store a value that is defined within a method or compound statement. All variables
must be declared before they can be used; this is done with a variable declaration
statement. Because Java is a statically typed language, a variable declaration specifies
the type of the variable, and only values of that type can be stored in the variable.

In its simplest form, a variable declaration specifies a variable’s type and name:

int counter;
String s;

A variable declaration can also include an initializer, an expression that specifies an
initial value for the variable. For example:

int i = 0;
String s = readLine();
int[] data = {x+1, x+2, x+3}; // Array initializers are discussed later
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The Java compiler does not allow you to use a local variable that has not been ini‐
tialized, so it is usually convenient to combine variable declaration and initialization
into a single statement. The initializer expression need not be a literal value or a
constant expression that can be evaluated by the compiler; it can be an arbitrarily
complex expression whose value is computed when the program is run.

If a variable has an initializer, then the programmer can use a special syntax to ask
the compiler to automatically work out the type, if it is possible to do so:

var i = 0;          // type of i inferred as int
var s = readLine(); // type of s inferred as String

This can be a useful syntax, but it is potentially harder to read. Our second example,
for instance, requires that you know that the return type of readLine() is String
to know what type will be inferred for s. For this reason, throughout the text we
only use var in examples when the initializer makes the type completely redundant.
As you learn the Java language, this may be a reasonable policy to follow while you
become familiar with the Java type system.

A single variable declaration statement can declare and initialize more than one
variable, but all variables must be of the same explicitly declared type. Variable
names and optional initializers are separated from each other with commas:

int i, j, k;
float x = 1.0f, y = 1.0f;
String question = "Really Quit?", response;

Variable declaration statements can begin with the final keyword. This modifier
specifies that once an initial value is defined for the variable, that value is never
allowed to change:

final String greeting = getLocalLanguageGreeting();

We will have more to say about the final keyword later on, especially when talking
about the design of classes and the immutable style of programming.

Java variable declaration statements can appear anywhere in Java code; they are not
restricted to the beginning of a method or block of code. Local variable declarations
can also be integrated with the initialize portion of a for loop, as we’ll discuss
shortly.

Local variables can be used only within the method or block of code in which they
are defined. This is called their scope or lexical scope:

void method() {            // A method definition
   int i = 0;              // Declare variable i
   while (i < 10) {        // i is in scope here
     int j = 0;            // Declare j; the scope of j begins here
     i++;                  // i is in scope here; increment it
   }                       // j is no longer in scope;
   System.out.println(i);  // i is still in scope here
}                          // The scope of i ends here
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The if/else Statement
The if statement is a fundamental control statement that allows Java to make
decisions or, more precisely, to execute statements conditionally. The if statement
has an associated expression and statement. If the expression evaluates to true,
the interpreter executes the statement. If the expression evaluates to false, the
interpreter skips the statement.

Java allows the expression to be of the wrapper type Boolean
instead of the primitive type boolean. In this case, the wrapper
object is automatically unboxed.

Here is an example if statement:

if (username == null)         // If username is null,
   username = "John Doe";     // use a default value

Although they look extraneous, the parentheses around the expression are a
required part of the syntax for the if statement. As we already saw, a block of state‐
ments enclosed in curly braces is itself a statement, so we can write if statements
that look like this as well:

if ((address == null) || (address.equals(""))) {
   address = "[undefined]";
   System.out.println("WARNING: no address specified.");
}

An if statement can include an optional else keyword that is followed by a second
statement. In this form of the statement, the expression is evaluated, and, if it is
true, the first statement is executed. Otherwise, the second statement is executed.
For example:

if (username != null)
   System.out.println("Hello " + username);
else {
   username = askQuestion("What is your name?");
   System.out.println("Hello " + username + ". Welcome!");
}

When you use nested if/else statements, some caution is required to ensure that
the else clause goes with the appropriate if statement. Consider the following
lines:

if (i == j)
   if (j == k)
     System.out.println("i equals k");
else
   System.out.println("i doesn't equal j");    // WRONG!!
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In this example, the inner if statement forms the single statement allowed by the
syntax of the outer if statement. Unfortunately, it is not clear (except from the hint
given by the indentation) which if the else goes with. And in this example, the
indentation hint is wrong. The rule is that an else clause like this is associated with
the nearest if statement. Properly indented, this code looks like this:

if (i == j)
   if (j == k)
     System.out.println("i equals k");
   else
     System.out.println("i doesn't equal j");    // WRONG!!

This is legal code, but it is clearly not what the programmer had in mind. When
working with nested if statements, you should use curly braces to make your code
easier to read. Here is a better way to write the code:

if (i == j) {
   if (j == k)
     System.out.println("i equals k");
}
else {
   System.out.println("i doesn't equal j");
}

The else if clause
The if/else statement is useful for testing a condition and choosing between two
statements or blocks of code to execute. But what about when you need to choose
between several blocks of code? This is typically done with an else if clause, which
is not really new syntax but a common idiomatic usage of the standard if/else
statement. It looks like this:

if (n == 1) {
    // Execute code block #1
}
else if (n == 2) {
    // Execute code block #2
}
else if (n == 3) {
    // Execute code block #3
}
else {
    // If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if statements, where
each if is part of the else clause of the previous statement. Using the else if idiom
is preferable to, and more legible than, writing these statements out in their fully
nested form:
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if (n == 1) {
   // Execute code block #1
}
else {
   if (n == 2) {
     // Execute code block #2
   }
   else {
     if (n == 3) {
       // Execute code block #3
     }
     else {
       // If all else fails, execute block #4
     }
   }
}

The switch Statement
An if statement causes a branch in the flow of a program’s execution. You can use
multiple if statements, as shown in the previous section, to perform a multiway
branch. This is not always the best solution, however, especially when all of the
branches depend on the value of a single variable.

In this case, the repeated if statements may seriously hamper readability, especially
if the code has been refactored over time or features multiple levels of nested if.

A better solution is to use a switch statement, which is inherited from the C
programming language. Note, however, that the syntax of this statement is not
nearly as elegant as other parts of Java. The failure to revisit the design of the feature
is widely regarded as a mistake, one that has been partially addressed in recent
versions with an expression form of switch we’ll examine in a moment. However,
that alternative format won’t erase the long history of switch statements in the
language, so it’s good to come to grips with it.

A switch statement starts with an expression whose type is an
int, short, char, byte (or their wrapper type), String, or an
enum (see Chapter 4 for more on enumerated types).

This expression is followed by a block of code in curly braces that contains various
entry points that correspond to possible values for the expression. For example, the
following switch statement is equivalent to the repeated if and else/if statements
shown in the previous section:

switch(n) {
   case 1:                         // Start here if n == 1
     // Execute code block #1
     break;                        // Stop here
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   case 2:                         // Start here if n == 2
     // Execute code block #2
     break;                        // Stop here
   case 3:                         // Start here if n == 3
     // Execute code block #3
     break;                        // Stop here
   default:                        // If all else fails...
     // Execute code block #4
     break;                        // Stop here
}

As you can see from the example, the various entry points into a switch statement
are labeled either with the keyword case, followed by an integer value and a colon,
or with the special default keyword, followed by a colon. When a switch statement
executes, the interpreter computes the value of the expression in parentheses and
then looks for a case label that matches that value. If it finds one, the interpreter
starts executing the block of code at the first statement following the case label. If it
does not find a case label with a matching value, the interpreter starts execution at
the first statement following a special-case default: label. Or, if there is no default:
label, the interpreter skips the body of the switch statement altogether.

Note the use of the break keyword at the end of each case in the previous code. The
break statement is described later in this chapter, but, in this example, it causes the
interpreter to exit the body of the switch statement. The case clauses in a switch
statement specify only the starting point of the desired code. The individual cases
are not independent blocks of code, and they do not have any implicit ending point.

You must explicitly specify the end of each case with a break
or related statement. In the absence of break statements, a
switch statement begins executing code at the first statement
after the matching case label and continues executing state‐
ments until it reaches the end of the block. The control flow
will fall through into the next case label and continue execut‐
ing, rather than exit the block.

On rare occasions, it is useful to write code like this that falls through from one
case label to the next, but 99% of the time you should be careful to end every
case and default section with a statement that causes the switch statement to stop
executing. Normally you use a break statement, but return and throw also work.

As a consequence of this default fall-through, a switch statement can have more
than one case clause labeling the same statement. Consider the switch statement in
the following method:

boolean parseYesOrNoResponse(char response) {
   switch(response) {
     case 'y':
     case 'Y': return true;
     case 'n':
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     case 'N': return false;
     default:
       throw new IllegalArgumentException("Response must be Y or N");
   }
}

The switch statement and its case labels have some important restrictions. First,
the expression associated with a switch statement must have an appropriate type—
either byte, char, short, int (or their wrappers), or an enum type or a String.
The floating-point and boolean types are not supported, and neither is long, even
though long is an integer type. Second, the value associated with each case label
must be a constant value or a constant expression the compiler can evaluate. A case
label cannot contain a runtime expression involving variables or method calls, for
example. Third, the case label values must be within the range of the data type used
for the switch expression. And finally, it is not legal to have two or more case labels
with the same value or more than one default label.

With all those caveats, let’s look at how the new switch expression makes for a
cleaner experience.

The switch Expression
A frequent problem with the classic switch statement arises when capturing a
variable value.

Boolean yesOrNo = null;
switch(input) {
    case "y":
    case "Y":
        yesOrNo = true;
        break;
    case "n":
    case "N":
        yesOrNo = false;
        break;
    default:
        throw new IllegalArgumentException("Response must be Y or N");
}

For the variable to be available after the switch, it must be declared outside the
statement and provided an initial value. Then each case must be certain to set the
variable. However, we have no guarantees, and in code with more branches than
this simple example, it’s an easy thing to miss and introduce a bug.

The switch expression is explicitly designed to address these and other faults. As
the name calls out, it’s an expression—one of the more syntactically complex ones in
the language—and as such results in a value.

boolean yesOrNo = switch(input) {
    case "y" -> true;
    case "Y" -> true;
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    case "N" -> false;
    case "n" -> false;
    default -> throw new IllegalArgumentException("Y or N");
};

Much like the switch statement, each case here evaluates the input against its value.
After an -> you provide the resulting value for the switch expression as a whole. In
this example, we’re assigning that to our variable yesOrNo, which no longer needs to
be the nullable wrapper type.

Our code as written here hides one of the protections that the switch expressions
is giving us. If we remove the default clause, the compiler will give us an error
because the expression cannot always be evaluated fully.

boolean yesOrNo = switch(input) {
    case "y" -> true;
    case "Y" -> true;
    case "N" -> false;
    case "n" -> false;
};

// Compiler error:
//   the switch expression does not cover all possible input values

Switch expressions do not fall through like the statement form. To support multiple
values evaluating to the same result, each case can take a comma-separated list of
values instead of just a single value.

boolean yesOrNo = switch(input) {
    case "y", "Y" -> true;
    case "n", "N" -> false;
    default -> throw new IllegalArgumentException("Y or N");
};

Our desired result can’t always be expressed as a single value or method call. To
support that, curly braces may introduce a statement. However, the statement must
end with either yield to exit the switch with a value, or a return leaving the entire
enclosing method.

boolean yesOrNo = switch(input) {
    case "y", "Y" -> { System.out.println("Got it"); yield true; }
    case "n", "N" -> { System.out.println("Nope"); yield false; }
    default -> throw new IllegalArgumentException("Y or N");
};

And in fact, if we don’t make use of the switch expression result, we can even use
this syntax, with its improved branch checking and safety, purely for side effects.

switch(input) {
    case "y", "Y" -> System.out.println("Sure");
    case "n", "N" -> System.out.println("Nope");
    default -> throw new IllegalArgumentException("Y or N");
}
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The while Statement
The while statement is a basic statement that allows Java to perform repetitive
actions—or, to put it another way, it is one of Java’s primary looping constructs. It has
the following syntax:

while (expression)
  statement
  

The while statement works by first evaluating the expression, which must result
in a boolean or Boolean value. If the value is false, the interpreter skips the
statement associated with the loop and moves to the next statement in the pro‐
gram. If it is true, however, the statement that forms the body of the loop is
executed, and the expression is reevaluated. Again, if the value of expression is
false, the interpreter moves on to the next statement in the program; otherwise, it
executes the statement again. This cycle continues while the expression remains
true (i.e., until it evaluates to false), at which point the while statement ends, and
the interpreter moves on to the next statement. You can create an infinite loop with
the syntax while(true).

Here is an example while loop that prints the numbers 0 to 9:

int count = 0;
while (count < 10) {
   System.out.println(count);
   count++;
}

As you can see, the variable count starts off at 0 in this example and is incremen‐
ted each time the body of the loop runs. Once the loop has executed 10 times,
the expression becomes false (i.e., count is no longer less than 10), the while
statement finishes, and the Java interpreter can move to the next statement in
the program. Most loops have a counter variable like count. The variable names
i, j, and k are commonly used as loop counters, although you should use more
descriptive names if it makes your code easier to understand.

The do Statement
A do loop is much like a while loop, except that the loop expression is tested at the
bottom of the loop rather than at the top. This means that the body of the loop is
always executed at least once. The syntax is:

do
   statement
while (expression);

Notice a couple of differences between the do loop and the more ordinary while
loop. First, the do loop requires both the do keyword to mark the beginning of the
loop and the while keyword to mark the end and introduce the loop condition.
Also, unlike the while loop, the do loop is terminated with a semicolon. This is
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because the do loop ends with the loop condition rather than simply ending with a
curly brace that marks the end of the loop body. The following do loop prints the
same output as the while loop just discussed:

int count = 0;
do {
   System.out.println(count);
   count++;
} while(count < 10);

The do loop is much less commonly used than its while cousin because, in practice,
it is unusual to encounter a situation where you are sure you always want a loop to
execute at least once.

The for Statement
The for statement provides a looping construct that is often more convenient than
the while and do loops. The for statement takes advantage of a common looping
pattern. Most loops have a counter, or state variable of some kind, that is initialized
before the loop starts, tested to determine whether to execute the loop body, and
then incremented or updated somehow at the end of the loop body before the test
expression is evaluated again. The initialize, test, and update steps are the three
crucial manipulations of a loop variable, and the for statement makes these three
steps an explicit part of the loop syntax:

for(initialize; test; update) {
    statement
}

This for loop is basically equivalent to the following while loop:

initialize;
while (test) {
   statement;
   update;
}

Placing the initialize, test, and update expressions at the top of a for loop
makes it especially easy to understand what the loop is doing, and it prevents
mistakes such as forgetting to initialize or update the loop variable. The interpreter
discards the values of the initialize and update expressions, so to be useful, these
expressions must have side effects. initialize is typically an assignment expres‐
sion, while update is usually an increment, decrement, or some other assignment.

The following for loop prints the numbers 0 to 9, just as the previous while and do
loops have done:

int count;
for(count = 0 ; count < 10 ; count++)
   System.out.println(count);
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Notice how this syntax places all the important information about the loop variable
on a single line, making it very clear how the loop executes. Placing the update
expression in the for statement itself also simplifies the body of the loop to a single
statement; we don’t even need to use curly braces to produce a statement block.

The for loop supports some additional syntax that makes it even more convenient
to use. Because many loops use their loop variables only within the loop, the for
loop allows the initialize expression to be a full variable declaration, so that
the variable is scoped to the body of the loop and is not visible outside of it. For
example:

for(int count = 0 ; count < 10 ; count++)
   System.out.println(count);

Furthermore, the for loop syntax does not restrict you to writing loops that use
only a single variable. Both the initialize and update expressions of a for loop
can use a comma to separate multiple initializations and update expressions. For
example:

for(int i = 0, j = 10 ; i < 10 ; i++, j--)
     sum += i * j;

Even though all the examples so far have counted numbers, for loops are not
restricted to loops that count numbers. For example, you might use a for loop to
iterate through the elements of a linked list:

for(Node n = listHead; n != null; n = n.nextNode())
   process(n);

The initialize, test, and update expressions of a for loop are all optional; only
the semicolons that separate the expressions are required. If the test expression is
omitted, it is assumed to be true. Thus, you can write an infinite loop as for(;;).

The foreach Statement
Java’s for loop works well for primitive types, but it is needlessly clunky for han‐
dling collections of objects. Instead, an alternative syntax known as a foreach loop is
used for handling collections of objects that need to be looped over.

The foreach loop uses the keyword for followed by an opening parenthesis, a vari‐
able declaration (without initializer), a colon, an expression, a closing parenthesis,
and finally the statement (or block) that forms the body of the loop:

for( declaration : expression )
     statement

Despite its name, the foreach loop does not have a keyword foreach—instead, it is
common to read the colon as “in”—as in “foreach name in studentNames.”

For the while, do, and for loops, we’ve shown an example that prints 10 numbers.
The foreach loop can do this too, but it needs a collection to iterate over. In order to
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loop 10 times (to print out 10 numbers), we need an array or other collection with
10 elements. Here’s code we can use:

// These are the numbers we want to print
int[] primes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
// This is the loop that prints them
for(int n : primes)
     System.out.println(n);

What foreach cannot do
The foreach is different from the while, for, or do loops, because it hides the loop
counter or Iterator from you. This is a very powerful idea, as we’ll see when we
discuss lambda expressions, but there are some algorithms that cannot be expressed
very naturally with a foreach loop.

For example, suppose you want to print the elements of an array as a comma-
separated list. To do this, you need to print a comma after every element of the array
except the last, or equivalently, before every element of the array except the first.
With a traditional for loop, the code might look like this:

for(int i = 0; i < words.length; i++) {
     if (i > 0) System.out.print(", ");
     System.out.print(words[i]);
}

This is a very straightforward task, but you simply cannot do it with foreach
without keeping track of additional state. The problem is that the foreach loop
doesn’t give you a loop counter or any other way to tell if you’re on the first
iteration, the last iteration, or somewhere in between.

A similar issue exists when you’re using foreach to iterate
through the elements of a collection. Just as a foreach loop
over an array has no way to obtain the array index of the
current element, a foreach loop over a collection has no way
to obtain the Iterator object that is being used to itemize the
elements of the collection.

Here are some other things you cannot do with a foreach-style loop:

• Iterate backward through the elements of an array or List.•
• Use a single loop counter to access the same-numbered elements of two distinct•

arrays.

• Iterate through the elements of a List using calls to its get() method rather•
than calls to its iterator.
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The break Statement
A break statement causes the Java interpreter to skip immediately to the end of
a containing statement. We have already seen the break statement used with the
switch statement. The break statement is most often written as simply the keyword
break followed by a semicolon:

break;

When used in this form, it causes the Java interpreter to immediately exit the
innermost containing while, do, for, or switch statement. For example:

for(int i = 0; i < data.length; i++) {
    if (data[i] == target) {  // When we find what we're looking for,
        index = i;              // remember where we found it
        break;                  // and stop looking!
    }
}   // The Java interpreter goes here after executing break

The break statement can also be followed by the name of a containing labeled
statement. When used in this form, break causes the Java interpreter to immediately
exit the named block, which can be any kind of statement, not just a loop or switch.
For example:

TESTFORNULL: if (data != null) {
   for(int row = 0; row < numrows; row++) {
     for(int col = 0; col < numcols; col++) {
       if (data[row][col] == null)
         break TESTFORNULL;           // treat the array as undefined.
     }
   }
}  // Java interpreter goes here after executing break TESTFORNULL

The continue Statement
While a break statement exits a loop, a continue statement quits the current
iteration of a loop and starts the next one. continue, in both its unlabeled and
labeled forms, can be used only within a while, do, or for loop. When used without
a label, continue causes the innermost loop to start a new iteration. When used
with a label that is the name of a containing loop, it causes the named loop to start a
new iteration. For example:

for(int i = 0; i < data.length; i++) {  // Loop through data.
   if (data[i] == -1)                   // If a data value is missing,
     continue;                          // skip to the next iteration.
   process(data[i]);                    // Process the data value.
}

while, do, and for loops differ slightly in the way that continue starts a new
iteration:
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• With a while loop, the Java interpreter simply returns to the top of the loop,•
tests the loop condition again, and, if it evaluates to true, executes the body of
the loop again.

• With a do loop, the interpreter jumps to the bottom of the loop, where it tests•
the loop condition to decide whether to perform another iteration of the loop.

• With a for loop, the interpreter jumps to the top of the loop, where it first•
evaluates the update expression and then evaluates the test expression to
decide whether to loop again. As you can see from the examples, the behavior
of a for loop with a continue statement is different from the behavior of the
“basically equivalent” while loop presented earlier; update gets evaluated in the
for loop but not in the equivalent while loop.

The return Statement
A return statement tells the Java interpreter to stop executing the current method.
If the method is declared to return a value, the return statement must be followed
by an expression. The value of the expression becomes the return value of the
method. For example, the following method computes and returns the square of a
number:

double square(double x) {      // A method to compute x squared
   return x * x;               // Compute and return a value
}

Some methods are declared void to indicate that they do not return any value.
The Java interpreter runs methods like this by executing their statements one by
one until it reaches the end of the method. After executing the last statement, the
interpreter returns implicitly. Sometimes, however, a void method has to return
explicitly before reaching the last statement. In this case, it can use the return
statement by itself, without any expression. For example, the following method
prints, but does not return, the square root of its argument. If the argument is a
negative number, it returns without printing anything:

// A method to print square root of x
void printSquareRoot(double x) {
   if (x < 0) return;                // If x is negative, return
   System.out.println(Math.sqrt(x)); // Print the square root of x
}                                    // Method end: return implicitly

The synchronized Statement
Java has always provided support for multithreaded programming. We cover this in
some detail later on (especially in “Java’s Support for Concurrency” on page 249);
however, be aware that concurrency is difficult to get right and has a number of
subtleties.
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In particular, when working with multiple threads, you must often take care to
prevent multiple threads from modifying an object simultaneously in a way that
might corrupt the object’s state. Java provides the synchronized statement to help
the programmer prevent corruption. The syntax is:

synchronized ( expression ) {
   statements
}

expression is an expression that must evaluate to an object (including arrays).
statements constitute the code of the section that could cause damage and must be
enclosed in curly braces.

In Java, the protection of object state (i.e., data) is the primary
concern of the concurrency primitives. This is unlike some
other languages, where the exclusion of threads from critical
sections (i.e., code) is the main focus.

Before executing the statement block, the Java interpreter first obtains an exclusive
lock on the object or array specified by expression. It holds the lock until it is
finished running the block, then releases it. While a thread holds the lock on an
object, no other thread can obtain that lock.

As well as the block form, synchronized can also be used as a method modifier in
Java. When applied to a method, the keyword indicates that the entire method is
treated as synchronized.

For a synchronized instance method, Java obtains an exclusive lock on the class
instance. (Class and instance methods are discussed in Chapter 3.) It can be thought
of as a synchronized (this) { ... } block that covers the entire method.

A static synchronized method (a class method) causes Java to obtain an exclusive
lock on the class (technically the class object corresponding to the type) before
executing the method.

The throw Statement
An exception is a signal that indicates some sort of exceptional condition or error
has occurred. To throw an exception is to signal an exceptional condition. To catch
an exception is to handle it—to take whatever actions are necessary to recover from
it.

In Java, the throw statement is used to throw an exception:

throw expression;

The expression must evaluate to an exception object that describes the exception
or error that has occurred. We’ll talk more about types of exceptions shortly; for
now, all you need to know is that an exception:
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• Is represented by an object•

• Has a type that is a subclass of Exception•
• Has a slightly specialized role in Java’s syntax•
• Can be of two different types: checked or unchecked•

Here is some example code that throws an exception:

public static double factorial(int x) {
   if (x < 0)
     throw new IllegalArgumentException("x must be >= 0");
   double fact;
   for(fact=1.0; x > 1; fact *= x, x--)
     /* empty */ ;          // Note use of the empty statement
   return fact;
}

When the Java interpreter executes a throw statement, it immediately stops normal
program execution and starts looking for an exception handler that can catch, or
handle, the exception. Exception handlers are written with the try/catch/finally
statement, which is described in the next section. The Java interpreter first looks at
the enclosing block of code to see if it has an associated exception handler. If so, it
exits that block of code and starts running the exception-handling code associated
with the block. After running the exception handler, the interpreter continues
execution at the statement immediately following the handler code.

If the enclosing block of code does not have an appropriate exception handler, the
interpreter checks the next higher enclosing block of code in the method. This con‐
tinues until a handler is found. If the method does not contain an exception handler
that can handle the exception thrown by the throw statement, the interpreter stops
running the current method and returns to the caller. Now the interpreter starts
looking for an exception handler in the blocks of code of the calling method. In this
way, exceptions propagate up through the lexical structure of Java methods, up the
call stack of the Java interpreter. If the exception is never caught, it propagates all the
way up to the main() method of the program. If it is not handled in that method,
the Java interpreter prints an error message, prints a stack trace to indicate where
the exception occurred, and then exits.

The try/catch/finally Statement
Java has two slightly different exception-handling mechanisms. The classic form is
the try/catch/finally statement. The try clause of this statement establishes a
block of code for exception handling. This try block is followed by zero or more
catch clauses, each of which is a block of statements designed to handle specific
exceptions. Each catch block can handle more than one different exception—to
indicate that a catch block should handle multiple exceptions, we use the | symbol
to separate the different exceptions a catch block should handle. The catch clauses
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are followed by an optional finally block that contains cleanup code guaranteed to
be executed regardless of what happens in the try block.

try Block Syntax
Both the catch and finally clauses are optional, but every try block must either
declare some automatically managed resources (the try-with-resources construct
we’ll see in “The try-with-resources Statement” on page 72) or be accompanied by
a catch, a finally, or both. The try, catch, and finally blocks all begin and end
with curly braces. These are a required part of the syntax and cannot be omitted,
even if the clause contains only a single statement.

The following code illustrates the syntax and purpose of the try/catch/finally
statement:

try {
   // Normally this code runs from the top of the block to the bottom
   // without problems. But it can sometimes throw an exception,
   // either directly with a throw statement or indirectly by calling
   // a method that throws an exception.
}
catch (SomeException e1) {
   // This block contains statements that handle an exception object
   // of type SomeException or a subclass of that type. Statements in
   // this block can refer to that exception object by the name e1.
}
catch (AnotherException | YetAnotherException e2) {
   // This block contains statements that handle an exception of
   // type AnotherException or YetAnotherException, or a subclass of
   // either of those types. Statements in this block refer to the
   // exception object they receive by the name e2.
}
finally {
   // This block contains statements that are always executed
   // after we leave the try clause, regardless of whether we leave it:
   //   1) normally, after reaching the bottom of the block;
   //   2) because of a break, continue, or return statement;
   //   3) with an exception that is handled by a catch clause above;
   //   4) with an uncaught exception that has not been handled.
   // If the try clause calls System.exit(), however, the interpreter
   // exits before the finally clause can be run.
}

try
The try clause simply establishes a block of code that either has its exceptions
handled or needs special cleanup code to be run when it terminates for any reason.
The try clause by itself doesn’t do anything interesting; it is the catch and finally
clauses that do the exception-handling and cleanup operations.
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catch
A try block can be followed by zero or more catch clauses that specify code to
handle various types of exceptions. Each catch clause is declared with a single
argument that specifies the types of exceptions the clause can handle (possibly using
the special | syntax to indicate that the catch block can handle more than one type
of exception) and also provides a name the clause can use to refer to the exception
object it is currently handling. Any type that a catch block wishes to handle must be
some subclass of Throwable.

When an exception is thrown, the Java interpreter looks for a catch clause with an
argument that matches the same type as the exception object or a superclass of that
type. The interpreter invokes the first such catch clause it finds. The code within a
catch block should take whatever action is necessary to cope with the exceptional
condition. If the exception is a java.io.FileNotFoundException, for example, you
might handle it by asking the user to check their spelling and try again.

It is not required to have a catch clause for every possible exception; in some
cases, the correct response is to allow the exception to propagate up and be caught
by the invoking method. In other cases, such as a programming error signaled by
NullPointerException, the correct response is probably not to catch the exception
at all but allow it to propagate and have the Java interpreter exit with a stack trace
and an error message.

finally
The finally clause is generally used to clean up after the code in the try clause
(e.g., close files and shut down network connections). The finally clause is useful
because it is guaranteed to be executed if any portion of the try block is executed,
regardless of how the code in the try block completes. In fact, the only way a try
clause can exit without allowing the finally clause to be executed is by invoking
the System.exit() method, which causes the Java interpreter to stop running.

In the normal case, control reaches the end of the try block and then proceeds
to the finally block, which performs any necessary cleanup. If control leaves the
try block because of a return, continue, or break statement, the finally block is
executed before control transfers to its new destination.

If an exception occurs in the try block and there is an associated catch block to
handle the exception, control transfers first to the catch block and then to the
finally block. If there is no local catch block to handle the exception, control
transfers first to the finally block, and then propagates up to the nearest contain‐
ing catch clause that can handle the exception.

If a finally block itself transfers control with a return, continue, break, or throw
statement or by calling a method that throws an exception, the pending control
transfer is abandoned, and this new transfer is processed. For example, if a finally
clause throws an exception, that exception replaces any exception that was in the
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2 Technically, they must all implement the AutoCloseable interface.

process of being thrown. If a finally clause issues a return statement, the method
returns normally, even if an exception has been thrown and has not yet been
handled.

try and finally can be used together without exceptions or any catch clauses.
In this case, the finally block is simply cleanup code that is guaranteed to be
executed, regardless of any break, continue, or return statements within the try
clause.

The try-with-resources Statement
The standard form of a try block is very general, but there is a common set of
circumstances that require developers to be very careful when writing catch and
finally blocks. These circumstances are when operating with resources that need
to be cleaned up or closed when they are no longer needed.

Java provides a very useful mechanism for automatically closing resources that
require cleanup. This is known as try-with-resources, or TWR. We discuss TWR in
detail in “Classic Java I/O” on page 343, but for completeness, let’s introduce the
syntax now. The following example shows how to open a file using the FileInput
Stream class (which results in an object that will require cleanup):

try (InputStream is = new FileInputStream("/Users/ben/details.txt")) {
  // ... process the file
}

This new form of try takes parameters that are all objects that require cleanup.2
These objects are scoped to this try block and are then cleaned up automatically no
matter how this block is exited. The developer does not need to write any catch or
finally blocks—the Java compiler automatically inserts correct cleanup code.

All new code that deals with resources should be written in the TWR style—it is
considerably less error prone than manually writing catch blocks and does not suf‐
fer from the problems that plague techniques such as finalization (see “Finalization”
on page 248 for details).

The assert Statement
An assert statement is an attempt to provide a capability to verify design assump‐
tions in Java code. An assertion consists of the assert keyword followed by a
boolean expression that the programmer believes should always evaluate to true. By
default, assertions are not enabled, and the assert statement does not actually do
anything.

It is possible to enable assertions as a debugging tool, however; when this is done,
the assert statement evaluates the expression. If it is indeed true, assert does
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nothing. On the other hand, if the expression evaluates to false, the assertion fails,
and the assert statement throws a java.lang.AssertionError.

Outside of the core JDK libraries, the assert statement is
extremely rarely used. It turns out to be too inflexible for
testing most applications and is not often used by ordinary
developers. Instead, developers use ordinary testing libraries,
such as JUnit.

The assert statement may include an optional second expression, separated from
the first by a colon. When assertions are enabled and the first expression evaluates
to false, the value of the second expression is taken as an error code or error
message and is passed to the AssertionError() constructor. The full syntax of the
statement is:

assert assertion;

or:

assert assertion : errorcode;

To use assertions effectively, you must also be aware of a couple of fine points. First,
remember that your programs will normally run with assertions disabled and only
sometimes with assertions enabled. This means that you should be careful not to
write assertion expressions that contain side effects.

You should never throw AssertionError from your own
code, as it may have unexpected results in future versions of
the platform.

If an AssertionError is thrown, it indicates that one of the programmer’s assump‐
tions has not held up. This means that the code is being used outside of the
parameters for which it was designed, and it cannot be expected to work correctly.
In short, there is no plausible way to recover from an AssertionError, and you
should not attempt to catch it (unless you catch it at the top level simply so that you
can display the error in a more user-friendly fashion).

Enabling assertions
For efficiency, it does not make sense to test assertions each time code is executed
—assert statements encode assumptions that should always be true. Thus, by
default, assertions are disabled, and assert statements have no effect. The assertion
code remains compiled in the class files, however, so it can always be enabled
for diagnostic or debugging purposes. You can enable assertions, either across the
board or selectively, with command-line arguments to the Java interpreter.
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3 In the Java Language Specification, the term “signature” has a technical meaning that is slightly
different than that used here. This book uses a less formal definition of method signature.

To enable assertions in all classes except for system classes, use the -ea argument.
To enable assertions in system classes, use -esa. To enable assertions within a
specific class, use -ea followed by a colon and the class name:

java -ea:com.example.sorters.MergeSort com.example.sorters.Test

To enable assertions for all classes in a package and in all of its subpackages, follow
the -ea argument with a colon, the package name, and three dots:

java -ea:com.example.sorters... com.example.sorters.Test

You can disable assertions in the same way, using the -da argument. For example, to
enable assertions throughout a package and then disable them in a specific class or
subpackage, use:

java -ea:com.example.sorters... -da:com.example.sorters.QuickSort
java -ea:com.example.sorters... -da:com.example.sorters.plugins..

Finally, it is possible to control whether or not assertions are enabled or disabled
at classloading time. If you use a custom classloader (see Chapter 11 for details on
custom classloading) in your program and want to turn on assertions, you may be
interested in these methods.

Methods
A method is a named sequence of Java statements that can be invoked by other
Java code. When a method is invoked, it is passed zero or more values known
as arguments. The method performs some computations and, optionally, returns a
value. As described earlier in “Expressions and Operators” on page 34, a method
invocation is an expression that is evaluated by the Java interpreter. Because method
invocations can have side effects, however, they also can be used as expression
statements. This section does not discuss method invocation but instead describes
how to define methods.

Defining Methods
You already know how to define the body of a method; it is simply an arbitrary
sequence of statements enclosed within curly braces. What is more interesting about
a method is its signature.3 The signature specifies:

• The name of the method•
• The number, order, type, and name of the parameters used by the method•
• The type of the value returned by the method•
• The checked exceptions that the method can throw (the signature may also list•

unchecked exceptions, but these are not required)
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• Various method modifiers that provide additional information about the•
method

A method signature defines everything you need to know about a method before
calling it. It is the method specification and defines the API for the method. To use
the Java platform’s online API reference, you need to know how to read a method
signature. And, to write Java programs, you need to know how to define your own
methods, each of which begins with a method signature.

A method signature looks like this:

modifiers type name (paramlist) [ throws exceptions ]

The signature (the method specification) is followed by the method body (the
method implementation), which is simply a sequence of Java statements enclosed
in curly braces. If the method is abstract (see Chapter 3), the implementation is
omitted, and the method body is replaced with a single semicolon.

The signature of a method may also include type variable declarations—such
methods are known as generic methods. Generic methods and type variables are
discussed in Chapter 4.

Here are some example method definitions, which begin with the signature and are
followed by the method body:

// This method is passed an array of strings and has no return value.
// All Java programs have an entry point with this name and signature.
public static void main(String[] args) {
     if (args.length > 0) System.out.println("Hello " + args[0]);
     else System.out.println("Hello world");
}

// This method is passed two double arguments and returns a double.
static double distanceFromOrigin(double x, double y) {
     return Math.sqrt(x*x + y*y);
}

// This method is abstract which means it has no body.
// Note that it may throw exceptions when invoked.
protected abstract String readText(File f, String encoding)
    throws FileNotFoundException, UnsupportedEncodingException;

modifiers are zero or more special modifier keywords, separated from each other
by spaces. A method might be declared with the public and static modifiers,
for example. The allowed modifiers and their meanings are described in the next
section.

The type in a method signature specifies the return type of the method. If the
method does not return a value, type must be void. If a method is declared with a
non-void return type, it must include a return statement that returns a value of (or
is convertible to) the declared type.
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A constructor is a block of code, similar to a method, that is used to initialize newly
created objects. As we’ll see in Chapter 3, constructors are defined in a very similar
way to methods, except that their signatures do not include this type specification
and must be named the same as the class.

The name of a method follows the specification of its modifiers and type. Method
names, like variable names, are Java identifiers and, like all Java identifiers, may
contain letters in any language represented by the Unicode character set. It is legal,
and often quite useful, to define more than one method with the same name, as
long as each version of the method has a different parameter list. Defining multiple
methods with the same name is called method overloading.

Unlike some other languages, Java does not have anonymous
methods. Instead, Java 8 introduces lambda expressions,
which are similar to anonymous methods, but which the Java
runtime automatically converts to a suitable named method—
see “Lambda Expressions” on page 85 for more details.

For example, the System.out.println() method we’ve seen already is an overloa‐
ded method. One method by this name prints a string, and other methods by
the same name print the values of the various primitive types. The Java compiler
decides which method to call based on the type of the argument passed to the
method.

When you are defining a method, the name of the method is always followed by the
method’s parameter list, which must be enclosed in parentheses. The parameter list
defines zero or more arguments that are passed to the method. The parameter spec‐
ifications, if there are any, each consist of a type and a name and the specifications
are separated from each other by commas (if there are multiple parameters). When
a method is invoked, the argument values it is passed must match the number, type,
and order of the parameters specified in this method signature line. The values
passed need not have exactly the same type as specified in the signature, but they
must be convertible to those types without casting.

When a Java method expects no arguments, its parameter list
is simply (), not (void). Java does not regard void as a type—
C and C++ programmers in particular should pay heed.

Java allows the programmer to define and invoke methods that accept a variable
number of arguments, using a syntax known colloquially as varargs. Varargs are
covered in detail later in this chapter.
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The final part of a method signature is the throws clause, which is used to list
the checked exceptions that a method can throw. Checked exceptions are a category
of exception classes that must be listed in the throws clauses of methods that can
throw them.

If a method uses the throw statement to throw a checked exception, the method
must declare that it can throw that exception. The method must also declare that
it can throw in the case that it calls some other method that throws a checked
exception, and the calling method does not explicitly catch that exception.

If a method can throw one or more checked exceptions, it specifies this by placing
the throws keyword after the argument list and following it by the name of the
exception class or classes it can throw. If a method does not throw any checked
exceptions, it does not use the throws keyword. If a method throws more than one
type of checked exception, separate the names of the exception classes from each
other with commas. More on this in a bit.

Method Modifiers
The modifiers of a method consist of zero or more modifier keywords such as
public, static, or abstract. Here is a list of allowed modifiers and their meanings:

abstract

An abstract method is a specification without an implementation. The curly
braces and Java statements that would normally comprise the body of the
method are replaced with a single semicolon. A class that includes an abstract
method must itself be declared abstract. Such a class is incomplete and cannot
be instantiated (see Chapter 3).

default

A default method may be defined only on an interface. All classes implement‐
ing the interface receive the default method unless they override it directly.
Implementing interfaces in classes is explored thoroughly in Chapter 3.

final

A final method may not be overridden or hidden by a subclass, which makes
it amenable to compiler optimizations that are not possible for regular meth‐
ods. All private methods are implicitly final, as are all methods of any class
that is declared final.

native

The native modifier specifies that the method implementation is written in
some “native” language such as C and is provided externally to the Java pro‐
gram. Like abstract methods, native methods have no body: the curly braces
are replaced with a semicolon.
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Implementing native Methods
When Java was first released, native methods were sometimes used for efficiency
reasons. That is almost never necessary today. Instead, native methods are used to
interface Java code to existing libraries written in C or C++. native methods are
implicitly platform-dependent, and the procedure for linking the implementation
with the Java class that declares the method is dependent on the implementation of
the Java virtual machine. native methods are not covered in this book but more
information can be found in the Java Native Interface Specification.

public, protected, private
These access modifiers specify whether and where a method can be used out‐
side of the class that defines it. These very important modifiers are explained in
Chapter 3.

static

A method declared static is a class method associated with the class itself
rather than with an instance of the class (we cover this in more detail in
Chapter 3).

strictfp

The fp in this awkwardly named, rarely used modifier stands for “floating
point.” For performance reasons, in Java 1.2 the language allowed for subtle
deviation from the strict IEEE-754 standard when using certain floating-point
acceleration hardware. The strictfp keyword was added to force Java to
strictly obey the standard. These hardware considerations haven’t been relevant
for many years, so Java 17 returns the default to the IEEE standard. Use of the
strictfp keyword will emit a warning, as it is no longer necessary.

synchronized

The synchronized modifier makes a method threadsafe. Before a thread can
invoke a synchronized method, it must obtain a lock on the method’s class
(for static methods) or on the relevant instance of the class (for non-static
methods). This prevents two threads from executing the method at the same
time.

The synchronized modifier is an implementation detail (because methods can
make themselves threadsafe in other ways) and is not formally part of the method
specification or API. Good documentation specifies explicitly whether a method is
threadsafe; you should not rely on the presence or absence of the synchronized
keyword when working with multithreaded programs.
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Annotations are an interesting special case (see Chapter 4 for
more on annotations)—they can be thought of as a halfway
house between a method modifier and additional supplemen‐
tary type information.

Checked and Unchecked Exceptions
The Java exception-handling scheme distinguishes between two types of exceptions,
known as checked and unchecked exceptions.

The distinction between checked and unchecked exceptions has to do with the
circumstances under which the exceptions could be thrown. Checked exceptions
arise in specific, well-defined circumstances, and very often are conditions from
which the application may be able to partially or fully recover.

For example, consider some code that might find its configuration file in one of
several possible directories. If we attempt to open the file from a directory it isn’t
present in, then a FileNotFoundException will be thrown. In our example, we want
to catch this exception and move on to try the next possible location for the file. In
other words, although the file not being present is an exceptional condition, it is one
from which we can recover, and it is an understood and anticipated failure.

On the other hand, in the Java environment there are a set of failures that cannot
easily be predicted or anticipated, due to such things as runtime conditions or abuse
of library code. There is no good way to predict an OutOfMemoryError, for example,
and any method that uses objects or arrays can throw a NullPointerException if it
is passed an invalid null argument.

These are the unchecked exceptions—and practically any method can throw an
unchecked exception at essentially any time. They are the Java environment’s ver‐
sion of Murphy’s law: “Anything that can go wrong, will go wrong.” Recovery from
an unchecked exception is usually very difficult, if not impossible—simply due to
their sheer unpredictability.

To figure out whether an exception is checked or unchecked, remember that excep‐
tions are Throwable objects and that these fall into two main categories, specified
by the Error and Exception subclasses. Any exception object that is an Error is
unchecked. There is also a subclass of Exception called RuntimeException—and
any subclass of RuntimeException is also an unchecked exception. All other excep‐
tions are checked exceptions.

Working with checked exceptions
Java has different rules for working with checked and unchecked exceptions. If you
write a method that throws a checked exception, you must use a throws clause to
declare the exception in the method signature. The Java compiler checks to make
sure you have declared them in method signatures and produces a compilation
error if you have not (that’s why they’re called “checked exceptions”).
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Even if you never throw a checked exception yourself, sometimes you must use a
throws clause to declare a checked exception. If your method calls a method that
can throw a checked exception, you must either include exception-handling code to
handle that exception or use throws to declare that your method can also throw that
exception.

For example, the following method tries to estimate the size of a web page—it uses
the standard java.net libraries and the class URL (we’ll meet these in Chapter 10) to
contact the web page. It uses methods and constructors that can throw various types
of java.io.IOException objects, so it declares this fact with a throws clause:

public static estimateHomepageSize(String host) throws IOException {
    URL url = new URL("htp://"+ host +"/");
    try (InputStream in = url.openStream()) {
        return in.available();
    }
}

In fact, the preceding code has a bug: we’ve misspelled the protocol specifier—
there’s no such protocol as htp://. So, the estimateHomepageSize() method will
always fail with a MalformedURLException.

How do you know if the method you are calling can throw a checked exception?
You can look at its method signature to find out. Or, failing that, the Java compiler
will tell you (by reporting a compilation error) if you’ve called a method whose
exceptions you must handle or declare.

Variable-Length Argument Lists
Methods may be declared to accept, and may be invoked with, variable numbers
of arguments. Such methods are commonly known as varargs methods. The “print
formatted” method System.out.printf() as well as the related format() methods
of String use varargs, as do a number of important methods from the Reflection
API of java.lang.reflect.

To declare a variable-length argument list, follow the type of the last argument to
the method with an ellipsis (...), indicating that this last argument can be repeated
zero or more times. For example:

public static int max(int first, int... rest) {
    /* body omitted for now */
}

Varargs methods are handled purely by the compiler. They operate by converting
the variable number of arguments into an array. To the Java runtime, the max()
method is indistinguishable from this one:

public static int max(int first, int[] rest) {
    /* body omitted for now */
}
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To convert a varargs signature to the “real” signature, simply replace ... with [ ].
Remember that only one ellipsis can appear in a parameter list, and it may only
appear on the last parameter in the list.

Let’s flesh out the max() example a little:

public static int max(int first, int... rest) {
    int max = first;
    for(int i : rest) { // legal because rest is actually an array
        if (i > max) max = i;
    }
    return max;
}

This max() method is declared with two arguments. The first is just a regular
int value. The second, however, may be repeated zero or more times. All of the
following are legal invocations of max():

max(0)
max(1, 2)
max(16, 8, 4, 2, 1)

Because varargs methods are compiled into methods that expect an array of argu‐
ments, invocations of those methods are compiled to include code that creates and
initializes such an array. So the call max(1,2,3) is compiled to this:

max(1, new int[] { 2, 3 })

In fact, if you already have method arguments stored in an array, it is perfectly
legal for you to pass them to the method that way, instead of writing them out
individually. You can treat any ... argument as if it were declared as an array. The
converse is not true, however: you can use varargs method invocation syntax only
when the method is actually declared as a varargs method using an ellipsis.

Introduction to Classes and Objects
Now that we have introduced operators, expressions, statements, and methods, we
can finally talk about classes. A class is a named collection of fields that holds
data values and methods that operate on those values. Classes are just one of five
reference types supported by Java, but they are the most important type. Classes
are thoroughly documented in a chapter of their own (Chapter 3). We introduce
them here, however, because they are the next higher level of syntax after methods,
and because the rest of this chapter requires a basic familiarity with the concept
of a class and the basic syntax for defining a class, instantiating it, and using the
resulting object.

The most important thing about classes is that they define new data types. For
example, you might define a class named Account to represent a bank account that
holds a balance. The class would define fields to hold data items such as the balance
(perhaps represented as a double), account holder’s name and address (as String
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instances) and methods to manipulate and operate on the account. The Account
class is a new data type.

When discussing data types, it is important to distinguish between the data type
itself and the values the data type represents. char is a data type: it represents
Unicode characters. But a char value represents a single specific character. A class
is a data type; a class value is called an object. We use the name class because each
class defines a type (or kind, or species, or class) of objects. The Account class is a
data type that represents bank accounts, while an Account object represents a single
specific account. As you might imagine, classes and their objects are closely linked.
In the sections that follow, we will discuss both.

Defining a Class
Here is a possible definition of the Account class we have been discussing:

/** Represents a customer bank account */
public class Account {
     public String name;
     public double balance;
     public int accountId;

     // A constructor that initializes the fields
     public Account(String name, double openingBalance, int id) {
         this.name = name;
         this.balance = openingBalance;
         this.accountId = id;
     }
}

This class definition is stored in a file named Account.java and compiled to a
file named Account.class, where it is available for use by Java programs and other
classes. This class definition is provided here for completeness and to provide
context, but don’t expect to understand all the details just yet; most of Chapter 3 is
devoted to the topic of defining classes.

Keep in mind that you don’t have to define every class you want to use in a
Java program. The Java platform includes thousands of predefined classes that are
guaranteed to be available on every computer that runs that given version of Java.

Creating an Object
Now that we have defined the Account class as a new data type, we can use the
following line to declare a variable that holds an Account object:

Account a;

Declaring a variable to hold an Account object does not create the object itself,
however. To actually create an object, you must use the new operator. This keyword
is followed by the object’s class (i.e., its type) and an optional argument list in
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parentheses. These arguments are passed to the constructor for the class, which
initializes internal fields in the new object:

// Declare variable a and store a reference to new Account object
Account a = new Account("Jason Clark", 0.0, 42);

// Create some other objects as well
// An object that represents the current time
LocalDateTime d = new LocalDateTime();

// A HashSet object to hold a set of strings
Set<String> words = new HashSet<>();

The new keyword is by far the most common way to create objects in Java. A few
other ways are also worth mentioning. First, classes that meet certain criteria are
so important that Java defines special literal syntax for creating objects of those
types (as we discuss later in this section). Second, Java supports a mechanism that
allows programs to load classes and create instances of those classes dynamically.
See Chapter 11 for more details. Finally, objects can also be created by deserializing
them. An object that has had its state saved, or serialized, usually to a file, can be
recreated using the java.io.ObjectInputStream class.

Using an Object
Now that we’ve seen how to define classes and instantiate them by creating objects,
we need to look at the Java syntax that allows us to use those objects. Recall that a
class defines a collection of fields and methods. Each object has its own copies of
those fields and has access to those methods. We use the dot character (.) to access
the named fields and methods of an object. For example:

Account a = new Account("Jason", 0.0, 42);  // Create an object

double b  = a.balance;                 // Read a field of the object
a.balance = a.balance + 10.0;          // Set the value of a field

String s  = a.toString();              // Access a method of the object

This syntax is very common when programming in object-oriented languages, and
Java is no exception. Note, in particular, the expression a.toString(). This tells the
Java compiler to look up a method named toString (which is defined by the parent
Object class of Account) and use that method to perform a computation on the
object a. We’ll cover the details of this operation in Chapter 3.

Object Literals
In our discussion of primitive types, we saw that each primitive type has a literal
syntax for including values of the type literally into the text of a program. Java also
defines a literal syntax for a few special reference types, as described next.
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String literals
The String class represents text as a string of characters. Because programs usually
communicate with their users through the written word, the ability to manipulate
strings of text is quite important in any programming language. In Java, strings
are objects; the data type used to represent text is the String class. Modern Java
programs usually use more string data than anything else.

Accordingly, because strings are such a fundamental data type, Java allows you to
include text literally in programs in one of two formats. Traditional strings are
placed between double-quote (") characters, or a newer text block form may be
used between sequences of three double-quote characters (""").

A traditional double-quoted string looks like this:

String name = "David";
System.out.println("Hello, " + name);

Don’t confuse the double-quote characters that surround string literals with the
single-quote (or apostrophe) characters that surround char literals.

String literals of either form can contain any of the escape sequences char literals
can (see Table 2-2). Traditional double-quoted strings require escape sequences to
embed double-quote characters or newlines. They also must consist of a single line
in our Java code. For example:

String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

The primary use for text blocks instead of traditional strings is representing multi-
line strings. Text blocks start with """, followed by a newline, and end when a
concluding """ is reached.

Along with their support for multiline strings, text blocks also allow us to use
double quotes without escaping. This often makes text blocks much easier to
read, particularly when expressing another programming language (such as SQL
or HTML) in our Java code.

String html = """
              <html>
                <body class="main-body">
                  ...
                </body>
              </html>""";
System.out.println(html);

Examining the output from this code reveals one more interesting fact about text
blocks regarding indentation. The above prints with <html> in the first column of
the output with no leading spaces.

The compiler finds the smallest indentation across the lines of our text block and
strips that many leading spaces from each line. If this is not desired, the placement
of the closing """ also participates in choosing the indent. We could retain the full
white space with:
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String html = """
              <html>
                <body class="main-body">
                  ...
                </body>
              </html>
""";  // As smallest indent (0), this leaves the text block as written

System.out.println(html);

Before text blocks were introduced in Java, it was common to break up string literals
for easier reading using + to concatenate them. Along with existing in many code
bases, this remains a valid technique if your string shouldn’t include newlines.

// This is illegal
// Traditional string literals cannot break across lines.
String x = "This is a test of the
            emergency broadcast system";

// Common before text blocks
// Still useful if avoiding newlines in the text
String s = "This is a test of the " +
           "emergency broadcast system";

Literals, whether traditional or text blocks, are concatenated when your program
is compiled, not when it is run, so you do not need to worry about any kind of
performance penalty.

Type literals
The second type that supports its own special object literal syntax is the class named
Class. Instances of the Class class represent a Java data type and contain metadata
about the type that is referred to. To include a Class object literally in a Java
program, follow the name of any data type with .class. For example:

Class<?> typeInt = int.class;
Class<?> typeIntArray = int[].class;
Class<?> typeAccount = Account.class;

The null reference
The null keyword is a special literal value that is a reference to nothing, or an
absence of a reference. The null value is unique because it is a member of every
reference type. You can assign null to variables of any reference type. For example:

String s = null;
Account a = null;

Lambda Expressions
Java 8 introduced a major new feature—lambda expressions. These are a very com‐
mon programming language construct and in particular are extremely widely used
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in the family of languages known as functional programming languages (e.g., Lisp,
Haskell, and OCaml). The power and flexibility of lambdas goes far beyond just
functional languages, and they can be found in almost all modern programming
languages.

Definition of a Lambda Expression
A lambda expression is essentially a function that does not have a name and can
be treated as a value in the language (e.g., assigned to a variable). As Java does not
allow code to run around on its own outside of classes, in Java this means that a
lambda is an anonymous method defined on some class (that is possibly unknown
to the developer).

The syntax for a lambda expression looks like this:

( paramlist ) -> { statements }

One simple, very traditional example:

Runnable r = () -> System.out.println("Hello World");

When a lambda expression is used as a value, it is automatically converted to a new
object of the correct type for the variable it is being placed into. This autoconversion
and type inference is essential to Java’s approach to lambda expressions. Unfortu‐
nately, it relies on a proper understanding of Java’s type system as a whole. “Nested
Types” on page 187 provides a more detailed explanation of lambda expressions—so
for now, it suffices to simply recognize the syntax for lambdas.

A slightly more complex example:

ActionListener listener = (e) -> {
  System.out.println("Event fired at: "+ e.getWhen());
  System.out.println("Event command: "+ e.getActionCommand());
};

Arrays
An array is a special kind of object that holds zero or more primitive values or
references. These values are held in the elements of the array, which are unnamed
variables referred to by their position or index. The type of an array is characterized
by its element type, and all elements of the array must be of that type.

Array elements are numbered starting with zero, and valid indexes range from zero
to the number of elements minus one. The array element with index 1, for example,
is the second element in the array. The number of elements in an array is its length.
The length of an array is specified when the array is created, and it never changes
(unlike Java collections, which we’ll see in Chapter 8).

The element type of an array may be any valid Java type, including array types. This
means that Java supports arrays of arrays, which provide a kind of multidimensional
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4 There is a terminology difficulty in discussions of arrays. Unlike with classes and their instances,
we use the term “array” for both the array type and the array instance. In practice, it is usually
clear from context whether a type or a value is being discussed.

array capability. Java does not support the matrix-style multidimensional arrays
found in some languages.

While Java’s Collection API, covered thoroughly in Chapter 8, is often more flexible
and feature-rich than basic arrays, arrays remain common throughout the platform
and it’s worth understanding the details of using them.

Array Types
Array types are reference types, just as classes are. Instances of arrays are objects,
just as the instances of a class are.4 Unlike classes, array types do not have to
be defined. Simply place square brackets after the element type. For example, the
following code declares three variables of array type:

byte b;                        // byte is a primitive type
byte[] arrayOfBytes;           // byte[] is an array of byte values
byte[][] arrayOfArrayOfBytes;  // byte[][] is an array of byte[]
String[] strings;              // String[] is an array of strings

The length of an array is not part of the array type. It is not possible, for example,
to declare a method that expects an array of exactly four int values. If a method
parameter is of type int[], a caller can pass an array with any number (including
zero) of elements.

Array types are not classes, but array instances are objects. This means that arrays
inherit the methods of java.lang.Object. Arrays implement the Cloneable inter‐
face and override the clone() method to guarantee that an array can always be
cloned and that clone() never throws a CloneNotSupportedException. Arrays also
implement Serializable so that any array can be serialized if its element type can
be serialized. Finally, all arrays have a public final int field named length that
specifies the number of elements in the array.

Array type widening conversions
Because arrays extend Object and implement the Cloneable and Serializable
interfaces, any array type can be widened to any of these three types. But certain
array types can also be widened to other array types. If the element type of an array
is a reference type T, and T is assignable to a type S, the array type T[] is assignable
to the array type S[]. Note that there are no widening conversions of this sort for
arrays of a given primitive type. As examples, the following lines of code show legal
array widening conversions:

String[] arrayOfStrings;      // Created elsewhere
int[][] arrayOfArraysOfInt;   // Created elsewhere
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// String is assignable to Object,
// so String[] is assignable to Object[]
Object[] oa = arrayOfStrings;

// String implements Comparable, so a String[] can
// be considered a Comparable[]
Comparable[] ca = arrayOfStrings;

// An int[] is an Object, so int[][] is assignable to Object[]
Object[] oa2 = arrayOfArraysOfInt;

// All arrays are cloneable, serializable Objects
Object o = arrayOfStrings;
Cloneable c = arrayOfArraysOfInt;
Serializable s = arrayOfArraysOfInt[0];

This ability to widen an array type to another array type means that the compile-
time type of an array is not always the same as its runtime type.

This widening is known as array covariance, and as we shall
see in “Bounded Type Parameters” on page 167, it is regarded
by modern standards as a historical artifact and a misfeature,
because of the mismatch between compile and runtime typing
that it exposes.

The compiler must usually insert runtime checks before any operation that stores a
reference value into an array element to ensure that the runtime type of the value
matches the runtime type of the array element. An ArrayStoreException is thrown
if the runtime check fails.

C compatibility syntax
As we’ve seen, you write an array type simply by placing brackets after the element
type. For compatibility with C and C++, however, Java supports an alternative syn‐
tax in variable declarations: brackets may be placed after the name of the variable
instead of, or in addition to, the element type. This applies to local variables, fields,
and method parameters. For example:

// This line declares local variables of type int, int[] and int[][]
int justOne, arrayOfThem[], arrayOfArrays[][];

// These three lines declare fields of the same array type:
public String[][] aas1;   // Preferred Java syntax
public String aas2[][];   // C syntax
public String[] aas3[];   // Confusing hybrid syntax

// This method signature includes two parameters with the same type
public static double dotProduct(double[] x, double y[]) { ... }
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This compatibility syntax is extremely uncommon, and you
should not use it.

Creating and Initializing Arrays
To create an array value in Java, you use the new keyword, just as you do to create an
object. Array types don’t have constructors, but you are required to specify a length
whenever you create an array. Specify the desired size of your array as a nonnegative
integer between square brackets:

// Create a new array to hold 1024 bytes
byte[] buffer = new byte[1024];
// Create an array of 50 references to strings
String[] lines = new String[50];

When you create an array with this syntax, each of the array elements is automati‐
cally initialized to the same default value that is used for the fields of a class: false
for boolean elements, \u0000 for char elements, 0 for integer elements, 0.0 for
floating-point elements, and null for elements of reference type.

Array creation expressions can also be used to create and initialize a multidimen‐
sional array of arrays. This syntax is somewhat more complicated and is explained
later in this section.

Array initializers
To create an array and initialize its elements in a single expression, omit the array
length and follow the square brackets with a comma-separated list of expressions
within curly braces. The type of each expression must be assignable to the element
type of the array, of course. The length of the array that is created is equal to the
number of expressions. It is legal, but not necessary, to include a trailing comma
following the last expression in the list. For example:

String[] greetings = new String[] { "Hello", "Hi", "Howdy" };
int[] smallPrimes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, };

Note that this syntax allows arrays to be created, initialized, and used without
ever being assigned to a variable. In a sense, these array creation expressions are
anonymous array literals. Here are examples:

// Call a method, passing an anonymous array literal that
// contains two strings
String response = askQuestion("Do you want to quit?",
                               new String[] {"Yes", "No"});

// Call another method with an anonymous array (of anonymous objects)
double d = sumAccounts(new Account[] { new Account("1st", 100.0, 1),
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                                       new Account("2nd", 200.0, 2),
                                       new Account("3rd", 300.0, 3) });

When an array initializer is part of a variable declaration, you may omit the new
keyword and element type and list the desired array elements within curly braces:

String[] greetings = { "Hello", "Hi", "Howdy" };
int[] powersOfTwo = {1, 2, 4, 8, 16, 32, 64, 128};

Array literals are created and initialized when the program is run, not when the
program is compiled. Consider the following array literal:

int[] perfectNumbers = {6, 28};

This is compiled into Java bytecodes that are equivalent to:

int[] perfectNumbers = new int[2];
perfectNumbers[0] = 6;
perfectNumbers[1] = 28;

The fact that Java does all array initialization at runtime has an important corollary.
It means that the expressions in an array initializer may be computed at runtime
and need not be compile-time constants. For example:

Account[] accounts = { findAccountById(1), findAccountById(2) };

Using Arrays
Once an array has been created, you are ready to start using it. The following
sections explain basic access to the elements of an array and cover common idioms
of array usage, such as iterating through the elements of an array and copying an
array or part of an array.

Accessing array elements
The elements of an array are variables. When an array element appears in an
expression, it evaluates to the value held in the element. And when an array element
appears on the lefthand side of an assignment operator, a new value is stored into
that element. Unlike a normal variable, however, an array element has no name,
only a number. Array elements are accessed using a square bracket notation. If a
is an expression that evaluates to an array reference, you index that array and refer
to a specific element with a[i], where i is an integer literal or an expression that
evaluates to an int. For example:

// Create an array of two strings
String[] responses = new String[2];
responses[0] = "Yes";  // Set the first element of the array
responses[1] = "No";   // Set the second element of the array

// Now read these array elements
System.out.println(question + " (" + responses[0] + "/" +
                   responses[1] + " ): ");
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// Both the array reference and the array index may be more complex
double datum = data.getMatrix()[data.row() * data.numColumns() +
                   data.column()];

The array index expression must be of type int, or a type that can be widened to
an int: byte, short, or even char. It is obviously not legal to index an array with
a boolean, float, or double value. Remember that the length field of an array
is an int and that arrays may not have more than Integer.MAX_VALUE elements.
Indexing an array with an expression of type long generates a compile-time error,
even if the value of that expression at runtime would be within the range of an int.

Array bounds
Remember that the first element of an array a is a[0] , the second element is a[1],
and the last is a[a.length-1].

A common bug involving arrays is use of an index that is too small (a negative
index) or too large (greater than or equal to the array length). In languages like
C or C++, accessing elements before the beginning or after the end of an array
yields unpredictable behavior that can vary from invocation to invocation and
platform to platform. Such bugs may not always be caught, and if a failure occurs,
it may be at some later time. While it is just as easy to write faulty array indexing
code in Java, Java guarantees predictable results by checking every array access at
runtime. If an array index is too small or too large, Java immediately throws an
ArrayIndexOutOfBoundsException.

Iterating arrays
It is common to write loops that iterate through each of the elements of an array in
order to perform some operation on it. This is typically done with a for loop. The
following code, for example, computes the sum of an array of integers:

int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23 };
int sumOfPrimes = 0;
for(int i = 0; i < primes.length; i++)
    sumOfPrimes += primes[i];

The structure of this for loop is idiomatic, and you’ll see it frequently. Java also has
the foreach syntax that we’ve already met. The summing code could be rewritten
succinctly as follows:

for(int p : primes) sumOfPrimes += p;

Copying arrays
All array types implement the Cloneable interface, and any array can be copied by
invoking its clone() method. Note that a cast is required to convert the return value
to the appropriate array type, but the clone() method of arrays is guaranteed not to
throw a CloneNotSupportedException:
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int[] data = { 1, 2, 3 };
int[] copy = data.clone();

The clone() method makes a shallow copy. If the element type of the array is a
reference type, only the references are copied, not the referenced objects themselves.
Because the copy is shallow, any array can be cloned, even if the element type is not
itself Cloneable.

Sometimes you simply want to copy elements from one existing array to another
existing array. The System.arraycopy() method is designed to do this efficiently,
and you can assume that Java VM implementations perform this method using
high-speed block copy operations on the underlying hardware.

arraycopy() is a straightforward function that is difficult to use only because it
has five arguments to remember. First, pass the source array from which elements
are to be copied. Second, pass the index of the start element in that array. Pass
the destination array and the destination index as the third and fourth arguments.
Finally, as the fifth argument, specify the number of elements to be copied.

arraycopy() works correctly even for overlapping copies within the same array. For
example, if you’ve “deleted” the element at index 0 from array a and want to shift the
elements between indexes 1 and n down one so that they occupy indexes 0 through
n-1, you could do this:

System.arraycopy(a, 1, a, 0, n);

Array utilities
The java.util.Arrays class contains a number of static utility methods for work‐
ing with arrays. Most of these methods are heavily overloaded, with versions for
arrays of each primitive type and another version for arrays of objects.

The sort() and binarySearch() methods are particularly useful for sorting and
searching arrays. The equals() method allows you to compare the content of two
arrays. The toString() method is useful when you want to convert array content to
a string, such as for debugging or logging output. copyOf() is a useful alternative to
arraycopy() we’ve seen before if you’re ok with a new array being allocated rather
than copying into an existing one.

The Arrays class also includes deepEquals(), deepHashCode(), and deepTo

String() methods that work correctly for multidimensional arrays.

Multidimensional Arrays
As we’ve seen, an array type is written as the element type followed by a pair of
square brackets. An array of char is char[], and an array of arrays of char is
char[][]. When the elements of an array are themselves arrays, we say that the
array is multidimensional. In order to work with multidimensional arrays, you need
to understand a few additional details.
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Imagine that you want to use a multidimensional array to represent a multiplication
table:

int[][] products;      // A multiplication table

Each of the pairs of square brackets represents one dimension, so this is a two-
dimensional array. To access a single int element of this two-dimensional array, you
must specify two index values, one for each dimension. Assuming that this array
was actually initialized as a multiplication table, the int value stored at any given
element would be the product of the two indexes. That is, products[2][4] would
be 8, and products[3][7] would be 21.

To create a new multidimensional array, use the new keyword and specify the size of
both dimensions of the array. For example:

int[][] products = new int[10][10];

In some languages, an array like this would be created as a single block of 100 int
values. Java does not work this way. This line of code does three things:

• Declares a variable named products to hold an array of arrays of int.•

• Creates a 10-element array to hold 10 arrays of int.•

• Creates 10 more arrays, each of which is a 10-element array of int. It assigns•
each of these 10 new arrays to the elements of the initial array. The default
value of every int element of each of these 10 new arrays is 0.

To put this another way, the previous single line of code is equivalent to the
following code:

int[][] products = new int[10][]; // An array to hold 10 int[] values
for(int i = 0; i < 10; i++)      // Loop 10 times...
    products[i] = new int[10];   // ...and create 10 arrays

The new keyword performs this additional initialization automatically for you. It
works with arrays with more than two dimensions as well:

float[][][] globalTemperatureData = new float[360][180][100];

When using new with multidimensional arrays, you do not have to specify a size
for all dimensions of the array, only the leftmost dimension or dimensions. For
example, the following two lines are legal:

float[][][] globalTemperatureData = new float[360][][];
float[][][] globalTemperatureData = new float[360][180][];

The first line creates a single-dimensional array, where each element of the array
can hold a float[][]. The second line creates a two-dimensional array, where
each element of the array is a float[]. If you specify a size for only some of the
dimensions of an array, however, those dimensions must be the leftmost ones. The
following lines are not legal:
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float[][][] globalTemperatureData = new float[360][][100];  // Error!
float[][][] globalTemperatureData = new float[][180][100];  // Error!

Like a one-dimensional array, a multidimensional array can be initialized using an
array initializer. Simply use nested sets of curly braces to nest arrays within arrays.
For example, we can declare, create, and initialize a 5 × 5 multiplication table like
this:

int[][] products = { {0, 0, 0, 0, 0},
                     {0, 1, 2, 3, 4},
                     {0, 2, 4, 6, 8},
                     {0, 3, 6, 9, 12},
                     {0, 4, 8, 12, 16} };

Or, if you want to use a multidimensional array without declaring a variable, you
can use the anonymous initializer syntax:

boolean response = bilingualQuestion(question, new String[][] {
                                                   { "Yes", "No" },
                                                   { "Oui", "Non" }});

When you create a multidimensional array using the new keyword, it is usually good
practice to use only rectangular arrays: ones in which all the array values for a given
dimension have the same size.

Reference Types
Now that we’ve covered arrays and introduced classes and objects, we can turn to
a more general description of reference types. Classes and arrays are two of Java’s
five kinds of reference types. Classes were introduced earlier and are covered in
complete detail, along with interfaces, in Chapter 3. Enumerated types and annota‐
tion types are reference types introduced in Chapter 4.

This section does not cover specific syntax for any particular reference type but
instead explains the general behavior of reference types and illustrates how they
differ from Java’s primitive types. In this section, the term object refers to a value or
instance of any reference type, including arrays.

Reference Versus Primitive Types
Reference types and objects differ substantially from primitive types and their
primitive values:

Eight primitive types are defined by the Java language, and the programmer cannot
define new primitive types.

Reference types are user-defined, so there is an unlimited number of them. For
example, a program might define a class named Account and use objects of this
newly defined type to store and track user bank accounts.
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Primitive types represent single values.
Reference types are aggregate types that hold zero or more primitive values
or objects. Our hypothetical Account class, for example, might hold a numeric
value for the balance, along with identifiers for the account owner. The char[]
and Account[] array types are aggregate types because they hold a sequence of
primitive char values or Account objects.

Primitive types require between one and eight bytes of memory.
When a primitive value is stored in a variable or passed to a method, the
computer makes a copy of the bytes that hold the value. Objects, on the other
hand, may require substantially more memory. Memory to store an object is
dynamically allocated on the heap when the object is created, and this memory
is automatically “garbage collected” when the object is no longer needed.

When an object is assigned to a variable or passed to a
method, the memory that represents the object is not copied.
Instead, only a reference to that memory is stored in the
variable or passed to the method.

References are completely opaque in Java and the representation of a reference is
an implementation detail of the Java runtime. If you are a C programmer, however,
you can safely imagine a reference as a pointer or a memory address. Remember,
though, that Java programs cannot manipulate references in any way.

Unlike pointers in C and C++, references cannot be converted to or from integers,
and they cannot be incremented or decremented. C and C++ programmers should
also note that Java does not support the & address-of operator or the * and ->
dereference operators.

Manipulating Objects and Reference Copies
The following code manipulates a primitive int value:

int x = 42;
int y = x;

After these lines execute, the variable y contains a copy of the value held in the
variable x. Inside the Java VM, there are two independent copies of the 32-bit
integer 42.

Now think about what happens if we run the same basic code but use a reference
type instead of a primitive type:

Account a = new Account("Jason", 0.0, 42);
Account b = a;

After this code runs, the variable b holds a copy of the reference held in the variable
a. There is still only one copy of the Account object in the VM, but there are now
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two copies of the reference to that object. This has some important implications.
Suppose the two previous lines of code are followed by this code:

System.out.println(a.balance);  // Print out balance of a: 0.0
b.balance = 13.0;               // Now change balance of b
System.out.println(a.balance);  // Print a's balance again: 13.0

Because the variables a and b hold references to the same object, either variable can
be used to make changes to the object, and those changes are visible through the
other variable as well. As arrays are a kind of object, the same thing happens with
arrays, as illustrated by the following code:

// greet holds an array reference
char[] greet = { 'h','e','l','l','o' };
char[] cuss = greet;             // cuss holds the same reference
cuss[4] = '!';                   // Use reference to change an element
System.out.println(greet);       // Prints "hell!"

A similar difference in behavior between primitive types and reference types occurs
when arguments are passed to methods. Consider the following method:

void changePrimitive(int x) {
    while(x > 0) {
        System.out.println(x--);
    }
}

When this method is invoked, the method is given a copy of the argument used to
invoke the method in the parameter x. The code in the method uses x as a loop
counter and decrements it to zero. Because x is a primitive type, the method has its
own private copy of this value, so this is a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that the
parameter is a reference type:

void changeReference(Account b) {
    while (b.balance > 0) {
        System.out.println(b.balance--);
    }
}

When this method is invoked, it is passed a private copy of a reference to a Account
object and can use this reference to change the Account object. For example,
consider:

Account a = new Account("Jason", 3.0, 42);  // Account balance: 3.0
changeReference(a);             // Prints 3,2,1 and modifies the Account
System.out.println(a.balance);  // The balance of a is now 0!

When the changeReference() method is invoked, it is passed a copy of the refer‐
ence held in variable a. Now both the variable a and the method parameter b
hold references to the same object. The method can use its reference to change
the contents of the object. Note, however, that it cannot change the contents of
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the variable a. In other words, the method can change the Account object beyond
recognition, but it cannot change the fact that the variable a refers to that object.

Comparing Objects
We’ve seen that primitive types and reference types differ significantly in the way
they are assigned to variables, passed to methods, and copied. The types also differ
in the way they are compared for equality. When used with primitive values, the
equality operator (==) simply tests whether two values are identical (i.e., whether
they have exactly the same bits). With reference types, however, == compares refer‐
ences, not actual objects. In other words, == tests whether two references refer to the
same object; it does not test whether two objects have the same content. Here’s an
example:

String letter = "o";
String s = "hello";              // These two String objects
String t = "hell" + letter;      // contain exactly the same text.
if (s == t) System.out.println("equal"); // But they are not equal!

byte[] a = { 1, 2, 3 };
// A copy with identical content.
byte[] b = (byte[]) a.clone();
if (a == b) System.out.println("equal"); // But they are not equal!

When working with reference types, keep in mind there are two kinds of equality:
equality of reference and equality of object. It is important to distinguish between
these two kinds of equality. One way to do this is to use the word “identical” when
talking about equality of references and the word “equal” when talking about two
distinct objects that have the same content. To test two nonidentical objects for
equality, pass one of them to the equals() method of the other:

String letter = "o";
String s = "hello";              // These two String objects
String t = "hell" + letter;      // contain exactly the same text.
if (s.equals(t)) {               // And the equals() method
    System.out.println("equal"); // tells us so.
}

All objects inherit an equals() method (from Object), but the default implementa‐
tion simply uses == to test for identity of references, not equality of content. A class
that wants to allow objects to be compared for equality can define its own version
of the equals() method. Our Account class does not do this, but the String class
does, as indicated in the code example. You can call the equals() method on an
array, but it is the same as using the == operator, because arrays always inherit the
default equals() method that compares references rather than array content. You
can compare arrays for equality with the java.util.Arrays.equals() convenience
method.
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Boxing and Unboxing Conversions
Primitive types and reference types behave quite differently. It is sometimes useful
to treat primitive values as objects, and for this reason, the Java platform includes
wrapper classes for each of the primitive types. Boolean, Byte, Short, Character,
Integer, Long, Float, and Double are immutable, final classes whose instances each
hold a single primitive value. These wrapper classes are usually used when you want
to store primitive values in collections such as java.util.List:

// Create a List-of-Integer collection
List<Integer> numbers = new ArrayList<>();
// Store a wrapped primitive
numbers.add(Integer.valueOf(-1));
// Extract the primitive value
int i = numbers.get(0).intValue();

Java allows types of conversions known as boxing and unboxing conversions. Box‐
ing conversions convert a primitive value to its corresponding wrapper object and
unboxing conversions do the opposite. You may explicitly specify a boxing or
unboxing conversion with a cast, but this is unnecessary, as these conversions are
automatically performed when you assign a value to a variable or pass a value
to a method. Furthermore, unboxing conversions are also automatic if you use a
wrapper object when a Java operator or statement expects a primitive value. Because
Java performs boxing and unboxing automatically, this language feature is often
known as autoboxing.

Here are some examples of automatic boxing and unboxing conversions:

Integer i = 0;   // int literal 0 boxed to an Integer object
Number n = 0.0f; // float literal boxed to Float and widened to Number
Integer i = 1;   // this is a boxing conversion
int j = i;       // i is unboxed here
i++;             // i is unboxed, incremented, and then boxed up again
Integer k = i+2; // i is unboxed and the sum is boxed up again
i = null;
j = i;           // unboxing here throws a NullPointerException

Autoboxing makes dealing with collections much easier as well. Let’s look at an
example that uses Java’s generics (a language feature we’ll meet properly in “Java
Generics” on page 162) that allows us to restrict what types can be put into lists and
other collections:

List<Integer> numbers = new ArrayList<>(); // Create a List of Integer
numbers.add(-1);                           // Box int to Integer
int i = numbers.get(0);                    // Unbox Integer to int

Packages and the Java Namespace
A package is a named collection of classes, interfaces, and other reference types.
Packages serve to group related classes and define a namespace for the classes they
contain.
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The core classes of the Java platform are in packages whose names begin with
java. For example, the most fundamental classes of the language are in the pack‐
age java.lang. Various utility classes are in java.util. Classes for input and
output are in java.io, and classes for networking are in java.net. Some of these
packages contain subpackages, such as java.lang.reflect and java.util.regex.
Extensions to the Java platform that have been standardized by Oracle (or originally
Sun) typically have package names that begin with javax. Some of these extensions,
such as javax.swing and its myriad subpackages, were later adopted into the core
platform itself. Finally, the Java platform also includes several “endorsed standards,”
which have packages named after the standards body that created them, such as
org.w3c and org.omg.

Every class has both a simple name, which is the name given to it in its definition,
and a fully qualified name, which includes the name of the package of which it is
a part. The String class, for example, is part of the java.lang package, so its fully
qualified name is java.lang.String.

This section explains how to place your own classes and interfaces into a package
and how to choose a package name that won’t conflict with anyone else’s package
name. Next, it explains how to selectively import type names or static members into
the namespace so that you don’t have to type the package name of every class or
interface you use.

Package Declaration
To specify the package a class belongs to, you use a package declaration. The
package keyword, if it appears, must be the first token of Java code (i.e., the first
thing other than comments and space) in the Java file. The keyword should be
followed by the name of the desired package and a semicolon. Consider a Java file
that begins with this directive:

package org.apache.commons.net;

All classes defined by this file are part of the package org.apache.commons.net.

If no package directive appears in a Java file, all classes defined in that file are part of
an unnamed default package. In this case, the qualified and unqualified names of a
class are the same.

The possibility of naming conflicts means that you should
not use the default package. As your project grows more com‐
plicated, conflicts become almost inevitable—much better to
create packages right from the start.

Globally Unique Package Names
One of the important functions of packages is to partition the Java namespace and
prevent name collisions between classes. It is only their package names that keep
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the java.util.List and java.awt.List classes distinct, for example. For this to
work, however, package names must themselves be distinct. As the developer of
Java, Oracle controls all package names that begin with java, javax, and sun.

One common scheme is to use your domain name, with its elements reversed, as
the prefix for all your package names. For example, the Apache Project produces a
networking library as part of the Apache Commons project. The Commons project
can be found at http://commons.apache.org and accordingly, the package name used
for the networking library is org.apache.commons.net.

Note that these package-naming rules apply primarily to API developers. If other
programmers will be using classes that you develop along with unknown other
classes, it is important that your package name be globally unique. On the other
hand, if you are developing a Java application and will not be releasing any of
the classes for reuse by others, you know the complete set of classes that your
application will be deployed with and do not have to worry about unforeseen
naming conflicts. In this case, you can choose a package-naming scheme for your
own convenience rather than for global uniqueness. One common approach is to
use the application name as the main package name (it may have subpackages
beneath it).

Importing Types
When referring to a class or interface in your Java code, you must, by default, use
the fully qualified name of the type, including the package name. If you’re writing
code to manipulate a file and need to use the File class of the java.io package, you
must type java.io.File. This rule has three exceptions:

• Types from the package java.lang are so important and so commonly used•
that they can always be referred to by their simple names.

• The code in a type p.T may refer to other types defined in the package p by•
their simple names.

• Types that have been imported into the namespace with an import declaration•
may be referred to by their simple names.

The first two exceptions are known as “automatic imports.” The types from
java.lang and the current package are “imported” into the namespace so that they
can be used without their package name. Typing the package name of commonly
used types that are not in java.lang or the current package quickly becomes
tedious, and so it is also possible to explicitly import types from other packages into
the namespace. This is done with the import declaration.

import declarations must appear at the start of a Java file, immediately after the
package declaration, if there is one, and before any type definitions. You may use
any number of import declarations in a file. An import declaration applies to all
type definitions in the file (but not to any import declarations that follow it).
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The import declaration has two forms. To import a single type into the namespace,
follow the import keyword with the name of the type and a semicolon:

import java.io.File;    // Now we can type File instead of java.io.File

This is known as the “single type import” declaration.

The other form of import declaration is the “on-demand type import.” In this form,
you specify the name of a package followed by the characters .* to indicate that any
type from that package may be used without its package name. Thus, if you want to
use several other classes from the java.io package in addition to the File class, you
can simply import the entire package:

import java.io.*;   // Use simple names for all classes in java.io

This on-demand import syntax does not apply to subpackages. If I import the
java.util package, I must still refer to the java.util.zip.ZipInputStream class
by its fully qualified name or import it.

Using an on-demand type import declaration is not the same as explicitly writing
out a single type import declaration for every type in the package. It is more like an
explicit single type import for every type in the package that you actually use in your
code. This is the reason it’s called “on demand”; types are imported as you use them.

Naming conflicts and shadowing
import declarations are invaluable to Java programming. They do expose us to
the possibility of naming conflicts, however. Consider the packages java.util and
java.awt. Both contain types named List.

java.util.List is an important and commonly used interface. The java.awt pack‐
age contains a number of important types that are commonly used in client-side
applications, but java.awt.List has been superseded and is not one of these
important types. It is illegal to import both java.util.List and java.awt.List
in the same Java file. The following single type import declarations produce a
compilation error:

import java.util.List;
import java.awt.List;

Using on-demand type imports for the two packages is legal:

import java.util.*;  // For collections and other utilities.
import java.awt.*;   // For fonts, colors, and graphics.

Difficulty arises, however, if you actually try to use the type List. This type can
be imported “on demand” from either package, and any attempt to use List as an
unqualified type name produces a compilation error. The workaround, in this case,
is to explicitly specify the package name you want.

Packages and the Java Namespace | 101

Java Syntax



Because java.util.List is much more commonly used than java.awt.List, it is
useful to combine the two on-demand type import declarations with a single type
import declaration that serves to disambiguate what we mean when we say List:

import java.util.*;    // For collections and other utilities.
import java.awt.*;     // For fonts, colors, and graphics.
import java.util.List; // To disambiguate from java.awt.List

With these import declarations in place, we can use List to mean the
java.util.List interface. If we actually need to use the java.awt.List class, we
can still do so as long as we include its package name. There are no other naming
conflicts between java.util and java.awt, and their types will be imported “on
demand” when we use them without a package name.

Importing Static Members
As well as types, you can import the static members of types using the keywords
import static. (Static members are explained in Chapter 3. If you are not already
familiar with them, you may want to come back to this section later.) Like type
import declarations, these static import declarations come in two forms: single
static member import and on-demand static member import. Suppose, for example,
that you are writing a text-based program that sends a lot of output to System.out.
In this case, you might use this single static member import to save yourself typing:

import static java.lang.System.out;

You can then use out.println() instead of System.out.println(). Or suppose
you are writing a program that uses many of the trigonometric and other functions
of the Math class. In a program that is clearly focused on numerical methods like
this, having to repeatedly type the class name “Math” does not add clarity to your
code; it just gets in the way. In this case, an on-demand static member import may
be appropriate:

import static java.lang.Math.*

With this import declaration, you are free to write concise expressions like
sqrt(abs(sin(x))) without having to prefix the name of each static method with
the class name Math.

Another important use of import static declarations is to import the names
of constants into your code. This works particularly well with enumerated types
(see Chapter 4). Suppose, for example, that you want to use the values of this
enumerated type in code you are writing:

package climate.temperate;
enum Seasons { WINTER, SPRING, SUMMER, AUTUMN };

You could import the type climate.temperate.Seasons and then prefix the con‐
stants with the type name: Seasons.SPRING. For more concise code, you could
import the enumerated values themselves:
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import static climate.temperate.Seasons.*;

Using static member import declarations for constants is generally a better
technique than implementing an interface that defines the constants.

Static member imports and overloaded methods
A static import declaration imports a name, not any one specific member with that
name. Because Java allows method overloading and allows a type to have fields
and methods with the same name, a single static member import declaration may
actually import more than one member. Consider this code:

import static java.util.Arrays.sort;

This declaration imports the name “sort” into the namespace, not any one of the 19
sort() methods defined by java.util.Arrays. If you use the imported name sort
to invoke a method, the compiler will look at the types of the method arguments to
determine which method you mean.

It is even legal to import static methods with the same name from two or more
different types as long as the methods all have different signatures. Here is one
natural example:

import static java.util.Arrays.sort;
import static java.util.Collections.sort;

You might expect that this code would cause a syntax error. In fact, it does not
because the sort() methods defined by the Collections class have different signa‐
tures than all of the sort() methods defined by the Arrays class. When you use
the name “sort” in your code, the compiler looks at the types of the arguments to
determine which of the 21 possible imported methods you mean.

Java Source File Structure
This chapter has taken us from the smallest to the largest elements of Java syntax,
from individual characters and tokens to operators, expressions, statements, and
methods, and on up to classes and packages. From a practical standpoint, the unit of
Java program structure you will be dealing with most often is the Java file. A Java file
is the smallest unit of Java code that can be compiled by the Java compiler. A Java
file consists of:

• An optional package directive•

• Zero or more import or import static directives•
• One or more type definitions•

These elements can be interspersed with comments, of course, but they must appear
in this order. This is all there is to a Java file. All Java statements (except the
package and import directives, which are not true statements, and the specialized
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module descriptors we’ll discuss in Chapter 12) must appear within methods, and
all methods must appear within a type definition.

A special Java file named module-info.java is used only in declaring the structure
and visibility of our packages in a modular Java application. These more advanced
techniques and syntax are covered in detail in Chapter 12.

Java files have a couple of other important restrictions. First, each file can contain
at most one top-level class that is declared public. A public class is one that is
designed for use by other classes in other packages. A class can contain any number
of nested or inner classes that are public. We’ll see more about the public modifier
and nested classes in Chapter 3.

The second restriction concerns the filename of a Java file. If a Java file contains a
public class, the name of the file must be the same as the name of the class, with
the extension .java appended. Therefore, if Account is defined as a public class, its
source code must appear in a file named Account.java. Regardless of whether your
classes are public or not, it is good programming practice to define only one per
file and to give the file the same name as the class.

When a Java file is compiled, each of the classes it defines is compiled into a
separate class file that contains Java bytecodes to be executed by the Java Virtual
Machine. A class file has the same name as the class it defines, with the exten‐
sion .class appended. Thus, if the file Account.java defines a class named Account,
a Java compiler compiles it to a file named Account.class. On most systems, class
files are stored in directories that correspond to their package names. For exam‐
ple, the class com.davidflanagan.examples.Account is defined by the class file
com/davidflanagan/examples/Account.class.

The Java runtime knows where the class files for the standard system classes are
located and can load them as needed. When the interpreter runs a program that
wants to use a class named com.davidflanagan.examples.Account, it knows that
the code for that class is located in a directory named com/davidflanagan/examples/
and, by default, it “looks” in the current directory for a subdirectory of that name.
In order to tell the interpreter to look in locations other than the current directory,
you must use the -classpath option when invoking the interpreter or set the
CLASSPATH environment variable. For details, see the documentation for the Java
executable, java, in Chapter 13.

Defining and Running Java Programs
A Java program consists of a set of interacting class definitions. But not every Java
class or Java file defines a program. To create a program, you must define a class that
has a special method with the following signature:

public static void main(String[] args)

This main() method is the main entry point for your program. It is where the Java
interpreter starts running. This method is passed an array of strings and returns no
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value. When main() returns, the Java interpreter exits (unless main() has created
separate threads, in which case the interpreter waits for all those threads to exit).

To run a Java program, you run the Java executable, java, specifying the fully
qualified name of the class that contains the main() method. Note that you specify
the name of the class, not the name of the class file that contains the class. Any
additional arguments you specify on the command line are passed to the main()
method as its String[] parameter. You may also need to specify the -classpath
option (or -cp) to tell the interpreter where to look for the classes needed by the
program. Consider the following command:

java -classpath /opt/Jude com.davidflanagan.jude.Jude datafile.jude

java is the command to run the Java interpreter. -classpath /opt/Jude tells the
interpreter where to look for .class files. com.davidflanagan.jude.Jude is the name
of the program to run (i.e., the name of the class that defines the main() method).
Finally, datafile.jude is a string that is passed to that main() method as the single
element of an array of String objects.

There is an easier way to run programs. If a program and all its auxiliary classes
(except those that are part of the Java platform) have been properly bundled in a
Java archive (JAR) file, you can run the program simply by specifying the name of
the JAR file. In the next example, we show how to start up a log analyzer:

java -jar /usr/local/log-analyzer/log-analyzer.jar

Some operating systems make JAR files automatically executable. On those systems,
you can simply say:

/usr/local/log-analyzer/log-analyzer.jar

Java 17 also introduced the ability to run java against a source file directly, similar
to what’s available in scripting languages such as Python. You still must define a
class matching the name of the file and a main() method, but then you can execute
the program with:

java MyClass.java

See Chapter 13 for more details on how to execute Java programs.

Summary
In this chapter, we’ve introduced the basic syntax of the Java language. Due to the
interlocking nature of the syntax of programming languages, it is perfectly fine if
you don’t feel at this point that you have completely grasped all of the syntax of the
language. It is by practice that we acquire proficiency in any language, human or
computer.

It is also worth observing that some parts of syntax are far more regularly used than
others. For example, the strictfp and assert keywords are almost never used.
Rather than trying to grasp every aspect of Java’s syntax, it is far better to begin to
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acquire facility in the core aspects of Java and then return to any details of syntax
that may still be troubling you. With this in mind, let’s move to the next chapter and
begin to discuss the classes and objects that are so central to Java and the basics of
Java’s approach to object-oriented programming.
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3
Object-Oriented Programming

in Java

Now that we’ve covered fundamental Java syntax, we are ready to begin object-
oriented programming in Java. All Java programs use objects, and the type of an
object is defined by its class or interface. Every Java program is defined as a class,
and nontrivial programs include a number of classes and interface definitions.

This chapter explains how to define new classes (and records) and how to do object-
oriented programming with them. We also introduce the concept of an interface,
but a full discussion of interfaces and Java’s type system is deferred until Chapter 4.

If you have experience with OO programming, however, be
careful. The term “object-oriented” has different meanings in
different languages. Don’t assume that Java works the same
way as your favorite OO language. (This is particularly true
for JavaScript or Python programmers.)

This is a fairly lengthy chapter, so let’s begin with an overview and some definitions.

Overview of Classes and Records
Classes are the most fundamental structural element of all Java programs. You
cannot write Java code without defining a class. All Java statements appear within
classes, and all methods are implemented within classes.
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Basic OO Definitions
Here are some important definitions:

Class
A class is a collection of data fields that hold values, along with methods that
operate on those values. A class defines a new reference type, such as the
Account type defined in Chapter 2.

The Account class defines a type that represents customer accounts within a
banking system.

From Java 17 onwards, the language also includes support for records—which are a
special kind of class that have additional semantics.

Object
An object is an instance of a class.

An Account object is a value of that type: it represents a specific customer bank
account.

Objects are often created by instantiating a class with the new keyword and a
constructor invocation, as shown here:

Account a = new Account("John Smith", 100, 1144789);

Constructors are covered in detail later in this chapter in “Creating and Initializing
Objects” on page 117.

A class definition consists of a signature and a body. The class signature defines
the name of the class and may also specify other important information. The body
of a class is a set of members enclosed in curly braces. The members of a class
usually include fields and methods, and may also include constructors, initializers,
and nested types.

Members can be static or nonstatic. A static member belongs to the class itself,
while a nonstatic member is associated with the instances of a class (see “Fields and
Methods” on page 111).

There are four very common kinds of members—class fields,
class methods, instance fields, and instance methods. The
majority of work done with Java involves interacting with
these kinds of members.

The signature of a class may declare that the class extends another class. The
extended class is known as the superclass and the extension is known as the subclass.
A subclass inherits the members of its superclass and may declare new members or
override inherited methods with new implementations.
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1 There is also the default, aka package, visibility that we will meet later.

The members of a class may have access modifiers public, protected, or private.1
These modifiers specify their visibility and accessibility to clients and to subclasses.
This allows classes to control access to members that are not part of their public
API. This ability to hide members enables an object-oriented design technique
known as data encapsulation, which we discuss in “Data Hiding and Encapsulation”
on page 135.

Records
A record (or record class) is a special form of class that provides additional semantic
guarantees that general classes do not.

Specifically, a record guarantees that the instance fields precisely define the only
meaningful state of an object of that type. This can be expressed as the principle (or
pattern) that the record class is a data carrier or “just holds fields.” Agreeing to this
principle imposes constraints on programmers, but it also frees them from needing
to be explicit about some design details.

A record class is defined like this:

/** Represents a point in 2-dimensional space */
public record Point(double x, double y) {}

There is no need to explicitly declare a constructor, or accessor methods for the
fields—for a record class the compiler automatically generates these members and
adds them to the class definition. The accessor methods are named exactly the
same as the underlying fields they provide access to. It is possible to add additional
methods to a record, but it is not necessary to do so if all that is needed is the basic
data carrier form.

Instances of record classes (or just records) are created and instantiated in the same
way as for regular classes, and we can call the accessors on the objects we create:

// Create a Point object representing (2,-3.5).
// Declare a variable p and store a reference to the new Point object
Point p = new Point(2.0, -3.5);
double x = p.x();                    // Read a field of the object

One other aspect of records is that they are always immutable. Once created, the
value of a record’s fields cannot be altered. This means that there is no need for
setter methods for the fields, as they cannot be modified.

The contract that Java records have is that the parameter name (as specified in the
record declaration), the field name, and the method name are all identical: if there’s
a record parameter x of type double then the class has a field called x of type double
and an instance method called x() that returns double.
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Records have certain other methods that are also automatically generated by the
compiler. We will have more to say about them in Chapter 5 when we discuss how
to use records as part of object-oriented design.

Other Reference Types
The signature of a class may also declare that the class implements one or more
interfaces. An interface is a reference type similar to a class that defines method
signatures but does not usually include method bodies to implement the methods.

However, from Java 8 onward, interfaces may use the keyword default to indicate
that a method specified in the interface is optional. If a method is optional, the
interface file must include a default implementation (hence the choice of keyword),
which will be used by all implementing classes that do not provide an implementa‐
tion of the optional method.

A class that implements an interface is required to provide bodies for the interface’s
nondefault methods. Instances of a class that implement an interface are also instan‐
ces of the interface type.

Classes and interfaces are the most important of the five fundamental reference
types defined by Java. Arrays, enumerated types (or “enums”), and annotation
types (usually just called “annotations”) are the other three. Arrays are covered in
Chapter 2. Enums are a specialized kind of class, and annotations are a specialized
kind of interface—both are discussed later in Chapter 4, along with a full discussion
of interfaces.

Class Definition Syntax
At its simplest level, a class definition consists of the keyword class followed by
the name of the class and a set of class members within curly braces. The class
keyword may be preceded by modifier keywords and annotations. If the class
extends another class, the class name is followed by the extends keyword and the
name of the class being extended. If the class implements one or more interfaces,
then the class name or the extends clause is followed by the implements keyword
and a comma-separated list of interface names. For example, for the Integer class
in java.lang

public class Integer extends Number
                     implements Serializable, Comparable {
    // class members go here
}

Java also includes the ability to declare generic classes that allow an entire family
of types to be created from a single class declaration. We will meet this feature,
along with its supporting mechanisms (such as type parameters and wildcards), in
Chapter 4.
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Class declarations may include modifier keywords. In addition to the access control
modifiers (public, protected, etc.), these include:

abstract

An abstract class is one whose implementation is incomplete and cannot be
instantiated. Any class with one or more abstract methods must be declared
abstract. Abstract classes are discussed in “Abstract Classes and Methods” on
page 143.

final

The final modifier specifies that the class may not be extended. A class cannot
be declared to be both abstract and final.

sealed

Sealed classes are those that may be extended only by a known set of subclasses.
Sealed classes provide a halfway house between final classes and the default,
open for extension classes. The use of sealed classes is discussed in more detail
in Chapter 5. Sealed classes are available only in Java 17 and above.

strictfp

A class can be declared strictfp; all its methods behave as if they were
declared strictfp, and thus exactly follow the formal semantics of the
floating-point standard. This modifier is extremely rarely used, and is in fact a
no-op in Java 17, for the reasons discussed in Chapter 2.

Fields and Methods
A class can be viewed as a collection of data (also referred to as state) and code to
operate on that state. The data is stored in fields, and the code is organized into
methods.

This section covers fields and methods, the two most important kinds of class mem‐
bers. Fields and methods come in two distinct types: class members (also known
as static members) are associated with the class itself, while instance members are
associated with individual instances of the class (i.e., with objects). This gives us
four kinds of members:

• Class fields•
• Class methods•
• Instance fields•
• Instance methods•

The simple class definition for the class Circle, shown in Example 3-1, contains all
four types of members.
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Example 3-1. A simple class and its members

public class Circle {
  // A class field
  public static final double PI= 3.14159;     // A useful constant

  // A class method: just compute a value based on the arguments
  public static double radiansToDegrees(double radians) {
    return radians * 180 / PI;
  }

  // An instance field
  public double r;                  // The radius of the circle

  // Two instance methods: operate on an object's instance fields

  // Compute the area of the circle
  public double area() {
    return PI * r * r;
  }

  // Compute the circumference of the circle
  public double circumference() {
    return 2 * PI * r;
  }
}

It is not good practice to have a public instance field such as r
in our example. It would be much better to have a private field
r and a method radius() (or r()) to provide access to it. The
reason for this will be explained later, in “Data Hiding and
Encapsulation” on page 135. For now, we use a public field
simply to give examples of how to work with instance fields.

The following sections explain all four common kinds of members. First, we cover
the declaration syntax for fields. (The syntax for declaring methods is covered later
in this chapter in “Data Hiding and Encapsulation” on page 135.)

Field Declaration Syntax
Field declaration syntax is much like the syntax for declaring local variables (see
Chapter 2) except that field definitions may also include modifiers. The simplest
field declaration consists of the field type followed by the field name.

The type may be preceded by zero or more modifier keywords or annotations,
and the name may be followed by an equals sign and initializer expression that
provides the initial value of the field. If two or more fields share the same type and
modifiers, the type may be followed by a comma-separated list of field names and
initializers. Here are some valid field declarations:
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int x = 1;
private String name;
public static final int DAYS_PER_WEEK = 7;
String[] daynames = new String[DAYS_PER_WEEK];
private int a = 17, b = 37, c = 53;

Field modifier keywords comprise zero or more of the following keywords:

public, protected, private
These access modifiers specify whether and where a field can be used outside of
the class that defines it.

static

If present, this modifier specifies that the field is associated with the defining
class itself rather than with each instance of the class.

final

This modifier specifies that once the field has been initialized, its value may
never be changed. Fields that are both static and final are compile-time
constants that javac may inline. final fields can also be used to create classes
whose instances are immutable.

transient

This modifier specifies that a field is not part of the persistent state of an object
and that it need not be serialized along with the rest of the object. This modifier
is very rarely seen.

volatile

This modifier indicates that the field has extra semantics for concurrent use
by two or more threads. The volatile modifier says that the value of a field
must always be read from and flushed to main memory, and that it may not be
cached by a thread (in a register or CPU cache). See Chapter 6 for more details.

Class Fields
A class field is associated with the class in which it is defined rather than with an
instance of the class. The following line declares a class field:

public static final double PI = 3.14159;

This line declares a field of type double named PI and assigns it a value of 3.14159.

The static modifier says that the field is a class field. Class fields are sometimes
called static fields because of this static modifier. The final modifier says that the
value of the field cannot be reassigned directly. Because the field PI represents a
constant, we declare it final so that it cannot be changed.

It is a convention in Java (and many other languages) that constants are named with
capital letters, which is why our field is named PI, not pi. Defining constants like
this is a common use for class fields, meaning that the static and final modifiers
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are often used together. Not all class fields are constants, however. In other words, a
field can be declared static without being declared final.

The use of public fields that are not final is a code smell—as
multiple threads could update the field and cause behavior
that is extremely hard to debug. Beginning Java programmers
should not use public fields that are not final.

A public static field is essentially a global variable. The names of class fields are
qualified by the unique names of the classes that contain them, however. Thus,
Java does not suffer from the name collisions that can affect other languages when
different modules of code define global variables with the same name.

The key point to understand about a static field is that there is only a single copy of
it. This field is associated with the class itself, not with instances of the class. If you
look at the various methods of the Circle class, you’ll see that they use this field.
From inside the Circle class, the field can be referred to simply as PI. Outside the
class, however, both class and field names are required to uniquely specify the field.
Methods that are not part of Circle access this field as Circle.PI.

Class Methods
As with class fields, class methods are declared with the static modifier. They are
also known as static methods:

public static double radiansToDegrees(double rads) {
  return rads * 180 / PI;
}

This line declares a class method named radiansToDegrees(). It has a single
parameter of type double and returns a double value.

Like class fields, class methods are associated with a class, rather than with an
object. When invoking a class method from code that exists outside the class, you
must specify both the name of the class and the method. For example:

// How many degrees is 2.0 radians?
double d = Circle.radiansToDegrees(2.0);

If you want to invoke a class method from inside the class in which it is defined,
you don’t have to specify the class name. You can also shorten the amount of typing
required via the use of a static import (as discussed in Chapter 2).

Note that the body of our Circle.radiansToDegrees() method uses the class field
PI. A class method can use any class fields and class methods of its own class (or of
any other class that is visible to it).

A class method cannot use any instance fields or instance methods because class
methods are not associated with an instance of the class. In other words, although
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the radiansToDegrees() method is defined in the Circle class, it cannot use the
instance part of any Circle objects.

One way to think about this is that in any instance, we always
have a reference—this—to the current object. The this ref‐
erence is passed as an implicit parameter to any instance
method. However, class methods are not associated with a
specific instance, so they have no this reference and no access
to instance fields.

As we discussed earlier, a class field is essentially a global variable. In a similar way, a
class method is a global method, or global function. Although radiansToDegrees()
does not operate on Circle objects, it is defined within the Circle class because it is
a utility method that is sometimes useful when you’re working with circles, and so it
makes sense to package it along with the other functionality of the Circle class.

Instance Fields
Any field declared without the static modifier is an instance field:

public double r;    // The radius of the circle

Instance fields are associated with instances of the class, so every Circle object we
create has its own copy of the double field r. In our example, r represents the radius
of a specific circle. Each Circle object can have a radius independent of all other
Circle objects.

Inside a class definition, instance fields are referred to by name alone. You can see
an example of this if you look at the method body of the circumference() instance
method. In code outside the class, the name of an instance method must be prefixed
with a reference to the object that contains it. For example, if the variable c holds a
reference to a Circle object, we use the expression c.r to refer to the radius of that
circle:

Circle c = new Circle(); // Create a Circle object; store a ref in c
c.r = 2.0;               // Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object
d.r = c.r * 2;           // Make this one twice as big

Instance fields are key to object-oriented programming. Instance fields hold the
state of an object; the values of those fields make one object distinct from another.

Instance Methods
An instance method operates on a specific instance of a class (an object), and any
method not declared with the static keyword is automatically an instance method.

Instance methods are the feature that makes object-oriented programming start
to get interesting. The Circle class defined in Example 3-1 contains two instance
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methods, area() and circumference(), that compute and return the area and
circumference of the circle represented by a given Circle object.

To use an instance method from outside the class in which it is defined, we must
prefix it with a reference to the instance that is to be operated on. For example:

// Create a Circle object; store in variable c
Circle c = new Circle();
c.r = 2.0;                 // Set an instance field of the object
double a = c.area();       // Invoke an instance method of the object

This is why it is called object-oriented programming; the
object is the focus here, not the method call.

From within an instance method, we naturally have access to all the instance fields
that belong to the object the method was called on. Recall that an object is often best
considered to be a bundle containing state (represented as the fields of the object),
and behavior (the methods to act on that state).

All instance methods are implemented by using an implicit parameter not shown
in the method signature. The implicit argument is named this; it holds a reference
to the object through which the method is invoked. In our example, that object is a
Circle.

The bodies of the area() and circumference() methods both
use the class field PI. We saw earlier that class methods can
use only class fields and class methods, not instance fields or
methods. Instance methods are not restricted in this way: they
can use any member of a class, whether it is declared static
or not.

How the this Reference Works
The implicit this parameter is not shown in method signatures because it is usually
not needed; whenever a Java method accesses the instance fields in its class, it is
implicit that it is accessing fields in the object referred to by the this parameter. The
same is true when an instance method invokes another instance method in the same
class—it’s taken that this means “call the instance method on the current object.”

However, you can use the this keyword explicitly when you want to make it clear
that a method is accessing its own fields and/or methods. For example, we can
rewrite the area() method to use this explicitly to refer to instance fields:

public double area() { return Circle.PI * this.r * this.r; }
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This code also uses the class name explicitly to refer to class field PI. In a method
this simple, it is not normally necessary to be quite so explicit. In more complicated
cases, however, you may sometimes find that it increases the clarity of your code to
use an explicit this even when it is not strictly required.

In some cases, the this keyword is required, however. For example, when a method
parameter or local variable in a method has the same name as one of the fields of
the class, you must use this to refer to the field. This is because the field name
used alone refers to the method parameter or local variable, as discussed in “Lexical
Scoping and Local Variables” on page 185.

For example, we can add the following method to the Circle class:

public void setRadius(double r) {
  this.r = r;      // Assign the argument (r) to the field (this.r)
                   // Note that writing r = r is a bug
}

Some developers will deliberately choose the names of their method arguments in
such a way that they don’t clash with field names, so the use of this can largely
be avoided. However, accessor methods (setter) generated by any of the major Java
IDEs will use the this.x = x style shown here.

Finally, note that while instance methods can use the this keyword, class methods
cannot because class methods are not associated with individual objects.

Creating and Initializing Objects
Now that we’ve covered fields and methods, let’s move on to other important mem‐
bers of a class. In particular, we’ll look at constructors—these are class members
whose job is to initialize the fields of a class as new instances of the class are created.

Take another look at how we’ve been creating Circle objects:

Circle c = new Circle();

This can easily be read as creating a new instance of Circle, by calling something
that looks a bit like a method. In fact, Circle() is an example of a constructor. This
is a member of a class that has the same name as the class, and it has a body, like a
method.

Here’s how a constructor works. The new operator indicates that we need to create a
new instance of the class. First of all, memory is allocated (in the Java heap) to hold
the new object instance. Then, the constructor body is called, with any arguments
that have been specified. The constructor uses these arguments to do whatever
initialization of the new object is necessary.

Every class in Java has at least one constructor, and their purpose is to perform
any necessary initialization for a new object. If the programmer does not explic‐
itly define a constructor for a class, the javac compiler automatically creates a
constructor (called the default constructor) that takes no arguments and performs
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no special initialization. The Circle class seen in Example 3-1 used this mechanism
to automatically declare a constructor.

Defining a Constructor
There is some obvious initialization we could do for our Circle objects, so let’s
define a constructor. Example 3-2 shows a new definition for Circle that contains a
constructor that lets us specify the radius of a new Circle object. We’ve also taken
the opportunity to make the field r protected (to prevent access to it from arbitary
objects).

Example 3-2. A constructor for the Circle class

public class Circle {
    public static final double PI = 3.14159;  // A constant
    // An instance field that holds the radius of the circle
    protected double r;

    // The constructor: initialize the radius field
    public Circle(double r) { this.r = r; }

    // The instance methods: compute values based on the radius
    public double circumference() { return 2 * PI * r; }
    public double area() { return PI * r * r; }
    public double radius() { return r; }
}

When we relied on the default constructor supplied by the compiler, we had to write
code like this to initialize the radius explicitly:

Circle c = new Circle();
c.r = 0.25;

With the new constructor, the initialization becomes part of the object creation step:

Circle c = new Circle(0.25);

Here are some basics regarding naming, declaring, and writing constructors:

• The constructor name is always the same as the class name.•

• A constructor is declared without a return type (not even the void place‐•
holder).

• The body of a constructor is the code that initializes the object. You can think•
of this as setting up the contents of the this reference.

• A constructor does not return this (or any other value).•

118 | Chapter 3: Object-Oriented Programming in Java



Defining Multiple Constructors
Sometimes you want to initialize an object in a number of different ways, depending
on what is most convenient in a particular circumstance. For example, we might
want to initialize the radius of a circle to a specified value or a reasonable default
value. Here’s how we can define two constructors for Circle:

public Circle() { r = 1.0; }
public Circle(double r) { this.r = r; }

Because our Circle class has only a single instance field, we can’t initialize it in too
many ways, of course. But in more complex classes, it is often convenient to define a
variety of constructors.

It is perfectly legal to define multiple constructors for a class, as long as each con‐
structor has a different parameter list. The compiler determines which constructor
you wish to use based on the number and type of arguments you supply. This ability
to define multiple constructors is analogous to method overloading.

Invoking One Constructor from Another
A specialized use of the this keyword arises when a class has multiple constructors;
it can be used from a constructor to invoke one of the other constructors of the
same class. In other words, we can rewrite the two previous Circle constructors as
follows:

// This is the basic constructor: initialize the radius
public Circle(double r) { this.r = r; }
// This constructor uses this() to invoke the constructor above
public Circle() { this(1.0); }

This is a useful technique when a number of constructors share a significant
amount of initialization code, as it avoids repetition of that code. In more complex
cases, where the constructors do a lot more initialization, this can be a very useful
technique.

There is an important restriction on using this(): it can appear only as the first
statement in a constructor, but the call may be followed by any additional initiali‐
zation a particular constructor needs to perform. The reason for this restriction
involves the automatic invocation of superclass constructors, which we’ll explore
later in this chapter.

Field Defaults and Initializers
The fields of a class do not necessarily require initialization. If their initial values
are not specified, the fields are automatically initialized to the default value false,
\u0000, 0, 0.0, or null, depending on their type (see Table 2-1 for more details).
These default values are specified by the Java language specification and apply to
both instance fields and class fields.
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The default values are essentially the “natural” interpretation
of the zero bit pattern for each type.

If the default field value is not appropriate for your field, you can instead explicitly
provide a different initial value. For example:

public static final double PI = 3.14159;
public double r = 1.0;

Field declarations are not part of any method. Instead, the Java compiler generates
initialization code for the field automatically and puts it into all the constructors for
the class. The initialization code is inserted into a constructor in the order in which
it appears in the source code, which means that a field initializer can use the initial
values of any fields declared before it.

Consider the following code excerpt, which shows a constructor and two instance
fields of a hypothetical class:

public class SampleClass {
  public int len = 10;
  public int[] table = new int[len];

  public SampleClass() {
    for(int i = 0; i < len; i = i + 1) {
        table[i] = i;
    }
  }

  // The rest of the class is omitted...
}

In this case, the code generated by javac for the constructor is actually equivalent
to:

public SampleClass() {
  len = 10;
  table = new int[len];
  for(int i = 0; i < len; i = i + 1) {
      table[i] = i;
  }
}

If a constructor begins with a this() call to another constructor, the field initiali‐
zation code does not appear in the first constructor. Instead, the initialization is
handled in the constructor invoked by the this() call.

So, if instance fields are initialized in the constructor, where are class fields initial‐
ized? These fields are associated with the class, even if no instances of the class
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are ever created. Logically, this means they need to be initialized even before a
constructor is called.

To support this, javac generates a class initialization method automatically for
every class. Class fields are initialized in the body of this method, which is invoked
exactly once before the class is first used (often when the class is first loaded by the
Java VM).

As with instance field initialization, class field initialization expressions are inserted
into the class initialization method in the order in which they appear in the source
code. This means that the initialization expression for a class field can use the class
fields declared before it.

The class initialization method is an internal method that is hidden from Java
programmers. In the class file, it bears the name <clinit> (and you could see this
method by, for example, examining the class file with javap—see Chapter 13 for
more details on how to use javap to do this).

Initializer blocks
So far, we’ve seen that objects can be initialized through the initialization expres‐
sions for their fields and by arbitrary code in their constructors. A class has a class
initialization method (which is like a constructor), but we cannot explicitly define
the body of this method in Java, although it is perfectly legal to do so in bytecode.

Java does however allow us to express class initialization with a construct known
as a static initializer. A static initializer is simply the keyword static followed by
a block of code in curly braces. A static initializer can appear in a class definition
anywhere a field or method definition can appear. For example, consider the follow‐
ing code that performs some nontrivial initialization for two class fields:

// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {
  // Here are our static lookup tables and their own initializers
  private static final int NUMPTS = 500;
  private static double sines[] = new double[NUMPTS];
  private static double cosines[] = new double[NUMPTS];

  // Here's a static initializer that fills in the arrays
  static {
    double x = 0.0;
    double delta_x = (Circle.PI/2)/(NUMPTS - 1);
    for(int i = 0, x = 0.0; i < NUMPTS; i = i + 1, x += delta_x) {
      sines[i] = Math.sin(x);
      cosines[i] = Math.cos(x);
    }
  }
  // The rest of the class is omitted...
}
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A class can have any number of static initializers. The body of each initializer
block is incorporated into the class initialization method, along with any static field
initialization expressions. A static initializer is like a class method in that it cannot
use the this keyword or any instance fields or instance methods of the class.

Record Constructors
Record classes, introduced as a standard feature in Java 16, implicitly define one
constructor: the canonical constructor defined by the parameter list. There may be
circumstances, however, when developers need to provide additional (aka auxiliary)
constructors for record classes. For example, to provide default values for some of
the record parameters, as in:

public record Point(double x, double y) {
    /** Constructor simulates default parameters */
    public Point(double x) {
        this(x, 0.0);
    }
}

Records also provide for another refinement to class constructors: the compact
constructor. This is used when some sort of validation or other checking code is
helpful for creating valid record objects. For example:

/** Represents a point in 2-dimensional space */
public record Point(double x, double y) {
    /** Compact constructor provides validation */
    public Point {
        if (Double.isNaN(x) || Double.isNaN(y)) {
            throw new IllegalArgumentException("Illegal NaN");
        }
    }
}

Note that in the compact constructor syntax, the parameter list does not need to be
repeated (as it is inferred from the record declaration) and the parameters (in our
example, x and y) are already in scope. Compact constructors, like the canonical
constructor, also implicitly initialize the fields from the parameter values.

Subclasses and Inheritance
The Circle defined earlier is a simple class that distinguishes circle objects only
by their radii. Suppose, instead, that we want to represent circles that have both a
size and a position. For example, a circle of radius 1.0 centered at point 0,0 in the
Cartesian plane is different from the circle of radius 1.0 centered at point 1,2. To do
this, we need a new class, which we’ll call PlaneCircle.

We’d like to add the ability to represent the position of a circle without losing any of
the existing functionality of the Circle class. We do this by defining PlaneCircle
as a subclass of Circle so that PlaneCircle inherits the fields and methods of its
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superclass, Circle. The ability to add functionality to a class by subclassing, or
extending, is central to the object-oriented programming paradigm.

Extending a Class
In Example 3-3, we show how we can implement PlaneCircle as a subclass of the
Circle class.

Example 3-3. Extending the Circle class

public class PlaneCircle extends Circle {
  // We automatically inherit the fields and methods of Circle,
  // so we only have to put the new stuff here.
  // New instance fields that store the center point of the circle
  private final double cx, cy;

  // A new constructor to initialize the new fields
  // It uses a special syntax to invoke the Circle() constructor
  public PlaneCircle(double r, double x, double y) {
    super(r);       // Invoke the constructor of the superclass, Circle()
    this.cx = x;    // Initialize the instance field cx
    this.cy = y;    // Initialize the instance field cy
  }

  public double getCenterX() {
    return cx;
  }

  public double getCenterY() {
    return cy;
  }

  // The area() and circumference() methods are inherited from Circle
  // A new instance method checks whether a point is inside the circle
  // Note that it uses the inherited instance field r
  public boolean isInside(double x, double y) {
    double dx = x - cx, dy = y - cy;             // Distance from center
    double distance = Math.sqrt(dx*dx + dy*dy);  // Pythagorean theorem
    return (distance < r);                       // Returns true or false
  }
}

Note the use of the keyword extends in the first line of Example 3-3. This keyword
tells Java that PlaneCircle extends, or subclasses, Circle, meaning that it inherits
the fields and methods of that class.

The definition of the isInside() method shows field inheritance; this method uses
the field r (defined by the Circle class) as if it were defined right in PlaneCircle
itself. PlaneCircle also inherits the methods of Circle. Therefore, if we have a
PlaneCircle object referenced by variable pc, we can say:
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double ratio = pc.circumference() / pc.area();

This works just as if the area() and circumference() methods were defined in
PlaneCircle itself.

Another feature of subclassing is that every PlaneCircle object is also a perfectly
legal Circle object. If pc refers to a PlaneCircle object, we can assign it to a Circle
variable and forget all about its extra positioning capabilities:

// Unit circle at the origin
PlaneCircle pc = new PlaneCircle(1.0, 0.0, 0.0);
Circle c = pc;     // Assigned to a Circle variable without casting

This assignment of a PlaneCircle object to a Circle variable can be done without
a cast. As we discussed in Chapter 2, a conversion like this is always legal. The value
held in the Circle variable c is still a valid PlaneCircle object, but the compiler
cannot know this for sure, so it doesn’t allow us to do the opposite (narrowing)
conversion without a cast:

// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCircle pc2 = (PlaneCircle) c;
boolean inside = ((PlaneCircle) c).isInside(0.0, 0.0);

This distinction is covered in more detail in “Nested Types” on page 187, where we
talk about the distinction between the compile and runtime type of an object.

Final classes
When a class is declared with the final modifier, it means that it cannot be
extended or subclassed. java.lang.String is an example of a final class. Declaring
a class final prevents unwanted extensions to the class: if you invoke a method on
a String object, you know that the method is the one defined by the String class
itself, even if the String is passed to you from some unknown outside source.

In general, many of the classes that Java developers create should be final. Think
carefully about whether it will make sense to allow other (possibly unknown) code
to extend your classes—if it doesn’t, then disallow the mechanism by declaring your
classes final.

Superclasses, Object, and the Class Hierarchy
In our example, PlaneCircle is a subclass of Circle. We can also say that Circle is
the superclass of PlaneCircle. The superclass of a class is specified in its extends
clause, and a class may have only a single direct superclass:

public class PlaneCircle extends Circle { ... }

Every class the programmer defines has a superclass. If the superclass is not
specified with an extends clause, then the superclass is taken to be the class
java.lang.Object.

As a result, the Object class is special for a couple of reasons:
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• It is the only class in Java that does not have a superclass.•

• All Java classes inherit (directly or indirectly) the methods of Object.•

Because every class (except Object) has a superclass, classes in Java form a class
hierarchy, which can be represented as a tree with Object at its root.

Object has no superclass, but every other class has exactly one
superclass. A subclass cannot extend more than one super‐
class; see Chapter 4 for more information on how to achieve a
similar result using interfaces.

Figure 3-1 shows a partial class hierarchy diagram that includes our Circle and
PlaneCircle classes, as well as some of the standard classes from the Java API.

Figure 3-1. A class hierarchy diagram

Subclass Constructors
Look again at the PlaneCircle() constructor from Example 3-3:

public PlaneCircle(double r, double x, double y) {
  super(r);       // Invoke the constructor of the superclass, Circle()
  this.cx = x;    // Initialize the instance field cx
  this.cy = y;    // Initialize the instance field cy
}

Although this constructor explicitly initializes the cx and cy fields newly defined
by PlaneCircle, it relies on the superclass Circle() constructor to initialize the
inherited fields of the class. To invoke the superclass constructor, our constructor
calls super().

super is a reserved word in Java. One of its main uses is to invoke the constructor of
a superclass from within a subclass constructor. This use is analogous to the use of
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this() to invoke one constructor of a class from within another constructor of the
same class. Invoking a constructor using super() is subject to the same restrictions
as is using this():

• super() can be used in this way only within a constructor.•
• The call to the superclass constructor must appear as the first statement within•

the constructor, even before local variable declarations.

The arguments passed to super() must match the parameters of the superclass
constructor. If the superclass defines more than one constructor, super() can be
used to invoke any one of them, depending on the arguments passed.

Constructor Chaining and the Default Constructor
Java guarantees that the constructor of a class is called whenever an instance of that
class is created. It also guarantees that the constructor is called whenever an instance
of any subclass is created. In order to guarantee this second point, Java must ensure
that every constructor calls its superclass constructor.

Thus, if the first statement in a constructor does not explicitly invoke another
constructor with this() or super(), the javac compiler inserts the call super()
(i.e., it calls the superclass constructor with no arguments). If the superclass does
not have a visible constructor that takes no arguments, this implicit invocation
causes a compilation error.

Consider what happens when we create a new instance of the PlaneCircle class:

1. First, the PlaneCircle constructor is invoked.1.

2. This constructor explicitly calls super(r) to invoke a Circle constructor.2.

3. That Circle() constructor implicitly calls super() to invoke the constructor of3.
its superclass, Object (Object only has one constructor).

4. At this point, we’ve reached the top of the hierarchy and constructors start to4.
run.

5. The body of the Object constructor runs first.5.

6. When it returns, the body of the Circle() constructor runs.6.

7. Finally, when the call to super(r) returns, the remaining statements of the7.
PlaneCircle() constructor are executed.

What all this means is that constructor calls are chained; any time an object is
created, a sequence of constructors is invoked, from subclass to superclass on up to
Object at the root of the class hierarchy.

Because a superclass constructor is always invoked as the first statement of its
subclass constructor, the body of the Object constructor always runs first, followed
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by the constructor of its subclass and on down the class hierarchy to the class that is
being instantiated.

Whenever a constructor is invoked, it can count on the fields of its superclass to be
initialized by the time the constructor starts to run.

The default constructor
There is one missing piece in the previous description of constructor chaining. If a
constructor does not invoke a superclass constructor, Java does so implicitly.

If a class is declared without a constructor, Java implicitly
adds a constructor to the class. This default constructor does
nothing but invoke the superclass constructor.

For example, if we don’t declare a constructor for the PlaneCircle class, Java
implicitly inserts this constructor:

public PlaneCircle() { super(); }

Classes declared public are given public constructors. All other classes are given a
default constructor that is declared without any visibility modifier; such a construc‐
tor has default visibility.

One very important point is that if a class declares constructors that take parameters
but does not define a no-argument constructor, then all its subclasses must define
constructors that explicitly invoke a constructor with the necessary arguments.

If you are creating a public class that should not be publicly
instantiated, declare at least one non-public constructor to
prevent the insertion of a default public constructor.

Classes that should never be instantiated (such as java.lang.Math or
java.lang.System) should define only a private constructor. Such a constructor
can never be invoked from outside of the class, and it prevents the automatic
insertion of the default constructor. The overall effect is that the class will never be
instantiated, as it is not instantiated by the class itself and no other class has the
correct access.

Hiding Superclass Fields
For the sake of example, imagine that our PlaneCircle class needs to know the
distance between the center of the circle and the origin (0,0). We can add another
instance field to hold this value:
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public double r;

Adding the following line to the constructor computes the value of the field:

this.r = Math.sqrt(cx*cx + cy*cy);  // Pythagorean theorem

But wait; this new field r has the same name as the radius field r in the Circle
superclass. When this happens, we say that the field r of PlaneCircle hides the field
r of Circle. (This is a contrived example, of course: the new field really should be
called distanceFromOrigin.)

In code that you write, you should avoid declaring fields with
names that hide superclass fields. It is almost always a sign of
bad code.

With this new definition of PlaneCircle, the expressions r and this.r both refer to
the field of PlaneCircle. How, then, can we refer to the field r of Circle that holds
the radius of the circle? A special syntax for this uses the super keyword:

r        // Refers to the PlaneCircle field
this.r   // Refers to the PlaneCircle field
super.r  // Refers to the Circle field

Another way to refer to a hidden field is to cast this (or any instance of the class) to
the appropriate superclass and then access the field:

((Circle) this).r   // Refers to field r of the Circle class

This casting technique is particularly useful when you need to refer to a hidden field
defined in a class that is not the immediate superclass. Suppose, for example, that
classes A, B, and C all define a field named x and that C is a subclass of B, which is a
subclass of A. Then, in the methods of class C, you can refer to these different fields
as follows:

x                // Field x in class C
this.x           // Field x in class C
super.x          // Field x in class B
((B)this).x      // Field x in class B
((A)this).x      // Field x in class A
super.super.x    // Illegal; does not refer to x in class A

You cannot refer to a hidden field x in the superclass of a
superclass with super.super.x. This is not legal syntax.

Similarly, if you have an instance c of class C, you can refer to the three fields named
x like this:
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c.x              // Field x of class C
((B)c).x         // Field x of class B
((A)c).x         // Field x of class A

So far, we’ve been discussing instance fields. Class fields can also be hidden. You can
use the same super syntax to refer to the hidden value of the field, but this is never
necessary, as you can always refer to a class field by prepending the name of the
desired class. Suppose, for example, that the implementer of PlaneCircle decides
that the Circle.PI field does not declare to enough decimal places. She can define
her own class field PI:

public static final double PI = 3.14159265358979323846;

Now code in PlaneCircle can use this more accurate value with the expressions
PI or PlaneCircle.PI. It can also refer to the old, less accurate value with the
expressions super.PI and Circle.PI. However, the area() and circumference()
methods inherited by PlaneCircle are defined in the Circle class, so they use the
value Circle.PI, even though that value is hidden now by PlaneCircle.PI.

Overriding Superclass Methods
When a class defines an instance method using the same name, return type, and
parameters as a method in its superclass, that method overrides the method of the
superclass. When the method is invoked for an object of the class, it is the new
definition of the method that is called, not the old definition from the superclass.

The return type of the overriding method may be a subclass
of the return type of the original method (instead of being
exactly the same type). This is known as a covariant return.

Method overriding is an important and useful technique in object-oriented pro‐
gramming. PlaneCircle does not override either of the methods defined by Circle,
and in fact it is difficult to think of a good example where any of the methods
defined by Circle could have a well-defined override.

Don’t be tempted to consider subclassing Circle with a class
like Ellipse—this would actually violate a core principle of
object-oriented development (the Liskov principle, which we
will meet later in this chapter).

Instead, let’s look at a different example that does work with method overriding:

public class Car {
    public static final double LITRE_PER_100KM = 8.9;

    protected double topSpeed;
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    protected double fuelTankCapacity;

    private int doors;

    public Car(double topSpeed, double fuelTankCapacity, 
               int doors) {
        this.topSpeed = topSpeed;
        this.fuelTankCapacity = fuelTankCapacity;
        this.doors = doors;
    }

    public double getTopSpeed() {
        return topSpeed;
    }

    public int getDoors() {
        return doors;
    }

    public double getFuelTankCapacity() {
        return fuelTankCapacity;
    }

    public double range() {
        return 100 * fuelTankCapacity / LITRE_PER_100KM;
    }
}

This is a bit more complex, but it will illustrate the concepts behind overriding.
Along with the Car class, we also have a specialized class, SportsCar. This has
several differences: it has a fixed-size fuel tank and comes only in a two-door
version. It may also have a much higher top speed than the regular form, but if the
top speed rises above 200 km/h then the fuel efficiency of the car suffers, and as a
result the overall range of the car starts to decrease:

public class SportsCar extends Car {

    private double efficiency;

    public SportsCar(double topSpeed) {
        super(topSpeed, 50.0, 2);
        if (topSpeed > 200.0) {
            efficiency = 200.0 / topSpeed;
        } else {
            efficiency = 1.0;
        }
    }

    public double getEfficiency() {
        return efficiency;
    }
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    @Override
    public double range() {
        return 100 * fuelTankCapacity * efficiency / LITRE_PER_100KM;
    }

}

The upcoming discussion of method overriding considers only instance methods.
Class (aka static) methods behave quite differently, and they cannot be overridden.
Just like fields, class methods can be hidden by a subclass but not overridden. As
noted earlier in this chapter, it is good programming style to always prefix a class
method invocation with the name of the class in which it is defined. If you consider
the class name part of the class method name, the two methods have different
names, so nothing is actually hidden at all.

The code example for the SportsCar includes the syntax con‐
struct @Override. This is known as an annotation, and we
shall meet this piece of Java syntax properly in Chapter 4.

Before we go any further with the discussion of method overriding, you should
understand the difference between method overriding and method overloading. As
we discussed in Chapter 2, method overloading refers to the practice of defining
multiple methods (in the same class) that have the same name but different parame‐
ter lists.

On the other hand, a method overrides a method in its superclass when the instance
method uses the same name, return type, and parameter list as a method in its
superclass. These two features are very different from each other, so don’t get them
confused.

Overriding is not hiding
Although Java treats the fields and methods of a class analogously in many ways,
method overriding is not at all like field hiding. You can refer to hidden fields
simply by casting an object to an instance of the appropriate superclass, but you
cannot invoke overridden instance methods with this technique. The following
code illustrates this crucial difference:

class A {                          // Define a class named A
  int i = 1;                       // An instance field
  int f() { return i; }            // An instance method
  static char g() { return 'A'; }  // A class method
}

class B extends A {                // Define a subclass of A
  int i = 2;                       // Hides field i in class A
  int f() { return -i; }           // Overrides method f in class A
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  static char g() { return 'B'; }  // Hides class method g() in class A
}

public class OverrideTest {
  public static void main(String args[]) {
    B b = new B();               // Creates a new object of type B
    System.out.println(b.i);     // Refers to B.i; prints 2
    System.out.println(b.f());   // Refers to B.f(); prints -2
    System.out.println(b.g());   // Refers to B.g(); prints B
    System.out.println(B.g());   // A better way to invoke B.g()

    A a = (A) b;                 // Casts b to an instance of class A
    System.out.println(a.i);     // Now refers to A.i; prints 1
    System.out.println(a.f());   // Still refers to B.f(); prints -2
    System.out.println(a.g());   // Refers to A.g(); prints A
    System.out.println(A.g());   // A better way to invoke A.g()
  }
}

While this difference between method overriding and field hiding may seem sur‐
prising at first, a little thought makes the purpose clear.

Suppose we are manipulating a bunch of Car and SportsCar objects and store them
in an array of type Car[]. We can do this because SportsCar is a subclass of Car, so
all SportsCar objects are legal Car objects.

When we loop through the elements of this array, we don’t have to know or care
whether the element is actually a Car or a SportsCar. What we do care about very
much, however, is that the correct value is computed when we invoke the range()
method of any element of the array. In other words, we don’t want to use the
formula for the range of a car when the object is actually a sports car!

All we really want is for the objects we’re computing the ranges of to “do the right
thing”—the Car objects to use their definition of how to compute their own range,
and the SportsCar objects to use the definition that is correct for them.

Seen in this context, it is not surprising that Java handles method overriding differ‐
ently than field hiding.

Virtual method lookup
If we have a Car[] array that holds Car and SportsCar objects, how does javac
know whether to call the range() method of the Car class or the SportsCar class for
any given item in the array? In fact, the source code compiler cannot know this at
compilation time.

Instead, javac creates bytecode that uses virtual method lookup at runtime. When
the interpreter runs the code, it looks up the appropriate range() method to call
for each of the objects in the array. That is, when the interpreter interprets the
expression o.range(), it checks the actual runtime type of the object referred to by
the variable o and then finds the range() method that is appropriate for that type.
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Some other languages (such as C# or C++) do not do virtual
lookup by default and instead have a virtual keyword that
programmers must explicitly use if they want subclasses to be
able to override a method.

This is another way of approaching the concept of method overriding, which we
discussed earlier. If the version of the range() method associated with the static
type of o was used, without the runtime (aka virtual) lookup, then overriding would
not work properly.

Virtual method lookup is the default for Java instance methods. See Chapter 4 for
more details about compile-time and runtime types and how they affect virtual
method lookup.

Invoking an overridden method
We’ve seen the important differences between method overriding and field hiding.
Nevertheless, the Java syntax for invoking an overridden method is quite similar to
the syntax for accessing a hidden field: both use the super keyword. The following
code illustrates:

class A {
  int i = 1;            // An instance field hidden by subclass B
  int f() { return i; } // An instance method overridden by subclass B
}

class B extends A {
  int i;                    // This field hides i in A
  int f() {                 // This method overrides f() in A
    i = super.i + 1;        // It can retrieve A.i like this
    return super.f() + i;   // It can invoke A.f() like this
  }
}

Recall that when you use super to refer to a hidden field, it is the same as casting
this to the superclass type and accessing the field through it. Using super to invoke
an overridden method, however, is not the same as casting the this reference. In
other words, in the previous code, the expression super.f() is not the same as
((A)this).f().

When the interpreter invokes an instance method with the super syntax, a modified
form of virtual method lookup is performed. The first step, as in regular virtual
method lookup, is to determine the actual class of the object through which the
method is invoked. Normally, the runtime search for an appropriate method def‐
inition would begin with this class. When a method is invoked with the super
syntax, however, the search begins at the superclass of the class. If the superclass
implements the method directly, that version of the method is invoked. If the
superclass inherits the method, the inherited version of the method is invoked.
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Note that the super keyword invokes the most immediately overridden version of
a method. Suppose class A has a subclass B that has a subclass C and that all three
classes define the same method f(). The method C.f() can invoke the method
B.f(), which it overrides directly, with super.f(). But there is no way for C.f() to
invoke A.f() directly: super.super.f() is not legal Java syntax. Of course, if C.f()
invokes B.f(), it is reasonable to suppose that B.f() might also invoke A.f().

This kind of chaining is relatively common with overridden methods: it is a way of
augmenting the behavior of a method without replacing the method entirely.

Don’t confuse the use of super to invoke an overridden
method with the super() method call used in a constructor
to invoke a superclass constructor. Although they both use
the same keyword, these are two entirely different syntaxes.
In particular, you can use super to invoke an overridden
method anywhere in the overriding class, while you can use
super() only to invoke a superclass constructor as the very
first statement of a constructor.

It is also important to remember that super can be used only to invoke an over‐
ridden method from within the class that overrides it. Given a reference to a
SportsCar object e, there is no way for a program that uses e to invoke the range()
method defined by the Car class on e.

Sealed Classes
Until this point, we have only encountered two possibilities for class inheritance:

• Unrestricted ability to subclass (which is the default and has no keyword•
associated with it)

• Complete prevention of subclassing with the final keyword applied to a class•

As of Java 17, there is a third possibility, which is controlled by the sealed keyword.
A sealed class is one that can be subclassed but only by a specific list of known
classes. This is done by using the permits keyword to enumerate the list of possible
subclasses (which must all be in the same package as the base class) upfront, when
the sealed class is declared. Like this:

// In Shape.java
public abstract sealed class Shape permits Circle, Triangle {
    // ...
}

// In Circle.java
public final class Circle extends Shape {
    // ...
}
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// In Triangle.java
public final class Triangle extends Shape {
    // ...
}

In this example, we have declared both Circle and Triangle as final, so they
cannot be further subclassed. This is the usual approach, but it is also possible to
declare a subtype of a sealed class as either sealed (with a further set of permitted
subclasses), or as non-sealed, which restores the default Java behavior of unrestric‐
ted subclassing.

This last option (non-sealed) should not be used without a very good reason, as
it undermines much of the semantic point of using class sealing in the first place.
For this reason, it is a compile-time error to try to subclass a sealed class without
providing one of the three sealing modifiers: there is no default behavior here.

The introduction of non-sealed is the first example of a
hyphenated keyword that’s been seen in Java.

In this example we’ve used an abstract sealed base class (Shape). This is not always
necessary but it is often a good practice, as it means that any instances of the
type that we encounter are known to be one of the “leaf types,” such as Circle or
Triangle. We will meet abstract classes properly later in the chapter.

Although sealed classes are new with Java 17, we expect that many developers will
adopt them quickly—along with records, they represent a “missing concept” that
fits very naturally into Java’s view of OO. We will have more to say about this in
Chapter 5 when we discuss aspects of object-oriented design related to sealed types.

Data Hiding and Encapsulation
We started this chapter by describing a class as a collection of data and methods.
One of the most important object-oriented techniques we haven’t discussed so far is
hiding the data within the class and making it available only through the methods.

This technique is known as encapsulation because it contains the data (and internal
methods) safely inside the “capsule” of the class, where it can be accessed only by
trusted users (i.e., the methods of the class).

Why would you want to do this? The most important reason is to hide the internal
implementation details of your class. If you prevent programmers from relying on
those details, you can safely modify the implementation without worrying that you
will break existing code that uses the class.
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You should always encapsulate your code. It is almost always
impossible to reason through and ensure the correctness of
code that hasn’t been well-encapsulated, especially in multi‐
threaded environments (and essentially all Java programs are
multithreaded).

Another reason for encapsulation is to protect your class against accidental or will‐
ful stupidity. A class often contains a number of interdependent fields that must be
in a consistent state. If you allow programmers (including yourself) to manipulate
those fields directly, they may change one field without changing important related
fields, leaving the class in an inconsistent state. If instead the programmer has to call
a method to change the field, that method can be sure to do everything necessary to
keep the state consistent. Similarly, if a class defines certain methods for internal use
only, hiding these methods prevents users of the class from calling them.

Here’s another way to think about encapsulation: when all the data for a class is
hidden, the methods define the only possible operations that can be performed on
objects of that class.

Once you have carefully tested and debugged your methods, you can be confident
that the class will work as expected. On the other hand, if all the fields of the class
can be directly manipulated, the number of possibilities you have to test becomes
unmanageable.

This idea can be carried to a very powerful conclusion, as we
will see in “Safe Java Programming” on page 234 when we
discuss the safety of Java programs (which differs from the
concept of type safety of the Java programming language).

Other, secondary, reasons to hide fields and methods of a class include:

• Internal fields and methods that are visible outside the class just clutter up the•
API. Keeping visible fields to a minimum keeps your class tidy and therefore
easier to use and understand.

• If a method is visible to the users of your class, you have to document it. Save•
yourself time and effort by hiding it instead.

Access Control
Java defines access control rules that can restrict members of a class from being used
outside the class. In a number of examples in this chapter, you’ve seen the public
modifier used in field and method declarations. This public keyword, along with
protected and private (and one other, special one) are access control modifiers;
they specify the access rules for the field or method.
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Access to modules
One of the biggest changes in Java 9 was the arrival of Java platform modules. These
are a grouping of code that is larger than a single package and intended as the
future way to deploy code for reuse. As Java is often used in large applications and
environments, the arrival of modules should make it easier to build and manage
enterprise codebases.

The modules technology is an advanced topic, and if Java is one of the first pro‐
gramming languages you have encountered, you should not try to learn it until
you have gained some language proficiency. An introductory treatment of modules
is provided in Chapter 12, and we defer discussing the access control impact of
modules until then.

Access to packages
Access control on a per-package basis is not directly part of the core Java language
and instead is provided by the modules mechanism. In the normal course of pro‐
gramming, access control is usually done at the level of classes and members of
classes.

A package that has been loaded is always accessible to code
defined within the same package. Whether it is accessible to
code from other packages depends on the way the package
is deployed on the host system. When the class files that
comprise a package are stored in a directory, for example, a
user must have read access to the directory and the files within
it to have access to the package.

Access to classes
By default, top-level classes are accessible within the package in which they are
defined. However, if a top-level class is declared public, it is accessible everywhere.

In Chapter 4, we’ll meet nested classes. These are classes that
can be defined as members of other classes. Because these
inner classes are members of a class, they obey the member
access-control rules.

Access to members
The members of a class are always accessible within the body of the class. By default,
members are also accessible throughout the package in which the class is defined.
This default level of access is often called package access.

It is one of four possible levels of access. The other three levels are defined by the
public, protected, and private modifiers. Here is some example code that uses
these modifiers:
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public class Laundromat {    // People can use this class.
  private Laundry[] dirty;   // They cannot use this internal field,
  public void wash() { ... } // but they can use these public methods
  public void dry() { ... }  // to manipulate the internal field.
  // A subclass might want to tweak this field
  protected int temperature;
}

These access rules apply to members of a class:

• All the fields and methods of a class can always be used within the body of the•
class itself.

• If a member of a class is declared with the public modifier, it means that the•
member is accessible anywhere the containing class is accessible. This is the
least restrictive type of access control.

• If a member of a class is declared private, the member is never accessible,•
except within the class itself. This is the most restrictive type of access control.

• If a member of a class is declared protected, it is accessible to all classes within•
the package (the same as the default package accessibility) and also accessible
within the body of any subclass of the class, regardless of the package in which
that subclass is defined.

• If a member of a class is not declared with any of these modifiers, it has default•
access (sometimes called package access), and it is accessible to code within
all classes that are defined in the same package but inaccessible outside of the
package.

Default access is more restrictive than protected—as default
access does not allow access by subclasses outside the package.

protected access requires more elaboration. Suppose class A declares a protected
field x and is extended by a class B, which is defined in a different package (this last
point is important). Class B inherits the protected field x, and its code can access
that field in the current instance of B or in any other instances of B that the code can
refer to. This does not mean, however, that the code of class B can start reading the
protected fields of arbitrary instances of A.

Let’s look at this language detail in code. Here’s the definition for A:

package javanut8.ch03;

public class A {
    protected final String name;
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    public A(String named) {
        name = named;
    }

    public String getName() {
        return name;
    }
}

Here’s the definition for B:

package javanut8.ch03.different;

import javanut8.ch03.A;

public class B extends A {

    public B(String named) {
        super(named);
    }

    @Override
    public String getName() {
        return "B: " + name;
    }
}

Java packages do not “nest,” so javanut8.ch03.different is
just a different package than javanut8.ch03; it is not con‐
tained inside it or related to it in any way.

However, if we try to add this new method to B, we will get a compilation error,
because instances of B do not have access to arbitary instances of A:

    public String examine(A a) {
        return "B sees: " + a.name;
    }

If we change the method to this:

    public String examine(B b) {
        return "B sees another B: " + b.name;
    }

then the compiler is happy, because instances of the same exact type can always see
each other’s protected fields. Of course, if B was in the same package as A, then any
instance of B could read any protected field of any instance of A because protected
fields are visible to every class in the same package.
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Access control and inheritance
The Java specification states that:

• A subclass inherits all the instance fields and instance methods of its superclass•
accessible to it.

• If the subclass is defined in the same package as the superclass, it inherits all•
non-private instance fields and methods.

• If the subclass is defined in a different package, it inherits all protected and•
public instance fields and methods.

• private fields and methods are never inherited; neither are class fields or class•
methods.

• Constructors are not inherited (instead, they are chained, as described earlier•
in this chapter).

However, some programmers are confused by the statement that a subclass does
not inherit the inaccessible fields and methods of its superclass. Let us be explicit:
Every instance of a subclass includes a complete instance of the superclass within it,
including all private fields and methods. When you create an instance of a subclass,
memory is allocated for all private fields defined by the superclass; however, the
subclass does not have access to these fields directly.

This existence of potentially inaccessible members seems to be in conflict with the
statement that the members of a class are always accessible within the body of the
class. To clear up this confusion, we define “inherited members” to mean those
superclass members that are accessible.

Then the correct statement about member accessibility is: “All inherited members
and all members defined in this class are accessible.” An alternative way of saying
this is:

• A class inherits all instance fields and instance methods (but not constructors)•
of its superclass.

• The body of a class can always access all the fields and methods it declares•
itself. It can also access the accessible fields and members it inherits from its
superclass.

Member access summary
We summarize the member access rules in Table 3-1.
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Table 3-1. Class member accessibility

 Member visibility    

Accessible to Public Protected Default Private

Defining class Yes Yes Yes Yes

Class in same package Yes Yes Yes No

Subclass in different package Yes Yes No No

Nonsubclass different package Yes No No No

There are a few generally observed rules about what parts of a Java program should
use each visibility modifier. It is important that even beginning Java programmers
follow these rules:

• Use public only for methods and constants that form part of the public API•
of the class. The only acceptable usage of public fields is for constants or
immutable objects, and they must be also declared final.

• Use protected for fields and methods that aren’t required by most program‐•
mers using the class but that may be of interest to anyone creating a subclass as
part of a different package.

protected members are technically part of the exported API
of a class. They must be documented and cannot be changed
without potentially breaking code that relies on them.

• Use the default package visibility for fields and methods that are internal imple‐•
mentation details but are used by cooperating classes in the same package.

• Use private for fields and methods that are used only inside the class and•
should be hidden everywhere else.

If you are not sure whether to use protected, package, or private accessibility, start
with private. If this is overly restrictive, you can always relax the access restrictions
slightly (or provide accessor methods, in the case of fields).

This is especially important for designing APIs because increasing access restric‐
tions is not a backward-compatible change and can break code that relies on access
to those members.

Data Hiding and Encapsulation | 141

O
O

P
ro

g
ram

m
ing



Data Accessor Methods
In the Circle example, we declared the circle radius to be a public field. The
Circle class is one in which it may be reasonable to keep that field publicly
accessible; it is a simple enough class, with no dependencies between its fields. On
the other hand, our current implementation of the class allows a Circle object to
have a negative radius, and circles with negative radii simply should not exist. As
long as the radius is stored in a public field, however, any programmer can set the
field to any value they want, no matter how unreasonable. The only solution is to
restrict the programmer’s direct access to the field and define public methods that
provide indirect access to the field. Providing public methods to read and write a
field is not the same as making the field itself public. The crucial difference is that
methods can perform error checking.

We might, for example, want to prevent Circle objects with negative radii—these
are obviously not sensible, but our current implementation does not prohibit this.
In Example 3-4, we show how we might change the definition of Circle to prevent
this.

This version of Circle declares the r field to be protected and defines accessor
methods named getRadius() and setRadius() to read and write the field value
while enforcing the restriction on negative radius values. Because the r field is
protected, it is directly (and more efficiently) accessible to subclasses.

Example 3-4. The Circle class using data hiding and encapsulation

package javanut8.ch03.shapes; // Specify a package for the class

public class Circle {     // The class is still public
    // This is a generally useful constant, so we keep it public
    public static final double PI = 3.14159;

    protected double r;     // Radius is hidden but visible to subclasses

    // A method to enforce the restriction on the radius
    // Subclasses may be interested in this implementation detail
    protected void checkRadius(double radius) {
        if (radius < 0.0)
            throw new IllegalArgumentException("illegal negative radius");
    }

    // The non-default constructor
    public Circle(double r) {
        checkRadius(r);
        this.r = r;
    }

    // Public data accessor methods
    public double getRadius() { return r; }
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    public void setRadius(double r) {
        checkRadius(r);
        this.r = r;
    }

    // Methods to operate on the instance field
    public double area() { return PI * r * r; }
    public double circumference() { return 2 * PI * r; }
}

We have defined the Circle class within a package named javanut8.ch03.shapes;
r is protected so any other classes in the javanut8.ch03.shapes package have
direct access to that field and can set it however they like. The assumption here is
that all classes within the javanut8.ch03.shapes package were written by the same
author or a closely cooperating group of authors, and that the classes all trust each
other not to abuse their privileged level of access to each other’s implementation
details.

Finally, the code that enforces the restriction against negative radius values is itself
placed within a protected method, checkRadius(). Although users of the Circle
class cannot call this method, subclasses of the class can call it and even override it if
they want to change the restrictions on the radius.

One set of common (but older) conventions in Java—known
as Java Beans conventions—is that data accessor methods
begin with the prefixes “get” and “set.” But if the field being
accessed is of type boolean, the get() method may be
replaced with an equivalent method that begins with “is”—
the accessor method for a boolean field named readable is
typically called isReadable() instead of getReadable().

Abstract Classes and Methods
In Example 3-4, we declared our Circle class to be part of a package named shapes.
Suppose we plan to implement a number of shape classes: Rectangle, Square,
Hexagon, Triangle, and so on. We can give these shape classes our two basic area()
and circumference() methods. Now, to make it easy to work with an array of
shapes, it would be helpful if all our shape classes had a common superclass, Shape.
If we structure our class hierarchy this way, every shape object, regardless of the
actual type of shape it represents, can be assigned to variables, fields, or array
elements of type Shape. We want the Shape class to encapsulate whatever features all
our shapes have in common (e.g., the area() and circumference() methods). But
our generic Shape class doesn’t represent any real kind of shape, so it cannot define
useful implementations of the methods. Java handles this situation with abstract
methods.
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2 An abstract method in Java is something like a pure virtual function in C++ (i.e., a virtual
function that is declared = 0). In C++, a class that contains a pure virtual function is called an
abstract class and cannot be instantiated. The same is true of Java classes that contain abstract
methods.

Java lets us define a method without implementing it by declaring the method with
the abstract modifier. An abstract method has no body; it simply has a signature
definition followed by a semicolon.2 Here are the rules about abstract methods
and the abstract classes that contain them:

• Any class with an abstract method is automatically abstract itself and must•
be declared as such. To fail to do so is a compilation error.

• An abstract class cannot be instantiated.•

• A subclass of an abstract class can be instantiated only if it overrides each of•
the abstract methods of its superclass and provides an implementation (i.e., a
method body) for all of them. Such a class is often called a concrete subclass, to
emphasize the fact that it is not abstract.

• If a subclass of an abstract class does not implement all the abstract methods•
it inherits, that subclass is itself abstract and must be declared as such.

• static, private, and final methods cannot be abstract, because these types•
of methods cannot be overridden by a subclass. Similarly, a final class cannot
contain any abstract methods.

• A class can be declared abstract even if it does not actually have any abstract•
methods. Declaring such a class abstract indicates that the implementation
is somehow incomplete and is meant to serve as a superclass for one or
more subclasses that complete the implementation. Such a class cannot be
instantiated.

The ClassLoader class that we will meet in Chapter 11 is
a good example of an abstract class that does not have any
abstract methods.

Let’s look at an example of how these rules work. If we define the Shape class to have
abstract area() and circumference() methods, any subclass of Shape is required
to provide implementations of these methods so that it can be instantiated. In other
words, every Shape object is guaranteed to have implementations of these methods
defined. Example 3-5 shows how this might work. It defines an abstract Shape
class and a concrete subclass of it. You should also imagine that the Circle class
from Example 3-4 has been modified so that it extends Shape.
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Example 3-5. An abstract class and concrete subclass

public abstract class Shape {
    public abstract double area();            // Abstract methods: note
    public abstract double circumference();   // semicolon instead of body.
}

public class Rectangle extends Shape {
    // Instance data
    protected double w, h;

    // Constructor                               
    public Rectangle(double w, double h) {               
        this.w = w;  this.h = h;
    }

    // Accessor methods
    public double getWidth() { return w; }               
    public double getHeight() { return h; }

    // Implementation of abstract methods             
    public double area() { return w*h; }                 
    public double circumference() { return 2*(w + h); }   
}

Each abstract method in Shape has a semicolon right after its parentheses. Method
declarations of this sort have no curly braces, and no method body is defined.

Note that we could have declared the class Shape as a sealed class, but we have
deliberately chosen not to. This is so other programmers can define their own shape
classes as new subclasses of Shape, should they wish to.

Using the classes defined in Example 3-5, we can now write code such as:

Shape[] shapes = new Shape[3];        // Create an array to hold shapes
shapes[0] = new Circle(2.0);          // Fill in the array
shapes[1] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);

double totalArea = 0;
for(int i = 0; i < shapes.length; i++) {
    totalArea += shapes[i].area();   // Compute the area of the shapes
}

Notice two important points here:

• Subclasses of Shape can be assigned to elements of an array of Shape. No cast•
is necessary. This is another example of a widening reference type conversion
(discussed in Chapter 2).

• You can invoke the area() and circumference() methods for any Shape•
object, even though the Shape class does not define a body for these methods.
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When you do this, the method to be invoked is found using virtual lookup,
which we met earlier. In our case, this means that the area of a circle is
computed using the method defined by Circle, and the area of a rectangle is
computed using the method defined by Rectangle.

Reference Type Conversions
Object references can be converted between different reference types. As with
primitive types, reference type conversions can be widening conversions (allowed
automatically by the compiler) or narrowing conversions that require a cast (and
possibly a runtime check). In order to understand reference type conversions, you
need to understand that reference types form a hierarchy, usually called the class
hierarchy.

Every Java reference type extends some other type, known as its superclass. A type
inherits the fields and methods of its superclass and then defines its own additional
fields and methods. A special class named Object serves as the root of the class
hierarchy in Java. All Java classes extend Object directly or indirectly. The Object
class defines a number of special methods that are inherited (or overridden) by all
objects.

The predefined String class and the Account class we discussed earlier in this
chapter both extend Object. Thus, we can say that all String objects are also Object
objects. We can also say that all Account objects are Object objects. The opposite
is not true, however. We cannot say that every Object is a String because, as we’ve
just seen, some Object objects are Account objects.

With this simple understanding of the class hierarchy, we can define the rules of
reference type conversion:

• An object reference cannot be converted to an unrelated type. The Java com‐•
piler does not allow you to convert a String to a Account, for example, even if
you use a cast operator.

• An object reference can be converted to the type of its superclass or of any•
ancestor class. This is a widening conversion, so no cast is required. For
example, a String value can be assigned to a variable of type Object or passed
to a method where an Object parameter is expected.

No conversion is actually performed; the object is simply
treated as if it were an instance of the superclass. This is a
simple form of the Liskov substitution principle, after Barbara
Liskov, the computer scientist who first explicitly formulated
it.
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• An object reference can be converted to the type of a subclass, but this is•
a narrowing conversion and requires a cast. The Java compiler provisionally
allows this kind of conversion, but the Java interpreter checks at runtime to
make sure it is valid. Only cast a reference to the type of a subclass if you are
sure, based on the logic of your program, that the object is actually an instance
of the subclass. If it is not, the interpreter throws a ClassCastException. For
example, if we assign a String reference to a variable of type Object, we can
later cast the value of that variable back to type String:

Object o = "string";    // Widening conversion from String
                        // to Object later in the program...
String s = (String) o;  // Narrowing conversion from Object
                        // to String

Arrays are objects and follow some conversion rules of their own. First, any array
can be converted to an Object value through a widening conversion. A narrowing
conversion with a cast can convert such an object value back to an array. Here’s an
example:

// Widening conversion from array to Object
Object o = new int[] {1,2,3};
// Later in the program...

int[] a = (int[]) o;      // Narrowing conversion back to array type

In addition to converting an array to an object, we can convert an array to another
type of array if the “base types” of the two arrays are reference types that can
themselves be converted. For example:

// Here is an array of strings.
String[] strings = new String[] { "hi", "there" };
// A widening conversion to CharSequence[] is allowed because String
// can be widened to CharSequence
CharSequence[] sequences = strings;
// The narrowing conversion back to String[] requires a cast.
strings = (String[]) sequences;

// This is an array of arrays of strings
String[][] s = new String[][] { strings };
// It cannot be converted to CharSequence[] because String[] cannot be
// converted to CharSequence: the number of dimensions don't match

sequences = s;  // This line will not compile
// s can be converted to Object or Object[], because all array types
// (including String[] and String[][]) can be converted to Object.
Object[] objects = s;
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Note that these array conversion rules apply only to arrays of objects and arrays of
arrays. An array of primitive type cannot be converted to any other array type, even
if the primitive base types can be converted:

// Can't convert int[] to double[] even though
// int can be widened to double
// This line causes a compilation error
double[] data = new int[] {1,2,3};
// This line is legal, however,
// because int[] can be converted to Object
Object[] objects = new int[][] {{1,2},{3,4}};

Modifier Summary
As we’ve seen, classes, interfaces, and their members can be declared with one or
more modifiers—keywords such as public, static, and final. Let’s conclude this
chapter by listing the Java modifiers, explaining what types of Java constructs they
can modify, and explaining what they do. Table 3-2 has the details; you can also
refer to “Overview of Classes and Records” on page 107, “Field Declaration Syntax”
on page 112, and “Method Modifiers” on page 77.

Table 3-2. Java modifiers

Modifier Used on Meaning

abstract Class The class cannot be instantiated and may contain unimplemented methods.

Interface All interfaces are abstract. The modifier is optional in interface
declarations.

Method No body is provided for the method; it is provided by a subclass. The
signature is followed by a semicolon. The enclosing class must also be
abstract.

default Method Implementation of this interface method is optional. The interface provides
a default implementation for classes that elect not to implement it. See
Chapter 4 for more details.

final Class The class cannot be subclassed.

Method The method cannot be overridden.

Field The field cannot have its value changed. static final fields are
compile-time constants.

Variable A local variable, method parameter, or exception parameter cannot have its
value changed.
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Modifier Used on Meaning

native Method The method is implemented in some platform-dependent way (often in C).
No body is provided; the signature is followed by a semicolon.

non-sealed Class The class inherits from a sealed type but itself has unrestricted open
inheritance.

<None> (package) Class A non-public class is accessible only in its package.

Interface A non-public interface is accessible only in its package.

Member A member that is not private, protected, or public has package
visibility and is accessible only within its package.

private Member The member is accessible only within the class that defines it.

protected Member The member is accessible only within the package in which it is defined and
within subclasses.

public Class The class is accessible anywhere its package is.

Interface The interface is accessible anywhere its package is.

Member The member is accessible anywhere its class is.

sealed Class The class can be subclassed only by a known list of subclasses, as given by the
permits clause. If the permits clause is missing, the class can be subclassed
only by classes within the same compilation unit.

static Class An inner class declared static is a top-level class not associated with a
member of the containing class. See Chapter 4 for more details.

Method A static method is a class method. It is not passed an implicit this object
reference. It can be invoked through the class name.

Field A static field is a class field. There is only one instance of the field,
regardless of the number of class instances created. It can be accessed
through the class name.

Initializer The initializer is run when the class is loaded rather than when an instance is
created.

strictfp Class All methods of the class are implicitly strictfp.
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Modifier Used on Meaning

Method All floating-point computation done by the method must be performed in a
way that strictly conforms to the IEEE 754 standard. In particular, all values,
including intermediate results, must be expressed as IEEE float or double
values and cannot take advantage of any extra precision or range offered by
native platform floating-point formats or hardware. This modifier is extremely
rarely used, and is a no-op in Java 17, as the language now always uses strict
conformance to the standard.

synchronized Method The method makes nonatomic modifications to the class or instance, so care
must be taken to ensure that two threads cannot modify the class or instance
at the same time. For a static method, a lock for the class is acquired
before executing the method. For a non-static method, a lock for the
specific object instance is acquired. See Chapter 5 for more details.

transient Field The field is not part of the persistent state of the object and should
not be serialized with the object. Used with object serialization; see
java.io.ObjectOutputStream.

volatile Field The field can be accessed by unsynchronized threads, so certain optimizations
must not be performed on it. This modifier can sometimes be used as an
alternative to synchronized. See Chapter 5 for more details.

Summary
Java, like all object-oriented languages, has its own model of how OO should work.
In this chapter we have met the basic concepts of this model: static typing, fields,
methods, inheritance, access control, encapsulation, overloading, overriding, and
sealing. To become a proficient Java programmer, you will need to gain proficiency
in handling all of these concepts and understand the relationship between them and
how they interact.

The next two chapters are devoted to exploring these features further and under‐
standing how the basic aspects of object-oriented design in Java arise directly from
this relatively small set of basic concepts.
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4
The Java Type System

In this chapter, we move beyond basic object-oriented programming with classes
and into the additional concepts required to work effectively with Java’s type system.

A statically typed language is one in which variables have
definite types, and where it is a compile-time error to assign
a value of an incompatible type to a variable. Languages that
only check type compatibility at runtime are called dynami‐
cally typed.

Java is a fairly classic example of a statically typed language. JavaScript is an example
of a dynamically typed language that allows any variable to store any type of value.

The Java type system involves not only classes and primitive types but also other
kinds of reference type that are related to the basic concept of a class, but which
differ in some way and are usually treated in a special way by javac or the JVM.

We have already met arrays and classes, two of Java’s most widely used kinds of
reference type. This chapter starts by discussing another very important kind of
reference type—interfaces. We then move on to discuss Java’s generics, which have a
major role to play in Java’s type system. With these topics under our belts, we can
discuss the differences between compile-time and runtime types in Java.

To complete the full picture of Java’s reference types, we look at specialized kinds
of classes and interfaces—known as enums and annotations. We conclude the chap‐
ter by looking at lambda expressions and nested types and then reviewing how
enhanced type inference has allowed Java’s nondenotable types to become usable by
programmers.
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Let’s get started by taking a look at interfaces—probably the most important of
Java’s reference types after classes and a key building block for the rest of Java’s type
system.

Interfaces
In Chapter 3, we met the idea of inheritance. We also saw that a Java class can
inherit only from a single class. This is quite a big restriction on the kinds of
object-oriented programs that we want to build. The designers of Java knew this,
but they also wanted to ensure that Java’s approach to object-oriented programming
was less complex and error-prone than, for example, that of C++.

The solution that they chose was to introduce the concept of an interface to Java.
Like a class, an interface defines a new reference type. As its name implies, an
interface is intended to represent only an API—so it provides a description of a type
and the methods (and signatures) that classes that implement that API must provide.

In general, a Java interface does not provide any implementation code for the
methods that it describes. These methods are considered mandatory—any class
that wishes to implement the interface must provide an implementation of these
methods.

However, an interface may wish to mark that some API methods are optional
and that implementing classes do not need to implement them if they choose not
to. This is done with the default keyword—and the interface must provide an
implementation of these optional methods, which will be used by any implementing
class that elects not to implement them.

The ability to have optional methods in interfaces was new in
Java 8. It is not available in any earlier version. See “Records
and Interfaces” on page 156 for a full description of how
optional (also called default) methods work.

It is not possible to directly instantiate an interface and create a member of the
interface type. Instead, a class must implement the interface to provide the necessary
method bodies.

Any instances of the implementing class are compatible with both the type defined
by the class and the type defined by the interface. This means that the instances may
be substituted at any point in the code that requires an instance of either the class
type or the interface type. This extends the Liskov principle as seen in “Reference
Type Conversions” on page 146.

Another way of saying this is that two objects that do not share the same class or
superclass may still both be compatible with the same interface type if both objects
are instances of classes that implement the interface.
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Defining an Interface
An interface definition is somewhat like a class definition in which all the
(mandatory) methods are abstract and the keyword class has been replaced with
interface. For example, this code shows the definition of an interface named
Centered (a Shape class, such as those defined in Chapter 3, might implement this
interface if it wants to allow the coordinates of its center to be set and queried):

interface Centered {
  void setCenter(double x, double y);
  double getCenterX();
  double getCenterY();
}

A number of restrictions apply to the members of an interface:

• All mandatory methods of an interface are implicitly abstract and must have a•
semicolon in place of a method body. The abstract modifier is allowed but by
convention is usually omitted.

• An interface defines a public API. By convention, members of an interface•
are implicitly public, and it is conventional to omit the unnecessary public
modifier.

• An interface may not define any instance fields. Fields are an implementation•
detail, and an interface is a specification, not an implementation. The only
fields allowed in an interface definition are constants that are declared both
static and final.

• An interface cannot be instantiated, so it does not define a constructor.•

• Interfaces may contain nested types. Any such types are implicitly public and•
static. See “Nested Types” on page 187 for a full description of nested types.

• As of Java 8, an interface may contain static methods. Previous versions of Java•
did not allow this, which is widely believed to have been a flaw in the design of
the Java language.

• As of Java 9, an interface may contain private methods. These have limited use•
cases, but with the other changes to the interface construct, it seems arbitrary
to disallow them.

• It is a compile-time error to try to define a protected method in an interface.•

Extending Interfaces
Interfaces may extend other interfaces, and, like a class definition, an interface defi‐
nition indicates this by including an extends clause. When one interface extends
another, it inherits all the methods and constants of its superinterface and can
define new methods and constants. Unlike classes, however, the extends clause of
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an interface definition may include more than one superinterface. For example, here
are some interfaces that extend other interfaces:

interface Positionable extends Centered {
  void setUpperRightCorner(double x, double y);
  double getUpperRightX();
  double getUpperRightY();
}
interface Transformable extends Scalable, Translatable, Rotatable {}
interface SuperShape extends Positionable, Transformable {}

An interface that extends more than one interface inherits all the methods and
constants from each of those interfaces and can define its own additional methods
and constants. A class that implements such an interface must implement the
abstract methods defined directly by the interface, as well as all the abstract methods
inherited from all the superinterfaces.

Implementing an Interface
Just as a class uses extends to specify its superclass, it can use implements to
name one or more interfaces it supports. The implements keyword can appear
in a class declaration following the extends clause. It should be followed by a
comma-separated list of interfaces that the class implements.

When a class declares an interface in its implements clause, it is saying that it pro‐
vides an implementation (i.e., a body) for each mandatory method of that interface.
If a class implements an interface but does not provide an implementation for every
mandatory interface method, it inherits those unimplemented abstract methods
from the interface and must itself be declared abstract. If a class implements more
than one interface, it must implement every mandatory method of each interface it
implements (or be declared abstract).

The following code shows how to define a CenteredRectangle class that extends
the Rectangle class from Chapter 3 and implements our Centered interface:

public class CenteredRectangle extends Rectangle implements Centered {
  // New instance fields
  private double cx, cy;

  // A constructor
  public CenteredRectangle(double cx, double cy, double w, double h) {
    super(w, h);
    this.cx = cx;
    this.cy = cy;
  }

  // We inherit all the methods of Rectangle but must
  // provide implementations of all the Centered methods.
  public void setCenter(double x, double y) { cx = x; cy = y; }
  public double getCenterX() { return cx; }
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  public double getCenterY() { return cy; }
}

Suppose we implement CenteredCircle and CenteredSquare just as we have
implemented this CenteredRectangle class. Each class extends Shape, so instances
of the classes can be treated as instances of the Shape class, as we saw earlier.
Because each class implements the Centered interface, instances can also be treated
as instances of that type. The following code demonstrates how objects can be
members of both a class type and an interface type:

Shape[] shapes = new Shape[3];      // Create an array to hold shapes

// Create some centered shapes, and store them in the Shape[]
// No cast necessary: these are all compatible assignments
shapes[0] = new CenteredCircle(1.0, 1.0, 1.0);
shapes[1] = new CenteredSquare(2.5, 2, 3);
shapes[2] = new CenteredRectangle(2.3, 4.5, 3, 4);

// Compute average area of the shapes and
// average distance from the origin
double totalArea = 0;
double totalDistance = 0;
for(int i = 0; i < shapes.length; i = i + 1) {
  totalArea += shapes[i].area();   // Compute the area of the shapes

  // Be careful, in general, the use of instanceof to determine the
  // runtime type of an object is quite often an indication of a
  // problem with the design
  if (shapes[i] instanceof Centered) { // The shape is a Centered shape
    // Note the required cast from Shape to Centered (no cast would
    // be required to go from CenteredSquare to Centered, however).
    Centered c = (Centered) shapes[i];

    double cx = c.getCenterX();    // Get coordinates of the center
    double cy = c.getCenterY();    // Compute distance from origin
    totalDistance += Math.sqrt(cx*cx + cy*cy);
  }
}
System.out.println("Average area: " + totalArea/shapes.length);
System.out.println("Average distance: " + totalDistance/shapes.length);

Interfaces are data types in Java, just like classes. When a
class implements an interface, instances of that class can be
assigned to variables of the interface type.

Don’t interpret this example to imply that you must assign a CenteredRectangle
object to a Centered variable before you can invoke the setCenter() method
or to a Shape variable before invoking the area() method. Instead, because the
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CenteredRectangle class defines setCenter() and inherits area() from its Rectan
gle superclass, you can always invoke these methods.

As we could see by examining the bytecode (e.g., by using the javap tool we
will meet in Chapter 13), the JVM calls the setCenter() method slightly differ‐
ently depending on whether the local variable holding the shape is of the type
CenteredRectangle or Centered, but this is not a distinction that matters most of
the time when you’re writing Java code.

Records and Interfaces
Records, being a special case of classes, can implement interfaces, just like any
other class. The body of the record must contain implementation code for all of
the mandatory methods of the interface, and it may contain overriding implementa‐
tions for any of the default methods of the interface.

Let’s look at an example as applied to the Point record we met in the last chapter.
Given an interface defined like this:

interface Translatable {
    Translatable deltaX(double dx);
    Translatable deltaY(double dy);
    Translatable delta(double dx, double dy);
}

then we can update the Point type like this:

public record Point(double x, double y) implements Translatable {
    public Translatable deltaX(double dx) {
        return delta(dx, 0.0);
    }

    public Translatable deltaY(double dy) {
        return delta(0.0, dy);
    }

    public Translatable delta(double dx, double dy) {
        return new Point(x + dx, y + dy);
    }
}

Note that because records are immutable, it is not possible to mutate instances
in-place and so, if we need a modified object, we have to create one and return it
explicitly. This implies that not every interface will be suitable for implementation
by a record type.

Sealed Interfaces
We met the sealed keyword in the last chapter, as applied to classes. It can also be
applied to interfaces, like this:
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sealed interface Rotate90 permits Circle, Rectangle {
    void clockwise();
    void antiClockwise();
}

This sealed interface represents the capability for a shape to be rotated by 90
degrees. Note that the declaration also contains a permits clause that specifies
the only classes that are allowed to implement this interface—in this case just the
Circle and Rectangle for simplicity. The Circle is modified like this:

public final class Circle extends Shape implements Rotate90 {
    // ...

    @Override
    public void clockwise() {
        // No-op, circles are rotation-invariant
    }

    @Override
    public void antiClockwise() {
        // No-op, circles are rotation-invariant
    }

    // ...
}

whereas the Rectangle has been modified like this:

public final class Rectangle extends Shape implements Rotate90 {
    // ...

    @Override
    public void clockwise() {
        // Swap width and height
        double tmp = w;
        w = h;
        h = tmp;
    }

    @Override
    public void antiClockwise() {
        // Swap width and height
        double tmp = w;
        w = h;
        h = tmp;
    }

    // ...
}

As it stands, we don’t want to deal with the complexity of allowing other shapes
to have rotational behavior, so we restrict the interface so that it can only be
implemented by the two simplest cases: circles and rectangles.
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There is also an interesting interplay between sealed interfaces and records, which
we will discuss in Chapter 5.

Default Methods
From Java 8 onward, it is possible to declare methods in interfaces that include
an implementation. In this section, we’ll discuss these methods, which should be
understood as optional methods in the API the interfaces represent—they’re usually
called default methods. Let’s start by looking at the reasons why we need the default
mechanism in the first place.

Backward compatibility
The Java platform has always been very concerned with backward compatibility.
This means that code that was written (or even compiled) for an earlier version
of the platform must continue to work with later releases of the platform. This
principle allows development groups to have a high degree of confidence that an
upgrade of their JDK or Java Runtime Environment (JRE) will not break currently
working applications.

Backward compatibility is a great strength of the Java platform, but in order to
achieve it, some constraints are placed on the platform. One of them is that inter‐
faces may not have new mandatory methods added to them in a new release of the
interface.

For example, let’s suppose that we want to update the Positionable interface with
the ability to add a bottom-left bounding point as well:

public interface Positionable extends Centered {
  void setUpperRightCorner(double x, double y);
  double getUpperRightX();
  double getUpperRightY();
  void setLowerLeftCorner(double x, double y);
  double getLowerLeftX();
  double getLowerLeftY();
}

With this new definition, if we try to use this new interface with code developed for
the old, it just won’t work, as the existing code is missing the mandatory methods
setLowerLeftCorner(), getLowerLeftX(), and getLowerLeftY().

You can see this effect quite easily in your own code. Com‐
pile a class file that depends on an interface. Then add a
new mandatory method to the interface and try to run the
program with the new version of the interface, together with
your old class file. You should see the program crash with a
NoClassDefError.
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This limitation was a concern for the designers of Java 8—as one of their goals was
to be able to upgrade the core Java Collections libraries and introduce methods that
used lambda expressions.

To solve this problem, a new mechanism was needed, essentially to allow inter‐
faces to evolve by allowing new methods to be added without breaking backward
compatibility.

Implementation of default methods
Adding new methods to an interface without breaking backward compatibility
requires providing some implementation for the older implementations of the inter‐
face so that they can continue to work. This mechanism is a default method, and it
was first added to the platform in JDK 8.

A default method (sometimes called an optional method) can
be added to any interface. This must include an implementa‐
tion, called the default implementation, which is written inline
in the interface definition.

The basic behavior of a default method is:

• An implementing class may (but is not required to) implement the default•
method.

• If an implementing class implements the default method, then the implementa‐•
tion in the class is used.

• If no other implementation can be found, then the default implementation is•
used.

An example default method is the sort() method. It’s been added to the interface
java.util.List in JDK 8, and is defined as:

// The <E> syntax is Java's way of writing a generic type - see
// the next section for full details. If you aren't familiar with
// generics, just ignore that syntax for now.
interface List<E> {
  // Other members omitted

  public default void sort(Comparator<? super E> c) {
    Collections.<E>sort(this, c);
  }
}

Thus, from Java 8 upward, any object that implements List has an instance method
sort() that can be used to sort the list using a suitable Comparator. As the return
type is void, we might expect that this is an in-place sort, and this is indeed the case.
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One consequence of default methods is that when implementing multiple interfaces,
it’s possible that two or more interfaces may contain a default method with a
completely identical name and signature.

For example:

interface Vocal {
  default void call() {
    System.out.println("Hello!");
  }
}

interface Caller {
  default void call() {
    Switchboard.placeCall(this);
  }
}

public class Person implements Vocal, Caller {
  // ... which default is used?
}

These two interfaces have very different default semantics for call() and could
cause a potential implementation clash—a colliding default method. In versions of
Java prior to 8, this could not occur, as the language permitted only single inher‐
itance of implementation. The introduction of default methods means that Java
now permits a limited form of multiple inheritance (but only of method implemen‐
tations). Java still does not permit (and has no plans to add) multiple inheritance of
object state.

In some other languages, notably C++, this problem is known
as diamond inheritance.

Default methods have a simple set of rules to help resolve any potential ambiguities:

• If a class implements multiple interfaces in such a way as to cause a potential•
clash of default method implementations, the implementing class must over‐
ride the clashing method and provide a definition of what is to be done.

• Syntax is provided to allow the implementing class to simply call one of the•
interface default methods if that is what is required:

public class Person implements Vocal, Caller {

    public void call() {
        // Can do our own thing
        // or delegate to either interface
        // e.g.,
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        // Vocal.super.call();
        // or
        // Caller.super.call();
    }
}

As a side effect of the design of default methods, there is a slight, unavoidable
usage issue that may arise in the case of evolving interfaces with colliding methods.
Consider the case where a bytecode version 51.0 (Java 7) class implements two
interfaces A and B with version numbers a.0 and b.0, respectively. As defaults are
not available in Java 7, this class will work correctly. However, if at a later time
either or both interfaces adopt a default implementation of a colliding method, then
compile-time breakage can occur.

For example, if version a.1 introduces a default method in A, then the implementing
class will pick up the implementation when run with the new version of the depend‐
ency. If version b.1 now introduces the same method, it causes a collision:

• If B introduces the method as a mandatory (i.e., abstract) method, then the•
implementing class continues to work—both at compile time and at runtime.

• If B introduces the method as a default method, then this is not safe and the•
implementing class will fail both at compile and at runtime.

This minor issue is very much a corner case and in practice is a very small price to
pay in order to have usable default methods in the language.

When working with default methods, we should be aware that there is a slightly
restricted set of operations we can perform from within a default method:

• Call another method present in the interface’s public API (whether mandatory•
or optional); some implementation for such methods is guaranteed to be
available.

• Call a private method on the interface (Java 9 and up).•
• Call a static method, whether on the interface or defined elsewhere.•

• Use the this reference (e.g., as an argument to method calls).•

The biggest takeaway from these restrictions is that even with default methods,
Java interfaces still lack meaningful state; we cannot alter or store state within the
interface.

Default methods have had a profound impact on the way that Java practitioners
approach object-oriented programming. When combined with the rise of lambda
expressions, they have upended many previous conventions of Java coding; we will
discuss this in detail in the next chapter.

Interfaces | 161

Typ
e System



Marker Interfaces
Occasionally it is useful to define an interface that is entirely empty. A class can
implement this interface simply by naming it in its implements clause without
having to implement any methods. In this case, any instances of the class become
valid instances of the interface as well and can be cast to the type. Java code
can check whether an object is an instance of the interface using the instanceof
operator, so this technique is a useful way to provide additional information about
an object. It can be thought of as providing additional, auxiliary type information
about a class.

Marker interfaces are much less widely used than they once
were. Java’s annotations (which we shall meet presently) have
largely replaced them due to their much greater flexibility at
conveying extended type information.

The interface java.util.RandomAccess is an example of a marker interface:
java.util.List implementations use this interface to advertise that they provide
fast random access to the elements of the list. For example, ArrayList implements
RandomAccess, while LinkedList does not. Algorithms that care about the perfor‐
mance of random-access operations can test for RandomAccess like this:

// Before sorting the elements of a long arbitrary list, we may want
// to make sure that the list allows fast random access.  If not,
// it may be quicker to make a random-access copy of the list before
// sorting it. Note that this is not necessary when using
// java.util.Collections.sort().
List l = ...;  // Some arbitrary list we're given
if (l.size() > 2 && !(l instanceof RandomAccess)) {
    l = new ArrayList(l);
}
sortListInPlace(l);

As we will see later, Java’s type system is very tightly coupled to the names that types
have—an approach called nominal typing. A marker interface is a great example of
this: it has nothing at all except a name.

Java Generics
One of the great strengths of the Java platform is the standard library it ships. It pro‐
vides a great deal of useful functionality—and in particular robust implementations
of common data structures. These implementations are relatively simple to develop
with and are well documented. The libraries are known as the Java Collections, and
we will spend a big chunk of Chapter 8 discussing them. For a far more complete
treatment, see the book Java Generics and Collections by Maurice Naftalin and Philip
Wadler (O’Reilly).
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Although they were still very useful, the earliest versions of the collections had
a fairly major limitation: the data structure (sometimes called the container) essen‐
tially obscured the type of the data being stored in it.

Data hiding and encapsulation is a great principle of object-
oriented programming, but in this case, the opaque nature of
the container caused a lot of problems for the developer.

Let’s kick off the section by demonstrating the problem and showing how the
introduction of generic types solved it and made life much easier for Java developers.

Introduction to Generics
If we want to build a collection of Shape instances, we can use a List to hold them,
like this:

List shapes = new ArrayList();   // Create a List to hold shapes

// Create some centered shapes, and store them in the list
shapes.add(new CenteredCircle(1.0, 1.0, 1.0));
// This is legal Java-but is a very bad design choice
shapes.add(new CenteredSquare(2.5, 2, 3));

// List::get() returns Object, so to get back a
// CenteredCircle we must cast
CenteredCircle c = (CenteredCircle)shapes.get(0);

// Next line causes a runtime failure
CenteredCircle c = (CenteredCircle)shapes.get(1);

A problem with this code stems from the requirement to perform a cast to get the
shape objects back out in a usable form—the List doesn’t know what type of objects
it contains. Not only that, but it’s actually possible to put different types of objects
into the same container, and everything will work fine until an illegal cast is used
and the program crashes.

What we really want is a form of List that understands what type it contains. Then,
javac could detect when an illegal argument was passed to the methods of List and
cause a compilation error, rather than deferring the issue to runtime.

Collections that have all elements of the same type are called
homogeneous, while the collections that can have elements of
potentially different types are called heterogeneous (sometimes
called “mystery meat collections”).
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Java provides a simple syntax to cater to homogeneous collections. To indicate that
a type is a container that holds instances of another reference type, we enclose the
payload type that the container holds within angle brackets:

// Create a List-of-CenteredCircle
List<CenteredCircle> shapes = new ArrayList<CenteredCircle>();

// Create some centered shapes, and store them in the list
shapes.add(new CenteredCircle(1.0, 1.0, 1.0));

// Next line will cause a compilation error
shapes.add(new CenteredSquare(2.5, 2, 3));

// List<CenteredCircle>::get() returns a CenteredCircle, no cast needed
CenteredCircle c = shapes.get(0);

This syntax ensures that a large class of unsafe code is caught by the compiler,
before it gets anywhere near runtime. This is, of course, the whole point of static
type systems—to use compile-time knowledge to help eliminate runtime problems
wherever possible.

The resulting types, which combine an enclosing container type and a payload type,
are usually called generic types, and they are declared like this:

interface Box<T> {
  void box(T t);
  T unbox();
}

This indicates that the Box interface is a general construct, which can hold any
type of payload. It isn’t really a complete interface by itself—it’s more like a general
description of a whole family of interfaces, one for each type that can be used in
place of T.

Generic Types and Type Parameters
We’ve seen how to use a generic type to provide enhanced program safety by using
compile-time knowledge to prevent simple type errors. In this section, let’s dig
deeper into the properties of generic types.

The syntax <T> has a special name, type parameter, and another name for a generic
type is a parameterized type. This should convey the sense that the container type
(e.g., List) is parameterized by another type (the payload type). When we write
a type like Map<String, Integer>, we are assigning concrete values to the type
parameters.

When we define a type that has parameters, we need to do so in a way that does
not make assumptions about the type parameters. So the List type is declared in
a generic way as List<E>, and the type parameter E is used all the way through to
stand as a placeholder for the actual type that programmers will use for the payload
when they use the List data structure.
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Type parameters always stand in for reference types. It is not
possible to use a primitive type as a value for a type parameter.

The type parameter can be used in the signatures and bodies of methods as though
it is a real type, for example:

interface List<E> extends Collection<E> {
  boolean add(E e);
  E get(int index);
  // other methods omitted
}

Note how the type parameter E can be used as a parameter for both return types
and method arguments. We don’t assume that the payload type has any specific
properties and only make the basic assumption of consistency—that the type we put
in is the same type that we will later get back out.

This enhancement has effectively introduced a new kind of type to Java’s type
system. By combining the container type with the value of the type parameter, we
are making new types.

Diamond Syntax
When we create an instance of a generic type, the righthand side of the assignment
statement repeats the value of the type parameter. This is usually unnecessary, as the
compiler can infer the values of the type parameters. In modern versions of Java, we
can leave out the repeated type values in what is called diamond syntax.

Let’s look at an example of how to use diamond syntax, by rewriting one of our
earlier examples:

// Create a List-of-CenteredCircle using diamond syntax
List<CenteredCircle> shapes = new ArrayList<>();

This is a small improvement in the verbosity of the assignment statement—we’ve
managed to save a few characters of typing. We’ll return to the topic of type
inference when we discuss lambda expressions later in this chapter.

Type Erasure
In “Default Methods” on page 158, we discussed the Java platform’s strong prefer‐
ence for backward compatibility. The addition of generics in Java 5 was another
example of where backward compatibility was an issue for a new language feature.

The central question was how to make a type system that allowed older, nongeneric
collection classes to be used alongside with newer, generic collections. The design
decision was to achieve this by the use of casts:
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List someThings = getSomeThings();
// Unsafe cast, but we know that the
// contents of someThings are really strings
List<String> myStrings = (List<String>)someThings;

This means that List and List<String> are compatible as types, at least at some
level. Java achieves this compatibility by type erasure. This means that generic type
parameters are only visible at compile time—they are stripped out by javac and are
not reflected in the bytecode.1

The nongeneric type List is usually called a raw type. It is still
perfectly legal Java to work with the raw form of types, even
for types that are now generic. This is almost always a sign of
poor-quality code, however.

The mechanism of type erasure gives rise to a difference in the type system seen
by javac and that seen by the JVM—we will discuss this fully in “Compile and
Runtime Typing” on page 174.

Type erasure also prohibits some other definitions, which would otherwise seem
legal. In this code, we want to count the orders as represented in two slightly
different data structures:

// Won't compile
interface OrderCounter {
  // Name maps to list of order numbers
  int totalOrders(Map<String, List<String>> orders);

  // Name maps to total orders made so far
  int totalOrders(Map<String, Integer> orders);
}

This seems like perfectly legal Java code, but it will not compile. The issue is
that although the two methods seem like normal overloads, after type erasure, the
signature of both methods becomes:

  int totalOrders(Map);

All that is left after type erasure is the raw type of the container—in this case, Map.
The runtime would be unable to distinguish between the methods by signature, and
so the language specification makes this syntax illegal.
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Bounded Type Parameters
Consider a simple generic box:

public class Box<T> {
    protected T value;

    public void box(T t) {
        value = t;
    }

    public T unbox() {
        T t = value;
        value = null;
        return t;
    }
}

This is a useful abstraction, but suppose we want to have a restricted form of box
that holds only numbers. Java allows us to achieve this by using a bound on the type
parameter. This is the ability to restrict the types that can be used as the value of a
type parameter, for example:

public class NumberBox<T extends Number> extends Box<T> {
    public int intValue() {
        return value.intValue();
    }
}

The type bound T extends Number ensures that T can only be substituted with a
type that is compatible with the type Number. As a result of this, the compiler knows
that value will definitely have a method intValue() available on it.

Notice that because the value field has protected access, it can
be accessed directly in the subclass.

If we attempt to instantiate NumberBox with an invalid value for the type parameter,
the result will be a compilation error:

NumberBox<Integer> ni = new NumberBox<>(); // This compiles fine

NumberBox<Object> no = new NumberBox<>(); // Won't compile

Beginning Java programmers should avoid using raw types altogether. Even experi‐
enced Java programmers can run into problems when using them. For example,
when using raw types when working with a type bound, then the type bound can be
evaded, but in doing so, the code is left vulnerable to a runtime exception:
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// Compiles
NumberBox n = new NumberBox();
// This is very dangerous
n.box(new Object());
// Runtime error
System.out.println(n.intValue());

The call to intValue() fails with a java.lang.ClassCastException—as javac has
inserted an unconditional cast of value to Number before calling the method.

In general, type bounds can be used to write better generic code and libraries. With
practice, some fairly complex constructions can be built, for example:

public class ComparingBox<T extends Comparable<T>> extends Box<T>
                            implements Comparable<ComparingBox<T>> {
    @Override
    public int compareTo(ComparingBox<T> o) {
        if (value == null)
            return o.value == null ? 0 : -1;
        return value.compareTo(o.value);
    }
}

The definition might seem daunting, but the ComparingBox is really just a Box that
contains a Comparable value. The type also extends the comparison operation to the
ComparingBox type itself, just by comparing the contents of the two boxes.

Introducing Covariance
The design of Java’s generics contains the solution to an old problem. In the earliest
versions of Java, before the collections libraries were even introduced, the language
had been forced to confront a deep-seated type system design issue.

Put simply, the question is this:

Should an array of strings be compatible with a variable of type array-of-
object?

In other words, should this code be legal?

String[] words = {"Hello World!"};
Object[] objects = words;

Without this, then even simple methods like Arrays::sort would have been very
difficult to write in a useful way, as this would not work as expected:

Arrays.sort(Object[] a);

The method declaration would work only for the type Object[] and not for any
other array type. As a result of these complications, the very first version of the Java
Language Standard determined that:

If a value of type C can be assigned to a variable of type P, then a value of
type C[] can be assigned to a variable of type P[].
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Java Magazine (May/June 2012): 44–47.

That is, arrays’ assignment syntax varies with the base type that they hold, or arrays
are covariant.

This design decision is rather unfortunate, as it leads to immediate negative
consequences:

String[] words = {"Hello", "World!"};
Object[] objects = words;

// Oh, dear, runtime error
objects[0] = new Integer(42);

The assignment to objects[0] attempts to store an Integer into a piece of storage
that is expecting to hold a String. This obviously will not work and will throw an
ArrayStoreException.

The usefulness of covariant arrays led to them being seen as
a necessary evil in the very early days of the platform, despite
the hole in the static type system that the feature exposes.

However, more recent research on modern open-source codebases indicates that
array covariance is extremely rarely used and is a language misfeature.2 You should
avoid it when writing new code.

When considering the behavior of generics in the Java platform, a very similar
question can be asked: “Is List<String> a subtype of List<Object>?” That is, can
we write this:

// Is this legal?
List<Object> objects = new ArrayList<String>();

At first glance, this seems entirely reasonable—String is a subclass of Object, so we
know that any String element in our collection is also a valid Object.

However, consider the following code (which is just the array covariance code
translated to use List):

// Is this legal?
List<Object> objects = new ArrayList<String>();

// What do we do about this?
objects.add(new Object());
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As the type of objects was declared to be List<Object>, then it should be legal
to add an Object instance to it. However, as the actual instance holds strings, then
trying to add an Object would not be compatible, and so this would fail at runtime.

This would have changed nothing from the case of arrays, and so the resolution is to
realize that although this is legal:

Object o = new String("X");

that does not mean that the corresponding statement for generic container types is
also true, and as a result:

// Won't compile
List<Object> objects = new ArrayList<String>();

Another way of saying this is that List<String> is not a subtype of List<Object>
or that generic types are invariant, not covariant. We will have more to say about
this when we discuss bounded wildcards.

Wildcards
A parameterized type, such as ArrayList<T>, is not instantiable; we cannot create
instances of them. This is because <T> is just a type parameter, merely a placeholder
for a genuine type. It is only when we provide a concrete value for the type parame‐
ter (e.g., ArrayList<String>) that the type becomes fully formed and we can create
objects of that type.

This poses a problem if the type that we want to work with is unknown at compile
time. Fortunately, the Java type system is able to accommodate this concept. It does
so by having an explicit concept of the unknown type, which is represented as <?>.
This is the simplest example of Java’s wildcard types.

We can write expressions that involve the unknown type:

ArrayList<?> mysteryList = unknownList();
Object o = mysteryList.get(0);

This is perfectly valid Java: ArrayList<?> is a complete type that a variable can
have, unlike ArrayList<T>. We don’t know anything about mysteryList’s payload
type, but that may not be a problem for our code.

For example, when we get an item out of mysteryList, it has a completely unknown
type. However, we can be sure that the object is assignable to Object—because all
valid values of a generic type parameter are reference types and all reference values
can be assigned to a variable of type Object.

On the other hand, when we’re working with the unknown type, there are some
limitations on its use in user code. For example, this code will not compile:

// Won't compile
mysteryList.add(new Object());
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The reason for this is simple: we don’t know what the payload type of mysteryList
is! For example, if mysteryList was really a instance of ArrayList<String>, then
we wouldn’t expect to be able to put an Object into it.

The only value that we know we can always insert into a container is null, as we
know that null is a possible value for any reference type. This isn’t that useful, and
for this reason, the Java language spec also rules out instantiating a container object
with the unknown type as payload, for example:

// Won't compile
List<?> unknowns = new ArrayList<?>();

The unknown type may seem to be of limited utility, but one very important use
for it is as a starting point for resolving the covariance question. We can use the
unknown type if we want to have a subtyping relationship for containers, like this:

// Perfectly legal
List<?> objects = new ArrayList<String>();

This means that List<String> is a subtype of List<?>—although when we use
an assignment like the preceding one, we have lost some type information. For
example, the return type of objects.get() is now effectively Object.

For any value of the type parameter T, List<?> is not a sub‐
type of the type List<T>.

The unknown type sometimes confuses developers—provoking questions like,
“Why wouldn’t you just use Object instead of the unknown type?” However, as
we’ve seen, the need to have subtyping relationships between generic types essen‐
tially requires us to have a notion of the unknown type.

Bounded wildcards
In fact, Java’s wildcard types extend beyond just the unknown type, with the concept
of bounded wildcards.

These are used to describe the inheritance hierarchy of a mostly unknown type—
effectively making statements like, for example, “I don’t know anything about this
type, except that it must implement List.”

This would be written as ? extends List in the type parameter. This provides a
useful lifeline to programmers. Instead of being restricted to the totally unknown
type, they know that at least the capabilities of the type bound are available.
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The extends keyword is always used, regardless of whether
the constraining type is a class or interface type.

This is an example of a concept called type variance, which is the general theory of
how inheritance between container types relates to the inheritance of their payload
types.

Type covariance
This means that the container types have the same relationship to each other as
the payload types do. This is expressed using the extends keyword.

Type contravariance
This means that the container types have the inverse relationship to each other
as the payload types. This is expressed using the super keyword.

These ideas tend to appear when discussing container types. For example, if Cat
extends Pet, then List<Cat> is a subtype of List<? extends Pet>, and so:

List<Cat> cats = new ArrayList<Cat>();
List<? extends Pet> pets = cats;

However, this differs from the array case, because type safety is maintained in the
following way:

pets.add(new Cat()); // won't compile
pets.add(new Pet()); // won't compile
cats.add(new Cat());

The compiler cannot prove that the storage pointed at by pets is capable of storing
a Cat and so it rejects the call to add(). However, as cats definitely points at a list of
Cat objects, then it must be acceptable to add a new one to the list.

As a result, it is very commonplace to see these types of generic constructions with
types that act as producers or consumers of payload types.

For example, when the List is acting as a producer of Pet objects, then the appro‐
priate keyword is extends.

Pet p = pets.get(0);

Note that for the producer case, the payload type appears as the return type of the
producer method.

For a container type that is acting purely as a consumer of instances of a type, we
would use the super keyword, and we would expect to see the payload type as the
type of a method argument.
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This is codified in the Producer Extends, Consumer Super
(PECS) principle coined by Joshua Bloch.

As we will discuss in Chapter 8, both covariance and contravariance appear
throughout the Java Collections. They largely exist to ensure that the generics just
“do the right thing” and behave in a manner that should not surprise the developer.

Generic Methods
A generic method is a method that is able to take instances of any reference type.

Let’s look at an example. In Java, the comma is used to allow multiple declarations
in a single line (usually referred to as a compound declaration). Other languages,
such as Javascript or C, have a comma operator that is much more general. The JS
comma operator (,) evaluates both expressions provided to it (from left to right)
and returns the value of the last expression. The aim is to create a compound
expression in which multiple expressions are evaluated, with the compound expres‐
sion’s value being the value of the rightmost of its member expressions. Note that
any side effects from evaluating the expressions to the comma are always triggered,
unlike in a short-circuiting logic operator.

Java’s comma is much more restrictive than this, by design. This is because the
comma in other languages can lead to some very hard-to-understand code and can
be a fantastic source of bugs. However, if we did want to emulate the behavior of the
comma operator from other language, we could do so by creating a generic method:

// Note that this class is not generic
public class Utils {
  public static <T> T comma(T a, T b) {
    return b;
  }
}

Calling the method Utils.comma() will cause the values of the expressions a and b
to be computed, and any side effects to be triggered, before the method call, which
is the behavior we want.

However, notice that even though a type parameter is used in the definition of the
method, the class it is defined in (Utils) is not generic. Instead, we see that a new
syntax is used to indicate that the method can be used freely, and that the return
type is the same as the argument.

Let’s look at another example, from the Java Collections library. In the ArrayList
class we can find a method to create a new array object from an arraylist instance:

@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
    if (a.length < size)
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        // Make a new array of a's runtime type, but my contents:
        return (T[]) Arrays.copyOf(elementData, size, a.getClass());
    System.arraycopy(elementData, 0, a, 0, size);
    if (a.length > size)
        a[size] = null;
    return a;
}

This method uses the low-level arraycopy() method to do the actual work.

If we look at the class definition for ArrayList we can see
that it is a generic class—but the type parameter is <E>, not
<T>, and the type parameter <E> does not appear at all in the
definition of toArray().

The toArray() method provides one half of a bridge API between the collections
and Java’s original arrays. The other half of the API—moving from arrays to collec‐
tions—involves a few additional subtleties, as we will discuss in Chapter 8.

Compile and Runtime Typing
Consider an example piece of code:

List<String> l = new ArrayList<>();
System.out.println(l);

We can ask the following question: what is the type of l? The answer to that
question depends on whether we consider l at compile time (i.e., the type seen by
javac) or at runtime (as seen by the JVM).

javac will see the type of l as List-of-String and will use that type information to
carefully check for syntax errors, such as an attempted add() of an illegal type.

Conversely, the JVM will see l as an object of type ArrayList, as we can see from
the println() statement. The runtime type of l is a raw type due to type erasure.

The compile-time and runtime types are therefore slightly different from each other.
The slightly strange thing is that in some ways, the runtime type is both more and
less specific than the compile-time type.

The runtime type is less specific than the compile-time type, because the type
information about the payload type is gone—it has been erased, and the resulting
runtime type is just a raw type.

The compile-time type is less specific than the runtime type, because we don’t
know exactly what concrete type l will be; all we know is that it will be of a type
compatible with List.
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The differences between compile-time and runtime typing sometimes confuse new
Java programmers, but the distinction quickly comes to be seen as a normal part of
working in the language.

Using and Designing Generic Types
When working with Java’s generics, it can be helpful to think in terms of two
different levels of understanding:

Practitioner
A practitioner needs to use existing generic libraries and to build some fairly
simple generic classes. At this level, the developer should also understand the
basics of type erasure, as several Java syntax features are confusing without at
least an awareness of the runtime handling of generics.

Designer
The designer of new libraries that use generics needs to understand much more
of the capabilities of generics. There are some nastier parts of the spec, includ‐
ing a full understanding of wildcards, and advanced topics such as “capture-of ”
error messages.

Java generics are one of the most complex parts of the language specification with
a lot of potential corner cases. Not every developer needs to fully understand this
part of the language, at least not on their first encounter with this part of Java’s type
system.

Enums and Annotations
We have already met records, but Java has additional specialized forms of classes
and interfaces used to fulfill specific roles in the type system. They are known as
enumerated types and annotation types, or normally just enums and annotations.

Enums
Enums are a variation of classes that have limited functionality and the specific
semantic meaning that the type has only a small number of possible permitted
values.

For example, suppose we want to define a type to represent the primary colors of
red, green, and blue, and we want these to be the only possible values of the type.
We can do this by using the enum keyword:

public enum PrimaryColor {
  // The ; is not required at the end of the list of instances
  RED, GREEN, BLUE
}

The only available instances of the type PrimaryColor can then be referenced as
static fields: PrimaryColor.RED, PrimaryColor.GREEN, and PrimaryColor.BLUE.
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In other languages, such as C++, the role of enum types is ful‐
filled by using constant integers, but Java’s approach provides
better type safety and more flexiblity.

As enums are specialized classes, enums can have member fields and methods. If
they do have a body (consisting of fields or methods), then the semicolon at the end
of the list of instances is required, and the list of enum constants must precede the
methods and fields.

For example, suppose that we want to have an enum that encompasses the suits of
standard playing cards. We can achieve this by using an enum that takes a value as a
parameter, like this:

public enum Suit {
    // ; at the end of list required for enums with parameters
    HEART('♥'),
    CLUB('♣'),
    DIAMOND('♦'),
    SPADE('♠');

    private char symbol;
    private char letter;

    public char getSymbol() {
        return symbol;
    }

    public char getLetter() {
        return letter;
    }

    private Suit(char symbol) {
        this.symbol = symbol;
        this.letter = switch (symbol) {
            case '♥' -> 'H';
            case '♣' -> 'C';
            case '♦' -> 'D';
            case '♠' -> 'S';
            default -> throw new RuntimeException("Illegal:" + symbol);
        };
    }
}

The parameters (only one of them in this example) are passed to the constructor
to create the individual enum instances. As the enum instances are created by the
Java runtime, and can’t be instantiated from outside, the constructor is declared as
private.

Enums have some special properties:
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• All (implicitly) extend java.lang.Enum•
• May not be generic•
• May implement interfaces•
• Cannot be extended•
• May have only abstract methods if all enum values provide an implementation•

body

• May not be directly instantiated by new•

Annotations
Annotations are a specialized kind of interface that, as the name suggests, annotate
some part of a Java program.

For example, consider the @Override annotation. You may have seen it on some
methods in some of the earlier examples and may have asked the following ques‐
tion: what does it do?

The short, and perhaps surprising, answer is that it does nothing at all.

The less short (and flippant) answer is that, like all annotations, it has no direct
effect but instead acts as additional information about the method that it annotates;
in this case, it denotes that a method overrides a superclass method.

This acts as a useful hint to compilers and integrated development environments
(IDEs)—if a developer has misspelled the name of a method intended to be an
override of a superclass method, then the presence of the @Override annotation on
the misspelled method (which does not override anything) alerts the compiler to the
fact that something is not right.

Annotations, as originally conceived, were not supposed to alter program seman‐
tics; instead, they were to provide optional metadata. In its strictest sense, this
means that they should not affect program execution and instead should only
provide information for compilers and other pre-execution phases.

In practice, modern Java applications make heavy use of annotations, and this now
includes many use cases that essentially render the annotated classes useless without
additional runtime support.

For example, classes bearing annotations such as @Inject, @Test, or @Autowired
cannot realistically be used outside of a suitable container. As a result, it is difficult
to argue that such annotations do not violate the “no semantic meaning” rule.

The platform defines a small number of basic annotations in java.lang. The origi‐
nal set were @Override, @Deprecated, and @SuppressWarnings, which were used
to indicate that a method was overriden, deprecated, or that it generated some
compiler warnings that should be suppressed.
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These were augmented by @SafeVarargs in Java 7 (which provides extended warn‐
ing suppression for varargs methods) and @FunctionalInterface in Java 8.

This last annotation indicates an interface can be used as a target for a lambda
expression—it is a useful marker annotation although not mandatory, as we will see.

Annotations have some special properties, compared to regular interfaces:

• All (implicitly) extend java.lang.annotation.Annotation•
• May not be generic•
• May not extend any other interface•
• May only define zero-arg methods•
• May not define methods that throw exceptions•
• Have restrictions on the return types of methods•
• Can have a default return value for methods•

In practice, annotations do not typically have a great deal of functionality and
instead are a fairly simple language concept.

Defining Custom Annotations
Defining custom annotation types for use in your own code is not that hard. The
@interface keyword allows the developer to define a new annotation type, in much
the same way that class or interface is used.

The key to writing custom annotations is the use of “meta-
annotations.” These are special annotations that appear on the
definition of new (custom) annotation types.

The meta-annotations are defined in java.lang.annotation and allow the devel‐
oper to specify policy for where the new annotation type is to be used and how it
will be treated by the compiler and runtime.

There are two primary meta-annotations that are both required when creating a
new annotation type—@Target and @Retention. These both take values that are
represented as enums.

The @Target meta-annotation indicates where the new custom annotation can
be legally placed within Java source code. The enum ElementType has the possi‐
ble values TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, LOCAL_VARIABLE, ANNOTA
TION_TYPE, PACKAGE, TYPE_PARAMETER, and TYPE_USE, and annotations can indicate
that they intend to be used at one or more of these locations.
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The other meta-annotation is @Retention, which indicates how javac and the Java
runtime should process the custom annotation type. It can have one of three values,
which are represented by the enum RetentionPolicy:

SOURCE

Annotations with this retention policy are discarded by javac during
compilation.

CLASS

This means that the annotation will be present in the class file but will not
necessarily be accessible at runtime by the JVM. This is rarely used but is
sometimes seen in tools that do offline analysis of JVM bytecode.

RUNTIME

This indicates that the annotation will be available for user code to access at
runtime (by using reflection).

Let’s take a look at an example, a simple annotation called @Nickname, which allows
the developer to define a nickname for a method, which can then be used to find the
method reflectively at runtime:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Nickname {
    String[] value() default {};
}

This is all that’s required to define the annotation—a syntax element where the
annotation can appear, a retention policy, and the name of the element. As we need
to be able to supply the nickname we’re assigning to the method, we also need to
define a method on the annotation. Despite this, defining new custom annotations
is a remarkably compact undertaking.

In addition to the two primary meta-annotations, there are also the @Inherited
and @Documented meta-annotations. These are much less frequently encountered in
practice, and details on them can be found in the platform documentation.

Type Annotations
With the release of Java 8, two new values for ElementType were added: TYPE_PARAM
ETER and TYPE_USE. These new values allow the use of annotations in places where
they were previously not legal, such as at any site where a type is used. This enables
the developer to write code such as:

@NotNull String safeString = getMyString();

The extra type information conveyed by the @NotNull can then be used by a
special type checker to detect problems (a possible NullPointerException, in this
example) and to perform additional static analysis. The basic Java 8 distribution
ships with some basic pluggable type checkers, but it also provides a framework for
allowing developers and library authors to create their own.
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In this section, we’ve met Java’s enum and annotation types. Let’s move on to
consider the next important part of Java’s type system: lambda expressions.

Lambda Expressions
One of the most eagerly anticipated features of Java 8 was the introduction of
lambda expressions (frequently referred to as just lambdas).

This major upgrade to the Java platform was driven by five goals, in roughly
descending order of priority:

• More expressive programming•
• Better libraries•
• Concise code•
• Improved programming safety•
• Potentially increased data parallelism•

Lambdas have three key aspects that help define the essential nature of the feature:

• They allow small bits of code to be written inline as literals in a program.•
• They relax the strict grammar of Java code by using type inference.•
• They facilitate a more functional style of programming Java.•

As we saw in Chapter 2, the syntax for a lambda expression is to take a list of
parameters (the types of which are typically inferred), and to attach that to a
method body, like this:

(p, q) -> { /* method body */ }

This can provide a very compact way to represent what is effectively a single
method. It is also a major departure from earlier versions of Java—until now, we
always required a class declaration and then a complete method declaration, all of
which add to the verboseness of the code.

In fact, before the arrival of lambdas, the only way to approximate this coding style
was to use anonymous classes, which we will discuss later in this chapter. However,
since Java 8, lambdas have proved to be very popular with Java programmers and
now have mostly taken over the role of anonymous classes.

Despite the similarities between lambda expressions and
anonymous classes, lambdas are not simply syntactic sugar
over anonymous classes. In fact, lambdas are implemented
using method handles (which we will meet in Chapter 11) and
a special JVM bytecode called invokedynamic.
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Lambda expressions represent the creation of an object of a specific type. The type
of the instance that is created is known as the target type of the lambda.

Only certain types are eligible to be the target of a lambda.

Target types are also called functional interfaces and they must:

• Be interfaces•
• Have only one nondefault method (but may have other methods that are•

default)

Some developers also like to use the single abstract method (or SAM) type to refer to
the interface type that the lambda is converted into. This draws attention to the fact
that to be usable by the lambda expression mechanism, an interface must have only
a single nondefault method.

A lambda expression has almost all of the component parts of
a method, with the obvious exception that a lambda doesn’t
have a name. In fact, many developers like to think of lambdas
as “anonymous methods.”

As a result, this means that the single line of code:

Runnable r  = () -> System.out.println("Hello");

does not result in the execution of the println() but instead creates an object,
which is assigned to a variable r, of type Runnable. This object, r, will execute the
println() statement, but only when r.run() is called, and not until then.

Lambda Expression Conversion
When javac encounters a lambda expression, it interprets it as the body of a
method with a specific signature—but which method?

To resolve this question, javac looks at the surrounding code. To be legal Java code,
the lambda expression must satisfy the following properties:

• The lambda must appear where an instance of an interface type is expected.•
• The expected interface type should have exactly one mandatory method.•
• The expected interface method should have a signature that exactly matches•

that of the lambda expression.

If this is the case, then an instance is created of a type that implements the expected
interface and uses the lambda body as the implementation for the mandatory
method.
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This slightly complex conversion approach comes from the desire to keep Java’s type
system as purely nominative (based on names). The lambda expression is said to be
converted to an instance of the correct interface type.

From this discussion, we can see that although Java 8 has added lambda expressions,
they have been specifically designed to fit into Java’s existing type system—which
has a very strong emphasis on nominal types (rather than the other possible sorts of
types that exist in some other programming languages).

Let’s consider an example of lambda conversion—the list() method of the
java.io.File class. This method lists the files in a directory. Before it returns
the list, though, it passes the name of each file to a FilenameFilter object that the
programmer must supply. This FilenameFilter object accepts or rejects each file
and is a SAM type defined in the java.io package:

@FunctionalInterface
public interface FilenameFilter {
    boolean accept(File dir, String name);
}

The type FilenameFilter carries the @FunctionalInterface to indicate that it is a
suitable type to be used as the target type for a lambda. However, this annotation is
not required, and any type that meets the requirements (by being an interface and a
SAM type) can be used as a target type.

This is because the JDK and the existing corpus of Java code already had a huge
number of SAM types available before Java 8 was released. To require potential
target types to carry the annotation would have prevented lambdas from being
retrofitted to existing code for no real benefit.

In code that you write, you should always try to indicate
when your types are usable as target types, which you can
do by adding the @FunctionalInterface to them. This aids
readability and can help some automated tools as well.

Here’s how we can define a FilenameFilter class to list only those files whose
names end with .java, using a lambda:

File dir = new File("/src");      // The directory to list

String[] filelist = dir.list((d, fName) -> fName.endsWith(".java"));

For each file in the list, the block of code in the lambda expression is evaluated. If
the method returns true (which happens if the filename ends in .java), then the file
is included in the output—which ends up in the array filelist.

This pattern, where a block of code is used to test if an element of a container
matches a condition, and to return only the elements that pass the condition, is
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called a filter idiom. It is one of the standard techniques of functional programming,
which we will discuss in more depth presently.

Method References
Recall that we can think of lambda expressions as objects representing methods that
don’t have names. Now, consider this lambda expression:

// In real code this would probably be
// shorter because of type inference
(MyObject myObj) -> myObj.toString()

This will be autoconverted to an implementation of a @FunctionalInterface type
that has a single nondefault method that takes a single MyObject and returns a
String—specifically, the string obtained by calling toString() on the instance of
MyObject. However, this seems like excessive boilerplate, and so Java 8 provides a
syntax for making this easier to read and write:

MyObject::toString

This shorthand, known as a method reference, uses an existing method as a lambda
expression. The method reference syntax is completely equivalent to the previous
form expressed as a lambda. It can be thought of as using an existing method
but ignoring the name of the method, so it can be used as a lambda and then
autoconverted in the usual way. Java defines four types of method reference, which
are equivalent to four slightly different lambda expression forms (see Table 4-1).

Table 4-1. Method references

Name Method reference Equivalent lambda

Unbound Trade::getPrice trade -> trade.getPrice()

Bound System.out::println s -> System.out.println(s)

Static System::getProperty key -> System.getProperty(key)

Constructor Trade::new price -> new Trade(price)

The form we originally introduced can be seen to be an unbound method reference.
When we use an unbound method reference, it is equivalent to a lambda that is
expecting an instance of the type that contains the method reference—in Table 4-1
that is a Trade object.

It is called an unbound method reference because the receiver object needs to be
supplied (as the first argument to the lambda) when the method reference is used.
That is, we are going to call getPrice() on some Trade object, but the supplier of
the method reference has not defined which one. That is left up to the user of the
reference.
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By contrast, a bound method reference always includes the receiver as part of the
instantiation of the method reference. In Table 4-1, the receiver is System.out
so, when the reference is used, the println() method will always be called on
System.out, and all the parameters of the lambda will be used as method parame‐
ters to println().

We will discuss use cases for method references versus lambda expressions in more
detail in the next chapter.

Functional Programming
Java is fundamentally an object-oriented language. However, with the arrival of
lambda expressions, it becomes much easier to write code that is closer to the
functional approach.

There’s no single definition of exactly what constitutes a func‐
tional language—but there is at least consensus that it should
at a minimum contain the ability to represent a function as a
value that can be put into a variable.

Java has always (since version 1.1) been able to represent functions via inner classes
(see next section), but the syntax was complex and lacking in clarity. Lambda
expressions greatly simplify that syntax, and so it is only natural that more develop‐
ers will be seeking to use aspects of functional programming in their Java code.

The first taste of functional programming that Java developers are likely to
encounter are three basic idioms that are remarkably useful:

map()

The map idiom is used with lists and list-like containers. The idea is that a
function is passed in that is applied to each element in the collection, and a new
collection is created that consists of the results of applying the function to each
element in turn. This means that a map idiom converts a collection of one type
to a collection of potentially a different type.

filter()

We have already met an example of the filter idiom, when we discussed how to
replace an anonymous implementation of FilenameFilter with a lambda. The
filter idiom is used for producing a new subset of a collection, based on some
selection criteria. Note that in functional programming, it is normal to produce
a new collection rather than modifying an existing one in place.

reduce()

The reduce idiom has several different guises. It is an aggregation operation,
which can be called fold, accumulate, or aggregate as well as reduce. The basic
idea is to take an initial value and an aggregation (or reduction) function, and
apply the reduction function to each element in turn, building up a final result
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for the whole collection by making a series of intermediate results—similar to a
“running total”—as the reduce operation traverses the collection.

Java has full support for these key functional idioms (and several others). The
implementation is explained in some depth in Chapter 8, where we discuss Java’s
data structures and collections, and in particular the stream abstraction, which
makes all of this possible.

Let’s conclude this introduction with some words of caution. It’s worth noting that
Java is best regarded as having support for “slightly functional programming.” It is
not an especially functional language, nor does it try to be. Some particular aspects
of Java that militate against any claims to being a functional language include:

• Java has no structural types, which means no “true” function types. Every•
lambda is automatically converted to the appropriate target type.

• Type erasure causes problems for functional programming—type safety can be•
lost for higher-order functions.

• Java is inherently mutable (as we’ll discuss in Chapter 6)—mutability is often•
regarded as highly undesirable for functional languages.

• The Java collections are imperative, not functional. Collections must be con‐•
verted to streams to use functional style.

Despite this, easy access to the basics of functional programing—and especially
idioms such as map, filter, and reduce—is a huge step forward for the Java commu‐
nity. These idioms are so useful that a large majority of Java developers will never
need or miss the more advanced capabilities provided by languages with a more
thoroughbred functional pedigree.

In truth, many of these techniques were possible using nested types (see next sec‐
tion for details), via patterns like callbacks and handlers, but the syntax was always
quite cumbersome, especially given that you had to explicitly define a completely
new type even when you needed to express only a single line of code in the callback.

Lexical Scoping and Local Variables
A local variable is defined within a block of code that defines its scope and, outside
of that scope, a local variable cannot be accessed and ceases to exist. Only code
within the curly braces that define the boundaries of a block can use local variables
defined in that block. This type of scoping is known as lexical scoping, and it just
defines a section of source code within which a variable can be used.

It is common for programmers to think of such a scope as temporal instead—that
is, to think of a local variable as existing from the time the JVM begins executing
the block until the time control exits the block. This is usually a reasonable way
to think about local variables and their scope. However, lambda expressions (and
anonymous and local classes, which we will meet later) have the ability to bend or
break this intuition.

Lambda Expressions | 185

Typ
e System



This can cause effects that some developers initially find surprising. Because lamb‐
das can use local variables, they can contain copies of values from lexical scopes that
no longer exist. This can been seen in the following code:

public interface IntHolder {
    public int getValue();
}

public class Weird {
    public static void main(String[] args) {
        IntHolder[] holders = new IntHolder[10];
        for (int i = 0; i < 10; i++) {
            final int fi = i;

            holders[i] = () -> {
                return fi;
            };
        }
  // The lambda is now out of scope, but we have 10 valid instances
  // of the class the lambda has been converted to in our array.
  // The local variable fi is not in our scope here, but is still
  // in scope for the getValue() method of each of those 10 objects.
  // So call getValue() for each object and print it out.
  // This prints the digits 0 to 9.
        for (int i = 0; i < 10; i++) {
            System.out.println(holders[i].getValue());
        }
    }
}

Each instance of a lambda has an automatically created private copy of each of the
final local variables it uses, so, in effect, it has its own private copy of the scope that
existed when it was created. This is sometimes referred to as a captured variable.

Lambdas that capture variables like this are referred to as closures, and the variables
are said to have been closed over.

Other programming languages may have a slightly different
definition of a closure. In fact, some theorists would dispute
that Java’s mechanism counts as a closure because, technically,
it is the contents of the variable (a value) and not the variable
itself that is captured.

In practice, the preceding closure example is more verbose than it needs to be in
two separate ways:

• The lambda has an explicit scope {} and return statement.•

• The variable fi is explicitly declared final.•

The compiler javac helps with both of these.
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Lambdas that return the value of only a single expression need not include a scope
or return; instead, the body of the lambda is just the expression without the need
for curly braces. In our example, we have explicitly included the braces and return
statement to spell out that the lambda is defining its own scope.

In early versions of Java, there were two hard requirements when closing over a
variable:

• The captures must not be modified after they have been captured (e.g., after the•
lambda)

• The captured variables must be declared final•

However, in recent Java versions, javac can analyze the code and detect whether
the programmer attempts to modify the captured variable after the scope of the
lambda. If not, then the final qualifier on the captured variable can be omitted
(such a variable is said to be effectively final). If the final qualifier is omitted, then
it is a compile-time error to attempt to modify a captured variable after the lambda’s
scope.

The reason for this is that Java implements closures by copying the bit pattern of the
contents of the variable into the scope created by the closure. Further changes to the
contents of the closed-over variable would not be reflected in the copy contained in
closure scope, so the design decision was made to make such changes illegal and a
compile-time error.

These assists from javac mean that we can rewrite the inner loop of the preceding
example to the very compact form:

for (int i = 0; i < 10; i++) {
    int fi = i;
    holders[i] = () -> fi;
}

Closures are very useful in some styles of programming, and different program‐
ming languages define and implement closures in different ways. Java implements
closures as lambda expressions, but local classes and anonymous classes can also
capture state—and in fact this is how Java implemented closures before lambdas
were available.

Nested Types
The classes, interfaces, and enum types we have seen so far in this book have
all been defined as top-level types. This means that they are direct members of
packages, defined independently of other types. However, type definitions can also
be nested within other type definitions. These nested types, commonly known as
“inner classes,” are a powerful feature of the Java language.

In general, nested types are used for two separate purposes, both related to encapsu‐
lation. First, a type may be nested because it needs especially intimate access to the
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internals of another type. By being a nested type, it has access in the same way that
member variables and methods do. This means that nested types have privileged
access and can be thought of as “slightly bending the rules of encapsulation.”

Another way of thinking about this use case of nested types is that they are types
that are somehow tied together with another type. This means that they don’t really
have a completely independent existence as an entity and only coexist.

Alternatively, a type may be only required for a very specific reason and in a very
small section of code. This means that it should be tightly localized, as it is really
part of the implementation detail.

In older versions of Java, the only way to do this was with a nested type, such as
an anonymous implementation of an interface. In practice, with the advent of Java
8, this use case has substantially been taken over by lambda expressions. The use
of anonymous types as closely localized types has dramatically declined as a result,
although it still persists for some cases.

Types can be nested within another type in four different ways:

Static member types
A static member type is any type defined as a static member of another type.
Nested interfaces, enums, and annotations are always static (even if you don’t
use the keyword).

Nonstatic member classes
A “nonstatic member type” is simply a member type that is not declared
static. Only classes can be nonstatic member types.

Local classes
A local class is a class that is defined and only visible within a block of Java
code. Interfaces, enums, and annotations may not be defined locally.

Anonymous classes
An anonymous class is a kind of local class that has no meaningful name that
is useful to humans; it is merely an arbitrary name assigned by the compiler,
which programmers should not use directly. Interfaces, enums, and annota‐
tions cannot be defined anonymously.

The term “nested types,” while correct and precise, is not widely used by developers.
Instead, most Java programmers use the much vaguer term “inner class.” Depending
on the situation, this can refer to a nonstatic member class, local class, or anony‐
mous class, but not a static member type, with no real way to distinguish between
them.

Fortunately, although the terminology for describing nested types is not always
clear, the syntax for working with them is, and it is usually apparent from context
which kind of nested type is being discussed.
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Until Java 11, nested types were implemented using a compiler
trick and were mostly syntactic sugar. Experienced Java pro‐
grammers should note that this detail changed in Java 11, and
it is no longer done in quite the same way as it used to be.

Let’s move on to describe each of the four kinds of nested types in greater detail.
Each section describes the features of the nested type, the restrictions on its use, and
any special Java syntax used with the type.

Static Member Types
A static member type is much like a regular top-level type. For convenience, how‐
ever, it is nested within the namespace of another type. Static member types have
the following basic properties:

• A static member type is like the other static members of a class: static fields and•
static methods.

• A static member type is not associated with any instance of the containing class•
(i.e., there is no this object).

• A static member type can access (only) the static members of the class that•
contains it.

• A static member type has access to all the static members (including any•
other static member types) of its containing type.

• Nested interfaces, enums, and annotations are implicitly static, whether or not•
the static keyword appears.

• Any type nested within an interface or annotation is also implicitly static.•
• Static member types may be defined within top-level types or nested to any•

depth within other static member types.
• A static member type may not be defined within any other kind of nested type.•

Let’s look at a quick example of the syntax for static member types. Example 4-1
shows a helper interface defined as a static member of a containing interface, in this
case Java’s Map.

Example 4-1. Defining and using a static member interface

public interface Map<K, V> {
    // ...

    Set<Map.Entry<K, V>> entrySet();

    // All nested interfaces are automatically static
    interface Entry<K, V> {
        K getKey();
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        V getValue();
        V setValue(V value);

        // other members elided
    }

    // other members elided
}

When used by an external class, Entry will be referred to by its hierarchical name
Map.Entry.

Features of static member types
A static member type has access to all static members of its containing type, includ‐
ing private members. The reverse is true as well: the methods of the containing
type have access to all members of a static member type, including the private
members. A static member type even has access to all the members of any other
static member types, including the private members of those types. A static mem‐
ber type can use any other static member without qualifying its name with the name
of the containing type.

Top-level types can be declared as either public or package-private (if they’re
declared without the public keyword). But declaring top-level types as private
and protected wouldn’t make a great deal of sense—protected would just mean
the same as package-private, and a private top-level class would be unable to be
accessed by any other type.

Static member types, on the other hand, are members and so can use any access
control modifiers that other members of the containing type can. These modifiers
have the same meanings for static member types as they do for other members of a
type.

Under most circumstances, the Outer.Inner syntax for class names provides a
helpful reminder that the inner class is interconnected with its containing type.
However, the Java language does permit you to use the import directive to directly
import a static member type:

import java.util.Map.Entry;

You can then reference the nested type without including the name of its enclosing
type (e.g., just as Entry).

You can also use the import static directive to import a
static member type. See “Packages and the Java Namespace”
on page 98 in Chapter 2 for details on import and import
static.
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However, importing a nested type obscures the fact that that type is closely associ‐
ated with its containing type—which is usually important information—and as a
result it is not commonly done.

Nonstatic Member Classes
A nonstatic member class is a class that is declared as a member of a containing class
or enumerated type without the static keyword:

• If a static member type is analogous to a class field or class method, a nonstatic•
member class is analogous to an instance field or instance method.

• Only classes can be nonstatic member types.•
• An instance of a nonstatic member class is always associated with an instance•

of the enclosing type.
• The code of a nonstatic member class has access to all the fields and methods•

(both static and non-static) of its enclosing type.
• Several Java syntax features exist specifically to work with the enclosing•

instance of a nonstatic member class.

Example 4-2 shows how a member class can be defined and used. This example
shows a LinkedStack example: it defines a nested interface that describes the nodes
of the linked list underlying the stack and a nested class to allow enumeration of
the elements on the stack. The member class defines an implementation of the
java.util.Iterator interface.

Example 4-2. An iterator implemented as a member class

import java.util.Iterator;

public class LinkedStack {

    // Our static member interface
    public interface Linkable {
        public Linkable getNext();
        public void setNext(Linkable node);
    }

    // The head of the list
    private Linkable head;

    // Method bodies omitted here
    public void push(Linkable node) { ... }
    public Linkable pop() { ... }

    // This method returns an Iterator object for this LinkedStack
    public Iterator<Linkable> iterator() { return new LinkedIterator(); }
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    // Here is the implementation of the Iterator interface,
    // defined as a nonstatic member class.
    protected class LinkedIterator implements Iterator<Linkable> {
        Linkable current;

        // The constructor uses a private field of the containing class
        public LinkedIterator() { current = head; }

        // The following three methods are defined
        // by the Iterator interface
        public boolean hasNext() {  return current != null; }

        public Linkable next() {
            if (current == null)
              throw new java.util.NoSuchElementException();
            Linkable value = current;
            current = current.getNext();
            return value;
        }

        public void remove() { throw new UnsupportedOperationException(); }
    }
}

Notice how the LinkedIterator class is nested within the LinkedStack class.
LinkedIterator is a helper class used only within LinkedStack, so having it defined
close to where it is used by the containing class makes for a clean design.

Features of member classes
Like instance fields and instance methods, every instance of a nonstatic member
class is associated with an instance of the class in which it is defined. This means
that the code of a member class has access to all the instance fields and instance
methods (as well as the static members) of the containing instance, including any
that are declared private.

This crucial feature was already illustrated in Example 4-2. Here is the Linked
Stack.LinkedIterator() constructor again:

public LinkedIterator() { current = head; }

This single line of code sets the current field of the inner class to the value of the
head field of the containing class. The code works as shown, even though head is
declared as a private field in the containing class.

A nonstatic member class, like any member of a class, can be assigned one of the
standard access control modifiers. In Example 4-2, the LinkedIterator class is
declared protected, so it is inaccessible to code (in a different package) that uses
the LinkedStack class but is accessible to any class that subclasses LinkedStack.
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Member classes have two important restrictions:

• A nonstatic member class cannot have the same name as any containing class•
or package. This is an important rule, one that is not shared by fields and
methods.

• Nonstatic member classes cannot contain any static fields, methods, or types,•
except for constant fields declared both static and final.

Syntax for member classes
The most important feature of a member class is that it can access the instance fields
and methods in its containing object.

If we want to use explicit references, and make use of this, then we have to use a
special syntax for explicitly referring to the containing instance of the this object.
For example, if we want to be explicit in our constructor, we can use the following
syntax:

public LinkedIterator() { this.current = LinkedStack.this.head; }

The general syntax is classname.this, where classname is the name of a contain‐
ing class. Note that member classes can themselves contain member classes, nested
to any depth.

However, no member class can have the same name as any containing class, so
the use of the enclosing class name prepended to this is a perfectly general way
to refer to any containing instance. Another way of saying this is that the syntax
construction EnclosingClass.this is an unambiguous way of referring to the
containing instance as an uplevel reference. 

Local Classes
A local class is declared locally within a block of Java code rather than as a member
of a class. Only classes may be defined locally: interfaces, enumerated types, and
annotation types must be top-level or static member types. Typically, a local class
is defined within a method, but it can also be defined within a static initializer or
instance initializer of a class.

Just as all blocks of Java code appear within class definitions, all local classes are
nested within containing blocks. For this reason, although local classes share many
of the features of member classes, it is usually more appropriate to think of them as
an entirely separate kind of nested type.

See Chapter 5 for details as to when it’s appropriate to choose
a local class versus a lambda expression.
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The defining characteristic of a local class is that it is local to a block of code. Like
a local variable, a local class is valid only within the scope defined by its enclosing
block. Example 4-3 illustrates how we can modify the iterator() method of the
LinkedStack class so it defines LinkedIterator as a local class instead of a member
class.

By doing this, we move the definition of the class even closer to where it is used
and hopefully improve the clarity of the code even further. For brevity, Example 4-3
shows only the iterator() method, not the entire LinkedStack class that contains
it.

Example 4-3. Defining and using a local class

// This method returns an Iterator object for this LinkedStack
public Iterator<Linkable> iterator() {
    // Here's the definition of LinkedIterator as a local class
    class LinkedIterator implements Iterator<Linkable> {
        Linkable current;

        // The constructor uses a private field of the containing class
        public LinkedIterator() { current = head; }

        // The following three methods are defined
        // by the Iterator interface
        public boolean hasNext() {  return current != null; }

        public Linkable next() {
            if (current == null)
              throw new java.util.NoSuchElementException();
            Linkable value = current;
            current = current.getNext();
            return value;
        }

        public void remove() { throw new UnsupportedOperationException(); }
    }

    // Create and return an instance of the class we just defined
    return new LinkedIterator();
}

Features of local classes
Local classes have the following interesting features:

• Like member classes, local classes are associated with a containing instance and•
can access any members, including private members, of the containing class.
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• In addition to accessing fields defined by the containing class, local classes can•
access any local variables, method parameters, or exception parameters that are
in the scope of the local method definition and are declared final.

Local classes are subject to the following restrictions:

• The name of a local class is defined only within the block that defines it; it can•
never be used outside that block. (Note, however, that instances of a local class
created within the scope of the class can continue to exist outside of that scope.
This situation is described in more detail later in this section.)

• Local classes cannot be declared public, protected, private, or static.•
• Like member classes, and for the same reasons, local classes cannot contain•
static fields, methods, or classes. The only exception is for constants that are
declared both static and final.

• Interfaces, enumerated types, and annotation types cannot be defined locally.•
• A local class, like a member class, cannot have the same name as any of its•

enclosing classes.
• As noted earlier, a local class can close over the local variables, method param‐•

eters, and even exception parameters that are in its scope but only if those
variables or parameters are effectively final.

Scope of a local class
In discussing nonstatic member classes, we saw that a member class can access any
members inherited from superclasses and any members defined by their containing
classes.

The same is true for local classes, but local classes can also behave like lambdas and
access effectively final local variables and parameters. Example 4-4 illustrates the
different kinds of fields and variables that may be accessible to a local class (or a
lambda, for that matter).

Example 4-4. Fields and variables available to a local class

class A { protected char a = 'a'; }
class B { protected char b = 'b'; }

public class C extends A {
  private char c = 'c';         // Private fields visible to local class
  public static char d = 'd';
  public void createLocalObject(final char e)
  {
    final char f = 'f';
    int i = 0;                  // i not final; not usable by local class
    class Local extends B
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    {
      char g = 'g';
      public void printVars()
      {
        // All of these fields and variables are accessible to this class
        System.out.println(g);  // (this.g) g is a field of this class
        System.out.println(f);  // f is a final local variable
        System.out.println(e);  // e is a final local parameter
        System.out.println(d);  // (C.this.d) d field of containing class
        System.out.println(c);  // (C.this.c) c field of containing class
        System.out.println(b);  // b is inherited by this class
        System.out.println(a);  // a is inherited by the containing class
      }
    }
    Local l = new Local();      // Create an instance of the local class
    l.printVars();              // and call its printVars() method.
  }
}

Local classes have quite a complex scoping structure, therefore. To see why, notice
that instances of a local class can have a lifetime that extends past the time that the
JVM exits the block where the local class is defined.

In other words, if you create an instance of a local class,
that instance does not automatically go away when the JVM
finishes executing the block that defines the class. So, even
though the definition of the class was local, instances of that
class can escape the place they were defined.

Local classes, therefore, behave like lambdas in many regards, although the use case
of local classes is more general than that of lambdas. However, in practice, the extra
generality is rarely required, and lambdas are preferred wherever possible.

Anonymous Classes
An anonymous class is a local class without a name. It is defined and instantiated
in a single expression using the new operator. While a local class definition is a
statement in a block of Java code, an anonymous class definition is an expression,
which means that it can be included as part of a larger expression, such as a method
call.

For the sake of completeness, we cover anonymous classes
here, but for most use cases, lambda expressions (see “Lambda
Expressions” on page 180) have replaced anonymous classes.
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Consider Example 4-5, which shows the LinkedIterator class implemented as an
anonymous class within the iterator() method of the LinkedStack class. Compare
it with Example 4-4, which shows the same class implemented as a local class.

Example 4-5. An enumeration implemented with an anonymous class

public Iterator<Linkable> iterator() {
    // The anonymous class is defined as part of the return statement
    return new Iterator<Linkable>() {
        Linkable current;
        // Replace constructor with an instance initializer
        { current = head; }

        // The following three methods are defined
        // by the Iterator interface
        public boolean hasNext() {  return current != null; }
        public Linkable next() {
            if (current == null)
              throw new java.util.NoSuchElementException();
            Linkable value = current;
            current = current.getNext();
            return value;
        }
        public void remove() { throw new UnsupportedOperationException(); }
    };  // Note the required semicolon. It terminates the return statement
}

As you can see, the syntax for defining an anonymous class and creating an instance
of that class uses the new keyword, followed by the name of a type and a class body
definition in curly braces. If the name following the new keyword is the name of a
class, the anonymous class is a subclass of the named class. If the name following
new specifies an interface, as in the two previous examples, the anonymous class
implements that interface and extends Object.

The syntax for anonymous classes deliberately does not
include any way to specify an extends clause, an implements
clause, or a name for the class.

Because an anonymous class has no name, it is not possible to define a constructor
for it within the class body. This is one of the basic restrictions on anonymous
classes. Any arguments you specify between the parentheses following the super‐
class name in an anonymous class definition are implicitly passed to the superclass
constructor. Anonymous classes are commonly used to subclass simple classes that
do not take any constructor arguments, so the parentheses in the anonymous class
definition syntax are often empty.
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Because an anonymous class is just a type of local class, anonymous classes and
local classes share the same restrictions. An anonymous class cannot define any
static fields, methods, or classes, except for static final constants. Interfaces,
enumerated types, and annotation types cannot be defined anonymously. Also, like
local classes, anonymous classes cannot be public, private, protected, or static.

The syntax for defining an anonymous class combines definition with instantiation,
similar to a lambda expression. Using an anonymous class instead of a local class is
not appropriate if you need to create more than a single instance of the class each
time the containing block is executed.

Describing the Java Type System
At this point, we have met all of the major aspects of the Java type system, and so it
is possible for us to describe and characterize it.

The most important and obvious characteristics of Java’s type system are that it is:

• Static•
• Not single-rooted•
• Nominal•

Static typing, which is the most widely recognized of the three aspects, means that
in Java, every piece of data storage (such as variables, fields, etc.) has a type, and that
type is declared when the storage is first introduced. It is a compile-time error to try
to put an incompatible value into storage that does not support it.

That Java’s type system is not single-rooted is also immediately apparent. Java has
both primitive types and reference types. Every object in Java belongs to a class, and
every class, except Object, has a single parent. This means that the set of classes in
any Java program forms a tree structure with Object at the root.

However, there is no inheritance relationship between any of the primitive types
and Object. As a result, the overall graph of Java classes consists of a large tree of
reference types and eight disjoint, isolated points that correspond to the primitives.
This leads to the need to use wrapper types, such as Integer, to represent primitive
values as objects where necessary (such as in the Java Collections).

The final aspect, though, requires a bit more of a detailed discussion.

Nominal Typing
In Java, each type has a name. In the normal course of Java programming, this
will be a simple string of letters (and sometimes numbers) that has some semantic
meaning that reflects the purpose of the type. This approach is known as nominal
typing.

Not all languages have purely nominal typing; for example, some languages can
express the idea that “this type has a method with a certain signature” without
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needing to explicitly refer to the name of the type, sometimes known as a structural
type.

For example, in Python, you can call len() on any object that defines a __len__()
method. Of course, Python is a dynamically typed language and so will throw a
runtime exception if the call to len() cannot be made. However, it is also possible to
express a similar idea in statically typed languages, such as Scala.

Java, on the other hand, has no way to express this idea without using an interface,
which, of course, has a name. Java also maintains type compatibility based strictly
on inheritance and implementation. Let’s look at an example:

@FunctionalInterface
public interface MyRunnable {
    void run();
}

The interface MyRunnable has a single method that exactly matches that of
Runnable. However, the two interfaces have no inheritance or other relationship
to each other and so code like this:

MyRunnable myR = () -> System.out.println("Hello");
Runnable r = (Runnable)myR;
r.run();

will compile cleanly but will fail with a ClassCastException at runtime. The fact
that a run() method with an identical signature exists on both interfaces is not
considered, and in fact the program never even makes it to the point where run()
would be called: it fails on the previous line where the cast is attempted.

Another important point is that the entire construction of Java’s lambda expressions,
and especially the use of target typing to a functional interface, is to ensure that
lambdas fit into the nominal typing approach. For example, consider an interface
such as:

@FunctionalInterface
public interface MyIntProvider {
    int run() throws InterruptedException;
}

then a lambda expression that yields a constant, e.g., () -> 42, can be used in a
number of different ways:

MyIntProvider prov       = () -> 42;
Supplier<Integer> sup    = () -> 42;
Callable<Integer> callMe = () -> 42;

From this, we can see that the expression () -> 42 is, by itself, incomplete. Java
lambdas rely upon type inference, and so we need to see the expression in context
with its target type for it to be meaningful. When combined with a target type, the
lambda’s class type is “an unknown-at-compile-time implementation of the target
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interface,” and the programmer must use the interface type as the type of the
lambda.

Beyond lambdas, there are some corner cases of nominal typing in Java. One
example is anonymous classes, but even here the types still have names. However,
the type names of anonymous types are automatically generated by the compiler
and are specially chosen so as to be usable by the JVM but not accepted by the Java
source code compiler.

There is one other corner case that we should consider, and it relates to the
enhanced type inference introduced in recent Java versions.

Nondenotable Types and var
From Java 11 onwards (actually introduced in the Java 10 non-LTS release), Java
developers can make use of a new language feature Local Variable Type Inference
(LVTI), otherwise known as var. This is an enhancement to Java’s type inference
capabilities that may prove to be more significant than it first appears. In the
simplest case, it allows code such as:

var ls = new ArrayList<String>();

which moves the inference from the type of values to the type of variables.

The implementation achieves this by making var a reserved type name rather than
a keyword. This means that code can still use var as a variable, method, or package
name without being affected by the new syntax. However, code that has previously
used var as the name of a type will have to be recompiled.

This simple case is designed to reduce verbosity and to make programmers coming
to Java from other languages (especially Scala, .NET, and JavaScript) feel more
comfortable. However, it does carry the risk that overuse will potentially obscure the
intent of the code being written, so it should be used sparingly.

As well as the simple cases, var actually permits programming constructs that were
not possible before. To see the differences, let’s consider that javac has always
permitted a very limited form of type inference:

public class Test {
    public static void main(String[] args) {
        (new Object() {
            public void bar() {
                System.out.println("bar!");
            }
        }).bar();
    }
}

The code will compile and run, printing out bar!. This slightly counterintuitive
result occurs because javac preserves enough type information about the anony‐
mous class (i.e., that it has a bar() method) for just long enough that the compiler
can conclude that the call to bar() is valid.
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In fact, this edge case has been known in the Java community since at least 2009,
long before the arrival of Java 7.

The problem with this form of type inference is that it has no real practical applica‐
tions: the type of “Object-with-a-bar-method” exists within the compiler, but the
type is impossible to express as the type of a variable—it is not a denotable type.
This means that before Java 10, the existence of this type is restricted to a single
expression and cannot be used in a larger scope.

With the arrival of LVTI, however, the type of variables does not always need to
be made explicit. Instead, we can use var to allow us to preserve the static type
information by avoiding denoting the type.

This means we can now modify our example and write:

var o = new Object() {
    public void bar() {
        System.out.println("bar!");
    }
};

o.bar();

This has allowed us to preserve the true type of o beyond a single expression.
The type of o cannot be denoted, and so it cannot appear as the type of either a
method parameter or return type. This means the type is still limited to only a single
method, but it is still useful to express some constructions that would be awkward
or impossible otherwise.

This use of var as a “magic type” allows the programmer to preserve type infor‐
mation for each distinct usage of var, in a way that is somewhat reminiscent of
bounded wildcards from Java’s generics.

More advanced usages of var with nondenotable types are possible. While the
feature is not able to satisfy every criticism of Java’s type system, it does represent a
definite (if cautious) step forward.

Summary
By examining Java’s type system, we have been able to build up a clear picture of
the worldview that the Java platform has about data types. Java’s type system can be
characterized as:

Static
All Java variables have types that are known at compile time.

Nominal
The name of a Java type is of paramount importance. Java does not permit
structural types and has only limited support for nondenotable types.
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Object/imperative
Java code is object-oriented, and all code must live inside methods, which must
live inside classes. However, Java’s primitive types prevent full adoption of the
“everything is an object” worldview.

Slightly functional
Java provides support for some of the more common functional idioms but
more as a convenience to programmers than anything else.

Type-inferred
Java is optimized for readability (even by novice progammers) and prefers
to be explicit but uses type inference to reduce boilerplate where it does not
impact the legibility of the code.

Strongly backward compatible
Java is primarily a business-focused language, and backward compatibility and
protection of existing codebases are very high priorities.

Type erased
Java permits parameterized types, but this information is not available at
runtime.

Java’s type system has evolved (albeit slowly and cautiously) over the years—and is
now on par with the type systems of other mainstream programming languages.
Lambda expressions, along with default methods, represent the greatest transforma‐
tion since the advent of Java 5 and the introduction of generics, annotations, and
related innovations.

Default methods represent a major shift in Java’s approach to object-oriented pro‐
gramming—perhaps the biggest since the language’s inception. From Java 8 onward,
interfaces can contain implementation code. This fundamentally changes Java’s
nature. Previously a single-inherited language, Java is now multiply inherited (but
only for behavior—there is still no multiple inheritance of state).

Despite all of these innovations, Java’s type system is not (and is not intended to be)
equipped with the power of the type systems of languages such as Scala or Haskell.
Instead, Java’s type system is strongly biased in favor of simplicity, readability, and a
simple learning curve for newcomers.

Java has also benefited enormously from the approaches to types developed in other
languages over the last 10 years. Scala’s example of a statically typed language that
nevertheless achieves much of the feel of a dynamically typed language through the
use of type inference has been a good source of ideas for features to add to Java,
even though the languages have quite different design philosophies.

One remaining question is whether the modest support for functional idioms
that lambda expressions provide in Java is sufficient for the majority of Java
programmers.
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The long-term direction of Java’s type system is being explored
in research projects such as Valhalla, where concepts such as
data classes, pattern matching, and sealed classes are being
explored.

It remains to be seen whether the majority of ordinary Java programmers require
the added power—and attendant complexity—that comes from an advanced (and
much less nominal) type system such as Scala’s, or whether the “slightly functional
programming” introduced in Java 8 (e.g., map, filter, reduce, and their peers) will
suffice for most developers’ needs.
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5
Introduction to Object-Oriented

Design in Java

In this chapter, we will consider several techniques relevant to object-oriented
design (OOD) in Java.

We’ll look at how to work with Java’s objects, covering the key methods of Object,
aspects of object-oriented design, and implementing exception handling schemes.
Throughout the chapter, we will be introducing some design patterns—essentially
best practices for solving some very common situations that arise in software
design. Toward the end of the chapter, we’ll also consider safe programs—those that
are designed so as not to become inconsistent over time.

This chapter is intended to showcase some examples of a
complex topic and a few underlying principles. We encourage
you to consult additional resources, such as Effective Java by
Josh Bloch.

We’ll get started by considering the subject of Java’s calling and passing conventions
and the nature of Java values.

Java Values
Java’s values, and their relationship to the type system, are quite straightforward.
Java has two types of values: primitives and object references.
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There are only eight different primitive types in Java, and new
primitive types cannot be defined by the programmer.

The key difference between primitive values and references is that primitive values
cannot be altered; the value 2 is always the same value. By contrast, the contents of
object references can usually be changed—often referred to as mutation of object
contents.

Also note that variables can contain values only of the appropriate type. In particu‐
lar, variables of reference type always contain a reference to the memory location
holding the object—they do not contain the object contents directly. This means
that in Java there is no equivalent of a dereference operator or a struct.

Java tries to simplify a concept that often confused C++ programmers: the differ‐
ence between “contents of an object” and “reference to an object.” Unfortunately,
it’s not possible to completely hide the difference, and so it is necessary for the
programmer to understand how reference values work in the platform.

Is Java “Pass by Reference”?
Java handles objects “by reference,” but we must not confuse this with the phrase
“pass by reference,” a term used to describe the method-calling conventions of
various programming languages. In a pass-by-reference language, values—even
primitive values—are not passed directly to methods. Instead, methods are always
passed by references to values. Thus, if the method modifies its parameters, those
modifications are visible when the method returns, even for primitive types.

Java does not do this; it is a “pass by value” language. However, when a reference
type is involved, the value that is passed is a copy of the reference (as a value). But
this is not the same as pass by reference. If Java were a pass-by-reference language,
when a reference type is passed to a method, it would be passed as a reference to the
reference.

The fact that Java is pass by value can be demonstrated very simply, e.g., by running
the following code:

public void manipulate(Circle circle) {
    circle = new Circle(3);
}

Circle c = new Circle(2);
System.out.println("Radius: "+ c.getRadius());
manipulate(c);
System.out.println("Radius: "+ c.getRadius());
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This outputs Radius: 2 twice and thus shows that even after the call to
manipulate(), the value contained in variable c is unaltered—it is still holding a
reference to a Circle object of radius 2. If Java was a pass-by-reference language, it
would instead be holding a reference to a radius 3 Circle:

If we’re scrupulously careful about the distinction, and about referring to object
references as one of Java’s possible kinds of values, then some otherwise surprising
features of Java become obvious. Be careful! Some older texts are ambiguous on this
point. We will meet this concept of Java’s values again when we discuss memory and
garbage collection in Chapter 6.

Important Common Methods
As we’ve noted, all classes extend, directly or indirectly, java.lang.Object. This
class defines a number of useful methods, some of which were designed to be over‐
ridden by classes you write. Example 5-1 shows a class that overrides these methods.
The sections that follow this example document the default implementation of each
method and explain why you might want to override it.

Note that this example is for demonstration purposes only; in reality, we would
represent classes like Circle as records and get a lot of these methods implemented
automatically by the compiler.

Example 5-1. A class that overrides important Object methods

// This class represents a circle with immutable position and radius.
public class Circle implements Comparable<Circle> {
    // These fields hold the coordinates of the center and the radius.
    // They are private for data encapsulation and final for immutability
    private final int x, y, r;

    // The basic constructor: initialize the fields to specified values
    public Circle(int x, int y, int r) {
        if (r < 0) throw new IllegalArgumentException("negative radius");
        this.x = x; this.y = y; this.r = r;
    }

    // This is a "copy constructor"--a useful alternative to clone()
    public Circle(Circle original) {
        x = original.x;   // Just copy the fields from the original
        y = original.y;
        r = original.r;
    }

    // Public accessor methods for the private fields.
    // These are part of data encapsulation.
    public int getX() { return x; }
    public int getY() { return y; }
    public int getR() { return r; }
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    // Return a string representation
    @Override public String toString() {
        return String.format("center=(%d,%d); radius=%d", x, y, r);
    }

    // Test for equality with another object
    @Override public boolean equals(Object o) {
        // Identical references?
        if (o == this) return true;
        // Correct type and non-null?
        if (!(o instanceof Circle)) return false;
        Circle that = (Circle) o;                 // Cast to our type
        if (this.x == that.x && this.y == that.y && this.r == that.r)
            return true;                          // If all fields match
        else
            return false;                         // If fields differ
    }

    // A hash code allows an object to be used in a hash table.
    // Equal objects must have equal hash codes.  Unequal objects are
    // allowed to have equal hash codes, but we try to avoid that.
    // We must override this method because we also override equals().
    @Override public int hashCode() {
        int result = 17;          // This hash code algorithm from
        result = 37*result + x;   // Effective Java, by Joshua Bloch
        result = 37*result + y;
        result = 37*result + r;
        return result;
    }

    // This method is defined by the Comparable interface. Compare
    // this Circle to that Circle.  Return a value < 0 if this < that
    // Return 0 if this == that. Return a value > 0 if this > that.
    // Circles are ordered top to bottom, left to right, then by radius
    public int compareTo(Circle that) {
        // Smaller circles have bigger y
        long result = (long)that.y - this.y;
        // If same compare l-to-r
        if (result==0) result = (long)this.x - that.x;
        // If same compare radius
        if (result==0) result = (long)this.r - that.r;

        // We have to use a long value for subtraction because the
        // differences between a large positive and large negative
        // value could overflow an int. But we can't return the long,
        // so return its sign as an int.
        return Long.signum(result);
    }
}
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Example 5-1 uses a lot of the extended features of the type system that we intro‐
duced in Chapter 4. First, this example implements a parameterized, or generic,
version of the Comparable interface. Second, it uses the @Override annotation to
emphasize (and have the compiler verify) that certain methods override Object.

toString()
The purpose of the toString() method is to return a textual representation of an
object. The method is invoked automatically on objects during string concatenation
and by methods such as System.out.println(). Giving objects a textual represen‐
tation can be quite helpful for debugging or logging output, and a well-crafted
toString() method can even help with tasks such as report generation.

The version of toString() inherited from Object returns a string that includes
the name of the class of the object as well as a hexadecimal representation of the
hashCode() value of the object (discussed later in this chapter). This default imple‐
mentation provides basic type and identity information for an object but is not very
useful. The toString() method in Example 5-1 instead returns a human-readable
string that includes the value of each of the fields of the Circle class.

equals()
The == operator tests two references to see if they refer to the same object. If you
want to test whether two distinct objects are equal to one another, you must use
the equals() method instead. Any class can define its own notion of equality by
overriding equals(). The Object.equals() method simply uses the == operator:
this default method considers two objects equal only if they are actually the very
same object.

The equals() method in Example 5-1 considers two distinct Circle objects to be
equal if their fields are all equal. Note that it first does a quick identity test with ==
as an optimization and then checks the type of the other object with instanceof:
a Circle can be equal only to another Circle, and it is not acceptable for an
equals() method to throw a ClassCastException. Note that the instanceof test
also rules out null arguments: instanceof always evaluates to false if its lefthand
operand is null.

hashCode()
Whenever you override equals(), you also must override hashCode(). This method
returns an integer for use by hash table data structures. It is critical that two objects
have the same hash code if they are equal according to the equals() method.

It is important (for efficient operation of hash tables) but not required that unequal
objects have unequal hash codes, or at least that unequal objects are unlikely to
share a hash code. This second criterion can lead to hashCode() methods that
involve mildly tricky arithmetic or bit manipulation.
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The Object.hashCode() method works with the Object.equals() method and
returns a hash code based on object identity rather than object equality. (If you ever
need an identity-based hash code, you can access the functionality of Object.hash
Code() through the static method System.identityHashCode().)

When you override equals(), you must always override hash
Code() to guarantee that equal objects have equal hash codes.
Failing to do this can cause subtle bugs in your programs.

Because the equals() method in Example 5-1 bases object equality on the values
of the three fields, the hashCode() method computes its hash code based on these
three fields as well. It is clear from the code that if two Circle objects have the same
field values, they will have the same hash code.

Note that the hashCode() method in Example 5-1 does not simply add the three
fields and return their sum. Such an implementation would be legal but not efficient
because two circles with the same radius but whose x and y coordinates were
reversed would then have the same hash code. The repeated multiplication and
addition steps “spread out” the range of hash codes and dramatically reduce the
likelihood that two unequal Circle objects have the same code.

In practice, modern Java programmers will either autogenerate hashCode(),
equals(), and toString() from within their IDE (for classes), or use records
where the source code compiler produces a standard form of these methods. For
the extremely rare cases where the programmer chooses not to use either of these
approaches, Effective Java by Joshua Bloch (Addison Wesley) includes a helpful
recipe for constructing efficient hashCode() methods.

Comparable::compareTo()
Example 5-1 includes a compareTo() method. This method is defined by the
java.lang.Comparable interface rather than by Object, but it is such a common
method to implement that we include it in this section. The purpose of Comparable
and its compareTo() method is to allow instances of a class to be compared to each
other in a similar way to how the <, <=, >, and >= operators compare numbers. If
a class implements Comparable, we can call methods to allow us to say that one
instance is less than, greater than, or equal to another instance. This also means that
instances of a Comparable class can be sorted.

The method compareTo() sets up a total ordering of the
objects of the type. This is referred to as the natural order
of the type, and the method is called the natural comparison
method.
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Because compareTo() is not declared by the Object class, it is up to each individual
class to determine whether and how its instances should be ordered and to include a
compareTo() method that implements that ordering.

The ordering defined by Example 5-1 compares Circle objects as if they were
words on a page. Circles are first ordered from top to bottom: circles with larger
y coordinates are less than circles with smaller y coordinates. If two circles have
the same y coordinate, they are ordered from left to right. A circle with a smaller
x coordinate is less than a circle with a larger x coordinate. Finally, if two circles
have the same x and y coordinates, they are compared by radius. The circle with the
smaller radius is smaller.

Note that under this ordering, two circles are equal only if all three of their fields are
equal. This means that the ordering defined by compareTo() is consistent with the
equality defined by equals(). This is not strictly required but is very desirable, and
you should aim for it wherever possible.

The compareTo() method returns an int value that requires further explanation.
compareTo() should return a negative number if the this object is less than the
object passed to it. It should return 0 if the two objects are equal. And compareTo()
should return a positive number if this is greater than the method argument.

clone()
Object defines a method named clone() whose purpose is to return an object with
fields set identically to those of the current object. This is an unusual method for
several reasons.

First, clone() is declared as protected. Therefore, if you want your object to
be cloneable by other classes, you must override the clone() method, making
it public. Next, the default implementation of clone() in Object throws a
checked exception, CloneNotSupportedException, unless the class implements the
java.lang.Cloneable interface. Note that this interface does not define any meth‐
ods (it is a marker interface), so implementing it is simply a matter of listing it in the
implements clause of the class signature.

The original intent of clone() was to provide a mechanism to produce “deep
copies” of objects, but it is fundamentally flawed and its use is not recommended.
Instead, developers should prefer declaring a copy constructor for making copies of
their objects, for example:

Circle original = new Circle(1, 2, 3);  // regular constructor
Circle copy = new Circle(original);     // copy constructor

We will meet copy constructors again when we consider factory methods, later in
this chapter.
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1 Technically, this should probably be called SCREAMING_SNAKE_CASE

Constants
In Java a constant is a static final field. This combination of modifiers gives a
single value (per class) with the given name, and it is initialized as soon as the class
is loaded and then cannot be changed.

By convention, Java’s constants are named in all-capitals, using snake case, for
example NETWORK_SERVER_SOCKET1 as opposed to the “camel case” (or “camelCase”)
convention networkServerSocket for a regular field.

There are essentially three different subcases of constants that can appear:

• public constants: these form part of the public API of the class•

• private constants: these are used when the constant is an internal implementa‐•
tion detail for this class only

• Package-level constants: these have no additional access keyword and are used•
when the constant is an internal implementation detail that needs to be seen by
different classes within the same package

The final case might arise, for example, when client and server classes implement a
network protocol whose details (such as the port number to connect to and listen
on) are captured in a set of symbolic constants.

As discussed earlier, an alternative approach is for constants to appear in an inter‐
face definition. Any class that implements an interface inherits the constants it
defines and can use them as if they were defined directly in the class itself. This has
the advantage that there is no need to prefix the constants with the name of the
interface or provide any kind of implementation of the constants.

However, this is rather overcomplicated and so the preferred approach is to define
constants (as either public or package-level) in a class and use them by importing
the constants from their defining class with the import static declaration. See
“Packages and the Java Namespace” on page 98 for details.

Working with Fields
Java provides a variety of access control keywords that can be used to define how
fields can be accessed. It is perfectly legal to use any of these possibilities, but in
practice there are three primary choices for field access that Java developers typically
use:

• Constants (static final): the case that we just met, which may have an•
additional access control keyword as well
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• Immutable fields (private final): fields with this combination cannot be•
altered after object creation

• Mutable fields (private): this combination should only be used if the program‐•
mer is sure that the field’s value will change during the object’s lifetime

In recent years, many developers have adopted the practice of using immutable data
wherever possible. There are several benefits to this approach, but the main one is
that if objects can be designed so that they cannot be modified after creation, then
they can be freely shared between threads.

When writing classes, we recommend using the above three choices for field mod‐
ifiers, depending on the circumstances. Instance fields should always be initially
written as final and made mutable only if necessary.

In addition, direct field access should not be used, except for constants. Instead,
getter methods (and setters, for the case of mutable state) should be preferred. The
primary reason for this is that direct field access is a very tight coupling between
the defining class and any client code. If accessor methods are used, then the
implementation code for those methods can later be modified without changing the
client code—this is impossible with field access.

We should also call out one common mistake in field handling: Developers coming
from C++ frequently make the mistake of omitting any access modifiers for fields.
This is a serious defect, because C++ has a default visibility of private, whereas Java’s
default access is considerably more open. This represents a failure of encapsulation
in Java, and developers should take care to avoid it.

Field Inheritance and Accessors
As well as the above considerations, Java offers multiple potential approaches to
the design issue of the inheritance of state. The programmer could choose to mark
fields as protected and allow them to be accessed directly by subclasses (including
writing to them). Alternatively, we can provide accessor methods to read (and write,
if desired) the actual object fields, while retaining encapsulation and leaving the
fields as private.

Let’s revisit our earlier PlaneCircle example from the end of Chapter 3 and explic‐
itly show the field inheritance:

public class Circle {
  // This is a generally useful constant, so we keep it public
  public static final double PI = 3.14159;

  protected double r;     // State inheritance via a protected field

  // A method to enforce the restriction on the radius
  protected void checkRadius(double radius) {
    if (radius < 0.0)
      throw new IllegalArgumentException("radius may not < 0");
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  }

  // The non-default constructor
  public Circle(double r) {
    checkRadius(r);
    this.r = r;
  }

  // Public data accessor methods
  public double getRadius() { return r; }
  public void setRadius(double r) {
    checkRadius(r);
    this.r = r;
  }

  // Methods to operate on the instance field
  public double area() { return PI * r * r; }
  public double circumference() { return 2 * PI * r; }
}

public class PlaneCircle extends Circle {
  // We automatically inherit the fields and methods of Circle,
  // so we only have to put the new stuff here.
  // New instance fields that store the center point of the circle
  private final double cx, cy;

  // A new constructor to initialize the new fields
  // It uses a special syntax to invoke the Circle() constructor
  public PlaneCircle(double r, double x, double y) {
    super(r);       // Invoke the constructor of the superclass
    this.cx = x;    // Initialize the instance field cx
    this.cy = y;    // Initialize the instance field cy
  }

  public double getCenterX() {
    return cx;
  }

  public double getCenterY() {
    return cy;
  }

  // The area() and circumference() methods are inherited from Circle
  // A new instance method that checks whether a point is inside the
  // circle; note that it uses the inherited instance field r
  public boolean isInside(double x, double y) {
    double dx = x - cx, dy = y - cy;
    // Pythagorean theorem
    double distance = Math.sqrt(dx*dx + dy*dy);
    return (distance < r);                   // Returns true or false
  }
}
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Instead of the preceding code, we can rewrite PlaneCircle using accessor methods,
like this:

public class PlaneCircle extends Circle {
  // Rest of class is the same as above; the field r in
  // the superclass Circle can be made private because
  // we no longer access it directly here

  // Note that we now use the accessor method getRadius()
  public boolean isInside(double x, double y) {
    double dx = x - cx, dy = y - cy;            // Distance to center
    double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
    return (distance < getRadius());
  }
}

Both approaches are legal Java, but they have some differences. As we discussed in
“Data Hiding and Encapsulation” on page 135, fields that are writable outside of the
class are usually not a correct way to model object state. In fact, as we will see later
in this chapter and again in “Java’s Support for Concurrency” on page 249, they can
damage the running state of a program irreparably.

It is therefore unfortunate that the protected keyword in Java allows access to
fields (and methods) from both subclasses and classes in the same packages as
the declaring class. This, combined with the ability for anyone to write a class
that belongs to any given package (except system packages), means that protected
inheritance of state is potentially flawed in Java.

Java does not provide a mechanism for a member to be visible
only in the declaring class and its subclasses.

For all of these reasons, it is almost always better to use accessor methods (either
public or protected) to provide access to state for subclasses—unless the inherited
state is declared final, in which case protected inheritance of state is perfectly
permissible.

Singleton
The singleton pattern is a very well-known design pattern. It is intended to solve
the design issue where only a single instance of a class is required or desired. Java
provides a number of different possible ways to implement the singleton pattern. In
our discussion, we will use a slightly more verbose form, which has the benefit of
being very explicit in what needs to happen for a safe singleton:

public class Singleton {
  private final static Singleton instance = new Singleton();
  private static boolean initialized = false;
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  // Constructor
  private Singleton() {
    super();
  }

  private void init() {
    /* Do initialization */
  }

  // This method should be the only way to get a reference
  // to the instance
  public static synchronized Singleton getInstance() {
    if (initialized) return instance;
    instance.init();
    initialized = true;
    return instance;
  }
}

The crucial point is that for the singleton pattern to be effective, it must be impossi‐
ble to create more than one of them, and it must be impossible to get a reference
to the object in an uninitialized state (see later in this chapter for more on this
important point).

To achieve this, we require a private constructor, which is called only once, ever. In
our version of Singleton, we only call the constructor when we initialize the private
static variable instance. We also separate the creation of the only Singleton object
from its initialization—which occurs in the private method init().

With this mechanism in place, the only way to get a reference to the lone instance
of Singleton is via the static helper method, getInstance(). This method checks
the flag initialized to see if the object is already in an active state. If it is, then
a reference to the singleton object is returned. If not, then getInstance() calls
init() to activate the object and flicks the flag to true, so that next time a reference
to the Singleton is requested, further initialization will not occur.

Finally, we also note that getInstance() is a synchronized method. See Chapter 6
for full details of what this means and why it is necessary, but for now, know that
it is present to guard against unintended consequences if Singleton is used in a
multithreaded program.

Singleton, being one of the simplest patterns, is often over‐
used. When used correctly, it can be a useful technique, but
too many singleton classes in a program is a classic sign of
badly engineered code.
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The singleton pattern has some drawbacks—in particular, it can be hard to test
and to separate from other classes. It also requires care when used in mulithreaded
code. Nevertheless, it is important that developers are familiar with it and do
not accidentally reinvent it. The singleton pattern is often used in configuration
management, but modern code will typically use a framework (often a dependency
injection framework) to provide the programmer with singletons automatically,
rather than via an explicit Singleton (or equivalent) class.

Factory Methods
An alternative to using constructors directly is the Factory Method pattern. The
basic form of this technique is to make the constructor private (or other nonpublic
modifier, in some variants) and to provide a static method that returns the desired
type. This static method is then used by client code that wants an instance of the
type.

There are various reasons why, as a code author, we may not want to expose our
constructors directly and may choose to use factories instead. For example, caching
factories that do not necessarily create a new object, or because there are several
valid ways of constructing an object.

The static factory approach is not the same as the Abstract
Factory pattern from the classic book Design Patterns.

Let’s rewrite the constructor from Example 5-1 and introduce some factory
methods:

public final class Circle implements Comparable<Circle> {
    private final int x, y, r;

    // Main constructor
    private Circle(int x, int y, int r) {
        if (r < 0) throw new IllegalArgumentException("radius < 0");
        this.x = x; this.y = y; this.r = r;
    }

    // Usual factory method
    public static Circle of(int x, int y, int r) {
        return new Circle(x, y, r);
    }

    // Factory method playing the role of the copy constructor
    public static Circle of(Circle original) {
        return new Circle(original.x, original.y, original.r);
    }
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    // Third factory with intent given by name
    public static Circle ofOrigin(int r) {
        return new Circle(0, 0, r);
    }

    // other methods elided
}

This class contains a private constructor and three separate factory methods: a
“usual” one with the same signature as the constructor, and two additional. One of
these additional factories is effectively a copy constructor, and the other is used to
handle a special case: circles at the origin.

One advantage of using factory methods is that, unlike constructors, the method
has a name and so can indicate its intent using part of the name. In our example, the
factory methods are of(), which is one very common choice, and we distinguish
the case of the origin circles by using a name ofOrigin() that expresses it.

Builders
Factory methods are a useful technique for when you don’t want to expose a
constructor to client code. However, there are limitations to factories. They work
well when only a few parameters, all of which are required, need to be passed. But in
some circumstances, we need to model data where much of it is optional, or when
there are many valid, different possible constructions for our domain objects. In this
case, the number of factory methods can quickly multiply to represent all possible
combinations and overwhelm us, cluttering the API.

An alternative approach is the Builder pattern. This pattern uses a secondary builder
object that exactly parallels the state of the real domain object (which is assumed
to be immutable). For every field that the domain object has, the builder has the
same field—the same name, and the same type. However, while the domain object
is immutable, the builder object is explicitly mutable. In fact, the builder has a setter
method, named in the same way as the field (i.e. in “record convention”) that the
developer will use to set up a piece of state.

The overall intent of the Builder pattern is to start from a “blank” builder object
and add state to it, until the builder is ready to be converted into an actual domain
object, usually by calling the build() method on the builder.

Let’s take a look at a simple example:

// Generic builder interface
public interface Builder<T> {
    T build();
}

public class BCircle {
    private final int x, y, r;

    // The main constructor is now private
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    private BCircle(CircleBuilder cb) {
        if (cb.r < 0)
        throw new IllegalArgumentException("negative radius");
        this.x = cb.x; this.y = cb.y; this.r = cb.r;
    }

    public static class CircleBuilder implements Builder<BCircle> {
        private int x = 0, y = 0, r = 0;

        public CircleBuilder x(int x) {
            this.x = x;
            return this;
        }

        public int x() {
            return x;
        }

        // Similarly for y and r

        @Override
        public BCircle build() {
            return new BCircle(this);
        }
    }

    // Other methods elided
}

Notice that the builder interface is typically generic. This is because in practice
we may well have a large number of domain classes, all of which will require
builders, so the use of a generic builder interface removes duplication. The Builder
interface contains only one method, so it technically is a candidate for lambda target
typing. But in practice this is almost never the intent, and so it is not tagged with
@FunctionalInterface. The implementation of the build() method also contains a
nonoptional use of the this reference.

The builder can be driven by a simple bit of code like this:

var cb = new BCircle.CircleBuilder();
cb.x(1).y(2).r(3);
var circle = cb.build();

Note that first we instantiate the builder. Then, we call the methods to set the
various parameters on the builder. Finally, we create an immutable object from the
builder, by calling build().

You may notice that the methods on the builder that accrete state all return this.
The point of this interface design is so that the calls can be chained—so that
methods can be called one after another on the same mutable object—for example
as cb.x(1).y(2).r(3). Another way of describing this style of interface design is as
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a fluent interface. As each method returns this, we know that all of these calls are
safe: there can’t be a NullPointerException.

Our example is very simple and is somewhat contrived; it only has three parameters
and all of them are required. In practice, builders are more useful with a larger
number of object parameters and when there are multiple possibilities for “spanning
sets” of valid object states. There exists an overlap between the cases where one
should use a factory versus a builder; determining exactly where that boundary is
for your own code is part of the development of OO design skills.

Interfaces Versus Abstract Classes
Java 8 fundamentally changed Java’s object-oriented programming model. Before
Java 8, interfaces were pure API specification and contained no implementation.
This could (and often did) lead to duplication of code when the interface had
multiple implementations.

To prevent this wasted effort, a simple coding pattern developed that takes advan‐
tage of the fact that an abstract class can contain a partial implementation that
subclasses can build upon. Numerous subclasses can rely on method implementa‐
tions provided by an abstract superclass (also called an abstract base).

The pattern consists of an interface that contains the API spec for the basic meth‐
ods, paired with a primary partial implementation as an abstract class. A good
example would be java.util.List, which is paired with java.util.AbstractList.
Two of the main implementations of List that ship with the JDK (ArrayList and
LinkedList) are subclasses of AbstractList.

As another example:

// Here is a basic interface. It represents a shape that fits inside
// of a rectangular bounding box. Any class that wants to serve as a
// RectangularShape can implement these methods from scratch.
public interface RectangularShape {
    void setSize(double width, double height);
    void setPosition(double x, double y);
    void translate(double dx, double dy);
    double area();
    boolean isInside();
}

// Here is a partial implementation of that interface. Many
// implementations may find this a useful starting point.
public abstract class AbstractRectangularShape
                        implements RectangularShape {
    // The position and size of the shape
    protected double x, y, w, h;

    // Default implementations of some of the interface methods
    public void setSize(double width, double height) {
     w = width; h = height;
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    }
    public void setPosition(double x, double y) {
     this.x = x; this.y = y;
    }
    public void translate (double dx, double dy) { x += dx; y += dy; }
}

The arrival of default methods in Java 8 changed this landscape considerably. Inter‐
faces can now contain implementation code, as we saw in “Default Methods” on
page 158.

This means that when defining an abstract type (e.g., Shape) that you expect to
have many subtypes (e.g., Circle, Rectangle, Square), you are faced with a choice
between interfaces and abstract classes. As they now have potentially similar fea‐
tures, it is not always clear which to use.

Remember that a class that extends an abstract class cannot extend any other class,
and that interfaces still cannot contain any nonconstant fields. This means there are
still some restrictions on how we can use inheritance in our Java programs.

Another important difference between interfaces and abstract classes has to do with
compatibility. If you define an interface as part of a public API and then later add a
new mandatory method to the interface, you break any classes that implemented the
previous version of the interface—in other words, any new interface methods must
be declared as default and an implementation provided.

If you use an abstract class, however, you can safely add nonabstract methods to
that class without requiring modifications to existing classes that extend the abstract
class.

In both cases, adding new methods can cause a clash with subclass methods of
the same name and signature—with the subclass methods always winning. For this
reason, think carefully when adding new methods, especially when the method
names are “obvious” for this type or where the method could have several possible
meanings.

In general, the suggested approach is to prefer interfaces when an API specification
is needed. The mandatory methods of the interface are nondefault, as they represent
the part of the API that must be present for an implementation to be considered
valid. Default methods should be used only if a method is truly optional, or if they
are really only intended to have a single possible implementation.

Finally, the older (pre-Java 8) technique of declaring in documentation which meth‐
ods of an interface are considered “optional” and directing to implementations to
throw a java.lang.UnsupportedOperationException if the programmer does not
want to implement them is fraught with problems and should not be used in new
code.
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Do Default Methods Change Java’s Inheritance Model?
Before Java 8, the strict single inheritance model of the language was clear. Every
class (except Object) had exactly one direct superclass, and method implementa‐
tions could only either be defined in a class, or be inherited from the superclass
hierarchy.

Default methods change this picture, because they allow method implementations
to be inherited from multiple places—either from the superclass hierarchy or from
default implementation provided in interfaces. Any potential conflicts between dif‐
ferent default methods from separate interfaces will result in a compile-time error.

This means there is no possibility of conflicting multiple inheritance of implemen‐
tation, as in any clash the programmer is required to manually disambiguate the
methods.

There is also no multiple inheritance of state: interfaces still do not have non-
constant fields.

This means that Java’s multiple inheritance is different from the general multiple
inheritance found in, e.g., C++. In fact, default methods are effectively the Mixin
pattern from C++ (for readers who are familiar with that language). Some develop‐
ers also view default members as a form of the trait language feature that appears in
some OO languages (e.g., Scala).

However, the official position from Java’s language designers is that default methods
fall short of being full traits. This view is somewhat undermined by the code that
ships within the JDK—even the interfaces within java.util.function (such as
Function itself) behave as simple traits.

For example, consider this example:

public interface IntFunc {
    int apply(int x);

    default IntFunc compose(IntFunc before) {
        return (int y) -> apply(before.apply(y));
    }

    default IntFunc andThen(IntFunc after) {
        return (int z) -> after.apply(apply(z));
    }

    static IntFunc id() {
        return x -> x;
    }
}

It is a simplified version of the Function interface in java.util.function that
removes the generics and deals with int only as a data type.
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This case shows an important point for the functional composition methods
( compose() and andThen()) present: these functions will only be composed in
the standard way, and it is highly implausible that any sane override of the default
compose() method could exist.

This is, of course, also true for the function types present in java.util.function,
and it shows that within the limited domain provided, default methods can indeed
be treated as a form of stateless trait.

OOD Using Lambdas
Consider this simple lambda expression:

Runnable r = () -> System.out.println("Hello World");

The type of the lvalue (lefthand side of the assignment) is Runnable, which is an
interface type. For this statement to make sense, the rvalue (right-hand side of
the assignment) must contain an instance of some class type (because interfaces
cannot be instantiated) that implements Runnable. The minimal implementation
that satisfies these constraints is a class type (of inconsequential name) that directly
extends Object and implements Runnable.

Recall that the intention of lambda expressions is to allow Java programmers to
express a concept that is as close as possible to the anonymous or inline methods
seen in other languages.

Furthermore, given that Java is a statically typed language, this leads directly to the
design of lambdas as implemented.

Lambdas are a shorthand for the construction of a new
instance of a class type that is essentially Object enhanced
by a single method.

A lambda’s single extra method has a signature provided by the interface type, and
the compiler will check that the rvalue is consistent with this type signature.

Lambdas Versus Nested Classes
The addition of lambdas to the language in Java 8 was relatively late, as compared
to other programming languages. As a consequence, the Java community had estab‐
lished patterns to work around the absence of lambdas. This manifests in a heavy
use of very simple nested (aka inner) classes to fill the niche that lambdas usually
occupy.

In modern Java projects developed from scratch, developers will typically use lamb‐
das wherever possible. We also strongly suggest that, when refactoring old code, you
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take some time to convert inner classes to lambdas wherever possible. Some IDEs
even provide an automatic conversion facility.

However, this still leaves the design question of when to use lambdas and when
nested classes are still the correct solution.

Some cases are obvious; for example, when extending a default implementation for
some functionality, a nested class approach is appropriate, for two reasons:

1. The custom implementation may have to override multiple methods1.
2. The base implementation is a class, not an interface2.

Another major use case to consider is that of stateful lambdas. As there is nowhere
to declare any fields, it would appear at first glance that lambdas cannot directly
be used for anything that involves state—the syntax only gives the opportunity to
declare a method body.

However, a lambda can refer to a variable defined in the scope that the lambda is
created in, so we can create a closure, as discussed in Chapter 4, to fill the role of a
stateful lambda.

Lambdas Versus Method References
The question of when to use a lambda and when to use a method reference is largely
a matter of personal taste and style. There are, of course, some circumstances where
it is essential to create a lambda. However, in many simple cases, a lambda can be
replaced by a method reference.

One possible approach is to consider whether the lambda notation adds anything
to the readability of the code. For example, in the streams API, there is a potential
benefit in using the lambda form, as it uses the -> operator. This provides a form of
visual metaphor—the stream API is a lazy abstraction that can be visualized as data
items “flowing through a functional pipeline.”

For example, let’s consider a Person object, which has standard characteristics, such
as name, age, etc. We can compute the average using a pipeline, like this:

List<Person> persons = ... // derived from somewhere
double aveAge = persons.stream()
        .mapToDouble(o -> o.getAge())
        .reduce(0, (x, y) -> x + y ) / persons.size();

The idea that the mapToDouble() method has an aspect of motion, or transforma‐
tion, is strongly implied by the usage of an explicit lambda. For less experienced
programmers, it also draws attention to the use of a functional API.

For other use cases (e.g., dispatch tables), method references may well be more
appropriate. For example:

public class IntOps {
    private Map<String, BinaryOperator> table =
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        Map.of("add", IntOps::add, "subtract", IntOps::sub);

    private static int add(int x, int y) {
        return x + y;
    }

    private static int sub(int x, int y) {
        return x - y;
    }

    public int eval(String op, int x, int y) {
        return table.get(op).apply(x, y);
    }
}

In situations where either notation could be used, you will come to develop a pref‐
erence that fits your individual style over time. The key consideration is whether,
when returning to reread code written several months (or years) ago, the choice of
notation still makes sense and the code is easy to read.

OOD Using Sealed Types
We met sealed classes for the first time in Chapter 3 and introduced sealed inter‐
faces in Chapter 4. As well as the cases we’ve already met, there is also a simpler
possibility, in which a sealed type can be extended only by classes that are defined
inside the same compilation unit (i.e., Java source file), like this:

// Note the absence of a permits clause
public abstract sealed class Shape {

    public static final class Circle extends Shape {
        // ...
    }

    public static final class Rectangle extends Shape {
        // ...
    }
}

The classes Shape.Circle and Shape.Rectangle are the only permitted subclasses
of Shape: any other attempt to extend Shape will result in a compilation error. This
is really just additional detail, as the general concept remains the same; sealed
indicates a type that has only a finite number of possible types that are compatible
with it.

There is an interesting duality here:

• Enums are classes that have only a finite number of instances—any enum•
object is one of those instances
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• Sealed types have only a finite number of compatible classes—any sealed object•
belongs to one of those classes

Now consider a switch expression that accepts an enum, for example:

var temp = switch(season) {
    case WINTER -> 2.0;
    case SPRING -> 10.5;
    case SUMMER -> 24.5;
    case AUTUMN -> 16.0;
};
System.out.println("Average temp: "+ temp);

All the possible enum constants for seasons are present in this switch expression,
and so the match is said to be total. In this case, it is not necessary to include a
default, as the compiler can use the exhaustiveness of the enum constants to infer
that the default case would never be activated.

It isn’t hard to see that we could do something similar with sealed types. Some code
like this:

Shape shape = ...

if (shape instanceof Shape.Circle c) {
    System.out.println("Circle: "+ c.circumference());
} else if (shape instanceof Shape.Rectangle r) {
    System.out.println("Rectangle: "+ r.circumference());
}

is obviously exhaustive to a human but is not currently (as of Java 17) directly
recognized by the compiler.

This is because, as of Java 17, sealed types are essentially an incomplete feature. In
a future version of Java, the intent is to extend the switch expressions feature and
combine it with the new form of instanceof (and other new language features) to
deliver a capability called pattern matching.

This new feature will enable developers to write code that, for example, “switches
over a variable’s type,” and this will unlock new design patterns inspired by func‐
tional programming, which have not been easy to achieve in Java.

Appendix has more information about pattern matching and
other future features.

Despite not being entirely complete as of Java 17, sealed types are still very useful
in their current form and can also be combined with records to produce some
compelling designs.
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OOD Using Records
Records were introduced in Chapter 3, and in their simplest form they represent
a data entity that is “just fields” or a “bag of data.” In some other programming
languages, this is represented by a tuple, but Java’s records are different from tuples
in two important ways:

1. Java records are named types, whereas tuples are anonymous1.
2. Java records can have methods, auxiliary constructors and almost everything a2.

class can

Both of these stem from the fact that records are a special type of class. This allows
the programmer to start their design by using a record as a basic collection of fields,
and then to evolve from there.

For example, let’s rewrite Example 5-1 as a record (eliding the Comparable interface
for simplicity):

public record Circle(int x, int y, int r) {
    // Primary (compact) constructor
    public Circle {
        // Validation code in the constructor
        // This would be impossible in a tuple
        if (r < 0) {
            throw new IllegalArgumentException("negative radius");
        }
    }

    // Factory method playing the role of the copy constructor
    public static Circle of(Circle original) {
        return new Circle(original.x, original.y, original.r);
    }
}

Note that we have introduced a new type of constructor, called a compact construc‐
tor. It is available only for records and is used in the case where we want to do a bit
of extra work in the constructor as well as initialize the fields. Compact constructors
don’t have (or need) a parameter list, as they always have the same parameter list as
the declaration of the record.

This code is much shorter than Example 5-1 and clearly distinguishes the case of the
primary constructor (the “true form”) of the record from the copy constructor and
any other factories that may be present.

The design of Java’s records means that they are a very flexible choice for the
programmer. An entity can be initially modeled as just fields, and over time, can
acquire more methods, implement interfaces, and so on.

One other important aspect is that records also can be used very effectively in
combination with sealed interfaces. Let’s take a look at an example: a delivery
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company that has different types of orders: basic orders (delivered free), and express
orders (arrive quicker but for an additional charge).

The basic interface for the orders looks like this:

sealed interface Order permits BasicOrder, ExpressOrder {
    double price();
    String address();
    LocalDate delivery();
}

and has two implementations:

public record BasicOrder(double price,
                         String address,
                         LocalDate delivery) implements Order {}

public record ExpressOrder(double price,
                           String address,
                           LocalDate delivery,
                           double deliveryCharge) implements Order {}

Remember that the supertype of all record types is java.lang.Record, so for this
type of use case we have to use interfaces; it would not be possible to have the
different order types extend an abstract base. Our choices are:

• Model the entities as classes and use a sealed abstract base class•
• Model the entities as records and use a sealed interface•

In the second case, any common record components need to be hoisted up into the
interface, just as we saw for the Order example.

Instance Methods or Class Methods?
Instance methods are one of the key features of object-oriented programming. That
doesn’t mean, however, that you should shun class methods. In many cases, it is
perfectly reasonable to define class methods.

Remember that in Java, class methods are declared with the
static keyword, and the terms static method and class method
are used interchangeably.

For example, when working with the Circle class you might find that you often
want to compute the area of a circle with a given radius but don’t want to bother
creating a Circle object to represent that circle. In this case, a class method is more
convenient:

public static double area(double r) { return PI * r * r; }
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It is perfectly legal for a class to define more than one method with the same name,
as long as the methods have different parameter lists. This version of the area()
method is a class method, so it does not have an implicit this parameter and must
have a parameter that specifies the radius of the circle. This parameter keeps it
distinct from the instance method of the same name.

As another example of the choice between instance methods and class methods,
consider defining a method named bigger() that examines two Circle objects
and returns whichever has the larger radius. We can write bigger() as an instance
method as follows:

// Compare the implicit "this" circle to the "that" circle passed
// explicitly as an argument and return the bigger one.
public Circle bigger(Circle that) {
  if (this.r > that.r) return this;
  else return that;
}

We can also implement bigger() as a class method as follows:

// Compare circles a and b and return the one with the larger radius
public static Circle bigger(Circle a, Circle b) {
  if (a.r > b.r) return a;
  else return b;
}

Given two Circle objects, x and y, we can use either the instance method or
the class method to determine which is bigger. The invocation syntax differs signifi‐
cantly for the two methods, however:

// Instance method: also y.bigger(x)
Circle biggest = x.bigger(y);
Circle biggest = Circle.bigger(x, y);  // Static method

Both methods work well, and, from an object-oriented design standpoint, neither
of these methods is “more correct” than the other. The instance method is more for‐
mally object-oriented, but its invocation syntax suffers from a kind of asymmetry. In
a case like this, the choice between an instance method and a class method is simply
a design decision. Depending on the circumstances, one or the other will likely be
the more natural choice.

A word about System.out.println()
We’ve frequently encountered the method System.out.println()—it’s used to dis‐
play output to the terminal window or console. We’ve never explained why this
method has such a long, awkward name or what those two periods are doing in it.
Now that you understand class and instance fields and class and instance methods,
it is easier to understand what is going on: System is a class. It has a public class
field named out. This field is an object of type java.io.PrintStream, and it has an
instance method named println().
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We can use static imports to make this a bit shorter with import static

java.lang.System.out;—this will enable us to refer to the printing method as
out.println() but as this is an instance method, we cannot shorten it further.

Composition Versus Inheritance
Inheritance is not the only technique at our disposal in object-oriented design.
Objects can contain references to other objects, so a larger conceptual unit can be
aggregated out of smaller component parts; this is known as composition.

An important related technique is delegation, where an object of a particular type
holds a reference to a secondary object of a compatible type and forwards all
operations to the secondary object. This is frequently done using interface types,
as shown in this example where we model the employment structure of software
companies:

public interface Employee {
  void work();
}

public class Programmer implements Employee {
  public void work() { /* program computer */ }
}

public class Manager implements Employee {
  private Employee report;

  public Manager(Employee staff) {
    report = staff;
  }

  public Employee setReport(Employee staff) {
    report = staff;
  }

  public void work() {
    report.work();
  }
}

The Manager class is said to delegate the work() operation to their direct report,
and no actual work is performed by the Manager object. Variations of this pattern
involve some work being done in the delegating class, with only some calls being
forwarded to the delegate object.

Another useful, related technique is called the decorator pattern. This provides the
capability to extend objects with new functionality, including at runtime. The slight
overhead is some extra work needed at design time. Let’s look at an example of the
decorator pattern as applied to modeling burritos for sale at a taqueria. To keep
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things simple, we’ve modeled only a single aspect to be decorated—the price of the
burrito:

// The basic interface for our burritos
interface Burrito {
  double getPrice();
}

// Concrete implementation-standard size burrito
public class StandardBurrito implements Burrito {
  private static final double BASE_PRICE = 5.99;

  public double getPrice() {
    return BASE_PRICE;
  }
}

// Larger, super-size burrito
public class SuperBurrito implements Burrito {
  private static final double BASE_PRICE = 6.99;

  public double getPrice() {
    return BASE_PRICE;
  }
}

These cover the basic burritos that can be offered—two different sizes, at different
prices. Let’s enhance this by adding some optional extras—jalapeño chilies and
guacamole. The key design point here is to use an abstract base class that all of the
optional decorating components will subclass:

/*
 * This class is the Decorator for Burrito. It represents optional
 * extras that the burrito may or may not have.
 */
public abstract class BurritoOptionalExtra implements Burrito {
    private final Burrito burrito;
    private final double price;

    protected BurritoOptionalExtra(Burrito toDecorate,
          double myPrice) {
        burrito = toDecorate;
        price = myPrice;
    }

    public final double getPrice() {
        return (burrito.getPrice() + price);
    }
}

Combining an abstract base, BurritoOptionalExtra, with a protected construc‐
tor means that the only valid way to get a BurritoOptionalExtra is to construct an
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instance of one of the subclasses, as they have public constructors. This approach
also hides the setup of the price of the component from client code.

Decorators can, of course, also be combined with sealed types
to allow only a known, finite list of possible decorators.

Let’s test the implementation:

Burrito lunch = new Jalapeno(new Guacamole(new SuperBurrito()));
// The overall cost of the burrito is the expected $8.09.
System.out.println("Lunch cost: "+ lunch.getPrice());

The decorator pattern is very widely used, not least in the JDK utility classes. When
we discuss Java I/O in Chapter 10, we will see more examples of decorators in the
wild.

Exceptions and Exception Handling
We met checked and unchecked exceptions in “Checked and Unchecked Excep‐
tions” on page 79. In this section, we discuss some additional aspects of the design
of exceptions and how to use them in your own code.

Recall that an exception in Java is an object. The type of this object is
java.lang.Throwable, or more commonly, some subclass of Throwable that more
specifically describes the type of exception that occurred. Throwable has two stan‐
dard subclasses: java.lang.Error and java.lang.Exception. Exceptions that are
subclasses of Error generally indicate unrecoverable problems: the virtual machine
has run out of memory, or a class file is corrupted and cannot be read, for example.
Exceptions of this sort can be caught and handled, but it is rare to do so—these are
the unchecked exceptions previously mentioned.

Exceptions that are subclasses of Exception, on the other hand, indicate less severe
conditions. These exceptions can be reasonably caught and handled. They include
such exceptions as java.io.EOFException, which signals the end of a file, and
java.lang.ArrayIndexOutOfBoundsException, which indicates that a program has
tried to read past the end of an array. These are the checked exceptions from
Chapter 2 (except for subclasses of RuntimeException, which are also a form of
unchecked exception). In this book, we use the term “exception” to refer to any
exception object, regardless of whether the type of that exception is Exception or
Error.

Because an exception is an object, it can contain data, and its class can define
methods that operate on that data. The Throwable class and all its subclasses include
a String field that stores a human-readable error message that describes the excep‐
tional condition. It’s set when the exception object is created and can be read from
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the exception with the getMessage() method. Most exceptions contain only this
single message, but a few add other data. The java.io.InterruptedIOException,
for example, adds a field named bytesTransferred that specifies how much input
or output was completed before the exceptional condition interrupted it.

When designing your own exceptions, you should consider what other additional
modeling information is relevant to the exception object. This is usually situation-
specific information about the aborted operation, and the exceptional circumstance
that was encountered (as we saw with java.io.InterruptedIOException).

There are some trade-offs in the use of exceptions in application design. Using
checked exceptions means that the compiler can enforce the handling (or propaga‐
tion up the call stack) of known conditions that have the potential of recovery
or retry. It also means that it’s more difficult to forget to actually handle errors—
thus reducing the risk that a forgotten error condition causes a system to fail in
production.

On the other hand, some applications will not be able to recover from certain
conditions, even conditions that are theoretically modeled by checked exceptions.
For example, if an application requires a config file to be placed at a specific place
in the filesystem and can’t locate it at startup, it may have no option but to print an
error message and exit—despite the fact that java.io.FileNotFoundException is a
checked exception. Forcing exceptions that cannot be recovered from to be either
handled or propagated is, in these circumstances, bordering on perverse; in this
situation, printing the error and exiting is the only really sensible action.

When designing exception schemes, here are some good practices you should
follow:

• Consider what additional state needs to be placed on the exception—remember•
that it’s also an object like any other.

• Exception has four public constructors—under normal circumstances, custom•
exception classes should implement all of them—to initialize the additional
state or to customize messages.

• Don’t create many fine-grained custom exception classes in your APIs—the•
Java I/O and reflection APIs both suffer from this, and it needlessly complicates
working with those packages.

• Don’t overburden a single exception type with describing too many conditions.•
• Never create an exception until you’re sure you need to throw it. Exception•

creation can be a costly operation.

Finally, two exception-handling antipatterns you should avoid:

// Never just swallow an exception
try {
  someMethodThatMightThrow();
} catch(Exception e){
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}

// Never catch, log, and rethrow an exception
try {
  someMethodThatMightThrow();
} catch(SpecificException e){
  log(e);
  throw e;
}

The former just ignores a condition that almost certainly required some action
(even if just a notification in a log). This increases the likelihood of failure elsewhere
in the system—potentially far from the original, real source.

The second just creates noise. We’re logging a message but not actually doing
anything about the issue; we still require some other code higher up in the system to
actually deal with the problem.

Safe Java Programming
Programming languages are sometimes described as being type safe; however, this
term is used rather loosely by working programmers. There are a number of differ‐
ent viewpoints on and definitions for type safety, not all of which are mutually
compatible. The most useful view for our purposes is that type safety is the property
of a programming language that prevents the type of data being incorrectly identi‐
fied at runtime. This should be thought of as a sliding scale—it is more helpful to
think of languages as being more (or less) type safe than each other, rather than a
simple binary property of safe/unsafe.

In Java, the static nature of the type system helps prevent a large class of possible
errors by producing compilation errors if, for example, the programmer attempts to
assign an incompatible value to a variable. However, Java is not perfectly type safe,
as we can perform a cast between any two reference types—this will fail at runtime
with a ClassCastException if the value is not compatible.

In this book, we prefer to think of safety as inseparable from the broader topic
of correctness. This means that we should think in terms of programs, rather
than languages. This emphasizes the point that safe code is not guaranteed by any
widely used language, and instead considerable programmer effort (and adherence
to rigorous coding discipline) must be employed if the end result is to be truly safe
and correct.

We approach our view of safe programs by working with the state model abstraction
as shown in Figure 5-1. A safe program is one in which:

• All objects start off in a legal state after creation•
• Externally accessible methods transition objects between legal states•
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• Externally accessible methods must not return with objects in an inconsistent•
state

• Externally accessible methods must reset objects to a legal state before•
throwing

In this context, “externally accessible” means public, package-private, or
protected. This defines a reasonable model for safety of programs, and as it is
bound up with defining our abstract types in such a way that their methods ensure
consistency of state, it’s reasonable to refer to a program satisfying these require‐
ments as a “safe program,” regardless of the language in which such a program is
implemented.

Private methods do not have to start or end with objects in
a legal state, as they cannot be called by an external piece of
code.

As you might imagine, actually engineering a substantial piece of code so that
we can be sure that the state model and methods respect these properties can
be quite an undertaking. In languages such as Java, in which programmers have
direct control over the creation of preemptively multitasked execution threads, this
problem is a great deal more complex.

Figure 5-1. Program state transitions

Moving on from our introduction of object-oriented design, one final aspect of the
Java language and platform needs to be understood for a sound grounding. That is
the nature of memory and concurrency—one of the most complex of the platform,
but also one that rewards careful study with large dividends. It is the subject of our
next chapter and concludes Part I.
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6
Java’s Approach to Memory

and Concurrency

This chapter is an introduction to the handling of concurrency (multithreading)
and memory in the Java platform. These topics are inherently intertwined, so it
makes sense to treat them together. We will cover:

• Introduction to Java’s memory management•
• The basic mark-and-sweep garbage collection (GC) algorithm•
• How the HotSpot JVM optimizes GC according to the lifetime of the object•
• Java’s concurrency primitives•
• Data visibility and mutability•

Basic Concepts of Java Memory Management
In Java, the memory occupied by an object is automatically reclaimed when the
object is no longer needed. This is done through a process known as garbage
collection (or GC). Garbage collection is a technique that has been around for years
and was pioneered by languages such as Lisp. It takes some getting used to for those
programmers accustomed to languages such as C and C++, in which you must call
the free() function or the delete operator to reclaim memory.
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The fact that you don’t need to remember to destroy every
object you create is one of the features that makes Java a pleas‐
ant language to work with. It is also one of the features that
makes programs written in Java less prone to bugs than those
written in languages that don’t support automatic garbage
collection.

Different VM implementations handle garbage collection in different ways, and
the specifications do not impose very stringent restrictions on how GC must be
implemented. Later in this chapter, we will discuss the HotSpot JVM (which is
the basis of both the Oracle and OpenJDK implementations of Java). Although
this is not the only JVM that you may encounter, it is by far the most common
among server-side deployments and provides the reference example of a modern
production JVM.

Memory Leaks in Java
The fact that Java supports garbage collection dramatically reduces the incidence
of memory leaks. A memory leak occurs when memory is allocated and never
reclaimed. At first glance, it might seem that garbage collection prevents all memory
leaks because it reclaims all unused objects.

A memory leak can still occur in Java, however, if a valid (but unused) reference to
an unused object is left hanging around. For example, when a method runs for a
long time (or forever), the local variables in that method can retain object references
much longer than they are actually required. The following code illustrates:

public static void main(String args[]) {
  int bigArray[] = new int[100000];

  // Do some computations with bigArray and get a result.
  int result = compute(bigArray);

  // We no longer need bigArray. It will get garbage collected when
  // there are no more references to it. Because bigArray is a local
  // variable, it refers to the array until this method returns. But
  // this method doesn't return.
  // If we explicitly sever the reference by assigning it to
  // null then the garbage collector knows it can reclaim the array.
  bigArray = null;

  // Loop forever, handling the user's input
  for(;;) handle_input(result);
}
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Memory leaks can also occur when you use a HashMap or similar data structure to
associate one object with another. Even when neither object is required anymore,
the association remains in the map, preventing the objects from being reclaimed
until the map itself is reclaimed. If the map has a substantially longer lifetime than
the objects it holds, this can cause memory leaks.

Introducing Mark-and-Sweep
Java GC typically relies on an algorithm from a family broadly known as mark-and-
sweep. To understand these algorithms, recall that all Java objects are created in the
heap, and a reference (basically a pointer) to them is stored in a Java local variable
(or field) when an object is created. Local variables live in the method’s stack frame,
and if an object is returned from a method, then the reference is passed back to the
caller’s stack frame when the method exits.

As all objects are allocated in the heap, GC will trigger when the heap gets full (or
before, depending on the details). The basic idea of mark-and-sweep is to trace the
heap and identify which objects are still in use. This can be done by examining
the stack frames of each Java thread (and a few other sources of references) and
following any references into the heap. Each object located is marked as still alive
and can then be checked to see if it has any fields that are of reference type. If so,
these references can be traced and marked as well.

When the recursive tracing activity has completed, all remaining unmarked objects
are known to be no longer needed and the heap space they occupy can be swept as
garbage, i.e., the memory they used is reclaimed to use in further object allocations.
If this analysis can be carried out exactly, then this type of collector is known,
unsurprisingly enough, as an exact garbage collector. For all practical purposes, all
Java GCs can be considered to be exact, but this may not be true in other software
environments.

In a real JVM, there will very likely be different areas of heap memory, and real
programs will use all of them in normal operation. In Figure 6-1 we show one
possible layout of the heap, with two threads (T1 and T2) holding references that
point into the heap.

The different areas are called Eden, Survivor and Tenured; we’ll meet each of these
later in the chapter and see how they relate to each other. For the sake of simplicity,
the figures show an older form of the Java heap, where each memory area is a single
lump of memory. Modern collectors don’t actually lay objects out this way, but it’s
easier to understand by thinking about it this way first!
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Figure 6-1. Heap structure

The figure also shows that it would be dangerous to move objects that application
threads have references to while the program is running.

To avoid this, a simple tracing GC like the one just described will cause a stop-the-
world (STW) pause when it runs. This works because all application threads are
stopped, then GC occurs, and finally application threads are started up again. The
runtime takes care of this by halting application threads as they reach a safepoint
—for example, the start of a loop or just before a method call returns. At these
execution points, the runtime knows that it can stop an application thread without a
problem.

These pauses sometimes worry developers, but for most mainstream usages, Java is
running on top of an operating system (and possibly multiple virtualization layers)
that is constantly swapping processes on and off processor cores, so this slight
additional stoppage is usually not a concern. In the HotSpot case, a large amount
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of work has been done to optimize GC and to reduce STW times, for those cases
where it is important to an application’s workload. We will discuss some of those
optimizations in the next section.

How the JVM Optimizes Garbage Collection
The weak generational hypothesis (WGH) is a great example of one of the runtime
facts about software that we introduced in Chapter 1. Simply put, it is that objects
tend to have one of a small number of possible life expectancies (referred to as
generations).

Usually objects are alive for only a very short amount of time (sometimes called
transient objects) and then become eligible for garbage collection. However, some
small fraction of objects live longer and are destined to become part of the longer-
term state of the program (sometimes referred to as the working set). This can be
seen in Figure 6-2 where we see volume of memory (or number of objects created)
plotted against expected lifetime.

Figure 6-2. Weak generational hypothesis

This fact is not deducible from static analysis of programs, and yet when we
measure the runtime behavior of software, we see that it is broadly true across a
wide range of workloads.

The HotSpot JVM has a garbage collection subsystem that is designed specifically to
take advantage of the weak generational hypothesis, and in this section, we will dis‐
cuss how these techniques apply to short-lived objects (which is the majority case).
This discussion is directly applicable to HotSpot, but other JVMs often employ
similar or related techniques.

In its simplest form, a generational garbage collector is one that takes notice of the
WGH. They take the position that some extra bookkeeping to monitor memory
will be more than paid for by gains obtained by being friendly to the WGH. In
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the simplest forms of generational collector, there are usually just two generations—
usually referred to as young and old generation.

Evacuation
In our original formulation of mark-and-sweep, during the cleanup phase, the GC
reclaimed individual objects for reuse. This is fine, as far as it goes, but it leads
to issues such as memory fragmentation and the GC needing to maintain a “free
list” of memory blocks that are available. However, if the WGH is true, and on any
given GC cycle most objects are dead, then it may make sense to use an alternative
approach to reclaiming space.

This works by dividing the heap up into separate memory spaces; new objects are
created in a space called Eden. Then, on each GC run, we locate only the live objects
and move them to a different space, in a process called evacuation. Collectors that
do this are referred to as evacuating collectors, and they have the property that the
entire memory space can be wiped at the end of the collection, to be reused again
and again.

Figure 6-3 shows an evacuating collector in action, with solid blocks representing
surviving objects, and hatched boxes representing allocated but now dead (and
unreachable) objects.

Figure 6-3. Evacuating collectors

This is potentially much more efficient than the naive collection approach, because
the dead objects are never touched. This means that the GC time is proportional to
the number of live objects, rather than the number of allocated objects. The only
downside is slightly more bookkeeping—we have to pay the cost of copying the live
objects, but this is almost always a very small price compared to the huge gains
realized by evacuation strategies.
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The use of an evacuating collector also allows the use of per-thread allocation. This
means that each application thread can be given a contiguous chunk of memory
(called a thread-local allocation buffer or TLAB) for its exclusive use when allocating
new objects. When new objects are allocated, this just involves bumping a pointer in
the allocation buffer, an extremely cheap operation.

If an object is created just before a collection starts, then it will not have time to
fulfill its purpose and die before the GC cycle starts. In a collector with only two
generations, this short-lived object will be moved into the long-lived region, die
almost immediately, and then stay there until the next full collection. As these are a
lot less frequent (and typically a lot more expensive), this seems rather wasteful.

To mitigate this, HotSpot has a concept of a survivor space, an area used to house
objects that have survived previous collections of young objects. A surviving object
is copied by the evacuating collector between survivor spaces until a tenuring thresh‐
old is reached, when the object will be promoted to the old generation, known as
Tenured or OldGen. This solves the problem of short-lived objects cluttering up the
old generation, at the cost of more complexity in the GC subsystem.

Compaction
A different form of collection algorithm is known as a compacting collector. The
main feature of these collectors is that, at the end of the collection cycle, allocated
memory (i.e., surviving objects) is arranged as a single contiguous area within the
collected region.

The normal case is that all the surviving objects have been “shuffled up” within the
memory pool (or region) usually to the start of the memory range, and there is now
a pointer indicating the start of empty space available for objects to be written into
once application threads restart.

Compacting collectors will avoid memory fragmentation but typically are much
more expensive in terms of amount of CPU consumed than evacuating collectors.
There are design trade-offs between the two algorithms (the details of which
are beyond the scope of this book), but both techniques are used in production
collectors in Java (and in many other programming languages). The space where
long-lived objects end up is typically cleaned using a compacting collector.

A full discussion of the details of the GC subsystem is outside the scope of this
book. For production applications that have to care about these details, specialist
material such as Optimizing Java (O’Reilly) should be consulted.

The HotSpot Heap
The HotSpot JVM is a relatively complex piece of code, made up of an interpreter
and a just-in-time compiler, as well as a user-space memory management subsys‐
tem. It is composed of a mixture of C, C++, and a fairly large amount of platform-
specific assembly code.
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HotSpot manages the JVM heap itself, more-or-less com‐
pletely in user space, and does not need to perform system
calls to allocate or free memory. The area where objects are
initially created is usually called Eden (or the Nursery), and
most production JVMs will use an evacuating strategy when
collecting Eden.

At this point, let’s summarize our description of the HotSpot heap and recap its
basic features:

• The Java heap is a contiguous block of memory, which is reserved at JVM•
startup.

• Only some of the heap is initially allocated to the various memory pools.•
• As the application runs, memory pools are resized as needed.•
• These resizes are performed by the GC subsystem.•
• Objects are created in Eden by application threads and are removed by a•

nondeterministic GC cycle.
• The GC cycle runs when necessary (i.e., when memory is getting low).•
• The heap is divided into two generations, young and old.•
• The young generation is made up of Eden and survivor spaces, whereas the old•

generation is just one memory space.
• After surviving several GC cycles, objects get promoted to the old generation.•
• Collections that collect only the young generation are usually very cheap (in•

terms of computation required).
• HotSpot uses an advanced form of mark-and-sweep and is prepared to do extra•

bookkeeping to improve GC performance.

When discussing garbage collectors, developers should know one other important
terminology distinction:

Parallel collector
A garbage collector that uses multiple threads to perform collection

Concurrent collector
A garbage collector that can run at the same time as application threads are still
running

In the discussion so far, the collection algorithms we have been describing have
implicitly all been parallel, but not concurrent, collectors.
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In modern approaches to GC, there is a growing trend toward
using partially concurrent algorithms. These types of algo‐
rithms are much more elaborate and computationally expen‐
sive than STW algorithms and involve trade-offs. However,
today’s applications are typically willing to trade some extra
computation for reduced application pauses.

In legacy Java versions (version 8 and older), the heap has a simple structure:
each memory pool (Eden, survivor spaces, and Tenured) is a contiguous block
of memory. This is the structure that we’ve shown in the diagrams, as it’s easier
for beginners to visualize. The default collector for the old generation in these
older versions is called Parallel. However, in modern versions of HotSpot, a new,
partially concurrent collection algorithm known as Garbage First (G1) has become
the default.

G1
G1 is an example of a region-based collector and has a different heap layout than the
old-style heap. A region is an area of memory (usually 1M in size, but larger heaps
may have regions of 2, 4, 8, 16, or 32M) where all the objects belong to the same
memory pool. However, in a regional collector, the different regions that make up
a pool are not necessarily located next to each other in memory. This is unlike the
Java 8 heap, where each pool is contiguous, although in both cases the entire heap
remains contiguous.

G1 uses a different version of the algorithm in each Java
version, and there are some important differences in terms
of performance and other behavior between versions. It is
very important that, when upgrading from Java 8 to a later
version and adopting G1, you undertake a full performance
retest. You may find that when switching to Java 11 or 17, you
require fewer resources (and may even save money).

G1 focuses its attention on regions that are mostly garbage, as they have the best
free memory recovery. It is an evacuating collector and does incremental compaction
when evacuating individual regions.

The G1 collector was originally intended to take over from a previous collector,
CMS, as the low-pause collector, and it allows the user to specify pause goals in
terms of how long and how often to pause when doing GC.

The JVM provides a command-line switch that controls how long the collector will
aim to pause: -XX:MaxGCPauseMillis=200. This means that the default pause time
goal is 200 ms, but you can change this value depending on your needs.

There are, of course, limits to how far the collector can be pushed. Java GC is driven
by the rate at which new memory is allocated, which can be highly unpredictable for
many Java applications.
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As noted, G1 was originally intended to be a replacement low-pause collector.
However, the overall characteristics of its behavior have meant that it has actually
evolved into a more general-purpose collector (which is why it has now become the
default).

Note that the development of a new production-grade collector that is suitable for
general use is not a quick process. In the next section, let’s move on to discuss the
alternative collectors that are provided by HotSpot (including the parallel collector
of Java 8).

A detailed full treatment is outside the scope of the book, but it is worth knowing
about the existence of alternate collectors. For non-HotSpot users, you should
consult your JVM’s documentation to see what options may be available for you.

ParallelOld
By default, in Java 8 the collector for the old generation is a parallel (but not
concurrent) mark-and-sweep collector. It seems, at first glance, to be similar to the
collector used for the young generation. However, it differs in one very important
respect: it is not an evacuating collector. Instead, the old generation is compacted
when collection occurs. This is important so that the memory space does not
become fragmented over time.

The ParallelOld collector is very efficient, but it has two properties that make it
less desirable for modern applications. It is:

• Fully STW•
• Linear in pause time with the size of the heap•

This means that once GC has started, it cannot be aborted early, and the cycle must
be allowed to finish. As heap sizes increase, this makes ParallelOld a less attractive
option than G1, which can often keep a constant pause time regardless of heap size
(assuming the allocation rate is manageable).

In modern deployments, especially for Java 11+, G1 gives typically better perfor‐
mance on a large majority of applications that previously used ParallelOld. The
ParallelOld collector is still available as of Java 17, for those (hopefully few)
apps that still need it, but the direction of the platform is clear—toward using G1
wherever possible.

Serial
The Serial and SerialOld collectors operate in a similar fashion to the Parallel collec‐
tors, with one important difference: they use only a single CPU core to perform
fully STW GC.

On modern multicore systems, there is no benefit from using these collectors, and
so they should not be used, as they are just an inefficient form of the parallel
collectors. However, one place where you may still encounter these collectors is
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when running Java applications in containers. A full discussion of containerized
Java is outside the scope of this book. However, if your application is run in too
small a container (either too little memory or with only a single CPU), then the
JVM will automatically select the Serial collector.

Therefore, we do not recommend running Java in a single-core container, as the
Serial collector performs noticeably worse than G1 under almost all realistic load
scenarios.

Shenandoah
Shenandoah is a new GC algorithm developed by Red Hat to work effectively with
certain use cases where G1 and other algorithms do not perform well.

The aim of Shenandoah is to bring down pause times, especially on large heaps, and
to guarantee (as far as possible) that pause times will not exceed 1 ms, no matter the
size of the heap.

Like G1, Shenandoah is an evacuating regional collector that performs concurrent
marking. The evacuation of regions causes incremental compaction but the key
difference is that in G1, evacuation happens during a STW phase, whereas in
Shenandoah the evacuation is concurrent with application threads.

There is no such thing as a free lunch, however, and users of Shenandoah could
experience up to 15% overhead (i.e., reduction in application throughput), but the
exact figure will depend on the details of the workload. For example, on some
targeted benchmarks you can observe a significant overhead, towards the upper end
of the expected range.

Shenandoah can be activated with this command line switch:

-XX:+UseShenandoahGC

One important point to note is that, at time of writing, Shenandoah is not yet
a generational collector, although work is underway to add generations to the
implementation.

ZGC
As well as Shenandoah, Oracle has also created a new ultra-low-pause collector,
known as ZGC. It is designed to appeal to the same sorts of workloads as
Shenandoah and is broadly similar in intent, effect, and overhead. ZGC is a
single-generation, region-based, NUMA-aware, compacting collector. However, the
implementation of ZGC is quite different from Shenandoah.

ZGC can be activated with this command line switch:

-XX:+UseZGC

ZGC needs only a stop-the-world pause to perform root scanning, which means
that GC pause times do not increase with the size of the heap or the number of
live objects. Due to its intended domain of applicability (ultra-low pause on large
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heaps), ZGC is most commonly used by Oracle customers on the Oracle-supported
builds of Java.

Finalization
For completeness, developers should be aware of an old technique for resource
management known as finalization. However, this technique is extremely heavily
deprecated and the vast majority of Java developers should not directly use it under
any circumstances.

Finalization has been deprecated and will be removed in a
future release. The mechanism remains enabled by default for
now but can be disabled with a switch. In a future release, it
will be disabled by default and then eventually removed.

The finalization mechanism was intended to automatically release resources once
they are no longer needed. Garbage collection automatically frees up the memory
resources used by objects, but objects can hold other kinds of resources, such
as open files and network connections. The garbage collector cannot free these
additional resources for you, so the finalization mechanism was intended to allow
the developer to perform cleanup tasks as closing files, terminating network con‐
nections, deleting temporary files, and so on.

The finalization mechanism works as follows: if an object has a finalize() method
(usually called a finalizer), this is invoked some time after the object becomes
unused (or unreachable) but before the garbage collector reclaims the space alloca‐
ted to the object. The finalizer is used to perform resource cleanup for an object.

The central problem with finalization is that Java makes no guarantees about when
garbage collection will occur or in what order objects will be collected. Therefore,
the platform can make no guarantees about when (or even whether) a finalizer will
be invoked or in what order finalizers will be invoked.

Finalization Details
The finalization mechanism is an attempt to implement a similar concept present
in other languages and environments. In particular, C++ has a pattern known
as RAII (Resource Acquisition Is Initialization) that provides automatic resource
management in a similar way. In that pattern, a destructor method (which would be
called finalize() in Java) is provided by the programmer, to perform cleanup and
release resources when the object is destroyed.

The basic use case for this is fairly simple: when an object is created, it takes
ownership of some resource, and the object’s ownership of that resource is tied
to the lifetime of the object. When the object dies, the ownership of the resource
is automatically relinquished, as the platform calls the destructor without any pro‐
grammer intervention.
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While finalization superficially sounds similar to this mechanism, in reality it is
fundamentally different. In fact, the finalization language feature is fatally flawed,
due to differences in the memory management schemes of Java versus C++.

In the C++ case, memory is handled manually, with explicit lifetime management of
objects under the control of the programmer. This means that the destructor can be
called immediately after the object is deleted (the platform guarantees this), and so
the acquisition and release of resources is directly tied to the lifetime of the object.

On the other hand, Java’s memory management subsystem is a garbage collector
that runs as needed, in response to running out of available memory to allocate. It
therefore runs at variable (and nondeterministic) intervals and so finalize() is run
only when the object is collected, and this will be at an unknown time.

If the finalize() mechanism was used to automatically release resources (e.g.,
filehandles), then there is no guarantee as to when (if ever) those resources will
actually become available. This has the result of making the finalization mechanism
fundamentally unsuitable for its stated purpose—automatic resource management.
We cannot guarantee that finalization will happen fast enough to prevent us from
running out of resources. As an automatic cleanup mechanism for protecting scarce
resources (such as filehandles), finalization is broken by design.

Finalization has only a very small number of legitimate use cases, and only a tiny
minority of Java developers will ever encounter them. If in any doubt, do not
use finalization—try-with-resources is usually the correct alternative. More details
about try-with-resources can be found in Chapter 10.

Java’s Support for Concurrency
The idea of a thread is that of a lightweight unit of execution—smaller than a
process, but still capable of executing arbitrary Java code. The usual way that this
is implemented is for each thread to be a fully fledged unit of execution to the
operating system but to belong to a process, with the address space of the process
being shared between all threads comprising that process. This means each thread
can be scheduled independently and has its own stack and program counter but
shares memory and objects with other threads in the same process.

The Java platform has supported multithreaded programming from the very first
version. The platform exposes the ability to create new threads of execution to the
developer.

To understand this, first we must consider what happens in detail when a Java
program starts up and the original application thread (usually referred to as main
thread) appears:

1. The programmer executes java Main (other startup cases are possible).1.
2. This causes the Java Virtual Machine, the context within which all Java pro‐2.

grams run, to start up.
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3. The JVM examines its arguments and sees that the programmer has requested3.
execution starting at the entry point (the main() method) of Main.class.

4. Assuming that Main passes classloading checks, a dedicated thread for the4.
execution of the program is started (main thread).

5. The JVM bytecode interpreter is started on main thread.5.

6. Main thread’s interpreter reads the bytecode of Main::main() and execution6.
begins, one bytecode at a time.

Every Java program starts this way, but this also means:

• Every Java program starts as part of a managed model with one interpreter per•
thread.

• Every Java program always runs as part of a multithreaded operating system•
process.

• The JVM has a certain ability to control a Java application thread.•

Following from this, when we create new threads of execution in Java code, this is
usually as simple as:

Thread t = new Thread(() -> {System.out.println("Hello Thread");});
t.start();

This small piece of code creates and starts a new thread, which executes the body
of the lambda expression and then executes. Technically speaking, the lambda is
converted to an instance of the Runnable interface before being passed to the
Thread constructor.

The threading mechanism allows new threads to execute concurrently with the
original application thread and the threads that the JVM itself starts up for various
purposes.

For mainstream implementations of the Java platform, every time we call
Thread::start() this call is delegated to the operating system, and a new OS thread
is created. This new OS thread exec()’s a new copy of the JVM bytecode interpreter.
The interpreter starts executing at the run() method (or, equivalently, at the body of
the lambda).

This means that application threads have their access to the CPU controlled by
the operating system scheduler—a built-in part of the OS that is responsible for
managing timeslices of processor time (and that will not allow an application thread
to exceed its allocated time).

In more recent versions of Java, an increasing trend toward runtime-managed con‐
currency has appeared. This is the idea that for many purposes it’s not desirable
for developers to explicitly manage threads. Instead, the runtime should provide
“fire and forget” capabilities, whereby the program specifies what needs to be done,
but the low-level details of how this is to be accomplished are left to the runtime.
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This viewpoint can be seen in the concurrency toolkit contained in java.util.con
current, which we discuss briefly in Chapter 8.

For the remainder of this chapter, we will introduce the low-level concurrency
mechanisms that the Java platform provides and that every Java developer should
be aware of. The reader is strongly encouraged to understand both the low-level
Thread-based and the runtime-managed approaches before doing any significant
concurrent programming.

Thread Lifecycle
Let’s start by looking at the lifecycle of an application thread. Every operating system
has a view of threads that can differ in the details (but in most cases is broadly
similar at a high level). Java tries hard to abstract these details away and has an
enum called Thread.State, which wrappers over the operating system’s view of the
thread’s state. The values of Thread.State provide an overview of the lifecycle of a
thread:

NEW

The thread has been created, but its start() method has not yet been called.
All threads start in this state.

RUNNABLE

The thread is running or is available to run when the operating system
schedules it.

BLOCKED

The thread is not running because it is waiting to acquire a lock so that it can
enter a synchronized method or block. We’ll see more about synchronized
methods and blocks later in this section.

WAITING

The thread is not running because it has called Object.wait() or
Thread.join().

TIMED_WAITING

The thread is not running because it has called Thread.sleep() or has called
Object.wait() or Thread.join() with a timeout value.

TERMINATED

The thread has completed execution. Its run() method has exited normally or
by throwing an exception.

These states represent the view of a thread that is common (at least across main‐
stream operating systems), leading to a view like Figure 6-4.
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Figure 6-4. Thread lifecycle

Threads can also be made to sleep, by using the Thread.sleep() method. This takes
an argument in milliseconds, which indicates how long the thread would like to
sleep like this:

try {
    Thread.sleep(2000);
} catch (InterruptedException e) {
    e.printStackTrace();
}

The argument to sleep is a request to the operating system,
not a demand. For example, your program may sleep for
longer than requested, depending on load and other factors
specific to the runtime environment.

We will discuss the other methods of Thread later in this chapter, but first we need
to cover some important theory that deals with how threads access memory and
that is fundamental to understanding why multithreaded programming is hard and
can cause developers a lot of problems.

Visibility and Mutability
In mainstream Java implementations, all Java application threads in a process have
their own call stacks (and local variables) but share a single heap. This makes it very
easy to share objects between threads, as all that is required is to pass a reference
from one thread to another. This is illustrated in Figure 6-5.
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This leads to a general design principle of Java—that objects are visible by default.
If I have a reference to an object, I can copy it and hand it off to another thread
with no restrictions. A Java reference is essentially a typed pointer to a location in
heap—and threads share the same heap, so visible by default is a natural model.

In addition to visible by default, Java has another property that is important to
fully understand concurrency, which is that objects are mutable: the contents of an
object instance’s fields can usually be changed. We can make individual variables
or references constant by using the final keyword, but this does not apply to the
contents of the object.

As we will see throughout the rest of this chapter, the combination of these two
properties—visibility across threads and object mutability—gives rise to a great
many complexities when trying to reason about concurrent Java programs.

Figure 6-5. Shared memory between threads
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Concurrent safety
If we’re to write correct multithreaded code, then we want our programs to satisfy a
certain important property.

In Chapter 5, we defined a safe object-oriented program to be one where we move
objects from legal state to legal state by calling their accessible methods. This defini‐
tion works well for single-threaded code. However, there is a particular difficulty
that comes about when we try to extend it to concurrent programs.

A safe multithreaded program is one in which it is impossible
for any object to be seen in an illegal or inconsistent state by
any other object, no matter what methods are called, and no
matter in what order the application threads are scheduled by
the operating system.

For most mainstream cases, the operating system will schedule threads to run on
particular processor cores at seemingly random times, depending on load and what
else is running in the system. If load is high, then there may be other processes that
also need to run.

The operating system will forcibly remove a Java thread from a CPU core if it needs
to. The thread is suspended immediately, no matter what it’s doing—including
being partway through executing a method. However, as we discussed in Chapter 5,
a method can temporarily put an object into an illegal state while it is working on it,
providing it corrects it before the method exits.

This means that if a thread is swapped off before it has completed a long-running
method, it may leave an object in an inconsistent state, even if the program follows
the safety rules. Another way of saying this is that even data types that have been
correctly modeled for the single-threaded case still need to protect against the
effects of concurrency. Code that adds this extra layer of protection is called concur‐
rently safe or (more informally) threadsafe.

In the next section, we’ll discuss the primary means of achieving this safety, and at
the end of the chapter, we’ll meet some other mechanisms that can also be useful
under some circumstances.

Exclusion and Protecting State
Any code that modifies or reads state that can become inconsistent must be pro‐
tected. To achieve this, the Java platform provides only one mechanism: exclusion.

Consider a method that contains a sequence of operations that, if interrupted
partway through, could leave an object in an inconsistent or illegal state. If this
illegal state was visible to another object, incorrect code behavior could occur.
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For example, consider an ATM or other cash-dispensing machine:

public class Account {
    private double balance = 0.0; // Must be >= 0
    // Assume the existence of other field (e.g., name) and methods
    // such as deposit(), checkBalance(), and dispenseNotes()

    public Account(double openingBal) {
        balance = openingBal;
    }

    public boolean withdraw(double amount) {
        if (balance >= amount) {
            try {
                Thread.sleep(2000); // Simulate risk checks
            } catch (InterruptedException e) {
                return false;
            }
            balance = balance - amount;
            dispenseNotes(amount);
            return true;
        }
        return false;
    }
}

The sequence of operations that happens inside withdraw() can leave the object in
an inconsistent state. In particular, after we’ve checked the balance, a second thread
could come in while the first was sleeping in simulated risk checks, and the account
could be overdrawn, in violation of the constraint that balance >= 0.

This is an example of a system where the operations on the objects are single-
threaded safe (because the objects cannot reach an illegal state (balance < 0) if
called from a single thread) but not concurrently safe.

To allow the developer to make code like this concurrently safe, Java provides the
synchronized keyword. This keyword can be applied to a block or to a method, and
when it is used, the platform uses it to restrict access to the code inside the block or
method.

Because synchronized surrounds code, many developers are
led to the conclusion that concurrency in Java is about code.
Some texts even refer to the code that is inside the synchron‐
ized block or method as a critical section and consider that
to be the crucial aspect of concurrency. This is not the case;
instead, it is the inconsistency of data that we must guard
against, as we will see.

The Java platform keeps track of a special token, called a monitor, for every object
that it ever creates. These monitors (also called locks) are used by synchronized to
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indicate that the following code could temporarily render the object inconsistent.
The sequence of events for a synchronized block or method is:

1. Thread needs to modify an object and may make it briefly inconsistent as an1.
intermediate step

2. Thread acquires the monitor, indicating it requires temporary exclusive access2.
to the object

3. Thread modifies the object, leaving it in a consistent, legal state when done3.
4. Thread releases the monitor4.

If another thread attempts to acquire the lock while the object is being modified,
then the attempt to acquire the lock blocks, until the holding thread releases the
lock.

Note that you do not have to use the synchronized statement unless your program
creates multiple threads that share data. If only one thread ever accesses a data
structure, there is no need to protect it with synchronized.

One point is of critical importance—acquiring the monitor does not prevent access
to the object. It only prevents any other thread from claiming the lock. Correct
concurrently safe code requires developers to ensure that all accesses that might
modify or read potentially inconsistent state acquire the object monitor before
operating on or reading that state.

Put another way, if a synchronized method is working on an object and has placed
it into an illegal state, and another method (which is not synchronized) reads from
the object, it can still see the inconsistent state.

Synchronization is a cooperative mechanism for protecting
state, and it is very fragile as a result. A single bug (such as
missing a single synchronized keyword from a method it’s
required on) can have catastrophic results for the safety of the
system as a whole.

The reason we use the word synchronized as the keyword for “requires temporary
exclusive access” is that in addition to acquiring the monitor, the JVM also rereads
the current state of the object from main memory when the block is entered.
Similarly, when the synchronized block or method is exited, the JVM flushes any
modified state of the object back to main memory.

Without synchronization, different CPU cores in the system may not see the same
view of memory, and memory inconsistencies can damage the state of a running
program, as we saw in our ATM example.

The simplest example of this is known as lost update, as demonstrated in the
following code:
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public class Counter {
    private int i = 0;

    public int increment() {
        return i = i + 1;
    }
    public int getCounter() { return i; }
}

This can be driven via a simple control program:

    Counter c = new Counter();
    int REPEAT = 10_000_000;
    Runnable r = () -> {
        for (int i = 0; i < REPEAT; i++) {
            c.increment();
        }
    };
    Thread t1 = new Thread(r);
    Thread t2 = new Thread(r);
    
    t1.start();
    t2.start();
    t1.join();
    t2.join();

    int anomaly = (2 * REPEAT) - c.getCounter();
    double perc = ((double) anomaly * 100) / (2 * REPEAT);
    System.out.println("Lost updates: "+ anomaly +" ; % = " + perc);

If this concurrent program was correct, then the value for the anomaly (number
of lost updates) should be exactly zero. It is not, and so we may conclude that
unsynchronized access is fundamentally unsafe.

By contrast, we also see that the addition of the keyword synchronized to the
increment method is sufficient to reduce the lost update anomaly to zero—that is, to
make the method correct, even in the presence of multiple threads.

volatile
Java provides another keyword for dealing with concurrent access to data. This is
the volatile keyword, and it indicates that before being used by application code,
the value of the field or variable must be reread from main memory. Equally, after a
volatile value has been modified, as soon as the write to the variable has completed,
it must be written back to main memory.

One common usage of the volatile keyword is in the “run-until-shutdown” pat‐
tern. This is used in multithreaded programming where an external user or system
needs to signal to a processing thread that it should finish the current job being
worked on and then shut down gracefully. This is sometimes called the “graceful
completion” pattern. Let’s look at a typical example, supposing that this code for our
processing thread is in a class that implements Runnable:
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private volatile boolean shutdown = false;

public void shutdown() {
    shutdown = true;
}

public void run() {
    while (!shutdown) {
        // ... process another task
    }
}

All the time that the shutdown() method is not called by another thread, the
processing thread continues to sequentially process tasks (this is often combined
very usefully with a BlockingQueue to deliver work). Once shutdown() is called by
another thread, the processing thread immediately sees the shutdown flag change to
true. This does not affect the running job, but once the task finishes, the processing
thread will not accept another task and instead will shut down gracefully.

However, useful as the volatile keyword is, it does not provide a complete protec‐
tion of state—as we can see by using it to mark the field in Counter as volatile.
We might naively assume that this would protect the code in Counter. However,
it does not. To see this, modify the previous Counter example and add the word
volatile to the field i and rerun the example. The observed nonzero value of the
anomaly (and therefore, the presence of the lost update problem) tells us that by
itself, volatile does not make code threadsafe.

Useful Methods of Thread
The Thread class has a number of methods to make your life easier when you’re
creating new application threads. This is not an exhaustive list—there are many
other methods on Thread, but this is a description of some of the more common
methods.

getId()
This method returns the ID number of the thread, as a long. This ID will stay
the same for the lifetime of the thread and is guaranteed to be unique within this
instance of the JVM.

getPriority() and setPriority()
These methods are used to control the priority of threads. The scheduler decides
how to handle thread priorities; for example, one strategy could be to not have
any low-priority threads run while there are high-priority threads waiting. In most
cases, there is no way to influence how the scheduler will interpret priorities.
Thread priorities are represented as an integer between 1 and 10, with 10 being the
highest.
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setName() and getName()
These methods allow the developer to set or retrieve a name for an individual
thread. Naming threads is good practice, as it can make debugging much, much
easier, especially in a tool such as JDK Mission Control (which we will discuss
briefly in Chapter 13).

getState()
This returns a Thread.State object that indicates which state this thread is in, as
per the values defined in “Thread Lifecycle” on page 251.

isAlive()
This method is used to test whether a thread is still alive.

start()
This method is used to create a new application thread, and to schedule it, with the
run() method being the entry point for execution. A thread terminates normally
when it reaches the end of its run() method or when it executes a return statement
in that method.

interrupt()
If a thread is blocked in a sleep(), wait(), or join() call, then calling interrupt()
on the Thread object that represents the thread will cause the thread to be sent an
InterruptedException (and to wake up).

If the thread was involved in interruptible I/O, then the I/O will be terminated and
the thread will receive a ClosedByInterruptException. The interrupt status of the
thread will be set to true, even if the thread was not engaged in any activity that
could be interrupted.

join()
The current thread waits until the thread corresponding to the Thread object has
died. It can be thought of as an instruction not to proceed until the other thread has
completed.

setDaemon()
A user thread is a thread that will prevent the process from exiting if it is still alive—
this is the default for threads. Sometimes, programmers want threads that will not
prevent an exit from occurring—these are called daemon threads. The status of a
thread as a daemon or user thread can be controlled by the setDaemon() method
and checked using isDaemon().
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setUncaughtExceptionHandler()
When a thread exits by throwing an exception (i.e., one that the program did not
catch), the default behavior is to print the name of the thread, the type of the
exception, the exception message, and a stack trace. If this isn’t sufficient, you can
install a custom handler for uncaught exceptions in a thread. For example:

// This thread just throws an exception
Thread handledThread =
  new Thread(() -> { throw new UnsupportedOperationException(); });

// Giving threads a name helps with debugging
handledThread.setName("My Broken Thread");

// Here's a handler for the error.
handledThread.setUncaughtExceptionHandler((t, e) -> {
    System.err.printf("Exception in thread %d '%s':" +
        "%s at line %d of %s%n",
        t.getId(),    // Thread id
        t.getName(),  // Thread name
        e.toString(), // Exception name and message
        e.getStackTrace()[0].getLineNumber(),
        e.getStackTrace()[0].getFileName()); });
handledThread.start();

This can be useful in some situations; for example, if one thread is supervising a
group of other worker threads, then this pattern can be used to restart any threads
that die.

There is also setDefaultUncaughtExceptionHandler(), a static method that sets
a backup handler for catching any thread’s uncaught exceptions.

Deprecated Methods of Thread
In addition to the useful methods of Thread, there are a number of dangerous
methods you should not use. These methods form part of the original Java thread
API but were quickly found to be unsuitable for developer use. Unfortunately, due
to Java’s backward compatibility requirements, it has not been possible to remove
them from the API. Developers simply need to be aware of them and to avoid using
them under all circumstances.

stop()
Thread.stop() is almost impossible to use correctly without violating concurrent
safety, as stop() kills the thread immediately, without giving it any opportunity
to recover objects to legal states. This is in direct opposition to principles such as
concurrent safety and so should never be used.

260 | Chapter 6: Java’s Approach to Memory and Concurrency



1 Outside of Java, not all implementations of locks have this property.

suspend(), resume(), and countStackFrames()
The suspend() mechanism does not release any monitors it holds when it sus‐
pends, so any other thread that attempts to access those monitors will deadlock.
In practice, this mechanism produces race conditions between these deadlocks
and resume() that render this group of methods unusable. The method countStack
Frames() only works when called on a suspended thread so is also made nonfunc‐
tional by this restriction.

destroy()
This method was never implemented—it would have suffered from the same race
condition issues as suspend() if it had been.

All of these deprecated methods should always be avoided. A set of safe alternative
patterns that achieve the same intended aims as the preceding methods have been
developed. A good example of one of these patterns is the run-until-shutdown
pattern that we already met.

Working with Threads
To work effectively with multithreaded code, you need the basic facts about moni‐
tors and locks at your command. This checklist contains the main facts you should
know:

• Synchronization is about protecting object state and memory, not code.•
• Synchronization is a cooperative mechanism between threads. One bug can•

break the cooperative model and have far-reaching consequences.
• Acquiring a monitor only prevents other threads from acquiring the monitor—•

it does not protect the object.
• Unsynchronized methods can see (and modify) inconsistent state, even while•

the object’s monitor is locked.

• Locking an Object[] doesn’t lock the individual objects.•
• Primitives are not mutable, so they can’t (and don’t need to) be locked.•

• synchronized can’t appear on a method declaration in an interface.•
• Inner classes are just syntactic sugar, so locks on inner classes have no effect on•

the enclosing class (and vice versa).
• Java’s locks are reentrant. This means that if a thread holding a monitor•

encounters a synchronized block for the same monitor, it can enter the block.1

Working with Threads | 261

M
em

o
ry and

C
o

ncurrency



We’ve also seen that threads can be asked to sleep for a period of time. It is also
useful to go to sleep for an unspecified amount of time and wait until a condition is
met. In Java, this is handled by the wait() and notify() methods that are present
on Object.

Just as every Java object has a lock associated with it, every object maintains a list
of waiting threads. When a thread calls the wait() method of an object, any locks
the thread holds are temporarily released, and the thread is added to the list of
waiting threads for that object and stops running. When another thread calls the
notifyAll() method of the same object, the object wakes up the waiting threads
and allows them to continue running.

For example, let’s look at a simplified version of a queue that is safe for multithrea‐
ded use:

/*
 * One thread calls push() to put an object on the queue.
 * Another calls pop() to get an object off the queue. If there is no
 * data, pop() waits until there is some, using wait()/notify().
 */
public class WaitingQueue<E> {
    LinkedList<E> q = new LinkedList<E>(); // storage
    public synchronized void push(E o) {
        q.add(o);         // Append the object to the end of the list
        this.notifyAll(); // Tell waiting threads that data is ready
    }
    public synchronized E pop() {
        while(q.size() == 0) {
            try { this.wait(); }
            catch (InterruptedException ignore) {}
        }
        return q.remove();
    }
}

This class uses a wait() on the instance of WaitingQueue if the queue is empty
(which would make the pop() fail). The waiting thread temporarily releases its
monitor, allowing another thread to claim it—a thread that might push() some‐
thing new onto the queue. When the original thread is woken up again, it is
restarted where it originally began to wait, and it will have reacquired its monitor.

wait() and notify() must be used inside a synchronized
method or block, because of the temporary relinquishing of
locks required for them to work properly.
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In general, most developers shouldn’t roll their own classes like the one in this
example—instead, use the libraries and components that the Java platform provides
for you.

Summary
In this chapter, we’ve discussed Java’s view of memory and concurrency and seen
how these topics are intrinsically linked.

Java’s garbage collection is one of the major aspects of the platform that simplifies
development by removing the need for programmers to manually manage memory.
We have seen how Java provides advanced GC capabilities and how modern ver‐
sions of Java use the partially concurrent G1 collector by default.

We have also discussed how, as processors develop more and more cores, we will
need to use concurrent programming techniques to use those cores effectively. In
other words, concurrency is key to the future of well-performing applications.

Java’s threading model is based on three fundamental concepts:

Shared, visible-by-default mutable state
Objects are easily shared between different threads in a process, and they can
be changed (“mutated”) by any thread holding a reference to them.

Preemptive thread scheduling
The OS thread scheduler can swap threads on and off cores at more or less any
time.

Object state can only be protected by locks
Locks can be hard to use correctly, and state is quite vulnerable—even in
unexpected places such as read operations.

Taken together, these three aspects of Java’s approach to concurrency explain why
multithreaded programming can cause so many headaches for developers.
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II
Working with the Java Platform

Part II is an introduction to some of the core libraries that ship with Java and
some programming techniques that are common to intermediate and advanced Java
programs.

Chapter 7, “Programming and Documentation Conventions”
Chapter 8, “Working with Java Collections”
Chapter 9, “Handling Common Data Formats”
Chapter 10, “File Handling and I/O”
Chapter 11, “Classloading, Reflection, and Method Handles”
Chapter 12, “Java Platform Modules”
Chapter 13, “Platform Tools”





7
Programming and

Documentation Conventions

This chapter explains a number of important and useful Java programming and
documentation conventions. It covers:

• General naming and capitalization conventions•
• Portability tips and conventions•

• javadoc documentation comment syntax and conventions•

Naming and Capitalization Conventions
The following widely adopted naming conventions apply to modules, packages,
reference types, methods, fields, and constants in Java. Because these conventions
are almost universally followed and because they affect the public API of the classes
you define, you should adopt them as well:

Modules
As modules are the preferred unit of distribution for Java applications from
Java 9 onward, you should take special care when naming them.

Module names must be globally unique—the modules system is essentially
predicated on this assumption. As modules are effectively super packages (or
aggregates of packages), the module name should be closely related to the
package names grouped into the module. One recommended way to do this is
to group the packages within a module and use the root name of the packages
as the module name. For example, if an application’s packages all live under
com.mycompany.*, then com.mycompany is a good name for your module.
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Packages
It is customary to ensure that your publicly visible package names are unique.
One common way of doing this is by prefixing them with the inverted name of
an internet domain that you own (e.g., com.oreilly.javanutshell).

This convention is now followed less strictly than it used to be, with some
projects merely adopting a simple, recognizable, and unique prefix instead. All
package names should be lowercase.

Classes
A type name should begin with a capital letter and be written in mixed case
(e.g., String). This is usually referred to as Pascal case. If a class name consists
of more than one word, each word should begin with a capital letter (e.g.,
StringBuffer). If a type name, or one of the words of a type name, is an acro‐
nym, the acronym can be written in all capital letters (e.g., URL, HTMLParser).

Because classes and enumerated types are designed to represent objects,
you should choose class names that are nouns (e.g., Thread, Teapot, Format
Converter).

Enum types are a special case of a class with a finite number of instances. They
should be named as nouns in all but highly exceptional circumstances. The
constants defined by enum types are also typically written in all capital letters, as
per the rules for constants below.

Interfaces
Java programmers typically use interfaces in one of two ways: either to convey
that a class has additional, supplementary aspects or behaviors; or to indicate
that the class is one possible implementation of an interface for which there are
multiple valid implementation choices.

When an interface is used to provide additional information about the classes
that implement it, it is common to choose an interface name that is an adjective
(i.e., Runnable, Cloneable, Serializable).

When an interface is intended to work more like an abstract superclass, use
a name that is a noun (e.g., Document, FileNameMap, Collection). It is con‐
ventional to not indicate via the name that it is an interface (i.e., don’t use
IDocument or DocumentInterface).

Methods
A method name always begins with a lowercase letter. If the name contains
more than one word, every word after the first begins with a capital letter (e.g.,
insert(), insertObject(), insertObjectAt()). This is usually referred to as
camel case.

Method names are typically chosen so that the first word is a verb. Method
names can be as long as is necessary to make their purpose clear, but choose
succinct names where possible. Avoid overly general method names, such as
performAction(), go(), or the dreadful doIt().
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Fields and constants
Nonconstant field names follow the same capitalization conventions as method
names. A field name should be chosen to best describe the purpose of the
field or the value it holds. Prefixes to indicate types or visibility of fields are
discouraged.

If a field is a static final constant, it should be written in all uppercase. If
the name of a constant includes more than one word, the words should be
separated with underscores (e.g., MAX_VALUE).

Parameters
Method parameters follow the same capitalization conventions as nonconstant
fields. The names of method parameters appear in the documentation for a
method, so you should choose names that make the purpose of the parameters
as clear as possible. Try to keep parameter names to a single word and use them
consistently. For example, if a WidgetProcessor class defines many methods
that accept a Widget object as the first parameter, name this parameter widget.

Local variables
Local variable names are an implementation detail and never visible outside
your class. Nevertheless, choosing good names makes your code easier to read,
understand, and maintain. Variables are typically named following the same
conventions as methods and fields.

In addition to the conventions for specific types of names, there are conven‐
tions regarding the characters you should use in your names. Java allows the $
character in any identifier, but, by convention, its use is reserved for synthetic
names generated by source-code processors. For example, it is used by the Java
compiler to make inner classes work. You should not use the $ character in any
name that you create.

Java allows names to use any alphanumeric characters from the entire Unicode
character set. While this can be convenient for non-English-speaking program‐
mers, Unicode use has never really taken off, and this usage is extremely rare.

Practical Naming
The names we give to our constructs matter—a lot. Naming is a key part of the
process that conveys our abstract designs to our peers. The process of transferring a
software design from one human mind to another is hard—harder, in many cases,
than the process of transferring our design from our mind to the machines that will
execute it.

We must, therefore, do everything we can to ensure that this process is eased.
Names are a keystone of this. When reviewing code (and all code should be
reviewed), pay particular attention to the names that have been chosen:
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• Do the names of the types reflect the purpose of those types?•
• Does each method do exactly what its name suggests? Ideally, no more and no•

less?
• Are the names descriptive enough? Could a more specific name be used•

instead?
• Are the names well suited for the domain they describe?•
• Are the names consistent across the domain?•
• Do the names mix metaphors?•
• Does the name reuse a common term of software engineering?•
• Do the names of boolean-returning methods include negation? These often•

need more attention to understand when reading (e.g., notEnabled() vs.
enabled())

Mixed metaphors are common in software, especially after several releases of an
application. A system that starts off perfectly reasonably with components called
Receptionist (for handling incoming connections), Scribe (for persisting orders),
and Auditor (for checking and reconciling orders) can quite easily end up in a later
release with a class called Watchdog for restarting processes. This isn’t terrible, but it
breaks the established pattern of people’s job titles that previously existed.

It is also incredibly important to realize that software changes a lot over time.
A perfectly apposite name on release 1 can become highly misleading by release
4. Care should be taken that as the system focus and intent shift, the names are
refactored along with the code. Modern IDEs have no problem with global search
and replace of symbols, so there is no need to cling to outdated metaphors once
they are no longer useful.

One final note of caution: an overly strict interpretation of these guidelines can lead
the developer to some very odd naming constructs. There are a number of excellent
descriptions of some of the absurdities that can result by taking these conventions
to their extremes.

In other words, none of the conventions described here is mandatory. Following
them will, in the vast majority of cases, make your code easier to read and maintain.
However, you should not be afraid to deviate from these guidelines if it makes your
code easier to read and understand.

Break any of these rules rather than say anything outright barbarous.
—George Orwell

Above all, you should have a sense of the expected lifetime of the code you are
writing. A risk calculation system in a bank may have a lifetime of a decade or more,
whereas a prototype for a startup may be relevant for only a few weeks. Document
accordingly—the longer the code is likely to be live, the better its documentation
and naming need to be.
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Java Documentation Comments
Most ordinary comments within Java code explain the implementation details of
that code. By contrast, the Java language specification defines a special type of
comment known as a doc comment that serves to document the API of your code.

A doc comment is an ordinary multiline comment that begins with /** (instead
of the usual /*) and ends with */. A doc comment appears immediately before a
type or member definition and contains documentation for that type or member.
The documentation can include simple HTML formatting tags and other special
keywords that provide additional information.

Doc comments are ignored by the compiler, but they can be extracted and auto‐
matically turned into online HTML documentation by the javadoc program. (See
Chapter 13 for more information about javadoc.)

Here is an example class that contains appropriate doc comments:

/**
 * This immutable class represents <i>complex numbers</i>.
 *
 * @author David Flanagan
 * @version 1.0
 */
public class Complex {
    /**
     * Holds the real part of this complex number.
     * @see #y
     */
    protected double x;

    /**
     * Holds the imaginary part of this complex number.
     * @see #x
     */
    protected double y;

    /**
     * Creates a new Complex object that represents the complex number
     * x+yi.
     * @param x The real part of the complex number.
     * @param y The imaginary part of the complex number.
     */
    public Complex(double x, double y) {
        this.x = x;
        this.y = y;
    }

    /**
     * Adds two Complex objects and produces a third object that
     * represents their sum.
     * @param c1 A Complex object
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     * @param c2 Another Complex object
     * @return  A new Complex object that represents the sum of
     *          <code>c1</code> and <code>c2</code>.
     * @exception java.lang.NullPointerException
     *            If either argument is <code>null</code>.
     */
    public static Complex add(Complex c1, Complex c2) {
        return new Complex(c1.x + c2.x, c1.y + c2.y);
    }
}

Structure of a Doc Comment
The body of a doc comment should begin with a one-sentence summary of the type
or member being documented. This sentence may be displayed by itself as summary
documentation, so it should be written to stand on its own. The initial sentence
may be followed by any number of other sentences and paragraphs that describe the
class, interface, method, or field in full detail.

After the descriptive paragraphs, a doc comment can contain any number of other
paragraphs, each of which begins with a special doc-comment tag, such as @author,
@param, or @returns. These tagged paragraphs provide specific information about
the class, interface, method, or field that the javadoc program displays in a standard
way. The full set of doc-comment tags is listed in the next section.

The descriptive material in a doc comment can contain simple HTML markup tags,
such as <i> for emphasis; <code> for class, method, and field names; and <pre>
for multiline code examples. It can also contain <p> tags to break the description
into separate paragraphs and <ul>, <li>, and related tags to display bulleted lists
and similar structures. Remember, however, that the material you write is embedded
within a larger, more complex HTML document. For this reason, doc comments
should not contain major structural HTML tags, such as <h2> or <hr>, that might
interfere with the structure of the larger document.

Avoid the use of the <a> tag to include hyperlinks or cross-references in your doc
comments. Instead, use the special {@link} doc-comment tag, which, unlike the
other doc-comment tags, can appear anywhere within a doc comment. As described
in the next section, the {@link} tag allows you to specify hyperlinks to other
classes, interfaces, methods, and fields without knowing the HTML-structuring
conventions and filenames used by javadoc.

If you want to include an image in a doc comment, place the image file in a doc-files
subdirectory of the source code directory. Give the image the same name as the
class, with an integer suffix. For example, the second image that appears in the doc
comment for a class named Circle can be included with this HTML tag:

<img src="doc-files/Circle-2.gif">

Because the lines of a doc comment are embedded within a Java comment, any
leading spaces and asterisks (*) are stripped from each line of the comment before
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processing. Thus, you don’t need to worry about the asterisks appearing in the
generated documentation or about the indentation of the comment affecting the
indentation of code examples included within the comment with a <pre> tag.

Doc-Comment Tags
The javadoc program recognizes a number of special tags, each of which begins
with an @ character. These doc-comment tags allow you to encode specific informa‐
tion into your comments in a standardized way, and they allow javadoc to choose
the appropriate output format for that information. For example, the @param tag lets
you specify the name and meaning of a single parameter for a method. javadoc can
extract this information and display it using an HTML <dl> list, an HTML <table>,
or whatever it sees fit.

The following doc-comment tags are recognized by javadoc; a doc comment should
typically use these tags in the order listed here:

@author name
Adds an “Author:” entry that contains the specified name. This tag should be
used for every class or interface definition but must not be used for individual
methods and fields. If a class has multiple authors, use multiple @author tags
on adjacent lines. For example:

@author David Flanagan
@author Ben Evans
@author Jason Clark

List the authors in chronological order, with the original author first. If the
author is unknown, you can use “unascribed.” javadoc does not output author‐
ship information unless the -author command-line argument is specified.

@version text
Inserts a “Version:” entry that contains the specified text. For example:

@version 1.32, 08/26/04

This tag should be included in every class and interface doc comment but
cannot be used for individual methods and fields. This tag is often used in
conjunction with the automated version-numbering capabilities of a version
control system, such as git, Perforce, or SVN. javadoc does not output version
information in its generated documentation unless the -version command-
line argument is specified.

@param parameter-name description
Adds the specified parameter and its description to the “Parameters:” section
of the current method. The doc comment for a method or constructor must
contain one @param tag for each parameter the method expects. These tags
should appear in the same order as the parameters specified by the method.
The tag can be used only in doc comments for methods and constructors.
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You are encouraged to use phrases and sentence fragments where possible
to keep the descriptions brief. However, if a parameter requires detailed
documentation, the description can wrap onto multiple lines and include as
much text as necessary. For readability in source-code form, consider using
spaces to align the descriptions with each other. For example:

@param o      the object to insert
@param index  the position to insert it at

@return description
Inserts a “Returns:” section that contains the specified description. This tag
should appear in every doc comment for a method, unless the method returns
void or is a constructor. The description can be as long as necessary, but
consider using a sentence fragment to keep it short. For example:

@return <code>true</code> if the insertion is successful, or
        <code>false</code> if the list already contains the object.

@exception full-classname description
Adds a “Throws:” entry that contains the specified exception name and
description. A doc comment for a method or constructor should contain an
@exception tag for every checked exception that appears in its throws clause.
For example:

@exception java.io.FileNotFoundException
           If the specified file could not be found

The @exception tag can optionally be used to document unchecked exceptions
(i.e., subclasses of RuntimeException) the method may throw, when these are
exceptions that a user of the method may reasonably want to catch. If a method
can throw more than one exception, use multiple @exception tags on adjacent
lines and list the exceptions in alphabetical order. The description can be as
short or as long as necessary to describe the significance of the exception. This
tag can be used only for method and constructor comments. The @throws tag is
a synonym for @exception.

@throws full-classname description
This tag is a synonym for @exception.

@see reference
Adds a “See Also:” entry that contains the specified reference. This tag can
appear in any kind of doc comment. The syntax for the reference is explained
in “Cross-References in Doc Comments” on page 277.

@deprecated explanation
This tag specifies that the following type or member has been deprecated and
that its use should be avoided. javadoc adds a prominent “Deprecated” entry
to the documentation and includes the specified explanation text. This text
should specify when the class or member was deprecated and, if possible,
suggest a replacement class or member and include a link to it. For example:
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@deprecated As of Version 3.0, this method is replaced
            by {@link #setColor}.

The @deprecated tag is an exception to the general rule that javac ignores all
comments. When this tag appears, the compiler notes the deprecation in the
class file it produces. This allows it to issue warnings for other classes that rely
on the deprecated feature.

@since version
Specifies when the type or member was added to the API. This tag should be
followed by a version number or other version specification. For example:

@since JNUT 3.0

Every doc comment for a type should include an @since tag, and any members
added after the initial release of the type should have @since tags in their doc
comments.

@serial description
Technically, the way a class is serialized is part of its public API. If you write
a class that you expect to be serialized, you should document its serialization
format using @serial and the related tags listed next. @serial should appear
in the doc comment for any field that is part of the serialized state of a
Serializable class.

For classes that use the default serialization mechanism, this means all fields
that are not declared transient, including fields declared private. The
description should be a brief description of the field and of its purpose within
a serialized object.

You can also use the @serial tag at the class and package level to specify
whether a “serialized form page” should be generated for the class or package.
The syntax is:

@serial include
@serial exclude

@serialField name type description
A Serializable class can define its serialized format by declaring an array
of ObjectStreamField objects in a field named serialPersistentFields. For
such a class, the doc comment for serialPersistentFields should include an
@serialField tag for each element of the array. Each tag specifies the name,
type, and description for a particular field in the serialized state of the class.

@serialData description
A Serializable class can define a writeObject() method to write data other
than that written by the default serialization mechanism. An Externalizable
class defines a writeExternal() method responsible for writing the complete
state of an object to the serialization stream. The @serialData tag should be
used in the doc comments for these writeObject() and writeExternal()
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methods, and the description should document the serialization format used
by the method.

Inline Doc-Comment Tags
In addition to the preceding tags, javadoc also supports several inline tags that may
appear anywhere that HTML text appears in a doc comment. Because these tags
appear directly within the flow of HTML text, they require the use of curly braces
as delimiters to separate the tagged text from the HTML text. Supported inline tags
include the following:

{@link reference }
The {@link} tag is like the @see tag except that instead of placing a link to the
specified reference in a special “See Also:” section, it inserts the link inline. An
{@link} tag can appear anywhere that HTML text appears in a doc comment.
In other words, it can appear in the initial description of the class, interface,
method, or field and in the descriptions associated with the @param, @returns,
@exception, and @deprecated tags. The reference for the {@link} tag uses
the syntax described next in “Cross-References in Doc Comments” on page
277. For example:

@param regexp The regular expression to search for. This string
              argument must follow the syntax rules described for
              {@link java.util.regex.Pattern}.

{@linkplain reference }
The {@linkplain} tag is just like the {@link} tag, except that the text of the
link is formatted using the normal font rather than the code font used by the
{@link} tag. This is most useful when reference contains both a feature to
link to and a label that specifies alternate text to be displayed in the link. See
“Cross-References in Doc Comments” on page 277 for more on the feature
and label portions of the reference argument.

{@inheritDoc}

When a method overrides a method in a superclass or implements a method in
an interface, you can omit a doc comment, and javadoc automatically inherits
the documentation from the overridden or implemented method. You can use
the {@inheritDoc} tag to inherit the text of individual tags. This tag also allows
you to inherit and augment the descriptive text of the comment. To inherit
individual tags, use it like this:

@param index {@inheritDoc}
@return {@inheritDoc}

{@docRoot}

This inline tag takes no parameters and is replaced with a reference to the root
directory of the generated documentation. It is useful in hyperlinks that refer to
an external file, such as an image or a copyright statement:
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<img src="{@docroot}/images/logo.gif">
This is <a href="{@docRoot}/legal.html">Copyrighted</a> material.

{@literal text }
This inline tag displays text literally, escaping any HTML in it and ignoring
any javadoc tags it may contain. It does not retain whitespace formatting but is
useful when used within a <pre> tag.

{@code text }
This tag is like the {@literal} tag but displays the literal text in code font.
Equivalent to:

&lt;code&gt;{@literal <replaceable>text</replaceable>}&lt;/code&gt;

{@value}

The {@value} tag, with no arguments, is used inline in doc comments for
static final fields and is replaced with the constant value of that field.

{@value reference }
This variant of the {@value} tag includes a reference to a static final field
and is replaced with the constant value of that field.

Cross-References in Doc Comments
The @see tag and the inline tags {@link}, {@linkplain}, and {@value} all encode a
cross-reference to some other source of documentation, typically to the documenta‐
tion comment for some other type or member.

reference can take three different forms. If it begins with a quote character, it is
taken to be the name of a book or some other printed resource and is displayed
as is. If reference begins with a < character, it is taken to be an arbitrary HTML
hyperlink that uses the <a> tag, and the hyperlink is inserted into the output
documentation as is. This form of the @see tag can insert links to other online
documents, such as a programmer’s guide or user’s manual.

If reference is not a quoted string or a hyperlink, it is expected to have the
following form:

feature [label]

In this case, javadoc outputs the text specified by label and encodes it as a
hyperlink to the specified feature. If label is omitted (as it usually is), javadoc
uses the name of the specified feature instead.

feature can refer to a package, type, or type member, using one of the following
forms:

pkgname

A reference to the named package. For example:

@see java.lang.reflect
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pkgname.typename
A reference to a class, interface, enumerated type, or annotation type specified
with its full package name. For example:

@see java.util.List

typename

A reference to a type specified without its package name. For example:

@see List

javadoc resolves this reference by searching the current package and the list of
imported classes for a class with this name.

typename # methodname
A reference to a named method or constructor within the specified type. For
example:

@see java.io.InputStream#reset
@see InputStream#close

If the type is specified without its package name, it is resolved as described for
typename. This syntax is ambiguous if the method is overloaded or the class
defines a field by the same name.

typename # methodname ( paramtypes )
A reference to a method or constructor with the type of its parameters explic‐
itly specified. This is useful when cross-referencing an overloaded method. For
example:

@see InputStream#read(byte[], int, int)

# methodname
A reference to a nonoverloaded method or constructor in the current class or
interface or one of the containing classes, superclasses, or superinterfaces of the
current class or interface. Use this concise form to refer to other methods in the
same class. For example:

@see #setBackgroundColor

# methodname ( paramtypes )
A reference to a method or constructor in the current class or interface or
one of its superclasses or containing classes. This form works with overloaded
methods because it lists the types of the method parameters explicitly. For
example:

@see #setPosition(int, int)

typename # fieldname
A reference to a named field within the specified class. For example:

@see java.io.BufferedInputStream#buf
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If the type is specified without its package name, it is resolved as described for
typename.

# fieldname
A reference to a field in the current type or one of the containing classes,
superclasses, or superinterfaces of the current type. For example:

@see #x

Doc Comments for Packages
Documentation comments for classes, interfaces, methods, constructors, and fields
appear in Java source code immediately before the definitions of the features they
document. javadoc can also read and display summary documentation for pack‐
ages. Because a package is defined in a directory, not in a single file of source code,
javadoc looks for the package documentation in a file named package.html in the
directory that contains the source code for the classes of the package.

The package.html file should contain simple HTML documentation for the pack‐
age. It can also contain @see, @link, @deprecated, and @since tags. Because
package.html is not a file of Java source code, the documentation it contains should
be HTML and should not be a Java comment (i.e., it should not be enclosed
within /** and */ characters). Finally, any @see and @link tags that appear in
package.html must use fully qualified class names.

In addition to defining a package.html file for each package, you can also provide
high-level documentation for a group of packages by defining an overview.html file
in the source tree for those packages. When javadoc is run over that source tree, it
uses overview.html as the highest-level overview it displays.

Doclets
The javadoc tool that is used to generate HTML documentation is based upon a
standard API. Since Java 9, this standard interface has been delivered in the module
jdk.javadoc and tools leveraging this API are typically called doclets (with javadoc
being referred to as the standard doclet).

The Java 9 release also included a major upgrade of the standard doclet. In particu‐
lar, it now (as of Java 10) generates modern HTML5 by default. This allows for other
improvements—such as implementing the WAI-ARIA standard for accessibility.
This standard makes it easier for people with visual or other impairments to access
javadoc output using tools such as screen readers.

javadoc has also been enhanced to understand the new plat‐
form modules, and so the semantic meaning of what consti‐
tutes an API (and so what should be documented) is now
aligned with the modular Java definition.
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The standard doclet now also automatically indexes the code as documentation is
generated and creates a client-side index in JavaScript. The resulting web pages
have a search capability to allow developers to easily find some common program
components, such as the names of:

• Modules•
• Packages•
• Types and members•
• Method parameter types•

The developer can also add search terms or phrases using an @index inline javadoc
tag.

Conventions for Portable Programs
One of the earliest slogans for Java was “write once, run anywhere.” This emphasizes
that Java makes it easy to write portable programs, but it is still possible to write
Java programs that do not automatically run successfully on any Java platform. The
following tips help to avoid portability problems:

Native methods
Portable Java code can use any methods in the core Java APIs, including meth‐
ods implemented as native methods. However, portable code must not define
its own native methods. By their very nature, native methods must be ported
to each new platform, so they directly subvert the “write once, run anywhere”
promise of Java.

The Runtime.exec() method
Calling the Runtime.exec() method to spawn a process and execute an exter‐
nal command on the native system is rarely allowed in portable code. This is
because the native OS command to be executed is never guaranteed to exist or
behave the same way on all platforms.

The only time it is legal to use Runtime.exec() in portable code is when the
user is allowed to specify the command to run, either by typing the command
at runtime or by specifying the command in a configuration file or preferences
dialog box.

If the programmer wishes to control external processes, then this should be
done through the enhanced ProcessHandle capability introduced in Java 9,
rather than by using Runtime.exec() and parsing the output. This is not fully
portable, but it at least reduces the amount of platform-specific logic necessary
to control external processes.

The System.getenv() method
Using System.getenv() is inherently nonportable. Different operating systems
have differing casing conventions (e.g., Windows is case-insensitive, where
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Unix systems are not). Also, typical values found in an environment vary
greatly between operating systems and organizations. Use of System.getenv()
to parameterize specific values your application expects can be acceptable if
well documented; this is frequently done with containerized applications. But
reaching out to the broader environment can yield incompatible behavior.

Undocumented classes
Portable Java code must use only classes and interfaces that are a documented
part of the Java platform. Most Java implementations ship with additional
undocumented public classes that are part of the implementation but not part
of the Java platform specification.

The modules system prevents a program from using and relying on these
implementation classes, but even with the increased restrictions in Java 17 it
is still possible to circumvent this protection by using reflection (although the
exact runtime switches permitting reflection have changed in recent versions;
see Chapter 12 for more details).

However, doing so is not portable because the implementation classes are not
guaranteed to exist in all Java implementations or on all platforms, and they
may change or disappear in future versions. Even if you don’t care much about
portability, use of undocumented classes can greatly complicate future JDK
version upgrades.

Of particular note is the sun.misc.Unsafe class, which provides access to a
number of “unsafe” methods, which can allow developers to circumvent key
restrictions of the Java platform. Developers should not directly use the Unsafe
class under any circumstances.

Implementation-specific features
Portable code must not rely on features specific to a single implementation. For
example, in the early years of Java, Microsoft distributed a version of the Java
runtime system that included a number of additional methods that were not
part of the Java platform as defined by the specifications. Any program that
depends on such extensions is obviously not portable to other platforms.

Implementation-specific bugs
Just as portable code must not depend on implementation-specific features,
it must not depend on implementation-specific bugs. If a class or method
behaves differently than the specification says it should, a portable program
cannot rely on this behavior, which may be different on different platforms,
and a future version may ultimately fix the bug, hindering JDK upgrades.

Implementation-specific behavior
Sometimes different platforms and different implementations present different
behaviors, all of which are legal according to the Java specification. Portable
code must not depend on any one specific behavior. For example, the Java
specification does not indicate whether threads of equal priority share the CPU
or if one long-running thread can starve another thread at the same priority. If
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an application assumes one behavior or the other, it may not run properly on
all platforms.

Defining system classes
Portable Java code never attempts to define classes in any of the system or
standard extension packages. Doing so violates the protection boundaries of
those packages and exposes package-visible implementation details, even in
those cases where it is not forbidden by the modules system.

Hardcoded filenames
A portable program contains no hardcoded file or directory names. This is
because different platforms have significantly different filesystem organizations
and use different directory separator characters. If you need to work with a file
or directory, have the user specify the filename, or at least the base directory
beneath which the file can be found. This specification can be done at runtime,
in a configuration file, or as a command-line argument to the program. When
concatenating a file or directory name to a directory name, use the File()
constructor, the File.separator constant, or the Path.of() method.

Line separators
Different systems use different characters or sequences of characters as line
separators. Do not hardcode \n, \r, or \r\n as the line separator in your
program. Instead, use the println() method of PrintStream or PrintWriter,
which automatically terminates a line with the line separator appropriate for
the platform, or use the value of the line.separator system property. You
can also use the “%n” format string to printf() and format() methods of
java.util.Formatter and related classes.

Summary
In this chapter, we’ve seen the standard conventions around naming parts of our
Java code. While the language allows many things beyond these conventions, your
code will be easier for others to read and understand the more these are followed.

Good documentation is at the heart of creating maintainable systems. The javadoc
tool allows us to write much of our documentation within our code, keeping it in
context when things change. A variety of document tags allow for generating clear
and consistent documentation.

Part of the appeal of the JVM is its broad install base across many operating systems
and types of hardware. However, you can compromise the portability of your
application if you’re not careful in a few areas, so this chapter reviewed guidelines
around the most typical of those stumbling blocks to avoid.

Next up, we’ll take a look at one of the most commonly used parts of Java’s standard
libraries: collections.
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8
Working with Java Collections

This chapter introduces Java’s interpretation of fundamental data structures, known
as the Java Collections. These abstractions are core to many (if not most) program‐
ming types and form an essential part of any programmer’s basic toolkit. Accord‐
ingly, this is one of the most important chapters of the entire book and provides a
toolkit that is essential to virtually all Java programmers.

In this chapter, we will introduce the fundamental interfaces and the type hierarchy,
show how to use them, and discuss aspects of their overall design. Both the “classic”
approach to handling the collections and the newer approach (using the Streams
API and the lambda expressions functionality introduced in Java 8) will be covered.

Introduction to Collections API
The Java Collections are a set of generic interfaces that describe the most common
forms of data structure. Java ships with several implementations of each of the
classic data structures, and because the types are represented as interfaces, it is very
possible for development teams to develop their own, specialized implementations
of the interfaces for use in their own projects.

The Java Collections define two fundamental types of data structures. A Collection
is a grouping of objects, while a Map is a set of mappings, or associations, between
objects. The basic layout of the Java Collections is shown in Figure 8-1.

Within this basic description, a Set is a type of Collection with no duplicates,
and a List is a Collection in which the elements are ordered (but may contain
duplicates).
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Figure 8-1. Collections classes and inheritance

SortedSet and SortedMap are specialized sets and maps that maintain their ele‐
ments in a sorted order.

Collection, Set, List, Map, SortedSet, and SortedMap are all interfaces, but the
java.util package also defines various concrete implementations, such as lists
based on arrays and linked lists, and maps and sets based on hash tables or binary
trees. Other important interfaces are Iterator and Iterable, which allow you to
loop through the objects in a collection, as we will see later on.

The Collection Interface
Collection<E> is a parameterized interface that represents a generalized grouping
of objects of type E. We can create a collection of any kind of reference type.

To work properly with the expectations of collections, you
must take care when defining hashCode() and equals()
methods on your classes, as discussed in Chapter 5.

Methods are defined for adding and removing objects from the group, testing an
object for membership in the group, and iterating through all elements in the group.
Additional methods return the elements of the group as an array and return the size
of the collection.
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The grouping within a Collection may or may not allow
duplicate elements and may or may not impose an ordering
on the elements.

The Java Collections Framework provides Collection because it defines the fea‐
tures shared by all common forms of data structure. The JDK ships Set, List, and
Queue as subinterfaces of Collection.

The following code illustrates the operations you can perform on Collection
objects:

// Create some collections to work with.
Collection<String> c = new HashSet<>();  // An empty set

// We'll see these utility methods later. Be aware that there are
// some subtleties to watch out for when using them
Collection<String> d = Arrays.asList("one", "two");
Collection<String> e = Collections.singleton("three");

// Add elements to a collection. These methods return true
// if the collection changes, which is useful with Sets that
// don't allow duplicates.
c.add("zero");           // Add a single element
c.addAll(d);             // Add all of the elements in d

// Copy a collection: most implementations have a copy constructor
Collection<String> copy = new ArrayList<String>(c);

// Remove elements from a collection.
// All but clear return true if the collection changes.
c.remove("zero");        // Remove a single element
c.removeAll(e);          // Remove a collection of elements
c.retainAll(d);          // Remove all elements that are not in d
c.clear();               // Remove all elements from the collection

// Querying collection size
boolean b = c.isEmpty(); // c is now empty, so true
int s = c.size();        // Size of c is now 0.

// Restore collection from the copy we made
c.addAll(copy);

// Test membership in the collection. Membership is based on
// the equals method, not the == operator.
b = c.contains("zero");  // true
b = c.containsAll(d);    // true

// Most Collection implementations have a useful toString()  method
System.out.println(c);
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// Obtain an array of collection elements.  If the iterator guarantees
// an order, this array has the same order. The Object array is a new
// instance, containing references to the same objects as the original
// collection `c` (aka a shallow copy).
Object[] elements = c.toArray();

// If we want the elements in a String[], we must pass one in
String[] strings = c.toArray(new String[c.size()]);

// Or we can pass an empty String[] just to specify the type and
// the toArray method will allocate an array for us
strings = c.toArray(new String[0]);

Remember that you can use any of the methods shown here with any Set, List, or
Queue. These subinterfaces may impose membership restrictions or ordering con‐
straints on the elements of the collection but still provide the same basic methods.

Methods such as addAll(), retainAll(), clear(), and
remove() that alter the collection were conceived of as
optional parts of the API. Unfortunately, they were specified a
long time ago, when the received wisdom was to indicate the
absence of an optional method by throwing UnsupportedOper
ationException. Accordingly, some implementations (nota‐
bly read-only forms) may throw this unchecked exception.

Collection, Map, and their subinterfaces do not extend the interfaces Cloneable or
Serializable. All of the collection and map implementation classes provided in the
Java Collections Framework, however, do implement these interfaces.

Some collection implementations place restrictions on the elements that they can
contain. An implementation might prohibit null as an element, for example. And
EnumSet restricts membership to the values of a specified enumerated type.

Attempting to add a prohibited element to a collection always throws an unchecked
exception such as NullPointerException or ClassCastException. Checking
whether a collection contains a prohibited element may also throw such an excep‐
tion, or it may simply return false.

The Set Interface
A set is a collection of objects that does not allow duplicates: it may not contain
two references to the same object, two references to null, or references to two
objects a and b such that a.equals(b). Most general-purpose Set implementations
impose no ordering on the elements of the set, but ordered sets are not prohibited
(see SortedSet and LinkedHashSet). Sets are further distinguished from ordered
collections like lists by the general expectation that they have an efficient contains
method that runs in constant or logarithmic time.
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Set defines no methods of its own beyond those defined by Collection but places
additional restrictions on some methods. The add() and addAll() methods of a
Set are required to enforce the no-duplicates rules: they may not add an element to
the Set if the set already contains that element. Recall that the add() and addAll()
methods defined by the Collection interface return true if the call resulted in a
change to the collection and false if it did not. This return value is relevant for Set
objects because the no-duplicates restriction means that adding an element does not
always result in a change to the set.

Table 8-1 lists the implementations of the Set interface and summarizes their
internal representation, ordering characteristics, member restrictions, and the per‐
formance of the basic add(), remove(), and contains operations as well as iteration
performance. Note that CopyOnWriteArraySet is in the java.util.concurrent
package; all the other implementations are part of java.util. Also note that
java.util.BitSet is not a Set implementation. This legacy class is useful as a
compact and efficient list of boolean values but is not part of the Java Collections
Framework.
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The TreeSet implementation uses a red-black tree data structure to maintain a set
that is iterated in ascending order according to the natural ordering of Comparable
objects or according to an ordering specified by a Comparator object. TreeSet
actually implements the SortedSet interface, which is a subinterface of Set.

The SortedSet interface offers several interesting methods that take advantage of its
sorted nature. The following code illustrates:

public static void testSortedSet(String[] args) {
    // Create a SortedSet
    SortedSet<String> s = new TreeSet<>(Arrays.asList(args));

    // Iterate set: elements are automatically sorted
    for (String word : s) {
        System.out.println(word);
    }

    // Special elements
    String first = s.first();  // First element
    String last = s.last();    // Last element

    // all elements but first
    SortedSet<String> tail = s.tailSet(first + '\0');
    System.out.println(tail);

    // all elements but last
    SortedSet<String> head = s.headSet(last);
    System.out.println(head);

    SortedSet<String> middle = s.subSet(first+'\0', last);
    System.out.println(middle);
}

The addition of \0 characters is needed because the tailSet()
and related methods use the successor of an element, which for
strings is the string value with a NULL character (ASCII code 0)
appended.

From Java 9 onward, the API has also been upgraded with a helper static method on
the Set interface, like this:

Set<String> set = Set.of("Hello", "World");

This API has several overloads that each take a fixed number of arguments, and also
a varargs overload. The latter is used for the case where arbitrarily many elements
are wanted in the set and falls back to the standard varargs mechanism (marshaling
the elements into an array before the call). It’s worth noting as well that the set
returned by Set.of is immutable and will throw an UnsupportedOperationExcep
tion on further attempts to add or remove from it after instantiation.

Introduction to Collections API | 289

Java
C

o
llectio

ns



The List Interface
A List is an ordered collection of objects. Each element of a list has a position
in the list, and the List interface defines methods to query or set the element at
a particular position, or index. In this respect, a List is like an array whose size
changes as needed to accommodate the number of elements it contains. Unlike sets,
lists allow duplicate elements.

In addition to its index-based get() and set() methods, the List interface defines
methods to add or remove an element at a particular index and also defines meth‐
ods to return the index of the first or last occurrence of a particular value in the
list. The add() and remove() methods inherited from Collection are defined to
append to the list and to remove the first occurrence of the specified value from
the list. The inherited addAll() appends all elements in the specified collection to
the end of the list, and another version inserts the elements at a specified index.
The retainAll() and removeAll() methods behave as they do for any Collection,
retaining or removing multiple occurrences of the same value, if needed.

The List interface doesn’t define methods that operate on a range of list indexes.
Instead, it defines a single subList() method that returns a List object that repre‐
sents just the specified range of the original list. The sublist is backed by the parent
list, and any changes made to the sublist are immediately visible in the parent list.
Examples of subList() and the other basic List manipulation methods follow:

// Create lists to work with
List<String> l = new ArrayList<String>(Arrays.asList(args));
List<String> words = Arrays.asList("hello", "world");
List<String> words2 = List.of("hello", "world");

// Querying and setting elements by index
String first = l.get(0);             // First element of list
String last = l.get(l.size() - 1);   // Last element of list
l.set(0, last);                      // The last shall be first

// Adding and inserting elements.  add  can append or insert
l.add(first);       // Append the first word at end of list
l.add(0, first);    // Insert first at the start of the list again
l.addAll(words);    // Append a collection at the end of the list
l.addAll(1, words); // Insert collection after first word

// Sublists: backed by the original list
List<String> sub = l.subList(1,3);  // second and third elements
sub.set(0, "hi");                   // modifies 2nd element of l

// Sublists can restrict operations to a subrange of backing list
String s = Collections.min(l.subList(0,4));
Collections.sort(l.subList(0,4));

// Independent copies of a sublist don't affect the parent list.
List<String> subcopy = new ArrayList<String>(l.subList(1,3));
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subcopy.clear();

// Searching lists
int p = l.indexOf(last);  // Where does the last word appear?
p = l.lastIndexOf(last);  // Search backward

// Print the index of all occurrences of last in l.  Note subList
int n = l.size();
p = 0;
while (p < n) {
    // Get a view of the list that includes only the elements we
    // haven't searched yet.
    List<String> list = l.subList(p, n);
    int q = list.indexOf(last);
    if (q == -1) break;
    System.out.printf("Found '%s' at index %d%n", last, p+q);
    p += q+1;
}

// Removing elements from a list
l.remove(last);         // Remove first occurrence of the element
l.remove(0);            // Remove element at specified index
l.subList(0,2).clear(); // Remove a range of elements using subList
l.retainAll(words);     // Remove all but elements in words
l.removeAll(words);     // Remove all occurrences of elements in words
l.clear();              // Remove everything

Foreach loops and iteration
One very important way of working with collections is to process each element
in turn, an approach known as iteration. This is an older way of looking at data
structures, but it is still very useful (especially for small collections of data) and is
easy to understand. This approach fits naturally with the for loop, as shown in this
bit of code, and is easiest to illustrate using a List:

List<String> c = new ArrayList<String>();
// ... add some Strings to c

for(String word : c) {
    System.out.println(word);
}

The sense of the code should be clear—it takes the elements of c one at a time
and uses them as a variable in the loop body. More formally, it iterates through the
elements of an array or collection (or any object that implements java.lang.Itera
ble). On each iteration it assigns an element of the array or Iterable object to
the loop variable you declare and then executes the loop body, which typically uses
the loop variable to operate on the element. No loop counter or Iterator object is
involved; the loop performs the iteration automatically, and you need not concern
yourself with correct initialization or termination of the loop.
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This type of for loop is often referred to as a foreach loop. Let’s see how it works.
The following bit of code shows a rewritten (and equivalent) for loop, with the
method calls explicitly shown:

// Iteration with a for loop
for(Iterator<String> i = c.iterator(); i.hasNext();) {
    System.out.println(i.next());
}

The Iterator object, i, is produced from the collection and used to step through
the collection one item at a time. It can also be used with while loops:

// Iterate through collection elements with a while loop.
// Some implementations (such as lists) guarantee an order of iteration
// Others make no guarantees.
Iterator<String> iterator = c.iterator();
while (iterator.hasNext()) {
    System.out.println(iterator.next());
}

Here are some more things you should know about the syntax of the foreach loop:

• As noted earlier, expression must be either an array or an object that imple‐•
ments the java.lang.Iterable interface. This type must be known at compile
time so that the compiler can generate appropriate looping code.

• The type of the array or Iterable elements must be assignment-compatible•
with the type of the variable declared in the declaration. If you use an
Iterable object that is not parameterized with an element type, the variable
must be declared as an Object.

• The declaration usually consists of just a type and a variable name, but it•
may include a final modifier and any appropriate annotations (see Chapter 4).
Using final prevents the loop variable from taking on any value other than the
array or collection element the loop assigns it and serves to emphasize that the
array or collection cannot be altered through the loop variable.

• The loop variable of the foreach loop must be declared as part of the loop, with•
both a type and a variable name. You cannot use a variable declared outside the
loop as you can with the for loop.

To understand in detail how the foreach loop works with collections, we need to
consider two interfaces, java.util.Iterator and java.lang.Iterable:

public interface Iterator<E> {
     boolean hasNext();
     E next();
     void remove();
}

Iterator defines a way to iterate through the elements of a collection or other
data structure. It works like this: while there are more elements in the collection
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(hasNext() returns true), call next to obtain the next element of the collection.
Ordered collections, such as lists, typically have iterators that guarantee they’ll
return elements in order. Unordered collections like Set simply guarantee that
repeated calls to next() return all elements of the set without omissions or duplica‐
tions, but they do not specify an ordering.

The next() method of Iterator performs two functions—it
advances through the collection and also returns the element
of the collection that we have just moved past. This combina‐
tion of operations can cause problems when you are program‐
ming in a functional or immutable style, as it mutates the
underlying collection.

The Iterable interface was introduced to make the foreach loop work. A class
implements this interface to advertise that it is able to provide an Iterator to
anyone interested:

public interface Iterable<E> {
     java.util.Iterator<E> iterator();
}

If an object is Iterable<E>, that means that it has an iterator() method that
returns an Iterator<E>, which has a next() method that returns an object of
type E.

If you use the foreach loop with an Iterable<E>, the loop
variable must be of type E or a superclass or interface.

For example, to iterate through the elements of a List<String>, the variable must
be declared String or its superclass Object, or one of the interfaces it implements:
CharSequence, Comparable, or Serializable.

A common pitfall with iterators regards modification. If the collection is modified
while iteration is in process, it may throw an error of the type ConcurrentModifica
tionException.

List<String> l = new ArrayList<>(List.of("one", "two", "three"));
for (String x : l) {
    if (x.equals("one")) {
        l.remove("one");  // throws ConcurrentModificationException
    }
}

Avoiding this exception requires rethinking your algorithm so it doesn’t modify the
collection. This can often be accomplished by working against a local copy instead

Introduction to Collections API | 293

Java
C

o
llectio

ns



of the original collection. The newer Stream APIs for collections also provide a lot
of useful helpers for these situations.

Random access to Lists
A general expectation of List implementations is that they can be efficiently iter‐
ated, typically in time proportional to the size of the list. Lists do not all provide effi‐
cient random access to the elements at any index, however. Sequential-access lists,
such as the LinkedList class, provide efficient insertion and deletion operations at
the expense of random-access performance. Implementations that provide efficient
random access implement the RandomAccess marker interface, and you can test for
this interface with instanceof if you need to ensure efficient list manipulations:

// Arbitrary list we're passed to manipulate
List<?> l = ...;

// Ensure we can do efficient random access.  If not, use a copy
// constructor to make a random-access copy of the list before
// manipulating it.
if (!(l instanceof RandomAccess)) l = new ArrayList<?>(l);

The Iterator returned by the iterator() method of a List iterates the list ele‐
ments in the order they occur in the list. List implements Iterable, and lists can be
iterated with a foreach loop just as any other collection can.

To iterate just a portion of a list, you can use the subList() method to create a
sublist view:

List<String> words = ...;  // Get a list to iterate

// Iterate just all elements of the list but the first
for(String word : words.subList(1, words.size()))
    System.out.println(word);

Table 8-2 summarizes the five general-purpose List implementations in the Java
platform. Vector and Stack are legacy implementations and should not be used.
CopyOnWriteArrayList is part of the java.util.concurrent package and is only
really suitable for multithreaded use cases.

Table 8-2. List implementations

Class Representation Since Random
access

Notes

ArrayList Array 1.2 Yes Best all-around implementation

LinkedList Double-linked list 1.2 No More efficient insertion and deletion
in middle of list
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Class Representation Since Random
access

Notes

CopyOnWriteArrayList Array 5.0 Yes Threadsafe; fast traversal, slow
modification

Vector Array 1.0 Yes Legacy class; synchronized methods.
Do not use.

Stack Array 1.0 Yes Extends Vector; adds push(),
pop(), peek(). Legacy; use
Deque instead.

The Map Interface
A map is a set of key objects and a mapping from each member of that set to a value
object. The Map interface defines an API for defining and querying mappings. Map
is part of the Java Collections Framework, but it does not extend the Collection
interface, so a Map is a little-c collection, not a big-C Collection. Map is a parameter‐
ized type with two type variables, Map<K, V>. Type variable K represents the type of
keys held by the map, and type variable V represents the type of the values that the
keys are mapped to. A mapping from String keys to Integer values, for example,
can be represented with a Map<String,Integer>.

The most important Map methods are put(), which defines a key/value pair in the
map; get(), which queries the value associated with a specified key; and remove(),
which removes the specified key and its associated value from the map. The general
performance expectation for Map implementations is that these three basic methods
are quite efficient: they should run in constant time and certainly no worse than in
logarithmic time.

An important feature of Map is its support for “collection views.” These can be
summarized as:

• A Map is not a Collection•

• The keys of a Map can be viewed as a Set•

• The values can be viewed as a Collection•

• The mappings can be viewed as a Set of Map.Entry objects.•

Map.Entry is a nested interface defined within Map: it simply
represents a single key/value pair.
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The following sample code shows the get(), put(), remove(), and other methods
of a Map and demonstrates some common uses of the collection views of a Map:

// New, empty map
Map<String,Integer> m = new HashMap<>();

// Immutable Map containing a single key/value pair
Map<String,Integer> singleton = Collections.singletonMap("test", -1);

// Note this rarely used syntax to explicitly specify the parameter
// types of the generic emptyMap method. The returned map is immutable
Map<String,Integer> empty = Collections.<String,Integer>emptyMap();

// Populate the map using the put method to define mappings
// from array elements to the index at which each element appears
String[] words = { "this", "is", "a", "test" };
for(int i = 0; i < words.length; i++) {
    m.put(words[i], i);  // Note autoboxing of int to Integer
}

// Each key must map to a single value. But keys may map to the
// same value
for(int i = 0; i < words.length; i++) {
    m.put(words[i].toUpperCase(), i);
}

// The putAll() method copies mappings from another Map
m.putAll(singleton);

// Query the mappings with the get()  method
for(int i = 0; i < words.length; i++) {
    if (m.get(words[i]) != i) throw new AssertionError();
}

// Key and value membership testing
m.containsKey(words[0]);        // true
m.containsValue(words.length);  // false

// Map keys, values, and entries can be viewed as collections
Set<String> keys = m.keySet();
Collection<Integer> values = m.values();
Set<Map.Entry<String,Integer>> entries = m.entrySet();

// The Map and its collection views typically have useful
// toString  methods
System.out.printf("Map: %s%nKeys: %s%nValues: %s%nEntries: %s%n",
                  m, keys, values, entries);

// These collections can be iterated.
// Most maps have an undefined iteration order (but see SortedMap)
for(String key : m.keySet()) System.out.println(key);
for(Integer value: m.values()) System.out.println(value);
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// The Map.Entry<K,V> type represents a single key/value pair in a map
for(Map.Entry<String,Integer> pair : m.entrySet()) {
    // Print out mappings
    System.out.printf("'%s' ==> %d%n", pair.getKey(), pair.getValue());
    // And increment the value of each Entry
    pair.setValue(pair.getValue() + 1);
}

// Removing mappings
m.put("testing", null);   // Mapping to null can "erase" a mapping:
m.get("testing");         // Returns null
m.containsKey("testing"); // Returns true: mapping still exists
m.remove("testing");      // Deletes the mapping altogether
m.get("testing");         // Still returns null
m.containsKey("testing"); // Now returns false.

// Deletions may also be made via the collection views of a map.
// Additions to the map may not be made this way, however.
m.keySet().remove(words[0]);  // Same as m.remove(words[0]);

// Removes one mapping to the value 2 - usually inefficient and of
// limited use
m.values().remove(2);
// Remove all mappings to 4
m.values().removeAll(Collections.singleton(4));
// Keep only mappings to 2 & 3
m.values().retainAll(Arrays.asList(2, 3));

// Deletions can also be done via iterators
Iterator<Map.Entry<String,Integer>> iter = m.entrySet().iterator();
while(iter.hasNext()) {
    Map.Entry<String,Integer> e = iter.next();
    if (e.getValue() == 2) iter.remove();
}

// Find values that appear in both of two maps.  In general, addAll()
// and retainAll() with keySet() and values() allow union and
// intersection
Set<Integer> v = new HashSet<>(m.values());
v.retainAll(singleton.values());

// Miscellaneous methods
m.clear();                // Deletes all mappings
m.size();                 // Returns number of mappings: currently 0
m.isEmpty();              // Returns true
m.equals(empty);          // true: Maps implementations override equals

With the arrival of Java 9, the Map interface also has been enhanced with factory
methods for spinning up collections easily:

Introduction to Collections API | 297

Java
C

o
llectio

ns



Map<String, Double> cities =
        Map.of(
          "Barcelona", 22.5,
          "New York", 28.3);

The situation is a little more complicated as compared to Set and List, as the
Map type has both keys and values, and Java does not allow more than one varargs
parameter in a method declaration. The solution is to have fixed argument size
overloads, up to 10 entries and also to provide a new static method, entry(), that
will construct an object to represent the key/value pair.

The code can then be written to use the varargs form like this:

Map<String, Double> cities =
        Map.ofEntries(
          entry("Barcelona", 22.5),
          entry("New York", 28.3));

Note that the method name has to be different from of() due to the difference in
type of the arguments—this is now a varargs method in Map.Entry.

The Map interface includes a variety of general-purpose and special-purpose imple‐
mentations, which are summarized in Table 8-3. As always, complete details are in
the JDK’s documentation and javadoc. All classes in Table 8-3 are in the java.util
package except ConcurrentHashMap and ConcurrentSkipListMap, which are part of
java.util.concurrent.

Table 8-3. Map implementations

Class Representation Since Null
keys

Null
values

Notes

HashMap Hashtable 1.2 Yes Yes General-purpose implementation

Concurrent

HashMap

Hashtable 5.0 No No General-purpose threadsafe
implementation; see Concurrent
Map interface

ConcurrentSki

pListMap

Hashtable 6.0 No No Specialized threadsafe
implementation; see Concurrent
NavigableMap interface

EnumMap Array 5.0 No Yes Keys are instances of an enum

LinkedHashMap Hashtable plus list 1.4 Yes Yes Preserves insertion or access order

TreeMap Red-black tree 1.2 No Yes Sorts by key value. Operations are
O(log(n)). See SortedMap interface.
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Class Representation Since Null
keys

Null
values

Notes

IdentityHash

Map

Hashtable 1.4 Yes Yes Compares with == instead of
equals()

WeakHashMap Hashtable 1.2 Yes Yes Doesn’t prevent garbage collection of
keys

Hashtable Hashtable 1.0 No No Legacy class; synchronized methods.
Do not use.

Properties Hashtable 1.0 No No Extends Hashtable with String
methods

The ConcurrentHashMap and ConcurrentSkipListMap classes of the java.util.con
current package implement the ConcurrentMap interface of the same package.
ConcurrentMap extends Map and defines some additional atomic operations that
are important in multithreaded programming. For example, the putIfAbsent()
method is like put() but adds the key/value pair to the map only if the key is not
already mapped.

TreeMap implements the SortedMap interface, which extends Map to add methods
that take advantage of the sorted nature of the map. SortedMap is quite similar to
the SortedSet interface. The firstKey() and lastKey() methods return the first
and last keys in the keySet(). And headMap(), tailMap(), and subMap() return a
restricted range of the original map.

The Queue and BlockingQueue Interfaces
A queue is an ordered collection of elements with methods for extracting elements,
in order, from the head of the queue. Queue implementations are commonly based
on insertion order as in first-in, first-out (FIFO) queues or last-in, first-out (LIFO)
queues.

LIFO queues are also known as stacks, and Java provides a
Stack class, but its use is strongly discouraged—instead, use
implementations of the Deque interface.

Other orderings are also possible: a priority queue orders its elements according to
an external Comparator object or according to the natural ordering of Comparable
elements. Unlike a Set, Queue implementations typically allow duplicate elements.
Unlike List, the Queue interface does not define methods for manipulating queue
elements at arbitrary positions. Only the element at the head of the queue is
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available for examination. It is common for Queue implementations to have a fixed
capacity: when a queue is full, it is not possible to add more elements. Similarly,
when a queue is empty, it is not possible to remove any more elements. Because full
and empty conditions are a normal part of many queue-based algorithms, the Queue
interface defines methods that signal these conditions with return values rather than
by throwing exceptions. Specifically, the peek() and poll() methods return null to
indicate that the queue is empty. For this reason, most Queue implementations do
not allow null elements.

A blocking queue is a type of queue that defines blocking put() and take() meth‐
ods. The put() method adds an element to the queue, waiting, if necessary, until
there is space in the queue for the element. And the take() method removes
an element from the head of the queue, waiting, if necessary, until there is an
element to remove. Blocking queues are an important part of many multithreaded
algorithms, and the BlockingQueue interface (which extends Queue) is defined as
part of the java.util.concurrent package.

Queues are not nearly as commonly used as sets, lists, and maps, except perhaps in
certain multithreaded programming styles. In lieu of example code here, we’ll try to
clarify the different possible queue insertion and removal operations.

Adding Elements to Queues
add()

This Collection method simply adds an element in the normal way. In boun‐
ded queues, this method may throw an exception if the queue is full.

offer()

This Queue method is like add() but returns false instead of throwing an
exception if the element cannot be added because a bounded queue is full.

BlockingQueue defines a timeout version of offer() that waits up to a speci‐
fied amount of time for space to become available in a full queue. Like the basic
version of the method, it returns true if the element was inserted and false
otherwise.

put()

This BlockingQueue method blocks: if the element cannot be inserted because
the queue is full, put() waits until some other thread removes an element from
the queue and space becomes available for the new element.

Removing Elements from Queues
remove()

In addition to the Collection.remove() method, which removes a specified
element from the queue, the Queue interface defines a no-argument version of
remove() that removes and returns the element at the head of the queue. If the
queue is empty, this method throws a NoSuchElementException.
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poll()

This Queue method removes and returns the element at the head of the queue,
like remove() does, but returns null if the queue is empty instead of throwing
an exception.

BlockingQueue defines a timeout version of poll() that waits up to a specified
amount of time for an element to be added to an empty queue.

take()

This BlockingQueue method removes and returns the element at the head of
the queue. If the queue is empty, it blocks until some other thread adds an
element to the queue.

drainTo()

This BlockingQueue method removes all available elements from the queue
and adds them to a specified Collection. It does not block to wait for elements
to be added to the queue. A variant of the method accepts a maximum number
of elements to drain.

Querying
In this context, querying refers to examining the element at the head without
removing it from the queue.

element()

This Queue method returns the element at the head of the queue but does not
remove that element from the queue. It throws NoSuchElementException if the
queue is empty.

peek()

This Queue method is like element but returns null if the queue is empty.

When using queues, it is usually a good idea to pick one
particular style of how to deal with a failure. For example, if
you want operations to block until they succeed, then choose
put() and take(). If you want to examine the return code of a
method to see if the queue operation succeeded, then offer()
and poll() are appropriate choices.

The LinkedList class also implements Queue. It provides unbounded FIFO order‐
ing, and insertion and removal operations require constant time. LinkedList allows
null elements, although their use is discouraged when the list is being used as a
queue.

There are two other Queue implementations in the java.util package. Priority
Queue orders its elements according to a Comparator or orders Comparable elements
according to the order defined by their compareTo() methods. The head of a
PriorityQueue is always the smallest element according to the defined ordering.
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Finally, ArrayDeque is a double-ended queue implementation. It is often used when
a stack implementation is needed.

The java.util.concurrent package also contains a number of BlockingQueue
implementations, which are designed for use in multithreaded programing style;
advanced versions that can remove the need for synchronized methods are
available.

A full discussion of java.util.concurrent is unfortunately outside the scope of
this book. The interested reader should refer to Java Concurrency in Practice by
Brian Goetz et al. (Addison-Wesley, 2006).

Utility Methods
The java.util.Collections class is home to quite a few static utility methods
designed for use with collections. One important group of these methods is the col‐
lection wrapper methods: they return a special-purpose collection wrapped around
a collection you specify. The purpose of the wrapper collection is to wrap additional
functionality around a collection that does not provide it itself. Wrappers exist to
provide thread-safety, write protection, and runtime type checking. Wrapper collec‐
tions are always backed by the original collection, which means that the methods of
the wrapper simply dispatch to the equivalent methods of the wrapped collection.
This means that changes made to the collection through the wrapper are visible
through the wrapped collection and vice versa.

The first set of wrapper methods provides threadsafe wrappers around collections.
Except for the legacy classes Vector and Hashtable, the collection implementations
in java.util do not have synchronized methods and are not protected against
concurrent access by multiple threads. If you need threadsafe collections and don’t
mind the additional overhead of synchronization, create them with code like this:

List<String> list =
    Collections.synchronizedList(new ArrayList<>());
Set<Integer> set =
    Collections.synchronizedSet(new HashSet<>());
Map<String,Integer> map =
    Collections.synchronizedMap(new HashMap<>());

A second set of wrapper methods provides collection objects through which the
underlying collection cannot be modified. They return a read-only view of a collec‐
tion: an UnsupportedOperationException will result from changing the collection’s
content. These wrappers are useful when you must pass a collection to a method
that must not be allowed to modify or mutate the content of the collection in any
way:

List<Integer> primes = new ArrayList<>();
List<Integer> readonly = Collections.unmodifiableList(primes);
// We can modify the list through primes
primes.addAll(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
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// But we can't modify through the read-only wrapper
readonly.add(23);  // UnsupportedOperationException

The java.util.Collections class also defines methods to operate on collections.
Some of the most notable are methods to sort and search the elements of
collections:

Collections.sort(list);
// list must be sorted first
int pos = Collections.binarySearch(list, "key");

Here are some other interesting Collections methods:

// Copy list2 into list1, overwriting list1
Collections.copy(list1, list2);
// Fill list with Object o
Collections.fill(list, o);
// Find the largest element in Collection c
Collections.max(c);
// Find the smallest element in Collection c
Collections.min(c);

Collections.reverse(list);      // Reverse list
Collections.shuffle(list);      // Mix up list

It is a good idea to familiarize yourself fully with the utility methods in Collections
and Arrays, as they can save you from writing your own implementation of a
common task.

Special-case collections
In addition to its wrapper methods, the java.util.Collections class also defines
utility methods for creating immutable collection instances that contain a single
element and other methods for creating empty collections. singleton(), singleton
List(), and singletonMap() return immutable Set, List, and Map objects that
contain a single specified object or a single key/value pair. These methods are useful
when you need to pass a single object to a method that expects a collection.

The Collections class also includes methods that return empty collections. If you
are writing a method that returns a collection, it is usually best to handle the
no-values-to-return case by returning an empty collection instead of a special-case
value like null:

Set<Integer> si = Collections.emptySet();
List<String> ss = Collections.emptyList();
Map<String, Integer> m = Collections.emptyMap();

Since Java 9, though, these methods are frequently replaced by the of() methods on
the Set, List and Map interfaces.

Set<Integer> si = Set.of();
List<String> ss = List.of();
Map<String, Integer> m = Map.of();
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These return immutable versions of their type and may also take elements through
the same method.

Set<Integer> si = Set.of(1);
List<String> ss = List.of("string");
Map<String, Integer> m = Map.of("one", 1);

Finally, nCopies() returns an immutable List that contains a specified number of
copies of a single specified object:

List<Integer> tenzeros = Collections.nCopies(10, 0);

Arrays and Helper Methods
Arrays of objects and collections serve similar purposes. It is possible to convert
from one to the other:

String[] a = { "this", "is", "a", "test" };  // An array
// View array as an ungrowable list
List<String> l = Arrays.asList(a);
// Make a growable copy of the view
List<String> m = new ArrayList<>(l);

// asList() is a varargs method so we can do this, too:
Set<Character> abc =
    new HashSet<Character>(Arrays.asList('a', 'b', 'c'));

// Collection defines a toArray method. The no-args version creates
// an Object[] array, copies collection elements to it and returns it
// Get set elements as an array
Object[] members = set.toArray();
// Get list elements as an array
Object[] items = list.toArray();
// Get map key objects as an array
Object[] keys = map.keySet().toArray();
// Get map value objects as an array
Object[] values = map.values().toArray();

// If you want the return value to be something other than Object[],
// pass in an array of the appropriate type. If the array is not
// big enough, another one of the same type will be allocated.
// If the array is too big, the collection elements copied to it
// will be null-filled
String[] c = l.toArray(new String[0]);

In addition, there are a number of useful helper methods for working with Java’s
arrays, which are included here for completeness.

The java.lang.System class defines an arraycopy() method that is useful for
copying specified elements in one array to a specified position in a second array.
The second array must be the same type as the first, and it can even be the same
array:
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char[] text = "Now is the time".toCharArray();
char[] copy = new char[100];
// Copy 10 characters from element 4 of text into copy,
// starting at copy[0]
System.arraycopy(text, 4, copy, 0, 10);

// Move some of the text to later elements, making room for
// insertions If target and source are the same, this will involve
// copying to a temporary array
System.arraycopy(copy, 3, copy, 6, 7);

There are also a number of useful static methods defined on the Arrays class:

int[] intarray = new int[] { 10, 5, 7, -3 }; // An array of integers
Arrays.sort(intarray);                       // Sort it in place
// Value 7 is found at index 2
int pos = Arrays.binarySearch(intarray, 7);
// Not found: negative return value
pos = Arrays.binarySearch(intarray, 12);

// Arrays of objects can be sorted and searched too
String[] strarray = new String[] { "now", "is", "the", "time" };
Arrays.sort(strarray);   // sorted to: { "is", "now", "the", "time" }

// Arrays.equals compares all elements of two arrays
String[] clone = (String[]) strarray.clone();
boolean b1 = Arrays.equals(strarray, clone);  // Yes, they're equal

// Arrays.fill  initializes array elements
// An empty array; elements set to 0
byte[] data = new byte[100];
// Set them all to -1
Arrays.fill(data, (byte) -1);
// Set elements 5, 6, 7, 8, 9 to -2
Arrays.fill(data, 5, 10, (byte) -2);

// Creates a new array with elements copied into it
int[] copied = Arrays.copyOf(new int[] { 1, 2, 3 }, 2);

Arrays can be treated and manipulated as objects in Java. Given an arbitrary object
o, you can use code such as the following to find out if the object is an array and, if
so, what type of array it is:

Class type = o.getClass();
if (type.isArray()) {
  Class elementType = type.getComponentType();
}
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Java Streams and Lambda Expressions
One of the major reasons for introducing lambda expressions in Java 8 was to
facilitate the overhaul of the Collections API to allow more modern programming
styles to be used by Java developers. Until the release of Java 8, the handling of
data structures in Java looked a little bit dated. Many languages now support a
programming style that allows collections to be treated as a whole, rather than
requiring them to be broken apart and iterated over.

In fact, many Java developers had taken to using alternative data structures libraries
to achieve some of the expressivity and productivity they felt was lacking in the
Collections API. The key to upgrading the APIs was to introduce new classes
and methods that would accept lambda expressions as parameters—to define what
needed to be done, rather than precisely how. This is a conception of programming
that comes from the functional style.

The introduction of the functional collections—which are called Java Streams to
make clear their divergence from the older collections approach—is an important
step forward. A stream can be created from a collection simply by calling the
stream() method on an existing collection.

The desire to add new methods to existing interfaces was
directly responsible for the new language feature referred to as
default methods (see “Default Methods” on page 158 for more
details). Without this new mechanism, older implementations
of the Collections interfaces would fail to compile under Java 8
and would fail to link if loaded into a Java 8 runtime.

However, the arrival of the Streams API does not erase history. The Collections API
is deeply embedded in the Java world, and it is not functional. Java’s commitment to
backward compatibility and to a rigid language grammar means that the Collections
will never go away. Java code, even when written in a functional style, will never
be entirely free of boilerplate and will never have the concise syntax that we see in
languages such as Haskell or Scala.

This is part of the inevitable trade-off in language design—Java has retrofitted
functional capabilities on top of an imperative design and base. This is not the same
as designing for functional programming from the ground up. A more important
question is: Are the functional capabilities supplied from Java 8 onward what
working programmers need to build their applications?

The rapid adoption of Java 8 over previous versions and the community reaction
seem to indicate that the new features have been a success and have provided what
the ecosystem was looking for.

In this section, we will introduce the use of Java streams and lambda expressions
in the Java Collections. For a fuller treatment, see Java 8 Lambdas by Richard
Warburton (O’Reilly).
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Functional Approaches
The approach that Java 8 Streams wished to enable was derived from functional
programming languages and styles. We met some of these key patterns in “Func‐
tional Programming” on page 184—let’s reintroduce them and look at some exam‐
ples of each.

Filter
The filter idiom applies a piece of code returning either true or false (known as a
predicate) to each element in a collection. A new collection is built consisting of the
elements that “passed the test” (i.e., the bit of code returned true when applied to
the element).

For example, let’s look at some code to work with a collection of cats and pick out
the tigers:

List<String> cats = List.of("tiger", "cat", "TIGER", "leopard");
String search = "tiger";
String tigers = cats.stream()
                    .filter(s -> s.equalsIgnoreCase(search))
                    .collect(Collectors.joining(", "));
System.out.println(tigers);

The key piece is the call to filter(), which takes a lambda expression. The lambda
takes in a string and returns a Boolean value. This is applied over the whole
collection cats, and a new collection is created, which contains only tigers (however
they were capitalized).

The filter() method takes in an instance of the Predicate interface, from the
package java.util.function. This is a functional interface, with only a single
nondefault method, and so is a perfect fit for a lambda expression.

Note the final call to collect(); this is an essential part of the API and is used to
“gather up” the results at the end of the lambda operations. We’ll discuss it in more
detail in the next section.

Predicate has some other very useful default methods, such as for constructing
combined predicates by using logic operations. For example, if the tigers want to
admit leopards into their group, this can be represented by using the or() method:

Predicate<String> p = s -> s.equalsIgnoreCase(search);
Predicate<String> combined = p.or(s -> s.equals("leopard"));
String pride = cats.stream()
                   .filter(combined)
                   .collect(Collectors.joining(", "));
System.out.println(pride);

Note that it’s much clearer if the Predicate<String> object p is explicitly created,
so that the defaulted or() method can be called on it and the second lambda
expression (which will also be automatically converted to a Predicate<String>)
passed to it.
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Map
The map idiom makes use of the interface Function<T, R> in the package
java.util.function. Like Predicate<T>, this is a functional interface and so only
has one nondefaulted method, apply(). The map idiom is about transforming one
stream into a new stream, where the new stream potentially has different types and
values than the original. This shows up in the API as the fact that Function<T, R>
has two separate type parameters. The name of the type parameter R indicates that
this represents the return type of the function.

Let’s look at a code example that uses map():

List<Integer> namesLength = cats.stream()
                .map(String::length)
                .toList();
System.out.println(namesLength);

This is called upon the previous cats variable (which is a Stream<String>) and
applies the function String::length (a method reference) to each string in turn.
The result is a new stream—but of Integer this time. We turn that stream into a
List with the toList() method. Note that unlike the collections API, the map()
method does not mutate the stream in place but returns a new value. This is key to
the functional style as used here.

forEach
The map and filter idioms are used to create one collection from another. In
languages that are strongly functional, this would be combined with requiring that
the original collection was not affected by the body of the lambda as it touched each
element. In computer science terms, this means that the lambda body should be
“side effect free.”

In Java, of course, we often need to deal with mutable data, so the Streams API
provides a way to mutate elements as the collection is traversed—the forEach()
method. This takes an argument of type Consumer<T>, which is a functional inter‐
face that is expected to operate by side effects (although whether it actually mutates
the data or not is of lesser importance). This means that the signature of lambdas
that can be converted to Consumer<T> is (T t) → void. Let’s look at a quick example
of forEach():

List<String> pets =
  List.of("dog", "cat", "fish", "iguana", "ferret");
pets.stream().forEach(System.out::println);

In this example, we are simply printing out each member of the collection. How‐
ever, we’re doing so by using a special kind of method reference as a lambda
expression. This type of method reference is called a bound method reference, as it
involves a specific object (in this case, the object System.out, which is a static public
field of System). This is equivalent to the lambda expression:

s -> System.out.println(s);
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This is of course eligible for conversion to an instance of a type that implements
Consumer<? super String> as required by the method signature.

Nothing prevents a map() or filter() call from mutating
elements. It is only a convention that they must not mutate,
but it’s one that every Java programmer should adhere to.

There’s one final functional technique that we should look at before we move on.
This is the practice of aggregating a collection down to a single value, and it’s the
subject of our next section.

Reduce
Let’s look at the reduce() method. This implements the reduce idiom, which is
really a family of similar and related operations, some referred to as fold, or aggre‐
gation, operations.

In Java, reduce() takes two arguments. These are the initial value, which is often
called the identity (or zero), and a function to apply step by step. This function
is of type BinaryOperator<T>, which is another functional interface that takes
in two arguments of the same type and returns another value of that type. This
second argument to reduce() is a two-argument lambda. reduce() is defined in the
javadoc like this:

T reduce(T identity, BinaryOperator<T> aggregator);

The easy way to think about the second argument to reduce() is that it creates a
“running total” as it runs over the stream. It starts by combining the identity with
the first element of the stream to produce the first result, then combines that result
with the second element of the stream, and so on.

It can help to imagine that the implementation of reduce() works a bit like this:

public T reduce(T identity, BinaryOperator<T> aggregator) {
    T runningTotal = identity;
    for (T element : myStream) {
        runningTotal = aggregator.apply(runningTotal, element);
    }

    return runningTotal;
}

In practice, implementations of reduce() can be more sophis‐
ticated than these and can even execute in parallel if the data
structure and operations are amenable to this.
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Let’s look at a quick example of a reduce() and calculate the sum of some primes:

double sumPrimes = List.of(2, 3, 5, 7, 11, 13, 17, 19, 23)
        .stream()
        .reduce(0, (x, y) -> x + y);
System.out.println("Sum of some primes: " + sumPrimes);

In all of the examples we’ve met in this section, you may have noticed the presence
of a stream() method call on the List instance. This is part of the evolution of Java
Collections—it was originally chosen partly out of necessity but has proved to be an
excellent abstraction. Let’s move on to discuss the Streams API in more detail.

The Streams API
The fundamental issue that caused the Java library designers to introduce the
Streams API was the large number of implementations of the core collections
interfaces present in the wild. As these implementations predate Java 8 and lambdas,
they would not have any of the methods corresponding to the new functional
operations. Worse still, as method names such as map() and filter() have never
been part of the interface of the Collections, implementations may already have
methods with those names.

To work around this problem, a new abstraction called a Stream was introduced.
The idea is that a Stream object can be generated from a collection object via the
stream() method. This Stream type, being new and under the control of the library
designers, is then guaranteed to be free of collisions. This then mitigates the risk
of clash, as only Collections implementations that contained a stream() method
would be affected.

A Stream object plays a similar role to an Iterator in the new approach to
collections code. The overall idea is for the developer to build up a sequence (or
“pipeline”) of operations (such as map, filter, or reduce) that need to be applied
to the collection as a whole. The actual content of the operations will usually be
expressed as a lambda expression for each operation.

At the end of the pipeline, the results usually need to be gathered up, or “material‐
ized,” either as a new collection or another value. This is done either by using a
Collector or by finishing the pipeline with a “terminal method” such as reduce()
that returns an actual value, rather than another stream. Overall, the new approach
to collections looks like this:

        stream()   filter()   map()   collect()
Collection -> Stream -> Stream -> Stream -> Collection

The Stream class behaves as a sequence of elements that are accessed one at a time
(although there are some types of streams that support parallel access and can be
used to process larger collections in a naturally multithreaded way). In a similar way
to an Iterator, the Stream is used to take each item in turn.
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As is usual for generic classes in Java, Stream is parameterized by a reference type.
However, in many cases, we actually want streams of primitive types, especially
ints and doubles. We cannot have Stream<int>, so instead in java.util.stream
there are special (nongeneric) classes such as IntStream and DoubleStream. These
are known as primitive specializations of the Stream class and have APIs that are
very similar to the general Stream methods, except that they use primitives where
appropriate.

Lazy evaluation
In fact, streams are more general than iterators (or even collections), as streams
do not manage storage for data. In earlier versions of Java, there was always a
presumption that all of the elements of a collection existed (usually in memory).
It was possible to work around this in a limited way by insisting on the use of
iterators everywhere, as well as by having the iterators construct elements on the fly.
However, this was neither very convenient nor that common.

By contrast, streams are an abstraction for managing data, rather than being con‐
cerned with the details of storage. This makes it possible to handle more subtle data
structures than just finite collections. For example, infinite streams can easily be
represented by the Stream interface, and they can be used as a way, for example, to
handle the set of all square numbers. Let’s see how we could accomplish this using a
Stream:

public class SquareGenerator implements IntSupplier {
    private int current = 1;

    @Override
    public synchronized int getAsInt() {
        int thisResult = current * current;
        current++;
        return thisResult;
    }
}

IntStream squares = IntStream.generate(new SquareGenerator());
PrimitiveIterator.OfInt stepThrough = squares.iterator();
for (int i = 0; i < 10; i++) {
    System.out.println(stepThrough.nextInt());
}
System.out.println("First iterator done...");

// We can go on as long as we like...
for (int i = 0; i < 10; i++) {
    System.out.println(stepThrough.nextInt());
}

Because our list of possible values is infinite, we must adopt a model in which
elements do not all exist ahead of time. Essentially, a bit of code must return the
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next element as we demand it. The key technique used to accomplish this is lazy
evaluation.

Lazy evaluation is a big change for Java, as until JDK 8 the
value of an expression was always computed as soon as it was
assigned to a variable (or passed into a method). This famil‐
iar model, where values are computed immediately, is called
“eager evaluation” and it is the default behavior for evaluation
of expressions in most mainstream programming languages.

We can see this lazy evaluation in action in our example above if we modify
getAsInt() slightly to provide output actively when it is called:

    @Override
    public synchronized int getAsInt() {
        int thisResult = current * current;
        System.out.print(String.format("%d... ", thisResult));
        current++;
        return thisResult;
    }

When this modified program is run, we’ll see output that shows each getAsInt()
call immediately followed by the use of that value in the for loop:

1... 1
4... 4
9... 9
16... 16
25... 25
36... 36
49... 49
64... 64
81... 81
100... 100
First iterator done...
121... 121
...

One significant consequence of modeling the infinite stream is that methods like
collect() won’t work. This is because we can’t materialize the whole stream to a
collection (we would run out of memory before we created the infinite amount of
objects we would need).

Even when a stream isn’t infinite, it’s important to recognize what parts of the
evaluation are lazy. For instance, the following code that tries to show us diagnostic
information during a map operation doesn’t actually yield any output:

List.of(1, 2, 3, 4, 5)
    .stream()
    .map((i) - > {
        System.out.println(i);
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        return i;
    });

Only once we provide a terminal action such as collect() or toList() is our
map() lambda actually executed.

Recognizing which intermediate results are lazy in their evaluation is a topic Java
developers should be mindful of when working with the Stream API. The more
complicated implementation details, though, fall to library writers rather than users
of streams.

While the combination of filter, map, and reduce can accomplish almost any
stream-related task we’re after, it isn’t always the most convenient API. There are a
wide variety of additional methods that build on top of these primitives to give us a
richer vocabulary to work with stream.

Further filtering
A common place where working with streams benefits from more elaborate meth‐
ods is filtering. A number of methods on the Stream interface allow more expressive
descriptions of how we want to trim our streams for consumption:

// Distinct elements only
Stream.of(1, 2, 1, 2, 3, 4)
      .distinct();
// Results in  [1, 2, 3, 4]

// Ignores items until predicate matches, then returns remainder
// Note that later elements aren't required to match the predicate.
Stream.of(1, 2, 3, 4, 5, 3)
      .dropWhile((i) -> i < 4);
// Results in [4, 5, 3]

// Returns items from the stream until the predicate stops matching.
// Note that later elements matching the predicate aren't returned.
Stream.of(1, 2, 3, 4, 3)
      .takeWhile((i) -> i < 4);
// Results in [1, 2, 3]

// Skips the first N items in the stream
Stream.of(1, 2, 3, 4, 5)
      .skip(2);
// Results in [3, 4, 5]

// Limits items taken from stream to an exact value
// Useful with infinite streams to set boundaries
Stream.of(1, 2, 3, 4, 5)
      .limit(3);
// Results in [1, 2, 3]
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Matching in streams
Another typical operation is to ask questions of an entire stream of elements, such
as whether all (or none) match a given predicate, or alternatively if there’s any single
element that matches:

// Are all the items odd?
Stream.of(1, 1, 3, 5)
      .allMatch((i) -> i % 2 == 1);
// Returns true

// Are none of the items even?
Stream.of(1, 1, 3, 5)
      .noneMatch((i) -> i % 2 == 0);
// Returns true

// Is at least one item even?
Stream.of(1, 1, 3, 5, 6)
      .anyMatch((i) -> i % 2 == 0);
// Returns true

Flattening
Once we’ve started down the path of modeling our data as streams, it’s not unusual
to find yet another layer of streams beneath. For instance, if we’re processing
multiple lines of text and wanted to gather the set of words from the entire block, we
might reach first for code like this:

var lines = Stream.of(
    "For Brutus is an honourable man",
    "Give me your hands if we be friends and Robin shall restore amends",
    "Misery acquaints a man with strange bedfellows");

lines.map((s) -> s.split(" +"));
// Returns Stream.of(new String[] { "For", "Brutus",...},
//                   new String[] { "Give", "me", "your", ... },
//                   new String[] { "Misery", "acquaints", "a", ... },

This isn’t quite the plain word list we’re after, though. We have an extra layer of
nesting, a Stream<String[]> instead of Stream<String>.

The flatMap() method is designed for exactly these situations. For each element in
our original stream, the lambda provided to flatMap() returns not an individual
value but another Stream. Then flatMap() gathers those multiple streams and joins
them, flattening to a single stream of the contained type.

In our example split() gives us arrays, which we can trivially convert to streams.
From there, flatMap() will do the work of turning those multiple streams into the
single stream of words we were after:

lines.flatMap((s) -> Arrays.stream(s.split(" +")));
// Returns Stream.of("For", "Brutus", "is", "an", ...)
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From Streams to Collections
Defining a separate Stream interface was a pragmatic way to enable newer styles
of development with Java while not breaking existing code. However, sometimes
you still need the standard Java Collections, whether to pass to another API or for
functionality that isn’t present in streams. For the most common cases of returning
a simple List or array of elements, the methods are provided directly on the Stream
interface:

// Immutable list returned
List<Integer> list =
    Stream.of(1, 2, 3, 4, 5).toList();

// Note the return type is `Object[]`
Object[] array =
    Stream.of(1, 2, 3, 4, 5).toArray();

Transforming a stream into a nonstream collection or other object is primarily
performed through the collect() method. This method receives an instance of the
Collector interface, allowing for a world of possible ways to gather up our stream
results without adding to the Stream interface itself.

Standard implementations for a variety of collectors are available on the Collectors
class as static methods. For instance, we can turn our stream into any of our normal
collection types:

// In earlier versions of Java, Stream#toList() didn't exist
// This was the commonly used approach so you'll still see it often
List<Integer> list =
    Stream.of(1,2,3,4,5)
          .collect(Collectors.toList());

// Create a standard Set (no duplicates)
Set<Integer> set =
    Stream.of(1,2,3,4,5)
          .collect(Collectors.toSet());

// For Collection types that don't have a specific method, we can
// use toCollection with a function that creates our empty instance
// Each item will be added to that collection
TreeSet<Integer> collection =
    Stream.of(1,2,3,4,5)
          .collect(Collectors.toCollection(TreeSet::new));

// When creating maps we must provide two functions
// The first constructs the key for each element, the second the value
// Here, each int is its own key and the value is its toString()
Map<Integer, String> map =
    Stream.of(1,2,3,4,5)
          .collect(Collectors.toMap(
                      (i) -> i,
                      Object::toString));

Java Streams and Lambda Expressions | 315

Java
C

o
llectio

ns



Unlike Stream#toList(), all of these options return a modifiable version of their
collection type. Collectors also provides specific methods if you want to return an
unmodifiable or immutable version. They follow a naming convention toUnmodifia
bleX() where X is the collection type as seen above.

A final variation on gathering collections is when you want to group the elements
by some property. In this example, we want to group the numbers by their first
digit:

Map<Character, List<Integer>> grouped =
        Stream.of(10, 11, 12, 20, 30)
                .collect(Collectors.groupingBy((i) -> {
                    return i.toString().charAt(0);
                }));
// Returns map with {"1"=[10, 11, 12], "2"=[20], "3"=[30]}

From Streams to values
We don’t always want to retrieve collections from our streams—sometimes we need
a single value, much like the reduce() method gave us.

Stream has a few built-in methods for the most common values we might want
from our stream:

var count = Stream.of(1,2,3).count();
var max = Stream.of(1,2,3).max(Integer::compareTo);
var min = Stream.of(1,2,3).min(Integer::compareTo);

The collect() method isn’t limited to returning collection types either. A wide
variety of result gathering methods are available from Collectors to aid in com‐
mon calculations, particularly on streams of numbers. These methods all require a
function for turning the incoming item from the stream to a number, which allows
it to be easily used with objects as well as primitive values:

var average =
    Stream.of(1,2,3)
          .collect(Collectors.averagingInt(Integer::intValue));

var sum =
    Stream.of(1,2,3)
          .collect(Collectors.summingInt(Integer::intValue));

var summary =
    Stream.of(1,2,3)
          .collect(Collectors.summarizingInt(Integer::intValue));
// IntSummaryStatistics{count=3, sum=6, min=1, average=2.0, max=3}

Similar methods are available for long and double types in addition to integers.

A final way of getting a result from a stream helps us with strings. A classic issue
is turning a series of smaller strings into one larger delimited string. Streams make
this quite simple.
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var words = Stream.of("This", "is", "some", "text");
var csv = words.collect(Collectors.joining(", "));
// Returns string "This, is, some, text"

Streams utility default methods
Java Streams took the opportunity to introduce a number of new methods to
the Java Collections libraries. Using default methods, it was possible to add new
methods to the Collections without breaking backward compatibility.

Some of these methods are scaffold methods for creating Streams from our
existing collections. These include methods such as Collection::stream, Collec
tion::parallelStream, and Collection::spliterator (which has specialized
forms List::spliterator and Set::spliterator).

Other methods provide shortcuts to functionality that existed elsewhere in previous
versions. For instance, List::sort method essentially delegates to the more cum‐
bersome version already available on the Collections class:

// Essentially just forwards to the helper method in Collections
public default void sort(Comparator<? super E> c) {
    Collections.<E>sort(this, c);
}

The remaining methods provide additional functional techniques using the inter‐
faces of java.util.function:

Collection::removeIf

This method takes a Predicate and iterates internally over the collection,
removing any elements that satisfy the predicate object.

Map::forEach

The single argument to this method is a lambda expression that takes two
arguments (one of the key’s type and one of the value’s type) and returns void.
This is converted to an instance of BiConsumer and applied to each key/value
pair in the map.

Map::computeIfAbsent

This takes a key and a lambda expression that maps the key type to the value
type. If the specified key (first parameter) is not present in the map, then it
computes a default value by using the lambda expression and puts it in the
map.

(See also Map::computeIfPresent, Map::compute, and Map::merge.)

Summary
In this chapter, we’ve met the Java Collections libraries and seen how to start
working with Java’s implementations of fundamental and classic data structures.
We’ve met the general Collection interface, as well as List, Set, and Map. We’ve
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seen the original, iterative way of handling collections and introduced the new Java
Streams style, based on ideas from fundamental programming. In the Streams API,
we’ve seen how the new approach is more general and can express more subtle
programming concepts than the classic approach.

We’ve only scratched the surface—the Streams API is a fundamental shift in how
Java code is written and architected. There are inherent design limitations in how
far the ideals of functional programming can be implemented in Java. Having said
that, the possibility that Streams represents “just enough functional programming”
is compelling.

Let’s move on. In the next chapter, we’ll continue looking at data, and common tasks
like text processing, handling numeric data, and Java 8’s new date and time libraries.
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9
Handling Common Data Formats

Most of programming is handling data in various formats. In this chapter, we will
introduce Java’s support for handling two big classes of data—text and numbers.
The second half of the chapter will focus on handling date and time information.
This is of particular interest, as Java 8 shipped a completely new API for handling
date and time. We cover this interface in some depth before finishing the chapter by
briefly discussing Java’s original date and time API.

Many applications are still using the legacy APIs, so developers need to be aware
of the old way of doing things, but the new APIs are so much better that we
recommend converting as soon as possible. Before we get to those more complex
formats, let’s get under way by talking about textual data and strings.

Text
We have already met Java’s strings on many occasions. They consist of sequences of
Unicode characters and are represented as instances of the String class. Strings are
one of the most common types of data that Java programs process (a claim you can
investigate for yourself by using the jmap tool that we’ll meet in Chapter 13).

In this section, we’ll meet the String class in some more depth and understand
why it is in a rather unique position within the Java language. Later in the section,
we’ll introduce regular expressions, a very common abstraction for searching text
for patterns (and a classic tool in the programmer’s arsenal, regardless of language).

Special Syntax for Strings
The String class is handled in a somewhat special way by the Java language.
This is because, despite not being a primitive type, strings are so common that it
makes sense for Java to have a number of special syntax features designed to make
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handling strings easy. Let’s look at some examples of special syntax features for
strings that Java provides.

String literals
As we saw in Chapter 2, Java allows a sequence of characters to be placed in double
quotes to create a literal string object. Like this:

String pet = "Cat";

Without this special syntax, we would have to write acres of horrible code like this:

char[] pullingTeeth = {'C', 'a', 't'};
String pet = new String(pullingTeeth);

This would get tedious extremely quickly, so it’s no surprise that Java, like all
modern programming languages, provides a simple string literal syntax. The string
literals are perfectly sound objects, so code like this is completely legal:

System.out.println("Dog".length());

Strings using basic double quotes cannot span multiple lines, but recent versions of
Java have included multiline text blocks with the """ syntax. The resulting string
objects are created at compile-time and are no different than a " quoted string, just
easier to express:

String lyrics = """
  This is the song that never ends
  This song goes on and one my friend
  ...""";

See “String literals” on page 84 for complete coverage of string literals in Java.

toString()
This method is defined on Object and is designed to allow easy conversion of
any object to a string. This makes it easy to print out any object, by using the
method System.out.println(). This method is actually PrintStream::println
because System.out is a static field of type PrintStream. Let’s see how this method
is defined:

    public void println(Object x) {
        String s = String.valueOf(x);
        synchronized (this) {
            print(s);
            newLine();
        }
    }

This creates a new string by using the static method String::valueOf():

    public static String valueOf(Object obj) {
        return (obj == null) ? "null" : obj.toString();
    }
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The static valueOf() method is used instead of toString()
directly, to avoid a NullPointerException in the case where
obj is null.

This construction means that toString() is always available for any object, and
this comes in very handy for another major syntax feature that Java provides: string
concatenation.

String concatenation
Java allows us to create new strings by “adding” the characters from one string onto
the end of another. This is called string concatenation and uses the operator +. In
versions of Java up to and including Java 8, it works by first creating a “working
area” in the form of a StringBuilder object that contains the same sequence of
characters as the original string.

Java 9 introduced a new mechanism that uses the
invokedynamic instruction instead of StringBuilder directly.
This is an advanced piece of functionality and out of scope for
this discussion, but it doesn’t change the behavior visible to
the Java developer.

The builder object is then updated and the characters from the additional string
are added onto the end. Finally, toString() is called on the StringBuilder object
(which now contains the characters from both strings). This gives us a new string
with all the characters in it. All of this code is created automatically by javac
whenever we use the + operator to concatenate strings.

The concatenation process returns a completely new String object, as we can see in
this example:

String s1 = "AB";
String s2 = "CD";

String s3 = s1;
System.out.println(s1 == s3); // Same object? Yes.

s3 = s1 + s2;
System.out.println(s1 == s3); // Still same? Nope!
System.out.println(s1);
System.out.println(s3);

The concatenation example directly shows that the + operator is not altering (or
mutating) s1 in place. This is an example of a more general principle: Java’s strings
are immutable. This means that once the characters that make up the string have
been chosen and the String object has been created, the String cannot be changed.
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This is an important language principle in Java, so let’s look at it in a little more
depth.

String Immutability
To “change” a string, as we saw when we discussed string concatenation, we actually
need to create an intermediate StringBuilder object to act as a temporary scratch
area, and then call toString() on it, to bake it into a new instance of String. Let’s
see how this works in code:

String pet = "Cat";
StringBuilder sb = new StringBuilder(pet);
sb.append("amaran");
String boat = sb.toString();
System.out.println(boat);

Code like this behaves equivalently to the following, although in Java 9 and above
the actual bytecode sequences will differ:

String pet = "Cat";
String boat = pet + "amaran";
System.out.println(boat);

Of course, as well as being used under the hood by javac, the StringBuilder class
can also be used directly in application code, as we’ve seen.

Along with StringBuilder, Java also has a StringBuffer
class. This comes from the oldest versions of Java and
should not be used for new development—use StringBuilder
instead, unless you really need to share the construction of a
new string between multiple threads.

String immutability is an extremely useful language feature. For example, suppose
the + changed a string instead of creating a new one; then, whenever any thread
concatenated two strings, all other threads would also see the change. This is
unlikely to be a useful behavior for most programs, and so immutability makes
good sense.

Hash codes and effective immutability
We have already met the hashCode() method in Chapter 5, where we described the
contract that the method must satisfy. Let’s take a look at the JDK source code and
see how the method String::hashCode() is defined:

    public int hashCode() {
        int h = hash;
        if (h == 0 && value.length > 0) {
            char val[] = value;

            for (int i = 0; i < value.length; i++) {
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                h = 31 * h + val[i];
            }
            hash = h;
        }
        return h;
    }

The field hash holds the hash code of the string, and the field value is a char[]
that holds the characters that actually make up the string. As we can see from the
code, Java computes the hash by looping over all the characters of the string. It
therefore takes a number of machine instructions proportional to the number of
characters in the string. For very large strings, this could take a bit of time. Rather
than precompute the hash value, Java calculates it only when it is needed.

When the method runs, the hash is computed by stepping through the array of
characters. At the end of the array, we exit the for loop and write the computed
hash back into the field hash. Now, when this method is called again, the value has
already been computed, so we can just use the cached value and subsequent calls to
hashCode() return immediately.

The computation of a string’s hash code is an example of a
benign data race. In a program with multiple threads, they
could race to compute the hash code. However, they would all
eventually arrive at exactly the same answer—hence the term
benign.

All of the fields of the String class are final, except for hash. So Java’s strings are
not, strictly speaking, immutable. However, because the hash field is just a cache
of a value that is deterministically computed from the other fields, which are all
immutable then, provided String has been coded correctly, it will behave as if it
were immutable. Classes that have this property are called effectively immutable—
they are quite rare in practice, and working programmers can usually ignore the
distinction between truly immutable and effectively immutable data.

String Formatting
In “String concatenation” on page 321, we saw how Java supports building strings
from smaller strings by joining them. While this works, it can often be tedious
and error prone when constructing more elaborate output strings. Java provides a
number of other methods and classes for doing richer string formatting.

The static method format on the String class allows us to specify a template and
then dynamically plug in various values:

// Result is the string "The 1 pet is a cat: true?"
var s = String.format("The %d pet is a %s: %b?%n", 1, "cat", true);

// Same result, but called on string instance instead of statically
s = "The %d pet is a %s: %b?%n".formatted(1, "cat", true);
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Placeholders in the format string where values will be introduced start with the
% character. In this example, we substitute an integer with %d, a string with %s, a
boolean with %b, and finally end the string with a newline via %n.

Those with a background in C or similar languages will recognize this format
from the venerable printf function. Java supports many, though not all, of the
same formats with a wide variety of options. Java’s printf also provides more
sophisticated date and time formatting as seen in C’s strftime function. See the
Java documentation on java.util.Formatter for the full list of options available.

Java also improves on the experience using these format strings by throwing excep‐
tions on invalid conditions such as mismatched numbers of placeholders to values,
or unrecognized % values.

String.format() provides powerful tools for constructing complex strings but,
particularly when making output correct across countries, more assistance is
needed. NumberFormat is an example of classes Java provides to support more com‐
plex, locale-aware formatting of values. Other formatters are also available under
java.text:

// Some common locales are available as constants
// A much longer list can be accessed at runtime
var locale = Locale.US;

NumberFormat.getNumberInstance(locale).format(1_000_000_000L)
// 1,000,000,000

NumberFormat.getCurrencyInstance(locale).format(1_000_000_000L)
// $1,000,000,000.00

NumberFormat.getPercentInstance(locale).format(0.1)
// 10%

NumberFormat.getCompactNumberInstance(locale , NumberFormat.Style.LONG)
            .format(1_000_000_000L)
// 1 billion

NumberFormat.getCompactNumberInstance(locale, NumberFormat.Style.SHORT)
            .format(1_000_000_000L)
// 1B

Regular Expressions
Java has support for regular expressions (often shortened to regex or regexp). These
are a representation of a search pattern used to scan and match text. A regex is a
sequence of characters that we want to search for. They can be very simple—for
example, abc means that we’re looking for a, followed immediately by b, followed
immediately by c, anywhere within the text we’re searching. Note that a search
pattern may match an input text in zero, one, or more places.
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The simplest regexes are just sequences of literal characters, like abc. However, the
language of regexes can express more complex and subtle ideas than just literal
sequences. For example, a regex can represent patterns to match like:

• A numeric digit•
• Any letter•
• Any number of letters, which must all be in the range a to j but can be upper-•

or lowercase
• a followed by any four characters, followed by b•

The syntax we use to write regular expressions is simple, but because we can build
complex patterns, it is often possible to write an expression that does not implement
precisely what we wanted. When using regexes, it is very important to always test
them fully. This should include both test cases that should pass and cases that
should fail.

To express these more complex patterns, regexes use metacharacters. These are
special characters that indicate special processing is required. This can be thought
of as similar to the use of the * character in operating system shells. In those
circumstances, it is understood that the * is not to be interpreted literally but
instead means “anything.” If we wanted to list all the Java source files in the current
directory on Unix, we would issue the command:

ls *.java

The metacharacters of regexes are similar, but there are far more of them, and
they are far more flexible than the set available in shells. They also have different
meanings than they do in shell scripts, so don’t get confused.

Many different flavors of regular expression patterns exist in
the world. Java’s is PCRE-compatible, supporting a common
set of metacharacters popularized by the Perl programming
language. Be aware though that a random regex found online
may or may not actually work, whatever regex libraries you
are using.

Let’s meet a couple of examples. Suppose we want to have a spell-checking pro‐
gram that is relaxed about the difference in spelling between British and American
English. This means that honor and honour should both be accepted as valid spelling
choices. This is easy to do with regular expressions.

Java uses a class called Pattern (from the package java.util.regex) to represent
a regex. This class can’t be directly instantiated, however. Instead, new instances are
created by using a static factory method, compile(). From a pattern, we then derive
a Matcher for a particular input string that we can use to explore the input string.
For example, let’s examine a bit of Shakespeare from the play Julius Caesar:
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Pattern p = Pattern.compile("honou?r");

String caesarUK = "For Brutus is an honourable man";
Matcher mUK = p.matcher(caesarUK);

String caesarUS = "For Brutus is an honorable man";
Matcher mUS = p.matcher(caesarUS);

System.out.println("Matches UK spelling? " + mUK.find());
System.out.println("Matches US spelling? " + mUS.find());

Be careful when using Matcher, as it has a method called
matches(). However, this method indicates whether the pat‐
tern can cover the entire input string. It will return false if
the pattern starts matching only in the middle of the string.

The last example introduces our first regex metacharacter ?, in the pattern honou?r.
This means “the preceding character is optional”—so both honour and honor will
match. Let’s look at another example. Suppose we want to match both minimize and
minimise (the latter spelling is more common in British English). We can use square
brackets to indicate that any character from a set (but only one alternative) [] can
be used—like this:

Pattern p = Pattern.compile("minimi[sz]e");

Table 9-1 provides an expanded list of metacharacters available for Java regexes.

Table 9-1. Regex metacharacters

Metacharacter Meaning Notes

? Optional character—zero or one instance

* Zero or more of preceding character

+ One or more of preceding character

{M,N} Between M and N instances of preceding character

\d A digit

\D A nondigit character

\w A word character Digits, letters, and _

\W A nonword character
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Metacharacter Meaning Notes

\s A whitespace character

\S A nonwhitespace character

\n Newline character

\t Tab character

. Any single character Does not include newline in Java

[ ] Any character contained with the brackets Called a character class

[^ ] Any character not contained with the brackets Called a negated character class

( ) Build up a group of pattern elements Called a group (or capturing group)

| Define alternative possibilities Implements logical OR

^ Start of string

$ End of string

\\ Literal escape (\) char

There are a few more, but this is the basic list. The java.util.regex.Pattern Java
documentation is a good source for all the details. From this, we can construct more
complex expressions for matching such as the examples given earlier in this section:

String text = "Apollo 13";

// A numeric digit. Note we must use \\ because we need a literal \
// and Java uses a single \ as an escape character, as per the table
Pattern p = Pattern.compile("\\d");
Matcher m = p.matcher(text);
System.out.print(p + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

// A single letter
p = Pattern.compile("[a-zA-Z]");
m = p.matcher(text);
System.out.print(p + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

// Any number of letters, which must all be in the range 'a' to 'j'
// but can be upper- or lowercase
p = Pattern.compile("([a-jA-J]*)");
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m = p.matcher(text);
System.out.print(p + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

// 'a' followed by any four characters, followed by 'b'
text = "abacab";
p = Pattern.compile("a....b");
m = p.matcher(text);
System.out.print(p + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

Regexes are extremely useful for determining when a string matches a given pattern,
but they also allow for extracting bits and pieces from the strings as well. This is
done through the group mechanism, which is represented in the patterns by ():

String text = "Apollo 13";

Pattern p = Pattern.compile("Apollo (\\d*)");
Matcher m = p.matcher(text);
System.out.print(p + " matches " + text + "? " + m.find());
System.out.println("; mission: " + m.group(1));

The call to Matcher.group(1) returns the text that the regex matched in the (\\d*)
of our pattern. Multiple groups are allowed, along with syntax for naming groups
rather than using them by position. See the Java documentation for full details.

A common difficulty working with regular expressions is the need to use escape
characters for both the Java string and the regular expression. Where text blocks
have less escaping—such as quote characters—they can provide for less cluttered
expressions:

// Detect if there are any double-quoted passages in string
// Note standard string literal requires escaping quotations
Pattern oldQuoted = Pattern.compile(".*\".*\".*");

Pattern newQuoted = Pattern.compile("""
                                    .*".*".*""");

Let’s conclude our quick tour of regular expressions by meeting a new method that
was added to Pattern as part of Java 8: asPredicate(). This method is present to
allow us to easily bridge from regular expressions to the Java Collections and their
new support for lambda expressions.

For example, suppose we have a regex and a collection of strings. It’s very natural to
ask the question: “Which strings match against the regex?” We do this by using the
filter idiom and by converting the regex to a Predicate using the helper method,
like this:

// Contains a numeric digit
Pattern p = Pattern.compile("\\d");

List<String> ls = List.of("Cat", "Dog", "Ice-9", "99 Luftballoons");
List<String> containDigits = ls.stream()
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        .filter(p.asPredicate())
        .toList();

System.out.println(containDigits);

Java’s built-in support for text processing is more than adequate for the majority
of text-processing tasks that business applications normally require. More advanced
tasks, such as the search and processing of very large data sets, or complex parsing
(including formal grammars), are outside the scope of this book, but Java has a
large ecosystem of helpful libraries and bindings to specialized technologies for text
processing and analysis.

Numbers and Math
In this section, we will discuss Java’s support for numeric types in some more detail.
In particular, we’ll discuss the two’s complement representation of integral types that
Java uses. We’ll introduce floating-point representations and touch on some of the
problems they can cause. We’ll also work through examples that use some of Java’s
library functions for standard mathematical operations.

How Java Represents Integer Types
Java’s integer types are all signed, as we first mentioned in “Primitive Data Types” on
page 25. This means that all integer types can represent both positive and negative
numbers. As computers work with binary, this means that the only really logical
way to represent this is to split the possible bit patterns and use half of them to
represent negative numbers.

Let’s work with Java’s byte type to investigate how Java represents integers. This has
8 bits so can represent 256 different numbers (i.e., 128 negative and 128 nonnega‐
tive numbers). It’s logical to use the pattern 0b0000_0000 to represent zero (recall
that Java has the syntax 0b<binary digits> to represent numbers as binary), and
then it’s easy to figure out the bit patterns for the positive numbers:

byte b = 0b0000_0001;
System.out.println(b); // 1

b = 0b0000_0010;
System.out.println(b); // 2

b = 0b0000_0011;
System.out.println(b); // 3

// ...

b = 0b0111_1111;
System.out.println(b); // 127
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When we set the first bit of the byte, the sign should change (as we have now
used up all of the bit patterns that we’ve set aside for nonnegative numbers). So the
pattern 0b1000_0000 should represent some negative number—but which one?

As a consequence of how we’ve defined things, in this repre‐
sentation we have a very simple way to identify whether a bit
pattern corresponds to a negative number: if the high-end bit
of a bit pattern is a 1, then the number being represented is
negative.

Consider the bit pattern consisting of all set bits: 0b1111_1111. If we add 1 to this
number, then the result will overflow the 8 bits of storage that a byte has, resulting
in 0b1_0000_0000. If we want to constrain this to fit within the byte data type, then
we should ignore the overflow, so this becomes 0b0000_0000, otherwise known as
zero. It is therefore natural to adopt the representation that “all set bits represent -1.”
This allows for natural arithmetic behavior, like this:

b = (byte) 0b1111_1111; // -1
System.out.println(b);
b++;
System.out.println(b);

b = (byte) 0b1111_1110; // -2
System.out.println(b);
b++;
System.out.println(b);

Finally, let’s look at the number that 0b1000_0000 represents. It’s the most negative
number that the type can represent, so for byte:

b = (byte) 0b1000_0000;
System.out.println(b); // -128

This representation, called two’s complement, is the most common representation for
signed integers. To use it effectively, you need to remember only two points:

• A bit pattern of all 1’s is the representation for −1.•
• If the high bit is set, the number is negative.•

Java’s other integer types (short, int, and long) behave in very similar ways but
with more bits in their representation. The char data type is different because it
represents a Unicode character, but in some ways it behaves as an unsigned 16-bit
numeric type. It is not normally regarded as an integer type by Java programmers.

Java and Floating-Point Numbers
Computers represent numbers using binary. We’ve seen how Java uses the two’s
complement representation for integers. But what about fractions or decimals?
Java, like almost all modern programming languages, represents them using
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1 In fact, they are actually two of the known examples of transcendental numbers.

floating-point arithmetic. Let’s take a look at how this works, first in base-10 (regular
decimal) and then in binary. Java defines the two most important mathematical
constants, e and π (pi), as constants in java.lang.Math like this:

public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;

Of course, these constants are actually irrational numbers and cannot be precisely
expressed as a fraction, or by any finite decimal number.1 This means that whenever
we try to represent them in a computer, there is always rounding error. Let’s
suppose we only want to deal with eight digits of π, and we want to represent the
digits as a whole number. We can use a representation like this:

314159265 • 10–8

This starts to suggest the basis of how floating-point numbers work. We use some of
the bits to represent the significant digits (314159265, in our example) of the num‐
ber and some bits to represent the exponent of the base (-8, in our example). The
collection of significant digits is called the significand and the exponent describes
whether we need to shift the significand up or down to get to the desired number.

Of course, in the examples we’ve met until now, we’ve been working in base-10.
Computers use binary, so we need to use this as the base in our floating-point
examples. This introduces some additional complications.

The number 0.1 cannot be expressed as a finite sequence of
binary digits. This means that virtually all calculations that
humans care about will lose precision when performed in
floating point, and rounding error is essentially inevitable.

Let’s look at an example that shows the rounding problem:

double d = 0.3;
System.out.println(d); // Special-cased to avoid ugly representation

double d2 = 0.2;
// Should be -0.1 but prints -0.09999999999999998
System.out.println(d2 - d);

The official standard that describes floating-point arithmetic is IEEE-754, and Java’s
support for floating point is based on that standard. The standard uses 24 binary
digits for standard precision and 53 binary digits for double precision.

As we mentioned briefly in Chapter 2, Java previously allowed deviation from this
standard, resulting in greater precision when some hardware features were used to
accelerate calculations. As of Java 17, this is no longer allowed, and all floating-point
operations comply with the IEEE-754 standard.
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BigDecimal
Rounding error is a constant source of headaches for programmers who work with
floating-point numbers. In response, Java has a class java.math.BigDecimal that
provides arbitrary precision arithmetic, in a decimal representation. This works
around the problem of 0.1 not having a finite representation in binary, but there are
still some edge conditions when converting to or from Java’s primitive types, as you
can see:

double d = 0.3;
System.out.println(d);

BigDecimal bd = new BigDecimal(d);
System.out.println(bd);

bd = new BigDecimal("0.3");
System.out.println(bd);

However, even with all arithmetic performed in base-10, there are still numbers,
such as 1/3, that do not have a terminating decimal representation. Let’s see what
happens when we try to represent such numbers using BigDecimal:

bd = new BigDecimal(BigInteger.ONE);
bd.divide(new BigDecimal(3.0));
System.out.println(bd); // Should be 1/3

As BigDecimal can’t represent 1/3 precisely, the call to divide() blows up with
ArithmeticException. When you are working with BigDecimal, it is therefore
necessary to be acutely aware of exactly which operations could result in a non‐
terminating decimal result. To make matters worse, ArithmeticException is an
unchecked, runtime exception and so the Java compiler does not even warn about
possible exceptions of this type.

As a final note on floating-point numbers, the paper “What Every Computer Scien‐
tist Should Know About Floating-Point Arithmetic” by David Goldberg should be
considered essential further reading for all professional programmers. It is easily
and freely obtainable on the internet.

Java’s Standard Library of Mathematical Functions
To conclude this look at Java’s support for numeric data and math, let’s take a quick
tour of the standard library of functions that Java ships with. These are mostly static
helper methods that are located on the class java.lang.Math and include functions
like:

abs()

Returns the absolute value of a number. Has overloaded forms for various
primitive types.
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Trigonometric functions
Basic functions for computing the sine, cosine, tangent, and so on. Java also
includes hyperbolic versions and the inverse functions (such as arc sine).

max(), min()
Overloaded functions to return the greater and smaller of two arguments (both
of the same numeric type).

ceil(), floor()
Used for rounding to integers. floor() returns the largest integer smaller than
the argument (which is a double). ceil() returns the smallest integer larger
than the argument.

pow(), exp(), log()
Functions for raising one number to the power of another and for computing
exponentials and natural logarithms. log10() provides logarithms to base-10,
rather than the natural base.

Let’s look at some simple examples of how to use these functions:

System.out.println(Math.abs(2));
System.out.println(Math.abs(-2));

double cosp3 = Math.cos(0.3);
double sinp3 = Math.sin(0.3);
System.out.println((cosp3 * cosp3 + sinp3 * sinp3)); // Always 1.0

System.out.println(Math.max(0.3, 0.7));
System.out.println(Math.max(0.3, -0.3));
System.out.println(Math.max(-0.3, -0.7));

System.out.println(Math.min(0.3, 0.7));
System.out.println(Math.min(0.3, -0.3));
System.out.println(Math.min(-0.3, -0.7));

System.out.println(Math.floor(1.3));
System.out.println(Math.ceil(1.3));
System.out.println(Math.floor(7.5));
System.out.println(Math.ceil(7.5));

System.out.println(Math.round(1.3)); // Returns long
System.out.println(Math.round(7.5)); // Returns long

System.out.println(Math.pow(2.0, 10.0));
System.out.println(Math.exp(1));
System.out.println(Math.exp(2));
System.out.println(Math.log(2.718281828459045));
System.out.println(Math.log10(100_000));
System.out.println(Math.log10(Integer.MAX_VALUE));

System.out.println(Math.random());
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2 It is very difficult to get computers to produce true random numbers, and in the rare cases where
this is done, specialized hardware is usually necessary.

System.out.println("Let's toss a coin: ");
if (Math.random() > 0.5) {
    System.out.println("It's heads");
} else {
    System.out.println("It's tails");
}

To conclude this section, let’s briefly discuss Java’s random() function. When this is
first called, it sets up a new instance of java.util.Random. This is a pseudorandom
number generator (PRNG)—a deterministic piece of code that produces numbers
that look random but are actually produced by a mathematical formula.2 In Java’s
case, the formula used for the PRNG is pretty simple, for example:

    // From java.util.Random
    public double nextDouble() {
        return (((long)(next(26)) << 27) + next(27)) * DOUBLE_UNIT;
    }

If the sequence of pseudorandom numbers always starts at the same place, then
exactly the same stream of numbers will be produced. To get around this problem,
the PRNG is seeded by a value that should contain as much true randomness as
possible. For this source of randomness for the seed value, Java uses a CPU counter
value that is normally used for high-precision timing.

While Java’s built-in pseudorandom numbers are fine for
most general applications, some specialist applications (nota‐
bly cryptography and some types of simulations) have much
more stringent requirements. If you are working on an appli‐
cation of that sort, seek expert advice from programmers who
are already working in the area.

Now that we’ve looked at text and numeric data, let’s move on to look at another of
the most frequently encountered kinds of data: date and time information.

Date and Time
Almost all business software applications have some notion of date and time. When
modeling real-world events or interactions, collecting a point at which the event
occurred is critical for future reporting or comparison of domain objects. Java 8
brought a complete overhaul to the way that developers work with date and time.
This section introduces those concepts. In earlier versions, the only support is via
classes such as java.util.Date that do not model the concepts. Code that uses the
older APIs should move as soon as possible.
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Introducing the Java 8 Date and Time API
Java 8 introduced the new package java.time, which contains the core classes that
most developers work with. It also contains four subpackages:

java.time.chrono

Alternative chronologies that developers using calendaring systems that do not
follow the ISO standard will interact with. An example would be a Japanese
calendaring system.

java.time.format

Contains the DateTimeFormatter used for converting date and time objects
into a String and also for parsing strings into the data and time objects.

java.time.temporal

Contains the interfaces required by the core date and time classes and also
abstractions (such as queries and adjusters) for advanced operations with dates.

java.time.zone

Classes used for the underlying time zone rules; most developers won’t require
this package.

One of the most important concepts when representing time is the idea of an
instantaneous point on the timeline of some entity. While this concept is well
defined within, for example, Special Relativity, representing it within a computer
requires us to make some assumptions. In Java, we represent a single point in time
as an Instant, which has these key assumptions:

• We cannot represent more seconds than can fit into a long.•
• We cannot represent time more precisely than nanosecond precision.•

This means that we are restricting ourselves to modeling time in a manner that
is consistent with the capabilities of current computer systems. However, another
fundamental concept should also be introduced.

An Instant is about a single event in space-time. However, it is far from uncom‐
mon for programmers to have to deal with intervals between two events, and so Java
also contains the java.time.Duration class. This class ignores calendar effects that
might arise (e.g., from daylight saving time). With this basic conception of instants
and durations between events, let’s move on to unpack the possible ways of thinking
about an instant.
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The parts of a timestamp
In Figure 9-1, we show the breakdown of the different parts of a timestamp in a
number of possible ways.

Figure 9-1. Breaking apart a timestamp

The key concept here is that a number of different abstractions might be appropri‐
ate at different times. For example, there are applications where a LocalDate is key
to business processing, where the needed granularity is a business day. Alternatively,
some applications require subsecond, or even millisecond, precision. Developers
should be aware of their domain and use a suitable representation within their
application.

Example
The date and time API can be a lot to take in at first glance, so let’s start by looking
at an example and discussing a diary class that keeps track of birthdays. If you
happen to be very forgetful about birthdays, then a class like this (and especially
methods like getBirthdaysInNextMonth()) might be very helpful:

public class BirthdayDiary {
    private Map<String, LocalDate> birthdays;

    public BirthdayDiary() {
        birthdays = new HashMap<>();
    }

    public LocalDate addBirthday(String name, int day, int month,
                                 int year) {
        LocalDate birthday = LocalDate.of(year, month, day);
        birthdays.put(name, birthday);
        return birthday;
    }

    public LocalDate getBirthdayFor(String name) {
        return birthdays.get(name);
    }
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    public int getAgeInYear(String name, int year) {
        Period period = Period.between(
              birthdays.get(name),
              birthdays.get(name).withYear(year));

        return period.getYears();
    }

    public Set<String> getFriendsOfAgeIn(int age, int year) {
        return birthdays.keySet().stream()
                .filter(p -> getAgeInYear(p, year) == age)
                .collect(Collectors.toSet());
    }

    public int getDaysUntilBirthday(String name) {
        Period period = Period.between(
              LocalDate.now(),
              birthdays.get(name));

        return period.getDays();
    }

    public Set<String> getBirthdaysIn(Month month) {
        return birthdays.entrySet().stream()
                .filter(p -> p.getValue().getMonth() == month)
                .map(p -> p.getKey())
                .collect(Collectors.toSet());
    }

    public Set<String> getBirthdaysInCurrentMonth() {
        return getBirthdaysIn(LocalDate.now().getMonth());
    }

    public int getTotalAgeInYears() {
        return birthdays.keySet().stream()
                .mapToInt(p -> getAgeInYear(p,
                      LocalDate.now().getYear()))
                .sum();
    }
}

This class shows how to use the low-level API to build up useful functionality. It
also uses innovations such as the Java Streams API and demonstrates how to use
LocalDate as an immutable class and how dates should be treated as values.

Queries
Under a wide variety of circumstances, we may find ourselves wanting to answer a
question about a particular temporal object. Some example questions we may want
answers to are:
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• Is the date before March 1st?•
• Is the date in a leap year?•
• How many days is it from today until my next birthday?•

This is achieved by the use of the TemporalQuery interface, which is defined like
this:

public interface TemporalQuery<R> {
    R queryFrom(TemporalAccessor temporal);
}

The parameter to queryFrom() should not be null, but if the result indicates that a
value was not found, null could be used as a return value.

The Predicate interface can be thought of as a query that
can only represent answers to yes-or-no questions. Temporal
queries are more general and can return a value of “How
many?” or “Which?” instead of just “yes” or “no.”

Let’s look at an example of a query in action, by considering a query that answers
the following question: “Which quarter of the year is this date in?” Java does not
support the concept of a quarter directly. Instead, code like this is used:

LocalDate today = LocalDate.now();
Month currentMonth = today.getMonth();
Month firstMonthofQuarter = currentMonth.firstMonthOfQuarter();

This still doesn’t give quarter as a separate abstraction and instead special case code
is still needed. So let’s slightly extend the JDK support by defining this enum type:

public enum Quarter {
    FIRST, SECOND, THIRD, FOURTH;
}

Now, the query can be written as:

public class QuarterOfYearQuery implements TemporalQuery<Quarter> {
    @Override
    public Quarter queryFrom(TemporalAccessor temporal) {
        LocalDate now = LocalDate.from(temporal);

        if(now.isBefore(now.with(Month.APRIL).withDayOfMonth(1))) {
            return Quarter.FIRST;
        } else if(now.isBefore(now.with(Month.JULY)
                               .withDayOfMonth(1))) {
            return Quarter.SECOND;
        } else if(now.isBefore(now.with(Month.NOVEMBER)
                               .withDayOfMonth(1))) {
            return Quarter.THIRD;
        } else {
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           return Quarter.FOURTH;
        }
    }
}

TemporalQuery objects can be used directly or indirectly. Let’s look at an example of
each:

QuarterOfYearQuery q = new QuarterOfYearQuery();

// Direct
Quarter quarter = q.queryFrom(LocalDate.now());
System.out.println(quarter);

// Indirect
quarter = LocalDate.now().query(q);
System.out.println(quarter);

Under most circumstances, it is better to use the indirect approach, where the query
object is passed as a parameter to query(). This is because it is normally a lot clearer
to read in code.

Adjusters
Adjusters modify date and time objects. Suppose, for example, that we want to
return the first day of a quarter that contains a particular timestamp:

public class FirstDayOfQuarter implements TemporalAdjuster {
    @Override
    public Temporal adjustInto(Temporal temporal) {
        final int currentQuarter = YearMonth.from(temporal)
                .get(IsoFields.QUARTER_OF_YEAR);

        final Month firstMonthOfQuarter = switch (currentQuarter) {
            case 1 -> Month.JANUARY;
            case 2 -> Month.APRIL;
            case 3 -> Month.JULY;
            case 4 -> Month.OCTOBER;
            default -> throw new IllegalArgumentException("Impossible");
        };

        return LocalDate.from(temporal)
                .withMonth(firstMonthOfQuarter.getValue())
                .with(TemporalAdjusters.firstDayOfMonth());
    }
}

Let’s look at an example of how to use an adjuster:

LocalDate now = LocalDate.now();
Temporal fdoq = now.with(new FirstDayOfQuarter());
System.out.println(fdoq);
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The key here is the with() method, and the code should be read as taking in
one Temporal object and returning another object that has been modified. This is
completely normal for APIs that work with immutable objects.

Timezones
If you work with code that cares about dates, you will almost certainly encounter
complications from timezones. Beyond the simple problems of presenting informa‐
tion clearly to users, timezones cause problems because they change. Whether from
daylight savings moves or governments reassigning the zone for a given territory,
the definition of timezones today isn’t guaranteed to be the same next month.

The JVM brings its own copy of the standard IANA timezone data, so getting
timezone updates typically requires a JDK upgrade. For those who need changes
more frequently, Oracle publishes a tzupdater tool that can be used to modify a
JDK installation in-place with newer data.

Legacy Date and Time
Unfortunately, many applications are not yet converted to use the superior date and
time libraries that shipped with Java 8. So, for completeness, we briefly mention the
legacy date and time support (which is based on java.util.Date).

The legacy date and time classes, especially java.util.Date,
should not be used in modern Java environments. Consider
refactoring or rewriting any code that still uses the legacy
classes.

In older versions of Java, java.time is not available. Instead, programmers rely
upon the legacy and rudimentary support provided by java.util.Date. Histori‐
cally, this was the only way to represent timestamps, and although named Date this
class actually consisted of both a date and a time component—and this led to a lot
of confusion for many programmers.

There are many problems with the legacy support provided by Date, for example:

• The Date class is incorrectly factored. It doesn’t actually refer to a date and•
instead is more like a timestamp. It turns out that we need different representa‐
tions for a date, versus a date and time, versus an instantaneous timestamp.

• Date is mutable. We can obtain a reference to a date and then change when it•
refers to.

• The Date class doesn’t actually accept ISO-8601, the universal ISO date stan‐•
dard, as being a valid date.

• Date has a very large number of deprecated methods.•
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The current JDK uses two constructors for Date—the void constructor that is
intended to be the “now constructor,” and a constructor that takes a number of
milliseconds since epoch.

If you cannot avoid java.util.Date, you can still take advantage of the newer APIs
by converting with code like the following example:

// Defaults to timestamp when called
var oldDate = new java.util.Date();

// Note both forms require specifying timezone -
// part of the failing in the old API
var newDate = LocalDate.ofInstant(
                  oldDate.toInstant(),
                  ZoneId.systemDefault());

var newTime = LocalDateTime.ofInstant(
                  oldDate.toInstant(),
                  ZoneId.systemDefault());

Summary
In this chapter, we’ve met several different classes of data. Textual and numeric
data are the most obvious examples, but as working programmers we will meet a
large number of different sorts of data. Let’s move on to look at whole files of data
and new ways to work with I/O and networking. Fortunately, Java provides good
support for dealing with many of these abstractions.
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10
File Handling and I/O

Java has had input/output (I/O) support since the very first version. However,
due to Java’s strong desire for platform independence, the earlier versions of I/O
functionality emphasized portability over functionality. As a result, they were not
always easy to work with.

We’ll see later in the chapter how the original APIs have been supplemented—they
are now rich, fully featured, and very easy to develop with. Let’s kick off the chapter
by looking at the original, “classic” approach to Java I/O, which the more modern
approaches layer on top of.

Classic Java I/O
The File class is the cornerstone of Java’s original way to do file I/O. This abstrac‐
tion can represent both files and directories but in doing so is sometimes a bit
cumbersome to deal with, leading to code like this:

// Get a file object to represent the user's home directory
var homedir = new File(System.getProperty("user.home"));

// Create an object to represent a config file (should
// already be present in the home directory)
var f = new File(homedir, "app.conf");

// Check the file exists, really is a file, and is readable
if (f.exists() && f.isFile() && f.canRead()) {

  // Create a file object for a new configuration directory
  var configdir = new File(homedir, ".configdir");
  // And create it
  configdir.mkdir();
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  // Finally, move the config file to its new home
  f.renameTo(new File(configdir, ".config"));
}

This shows some of the flexibility possible with the File class, but it also demon‐
strates some of the problems with the abstraction. It is very general and thus
requires a lot of methods to interrogate a File object in order to determine what it
actually represents and its capabilities.

Files
The File class has a very large number of methods on it, but some basic functional‐
ity (notably a way to read the actual contents of a file) is not, and never has been,
provided directly. The following is a quick summary of File methods:

// Permissions management
boolean canX = f.canExecute();
boolean canR = f.canRead();
boolean canW = f.canWrite();

boolean ok;
ok = f.setReadOnly();
ok = f.setExecutable(true);
ok = f.setReadable(true);
ok = f.setWritable(false);

// Different views of the file's name
File absF = f.getAbsoluteFile();
File canF = f.getCanonicalFile();
String absName = f.getAbsolutePath();
String canName = f.getCanonicalPath();
String name = f.getName();
String pName = f.getParent();
URI fileURI = f.toURI(); // Create URI for File path

// File metadata
boolean exists = f.exists();
boolean isAbs = f.isAbsolute();
boolean isDir = f.isDirectory();
boolean isFile = f.isFile();
boolean isHidden = f.isHidden();
long modTime = f.lastModified(); // milliseconds since epoch
boolean updateOK = f.setLastModified(updateTime); // milliseconds
long fileLen = f.length();

// File management operations
boolean renamed = f.renameTo(destFile);
boolean deleted = f.delete();

// Create won't overwrite existing file
boolean createdOK = f.createNewFile();

344 | Chapter 10: File Handling and I/O



// Temporary file handling
var tmp = File.createTempFile("my-tmp", ".tmp");
tmp.deleteOnExit();

// Directory handling
boolean createdDir = dir.mkdir(); // Non-recursive create only
String[] fileNames = dir.list();
File[] files = dir.listFiles();

The File class also has a few methods on it that aren’t a perfect fit for the
abstraction. They largely involve interrogating the filesystem (e.g., inquiring about
available free space) that the file resides on:

long free = f.getFreeSpace();
long total = f.getTotalSpace();
long usable = f.getUsableSpace();

File[] roots = File.listRoots(); // all available Filesystem roots

I/O Streams
The I/O stream abstraction (not to be confused with the streams that are used when
dealing with the Java 8 Collection APIs) was present in Java 1.0, as a way of dealing
with sequential streams of bytes from disks or other sources.

The core of this API is a pair of abstract classes, InputStream and OutputStream.
These are very widely used, and in fact the “standard” input and output streams,
which are called System.in and System.out, are streams of this type. They are
public, static fields of the System class, and they are often used in even the simplest
programs:

System.out.println("Hello World!");

Specific subclasses of streams, including FileInputStream and FileOutputStream,
can be used to operate on individual bytes in a file—for example, by counting all the
times ASCII 97 (small letter a) occurs in a file:

try (var is = new FileInputStream("/Users/ben/cluster.txt")) {
  byte[] buf = new byte[4096];
  int len, count = 0;
  while ((len = is.read(buf)) > 0) {
    for (int i = 0; i < len; i = i + 1) {
      if (buf[i] == 97) {
        count = count + 1;
      }
    }
  }
  System.out.println("'a's seen: "+ count);
} catch (IOException e) {
  e.printStackTrace();
}
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This approach to dealing with on-disk data can lack some flexibility—most devel‐
opers think in terms of characters, not bytes. To allow for this, the streams are
usually combined with the higher-level Reader and Writer classes, which provide a
character-stream level of interaction, rather than the low-level bytestream provided
by InputStream and OutputStream and their subclasses.

Readers and Writers
By moving to an abstraction that deals in characters, rather than bytes, developers
are presented with an API that is much more familiar and that hides many of the
issues with character encoding, Unicode, and so on.

The Reader and Writer classes are intended to overlay the bytestream classes and to
remove the need for low-level handling of I/O streams. They have several subclasses
that are often used to layer on top of each other, such as:

• FileReader•

• BufferedReader•

• StringReader•

• InputStreamReader•

• FileWriter•

• PrintWriter•

• BufferedWriter•

To read all lines in from a file and print them out, we use a BufferedReader layered
on top of a FileReader, like this:

try (var in = new BufferedReader(new FileReader(filename))) {
  String line;

  while((line = in.readLine()) != null) {
    System.out.println(line);
  }
} catch (IOException e) {
  // Handle FileNotFoundException, etc. here
}

If we need to read in lines from the console, rather than a file, we will usually use
an InputStreamReader applied to System.in. Let’s look at an example where we
want to read in lines of input from the console but treat input lines that start with
a special character as special—commands (“metas”) to be processed, rather than
regular text. This is a common feature of many chat programs, including IRC. We’ll
use regular expressions from Chapter 9 to help us:

// Meta example: "#info username"
var SHELL_META_START = Pattern.compile("^#(\\w+)\\s*(\\w+)?");
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try (var console =
      new BufferedReader(new InputStreamReader(System.in))) {
  String line;

  while((line = console.readLine()) != null) {
    // Check for special commands ("metas")
    Matcher m = SHELL_META_START.matcher(line);
    if (m.find()) {
      String metaName = m.group(1);
      String arg = m.group(2);
      doMeta(metaName, arg);
    } else {
      System.out.println(line);
    }
  }
} catch (IOException e) {
  // Handle FileNotFoundException, etc. here
}

To output text to a file, we can use code like this:

var f = new File(System.getProperty("user.home")
 + File.separator + ".bashrc");
try (var out =
      new PrintWriter(new BufferedWriter(new FileWriter(f)))) {
  out.println("## Automatically generated config file. DO NOT EDIT");
  // ...
} catch (IOException iox) {
  // Handle exceptions
}

This older style of Java I/O has a lot of other occasionally useful functionality. For
example, to deal with text files, the FilterInputStream class is quite often useful.
Or for threads that want to communicate in a way similar to the classic “piped”
I/O approach, PipedInputStream, PipedReader, and their write counterparts are
provided.

Throughout this chapter so far, we have used the language feature known as
“try-with-resources” (TWR). This syntax was briefly introduced in “The try-with-
resources Statement” on page 72, but it is in conjunction with operations like I/O
that it comes into its fullest potential, and it has granted a new lease on life to the
older I/O style.

try-with-resources Revisited
To make the most of Java’s I/O capabilities, it is important to understand how
and when to use TWR. It is very easy to understand when code should use TWR—
whenever it is possible to do so.

Before TWR, resources had to be closed manually; complex interactions between
resources that failed to close led to buggy code that leaked resources.
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In fact, Oracle’s engineers estimate that 60% of the resource handling code in the
initial JDK 6 release was incorrect. So, if even the platform authors can’t reliably get
manual resource handling right, then all new code should definitely be using TWR.

The key to TWR is a new interface—AutoCloseable. This interface is a direct
superinterface of Closeable. It marks a resource that must be automatically closed,
and for which the compiler will insert special exception-handling code.

Inside a TWR resource clause, only declarations of objects that implement Auto
Closeable objects may appear—but the developer may declare as many as required:

try (var in = new BufferedReader(
                           new FileReader("profile"));
     var out = new PrintWriter(
                         new BufferedWriter(
                           new FileWriter("profile.bak")))) {
  String line;
  while((line = in.readLine()) != null) {
    out.println(line);
  }
} catch (IOException e) {
  // Handle FileNotFoundException, etc. here
}

The consequences of this are that resources are automatically scoped to the try
block. The resources (whether readable or writable) are automatically closed in the
correct order (the reverse order to the way they were opened), and the compiler
inserts exception handling that takes dependencies between resources into account.

TWR is related to similar concepts in other languages and environments, for exam‐
ple, RAII (Resource Acquisition Is Initialization) in C++. However, as discussed in
the finalization section, TWR is limited to block scope. This minor limitation is
because the feature is implemented by the Java source code compiler—it automati‐
cally inserts bytecode that calls the resource’s close() method when the scope is
exited (by whatever means).

As a result, the overall effect of TWR is more similar to C#’s using keyword, rather
than the C++ version of RAII. For Java developers, the best way to regard TWR is
as “finalization done right.” As noted in “Finalization” on page 248, new code should
never directly use the finalization mechanism and should always use TWR instead.
Older code should be refactored to use TWR as soon as is practicable, as it provides
real tangible benefits to resource handling code.

Problems with Classic I/O
Even with the welcome addition of try-with-resources, the File class and friends
have a number of problems that make them less than ideal for extensive use when
performing even standard I/O operations. For instance:

• “Missing methods” for common operations•
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• Does not deal with filenames consistently across platforms•
• Fails to have a unified model for file attributes (e.g., modeling read/write•

access)
• Difficult to traverse unknown directory structures•
• No platform- or OS-specific features•
• Nonblocking operations for filesystems not supported•

To deal with these shortcomings, Java’s I/O has evolved over several major releases.
With the release of Java 7, this support became truly easy and effective to use.

Modern Java I/O
Java 7 brought in a brand new I/O API—usually called NIO.2—and it should be
considered almost a complete replacement for the original File approach to I/O.

The new classes are contained in the java.nio.file package and are considerably
easier for many use cases. The API has two major parts. The first is a new abstrac‐
tion called Path (which can be thought of as representing a file location, which may
or may not actually exist). The second piece is lots of new convenience and utility
methods to deal with files and filesystems. These are contained as static methods in
the Files class.

Files
For example, when you are using the new Files functionality, a basic copy opera‐
tion is now as simple as:

var inputFile = new File("input.txt");
try (var in = new FileInputStream(inputFile)) {
  Files.copy(in, Path.of("output.txt"));
} catch(IOException ex) {
  ex.printStackTrace();
}

Let’s quickly survey some of the major methods in Files—the operation of most of
them is pretty self-explanatory. In many cases, the methods have return types. We
have omitted handling these, as they are rarely useful except for contrived examples
and for duplicating the behavior of the equivalent C code:

Path source, target;
Attributes attr;
Charset cs = StandardCharsets.UTF_8;

// Creating files
//
// Example of path --> /home/ben/.profile
// Example of attributes --> rw-rw-rw-
Files.createFile(target, attr);
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// Deleting files
Files.delete(target);
boolean deleted = Files.deleteIfExists(target);

// Copying/moving files
Files.copy(source, target);
Files.move(source, target);

// Utility methods to retrieve information
long size = Files.size(target);

FileTime fTime = Files.getLastModifiedTime(target);
System.out.println(fTime.to(TimeUnit.SECONDS));

Map<String, ?> attrs = Files.readAttributes(target, "*");
System.out.println(attrs);

// Methods to deal with file types
boolean isDir = Files.isDirectory(target);
boolean isSym = Files.isSymbolicLink(target);

// Methods to deal with reading and writing
List<String> lines = Files.readAllLines(target, cs);
byte[] b = Files.readAllBytes(target);

var br = Files.newBufferedReader(target, cs);
var bwr = Files.newBufferedWriter(target, cs);

var is = Files.newInputStream(target);
var os = Files.newOutputStream(target);

Some of the methods on Files provide the opportunity to pass optional arguments,
to provide additional (possibly implementation-specific) behavior for the operation.

Some of the API choices here produce occasionally annoying behavior. For exam‐
ple, by default, a copy operation will not overwrite an existing file, so we need to
specify this behavior as a copy option:

Files.copy(Path.of("input.txt"), Path.of("output.txt"),
           StandardCopyOption.REPLACE_EXISTING);

StandardCopyOption is an enum that implements an interface called CopyOption.
This is also implemented by LinkOption. So Files.copy() can take any number of
either LinkOption or StandardCopyOption arguments. LinkOption is used to spec‐
ify how symbolic links should be handled (provided the underlying OS supports
symlinks, of course).

Path
Path is a type that may be used to locate a file in a filesystem. It represents a path
that is:
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• System dependent•
• Hierarchical•
• Composed of a sequence of path elements•
• Hypothetical (may not exist yet, or may have been deleted)•

It is therefore fundamentally different from a File. In particular, the system
dependency is manifested by Path being an interface, not a class, which enables
different filesystem providers to each implement the Path interface and provide for
system-specific features while retaining the overall abstraction.

The elements of a Path consist of an optional root component, which identifies the
filesystem hierarchy that this instance belongs to. Note that, for example, relative
Path instances may not have a root component. In addition to the root, all Path
instances have zero or more directory names and a name element.

The name element is the element farthest from the root of the directory hierarchy
and represents the name of the file or directory. The Path can be thought of as
consisting of the path elements joined by a special separator or delimiter.

Path is an abstract concept; it isn’t necessarily bound to any physical file path. This
allows us to talk easily about the locations of files that don’t exist yet. The Path
interface provides static factory methods for creating Path instances.

When NIO.2 was introduced in Java 7, static methods were
not supported on interfaces, so a Paths class was introduced
to hold the factory methods. With Java 17 the Path interface
methods are recommended instead, and the Paths class may
in the future be deprecated.

Path provides two of() methods for creating Path objects. The usual version takes
one or more String instances and uses the default filesystem provider. The URI
version takes advantage of the ability of NIO.2 to plug in additional providers of
bespoke filesystems. This is an advanced usage, and interested developers should
consult the primary documentation. Let’s look at some simple examples of how to
use Path:

var p = Path.of("/Users/ben/cluster.txt");
var p2 = Path.of(new URI("file:///Users/ben/cluster.txt"));
System.out.println(p2.equals(p));

File f = p.toFile();
System.out.println(f.isDirectory());

Path p3 = f.toPath();
System.out.println(p3.equals(p));
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This example also shows the easy interoperation between Path and File objects.
The addition of a toFile() method to Path and a toPath() method to File
allows the developer to move effortlessly between the two APIs and allows for a
straightforward approach to refactoring the internals of code based on File to use
Path instead.

We can also use some helpful “bridge” methods that the Files class also provides.
These provide convenient access to the older I/O APIs—for example, by providing
convenient methods to open Writer objects to specified Path locations:

var logFile = Path.of("/tmp/app.log");
try (var writer =
       Files.newBufferedWriter(logFile, StandardCharsets.UTF_8,
                               StandardOpenOption.WRITE,
                               StandardOpenOption.CREATE)) {
  writer.write("Hello World!");
  // ...
} catch (IOException e) {
  // ...
}

We’re using the StandardOpenOption enum, which provides similar capabilities to
the copy options but for the case of opening a new file instead. We provide both
WRITE and CREATE, so if the file doesn’t exist it will be created; otherwise, we’ll simply
open it for additional writing.

In this example use case, we have used the Path API to:

• Create a Path corresponding to a new file•

• Use the Files class to create that new file•

• Open a Writer to that file•
• Write to that file•
• Automatically close it when done•

In our next example, we’ll build on this to manipulate a JAR file as a FileSystem in
its own right, modifying it to add a file directly into the JAR. Recall that JAR files are
actually just ZIP files, so this technique will also work for .zip archives:

var tempJar = Path.of("sample.jar");
try (var workingFS =
      FileSystems.newFileSystem(tempJar)) {

  Path pathForFile = workingFS.getPath("/hello.txt");
  Files.write(pathForFile,
              List.of("Hello World!"),
              Charset.defaultCharset(),
              StandardOpenOption.WRITE, StandardOpenOption.CREATE);
}
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This shows how we create a FileSystem object in order to create the Path objects
that refer to files inside the jar, via the getPath() method. This enables the devel‐
oper to essentially treat FileSystem objects as black boxes: they are automatically
created via a service provider interface (SPI) mechanism.

To see which file systems are available on your machine, you can run some code like
this:

for (FileSystemProvider f : FileSystemProvider.installedProviders()) {
    System.out.println(f.toString());
}

The Files class also provides methods for handling temporary files and directories,
which is a surprisingly common use case (and can be a source of security bugs). For
example, let’s see how to load a resources file from within the classpath, copy it to
a newly created temporary directory, and then safely clean up the temporary files
(using a Reaper class available in the book resources online):

Path tmpdir = Files.createTempDirectory(Path.of("/tmp"), "tmp-test");
try (InputStream in =
      FilesExample.class.getResourceAsStream("/res.txt")) {
    Path copied = tmpdir.resolve("copied-resource.txt");
    Files.copy(in, copied, StandardCopyOption.REPLACE_EXISTING);
    // ... work with the copy
}
// Clean up when done...
Files.walkFileTree(tmpdir, new Reaper());

One of the criticisms of Java’s original I/O APIs was the lack of support for native
and high-performance I/O. A solution was initially added in Java 1.4, the Java New
I/O (NIO) API, and it has been refined in later Java versions.

NIO Channels and Buffers
NIO buffers are a low-level abstraction for high-performance I/O. They provide a
container for a linear sequence of elements of a specific primitive type. We’ll work
with the ByteBuffer (the most common case) in our examples.

ByteBuffer
This is a sequence of bytes and can conceptually be thought of as a performance-
critical alternative to working with a byte[]. To get the best possible performance,
ByteBuffer provides support for dealing directly with the native capabilities of the
platform the JVM is running on.

This approach is called the direct buffers case, and it bypasses the Java heap wherever
possible. Direct buffers are allocated in native memory, not on the standard Java
heap, and they are not subject to garbage collection in the same way as regular
on-heap Java objects.
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To obtain a direct ByteBuffer, call the allocateDirect() factory method. An
on-heap version, allocate(), is also provided, but in practice this is not often used.

A third way to obtain a byte buffer is to wrap() an existing byte[]—this will give an
on-heap buffer that serves to provide a more object-oriented view of the underlying
bytes:

var b = ByteBuffer.allocateDirect(65536);
var b2 = ByteBuffer.allocate(4096);

byte[] data = {1, 2, 3};
ByteBuffer b3 = ByteBuffer.wrap(data);

Byte buffers are all about low-level access to the bytes. This means that developers
have to deal with the details manually—including the need to handle the endianness
of the bytes and the signed nature of Java’s integral primitives:

b.order(ByteOrder.BIG_ENDIAN);

int capacity = b.capacity();
int position = b.position();
int limit = b.limit();
int remaining = b.remaining();
boolean more = b.hasRemaining();

To get data into or out of a buffer, we have two types of operation—single value,
which reads or writes a single value, and bulk, which takes a byte[] or ByteBuffer
and operates on a (potentially large) number of values as a single operation. It is
from the bulk operations that we’d expect to realize performance gains:

b.put((byte)42);
b.putChar('x');
b.putInt(0xc001c0de);

b.put(data);
b.put(b2);

double d = b.getDouble();
b.get(data, 0, data.length);

The single value form also supports a form used for absolute positioning within the
buffer:

b.put(0, (byte)9);

Buffers are an in-memory abstraction. To affect the outside world (e.g., the file or
network), we need to use a Channel, from the package java.nio.channels. Chan‐
nels represent connections to entities that can support read or write operations.
Files and sockets are the usual examples of channels, but we could consider custom
implementations used for low-latency data processing.
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Channels are open when they’re created and can subsequently be closed. Once
closed, they cannot be reopened. Channels are usually either readable or writable,
but not both. The key to understanding channels is that:

• Reading from a channel puts bytes into a buffer•
• Writing to a channel takes bytes from a buffer•

For example, suppose we have a large file that we want to checksum in 16M chunks:

FileInputStream fis = getSomeStream();
boolean fileOK = true;

try (FileChannel fchan = fis.getChannel()) {
  var buffy = ByteBuffer.allocateDirect(16 * 1024 * 1024);
  while(fchan.read(buffy) != -1 || buffy.position() > 0 || fileOK) {
    fileOK = computeChecksum(buffy);
    buffy.compact();
  }
} catch (IOException e) {
  System.out.println("Exception in I/O");
}

This will use native I/O as far as possible and will avoid a lot of copying of
bytes on and off the Java heap. If the computeChecksum() method has been well
implemented, then this could be a very performant implementation.

Mapped Byte Buffers
These are a type of direct byte buffer that contains a memory-mapped file (or
a region of one). They are created from a FileChannel object, but note that the
File object corresponding to the MappedByteBuffer must not be used after the
memory-mapped operations or an exception will be thrown. To mitigate this, we
again use try-with-resources, to scope the objects tightly:

try (var raf =
  new RandomAccessFile(new File("input.txt"), "rw");
     FileChannel fc = raf.getChannel();) {

  MappedByteBuffer mbf =
    fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());
  var b = new byte[(int)fc.size()];
  mbf.get(b, 0, b.length);
  for (int i = 0; i < fc.size(); i = i + 1) {
    b[i] = 0; // Won't be written back to the file, we're a copy
  }
  mbf.position(0);
  mbf.put(b); // Zeros the file
}

Even with buffers, there are limitations of what can be done in Java for large I/O
operations (e.g., transferring 10G between filesystems) that perform synchronously
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on a single thread. Before Java 7, these types of operations would typically be
done by writing custom multithreaded code and managing a separate thread for
performing a background copy. Let’s move on to look at the new asynchronous I/O
features that were added with JDK 7.

Async I/O
The key to the asynchronous functionality is new subclasses of Channel that can
deal with I/O operations that need to be handed off to a background thread. The
same functionality can be applied to large, long-running operations and to several
other use cases.

In this section, we’ll deal exclusively with AsynchronousFileChannel for file I/O,
but there are a couple of other asynchronous channels to be aware of. We’ll peek at
asynchronous sockets at the end of the chapter. We’ll look at:

• AsynchronousFileChannel for file I/O•

• AsynchronousSocketChannel for client socket I/O•

• AsynchronousServerSocketChannel for asynchronous sockets that accept•
incoming connections

There are two different ways to interact with an asynchronous channel—Future

style and callback style.

Future-Based Style
A full discussion of the Future interface would take us too far into the details of Java
concurrency. However, for the purpose of this chapter, it can be thought of as an
ongoing task that may or may not have completed yet. It has two key methods:

isDone()

Returns a Boolean indicating whether the task has finished.

get()

Returns the result. If finished, returns immediately. If not finished, blocks until
done.

Let’s look at an example of a program that reads a large file (possibly as large as 100
Mb) asynchronously:

try (var channel =
         AsynchronousFileChannel.open(Path.of("input.txt"))) {
  var buffer = ByteBuffer.allocateDirect(1024 * 1024 * 100);
  Future<Integer> result = channel.read(buffer, 0);

  while(!result.isDone()) {
    // Do some other useful work....
  }
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  System.out.println("Bytes read: " + result.get());
}

Callback-Based Style
The callback style for asynchronous I/O is based on a CompletionHandler, which
defines two methods, completed() and failed(), that will be called back when the
operation either succeeds or fails.

This style is useful if you want immediate notification of events in asynchronous
I/O—for example, if there are a large number of I/O operations in flight, but failure
of any single operation is not necessarily fatal:

byte[] data = {2, 3, 5, 7, 11, 13, 17, 19, 23};
ByteBuffer buffy = ByteBuffer.wrap(data);

CompletionHandler<Integer,Object> h =
  new CompletionHandler<>() {
    public void completed(Integer written, Object o) {
      System.out.println("Bytes written: " + written);
    }

    public void failed(Throwable x, Object o) {
      System.out.println("Asynch write failed: "+ x.getMessage());
    }
  };

try (var channel =
       AsynchronousFileChannel.open(Path.of("primes.txt"),
          StandardOpenOption.CREATE, StandardOpenOption.WRITE)) {

  channel.write(buffy, 0, null, h);

  // Give the CompletionHandler time to run before foreground exit
  Thread.sleep(1000);
}

The AsynchronousFileChannel object is associated with a background thread pool,
so that the I/O operation proceeds, while the original thread can get on with other
tasks.

The CompletionHandler interface has two abstract methods,
not one, so it cannot be the target type for a lambda expres‐
sion, unfortunately.

By default, this uses a managed thread pool that is provided by the runtime. If
required, it can be created to use a thread pool that is managed by the application
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(via an overloaded form of AsynchronousFileChannel.open()), but this is seldom
necessary.

Finally, for completeness, let’s touch upon NIO’s support for multiplexed I/O. This
enables a single thread to manage multiple channels and to examine those channels
to see which are ready for reading or writing. The classes to support this are in the
java.nio.channels package and include SelectableChannel and Selector.

These nonblocking multiplexed techniques can be extremely useful when you’re
writing advanced applications that require high scalability, but a full discussion
is outside the scope of this book. In general, the nonblocking API should only
be used for advanced use cases when high performance or other nonfunctional
requirements demand it.

Watch Services and Directory Searching
The last class of asynchronous services we will consider are those that watch a
directory or visit a directory (or a tree). The watch services operate by observing
everything that happens within a directory—for example, the creation or modifica‐
tion of files:

try {
  var watcher = FileSystems.getDefault().newWatchService();

  var dir = FileSystems.getDefault().getPath("/home/ben");
  dir.register(watcher,
                StandardWatchEventKinds.ENTRY_CREATE,
                StandardWatchEventKinds.ENTRY_MODIFY,
                StandardWatchEventKinds.ENTRY_DELETE);

  while(!shutdown) {
    WatchKey key = watcher.take();
    for (WatchEvent<?> event: key.pollEvents()) {
      Object o = event.context();
      if (o instanceof Path) {
        System.out.println("Path altered: "+ o);
      }
    }
    key.reset();
  }
}

By contrast, the directory streams provide a view into all files currently in a single
directory. For example, to list all the Java source files and their size in bytes, we can
use code like:

try(DirectoryStream<Path> stream =
    Files.newDirectoryStream(Path.of("/opt/projects"), "*.java")) {
  for (Path p : stream) {
    System.out.println(p +": "+ Files.size(p));
  }
}
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One drawback of this API is that it will return only elements that match accord‐
ing to glob syntax, which is sometimes insufficiently flexible. We can go further
by using the Files.find() and Files.walk() methods to address each element
obtained by a recursive walk through the directory:

var homeDir = Path.of("/Users/ben/projects/");
Files.find(homeDir, 255,
  (p, attrs) -> p.toString().endsWith(".java"))
     .forEach(q -> {System.out.println(q.normalize());});

It is possible to go even farther and construct advanced solutions based on the File
Visitor interface in java.nio.file, but that requires the developer to implement
all four methods on the interface, rather than just using a single lambda expression
as done here.

In the last section of this chapter, we will discuss Java’s networking support and the
core JDK classes that enable it.

Networking
The Java platform provides access to a large number of standard networking proto‐
cols, and these make writing simple networked applications quite easy. The core of
Java’s network support lives in the package java.net, with additional extensibility
provided by javax.net (and in particular, javax.net.ssl), all of which is in the
module java.base.

One of the easiest protocols to use for building applications is HyperText Transmis‐
sion Protocol (HTTP), the protocol used as the basic communication protocol of
the Web.

HTTP
HTTP is the most common and popular high-level network protocol that Java
supports out of the box. It is a very simple protocol, implemented on top of the
standard TCP/IP stack. It can run on any network port but is usually found on
port 443 when encrypted with TLS (known as HTTPS) or port 80 when running
unencrypted. These days, HTTPS should be the default wherever possible.

Java has two separate APIs for handling HTTP—one of which dates back to the
earliest days of the platform, and a more modern API that arrived fully in Java 11.

Let’s take a quick look at the older API, for the sake of completeness. In this API,
URL is the key class—it supports URLs of the form http://, ftp://, file://, and
https:// out of the box. It is very easy to use, and the simplest example of Java
HTTP support is to download a particular URL:

var url = new URL("http://www.google.com/");
try (InputStream in = url.openStream()) {
  Files.copy(in, Path.of("output.txt"));
} catch(IOException ex) {
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  ex.printStackTrace();
}

For more low-level control, including metadata about the request and response, we
can use URLConnection and achieve something like:

try {
  URLConnection conn = url.openConnection();

  String type = conn.getContentType();
  String encoding = conn.getContentEncoding();
  Date lastModified = new Date(conn.getLastModified());
  int len = conn.getContentLength();
  InputStream in = conn.getInputStream();
} catch (IOException e) {
  // Handle exception
}

HTTP defines “request methods,” which are the operations that a client can make
on a remote resource. These methods are called GET, POST, HEAD, PUT, DELETE,
OPTIONS, and TRACE.

Each has slightly different usages, for example:

• GET should only be used to retrieve a document and never should perform any•
side effects.

• HEAD is equivalent to GET except the body is not returned—useful if a•
program wants to quickly check via headers whether a URL has changed.

• POST is used when we want to send data to a server for processing.•

By default, Java uses GET, but it does provide a way to use other methods for
building more complex applications; however, doing so is a bit involved. In this next
example, we’re using the echo function provided by Postman to return a view of the
data we posted:

var url = new URL("https://postman-echo.com/post");
var encodedData = URLEncoder.encode("q=java", "ASCII");
var contentType = "application/x-www-form-urlencoded";

var conn = (HttpURLConnection) url.openConnection();
conn.setInstanceFollowRedirects(false);
conn.setRequestMethod("POST");
conn.setRequestProperty("Content-Type", contentType );
conn.setRequestProperty("Content-Length",
  String.valueOf(encodedData.length()));

conn.setDoOutput(true);
OutputStream os = conn.getOutputStream();
os.write( encodedData.getBytes() );

int response = conn.getResponseCode();
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if (response == HttpURLConnection.HTTP_MOVED_PERM
    || response == HttpURLConnection.HTTP_MOVED_TEMP) {
  System.out.println("Moved to: "+ conn.getHeaderField("Location"));
} else {
  try (InputStream in = conn.getInputStream()) {
    Files.copy(in, Path.of("postman.txt"),
                StandardCopyOption.REPLACE_EXISTING);
  }
}

Notice that we needed to send our query parameters in the body of a request and
to encode them before sending. We also had to disable following of HTTP redirects
and to treat any redirection from the server manually. This is due to a limitation
of the HttpURLConnection class, which does not deal well with redirection of POST
requests.

The older API definitely shows its age, and in fact implements only version 1.0
of the HTTP standard, which is very inefficient and considered archaic. As an
alternative, modern Java programs can use the new API, which was added as a result
of Java needing to support the new HTTP/2 protocol. It has been available in a
fully supported module, java.net.http, since Java 11. Let’s see a simple example of
using the new API:

        var client = HttpClient.newBuilder().build();
        var uri = new URI("https://www.oreilly.com");
        var request = HttpRequest.newBuilder(uri).build();

        var response = client.send(request,
                ofString(Charset.defaultCharset()));
        var body = response.body();
        System.out.println(body);

Note that this API is designed to be extensible, with interfaces such as HttpRes
ponse.BodySubscriber available for implementing custom handling. The interface
also seamlessly hides the differences between HTTP/2 and the older HTTP/1.1
protocol, meaning that Java applications will be able to migrate gracefully as web
servers adopt the new version.

Let’s move on to look at the next layer down the networking stack, the Transmission
Control Protocol (TCP).

TCP
TCP is the basis of reliable network transport over the internet. It ensures that web
pages and other internet traffic are delivered in a complete and comprehensible
state. From a networking theory standpoint, the protocol properties that allow TCP
to function as this “reliability layer” for internet traffic are:
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Connection based
Data belongs to a single logical stream (a connection).

Guaranteed in-order delivery
Data packets will be resent until they arrive.

Error checked
Damage caused by network transit will be detected and fixed automatically.

TCP is a two-way (or bidirectional) communication channel and uses a special
numbering scheme (TCP sequence numbers) for data chunks to ensure that both
sides of a communication stream stay in sync. To support many different services on
the same network host, TCP uses port numbers to identify services and ensures that
traffic intended for one port does not go to a different one.

In Java, TCP is represented by the classes Socket and ServerSocket. They are used
to provide the capability to be the client side and server side of the connection,
respectively—meaning that Java can be used both to connect to network services
and as a language for implementing new services.

Java’s original socket support was reimplemented, without API
changes, in Java 13. The classic socket APIs now share code
with the more modern NIO infrastructure and will continue
working well into the future as a result.

As an example, let’s consider reimplementing HTTP 1.1. This is a relatively simple,
text-based protocol. We’ll need to implement both sides of the connection, so let’s
start with an HTTP client on top of a TCP socket. To accomplish this, we will
actually need to implement the details of the HTTP protocol, but we do have the
advantage that we have complete control over the TCP socket.

We will need to both read and write from the client socket, and we’ll construct
the actual request line in accordance with the HTTP standard (which is known as
RFC 2616, and uses explicit line-ending syntax). The resulting client code will look
something like this:

var hostname = "www.example.com";
int port = 80;
var filename = "/index.html";

try (var sock = new Socket(hostname, port);
  var from = new BufferedReader(
      new InputStreamReader(sock.getInputStream()));
  var to = new PrintWriter(
      new OutputStreamWriter(sock.getOutputStream())); ) {

  // The HTTP protocol
  to.print("GET " + filename +
    " HTTP/1.1\r\nHost: "+ hostname +"\r\n\r\n");
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  to.flush();

  for (String l = null; (l = from.readLine()) != null; )
    System.out.println(l);
}

On the server side, we’ll need to receive possibly multiple incoming connections.
To handle this, we’ll kick off a main server loop, then use accept() to take a new
connection from the operating system. The new connection is then quickly passed
to a separate handler class so that the main server loop can get back to listening for
new connections. The code for this is a bit more involved than the client case:

// Handler class
private static class HttpHandler implements Runnable {
  private final Socket sock;
  HttpHandler(Socket client) { this.sock = client; }

  public void run() {
    try (var in =
           new BufferedReader(
             new InputStreamReader(sock.getInputStream()));
         var out =
           new PrintWriter(
             new OutputStreamWriter(sock.getOutputStream())); ) {
      out.print("HTTP/1.0 200\r\nContent-Type: text/plain\r\n\r\n");
      String line;
      while((line = in.readLine()) != null) {
        if (line.length() == 0) break;
        out.println(line);
      }
    } catch(Exception e) {
      // Handle exception
    }
  }
}

// Main server loop
public static void main(String[] args) {
  try {
    var port = Integer.parseInt(args[0]);

    ServerSocket ss = new ServerSocket(port);
    while (true) {
      Socket client = ss.accept();
      var handler = new HTTPHandler(client);
      new Thread(handler).start();
    }
  } catch (Exception e) {
    // Handle exception
  }
}
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When designing a protocol for applications to communicate over TCP, there’s a
simple and profound network architecture principle, known as Postel’s Law (after
Jon Postel, one of the fathers of the internet) that you should always keep in mind.
It is sometimes stated as: “Be strict about what you send, and liberal about what you
will accept.” This simple principle means that communication can remain broadly
possible in a network system, even in the event of quite imperfect implementations.

Postel’s Law, when combined with the general principle that the protocol should
be as simple as possible (sometimes called the KISS principle), will make the develo‐
per’s job of implementing TCP-based communication much easier than it otherwise
would be.

Below TCP is the internet’s general-purpose haulage protocol—the Internet Proto‐
col (IP) itself.

IP
IP, the “lowest common denominator” transport, provides a useful abstraction over
the physical network technologies that are used to actually move bytes from A to B.

Unlike TCP, delivery of an IP packet is not guaranteed, and a packet can be dropped
by any overloaded system along the path. IP packets do have a destination but
usually no routing data—it’s the responsibility of the (possibly many different)
physical transports along the route to actually deliver the data.

It is possible to create “datagram” services in Java that are based around single IP
packets (or those with a UDP header, instead of TCP), but this is not often required
except for extremely low-latency applications. Java uses the class DatagramSocket to
implement this functionality, although few developers should ever need to venture
this far down the network stack.

Finally, it’s worth noting some changes currently in-flight in the addressing schemes
that are used across the internet. The current dominant version of IP in use is IPv4,
which has a 32-bit space of possible network addresses. This space is now very
badly squeezed and various mitigation techniques have been deployed to handle the
depletion.

The next version of IP (IPv6) is being rolled out, but it is not fully accepted and
has yet to displace IPv4, although steady progress toward it becoming the standard
continues. As of this writing, IPv6 traffic is at about 35% of internet traffic and
steadily rising. In the next 10 years, IPv6 is likely to overtake IPv4 in terms of traffic
volume, and low-level networking will need to adapt to this radically new version.

However, for Java programmers, the good news is that the language and platform
have been working for many years on good support for IPv6 and the changes that it
introduces. The transition between IPv4 and IPv6 is likely to be much smoother and
less problematic for Java applications than for many other languages.
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Summary
In this chapter we’ve met the file handling, I/O, and networking capabilities pro‐
vided in Java’s SDK. However, these capabilities are not used equally often. The
core file handling classes (especially Path and the rest of NIO.2) are used very
often by Java developers, with the more advanced capabilities being less frequently
encountered.

The story is different for the networking libraries. It’s good to be aware of these
capabilities, but they are fairly basic. In practice, higher-level libraries provided
by third parties are often used instead (e.g., Netty). The one exception: the one
low-level JDK networking library that Java developers can expect to encounter
relatively often is the new HTTP library in java.net.http.

Let’s move on to meet some of Java’s key dynamic features—classloading and reflec‐
tion—powerful techniques that allow code to be discovered, loaded, and executed at
runtime in ways that were unknown at compile time.
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11
Classloading, Reflection, and

Method Handles

In Chapter 3, we met Java’s Class objects, a way of representing a live type in a
running Java process. In this chapter, we will build on this foundation to discuss
how the Java environment loads and makes new types available. In the second half
of the chapter, we will introduce Java’s introspection capabilities—both the original
Reflection API and the newer Method Handles capabilities.

Class Files, Class Objects, and Metadata
Class files, as we saw in Chapter 1, are the result of compiling Java source files (or,
potentially, other languages) into the intermediate form used by the JVM. These are
binary files that are not designed to be human readable.

The runtime representation of these class files are the class objects that contain
metadata, which represents the Java type that the class file was created from.

Examples of Class Objects
You can obtain a class object in Java in several ways. The simplest is:

Class<?> myClass = getClass();

This returns the class object of the instance that it is called from. However, as we
know from our survey of the public methods of Object, the getClass() method on
Object is public, so we can also obtain the class of an arbitrary object o:

Class<?> c = o.getClass();

Class objects for known types can also be written as “class literals”:
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// Express a class literal as a type name followed by ".class"
c = String.class; // Same as "a string".getClass()
c = byte[].class; // Type of byte arrays

For primitive types and void, we also have class objects that are represented as
literals:

// Obtain a Class object for primitive types with various
// predefined constants
c = Void.TYPE; // The special "no-return-value" type
c = Byte.TYPE; // Class object that represents a byte
c = Integer.TYPE; // Class object that represents an int
c = Double.TYPE; // etc.; see also Short, Character, Long, Float

There is also the possibility of using the .class syntax directly on a primitive type,
like this:

c = int.class; // Same as Integer.TYPE

The relationship between .class and .TYPE can be seen with some simple tests:

// outputs true
System.out.printf("%b%n", Integer.TYPE == int.class);

// outputs false
System.out.printf("%b%n", Integer.class == int.class);

// outputs false
System.out.printf("%b%n", Integer.class == Integer.TYPE);

Note that the wrapper types (Integer, etc) have a .TYPE property, but in general
classes do not. Also, all of this works only for types that are known at compile time;
for unknown types, we will have to use more sophisticated methods.

Class Objects and Metadata
The class objects contain metadata about the given type. This includes the methods,
fields, constructors, and the like that are defined on the class in question. This meta‐
data can be accessed by the programmer to investigate the class, even if nothing is
known about the class when it is loaded.

For example, we can find all the deprecated methods in the class file (they will be
marked with the @Deprecated annotation):

Class<?> clz =  ... // Get class from somewhere, e.g. loaded from disk
for (Method m : clz.getMethods()) {
  for (Annotation a : m.getAnnotations()) {
    if (a.annotationType() == Deprecated.class) {
      System.out.println(m.getName());
    }
  }
}
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We could also find the common ancestor class of a pair of class files. This simple
form will work when both classes have been loaded by the same classloader:

public static Class<?> commonAncestor(Class<?> cl1, Class<?> cl2) {
  if (cl1 == null || cl2 == null) return null;
  if (cl1.equals(cl2)) return cl1;
  if (cl1.isPrimitive() || cl2.isPrimitive()) return null;

  List<Class<?>> ancestors = new ArrayList<>();
  Class<?> c = cl1;
  while (!c.equals(Object.class)) {
    if (c.equals(cl2)) return c;
    ancestors.add(c);
    c = c.getSuperclass();
  }
  c = cl2;
  while (!c.equals(Object.class)) {
    for (Class<?> k : ancestors) {
      if (c.equals(k)) return c;
    }
    c = c.getSuperclass();
  }

  return Object.class;
}

Class files have a very specific layout they must conform to if they are to be legal
and loadable by the JVM. The sections of the class file are (in order):

• Magic number (all class files starting with the four bytes CA FE BA BE in•
hexadecimal)

• Version of class file standard in use•
• Constant pool for this class•

• Access flags (abstract, public, etc.)•
• Name of this class•
• Inheritance info (e.g., name of superclass)•
• Implemented interfaces•
• Fields•
• Methods•
• Attributes•

The class file is a simple binary format, but it is not human readable. Instead, tools
like javap (see Chapter 13) should be used to comprehend the contents.

One of the most frequently used sections in the class file is the constant pool, which
contains representations of all the methods, classes, fields, and constants that the
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class needs to refer to (whether they are in this class or another). It is designed
so that bytecodes can simply refer to a constant pool entry by its index number—
which saves space in the bytecode representation.

A number of different class file versions are created by various Java versions.
However, one of Java’s backward compatibility rules is that JVMs (and tools) from
newer versions can always use older class files.

Let’s look at how the classloading process takes a collection of bytes on disk and
turns it into a new class object.

Phases of Classloading
Classloading is the process by which a new type is added to a running JVM process.
This is the only way that new code can enter the system and the only way to turn
data into code in the Java platform. There are several phases to the process of
classloading, so let’s examine them in turn.

Loading
The classloading process starts with loading a byte array. This is usually read in
from a filesystem, but it also can be read from a URL or other location (often
represented as a Path object).

The ClassLoader::defineClass() method is responsible for turning a class file
(represented as a byte array) into a class object. It is a protected method and so is
not accessible without subclassing.

The first job of defineClass() is loading. This produces the skeleton of a class
object, corresponding to the class you’re attempting to load. By this stage, some
basic checks have been performed on the class (e.g., the constants in the constant
pool have been checked to ensure that they’re self-consistent).

However, loading doesn’t produce a complete class object by itself, and the class isn’t
yet usable. Instead, after loading, the class must be linked. This step breaks down
into separate subphases:

• Verification•
• Preparation and resolution•
• Initialization•

Verification
Verification confirms that the class file conforms to expectations, and that it doesn’t
try to violate the JVM’s security model (see “Secure Programming and Classload‐
ing” on page 372 for details).
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1 As in Chapter 6, we’re borrowing the expression transitive closure from the branch of mathemat‐
ics called graph theory.

JVM bytecode is designed so that it can be (mostly) checked statically. This has the
effect of slowing down the classloading process but speeding up runtime (as checks
can be omitted).

The verification step is designed to prevent the JVM from executing bytecodes that
might crash it or put it into an undefined and untested state where it might be
vulnerable to other attacks by malicious code. Bytecode verification is a defense
against malicious hand-crafted Java bytecodes and untrusted Java compilers that
might output invalid bytecodes.

The default methods mechanism works via classloading.
When an implementation of an interface is being loaded, the
class file is examined to see if implementations for default
methods are present. If they are, classloading continues nor‐
mally. If some are missing, the implementation is patched to
add in the default implementation of the missing methods.

Preparation and Resolution
After successful verification, the class is prepared for use. Memory is allocated and
static variables in the class are readied for initialization.

At this stage, variables aren’t initialized, and no bytecode from the new class has
been executed. Before we run any code, the JVM checks that every type referred to
by the new class file is known to the runtime. If the types aren’t known, they may
also need to be loaded—which can kick off the classloading process again, as the
JVM loads the new types.

This process of loading and discovery can execute iteratively until a stable set of
types is reached. This is called the “transitive closure” of the original type that was
loaded.1

Let’s look at a quick example by examining the dependencies of java.lang.Object.
Figure 11-1 shows a simplified dependency graph for Object. It shows only the
direct dependencies of Object that are visible in the public API of Object and the
direct, API-visible dependencies of those dependencies. In addition, the dependen‐
cies of Class on the reflection subsystem, and of PrintStream and PrintWriter on
the I/O subsystems, are shown in very simplified form.

In Figure 11-1, we can see part of the transitive closure of Object.
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Figure 11-1. Transitive closure of types

Initialization
Once resolved, the JVM can finally initialize the class. Static variables can be initial‐
ized and static initialization blocks are run.

This is the first time that the JVM is executing bytecode from the newly loaded
class. When the static blocks complete, the class is fully loaded and ready to go.

Secure Programming and Classloading
Java programs can dynamically load Java classes from a variety of sources, including
untrusted sources, such as websites reached across an insecure network. The ability
to create and work with such dynamic sources of code is one of the great strengths
and features of Java. To make it work successfully, however, Java puts great emphasis
on a security architecture that allows untrusted code to run safely, without fear of
damage to the host system.

Java’s classloading subsystem is where a lot of safety features are implemented. The
central idea of the security aspects of the classloading architecture is that there is
only one way to get new executable code into the process: a class.
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This provides a “pinch point”—the only way to create a new class is to use the
functionality provided by ClassLoader to load a class from a stream of bytes. By
concentrating on making classloading secure, we can constrain the attack surface
that needs to be protected.

One extremely helpful aspect of the JVM’s design is that the JVM is a stack machine,
so all operations are evaluated on a stack, rather than in registers. The stack state
can be deduced at every point in a method, and this can be used to ensure that the
bytecode doesn’t attempt to violate the security model.

Some of the security checks implemented by the JVM are:

• All the bytecode of the class has valid parameters.•
• All methods are called with the right number of parameters of the correct static•

types.
• Bytecode never tries to underflow or overflow the JVM stack.•
• Local variables are not used before they are initialized.•
• Variables are only assigned suitably typed values.•
• Field, method, and class access control modifiers must be respected.•

• No unsafe casts (e.g., attempts to convert an int to a pointer).•
• All branch instructions are to legal points within the same method.•

Of fundamental importance is the approach to memory, and pointers. In assembly
and C/C++, integers and pointers are interchangeable, so an integer can be used as a
memory address. We can write it in assembly like this:

mov eax, [STAT] ; Move 4 bytes from addr STAT into eax

The lowest level of the Java security architecture involves the design of the Java
Virtual Machine and the bytecodes it executes. The JVM does not allow any kind
of direct access to individual memory addresses of the underlying system, which
prevents Java code from interfering with the native hardware and operating system.
These intentional restrictions on the JVM are reflected in the Java language itself,
which does not support pointers or pointer arithmetic.

Neither the language nor the JVM allow an integer to be cast to an object reference
or vice versa, and there is no way whatsoever to obtain an object’s address in mem‐
ory. Without capabilities like these, malicious code simply cannot gain a foothold.

Recall from Chapter 2 that Java has two types of values—primitives and object
references. These are the only things that can be put into variables. Note that “object
contents” cannot be put into variables. Java has no equivalent of C’s struct and
always has pass-by-value semantics. For reference types, what is passed is a copy of
the reference—which is a value.
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References are represented in the JVM as pointers, but they are not directly manip‐
ulated by the bytecode. In fact, bytecode does not have opcodes for “access memory
at location X.”

Instead, all we can do is access fields and methods; bytecode cannot call an arbitrary
memory location. This means that the JVM always knows the difference between
code and data. In turn, this prevents a whole class of stack overflow and other
attacks.

Applied Classloading
To apply knowledge of classloading, it’s important to fully understand
java.lang.ClassLoader.

This is an abstract class that is fully functional and has no abstract methods. The
abstract modifier exists only to ensure that users must subclass ClassLoader if
they want to use it.

In addition to the aforementioned defineClass() method, we can load classes
via a public loadClass() method. This is commonly used by the URLClassLoader
subclass, which can load classes from a URL or file path.

We can use URLClassLoader to load classes from the local disk like this:

var current = new File( "." ).getCanonicalPath();
var urls = new URL[] {new URL("file://"+ current + "/")};
try (URLClassLoader loader = new URLClassLoader(urls)) {
  Class<?> clz = loader.loadClass("com.example.DFACaller");
  System.out.println(clz.getName());
}

The argument to loadClass() is the binary name of the class file. Note that for the
URLClassLoader to find the classes correctly, they need to be in the expected place
on the filesystem. In this example, the class com.example.DFACaller would need to
be found in the file com/example/DFACaller.class relative to the working directory.

Alternatively, Class provides Class.forName(), a static method that can load
classes that are present on the classpath but that haven’t been referred to yet.

This method takes a fully qualified class name. For example:

Class<?> jdbcClz = Class.forName("oracle.jdbc.driver.OracleDriver");

It throws a ClassNotFoundException if the class can’t be found. As the example
indicates, this was commonly used in older versions of Java Database Connectivity
(JDBC) to ensure that the correct driver was loaded, while avoiding a direct import
dependency on the driver classes. With the advent of JDBC 4.0, this initialization
step is no longer required.

Class.forName() has an alternative, three-argument form, which is sometimes
used in conjunction with alternative classloaders:
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Class.forName(String name, boolean inited, ClassLoader classloader);

There are a host of subclasses of ClassLoader that deal with individual special cases
of classloading—which fit into the classloader hierarchy.

Classloader Hierarchy
The JVM has a hierarchy of classloaders; each classloader in the system (apart from
the initial, “bootstrap” classloader) has a parent that it can delegate to.

The arrival of modules in Java 9 has affected the details of the
way that classloading operates. In particular, the classloaders
that load the JRE classes are now modular classloaders.

The convention is that a classloader will ask its parent to resolve and load a class,
and it will perform the job itself if only the parent classloader is unable to comply.
Some common classloaders are shown in Figure 11-2.

Figure 11-2. Classloader hierarchy

Bootstrap classloader
This is the first classloader to appear in any JVM process and is only used to load
the core system classes. In older texts, it is sometimes referred to as the primordial
classloader, but modern usage favors the bootstrap name.

For performance reasons, the bootstrap classloader does no verification and relies
on the boot classpath being secure. Types loaded by the bootstrap classloader are
implicitly granted all security permissions, and so this group of modules is kept as
restricted as possible.
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Platform classloader
This level of the classloader hierarchy was originally used as the extension class‐
loader, but this mechanism has now been removed.

In its new role, this classloader (which has the bootstrap classloader as its parent)
is now known as the platform classloader. It is available via the method Class
Loader::getPlatformClassLoader and appears in (and is required by) the Java
specification from version 9 onward. It loads the remaining modules from the base
system (the equivalent of the old rt.jar used in version 8 and earlier).

In the new modular implementations of Java, far less code is required to bootstrap
a Java process; accordingly, as much JDK code (now represented as modules) as
possible has been moved out of the scope of the bootstrap loader and into the
platform loader instead.

Application classloader
Historically, this was sometimes called the system classloader, but this is a bad
name, as it doesn’t load the system (the bootstrap and platform classloaders do).
Instead, it is the classloader that loads application code from either the module path
or the classpath. It is the most commonly encountered classloader, and it has the
platform classloader as its parent.

To perform classloading, the application classloader first searches the named mod‐
ules on the module path (the modules known to any of the three built-in classload‐
ers). If the requested class is found in a module known to one of these classloaders
then that classloader will load the class. If the class is not found in any known
named module, the application classloader delegates to its parent (the platform
classloader). If the parent fails to find the class, the application classloader searches
the classpath. If the class is found on the classpath, it is loaded as a member of the
application classloader’s unnamed module.

The application classloader is very widely used, but many advanced Java frame‐
works require functionality that the main classloaders do not supply. Instead, exten‐
sions to the standard classloaders are required. This forms the basis of “custom
classloading”—which relies on implementing a new subclass of ClassLoader.

Custom classloader
When performing classloading, sooner or later we have to turn data into code. As
noted earlier, the defineClass() (actually a group of related methods) is responsi‐
ble for converting a byte[] into a class object.

This method is usually called from a subclass—for example, this simple custom
classloader that creates a class object from a file on disk:

public static class DiskLoader extends ClassLoader {
  public DiskLoader() {
    super(DiskLoader.class.getClassLoader());
  }
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  public Class<?> loadFromDisk(String clzPath) throws IOException {
    byte[] b = Files.readAllBytes(Paths.get(clzPath));

    return defineClass(null, b, 0, b.length);
  }
}

Notice that in the preceding example we didn’t need to have the class file in the
“correct” location on disk, as we did for the URLClassLoader example.

We need to provide a classloader to act as parent for any custom classloader. In
this example, we provided the classloader that loaded the DiskLoader class (which
would usually be the application classloader).

Custom classloading is a very common technique in Java EE and advanced SE
environments, and it provides very sophisticated capabilities to the Java platform.
We’ll see an example of custom classloading later in this chapter.

One drawback of dynamic classloading is that when working with a class object that
we loaded dynamically, we typically have little or no information about the class.
To work effectively with this class, we will therefore have to use a set of dynamic
programming techniques known as reflection.

Reflection
Reflection is the capability of examining, operating on, and modifying objects
at runtime. This includes modifying their structure and behavior—even self-
modification.

The Java modules system introduces major changes to how
reflection works on the platform. It is important to reread
this section after you have gained an understanding of how
modules work and how the two capabilities interact. More
details on how modules restrict reflection are available in
“Open Modules” on page 397.

Reflection is capable of working even when type and method names are not known
at compile time. It uses the essential metadata provided by class objects and can
discover method or field names from the class object—and then acquire an object
representing the method or field.

Instances can also be constructed reflectively (by using Class::newInstance() or
another constructor). With a reflectively constructed object and a Method object, we
can call any method on an object of a previously unknown type.

This makes reflection a very powerful technique, so it’s important to understand
when we should use it, and when it’s overkill.
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When to Use Reflection
Many, if not most, Java frameworks use reflection in some capacity. Writing
architectures that are flexible enough to cope with code that is unknown until
runtime usually requires reflection. For example, plug-in architectures, debuggers,
code browsers, and read-evaluate-print loop (REPL)-like environments are usually
implemented on top of reflection.

Reflection is also widely used in testing (e.g., by the JUnit and TestNG libraries)
and for mock object creation. If you’ve used any kind of Java framework you have
almost certainly been using reflective code, even if you didn’t realize it.

To start using the Reflection API in your own code, the most important thing to
realize is that it is about accessing objects where virtually no information is known,
and that the interactions can be cumbersome because of this.

If some static information is known about dynamically loaded classes (e.g., that
the classes loaded all implement a known interface), this can greatly simplify the
interaction with the classes and reduce the burden of operating reflectively.

It is a common mistake to try to create a reflective framework that attempts to
account for all possible circumstances, instead of dealing only with the cases that are
immediately applicable to the problem domain.

How to Use Reflection
The first step in any reflective operation is to get a Class object representing the
type to be operated on. From this, other objects, representing fields, methods, or
constructors, can be accessed and applied to instances of the unknown type.

If we already have an instance of an unknown type, we can retrieve its class via the
Object::getClass() method. Alternatively, the static Class.forName() method
demonstrated in “Applied Classloading” on page 374 for classloading can also per‐
form lookup of a Class object by name:

var clzForInstance = "Hi".getClass();
var clzForName = Class.forName("java.lang.String");

Once we have an instance of a Class object, the next reasonable step is call‐
ing a method reflectively. The Method objects are some of the most commonly
used objects provided by the Reflection API. We’ll discuss them in detail—the
Constructor and Field objects are similar in many respects.

Method objects
A class object contains a Method object for each method on the class. These are
lazily created after classloading, and so they aren’t immediately visible in an IDE’s
debugger.
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Methods on Class allow us to retrieve (and if necessary lazily initialize) these
Method objects:

var clz = Class.forName("java.lang.String");

// Returns list of all publicly visible methods on clz
var publicMethods = clz.getMethods();

// Returns named method from clz, or throws
var toString = clz.getMethod("toString", new Class[] {});

The second parameter to getMethod() takes an array of Class objects representing
the method’s parameters to distinguish between method overrides.

The code demonstrated here will only list and find public methods on our Class
objects. There are alternative methods of the form getDeclaredMethod that parallel
what we’ve shown that allow access to protected and private methods. We’ll have
more to say shortly about using these mechanisms to circumvent Java’s access
model, though.

Like any good Java object, Method provides accessors for all the relevant information
about the method. Let’s look at the most critical metadata about a method that we
can retrieve:

var clz = Class.forName("java.lang.String");
var toString = clz.getMethod("toString", new Class[] {});

// The method's name
String name = toString.getName();

// Generic type information for the method
TypeVariable[] typeParams = toString.getTypeParameters();

// List of method annotations with RUNTIME retention
Annotation[] ann = toString.getAnnotations();

// List of checked exception types declared by method
Class[] exceptions = toString.getExceptionTypes();

// List of Parameter objects for callling the method
Parameter[] params = toString.getParameters();

// List of just the `Class` for each parameter to the method
Class[] paramTypes = toString.getParameterTypes();

// Class of the method's return type
Class ret = toString.getReturnType();

We can explore the metadata of a Method object by calling accessor methods, but by
far the single biggest use case for Method is reflective invocation.
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The methods represented by these objects can be executed by reflection using the
invoke() method on Method.

An example of invoking hashCode() on a String object follows:

Object rcvr = "a";
try {
  Class<?>[] argTypes = new Class[] { };
  Object[] args = null;

  Method meth = rcvr.getClass().getMethod("hashCode", argTypes);
  Object ret = meth.invoke(rcvr, args);
  System.out.println(ret);

} catch (IllegalArgumentException | NoSuchMethodException |
         SecurityException e) {
  e.printStackTrace();
} catch (IllegalAccessException | InvocationTargetException x) {
  x.printStackTrace();
}

Note that the static type of rcvr was declared to be Object. No static type informa‐
tion was used during the reflective invocation. The invoke() method also returns
Object, so the actual return type of hashCode() has been autoboxed to Integer.

This autoboxing is one of the aspects of Reflection where you can see some of the
slight awkwardness of the API—which we’ll discuss in an upcoming section.

Creating instances with Reflection
If you’re looking to create new instances of a Class object, you’ll find that the
method lookups don’t help. Our constructors don’t have names that those APIs are
able to find.

In the simplest case of a no-argument constructor, a helper is available via the Class
object:

Class<?> clz = ... // Get some class object
Object rcvr = clz.getDeclaredConstructor().newInstance();

For constructors that take arguments, Class has methods like getConstructor
that allow for finding the override you’re after. While they return a separate
Constructor type, using these is very similar to what we’ve already seen for inter‐
acting with Method objects.

Let’s look at an extended example and see how to combine reflection with custom
classloading to inspect a class file on disk for any deprecated methods (these should
be marked with @Deprecated):

public class CustomClassloadingExamples {
    public static class DiskLoader extends ClassLoader {

        public DiskLoader() {
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            super(DiskLoader.class.getClassLoader());
        }

        public Class<?> loadFromDisk(String clzName)
          throws IOException {
            byte[] b = Files.readAllBytes(Paths.get(clzName));

            return defineClass(null, b, 0, b.length);
        }
    }

    public void findDeprecatedMethods(Class<?> clz) {
        for (Method m : clz.getMethods()) {
            for (Annotation a : m.getAnnotations()) {
                if (a.annotationType() == Deprecated.class) {
                    System.out.println(m.getName());
                }
            }
        }
    }

    public static void main(String[] args)
      throws IOException, ClassNotFoundException {
        var rfx = new CustomClassloadingExamples();

        if (args.length > 0) {
            DiskLoader dlr = new DiskLoader();
            Class<?> clzToTest = dlr.loadFromDisk(args[0]);
            rfx.findDeprecatedMethods(clzToTest);
        }
    }
}

This showcases some of the power of reflective techniques, but there are also
problems that come with using the API.

Problems with Reflection
Java’s Reflection API is often the only way to deal with dynamically loaded code, but
a number of annoyances in the API can make it slightly awkward to deal with:

• Heavy use of Object[] to represent call arguments and other instances.•

• Also uses Class[] when talking about types.•
• Methods can be overloaded on name, so we need an array of types to distin‐•

guish between methods.
• Representing primitive types can be problematic—we have to manually box•

and unbox.
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void is a particular problem—there is a void.class, but it’s not used consistently.
Java doesn’t really know whether void is a type or not, and some methods in the
Reflection API use null instead.

This is cumbersome, and can be error prone—in particular, the slight verbosity of
Java’s array syntax can lead to errors.

One further problem is the treatment of non-public methods. As mentioned
before, instead of using getMethod(), we must use getDeclaredMethod() to get
a reference to a non-public method. Additionally, to call non-public methods, we
must override the Java access control subsystem, calling setAccessible() to allow
it to be executed:

public class MyCache {
  private void flush() {
    // Flush the cache...
  }
}

Class<?> clz = MyCache.class;
try {
  Object rcvr = clz.newInstance();
  Class<?>[] argTypes = new Class[] { };
  Object[] args = null;

  Method meth = clz.getDeclaredMethod("flush", argTypes);
  meth.setAccessible(true);
  meth.invoke(rcvr, args);
} catch (IllegalArgumentException | NoSuchMethodException |
         InstantiationException | SecurityException e) {
  e.printStackTrace();
} catch (IllegalAccessException | InvocationTargetException x) {
  x.printStackTrace();
}

Because reflection always involves unknown information, we just have to live with
some of this verbosity. It’s the price of using the dynamic, runtime power of reflec‐
tive invocation.

Dynamic Proxies
One last piece of the Java Reflection story is the creation of dynamic proxies. These
are classes (which extend java.lang.reflect.Proxy) that implement a number
of interfaces. The implementing class is constructed dynamically at runtime and
forwards all calls to an invocation handler object:

InvocationHandler handler = (proxy, method, args) -> {
    String name = method.getName();
    System.out.println("Called as: "+ name);
    return switch (name) {
        case "isOpen" -> Boolean.TRUE;
        case "close" -> null;
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        default -> null;
    };
};

Channel c = (Channel) Proxy.newProxyInstance(
        Channel.class.getClassLoader(),
        new Class[] { Channel.class },
        handler);
System.out.println("Open? "+ c.isOpen());
c.close();

Proxies can be used as stand-in objects for testing (especially in test mocking
approaches).

Another use case is to provide partial implementations of interfaces, or to decorate
or otherwise control some aspect of delegation:

public class RememberingList implements InvocationHandler {
  private final List<String> proxied = new ArrayList<>();

  @Override
  public Object invoke(Object proxy, Method method, Object[] args)
                         throws Throwable {
    String name = method.getName();
    switch (name) {
      case "clear":
        return null;
      case "remove":
      case "removeAll":
        return false;
    }

    return method.invoke(proxied, args);
  }
}

RememberingList hList = new RememberingList();

var l = (List<String>) Proxy.newProxyInstance(
                                List.class.getClassLoader(),
                                new Class[] { List.class },
                                hList);
l.add("cat");
l.add("bunny");
l.clear();
System.out.println(l);

Proxies are an extremely powerful and flexible capability used within many Java
frameworks.
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Method Handles
In Java 7, a brand new mechanism for introspection and method access was intro‐
duced. This was originally designed for use with dynamic languages, which may
need to participate in method dispatch decisions at runtime. To support this at the
JVM level, the new invokedynamic bytecode was introduced. This bytecode was not
used by Java 7 itself, but with the advent of Java 8, it was extensively used in both
lambda expressions and the Nashorn JavaScript implementation.

Even without invokedynamic, the new Method Handles API is comparable in power
to many aspects of the Reflection API—and can be cleaner and conceptually simpler
to use, even standalone. It can be thought of as Reflection done in a safer, more
modern way.

MethodType
In Reflection, method signatures are represented as Class[]. This is quite cumber‐
some. By contrast, method handles rely on MethodType objects. These are a typesafe
and object-oriented way to represent the type signature of a method.

They include the return type and argument types but not the receiver type or name
of the method. The name is not present, as this allows any method of the correct
signature to be bound to any name (as per the functional interface behavior of
lambda expressions).

A type signature for a method is represented as an immutable instance of Method
Type, as acquired from the factory method MethodType.methodType(). The zeroth
argument to methodType() is the return type of the method, with the types of the
method arguments following it.

For example:

// Matching method type for toString()
MethodType m2Str = MethodType.methodType(String.class);

// Matching method type for Integer.parseInt()
MethodType mtParseInt =
  MethodType.methodType(Integer.class, String.class);

// Matching method type for defineClass() from ClassLoader
MethodType mtdefClz = MethodType.methodType(Class.class, String.class,
                                            byte[].class, int.class,
                                            int.class);

This single piece of the puzzle provides significant gains over Reflection, as it makes
method signatures significantly easier to represent and discuss. The next step is to
acquire a handle on a method. This is achieved by a lookup process.
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Method Lookup
Method lookup queries are performed on the class where a method is defined and
are dependent on the context that they are executed from:

// String.toString only has return type with no parameter
MethodType mtToString = MethodType.methodType(String.class);

try {
  Lookup l = MethodHandles.lookup();
  MethodHandle mh = l.findVirtual(String.class, "toString",
                                  mtToString);
  System.out.println(mh);
} catch (NoSuchMethodException | IllegalAccessException e) {
  e.printStackTrace();
}

We always need to call MethodHandles.lookup()—this gives us a lookup context
object based on the currently executing method.

Lookup objects have several methods (which all start with find) declared on them
for method resolution. These include findVirtual(), findConstructor(), and
findStatic().

One big difference between the Reflection and Method Handles APIs is access
control. A Lookup object will only return methods that are accessible to the context
where the lookup was created—and there is no way to subvert this (no equivalent of
Reflection’s setAccessible() hack).

For example, we can see that when we attempt to look up the protected Class
Loader::defineClass() method from a general lookup context, we fail to resolve it
with an IllegalAccessException, as the protected method is not accessible:

public static void lookupDefineClass(Lookup l) {
  MethodType mt = MethodType.methodType(Class.class, String.class,
                                        byte[].class, int.class,
                                        int.class);

  try {
    MethodHandle mh =
      l.findVirtual(ClassLoader.class, "defineClass", mt);
    System.out.println(mh);
  } catch (NoSuchMethodException | IllegalAccessException e) {
    e.printStackTrace();
  }
}

Lookup l = MethodHandles.lookup();
lookupDefineClass(l);
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Method handles therefore always comply with the security manager, even when the
equivalent reflective code does not. They are access-checked at the point where the
lookup context is constructed—the lookup object will not return handles to any
methods to which it does not have proper access.

The lookup object, or method handles derived from it, can be returned to other
contexts, including ones where access to the method would no longer be possible.
Under those circumstances, the handle is still executable—access control is checked
at lookup time, as we can see in this example:

public class SneakyLoader extends ClassLoader {
  public SneakyLoader() {
    super(SneakyLoader.class.getClassLoader());
  }

  public Lookup getLookup() {
    return MethodHandles.lookup();
  }
}

SneakyLoader snLdr = new SneakyLoader();
l = snLdr.getLookup();
lookupDefineClass(l);

With a Lookup object, we’re able to produce method handles to any method we
have access to. We can also produce a way of accessing fields that may not have a
method that gives access. The findGetter() and findSetter() methods on Lookup
produce method handles that can read or update fields as needed.

Invoking Method Handles
A method handle represents the ability to call a method. They are strongly
typed and as typesafe as possible. Instances are all of some subclass of
java.lang.invoke.MethodHandle, which is a class that needs special treatment
from the JVM.

There are two ways to invoke a method handle—invoke() and invokeExact().
Both of these take the receiver and call arguments as parameters. invokeExact()
tries to call the method handle directly as is, whereas invoke() will massage call
arguments if needed.

In general, invoke() performs an asType() conversion if necessary—this converts
arguments according to these rules:

• A primitive argument will be boxed if required.•
• A boxed primitive will be unboxed if required.•
• Primitives will be widened if necessary.•

386 | Chapter 11: Classloading, Reflection, and Method Handles



• A void return type will be massaged to 0 or null, depending on whether the•
expected return was primitive or of reference type.

• null values are passed through, regardless of static type.•

With these potential conversions in place, invocation looks like this:

Object rcvr = "a";
try {
  MethodType mt = MethodType.methodType(int.class);
  MethodHandles.Lookup l = MethodHandles.lookup();
  MethodHandle mh = l.findVirtual(rcvr.getClass(), "hashCode", mt);

  int ret;
  try {
    ret = (int)mh.invoke(rcvr);
    System.out.println(ret);
  } catch (Throwable t) {
    t.printStackTrace();
  }
} catch (IllegalArgumentException |
  NoSuchMethodException | SecurityException e) {
  e.printStackTrace();
} catch (IllegalAccessException x) {
  x.printStackTrace();
}

Method handles provide a clearer and more coherent way to access the same
dynamic programming capabilities as Reflection. In addition, they are designed to
work well with the low-level execution model of the JVM and thus hold out the
promise of much better performance than Reflection can provide.
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12
Java Platform Modules

In this chapter, we will provide a basic introduction to the Java Platform Modules
System (JPMS). However, this is a large, complex subject—interested readers may
well require a more in-depth reference, such as Java 9 Modularity by Sander Mak
and Paul Bakker (O’Reilly).

Modules, a relatively advanced feature, are primarily about packaging and deploy‐
ing entire applications and their dependencies. They were added to the platform
roughly 20 years after the first version of Java and so can be seen as orthogonal to
the rest of the language syntax.

Java’s strong promotion of backwards compatibility also plays a role here, as non-
modular applications must continue to run. This has led the architects and stewards
of the Java platform to adopt a pragmatic view of the necessity of teams to adopt
modules.

There is no need to switch to modules.
There has never been a need to switch to modules.
Java 9 and later releases support traditional JAR files on the traditional
classpath, via the concept of the unnamed module, and will likely do so until
the heat death of the universe.
Whether to start using modules is entirely up to you.

—Mark Reinhold
https://oreil.ly/4RjDH

Due to the advanced nature of modules, this chapter assumes you are familiar with
a modern Java build tool, such as Gradle or Maven.

If you are new to Java, you can safely ignore references to those tools and just read
the chapter to get a first, high-level overview of JPMS. It is not necessary for a new
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Java programmer to fully understand this topic while still learning how to write Java
programs.

Why Modules?
There were several major motivating reasons for wanting to add modules to the Java
platform. These included a desire for:

• Strong encapsulation•
• Well-defined interfaces•
• Explicit dependencies•

These are all language (and application design) level, and they were combined with
the promise of new platform-level capabilities as well:

• Scalable development•
• Improved performance (especially startup time) and reduced footprint•
• Reduced attack surface and better security•
• Evolvable internals•

The encapsulation point was driven by the fact that the original language specifica‐
tion supports only private, public, protected, and package-private visibility levels.
There is no way to control access in a more fine-grained way to express concepts
such as:

• Only specified packages are available as an API—others are internal and may•
not be accessed

• Certain packages can be accessed by this list of packages but no others•
• Defining a strict exporting mechanism•

The lack of these and related capabilities has been a significant shortcoming when
architecting larger Java systems. Not only that, but without a suitable protection
mechanism, it would be very difficult to evolve the internals of the JDK—as nothing
prevents user applications from directly accessing implementation classes.

The modules system attempts to address all of these concerns at once and to
provide a solution that works both for the JDK and for user applications.

Modularizing the JDK
The monolithic JDK that shipped with Java 8 was the first target for the modules
system, and the familiar rt.jar was broken up into modules.
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Java 8 had begun the work of modularization, by shipping
a feature called Compact Profiles that tidied up the code and
made it possible to ship a reduced runtime footprint.

java.base is the module that represents the minimum that’s actually needed for a
Java application to start up. It contains core packages, such as:

java.io
java.lang
java.math
java.net
java.nio
java.security
java.text
java.time
java.util
javax.crypto
javax.net
javax.security

along with some subpackages and nonexported implementation packages such as
sun.text.resources. Some of the differences in compilation behavior between Java
8 and modular Java can be seen in this simple program, which extends an internal
public class contained in java.base:

import java.util.Arrays;
import sun.text.resources.FormatData;

public final class FormatStealer extends FormatData {
    public static void main(String[] args) {
        FormatStealer fs = new FormatStealer();
        fs.run();
    }

    private void run() {
        String[] s = (String[]) handleGetObject("japanese.Eras");
        System.out.println(Arrays.toString(s));

        Object[][] contents = getContents();
        Object[] eraData = contents[14];
        Object[] eras = (Object[])eraData[1];
        System.out.println(Arrays.toString(eras));
    }
}

Attempting to compile the code on Java 11 produces this error message:

$ javac javanut8/ch12/FormatStealer.java
javanut8/ch12/FormatStealer.java:4:
        error: package sun.text.resources is not visible
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import sun.text.resources.FormatData;
               ^
  (package sun.text.resources is declared in module
        java.base, which does not export it to the unnamed module)
javanut8/ch12/FormatStealer.java:14: error: cannot find symbol
        String[] s = (String[]) handleGetObject("japanese.Eras");
                                ^
  symbol:   method handleGetObject(String)
  location: class FormatStealer
javanut8/ch12/FormatStealer.java:17: error: cannot find symbol
        Object[][] contents = getContents();
                              ^
  symbol:   method getContents()
  location: class FormatStealer
3 errors

With a modular Java, even classes that are public cannot be accessed unless they are
explicitly exported by the module they are defined in. We can temporarily force the
compiler to use the internal package (basically reasserting the old access rules) with
the --add-exports switch, like this:

$ javac --add-exports java.base/sun.text.resources=ALL-UNNAMED \
        javanut8/ch12/FormatStealer.java
javanut8/ch12/FormatStealer.java:5:
        warning: FormatData is internal proprietary API and may be
        removed in a future release
import sun.text.resources.FormatData;
                         ^
javanut8/ch12/FormatStealer.java:7:
        warning: FormatData is internal proprietary API and may be
        removed in a future release
public final class FormatStealer extends FormatData {
                                         ^
2 warnings

We need to specify that the export is being granted to the unnamed module, as we
are compiling our class standalone and not as part of a module. The compiler warns
us that we’re using an internal API and that this might break with a future release
of Java. When compiled and run under Java 11, this produces a list of Japanese eras,
like this:

[, Meiji, Taisho, Showa, Heisei, Reiwa]
[, Meiji, Taisho, Showa, Heisei, Reiwa]

However, if we try to run under Java 17, then we have a different result:

$ java javanut8.ch12.FormatStealer

Error: LinkageError occurred while loading main class
        javanut8.ch12.FormatStealer

java.lang.IllegalAccessError: superclass access check failed:
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class javanut8.ch12.FormatStealer (in unnamed module @0x647c3190)
        cannot access class sun.text.resources.FormatData (in module
        java.base) because module java.base does not export
        sun.text.resources to unnamed module @0x647c3190

This is because Java 17 now enforces additional checks as part of the tightening up
of encapsulation of the internals. To get the program to run, we need to add the
--add-exports runtime flag as well:

$ java --add-exports java.base/sun.text.resources=ALL-UNNAMED \
        javanut8.ch12.FormatStealer
[, Meiji, Taisho, Showa, Heisei, Reiwa]
[, Meiji, Taisho, Showa, Heisei, Reiwa]

Although java.base is the absolute runtime minimum that an application needs to
start up, at compile time we want the visible platform to be as close to the old (Java
8) experience as possible.

This means that we use a much larger set of modules, contained under an umbrella
module, java.se. This module has a dependency graph, shown in Figure 12-1.

Figure 12-1. Module dependency graph of java.se

This brings in almost all of the classes and packages that most Java developers
expect to be available.

However, one important exception is that the Java 8 packages defining the CORBA
and Java EE APIs (now know as Jakarta EE) have been removed and are not part of
java.se. This means that any project that depends on those APIs will not compile
by default on Java 11 onward and a special build config must be used, to explicitly
depend upon external libraries that provide these APIs.

Along with these changes to compilation visibility, due to the modularization of the
JDK, the modules system is also intended to allow developers to modularize their
own code.
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Writing Your Own Modules
In this section, we will discuss the basic concepts needed to start writing modular
Java applications.

Basic Modules Syntax
The key to modularizing is the new file module-info.java, which contains a descrip‐
tion of a module. This is referred to as a module descriptor.

A module is laid out for compilation correctly on the filesystem in the following
way:

• Below the source root of the project (src), there needs to be a directory named•
the same as the module (the moduledir).

• Inside the moduledir is the module-info.java, at the same level as where the•
packages start from.

The module info is compiled to a binary format, module-info.class, which contains
the metadata that will be used when a modular runtime attempts to link and run
our application. Let’s look at a simple example of a module-info.java:

module httpchecker {
    requires java.net.http;

    exports httpchecker.main;
}

This introduces some new syntax: module, exports, and requires—but these are
not really full keywords in the accepted sense. As stated in the Java Language
Specification SE 11:

A further ten character sequences are restricted keywords: open, module,
requires, transitive, exports, opens, to, uses, provides, and with.
These character sequences are tokenized as keywords solely where they
appear as terminals in the ModuleDeclaration and ModuleDirective
productions.

This means that these restricted keywords can appear only in the module metadata
and are compiled into the binary format by javac. The meanings of the major
restricted keywords are:

module

Starts the module’s metadata declaration

requires

Lists a module on which this module depends

exports

Declares which packages are exported as an API
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The remaining (module-related) restricted keywords will be introduced throughout
the rest of the chapter.

The concept of restricted keyword is considerably expanded in
Java 17, and as a result the description is much longer and
less clear. We use the older specification here because it refers
specifically to the modules system and is more suited to our
purposes.

In our example, this means that we’re declaring a module httpchecker that depends
upon the module java.net.http that was standardized in Java 11 (as well as
an implicit dependency on java.base). The module exports a single package,
httpchecker.main, which is the only package in this module that will be accessible
from other modules at compile time.

Building a Simple Modular Application
As an example, let’s build a simple tool that checks whether websites are using
HTTP/2 yet, using the API that we met in Chapter 10:

import static java.net.http.HttpResponse.BodyHandlers.ofString;

public final class HTTP2Checker {
    public static void main(String[] args) throws Exception {
        if (args.length == 0) {
            System.err.println("Provide URLS to check");
        }
        for (final var location : args) {
            var client = HttpClient.newBuilder().build();
            var uri = new URI(location);
            var req = HttpRequest.newBuilder(uri).build();

            var response = client.send(req,
                    ofString(Charset.defaultCharset()));
            System.out.println(location +": "+ response.version());
        }
    }
}

This relies on two modules—java.net.http and the ubiquitous java.base. The
module file for the app is very simple:

module http2checker {
    requires java.net.http;
    exports httpchecker.main;
}

Assuming a simple, standard module layout, this can be compiled like this:
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$ javac -d out/httpchecker \
        httpchecker/httpchecker/main/HTTP2Checker.java \
        httpchecker/module-info.java

This creates a compiled module in the out/ directory. For use, it needs to be
packaged as a JAR file:

$ jar --create --file httpchecker.jar \
        --main-class httpchecker.main.HTTP2Checker \
        -C out/httpchecker .

The --create switch tells jar to create a new jar, which will include the classes
contained in the directory. The final . at the end of the command is mandatory and
signifies that all of the class files (relative to the path specified with -C) should be
packaged into the jar.

We used the --main-class switch to set an entry point for the module—that is, a
class to be executed when we use the module as an application. Let’s see it in action:

$ java -jar httpchecker.jar http://www.google.com
http://www.google.com: HTTP_1_1
$ java -jar httpchecker.jar https://www.google.com
https://www.google.com: HTTP_2

This shows that, at the time of writing, Google’s website was using HTTP/2 to serve
its main page over HTTPS but still using HTTP/1.1 for the legacy unencrypted
HTTP service.

Now that we have seen how to compile and run a simple modular application, let’s
meet some more of the core features of modularity that are needed to build and run
full-size applications.

The Module Path
Many Java developers are familiar with the concept of the classpath. When working
with modular Java applications, we instead need to work with the module path. This
is a new concept for modules that replaces the classpath wherever possible.

Modules carry metadata about their exports and dependencies—they are not just a
long list of types. This means a graph of module dependencies can be built easily
and module resolution can proceed efficiently.

Code that is not yet modularized continues to be placed on the classpath. This
code is loaded into the unnamed module, which is special and can read all other
modules that can be reached from java.se. Using the unnamed module happens
automatically when classes are placed on the classpath.

This provides a migration path to adopting a modular Java runtime without having
to migrate to a fully modular application path. However, it does have two major
drawbacks: none of the benefits of modules will be available until the app is fully
migrated, and the self-consistency of the classpath must be maintained by hand
until modularization is complete.
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Automatic Modules
One of the constraints of the modules system is that we can’t reference JARs on
the classpath from named modules. This is a safety feature—the designers of the
module system wanted the module dependency graph to utilize full metadata and be
able to rely on the completeness of that metadata.

However, there may be times when modular code needs to reference packages that
have not yet been modularized. The solution for this is to place the unmodified JAR
onto the module path directly (and remove it from the classpath). A JAR placed on
the module path like this becomes an automatic module.

This has the following features:

• Module name derived from JAR name (or read from MANIFEST.MF)•
• Exports every package•
• Requires all other modules (including the unnamed module)•

This is another feature designed to mitigate and help with migration, but some
safety is still being given up by using automatic modules.

Open Modules
As noted, simply marking a method public no longer guarantees that the element
will be accessible everywhere. Instead, accessibility also now depends upon whether
the package containing that element is exported by its defining module. Another
major issue in the design of modules is the use of reflection to access classes.

Reflection is such a wide-ranging, general-purpose mechanism that it is difficult to
see, at first glance, how it can be reconciled with the strong encapsulation goals
of JPMS. Worse yet, so many of the Java ecosystem’s most important libraries and
frameworks rely on reflection (e.g., unit testing, dependency injection, and many
more) that not having a solution for reflection would make modules impossible to
adopt for any real application.

The solution provided is twofold. First, a module can declare itself an open module,
like this:

open module jin8 {
    exports jin8.api;
}

This declaration has the effect that:

• All packages in the module can be accessed via reflection•
• Compile-time access is not provided for nonexported packages•

This means that the configuration behaves like a standard module at compile
time. The overall intent is to provide simple compatibility with existing code
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and frameworks and ease migration pain. With an open module, the previous
expectation of being able to reflectively access code is restored. In addition, the
setAccessible() hack that allows access to private and other methods that would
not normally permit access is preserved for open modules.

Finer-grained control over reflective access is also provided via the opens restricted
keyword. This does not create an open module but instead selectively opens specific
packages for reflective access by explicitly declaring certain packages to be accessi‐
ble via reflection:

module ojin8 {
    exports ojin8.api;
    opens ojin8.domain;
}

This type of usage is likely to be useful when, for example, you are providing a
domain model to be used by a module-aware object-relational mapping (ORM)
system that needs full reflective access to the core domain types of a module.

It is possible to go further and restrict reflective access to specific client packages,
using the to restricted keyword. Where possible, this can be a good design prin‐
ciple, but of course such a technique will not work well with a general-purpose
framework such as an ORM.

In a similar way, it is possible to restrict the export of a pack‐
age to only specific external packages. However, this feature
was added largely to help with the modularization of the JDK
itself, and it has limited applicability to user modules.

Not only that, it is also possible to both export and open a package, but this is
not recommended—during migration, access to a package should ideally be either
compile-time or reflective but not both.

In the case where reflective access is required to a package now contained in a
module, the platform provides some switches to act as band-aids for the transitional
period.

In particular, the java option --add-opens module/package=ALL-UNNAMED can be
used to open a specific package of module for reflective access to all code from the
classpath, overriding the behavior of the modules system. For code that is already
modular, it can also be used to allow reflective access to a specific module.

When you are migrating to modular Java, any code that reflectively accesses internal
code of another module should be run with that switch at first, until the situation
can be remediated.

Related to this issue of reflective access (and a special case of it) is the issue of wide‐
spread use of internal platform APIs by frameworks. This is usually characterized as
the “Unsafe problem” and we will encounter it toward the end of the chapter.
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Providing Services
The modules system includes the services mechanism, to mitigate another problem
with an advanced form of encapsulation. This problem is simply explained by
considering a familiar piece of code:

import com.example.Service;

Service s = new ServiceImpl();

Even if Service lives in an exported API package, this line of code still will not
compile unless the package containing ServiceImpl is also exported. What we need
is a mechanism to allow fine-grained access to classes implementing service classes
without needing the entire package to be imported. For example, we could write
something like:

module jin8 {
    exports jin8.api;
    requires othermodule.services;

    provides services.Service with jin8.services.ServiceImpl;
}

Now the ServiceImpl class is accessible at compile time as an implementation of
the Service interface. Note that the services package must be contained in another
module, which is required by the current module for this provision to work.

Multi-Release JARs
To explain the problem that is solved by multi-release JARs, let’s consider a simple
example: finding the process ID (PID) of the currently executing process (i.e., the
JVM that’s executing our code).

We don’t use the HTTP/2 example from earlier on, as Java 8
doesn’t have an HTTP/2 API—so we would have had to do a
huge amount of work (essentially a full backport!) to provide
the equivalent functionality for 8.

This may seem like a simple task, but on Java 8 this requires a surprising amount of
boilerplate code:

public class GetPID {
    public static long getPid() {
        // This rather clunky call uses JMX to return the name that
        // represents the currently running JVM. This name is in the
        // format <pid>@<hostname>—on OpenJDK and Oracle VMs only—there
        // is no guaranteed portable solution for this on Java 8
        final String jvmName = 
            ManagementFactory.getRuntimeMXBean().getName();
        final int index = jvmName.indexOf('@');
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        if (index < 1)
            return -1;

        try {
            return Long.parseLong(jvmName.substring(0, index));
        } catch (NumberFormatException nfe) {
            return -1;
        }
    }
}

As we can see, this is nowhere near as straightforward as we might like. Worse still,
it is not supported in a standard way across all Java 8 implementations. Fortunately,
from Java 11 onward, we can use the new ProcessHandle API, like this:

public class GetPID {
    public static long getPid() {
        // Use new Java 9 Process API...
        ProcessHandle processHandle = ProcessHandle.current();
        return processHandle.getPid();
    }
}

This now utilizes a standard API, but it leads to an essential problem: how can the
developer write code that is guaranteed to run on all current Java versions?

What we want is to build and run a project correctly in multiple Java versions. We
want to depend on library classes that are only available in later versions but still
run on an earlier version by using some code “shims.” The end result must be a
single JAR, and we do not require the project to switch to a multimodule format—in
fact, the JAR must work as an automatic module.

Let’s look at an example project that has to run correctly in both Java 8 and Java 11
or higher. The main codebase is built with Java 8, and the Java 11 portion must be
built with Java 11. This part of the build must be isolated from the main codebase
to prevent compilation failures, although it can depend on the build artifacts of the
Java 8 build.

To keep the build configuration simple, this feature is controlled using an entry in
MANIFEST.MF within the JAR file:

Multi-Release: True

The variant code (i.e., that for a later version) is then stored in a special directory in
META-INF. In our case, this is META-INF/versions/11.

For a Java runtime that implements this feature, any classes in the version-specific
directory override the versions in the content root. On the other hand, for Java 8
and earlier versions, both the manifest entry and the versions/ directory are ignored
and only the classes in the content root are found.
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Converting to a Multi-Release JAR
To start deploying your software as a multi-release JAR, follow this outline:

1. Isolate code that is JDK-version-specific1.
2. If possible, place that code into a package or group of packages2.
3. Get the version 8 project building cleanly3.
4. Create a new, separate project for the supplementary classes4.
5. Set up a single dependency for the new project (the version 8 artifact)5.

For Gradle, you can also use the concept of a source set and compile the v11 code
using a different (later) compiler. This can then be built into a JAR using a stanza
like this:

jar {
  into('META-INF/versions/11') {
     from sourceSets.java11.output
  }

  manifest.attributes(
     'Multi-Release': 'true'
  )
}

For Maven, the current easiest route is to use the Maven Dependency Plug-in
and add the modular classes to the overall JAR as part of the separate generate-
resources phase.

Migrating to Modules
Many Java developers are facing the question of whether, and when, they should
migrate their applications to use modules.

Modules should be the default for all greenfield apps, espe‐
cially those that are architected in a microservices style.

Many applications will not need to be migrated at all. However, modularizing
existing code bases can be worthwhile because the better encapsulation and overall
architectural benefits do pay off over the longer term—allowing new developers to
be brought onto the team faster and providing a clear structure that is easier to
understand and maintain.

When considering migration of an existing app (especially a monolithic design),
you can use the following roadmap:
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1. First upgrade the application runtime to Java 17 (running from the classpath1.
initially)

2. Identify any application dependencies that have been modularized and migrate2.
those dependencies to modules

3. Retain any nonmodularized dependencies as automatic modules3.
4. Introduce a single monolithic module of all application code4.

At this point, a minimally modularized application should be ready for production
deployment. This module will usually be an open module at this stage of the
process. The next step is architectural refactoring; at this point, applications can be
broken out into individual modules as needed.

Once the application code runs in modules, it can make sense to limit reflective
access to your code via opens. This access can be restricted to specific modules
(such as ORM or dependency injection modules) as a first step toward removing
any unnecessary access.

For Maven users, it’s worth remembering that Maven is not a modules system, but it
does have dependencies—and (unlike JPMS dependencies) they are versioned. The
Maven tooling is still evolving to fully integrate with JPMS (and many plug-ins have
not caught up at the time of this writing). However, some general guidelines for
modular Maven projects are emerging, specifically:

• Aim to produce one module per Maven POM•
• Don’t modularize a Maven project until you are ready (or have an immediate•

need to)
• Remember that running on a Java 11+ runtime does not require building on a•

Java 11+ toolchain

The last point indicates that one path for migration of Maven projects is to start
by building as a Java 8 project and ensuring that those Maven artifacts can deploy
cleanly (as automatic modules) on a Java 11 (or 17) runtime. Only once that first
step is working properly should a full modularization be undertaken.

Some good tooling support is available to help with the modularization process.
Java 8 and up ships with jdeps (see Chapter 13), a tool for determining which
packages and modules your code depends upon. This is very helpful for migrations
from Java 8 and the use of jdeps when rearchitecting is recommended.

Custom Runtime Images
One of the key goals of JPMS is the possibility that applications may need not
every class present in the traditional monolithic runtime of Java 8 and instead
can manage with a smaller subset of modules. Such applications can have a much
smaller footprint in terms of startup time and memory overhead. This can be taken
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further: if not all classes are needed, then why not ship an application together with
a reduced, custom runtime image that includes only what’s necessary?

To demonstrate the idea, let’s package the HTTP/2 checker into a standalone tool
with a custom runtime. We can use the jlink tool (which has been part of the
platform since Java 9) to achieve this:

$ jlink --module-path httpchecker.jar:$JAVA_HOME/jmods \
      --add-modules httpchecker,jdk.crypto.ec \
      --launcher http2chk=httpchecker \
      --output http2chk-image

Note that this assumes that JAR file httpchecker.jar was created with a main class
(aka entry point). The result is an output directory, http2chk-image, which is about
39M in size, much less than the full image. This also notes that because the tool uses
the new HTTP module, it requires the libraries for security, crypto, and so on when
connecting using HTTPS.

From within the custom image directory, we can run the http2chk tool directly and
see that it works even when the machine does not have the required version of java:

$ java -version
java version "1.8.0_144"
Java(TM) SE Runtime Environment (build 1.8.0_144-b01)
Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)
$ ./bin/http2chk https://www.google.com
https://www.google.com: HTTP_2

The deployment of custom runtime images is still quite a new tool, but it has great
potential to reduce your code footprint and help Java remain competitive in the age
of microservices. In the future, jlink could even be combined with new approaches
to compilation, including an ahead-of-time (AOT) compiler.

Issues with Modules
The modules system, despite being the flagship feature of Java 9 and having had a
large amount of engineering time devoted to it, is not without its problems. This
was, perhaps, inevitable—the feature fundamentally changes how Java applications
are architected and delivered. It would have been almost impossible for modules
to avoid running up against some problems when trying to retrofit over the large,
mature ecosystem that is Java.

Unsafe and Related Problems
sun.misc.Unsafe is a class that is both widely used and popular with framework
writers and other implementors within the Java world. However, it is an internal
implementation class and is not part of the standard API of the Java platform (as the
package name clearly indicates). The class name also provides a fairly strong clue
that this is not really intended for use by Java applications.
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Unsafe is an unsupported, internal API and so could be withdrawn or modified
by any new Java version, without regard to the effect on user applications. Any
code that does use it is technically directly coupled to the HotSpot JVM and is also
potentially nonstandard and may not run on other implementations.

Although not an official part of Java SE in any way, Unsafe has become a de facto
standard and key part of the implementation of basically every major framework in
one way or another. Over subsequent versions it has evolved into a kind of dumping
ground for nonstandard but necessary features. This admixture of features is a real
mixed bag, with varying degrees of safety provided by each capability. Example uses
of Unsafe include:

• Fast serialization/deserialization•
• Threadsafe 64-bit sized native memory access (e.g., offheap)•
• Atomic memory operations (e.g., Compare-and-Swap)•
• Fast field/memory access•
• Multi-operating system replacement for JNI•
• Access to array items with volatile semantics (see Chapter 6)•

The essential problem is that many frameworks and libraries were unable to move
to a modular JDK without replacement for some Unsafe features. In turn, this
impacts everyone using any libraries from a wide range of frameworks—basically
every application in the Java ecosystem.

To fix this problem, Oracle created new, supported APIs for some of the needed
functionality and segregated APIs that could not be encapsulated in time into a
module, jdk.unsupported. This makes it clear this is not a supported API and that
developers use it at their own risk. This gives Unsafe a temporary pass (which is
strictly limited time) while encouraging library and framework developers to move
to the new APIs.

An example of a replacement API is VarHandles. These extend the Method Handles
concept (from Chapter 11) and add new functionality, such as concurrency barrier
modes for Java 11. These, along with some modest updates to JMM, are intended
to produce a standard API for accessing new low-level processor features without
allowing developers full access to dangerous capabilities, as were found in Unsafe.

More details about Unsafe and related low-level platform techniques can be found
in Optimizing Java (O’Reilly).
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Lack of Versioning
The JPMS standard as of Java 17 does not include the versioning of dependencies.

This was a deliberate design decision to reduce the complexity
of the delivered system and does not preclude the possibility
that modules could include versioned dependencies in the
future.

The current situation requires external tools to handle the versioning of module
dependencies. In the case of Maven, this will be within the Project Object Model
(POM). An advantage to this approach is that the download and management of
versions are also handled within the local repository of the build tool.

However it is done, though, the simple fact is that the dependency version informa‐
tion must be stored out of the module and does not form part of the JAR artifact.

There’s no getting away from it—this is pretty ugly, but the counterpoint is that
the situation is no worse than it was with dependencies being deduced from the
classpath.

Slow Adoption Rates
With the release of Java 9, the Java release model fundamentally changed. Java 8 and
9 used the “keystone release” model—where one keystone (or landmark) feature
such as lambdas for Java 8 or modules for Java 9—essentially defined the release and
so the ship date was determined by when the feature was complete.

The problem with this model is that it can cause inefficiencies due to uncertainty
about when versions will ship. In particular, a small feature that just misses a release
will have to wait a long time for the next major release. As a result, from Java
10 onward, a new release model was adopted, which introduces strict time-based
versioning.

This means:

• Java releases are now classified as feature releases, which occur at a regular•
cadence of once every six months.

• Features are not merged into the platform until they are essentially complete.•
• The mainline repo is in a releasable state at all times.•

These releases are good for only six months, after which time they are no longer
supported. Certain releases are designated by Oracle as long-term support (LTS)
releases. These have extended, paid-for support available from Oracle.

The release cadence of these LTS releases was initially three years but at time of
writing is expected to change to two years. This means that Oracle LTS releases are
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currently 8 (retrospectively added), 11, and 17; the expected next release will be Java
21 in September 2023.

However, as well as Oracle, builds of OpenJDK are available from other providers
including Amazon, Azul, Eclipse Adoptium, IBM, Microsoft, Red Hat, and SAP.
These vendors offer various ways to get JDK updates (including security) at zero
cost.

There are also new and existing paid support models available from several of the
above vendors.

For an in-depth write-up of this topic, please see the guide: “Java Is Still Free” by the
Java Champions community, an independent body of Java leaders in the software
industry.

Although the Java community is generally positive on the new faster release cycle,
adoption rates of Java 9 and above have been much smaller than for previous
releases. This may be due to the desire of teams to have longer support cycles, rather
than upgrading to each feature release after only six months. In practice, only the
LTS releases are seeing widespread adoption, and even that has been slow compared
to the rapid uptake of Java 8.

It is also the case that the upgrade from Java 8 to 11 (or 17) is not a drop-in
replacement (unlike 7 to 8, and to a lesser extent 6 to 7). The modules subsystem
fundamentally changes many aspects of the Java platform, even if end-user applica‐
tions do not take advantage of modules.

Four years after the release of Java 11, it seems to have finally overtaken Java 8, with
more workloads now running on Java 11 than 8. It remains to be seen how quickly
Java 17 will be adopted and what the impact of Java 21 will be (assuming that 21 is
indeed the next LTS).

Summary
The modules feature, first introduced in Java 9, aims to solve several problems at
once. The aims of shorter startup time, lower footprint, and reduced complexity by
denying access to internals have all been met. The longer-term goals of enabling
better architecture of applications and starting to think about new approaches for
compilation and deployment are still in progress.

However, the plain fact is that, as of the release of Java 17, not many teams and
projects have moved wholeheartedly to the modular world. This is to be expected,
as modularity is a long-term project that has a slow payoff and relies on network
effects within the ecosystem to achieve the full benefit.

New applications should definitely consider building in a modular way from the
get-go, but the overall story of platform modularity within the Java ecosystem is still
only beginning.
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13
Platform Tools

This chapter discusses the tools that ship with the OpenJDK version of the Java
platform. The tools covered are all command-line tools. If you are using a different
version of Java, you may find different tools as part of your distribution but with
similar function.

Later in the chapter, we devote dedicated sections to two tools: jshell, which
introduced interactive development to the Java platform, and Java Flight Recorder
(JFR) tooling for deep profiling of Java applications.

Command-Line Tools
The command-line tools we cover are the most commonly used tools and those
of greatest utility—they are not a complete description of every available tool. In
particular, tools concerned with CORBA and the server portion of RMI are not
covered, as these modules were removed from the platform with the release of Java
11.

In some cases, we need to discuss switches that take filesystem
paths. As elsewhere in the book, we use Unix conventions for
such cases.

Below we’ll discuss the following tools, including their basic usage, description, and
common switches:

• javac•

• java•

407



• jar•

• javadoc•

• jdeps•

• jps•

• jstat•

• jstatd•

• jinfo•

• jstack•

• jmap•

• javap•

• jlink•

• jmod•

• jcmd•

Options described throughout are targeted at Java 17 and
may vary in older Java versions. For example, --class-path
was introduced when --module-path became an option but
won’t work on Java 8 and earlier (which require -cp or --
classpath).

javacjavac

Basic usage

bjavac some/package/MyClass.java

Description

javac is the Java source code  compiler—it produces bytecode (in the form of .class
files) from .java source files.

For modern Java projects, javac is not often used directly, as it is rather low-level
and unwieldy, especially for larger codebases. Instead, modern integrated develop‐
ment environments (IDEs) either drive javac automatically for the developer or
have built-in compilers for use while code is being written. For deployment, most
projects will use a separate build tool, most commonly Maven or Gradle. Discussion
of these tools is outside the scope of this book.
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Nevertheless, it is useful for developers to understand how to use javac, as there are
cases when compiling small codebases by hand is preferable to having to install and
manage a production-grade build tool such as Maven.

Common switches

-cp, --class-path <path>
Supply classes we need for compilation.

-p, --module-path <path>
Supply application modules for compilation. See Chapter 12 for a full discus‐
sion of Java modules.

-d some/dir

Tell javac where to output class files.

@project.list

Load options and source files from the file project.list.

-help

Help on options.

-X

Help on nonstandard options.

-source <version>

Control the Java version that javac will accept.

-target <version>

Control the version of class files that javac will output.

-profile <profile>

Control the profile that javac will use when compiling the application.

-Xlint

Enable detail about warnings.

-Xstdout <path>

Redirect output of compilation run to a file.

-g

Add debug information to class files.

Notes

javac has traditionally accepted switches (-source and -target) that control the
version of the source language that the compiler accepts and the version of the class
file format used for the outputted class files.
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This facility introduces additional compiler complexity (as multiple language syn‐
taxes must be supported internally) for some small developer benefit. In Java 8, this
capability was slightly tidied up and placed on a more formal basis.

From JDK 8 onward, javac will only accept source and target options from three
versions back. That is, only the formats from JDK 5, 6, 7, and 8 will be accepted by
javac version 8. This does not affect the java interpreter—any class file from any
Java version will still work on the JVM shipped with Java 8.

C and C++ developers may find that the -g switch is less helpful to them than it is
in those other languages. This is largely due to the widespread use of IDEs in the
Java ecosystem—integrated debugging is simply a lot more useful, and easier to use,
than additional debug symbols in class files.

The use of the lint capability remains somewhat controversial among developers.
Many Java developers produce code that triggers a large number of compilation
warnings, which they then simply ignore. However, experience on larger codebases
(especially on the JDK codebase itself) suggests that in a substantial percentage of
cases, code that triggers warnings is code in which subtle bugs may lurk. Use of the
lint feature, or static analysis tools (such as SpotBugs), is strongly recommended.

javajava

Basic usage

bjava some.package.MyClass
java -jar my-packaged.jar

Description

java is the executable that starts up a Java Virtual Machine. The initial entry point
into the program is the main() method that exists on the named class and that has
the signature:

public static void main(String[] args);

This method is run on the single application thread created by the JVM startup. The
JVM process will exit once this method returns (and any additional nondaemon
application threads that were started have terminated).

If the form takes a JAR file rather than a class (the executable JAR form), the JAR
file must contain a piece of metadata that tells the JVM which class to start from.

This bit of metadata is the Main-Class: attribute, and it is contained in the
MANIFEST.MF file in the META-INF/ directory. See the description of the jar
tool for more details.
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Common switches

-cp, --class-path <path>
Define the classpath to read from.

-p, --module-path <path>
Define the path to find modules.

--list-modules

List modules found with current settings and exits.

-X, -?, -help
Provide help about the java executable and its switches.

-D<property=value>

Set a Java system property that can be retrieved by the Java program. Any
number of such properties can be specified this way.

-jar

Run an executable JAR (see the entry for jar).

-Xbootclasspath(/a or /p)

Run with an alternative system classpath (very rarely used).

-client, -server
Select a HotSpot JIT compiler (see “Notes” for this entry).

-Xint, -Xcomp, -Xmixed
Control JIT compilation (very rarely used).

-Xms<size>

Set the minimum committed heap size for the JVM.

-Xmx<size>

Set the maximum committed heap size for the JVM.

-agentlib:<agent>, -agentpath:<path to agent>
Specify a JVM Tooling Interface (JVMTI) agent to attach to the process being
started. Agents are typically used for instrumentation or monitoring.

-verbose

Generate additional output, sometimes useful for debugging.

Notes
The HotSpot VM contains two separate JIT compilers—known as the client (or C1)
compiler and the server (or C2) compiler. These were designed for different pur‐
poses, with the client compiler offering more predictable performance and quicker
startup, at the expense of not performing aggressive code optimization.

Traditionally, the JIT compiler that a Java process used was chosen at process
startup via the -client or -server switch. However, as hardware advances have
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made compilation ever cheaper, a new possibility has become available—to use the
client compiler early on, while the Java process is warming up, and then to switch to
the high-performance optimizations available in the server compiler when they are
available. This scheme is called Tiered Compilation, and it is the default in Java 8.
Most processes will no longer need explicit -client or -server switches.

On the Windows platform, a slightly different version of the java executable is
often used—javaw. This version starts up a Java Virtual Machine, without forcing a
Windows console window to appear.

In older Java versions, a number of different legacy interpreters and virtual machine
modes were supported. These have now mostly been removed and any remaining
should be regarded as vestigial.

Switches that start with -X were intended to be nonstandard switches. However,
the trend has been to standardize a number of these switches (particularly -Xms
and -Xmx). In parallel, Java versions have introduced an increasing number of -XX:
switches. These were intended to be experimental and not for production use.
However, as the implementations have stabilized, some of these switches are now
suitable for some advanced users (even in production deployments).

In general, a full discussion of switches is outside the scope of this book. Configu‐
ration of the JVM for production use is a specialist subject, and developers are
urged to take care, especially when modifying any switches related to the garbage
collection subsystem.

jarjar

Basic usage

jar cvf my.jar someDir/

Description

The jar utility is used to create and manipulate Java Archive (.jar) files. These
are ZIP format files that contain Java classes, additional resources, and (usually)
metadata. The tool has five major modes of operation—Create, Update, Index, List,
and Extract—on a JAR file.

These are controlled by passing a command option character (not a switch) to jar.
Only one command character can be specified, but optional modifier characters can
also be used.
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Command options

• c: Create a new archive•

• u: Update archive•

• i: Index an archive•

• t: List an archive•

• x: Extract an archive•

Modifiers

• v: Verbose mode•

• f: Operate on a named file, rather than standard input•

• 0: Store, but do not compress, files added to the archive•

• m: Add the contents of the specified file to the jar metadata manifest•

• e: Make this jar executable, with the specified class as the entry point•

Notes

The syntax of the jar command is intentionally very similar to that of the Unix
tar command. This similarity is the reason jar uses command options, rather than
switches (as the other Java platform commands do). More typical explicit switches
(e.g. --create) are also available and documentation for them can be found via jar
--help.

When you create a JAR file, the jar tool will automatically add a directory called
META-INF that contains a file called MANIFEST.MF—this is metadata in the form
of headers paired with values. By default, MANIFEST.MF contains just two headers:

Manifest-Version: 1.0
Created-By: 17.0.4 (Eclipse Adoptium)

Using the m option allows additional metadata to be added into MANIFEST.MF at
JAR creation time. One frequently added piece is the Main-Class: attribute, which
indicates the entry point into the application contained in the JAR. A JAR with
a specified Main-Class: can be directly executed by the JVM, via java -jar, or
double-clicking the JAR in a graphical file browser.

The addition of the Main-Class: attribute is so common that jar has the e option
to create it directly in MANIFEST.MF, rather than having to create a separate text
file for this purpose. Contents of a jar, including the manifest, may be inspected
easily using the --extract option.
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javadocjavadoc

Basic usage

javadoc some.package

Description

javadoc produces documentation from Java source files. It does so by reading a
special comment format (known as Javadoc comments) and parsing it into a stan‐
dard documentation format, which can then be output into a variety of document
formats (although HTML is by far the most common).

For a full description of Javadoc syntax, refer to Chapter 7.

Common switches

-cp, --class-path <path>
Define the classpath to use.

-p, --module-path <path>
Define the path to find modules.

-D <directory>

Tell javadoc where to output the generated docs.

-quiet

Suppress output except for errors and warnings.

Notes
The platform API docs are all written in Javadoc.

javadoc is built on top of the same classes as javac and uses some of the source
compiler infrastructure to implement Javadoc features.

The typical way to use javadoc is to run it against a whole package, rather than just
a class.

javadoc has a very large number of switches and options that can control many
aspects of its behavior. Detailed discussion of all the options is outside the scope of
this book.

414 | Chapter 13: Platform Tools



jdepsjdeps

bThe jdeps tool is a static analysis tool for analyzing the dependencies of packages
or classes. The tool has a number of usages, from identifying developer code that
makes calls into the internal, undocumented JDK APIs (such as the sun.misc
classes) to helping trace transitive dependencies.

jdeps can also be used to confirm whether a JAR file can run under a Compact
Profile (see later in the chapter for more details on Compact Profiles).

Basic usage

jdeps com.me.MyClass

Description

jdeps reports dependency information for the classes it is asked to analyze. The
classes can be specified as any class on the classpath, a file path, a directory, or a JAR
file.

Common switches

-cp, --class-path <path>
Define the classpath to use.

-p, --module-path <path>
Define the path to find modules.

-s, -summary
Print dependency summary only.

-m <module-name>

Target a module for analysis

-v, -verbose
Print all class-level dependencies.

-verbose:package

Print package-level dependencies, excluding dependencies within the same
archive.

-verbose:class

Print class-level dependencies, excluding dependencies within the same
archive.
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-p <pkg name>, -package <pkg name>

Find dependencies in the specified package. You can specify this option multi‐
ple times for different packages. The -p and -e options are mutually exclusive.

-e <regex>, -regex <regex>

Find dependencies in packages matching the specified regular expression pat‐
tern. The -p and -e options are mutually exclusive.

-include <regex>

Restrict analysis to classes matching pattern. This option filters the list of
classes to be analyzed. It can be used together with -p and -e.

-jdkinternals

Find class-level dependencies in JDK internal APIs (which may change or
disappear in even minor platform releases).

-apionly

Restrict analysis to APIs—for example, dependencies from the signature of
public and protected members of public classes including field type, method
parameter types, returned type, and checked exception types.

-R, -recursive
Recursively traverse all dependencies.

-h, -?, --help
Print help message for jdeps.

Notes

jdeps is a useful tool for making developers aware of their dependencies on the JRE
not as a monolithic environment but as something more modular.

jpsjps

Basic usage

jps

jps <remote URL>

Description

jps provides a list of all active JVM processes on the local machine (or a remote
machine, if a suitable instance of jstatd is running on the remote side). Remote
URL support requires RMI; this configuration is explained in more detail in the
jstatd section.

416 | Chapter 13: Platform Tools



Common switches

-m

Output the arguments passed to the main method.

-l

Output the full package name for the application’s main class (or the full path
name to the application’s JAR file).

-v

Output the arguments passed to the JVM.

Notes

This command is not strictly necessary, as the standard Unix ps command could
suffice. However, it does not use the standard Unix mechanism for interrogating the
process, so there are circumstances in which a Java process stops responding (and
looks dead to jps) but is still listed as alive by the operating system.

jstatjstat

Basic usage

jstat -options

jstat <report type such as -class> <PID>

Description
This command displays some basic statistics about a given Java process. This is
usually a local process but can be located on a remote machine, provided the remote
side is running a suitable jstatd process.

Common switches

-options

List report types that jstat can produce. Most common options are:

-class

Report on classloading activity to date.

-compiler

JIT compilation of the process so far.

-gcutil

Detailed garbage collection report.
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-printcompilation

More detail on compilation.

Notes

The general syntax jstat uses to identify a process (which may be remote) is:

[<protocol>://]<vmid>[@hostname][:port][/servername]

This syntax is used to specify a remote process (which is usually connected to via
JMX over RMI), but in practice, the more common local syntax simply uses the
VM ID, which is the operating system process ID (PID) on mainstream platforms
(Linux, Windows, Unix, macOS, etc.).

jstatdjstatd

Basic usage

jstatd <options>

Description

jstatd makes information about local JVMs available over the network. It achieves
this using RMI and can make these otherwise-local capabilities accessible to JMX
clients. This requires special security settings, which differ from the JVM defaults.
To start jstatd, first we need to create the following file and name it jstatd.policy:

grant codebase "jrt:/jdk.jstatd" {
   permission java.security.AllPermission;
};

grant codebase "jrt:/jdk.internal.jvmstat" {
   permission java.security.AllPermission;
};

This policy file grants all security permissions to any class loaded from the JDK
modules that implement jstatd. The precise policy requirements changed with the
introduction of modules in JDK 9 and may vary in future JDK versions.

To launch jstatd with this policy, use this command line:

jstatd -J-Djava.security.policy=<path to jstat.policy>

Common switches

-p <port>

Look for an existing RMI registry on that port and create one if not found.
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Notes

It is recommended that jstatd is always switched on in production environments
but not over the public internet. For most corporate and enterprise environments,
this is nontrivial to achieve and will require the cooperation of Operations and
Network Engineering staff. However, the benefits of having telemetry data from
production JVMs, especially during outages, are difficult to overstate.

A full discussion of JMX and monitoring techniques is outside the scope of this
book.

jinfojinfo

Basic usage

jinfo <PID>

jinfo <core file>

Description
This tool displays the system properties and JVM options for a running Java process
(or a core file).

Common switches

-flags

Display JVM flags only.

-sysprops

Display system properties only.

Notes
In practice, this is very rarely used—although it can occasionally be helpful as a
sanity check that the expected program is actually the one that is executing.

jstackjstack

Basic usage

jstack <PID>

Command-Line Tools | 419

P
latfo

rm
 To

o
ls



Description

The jstack utility produces a stack trace for each Java thread in the process.

Common switches

-e

Extended mode (contains additional information about threads).

-l

Long mode (contains additional information about locks).

Notes
Producing the stack trace does not stop or terminate the Java process. The files that
jstack produces can be very large, and some postprocessing of the file is usually
necessary.

jmapjmap

Basic usage

jmap <output option> <process>

Description

jmap provides a view of memory allocation for a running Java process.

Common switches

-dump:<option>,file=<location;>
Produce a heap dump from the running process.

-histo
Produce a histogram of the current state of allocated memory.

-histo:live
This version of the histogram displays information only for live objects.

Notes
The histogram forms walk the JVMs allocation list. This includes both live and dead
(but not yet collected) objects. The histogram is organized by the type of objects
using memory and is ordered from greatest to least number of bytes used by a
particular type. The standard form does not pause the JVM.
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javap

The live form ensures that it is accurate by performing a full, stop-the-world
(STW) garbage collection before executing. As a result, it should not be used on a
production system at a time when a full GC would appreciably impact users.

For the -dump form, note that the production of a heap dump can be a time-
consuming process and is STW. The size of the resulting file is proportional to the
currently allocated heap and hence may be extremely large for some processes.

Basic usage

javap <classname>

javap <path/to/ClassFile.class>

Description

javap is the Java class disassembler—effectively a tool for peeking inside class files.
It can show the bytecode that Java methods have been compiled into, as well as
the constant pool information (which contains information similar to that of the
symbol table of Unix processes).

By default, javap shows signatures of public, protected, and default methods. The
-p switch will also show private methods.

Common switches

-c

Decompile bytecode

-v

Verbose mode (include constant pool information)

-p

Include private methods

-cp, --class-path
Location of classes if loading by class name

-p, --module-path
Location of modules if loading by class name

Notes

The javap tool will work with any class file, provided javap is from a JDK version
the same as (or later than) the one that produced the file.
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jlink

Some Java language features may have surprising implementa‐
tions in bytecode. For example, as we saw in Chapter 9, Java’s
String class has effectively immutable instances, and the JVM
implements the string concatenation operator + in a different
way in Java versions after 8. This difference is clearly visible in
the disassembled bytecode shown by javap.

Basic usage

jlink [options] --module-path modulepath --add-modules module

Description

jlink is the custom runtime image linker for the Java platform—a tool for linking
and packaging Java classes, modules, and their dependencies into a custom runtime
image. The image created by the jlink tool will comprise a linked set of modules,
along with their transitive dependences.

Common switches

--add-modules <module> [, module1]

Add modules to the root set of modules to be linked

--endian {little|big}

Specify the endianness of the target architecture

--module-path <path>

Specify the path where the modules for linking can be found

--save-opts <file>

Save the options to the linker in the specified file

--help

Print help information

@filename

Read options from filename instead of the command line

Notes

The jlink tool will work with any class file or module and linking will require the
transitive dependencies of the code to be linked.
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jmod

Custom runtime images don’t have any support for automatic
updates by default. This means developers are responsible for
rebuilding and updating their own applications in the field
when necessary. Some Java language features may have restric‐
tions, as the runtime image may not include the full JDK;
therefore, reflection and other dynamic techniques may not be
fully supported.

Basic usage

jmod create [options] my-new.jmod

Description

jmod prepares Java software components for use by the custom linker (jlink). The
result is a .jmod file. This should be considered an intermediate file, not a primary
artifact for distribution.

Basic modes

create

Create a new JMOD file

extract

Extract all files from a JMOD file (explode it)

list

List all files from a JMOD file

describe

Print details about a JMOD file

Common switches

--module-path path

Specify the module path where the core contents of the module can be found.

--libs path

Specify the path where native libraries for inclusion can be found.

--help

Print help information.

@filename

Read options from filename instead of the command line.
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jcmd

Notes

jmod reads and writes the JMOD format, but please note that this is different from
the modular JAR format and is not intended as an immediate replacement for it.

The jmod tool is only currently intended for modules that
are to be linked into a runtime image (using the jlink tool).
One other possible use case is for packaging modules that
have native libraries or other configuration files that must be
distributed along with the module.

Basic usage

jcmd <PID>

jcmd <PID> <command>

Description

jcmd issues commands to a running Java process. The precise commands may vary
between Java versions and may be listed by running jcmd with the process ID and
no command.

Common switches

-f <path>

Read from commands from a file rather than command-line arguments

-l

List Java processes (similar to jps)

--help

Print help information

Common commands

GC.heap_dump <path>

Generate a heap dump like jmap. Note the path is relative to the Java process,
not where jcmd is run!

GC.heap_info

Display statistics and sizing information about the Java process heap.

JFR.start

Begin a Java Flight Recorder (JFR) session. JFR is the JVM’s built-in perfor‐
mance monitoring and profiling tool.

JFR.stop name=<name from start> filename=<path>

Stop named JFR session and record to a file.
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VM.system_properties

Output Java process system properties.

Notes

Commands to jcmd are grouped by the subsystem they inter‐
act with, for instance GC or JFR. There are many more
commands than the examples we’ve given here. It’s worth
exploring what’s available on your Java installation for help in
operating the JVM in production.

Introduction to JShell
Java is traditionally understood as a language that is class-oriented and has a dis‐
tinct compile-interpret-evaluate execution model. However, in this section, we will
discuss a new technology that extends this programming paradigm by providing a
form of interactive/scripting capability.

With the advent of Java 9, the Java runtime and JDK bundles a new tool, JShell. This
is an interactive shell for Java, similar to the REPL seen in languages like Python,
Scala, or Lisp. The shell is intended for teaching and exploratory use and, due to
the nature of the Java language, is not expected to be as much use to the working
programmer as similar shells in other languages.

In particular, it is not expected that Java will become an REPL-driven language.
Instead, this opens up an opportunity to use JShell for a different style of pro‐
gramming, one that complements the traditional use case but also provides new
perspectives, especially for working with a new API.

It is very easy to use JShell to explore simple language features, for instance:

• Primitive data types•
• Simple numeric operations•
• String manipulation basics•
• Object types•
• Defining new classes•
• Creating new objects•
• Calling methods•

To start up JShell, we just invoke it from the command line:

$ jshell
|  Welcome to JShell -- Version 17.0.4
|  For an introduction type: /help intro

jshell>
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From here, we can enter small pieces of Java code, which are known as snippets:

jshell> 2 * 3
$1 ==> 6

jshell> var i = 2 * 3
i ==> 6

The shell is designed to be a simple working environment, and so it relaxes some
of the rules that working Java programmers may expect. Some of the differences
between JShell snippets and regular Java include:

• Semicolons are optional in JShell•
• JShell supports a verbose mode•
• JShell has a wider set of default imports than a regular Java program•
• Methods can be declared at top level (outside of a class)•
• Methods can be redefined within snippets•
• A snippet may not declare a package or a module—everything is placed in an•

unnamed package controlled by the shell
• Only public classes may be accessed from JShell•
• Due to package restrictions, it’s advisable to ignore access control when defin‐•

ing classes and working within JShell

It’s simple to create simple class hierarchies (e.g., for exploring Java’s inheritance and
generics):

jshell> class Pet {}
|  created class Pet

jshell> class Cat extends Pet {}
|  created class Cat

jshell> var c = new Cat()
c ==> Cat@2ac273d3

Tab completion within the shell is also possible, such as for autocompletion of
possible methods:

jshell> c.<TAB>
equals(       getClass()    hashCode()    notify()      notifyAll()
toString()    wait(

Pressing the tab key twice with certain input will display documentation for a
method:

jshell> c.hashCode(<TAB>
Signatures:
int Object.hashCode()
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<press tab again to see documentation>
jshell> c.hashCode(<TAB TAB>
int Object.hashCode()
Returns a hash code value for the object. (Full Javadoc follows...)

We can also create top-level methods, such as:

jshell> int div(int x, int y) {
   ...> return x / y;
   ...> }
|  created method div(int,int)

Simple exception backtraces are also supported:

jshell> div(3,0)
|  Exception java.lang.ArithmeticException: / by zero
|        at div (#2:2)
|        at (#3:1)

We can access classes from the JDK:

jshell> var ls = List.of("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
ls ==> [Alpha, Beta, Gamma, Delta, Epsilon]

jshell> ls.get(3)
$11 ==> "Delta"

jshell> ls.forEach(s -> System.out.println(s.charAt(1)))
l
e
a
e
p

Or explicitly import classes if necessary:

jshell> import java.time.LocalDateTime

jshell> var now = LocalDateTime.now()
now ==> 2018-10-02T14:48:28.139422

jshell> now.plusWeeks(3)
$9 ==> 2018-10-23T14:48:28.139422

The environment also allows JShell commands, which start with a /. It is useful to
be aware of some of the most common basic commands:

• /help intro is the introductory help text•

• /help is a more comprehensive entry point into the help system•

• /vars shows which variables are in scope•

• /list shows the shell history•

• /save outputs accepted snippet source to a file•
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• /open reads a saved file and brings it into the environment•

• /exit exits the jshell interface•

For example, the imports available within JShell include a lot more than just
java.lang. The whole list is loaded by JShell during startup and can be seen as
the special imports visible through the /list -all command:

jshell> /list -all

  s1 : import java.io.*;
  s2 : import java.math.*;
  s3 : import java.net.*;
  s4 : import java.nio.file.*;
  s5 : import java.util.*;
  s6 : import java.util.concurrent.*;
  s7 : import java.util.function.*;
  s8 : import java.util.prefs.*;
  s9 : import java.util.regex.*;
 s10 : import java.util.stream.*;

The JShell environment is tab-completed, which greatly adds to the tool’s usability.
The verbose mode is particularly useful when you are getting to know JShell—it can
be activated by passing the -v switch at startup as well as via a shell command.

Introduction to Java Flight Recorder (JFR)
Java Flight Record (JFR) is a powerful, low-latency profiling system built directly
into the JVM. It has existed for years but was available only with a commercial
license prior to Java 11. Now this rich source of information is available with
OpenJDK and worth exploring.

The typical JFR workflow involves starting a profile against a running JVM, down‐
loading the results as a file, and then inspecting that file offline with the JDK
Mission Control (JMC) GUI application. While JFR is embedded directly within
OpenJDK, JMC isn’t distributed with the JDK but can be downloaded from https://
oreil.ly/eq4cg.

JFR recording can be started either via options at JVM startup or interactively with
the jcmd tool shown earlier in this chapter. The following java invocation starts
with JFR recording for two minutes, writing the results to a file when finished:

java -XX:StartFlightRecording=duration=120s,filename=flight.jfr \
   Application

Options allow for tight control over the volume of data JFR will hold in memory,
either by specifying how long a recording to generate or by the size of the file that
will be generated. When combined with its low overhead, it is plausible to run JFR
persistently in production so data is always ready should you wish to capture it
(sometimes referred to as “ring buffer” mode). This opens up a world of possibilities
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for debugging in amazing detail with the JFR profiles, even minutes to hours after a
problem has occurred.

Along with sizing limits, JFR recording can also be configured to gather only
specific information of interest. Typical areas (but only a few of the things JFR
measures) include:

• Object allocation•
• Garbage collection•
• Threads and locks•
• Method profiling•

With Java 17, APIs are available in-process to consume JFR events in a streaming
fashion, evolving away from the file-based profiling approaches. This opens the
door for monitoring tooling to tap into this rich source of data, without the hassle of
logging onto servers to ask for a profile to be dumped.

In the future, we may expect JFR to act as a data source for the new generation
of Observability tools that are being adopted by the Java ecosystem, such as
OpenTelemetry.

Summary
Java has changed a huge amount over the last 15+ years, and yet the platform and
community remain vibrant. To have achieved this, while retaining a recognizable
language and platform, is no small accomplishment.

Ultimately, Java’s continued existence and viability depend upon the individual
developer. On that basis, the future looks bright, and we look forward to the next
wave and beyond.
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A
Beyond Java 17

This appendix discusses versions of Java beyond Java 17. In previous editions of
Java in a Nutshell, we have resisted adding forward-looking material, but recent
changes in the Java release model (which we discussed in Chapter 1), as well as
ongoing and forthcoming Java developments, have prompted a change of tack in
this new edition.

In the current model, a new version of Java is released every six months, but only
certain releases are LTS. As it stands, Java 11 and 17 are regarded as LTS (with
8 retrospectively added). Note that LTS has a dual meaning: for Oracle customers
it means that paid support is available for a multiyear period, while other JDK
providers (including Red Hat, Microsoft, Amazon, etc.) have de facto adopted the
same versions as those for which backported security and other fixes will be made
publicly available—free of charge—as certified OpenJDK binaries.

The industry, as a whole, has not chosen to adopt a six-month Java upgrade cycle
for various reasons, and so in practice, the LTS versions are the only ones that are
likely to be deployed into production. However, most of the OpenJDK providers do
diligently publish binaries for all Java releases, even those that will not be supported
beyond the six-month window.

This creates a dichotomy: new features arrive every six months but are not widely
deployed by teams until the next LTS, which complicates writing about specific
Java versions. This is further complicated by the concept of Incubating and Preview
features, which are used to experiment with new APIs and new language features,
respectively, before they are finalized and become a standard part of the language.

The solution we have chosen is to target new editions of this book at LTS versions
and include an appendix that covers any new features that have arrived (or are
expected to arrive) since the last LTS. We have also chosen to cover only final
features in the main part of the book; all discussion of Incubating and Preview
features will be confined to appendices.
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Let’s start by covering how major development efforts are arranged within
OpenJDK, then discuss Java 18 and 19, and then conclude with a look at the future
beyond that release.

Long-Term JDK Projects
OpenJDK is organized into projects that cover specific major areas of ongoing
work. This includes projects that are centered on the development of future lan‐
guage or JVM features that can take multiyear efforts to deliver.

Four projects currently focus on the delivery of major future aspects of Java. They
are usually known by their project codenames:

• Panama•
• Loom•
• Valhalla•
• Amber•

Of these, Project Panama provides two major improvements: a modern foreign-
function interface for Java and support for vector CPU instructions.

It has been incubating for some time now, but Java 18 contains an interesting
milestone iteration of the functionality, and so we will cover the project in the Java
18 section.

Project Loom is a new concurrency model for Java. A first preview of some of
Loom’s functionality will be available for the first time in Java 19, so we will discuss
Loom in that section.

Project Valhalla is the most ambitious, wide-ranging, and highest-impact of all of
the projects. It is also the most complex and the farthest from delivery as a shipping
product. We discuss it toward the end of the appendix.

Project Amber’s remit is incremental language improvements. It is probably the
most familiar and easiest-to-understand of the four projects, so we’ll discuss it here
as our next topic.

Amber
Amber has been running since Java 9 was delivered. It aims to deliver small chunks
of useful language functionality, an approach that fits well with the new delivery
schedule for Java releases. The features that have formed part of Amber and deliv‐
ered so far include:

• Local Variable Type Inference (var)•
• Switch Expressions•

• Enhanced instanceof•
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• Text Blocks•
• Records•
• Sealed Types•
• Pattern Matching•

Most of these features have already been completed, but the last of these, Pattern
Matching, has not been fully delivered as of Java 17. Only the simplest case, the
instanceof pattern, has arrived as a final feature so far. Java 17 does have a Preview
version of a more advanced form (as we mentioned in Chapter 5) that can be used
as part of a switch expression, like this:

sealed interface Pet permits Cat, Dog {}
record Cat(String name) implements Pet {}
record Dog(String name) implements Pet {}

boolean isDog(Pet p) {
    return switch (p) {
        case Cat c -> false;
        case Dog d -> true;
    };
}

Note the lack of need for a default case. All Pet objects are either a Cat or a Dog,
because the Pet interface is declared as sealed.

Pattern matching will truly come into its full power when further future cases arrive
and are standardized as final features. In particular, the combination of pattern
matching and algebraic data types (one of the names given to the combination of
records and sealed types) is especially powerful.

We can see how Amber’s approach fits with the model of biannual releases of Java;
switch expressions and enhanced instanceof are extended and combined into the
basics of pattern matching, which is then further enhanced by algebraic data types
and further cases of patterns tailored to them.

Java 18
New Java releases are made up of Java Enhancement Proposals (JEPs): a complete
list of current, past, and future JEPs can be found at https://oreil.ly/BE1r1.

Java 18 was released in March 2022 and includes the following JEPs:

• 400: UTF-8 by Default•
• 408: Simple Web Server•
• 413: Code Snippets in Java API Documentation•
• 416: Reimplement Core Reflection with Method Handles•
• 417: Vector API (Third Incubator)•
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• 418: Internet-Address Resolution SPI•
• 419: Foreign Function & Memory API (Second Incubator)•
• 420: Pattern Matching for switch (Second Preview)•

Most of these are very minor or internal implementation changes. The two JEPs
related to Panama (417 and 419) are significant steps forward for the project, which
we’ll discuss in detail here.

Panama
Project Panama aims to provide a modern Foreign (i.e., non-Java) interface for
connecting to native code. The codename comes from the isthmus of Panama, a
narrow strip connecting two larger “landmasses,” understood to be the JVM and
native memory (aka “off-heap”).

The overall aim is to replace Java Native Interface (JNI), which is well-known to
have major problems such as an excess of ceremony, extra artifacts, and a lack of
interoperability with libraries written in anything other than C / C++. In fact, even
for the C case, JNI does not do anything automatic to map type systems and the
portions of Java and C code have to be mapped semimanually.

Panama provides two main components to assist in the interoperation of Java and
native code:

• Foreign Memory and Functions API•
• Vector API•

The Foreign Memory API is concerned with the allocation, manipulation, and
freeing of structured foreign memory, and the lifecycle management of foreign
resources. This goes beyond the existing capabilities of the ByteBuffer class, and
for example can address more than 2 GB of memory as a single segment. The issue
of how foreign memory is managed is complex, as it is outside the scope of the
JVM’s garbage collector, and existing mechanisms such as finalization are known to
be fatally flawed.

Calling foreign functions is also possible using Panama. A new command-line tool,
called jextract, creates a Java bridge from a C header file. This bridge is built using
method and var handles to provide a set of (static) Java methods that look as close
as possible to the original C API.

The runtime support for this is contained in the module jdk.incubator.foreign,
which is, unsurprisingly, an Incubating API and may well change in future versions
before it ships as final. As it stands, C and C++ are the initially supported foreign
languages, but other possibilities (notably Rust) are expected to be added as the
project develops.

In addition to the Foreign API, Panama also provides support for vector computa‐
tions by shipping an API that has these main goals:
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• Clear and concise API•
• Platform agnostic•
• Reliable JIT compilation and performance•
• Graceful degradation of vector mode back to linear instructions•

Panama is initially shipping an implementation for the x64 and AArch64 CPU
architectures. However, as expressed in the goals, the API does not—and must not
—rule out possible implementations for other CPUs.

Java 19
Java 19 was released in September 2022 and includes a preview of a new major
feature (Loom) as well as the following selection of JEPs:

• 405: Record Patterns (Preview)•
• 422: Linux/RISC-V Port•
• 424: Foreign Function and Memory API (Preview)•
• 426: Vector API (Fourth Incubator)•
• 427: Pattern Matching for switch (Third Preview)•

These JEPs are mostly continuations of the development of existing preview and
incubating features, so rather than spend more time on them, we’ll focus on:

• 425: Virtual Threads (Preview)•
• 428: Structured Concurrency (Incubator)•

These two JEPs provide the basis of the first preview delivery of Project Loom.

Loom
In Java 17, every executing Java language thread is an OS thread because calling
Thread.start() triggers a system call that creates an OS thread. This therefore
creates a constraint between the number of available Java execution contexts and
the limits of the operating system. As programming languages have evolved, this
constraint has become more problematic. The OS has data structures (e.g., stack)
that it creates for each thread, and it individually schedules execution of each
thread.

This naturally leads to the question: how many OS threads can an application start?
1,000? Perhaps 10,000? Regardless of the exact number, there is definitely a hard
limit in this approach. Project Loom is a reimagining of Java’s concurrency model
that is designed to transcend this limitation.

The key is virtual threads, a new construct that is not 1-1 with OS threads. From
a Java programming perspective, virtual threads look like instances of Thread, but
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they are managed by the JVM, not the OS. This means that no OS-level data
structures (e.g., for the thread’s stack frames) are created, and all the management
metadata is handled by the JVM. This includes the scheduling behavior; rather than
the OS scheduler, a Java execution scheduler (a threadpool) is used.

When a virtual thread wants to execute, it does so on an OS carrier thread and
runs until a blocking call (e.g., I/O) is made. The carrier thread is yielded to another
virtual thread, and so a virtual thread may execute on several different carriers over
its lifetime. The connection to blocking calls means that virtual threads are not
suitable for pure CPU-bound tasks, and in general, the use of Loom is very different
from approaches such as async / await that developers may have used in other
languages.

It remains to be seen how much Loom will impact end-user devs, although there is
a lot of interest from framework and library authors. An initial version is arriving
as a preview in JDK 19, but it is still unclear when it’ll arrive as a standard feature.
Overall, the expectation in the community is that it will be finalized in the next LTS,
which is expected to be Java 21.

Future Java
Along with the completion of the projects already mentioned, longer-term efforts to
evolve Java are underway: Project Valhalla and the rise of Cloud-Native Java.

Let’s look at each in turn.

Valhalla
Project Valhalla is a very ambitious OpenJDK project that has been running since
2014. The goal, “To align JVM memory layout behavior with the cost model of
modern hardware,” seems simple and innocuous enough.

However, this is deeply deceptive.

For starters, this divides the existing Java objects into two cases: the identity objects
we’re used to using and a new kind of value object whose main difference is that
it doesn’t have a unique identity. From these value objects, a further step is taken
to allow the reference-ness, or indirection, to be removed and for the value to be
directly represented by its bit patterns.

The intended use case for this new data value is small, immutable, final, identity-less
types. This allows these new identity-less values to fit with both the existing object
reference and primitive worlds, getting the best of each world, and it also alludes to
one possible use case as “user-defined primitives.”

Users should think of values as objects without identity, and then they will get
guaranteed performance benefits from the JIT (such as enhanced escape analysis).
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Valhalla also provides a mechanism for low-level libraries
(such as complex numbers, half-floats for machine learning,
etc.) to use the primitive value type directly, but most develop‐
ers should not need to use this aspect.

The fact that these new data values lack object identity implies that they disrupt the
traditional inheritance hierarchy—without identity there is no object monitor, so
wait(), notify(), and synchronized are not possible for these types.

In turn, this creates a potentially surprising connection to Java generics because
only reference types are permissible as the value for a type parameter. Valhalla
therefore proposes to extend generics to allow abstraction over all types including
these new data values and even the existing primitives.

In addition to the extensive work to plumb these new forms of data through the
JVM, it is also necessary to create a usage model in the Java language that seems
natural to Java programmers. Valhalla must also enable existing libraries (including,
but not limited to, the JDK) to compatibly evolve as these changes are delivered.

Some new bytecode instructions will be needed, as Valhalla’s new types are immuta‐
ble, so the putfield instruction (which modifies object fields) will not work.

Valhalla’s new types have been known by several names during the project’s history,
including value types, inline types, and primitive classes. The JEPs that cover the
implementation of Valhalla are not, at the time of writing, targeted at any specific
Java version, and it may be some time before most Java programmers encounter
them in day-to-day work.

Cloud-Native Java
One of the ongoing mega trends in the software industry is the transition to
workloads that run “in the cloud,” which means on time-leased servers owned by
infrastructure providers such as Amazon, Microsoft, and Google.

Modern programming environments increasingly need to ensure that they are
economic and easy to use in cloud deployments, and Java is no exception. However,
Java’s design does have certain aspects that are potentially less friendly to cloud
applications than we would like. These largely stem from the classloading and JIT
compilation aspects of the runtime, which are designed for flexibility and high
performance over the lifetime of a single JVM process.

In the cloud, this can have side effects such as:

• Slow application startup time•
• Long time to peak performance•
• Potentially high memory overhead•
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In particular, the lifetime of cloud processes (especially for “Serverless” and
Function-as-a-Service deployments) may be too short for the performance benefits
of Java to pay off. This can be seen as the costs required to get the gains not being
fully amortized by the time the process exits.

There are ongoing attempts to solve these long-term pain points and ensure that
Java remains a competitive and attractive programming environment as Cloud-First
becomes the dominant mode of delivery for serverside applications.

One of the major approaches is native compilation: the conversion of a Java program
from bytecode into compiled machine code. As this compilation occurs before
program execution starts (as for languages like Rust and C++), it is known as ahead-
of-time compilation, or just AOT. This technique is unusual in the Java space, but it
aims to provide a faster startup time as programs do not need to be classloaded or
JIT compiled. However, it does not generally give better peak performance than the
same application would have when running in dynamic VM mode. This is because
peak performance isn’t the point here. AOT and JIT represent different strategies
and different tradeoffs.

The current main effort to support native compiled Java is Oracle’s GraalVM. This
was developed as a separate research project in Oracle Labs, but as of late 2022,
Oracle has announced plans to contribute parts of it to OpenJDK. It is available in
two editions, an open-source edition and a proprietary Enterprise Edition, which
has a licensing and support cost.

GraalVM contains a compiler called Graal that can operate in either JIT or AOT
mode. The AOT mode of Graal is the basis of GraalVM’s Native Image technology
that can produce a standalone, compiled machine code binary from a Java applica‐
tion. One interesting aspect of the Graal compiler is that it is written in Java, unlike
the JIT compilers in OpenJDK, which are implemented in native code.

GraalVM also includes Truffle, an interpreter generating framework for languages
on the JVM. Interpreters for supported languages, written on top of Truffle, are
themselves Java programs that run on the JVM. Many non-Java languages are
already available such as JavaScript, Python, Ruby, and R.

Another of the projects working on improving cloud-native support is Quarkus, a
Java microservices framework designed for the Kubernetes cloud orchestration and
deployment stack.1411.200 Quarkus attempts to reduce the impact of the cloud-
native pain points by extensively using build-time processing. Expensive computa‐
tions and startup that would normally be handled reflectively during startup are
instead performed ahead of time wherever possible.

Quarkus also emphasizes developer experience and provides both reactive and
imperative styles of programming microservices.

The framework is open source and production ready, and it has support available
from Red Hat, which is the primary maintainer of the project. It also includes
support for native compilation, based on the open-source edition of GraalVM.
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However, Quarkus can also be run in dynamic VM mode on top of an OpenJDK
runtime.

Finally, we should also mention Project Leyden. This is a new (May 2022) OpenJDK
project that seeks to introduce static runtime images to the Java platform. The
project name comes from a “Leyden jar,” a device from the 1700s used for storing
static electrical charge. A key aspect of this is known as the closed world assumption
that removes dynamic runtime behavior such as reflection.

The project is still in its early stages but is adopting a different (and more cautious)
approach than GraalVM; a key goal of Leyden is to be able to selectively and flexibly
constrain and shift dynamism. The intent is to evolve toward similar targets as the
AOT-compiled native image binaries created by GraalVM, but as yet there are no
indications when these techniques might appear in a production form of Java.
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Symbols
! (exclamation point)

!= (not equal to) operator, 36, 43
boolean NOT operator, 36, 45

" (quotes, double)
enclosing string literals, 28
escaping in char literals, 27
literals in, 24
in string literals, 84

""" (quotes, double), enclosing text blocks,
28, 84, 320

$ character, 269
% (percent sign)

%= (modulo assignment) operator, 36,
48

modulo operator, 36, 41
& (ampersand)

&& (conditional AND) operator, 36,
40, 44

&= (bitwise AND assignment) opera‐
tor, 36, 48

bitwise AND operator, 36, 46
boolean AND operator, 36, 45

' (quotes, single)
in char literals, 84
enclosing character literals, 26
escaping in char literals, 26
literals in, 24
in string literals, 28

() (parentheses)
cast operator, 36, 52
enclosing expressions in if statements,

56

enclosing method parameter list, 76
method invocation operator, 36, 39, 51
overriding operator precedence, 35
separators (tokens), 24

* (asterisk)
* = (multiply assignment) operator,

36, 48
in doc comments, 272
in multiline comments, 22
multiplication operator, 36, 40

+ (plus sign)
++ (increment) operator, 36, 39, 41
+= (add assignment) operator, 36, 41,

48
addition operator, 36, 40
string concatenation operator, 36, 41,

85, 321
unary plus operator, 36

, (comma) operator, 173
, (comma) separators (tokens), 24
- (minus sign)

-- (decrement) operator, 36, 42
-= (subtract assignment) operator, 36,

48
subtraction operator, 36, 38, 40
unary minus operator, 36, 38, 41

-> (lambda arrow) operator, 36, 51
. (dot)

member access operator, 50
object member access operator, 36
separators (tokens), 24

/ (slash)
/* */ in multiline comments, 22
/** */ in doc comments, 22, 271
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// in single-line comments, 22
/= (divide assignment) operator, 36, 48
division operator, 36, 40

0 (zero)
division by zero, 41
negative and positive zero, 31
represented by float and double types,

31
represented by integer types, 329

:: (colons) separators (tokens), 24
; (semicolon)

in abstract methods, 77
in break statements, 66
for empty statements, 54
in for loops, 64
separators (tokens), 24
terminating do loops, 62

< > (angle brackets)
< (less than) operator, 36, 43
<< (left shift) operator, 47
<< (signed left shift) operator, 36
<<= (left shift assignment) operator,

36, 48
<= (less than or equal to) operator, 36,

44
> (greater than) operator, 36, 44
>= (greater than or equal to) operator,

36, 44
>> (signed right shift) operator, 36, 47
>>= (right shift assignment) operator,

36, 48
>>> (unsigned right shift) operator,

36, 47
>>>= (unsigned right shift assign‐

ment) operator, 36, 48
homogeneous collections and, 164

= (equals sign)
= (assignment) operator, confusion

with == (equal to) operator, 48
== (equal to) operator, 36, 43, 97
assignment operator, 36, 48

? (question mark)
? : (conditional) operator, 36, 38, 40,

49
regular expression metacharacter, 326

@ (at sign)
in doc-comment tags, 273
separators (tokens), 24

@author doc-comment tag, 273

[ ] (brackets)
accessing array elements, 51, 90
after array element type, 52, 87
array access operator, 36
in regular expressions, 326

\ (backslash), 27
\\ (backslash), 27
^ (caret)

?= (bitwise XOR assignment) operator,
46

bitwise XOR operator, 36, 46
boolean XOR operator, 36, 45

_ (underscore), 24
{ } (curly braces)

members of a class in, 108
in nested if/else statements, 57
optional for small lambda expressions,

51
separators (tokens), 24
in switch statements, 58
in try/catch/finally statements, 70

| (vertical bar)
bitwise OR operator, 36, 46
boolean OR operator, 36, 45
|= (bitwise OR assignment) operator,

36, 48
|| (conditional OR) operator, 36, 40, 45

~ (tilde), bitwise complement operator,
36, 46

… (ellipses)
separators (tokens), 24
in variable-length argument lists, 80

A
abs(), 332
abstract classes, 77, 143-148

defined, 111
interfaces vs., 220-221

abstract methods, 77, 143-148
access control, 136-141

for classes, 137
data accessor methods, 142-143
inheritance and, 140
for members of a class, 137
for modules, 137
for packages, 137

access modifiers, 78, 109
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accessor methods, field inheritance and,
213-215

Account class, 108, 146
addition operator (+), 40
adjusters, date and time, 339
ahead-of-time (AOT) compilation, 438
allocateDirect(), 354
Amber, 432
Android, 4
annotations (annotated types), 177

defining custom types, 178
type annotations, 179

anonymous classes, 180, 196-198
AOT (ahead-of-time) compilation, 438
Apache Commons project, 100
application classloader, 376
apply(), 308
arithmetic operators, 40
ArithmeticException, 30
array covariance, 88
array literal, 52
arrayCopy(), 92, 304
ArrayDeque class, 302
ArrayIndexOutOfBoundsException, 91
arrays, 86-94

accessing elements, 51, 90
array bounds, 91
array types, 87-89
bounds, 91
C compatibility syntax, 88
conversion rules, 147
converting to/from objects, 304-305
copying, 91
creating and initializing, 89
creation with new operator, 52
initializers, 89
iterating, 91
Java Collections and, 304-305
multidimensional, 92
as operand type, 42, 49
type widening conversions, 87
types, 87-89
using, 90-92
utility methods for working with, 92

Arrays class, 92
ArrayStoreException, 88
ASCII escape sequences, 27
asPredicate(), 328
assert statements, 72-74

AssertionError, 73
assertions, 72
assignment operators, 47-49
associativity, 36
Async I/O, 356-359

callback-based style, 357-358
future-based style, 356
watch services and directory search‐

ing, 358
AsynchronousFileChannel (see async

I/O)
autoboxing, 98
AutoCloseable interface, 348
automatic imports, 100
automatic modules, 397

B
\b (escape sequence for backspace), 27
backward compatibility, interfaces and,

158
benign data race, 323
BigDecimal, 332
binary operators, 38
bitwise operators, 36, 45-46
blocking queue, defined, 300
BlockingQueue interface, 299-302

adding elements to queues, 300
querying of elements in queues, 301
removing elements from queues, 300

body
in class definition, 108
of a method, 74

Boolean operators, 44-45
boolean type, 26

Boolean class, 56
no conversions to other primitive

types, 32
operator return values, 39, 42
using +=, -=, &=, and |= to work with

boolean flags, 49
bootstrap classloader, 375
bound method reference, 184, 308
bounded type parameters, 167-168
bounded wildcards, 171
boxing and unboxing conversions, 98
boxing conversions, 98
break statements, 66, 71

labels, use of, 54
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specifying end of case clauses in switch
statements, 59

stopping switch statements, 59
BufferedReader class, 346
buffers, NIO, 353-356

ByteBuffer, 353-356
MappedByteBuffer, 355

builder pattern, 218-220
byte type, 28, 39

Byte class, 30
conversions to other primitive types,

32
ByteBuffer class, 353-355

basics, 353-355
MappedByteBuffer, 355

bytecode
class files and, 6
defined, 10
endianness, 10
machine-independence of, 10
optimization and, 10
security and, 15
as terminology, 10
verification, 15

byte[], 354

C
C#, using keyword, 348
C/C++

access modifiers for fields, 213
array compatibility syntax, 88
compatibility syntax in variable decla‐

rations, 88
enum types in, 176
interchangeability of integers/pointers,

373
Java compared to, 12
as model for Java language, 5
operator precedence, 35
pointers or memory addresses, refer‐

ences as, 95
RAII pattern, 248
switch statement, 58
using native methods to interface Java

code to C/C++ libraries, 77
virtual keyword, 133

callback-based style, for async I/O,
357-358

camel case, 24, 268
capitalization conventions, 267-269
captured variable, 187
carrier threads, 436
case labels (switch statements), 59
case sensitivity, 21
casts, 33

() (cast) operator, 52
conversion rules and, 146
of primitive types, 33

catch clause, 71
ceil(), 333
channels, 353-356

ByteBuffer, 353-355
MappedByteBuffer, 355

char type, 26, 39
Character class, static method, 27
conversion to and from integer and

floating-point types, 32
conversion to other primitive types, 27
escape characters in char literals, 27
surrogate pair, Unicode supplemen‐

tary characters, 28
character sets, 21
checked exceptions, 79-81

in throws clause of method signature,
77

working with, 79
Class class, 85
class field, 113
class files, 6
class hierarchy, 124, 146
class keyword, 110
class methods, 114

instance methods vs., 228-230
static modifier, 78
static synchronized, 68
synchronized modifier, 78

Class object
reflection, 377-383
type literals, 85

class objects, 367-370
(see also classloading)
examples of, 367
metadata with, 368-370

class(es), 81-86
abstract, 143-148
access control, 137
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basic object-oriented definitions,
108-109

class hierarchy, 124
core classes of Java platform, 99
defined, 108
defining, 82
definition syntax, 110
enums, 175-177
extending, 123-124
fields and methods, 111-117
final, 124
hiding data within (see encapsulation)
hierarchy, 124
initializer blocks, 121
name collisions, preventing, 99
names, simple and fully qualified, 99
naming conventions, 268
in object-oriented programming,

107-111
sealed, 134
subclasses and inheritance, 122-135
superclasses, 124

Class.forName(), 374
classic Java I/O, 343-349

File class, 344-345
problems with, 348
readers and writers, 346-347
stream abstraction, 345
try-with-resources statement, 347

classloading, 370-377
application classloader, 376
applied, 374-377
bootstrap classloader, 375
custom classloader, 376
hierarchy of classloaders, 375-377
initialization phase, 372
loading phase, 370
phases of, 370-372
platform classloader, 376
preparation and resolution, 371
secure programming, 372-374
verification phase, 370

ClassNotFoundException, 374
clone() method, 87, 91, 211
Cloneable interface, 87, 91
CloneNotSupportedException, 87
closures, 186
cloud-native Java, 437-439
@code doc-comment tag, 277

collect(), 307, 315
Collection interface, 284-286
collection views, 295
collections, 283-318

arrays and helper methods, 304-305
basics, 283-305
BlockingQueue interface, 299-302
Collection interface, 284-286
iterating over with foreach loops, 64
Java Streams and (see Java Streams)
List interface, 290-294
Map interface, 295-299
Queue interface, 299-302
Set interface, 286-289
special-case collections, 303
utility methods, 302-304

colliding default method, 160
comments, in Java programs, 21
compact constructor, 122, 227
compacting collector, 243
compaction, 243
compareTo(), 210
comparison operators, 42
compilation units, 20
compile-time typing, 174
compilers, javac and, 10, 408
CompletionHandler interface, 357
composition, inheritance vs., 230-232
compound declaration, 173
compound statement, 54
concatenation, of strings, 321
concurrency, 237, 249-261

(see also memory management;
threads)

deprecated methods of threads, 260
exclusion and protecting state,

254-257
safety, 254
synchronize statement, 67
thread lifecycle, 251-252
useful methods of threads, 258-260
visibility and mutability, 252-254
volatile keyword, 257
working with threads, 261-263

concurrency primitives, 68
concurrent collector, 244
concurrent safety, 254
ConcurrentHashMap class, 299
ConcurrentMap interface, 299
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ConcurrentModificationException, 293
ConcurrentSkipListMap class, 299
conditional AND operator (&&), 44
conditional operator (? :), 49
constant pool, 369
constants

field access and, 212
importing into code, 102
naming conventions, 269
object-oriented design and, 212

constructors
chaining, 126
default, 127
defining a single constructor, 118
defining multiple constructors, 119
definition of term, 51, 76
invoking one constructor from

another, 119
purpose of, 117
record constructors, 122
subclass, 125

continue statements, 66, 71
conventions, programming/documenta‐

tion, 267-282
classes, 268
constants, 269
doclets, 279
enums, 268
fields, 269
interfaces, 268
Java documentation comments,

271-279
(see also doc comments)

local variables, 269
methods, 268
modules, 267
naming and capitalization conven‐

tions, 267-269
packages, 268
parameters, 269
portable code conventions, 280-282
practical naming, 269-270
static final constant, 269
types, 268
variables, 269

conversions
boxing/unboxing, 98
reference types, 146-148

copy constructor, 211, 218

CopyOnWriteArrayList class, 294
CopyOnWriteArraySet class, 287
CopyOption interface, 350
counters for loops, incrementing, 62
countStackFrames(), 261
covariance, generics and, 168-170
covariant return, 129
cross-references, in doc comments,

277-279
currency symbols in identifiers, 23
custom annotations, defining, 178
custom classloader, 376
custom runtime images, JMPS and, 402

D
daemon thread, 259
data encapsulation (see encapsulation)
data formats, handling of common,

319-341
date and time, 334-341
numbers and math, 329-334
text, 319-329

data hiding (see encapsulation)
data types

array elements, 86
array index expressions, 91
array types, 87-89
boolean types, 26
boxing and unboxing conversions, 98
char types, 26
conversions, 32
expressions in switch statements, 60
floating-point types, 30-32
instanceof operator, 49
integer types, 28-30
of operands, 38
primitive, 25-33
reference, 94-98
type conversion or casting with (), 52

date and time API, 334-341
adjusters, 339
diary class example, 336
legacy issues, 340
queries, 337-339
timestamp, 336
timezones, 340

debugging, using assertions, 72
decorator pattern, 230
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decrement operator (--), 42
default access, 138
default constructor, 127
default fall-through, 59
default implementation, 159
default keyword, 110
default methods, 77

backward compatibility and, 158
collections and, 306
implementation of, 159-161
interfaces and, 158-161
traits and, 222-223

default: label, 59
defineClass(), 370
DELETE method (HTTP), 360
@deprecated doc-comment tag, 274
destroy(), 261
diamond inheritance, 160
diamond syntax, 165
direct buffers, 355
directory streams, Async I/O, 358
division operator, 40
do statements, 62, 67
doc comments, 22, 271-279

cross-references in, 277-279
inline tags, 276-277
for packages, 279
structure of, 272
tags, 273-277

doc-comment tags, 273-277
doclets, 279
@docRoot doc-comment tag, 276
documentation (see conventions, pro‐

gramming/documentation; javadoc)
domain names in package names, 100
double type, 30

Double class, 31
return type for operators, 39

dynamic proxies, 382-383
dynamically typed language, 151

E
eager evaluation, 312
ecosystem, Java, 8
Eden space, 242
effectively final variable, 187
effectively immutable classes, 323
else clause, 56

else if clause, 57
empty collections, Collections class meth‐

ods for, 303
empty statements, 54
encapsulation, 109, 135-143

access control, 136-141
data accessor methods, 142-143

endianness, bytecode and, 10
enums (enumerated types), 175-177, 268
equality operator (==), 32, 43

comparing reference types, 97
confusion with = (assignment) opera‐

tor, 48
equals(), 209

Arrays class, 97
testing two nonidentical objects for

equality, 97
Error class, 79
escape sequences

in char literals, 27
in string literals, 28, 84
Unicode characters, 21, 26

evacuating collectors, 242
evacuation, 242-243
evaluation of expressions

order of evaluation, 40
shortcutting, 44

exact garbage collector, 239
@exception doc-comment tag, 274
exception handlers, 69
exception handling, 232-234
exceptions

checked/unchecked, 77, 79-81
Exception class, 79
object-oriented design and, 232-234
throwing, 68

exclusion, protecting state with, 254-257
execution environment, JVM as, 6
exp(), 333
exponential notation, 30
exports keyword, 394
expression statement, 53
expressions, 34-52

array creation, 89
in assert statements, 72
defined, 34
following return statements, 67
in for loops, 63
in if statements, 56
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operators and, 34-52
statements vs., 52
in switch statements, 58
in synchronize statements, 68
in throw statements, 68
in while statements, 62

extending interfaces, 153
extends clause, 153
extension classloader, 376
extensions, standard, 99

F
\f (form feed) escape sequence, 27
factory methods, 217-218
fall-through, 59
field hiding, overriding vs., 131
fields, 111-117

class, 113
declaration syntax, 112
defaults and initializers, 119-122
hiding superclass fields, 127-129
inheritance, 213-215
initializer blocks, 121
instance, 115
modifiers, 113
naming conventions, 269
working with, 212

FIFO (first-in, first-out) queues, 299
File class, 100

classic Java I/O, 344-345
modern Java I/O, 349-350

file structure, Java, 103
FileChannel class, 355
FileInputStream class, 345
filenames, hardcoded, 282
FileOutputStream class, 345
FileReader class, 346
FileSystem class, 352
FileVisitor interface, 359
filter(), 184

in Java 8, 307
Predicate interface, 307
Stream interface, 313

FilterInputStream class, 347
final classes, 111, 124
final modifier, 113

methods, 77
in variable declaration statements, 55

finalization (resource management tech‐
nique), 248-249

finalize(), 248-249
finally clause (try/catch/finally), 71
first-in, first-out (FIFO) queues, 299
flatMap(), 314
flattening, 314
floating-point numbers, 330-331
floating-point types, 30-32

as approximations, 31
conversions, 32, 33
division by zero, 41
Double class, 31
double type, 30, 39
Float class, 31
float type, 30, 39
floating-point arithmetic, 32, 40
floating-point literals, 30
return type for operators, 39
strictfp modifier for methods, 78
testing if value is NaN, 43
wrapper classes, 31

floor(), 333
flow-control statements, 52
fluent interface, 219
for statements, 63

break statement in, 66
continue statement in, 67
initialize, test, and update expressions

in, 63
iterating arrays, 91

foreach loops, 291-294
foreach statements, 64

iterating arrays, 91
limitations of, 65

forEach(), 308
Foreign Memory API, 434
format()

line separators, 282
String class, 80

Formatter class, 282
free list, 242
functional collections, 306

(see also Java Streams)
functional interfaces, 181
functional programming

key patterns, 307-310
lambda expressions and, 184-185
languages, 85
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@FunctionalInterface annotation, 178,
182

future-based style, for async I/O, 356

G
garbage collection (GC), 241-243

(see also memory management)
compaction, 243
evacuation, 242-243
JVM's optimization of, 241-243
ParallelOld collector, 246
Serial collector, 246
Shenandoah, 247
ZGC, 247

Garbage First (G1) collector, 245
generational garbage collector, 241
generic methods, 75, 173
generics, 162-175

basics, 163
bounded type parameters, 167-168
bounded wildcards, 171
compile-time/runtime typing, 174
covariance, 168-170
diamond syntax, 165
generic methods, 173
type erasure, 165
types/type parameters, 164
using and designing, 175
wildcards, 170-173

GET method (HTTP), 360
get(), 356
getClass(), 367
getId(), 258
getInstance(), 216
getName(), 259
getPriority(), 258
getState(), 259
GraalVM, 438
graceful completion pattern, 257
Gradle, 401
greater than operator (>), 44
greater than or equal to operator (>=), 44

H
hash codes, 322
hashCode(), 209

and effective immutability, 322

String class, 322
HEAD method (HTTP), 360
heap (see HotSpot heap)
heterogeneous collections, 163
hidden fields, overriding vs. field hiding,

131
homogeneous collections, 163
HotSpot heap, 243-248
HotSpot JVM, 14, 411
HTTP, 359-361

I
I/O (input/output), 343-365

Async I/O, 356-359
ByteBuffer, 353-355
classic Java I/O, 343-349
HTTP, 359-361
IP, 364
MappedByteBuffer, 355
method names, 76
modern Java I/O, 349-353
networking, 359-364
NIO channels and buffers, 353-356
TCP, 361-364

identifiers, 23
IEEE-754 floating-point arithmetic stan‐

dard, 78, 331
if statements, 42, 56-57
if/else statements, 56-57

conditional operator (? :) as version of,
49

else clause, 56
else if clause, 57
nested, 56

immutability
hash codes and, 322
string, 322-323

immutable fields, 213
implementation-specific code, 281
implements keyword, 154
import declarations, 20, 100

naming conflicts and shadowing, 101
on-demand imports, 101
single type imports, 101

import static declarations, 102
increment operator (++), 39, 41
incremental compaction, 245
indexes
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array, 86, 90
list, 290

infinite loops
creating with syntax while(true), 64
writing with for(;;), 64

infinity
division by zero, 41
modulo operator (%) and, 41

inheritance
access control and, 140
composition vs., 230-232

@inheritDoc doc-comment tag, 276
initialization, classloading and, 372
initialize expressions (for loops), 63
initializers

array, 89
in variable declarations, 54

initializing objects
defining a constructor, 118
defining multiple constructors, 119
field defaults and initializers, 119-122
invoking one constructor from

another, 119
inline doc-comment tags, 276-277
inner classes (see nested types)
InputStream class, 345
InputStreamReader class, 346
instance fields, 115
instance methods, 115, 228-230
instanceof operator, 36, 49
Instant class, 335
int type, 28

32-bit int values, 29
conversions to other primitive types,

32
Integer class, 30
return type for operators, 39

integer literals, 29
integer types, 28-30, 329-330

conversions, 32
integer arithmetic, 29, 40
integer overflow, 29
wrapper classes, 30

interfaces, 152-162
abstract classes vs., 220-221
annotations, 177
backward compatibility, 158
default implementation, 159-161
default methods, 158-161

defining, 153
definition of term, 110
extending, 153
implementing, 154-156
marker, 162
naming conventions, 268
records and, 156
restrictions on, 153
sealed, 156-158

intermediate representation, bytecode as,
10

interpreted languages, 11
interrupt(), 259
introspection (see Method Handles;

Reflection)
invoke(), 386
invokedynamic bytecode, 384
invokeExact(), 386
IOException objects, 80
IP, 364
irrational numbers, 331
isAlive(), 259
isDone(), 356
isJavaIdentifierPart(): Character, 24
isJavaIdentifierStart(): Character, 24
isNan(), 43
Iterable interface, 292, 293
iteration

arrays, 91
foreach and, 64
lists, 291-294

Iterator object, foreach loop and, 65
iterator(), 293

J
JAR (Java archive) files, 105

jar and, 412
manipulating as a FileSystem, 352
multi-release, 399-401

jar command, 412
Java (generally)

answering criticisms of, 12-15
corporateness of, 15
documentation comments, 271-279

(see also doc comments)
history, 16-17
interpreted languages and, 11
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other programming languages com‐
pared to, 11-12

overview of versions 1.0 through 17,
16-17

pace of change, 13
performance problems, 14
security, 14
security vulnerabilities, 14
syntax (see syntax, Java)
verbosity of, 13

Java 8
Date and Time API, 334-341
ElementType values, 179
G1 collector, 245
interfaces in, 152, 158, 220-221
language changes in, 5
method references, 183
security issues, 14
sort(), 159
static methods, 153
Streams, 306
updates in, 17

Java 9
doclet upgrade, 279
JShell and, 425-428
keystone release model, 405
platform modules, 137, 389
special-case collections, 303

Java 11
migrating to modules, 402
multi-release JARs, 400
nested types, 189
new features, 17
OpenJDK and, 4

Java 13
socket support, 362

Java 17, xi
instanceof and pattern matching, 50
JFR and, 429
modularizing the JDK, 393
Path interface, 351
running java against a source file, 105
sealed classes, 134
strictfp modifier, 78
versions beyond, 431-439

Java 18, 433
Java 19, 435
Java Collections (see collections)
java command, 105, 410

Java ecosystem, 8
Java Enhancement Proposals (JEPs), 433
Java file structure, 103
Java Flight Recorder (JFR), 428
Java generics (see generics)
Java interpreter, 105
Java language (see syntax, Java)
Java Language Specification (JLS), 5
Java Native Interface (JNI), 434
Java Platform Modules System (JPMS),

389-406
adoption rates, 405
automatic modules, 397
basic modules syntax, 394
building a simple modular application,

395
custom runtime images, 402
decision to migrate applications to use

modules, 401
deploying software as multi-release

JAR, 401
issues with modules, 403-406
lack of versioning, 405
modularizing the JDK, 390-393
module path, 396
multi-release JARs, 399-401
open modules, 397-398
providing services, 399
reasons for creation of, 390
Unsafe class and related problems, 403
writing your own modules, 394-403

Java programming environment, 3-18
Java ecosystem, 8
Java language and, 5
Java/JVM history, 16-17
JVM, 6-8
lifecycle of Java program, 9-11
as open ecosystem, 4

Java programs
contents of, 20
defining and running, 104
lexical structure of, 20-25
lifecycle of, 9-11

Java Streams, 306-317
default methods, 317
filtering, 313
flattening, 314
functional approaches, 307-310
introduction of Streams API, 310-317
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lambda expressions and, 306-317
lazy evaluation, 311
matching, 314
transforming to nonstream collection,

315
transforming to values, 316

Java Virtual Machine (JVM)
classloader hierarchy, 375-377
garbage collection optimization by,

241-243
history, 16-17
java command, 410
Java programming environment and,

6-8
running non-Java languages on, 11
security checks implemented by, 373
verification of class file, 370

java.awt.List, 101
java.base, 391
java.io.IOException objects, 80
java.io.ObjectInputStream class, 83
java.io.PrintStream, 229
java.lang, 177
java.lang package, 100
java.lang.annotation, 178
java.lang.ClassLoader, 374-377
java.lang.Error, 232
java.lang.Exception, 232
java.lang.Iterable, 292
java.lang.Math, 331
java.lang.Object, 87

clone() method, 211
compareTo() method, 210
equals() method, 209
hashCode() method, 209
important methods of, 207-211
toString() method, 209

java.lang.reflect, 80
java.lang.String, 124
java.lang.System, 304
java.lang.System.out, 230
java.lang.Throwable, 232
java.net package, 359
java.nio.channels package, 354, 358
java.nio.file package, 349, 359
java.se module, 393
java.time package, 335
java.time.chrono package, 335
java.time.Duration package, 335

java.time.format package, 335
java.time.temporal package, 335
java.time.zone package, 335
java.util package

Map interface implementations, 298
Set implementations, 284

java.util.AbstractList, 220
java.util.Arrays class, 92
java.util.Collections

special-case collections, 303
wrapper methods, 302

java.util.concurrent, 287
BlockingQueue interface, 300
Map implementations, 298

java.util.Formatter, 282
java.util.function, 222, 308
java.util.Iterator, 191, 292
java.util.List, 101
java.util.Random package, 334
java.util.RandomAccess, 162
java.util.regex package, 325
javac, 408

class initialization method generation,
121

lambda expression conversion, 181,
186

optimized bytecode, 10
similarity to compiler, 10
virtual method lookup, 131

javadoc, 22
basics, 414
doc comments, 271
doclets, 279
package documentation, 279

javap tool, 421
JavaScript, Java compared to, 11
javax., package names beginning with, 99
javax.net package, 359
jcmd tool, 424
jdeps tool, 415
JDK (Java Development Kit)

long-term projects, 432-433
modularizing of, 390-393

JEPs (Java Enhancement Proposals), 433
jextract tool, 434
JFR (Java Flight Recorder), 428
jinfo tool, 419
jlink tool, 422
JLS (Java Language Specification), 5
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jmap utility, 420
jmod tool, 423
JNI (Java Native Interface), 434
join(), 259
JPMS (see Java Platform Modules System)
jps command, 416
JShell, 425-428
jstack utility, 419
jstad tool, 418
jstat command, 417
JUnit, 73
JVM (see Java Virtual Machine)

K
Kanji character (in Java identifier), 24
keystone release model, 405

L
labeled statements, 54, 66
lambda expressions, 180-187

anonymous classes and, 196
basics, 85, 180-181
conversion, 181
defined, 51, 86
functional programming and, 184-185
Java Streams and, 306-317
lexical scoping and local variables,

184-185
method references and, 183
method references vs., 224
nested classes vs., 223
nominal typing and, 199
object-oriented design and, 223-225

last in, first-out (LIFO) queues, 299
Latin-1 character set, 26
lazy evaluation, 311
left shift operator (<<), 47
length field, 91
length of arrays, 86, 89
less than operator (<), 43
less than or equal to operator (<=), 44
lexical scoping, 185-187
lexical structure

case sensitivity, 21
comments, 21
identifiers, 23
of Java program, 20-25

literals, 24
punctuation, 24
reserved words, 22
Unicode character set, 21
whitespace, 21

Leyden, 439
lifecycle, of Java program, 9-11
LIFO (last in, first-out) queues, 299
line separators, 282
@link doc-comment tag, 272, 276, 277
linked lists, iterating through, using for

loop, 64
LinkedList class, 294, 301
LinkOption class, 350
@linkplain doc-comment tag, 276, 277
List interface, 290-294

foreach loops and iteration, 291-294
generics and, 163
random access to lists, 294

lists
iterating through using foreach loop,

65
java.util.List and java.awt.List classes,

101, 101
@literal doc-comment tag, 277
literals, 24
loadClass(), 374
loading (classloading phase), 370
local classes, 193-196

features of, 194
scope of, 195

local variable declaration statements, 54
local variable type inference (LVTI),

200-201
local variables, 54

lambda expressions and, 184-185
naming conventions, 269

LocalDate class, 336
log(), 333
log10(), 333
logical operators, 44-45
long type, 28, 60

64-bit long values, 29
conversions between char values and,

33
Long class, 30
return type for operators, 39

long-term support (LTS) releases, 17, 405,
431
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Lookup object, 385
lookup queries, 385-386
Loom, 432, 435
looping

for statements, 63
while statements, 62

LTS (long-term support) releases, 17, 405,
431

lvalue, 48
LVTI (local variable type inference),

200-201

M
main thread, 250
main(), 69, 105
MalformedURLException, 80
Map interface, 295-299
map(), 184, 308
Map.Entry interface, 295
MappedByteBuffer, 355
mark-and-sweep algorithm, 239-241
marker interfaces, 162
Matcher class, 325
Math class

on-demand static import, 102
static methods for rounding, 33

mathematical functions, standard library
of, 332-334

Maven, 401
max(), 333
MAX_VALUE constant

Float and Double classes, 31
integer type wrapper classes, 30

member access operator (.), 50
member classes

features, 192
nonstatic, 191-193
static, 189-191
syntax for, 193

members of a class, 108, 137
memory leaks, 238
memory management, 237-249

(see also concurrency)
basic concepts, 237-241
finalization, 248-249
HotSpot heap, 243-248
JVM's optimization of garbage collec‐

tion, 241-243

mark-and-sweep algorithm, 239-241
memory leaks, 238

memory, primitive and reference types
requirements, 95

meta-annotations, 178
metacharacters in regular expressions,

325
metadata, class objects and, 368-370
method body, 74
Method Handles, 384-387

invoking, 386
lookup queries, 385-386
MethodType objects, 384

method invocation operator (( )), 39, 51
Method objects, Reflection and, 378-380
method overloading, 76, 103
method references

lambda expressions and, 183
lambdas vs., 224

method signature, 74-77
MethodHandles.lookup(), 385
methods, 74-81

abstract, 143-148
arguments passed to, primitive and

reference types, 96
checked/unchecked exceptions, 79-81
class, 114
data accessor methods, 142-143
defining, 74-77
instance, 115
instance methods vs. class methods,

228-230
invoking an overridden method,

133-134
of java.lang.Object, 207-211
modifiers, 77
naming conventions, 268
native, 77, 280
overriding superclass methods,

129-134
overriding vs. field hiding, 131
parameter list, 76
signature, 74-77
synchronized, 68
this reference, 116
variable-length argument lists, 80
virtual lookup, 131
void, 67

MethodType objects, 384
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min(), 333
MIN_VALUE constant

Float and Double classes, 31
integer type wrapper classes, 30

modern Java I/O, 349-353
File class, 349-350
Path type, 350-353

modifiers
access, 78
method, 75, 77

module descriptor, 394
module keyword, 394
module path, 396
module-info.java file, 104, 394
modules, 389

(see also Java Platform Modules Sys‐
tem [JPMS])

access control, 137
naming conventions, 267

modulo operator (%), 41
monitor token, 255
multidimensional arrays, 92
multiple inheritance, 160
multiplication operator (*), 40
multithreading (see concurrency)
mutability

concurrency and, 252-254
defined, 253

mutable fields, 213

N
\n (newlines, escaping), 27
names

of methods, 76
package-naming rules, 99

namespaces
globally unique package names, 99
importing static members, 103
importing types, 100

naming conflicts, 101
naming conventions (see conventions,

programming/documentation)
NaN (Not a number), 31

equality tests of, 43
floating-point calculations, division by

zero, 41
modulo operator (%) and, 41

narrowing conversions, 32

native compilation, 438
native methods, 77

implementation, 78
portable programs and, 280

natural comparison method, 210
negative infinity, 31
negative zero, 31
NEGATIVE_INFINITY constant, Float

and Double classes, 31
nested classes, lambdas vs., 223
nested types, 187-198

anonymous classes, 196-198
local classes, 193-196
nonstatic member class, 191-193
static member types, 189-191

networking
HTTP, 359-361
IP, 364
TCP, 361-364

new operator, 36, 39, 51
creating arrays, 52, 89, 94
creating new objects, 51, 83

next(), 293
NIO channels and buffers, 353-356

ByteBuffer, 353-355
MappedByteBuffer, 355

NIO.2, 351
nominal typing, 162, 198-200
non-denotable types, 200-201
nonstatic members, 108, 191-193
not equals operator (!=), 43
NOT operator

bitwise NOT (~), 46
boolean NOT (!), 45

notify(), 262
null reference, 85
numbers, 329-334

floating-point, 330-331
integer types, 329-330
library of mathematical functions,

332-334

O
Object class, 87, 146
object references, 146-148
object state, 68
object-oriented design (OOD), 205-235

builder pattern, 218-220
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by reference vs. pass by reference, 206
composition vs. inheritance, 230-232
constants, 212
default methods and traits, 222-223
exception handling, 232-234
factory methods, 217-218
field inheritance and accessors,

213-215
important methods of

java.lang.Object, 207-211
instance methods vs. class methods,

228-230
interfaces vs. abstract classes, 220-221
Java values, 205-207
lambdas and, 223-225
records, 227-228
safe programming, 234-235
sealed types, 225-226
singleton pattern, 215-217
System.out.println() and, 229

object-oriented programming, 107-150
abstract classes and methods, 143-148
classes, 107-111
creating/initializing objects, 117-122
data hiding and encapsulation,

135-143
fields and methods, 111-117
modifier summary, 148
subclasses and inheritance, 122-135
superclasses and class hierarchy, 124

object-relational mapping (ORM), 398
ObjectInputStream class, 83
objects

arrays as, 86-94
classes and, 81-86
comparing, 97
converting to/from arrays, 304-305
creating, 82, 117-122
creation with new operator, 51
defined, 108
defining, 82
initializing, 117-122
literals, 83-85
manipulating, 95
memory requirements for storing, 95
as operand type, 42, 49
using, 83

OOD (see object-oriented design)
open modules, 397-398

operand, number and type of, 38
operators, 25, 34-52

arithmetic, 40
assignment, 47-49
associativity, 36
bitwise, 45-46
Boolean, 44-45
comparison, 42
conditional, 49
increment/decrement, 41
instanceof, 49
operand number and type, 38
order of evaluation, 40
precedence of, 35
return type, 39
shift, 47
side effects, 39
special, 50-52
in statements, 52
string concatenation, 41
summary table, 36

optimization, bytecode and, 10
OPTIONS method (HTTP), 360
or(), 307
Oracle Corporation

control of package names beginning
with java, javax, and sun, 100

Java and, 4
LTS releases, 431

ORM (object-relational mapping), 398
OutputStream class, 345
overflow, integer arithmetic and, 29
overloading, static member imports and,

103
@Override annotation, 177
overriding

field hiding vs., 131
invoking an overridden method,

133-134

P
package access, 137
package declarations, 20
package keyword, 99
package-level constants, 212
packages, 98-103

access control, 137
declarations, 99
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doc comments for, 279
globally unique names, 99
importing static members, 102
importing types, 100
naming conflicts and shadowing, 101
naming conventions, 268
static member imports and overloaded

methods, 103
Panama, 434
parallel collector, 244
ParallelOld collector, 246
@param doc-comment tag, 273
parameterized type, 164
parameters, naming conventions for, 269
Pascal case, 268
pass-by-reference language, 206
pass-by-value language, 206
Path type, 350-353
Paths class, 351
pattern matching, 50, 226
pause goals, 245
payload type, 164
PECS (Producer Extends, Consumer

Super) principle, 173
per-thread allocation, 243
permits keyword, 134
platform classloader, 376
portable code, conventions for, 280-282
positive infinity, 31
positive zero, 31
POSITIVE_INFINITY constant, Float

and Double classes, 31
POST method (HTTP), 360
post-decrement operator (--), 42
post-increment operator (++), 42
Postel's Law, 364
pow(), 333
pre-decrement operator (--), 42
pre-increment operator (++), 42
precedence, operator, 35
Predicate interface, 307

converting regex to a Predicate, 328
temporal queries vs., 338

primary expressions, 34
primitive types, 25-33

boolean, 26
boxing and unboxing conversions, 98
char, 26
conversions between, 32

conversions to strings, 41
equals operator (==), testing operand

values, 43
floating-point types, 30-32
integer types, 28-30
reference types vs., 94, 97
String literals, 28
wrapper classes, 98

printf(), 80, 282
println(), 76, 320

line separators and, 282
out.println() instead of Sys‐

tem.out.println(), 102
System.out.println() and, 229

priority queues, 299
PriorityQueue, 301
private constants, 212
private constructor, 127
private modifier, 113, 138

methods, 78
rules governing, 141

PRNG (pseudorandom number genera‐
tor), 334

ProcessHandle API, 400
Producer Extends, Consumer Super

(PECS) principle, 173
programming conventions (see conven‐

tions)
Project Amber, 432
Project Leyden, 439
Project Loom, 432, 435
Project Panama, 434
Project Valhalla, 432, 436
protected access, 138, 215
protected modifier, 113

methods, 78
rules governing, 141

pseudorandom number generator
(PRNG), 334

public constants, 212
public modifier, 113, 138

methods, 78
rules governing, 141

punctuation characters as tokens, 24
PUT method (HTTP), 360
putIfAbsent(), 299
Python, Java compared to, 11
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Q
Quarkus, 438
queries

date and time, 337-339
elements in queues, 301
temporal, 337-339

Queue interface, 299-302
adding elements to queues, 300
querying of elements in queues, 301
removing elements from queues, 300

R
\r (carriage return) escape sequence, 27
RAII (Resource Acquisition Is Initializa‐

tion) pattern, 248
Random class, 334
random(), 334
RandomAccess interface, 294
raw type, 166
reader class, 346-347
receiver object, 51
receiver of a method, 51
record constructors, 122
records, 109

constructors, 122
interfaces and, 156
OOD and, 227-228

rectangular arrays, 94
reduce(), 184, 309
reference types, 20, 94-98

array types, 87-89
boxing and unboxing conversions, 98
boxing/unboxing conversions, 98
comparing objects, 97
conversions, 146-148
manipulating objects and reference

copies, 95
null, 85
as operand type, 49
operands, testing with == operator, 43
pointers in C/C++ vs., 95
primitive types vs., 94

reflection, 377-383
creating instances with, 380
dynamic proxies, 382-383
how to use, 378-382
Method objects, 378-380

problems with, 381
when to use, 378

Reflection API, 80, 381
region-based collector, 245
regular expressions (regex), 324-329
relational operators, 43
request methods (HTTP), 360
requires keyword, 394
reserved words, 22
restricted keywords, 394
resume(), 261
@return doc-comment tag, 274
return statements, 67, 71, 75
return types

for operators, 39
specified by type in method signature,

75
right shift operators, 47
rounding numbers, 33
run-until-shutdown pattern, 257
runtime typing, 174
runtime-managed concurrency, 250
Runtime.exec(), 280
RuntimeException, 79
rvalue, 48

S
safe multithreaded program, 254
safepoint, 240
safety

classloading and secure programming,
372-374

concurrent, 254
object-oriented design and, 234-235

SAM (single abstract method) type, 181
scaffold methods, 317
scientific notation, 30
scope, of local variables, 55
sealed classes, 111, 134
sealed interfaces, 156-158
sealed keyword, 134
sealed types, 225-226
search

Async I/O directory streams, 358
regular expressions and, 324-329

secure programming, classloading and,
372-374

security, 14
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@see reference tag, 274, 277
separators, 24
Serial collector, 246
@serial doc-comment tag, 275
@serialData doc-comment tag, 275
@serialField doc-comment tag, 275
Serializable interface, 87
SerialOld collector, 246
ServerSocket class, 362
services mechanism (JPMS), 399
Set interface, 286-289
setDaemon(), 259
setName(), 259
setPriority(), 258
setUncaughtExceptionHandler(), 260
shell, 425-428
Shenandoah collector, 247
shift operators, 47
short type, 28, 39
shutdown(), 258
side effects

expressions having, 53
operators, 39

signature
in class definition, 108
of method, 74-77

@since doc-comment tag, 275
single abstract method (SAM) type, 181
singleton pattern

about, 215-217
Collections class methods for, 303

snake case, 212
snippets, 426
Socket class, 362
sort()

as default method, 159
static member imports and, 103

SortedMap interface, 299
SortedSet interface, 289
source file, Java, 103
special operators (language constructs),

50-52
StandardCopyOption enum, 350
standards bodies, packages named for, 99
start(), 259
state, exclusion and, 254-257
statements, 52-74

assert, 72-74
break, 66

compound, 54
continue, 66
defined by Java, summary of, 52
do, 62
do/while, 62
empty, 54
expression, 53
expressions vs., 52
for, 63
foreach, 64
if/else, 56-57
labeled, 54
local variable declaration, 54
return, 67
switch, 56-57
synchronized, 67
throw, 68
try-with-resources, 72
try/catch/finally, 69-72
while, 62

statements section, synchronize state‐
ment, 68

static final constant, naming conventions
for, 269

static import declarations, 102
static initializer, 121
static keyword, 228
static member types, 189-191
static members, 102, 108
static methods, 78
static modifier, 113
static synchronized method, 68
statically typed language, 151, 198
stop(), 260
stop-the-world (STW) garbage collection,

240
storage location, 47
stream abstraction, 345
stream(), 310
Streams API, 310-317

(see also Java Streams)
strictfp modifier, 78, 111
String class, 124

reference type conversions and, 146
special syntax for, 319-322

string concatenation operator (+), 41, 85,
321

string literals, 28, 84, 320
String type, String literals vs., 28
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StringBuffer class, 322
StringBuilder class, 321
strings, 319-329

concatenation, 321
conversions for all primitive types, 41
converting to integer values, 30
formatting, 323
hash codes and effective immutability,

322
immutability, 322-323
literals, 320
String class, 28, 84, 99
toString() method, 320

STW (stop-the-world) garbage collection,
240

subclasses
access control, 140
constructor chaining, 126
constructors, 125
default constructor, 127
defined, 108
extending a class, 123-124
final classes and, 124
inheritance and, 122-135
superclasses and, 124

subList(), 290
subtraction operator (-), 40
sun.misc.Unsafe class, 403
super keyword

invoking an overridden method,
133-134

as reserved word, 126
super() vs., 134

super(), 126, 134
superclasses, 124

default constructor, 127
defined, 108
hiding superclass fields, 127-129
overriding superclass methods,

129-134
reference type conversions, 146

surrogate pairs (Unicode supplementary
characters), 28

survivor space, 243
suspend(), 261
switch expression, 60-61
switch statements, 56-57

case labels, 59
data type of expression in, 60

default: label, 59
restrictions on, 60

synchronized keyword, 68, 255-257
synchronized methods, 78
synchronized statements, 67
syntax, Java, 19-106

arrays, 86-94
case sensitivity, 21
classes and objects, 81-86
comments, 21
defining/running Java programs, 104
expressions and operators, 34-52
field declaration syntax, 112
identifiers, 23
Java file structure, 103
Java source file structure, 103
lambda expressions, 85
lexical structure of Java program,

20-25
literals, 24
methods, 74-81
operators, 34-52
overview of Java program, 20
packages and the Java namespace,

98-103
primitive data types, 25-33
primitive type conversions, 32
punctuation, 24
reference types, 94-98
reserved words, 22
statements, 52-74
Unicode character set, 21
whitespace, 21

system (application) classloader, 376
system classes, 282
System.arraycopy(), 92
System.exit(), 71
System.getenv(), 280
System.in, 345
System.out, 345
System.out.printf(), 80
System.out.println(), 76, 102, 229, 320

T
\t (tab), 27
tags

doc-comment, 273-277
inline doc-comment, 276-277
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TCP, 361-364
TemporalQuery interface, 338
tenuring threshold, 243
test expressions (for loops), 63
text, 319-329

regular expressions and, 324-329
strings, 319-329

(see also strings)
text blocks, 28, 84, 320
this keyword, 116, 119
this(), 120
thread-local allocation buffer (TLAB), 243
Thread.sleep(), 252
Thread.State, 251
threads, 249

(see also concurrency)
deprecated methods of, 260
lifecycle of, 251-252
Project Loom and, 435
useful methods of, 258-260
working with, 261-263

throw statements, 68, 71
methods using to throw checked

exceptions, 77
stopping switch statements, 59

Throwable class, 71, 232
Throwable objects, 79
throws clause (method signature), 77, 79
@throws doc-comment tag, 274
timestamp, 336
timezones, 340
TLAB (thread-local allocation buffer), 243
top-level types, 187
toString(), 41, 209, 320
TRACE method (HTTP), 360
traits, default methods and, 222-223
transient modifier, 113
transitive closure, 371
TreeMap class, 299
TreeSet class, 289
Truffle, 438
try block, 69
try clause, 70
try-with-resources (TWR) statements, 72,

347
try/catch/finally statement, 69-72

catch clause, 71
finally clause, 71
try block syntax, 70

try clause, 70
try/finally, 71

tuples, Java records versus, 227
two's complement, 330
TWR (try-with-resources) statements, 72,

347
type conversion or casting operator (( )),

52
type erasure, 165
type inference, 86
type literals, 85
type parameter, 164, 167-168
type safety, 234
type system, 151-202

annotations, 177
characteristics of, 201
describing, 198-201
enums, 175-177
generics, 162-175
interfaces, 152-162
lambda expressions, 180-187
nested types, 187-198
nominal typing, 198-200
non-denotable types and var, 200-201

type variance, 172
types, 164

(see also generics)
importing static members, 102
naming conventions, 268
wildcards, 170-173

U
umbrella module, 393
unary operators, 38

associativity, 36
unary minus (-) operator, 41

unbound method reference, 183
unboxing conversions, 98
unchecked exceptions, 79
underflow, integer arithmetic and, 29
Unicode character set, 21, 27

escaping in char literals, 27
supplementary characters, 28

unknown type, 170
(see also wildcard types)

update expressions (for loops), 63
URL class, 80
URLClassLoader, 374
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user thread, 259
UTF-8 identifier, 24

V
Valhalla, 432, 436
@value doc-comment tag, 277
valueOf(), 30, 31
values, transforming streams to, 316
var (local variable type inference),

200-201
varargs (variable-length argument) meth‐

ods, 80
variable declaration statement, 54
variables

declaring, 54, 88
local variable declaration statements,

54
naming conventions, 269

verification (classloading phase), 370
@version doc-comment tag, 273
versioning, as JPMS deficiency, 405
virtual method lookup, 131
virtual threads, 435
visibility

concurrency and, 252-254
defined, 253

void keyword, 67, 75, 382, 387
volatile keyword, 113, 257

W
wait(), 262
watch services, 358
weak generational hypothesis (WGH),

241

while loops, comparison operators in, 42
while statements, 62

continue statement in, 67
data type of expression in, 62
do statements vs., 62

whitespace, 21
widening conversions, 32, 33, 87
wildcard types, 170
WORA (write once, run anywhere), 7
working set, 241
wrapper classes, 98
wrapper collections, 302
write once, run anywhere (WORA), 7
writer class, 346-347

X
XOR operator

bitwise XOR (^), 46
boolean XOR (^), 45

Y
young generation, 244

Z
zero (0)

division by zero, 41
positive and negative zero, 31
represented by float and double types,

31
zero extension, 47
ZGC collector, 247
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