OREILLY"

in a Nutshell

A DESKTOP QUICK REFERENCE

Benjamin J. Evans & David Flanagan

Javain a Nutshell, Seventh Edition

by Ben Evans and David Flanagan

Copyright © 2019 Benjamin J. Evans and David Flanagan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com/safari). For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.
e Editor: Virginia Wilson

e Production Editor: Justin Billing

e Copyeditor: Jasmine Kwityn

e Proofreader: Rachel Monaghan

e Indexer: WordCo Indexing Services, Inc.

e Interior Designer: David Futato

e Cover Designer: Karen Montgomery

e [llustrator: Rebecca Demarest

e December 2018: Seventh Edition

Revision History for the Seventh Edition

e 2018-11-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492037255 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java in a Nutshell, the

cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s

views. While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the authors
disclaim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technology
this work contains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof complies with such

licenses and/or rights.
978-1-492-03725-5

[LSI]

Part I. Introducing Java

Part I is an introduction to the Java language and the Java platform. These chapters provide

enough information for you to get started using Java right away:

e Chapter 1, Introduction to the Java Environment

o Chapter 2, Java Syntax from the Ground Up

e Chapter 3, Object-Oriented Programming in Java

o Chapter 4, The Java Type System

e Chapter 5, Introduction to Object-Oriented Design in Java

e Chapter 6, Java’s Approach to Memory and Concurrency

Chapter 1. Introduction to the Java
Environment

Welcome to Java 11.

That version number probably surprises you as much as it does us. It seems like only yesterday

that Java 5 was the new thing, and yet here we are, 14 years and 6 major versions later.

You may be coming to the Java ecosystem from another language, or maybe this is your first
programming language. Whatever road you may have traveled to get here, welcome—we’re

glad you’ve arrived.

Java is a powerful, general-purpose programming environment. It is one of the most widely
used programming languages in the world, and has been exceptionally successful in business

and enterprise computing.

In this chapter, we’ll set the scene by describing the Java language (which programmers write
their applications in), the Java Virtual Machine (which executes those applications), and the
Java ecosystem (which provides a lot of the value of the programming environment to

development teams).

We’ll briefly cover the history of the Java language and virtual machine, before moving on to
discuss the lifecycle of a Java program and clear up some common questions about the

differences between Java and other environments.

At the end of the chapter, we’ll introduce Java security, and discuss some of the aspects of Java

that relate to secure coding.

The Language, the JVM, and the Ecosystem

The Java programming environment has been around since the late 1990s. It comprises the Java

language, and the supporting runtime, otherwise known as the Java Virtual Machine (JVM).

At the time that Java was initially developed, this split was considered novel, but recent trends

in software development have made it more commonplace. Notably, Microsoft’s .NET
environment, announced a few years after Java, adopted a very similar approach to platform

architecture.

One important difference between Microsoft’s .NET platform and Java is that Java was always
conceived as a relatively open ecosystem of multiple vendors, albeit led by a steward who owns
the technology. Throughout Java’s history, these vendors have both cooperated and competed

on aspects of Java technology.

One of the main reasons for the success of Java is that this ecosystem is a standardized
environment. This means there are specifications for the technologies that comprise the
environment. These standards give the developer and consumer confidence that the technology
will be compatible with other components, even if they come from a different technology

vendor.

The current steward of Java is Oracle Corporation (who acquired Sun Microsystems, the
originator of Java). Other corporations, such as Red Hat, IBM, Amazon, AliBaba, SAP, Azul
Systems, and Fujitsu are also heavily involved in producing implementations of standardized

Java technologies.

TIP

As of Java 11, the primary reference implementation of Java is the open source
OpenJDK, which many of these companies collaborate on and base their shipping

products upon.

Java actually comprises several different but related environments and specifications, such as
1
Java Mobile Edition (Java ME), Java Standard Edition (Java SE), and Java Enterprise Edition

2
(Java EE). In this book, we’ll only cover Java SE, version 11, with some historical notes

related to when certain features were introduced into the platform.

We will have more to say about standardization later, so let’s move on to discuss the Java

language and JVM as separate but related concepts.

What Is the Java Language?

Java programs are written as source code in the Java language. This is a human-readable
programming language, which is strictly class based and object oriented. The language syntax is

deliberately modeled on that of C and C++ and it was explicitly intended to be familiar to

programmers coming from those languages.

NOTE

Although the source code is similar to C++, in practice Java includes features and a
managed runtime that has more in common with more dynamic languages such as
Smalltalk.

Java is considered to be relatively easy to read and write (if occasionally a bit verbose). It has a
rigid grammar and simple program structure, and is intended to be easy to learn and to teach. It
builds on industry experience with languages like C++ and tries to remove complex features as

well as preserving “what works” from previous programming languages.

Overall, Java is intended to provide a stable, solid base for companies to develop business-
critical applications. As a programming language, it has a relatively conservative design and a
slow rate of change. These properties are a conscious attempt to serve the goal of protecting the

investment that organizations have made in Java technology.

The language has undergone gradual revision (but no complete rewrites) since its inception in

1996. This does mean that some of Java’s original design choices, which were expedient in the

late 1990s, are still affecting the language today—see Chapters 2 and 3 for more details.

Java 8 added the most radical changes seen in the language for almost a decade (some would
say since the birth of Java). Features like lambda expressions and the overhaul of the core
Collections code were enormously popular and changed forever the way that Java developers
write code. Since then, the platform has produced a release (Java 9) that adds a major (and long-

delayed) feature: the platform modules system (JPMS).

With that release, the project has transitioned to a new, much faster release model where new
Java versions are released every six months—bringing us up to Java 11. The Java language is
governed by the Java Language Specification (JLS), which defines how a conforming

implementation must behave.

What Is the JVM?

The JVM is a program that provides the runtime environment necessary for Java programs to
execute. Java programs cannot run unless there is a JVM available for the appropriate hardware

and OS platform we wish to execute on.

Fortunately, the JVM has been ported to run on a large number of environments—anything from

a set-top box or Blu-ray player to a huge mainframe will probably have a JVM available for it.

Java programs are typically started from a command line like this:

java <arguments> <program name>

This brings up the JVM as an operating system process that provides the Java runtime
environment, and then executes our program in the context of the freshly started (and empty)

virtual machine.

It is important to understand that when the JVM takes in a Java program for execution, the
program is not provided as Java language source code. Instead, the Java language source must
have been converted (or compiled) into a form known as Java bytecode. Java bytecode must be

supplied to the JVM in a format called class files (which always have a .class extension).

The JVM provides an execution environment for the program. It starts an interpreter for the
bytecode form of the program that steps through one bytecode instruction at a time. However,
production JVMs also provide a runtime compiler that will accelerate the important parts of the

program by replacing them with equivalent compiled machine code.

You should also be aware that both the JVM and the user program are capable of spawning
additional threads of execution, so that a user program may have many different functions

running simultaneously.

The design of the JVM built on many years of experience with earlier programming
environments, notably C and C++, so we can think of it as having several different goals—

which are all intended to make life easier for the programmer:

e Comprise a container for application code to run inside

Provide a secure and reliable execution environment as compared to C/C++

Take memory management out of the hands of developers

Provide a cross-platform execution environment

These objectives are often mentioned together in discussions of the platform.

We’ve already mentioned the first of these goals, when we discussed the JVM and its bytecode

interpreter—it functions as the container for application code.

We’ll discuss the second and third goals in Chapter 6, when we talk about how the Java

environment deals with memory management.

The fourth goal, sometimes called “write once, run anywhere” (WORA), is the property that
Java class files can be moved from one execution platform to another, and they will run

unaltered provided a JVM is available.

This means that a Java program can be developed (and converted to class files) on a machine
running macOS, and then the class files can be moved to Linux or Microsoft Windows (or other

platforms) and the Java program will run without any further work needed.

NOTE

The Java environment has been very widely ported, including to platforms that are
very different from mainstream platforms like Linux, macOS, and Windows. In this
book, we use the phrase “most implementations” to indicate those platforms that the
majority of developers are likely to encounter; macOS, Windows, Linux, BSD
Unix, and the like are all considered “mainstream platforms” and count within

“most implementations.”

In addition to these four primary goals, there is another aspect of the JVM’s design that is not

always recognized or discussed—it makes use of runtime information to self-manage.

Software research in the 1970s and 1980s revealed that the runtime behavior of programs has a
large amount of interesting and useful patterns that cannot be deduced at compile time. The

JVM was the first truly mainstream platform to make use of this research.

It collects runtime information to make better decisions about how to execute code. That means
that the JVM can monitor and optimize a program running on it in a manner not possible for

platforms without this capability.

A key example is the runtime fact that not all parts of a Java program are equally likely to be
called during the lifetime of the program—some portions will be called far, far more often than
others. The Java platform takes advantage of this fact with a technology called just-in-time (JIT)

compilation.

In the HotSpot JVM (which was the JVM that Sun first shipped as part of Java 1.3, and is still in
use today), the JVM first identifies which parts of the program are called most often—the “hot
methods.” Then, the JVM compiles these hot methods directly into machine code, bypassing the

JVM interpreter.

The JVM uses the available runtime information to deliver higher performance than was
possible from purely interpreted execution. In fact, the optimizations that the JVM uses now in

many cases produce performance that surpasses compiled C and C++ code.

The standard that describes how a properly functioning JVM must behave is called the JVM

Specification.

What Is the Java Ecosystem?

The Java language is easy to learn and contains relatively few abstractions, compared to other
programming languages. The JVM provides a solid, portable, high-performance base for Java
(or other languages) to execute on. Taken together, these two connected technologies provide a
foundation that businesses can feel confident about when choosing where to base their

development efforts.

The benefits of Java do not end there, however. Since Java’s inception, an extremely large
ecosystem of third-party libraries and components has grown up. This means that a development
team can benefit hugely from the existence of connectors and drivers for practically every

technology imaginable—both proprietary and open source.

In the modern technology ecosystem it is now rare indeed to find a technology component that
does not offer a Java connector. From traditional relational databases, to NoSQL, to every type
of enterprise monitoring system, to messaging systems, to Internet of Things (IoT)—everything

integrates with Java.

It is this fact that has been a major driver of adoption of Java technologies by enterprises and
larger companies. Development teams have been able to unlock their potential by making use of
preexisting libraries and components. This has promoted developer choice and encouraged

open, best-of-breed architectures with Java technology cores.

NOTE

Google’s Android environment is sometimes thought of as being “based on Java.”
However, the picture is actually more complicated. Android code is written in Java
but originally used a different implementation of Java’s class libraries along with a

cross compiler to convert to a different file format for a non-Java virtual machine.

The combination of a rich ecosystem and a first-rate virtual machine with an open standard for
program binaries makes the Java platform a very attractive execution target. In fact, there are a
large number of non-Java languages that target the JVM and also interoperate with Java (which
allows them to piggy-back off the platform’s success). These languages include Kotlin, Scala,
Groovy, and many others. While all of them are small compared to Java, they have distinct
niches within the Java world, and provide a source of innovation and healthy competition to

Java.

A Brief History of Java and the JVM

Java 1.0 (1996)

This was the first public version of Java. It contained just 212 classes organized in eight
packages. The Java platform has always had an emphasis on backward compatibility, and
code written with Java 1.0 will still run today on Java 11 without modification or

recompilation.

Java 1.1 (1997)

This release of Java more than doubled the size of the Java platform. This release introduced

“inner classes” and the first version of the Reflection API.

Java 1.2 (1998)

This was a very significant release of Java; it tripled the size of the Java platform. This
release marked the first appearance of the Java Collections API (with sets, maps, and lists).
The many new features in the 1.2 release led Sun to rebrand the platform as “the Java 2
Platform.” The term “Java 2 was simply a trademark, however, and not an actual version

number for the release.

Java 1.3 (2000)

This was primarily a maintenance release, focused on bug fixes, stability, and performance
improvements. This release also brought in the HotSpot Java Virtual Machine, which is still

in use today (although heavily modified and improved since then).

Java 1.4 (2002)

This was another fairly big release, adding important new functionality such as a higher-
performance, low-level I/O API; regular expressions for text handling; XML and XSLT
libraries; SSL support; a logging API; and cryptography support.

Java 5 (2004)

This large release of Java introduced a number of changes to the core language itself
including generic types, enumerated types (enums), annotations, varargs methods,
autoboxing, and a new for loop. These changes were considered significant enough to
change the major version number, and to start numbering as major releases. This release
included 3,562 classes and interfaces in 166 packages. Notable additions included utilities
for concurrent programming, a remote management framework, and classes for the remote

management and instrumentation of the Java VM itself.

Java 6 (2006)

This release was also largely a maintenance and performance release. It introduced the
Compiler API, expanded the usage and scope of annotations, and provided bindings to allow
scripting languages to interoperate with Java. There were also a large number of internal bug

fixes and improvements to the JVM and the Swing GUI technology.

Java 7 (2011)

The first release of Java under Oracle’s stewardship included a number of major upgrades to
the language and platform. The introduction of t r y-with-resources and the NI1O.2 API
enabled developers to write much safer and less error-prone code for handling resources and
I/O. The Method Handles API provided a simpler and safer alternative to reflection; in
addition, it opened the door for invokedynamic (the first new bytecode since version 1.0

of Java).

Java 8 (2014) (LTS)

This was a huge release—potentially the most significant changes to the language since Java
5 (or possibly ever). The introduction of lambda expressions provided the ability to
significantly enhance the productivity of developers, the Collections were updated to make
use of lambdas, and the machinery required to achieve this marked a fundamental change in
Java’s approach to object orientation. Other major updates include a new date and time API,

and major updates to the concurrency libraries.

Java 9 (2017)

Significantly delayed, this release introduced the new platform modularity feature, which
allows Java applications to be packaged into deployment units and modularize the platform
runtime. Other changes include a new default garbage collection algorithm, a new API for

handling processes, and some changes to the way that frameworks can access the internals.

Java 10 (March 2018)

This marks the first release under the new release cycle. This release contained a relatively
small amount of new features (due to its six-month development lifetime). New syntax for
type inference was introduced, along with some internal changes (including GC tweaks and

an experimental new compiler).

Java 11 (September 2018) (LTS)

The current version, also developed over a short six-month window, this release is the first
modular Java to be considered as a long-term support (LTS) release. It adds relatively few
new features that are directly visible to the developer—primarily Flight Recorder and the

new HTTP/2 API. There are some additional internal changes, but this release is primarily

for stabilization.

As it stands, the only current production versions are Java 8 and 11—the LTS releases. Due to
the highly significant changes that are introduced by modules, Java 8 has been grandfathered in
as an LTS release to provide extra time for teams and applications to migrate to a supported

modular Java.

The Lifecycle of a Java Program

To better understand how Java code is compiled and executed, and the difference between Java

and other types of programming environments, consider the pipeline in Figure 1-1.

1
1
|
|
|
|
1
|
|
|
|
|
|
1
|

4

New
~> Type

I I
I I

I I

I I

java class v :
javac 02U dasstoad // : |

—_— 001011 classloading | I
— 100010 : :
: interpreter :

I I

I .

I I

, y WM

Figure 1-1. How Java code is compiled and loaded

This starts wth Java source, and passes it through the javac program to produce class files—

which contain the source code compiled to Java bytecode. The class file is the smallest unit of

functionality the platform will deal with, and the only way to get new code into a running

program.

New class files are onboarded via the classloading mechanism (see Chapter 10 for a lot more
detail on how classloading works). This makes the new type available to the interpreter for

execution.

Frequently Asked Questions

In this section, we’ll discuss some of the most frequently asked questions about Java and the

lifecycle of programs written in the Java environment.

WHAT IS BYTECODE?

When developers are first introduced to the JVM, they sometimes think of it as “a computer
inside a computer.” It’s then easy to imagine bytecode as “machine code for the CPU of the

internal computer” or “machine code for a made-up processor.”

In fact, bytecode is not actually very similar to machine code that would run on a real hardware
processor. Instead, computer scientists would call bytecode a type of intermediate

representation—a halfway house between source code and machine code.

The whole aim of bytecode is to be a format that can be executed efficiently by the JVM’s

interpreter.

IS JAVAC A COMPILER?

Compilers usually produce machine code, but javac produces bytecode, which is not that
similar to machine code. However, class files are a bit like object files (like Windows .d// files,

or Unix .so files)—and they are certainly not human readable.

In theoretical computer science terms, javac is most similar to the front half of a compiler—it
creates the intermediate representation that can then be used later to produce (emit) machine

code.

However, because creation of class files is a separate build-time step that resembles compilation
in C/C++, many developers consider running javac to be compilation. In this book, we will
use the terms “source code compiler” or "javac compiler” to mean the production of class

files by javac.

We will reserve “compilation” as a standalone term to mean JIT compilation—as it’s JIT

compilation that actually produces machine code.

WHY IS IT CALLED “BYTECODE”?

The instruction code (opcode) is just a single byte (some operations also have parameters that
follow them in the bytestream), so there are only 256 possible instructions. In practice, some are

unused—about 200 are in use, but some of them aren’t emitted by recent versions of javac.

IS BYTECODE OPTIMIZED?

In the early days of the platform, javac produced heavily optimized bytecode. This turned out
to be a mistake. With the advent of JIT compilation, the important methods are going to be
compiled to very fast machine code. It’s therefore very important to make the job of the JIT
compiler easier—as there are much bigger gains available from JIT compilation than there are

from optimizing bytecode, which will still have to be interpreted.

IS BYTECODE REALLY MACHINE INDEPENDENT? WHAT ABOUT THINGS LIKE
ENDIANNESS?

The format of bytecode is always the same, regardless of what type of machine it was created
on. This includes the byte ordering (sometimes called “endianness”) of the machine. For readers

who are interested in the details, bytecode is always big-endian.

IS JAVA AN INTERPRETED LANGUAGE?

The JVM is basically an interpreter (with JIT compilation to give it a big performance boost).
However, most interpreted languages (such as PHP, Perl, Ruby, and Python) directly interpret
programs from source form (usually by constructing an abstract syntax tree from the input
source file). The JVM interpreter, on the other hand, requires class files—which, of course,

require a separate source code compilation step with javac.

CAN OTHER LANGUAGES RUN ON THE JVM?

Yes. The JVM can run any valid class file, so this means that non-Java languages can run on the
JVM in one of two ways. First, they could have a source code compiler (similar to javac) that
produces class files, which would run on the JVM just like Java code (this is the approach taken

by languages like Scala).

Alternatively, a non-Java language could implement an interpreter and runtime in Java, and then
interpret the source form of their language directly. This second option is the approach taken by
languages like JRuby (but JRuby has a very sophisticated runtime that is capable of secondary

JIT compilation in some circumstances).

Java Security

Java has been designed from the ground up with security in mind; this gives it a great advantage
over many other existing systems and platforms. The Java security architecture was designed by

security experts and has been studied and probed by many other security experts since the

inception of the platform. The consensus is that the architecture itself is strong and robust,

without any security holes in the design (at least none that have been discovered yet).

Fundamental to the design of the security model is that bytecode is heavily restricted in what it
can express—there is no way, for example, to directly address memory. This cuts out entire
classes of security problems that have plagued languages like C and C++. Furthermore, the VM
goes through a process known as bytecode verification whenever it loads an untrusted class,
which removes a further large class of problems (see Chapter 10 for more about bytecode

verification).
Despite all this, however, no system can guarantee 100% security, and Java is no exception.

While the design is still theoretically robust, the implementation of the security architecture is
another matter, and there is a long history of security flaws being found and patched in

particular implementations of Java.

In particular, the release of Java 8 was delayed, at least partly, due to the discovery of a number

of security problems that required considerable effort to fix.

In all likelihood, security flaws will continue to be discovered (and patched) in Java VM
implementations. For practical server-side coding, Java remains perhaps the most secure

general-purpose platform currently available, especially when kept patched up to date.

Comparing Java to Other Languages

In this section, we’ll briefly highlight some differences between the Java platform and other

programming environments you may be familiar with.

Java Compared to C

e Javais object oriented; C is procedural.

e Java is portable as class files; C needs to be recompiled.

e Java provides extensive instrumentation as part of the runtime.

¢ Java has no pointers and no equivalent of pointer arithmetic.

e Java provides automatic memory management via garbage collection.
¢ Java has no ability to lay out memory at a low level (no structs).

¢ Java has no preprocessor.

Java Compared to C++

e Java has a simplified object model compared to C++.
e Java’s dispatch is virtual by default.

e Java is always pass-by-value (but one of the possibilities for Java’s values is object

references).
e Java does not support full multiple inheritance.
e Java’s generics are less powerful (but also less dangerous) than C++ templates.

e Java has no operator overloading.

Java Compared to Python

e Java is statically typed; Python is dynamically typed.

Java is multithreaded; Python only allows one thread to execute Python at once.

Java has a JIT; the main implementation of Python does not.

Java’s bytecode has extensive static checks; Python’s bytecode does not.

Java Compared to JavaScript

e Java is statically typed; JavaScript is dynamically typed.

Java uses class-based objects; JavaScript is prototype based.

Java provides good object encapsulation; JavaScript does not.

Java has namespaces; JavaScript does not.

Java is multithreaded; JavaScript is not.

Answering Some Criticisms of Java

Java has had a long history in the public eye and, as a result, has attracted its fair share of
criticism over the years. Some of this negative press can be attributed to some technical

shortcomings combined with rather overzealous marketing in the first versions of Java.

Some criticisms have, however, entered technical folklore despite no longer being very accurate.

In this section, we’ll look at some common grumbles and the extent to which they’re true for

modern versions of the platform.

Overly Verbose

The Java core language has sometimes been criticized as overly verbose. Even simple Java
statements such as Object o = new Object () ; seem to be repetitious—the type
Object appears on both the left and right side of the assignment. Critics point out that this is
essentially redundant, that other languages do not need this duplication of type information, and

that many languages support features (e.g., type inference) that remove it.

The counterpoint to this argument is that Java was designed from the start to be easy to read
(code is read more often than written) and that many programmers, especially novices, find the

extra type information helpful when reading code.

Java is widely used in enterprise environments, which often have separate dev and ops teams.
The extra verbosity can often be a blessing when you are responding to an outage call, or when
you need to maintain and patch code that was written by developers who have long since moved

on.

In recent versions of Java, the language designers have attempted to respond to some of these
points, by finding places where the syntax can become less verbose and by making better use of

type information. For example:

// Files helper methods
byte[] contents =
Files.readAllBytes (Paths.get ("/home/ben/myFile.bin")) ;

// Diamond syntax for repeated type information

List<String> 1 = new ArrayList<>();

// Local variables can be type inferred
var threadPool = Executors.newScheduledThreadPool (2);
// Lambda expressions simplify Runnables

threadPool.submit (() -> { System.out.println("On Threadpool™); 1});

However, Java’s overall philosophy is to make changes to the language only very slowly and

carefully, so the pace of these changes may not satisfy detractors completely.

Slow to Change

The original Java language is now well over 20 years old, and has not undergone a complete
revision in that time. Many other languages (e.g., Microsoft’s C#) have released backward-

incompatible versions in the same period, and some developers criticize Java for not doing

likewise.

Furthermore, in recent years, the Java language has come under fire for being slow to adopt

language features that are now commonplace in other languages.

The conservative approach to language design that Sun (and now Oracle) has taken an attempt
to avoid imposing the costs and externalities of misfeatures on a very large user base. Many
Java shops have made major investments in the technology, and the language designers have

taken seriously the responsibility of not disrupting the existing user and install base.

Each new language feature needs to be very carefully thought about—not only in isolation, but
in terms of how it will interact with all the existing features of the language. New features can
sometimes have impacts beyond their immediate scope—and Java is widely used in very large

codebases, where there are more potential places for an unexpected interaction to manifest.

It is almost impossible to remove a feature that turns out to be incorrect after it has shipped. Java
has a couple of misfeatures (such as the finalization mechanism) that it has never been possible
to remove safely without impacting the install base. The language designers have taken the view

that extreme caution is required when evolving the language.

Having said that, the new language features that have arrived in recent versions are a significant
step toward addressing the most common complaints about missing features, and should cover

many of the idioms that developers have been asking for.

Performance Problems

The Java platform is still sometimes criticized as being slow—but of all the criticisms that are
leveled at the platform, this is probably the one that is least justified. It is a genuine myth about
the platform.

Release 1.3 of Java brought in the HotSpot Virtual Machine and its JIT compiler. Since then,
there has been over 15 years of continual innovation and improvement in the virtual machine
and its performance. The Java platform is now blazingly fast, regularly winning performance

benchmarks on popular frameworks, and even beating native-compiled C and C++.

Criticism in this area appears to be largely caused by a folk memory that Java was slow at some
point in the past. Some of the larger and more sprawling architectures that Java has been used

within may also have contributed to this impression.

The truth is that any large architecture will require benchmarking, analysis, and performance

tuning to get the best out of it—and Java is no exception.

The core of the platform—Ilanguage and JVM—was and remains one of the fastest general-use

environments available to the developer.

Insecure

During 2013 there were a number of security vulnerabilities in the Java platform, which caused
the release date of Java 8 to be pushed back. Even before this, some people had criticized Java’s

record of security vulnerabilities.

Many of these vulnerabilities involved the desktop and GUI components of the Java system, and

wouldn’t affect websites or other server-side code written in Java.

All programming platforms have security issues at times, and many other languages have a

comparable history of security vulnerabilities that have been significantly less well publicized.

Too Corporate

Java is a platform that is extensively used by corporate and enterprise developers. The
perception that it is too corporate is therefore an unsurprising one—Java has often been
perceived as lacking the “free-wheeling” style of languages that are deemed to be more

community oriented.

In truth, Java has always been, and remains, a very widely used language for community and
free or open source software development. It is one of the most popular languages for projects

hosted on GitHub and other project hosting sites.

Finally, the most widely used implementation of the language itself is based on OpenJDK—

which is itself an open source project with a vibrant and growing community.

]J ava ME is an older standard for smartphones and feature phones. Android and iOS are
much more common on phones today, but Java ME is still a large market for embedded

devices.

2] ava EE has now been transferred to the Eclipse Foundation, where it continues its life as the

Jakarta EE project.

Chapter 2. Java Syntax from the Ground Up

This chapter is a terse but comprehensive introduction to Java syntax. It is written primarily for
readers who are new to the language but have some previous programming experience.
Determined novices with no prior programming experience may also find it useful. If you
already know Java, you should find it a useful language reference. The chapter includes some
comparisons of Java to C and C++ for the benefit of programmers coming from those

languages.

This chapter documents the syntax of Java programs by starting at the very lowest level of Java

syntax and building from there, moving on to increasingly higher orders of structure. It covers:

e The characters used to write Java programs and the encoding of those characters.

e Literal values, identifiers, and other tokens that comprise a Java program.

e The data types that Java can manipulate.

e The operators used in Java to group individual tokens into larger expressions.

e Statements, which group expressions and other statements to form logical chunks of Java

code.

e Methods, which are named collections of Java statements that can be invoked by other Java

code.

e C(lasses, which are collections of methods and fields. Classes are the central program element
in Java and form the basis for object-oriented programming. Chapter 3 is devoted entirely to

a discussion of classes and objects.

e Packages, which are collections of related classes.

e Java programs, which consist of one or more interacting classes that may be drawn from one

or more packages.

The syntax of most programming languages is complex, and Java is no exception. In general, it
is not possible to document all elements of a language without referring to other elements that
have not yet been discussed. For example, it is not really possible to explain in a meaningful
way the operators and statements supported by Java without referring to objects. But it is also
not possible to document objects thoroughly without referring to the operators and statements of

the language. The process of learning Java, or any language, is therefore an iterative one.

Java Programs from the Top Down

Before we begin our bottom-up exploration of Java syntax, let’s take a moment for a top-down
overview of a Java program. Java programs consist of one or more files, or compilation units, of
Java source code. Near the end of the chapter, we describe the structure of a Java file and
explain how to compile and run a Java program. Each compilation unit begins with an optional
package declaration followed by zero or more import declarations. These declarations
specify the namespace within which the compilation unit will define names, and the namespaces
from which the compilation unit imports names. We’ll see package and import again later

in this chapter in “Packages and the Java Namespace”.

The optional package and import declarations are followed by zero or more reference type

definitions. We will meet the full variety of possible reference types in Chapters 3 and 4 , but

for now, we should note that these are most often either class or interface definitions.

Within the definition of a reference type, we will encounter members such as fields, methods,
and constructors. Methods are the most important kind of member. Methods are blocks of Java

code composed of statements.

With these basic terms defined, let’s start by approaching a Java program from the bottom up by

examining the basic units of syntax—often referred to as lexical tokens.

Lexical Structure

This section explains the lexical structure of a Java program. It starts with a discussion of the
Unicode character set in which Java programs are written. It then covers the tokens that

comprise a Java program, explaining comments, identifiers, reserved words, literals, and so on.

The Unicode Character Set

Java programs are written using Unicode. You can use Unicode characters anywhere in a Java
program, including comments and identifiers such as variable names. Unlike the 7-bit ASCII
character set, which is useful only for English, and the 8-bit ISO Latin-1 character set, which is

useful only for major Western European languages, the Unicode character set can represent

virtually every written language in common use on the planet.

TIP

If you do not use a Unicode-enabled text editor, or if you do not want to force other
programmers who view or edit your code to use a Unicode-enabled editor, you can
embed Unicode characters into your Java programs using the special Unicode
escape sequence \uxxxx—that is, a backslash and a lowercase u, followed by four
hexadecimal characters. For example, \u0020 is the space character, and \u03cO

1s the character 7.

Java has invested a large amount of time and engineering effort in ensuring that its Unicode
support is first class. If your business application needs to deal with global users, especially in
non-Western markets, then the Java platform is a great choice. Java also has support for multiple
encodings and character sets, in case applications need to interact with non-Java applications

that do not speak Unicode.

Case Sensitivity and Whitespace

Java is a case-sensitive language. Its keywords are written in lowercase and must always be
used that way. That is, While and WHILE are not the same as the while keyword. Similarly,

if you declare a variable named i in your program, you may not refer to it as I.

TIP

In general, relying on case sensitivity to distinguish identifiers is a terrible idea. Do
not use it in your own code, and in particular never give an identifier the same name

as a keyword but differently cased.

Java ignores spaces, tabs, newlines, and other whitespace, except when it appears within quoted
characters and string literals. Programmers typically use whitespace to format and indent their
code for easy readability, and you will see common indentation conventions in this book’s code

examples.

Comments

Comments are natural-language text intended for human readers of a program. They are ignored

by the Java compiler. Java supports three types of comments. The first type is a single-line
comment, which begins with the characters // and continues until the end of the current line.

For example:

int i = 0; // Initialize the loop variable

The second kind of comment is a multiline comment. It begins with the characters /* and
continues, over any number of lines, until the characters * /. Any text between the /* and the

* / is ignored by javac. Although this style of comment is typically used for multiline
comments, it can also be used for single-line comments. This type of comment cannot be nested
(i.e., one /* */ comment cannot appear within another). When writing multiline comments,
programmers often use extra * characters to make the comments stand out. Here is a typical

multiline comment:

J/*
* First, establish a connection to the server.
* If the connection attempt fails, quit right away.

*/

The third type of comment is a special case of the second. If a comment begins with /**, it is
regarded as a special doc comment. Like regular multiline comments, doc comments end with

* / and cannot be nested. When you write a Java class you expect other programmers to use,
provide doc comments to embed documentation about the class and each of its methods directly
into the source code. A program named javadoc extracts these comments and processes them
to create online documentation for your class. A doc comment can contain HTML tags and can

use additional syntax understood by javadoc. For example:

/**
* Upload a file to a web server.

*

* @param file The file to upload.
* @return <tt>true</tt> on success,
* <tt>false</tt> on failure.

* @author David Flanagan

*/

See Chapter 7 for more information on the doc comment syntax and Chapter 13 for more

information on the javadoc program.

Comments may appear between any tokens of a Java program, but may not appear within a

token. In particular, comments may not appear within double-quoted string literals. A comment

within a string literal simply becomes a literal part of that string.

Reserved Words

The following words are reserved in Java (they are part of the syntax of the language and may

not be used to name variables, classes, and so forth):

abstract const final int public throw
assert continue finally interface return throws
boolean default float long short transient
break do for native static true

byte double goto new strictfp try

case else if null super void
catch enum implements package switch volatile
char extends import private synchronized while
class false instanceof protected this

Of these, true, false, and null are technically literals. The sequence var is not a
keyword, but instead indicates that the type of a local variable should be type-inferred. The
character sequence consisting of a single underscore, , is also disallowed as an identifier. There
are also 10 restricted keywords which are only considered keywords within the context of

declaring a Java platform module.

We’ll meet each of these reserved words again later in this book. Some of them are the names of
primitive types and others are the names of Java statements, both of which are discussed later in

this chapter. Still others are used to define classes and their members (see Chapter 3).

Note that const and goto are reserved but aren’t actually used in the language, and that
interface has an additional variant form—@interface, which is used when defining
types known as annotations. Some of the reserved words (notably final and default) have

a variety of meanings depending on context.

Identifiers

An identifier is simply a name given to some part of a Java program, such as a class, a method
within a class, or a variable declared within a method. Identifiers may be of any length and may
contain letters and digits drawn from the entire Unicode character set. An identifier may not

begin with a digit.

In general, identifiers may not contain punctuation characters. Exceptions include the dollar sign

($) as well as other Unicode currency symbols such as £ and ¥.

The ASCII underscore (_) also deserves special mention. Originally, the underscore could be

freely used as an identifier, or part of one. However, in recent versions of Java, including Java

11, the underscore may not be used as an identifier.

The underscore character can still appear in a Java identifier, but it is no longer legal as a
complete identifier by itself. This is to support an expected forthcoming language feature

whereby the underscore will acquire a special new syntactic meaning.

TIP

Currency symbols are intended for use in automatically generated source code, such
as code produced by javac. By avoiding the use of currency symbols in your own
identifiers, you don’t have to worry about collisions with automatically generated

identifiers.

The usual Java convention is to name variables using camel case. This means that the first letter
of a variable should be lowerase, but that the first letter of any other words in the identifier

should be uppercase.

Formally, the characters allowed at the beginning of and within an identifier are defined by the
methods isJavaldentifierStart () and isJavaldentifierPart () of the class

java.lang.Character.

The following are examples of legal identifiers:

i x1 theCurrentTime current i

Note in particular the example of a UTF-8 identifier, J##i. This is the Kanji character for “otter”
and is perfectly legal as a Java identifier. The usage of non-ASCII identifiers is unusual in

programs predominantly written by Westerners, but is sometimes seen.

Literals

Literals are sequences of source characters that directly represent constant values that appear as-
is in Java source code. They include integer and floating-point numbers, single characters within
single quotes, strings of characters within double quotes, and the reserved words true, false,

and null. For example, the following are all literals:

1 1.0 09,0 18T "one" true false null

The syntax for expressing numeric, character, and string literals is detailed in “Primitive Data

Types”.

Punctuation

Java also uses a number of punctuation characters as tokens. The Java Language Specification
divides these characters (somewhat arbitrarily) into two categories, separators and operators.

The 12 separators are:

The operators are:

+ _ * / s & [2 << >> >>>

+= —= *= /= %= &= | = A= <K= >>= >>>=
= == = < <= > >=

! ~ &s || ++ -- ? ->

We’ll see separators throughout the book, and will cover each operator individually in

“Expressions and Operators”.

Primitive Data Types

Java supports eight basic data types known as primitive types as described in Table 2-1. The
primitive types include a Boolean type, a character type, four integer types, and two floating-
point types. The four integer types and the two floating-point types differ in the number of bits

that represent them and therefore in the range of numbers they can represent.

Table 2-1. Java primitive data types

Type Contains Default Size Range
boolean true Or false false 1 NA
bit

char Unicode character \u0000 16 \u0000 to \uFFFF

bits

byte Signed integer 0 8 —128 to 127
bits

short Signed integer 0 16 —32768 to 32767
bits

int Signed integer 0 32 —2147483648 to 2147483647
bits

long Signed integer 0 64 —9223372036854775808 to

bits 9223372036854775807

float IEEE 754 floating 0.0 32 1.4E-45 to 3.4028235E+38
point bits

double IEEE 754 floating 0.0 64 4.9E-324 to
point bits 1.7976931348623157E+308

The next section summarizes these primitive data types. In addition to these primitive types,
Java supports nonprimitive data types known as reference types, which are introduced in

“Reference Types”.

The boolean Type

The boolean type represents truth values. This type has only two possible values, representing
the two Boolean states: on or off, yes or no, true or false. Java reserves the words t rue and

false to represent these two Boolean values.

Programmers coming to Java from other languages (especially JavaScript and C) should note

that Java is much stricter about its Boolean values than other languages; in particular, a

boolean is neither an integral nor an object type, and incompatible values cannot be used in

place of a boolean. In other words, you cannot take shortcuts such as the following in Java:

Object o = new Object();

int 1 = 1;
if (o) {
while (i) {
S/

Instead, Java forces you to write cleaner code by explicitly stating the comparisons you want:

if (o != null) {
while (i != 0) {
/S

The char Type

The char type represents Unicode characters. Java has a slightly unique approach to
representing characters—7javac accepts identifiers and literals as UTF-8 (a variable-width
encoding) in input. However, internally, Java represents chars in a fixed-width encoding—either
a 16-bit encoding (before Java 9) or as ISO-8859-1 (an 8-bit encoding, used for Western

European languages, also called Latin-1) if possible (Java 9 and later).

This distinction between external and internal representation does not normally need to concern
the developer. In most cases, all that is required is to remember the rule that to include a

character literal in a Java program, simply place it between single quotes (apostrophes):

char ¢ = 'a';

You can, of course, use any Unicode character as a character literal, and you can use the \u
Unicode escape sequence. In addition, Java supports a number of other escape sequences that
make it easy both to represent commonly used nonprinting ASCII characters, such as
newline, and to escape certain punctuation characters that have special meaning in Java. For

example:

char tab = '\t', nul = '\000', aleph = '\u05D0', slash = '"\\';

Table 2-2 lists the escape characters that can be used in char literals. These characters can also

be used in string literals, which are covered in the next section.

Table 2-2. Java escape characters

Escape Character value
sequence

\b Backspace

\t Horizontal tab
\n Newline

\f Form feed

\r Carriage return
\" Double quote
\' Single quote
\\ Backslash

\ xxx The Latin-1 character with the encoding xxx, where xxx is an octal (base 8)

number between 000 and 377. The forms x and \ xx are also legal, as in \0,
but are not recommended because they can cause difficulties in string
constants where the escape sequence is followed by a regular digit. This form

is generally discouraged in favor of the \uxxxx form.

\uxxxx The Unicode character with encoding xxxx, where xxxx is four hexadecimal

digits. Unicode escapes can appear anywhere in a Java program, not only in

character and string literals.

char values can be converted to and from the various integral types, and the char data type is
a 16-bit integral type. Unlike byte, short, int, and 1ong, however, char is an unsigned
type. The Character class defines a number of useful static methods for working with
characters, including 1sDigit (), isJavaletter (), isLowerCase (), and

toUpperCase ().

The Java language and its char type were designed with Unicode in mind. The Unicode
standard is evolving, however, and each new version of Java adopts a new version of Unicode.

Java 7 uses Unicode 6.0 and Java 8 uses Unicode 6.2.

Recent releases of Unicode include characters whose encodings, or codepoints, do not fitin 16
bits. These supplementary characters, which are mostly infrequently used Han (Chinese)
ideographs, occupy 21 bits and cannot be represented in a single char value. Instead, you must
use an int value to hold the codepoint of a supplementary character, or you must encode it into

a so-called “surrogate pair” of two char values.

Unless you commonly write programs that use Asian languages, you are unlikely to encounter
any supplementary characters. If you do anticipate having to process characters that do not fit
into a char, methods have been added to the Character, String, and related classes for

working with text using int codepoints.

STRING LITERALS

In addition to the char type, Java also has a data type for working with strings of text (usually
simply called strings). The St ring type is a class, however, and is not one of the primitive
types of the language. Because strings are so commonly used, though, Java does have a syntax
for including string values literally in a program. A St ring literal consists of arbitrary text

within double quotes (as opposed to the single quotes for char literals). For example:

"Hello World"

"'This' is a string!"

String literals can contain any of the escape sequences that can appear as char literals (see

Table 2-2). Use the \" sequence to include a double quote within a St ring literal. Because
String is a reference type, string literals are described in more detail later in this chapter in
“Object Literals”. Chapter 9 contains more details on some of the ways you can work with

String objects in Java.

Integer Types

The integer types in Java are byte, short, int, and 1ong. As shown in Table 2-1, these four
types differ only in the number of bits and, therefore, in the range of numbers each type can
represent. All integral types represent signed numbers; there is no unsigned keyword as there

1s in C and C++.

Literals for each of these types are written exactly as you would expect: as a sequence of
1
decimal digits, optionally preceded by a minus sign. Here are some legal integer literals:

123
-42000

Integer literals are 32-bit values (and so are taken to be the Java type int) unless they end with

the character L or 1, in which case they are 64-bit values (and are understood to be the Java type

long):
1234 // An int value
1234L // A long value
OxffL // Another long value

Integer literals can also be expressed in hexadecimal, binary, or octal notation. A literal that
begins with Ox or 0X is taken as a hexadecimal number, using the letters A to F (or a to f) as

the additional digits required for base-16 numbers.

Integer binary literals start with Ob and may, of course, only feature the digits 1 or 0. As binary
literals can be very long, underscores are often used as part of a binary literal. The underscore
character is ignored whenever it is encountered in any numerical literal—it’s allowed purely to

help with readability of literals.

Java also supports octal (base-8) integer literals. These literals begin with a leading 0 and
cannot include the digits 8 or 9. They are not often used and should be avoided unless needed.

Legal hexadecimal, binary, and octal literals include:

Oxff // Decimal 255, expressed in hexadecimal

0377 // The same number, expressed in octal (base 8)
0b0010 1111 // Decimal 47, expressed in binary
0xCAFEBABE // A magic number used to identify Java class files

Integer arithmetic in Java never produces an overflow or an underflow when you exceed the

range of a given integer type. Instead, numbers just wrap around. For example, let’s look at an

overflow:
byte bl = 127, b2 = 1; // Largest byte is 127
byte sum = (byte) (bl + b2); // Sum wraps to -128, the smallest byte

and the corresponding underflow behavior:

byte b3 = -128, b4 = 5; // Smallest byte is -128
byte sum2 = (byte) (b3 - b4); // Sum wraps to a large byte value, 123

Neither the Java compiler nor the Java interpreter warns you in any way when this occurs. When
doing integer arithmetic, you simply must ensure that the type you are using has a sufficient
range for the purposes you intend. Integer division by zero and modulo by zero are illegal and

cause an ArithmeticException to be thrown.

Each integer type has a corresponding wrapper class: Byte, Short, Integer, and Long.
Each of these classes defines MIN VALUE and MAX VALUE constants that describe the range
of the type. The classes also define useful static methods, such as Byte.parseByte () and

Integer.parselnt (), for converting strings to integer values.

Floating-Point Types

Real numbers in Java are represented by the f1oat and double data types. As shown in
Table 2-1, f1oat is a 32-bit, single-precision floating-point value, and double is a 64-bit,
double-precision floating-point value. Both types adhere to the IEEE 754-1985 standard, which

specifies both the format of the numbers and the behavior of arithmetic for the numbers.

Floating-point values can be included literally in a Java program as an optional string of digits,

followed by a decimal point and another string of digits. Here are some examples:

123.45
0.0
.01

Floating-point literals can also use exponential, or scientific, notation, in which a number is
followed by the letter e or E (for exponent) and another number. This second number represents

the power of 10 by which the first number is multiplied. For example:

1.2345E02 // 1.2345 * 1072 or 123.45
le-6 // 1 * 10"-6 or 0.000001
6.02e23 // Avogadro's Number: 6.02 * 10723

Floating-point literals are double values by default. To include a f1oat value literally in a

program, follow the number with f or F:

double d = 6.02E23;
float £ = 6.02e23f;

Floating-point literals cannot be expressed in hexadecimal, binary, or octal notation.

FLOATING-POINT REPRESENTATIONS

Most real numbers, by their very nature, cannot be represented exactly in any finite number
of bits. Thus, it is important to remember that f1oat and double values are only
approximations of the numbers they are meant to represent. A float is a 32-bit
approximation, which results in at least six significant decimal digits, and a double is a 64-bit
approximation, which results in at least 15 significant digits. In Chapter 9, we will cover
floating-point representations in more detail.

—
In addition to representing ordinary numbers, the f1oat and double types can also represent
four special values: positive and negative infinity, zero, and NaN. The infinity values result
when a floating-point computation produces a value that overflows the representable range of a

float or double.

When a floating-point computation underflows the representable range of a f1oat ora

double, a zero value results.

NOTE

We can imagine repeatedly dividing the double value 1.0 by 2.0 (e.g.,ina
while loop). In mathematics, no matter how often we perform the division, the
result will never become equal to zero. However, in a floating-point representation,
after enough divisions, the result will eventually be so small as to be

indistinguishable from zero.

The Java floating-point types make a distinction between positive zero and negative zero,
depending on the direction from which the underflow occurred. In practice, positive and
negative zero behave pretty much the same. Finally, the last special floating-point value is NaN,
which stands for “Not-a-Number.” The NaN value results when an illegal floating-point
operation, such as 0.0/0.0, is performed. Here are examples of statements that result in these

special values:

double inf = 1.0/0.0; // Infinity

double neginf = -1.0/0.0; // Negative infinity
double negzero = -1.0/inf; // Negative zero
double NaN = 0.0/0.0; // Not a Number

The f1loat and double primitive types have corresponding classes, named Float and
Double. Each of these classes defines the following useful constants: MIN VALUE,
MAX VALUE, NEGATIVE INFINITY, POSITIVE INFINITY, and NaN.

NOTE

Java floating-point types can handle overflow to infinity and underflow to zero and
have a special NaN value. This means floating-point arithmetic never throws
exceptions, even when performing illegal operations, like dividing zero by zero or

taking the square root of a negative number.

The infinite floating-point values behave as you would expect. Adding or subtracting any finite
value to or from infinity, for example, yields infinity. Negative zero behaves almost identically
to positive zero, and, in fact, the == equality operator reports that negative zero is equal to
positive zero. One way to distinguish negative zero from positive, or regular, zero is to divide by

it: 1.0/0.0 yields positive infinity, but 1. 0 divided by negative zero yields negative infinity.

Finally, because NaN is Not a Number, the == operator says that it is not equal to any other

number, including itself!

double NaN = 0.0/0.0; // Not a Number
NaN == NaN; // false
Double.isNaN (NaN) ; // true

To check whether a f1oat or double value is NaN, you must use the Float.isNaN () and

Double.isNaN () methods.

Primitive Type Conversions

Java allows conversions between integer values and floating-point values. In addition, because
every character corresponds to a number in the Unicode encoding, char values can be
converted to and from the integer and floating-point types. In fact, boolean is the only

primitive type that cannot be converted to or from another primitive type in Java.

There are two basic types of conversions. A widening conversion occurs when a value of one
type is converted to a wider type—one that has a larger range of legal values. For example, Java
performs widening conversions automatically when you assign an int literal to a double

variable or a char literal to an int variable.

Narrowing conversions are another matter, however. A narrowing conversion occurs when a
value is converted to a type that is not wider than it is. Narrowing conversions are not always
safe: it is reasonable to convert the integer value 13 to a byte, for example, but it is not
reasonable to convert 13,000 to a byte, because byte can hold only numbers between —128
and 127. Because you can lose data in a narrowing conversion, the Java compiler complains
when you attempt any narrowing conversion, even if the value being converted would in fact fit

in the narrower range of the specified type:

int i = 13;
// byte b = i; // Incompatible types: possible lossy conversion
// from int to byte

The one exception to this rule is that you can assign an integer literal (an int value) toabyte

or short variable if the literal falls within the range of the variable.

byte b = 13;

If you need to perform a narrowing conversion and are confident you can do so without losing

data or precision, you can force Java to perform the conversion using a language construct
known as a cast. Perform a cast by placing the name of the desired type in parentheses before

the value to be converted. For example:

int 1 = 13;
byte b = (byte) i; // Force the int to be converted to a byte
i = (int) 13.456; // Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point values to integers. When
you do this, the fractional part of the floating-point value is simply truncated (i.e., the floating-
point value is rounded toward zero, not toward the nearest integer). The static methods

Math.round(),Math.floor (),and Math.ceil () perform other types of rounding.

The char type acts like an integer type in most ways, so a char value can be used anywhere
an int or long value is required. Recall, however, that the char type is unsigned, so it

behaves differently than the short type, even though both are 16 bits wide:

short s = (short) Oxffff; // These bits represent the number -1

char ¢ = '"\uffff'; // The same bits, as a Unicode character

int il = s; // Converting the short to an int yields -1
int i2 = c; // Converting the char to an int yields 65535

Table 2-3 shows which primitive types can be converted to which other types and how the
conversion is performed. The letter N in the table means that the conversion cannot be
performed. The letter Y means that the conversion is a widening conversion and is therefore
performed automatically and implicitly by Java. The letter C means that the conversion is a

narrowing conversion and requires an explicit cast.

Finally, the notation Y* means that the conversion is an automatic widening conversion, but that
some of the least significant digits of the value may be lost in the conversion. This can happen
when you are converting an int or 1ong to a floating-point type—see the table for details. The
floating-point types have a larger range than the integer types, so any int or 1ong can be
represented by a f1oat or double. However, the floating-point types are approximations of
numbers and cannot always hold as many significant digits as the integer types (see Chapter 9

for some more detail about floating-point numbers).

Table 2-3. Java primitive type conversions

Convert to:

Convert from: boolean byte short char int long float double

boolean - N N N N N N N
byte N - Y C Y Y Y Y
short N C - C Y Y Y Y
char N C C - Y Y Y Y
int N C C C - Y Y* Y
long N C C C C - Y* Y*
float N C C C C C - Y
double N C C C C C C -

Expressions and Operators

So far in this chapter, we’ve learned about the primitive types that Java programs can
manipulate and seen how to include primitive values as /iterals in a Java program. We’ve also
used variables as symbolic names that represent, or hold, values. These literals and variables are

the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java program. The Java interpreter
evaluates an expression to compute its value. The very simplest expressions are called primary
expressions and consist of literals and variables. So, for example, the following are all

expressions:

1.7 // A floating-point literal

true // A Boolean literal

sum // A variable

When the Java interpreter evaluates a literal expression, the resulting value is the literal itself.
When the interpreter evaluates a variable expression, the resulting value is the value stored in

the variable.

Primary expressions are not very interesting. More complex expressions are made by using
operators to combine primary expressions. For example, the following expression uses the
assignment operator to combine two primary expressions—a variable and a floating-point literal

—into an assignment expression:

sum = 1.7

But operators are used not only with primary expressions; they can also be used with

expressions at any level of complexity. The following are all legal expressions:

sum = 1 + 2 + 3 * 1.2 + (4 + 8)/3.0
sum/Math.sqrt (3.0 * 1.234)
(int) (sum + 33)

Operator Summary

The kinds of expressions you can write in a programming language depend entirely on the set of
operators available to you. Java has a wealth of operators, but to work effectively with them,
you must understand two important concepts: precedence and associativity. These concepts—

and the operators themselves—are explained in more detail in the following sections.

PRECEDENCE

The P column of Table 2-4 specifies the precedence of each operator. Precedence specifies the
order in which operations are performed. Operations that have higher precedence are performed

before those with lower precedence. For example, consider this expression:

a + b * c

The multiplication operator has higher precedence than the addition operator, so a is added to
the product of b and c, just as we expect from elementary mathematics. Operator precedence
can be thought of as a measure of how tightly operators bind to their operands. The higher the
number, the more tightly they bind.

Default operator precedence can be overridden through the use of parentheses that explicitly
specify the order of operations. The previous expression can be rewritten to specify that the

addition should be performed before the multiplication:

(a + b) * ¢

The default operator precedence in Java was chosen for compatibility with C; the designers of C
chose this precedence so that most expressions can be written naturally without parentheses.
There are only a few common Java idioms for which parentheses are required. Examples

include:

// Class cast combined with member access

((Integer) o) .intValue() ;

// Assignment combined with comparison

while((line = in.readLine()) !'= null) { ... }

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) !'= 0) { ... }

ASSOCIATIVITY

Associativity is a property of operators that defines how to evaluate expressions that would
otherwise be ambiguous. This is particularly important when an expression involves several

operators that have the same precedence.

Most operators are left-to-right associative, which means that the operations are performed from
left to right. The assignment and unary operators, however, have right-to-left associativity. The
A column of Table 2-4 specifies the associativity of each operator or group of operators. The

value L means left to right, and R means right to left.

The additive operators are all left-to-right associative, so the expression a+b-c is evaluated
from left to right: (a+b) —c. Unary operators and assignment operators are evaluated from

right to left. Consider this complex expression:

This is evaluated as follows:

As with operator precedence, operator associativity establishes a default order of evaluation for
an expression. This default order can be overridden through the use of parentheses. However,
the default operator associativity in Java has been chosen to yield a natural expression syntax,

and you should rarely need to alter it.

OPERATOR SUMMARY TABLE

Table 2-4 summarizes the operators available in Java. The P and A columns of the table specify
the precedence and associativity of each group of related operators, respectively. You should

use this table as a quick reference for operators (especially their precedence) when required.

Table 2-4. Java operators

P A Operator Operand type(s) Operation performed
16 L . object, member Object member access
[] array, int Array element access
(args) method, arglist Method invocation
e+, —— variable Post-increment, post-decrement
15 R ++, -~ variable Pre-increment, pre-decrement
+, - number Unary plus, unary minus
~ integer Bitwise complement

! boolean Boolean NOT

14 R

11

10

new

<<

>>

>>>

o

instanceof

class, arglist

type, any

number, number

number, number

string, any

integer, integer

integer, integer

integer, integer

number, number

number, number

reference, type

primitive, primitive

primitive, primitive

Object creation

Cast (type conversion)

Multiplication, division, remainder

Addition, subtraction

String concatenation

Left shift

Right shift with sign extension

Right shift with zero extension

Less than, less than or equal

Greater than, greater than or equal

Type comparison

Equal (have identical values)

Not equal (have different values)

reference, reference

reference, reference

integer, integer

boolean, boolean

integer, integer

boolean, boolean

integer, integer

boolean, boolean

boolean, boolean

boolean, boolean

boolean, any

variable, any

variable, any

Equal (refer to same object)

Not equal (refer to different objects)

Bitwise AND

Boolean AND

Bitwise XOR

Boolean XOR

Bitwise OR

Boolean OR

Conditional AND

Conditional OR

Conditional (ternary) operator

Assignment

Assignment with operation

>>=, >>>=

1 R - arglist, method body lambda expression

OPERAND NUMBER AND TYPE

The fourth column of Table 2-4 specifies the number and type of the operands expected by each
operator. Some operators operate on only one operand; these are called unary operators. For

example, the unary minus operator changes the sign of a single number:

-n // The unary minus operator

Most operators, however, are binary operators that operate on two operand values. The —

operator actually comes in both forms:

a - b // The subtraction operator 1is a binary operator

Java also defines one ternary operator, often called the conditional operator. It is like an i f
statement inside an expression. Its three operands are separated by a question mark and a colon;

the second and third operands must be convertible to the same type:

X >y ? x :y // Ternary expression; evaluates to larger of x and y

In addition to expecting a certain number of operands, each operator also expects particular
types of operands. The fourth column of the table lists the operand types. Some of the codes

used in that column require further explanation:

Number

An integer, floating-point value, or character (i.e., any primitive type except boolean).
Auto-unboxing (see “Boxing and Unboxing Conversions”) means that the wrapper classes
(such as Character, Integer, and Double) for these types can be used in this context

as well.

Integer

A Dbyte, short, int, long, or char value (1ong values are not allowed for the array
access operator []). With auto-unboxing, Byte, Short, Integer, Long, and

Character values are also allowed.

Reference

An object or array.

Variable

A variable or anything else, such as an array element, to which a value can be assigned.

RETURN TYPE

Just as every operator expects its operands to be of specific types, each operator produces a
value of a specific type. The arithmetic, increment and decrement, bitwise, and shift operators
return a double if at least one of the operands is a double. They return a f1oat if at least
one of the operands is a f1oat. They return a 1ong if at least one of the operands is a 1ong.
Otherwise, they return an int, even if both operands are byte, short, or char types that are

narrower than int.

The comparison, equality, and Boolean operators always return boolean values. Each
assignment operator returns whatever value it assigned, which is of a type compatible with the
variable on the left side of the expression. The conditional operator returns the value of its

second or third argument (which must both be of the same type).

SIDE EFFECTS

Every operator computes a value based on one or more operand values. Some operators,
however, have side effects in addition to their basic evaluation. If an expression contains side
effects, evaluating it changes the state of a Java program in such a way that evaluating the

expression again may yield a different result.

For example, the ++ increment operator has the side effect of incrementing a variable. The
expression ++a increments the variable a and returns the newly incremented value. If this

expression is evaluated again, the value will be different. The various assignment operators also

have side effects. For example, the expression a*=2 can also be written as a=a*2. The value
of the expression is the value of a multiplied by 2, but the expression has the side effect of

storing that value back into a.

The method invocation operator () has side effects if the invoked method has side effects.
Some methods, such as Math.sqgrt (), simply compute and return a value without side effects
of any kind. Typically, however, methods do have side effects. Finally, the new operator has the

profound side effect of creating a new object.

ORDER OF EVALUATION

When the Java interpreter evaluates an expression, it performs the various operations in an order
specified by the parentheses in the expression, the precedence of the operators, and the
associativity of the operators. Before any operation is performed, however, the interpreter first
evaluates the operands of the operator. (The exceptions are the &&, | |, and ?: operators, which
do not always evaluate all their operands.) The interpreter always evaluates operands in order
from left to right. This matters if any of the operands are expressions that contain side effects.

Consider this code, for example:

2;
int v = ++a + ++a * ++a;

int a

Although the multiplication is performed before the addition, the operands of the + operator are
evaluated first. As the operands of + are both +a, these are evaluated to 3 and 4, and so

the expression evaluatesto 3 + 4 * 5 or 23.

Arithmetic Operators

The arithmetic operators can be used with integers, floating-point numbers, and even characters
(i.e., they can be used with any primitive type other than boolean). If either of the operands is
a floating-point number, floating-point arithmetic is used; otherwise, integer arithmetic is used.
This matters because integer arithmetic and floating-point arithmetic differ in the way division
is performed and in the way underflows and overflows are handled, for example. The arithmetic

operators are:

Addition (+)

The + operator adds two numbers. As we’ll see shortly, the + operator can also be used to
concatenate strings. If either operand of + is a string, the other one is converted to a string as
well. Be sure to use parentheses when you want to combine addition with concatenation. For

example:

System.out.println ("Total: "™ + 3 + 4); // Prints "Total: 34", not 7!

14

Subtraction (-)

When the - operator is used as a binary operator, it subtracts its second operand from its

first. For example, 7-3 evaluates to 4. The - operator can also perform unary negation.

Multiplication (*)

The * operator multiplies its two operands. For example, 7* 3 evaluates to 21.

Division (/)

The / operator divides its first operand by its second. If both operands are integers, the
result is an integer, and any remainder is lost. If either operand is a floating-point value,
however, the result is a floating-point value. When you divide two integers, division by zero
throws an ArithmeticException. For floating-point calculations, however, division by

zero simply yields an infinite result or NaN:

7/3 // Evaluates to 2
7/3.0f // Evaluates to 2.333333f
7/0 // Throws an ArithmeticException
7/0.0 // Evaluates to positive infinity
0.0/0.0 // Evaluates to NaN

Modulo (%)

The % operator computes the first operand modulo the second operand (i.e., it returns the
remainder when the first operand is divided by the second operand an integral number of
times). For example, 7%3 is 1. The sign of the result is the same as the sign of the first
operand. While the modulo operator is typically used with integer operands, it also works
for floating-point values. For example, 4 .3%$2 . 1 evaluates to 0. 1. When you are operating
with integers, trying to compute a value modulo zero causes an ArithmeticException.
When you are working with floating-point values, anything modulo 0 . 0 evaluates to NaN,

as does infinity modulo anything.

Unary minus (=)

When the - operator is used as a unary operator—that is, before a single operand—it

performs unary negation. In other words, it converts a positive value to an equivalently

negative value, and vice versa.

String Concatenation Operator

In addition to adding numbers, the + operator (and the related += operator) also concatenates, or
joins, strings. If either of the operands to + is a string, the operator converts the other operand to

a string. For example:

// Prints "Quotient: 2.3333333"
System.out.println ("Quotient: " + 7/3.0f);

As a result, you must be careful to put any addition expressions in parentheses when combining
them with string concatenation. If you do not, the addition operator is interpreted as a

concatenation operator.

Java has built-in string conversions for all primitive types. An object is converted to a string by
invoking its toString () method. Some classes define custom toString () methods so
that objects of that class can easily be converted to strings in this way. An array is converted to a
string by invoking the built-in toString () method, which, unfortunately, does not return a

useful string representation of the array contents.

Increment and Decrement Operators

The ++ operator increments its single operand, which must be a variable, an element of an
array, or a field of an object, by 1. The behavior of this operator depends on its position relative
to the operand. When used before the operand, where it is known as the pre-increment operator,
it increments the operand and evaluates to the incremented value of that operand. When used
after the operand, where it is known as the post-increment operator, it increments its operand,

but evaluates to the value of that operand before it was incremented.

For example, the following code sets both i and j to 2:

'_l
Il
—
~.

j = ++i;

But these lines set i to 2 and j to 1:

J o= i++;

Similarly, the —— operator decrements its single numeric operand, which must be a variable, an
element of an array, or a field of an object, by one. Like the ++ operator, the behavior of —-
depends on its position relative to the operand. When used before the operand, it decrements the
operand and returns the decremented value. When used after the operand, it decrements the

operand, but returns the undecremented value.

The expressions x++ and x-- are equivalent to x=x+1 and x=x-1, respectively, except that
when you are using the increment and decrement operators, x is only evaluated once. If x is
itself an expression with side effects, this makes a big difference. For example, these two

expressions are not equivalent:

ali++]++; // Increments an element of an array

// Adds 1 to an array element and stores new value in another element

ali++] = ali++] + 1;

These operators, in both prefix and postfix forms, are most commonly used to increment or

decrement the counter that controls a loop.

Comparison Operators

The comparison operators consist of the equality operators that test values for equality or
inequality and the relational operators used with ordered types (numbers and characters) to test
for greater than and less than relationships. Both types of operators yield a boolean result, so
they are typically used with i f statements and while and for loops to make branching and

looping decisions. For example:

if (o != null) ...; // The not equals operator
while (i < a.length) ...; // The less than operator

Java provides the following equality operators:

Equals (==

The == operator evaluates to t rue if its two operands are equal and false otherwise.
With primitive operands, it tests whether the operand values themselves are identical. For
operands of reference types, however, it tests whether the operands refer to the same object
or array. In other words, it does not test the equality of two distinct objects or arrays. In

particular, note that you cannot test two distinct strings for equality with this operator.

If == is used to compare two numeric or character operands that are not of the same type,

the narrower operand is converted to the type of the wider operand before the comparison is
done. For example, when you are comparing a short toa float, the short is first
converted to a f1oat before the comparison is performed. For floating-point numbers, the
special negative zero value tests equal to the regular, positive zero value. Also, the special
NaN (Not a Number) value is not equal to any other number, including itself. To test
whether a floating-point value is NaN, use the Float.isNan () or Double.isNan ()

method.

Not equals (! =)

The ! = operator is exactly the opposite of the == operator. It evaluates to t rue if its two
primitive operands have different values or if its two reference operands refer to different

objects or arrays. Otherwise, it evaluates to false.

The relational operators can be used with numbers and characters, but not with boolean

values, objects, or arrays because those types are not ordered.

Java provides the following relational operators:

Less than (<)

Evaluates to t rue if the first operand is less than the second.

Less than or equal (<=)

Evaluates to t rue if the first operand is less than or equal to the second.

Greater than (>)

Evaluates to t rue if the first operand is greater than the second.

Greater than or equal (>=)

Evaluates to t rue if the first operand is greater than or equal to the second.

Boolean Operators

As we’ve just seen, the comparison operators compare their operands and yield a boolean
result, which is often used in branching and looping statements. In order to make branching and
looping decisions based on conditions more interesting than a single comparison, you can use
the Boolean (or logical) operators to combine multiple comparison expressions into a single,

more complex expression. The Boolean operators require their operands to be boolean values

and they evaluate to boolean values. The operators are:

Conditional AND (& &)

This operator performs a Boolean AND operation on its operands. It evaluates to t rue if
and only if both its operands are t rue. If either or both operands are false, it evaluates to

false. For example:

if (x < 10 && y > 3) ... // If both comparisons are true

This operator (and all the Boolean operators except the unary ! operator) have a lower
precedence than the comparison operators. Thus, it is perfectly legal to write a line of code
like the one just shown. However, some programmers prefer to use parentheses to make the

order of evaluation explicit:

if ((x < 10) && (y > 3))

You should use whichever style you find easier to read.

This operator is called a conditional AND because it conditionally evaluates its second
operand. If the first operand evaluates to false, the value of the expression is false,
regardless of the value of the second operand. Therefore, to increase efficiency, the Java
interpreter takes a shortcut and skips the second operand. The second operand is not
guaranteed to be evaluated, so you must use caution when using this operator with
expressions that have side effects. On the other hand, the conditional nature of this operator

allows us to write Java expressions such as the following:

if (data != null && i < data.length && datali] != -1)

The second and third comparisons in this expression would cause errors if the first or second
comparisons evaluated to false. Fortunately, we don’t have to worry about this because of

the conditional behavior of the & & operator.

Conditional OR (| |)

This operator performs a Boolean OR operation on its two boolean operands. It evaluates
to true if either or both of its operands are t rue. If both operands are false, it evaluates

to false. Like the && operator, | | does not always evaluate its second operand. If the first

operand evaluates to t rue, the value of the expression is t rue, regardless of the value of

the second operand. Thus, the operator simply skips the second operand in that case.

Boolean NOT (!)

This unary operator changes the boolean value of its operand. If applied to a t rue value,
it evaluates to false, and if applied to a false value, it evaluates to t rue. It is useful in

expressions like these:

if (!found) ... // found is a boolean declared somewhere

while (!c.isEmpty()) ... // The isEmpty () method returns a boolean

Because ! is a unary operator, it has a high precedence and often must be used with

parentheses:

if ('(x >y && y > z))

Boolean AND (&)

When used with boolean operands, the & operator behaves like the & & operator, except
that it always evaluates both operands, regardless of the value of the first operand. This
operator is almost always used as a bitwise operator with integer operands, however, and
many Java programmers would not even recognize its use with boolean operands as legal

Java code.

Boolean OR (|)

This operator performs a Boolean OR operation on its two boolean operands. It is like the
| | operator, except that it always evaluates both operands, even if the first one is true.
The | operator is almost always used as a bitwise operator on integer operands; its use with

boolean operands is very rare.

Boolean XOR ()

When used with boolean operands, this operator computes the exclusive OR (XOR) of its
operands. It evaluates to t rue if exactly one of the two operands is t rue. In other words, it
evaluates to false if both operands are false or if both operands are t rue. Unlike the
&& and | | operators, this one must always evaluate both operands. The ~ operator is much
more commonly used as a bitwise operator on integer operands. With boolean operands,

this operator is equivalent to the ! = operator.

Bitwise and Shift Operators

The bitwise and shift operators are low-level operators that manipulate the individual bits that
make up an integer value. The bitwise operators are not commonly used in modern Java except
for low-level work (e.g., network programming). They are used for testing and setting individual
flag bits in a value. In order to understand their behavior, you must understand binary (base-2)

numbers and the two’s complement format used to represent negative integers.

You cannot use these operators with floating-point, boolean, array, or object operands. When
used with boolean operands, the &, |, and * operators perform a different operation, as

described in the previous section.

If either of the arguments to a bitwise operator is a 1ong, the result is a 1ong. Otherwise, the
result is an int. If the left operand of a shift operator is a Long, the result is a 1ong;

otherwise, the result is an int. The operators are:

Bitwise complement (~)

The unary ~ operator is known as the bitwise complement, or bitwise NOT, operator. It

inverts each bit of its single operand, converting 1s to Os and Os to 1s. For example:

byte b = ~12; // ~00001100 = => 11110011 or -13 decimal
flags = flags & ~f; // Clear flag f in a set of flags
Bitwise AND (&)

This operator combines its two integer operands by performing a Boolean AND operation
on their individual bits. The result has a bit set only if the corresponding bit is set in both

operands. For example:

10 & 7 // 00001010 & 00000111 = => 00000010 or 2
if ((flags & f) != 0) // Test whether flag f is set

When used with boolean operands, & is the infrequently used Boolean AND operator

described earlier.

Bitwise OR ()

This operator combines its two integer operands by performing a Boolean OR operation on
their individual bits. The result has a bit set if the corresponding bit is set in either or both of

the operands. It has a zero bit only where both corresponding operand bits are zero. For

example:

10 | 7 // 00001010 | 00000111 = => (00001111 or 15
flags = flags | f; // Set flag f

When used with boolean operands, | is the infrequently used Boolean OR operator

described earlier.

Bitwise XOR ()

This operator combines its two integer operands by performing a Boolean XOR (exclusive
OR) operation on their individual bits. The result has a bit set if the corresponding bits in the
two operands are different. If the corresponding operand bits are both 1s or both Os, the

result bit is a 0. For example:

10 ~ 7 // 00001010 ~ 00000111 = => 00001101 or 13
When used with boolean operands, * is the seldom used Boolean XOR operator.

Left shift (<<)

The << operator shifts the bits of the left operand left by the number of places specified by
the right operand. High-order bits of the left operand are lost, and zero bits are shifted in
from the right. Shifting an integer left by n places is equivalent to multiplying that number

by 2”. For example:

10 << 1 // 0b00001010 << 1 = 00010100 = 20 = 10*2
7 << 3 // 0b00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2 // OxFFFFFFFF << 2 = OxFFFFFFFC = -4 = -1%4

// OxFFFF_FFFC == 0b1111 1111 1111 1111 1111 1111 1111 1100

14

If the left operand is a 1ong, the right operand should be between 0 and 63. Otherwise, the

left operand is taken to be an int, and the right operand should be between 0 and 31.

Signed right shift (>>)

The >> operator shifts the bits of the left operand to the right by the number of places
specified by the right operand. The low-order bits of the left operand are shifted away and
are lost. The high-order bits shifted in are the same as the original high-order bit of the left

operand. In other words, if the left operand is positive, Os are shifted into the high-order bits.

If the left operand is negative, s are shifted in instead. This technique is known as sign

extension; it is used to preserve the sign of the left operand. For example:

10 >> 1 // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3 // 00011011 >> 3 = 00000011 = 3 = 27/8
-50 >> 2 // 11001110 >> 2 = 11110011 = -13 != -50/4

If the left operand is positive and the right operand is n, the >> operator is the same as

integer division by 2n.

Unsigned right shift (>>>)

This operator is like the >> operator, except that it always shifts zeros into the high-order
bits of the result, regardless of the sign of the lefthand operand. This technique is called zero
extension; it 1s appropriate when the left operand is being treated as an unsigned value

(despite the fact that Java integer types are all signed). These are examples:

Oxff >>> 4 // 11111111 >>> 4 = 00001111 = 15 = 255/16
=50 >>> 2 // OXFFFFFFCE >>> 2 = 0x3FFFFFF3 = 1073741811

Assignment Operators

The assignment operators store, or assign, a value into a piece of the computer’s memory—
often referred to as a storage location. The left operand must evaluate to an appropriate local

variable, array element, or object field.

NOTE

The lefthand side of an assignment expression is sometimes called an I1value. In

Java it must refer to some assignable storage (i.e., memory that can be written to).

The righthand side (the rvalue) can be any value of a type compatible with the variable. An
assignment expression evaluates to the value that is assigned to the variable. More importantly,
however, the expression has the side effect of actually performing the assignment—storing the

rvalue in the 1value.

TIP

Unlike all other binary operators, the assignment operators are right-associative,
which means that the assignments in a=b=c are performed right to left, as follows:

a= (b=c).

The basic assignment operator is =. Do not confuse it with the equality operator, ==. In order to

keep these two operators distinct, we recommend that you read = as “is assigned the value.”

In addition to this simple assignment operator, Java also defines 11 other operators that combine
assignment with the 5 arithmetic operators and the 6 bitwise and shift operators. For example,
the += operator reads the value of the left variable, adds the value of the right operand to it,
stores the sum back into the left variable as a side effect, and returns the sum as the value of the
expression. Thus, the expression x+=2 is almost the same as x=x+2. The difference between
these two expressions is that when you use the += operator, the left operand is evaluated only
once. This makes a difference when that operand has a side effect. Consider the following two

expressions, which are not equivalent:

ali++] += 2;

ali++] = al[i++] + 2;

The general form of these combination assignment operators is:

lvalue op= rvalue

This is equivalent (unless there are side effects in 1value) to:

lvalue = lvalue op rvalue

The available operators are:

+= -= W= /= %= // Arithmetic operators plus assignment
&= = A= // Bitwise operators plus assignment
<<= >>= >>>= // Shift operators plus assignment

The most commonly used operators are += and -=, although &= and | = can also be useful

when you are working with boolean flags. For example:

i += 2; // Increment a loop counter by 2

c -= 5; // Decrement a counter by 5

flags |= f; // Set a flag f in an integer set of flags
flags &= ~f; // Clear a flag f in an integer set of flags

The Conditional Operator

The conditional operator ?: is a somewhat obscure ternary (three-operand) operator inherited
from C. It allows you to embed a conditional within an expression. You can think of it as the
operator version of the 1 f/else statement. The first and second operands of the conditional
operator are separated by a question mark (?), while the second and third operands are separated
by a colon (:). The first operand must evaluate to a boolean value. The second and third

operands can be of any type, but they must be convertible to the same type.

The conditional operator starts by evaluating its first operand. If it is t rue, the operator
evaluates its second operand and uses that as the value of the expression. On the other hand, if
the first operand is false, the conditional operator evaluates and returns its third operand. The
conditional operator never evaluates both its second and third operand, so be careful when using

expressions with side effects with this operator. Examples of this operator are:

int max = (x > vy) ? x : y;

String name = (name != null) ? name : "unknown";

Note that the ?: operator has lower precedence than all other operators except the assignment
operators, so parentheses are not usually necessary around the operands of this operator. Many
programmers find conditional expressions easier to read if the first operand is placed within
parentheses, however. This is especially true because the conditional i f statement always has

its conditional expression written within parentheses.

The instanceof Operator

The instanceof operator is intimately bound up with objects and the operation of the Java
type system. If this is your first look at Java, it may be preferable to skim this definition and

return to this section after you have a decent grasp of Java’s objects.

instanceof requires an object or array value as its left operand and the name of a reference
type as its right operand. It evaluates to t rue if the object or array is an instance of the

specified type; it returns false otherwise. If the left operand is null, instanceof always

evaluates to false. Ifan instanceof expression evaluates to true, it means that you can

safely cast and assign the left operand to a variable of the type of the right operand.

The instanceof operator can be used only with reference types and objects, not primitive

types and values. Examples of instanceof are:

// True: all strings are instances of String
"string" instanceof String

// True: strings are also instances of Object
"" instanceof Object

// False: null is never an instance of anything

null instanceof String

Object o = new int[] {1,2,3};
o instanceof int][] // True: the array value 1is an int array
o instanceof byte[] // False: the array value is not a byte array

o instanceof Object // True: all arrays are instances of Object

// Use instanceof to make sure that it is safe to cast an object
if (object instanceof Point) {

Point p = (Point) object;

In general, the use of instanceof is discouraged among Java programmers. It is often a sign
of questionable program design. Under normal circumstances, the usage of instanceof can

be avoided; it is only needed on rare occasions (but note that there are some cases where it is
needed).

Special Operators

Java has six language constructs that are sometimes considered operators and sometimes
considered simply part of the basic language syntax. These “operators” were included in

Table 2-4 in order to show their precedence relative to the other true operators. The use of these
language constructs is detailed elsewhere in this book, but is described briefly here so that you

can recognize them in code examples:

Member access (.)

An object is a collection of data and methods that operate on that data; the data fields and
methods of an object are called its members. The dot (.) operator accesses these members. If
o is an expression that evaluates to an object reference (or a class name), and f is the name
of a field of the class, o . £ evaluates to the value contained in that field. If m is the name of a
method, o . m refers to that method and allows it to be invoked using the () operator shown

later.

Array element access ([])

An array is a numbered list of values. Each element of an array can be referred to by its
number, or index. The [] operator allows you to refer to the individual elements of an
array. If a is an array, and 1 is an expression that evaluates to an int, a [i] refers to one of
the elements of a. Unlike other operators that work with integer values, this operator

restricts array index values to be of type int or narrower.

Method invocation (())

A method is a named collection of Java code that can be run, or invoked, by following the
name of the method with zero or more comma-separated expressions contained within
parentheses. The values of these expressions are the arguments to the method. The method
processes the arguments and optionally returns a value that becomes the value of the method
invocation expression. If o.m is a method that expects no arguments, the method can be
invoked with o.m () . If the method expects three arguments, for example, it can be invoked
with an expression such as o.m (x, y, z) . o is referred to as the receiver of the method—if
o is an object, then it is said to be the receiver object. Before the Java interpreter invokes a
method, it evaluates each of the arguments to be passed to the method. These expressions
are guaranteed to be evaluated in order from left to right (which matters if any of the

arguments have side effects).

Lambda expression (—>)

A lambda expression is an anonymous collection of executable Java code, essentially a
method body. It consists of a method argument list (zero or more comma-separated
expressions contained within parentheses) followed by the lambda arrow operator followed
by a block of Java code. If the block of code comprises just a single statement, then the
usual curly braces to denote block boundaries can be omitted. If the lambda takes only a

single argument, the parentheses around the argument can be omitted.

Object creation (new)

In Java, objects are created with the new operator, which is followed by the type of the
object to be created and a parenthesized list of arguments to be passed to the object
constructor. A constructor is a special block of code that initializes a newly created object,

so the object creation syntax is similar to the Java method invocation syntax. For example:

new ArrayList<String>();

new Point (1,2)

Array creation (new)

Arrays are a special case of objects and they too are created with the new operator, with a
slightly different syntax. The keyword is followed by the type of the array to be created and
the size of the array encased in square brackets—for example, as new int [5].In some

circumstances arrays can also be created using the array literal syntax.

Type conversion or casting (())

As we’ve already seen, parentheses can also be used as an operator to perform narrowing
type conversions, or casts. The first operand of this operator is the type to be converted to; it
is placed between the parentheses. The second operand is the value to be converted; it

follows the parentheses. For example:

(byte) 238 // An integer literal cast to a byte type

(int) (x + 3.14f) // A floating-point sum value cast to an Iinteger

(String)h.get (k) // A generic object cast to a string
Statements

A statement is a basic unit of execution in the Java language—it expresses a single piece of
intent by the programmer. Unlike expressions, Java statements do not have a value. Statements
also typically contain expressions and operators (especially assignment operators) and are

frequently executed for the side effects that they cause.

Many of the statements defined by Java are flow-control statements, such as conditionals and
loops, that can alter the default, linear order of execution in well-defined ways. Table 2-5

summarizes the statements defined by Java.

Table 2-5. Java statements

Statement Purpose Syntax

expression side variable = expr ; expr ++; method () ; new Type ();
effects

compound group { statements }

statements

empty

labeled

variable

if

switch

while

do

for

foreach

break

continue

do nothing

name a

statement

declare a

variable

conditional

conditional

loop

loop

simplified
loop

collection

iteration

exit block

restart

loop

I3

label . statement

[final] type name [= value] [, name [= value]]

if (expr) statement [else statement]

switch (expr) { [case expr:statements]

default: statements] }

while (expr) statement

do statement while (expr);

for (init; test; increment) statement

for (variable: iterable) statement

break [label] ;

continue [label] ;

return end return [expr] ;

method
synchronized critical synchronized (expr) { statements }
section
throw throw throw expr ;
exception
try handle try { statements } [catch (type name) {
excepﬁon, statements }] .. [finally { statements }]
assert Veﬁfy assert invariant [error];
Invariant

Expression Statements

As we saw earlier in the chapter, certain types of Java expressions have side effects. In other
words, they do not simply evaluate to some value; they also change the program state in some
way. You can use any expression with side effects as a statement simply by following it with a
semicolon. The legal types of expression statements are assignments, increments and

decrements, method calls, and object creation. For example:

a = 1; // Assignment

X *= 2; // Assignment with operation
i++; // Post-increment

==@3 // Pre-decrement
System.out.println ("statement") ; // Method invocation

Compound Statements

A compound statement is any number and kind of statements grouped together within curly

braces. You can use a compound statement anywhere a statement is required by Java syntax:

for(int i = 0; 1 < 10; i++) {

alil++; // Body of this loop is a compound statement.
19 [d]==8 // It consists of two expression statements
} // within curly braces.
The Empty Statement

An empty statement in Java is written as a single semicolon. The empty statement doesn’t do
anything, but the syntax is occasionally useful. For example, you can use it to indicate an empty

loop body in a for loop:

for(int 1 = 0; 1 < 10; a[i++]++) // Increment array elements

/* empty */; // Loop body is empty statement

Labeled Statements

A labeled statement is simply a statement that you have given a name by prepending an

identifier and a colon to it. Labels are used by the break and continue statements. For

example:
for(int r = 0; r < rows.length; r++) { // Labeled loop
for(int ¢ = 0; ¢ < columns.length; c++) { // Another one
break rowLoop; // Use a label

Local Variable Declaration Statements

A local variable, often simply called a variable, is a symbolic name for a location to store a
value that is defined within a method or compound statement. All variables must be declared
before they can be used; this is done with a variable declaration statement. Because Java is a
statically typed language, a variable declaration specifies the type of the variable, and only

values of that type can be stored in the variable.

In its simplest form, a variable declaration specifies a variable’s type and name:

int counter;

String s;

A variable declaration can also include an initializer: an expression that specifies an initial value

for the variable. For example:

int i = 0;
String s = readLine();

int[] data = {x+1, x+2, x+3}; // Array initializers are discussed later

The Java compiler does not allow you to use a local variable that has not been initialized, so it is
usually convenient to combine variable declaration and initialization into a single statement. The
initializer expression need not be a literal value or a constant expression that can be evaluated
by the compiler; it can be an arbitrarily complex expression whose value is computed when the

program is run.

If a variable has an initializer then the programmer can use a special syntax to ask the compiler

to automatically work out the type, if it is possible to do so:

var i 0; // type of i inferred as int

var s = readLine(); // type of s inferred as String

This can be a useful syntax, but when learning the Java language it is probably better to avoid it

at first while you become familiar with the Java type system.

A single variable declaration statement can declare and initialize more than one variable, but all
variables must be of the same explicitly declared type. Variable names and optional initializers

are separated from each other with commas:

int i, 3, k;
float x = 1.0f, yv = 1.0£f;

String question = "Really Quit?", response;

Variable declaration statements can begin with the final keyword. This modifier specifies that

once an initial value is defined for the variable, that value is never allowed to change:

final String greeting = getlLocallanguageGreeting() ;

We will have more to say about the final keyword later on, especially when talking about the

immutable style of programming.

Java variable declaration statements can appear anywhere in Java code; they are not restricted to
the beginning of a method or block of code. Local variable declarations can also be integrated

with the initialize portion of a for loop, as we’ll 2discuss shortly.

Local variables can be used only within the method or block of code in which they are defined.

This is called their scope or lexical scope:

void method () { // A method definition
int i = 0; // Declare variable 1
while (i < 10) { // 1 1is in scope here
int 7 = 0; // Declare j,; the scope of j begins here
1++; // 1 is 1in scope here; increment it

} // 7 1is no longer in scope;
System.out.println(i); // i is still in scope here

} // The scope of i ends here

The if/else Statement

The if statement is a fundamental control statement that allows Java to make decisions or,
more precisely, to execute statements conditionally. The i f statement has an associated
expression and statement. If the expression evaluates to t rue, the interpreter executes the

statement. If the expression evaluates to false, the interpreter skips the statement.

NOTE

Java allows the expression to be of the wrapper type Boolean instead of the

primitive type boolean. In this case, the wrapper object is automatically unboxed.

Here is an example i f statement:

if (username == null) // If username 1s null,

username = "John Doe"; // use a default value

Although they look extraneous, the parentheses around the expression are a required part of the
syntax for the i f statement. As we already saw, a block of statements enclosed in curly braces

1s itself a statement, so we can write 1 £ statements that look like this as well:

if ((address == null) || (address.equals(""))) {
address = "[undefined]";

System.out.println ("WARNING: no address specified.");

An 1f statement can include an optional el se keyword that is followed by a second statement.

In this form of the statement, the expression is evaluated, and, if it is t rue, the first statement is

executed. Otherwise, the second statement is executed. For example:

if (username != null)
System.out.println("Hello " + username);

else {
username = askQuestion ("What is your name?");
System.out.println("Hello " + username + ". Welcome!");

When you use nested 1 f/else statements, some caution is required to ensure that the el se

clause goes with the appropriate i £ statement. Consider the following lines:

if (1 ==)
if (j == k)
System.out.println("i equals k");
else
System.out.println("i doesn't equal J"); // WRONG!!

In this example, the inner i f statement forms the single statement allowed by the syntax of the
outer 1 f statement. Unfortunately, it is not clear (except from the hint given by the indentation)
which if the else goes with. And in this example, the indentation hint is wrong. The rule is
that an e1 se clause like this is associated with the nearest i f statement. Properly indented, this

code looks like this:

if (i == 7j)
if (3 == k)
System.out.println("i equals k");
else
System.out.println("i doesn't equal j"); // WRONG!!

This is legal code, but it is clearly not what the programmer had in mind. When working with
nested i f statements, you should use curly braces to make your code easier to read. Here is a

better way to write the code:

if (1 == J) |
if (3 == k)
System.out.println("i equals k");
}
else {

System.out.println("i doesn't equal j");

THE ELSE IF CLAUSE

The 1 f/else statement is useful for testing a condition and choosing between two statements
or blocks of code to execute. But what about when you need to choose between several blocks
of code? This is typically done with an el se if clause, which is not really new syntax, but a

common idiomatic usage of the standard i f/else statement. It looks like this:

if (n == 1) {

// Execute code block #1
}
else if (n == 2) {

// Execute code block #2
}
else if (n == 3) {

// Execute code block #3

}
else {

// If all else fails, execute block #4

There is nothing special about this code. It is just a series of i f statements, where each 1f is
part of the e 1 se clause of the previous statement. Using the el se 1 f idiom is preferable to,

and more legible than, writing these statements out in their fully nested form:

if (n == 1) {
// Execute code block #1
}
else {
if (n == 2) {
// Execute code block #2
}
else {
if (n == 3) {
// Execute code block #3

}
else {

// If all else fails, execute block #4

The switch Statement

An i f statement causes a branch in the flow of a program’s execution. You can use multiple i f
statements, as shown in the previous section, to perform a multiway branch. This is not always

the best solution, however, especially when all of the branches depend on the value of a single

variable.

In this case, the repeated i f statements may seriously hamper readability, especially if the code

has been refactored over time or features multiple levels of nested 1 f.

A better solution is to use a switch statement, which is inherited from the C programming
language. Note, however, that the syntax of this statement is not nearly as elegant as other parts

of Java, and the failure to revisit the design of the feature is widely regarded as a mistake.

NOTE

A switch statement starts with an expression whose type is an int, short,
char, byte (or their wrapper type), String, or an enum (see Chapter 4 for more

on enumerated types).

This expression is followed by a block of code in curly braces that contains various entry points
that correspond to possible values for the expression. For example, the following switch
statement is equivalent to the repeated i f and el se/1if statements shown in the previous

section:

switch (n) {

case 1: // Start here if n == 1
// Execute code block #1
break; // Stop here

case 2: // Start here if n == 2
// Execute code block #2
break; // Stop here

case 3: // Start here if n == 3
// Execute code block #3
break; // Stop here

default: // If all else fails...
// Execute code block #4
break; // Stop here

As you can see from the example, the various entry points into a switch statement are labeled
either with the keyword case, followed by an integer value and a colon, or with the special
default keyword, followed by a colon. When a switch statement executes, the interpreter
computes the value of the expression in parentheses and then looks for a case label that
matches that value. If it finds one, the interpreter starts executing the block of code at the first
statement following the case label. If it does not find a case label with a matching value, the

interpreter starts execution at the first statement following a special-case default: label. Or, if

there is no default: label, the interpreter skips the body of the switch statement altogether.

Note the use of the break keyword at the end of each case in the previous code. The break
statement is described later in this chapter, but, in this example, it causes the interpreter to exit
the body of the switch statement. The case clauses in a switch statement specify only the
starting point of the desired code. The individual cases are not independent blocks of code,

and they do not have any implicit ending point.

WARNING

You must explicitly specify the end of each case with a break or related
statement. In the absence of break statements, a switch statement begins
executing code at the first statement after the matching case label and continues
executing statements until it reaches the end of the block. The control flow will fa/l

through into the next case label and continue executing, rather than exit the block.

On rare occasions, it is useful to write code like this that falls through from one case label to
the next, but 99% of the time you should be careful to end every case and default section
with a statement that causes the switch statement to stop executing. Normally you use a

break statement, but return and throw also work.

As a consequence of this default fall-through, a switch statement can have more than one
case clause labeling the same statement. Consider the switch statement in the following

method:

boolean parseYesOrNoResponse (char response) {

switch (response) {

case 'y':
case 'Y': return true;
case 'n':
case 'N': return false;
default:

throw new IllegalArgumentException ("Response must be Y or N");

The switch statement and its case labels have some important restrictions. First, the
expression associated with a switch statement must have an appropriate type—either byte,

char, short, int (or their wrappers), or an enum type or a St ring. The floating-point and

boolean types are not supported, and neither is 1ong, even though 1ong is an integer type.
Second, the value associated with each case label must be a constant value or a constant
expression the compiler can evaluate. A case label cannot contain a runtime expression
involving variables or method calls, for example. Third, the case label values must be within
the range of the data type used for the switch expression. And finally, it is not legal to have

two or more case labels with the same value or more than one default label.

The while Statement

The while statement is a basic statement that allows Java to perform repetitive actions—or, to

put it another way, it is one of Java’s primary looping constructs. It has the following syntax:

while (expression)

statement

The while statement works by first evaluating the expression, which must result in a
boolean or Boolean value. If the value is false, the interpreter skips the statement
associated with the loop and moves to the next statement in the program. If it is t rue, however,
the statement that forms the body of the loop is executed, and the expressionis
reevaluated. Again, if the value of expressionis false, the interpreter moves on to the
next statement in the program; otherwise, it executes the statement again. This cycle
continues while the expressionremains true (i.e., until it evaluates to false), at which
point the while statement ends, and the interpreter moves on to the next statement. You can

create an infinite loop with the syntax while (true).

Here is an example while loop that prints the numbers 0 to 9:

int count = 0;
while (count < 10) {
System.out.println (count) ;

count++;

As you can see, the variable count starts off at 0 in this example and is incremented each time
the body of the loop runs. Once the loop has executed 10 times, the expression becomes false
(i.e., count is no longer less than 10), the whi 1e statement finishes, and the Java interpreter
can move to the next statement in the program. Most loops have a counter variable like count.
The variable names i, 7, and k are commonly used as loop counters, although you should use

more descriptive names if it makes your code easier to understand.

The do Statement

A do loop is much like a while loop, except that the loop expression is tested at the bottom of
the loop rather than at the top. This means that the body of the loop is always executed at least

once. The syntax is:

do
statement

while (expression);

Notice a couple of differences between the do loop and the more ordinary while loop. First,
the do loop requires both the do keyword to mark the beginning of the loop and the while
keyword to mark the end and introduce the loop condition. Also, unlike the whi 1e loop, the do
loop is terminated with a semicolon. This is because the do loop ends with the loop condition
rather than simply ending with a curly brace that marks the end of the loop body. The following

do loop prints the same output as the whi 1e loop just discussed:

int count = 0;

do {
System.out.println (count) ;
count++;

} while (count < 10);

The do loop is much less commonly used than its while cousin because, in practice, it is
unusual to encounter a situation where you are sure you always want a loop to execute at least

once.

The for Statement

The for statement provides a looping construct that is often more convenient than the while
and do loops. The for statement takes advantage of a common looping pattern. Most loops
have a counter, or state variable of some kind, that is initialized before the loop starts, tested to
determine whether to execute the loop body, and then incremented or updated somehow at the
end of the loop body before the test expression is evaluated again. The initialize, test,
and update steps are the three crucial manipulations of a loop variable, and the for statement

makes these three steps an explicit part of the loop syntax:

for(initialize; test; update) {

statement

This for loop is basically equivalent to the following while loop:

initialize;
while (test) {
statement;

update;

Placing the initialize, test, and update expressions at the top of a for loop makes it
especially easy to understand what the loop is doing, and it prevents mistakes such as forgetting
to initialize or update the loop variable. The interpreter discards the values of the initialize
and update expressions, so to be useful, these expressions must have side effects.
initializeis typically an assignment expression, while update is usually an increment,

decrement, or some other assignment.

The following for loop prints the numbers 0 to 9, just as the previous while and do loops

have done:

int count;
for (count = 0 ; count < 10 ; count++)

System.out.println (count) ;

Notice how this syntax places all the important information about the loop variable on a single
line, making it very clear how the loop executes. Placing the update expression in the for
statement itself also simplifies the body of the loop to a single statement; we don’t even need to

use curly braces to produce a statement block.

The for loop supports some additional syntax that makes it even more convenient to use.
Because many loops use their loop variables only within the loop, the for loop allows the
initialize expression to be a full variable declaration, so that the variable is scoped to the

body of the loop and is not visible outside of it. For example:

for (int count = 0 ; count < 10 ; count++)

System.out.println (count) ;
Furthermore, the for loop syntax does not restrict you to writing loops that use only a single
variable. Both the initialize and update expressions of a for loop can use a comma to

separate multiple initializations and update expressions. For example:

for(int 1 = 0, j = 10 ; i < 10 ; i++, F—--)

sum += 1 * J;

Even though all the examples so far have counted numbers, for loops are not restricted to
loops that count numbers. For example, you might use a for loop to iterate through the

elements of a linked list:

for (Node n = listHead; n != null; n = n.nextNode())

process (n) ;

The initialize, test, and update expressions of a for loop are all optional; only the
semicolons that separate the expressions are required. If the test expression is omitted, it is

assumed to be true. Thus, you can write an infinite loop as for (; ;).

The foreach Statement

Java’s for loop works well for primitive types, but it is needlessly clunky for handling
collections of objects. Instead, an alternative syntax known as a foreach loop is used for

handling collections of objects that need to be looped over.

The foreach loop uses the keyword for followed by an opening parenthesis, a variable
declaration (without initializer), a colon, an expression, a closing parenthesis, and finally the

statement (or block) that forms the body of the loop:

for (declaration : expression)

statement

Despite its name, the foreach loop does not have a keyword foreach—instead, it is common

to read the colon as “in”—as in “foreach name in studentNames.”

For the while, do, and for loops, we’ve shown an example that prints 10 numbers. The
foreach loop can do this too, but it needs a collection to iterate over. In order to loop 10 times
(to print out 10 numbers), we need an array or other collection with 10 elements. Here’s code

W€ C¢an usc:

// These are the numbers we want to print

int[] primes = new int([] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
// This is the loop that prints them

for(int n : primes)

System.out.println(n);

WHAT FOREACH CANNOT DO

The foreach is different from the while, for, or do loops, because it hides the loop counter or
ITterator from you. This is a very powerful idea, as we’ll see when we discuss lambda

expressions, but there are some algorithms that cannot be expressed very naturally with a

foreach loop.

For example, suppose you want to print the elements of an array as a comma-separated list. To
do this, you need to print a comma after every element of the array except the last, or
equivalently, before every element of the array except the first. With a traditional for loop, the

code might look like this:

for(int i = 0; i < words.length; i++) {
if (i > 0) System.out.print(", ");

System.out.print (words([i]) ;

This is a very straightforward task, but you simply cannot do it with foreach without keeping
track of additional state. The problem is that the foreach loop doesn’t give you a loop counter or

any other way to tell if you’re on the first iteration, the last iteration, or somewhere in between.

NOTE

A similar issue exists when you’re using foreach to iterate through the elements of a
collection. Just as a foreach loop over an array has no way to obtain the array index
of the current element, a foreach loop over a collection has no way to obtain the

Iterator object that is being used to itemize the elements of the collection.

Here are some other things you cannot do with a foreach-style loop:
e Jterate backward through the elements of an array or List.
e Use a single loop counter to access the same-numbered elements of two distinct arrays.

o [terate through the elements of a Li st using calls to its get () method rather than calls to

its iterator.

The break Statement

A break statement causes the Java interpreter to skip immediately to the end of a containing

statement. We have already seen the break statement used with the switch statement. The

break statement is most often written as simply the keyword break followed by a semicolon:

break;

When used in this form, it causes the Java interpreter to immediately exit the innermost

containing while, do, for, or switch statement. For example:

for(int 1 = 0; 1 < data.length; i++) {
[1

if (datali] == target) { // When we find what we're looking for,
index = 1i; // remember where we found it
break; // and stop looking!
}
} // The Java interpreter goes here after executing break

The break statement can also be followed by the name of a containing labeled statement.
When used in this form, break causes the Java interpreter to immediately exit the named

block, which can be any kind of statement, not just a loop or switch. For example:

if (data !'= null) {
for (int row = 0; row < numrows; row++) {
for (int col = 0; col < numcols; col++) {
if (datalrow] [col] == null)
break TESTFORNULL; // treat the array as undefined.

}
} // Java interpreter goes here after executing break TESTFORNULL

The continue Statement

While a break statement exits a loop, a continue statement quits the current iteration of a
loop and starts the next one. continue, in both its unlabeled and labeled forms, can be used
only within a while, do, or for loop. When used without a label, continue causes the
innermost loop to start a new iteration. When used with a label that is the name of a containing

loop, it causes the named loop to start a new iteration. For example:

for(int i = 0; 1 < data.length; i++) { // Loop through data.
if (datafli] == -1) // If a data value is missing,
continue; // skip to the next iteration.
process (datal[i]); // Process the data value.

while, do, and for loops differ slightly in the way that continue starts a new iteration:

e With a while loop, the Java interpreter simply returns to the top of the loop, tests the loop

condition again, and, if it evaluates to t rue, executes the body of the loop again.

e With a do loop, the interpreter jumps to the bottom of the loop, where it tests the loop

condition to decide whether to perform another iteration of the loop.

e With a for loop, the interpreter jumps to the top of the loop, where it first evaluates the
upda te expression and then evaluates the test expression to decide whether to loop
again. As you can see from the examples, the behavior of a for loop with a continue
statement is different from the behavior of the “basically equivalent” whi 1e loop presented

earlier; update gets evaluated in the for loop but not in the equivalent while loop.

The return Statement

A return statement tells the Java interpreter to stop executing the current method. If the
method is declared to return a value, the return statement must be followed by an expression.
The value of the expression becomes the return value of the method. For example, the following

method computes and returns the square of a number:

double square (double x) { // A method to compute x squared

return x * x; // Compute and return a value

Some methods are declared void to indicate that they do not return any value. The Java
interpreter runs methods like this by executing their statements one by one until it reaches the
end of the method. After executing the last statement, the interpreter returns implicitly.
Sometimes, however, a void method has to return explicitly before reaching the last statement.
In this case, it can use the return statement by itself, without any expression. For example,
the following method prints, but does not return, the square root of its argument. If the argument

is a negative number, it returns without printing anything:

// A method to print square root of x

void printSquareRoot (double x)
if (x < 0) return; // If x 1s negative, return
System.out.println (Math.sqrt(x)); // Print the square root of x

} // Method end: return implicitly

The synchronized Statement

Java has always provided support for multithreaded programming. We cover this in some detail

later on (especially in “Java’s Support for Concurrency”); however, be aware that concurrency

is difficult to get right, and has a number of subtleties.

In particular, when working with multiple threads, you must often take care to prevent multiple
threads from modifying an object simultaneously in a way that might corrupt the object’s state.
Java provides the synchronized statement to help the programmer prevent corruption. The

syntax is:

synchronized (expression) {

statements

expression is an expression that must evaluate to an object (including arrays).
statements constitute the code of the section that could cause damage and must be enclosed

in curly braces.

NOTE

In Java, the protection of object state (i.e., data) is the primary concern of the
concurrency primitives. This is unlike some other languages, where the exclusion of

threads from critical sections (i.e., code) is the main focus.

Before executing the statement block, the Java interpreter first obtains an exclusive lock on the
object or array specified by expression. It holds the lock until it is finished running the
block, then releases it. While a thread holds the lock on an object, no other thread can obtain
that lock.

As well as the block form, synchronized can also be used as a method modifier in Java.
When applied to a method, the keyword indicates that the entire method is treated as

synchronized.

For a synchronized instance method, Java obtains an exclusive lock on the class instance.
(Class and instance methods are discussed in Chapter 3.) It can be thought of as a

synchronized (this) { ... } block that covers the entire method.

A static synchronized method (a class method) causes Java to obtain an exclusive lock

on the class (technically the class object corresponding to the type) before executing the method.

The throw Statement

An exception is a signal that indicates some sort of exceptional condition or error has occurred.
To throw an exception is to signal an exceptional condition. To catch an exception is to handle

it—to take whatever actions are necessary to recover from it.

In Java, the throw statement is used to throw an exception:

throw expression;

The expression must evaluate to an exception object that describes the exception or error
that has occurred. We’ll talk more about types of exceptions shortly; for now, all you need to

know is that an exception:

e [s represented by an object

Has a type that is a subclass of Exception

Has a slightly specialized role in Java’s syntax

Can be of two different types: checked or unchecked

Here is some example code that throws an exception:

public static double factorial (int x) {
if (x < 0)
throw new IllegalArgumentException ("x must be >= 0");
double fact;
for (fact=1.0; x > 1; fact *= x, x—--)
/* empty */ ; // Note use of the empty statement

return fact;

When the Java interpreter executes a throw statement, it immediately stops normal program
execution and starts looking for an exception handler that can catch, or handle, the exception.
Exception handlers are written with the try/catch/finally statement, which is described
in the next section. The Java interpreter first looks at the enclosing block of code to see if it has
an associated exception handler. If so, it exits that block of code and starts running the
exception-handling code associated with the block. After running the exception handler, the

interpreter continues execution at the statement immediately following the handler code.

If the enclosing block of code does not have an appropriate exception handler, the interpreter
checks the next higher enclosing block of code in the method. This continues until a handler is

found. If the method does not contain an exception handler that can handle the exception thrown

by the throw statement, the interpreter stops running the current method and returns to the
caller. Now the interpreter starts looking for an exception handler in the blocks of code of the
calling method. In this way, exceptions propagate up through the lexical structure of Java
methods, up the call stack of the Java interpreter. If the exception is never caught, it propagates
all the way up to the main () method of the program. If it is not handled in that method, the
Java interpreter prints an error message, prints a stack trace to indicate where the exception

occurred, and then exits.

The try/catch/finally Statement

Java has two slightly different exception-handling mechanisms. The classic form is the
try/catch/finally statement. The t ry clause of this statement establishes a block of
code for exception handling. This t ry block is followed by zero or more catch clauses, each
of which is a block of statements designed to handle specific exceptions. Each catch block can
handle more than one different exception—to indicate that a catch block should handle
multiple exceptions, we use the | symbol to separate the different exceptions a catch block
should handle. The catch clauses are followed by an optional £inally block that contains

cleanup code guaranteed to be executed regardless of what happens in the t ry block.

TRY BLOCK SYNTAX

Both the catch and finally clauses are optional, but every try block must either declare
some automatically managed resources (the try-with-resources construct) or be
accompanied by one or the other (or both). The try, catch, and finally blocks all begin
and end with curly braces. These are a required part of the syntax and cannot be omitted,
even if the clause contains only a single statement.

—
The following code illustrates the syntax and purpose of the try/catch/finally

statement:

try {
// Normally this code runs from the top of the block to the bottom
// without problems. But it can sometimes throw an exception,
// either directly with a throw statement or indirectly by calling

// a method that throws an exception.

catch (SomeException el) ({
// This block contains statements that handle an exception object
// of type SomeException or a subclass of that type. Statements in
// this block can refer to that exception object by the name el.

catch (AnotherException | YetAnotherException e2) {

// This block contains statements that handle an exception of

// type AnotherException or YetAnotherException, or a subclass of
// either of those types. Statements in this block refer to the
// exception object they receive by the name e2.
}
finally {
// This block contains statements that are always executed
// after we leave the try clause, regardless of whether we leave it:
// 1) normally, after reaching the bottom of the block;
// 2) because of a break, continue, or return statement;,
// 3) with an exception that is handled by a catch clause above;,
// 4) with an uncaught exception that has not been handled.
// If the try clause calls System.exit (), however, the interpreter

// exits before the finally clause can be run.

TRY

The try clause simply establishes a block of code that either has its exceptions handled or
needs special cleanup code to be run when it terminates for any reason. The t ry clause by itself
doesn’t do anything interesting; it is the catch and finally clauses that do the exception-

handling and cleanup operations.

CATCH

A try block can be followed by zero or more catch clauses that specify code to handle
various types of exceptions. Each catch clause is declared with a single argument that
specifies the types of exceptions the clause can handle (possibly using the special | syntax to
indicate that the catch block can handle more than one type of exception) and also provides a
name the clause can use to refer to the exception object it is currently handling. Any type that a

catch block wishes to handle must be some subclass of Throwable.

When an exception is thrown, the Java interpreter looks for a catch clause with an argument
that matches the same type as the exception object or a superclass of that type. The interpreter
invokes the first such catch clause it finds. The code within a catch block should take
whatever action is necessary to cope with the exceptional condition. If the exception is a
java.io.FileNotFoundException exception, for example, you might handle it by

asking the user to check his spelling and try again.

It is not required to have a catch clause for every possible exception; in some cases, the
correct response is to allow the exception to propagate up and be caught by the invoking
method. In other cases, such as a programming error signaled by Nul1PointerException,
the correct response is probably not to catch the exception at all, but allow it to propagate and

have the Java interpreter exit with a stack trace and an error message.

FINALLY

The finally clause is generally used to clean up after the code in the t ry clause (e.g., close
files and shut down network connections). The finally clause is useful because it is
guaranteed to be executed if any portion of the t ry block is executed, regardless of how the
code in the t ry block completes. In fact, the only way a t ry clause can exit without allowing
the finally clause to be executed is by invoking the System.exit () method, which

causes the Java interpreter to stop running.

In the normal case, control reaches the end of the t ry block and then proceeds to the finally
block, which performs any necessary cleanup. If control leaves the t ry block because of a
return, continue, or break statement, the finally block is executed before control

transfers to its new destination.

If an exception occurs in the t ry block and there is an associated catch block to handle the
exception, control transfers first to the catch block and then to the finally block. If there is
no local catch block to handle the exception, control transfers first to the finally block,

and then propagates up to the nearest containing catch clause that can handle the exception.

If a finally block itself transfers control with a return, continue, break, or throw
statement or by calling a method that throws an exception, the pending control transfer is
abandoned, and this new transfer is processed. For example, ifa finally clause throws an
exception, that exception replaces any exception that was in the process of being thrown. If a
finally clause issues a return statement, the method returns normally, even if an exception

has been thrown and has not yet been handled.

tryand finally can be used together without exceptions or any catch clauses. In this case,
the finally block is simply cleanup code that is guaranteed to be executed, regardless of any

break, continue, or return statements within the try clause.

The try-with-resources Statement

The standard form of a t ry block is very general, but there is a common set of circumstances
that require developers to be very careful when writing catch and £inally blocks. These
circumstances are when operating with resources that need to be cleaned up or closed when they

are no longer needed.

Java provides a very useful mechanism for automatically closing resources that require cleanup.
This is known as try-with-resources, or TWR. We discuss TWR in detail in “Classic Java 1/0”,
but for completeness, let’s introduce the syntax now. The following example shows how to open
a file using the FileInputStreamn class (which results in an object that will require

cleanup):

try (InputStream is = new FileInputStream("/Users/ben/details.txt")) {
// ... process the file

2
This new form of t ry takes parameters that are all objects that require cleanup. These

objects are scoped to this t ry block, and are then cleaned up automatically no matter how this
block is exited. The developer does not need to write any catch or finally blocks—the

Java compiler automatically inserts correct cleanup code.

All new code that deals with resources should be written in the TWR style—it is considerably
less error prone than manually writing catch blocks, and does not suffer from the problems

that plague techniques such as finalization (see “Finalization” for details).

The assert Statement

An assert statement is an attempt to provide a capability to verify design assumptions in Java
code. An assertion consists of the assert keyword followed by a boolean expression that the
programmer believes should always evaluate to t rue. By default, assertions are not enabled,

and the assert statement does not actually do anything.

It is possible to enable assertions as a debugging tool, however; when this is done, the assert
statement evaluates the expression. If it is indeed t rue, assert does nothing. On the other
hand, if the expression evaluates to false, the assertion fails, and the assert statement

throws a java.lang.AssertionError.

TIP

Outside of the core JDK libraries, the assert statement is extremely rarely used. It
turns out to be too inflexible for testing most applications and is not often used by
ordinary developers. Instead, developers use ordinary testing libraries, such as
JUnit.

The assert statement may include an optional second expression, separated from the first by a
colon. When assertions are enabled and the first expression evaluates to false, the value of the
second expression is taken as an error code or error message and is passed to the

AssertionError () constructor. The full syntax of the statement is:

assert assertion;

or:

assert assertion : errorcode;

To use assertions effectively, you must also be aware of a couple of fine points. First, remember
that your programs will normally run with assertions disabled and only sometimes with
assertions enabled. This means that you should be careful not to write assertion expressions that

contain side effects.

WARNING

You should never throw AssertionError from your own code, as it may have

unexpected results in future versions of the platform.

If an AssertionError is thrown, it indicates that one of the programmer’s assumptions has
not held up. This means that the code is being used outside of the parameters for which it was
designed, and it cannot be expected to work correctly. In short, there is no plausible way to
recover from an AssertionError, and you should not attempt to catch it (unless you catch it

at the top level simply so that you can display the error in a more user-friendly fashion).

ENABLING ASSERTIONS

For efficiency, it does not make sense to test assertions each time code is executed—assert
statements encode assumptions that should always be true. Thus, by default, assertions are
disabled, and assert statements have no effect. The assertion code remains compiled in the
class files, however, so it can always be enabled for diagnostic or debugging purposes. You can
enable assertions, either across the board or selectively, with command-line arguments to the

Java interpreter.

To enable assertions in all classes except for system classes, use the —ea argument. To enable
assertions in system classes, use —esa. To enable assertions within a specific class, use —ea

followed by a colon and the class name:

java - com.example.sorters.MergeSort com.example.sorters.Test

To enable assertions for all classes in a package and in all of its subpackages, follow the —ea

argument with a colon, the package name, and three dots:

Jjava - com.example.sorters... com.example.sorters.Test

You can disable assertions in the same way, using the —da argument. For example, to enable

assertions throughout a package and then disable them in a specific class or subpackage, use:

java - com.example.sorters... - com.example.sorters.QuickSort

java - com.example.sorters... - com.example.sorters.plugins..

Finally, it is possible to control whether or not assertions are enabled or disabled at classloading
time. If you use a custom classloader (see Chapter 11 for details on custom classloading) in your

program and want to turn on assertions, you may be interested in these methods.

Methods

A method is a named sequence of Java statements that can be invoked by other Java code. When
a method is invoked, it is passed zero or more values known as arguments. The method
performs some computations and, optionally, returns a value. As described earlier in
“Expressions and Operators”, a method invocation is an expression that is evaluated by the Java
interpreter. Because method invocations can have side effects, however, they can also be used as
expression statements. This section does not discuss method invocation, but instead describes

how to define methods.

Defining Methods

You already know how to define the body of a method; it is simply an arbitrary sequence of

statements enclosed within curly braces. What is more interesting about a method is its
3
signature. The signature specifies the following:

¢ The name of the method
¢ The number, order, type, and name of the parameters used by the method
e The type of the value returned by the method

e The checked exceptions that the method can throw (the signature may also list unchecked

exceptions, but these are not required)
¢ Various method modifiers that provide additional information about the method

A method signature defines everything you need to know about a method before calling it. It is

the method specification and defines the API for the method. In order to use the Java platform’s

online API reference, you need to know how to read a method signature. And, in order to write
Java programs, you need to know how to define your own methods, each of which begins with a

method signature.

A method signature looks like this:

modifiers type name (paramlist) [throws exceptions]

The signature (the method specification) is followed by the method body (the method
implementation), which is simply a sequence of Java statements enclosed in curly braces. If the
method is abstract (see Chapter 3), the implementation is omitted, and the method body is

replaced with a single semicolon.

The signature of a method may also include type variable declarations—such methods are

known as generic methods. Generic methods and type variables are discussed in Chapter 4.

Here are some example method definitions, which begin with the signature and are followed by

the method body:

// This method is passed an array of strings and has no return value.
// All Java programs have an entry point with this name and signature.
public static void main (String[] args) {

if (args.length > 0) System.out.println("Hello " + args[0]);

else System.out.println("Hello world");

// This method is passed two double arguments and returns a double.
static double distanceFromOrigin (double x, double y) {

return Math.sqgrt (x*x + y*y);

// This method is abstract which means it has no body.

// Note that it may throw exceptions when invoked.

protected abstract String readText (File f, String encoding)
throws FileNotFoundException, UnsupportedEncodingException;

modifiers is zero or more special modifier keywords, separated from each other by spaces.
A method might be declared with the public and static modifiers, for example. The

allowed modifiers and their meanings are described in the next section.

The type in a method signature specifies the return type of the method. If the method does not
return a value, t ype must be void. If a method is declared with a non-vo1id return type, it

must include a return statement that returns a value of (or is convertible to) the declared type.

A constructor is a block of code, similar to a method, that is used to initialize newly created
objects. As we’ll see in Chapter 3, constructors are defined in a very similar way to methods,

except that their signatures do not include this type specification.

The name of a method follows the specification of its modifiers and type. Method names, like
variable names, are Java identifiers and, like all Java identifiers, may contain letters in any
language represented by the Unicode character set. It is legal, and often quite useful, to define
more than one method with the same name, as long as each version of the method has a different

parameter list. Defining multiple methods with the same name is called method overloading.

TIP

Unlike some other languages, Java does not have anonymous methods. Instead,
Java 8 introduces lambda expressions, which are similar to anonymous methods, but
which the Java runtime automatically converts to a suitable named method—see

“Lambda Expressions” for more details.

For example, the System.out.println () method we’ve seen already is an overloaded
method. One method by this name prints a string and other methods by the same name print the
values of the various primitive types. The Java compiler decides which method to call based on

the type of the argument passed to the method.

When you are defining a method, the name of the method is always followed by the method’s
parameter list, which must be enclosed in parentheses. The parameter list defines zero or more
arguments that are passed to the method. The parameter specifications, if there are any, each
consist of a type and a name and are separated from each other by commas (if there are multiple
parameters). When a method is invoked, the argument values it is passed must match the
number, type, and order of the parameters specified in this method signature line. The values
passed need not have exactly the same type as specified in the signature, but they must be

convertible to those types without casting.

NOTE

When a Java method expects no arguments, its parameter list is simply (), not
(void) . Java does not regard void as a type—C and C++ programmers in

particular should pay heed.

Java allows the programmer to define and invoke methods that accept a variable number of
arguments, using a syntax known colloquially as varargs. Varargs are covered in detail later in

this chapter.

The final part of a method signature is the throws clause, which is used to list the checked
exceptions that a method can throw. Checked exceptions are a category of exception classes that

must be listed in the throws clauses of methods that can throw them.

If a method uses the throw statement to throw a checked exception, or if it calls some other
method that throws a checked exception, and does not catch or handle that exception, the

method must declare that it can throw that exception.

If a method can throw one or more checked exceptions, it specifies this by placing the throws
keyword after the argument list and following it by the name of the exception class or classes it
can throw. If a method does not throw any exceptions, it does not use the throws keyword. If a
method throws more than one type of exception, separate the names of the exception classes

from each other with commas. More on this in a bit.

Method Modifiers

The modifiers of a method consist of zero or more modifier keywords such as public,

static, or abstract. Here is a list of allowed modifiers and their meanings:

abstract

An abstract method is a specification without an implementation. The curly braces and
Java statements that would normally comprise the body of the method are replaced with a
single semicolon. A class that includes an abstract method must itself be declared

abstract. Such a class is incomplete and cannot be instantiated (see Chapter 3).

final

A final method may not be overridden or hidden by a subclass, which makes it amenable
to compiler optimizations that are not possible for regular methods. All private methods

are implicitly final, as are all methods of any class that is declared final.

native

b

The native modifier specifies that the method implementation is written in some “native’
language such as C and is provided externally to the Java program. Like abstract

methods, native methods have no body: the curly braces are replaced with a semicolon.

IMPLEMENTING NATIVE METHODS

When Java was first released, native methods were sometimes used for efficiency
reasons. That is almost never necessary today. Instead, native methods are used to
interface Java code to existing libraries written in C or C++. native methods are implicitly
platform-dependent, and the procedure for linking the implementation with the Java class
that declares the method is dependent on the implementation of the Java virtual machine.
native methods are not covered in this book.

—

public, protected, private

These access modifiers specify whether and where a method can be used outside of the class

that defines it. These very important modifiers are explained in Chapter 3.

static

A method declared static is a class method associated with the class itself rather than

with an instance of the class (we cover this in more detail in Chapter 3).

strictfp

The fp in this awkwardly named, rarely used modifier stands for “floating point.” Java
normally takes advantage of any extended precision available to the runtime platform’s
floating-point hardware. The use of this keyword forces Java to strictly obey the standard
while running the st rictfp method and only perform floating-point arithmetic using 32-

or 64-bit floating-point formats, even if this makes the results less accurate.

synchronized

The synchronized modifier makes a method threadsafe. Before a thread can invoke a
synchronized method, it must obtain a lock on the method’s class (for static
methods) or on the relevant instance of the class (for non-static methods). This prevents

two threads from executing the method at the same time.

The synchronized modifier is an implementation detail (because methods can make
themselves threadsafe in other ways) and is not formally part of the method specification or
API. Good documentation specifies explicitly whether a method is threadsafe; you should not
rely on the presence or absence of the synchronized keyword when working with

multithreaded programs.

TIP

Annotations are an interesting special case (see Chapter 4 for more on annotations)
—they can be thought of as a halfway house between a method modifier and

additional supplementary type information.

Checked and Unchecked Exceptions

The Java exception-handling scheme distinguishes between two types of exceptions, known as

checked and unchecked exceptions.

The distinction between checked and unchecked exceptions has to do with the circumstances
under which the exceptions could be thrown. Checked exceptions arise in specific, well-defined
circumstances, and very often are conditions from which the application may be able to partially

or fully recover.

For example, consider some code that might find its configuration file in one of several possible
directories. If we attempt to open the file from a directory it isn’t present in, then a
FileNotFoundException will be thrown. In our example, we want to catch this exception
and move on to try the next possible location for the file. In other words, although the file not
being present is an exceptional condition, it is one from which we can recover, and it is an

understood and anticipated failure.

On the other hand, in the Java environment there are a set of failures that cannot easily be
predicted or anticipated, due to such things as runtime conditions or abuse of library code. There
is no good way to predict an OutOfMemoryError, for example, and any method that uses
objects or arrays can throw a Nul1lPointerException ifitis passed an invalid null

argument.

These are the unchecked exceptions—and practically any method can throw an unchecked
exception at essentially any time. They are the Java environment’s version of Murphy’s law:
“Anything that can go wrong, will go wrong.” Recovery from an unchecked exception is usually

very difficult, if not impossible—simply due to their sheer unpredictability.

To figure out whether an exception is checked or unchecked, remember that exceptions are
Throwable objects and that these fall into two main categories, specified by the Error and
Exception subclasses. Any exception object that is an Error is unchecked. There is also a
subclass of Exception called RuntimeException—and any subclass of

RuntimeException is also an unchecked exception. All other exceptions are checked

exceptions.

WORKING WITH CHECKED EXCEPTIONS

Java has different rules for working with checked and unchecked exceptions. If you write a
method that throws a checked exception, you must use a throws clause to declare the
exception in the method signature. The Java compiler checks to make sure you have declared
them in method signatures and produces a compilation error if you have not (that’s why they’re

called “checked exceptions™).

Even if you never throw a checked exception yourself, sometimes you must use a throws
clause to declare a checked exception. If your method calls a method that can throw a checked
exception, you must either include exception-handling code to handle that exception or use

throws to declare that your method can also throw that exception.

For example, the following method tries to estimate the size of a web page—it uses the standard
java.net libraries, and the class URL (we’ll meet these in Chapter 10) to contact the web
page. It uses methods and constructors that can throw various types of

java.io.IOException objects, so it declares this fact with a throws clause:

public static estimateHomepageSize (String host) throws IOException {
URL url = new URL ("htp://"+ host +"/");
try (InputStream in = url.openStream()) {

return in.available () ;

In fact, the preceding code has a bug: we’ve misspelled the protocol specifier—there’s no such
protocol as Atp://. So, the estimateHomepageSize () method will always fail with a

MalformedURLException.

How do you know if the method you are calling can throw a checked exception? You can look
at its method signature to find out. Or, failing that, the Java compiler will tell you (by reporting

a compilation error) if you’ve called a method whose exceptions you must handle or declare.

Variable-Length Argument Lists

Methods may be declared to accept, and may be invoked with, variable numbers of arguments.
Such methods are commonly known as varargs methods. The “print formatted” method
System.out.printf () as well as the related format () methods of String use varargs,

as do a number of important methods from the Reflection APl of java.lang.reflect.

To declare a variable-length argument list, follow the type of the last argument to the method

with an ellipsis (. . .), indicating that this last argument can be repeated zero or more times. For

example:

public static int max(int first, int... rest) {
/* body omitted for now */

Varargs methods are handled purely by the compiler. They operate by converting the variable

number of arguments into an array. To the Java runtime, the max () method is indistinguishable

from this one:

public static int max(int first, int[] rest) {
/* body omitted for now */

To convert a varargs signature to the “real” signature, simply replace . . . with []. Remember
that only one ellipsis can appear in a parameter list, and it may only appear on the last parameter

in the list.

Let’s flesh out the max () example a little:

public static int max (int first, int... rest) {
int max = first;
for(int i : rest) { // legal because rest 1is actually an array
if (i > max) max = 1i;

}

return max;

This max () method is declared with two arguments. The first is just a regular int value. The
second, however, may be repeated zero or more times. All of the following are legal invocations

ofmax ():

max (0)
max (1, 2)
max (16, 8, 4, 2, 1)

Because varargs methods are compiled into methods that expect an array of arguments,
invocations of those methods are compiled to include code that creates and initializes such an

array. So the call max (1, 2, 3) is compiled to this:

max (1, new int[] { 2, 3 })

In fact, if you already have method arguments stored in an array, it is perfectly legal for you to

pass them to the method that way, instead of writing them out individually. You can treat any
. argument as if it were declared as an array. The converse is not true, however: you can

only use varargs method invocation syntax when the method is actually declared as a varargs

method using an ellipsis.

Introduction to Classes and Objects

Now that we have introduced operators, expressions, statements, and methods, we can finally
talk about classes. A class is a named collection of fields that hold data values and methods that
operate on those values. Classes are just one of five reference types supported by Java, but they
are the most important type. Classes are thoroughly documented in a chapter of their own
(Chapter 3). We introduce them here, however, because they are the next higher level of syntax
after methods, and because the rest of this chapter requires a basic familiarity with the concept
of a class and the basic syntax for defining a class, instantiating it, and using the resulting

object.

The most important thing about classes is that they define new data types. For example, you
might define a class named Point to represent a data point in the two-dimensional Cartesian
coordinate system. This class would define fields (each of type double) to hold the x and y
coordinates of a point and methods to manipulate and operate on the point. The Point class is

a new data type.

When discussing data types, it is important to distinguish between the data type itself and the
values the data type represents. char is a data type: it represents Unicode characters. But a
char value represents a single specific character. A class is a data type; a class value is called
an object. We use the name class because each class defines a type (or kind, or species, or class)
of objects. The Point class is a data type that represents x,y points, while a Point object
represents a single specific x,y point. As you might imagine, classes and their objects are closely

linked. In the sections that follow, we will discuss both.

Defining a Class

Here is a possible definition of the Point class we have been discussing:

/** Represents a Cartesian (x,y) point */
public class Point {
// The coordinates of the point
public double x, y;

public Point (double x, double y) ({ // A constructor that
this.x = x; this.y = y; // initializes the fields

public double distanceFromOrigin () { // A method that operates
return Math.sqrt (x*x + y*y); // on the x and y fields

This class definition is stored in a file named Point.java and compiled to a file named
Point.class, where it is available for use by Java programs and other classes. This class
definition is provided here for completeness and to provide context, but don’t expect to

understand all the details just yet; most of Chapter 3 is devoted to the topic of defining classes.

Keep in mind that you don’t have to define every class you want to use in a Java program. The
Java platform includes thousands of predefined classes that are guaranteed to be available on

every computer that runs Java.

Creating an Object

Now that we have defined the Point class as a new data type, we can use the following line to

declare a variable that holds a Point object:

Point p;

Declaring a variable to hold a Point object does not create the object itself, however. To
actually create an object, you must use the new operator. This keyword is followed by the
object’s class (i.e., its type) and an optional argument list in parentheses. These arguments are

passed to the constructor for the class, which initializes internal fields in the new object:

// Create a Point object representing (2,-3.5).
// Declare a variable p and store a reference to the new Point object

Point p = new Point (2.0, -3.5);

// Create some other objects as well

// An object that represents the current time
LocalDateTime d = new LocalDateTime () ;

// A HashSet object to hold a set of strings
Set<String> words = new HashSet<> ()

The new keyword is by far the most common way to create objects in Java. A few other ways
are also worth mentioning. First, classes that meet certain criteria are so important that Java

defines special literal syntax for creating objects of those types (as we discuss later in this

section). Second, Java supports a dynamic loading mechanism that allows programs to load
classes and create instances of those classes dynamically. See Chapter 11 for more details.
Finally, objects can also be created by deserializing them. An object that has had its state saved,
or serialized, usually to a file, can be re-created using the java.io.ObjectInputStream

class.

Using an Object

Now that we’ve seen how to define classes and instantiate them by creating objects, we need to
look at the Java syntax that allows us to use those objects. Recall that a class defines a collection
of fields and methods. Each object has its own copies of those fields and has access to those

methods. We use the dot character (.) to access the named fields and methods of an object. For

example:
Point p = new Point (2, 3); // Create an object
double x = p.x; // Read a field of the object
PV = pP.X * p.X; // Set the value of a field
double d = p.distanceFromOrigin(); // Access a method of the object

This syntax is very common when programming in object-oriented languages, and Java is no
exception, frequently. Note, in particular, the expressions p.distance FromOrigin ().
This tells the Java compiler to look up a method named distance FromOrigin () (which is
defined by the class Point) and use that method to perform a computation on the fields of the

object p. We’ll cover the details of this operation in Chapter 3.

Object Literals

In our discussion of primitive types, we saw that each primitive type has a literal syntax for
including values of the type literally into the text of a program. Java also defines a literal syntax

for a few special reference types, as described next.

STRING LITERALS

The String class represents text as a string of characters. Because programs usually

communicate with their users through the written word, the ability to manipulate strings of text
is quite important in any programming language. In Java, strings are objects; the data type used
to represent text is the St ring class. Modern Java programs usually use more string data than

anything else.

Accordingly, because strings are such a fundamental data type, Java allows you to include text

literally in programs by placing it between double-quote (") characters. For example:

String name = "David";

System.out.println ("Hello, " + name);

Don’t confuse the double-quote characters that surround string literals with the single-quote (or
apostrophe) characters that surround char literals. String literals can contain any of the escape
sequences char literals can (see Table 2-2). Escape sequences are particularly useful for

embedding double-quote characters within double-quoted string literals. For example:

String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

String literals cannot contain comments and may consist of only a single line. Java does not
support any kind of continuation-character syntax that allows two separate lines to be treated as
a single line. If you need to represent a long string of text that does not fit on a single line, break

it into independent string literals and use the + operator to concatenate the literals. For example:

// This is illegal; string literals cannot be broken across lines.
String x = "This is a test of the

emergency broadcast system";

String s = "This is a test of the " + // Do this instead

"emergency broadcast system";

The literals are concatenated when your program is compiled, not when it is run, so you do not

need to worry about any kind of performance penalty.

TYPE LITERALS

The second type that supports its own special object literal syntax is the class named Class.
Instances of the C1ass class represent a Java data type, and contain metadata about the type
that is referred to. To include a C1ass object literally in a Java program, follow the name of

any data type with . class. For example:

Class<?> typelInt = int.class;
Class<?> typelIntArray = int[].class;
Class<?> typePoint = Point.class;

THE NULL REFERENCE

The null keyword is a special literal value that is a reference to nothing, or an absence of a
reference. The nul1l value is unique because it is a member of every reference type. You can

assign null to variables of any reference type. For example:

String s = null;
Point p = null;

Lambda Expressions

In Java 8, a major new feature was introduced—/ambda expressions. These are a very common
programming language construct, and in particular are extremely widely used in the family of
languages known as functional programming languages (e.g., Lisp, Haskell, and OCaml). The
power and flexibility of lambdas goes far beyond just functional languages, and they can be

found in almost all modern programming languages.

DEFINITION OF A LAMBDA EXPRESSION

A lambda expression is essentially a function that does not have a name, and can be treated
as a value in the language. As Java does not allow code to run around on its own outside of
classes, in Java, this means that a lambda is an anonymous method that is defined on some
class (that is possibly unknown to the developer).

—

The syntax for a lambda expression looks like this:

(paramlist) -> { statements }

One simple, very traditional example:

Runnable r = () -> System.out.println("Hello World");

When a lambda expression is used as a value, it is automatically converted to a new object of
the correct type for the variable that it is being placed into. This auto-conversion and #ype
inference is essential to Java’s approach to lambda expressions. Unfortunately, it relies on a
proper understanding of Java’s type system as a whole. “Nested Types” provides a more
detailed explanation of lambda expressions—so for now, it suffices to simply recognize the

syntax for lambdas.

A slightly more complex example:

ActionlListener listener = (e) -> {
System.out.println ("Event fired at: "+ e.getWhen());
System.out.println ("Event command: "+ e.getActionCommand()) ;

}i

Arrays

An array is a special kind of object that holds zero or more primitive values or references.
These values are held in the elements of the array, which are unnamed variables referred to by
their position or index. The type of an array is characterized by its element type, and all elements

of the array must be of that type.

Array elements are numbered starting with zero, and valid indexes range from zero to the
number of elements minus one. The array element with index 1, for example, is the second
element in the array. The number of elements in an array is its length. The length of an array is

specified when the array is created, and it never changes.

The element type of an array may be any valid Java type, including array types. This means that
Java supports arrays of arrays, which provide a kind of multidimensional array capability. Java

does not support the matrix-style multidimensional arrays found in some languages.

Array Types

Array types are reference types, just as classes are. Instances of arrays are objects, just as the

4
instances of a class are. Unlike classes, array types do not have to be defined. Simply place

square brackets after the element type. For example, the following code declares three variables

of array type:
byte b; // byte is a primitive type
byte[] arrayOfBytes; // byte[] is an array of byte values
byte[][] arrayOfArrayOfBytes; // byte[][] is an array of bytel[]
String[] points; // String[] is an array of strings

The length of an array is not part of the array type. It is not possible, for example, to declare a
method that expects an array of exactly four int values. If a method parameter is of type

int[], acaller can pass an array with any number (including zero) of elements.

Array types are not classes, but array instances are objects. This means that arrays inherit the
methods of java.lang.Object. Arrays implement the Cloneable interface and override
the clone () method to guarantee that an array can always be cloned and that c1one () never
throws a CloneNotSupportedException. Arrays also implement Serializable so
that any array can be serialized if its element type can be serialized. Finally, all arrays have a

public final int field named 1ength that specifies the number of elements in the array.

ARRAY TYPE WIDENING CONVERSIONS

Because arrays extend Object and implement the Cloneable and Serializable

interfaces, any array type can be widened to any of these three types. But certain array types can
also be widened to other array types. If the element type of an array is a reference type T, and T

is assignable to a type S, the array type T [] is assignable to the array type S []. Note that there

are no widening conversions of this sort for arrays of a given primitive type. As examples, the

following lines of code show legal array widening conversions:

String[] arrayOfStrings; // Created elsewhere
int[][] arrayOfArraysOfInt; // Created elsewhere
// String is assignable to Object,

// so String[] 1is assignable to Object/[]

Object[] oa = arrayOfStrings;

// String implements Comparable, so a String[] can
// be considered a Comparable[]

Comparable[] ca = arrayOfStrings;

// An int[] 1is an Object, so int[][] is assignable to Object[]
Object[] oca2 = arrayOfArraysOfInt;

// All arrays are cloneable, serializable Objects
Object o = arrayOfStrings;

Cloneable ¢ = arrayOfArraysOflInt;

Serializable s = arrayOfArraysOfInt[O0];

This ability to widen an array type to another array type means that the compile-time type of an

array is not always the same as its runtime type.

TIP

This widening is known as array covariance, and as we shall see in “Bounded Type
Parameters”, it is regarded by modern standards as a historical artifact and a
misfeature, because of the mismatch between compile and runtime typing that it

exposes.

The compiler must usually insert runtime checks before any operation that stores a reference
value into an array element to ensure that the runtime type of the value matches the runtime type

of the array element. An ArrayStoreException is thrown if the runtime check fails.

C COMPATIBILITY SYNTAX

As we’ve seen, you write an array type simply by placing brackets after the element type. For
compatibility with C and C++, however, Java supports an alternative syntax in variable
declarations: brackets may be placed after the name of the variable instead of, or in addition to,

the element type. This applies to local variables, fields, and method parameters. For example:

// This line declares local variables of type int, int[] and int[][]
int justOne, arrayOfThem[], arrayOfArrays|[]I[];

// These three lines declare fields of the same array type:

public String[][] aasl; // Preferred Java syntax
public String aas2[]I[]; // C syntax
public String[] aas3[]; // Confusing hybrid syntax

// This method signature includes two parameters with the same type

public static double dotProduct (double[] x, double yI[]) { ... }

TIP

This compatibility syntax is extremely uncommon, and you should not use it.

Creating and Initializing Arrays

To create an array value in Java, you use the new keyword, just as you do to create an object.
Array types don’t have constructors, but you are required to specify a length whenever you
create an array. Specify the desired size of your array as a nonnegative integer between square

brackets:

// Create a new array to hold 1024 bytes
byte[] buffer = new byte[1024];
// Create an array of 50 references to strings

String[] lines = new String[50];

When you create an array with this syntax, each of the array elements is automatically
initialized to the same default value that is used for the fields of a class: false for boolean
elements, \u0000 for char elements, O for integer elements, 0. O for floating-point elements,

and null for elements of reference type.

Array creation expressions can also be used to create and initialize a multidimensional array of

arrays. This syntax is somewhat more complicated and is explained later in this section.

ARRAY INITIALIZERS

To create an array and initialize its elements in a single expression, omit the array length and
follow the square brackets with a comma-separated list of expressions within curly braces. The
type of each expression must be assignable to the element type of the array, of course. The
length of the array that is created is equal to the number of expressions. It is legal, but not

necessary, to include a trailing comma following the last expression in the list. For example:

String[] greetings = new String[] { "Hello", "Hi", "Howdy" };
int[] smallPrimes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, };

Note that this syntax allows arrays to be created, initialized, and used without ever being
assigned to a variable. In a sense, these array creation expressions are anonymous array literals.

Here are examples:

// Call a method, passing an anonymous array literal that
// contains two strings
String response = askQuestion("Do you want to quit?",

new String[] {"Yes", "No"});

// Call another method with an anonymous array (of anonymous objects)
double d = computeAreaOfTriangle (new Point[] { new Point(l,2),

new Point (3,4),

new Point(3,2) 1});

When an array initializer is part of a variable declaration, you may omit the new keyword and

element type and list the desired array elements within curly braces:

String[] greetings = { "Hello", "Hi", "Howdy" };
int[] powersOfTwo = {1, 2, 4, 8, 16, 32, 64, 128};

Array literals are created and initialized when the program is run, not when the program is

compiled. Consider the following array literal:

int[] perfectNumbers = {6, 28};

This is compiled into Java byte codes that are equivalent to:

int[] perfectNumbers = new int[2];
perfectNumbers[0] = 6;
288

perfectNumbers|[1]

The fact that Java does all array initialization at runtime has an important corollary. It means
that the expressions in an array initializer may be computed at runtime and need not be compile-

time constants. For example:

Point[] points = { circlel.getCenterPoint (), circle2.getCenterPoint () };

Using Arrays

Once an array has been created, you are ready to start using it. The following sections explain
basic access to the elements of an array and cover common idioms of array usage, such as

iterating through the elements of an array and copying an array or part of an array.

ACCESSING ARRAY ELEMENTS

The elements of an array are variables. When an array element appears in an expression, it
evaluates to the value held in the element. And when an array element appears on the lefthand
side of an assignment operator, a new value is stored into that element. Unlike a normal
variable, however, an array element has no name, only a number. Array elements are accessed
using a square bracket notation. If a is an expression that evaluates to an array reference, you
index that array and refer to a specific element with a [1], where i is an integer literal or an

expression that evaluates to an int. For example:

// Create an array of two strings

String[] responses = new String[2];
responses[0] = "Yes"; // Set the first element of the array
responses[l] = "No"; // Set the second element of the array

// Now read these array elements
System.out.println (question + " (" + responses[0] + "/" +

responses[1l] + "): ");

// Both the array reference and the array index may be more complex
double datum = data.getMatrix () [data.row () * data.numColumns () +

data.column ()];

The array index expression must be of type int, or a type that can be widened to an int:
byte, short, or even char. It is obviously not legal to index an array with a boolean,
float, or double value. Remember that the 1ength field of an array is an int and that
arrays may not have more than Integer.MAX VALUE elements. Indexing an array with an
expression of type 1ong generates a compile-time error, even if the value of that expression at

runtime would be within the range of an int.

ARRAY BOUNDS

Remember that the first element of an array a is a [0] , the second element is a [1], and the

lastisa[a.length-17].

A common bug involving arrays is use of an index that is too small (a negative index) or too
large (greater than or equal to the array 1ength). In languages like C or C++, accessing
elements before the beginning or after the end of an array yields unpredictable behavior that can

vary from invocation to invocation and platform to platform. Such bugs may not always be

caught, and if a failure occurs, it may be at some later time. While it is just as easy to write
faulty array indexing code in Java, Java guarantees predictable results by checking every array
access at runtime. If an array index is too small or too large, Java immediately throws an

ArrayIndexOutOfBoundsException.

ITERATING ARRAYS

It is common to write loops that iterate through each of the elements of an array in order to
perform some operation on it. This is typically done with a for loop. The following code, for

example, computes the sum of an array of integers:

int[] primes = {(2, 3, 5, 7, 11, 13, 17, 19, 23 };
int sumOfPrimes = 0;
for(int i = 0; i < primes.length; i++)

sumOfPrimes += primes[i];

The structure of this for loop is idiomatic, and you’ll see it frequently. Java also has the
foreach syntax that we’ve already met. The summing code could be rewritten succinctly as

follows:

for (int p : primes) sumOfPrimes += p;

COPYING ARRAYS

All array types implement the Cloneable interface, and any array can be copied by invoking
its clone () method. Note that a cast is required to convert the return value to the appropriate
array type, but the c1one () method of arrays is guaranteed not to throw

CloneNotSupportedException:

int[] data = { 1, 2, 3 };

(int[]) data.clone();

int[] copy

The clone () method makes a shallow copy. If the element type of the array is a reference
type, only the references are copied, not the referenced objects themselves. Because the copy is

shallow, any array can be cloned, even if the element type is not itself Cloneable.

Sometimes you simply want to copy elements from one existing array to another existing array.
The System.arraycopy () method is designed to do this efficiently, and you can assume
that Java VM implementations perform this method using high-speed block copy operations on

the underlying hardware.

arraycopy () is a straightforward function that is difficult to use only because it has five
arguments to remember. First, pass the source array from which elements are to be copied.
Second, pass the index of the start element in that array. Pass the destination array and the
destination index as the third and fourth arguments. Finally, as the fifth argument, specify the

number of elements to be copied.

arraycopy () works correctly even for overlapping copies within the same array. For
example, if you’ve “deleted” the element at index O from array a and want to shift the elements
between indexes 1 and n down one so that they occupy indexes 0 through n-1, you could do

this:

System.arraycopy(a, 1, a, 0, n);

ARRAY UTILITIES

The java.util.Arrays class contains a number of static utility methods for working with
arrays. Most of these methods are heavily overloaded, with versions for arrays of each primitive
type and another version for arrays of objects. The sort () and binarySearch () methods
are particularly useful for sorting and searching arrays. The equals () method allows you to
compare the content of two arrays. The Arrays.toString () method is useful when you

want to convert array content to a string, such as for debugging or logging output.

The Arrays class also includes deepEquals (), deepHashCode (), and

deepToString () methods that work correctly for multidimensional arrays.

Multidimensional Arrays

As we’ve seen, an array type is written as the element type followed by a pair of square
brackets. An array of char is char [], and an array of arrays of char is char[] []. When
the elements of an array are themselves arrays, we say that the array is multidimensional. In

order to work with multidimensional arrays, you need to understand a few additional details.

Imagine that you want to use a multidimensional array to represent a multiplication table:

int[][] products; // A multiplication table

Each of the pairs of square brackets represents one dimension, so this is a two-dimensional
array. To access a single int element of this two-dimensional array, you must specify two
index values, one for each dimension. Assuming that this array was actually initialized as a

multiplication table, the int value stored at any given element would be the product of the two

indexes. That is, products [2] [4] would be 8, and products [3] [7] would be 21.

To create a new multidimensional array, use the new keyword and specify the size of both

dimensions of the array. For example:

int[] [] products = new int[10][10];

In some languages, an array like this would be created as a single block of 100 int values. Java

does not work this way. This line of code does three things:

e Declares a variable named products to hold an array of arrays of int.

e Creates a 10-element array to hold 10 arrays of int.

e Creates 10 more arrays, each of which is a 10-element array of int. It assigns each of these
10 new arrays to the elements of the initial array. The default value of every int element of

each of these 10 new arrays is 0.

To put this another way, the previous single line of code is equivalent to the following code:

int[][] products = new int[10][]; // An array to hold 10 int[] values
for(int i = 0; i < 10; i++) // Loop 10 times...
products[i] = new int[10]; // ...and create 10 arrays

The new keyword performs this additional initialization automatically for you. It works with

arrays with more than two dimensions as well:

float[][][] globalTemperatureData = new float[360][180][100];

When using new with multidimensional arrays, you do not have to specify a size for all
dimensions of the array, only the leftmost dimension or dimensions. For example, the following

two lines are legal:

float[][]1[] globalTemperatureData = new float[360][][];
float[][][] globalTemperatureData = new float[360][180]1[];

The first line creates a single-dimensional array, where each element of the array can hold a
float[] []. The second line creates a two-dimensional array, where each element of the array

isa float []. Ifyou specify a size for only some of the dimensions of an array, however, those

dimensions must be the leftmost ones. The following lines are not legal:

float[][][] globalTemperatureData new float[360][]1[100]; // Error!
float[][][] globalTemperatureData = new float[][180][100]; // Error!

Like a one-dimensional array, a multidimensional array can be initialized using an array
initializer. Simply use nested sets of curly braces to nest arrays within arrays. For example, we

can declare, create, and initialize a 5 X 5 multiplication table like this:

int[][] products = { {0, 0, 0, 0, O},
{0, 1, 2, 3, 4},
{0, 2, 4, 6, 8},
{0, 3, 6, 9, 123},
{0, 4, 8, 12, 16} };

Or, if you want to use a multidimensional array without declaring a variable, you can use the

anonymous initializer syntax:

boolean response = bilingualQuestion (question, new String[][] {
{ "YeS", "NO" },
{ "Oui", "Non" }});

When you create a multidimensional array using the new keyword, it is usually good practice to
only use rectangular arrays: one in which all the array values for a given dimension have the

same size.

Reference Types

Now that we’ve covered arrays and introduced classes and objects, we can turn to a more
general description of reference types. Classes and arrays are two of Java’s five kinds of
reference types. Classes were introduced earlier and are covered in complete detail, along with
interfaces, in Chapter 3. Enumerated types and annotation types are reference types introduced

in Chapter 4.

This section does not cover specific syntax for any particular reference type, but instead
explains the general behavior of reference types and illustrates how they differ from Java’s
primitive types. In this section, the term object refers to a value or instance of any reference

type, including arrays.

Reference Versus Primitive Types

Reference types and objects differ substantially from primitive types and their primitive values:

e Eight primitive types are defined by the Java language, and the programmer cannot define
new primitive types. Reference types are user-defined, so there is an unlimited number of
them. For example, a program might define a class named Point and use objects of this

newly defined type to store and manipulate x,y points in a Cartesian coordinate system.

¢ Primitive types represent single values. Reference types are aggregate types that hold zero or
more primitive values or objects. Our hypothetical Point class, for example, might hold
two double values to represent the x and y coordinates of the points. The char [] and
Point [] array types are aggregate types because they hold a sequence of primitive char

values or Point objects.

e Primitive types require between one and eight bytes of memory. When a primitive value is
stored in a variable or passed to a method, the computer makes a copy of the bytes that hold
the value. Objects, on the other hand, may require substantially more memory. Memory to
store an object is dynamically allocated on the heap when the object is created and this

memory is automatically “garbage collected” when the object is no longer needed.

TIP

When an object is assigned to a variable or passed to a method, the memory that
represents the object is not copied. Instead, only a reference to that memory is

stored in the variable or passed to the method.

References are completely opaque in Java and the representation of a reference is an
implementation detail of the Java runtime. If you are a C programmer, however, you can safely
imagine a reference as a pointer or a memory address. Remember, though, that Java programs

cannot manipulate references in any way.

Unlike pointers in C and C++, references cannot be converted to or from integers, and they
cannot be incremented or decremented. C and C++ programmers should also note that Java does

not support the & address-of operator or the * and —> dereference operators.

Manipulating Objects and Reference Copies

The following code manipulates a primitive int value:

int x = 42;

int y = x;

After these lines execute, the variable y contains a copy of the value held in the variable x.

Inside the Java VM, there are two independent copies of the 32-bit integer 42.

Now think about what happens if we run the same basic code but use a reference type instead of

a primitive type:

Point p new Point (1.0, 2.0);

Point g = p;

After this code runs, the variable g holds a copy of the reference held in the variable p. There is
still only one copy of the Point object in the VM, but there are now two copies of the
reference to that object. This has some important implications. Suppose the two previous lines

of code are followed by this code:

System.out.println(p.x); // Print out the x coordinate of p: 1.0
g.x = 13.0; // Now change the X coordinate of g
System.out.println(p.x); // Print out p.x again; this time it is 13.0

Because the variables p and g hold references to the same object, either variable can be used to
make changes to the object, and those changes are visible through the other variable as well. As
arrays are a kind of object, the same thing happens with arrays, as illustrated by the following

code:

// greet holds an array reference

char[] greet = { 'h','e','"1','1"'",'0" };

char[] cuss = greet; // cuss holds the same reference
cuss[4] = '"!'; // Use reference to change an element
System.out.println (greet) ; // Prints "helll!"

A similar difference in behavior between primitive types and reference types occurs when

arguments are passed to methods. Consider the following method:

void changePrimitive (int x) {
while(x > 0) {

System.out.println(x--);

When this method is invoked, the method is given a copy of the argument used to invoke the

method in the parameter x. The code in the method uses x as a loop counter and decrements it
to zero. Because x is a primitive type, the method has its own private copy of this value, so this

is a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that the parameter is a

reference type:

void changeReference (Point p) {
while (p.x > 0) {
System.out.println(p.x--);

When this method is invoked, it is passed a private copy of a reference to a Point object and

can use this reference to change the Point object. For example, consider the following:

Point g = new Point (3.0, 4.5); // A point with an x coordinate of 3
changeReference (q) ; // Prints 3,2,1 and modifies the Point
System.out.println (gq.x) ; // The x coordinate of g is now 0!

When the changeReference () method is invoked, it is passed a copy of the reference held
in variable g. Now both the variable g and the method parameter p hold references to the same
object. The method can use its reference to change the contents of the object. Note, however,
that it cannot change the contents of the variable g. In other words, the method can change the
Point object beyond recognition, but it cannot change the fact that the variable g refers to that

object.

Comparing Objects

We’ve seen that primitive types and reference types differ significantly in the way they are
assigned to variables, passed to methods, and copied. The types also differ in the way they are
compared for equality. When used with primitive values, the equality operator (==) simply tests
whether two values are identical (i.e., whether they have exactly the same bits). With reference
types, however, == compares references, not actual objects. In other words, == tests whether
two references refer to the same object; it does not test whether two objects have the same

content. Here’s an example:

String letter = "o";

String s = "hello"; // These two String objects

String t = "hell" + letter; // contain exactly the same text.
if (s == t) System.out.println("equal"); // But they are not equal!

byte[] a = { 1, 2, 3 };

// A copy with identical content.

byte[] b = (byte[]) a.clone();

if (a == b) System.out.println("equal"); // But they are not equal!

When working with reference types, keep in mind there are two kinds of equality: equality of
reference and equality of object. It is important to distinguish between these two kinds of
equality. One way to do this is to use the word “identical” when talking about equality of
references and the word “equal” when talking about two distinct objects that have the same
content. To test two nonidentical objects for equality, pass one of them to the equals ()

method of the other:

String letter = "o";

String s = "hello"; // These two String objects

String t = "hell" + letter; // contain exactly the same text.

if (s.equals(t)) { // And the equals () method
System.out.println ("equal"); // tells us so.

All objects inherit an equals () method (from Object), but the default implementation
simply uses == to test for identity of references, not equality of content. A class that wants to
allow objects to be compared for equality can define its own version of the equals () method.
Our Point class does not do this, but the St ring class does, as indicated in the code
example. You can call the equals () method on an array, but it is the same as using the ==
operator, because arrays always inherit the default equals () method that compares references
rather than array content. You can compare arrays for equality with the

java.util.Arrays.equals () convenience method.

Boxing and Unboxing Conversions

Primitive types and reference types behave quite differently. It is sometimes useful to treat
primitive values as objects, and for this reason, the Java platform includes wrapper classes for
each of the primitive types. Boolean, Byte, Short, Character, Integer, Long,
Float, and Double are immutable, final classes whose instances each hold a single primitive
value. These wrapper classes are usually used when you want to store primitive values in

collections such as java.util.List:

// Create a List-of-Integer collection
List<Integer> numbers = new ArrayList<>();
// Store a wrapped primitive
numbers.add (new Integer(-1));

// Extract the primitive value

int i = numbers.get (0).intValue();

Java allows types of conversions known as boxing and unboxing conversions. Boxing
conversions convert a primitive value to its corresponding wrapper object and unboxing
conversions do the opposite. You may explicitly specify a boxing or unboxing conversion with a
cast, but this is unnecessary, as these conversions are automatically performed when you assign
a value to a variable or pass a value to a method. Furthermore, unboxing conversions are also
automatic if you use a wrapper object when a Java operator or statement expects a primitive
value. Because Java performs boxing and unboxing automatically, this language feature is often

known as autoboxing.

Here are some examples of automatic boxing and unboxing conversions:

Integer 1 = 0; // int literal 0 boxed to an Integer object

Number n = 0.0f; // float literal boxed to Float and widened to Number
Integer 1 = 1; // this 1is a boxing conversion

int j = 1i; // 1 1is unboxed here

i++; // 1 1s unboxed, incremented, and then boxed up again
Integer k = i+2; // i is unboxed and the sum is boxed up again

i = null;

j o= 1i; // unboxing here throws a NullPointerException

Autoboxing makes dealing with collections much easier as well. Let’s look at an example that
uses Java’s generics (a language feature we’ll meet properly in “Java Generics”) that allows us

to restrict what types can be put into lists and other collections:

List<Integer> numbers = new ArraylList<>(); // Create a List of Integer
numbers.add (-1) ; // Box int to Integer
int i = numbers.get (0); // Unbox Integer to int

Packages and the Java Namespace

A package is a named collection of classes, interfaces, and other reference types. Packages serve

to group related classes and define a namespace for the classes they contain.

The core classes of the Java platform are in packages whose names begin with java. For
example, the most fundamental classes of the language are in the package java. lang.
Various utility classes are in java.util. Classes for input and output are in java. io, and
classes for networking are in java.net. Some of these packages contain subpackages, such as
java.lang.reflect and java.util.regex. Extensions to the Java platform that have

been standardized by Oracle (or originally Sun) typically have package names that begin with

javax. Some of these extensions, such as javax.swing and its myriad subpackages, were
later adopted into the core platform itself. Finally, the Java platform also includes several
“endorsed standards,” which have packages named after the standards body that created them,

such as org.w3c and org. omg.

Every class has both a simple name, which is the name given to it in its definition, and a fully
qualified name, which includes the name of the package of which it is a part. The String
class, for example, is part of the Java.lang package, so its fully qualified name is

java.lang.String.

This section explains how to place your own classes and interfaces into a package and how to
choose a package name that won’t conflict with anyone else’s package name. Next, it explains
how to selectively import type names or static members into the namespace so that you don’t

have to type the package name of every class or interface you use.

Package Declaration

To specify the package a class is to be part of, you use a package declaration. The package
keyword, if it appears, must be the first token of Java code (i.e., the first thing other than
comments and space) in the Java file. The keyword should be followed by the name of the

desired package and a semicolon. Consider a Java file that begins with this directive:

package org.apache.commons.net;

All classes defined by this file are part of the package org.apache.commons.net.

If no package directive appears in a Java file, all classes defined in that file are part of an
unnamed default package. In this case, the qualified and unqualified names of a class are the

same.

TIP

The possibility of naming conflicts means that you should not use the default
package. As your project grows more complicated, conflicts become almost

inevitable—much better to create packages right from the start.

Globally Unique Package Names

One of the important functions of packages is to partition the Java namespace and prevent name

collisions between classes. It is only their package names that keep the java.util.List and
java.awt.List classes distinct, for example. In order for this to work, however, package
names must themselves be distinct. As the developer of Java, Oracle controls all package names

that begin with java, javax, and sun.

One common scheme is to use your domain name, with its elements reversed, as the prefix for
all your package names. For example, the Apache Project produces a networking library as part
of the Apache Commons project. The Commons project can be found at
http://commons.apache.org/ and accordingly, the package name used for the networking library

1s org.apache.commons.net.

Note that these package-naming rules apply primarily to API developers. If other programmers
will be using classes that you develop along with unknown other classes, it is important that
your package name be globally unique. On the other hand, if you are developing a Java
application and will not be releasing any of the classes for reuse by others, you know the
complete set of classes that your application will be deployed with and do not have to worry
about unforeseen naming conflicts. In this case, you can choose a package naming scheme for
your own convenience rather than for global uniqueness. One common approach is to use the

application name as the main package name (it may have subpackages beneath it).

Importing Types

When referring to a class or interface in your Java code, you must, by default, use the fully
qualified name of the type, including the package name. If you’re writing code to manipulate a
file and need to use the File class of the java. io package, you must type java.io.File.

This rule has three exceptions:

e Types from the package java.lang are so important and so commonly used that they can

always be referred to by their simple names.

e The code in a type p . T may refer to other types defined in the package p by their simple

names.

e Types that have been imported into the namespace with an import declaration may be

referred to by their simple names.

The first two exceptions are known as “automatic imports.” The types from java.lang and
the current package are “imported” into the namespace so that they can be used without their
package name. Typing the package name of commonly used types that are not in java.lang
or the current package quickly becomes tedious, and so it is also possible to explicitly import

types from other packages into the namespace. This is done with the import declaration.

import declarations must appear at the start of a Java file, immediately after the package
declaration, if there is one, and before any type definitions. You may use any number of
import declarations in a file. An import declaration applies to all type definitions in the file

(but not to any import declarations that follow it).

The import declaration has two forms. To import a single type into the namespace, follow the

import keyword with the name of the type and a semicolon:

import java.io.File; // Now we can type File instead of java.io.File

This is known as the “single type import" declaration.

The other form of import declaration is the “on-demand type import.” In this form, you
specify the name of a package followed by the characters . * to indicate that any type from that
package may be used without its package name. Thus, if you want to use several other classes
from the java . io package in addition to the File class, you can simply import the entire

package:

import java.io.¥*; // Use simple names for all classes in java.io

This on-demand import syntax does not apply to subpackages. If [import the java.util
package, I must still refer to the java.util.zip.ZipInputStream class by its fully

qualified name.

Using an on-demand type import declaration is not the same as explicitly writing out a single
type import declaration for every type in the package. It is more like an explicit single type
import for every type in the package that you actually use in your code. This is the reason it’s

called “on demand”; types are imported as you use them.

NAMING CONFLICTS AND SHADOWING

import declarations are invaluable to Java programming. They do expose us to the possibility
of naming conflicts, however. Consider the packages java.util and java.awt. Both

contain types named List.

java.util.List is an important and commonly used interface. The java.awt package
contains a number of important types that are commonly used in client-side applications, but
java.awt.List has been superseded and is not one of these important types. It is illegal to
import both java.util.List and java.awt.List inthe same Java file. The following

single type import declarations produce a compilation error:

import java.util.List;
import java.awt.List;

Using on-demand type imports for the two packages is legal:

import java.util.*; // For collections and other utilities.

import java.awt.*; // For fonts, colors, and graphics.

Difficulty arises, however, if you actually try to use the type List. This type can be imported
“on demand” from either package, and any attempt to use List as an unqualified type name
produces a compilation error. The workaround, in this case, is to explicitly specify the package

name you want.

Because java.util.List is much more commonly used than java.awt.List,itis
useful to combine the two on-demand type import declarations with a single type import

declaration that serves to disambiguate what we mean when we say List:

import java.util.¥*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.

import java.util.List; // To disambiguate from java.awt.List

With these import declarations in place, we can use Li st to mean the java.util.List
interface. If we actually need to use the Jjava.awt.List class, we can still do so as long as
we include its package name. There are no other naming conflicts between java.util and
java.awt, and their types will be imported “on demand” when we use them without a

package name.

Importing Static Members

As well as types, you can import the static members of types using the keywords import
static. (Static members are explained in Chapter 3. If you are not already familiar with them,
you may want to come back to this section later.) Like type import declarations, these static
import declarations come in two forms: single static member import and on-demand static
member import. Suppose, for example, that you are writing a text-based program that sends a
lot of output to System. out. In this case, you might use this single static member import to

save yourself typing:

import static java.lang.System.out;

You can then use out.println () instead of System.out.println (). Or suppose you
are writing a program that uses many of the trigonometric and other functions of the Math
class. In a program that is clearly focused on numerical methods like this, having to repeatedly
type the class name “Math” does not add clarity to your code; it just gets in the way. In this

case, an on-demand static member import may be appropriate:

import static java.lang.Math.*

With this import declaration, you are free to write concise expressions like
sgrt (abs (sin(x))) without having to prefix the name of each static method with the class

name Math.

Another important use of import static declarations is to import the names of constants
into your code. This works particularly well with enumerated types (see Chapter 4). Suppose,

for example, that you want to use the values of this enumerated type in code you are writing:

package climate.temperate;
enum Seasons { WINTER, SPRING, SUMMER, AUTUMN };

You could import the type climate.temperate. Seasons and then prefix the constants
with the type name: Seasons . SPRING. For more concise code, you could import the

enumerated values themselves:

import static climate.temperate.Seasons.*;

Using static member import declarations for constants is generally a better technique than

implementing an interface that defines the constants.

STATIC MEMBER IMPORTS AND OVERLOADED METHODS

A static import declaration imports a name, not any one specific member with that name.
Because Java allows method overloading and allows a type to have fields and methods with the
same name, a single static member import declaration may actually import more than one

member. Consider this code:

import static java.util.Arrays.sort;

This declaration imports the name “sort” into the namespace, not any one of the 19 sort ()

methods defined by java.util.Arrays. If you use the imported name sort to invoke a

method, the compiler will look at the types of the method arguments to determine which method

you mean.

It is even legal to import static methods with the same name from two or more different types as

long as the methods all have different signatures. Here is one natural example:

import static java.util.Arrays.sort;

import static java.util.Collections.sort;

You might expect that this code would cause a syntax error. In fact, it does not because the
sort () methods defined by the Collections class have different signatures than all of the
sort () methods defined by the Arrays class. When you use the name “sort” in your code,
the compiler looks at the types of the arguments to determine which of the 21 possible imported

methods you mean.

Java Source File Structure

This chapter has taken us from the smallest to the largest elements of Java syntax, from
individual characters and tokens to operators, expressions, statements, and methods, and on up
to classes and packages. From a practical standpoint, the unit of Java program structure you will
be dealing with most often is the Java file. A Java file is the smallest unit of Java code that can

be compiled by the Java compiler. A Java file consists of:

e An optional package directive

e Zero or more import or import static directives

e One or more type definitions

These elements can be interspersed with comments, of course, but they must appear in this
order. This is all there is to a Java file. All Java statements (except the package and import
directives, which are not true statements) must appear within methods, and all methods must

appear within a type definition.

Java files have a couple of other important restrictions. First, each file can contain at most one
top-level class that is declared public. A public class is one that is designed for use by
other classes in other packages. A class can contain any number of nested or inner classes that

are public. We’ll see more about the pub1ic modifier and nested classes in Chapter 3.

The second restriction concerns the filename of a Java file. If a Java file contains a public

class, the name of the file must be the same as the name of the class, with the extension .java

appended. Therefore, if Point is defined as a pub1ic class, its source code must appear in a
file named Point.java. Regardless of whether your classes are public or not, it is good

programming practice to define only one per file and to give the file the same name as the class.

When a Java file is compiled, each of the classes it defines is compiled into a separate class file
that contains Java byte codes to be executed by the Java Virtual Machine. A class file has the
same name as the class it defines, with the extension .class appended. Thus, if the file Point.java
defines a class named Point, a Java compiler compiles it to a file named Point.class. On most
systems, class files are stored in directories that correspond to their package names. For
example, the class com.davidflanagan.examples.Point is defined by the class file

com/davidflanagan/examples/Point.class.

The Java runtime knows where the class files for the standard system classes are located and can
load them as needed. When the interpreter runs a program that wants to use a class named
com.davidflanagan.examples.Point, it knows that the code for that class is located
in a directory named com/davidflanagan/examples/ and, by default, it “looks” in the current
directory for a subdirectory of that name. In order to tell the interpreter to look in locations other
than the current directory, you must use the —classpath option when invoking the interpreter
or set the CLASSPATH environment variable. For details, see the documentation for the Java

executable, java, in Chapter 13.

Defining and Running Java Programs

A Java program consists of a set of interacting class definitions. But not every Java class or Java
file defines a program. To create a program, you must define a class that has a special method

with the following signature:

public static void main(String[] args)

This main () method is the main entry point for your program. It is where the Java interpreter
starts running. This method is passed an array of strings and returns no value. When main ()
returns, the Java interpreter exits (unless main () has created separate threads, in which case

the interpreter waits for all those threads to exit).

To run a Java program, you run the Java executable, java, specifying the fully qualified name of
the class that contains the main () method. Note that you specify the name of the class, not the
name of the class file that contains the class. Any additional arguments you specify on the
command line are passed to the main () method as its String[] parameter. You may also

need to specify the —classpath option (or —cp) to tell the interpreter where to look for the

classes needed by the program. Consider the following command:

java -classpath /opt/Jude com.davidflanagan.jude.Jude datafile.jude

java is the command to run the Java interpreter. —classpath /opt/Jude tells the
interpreter where to look for .class files. com.davidflanagan. jude.Jude is the name of
the program to run (i.e., the name of the class that defines the main () method). Finally,
datafile.jude is a string that is passed to that main () method as the single element of an

array of String objects.

There is an easier way to run programs. If a program and all its auxiliary classes (except those
that are part of the Java platform) have been properly bundled in a Java archive (JAR) file, you
can run the program simply by specifying the name of the JAR file. In the next example, we

show how to start up the Censum garbage collection log analyzer:

java -jar /usr/local/Censum/censum.jar

Some operating systems make JAR files automatically executable. On those systems, you can

simply say:

% /usr/local/Censum/censum.jar

See Chapter 13 for more details on how to execute Java programs.

Summary

In this chapter, we’ve introduced the basic syntax of the Java language. Due to the interlocking
nature of the syntax of programming languages, it is perfectly fine if you don’t feel at this point
that you have completely grasped all of the syntax of the language. It is by practice that we

acquire proficiency in any language, human or computer.

It is also worth observing that some parts of syntax are far more regularly used than others. For
example, the strictfp and assert keywords are almost never used. Rather than trying to
grasp every aspect of Java’s syntax, it is far better to begin to acquire facility in the core aspects
of Java and then return to any details of syntax that may still be troubling you. With this in
mind, let’s move to the next chapter and begin to discuss the classes and objects that are so

central to Java and the basics of Java’s approach to object-oriented programming.

Technically, the minus sign is an operator that operates on the literal, but is not part of the
1

literal itself.
2Technically, they must all implement the AutoCloseable interface.

3In the Java Language Specification, the term “signature” has a technical meaning that is
slightly different than that used here. This book uses a less formal definition of method

signature.

There is a terminology difficulty in discussions of arrays. Unlike with classes and their
4
instances, we use the term “array” for both the array type and the array instance. In practice,

it is usually clear from context whether a type or a value is being discussed.

Chapter 3. Object-Oriented Programming in
Java

Now that we’ve covered fundamental Java syntax, we are ready to begin object-oriented
programming in Java. All Java programs use objects, and the type of an object is defined by its
class or interface. Every Java program is defined as a class, and nontrivial programs include a

number of classes and interface definitions.

This chapter explains how to define new classes and how to do object-oriented programming
with them. We also introduce the concept of an interface, but a full discussion of interfaces and

Java’s type system is deferred until Chapter 4.

NOTE

If you have experience with OO programming, however, be careful. The term
“object-oriented” has different meanings in different languages. Don’t assume that
Java works the same way as your favorite OO language. (This is particularly true

for C++ or Python programmers.)

This is a fairly lengthy chapter, so let’s begin with an overview and some definitions.

Overview of Classes

Classes are the most fundamental structural element of all Java programs. You cannot write Java
code without defining a class. All Java statements appear within classes, and all methods are

implemented within classes.

Basic OO Definitions

Here are a couple important definitions:

Class

A class is a collection of data fields that hold values and methods that operate on those

values. A class defines a new reference type, such as the Point type defined in Chapter 2.

The Point class defines a type that is the set of all possible two-dimensional points.

Object

An object is an instance of a class.

A Point object is a value of that type: it represents a single two-dimensional point.

Objects are often created by instantiating a class with the new keyword and a constructor

invocation, as shown here:

Point p = new Point (1.0, 2.0);

Constructors are covered later in this chapter in “Creating and Initializing Objects”.

A class definition consists of a signature and a body. The class signature defines the name of the
class and may also specify other important information. The body of a class is a set of members
enclosed in curly braces. The members of a class usually include fields and methods, and may

also include constructors, initializers, and nested types.

Members can be static or nonstatic. A static member belongs to the class itself, while a nonstatic

member is associated with the instances of a class (see “Fields and Methods”).

NOTE

There are four very common kinds of members—class fields, class methods,
instance fields, and instance methods. The majority of work done with Java

involves interacting with these kinds of members.

The signature of a class may declare that the class extends another class. The extended class is
known as the superclass and the extension is known as the subclass. A subclass inherits the
members of its superclass and may declare new members or override inherited methods with

new implementations.

1
The members of a class may have access modifiers public, protected, or private.

These modifiers specify their visibility and accessibility to clients and to subclasses. This allows
classes to control access to members that are not part of their public API. This ability to hide
members enables an object-oriented design technique known as data encapsulation, which we

discuss in “Data Hiding and Encapsulation”.

Other Reference Types

The signature of a class may also declare that the class implements one or more interfaces. An
interface is a reference type similar to a class that defines method signatures but does not

usually include method bodies to implement the methods.

However, from Java 8 onward, interfaces may use the keyword default to indicate that a
method specified in the interface is optional. If a method is optional, the interface file must
include a default implementation (hence the choice of keyword), which will be used by all

implementing classes that do not provide an implementation of the optional method.

A class that implements an interface is required to provide bodies for the interface’s nondefault

methods. Instances of a class that implement an interface are also instances of the interface type.

Classes and interfaces are the most important of the five fundamental reference types defined by
Java. Arrays, enumerated types (or “enums”), and annotation types (usually just called
“annotations”) are the other three. Arrays are covered in Chapter 2. Enums are a specialized
kind of class and annotations are a specialized kind of interface—both are discussed later in

Chapter 4, along with a full discussion of interfaces.

Class Definition Syntax

At its simplest level, a class definition consists of the keyword class followed by the name of
the class and a set of class members within curly braces. The class keyword may be preceded
by modifier keywords and annotations. If the class extends another class, the class name is
followed by the extends keyword and the name of the class being extended. If the class
implements one or more interfaces, then the class name or the extends clause is followed by

the implements keyword and a comma-separated list of interface names. For example:

public class Integer extends Number implements Serializable, Comparable {

// class members go here

A generic class may also have type parameters and wildcards as part of its definition (see

Chapter 4).

Class declarations may include modifier keywords. In addition to the access control modifiers

(public, protected, etc.), these include:

abstract

An abstract class is one whose implementation is incomplete and cannot be instantiated.
Any class with one or more abstract methods must be declared abstract. Abstract

classes are discussed in “Abstract Classes and Methods™.

final

The final modifier specifies that the class may not be extended. A class cannot be

declared to be both abstract and final.

strictfp

If a class is declared strictfp, all its methods behave as if they were declared
strictfp, and so exactly follow the formal semantics of the floating-point standard. This

modifier is extremely rarely used.

Fields and Methods

A class can be viewed as a collection of data (also referred to as state) and code to operate on

that state. The data is stored in fields, and the code is organized into methods.

This section covers fields and methods, the two most important kinds of class members. Fields
and methods come in two distinct types: class members (also known as static members) are
associated with the class itself, while instance members are associated with individual instances

of the class (i.e., with objects). This gives us four kinds of members:
e Class fields

e Class methods

e Instance fields

¢ Instance methods

The simple class definition for the class Circle, shown in Example 3-1, contains all four types

of members.

Example 3-1. A simple class and its members

public class Circle {
// A class field
public static final double PI= 3.14159; // A useful constant

// A class method: just compute a value based on the arguments
public static double radiansToDegrees (double radians) {

return radians * 180 / PI;

// An instance field
public double r; // The radius of the circle

// Two instance methods: they operate on the instance fields of an objec
public double area() { // Compute the area of the circle

return PI * r * r;

public double circumference () { // Compute the circumference
// of the circle

return 2 * PI * r;

WARNING

It is not normally good practice to have a public field r—instead, it would be much
more usual to have a private field r and a method radius () to provide access to
it. The reason for this will be explained later, in “Data Hiding and Encapsulation”.
For now, we use a public field simply to give examples of how to work with

instance fields.

The following sections explain all four common kinds of members. First, we cover the
declaration syntax for fields. (The syntax for declaring methods is covered later in this chapter

in “Data Hiding and Encapsulation”.)

Field Declaration Syntax

Field declaration syntax is much like the syntax for declaring local variables (see Chapter 2)
except that field definitions may also include modifiers. The simplest field declaration consists

of the field type followed by the field name.

The type may be preceded by zero or more modifier keywords or annotations, and the name

may be followed by an equals sign and initializer expression that provides the initial value of the
field. If two or more fields share the same type and modifiers, the type may be followed by a

comma-separated list of field names and initializers. Here are some valid field declarations:

int x = 1;

private String name;

public static final int DAYS PER WEEK = 7;
String[] daynames = new String[DAYS PER WEEK];
private int a = 17, b = 37, ¢ = 53;

Field modifier keywords comprise zero or more of the following keywords:

public, protected, private

These access modifiers specify whether and where a field can be used outside of the class

that defines it.

static

If present, this modifier specifies that the field is associated with the defining class itself

rather than with each instance of the class.

final

This modifier specifies that once the field has been initialized, its value may never be
changed. Fields that are both static and final are compile-time constants that Jjavac

may inline. final fields can also be used to create classes whose instances are immutable.

transient

This modifier specifies that a field is not part of the persistent state of an object and that it

need not be serialized along with the rest of the object.

volatile

This modifier indicates that the field has extra semantics for concurrent use by two or more
threads. The volatile modifier says that the value of a field must always be read from
and flushed to main memory, and that it may not be cached by a thread (in a register or CPU

cache). See Chapter 6 for more details.

Class Fields

A class field is associated with the class in which it is defined rather than with an instance of the

class. The following line declares a class field:

public static final double PI = 3.14159;

This line declares a field of type double named PT and assigns it a value of 3.14159.

The static modifier says that the field is a class field. Class fields are sometimes called static
fields because of this static modifier. The £inal modifier says that the value of the field
cannot be reassigned directly. Because the field PT represents a constant, we declare it final

so that it cannot be changed.

It is a convention in Java (and many other languages) that constants are named with capital
letters, which is why our field is named PT, not pi. Defining constants like this is a common
use for class fields, meaning that the static and £inal modifiers are often used together.
Not all class fields are constants, however. In other words, a field can be declared static

without being declared final.

NOTE

The use of public fields that are not final is almost never a good practice—as
multiple threads could update the field and cause behavior that is extremely hard to

debug.

A public static field is essentially a global variable. The names of class fields are qualified by
the unique names of the classes that contain them, however. Thus, Java does not suffer from the
name collisions that can affect other languages when different modules of code define global

variables with the same name.

The key point to understand about a static field is that there is only a single copy of it. This field
is associated with the class itself, not with instances of the class. If you look at the various

methods of the Circle class, you’ll see that they use this field. From inside the Circle class,
the field can be referred to simply as PI. Outside the class, however, both class and field names
are required to uniquely specify the field. Methods that are not part of Circle access this field

asCircle.PI.

Class Methods

As with class fields, class methods are declared with the static modifier:

public static double radiansToDegrees (double rads) ({
return rads * 180 / PI;

This line declares a class method named radiansToDegrees (). It has a single parameter of

type double and returns a double value.

Like class fields, class methods are associated with a class, rather than with an object. When
invoking a class method from code that exists outside the class, you must specify both the name

of the class and the method. For example:

// How many degrees is 2.0 radians?

double d = Circle.radiansToDegrees (2.0);

If you want to invoke a class method from inside the class in which it is defined, you don’t have
to specify the class name. You can also shorten the amount of typing required via the use of a

static import (as discussed in Chapter 2).

Note that the body of our Circle.radiansToDegrees () method uses the class field PT.
A class method can use any class fields and class methods of its own class (or of any other

class).

A class method cannot use any instance fields or instance methods because class methods are
not associated with an instance of the class. In other words, although the
radiansToDegrees () method is defined in the Circle class, it cannot use the instance

part of any Circle objects.

NOTE

One way to think about this is that in any instance, we always have a reference
—this—to the current object. This is passed as an implicit parameter to any
instance method. However, class methods are not associated with a specific

instance, so have no this reference, and no access to instance fields.

As we discussed earlier, a class field is essentially a global variable. In a similar way, a class

method is a global method, or global function. Although radiansToDegrees () does not

operate on Circle objects, it is defined within the Circle class because it is a utility method
that is sometimes useful when you;re working with circles, and so it makes sense to package it

along with the other functionality of the Circle class.

Instance Fields

Any field declared without the stat ic modifier is an instance field:

public double r; // The radius of the circle

Instance fields are associated with instances of the class, so every Circle object we create has
its own copy of the double field r. In our example, r represents the radius of a specific circle.

Each Circle object can have a radius independent of all other Circle objects.

Inside a class definition, instance fields are referred to by name alone. You can see an example
of this if you look at the method body of the ci rcumference () instance method. In code
outside the class, the name of an instance method must be prefixed with a reference to the object
that contains it. For example, if the variable c holds a reference to a Circle object, we use the

expression c . r to refer to the radius of that circle:

Circle ¢ = new Circle(); // Create a Circle object; store a ref in c
c.r = 2.0; // Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object

d.r = c.r * 2; // Make this one twice as big

Instance fields are key to object-oriented programming. Instance fields hold the state of an

object; the values of those fields make one object distinct from another.

Instance Methods

An instance method operates on a specific instance of a class (an object), and any method not

declared with the static keyword is automatically an instance method.

Instance methods are the feature that makes object-oriented programming start to get interesting.
The Circle class defined in Example 3-1 contains two instance methods, area () and
circumference (), that compute and return the area and circumference of the circle

represented by a given Circle object.

To use an instance method from outside the class in which it is defined, we must prefix it with a

reference to the instance that is to be operated on. For example:

// Create a Circle object; store in variable c

Circle ¢ = new Circle();
c.r = 2.0; // Set an instance field of the object
double a = c.area(); // Invoke an instance method of the object

NOTE

This is why it is called object-oriented programming; the object is the focus here,

not the function call.

From within an instance method, we naturally have access to all the instance fields that belong
to the object the method was called on. Recall that an object is often best considered to be a
bundle containing state (represented as the fields of the object), and behavior (the methods to act

on that state).

All instance methods are implemented by using an implicit parameter not shown in the method
signature. The implicit argument is named this; it holds a reference to the object through

which the method is invoked. In our example, that objectisa Circle.

NOTE

The bodies of the area () and circumference () methods both use the class
field PT. We saw earlier that class methods can use only class fields and class
methods, not instance fields or methods. Instance methods are not restricted in this

way: they can use any member of a class, whether it is declared static or not.

How the this Reference Works

The implicit this parameter is not shown in method signatures because it is usually not
needed; whenever a Java method accesses the instance fields in its class, it is implicit that it is
accessing fields in the object referred to by the this parameter. The same is true when an
instance method invokes another instance method in the same class—it’s taken that this means

“call the instance method on the current object.”

However, you can use the this keyword explicitly when you want to make it clear that a
method is accessing its own fields and/or methods. For example, we can rewrite the area ()

method to use this explicitly to refer to instance fields:

public double area() { return Circle.PI * this.r * this.r; }

This code also uses the class name explicitly to refer to class field PI. In a method this simple,
it is not normally necessary to be quite so explicit. In more complicated cases, however, you
may sometimes find that it increases the clarity of your code to use an explicit this where it is

not strictly required.

In some cases, the this keyword is required, however. For example, when a method parameter
or local variable in a method has the same name as one of the fields of the class, you must use

this to refer to the field, because the field name used alone refers to the method parameter or

local variable.

For example, we can add the following method to the Circle class:

public void setRadius (double r) {
this.r = r; // Assign the argument (r) to the field (this.r)

// Note that we cannot just say r = r

Some developers will deliberately choose the names of their method arguments in such a way
that they don’t clash with field names, so the use of this can largely be avoided. However,
accessor methods (setter) generated by any of the major Java IDEs will use the this.x = x

style shown here.

Finally, note that while instance methods can use the this keyword, class methods cannot.

This is because class methods are not associated with individual objects.

Creating and Initializing Objects

Now that we’ve covered fields and methods, let’s move on to other important members of a
class. In particular, we’ll look at constructors—these are class members whose job is to

initialize the fields of a class as new instances of the class are created.
Take another look at how we’ve been creating Circle objects:
Circle ¢ = new Circle();
This can easily be read as creating a new instance of Circle, by calling something that looks a

bit like a method. In fact, Circle () is an example of a constructor. This is a member of a

class that has the same name as the class, and has a body, like a method.

Here’s how a constructor works. The new operator indicates that we need to create a new
instance of the class. First of all, memory is allocated to hold the new object instance. Then, the
constructor body is called, with any arguments that have been specified. The constructor uses

these arguments to do whatever initialization of the new object is necessary.

Every class in Java has at least one constructor, and their purpose is to perform any necessary
initialization for a new object. If the programmer does not explicitly define a constructor for a
class, the javac compiler automatically creates a constructor (called the default constructor)
that takes no arguments and performs no special initialization. The Circle class seen in

Example 3-1 used this mechanism to automatically delcare a constructor.

Defining a Constructor

There is some obvious initialization we could do for our Circle objects, so let’s define a
constructor. Example 3-2 shows a new definition for Circle that contains a constructor that
lets us specify the radius of a new Circle object. We’ve also taken the opportunity to make

the field r protected (to prevent access to it from arbitary objects).

Example 3-2. A constructor for the Circle class

public class Circle ({
public static final double PI = 3.14159; // A constant
// An instance field that holds the radius of the circle
protected double r;

// The constructor: initialize the radius field

public Circle (double r) { this.r = r; }

// The instance methods: compute values based on the radius

public double circumference() { return 2 * PI * r; }
public double area() { return PI * r*r; }
public double radius () { return r; }

When we relied on the default constructor supplied by the compiler, we had to write code like

this to initialize the radius explicitly:

Circle ¢ = new Circle();
c.r = 0.25;

With the new constructor, the initialization becomes part of the object creation step:

Circle ¢ = new Circle(0.25);

Here are some basic facts regarding naming, declaring, and writing constructors:

The constructor name is always the same as the class name.

A constructor is declared without a return type (not even the void placeholder).

The body of a constructor is the code that initializes the object. You can think of this as

setting up the contents of the this reference.

e A constructor does not return this (or any other value).

Defining Multiple Constructors

Sometimes you want to initialize an object in a number of different ways, depending on what is
most convenient in a particular circumstance. For example, we might want to initialize the
radius of a circle to a specified value or a reasonable default value. Here’s how we can define

two constructors for Circle:

public Circle() { r = 1.0; }
public Circle (double r) { this.r = r; }

Because our Circle class has only a single instance field, we can’t initialize it too many ways,

of course. But in more complex classes, it is often convenient to define a variety of constructors.

It is perfectly legal to define multiple constructors for a class, as long as each constructor has a
different parameter list. The compiler determines which constructor you wish to use based on
the number and type of arguments you supply. This ability to define multiple constructors is

analogous to method overloading.

Invoking One Constructor from Another

A specialized use of the this keyword arises when a class has multiple constructors; it can be
used from a constructor to invoke one of the other constructors of the same class. In other

words, we can rewrite the two previous Circle constructors as follows:

// This 1s the basic constructor: initialize the radius

public Circle (double r) { this.r = r; }
// This constructor uses this() to invoke the constructor above
public Circle() { this(1.0); }

This is a useful technique when a number of constructors share a significant amount of

initialization code, as it avoids repetition of that code. In more complex cases, where the

constructors do a lot more initialization, this can be a very useful technique.

There is an important restriction on using this () : it can appear only as the first statement in a
constructor—but the call may be followed by any additional initialization a particular
constructor needs to perform. The reason for this restriction involves the automatic invocation

of superclass constructors, which we’ll explore later in this chapter.

Field Defaults and Initializers

The fields of a class do not necessarily require initialization. If their initial values are not
specified, the fields are automatically initialized to the default value false, \u0000, 0, 0.0,
or null, depending on their type (see Table 2-1 for more details). These default values are

specified by the Java language specification and apply to both instance fields and class fields.

NOTE

The default values are essentially the “natural” interpretation of the zero bit pattern

for each type.

If the default field value is not appropriate for your field, you can instead explicitly provide a

different initial value. For example:

public static final double PI = 3.14159;
public double r = 1.0;

Field declarations are not part of any method. Instead, the Java compiler generates initialization
code for the field automatically and puts it into all the constructors for the class. The
initialization code is inserted into a constructor in the order in which it appears in the source
code, which means that a field initializer can use the initial values of any fields declared before

it.

Consider the following code excerpt, which shows a constructor and two instance fields of a

hypothetical class:

public class SampleClass {
public int len = 10;
public int[] table = new int[len];

public SampleClass () {
for(int 1 = 0; i1 < len; 1i++) table[i] = 1i;

// The rest of the class 1s omitted...

In this case, the code generated by javac for the constructor is actually equivalent to the

following:

public SampleClass () {

len = 10;
table = new int[len];
for(int 1 = 0; 1 < len; i++) table[i] = i;

If a constructor begins with a this () call to another constructor, the field initialization code
does not appear in the first constructor. Instead, the initialization is handled in the constructor

invoked by the this () call.

So, if instance fields are initialized in constructor, where are class fields initialized? These fields
are associated with the class, even if no instances of the class are ever created. Logically, this

means they need to be initialized even before a constructor is called.

To support this, javac generates a class initialization method automatically for every class.
Class fields are initialized in the body of this method, which is invoked exactly once before the

class is first used (often when the class is first loaded by the Java VM).

As with instance field initialization, class field initialization expressions are inserted into the
class initialization method in the order in which they appear in the source code. This means that

the initialization expression for a class field can use the class fields declared before it.

The class initialization method is an internal method that is hidden from Java programmers. In
the class file, it bears the name <c1init> (and you could see this method by, for example,
examining the class file with javap—see Chapter 13 for more details on how to use javap to
do this).

INITIALIZER BLOCKS

So far, we’ve seen that objects can be initialized through the initialization expressions for their
fields and by arbitrary code in their constructors. A class has a class initialization method
(which is like a constructor), but we cannot explicitly define the body of this method in Java,

although it is perfectly legal to do so in bytecode.

Java does allow us to express class initialization, however, with a construct known as a static

initializer. A static initializer is simply the keyword static followed by a block of code in
curly braces. A static initializer can appear in a class definition anywhere a field or method
definition can appear. For example, consider the following code that performs some nontrivial

initialization for two class fields:

// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {

// Here are our static lookup tables and their own initializers

private static final int NUMPTS = 500;

private static double sines[] = new double[NUMPTS];

private static double cosines[] = new double[NUMPTS];

// Here's a static initializer that fills in the arrays

static {
double x = 0.0;
double delta x = (Circle.PI/2)/(NUMPTS-1);
for(int i = 0, x = 0.0; i < NUMPTS; i++, x += delta x) {
sines[i] = Math.sin (x);
cosines[i] = Math.cos (x);

}
// The rest of the class 1is omitted...

A class can have any number of static initializers. The body of each initializer block is
incorporated into the class initialization method, along with any static field initialization
expressions. A static initializer is like a class method in that it cannot use the this keyword or

any instance fields or instance methods of the class.

Subclasses and Inheritance

The Circle defined earlier is a simple class that distinguishes circle objects only by their radii.
Suppose, instead, that we want to represent circles that have both a size and a position. For
example, a circle of radius 1.0 centered at point 0,0 in the Cartesian plane is different from the
circle of radius 1.0 centered at point 1,2. To do this, we need a new class, which we’ll call

PlaneCircle.

We’d like to add the ability to represent the position of a circle without losing any of the
existing functionality of the Circle class. We do this by defining PlaneCircle asa
subclass of Circle so that P1aneCircle inherits the fields and methods of its superclass,
Circle. The ability to add functionality to a class by subclassing, or extending, is central to

the object-oriented programming paradigm.

Extending a Class

In Example 3-3, we show how we can implement P1aneCircle as a subclass ofthe Circle

class.

Example 3-3. Extending the Circle class

public class PlaneCircle extends Circle {
// We automatically inherit the fields and methods of Circle,
// so we only have to put the new stuff here.
// New instance fields that store the center point of the circle

private final double cx, cy;

// A new constructor to initialize the new fields
// It uses a special syntax to invoke the Circle() constructor
public PlaneCircle (double r, double x, double y) {

super (r) ; // Invoke the constructor of the superclass, Circle()
this.cx = x; // Initialize the instance field cx
this.cy = y; // Initialize the instance field cy

public double getCentreX () {

return cx;

public double getCentreY () {

return cy;

// The area () and circumference() methods are inherited from Circle
// A new instance method that checks whether a point is inside the circl
// Note that it uses the inherited instance field r

public boolean isInside (double x, double y) {

double dx = x - ¢cx, dy =y - cy; // Distance from center
double distance = Math.sqgrt (dx*dx + dy*dy); // Pythagorean theorem
return (distance < r); // Returns true or false
}
}
4 »

Note the use of the keyword extends in the first line of Example 3-3. This keyword tells Java
that PlaneCircle extends, or subclasses, Circle, meaning that it inherits the fields and

methods of that class.

The definition of the 1sInside () method shows field inheritance; this method uses the field
r (defined by the Circle class) as if it were defined right in PlaneCircle itself.
PlaneCircle also inherits the methods of Circle. Therefore, if we have a PlaneCircle

object referenced by variable pc, we can say:

double ratio = pc.circumference() / pc.area();

This works just as if the area () and circumference () methods were defined in

PlaneCircle itself.

Another feature of subclassing is that every P1laneCircle object is also a perfectly legal
Circle object. If pc refers to a PlaneCircle object, we can assign it to a Circle variable

and forget all about its extra positioning capabilities:

// Unit circle at the origin
PlaneCircle pc = new PlaneCircle (1.0, 0.0, 0.0);

Circle ¢ = pc; // Assigned to a Circle variable without casting

This assignment of a PlaneCircle object to a Circle variable can be done without a cast.
As we discussed in Chapter 2, a conversion like this is always legal. The value held in the
Circle variable c is still a valid PlaneCircle object, but the compiler cannot know this for

sure, so it doesn’t allow us to do the opposite (narrowing) conversion without a cast:

// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCircle pc2 = (PlaneCircle) c;

boolean origininside = ((PlaneCircle) c).isInside (0.0, 0.0);

This distinction is covered in more detail in “Nested Types”, where we talk about the distinction

between the compile and runtime type of an object.

FINAL CLASSES

When a class is declared with the £inal modifier, it means that it cannot be extended or
subclassed. java.lang.String is an example of a final class. Declaring a class final
prevents unwanted extensions to the class: if you invoke a method on a St ring object, you
know that the method is the one defined by the St ring class itself, even if the String is

passed to you from some unknown outside source.

In general, many of the classes that Java developers create should be final. Think carefully
about whether it will make sense to allow other (possibly unknown) code to extend your classes

—if it doesn’t, then disallow the mechanism by declaring your classes final.

Superclasses, Object, and the Class Hierarchy

In our example, PlaneCircle is a subclass of Circle. We can also say that Circle is the

superclass of PlaneCircle. The superclass of a class is specified in its extends clause, and

a class may only have a single direct superclass:

public class PlaneCircle extends Circle { ... }

Every class the programmer defines has a superclass. If the superclass is not specified with an

extends clause, then the superclass is taken to be the class java.lang.Object.

As aresult, the Object class is special for a couple of reasons:

e It is the only class in Java that does not have a superclass.

e All Java classes inherit (directly or indirectly) the methods of Object.

Because every class (except Object) has a superclass, classes in Java form a class hierarchy,

which can be represented as a tree with Object at its root.

NOTE

Object has no superclass, but every other class has exactly one superclass. A
subclass cannot extend more than one superclass. See Chapter 4 for more

information on how to achieve a similar result.

Figure 3-1 shows a partial class hierarchy diagram that includes our Circle and

PlaneCircle classes, as well as some of the standard classes from the Java API.

Circle PlaneCircle I

Math

System

Reader InputStreamReader Ii FileReader I

FilterReader

e]
e |

LLLIT

StringReader

Figure 3-1. A class hierarchy diagram

Subclass Constructors

Look again at the PlaneCircle () constructor from Example 3-3:

public PlaneCircle (double r, double x, double y) {

super (r) ; // Invoke the constructor of the superclass, Circle()
this.cx = x; // Initialize the instance field cx
this.cy = y; // Initialize the instance field cy

Although this constructor explicitly initializes the cx and cy fields newly defined by
PlaneCircle, it relies on the superclass Circle () constructor to initialize the inherited

fields of the class. To invoke the superclass constructor, our constructor calls super ().

super is a reserved word in Java. One of its main uses is to invoke the constructor of a
superclass from within a subclass constructor. This use is analogous to the use of this () to
invoke one constructor of a class from within another constructor of the same class. Invoking a

constructor using super () is subject to the same restrictions as is using this () :
e super () can be used in this way only within a constructor.

e The call to the superclass constructor must appear as the first statement within the

constructor, even before local variable declarations.

The arguments passed to super () must match the parameters of the superclass constructor. If
the superclass defines more than one constructor, super () can be used to invoke any one of

them, depending on the arguments passed.

Constructor Chaining and the Default Constructor

Java guarantees that the constructor of a class is called whenever an instance of that class is
created. It also guarantees that the constructor is called whenever an instance of any subclass is
created. In order to guarantee this second point, Java must ensure that every constructor calls its

superclass constructor.

Thus, if the first statement in a constructor does not explicitly invoke another constructor with
this () or super (), the javac compiler inserts the call super () (i.e., it calls the
superclass constructor with no arguments). If the superclass does not have a visible constructor

that takes no arguments, this implicit invocation causes a compilation error.
Consider what happens when we create a new instance of the PlaneCircle class:
1. First, the P1aneCircle constructor is invoked.
2. This constructor explicitly calls super (r) to invoke a Circle constructor.

3. That Circle () constructor implicitly calls super () to invoke the constructor of its

superclass, Object (Object only has one constructor).
4. At this point, we’ve reached the top of the hierarchy and constructors start to run.
5. The body of the Object constructor runs first.
6. When it returns, the body of the Circle () constructor runs.

7. Finally, when the call to super (r) returns, the remaining statements of the

PlaneCircle () constructor are executed.

What all this means is that constructor calls are chained; any time an object is created, a
sequence of constructors is invoked, from subclass to superclass on up to Object at the root of

the class hierarchy.

Because a superclass constructor is always invoked as the first statement of its subclass
constructor, the body of the Object constructor always runs first, followed by the constructor

of its subclass and on down the class hierarchy to the class that is being instantiated.

Whenever a constructor is invoked, it can count on the fields of its superclass to be initialized by

the time the constructor starts to run.

THE DEFAULT CONSTRUCTOR

There is one missing piece in the previous description of constructor chaining. If a constructor

does not invoke a superclass constructor, Java does so implicitly.

NOTE

If a class is declared without a constructor, Java implicitly adds a constructor to the

class. This default constructor does nothing but invoke the superclass constructor.

For example, if we don’t declare a constructor for the P1laneCircle class, Java implicitly

inserts this constructor:

public PlaneCircle() { super(); }

In general, if a class does not define a no-argument constructor, all its subclasses must define

constructors that explicitly invoke the superclass constructor with the necessary arguments.

If a class does not declare any constructors, it is given a no-argument constructor by default.
Classes declared pub1ic are given public constructors. All other classes are given a default
constructor that is declared without any visibility modifier: such a constructor has default

visibility.

NOTE

If you are creating a public class that should not be publicly instantiated, declare
at least one non-public constructor to prevent the insertion of a default public

constructor.

Classes that should never be instantiated (such as java.lang.Math or
java.lang.System) should define a private constructor. Such a constructor can never
be invoked from outside of the class, but it prevents the automatic insertion of the default

constructor.

Hiding Superclass Fields

For the sake of example, imagine that our P1aneCircle class needs to know the distance
between the center of the circle and the origin (0,0). We can add another instance field to hold

this value:

public double r;

Adding the following line to the constructor computes the value of the field:

this.r = Math.sqrt(cx*cx + cy*cy); // Pythagorean theorem

But wait; this new field r has the same name as the radius field r in the Circle superclass.
When this happens, we say that the field r of P1laneCircle hides the field r of Circle.
(This is a contrived example, of course: the new field should really be called

distanceFromOrigin.)

NOTE

In code that you write, you should avoid declaring fields with names that hide

superclass fields. It is almost always a sign of bad code.

With this new definition of P1aneCircle, the expressions r and this. r both refer to the
field of P1aneCircle. How, then, can we refer to the field r of Circle that holds the radius

of the circle? A special syntax for this uses the super keyword:

r // Refers to the PlaneCircle field
this.r // Refers to the PlaneCircle field
super.r // Refers to the Circle field

Another way to refer to a hidden field is to cast this (or any instance of the class) to the

appropriate superclass and then access the field:

((Circle) this).r // Refers to field r of the Circle class

This casting technique is particularly useful when you need to refer to a hidden field defined in a

class that is not the immediate superclass. Suppose, for example, that classes A, B, and C all

define a field named x and that C is a subclass of B, which is a subclass of A. Then, in the

methods of class C, you can refer to these different fields as follows:

X // Field x in class C

this.x // Field x in class C

super.x // Field x in class B

((B) this) .x // Field x in class B

((A) this) .x // Field x in class A

super.super.x // Illegal; does not refer to x in class A
NOTE

Y ou cannot refer to a hidden field x in the superclass of a superclass with

super.super.x. This is not legal syntax.

Similarly, if you have an instance c of class C, you can refer to the three fields named x like

this:

Cc.X // Field x of class C
((B)c) .x // Field x of class B
((A)c) .x // Field x of class A

So far, we’ve been discussing instance fields. Class fields can also be hidden. You can use the
same super syntax to refer to the hidden value of the field, but this is never necessary, as you
can always refer to a class field by prepending the name of the desired class. Suppose, for
example, that the implementer of PlaneCircle decides that the Circle. PI field does not

declare to enough decimal places. She can define her own class field PI:
public static final double PI = 3.14159265358979323846;

Now code in P1laneCircle can use this more accurate value with the expressions PT or
PlaneCircle.PI. It can also refer to the old, less accurate value with the expressions
super.PI and Circle.PI. However, the area () and circumference () methods
inherited by PlaneCircle are defined in the Circle class, so they use the value

Circle.PI, even though that value is hidden now by PlaneCircle.PI.

Overriding Superclass Methods

When a class defines an instance method using the same name, return type, and parameters as a
method in its superclass, that method overrides the method of the superclass. When the method
is invoked for an object of the class, it is the new definition of the method that is called, not the

old definition from the superclass.

TIP

The return type of the overriding method may be a subclass of the return type of the
original method (instead of being exactly the same type). This is known as a

covariant return.

Method overriding is an important and useful technique in object-oriented programming.
PlaneCircle does not override either of the methods defined by Circle, and in fact it is
difficult to think of a good example where any of the methods defined by Circle could have a

well-defined override.

WARNING

Don’t be tempted to consider subclassing Circle with aclass like E11ipse—
this would actually violate a core principle of object-oriented development (the

Liskov principle, which we will meet later).

Instead, let’s look at a different example that does work with method overriding:

public class Car {
public static final double LITRE PER 100KM = 8.9;

protected double topSpeed;

protected double fuelTankCapacity;

private int doors;

public Car (double topSpeed, double fuelTankCapacity, int doors) {
this.topSpeed = topSpeed;

this.fuelTankCapacity = fuelTankCapacity;

this.doors = doors;

public double getTopSpeed() {

return topSpeed;

public int getDoors () {

return doors;

public double getFuelTankCapacity () {
return fuelTankCapacity;

public double range () {
return 100 * fuelTankCapacity / LITRE_PER 100KM;

This is a bit more complex, but will illustrate the concepts behind overriding. Along with the
Car class, we also have a specialized class, SportsCar. This has several differences: it has a
fixed-size fuel tank and only comes in a two-door version. It may also have a much higher top
speed than the regular form, but if the top speed rises above 200 km/h then the fuel efficiency of

the car suffers, and as a result the overall range of the car starts to decrease:

public class SportsCar extends Car {
private double efficiency;

public SportsCar (double topSpeed) {
super (topSpeed, 50.0, 2);
if (topSpeed > 200.0) {
efficiency = 200.0 / topSpeed;
} else {

efficiency = 1.0;

public double getEfficiency () {

return efficiency;

public double range () {
return 100 * fuelTankCapacity * efficiency / LITRE PER 100KM;

The upcoming discussion of method overriding considers only instance methods. Class methods

behave quite differently, and they cannot be overridden. Just like fields, class methods can be

hidden by a subclass but not overridden. As noted earlier in this chapter, it is good programming
style to always prefix a class method invocation with the name of the class in which it is
defined. If you consider the class name part of the class method name, the two methods have

different names, so nothing is actually hidden at all.

Before we go any further with the discussion of method overriding, you should understand the
difference between method overriding and method overloading. As we discussed in Chapter 2,
method overloading refers to the practice of defining multiple methods (in the same class) that
have the same name but different parameter lists. This is very different from method overriding,

so don’t get them confused.

OVERRIDING IS NOT HIDING

Although Java treats the fields and methods of a class analogously in many ways, method
overriding is not like field hiding at all. You can refer to hidden fields simply by casting an
object to an instance of the appropriate superclass, but you cannot invoke overridden instance

methods with this technique. The following code illustrates this crucial difference:

class A { // Define a class named A
int 1 = 1; // An instance field
int f() { return i; } // An instance method
static char g () { return 'a'; } // A class method
}
class B extends A { // Define a subclass of A
int i = 2; // Hides field i in class A
int f() { return -i; } // Overrides method f in class A
static char g () { return 'B'; } // Hides class method g() in class A

public class OverrideTest {
public static void main (String args[]) {
B b = new B(); // Creates a new object of type B
(b ; // Refers to B.i; prints 2
System.out.println(b.f()); // Refers to B.f(); prints -2
(b.g()); // Refers to B.g(); prints B
(B)) // A better way to invoke B.g()

System.out.println

System.out.println
System.out.println

A a = (A) b; // Casts b to an instance of class A
; // Now refers to A.i; prints 1

)) // Still refers to B.f(),; prints -2
.g()); // Refers to A.g(); prints A

)) // A better way to invoke A.g()

System.out.println
System.out.println
System.out.println
System.out.println

While this difference between method overriding and field hiding may seem surprising at first, a

little thought makes the purpose clear.

Suppose we are manipulating a bunch of Car and SportsCar objects, and store them in an
array of type Car []. We can do this because SportsCar is a subclass of Car, so all

SportsCar objects are legal Car objects.

When we loop through the elements of this array, we don’t have to know or care whether the
element is actually a Car or an SportsCar. What we do care about very much, however, is
that the correct value is computed when we invoke the range () method of any element of the
array. In other words, we don’t want to use the formula for the range of a car when the object is

actually a sports car!

All we really want is for the objects we’re computing the ranges of to “do the right thing”—the
Car objects to use their definition of how to compute their own range, and the SportsCar

objects to use the definition that is correct for them.

Seen in this context, it is not surprising at all that method overriding is handled differently by

Java than is field hiding.

VIRTUAL METHOD LOOKUP

If we have a Car [] array that holds Car and SportsCar objects, how does javac know
whether to call the range () method of the Car class or the SportsCar class for any given

item in the array? In fact, the source code compiler cannot know this at compilation time.

Instead, javac creates bytecode that uses virtual method lookup at runtime. When the
interpreter runs the code, it looks up the appropriate range () method to call for each of the
objects in the array. That is, when the interpreter interprets the expression o. range (), it
checks the actual runtime type of the object referred to by the variable o and then finds the
range () method that is appropriate for that type.

NOTE

Some other languages (such as C# or C++) do not do virtual lookup by default and
instead have a virtual keyword that programmers must explicitly use if they

want to allow subclasses to be able to override a method.

The JVM does not simply use the range () method that is associated with the static type of the

variable o, as that would not allow method overriding to work in the way detailed earlier.

Virtual method lookup is the default for Java instance methods. See Chapter 4 for more details

about compile-time and runtime type and how this affects virtual method lookup.

INVOKING AN OVERRIDDEN METHOD

We’ve seen the important differences between method overriding and field hiding.
Nevertheless, the Java syntax for invoking an overridden method is quite similar to the syntax

for accessing a hidden field: both use the super keyword. The following code illustrates:

class A {
int i = 1; // An instance field hidden by subclass B

int £f() { return i; } // An instance method overridden by subclass B

class B extends A {

int 1i; // This field hides i in A

int £() { // This method overrides f() in A
i = super.i + 1; // It can retrieve A.i like this
return super.f () + 1i; // It can invoke A.f() like this

Recall that when you use super to refer to a hidden field, it is the same as casting this to the
superclass type and accessing the field through that. Using super to invoke an overridden
method, however, is not the same as casting the this reference. In other words, in the previous

code, the expression super. f () is not the same as ((A) this) .f ().

When the interpreter invokes an instance method with the super syntax, a modified form of
virtual method lookup is performed. The first step, as in regular virtual method lookup, is to
determine the actual class of the object through which the method is invoked. Normally, the
runtime search for an appropriate method definition would begin with this class. When a method
is invoked with the super syntax, however, the search begins at the superclass of the class. If
the superclass implements the method directly, that version of the method is invoked. If the

superclass inherits the method, the inherited version of the method is invoked.

Note that the super keyword invokes the most immediately overridden version of a method.
Suppose class A has a subclass B that has a subclass C and that all three classes define the same
method f (). The method C. f () can invoke the method B. f (), which it overrides directly,
with super. f (). But there is no way for C. £ () to invoke A. £ () directly:
super.super. f () is not legal Java syntax. Of course, if C. f£ () invokes B. f (), itis

reasonable to suppose that B. £ () might also invoke A. £ ().

This kind of chaining is relatively common with overridden methods: it is a way of augmenting

the behavior of a method without replacing the method entirely.

NOTE

Don’t confuse the use of super to invoke an overridden method with the

super () method call used in a constructor to invoke a superclass constructor.
Although they both use the same keyword, these are two entirely different syntaxes.
In particular, you can use super to invoke an overridden method anywhere in the
overriding class, while you can use super () only to invoke a superclass

constructor as the very first statement of a constructor.

It is also important to remember that super can be used only to invoke an overridden method
from within the class that overrides it. Given a reference to a SportsCar object e, there is no

way for a program that uses e to invoke the range () method defined by the Car class on e.

Data Hiding and Encapsulation

We started this chapter by describing a class as a collection of data and methods. One of the
most important object-oriented techniques we haven’t discussed so far is hiding the data within

the class and making it available only through the methods.

This technique is known as encapsulation because it seals the data (and internal methods) safely
inside the “capsule” of the class, where it can be accessed only by trusted users (i.e., the

methods of the class).

Why would you want to do this? The most important reason is to hide the internal
implementation details of your class. If you prevent programmers from relying on those details,
you can safely modify the implementation without worrying that you will break existing code

that uses the class.

NOTE

You should always encapsulate your code. It is almost always impossible to reason
through and ensure the correctness of code that hasn’t been well-encapsulated,
especially in multithreaded environments (and essentially all Java programs are

multithreaded).

Another reason for encapsulation is to protect your class against accidental or willful stupidity.
A class often contains a number of interdependent fields that must be in a consistent state. If you
allow a programmer (including yourself) to manipulate those fields directly, he may change one
field without changing important related fields, leaving the class in an inconsistent state. If
instead he has to call a method to change the field, that method can be sure to do everything
necessary to keep the state consistent. Similarly, if a class defines certain methods for internal

use only, hiding these methods prevents users of the class from calling them.

Here’s another way to think about encapsulation: when all the data for a class is hidden, the

methods define the only possible operations that can be performed on objects of that class.

Once you have carefully tested and debugged your methods, you can be confident that the class
will work as expected. On the other hand, if all the fields of the class can be directly

manipulated, the number of possibilities you have to test becomes unmanageable.

NOTE

This idea can be carried to a very powerful conclusion, as we will see in “Safe Java
Programming” when we discuss the safety of Java programs (which differs from the

concept of type safety of the Java programming language).

Other, secondary, reasons to hide fields and methods of a class include:

e Internal fields and methods that are visible outside the class just clutter up the API. Keeping

visible fields to a minimum keeps your class tidy and therefore easier to use and understand.

e [f a method is visible to the users of your class, you have to document it. Save yourself time

and effort by hiding it instead.

Access Control

Java defines access control rules that can restrict members of a class from being used outside the
class. In a number of examples in this chapter, you’ve seen the public modifier used in field
and method declarations. This pub1ic keyword, along with protected and private (and
one other, special one) are access control modifiers; they specify the access rules for the field or

method.

ACCESS TO MODULES

One of the biggest changes in Java 9 was the arrival of Java platform modules. These are a

grouping of code that is larger than a single package, and which are intended as the future way
to deploy code for reuse. As Java is often used in large applications and environments, the

arrival of modules should make it easier to build and manage enterprise codebases.

The modules technology is an advanced topic, and if Java is one of the first programming
languages you have encountered, you should not try to learn it until you have gained some
language proficiency. An introductory treatment of modules is provided in Chapter 12 and we

defer discussing the access control impact of modules until then.

ACCESS TO PACKAGES

Access control on a per-package basis is not directly part of the Java language. Instead, access

control is usually done at the level of classes and members of classes.

NOTE

A package that has been loaded is always accessible to code defined within the

same package. Whether it is accessible to code from other packages depends on the
way the package is deployed on the host system. When the class files that comprise
a package are stored in a directory, for example, a user must have read access to the

directory and the files within it in order to have access to the package.

ACCESS TO CLASSES

By default, top-level classes are accessible within the package in which they are defined.

However, if a top-level class is declared public, it is accessible everywhere.

TIP

In Chapter 4, we’ll meet nested classes. These are classes that can be defined as
members of other classes. Because these inner classes are members of a class, they

also obey the member access-control rules.

ACCESS TO MEMBERS

The members of a class are always accessible within the body of the class. By default, members
are also accessible throughout the package in which the class is defined. This default level of
access is often called package access. It is only one of four possible levels of access. The other

three levels are defined by the public, protected, and private modifiers. Here is some

example code that uses these modifiers:

public class Laundromat { // People can use this class.
private Laundry[] dirty; // They cannot use this internal field,
public void wash() { ... } // but they can use these public methods
public void dry () { ... } // to manipulate the internal field.

// A subclass might want to tweak this field

protected int temperature;

These access rules apply to members of a class:

All the fields and methods of a class can always be used within the body of the class itself.

¢ [fa member of a class is declared with the pub1 ic modifier, it means that the member is
accessible anywhere the containing class is accessible. This is the least restrictive type of

access control.

e [fa member of a class is declared private, the member is never accessible, except within

the class itself. This is the most restrictive type of access control.

¢ [f a member of a class is declared protected, it is accessible to all classes within the
package (the same as the default package accessibility) and also accessible within the body

of any subclass of the class, regardless of the package in which that subclass is defined.

¢ [fa member of a class is not declared with any of these modifiers, it has default access
(sometimes called package access) and it is accessible to code within all classes that are

defined in the same package but inaccessible outside of the package.

NOTE

Default access is more restrictive than protected—as default access does not

allow access by subclasses outside the package.

protected access requires more elaboration. Suppose class A declares a protected field x
and is extended by a class B, which is defined in a different package (this last point is
important). Class B inherits the protected field x, and its code can access that field in the
current instance of B or in any other instances of B that the code can refer to. This does not

mean, however, that the code of class B can start reading the protected fields of arbitrary

instances of A.

Let’s look at this language detail in code. Here’s the definition for A:

package javanut7.ch03;

public class A {

protected final String name;
public A(String named) {

name = named;

public String getName () {

return name;

Here’s the definition for B:

package javanut7.ch03.different;

import javanut7.ch03.A;

public class B extends A {
public B(String named) ({

super (named) ;

@Override
public String getName () {

return "B: " + name;

NOTE

Java packages do not “nest,” so javanut7.ch03.different is just a different

package than javanut7.ch03; it is not contained inside it or related to it in any

way.

However, if we try to add this new method to B, we will get a compilation error, because

instances of B do not have access to arbitary instances of A:

public String examine (A a) {

return "B sees: " + a.name;

If we change the method to this:

public String examine (B b) {

return "B sees another B: " + b.name;

then the compiler is happy, because instances of the same exact type can always see each other’s
protected fields. Of course, if B was in the same package as A, then any instance of B could
read any protected field of any instance of A because protected fields are visible to every

class in the same package.
ACCESS CONTROL AND INHERITANCE

The Java specification states that:

¢ A subclass inherits all the instance fields and instance methods of its superclass accessible to
it.
o If the subclass is defined in the same package as the superclass, it inherits all non-private

instance fields and methods.

o If the subclass is defined in a different package, it inherits all protected and public

instance fields and methods.

e private fields and methods are never inherited; neither are class fields or class methods.

¢ Constructors are not inherited (instead, they are chained, as described earlier in this chapter).

However, some programmers are confused by the statement that a subclass does not inherit the
inaccessible fields and methods of its superclass. It could be taken to imply that when you create
an instance of a subclass, no memory is allocated for any private fields defined by the

superclass. This is not the intent of the statement, however.

NOTE

Every instance of a subclass does, in fact, include a complete instance of the

superclass within it, including all inaccessible fields and methods.

This existence of potentially inaccessible members seems to be in conflict with the statement

that the members of a class are always accessible within the body of the class. To clear up this

confusion, we define “inherited members” to mean those superclass members that are

accessible.

Then the correct statement about member accessibility is: “All inherited members and all

members defined in this class are accessible.” An alternative way of saying this is:

¢ A class inherits all instance fields and instance methods (but not constructors) of its

superclass.

e The body of a class can always access all the fields and methods it declares itself. It can also

access the accessible fields and members it inherits from its superclass.

MEMBER ACCESS SUMMARY

We summarize the member access rules in Table 3-1.

Table 3-1. Class member accessibility

Member visibility

Accessible to Public Protected Default Private
Defining class Yes Yes Yes Yes
Class in same package Yes Yes Yes No
Subclass in different package Yes Yes No No
Nonsubclass different package Yes No No No

There are a few generally observed rules about what parts of a Java program should use each

visibility modifier. It is important that even beginning Java programmers follow these rules:

e Use public only for methods and constants that form part of the public API of the class.
The only acceptable usage of public fields is for constants or immutable objects, and they

must be also declared final.

e Use protected for fields and methods that aren’t required by most programmers using the

class but that may be of interest to anyone creating a subclass as part of a different package.

NOTE

protected members are technically part of the exported API of a class. They
must be documented and cannot be changed without potentially breaking code that

relies on them.

e Use the default package visibility for fields and methods that are internal implementation

details but are used by cooperating classes in the same package.

e Use private for fields and methods that are used only inside the class and should be

hidden everywhere else.

If you are not sure whether to use protected, package, or private accessibility, start with
private. If this is overly restrictive, you can always relax the access restrictions slightly (or

provide accessor methods, in the case of fields).

This is especially important for designing APIs because increasing access restrictions is not a

backward-compatible change and can break code that relies on access to those members.

Data Accessor Methods

In the Circle example, we declared the circle radius to be a public field. The Circle class
is one in which it may well be reasonable to keep that field publicly accessible; it is a simple
enough class, with no dependencies between its fields. On the other hand, our current
implementation of the class allows a Circle object to have a negative radius, and circles with

negative radii should simply not exist. As long as the radius is stored in a public field,

however, any programmer can set the field to any value she wants, no matter how unreasonable.
The only solution is to restrict the programmer’s direct access to the field and define public
methods that provide indirect access to the field. Providing publ ic methods to read and write
a field is not the same as making the field itself public. The crucial difference is that methods

can perform error checking.

We might, for example, want to prevent Circle objects with negative radii—these are
obviously not sensible, but our current implementation does not prohibit this. In Example 3-4,

we show how we might change the definition of Circle to prevent this.

This version of Circle declares the r field to be protected and defines accessor methods
named getRadius () and setRadius () to read and write the field value while enforcing
the restriction on negative radius values. Because the r field is protected, it is directly (and

more efficiently) accessible to subclasses.

Example 3-4. The Circle class using data hiding and encapsulation

package shapes; // Specify a package for the class

public class Circle { // The class is still public
// This is a generally useful constant, so we keep it public
public static final double PI = 3.14159;

protected double r; // Radius is hidden but visible to subclasses

// A method to enforce the restriction on the radius
// This 1s an implementation detail that may be of Iinterest to subclasse
protected void checkRadius (double radius) {

if (radius < 0.0)

throw new IllegalArgumentException ("radius may not be negative.");

// The non-default constructor
public Circle (double r) {
checkRadius (r) ;

this.r = r;

// Public data accessor methods

public double getRadius () { return r; }

public void setRadius (double r) {
checkRadius (r) ;

this.r = r;

// Methods to operate on the instance field
public double area() { return PI * r * r; }

public double circumference() { return 2 * PI * r; }

We have defined the Circle class within a package named shapes; r is protected so any
other classes in the shapes package have direct access to that field and can set it however they
like. The assumption here is that all classes within the shapes package were written by the
same author or a closely cooperating group of authors, and that the classes all trust each other

not to abuse their privileged level of access to each other’s implementation details.

Finally, the code that enforces the restriction against negative radius values is itself placed
within a protected method, checkRadius (). Although users of the Circle class cannot
call this method, subclasses of the class can call it and even override it if they want to change

the restrictions on the radius.

NOTE

It is a common convention in Java that data accessor methods begin with the
prefixes “get” and “set.” But if the field being accessed is of type boolean, the
get () method may be replaced with an equivalent method that begins with “is”—
the accessor method for a boolean field named readable is typically called

isReadable () instead of getReadable ().

Abstract Classes and Methods

In Example 3-4, we declared our Circle class to be part of a package named shapes.
Suppose we plan to implement a number of shape classes: Rectangle, Square, Hexagon,
Triangle, and so on. We can give these shape classes our two basic area () and
circumference () methods. Now, to make it easy to work with an array of shapes, it would
be helpful if all our shape classes had a common superclass, Shape. If we structure our class
hierarchy this way, every shape object, regardless of the actual type of shape it represents, can
be assigned to variables, fields, or array elements of type Shape. We want the Shape class to
encapsulate whatever features all our shapes have in common (e.g., the area () and
circumference () methods). But our generic Shape class doesn’t represent any real kind
of shape, so it cannot define useful implementations of the methods. Java handles this situation

with abstract methods.

Java lets us define a method without implementing it by declaring the method with the

abstract modifier. An abstract method has no body; it simply has a signature definition

2
followed by a semicolon. Here are the rules about abstract methods and the abstract

classes that contain them:

e Any class with an abstract method is automatically abstract itself and must be

declared as such. To fail to do so is a compilation error.
e An abstract class cannot be instantiated.

e A subclass of an abstract class can be instantiated only if it overrides each of the
abstract methods of its superclass and provides an implementation (i.e., a method body)
for all of them. Such a class is often called a concrete subclass, to emphasize the fact that it is

not abstract.

e [fasubclass of an abstract class does not implement all the abstract methods it

inherits, that subclass is itself abstract and must be declared as such.

e static,private, and final methods cannot be abstract, because these types of
methods cannot be overridden by a subclass. Similarly, a final class cannot contain any

abstract methods.

e A class can be declared abstract even if it does not actually have any abstract
methods. Declaring such a class abstract indicates that the implementation is somehow
incomplete and is meant to serve as a superclass for one or more subclasses that complete the

implementation. Such a class cannot be instantiated.

NOTE

The Classloader class that we will meet in Chapter 11 is a good example of an

abstract class that does not have any abstract methods.

Let’s look at an example of how these rules work. If we define the Shape class to have
abstract area () and circumference () methods, any subclass of Shape is required to
provide implementations of these methods so that it can be instantiated. In other words, every
Shape object is guaranteed to have implementations of these methods defined. Example 3-5
shows how this might work. It defines an abstract Shape class and two concrete subclasses

of it.

Example 3-5. An abstract class and concrete subclasses

public abstract class Shape {

public abstract double area(); // Abstract methods: note
public abstract double circumference () ; // semicolon instead of body.

class Circle extends Shape {
public static final double PI = 3.14159265358979323846;

protected double r; // Instance data
public Circle (double r) { this.r = r; } // Constructor

public double getRadius () { return r; } // Accessor

public double area() { return PI*r*r; } // Implementations of
public double circumference() { return 2*PI*r; } // abstract methods.

class Rectangle extends Shape {
protected double w, h; // Instance data
public Rectangle (double w, double h) { // Constructor
this.w = w; this.h = h;
}

public double getWidth() { return w; } // Accessor method
public double getHeight () { return h; } // Another accessor
public double area() { return w*h; } // Implementation o
public double circumference() { return 2*(w + h); } // abstract methods

}
< | | »

Each abstract method in Shape has a semicolon right after its parentheses. They have no
curly braces, and no method body is defined. Using the classes defined in Example 3-5, we can

now write code such as:

Shape[] shapes = new Shapel[3]; // Create an array to hold shapes
shapes[0] = new Circle(2.0); // Fill in the array

shapes|[1] = new Rectangle (1.0, 3.0);

shapes|[2] = new Rectangle (4.0, 2.0);

double totalArea = 0;
for(int i = 0; i < shapes.length; i++)

totalArea += shapes|[i].areal(); // Compute the area of the shapes

Notice two important points here:

¢ Subclasses of Shape can be assigned to elements of an array of Shape. No cast is
necessary. This is another example of a widening reference type conversion (discussed in
Chapter 2).

¢ You can invoke the area () and circumference () methods for any Shape object,
even though the Shape class does not define a body for these methods. When you do this,

the method to be invoked is found using virtual dispatch, which we met earlier. In our case

this means that the area of a circle is computed using the method defined by Circle, and

the area of a rectangle is computed using the method defined by Rectangle.

Reference Type Conversions

Object references can be converted between different reference types. As with primitive types,
reference type conversions can be widening conversions (allowed automatically by the
compiler) or narrowing conversions that require a cast (and possibly a runtime check). In order
to understand reference type conversions, you need to understand that reference types form a

hierarchy, usually called the class hierarchy.

Every Java reference type extends some other type, known as its superclass. A type inherits the
fields and methods of its superclass and then defines its own additional fields and methods. A
special class named Object serves as the root of the class hierarchy in Java. All Java classes
extend Object directly or indirectly. The Object class defines a number of special methods

that are inherited (or overridden) by all objects.

The predefined String class and the Point class we discussed earlier in this chapter both
extend Object. Thus, we can say that all St ring objects are also Object objects. We can
also say that all Point objects are Object objects. The opposite is not true, however. We
cannot say that every Object is a String because, as we’ve just seen, some Object objects

are Point objects.

With this simple understanding of the class hierarchy, we can define the rules of reference type

conversion:

¢ An object reference cannot be converted to an unrelated type. The Java compiler does not

allow you to converta String to a Point, for example, even if you use a cast operator.

¢ An object reference can be converted to the type of its superclass or of any ancestor class.
This is a widening conversion, so no cast is required. For example, a St ring value can be
assigned to a variable of type Object or passed to a method where an Object parameter is

expected.

NOTE

No conversion is actually performed; the object is simply treated as if it were an
instance of the superclass. This is a simple form of the Liskov substitution principle,

after Barbara Liskov, the computer scientist who first explicitly formulated it.

¢ An object reference can be converted to the type of a subclass, but this is a narrowing
conversion and requires a cast. The Java compiler provisionally allows this kind of
conversion, but the Java interpreter checks at runtime to make sure it is valid. Only cast a
reference to the type of a subclass if you are sure, based on the logic of your program, that
the object is actually an instance of the subclass. If it is not, the interpreter throws a
ClassCastException. For example, if we assign a St ring reference to a variable of

type Object, we can later cast the value of that variable back to type String:

Object o = "string"; // Widening conversion from String

// to Object later in the program. ..

String s = (String) o; // Narrowing conversion from Object
// to String

Arrays are objects and follow some conversion rules of their own. First, any array can be
converted to an Object value through a widening conversion. A narrowing conversion with a

cast can convert such an object value back to an array. Here’s an example:

// Widening conversion from array to Object
Object o = new int[] {1,2,3};
// Later in the program. ..

int[] a = (int[]) o; // Narrowing conversion back to array type

In addition to converting an array to an object, we can convert an array to another type of array
if the “base types” of the two arrays are reference types that can themselves be converted. For

example:

// Here 1s an array of strings.

String[] strings = new String[] { "hi", "there" };

// A widening conversion to CharSequence[] is allowed because String
// can be widened to CharSequence

CharSequence[] sequences = strings;

// The narrowing conversion back to String[] requires a cast.

strings = (String[]) sequences;

// This is an array of arrays of strings

String[][] s = new String[][] { strings };

// It cannot be converted to CharSequence[] because String[] cannot be

// converted to CharSequence: the number of dimensions don't match

sequences = s; // This line will not compile

// s can be converted to Object or Object[], because all array types
// (including String[] and String[][]) can be converted to Object.
Object[] objects = s;

Note that these array conversion rules apply only to arrays of objects and arrays of arrays. An
array of primitive type cannot be converted to any other array type, even if the primitive base

types can be converted:

// Can't convert int[] to double[] even though
// int can be widened to double

// This line causes a compilation error
double|[] data = new int[] {1,2,3};

// This line is legal, however,

// because int[] can be converted to Object

Object[] objects = new int[][] {{1,2},{3,4}};

Modifier Summary

As we’ve seen, classes, interfaces, and their members can be declared with one or more
modifiers—keywords such as public, static,and final. Let’s conclude this chapter by
listing the Java modifiers, explaining what types of Java constructs they can modify, and
explaining what they do. Table 3-2 has the details; you can also refer back to “Overview of

Classes” and “Field Declaration Syntax”, as well as “Method Modifiers”.

Table 3-2. Java modifiers

Modifier Used on Meaning

abstract Class The class cannot be instantiated and may contain

unimplemented methods.

Interface All interfaces are abstract. The modifier is optional in

interface declarations.

Method No body is provided for the method; it is provided by a
subclass. The signature is followed by a semicolon. The

enclosing class must also be abstract.

default Method Implementation of this interface method is optional. The
interface provides a default implementation for classes that

elect not to implement it. See Chapter 4 for more details.

final

native

<None>

(package)

private

protected

Class

Method

Field

Variable

Method

Class

Interface

Member

Member

Member

The class cannot be subclassed.

The method cannot be overridden.

The field cannot have its value changed. static final

fields are compile-time constants.

A local variable, method parameter, or exception

parameter cannot have its value changed.

The method is implemented in some platform-dependent
way (often in C). No body is provided; the signature is

followed by a semicolon.

A non-public class is accessible only in its package.

A non-public interface is accessible only in its package.

A member that is not private, protected, or public has

package visibility and is accessible only within its package.

The member is accessible only within the class that defines

it.

The member is accessible only within the package in

which it is defined and within subclasses.

public Class

Interface

Member

strictfp Class

Method

static Class

Method

Field

The class is accessible anywhere its package is.

The interface is accessible anywhere its package is.

The member is accessible anywhere its class is.

All methods of the class are implicitly strictfp.

All floating-point computation done by the method must
be performed in a way that strictly conforms to the IEEE
754 standard. In particular, all values, including
intermediate results, must be expressed as IEEE fioat or
double values and cannot take advantage of any extra
precision or range offered by native platform floating-point
formats or hardware. This modifier is extremely rarely

used.

An inner class declared static is a top-level class, not
associated with a member of the containing class. See

Chapter 4 for more details.

A static method is a class method. It is not passed an
implicit this object reference. It can be invoked through

the class name.

A static field is a class field. There is only one instance
of the field, regardless of the number of class instances

created. It can be accessed through the class name.

synchronized

transient

volatile

Initializer

Method

Field

Field

The initializer is run when the class is loaded rather than

when an instance is created.

The method makes nonatomic modifications to the class or
instance, so care must be taken to ensure that two threads
cannot modify the class or instance at the same time. For a
static method, a lock for the class is acquired before
executing the method. For a non-static method, a lock
for the specific object instance is acquired. See Chapter 5

for more details.

The field is not part of the persistent state of the object and
should not be serialized with the object. Used with object

serialization; see java.io.ObjectOutputStream.

The field can be accessed by unsynchronized threads, so
certain optimizations must not be performed on it. This
modifier can sometimes be used as an alternative to

synchronized. See Chapter 5 for more details.

1There is also the default, aka package, visibility that we will meet later.

An abstract method in Java is something like a pure virtual function in C++ (i.e., a
2

virtual function that is declared = 0). In C++, a class that contains a pure virtual function is

called an abstract class and cannot be instantiated. The same is true of Java classes that

contain abstract methods.

Chapter 4. The Java Type System

In this chapter, we move beyond basic object-oriented programming with classes and into the

additional concepts required to work effectively with Java’s type system.

NOTE

A statically typed language is one in which variables have definite types, and where
it is a compile-time error to assign a value of an incompatible type to a variable.

Languages that only check type compatibility at runtime are called dynamically

typed.

Java is a fairly classic example of a statically typed language. JavaScript is an example of a

dynamically typed language that allows any variable to store any type of value.

The Java type system involves not only classes and primitive types, but also other kinds of
reference type that are related to the basic concept of a class, but which differ in some way, and

are usually treated in a special way by javac or the JVM.

We have already met arrays and classes, two of Java’s most widely used kinds of reference type.
This chapter starts by discussing another very important kind of reference type—interfaces. We
then move on to discuss Java’s generics, which have a major role to play in Java’s type system.
With these topics under our belts, we can discuss the differences between compile-time and

runtime types in Java.

To complete the full picture of Java’s reference types, we look at specialized kinds of classes
and interfaces—known as enums and annotations. We conclude the chapter by looking at
lambda expressions and nested types, and then reviewing how enhanced type inference has

allowed Java’s non-denotable types to become usable by programmers.

Let’s get started by taking a look at interfaces—probably the most important of Java’s reference

types after classes, and a key building block for the rest of Java’s type system.

Interfaces

In Chapter 3, we met the idea of inheritance. We also saw that a Java class can only inherit from
a single class. This is quite a big restriction on the kinds of object-oriented programs that we
want to build. The designers of Java knew this, but they also wanted to ensure that Java’s
approach to object-oriented programming was less complex and error-prone than, for example,

that of C++.

The solution that they chose was to introduce the concept of an interface to Java. Like a class,
an interface defines a new reference type. As its name implies, an interface is intended to
represent only an API—so it provides a description of a type, and the methods (and signatures)

that classes that implement that API must provide.

In general, a Java interface does not provide any implementation code for the methods that it
describes. These methods are considered mandatory—any class that wishes to implement the

interface must provide an implementation of these methods.

However, an interface may wish to mark that some API methods are optional, and that
implementing classes do not need to implement them if they choose not to. This is done with the
default keyword—and the interface must provide an implementation of these optional

methods, which will be used by any implementating class that elects not to implement them.

NOTE

The ability to have optional methods in interfaces was new in Java 8. It is not
available in any earlier version. See “Default Methods” for a full description of how

optional (also called default) methods work.

It is not possible to directly instantiate an interface and create a member of the interface type.

Instead, a class must implement the interface to provide the necessary method bodies.

Any instances of the implementing class are compatible with both the type defined by the class
and the type defined by the interface. This means that the instances may be substituted at any
point in the code that requires an instance of either the class type or the interface type. This

extends the Liskov principle as seen in “Reference Type Conversions”.

Another way of saying this is that two objects that do not share the same class or superclass may

still both be compatible with the same interface type if both objects are instances of classes that

implement the interface.

Defining an Interface

An interface definition is much like a class definition in which all the (nondefault) methods are
abstract and the keyword class has been replaced with interface. For example, this code
shows the definition of an interface named Centered (a Shape class, such as those defined in
Chapter 3, might implement this interface if it wants to allow the coordinates of its center to be

set and queried):

interface Centered {
void setCenter (double x, double vy);
double getCenterX() ;
double getCenterY () ;

A number of restrictions apply to the members of an interface:

¢ All mandatory methods of an interface are implicitly abstract and must have a semicolon
in place of a method body. The abstract modifier is allowed, but by convention is usually

omitted.

¢ An interface defines a public API. By convention, members of an interface are implicitly

public and it is conventional to omit the unnecessary publ ic modifier.

e An interface may not define any instance fields. Fields are an implementation detail, and an
interface is a specification, not an implementation. The only fields allowed in an interface

definition are constants that are declared both static and final.
e An interface cannot be instantiated, so it does not define a constructor.

e Interfaces may contain nested types. Any such types are implicitly public and static.

See “Nested Types” for a full description of nested types.

e As of Java 8, an interface may contain static methods. Previous versions of Java did not

allow this, and this is widely believed to have been a flaw in the design of the Java language.

e AsofJava9, an interface may contain private methods. These have limited use cases, but
with the other changes to the interface construct, it seems arbitary to disallow them. It is a

compile-time error to try to define a protected method in an interface.

Extending Interfaces

Interfaces may extend other interfaces, and, like a class definition, an interface definition
indicates this by including an extends clause. When one interface extends another, it inherits
all the methods and constants of its superinterface and can define new methods and constants.
Unlike classes, however, the extends clause of an interface definition may include more than

one superinterface. For example, here are some interfaces that extend other interfaces:

interface Positionable extends Centered {
void setUpperRightCorner (double x, double y);
double getUpperRightX() ;
double getUpperRightY () ;

}

interface Transformable extends Scalable, Translatable, Rotatable {}

interface SuperShape extends Positionable, Transformable {}

An interface that extends more than one interface inherits all the methods and constants from
each of those interfaces and can define its own additional methods and constants. A class that
implements such an interface must implement the abstract methods defined directly by the

interface, as well as all the abstract methods inherited from all the superinterfaces.

Implementing an Interface

Just as a class uses extends to specify its superclass, it can use implements to name one or
more interfaces it supports. The implements keyword can appear in a class declaration
following the extends clause. It should be followed by a comma-separated list of interfaces

that the class implements.

When a class declares an interface in its implements clause, it is saying that it provides an
implementation (i.e., a body) for each mandatory method of that interface. If a class implements
an interface but does not provide an implementation for every mandatory interface method, it
inherits those unimplemented abstract methods from the interface and must itself be
declared abstract. If a class implements more than one interface, it must implement every

mandatory method of each interface it implements (or be declared abstract).

The following code shows how we can define a CenteredRectangle class that extends the

Rectangle class from Chapter 3 and implements our Centered interface:

public class CenteredRectangle extends Rectangle implements Centered ({
// New instance fields

private double cx, cy;

// A constructor

public CenteredRectangle (double cx, double cy, double w, double h) ({
super (w, h);
this.cx = cx;

this.cy = cy;

// We inherit all the methods of Rectangle but must

// provide implementations of all the Centered methods.
public void setCenter (double x, double y) { cx = x; cy = y; }
public double getCenterX() { return cx; }

public double getCenterY () { return cy; }

Suppose we implement CenteredCircle and CenteredSquare just as we have

implemented this CenteredRectangle class. Each class extends Shape, so instances of the

classes can be treated as instances of the Shape class, as we saw earlier. Because each class

implements the Centered interface, instances can also be treated as instances of that type. The

following code demonstrates how objects can be members of both a class type and an interface

type:
Shape[] shapes = new Shapel[3]; // Create an array to hold shapes
// Create some centered shapes, and store them in the Shape/[]

// No cast necessary: these are all compatible assignments

shapes[0] = new CenteredCircle(1.0, 1.0, 1.0);

shapes[1] new CenteredSquare (2.5, 2, 3);

shapes([2] = new CenteredRectangle (2.3, 4.5, 3, 4);

// Compute average area of the shapes and
// average distance from the origin
double totalArea = 0;
double totalDistance = 0;
for(int i = 0; i < shapes.length; i++) {
totalArea += shapes[i].area(); // Compute the area of the shapes

// Be careful, in general, the use of instanceof to determine the

// runtime type of an object is quite often an indication of a

// problem with the design

if (shapes[i] instanceof Centered) { // The shape is a Centered shape
// Note the required cast from Shape to Centered (no cast would
// be required to go from CenteredSquare to Centered, however).

Centered ¢ = (Centered) shapes[i];

double cx c.getCenterX () ; // Get coordinates of the center
double cy = c.getCenterY () ; // Compute distance from origin

totalDistance += Math.sqgrt (cx*cx + cy*cy);

}
System.out.println ("Average area: " + totalArea/shapes.length);
System.out.println ("Average distance: " + totalDistance/shapes.length);

NOTE

Interfaces are data types in Java, just like classes. When a class implements an

interface, instances of that class can be assigned to variables of the interface type.

Don’t interpret this example to imply that you must assign a CenteredRectangle object to
a Centered variable before you can invoke the setCenter () method or to a Shape
variable before invoking the area () method. Instead, because the CenteredRectangle class
defines setCenter () and inherits area () from its Rectangle superclass, you can always

invoke these methods.

As we could see by examining the bytecode (e.g., by using the javap tool we will meet in
Chapter 13), the JVM calls the setCenter () method slightly differently depending on
whether the local variable holding the shape is of the type CenteredRectangle or
Centered, but this is not a distinction that matters most of the time when you’re writing Java

code.

Default Methods

From Java 8 onward, it is possible to declare methods in interfaces that include an
implementation. In this section, we’ll discuss these methods, which should be understood as
optional methods in the API the interfaces represent—they’re usually called default methods.

Let’s start by looking at the reasons why we need the default mechanism in the first place.

BACKWARD COMPATIBILITY

The Java platform has always been very concerned with backward compatibility. This means
that code that was written (or even compiled) for an earlier version of the platform must
continue to work with later releases of the platform. This principle allows development groups
to have a high degree of confidence that an upgrade of their JDK or JRE will not break currently

working applications.

Backward compatibility is a great strength of the Java platform, but in order to achieve it, some
constraints are placed on the platform. One of them is that interfaces may not have new

mandatory methods added to them in a new release of the interface.

For example, let’s suppose that we want to update the Positionable interface with the

ability to add a bottom-left bounding point as well:

public interface Positionable extends Centered {
void setUpperRightCorner (double x, double y);
double getUpperRightX() ;
double getUpperRightY () ;
void setLowerlLeftCorner (double x, double y);
double getLowerLeftX();
double getLowerLeftY ()

With this new definition, if we try to use this new interface with code developed for the old, it
just won’t work, as the existing code is missing the mandatory methods

setLowerLeftCorner (), getLowerLeftX (), and getLowerLeftY ().

NOTE

You can see this effect quite easily in your own code. Compile a class file that
depends on an interface. Then add a new mandatory method to the interface, and try
to run the program with the new version of the interface, together with your old

class file. You should see the program crash with a NoClassDefError.

This limitation was a concern for the designers of Java 8—as one of their goals was to be able to
upgrade the core Java Collections libraries, and introduce methods that made use of lambda

expressions.

To solve this problem, a new mechanism was needed, essentially to allow interfaces to evolve

by allowing new methods to be added without breaking backward compatibility.

IMPLEMENTATION OF DEFAULT METHODS

Adding new methods to an interface without breaking backward compatibility requires
providing some implementation for the older implementations of the interface so that they can
continue to work. This mechanism is a default method, and it was first added to the platform

in JDK 8.

NOTE

A default method (sometimes called an optional method) can be added to any
interface. This must include an implementation, called the default implementation,

which is written inline in the interface definition.

The basic behavior of default methods is:
e An implementing class may (but is not required to) implement the default method.

e If an implementing class implements the default method, then the implementation in the class

is used.
e If no other implementation can be found, then the default implementation is used.

An example default method is the sort () method. It’s been added to the interface

java.util.List in JDK 8, and is defined as:

// The <E> syntax 1s Java's way of writing a generic type-see
// the next section for full details. If you aren't familiar with
// generics, just ignore that syntax for now.
interface List<E> {
// Other members omitted

public default void sort (Comparator<? super E> c) {
Collections.<E>sort (this, c);

Thus, from Java 8 upward, any object that implements List has an instance method sort ()
that can be used to sort the list using a suitable Comparator. As the return type is void, we

might expect that this is an in-place sort, and this is indeed the case.

One consequence of default methods is that when implementing multiple interfaces, it’s possible
that two or more interfaces may contain a default method with a completely identical name and

signature.

For example:

interface Vocal {
default void call () {

System.out.println ("Hello!");

interface Caller {
default void call () {
Switchboard.placeCall (this) ;

public class Person implements Vocal, Caller {
// ... which default is used?

These two interfaces have very different default semantics for call () and could cause a
potential implementation clash—a colliding default method. In versions of Java prior to 8, this
could not occur, as the language only permitted single inheritance of implementation. The
introduction of default methods means that Java now permits a limited form of multiple
inheritance (but only of method implementations). Java still does not permit (and has no plans

to add) multiple inheritance of object state.

TIP

In some other languages, notably C++, this problem is known as diamond

inheritance.

Default methods have a simple set of rules to help resolve any potential ambiguities:

e Ifa class implements multiple interfaces in such a way as to cause a potential clash of default
method implementations, the implementing class must override the clashing method and

provide a definition of what is to be done.

e Syntax is provided to allow the implementing class to simply call one of the interface default

methods if that is what is required:

public class Person implements Vocal, Caller ({

public void call () {
// Can do our own thing
// or delegate to either interface
// e.qg.,
// Vocal.super.call/();
// or

// Caller.super.call ()

As a side effect of the design of default methods, there is a slight, unavoidable usage issue that
may arise in the case of evolving interfaces with colliding methods. Consider the case where a
(version 7) class implements two interfaces A and B with versions a. 0 and b. 0, respectively.
As defaults are not available in Java 7, this class will work correctly. However, if at a later time
either or both interfaces adopt a default implementation of a colliding method, then compile

time breakage can occur.

For example, if version a . 1 introduces a default method in A, then the implementing class will
pick up the implementation when run with the new version of the dependency. If version b. 1

now introduces the same method, it causes a collision:

e If B introduces the method as a mandatory (i.e., abstract) method, then the implementing

class continues to work—both at compile time and at runtime.

e If B introduces the method as a default method, then this is not safe and the implementing

class will fail both at compile and at runtime.

This minor issue is very much a corner case and in practice is a very small price to pay in order

to have usable default methods in the language.

When working with default methods, we should be aware that there is a slightly restricted set of

operations we can perform from within a default method:

e Call another method present in the interface’s public API (whether mandatory or optional);

some implementation for such methods is guaranteed to be available

e C(all a private method on the interface (Java 9 and up)

e (all a static method, whether on the interface or defined elsewhere

e Use the this reference (e.g., as an argument to method calls)

The biggest takeaway from these restrictions is that even with default methods, Java interfaces

still lack meaningful state; we cannot alter or store state within the interface.

Default methods have had a profound impact on the way that Java practitioners approach object-
oriented programming. When combined with the rise of lambda expressions, they have upended

many previous conventions of Java coding; we will discuss this in detail in the next chapter.

Marker Interfaces

Occasionally it is useful to define an interface that is entirely empty. A class can implement this
interface simply by naming it in its implements clause without having to implement any
methods. In this case, any instances of the class become valid instances of the interface as well
and can be cast to the type. Java code can check whether an object is an instance of the interface
using the instanceof operator, so this technique is a useful way to provide additional
information about an object. It can be thought of as providing additional, auxiliary type

information about a class.

TIP

Marker interfaces are much less widely used than they once were. Java’s
annotations (which we shall meet presently) have largely replaced them due to their

much greater flexibility at conveying extended type information.

The interface java.util.RandomAccess is an example of a marker interface:
java.util.List implementations use this interface to advertise that they provide fast
random access to the elements of the list. For example, ArrayList implements
RandomAccess, while LinkedList does not. Algorithms that care about the performance

of random-access operations can test for RandomAccess like this:

// Before sorting the elements of a long arbitrary list, we may want
// to make sure that the 1list allows fast random access. If not,

// it may be quicker to make a random-access copy of the list before
// sorting it. Note that this is not necessary when using

// java.util.Collections.sort ().

List 1L = ...; // Some arbitrary list we're given
if (l.size() > 2 && ! (1l instanceof RandomAccess)) {
1 = new ArrayList(l);

}
sortListInPlace (1) ;

As we will see later, Java’s type system is very tightly coupled to the names that types have—an
approach called nominal typing. A marker interface is a great example of this—it has nothing at

all except a name.

Java Generics

One of the great strengths of the Java platform is the standard library that it ships. It provides a

great deal of useful functionality—and in particular robust implementations of common data

structures. These implementations are relatively simple to develop with and are well
documented. The libraries are known as the Java Collections, and we will spend a big chunk of
Chapter 8 discussing them. For a far more complete treatment, see the book Java Generics and
Collections by Maurice Naftalin and Philip Wadler (O’Reilly).

Although they were still very useful, the earliest versions of the collections had a fairly major
limitation, however. This limitation was that the data structure (sometimes called the container)

essentially obscured the type of the data being stored in it.

NOTE

Data hiding and encapsulation is a great principle of object-oriented programming,
but in this case, the opaque nature of the container caused a lot of problems for the

developer.

Let’s kick off the section by demonstrating the problem, and showing how the introduction of

generic types solved it and made life much easier for Java developers.

Introduction to Generics

If we want to build a collection of Shape instances, we can use a List to hold them, like this:

List shapes = new ArrayList(); // Create a List to hold shapes

// Create some centered shapes, and store them in the 1list
shapes.add (new CenteredCircle (1.0, 1.0, 1.0));
// This is legal Java-but is a very bad design choice

shapes.add (new CenteredSquare (2.5, 2, 3));

// List::get () returns Object, so to get back a
// CenteredCircle we must cast

CenteredCircle ¢ = (CentredCircle)shapes.get (0);

// Next line causes a runtime failure

CenteredCircle ¢ = (CentredCircle)shapes.get(l);

A problem with this code stems from the requirement to perform a cast to get the shape objects
back out in a usable form—the Li st doesn’t know what type of objects it contains. Not only
that, but it’s actually possible to put different types of objects into the same container—and

everything will work fine until an illegal cast is used, and the program crashes.

What we really want is a form of Li st that understands what type it contains. Then, javac
could detect when an illegal argument was passed to the methods of List and cause a

compilation error, rather than deferring the issue to runtime.

NOTE

Collections that have all elements of the same type are called homogeneous, while
the collections that can have elements of potentially different types are called

heterogeneous (or sometimes “mystery meat collections”).

Java provides a simple syntax to cater for homogeneous collections—to indicate that a type is a
container that holds instances of another reference type, we enclose the payload type that the

container holds within angle brackets:

// Create a List-of-CenteredCircle

List<CenteredCircle> shapes = new ArrayList<CenteredCircle> () ;

// Create some centered shapes, and store them in the 1list

shapes.add (new CenteredCircle (1.0, 1.0, 1.0));

// Next line will cause a compilation error

shapes.add (new CenteredSquare (2.5, 2, 3));

// List<CenteredCircle>::get () returns a CenteredCircle, no cast needed

CenteredCircle c¢ = shapes.get (0);

This syntax ensures that a large class of unsafe code is caught by the compiler, before it gets
anywhere near runtime. This is, of course, the whole point of static type systems—to use

compile-time knowledge to help eliminate runtime problems wherever possible.

The resulting types, which combine an enclosing container type and a payload type, are usually

called generic types—and they are declared like this:

interface Box<T> {
void box (T t):;

T unbox () ;

This indicates that the Box interface is a general construct, which can hold any type of payload.

It isn’t really a complete interface by itself—it’s more like a general description of a whole

family of interfaces, one for each type that can be used in place of T.

Generic Types and Type Parameters

We’ve seen how to use a generic type, to provide enhanced program safety, by using compile-
time knowledge to prevent simple type errors. In this section, let’s dig deeper into the properties

of generic types.

The syntax <T> has a special name—it’s called a type parameter, and another name for a
generic type is a parameterized type. This should convey the sense that the container type (e.g.,
List) is parameterized by another type (the payload type). When we write a type like

Map<String, Integer>, we are assigning concrete values to the type parameters.

When we define a type that has parameters, we need to do so in a way that does not make
assumptions about the type parameters. So the List type is declared in a generic way as
List<E>, and the type parameter E is used all the way through to stand as a placeholder for the
actual type that the programmer will use for the payload when she makes use of the List data

structure.

TIP

Type parameters always stand in for reference types. It is not possible to use a

primitive type as a value for a type parameter.

The type parameter can be used in the signatures and bodies of methods as though it is a real

type, for example:

interface List<E> extends Collection<E> ({
boolean add(E e);
E get (int index);
// other methods omitted

Note how the type parameter E can be used as a parameter for both return types and method
arguments. We don’t assume that the payload type has any specific properties, and only make
the basic assumption of consistency—that the type we put in is the same type that we will later

get back out.

This enhancement has effectively introduced a new kind of type to Java’s type system—by

combining the container type with the value of the type parameter we are making new types.

Diamond Syntax

When we create an instance of a generic type, the righthand side of the assignment statement
repeats the value of the type parameter. This is usually unnecessary, as the compiler can infer
the values of the type parameters. In modern versions of Java, we can leave out the repeated

type values in what is called diamond syntax.

Let’s look at an example of how to use diamond syntax, by rewriting one of our earlier

examples:

// Create a List-of-CenteredCircle using diamond syntax

List<CenteredCircle> shapes = new ArrayList<>();

This is a small improvement in the verbosity of the assignment statement—we’ve managed to
save a few characters of typing. We’ll return to the topic of type inference when we discuss

lambda expressions later on in this chapter.

Type Erasure

In “Default Methods”, we discussed the Java platform’s strong preference for backward
compatibility. The addition of generics in Java 5 was another example of where backward

compatibility was an issue for a new language feature.

The central question was how to make a type system that allowed older, nongeneric collection
classes to be used alongside with newer, generic collections. The design decision was to achieve

this by the use of casts:

List someThings = getSomeThings () ;
// Unsafe cast, but we know that the
// contents of someThings are really strings

List<String> myStrings = (List<String>)someThings;

This means that List and List<String> are compatible as types, at least at some level.
Java achieves this compatibility by type erasure. This means that generic type parameters are

only visible at compile time—they are stripped out by javac and are not reflected in the
1

bytecode.

WARNING

The nongeneric type List is usually called a raw type. It is still perfectly legal Java
to work with the raw form of types—even for types that are now generic. This is

almost always a sign of poor-quality code, however.

The mechanism of type erasure gives rise to a difference in the type system seen by javac and

that seen by the JVM—we will discuss this fully in “Generic Methods”.

Type erasure also prohibits some other definitions, which would otherwise seem legal. In this

code, we want to count the orders as represented in two slightly different data structures:

// Won't compile
interface OrderCounter {
// Name maps to list of order numbers

int totalOrders (Map<String, List<String>> orders);

// Name maps to total orders made so far

int totalOrders (Map<String, Integer> orders);

This seems like perfectly legal Java code, but it will not compile. The issue is that although the
two methods seem like normal overloads, after type erasure, the signature of both methods

becomes:

int totalOrders (Map) ;

All that is left after type erasure is the raw type of the container—in this case, Map. The runtime
would be unable to distinguish between the methods by signature, and so the language

specification makes this syntax illegal.

Bounded Type Parameters

Consider a simple generic box:
public class Box<T> ({
protected T value;

public void box (T t) {

value = t;

public T unbox () {
T t = value;
value = null;

return t;

This is a useful abstraction, but suppose we want to have a restricted form of box that only holds
numbers. Java allows us to achieve this by using a bound on the type parameter. This is the

ability to restrict the types that can be used as the value of a type parameter, for example:

public class NumberBox<T extends Number> extends Box<T> {
public int intValue() {

return value.intValue () ;

The type bound T extends Number ensures that T can only be substituted with a type that
1s compatible with the type Number. As a result of this, the compiler knows that value will

definitely have a method intValue () available on it.

NOTE

Notice that because the value field has protected access, it can be accessed

directly in the subclass.

If we attempt to instantiate Numbe rBox with an invalid value for the type parameter, then the

result will be a compilation error, as we can see:

NumberBox<Integer> ni = new NumberBox<> () ;
// Won't compile
NumberBox<Object> no = new NumberBox<> () ;

You must take care with raw types when working with type bounds, as the type bound can be

evaded, but in doing so, the code is left vulnerable to a runtime exception:

// Compiles
NumberBox n = new NumberBox () ;
// This is very dangerous

n.box (new Object ());

// Runtime error

System.out.println(n.intValue());

The call to intValue () fails witha java.lang.ClassCastException—as javac

has inserted an unconditional cast of value to Number before calling the method.

In general, type bounds can be used to write better generic code and libraries. With practice,

some fairly complex constructions can be built, for example:
public class ComparingBox<T extends Comparable<T>> extends Box<T>
implements Comparable<ComparingBox<T>> ({
public int compareTo (ComparingBox<T> o) {
if (value == null)

return o.value == null 2 0 : -1;

return value.compareTo (o.value);

The definition might seem daunting, but the ComparingBox is really just a Box that contains
a Comparable value. The type also extends the comparison operation to the ComparingBox

type itself, by just comparing the contents of the two boxes.

Introducing Covariance

The design of Java’s generics contains the solution to an old problem. In the earliest versions of
Java, before the collections libraries were even introduced, the language had been forced to

confront a deep-seated type system design issue.
Put simply, the question is this:
Should an array of strings be compatible with a variable of type array-of-object?

In other words, should this code be legal?

String[] words = {"Hello World!"};
Object[] objects = words;

Without this, then even simple methods like Arrays: : sort would have been very difficult to

write in a useful way, as this would not work as expected:

Arrays.sort (Object[] a);

The method declaration would only work for the type Object [] and not for any other array
type. As a result of these complications, the very first version of the Java Language Standard

determined that:

If a value of type C can be assigned to a variable of type P then a value of type C[] can be
assigned to a variable of type P [].

That is, arrays’ assignment syntax varies with the base type that they hold, or arrays are

covariant.

This design decision is rather unfortunate, as it leads to immediate negative consequences:

String[] words = {"Hello", "World!"};
Object[] objects = words;

// Oh, dear, runtime error

objects[0] = new Integer (42);

The assignment to objects [0] attempts to store an Integer into a piece of storage that is
expecting to hold a St ring. This obviously will not work, and will throw an

ArrayStoreException.

WARNING

The usefulness of covariant arrays led to them being seen as a necessary evil in the
very early days of the platform, despite the hole in the static type system that the

feature exposes.

However, more recent research on modern open source codebases indicates that array

2
covariance is extremely rarely used and is a language misfeature. You should avoided it when

writing new code.

When considering the behavior of generics in the Java platform, a very similar question can be

asked: “Is List<String> a subtype of List<Object>?" That is, can we write this:

// Is this legal?
List<Object> objects = new ArrayList<String>();

At first glance, this seems entirely reasonable—String is a subclass of Object, so we know

that any String element in our collection is also a valid Object.

However, consider the following code (which is just the array covariance code translated to use

List):

// Is this legal?
List<Object> objects = new ArrayList<String> () ;

// What do we do about this?
objects.add (new Object());

As the type of objects was declared to be L.ist<Object>, then it should be legal to add an
Object instance to it. However, as the actual instance holds strings, then trying to add an

Object would not be compatible, and so this would fail at runtime.

This would have changed nothing from the case of arrays, and so the resolution is to realize that

although this is legal:

Object o = new String("X");

that does not mean that the corresponding statement for generic container types is also true, and

as a result:

// Won't compile
List<Object> objects = new ArraylList<String>();

Another way of saying this is that List<String> is not a subtype of List<Object> or
that generic types are invariant, not covariant. We will have more to say about this when we

discuss bounded wildcards.

Wildcards

A parameterized type, such as ArrayList<T>, is not instantiable; we cannot create instances
of them. This is because <T> is just a type parameter—merely a placeholder for a genuine type.
It is only when we provide a concrete value for the type parameter (e.g.,

ArrayList<String>) that the type becomes fully formed and we can create objects of that

type.

This poses a problem if the type that we want to work with is unknown at compile time.

Fortunately, the Java type system is able to accommodate this concept. It does so by having an

explicit concept of the unknown type—which is represented as <?>. This is the simplest

example of Java’s wildcard types.

We can write expressions that involve the unknown type:

ArrayList<?> mysterylList = unknownList () ;
Object o = mysteryList.get (0);

This is perfectly valid Java—ArrayList<?> is a complete type that a variable can have,
unlike ArrayList<T>. We don’t know anything about mysteryList’s payload type, but

that may not be a problem for our code.

For example, when we get an item out of mysteryList, it has a completely unknown type.
However, we can be sure that the object is assignable to Object—because all valid values of a
generic type parameter are reference types and all reference values can be assigned to a variable

of type Object.

On the other hand, when we’re working with the unknown type, there are some limitations on

its use in user code. For example, this code will not compile:

// Won't compile
mysterylList.add (new Object ());

The reason for this is simple—we don’t know what the payload type of mysteryList is! For
example, if mysteryList was really a instance of ArrayList<String>, then we

wouldn’t expect to be able to put an Object into it.

The only value that we know we can always insert into a container is nul 1—as we know that
null is a possible value for any reference type. This isn’t that useful, and for this reason, the
Java language spec also rules out instantiating a container object with the unknown type as

payload, for example:

// Won't compile

List<?> unknowns = new ArrayList<?>();

The unknown type may seem to be of limited utility, but one very important use for it is as a
starting point for resolving the covariance question. We can use the unknown type if we want to

have a subtyping relationship for containers, like this:

// Perfectly legal
List<?> objects = new ArrayList<String>();

This means that Li st<String> is a subtype of L1 st<?>—although when we use an
assignment like the preceding one, we have lost some type information. For example, the return

type of get () is now effectively Object.

NOTE

List<?>is not a subtype of any List<T>, for any value of T.

The unknown type sometimes confuses developers—provoking questions like, “Why wouldn’t
you just use Object instead of the unknown type?” However, as we’ve seen, the need to have
subtyping relationships between generic types essentially requires us to have a notion of the

unknown type.

BOUNDED WILDCARDS

In fact, Java’s wildcard types extend beyond just the unknown type, with the concept of
bounded wildcards.

They are used to describe the inheritance hierarchy of a mostly unknown type—effectively
making statements like, for example, “I don’t know anything about this type, except that it must

implement List.”

This would be written as ? extends List in the type parameter. This provides a useful
lifeline to the programmer—instead of being restricted to the totally unknown type, she knows

that at least the capabilities of the type bound are available.

WARNING

The extends keyword is always used, regardless of whether the constraining type

is a class or interface type.

This is an example of a concept called #ype variance, which is the general theory of how

inheritance between container types relates to the inheritance of their payload types.

Type covariance

This means that the container types have the same relationship to each other as the payload

types do. This is expressed using the extends keyword.

Type contravariance

This means that the container types have the inverse relationship to each other as the

payload types. This is expressed using the super keyword.

These ideas tend to appear when discussing container types. For example, if Cat extends Pet,

then List<Cat> is asubtype of List<? extends Pet>, and so:

List<Cat> cats = new ArraylList<Cat>();
List<? extends Pet> pets = cats;

However, this differs from the array case, because type safety is maintained in the following

way:
pets.add (new Cat()); // won't compile
pets.add (new Pet()); // won't compile

cats.add (new Cat());

The compiler cannot prove that the storage pointed at by pets is capable of storing a Cat and
so it rejects the call to add () . However, as cats definitely points at a list of Cat objects, then

it must be acceptable to add a new one to the list.

As aresult, it is very commonplace to see these types of generic constructions with types that

act as producers or consumers of payload types.

For example, when the List is acting as a producer of Pet objects, then the appropriate

keyword is extends.

Pet p = pets.get(0);

Note that for the producer case, the payload type appears as the return type of the producer
method.

For a container type that is acting purely as a consumer of instances of a type, we would use the

super keyword, and we would expect to see the payload type as the type of a method

argument.

NOTE

This is codified in the Producer Extends, Consumer Super (PECS) principle coined
by Joshua Bloch.

As discussed in Chapter 8, we see both covariance and contravariance throughout the Java
Collections. They largely exist to ensure that the generics just “do the right thing” and behave in

a manner that should not surprise the developer.

Generic Methods

A generic method is a method that is able to take instances of any reference type.

For example, this method emulates the behavior of the , (comma) operator from the C

language, which is usually used to combine expressions with side effects together:

// Note that this class 1s not generic
public class Utils
public static <T> T comma (T a, T b) {

return a;

Even though a type parameter is used in the definition of the method, the class it is defined in
need not be generic—instead, the syntax is used to indicate that the method can be used freely,

and that the return type is the same as the argument.

Let’s look at another example, from the Java Collections library. In the ArrayList class we

can find a method to create a new array object from an arraylist instance:

("unchecked")
public <T> T[] toArray (T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf (elementData, size, a.getClass());
System.arraycopy (elementData, 0, a, 0, size);
if (a.length > size)
al[size] = null;

return a;

This method uses the low-level arraycopy () method to do the actual work.

NOTE

If we look at the class definition for ArrayList we can see that it is a generic
class—but the type parameter is <E>, not <T>, and the type parameter <E> does

not appear at all in the definition of toArray ().

The toArray () method provides one half of a bridge API between the collections and Java’s
original arrays. The other half of the API—moving from arrays to collections—involves a few

additional subtleties, as we will discuss in Chapter 8.

Compile and Runtime Typing

Consider an example piece of code:

List<String> 1 = new ArrayList<>();

System.out.println(l);

We can ask the following question: what is the type of 1? The answer to that question depends
on whether we consider 1 at compile time (i.e., the type seen by javac) or at runtime (as seen

by the JVM).

javac will see the type of 1 as List-of-String, and will use that type information to

carefully check for syntax errors, such as an attempted add () of an illegal type.

Conversely, the JVM will see 1 as an object of type ArrayList—as we can see from the

println () statement. The runtime type of 1 is a raw type due to type erasure.

The compile-time and runtime types are therefore slightly different from each other. The
slightly strange thing is that in some ways, the runtime type is both more and less specific than

the compile-time type.

The runtime type is less specific than the compile-time type, because the type information about

the payload type is gone—it has been erased, and the resulting runtime type is just a raw type.

The compile-time type is less specific than the runtime type, because we don’t know exactly

what concrete type 1 will be—all we know is that it will be of a type compatible with List.

The differences between compile and runtime typing sometimes confuse new Java
programmers, but the distinction quickly comes to be seen as a normal part of working in the

language.

Using and Designing Generic Types

When working with Java’s generics, it can sometimes be helpful to think in terms of two

different levels of understanding:

Practitioner

A practitioner needs to use existing generic libraries, and to build some fairly simple generic
classes. At this level, the developer should also understand the basics of type erasure, as
several Java syntax features are confusing without at least an awareness of the runtime

handling of generics.

Designer

The designer of new libraries that use generics needs to understand much more of the
capabilities of generics. There are some nastier parts of the spec—including a full

understanding of wildcards, and advanced topics such as “capture-of” error messages.

Java generics are one of the most complex parts of the language specification with a lot of
potential corner cases, which not every developer needs to fully understand, at least on a first

encounter with this part of Java’s type system.

Enums and Annotations

Java has specialized forms of classes and interfaces that are used to fulfill specific roles in the
type system. They are known as enumerated types and annotation types, or normally just called

enums and annotations.

Enums

Enums are a variation of classes that have limited functionality and that have only a small

number of possible values that the type permits.

For example, suppose we want to define a type to represent the primary colors of red, green, and
blue, and we want these to be the only possible values of the type. We can do this by making

use of the enum keyword:

public enum PrimaryColor {

// The ; is not required at the end of the list of instances
RED, GREEN, BLUE

Instances of the type PrimaryColor can then be referenced as though they were static fields:

PrimaryColor.RED, PrimaryColor.GREEN, and PrimaryColor.BLUE.

NOTE

In other languages, such as C++, the role of enum types is fulfilled by using
constant integers, but Java’s approach provides better type safety and more

flexiblity.

As enums are specialized classes, enums can have member fields and methods. If they do have a
body (consisting of fields or methods), then the semicolon at the end of the list of instances is

required, and the list of enum constants must precede the methods and fields.

For example, suppose that we want to have an enum that encompasses the first few regular
polygons (shapes with all sides and all angles equal), and we want them to have some behavior
(in the form of methods). We could achieve this by using an enum that takes a value as a

parameter, like this:

public enum RegularPolygon {
// The ; is mandatory for enums that have parameters
TRIANGLE (3), SQUARE (4), PENTAGON (5), HEXAGON (6) ;

private Shape shape;

public Shape getShape () {

return shape;

private RegularPolygon (int sides) {
switch (sides) {

case 3:
// We assume that we have some general constructors
// for shapes that take the side length and
// angles in degrees as parameters
shape = new Triangle(1,1,1,60,60,60);
break;

case 4:
shape = new Rectangle(l,1);
break;

case 5:

shape new Pentagon(1,1,1,1,1,108,108,108,108,108);
break;

case 6:

shape new Hexagon(l,1,1,1,1,1,120,120,120,120,120,120) ;

break;

These parameters (only one of them in this example) are passed to the constructor to create the
individual enum instances. As the enum instances are created by the Java runtime, and can’t be

instantiated from outside, the constructor is declared as private.

Enums have some special properties:

e All (implicitly) extend java.lang.Enum

e May not be generic

e May implement interfaces

e (Cannot be extended

e May only have abstract methods if all enum values provide an implementation body

e May not be directly instantiated by new

Annotations

Annotations are a specialized kind of interface that, as the name suggests, annotate some part of

a Java program.

For example, consider the @Override annotation. You may have seen it on some methods in

some of the earlier examples, and may have asked the following question: what does it do?
The short, and perhaps surprising, answer is that it does nothing at all.

The less short (and flippant) answer is that, like all annotations, it has no direct effect, but
instead acts as additional information about the method that it annotates; in this case, it denotes

that a method overrides a superclass method.

This acts as a useful hint to compilers and integrated development environments (IDEs)—if a
developer has misspelled the name of a method that she intended to be an override of a

superclass method, then the presence of the @Override annotation on the misspelled method

(which does not override anything) alerts the compiler to the fact that something is not right.

Annotations, as originally conceived, were not supposed to alter program semantics; instead,
they were to provide optional metadata. In its strictest sense, this means that they should not
affect program execution and instead should only provide information for compilers and other

pre-execution phases.

In practice, modern Java applications make heavy use of annotations, and this now includes
many use cases that essentially render the annotated classes useless without additional runtime

support.

For example, classes bearing annotations such as @Inject, @Test, or QAutowired cannot
realistically be used outside of a suitable container. As a result, it is difficult to argue that such

annotations do not violate the “no semantic meaning” rule.

The platform defines a small number of basic annotations in java.lang. The original set
were @Override, @Deprecated, and @SuppressWarnings—which were used to
indicate that a method was overriden, deprecated, or that it generated some compiler warnings

that should be suppressed.

These were augmented by @SafeVarargs in Java 7 (which provides extended warning

suppression for varargs methods) and @FunctionalInterface in Java 8.

This last annotation indicates an interface can be used as a target for a lambda expression—it is

a useful marker annotation although not mandatory, as we will see.
Annotations have some special properties, compared to regular interfaces:
e All (implicitly) extend java.lang.annotation.Annotation

e May not be generic

e May not extend any other interface

e May only define zero-arg methods

e May not define methods that throw exceptions

e Have restrictions on the return types of methods

e Can have a default return value for methods

In practice, annotations do not typically have a great deal of functionality and instead are a fairly

simple language concept.

Defining Custom Annotations

Defining custom annotation types for use in your own code is not that hard. The @interface
keyword allows the developer to define a new annotation type, in much the same way that

class or interface is used.

NOTE

The key to writing custom annotations is the use of “meta-annotations.” These are

special annotations that appear on the definition of new (custom) annotation types.

The meta-annotations are defined in java.lang.annotation and allow the developer to
specify policy for where the new annotation type is to be used, and how it will be treated by the

compiler and runtime.

There are two primary meta-annotations that are both essentially required when creating a new
annotation type—@Target and @Retention. These both take values that are represented as

cnums.

The @Target meta-annotation indicates where the new custom annotation can be legally
placed within Java source code. The enum ElementType has the possible values TYPE,
FIELD, METHOD, PARAMETER, CONSTRUCTOR, LOCAL VARIABLE,

ANNOTATION TYPE, PACKAGE, TYPE PARAMETER, and TYPE USE, and annotations can

indicate that they intend to be used at one or more of these locations.

The other meta-annotation is @Retent ion, which indicates how javac and the Java runtime
should process the custom annotation type. It can have one of three values, which are

represented by the enum RetentionPolicy:

SOURCE

Annotations with this retention policy are discarded by javac during compilation.

CLASS

This means that the annotation will be present in the class file, but will not necessarily be

accessible at runtime by the JVM. This is rarely used, but is sometimes seen in tools that do

offline analysis of JVM bytecode.

RUNTIME

This indicates that the annotation will be available for user code to access at runtime (by

using reflection).

Let’s take a look at an example, a simple annotation called @Nickname, which allows the
developer to define a nickname for a method, which can then be used to find the method

reflectively at runtime:

(ElementType.METHOD)
(RetentionPolicy.RUNTIME)
public Nickname ({
String[] value() default {};

This is all that’s required to define the annotation—a syntax element where the annotation can
appear, a retention policy, and the name of the element. As we need to be able to state the
nickname we’re assigning to the method, we also need to define a method on the annotation.

Despite this, defining new custom annotations is a remarkably compact undertaking.

In addition to the two primary meta-annotations, there are also the @Inherited and
@Documented meta-annotations. These are much less frequently encountered in practice, and

details on them can be found in the platform documentation.

Type Annotations

With the release of Java 8, two new values for ElementType were added
—TYPE PARAMETER and TYPE USE. These new values allow the use of annotations in
places where they were previously not legal, such as at any site where a type is used. This

enables the developer to write code such as:

String safeString = getMyString() ;

The extra type information conveyed by the @NotNul1l can then be used by a special type
checker to detect problems (a possible Nul1PointerException, in this example) and to
perform additional static analysis. The basic Java 8 distribution ships with some basic pluggable
type checkers, but also provides a framework for allowing developers and library authors to

create their own.

In this section, we’ve met Java’s enum and annotation types. Let’s move on to consider the next

important part of Java’s type system: lambda expressions.

Lambda Expressions

One of the most eagerly anticated features of Java 8 was the introduction of lambda expressions

(frequently referred to just as lambdas).

This was a major upgrade to the Java platform and was driven by five goals, in roughly

descending order of priority:
e More expressive programming

Better libraries

Concise code

Improved programming safety

Potentially increased data parallelism

Lambdas have three key aspects that help define the essential nature of the feature:

e They allow small bits of code to be written inline as literals in a program.

e They relax the strict naming rules of Java code by using type inference.

e They are intended to facilitate a more functional style of programming Java.

As we saw in Chapter 2, the syntax for a lambda expression is to take a list of parameters (the

types of which are typically inferred), and to attach that to a method body, like this:

(p, a) -> { /* method body */ }

This can provide a very compact way to represent what is effectively a single method. It is also
a major departure from earlier versions of Java—until now, we have always had to have a class
declaration and then a complete method declaration, all of which adds to the verboseness of the

code.

In fact, before the arrival of lambdas, the only way to approximate this coding style was to use
anonymous classes, which we will discuss later in this chapter. However, since Java 8, lambdas

have proved to be very popular with Java programmers and now have mostly taken over the role

of anonymous classes wherever they are able to do so.

NOTE

Despite the similarities between lambda expressions and anonymous classes,
lambdas are not simply syntactic sugar over anonymous classes. In fact, lambdas
are implemented using method handles (which we will meet in Chapter 11) and a

new, special JVM bytecode called invokedynamic.

Lambda expressions represent the creation of an object of a specific type. The type of the

instance that is created is known as the target type of the lambda.

Only certain types are eligible to be the target of a lamba.

Target types are also called functional interfaces and they must:

e Be interfaces

e Have only one nondefault method (but may have other methods that are default)

Some developers also like to use the single abstract method (or SAM) type to refer to the
interface type that the lambda is converted into. This draws attention to the fact that to be usable

by the lambda expression mechanism, an interface must have only a single nondefault method.

NOTE

A lambda expression has almost all of the component parts of a method, with the
obvious exception that a lambda doesn’t have a name. In fact, many developers like

to think of lambdas as “anonymous methods.”

As a result, this means that the single line of code:

Runnable r = () -> System.out.println("Hello");

actually represents the creation of an object, which is assigned to a variable r, of type

Runnable.

Lambda Expression Conversion

When javac encounters a lambda expression, it interprets it as the body of a method with a

specific signature—but which method?

To resolve this question, javac looks at the surrounding code. To be legal Java code, the

lambda expression must satisfy the following properties:
¢ The lambda must appear where an instance of an interface type is expected.
e The expected interface type should have exactly one mandatory method.

e The expected interface method should have a signature that exactly matches that of the

lambda expression.

If this is the case, then an instance is created of a type that implements the expected interface,

and uses the lambda body as the implementation for the mandatory method.

This slightly complex conversion approach comes from the desire to keep Java’s type system as
purely nominative (based on names). The lambda expression is said to be converted to an

instance of the correct interface type.

From this discussion, we can see that although Java 8 has added lambda expressions, they have
been specifically designed to fit into Java’s existing type system—which has a very strong
emphasis on nominal types (rather than the other possible sorts of types that exist in some other

programming languages).

Let’s consider an example of lambda conversion—the 1ist () method of the
java.io.File class. This method lists the files in a directory. Before it returns the list,
though, it passes the name of each file to a FilenameFilter object that the programmer
must supply. This FilenameFilter object accepts or rejects each file, and is a SAM type

defined in the java. io package:

public interface FilenameFilter {

boolean accept (File dir, String name) ;

The type FilenameFilter carries the @FunctionalInterface to indicate that it is a
suitable type to be used as the target type for a lambda. However, this annotation is not required
and any type that meets the requirements (by being an interface and a SAM type) can be used as

a target type.

This is because the JDK and the existing corpus of Java code already had a huge number of
SAM types available before Java 8 was released. To require potential target types to carry the
annotation would have prevented lambdas from being retrofitted to existing code for no real

benefit.

TIP

In code that you write, you should always try to indicate when your types are usable
as target types, which you can do by adding the @FunctionalInterface to

them. This aids readability and can help some automated tools as well.

Here’s how we can define a FilenameFilter class to list only those files whose names end

with .java, using a lambda:

File dir = new File ("/src"); // The directory to list

String[] filelist = dir.list((d, fName) -> fName.endsWith(".java")):;

For each file in the list, the block of code in the lambda expression is evaluated. If the method
returns t rue (which happens if the filename ends in .java), then the file is included in the

output—which ends up in the array filelist.

This pattern, where a block of code is used to test if an element of a container matches a
condition, and to only return the elements that pass the condition, is called a filter idiom—and is
one of the standard techniques of functional programming, which we will discuss in more depth

presently.

Method References

Recall that we can think of lambda expressions as objects representing methods that don’t have

names. Now, consider this lambda expression:

// In real code this would probably be
// shorter because of type inference
(MyObject myObj) -> myObj.toString/()

This will be autoconverted to an implementation of a @Functional Interface type that

has a single nondefault method that takes a single MyObject and returns a String—

specifically, the string obtained by calling toString () on the instance of MyObject.
However, this seems like excessive boilerplate, and so Java 8 provides a syntax for making this

easier to read and write:

:toString

This is a shorthand, known as a method reference, that uses an existing method as a lambda
expression. The method reference syntax is completely equivalent to the previous form
expressed as a lambda. It can be thought of as using an existing method, but ignoring the name
of the method, so it can be used as a lambda and then autoconverted in the usual way. Java
defines four types of method reference, which are equivalent to four slightly different lambda

expression forms (see Table 4-1).

Table 4-1. Method references

Name Method reference Equivalent lambda

Unbound Trade: :getPrice trade -> trade.getPrice()
Bound System.out::println s -> System.out.println(s)
Static System: :getProperty key -> System.getProperty (key)
Constructor Trade: :new price -> new Trade (price)

The form we originally introduced can be seen to be an unbound method reference. When we
use an unbound method reference, it is equivalent to a lambda that is expecting an instance of

the type that contains the method reference—in Table 4-1 that is a Trade object.

It is called an unbound method reference because the receiver object needs to be supplied (as the
first argument to the lambda) when the method reference is used. That is, we are going to call
getPrice () onsome Trade object, but the supplier of the method reference has not defined

which one—that is left up to the user of the reference.

By contrast, a bound method reference always includes the receiver as part of the instantiation
of the method reference. In Table 4-1, the receiver is System.out—so when the reference is
used, the println () method will always be called on System. out, and all the parameters

of the lambda will be used as method parameters to println ().

We will discuss use cases for method references versus lambda expressions in more detail in the

next chapter.

Functional Programming

Java is fundamentally an object-oriented lanaguage. However, with the arrival of lambda

expressions, it becomes much easier to write code that is closer to the functional approach.

NOTE

There’s no single definition of exactly what constitutes a functional language—but
there is at least a consensus that it should at minimum contain the ability to

represent a function as a value that can be put into a variable.

Java has always (since version 1.1) been able to represent functions via inner classes, but the
syntax was complex and lacking in clarity. Lambda expressions greatly simplify that syntax, and
so it is only natural that more developers will be seeking to use aspects of functional

programming in their Java code, now that it is considerably easier to do so.

The first taste of functional programming that Java developers are likely to encounter are three

basic idioms that are remarkably useful:

map ()

The map idiom is used with lists and list-like containers. The idea is that a function is passed
in that is applied to each element in the collection, and a new collection is created—
consisting of the results of applying the function to each element in turn. This means that a

map idiom converts a collection of one type to a collection of potentially a different type.

filter ()

We have already met an example of the filter idiom, when we discussed how to replace an
anonymous implementation of FilenameFilter with a lambda. The filter idiom is used

for producing a new subset of a collection, based on some selection criteria. Note that in

functional programming, it is normal to produce a new collection, rather than modifying an

existing one in-place.

reduce ()

The reduce idiom has several different guises. It is an aggregation operation, which can be
called fold, accumulate, or aggregate as well as reduce. The basic idea is to take an initial
value, and an aggregation (or reduction) function, and apply the reduction function to each
element in turn, building up a final result for the whole collection by making a series of
intermediate results—similar to a “running total”—as the reduce operation traverses the

collection.

Java has full support for these key functional idioms (and several others). The implementation is
explained in some depth in Chapter 8, where we discuss Java’s data structures and collections,

and in particular the stream abstraction, which makes all of this possible.

Let’s conclude this introduction with some words of caution. It’s worth noting that Java is best
regarded as having support for “slightly functional programming.” It is not an especially
functional language, nor does it try to be. Some particular aspects of Java that militate against

any claims to being a functional language include the following:

¢ Java has no structural types, which means no “true” function types. Every lambda is

automatically converted to the appropriate nominal target type.

e Type erasure causes problems for functional programming—type safety can be lost for

higher-order functions.

e Java is inherently mutable (as we’ll discuss in Chapter 6)—mutability is often regarded as

highly undesirable for functional languages.

e The Java collections are imperative, not functional. Collections must be converted to streams

to use functional style.

Despite this, easy access to the basics of functional programing—and especially idioms such as
map, filter, and reduce—is a huge step forward for the Java community. These idioms are so
useful that a large majority of Java developers will never need or miss the more advanced

capabilities provided by languages with a more thoroughbred functional pedigree.

In truth, many of these techniques were possible using nested types, via patterns like callbacks
and handlers, but the syntax was always quite cumbersome, especially given that you had to

explicitly define a completely new type even when you only needed to express a single line of

code in the callback.

Lexical Scoping and Local Variables

A local variable is defined within a block of code that defines its scope, and outside of that
scope, a local variable cannot be accessed and ceases to exist. Only code within the curly braces
that define the boundaries of a block can use local variables defined in that block. This type of
scoping is known as lexical scoping, and just defines a section of source code within which a

variable can be used.

It is common for programmers to think of such a scope as femporal instead—that is, to think of
a local variable as existing from the time the JVM begins executing the block until the time
control exits the block. This is usually a reasonable way to think about local variables and their
scope. However, lambda expressions (and anonymous and local classes, which we will meet

later) have the ability to bend or break this intuition somewhat.

This can cause effects that some developers initially find surprising. This is because lambdas
can use local variables, and so they can contain copies of values from lexical scopes that no

longer exist. This can been seen in the following code:

public interface IntHolder ({
public int getValue () ;

public class Weird {
public static void main (String[] args) {
IntHolder[] holders = new IntHolder[10];

for (int 1 = 0; i < 10; i++) {
final int fi = 1i;
holders[i] = () -> {

return fi;
i

}
// The lambda is now out of scope, but we have 10 valid instances
// of the class the lambda has been converted to in our array.
// The local variable fi is not in our scope here, but is still
// 1in scope for the getValue () method of each of those 10 objects.
// So call getValue () for each object and print it out.
// This prints the digits 0 to 9.

for (int 1 = 0; 1 < 10; i++) {

System.out.println (holders[i].getValue())

Each instance of a lambda has an automatically created private copy of each of the final local
variables it uses, so, in effect, it has its own private copy of the scope that existed when it was

created. This is sometimes referred to as a captured variable.

Lambdas that capture variables like this are referred to as closures, and the variables are said to

have been closed over.

WARNING

Other programming languages may have a slightly different definition of a closure.
In fact, some theorists would dispute that Java’s mechanism counts as a closure
because, technically, it is the contents of the variable (a value) and not the variable

itself that is captured.

In practice, the preceding closure example is more verbose than it needs to be in two separate

ways:

¢ The lambda has an explicit scope { } and return statement.
e The variable £1 is explicitly declared final.

The compiler javac helps with both of these.

Lambdas that only return the value of a single expression need not include a scope or return;
instead, the body of the lambda is just the expression without the need for curly braces. In our
example we have explicitly included the braces and return statement to spell out that the

lambda is defining its own scope.

In early versions of Java there were two hard requirements when closing over a variable:

¢ The captures must not be modified after they have been captured (e.g., after the lambda)
e The captured variables must be declared final

However, in recent Java versions, javac can analyze the code and detect whether the
programmer attempts to modify the captured variable after the scope of the lambda. If not, then
the final qualifier on the captured variable can be omitted (such a variable is said to be
effectively final). If the final qualifier is omitted, then it is a compile-time error to attempt to

modify a captured variable after the lambda’s scope.

The reason for this is that Java implements closures by copying the bit pattern of the contents of
the variable into the scope created by the closure. Further changes to the contents of the closed-
over variable would not be reflected in the copy contained in closure scope, so the design

decision was made to make such changes illegal, and a compile-time error.

These assists from javac mean that we can rewrite the inner loop of the preceding example to

the very compact form:

for (int i = 0; 1 < 10; i++) {
int fi = 1i;
holders([i] = () -> fi;

Closures are very useful in some styles of programming, and different programming languages
define and implement closures in different ways. Java implements closures as lambda
expressions, but local classes and anonymous classes can also capture state—and in fact this is

how Java implemented closures before lambdas were available.

Nested Types

The classes, interfaces, and enum types we have seen so far in this book have all been defined as
top-level types. This means that they are direct members of packages, defined independently of
other types. However, type definitions can also be nested within other type definitions. These

nested types, commonly known as “inner classes,” are a powerful feature of the Java language.

In general, nested types are used for two separate purposes, both related to encapsulation. First,
a type may be nested because it needs especially intimate access to the internals of another type.
By being a nested type, it has access in the same way that member variables and methods do.
This means that nested types have privileged access and can be thought of as “slightly bending

the rules of encapsulation.”

Another way of thinking about this use case of nested types is that they are types that are
somehow tied together with another type. This means that they don’t really have a completely

independent existence as an entity, and only live in coexist.

Alternatively, a type may be only required for a very specific reason, and in a very small section
of code. This means that it should be tightly localized, as it is really part of the implementation

detail.

In older versions of Java, the only way to do this was with a nested type, such as an anonymous

implementation of an interface. In practice, with the advent of Java 8, this use case has

substantially been taken over by lambda expressions and the use of anonymous types as closely

localized types has dramatically declined, although it still persists for some cases.

Types can be nested within another type in four different ways:

Static member types

A static member type is any type defined as a static member of another type. Nested

interfaces, enums, and annotations are always static (even if you don’t use the keyword).

Nonstatic member classes

A “nonstatic member type” is simply a member type that is not declared static. Only

classes can be nonstatic member types.

Local classes

A local class is a class that is defined and only visible within a block of Java code.

Interfaces, enums, and annotations may not be defined locally.

Anonymous classes

An anonymous class is a kind of local class that has no meaningful name in the Java

language. Interfaces, enums, and annotations cannot be defined anonymously.

The term “nested types,” while a correct and precise usage, is not widely used by developers.
Instead, most Java programmers use the much vaguer term “inner class.” Depending on the
situation, this can refer to a nonstatic member class, local class, or anonymous class, but not a

static member type, with no real way to distinguish between them.

Fortunately, although the terminology for describing nested types is not always clear, the syntax
for working with them is, and it is usually apparent from context which kind of nested type is

being discussed.

NOTE

Until Java 11, nested types were implemented using a compiler trick. Experienced
Java programmers should note that this detail has actually changed in Java 11, and it

is no longer done in quite the same way as it used to be.

Let’s move on to describe each of the four kinds of nested types in greater detail. Each section
describes the features of the nested type, the restrictions on its use, and any special Java syntax

used with the type.

Static Member Types

A static member type is much like a regular top-level type. For convenience, however, it is
nested within the namespace of another type. Static member types have the following basic

properties:

e A static member type is like the other static members of a class: static fields and static

methods.

¢ A static member type is not associated with any instance of the containing class (i.e., there is

no this object).
e A static member type can access (only) the static members of the class that contains it.

e A static member type has access to all the static members (including any other static

member types) of its containing type.

¢ Nested interfaces, enums, and annotations are implicitly static, whether or not the static

keyword appears.
e Any type nested within an interface or annotation is also implicitly static.

¢ Static member types may be defined within top-level types or nested to any depth within

other static member types.
e A static member type may not be defined within any other kind of nested type.

Let’s look at a quick example of the syntax for static member types. Example 4-1 shows a

helper interface defined as a static member of a containing class.

Example 4-1. Defining and using a static member interface

// A class that implements a stack as a linked list
public class LinkedStack {

// This static member interface defines how objects are linked
// The static keyword is optional: all nested interfaces are static
static interface Linkable {

public Linkable getNext () ;

public void setNext (Linkable node);

// The head of the list is a Linkable object
Linkable head;

// Method bodies omitted
public void push (Linkable node) { ... }

public Object pop() { ... }

// This class implements the static member interface
class LinkableInteger implements LinkedStack.Linkable {
// Here's the node's data and constructor
int i;

public LinkableInteger(int i) { this.i = i; }

// Here are the data and methods required to implement the interface

LinkedStack.Linkable next;
public LinkedStack.Linkable getNext () { return next; }

public void setNext (LinkedStack.Linkable node) { next = node; }

The example also shows how this interface is used both within the class that contains it and by

external classes. Note the use of its hierarchical name in the external class.

FEATURES OF STATIC MEMBER TYPES

A static member type has access to all static members of its containing type, including
private members. The reverse is true as well: the methods of the containing type have access
to all members of a static member type, including the private members. A static member
type even has access to all the members of any other static member types, including the
private members of those types. A static member type can use any other static member

without qualifying its name with the name of the containing type.

Top-level types can be declared as either pub1ic or package-private (if they’re declared
without the pub1ic keyword). But declaring top-level types as private and protected
wouldn’t make a great deal of sense—protected would just mean the same as package-

private and a private top-level class would be unable to be accessed by any other type.

Static member types, on the other hand, are members and so can use any access control
modifiers that other members of the containing type can. These modifiers have the same

meanings for static member types as they do for other members of a type.

For example, in Example 4-1, the Linkable interface is declared public, so it can be

implemented by any class that is interested in being stored on a LinkedStack.

In code outside the containing class, a static member type is named by combining the name of

the outer type with that of the inner (e.g., LinkedStack.Linkable).

Under most circumstances, this syntax provides a helpful reminder that the inner class is
interconnected with its containing type. However, the Java language does permit you to use the

import directive to directly import a static member type:

import pkg.LinkedStack.Linkable; // Import a specific nested type
// Import all nested types of LinkedStack
import pkg.LinkedStack. *;

You can then reference the nested type without including the name of its enclosing type (e.g.,

justas Linkable).

NOTE

You can also use the import static directive to import a static member type.
See “Packages and the Java Namespace” in Chapter 2 for details on import and

import static.

However, importing a nested type obscures the fact that that type is closely associated with its
containing type—which is usually important information—and as a result it is not commonly

done.

Nonstatic Member Classes

A nonstatic member class is a class that is declared as a member of a containing class or

enumerated type without the static keyword:

e If a static member type is analogous to a class field or class method, a nonstatic member

class is analogous to an instance field or instance method.
¢ Only classes can be nonstatic member types.

e An instance of a nonstatic member class is always associated with an instance of the

enclosing type.

¢ The code of a nonstatic member class has access to all the fields and methods (both static

and non-static) of its enclosing type.

o Several features of Java syntax exist specifically to work with the enclosing instance of a

nonstatic member class.

Example 4-2 shows how a member class can be defined and used. This example extends the
previous LinkedStack example to allow enumeration of the elements on the stack by
defining an iterator () method that returns an implementation of the
java.util.Iterator interface. The implementation of this interface is defined as a

member class.

Example 4-2. An iterator implemented as a member class

import java.util.Iterator;

public class LinkedStack {

// Our static member interface
public interface Linkable {
public Linkable getNext () ;
public void setNext (Linkable node);

// The head of the 1list
private Linkable head;

// Method bodies omitted here
public void push (Linkable node) { ... }
public Linkable pop() { ... }

// This method returns an Iterator object for this LinkedStack
public Iterator<Linkable> iterator () { return new LinkedIterator(); }

// Here is the implementation of the Iterator interface,
// defined as a nonstatic member class.
protected class LinkedIterator implements Iterator<Linkable> {

Linkable current;

// The constructor uses a private field of the containing class

public LinkedIterator() { current = head; }

// The following three methods are defined
// by the Iterator interface
public boolean hasNext () { return current != null; }

public Linkable next () {
if (current == null)
throw new java.util.NoSuchElementException () ;

Linkable value = current;

current = current.getNext ()

return value;

public void remove () { throw new UnsupportedOperationException();

Notice how the LinkedIterator class is nested within the LinkedStack class. Because
LinkedIterator is a helper class used only within LinkedStack, having it defined so
close to where it is used by the containing class makes for a clean design, just as we discussed

when we introduced nested types.

FEATURES OF MEMBER CLASSES

Like instance fields and instance methods, every instance of a nonstatic member class is
associated with an instance of the class in which it is defined. This means that the code of a
member class has access to all the instance fields and instance methods (as well as the static

members) of the containing instance, including any that are declared private.

This crucial feature was already illustrated in Example 4-2. Here is the

LinkedStack.LinkedIterator () constructor again:

public LinkedIterator() { current = head; }

This single line of code sets the current field of the inner class to the value of the head field
of the containing class. The code works as shown, even though head is declared as a private

field in the containing class.

A nonstatic member class, like any member of a class, can be assigned one of the standard
access control modifiers. In Example 4-2, the LinkedIterator class is declared
protected, so it is inaccessible to code (in a different package) that uses the LinkedStack

class but is accessible to any class that subclasses LinkedStack.

Member classes have two important restrictions:

¢ A nonstatic member class cannot have the same name as any containing class or package.

This is an important rule, one that is not shared by fields and methods.

¢ Nonstatic member classes cannot contain any static fields, methods, or types, except for

constant fields declared both staticand final.

SYNTAX FOR MEMBER CLASSES

The most important feature of a member class is that it can access the instance fields and

methods in its containing object.

If we want to use explicit references, and make use of this, then we have to use a special
syntax for explicitly referring to the containing instance of the this object. For example, if we

want to be explicit in our constructor, we can use the following syntax:

public LinkedIterator () { this.current = LinkedStack.this.head; }

The general syntax is classname. this, where classname is the name of a containing
class. Note that member classes can themselves contain member classes, nested to any depth.
However, because no member class can have the same name as any containing class, the use of
the enclosing class name prepended to this is a perfectly general way to refer to any

containing instance.

Local Classes

A local class is declared locally within a block of Java code rather than as a member of a class.
Only classes may be defined locally: interfaces, enumerated types, and annotation types must be
top-level or static member types. Typically, a local class is defined within a method, but it can

also be defined within a static initializer or instance initializer of a class.

Just as all blocks of Java code appear within class definitions, all local classes are nested within
containing blocks. For this reason, local classes share many of the features of member classes. It

is usually more appropriate to think of them as an entirely separate kind of nested type.

NOTE

See Chapter 5 for details as to when it’s appropriate to choose a local class versus a

lambda expression.

The defining characteristic of a local class is that it is local to a block of code. Like a local
variable, a local class is valid only within the scope defined by its enclosing block. Example 4-3
illustrates how we can modify the iterator () method of the LinkedStack class so it

defines LinkedIterator as alocal class instead of a member class.

By doing this, we move the definition of the class even closer to where it is used and hopefully

improve the clarity of the code even further. For brevity, Example 4-3 shows only the

iterator () method, not the entire LinkedStack class that contains it.

Example 4-3. Defining and using a local class

// This method returns an Iterator object for this LinkedStack
public Iterator<Linkable> iterator () {
// Here's the definition of LinkedIterator as a local class
class LinkedIterator implements Iterator<Linkable> {

Linkable current;

// The constructor uses a private field of the containing class

public LinkedIterator() { current = head; }

// The following three methods are defined
// by the Iterator interface
public boolean hasNext () { return current != null; }

public Linkable next () {
if (current == null)
throw new java.util.NoSuchElementException () ;
Linkable value = current;
current = current.getNext () ;

return value;

public void remove () { throw new UnsupportedOperationException() ;

// Create and return an instance of the class we just defined

return new LinkedIterator();

FEATURES OF LOCAL CLASSES

Local classes have the following interesting features:

¢ Like member classes, local classes are associated with a containing instance and can access

any members, including private members, of the containing class.

¢ In addition to accessing fields defined by the containing class, local classes can access any
local variables, method parameters, or exception parameters that are in the scope of the local

method definition and are declared final.

Local classes are subject to the following restrictions:

¢ The name of a local class is defined only within the block that defines it; it can never be used

outside that block. (Note, however, that instances of a local class created within the scope of

the class can continue to exist outside of that scope. This situation is described in more detail

later in this section.)
e Local classes cannot be declared public, protected, private, or static.

e Like member classes, and for the same reasons, local classes cannot contain static fields,
methods, or classes. The only exception is for constants that are declared both static and

final.

e Interfaces, enumerated types, and annotation types cannot be defined locally.

¢ A local class, like a member class, cannot have the same name as any of its enclosing classes.

e As noted earlier, a local class can close over the local variables, method parameters, and even
exception parameters that are in its scope but only if those variables or parameters are

effectively final.

SCOPE OF A LOCAL CLASS

In discussing nonstatic member classes, we saw that a member class can access any members

inherited from superclasses and any members defined by its containing classes.

The same is true for local classes, but local classes can also behave like lambdas and access
effectively final local variables and parameters. Example 4-4 illustrates the different kinds of

fields and variables that may be accessible to a local class (or a lambda, for that matter):

Example 4-4. Fields and variables available to a local class

class A { protected char a = 'a'; }
class B { protected char b = 'b'; }

public class C extends A {
private char c¢c = 'c¢'; // Private fields visible to local class
public static char d = 'd';
public void createlocalObject (final char e)
{
final char £ = 'f£';
int i = 0; // 1 not final; not usable by local class
class Local extends B
{
char g = 'g';
public void printVars ()
{
// All of these fields and variables are accessible to this class
System.out.println(g); // (this.g) g is a field of this class
System.out.println(f); // f is a final local variable
System.out.println(e); // e is a final local parameter
(d);

System.out.println ; // (C.this.d) d field of containing class

System.out.println(c); // (C.this.c) c field of containing class

System.out.println(b); // b is inherited by this class
System.out.println(a); // a is inherited by the containing class
}
}
Local 1 = new Local(); // Create an instance of the local class
l.printVars(); // and call its printVars() method.

Local classes have quite a complex scoping structure, therefore. To see why, notice that
instances of a local class can have a lifetime that extends past the time that the JVM exits the

block where the local class is defined.

NOTE

In other words, if you create an instance of a local class, that instance does not
automatically go away when the JVM finishes executing the block that defines the
class. So, even though the definition of the class was local, instances of that class

can escape out of the place they were defined.

Local classe, therefore, behave like lambdas in many regards, although the use case of local
classes is more general than that of lambdas. However, in practice the extra generality is rarely

required, and lambdas are preferred wherever possible.

Anonymous Classes

An anonymous class is a local class without a name. It is defined and instantiated in a single
expression using the new operator. While a local class definition is a statement in a block of
Java code, an anonymous class definition is an expression, which means that it can be included

as part of a larger expression, such as a method call.

NOTE

For the sake of completeness, we cover anonymous classes here, but for most use
cases, lambda expressions (see “Lambda Expressions”) have replaced anonymous

classes.

Consider Example 4-5, which shows the LinkedIterator class implemented as an
anonymous class within the iterator () method of the LinkedStack class. Compare it

with Example 4-4, which shows the same class implemented as a local class.

Example 4-5. An enumeration implemented with an anonymous class

public Iterator<Linkable> iterator () {
// The anonymous class is defined as part of the return statement
return new Iterator<Linkable> () {
Linkable current;
// Replace constructor with an instance initializer

{ current = head; }

// The following three methods are defined
// by the Iterator interface
public boolean hasNext () { return current != null; }
public Linkable next () {
if (current == null)
throw new java.util.NoSuchElementException () ;
Linkable value = current;
current = current.getNext () ;
return value;

}
public void remove () { throw new UnsupportedOperationException() ;

}; // Note the required semicolon. It terminates the return statement

As you can see, the syntax for defining an anonymous class and creating an instance of that
class uses the new keyword, followed by the name of a type and a class body definition in curly
braces. If the name following the new keyword is the name of a class, the anonymous class is a
subclass of the named class. If the name following new specifies an interface, as in the two

previous examples, the anonymous class implements that interface and extends Object.

NOTE

The syntax for anonymous classes does not include any way to specify an

extends clause, an implements clause, or a name for the class.

Because an anonymous class has no name, it is not possible to define a constructor for it within
the class body. This is one of the basic restrictions on anonymous classes. Any arguments you
specify between the parentheses following the superclass name in an anonymous class definition

are implicitly passed to the superclass constructor. Anonymous classes are commonly used to

subclass simple classes that do not take any constructor arguments, so the parentheses in the

anonymous class definition syntax are often empty.

Because an anonymous class is just a type of local class, anonymous classes and local classes
share the same restrictions. An anonymous class cannot define any static fields, methods, or
classes, except for static final constants. Interfaces, enumerated types, and annotation
types cannot be defined anonymously. Also, like local classes, anonymous classes cannot be

public,private, protected,or static.

The syntax for defining an anonymous class combines definition with instantiation, similar to a
lambda expression. Using an anonymous class instead of a local class is not appropriate if you
need to create more than a single instance of the class each time the containing block is

executed.

Because an anonymous class has no name, it is not possible to define a constructor for an

anonymous class. If your class requires a constructor, you must use a local class instead.

Non-Denotable Types and var

One of the only new language features to arrive in Java 10 is Local Variable Type Inference,
otherwise known as var. This is an enhancement to Java’s type inference capabilities that may

prove to be more significant than it first appears. In the simplest case, it allows code such as:

var ls = new ArrayList<String>();

which moves the inference from the type of values to the type of variables.

The implementation in Java 10 achieves this by making var a reserved type name rather than a
keyword. This means that code can still use var as a variable, method, or package name
without being affected by the new syntax. However, code that has previously used var as the

name of a type will have to be recompiled.

This simple case is designed to reduce verbosity and to make programmers coming to Java from
other languages (especially Scala, .NET, and JavaScript) feel more comfortable. However, it
does carry the risk that overuse will potentially obscure the intent of the code being written, so it

should be used sparingly.

As well as the simple cases, var actually permits programming constructs that were not
possible before. To see the differences, let’s consider that javac has always permitted a very

limited form of type inference:

public class Test {
public static void main (String[] args) {
(new Object () {
public void bar () {
System.out.println ("bar!");

}
}) .bar();

The code will compile and run, printing out bar !. This slightly counterintuitive result occurs
because javac preserves enough type information about the anonymous class (i.e., that it has a
bar () method) for just long enough that the compiler can conclude that the call to bar () is

valid.

In fact, this edge case has been known in the Java community since at least 2009, long before

the arrival of even Java 7.

The problem with this form of type inference is that it has no real practical applications—the
type of “Object-with-a-bar-method” exists within the compiler, but the type is impossible to
express as the type of a variable—it is not a denotable type. This means that before Java 10 the

existence of this type is restricted to a single expression and cannot be used in a larger scope.

With the arrival of Java 10, however, the type of variables does not always need to be made
explicit. Instead, we can use var to allow us to preserve the static type information by avoiding

denoting the type.

This means we can now modify our example and write:

var o = new Object () {
public void bar() {

System.out.println ("bar!");

o.bar () ;

This has allowed us to preserve the true type of o beyond a single expression. The type of o
cannot be denoted, and so it cannot appear as the type of either a method parameter or return
type. This means that the type is still limited to only a single method, but it is still useful to

express some constructions that would be awkward or impossible otherwise.

This use of var as a “magic type” allows the programmer to preserve type information for each

distinct usage of var, in a way that is somewhat reminiscent of bounded wildcards from Java’s

generics.

More advanced usages of var with non-denotable types are possible. While the feature is not
able to satisfy every criticism of Java’s type system, it does represent a definite (if cautious) step

forward.

Summary

By examining Java’s type system, we have been able to build up a clear picture of the
worldview that the Java platform has about data types. Java’s type system can be characterized

as:

Static

All Java variables have types that are known at compile time.

Nominal

The name of a Java type is of paramount importance. Java does not permit structural types

and has only limited support for non-denotable types.

Object/imperative

Java code is object-oriented, and all code must live inside methods, which must live inside
classes. However, Java’s primitive types prevent full adoption of the “everything is an

object” worldview.

Slightly functional

Java provides support for some of the more common functional idioms, but more as a

convenience to programmers than anything else.

Type-inferred

Java is optimized for readability (even by novice progammers) and prefers to be explicit, but

uses type inference to reduce boilerplate where it does not impact the legibility of the code.

Strongly backward compatible

Java is primarily a business-focused language, and backward compatibility and protection of

existing codebases is a very high priority.

Type erased

Java permits parameterized types, but this information is not available at runtime.

Java’s type system has evolved (albeit slowly and cautiously) over the years—and is now on a
par with the type systems of other mainstream programming languages. Lambda expressions,
along with default methods, represent the greatest transformation since the advent of Java 5, and

the introduction of generics, annotations, and related innovations.

Default methods represent a major shift in Java’s approach to object-oriented programming—
perhaps the biggest since the language’s inception. From Java 8 onward, interfaces can contain
implementation code. This fundamentally changes Java’s nature—previously a single-inherited
language, Java is now multiply inherited (but only for behavior—there is still no multiple

inheritance of state).

Despite all of these innovations, Java’s type system is not (and is not intended to be) equipped
with the power of the type systems of languages such as Scala or Haskell. Instead, Java’s type
system is strongly biased in favor of simplicity, readability, and a simple learning curve for

newcomers.

Java has also benefited enormously from the approaches to types developed in other languages
over the last 10 years. Scala’s example of a statically typed language that nevertheless achieves
much of the feel of a dynamically typed language by the use of type inference has been a good
source of ideas for features to add to Java, even though the languages have quite different design

philosophies.

One remaining question is whether the modest support for functional idioms that lambda

expressions provide in Java is sufficient for the majority of Java programmers.

NOTE

The long-term direction of Java’s type system is being explored in research projects
such as Valhalla, where concepts such as data classes, pattern matching, and sealed

classes are being explored.

It remains to be seen whether the majority of ordinary Java programmers require the added
power—and attendant complexity—that comes from an advanced (and much less nominal) type
system such as Scala’s, or whether the “slightly functional programming” introduced in Java 8

(e.g., map, filter, reduce, and their peers) will suffice for most developers’ needs.

Some small traces of generics remain, which can be seen at runtime via reflection.
1

2Raoul-Gabriel Urma and Janina Voigt, “Using the OpenJDK to Investigate Covariance in

Java,” Java Magazine (May/June 2012): 44-47.

Chapter 5. Introduction to Object-Oriented
Design in Java

In this chapter, we’ll look at how to work with Java’s objects, covering the key methods of
Object, aspects of object-oriented design, and implementing exception handling schemes.
Throughout the chapter, we will be introducing some design patterns—essentially best practices
for solving some very common situations that arise in software design. Toward the end of the
chapter, we’ll also consider the design of safe programs—those that are designed so as not to
become inconsistent over time. We’ll get started by considering the subject of Java’s calling and

passing conventions and the nature of Java values.

Java Values

Java’s values, and their relationship to the type system, are quite straightforward. Java has two

types of values—primitives and object references.

NOTE

There are only eight different primitive types in Java and new primitive types

cannot be defined by the programmer.

The key difference between primitive values and references is that primitive values cannot be
altered; the value 2 is always the same value. By contrast, the contents of object references can

usually be changed—often referred to as mutation of object contents.

Also note that variables can only contain values of the appropriate type. In particular, variables
of reference type always contain a reference to the memory location holding the object—they do
not contain the object contents directly. This means that in Java there is no equivalent of a

dereference operator or a struct.

Java tries to simplify a concept that often confused C++ programmers: the difference between

“contents of an object” and “reference to an object.” Unfortunately, it’s not possible to
completely hide the difference, and so it is necessary for the programmer to understand how

reference values work in the platform.

IS JAVA “PASS BY REFERENCE”?

Java handles objects “by reference,” but we must not confuse this with the phrase “pass by

reference.” “Pass by reference” is a term used to describe the method-calling conventions of

some programming languages. In a pass-by-reference language, values—even primitive
values—are not passed directly to methods. Instead, methods are always passed references
to values. Thus, if the method modifies its parameters, those modifications are visible when
the method returns, even for primitive types.

Java does not do this; it is a “pass-by-value” language. However, when a reference type is
involved, the value that is passed is a copy of the reference (as a value). But this is not the
same as pass by reference. If Java were a pass-by-reference language, when a reference
type is passed to a method, it would be passed as a reference to the reference.

—
The fact that Java is pass by value can be demonstrated very simply. The following code shows
that even after the call to manipulate (), the value contained in variable c is unaltered—it is
still holding a reference to a Circle object of radius 2. If Java was a pass-by-reference

language, it would instead be holding a reference to a radius 3 Circle:

public void manipulate (Circle circle) {

circle = new Circle(3);

Circle ¢ = new Circle(2);
manipulate (c) ;

System.out.println ("Radius: "+ c.getRadius());

If we’re scrupulously careful about the distinction, and about referring to object references as
one of Java’s possible kinds of values, then some otherwise surprising features of Java become
obvious. Be careful—some older texts are ambiguous on this point. We will meet this concept

of Java’s values again when we discuss memory and garbage collection in Chapter 6.

Important Methods of java.lang.Object

As we’ve noted, all classes extend, directly or indirectly, java.lang.Object. This class
defines a number of useful methods that were designed to be overridden by classes you write.
Example 5-1 shows a class that overrides these methods. The sections that follow this example

document the default implementation of each method and explain why you might want to

override it.

Example 5-1 uses a lot of the extended features of the type system that we introduced in
Chapter 4. First, this example implements a parameterized, or generic, version of the
Comparable interface. Second, it uses the @Override annotation to emphasize (and have

the compiler verify) that certain methods override Object.

Example 5-1. A class that overrides important Object methods

// This class represents a circle with immutable position and radius.
public class Circle implements Comparable<Circle> {

// These fields hold the coordinates of the center and the radius.

// They are private for data encapsulation and final for immutability

private final int x, y, r;

// The basic constructor: initialize the fields to specified values
public Circle(int x, int y, int r) {
if (r < 0) throw new IllegalArgumentException("negative radius");

this.x = x; this.y = y; this.r = r;

// This is a "copy constructor'"--a useful alternative to clone()
public Circle(Circle original) {
x = original.x; // Just copy the fields from the original
y = original.y;

r original.r;

// Public accessor methods for the private fields.

// These are part of data encapsulation.

public int getX () { return x; }
public int getY () { return y; }
public int getR() { return r; }

// Return a string representation
@Override public String toString() {

return String.format ("center=(%d, %d); radius=%d", x, y, r);

// Test for equality with another object

®
O

werride public boolean equals (Object o) {
// Identical references?
if (o == this) return true;

// Correct type and non-null?

if (! (o instanceof Circle)) return false;

Circle that = (Circle) o; // Cast to our type

if (this.x == that.x && this.y == that.y && this.r == that.r)
return true; // If all fields match

else

return false; // If fields differ

// A hash code allows an object to be used in a hash table.

// Equal objects must have equal hash codes. Unequal objects are

// allowed to have equal hash codes as well, but we try to avoid that.
// We must override this method because we also override equals().

@Override public int hashCode () {

int result = 17; // This hash code algorithm from the boo
result = 37*result + x; // Effective Java, by Joshua Bloch
result = 37*result + y;

result = 37*result + r;

return result;

// This method is defined by the Comparable interface. Compare
// this Circle to that Circle. Return a value < 0 if this < that
// Return 0 if this == that. Return a value > 0 if this > that.
// Circles are ordered top to bottom, left to right, and then by radiu
public int compareTo (Circle that) {
// Smaller circles have bigger y
long result = (long)that.y - this.y;
// If same compare l-to-r
if (result==0) result = (long)this.x - that.x;
// If same compare radius

if (result==0) result = (long)this.r - that.r;

// We have to use a long value for subtraction because the
// differences between a large positive and large negative
// value could overflow an int. But we can't return the long,
// so return its sign as an int.

return Long.signum(result);

toString()

The purpose of the toString () method is to return a textual representation of an object. The
method is invoked automatically on objects during string concatenation and by methods such as
System.out.println (). Giving objects a textual representation can be quite helpful for
debugging or logging output, and a well-crafted toString () method can even help with tasks

such as report generation.

The version of toString () inherited from Object returns a string that includes the name of
the class of the object as well as a hexadecimal representation of the hashCode () value of the
object (discussed later in this chapter). This default implementation provides basic type and
identity information for an object but is not usually very useful. The toString () method in
Example 5-1 instead returns a human-readable string that includes the value of each of the fields

of the Circle class.

equals()

The == operator tests two references to see if they refer to the same object. If you want to test
whether two distinct objects are equal to one another, you must use the equals () method
instead. Any class can define its own notion of equality by overriding equals (). The
Object.equals () method simply uses the == operator: this default method considers two

objects equal only if they are actually the very same object.

The equals () method in Example 5-1 considers two distinct Circle objects to be equal if
their fields are all equal. Note that it first does a quick identity test with == as an optimization
and then checks the type of the other object with instanceof: a Circle can be equal only
to another Circle, and it is not acceptable for an equals () method to throw a
ClassCastException. Note that the instanceof test also rules out null arguments:

instanceof always evaluates to false if its lefthand operand is null.

hashCode()

Whenever you override equals (), you must also override hashCode () . This method
returns an integer for use by hash table data structures. It is critical that two objects have the

same hash code if they are equal according to the equals () method.

It is important (for efficient operation of hash tables) but not required that unequal objects have
unequal hash codes, or at least that unequal objects are unlikely to share a hash code. This
second criterion can lead to hashCode () methods that involve mildly tricky arithmetic or bit

manipulation.

The Object.hashCode () method works with the Object.equals () method and returns
a hash code based on object identity rather than object equality. (If you ever need an identity-
based hash code, you can access the functionality of Object.hashCode () through the static
method System.identityHashCode ().)

TIP

When you override equals (), you must always override hashCode () to
guarantee that equal objects have equal hash codes. Failing to do this can cause

subtle bugs in your programs.

Because the equals () method in Example 5-1 bases object equality on the values of the three

fields, the hashCode () method computes its hash code based on these three fields as well. It

is clear from the code that if two Circle objects have the same field values, they will have the

same hash code.

Note that the hashCode () method in Example 5-1 does not simply add the three fields and
return their sum. Such an implementation would be legal but not efficient because two circles
with the same radius but whose x and y coordinates were reversed would then have the same
hash code. The repeated multiplication and addition steps “spread out” the range of hash codes

and dramatically reduce the likelihood that two unequal Circle objects have the same code.

TIP

In practice, modern Java programmers will typically autogenerate hashCode (),

equals (),and toString () from within their IDE.

Effective Java by Joshua Bloch (Addison Wesley) includes a helpful recipe for constructing

efficient hashCode () methods, if the programmer chooses not to autogenerate.

Comparable::compareTo()

Example 5-1 includes a compareTo () method. This method is defined by the
java.lang.Comparable interface rather than by Object, but it is such a common method
to implement that we include it in this section. The purpose of Comparable and its
compareTo () method is to allow instances of a class to be compared to each other in a
similar way to how the <, <=, >, and >= operators compare numbers. If a class implements
Comparable, we can call methods to allow us to say that one instance is less than, greater
than, or equal to another instance. This also means that instances of a Comparable class can

be sorted.

NOTE

The method compareTo () sets up a fotal ordering of the objects of the type. This
is referred to as the natural order of the type, and the method is called the natural

comparison method.

Because compareTo () is not declared by the Object class, it is up to each individual class

to determine whether and how its instances should be ordered and to include a compareTo ()

method that implements that ordering.

The ordering defined by Example 5-1 compares Circle objects as if they were words on a
page. Circles are first ordered from top to bottom: circles with larger y coordinates are less than
circles with smaller y coordinates. If two circles have the same y coordinate, they are ordered
from left to right. A circle with a smaller x coordinate is less than a circle with a larger x
coordinate. Finally, if two circles have the same x and y coordinates, they are compared by
radius. The circle with the smaller radius is smaller. Notice that under this ordering, two circles
are equal only if all three of their fields are equal. This means that the ordering defined by
compareTo () is consistent with the equality defined by equals (). This is very desirable

(but not strictly required).

The compareTo () method returns an int value that requires further explanation.
compareTo () should return a negative number if the this object is less than the object
passed to it. It should return O if the two objects are equal. And compareTo () should return a

positive number if this is greater than the method argument.

clone()

Object defines a method named clone () whose purpose is to return an object with fields set
identically to those of the current object. This is an unusual method for two reasons. First, it
works only if the class implements the java.lang.Cloneable interface. Cloneable
does not define any methods (it is a marker interface), so implementing it is simply a matter of
listing it in the implements clause of the class signature. The other unusual feature of

clone () is that it is declared protected. Therefore, if you want your object to be cloneable
by other classes, you must implement Cloneable and override the clone () method, making

itpublic.

The Circle class of Example 5-1 does not implement C1oneable; instead it provides a copy

constructor for making copies of Circle objects:

Circle original = new Circle(l, 2, 3); // regular constructor

Circle copy = new Circle(original); // copy constructor

It can be difficult to implement clone () correctly, and it is usually easier and safer to provide

a copy constructor.

Aspects of Object-Oriented Design

In this section, we will consider several techniques relevant to object-oriented design in Java.

This is a very incomplete treatment and merely intended to showcase some examples—we
encourage you to consult additional resources, such as the aforementioned Effective Java by
Joshua Bloch.

We start by considering good practices for defining constants in Java, before moving on to
discuss different approaches to using Java’s object-oriented capabilities for modeling and
domain object design. At the end of the section, we conclude by covering the implementation of

some common design patterns in Java.

Constants

As noted earlier, constants can appear in an interface definition. Any class that implements an
interface inherits the constants it defines and can use them as if they were defined directly in the
class itself. Importantly, there is no need to prefix the constants with the name of the interface or

provide any kind of implementation of the constants.

When a set of constants is used by more than one class, it is tempting to define the constants
once in an interface and then have any classes that require the constants implement the interface.
This situation might arise, for example, when client and server classes implement a network
protocol whose details (such as the port number to connect to and listen on) are captured in a set
of symbolic constants. As a concrete example, consider the
java.io.0ObjectStreamConstants interface, which defines constants for the object
serialization protocol and is implemented by both ObjectInputStream and

ObjectOutputStream.

The primary benefit of inheriting constant definitions from an interface is that it saves typing:
you don’t need to specify the type that defines the constants. Despite its use with
ObjectStreamConstants, this is not a recommended technique. The use of constants is an
implementation detail that is not appropriate to declare in the implements clause of a class

signature.

A better approach is to define constants in a class and use the constants by typing the full class
name and the constant name. You can save typing by importing the constants from their
defining class with the import static declaration. See “Packages and the Java Namespace”

for details.

Interfaces Versus Abstract Classes

The advent of Java 8 has fundamentally changed Java’s object-oriented programming model.
Before Java 8, interfaces were pure API specification and contained no implementation. This

could often lead to duplication of code if the interface had many implementations.

In response, a coding pattern developed. This pattern takes advantage of the fact that an abstract
class does not need to be entirely abstract; it can contain a partial implementation that subclasses
can take advantage of. In some cases, numerous subclasses can rely on method implementations

provided by an abstract superclass.

The pattern consists of an interface that contains the API spec for the basic methods, paired with
a primary implementation as an abstract class. A good example would be java.util.List,
which is paired with java.util.AbstractList. Two of the main implementations of
List that ship with the JDK (ArrayList and LinkedList) are subclasses of

AbstractList. As another example:

// Here 1s a basic interface. It represents a shape that fits inside
// of a rectangular bounding box. Any class that wants to serve as a
// RectangularShape can implement these methods from scratch.
public interface RectangularShape {

void setSize (double width, double height);

void setPosition (double x, double vy);

void translate (double dx, double dy):;

double areal() ;

boolean isInside ()

// Here 1is a partial implementation of that interface. Many
// implementations may find this a useful starting point.
public abstract class AbstractRectangularShape
implements RectangularShape {
// The position and size of the shape
protected double x, y, w, h;

// Default implementations of some of the interface methods
public void setSize (double width, double height) {
w = width; h = height;
}
public void setPosition (double x, double y) ({

this.x = x; this.y = y;

}
public void translate (double dx, double dy) { x += dx; y += dy; }

The arrival of default methods in Java 8 changes this picture considerably. Interfaces can now

contain implementation code, as we saw in “Default Methods™.

This means that when defining an abstract type (e.g., Shape) that you expect to have many
subtypes (e.g., Circle, Rectangle, Square), you are faced with a choice between
interfaces and abstract classes. As they now have potentially similar features, it is not always

clear which to use.

Remember that a class that extends an abstract class cannot extend any other class, and that
interfaces still cannot contain any nonconstant fields. This means that there are still some

restrictions on how we can use object orientation in our Java programs.

Another important difference between interfaces and abstract classes has to do with
compatibility. If you define an interface as part of a public API and then later add a new
mandatory method to the interface, you break any classes that implemented the previous version
of the interface—in other words, any new interface methods must be declared as default and an
implementation provided. If you use an abstract class, however, you can safely add nonabstract
methods to that class without requiring modifications to existing classes that extend the abstract

class.

NOTE

In both cases, adding new methods can cause a clash with subclass methods of the
same name and signature—with the subclass methods always winning. For this
reason, think carefully when adding new methods—especially when the method
names are “obvious” for this type, or where the method could have several possible

meanings.

In general, the suggested approach is to prefer interfaces when an API specification is needed.
The mandatory methods of the interface are nondefault, as they represent the part of the API that
must be present for an implementation to be considered valid. Default methods should be used
only if a method is truly optional, or if they are really only intended to have a single possible

implementation.

Finally, the older technique of documenting which methods of an interface are considered
“optional” and throwing a java.lang.UnsupportedOperationException if the
programmer does not want to implement them is fraught with problems, and should not be used

in new code.

Can Default Methods Be Used as Traits?

Before Java 8, the strict single inheritance model was clear. Every class, except Object had
exactly one direct superclass, and method implementations could only either be defined in a

class, or be inherited from the superclass hierarchy.

Default methods change this picture, because they allow method implementations to be

inherited from multiple places—either from the superclass hierarchy or from default

implementation provided in interfaces.

NOTE

This is effectively the Mixin pattern from C++, and can be seen as a form of the

trait language feature that appears in some languages.

In the Java case, any potential conflicts between different default methods from separate
interfaces will result in a compile-time error. This means that there is no possibility of
conflicting multiple inheritance of implementation, as in any clash the programmer is required

to manually disambiguate. Not only that, but there is also no multiple inheritance of state.

However, the official view from Java’s language designers is that default methods fall short of
being full traits. However, this view is somewhat undermined by the code that ships within the
JDK—even the interfaces within java.util. function (such as Function itself) behave

as simple traits.

For example, consider this piece of code:

public interface IntFunc {

int apply(int x);

default IntFunc compose (IntFunc before) {

return (int y) -> apply(before.apply(y)):

default IntFunc andThen (IntFunc after) {
return (int z) -> after.apply(apply(z));

static IntFunc id() {

return x -> x;

It is a simplified form of the function types present in java.util.function—it removes

the generics and only deals with int as a data type.

This case shows an important point for the functional composition methods present: these
functions will only ever be composed in the standard way, and it is highly implausible that any

sane override of the default compose () method could exist.

This is, of course, also true for the function types present in java.util.function, and
shows that within the limited domain provided, default methods can be treated as a form of

stateless trait.

Instance Methods or Class Methods?

Instance methods are one of the key features of object-oriented programming. That doesn’t
mean, however, that you should shun class methods. In many cases, it is perfectly reasonable to

define class methods.

TIP

Remember that in Java, class methods are declared with the static keyword, and

the terms static method and class method are used interchangeably.

For example, when working with the Circle class you might find that you often want to
compute the area of a circle with a given radius but don’t want to bother creatinga Circle

object to represent that circle. In this case, a class method is more convenient:

public static double area(double r) { return PI * r * r; }

It is perfectly legal for a class to define more than one method with the same name, as long as
the methods have different parameters. This version of the area () method is a class method,
so it does not have an implicit this parameter and must have a parameter that specifies the

radius of the circle. This parameter keeps it distinct from the instance method of the same name.

As another example of the choice between instance methods and class methods, consider
defining a method named bigger () that examines two Circle objects and returns

whichever has the larger radius. We can write bigger () as an instance method as follows:

// Compare the implicit "this" circle to the "that" circle passed
// explicitly as an argument and return the bigger one.
public Circle bigger (Circle that) {

if (this.r > that.r) return this;

else return that;

We can also implement bigger () as a class method as follows:

// Compare circles a and b and return the one with the larger radius
public static Circle bigger (Circle a, Circle b) {
if (a.r > b.r) return a;

else return b;

Given two Circle objects, x and y, we can use either the instance method or the class method
to determine which is bigger. The invocation syntax differs significantly for the two methods,

however:

// Instance method: also y.bigger (x)
Circle biggest = x.bigger(y);
Circle biggest = Circle.bigger(x, y); // Static method

Both methods work well, and, from an object-oriented design standpoint, neither of these
methods is “more correct” than the other. The instance method is more formally object oriented,
but its invocation syntax suffers from a kind of asymmetry. In a case like this, the choice
between an instance method and a class method is simply a design decision. Depending on the

circumstances, one or the other will likely be the more natural choice.

A WORD ABOUT SYSTEM.OUT.PRINTLN()

We’ve frequently encountered the method System.out.println () —it’s used to display
output to the terminal window or console. We’ve never explained why this method has such a
long, awkward name or what those two periods are doing in it. Now that you understand class
and instance fields and class and instance methods, it is easier to understand what is going on:
Systemis a class. It has a public class field named out. This field is an object of type

java.io.PrintStream, and it has an instance method named println ().

We can use static imports to make this a bit shorter with import static
java.lang.System.out;—this will enable us to refer to the printing method as

out.println () but as this is an instance method, we cannot shorten it any further.

Composition Versus Inheritance

Inheritance is not the only technique at our disposal in object-oriented design. Objects can
contain references to other objects, so a larger conceptual unit can be aggregated out of smaller
component parts; this is known as composition. One important related technique is delegation,
where an object of a particular type holds a reference to a secondary object of a compatible type,
and forwards all operations to the secondary object. This is frequently done using interface
types, as shown in this example where we model the employment structure of software

companies:

public interface Employee {

void work () ;

public class Programmer implements Employee {

public void work() { /* program computer */ }

public class Manager implements Employee {
private Employee report;

public Manager (Employee staff) ({
report = staff;

public Employee setReport (Employee staff) {
report = staff;

public void work() {

report.work () ;

The Manager class is said to delegate the work () operation to their direct report, and no
actual work is performed by the Manager object. Variations of this pattern involve some work

being done in the delegating class, with only some calls being forwarded to the delegate object.

Another useful, related technique is called the decorator pattern. This provides the capability to
extend objects with new functionality, including at runtime. The slight overhead is some extra
work needed at design time. Let’s look at an example of the decorator pattern as applied to
modeling burritos for sale at a taqueria. To keep things simple, we’ve only modeled a single

aspect to be decorated—the price of the burrito:

// The basic interface for our burritos
interface Burrito {

double getPrice();

// Concrete implementation-standard size burrito
public class StandardBurrito implements Burrito ({
private static final double BASE PRICE = 5.99;

public double getPrice() {
return BASE_PRICE;

// Larger, super-size burrito
public class SuperBurrito implements Burrito {
private static final double BASE PRICE = 6.99;

public double getPrice () {
return BASE PRICE;

These cover the basic burritos that can be offered—two different sizes, at different prices. Let’s
enhance this by adding some optional extras—jalapefio chilies and guacamole. The key design
point here is to use an abstract base class that all of the optional decorating components will

subclass:

/*
* This class 1is the Decorator for Burrito. It represents optional
* extras that the burrito may or may not have.
*/
public abstract class BurritoOptionalExtra implements Burrito {
private final Burrito burrito;

private final double price;

protected BurritoOptionalExtra (Burrito toDecorate,
double myPrice) {
burrito = toDecorate;

price = myPrice;

public final double getPrice() {

return (burrito.getPrice() + price);

NOTE

Combining an abstract base, BurritoOptionalExtra, and aprotected
constructor means that the only valid way to get a BurritoOptionalExtra is
to construct an instance of one of the subclasses, as they have public constructors

(which also hide the setup of the price of the component from client code).

Let’s test the implementation out:

Burrito lunch = new Jalapeno (new Guacamole (new SuperBurrito())):;

// The overall cost of the burrito is the expected $8.009.
System.out.println ("Lunch cost: "+ lunch.getPrice());

The decorator pattern is very widely used—mnot least in the JDK utility classes. When we discuss

Java I/O in Chapter 10, we will see more examples of decorators in the wild.

Field Inheritance and Accessors

Java offers multiple potential approaches to the design issue of the inheritance of state. The
programmer can choose to mark fields as protected and allow them to be accessed directly
by subclasses (including writing to them). Alternatively, we can provide accessor methods to
read (and write, if desired) the actual object fields, while retaining encapsulation and leaving the

fields as private.

Let’s revisit our earlier PlaneCircle example from the end of Chapter 9 and explicitly show

the field inheritance:

public class Circle {
// This is a generally useful constant, so we keep it public
public static final double PI = 3.14159;

protected double r; // State inheritance via a protected field

// A method to enforce the restriction on the radius
protected void checkRadius (double radius) {
if (radius < 0.0)

throw new IllegalArgumentException ("radius may not < Q");

// The non-default constructor
public Circle (double r) {
checkRadius (r) ;

this.r = r;

// Public data accessor methods

public double getRadius () { return r; }

public void setRadius (double r) {
checkRadius (r) ;

this.r = r;

// Methods to operate on the instance field
public double area() { return PI * r * r; }

public double circumference() { return 2 * PI * r; }

public class PlaneCircle extends Circle {

// We automatically inherit the fields and methods of Circle,
// so we only have to put the new stuff here.
// New instance fields that store the center point of the circle

private final double cx, cy;

// A new constructor to initialize the new fields
// It uses a special syntax to invoke the Circle() constructor
public PlaneCircle (double r, double x, double y) {

super (r) ; // Invoke the constructor of the superclass
this.cx = x; // Initialize the instance field cx
this.cy = y; // Initialize the instance field cy

public double getCentreX () {

return cx;

public double getCentreY () {

return cy;

// The area () and circumference () methods are inherited from Circle
// A new instance method that checks whether a point is inside the
// circle; note that it uses the inherited instance field r
public boolean isInside (double x, double y) {

double dx = x - ¢cx, dy =y - CVy;

// Pythagorean theorem

double distance = Math.sqgrt (dx*dx + dy*dy);

return (distance < r); // Returns true or false

Instead of the preceding code, we can rewrite P1aneCircle using accessor methods, like this:

public class PlaneCircle extends Circle {
// Rest of class 1s the same as above,; the field r in
// the superclass Circle can be made private because

// we no longer access it directly here

// Note that we now use the accessor method getRadius ()

public boolean isInside (double x, double y) ({
double dx = x - ¢cx, dy = y - cy; // Distance from center
double distance = Math.sqgrt (dx*dx + dy*dy); // Pythagorean theorem
return (distance < getRadius());

Both approaches are legal Java, but they have some differences. As we discussed in “Data
Hiding and Encapsulation”, fields that are writable outside of the class are usually not a correct

way to model object state. In fact, as we will see in “Safe Java Programming” and again in

“Java’s Support for Concurrency”, they can damage the running state of a program irreparably.

It is therefore unfortunate that the protected keyword in Java allows access to fields (and
methods) from both subclasses and classes in the same packages as the declaring class. This,
combined with the ability for anyone to write a class that belongs to any given package (except

system packages), means that protected inheritance of state is potentially flawed in Java.

TIP

Java does not provide a mechanism for a member to be visible only in the declaring

class and its subclasses.

For all of these reasons, it is usually better to use accessor methods (either public or protected)
to provide access to state for subclasses—unless the inherited state is declared final, in which

case protected inheritance of state is perfectly permissible.

Singleton

The singleton pattern is another well-known design pattern. It is intended to solve the design
issue where only a single instance of a class is required or desired. Java provides a number of
different possible ways to implement the singleton pattern. In our discussion, we will use a
slightly more verbose form, which has the benefit of being very explicit in what needs to happen

for a safe singleton:

public class Singleton {
private final static Singleton instance = new Singleton();

private static boolean initialized = false;

// Constructor
private Singleton() {

super () ;

private void init () {

/* Do initialization */

// This method should be the only way to get a reference
// to the instance
public static synchronized Singleton getInstance () {

if (initialized) return instance;

instance.init () ;

initialized = true;

return instance;

The crucial point is that for the singleton pattern to be effective, it must be impossible to create
more than one of them, and it must be impossible to get a reference to the object in an
uninitialized state (see later in this chapter for more on this important point). To achieve this, we
require a private constructor, which is only called once. In our version of Singleton, we
only call the constructor when we initialize the private static variable instance. We also
separate out the creation of the only Singleton object from its initialization—which occurs

in the private method init ().

With this mechanism in place, the only way to get a reference to the lone instance of
Singleton is via the static helper method, get Instance (). This method checks the flag
initialized to see if the object is already in an active state. If it is, then a reference to the
singleton object is returned. If not, then getInstance () calls init () to activate the object,
and flicks the flag to t rue, so that next time a reference to the Singleton is requested,

further initialization will not occur.

Finally, we also note that get Instance () isa synchronized method. See Chapter 6 for
full details of what this means, and why it is necessary, but for now, know that it is present to

guard against unintended consequences if Singleton is used in a multithreaded program.

TIP

Singleton, being one of the simplest patterns, is often overused. When used
correctly, it can be a useful technique, but too many singleton classes in a program

is a classic sign of badly engineered code.

The singleton pattern has some drawbacks—in particular, it can be hard to test and to separate
out from other classes. It also requires care when used in mulithreaded code. Nevertheless, it is
important that developers are familiar with it, and do not accidentally reinvent it. The singleton
pattern is often used in configuration management, but modern code will typically use a
framework (often a dependency injection) to provide the programmer with singletons

automatically, rather than via an explicit Singleton (or equivalent) class.

Object-Oriented Design with Lambdas

Consider this simple lambda expression:

Runnable r = () -> System.out.println("Hello World");

The type of the 1value is Runnable, which is an interface type. For this statement to make
sense, the rvalue must contain an instance of some class type (because interfaces cannot be
instantiated) that implements Runnable. The minimal implementation that satisfies these
constraints is a class type (of inconsequential name) that directly extends Object and

implements Runnable.

Recall that the intention of lambda expressions is to allow Java programmers to express a

concept that is as close as possible to the anonymous or inline methods seen in other languages.

Furthermore, given that Java is a statically typed language, this leads directly to the design of

lambdas as implemented.

TIP

Lambdas are a shorthand for the construction of a new instance of a class type that

is essentially Object enhanced by a single method.

A lambda’s single extra method has a signature provided by the interface type, and the compiler

will check that the rvalue is consistent with this type signature.

Lambdas Versus Nested Classes

The addition of lambdas to the language in Java 8 was relatively late, as compared to other
programming languages. As a consequence, the Java community had established patterns to
work around the absence of lambdas. This manifests in a heavy usage of nested (aka inner)

classes to fill the niche that lambdas usually occupy.

In modern Java projects that are developed from scratch, developers will typically use lambdas
wherever possible. We also strongly suggest that, when refactoring old code, you take some
time to convert inner classes to lambdas wherever possible. Some IDEs even provide an

automatic conversion facility.

However, this still leaves the design question of when to use lambdas and when nested classes

are still the correct solution.

Some cases are obvious—for example, when extended from a default implementation (e.g., for a

Visitor pattern), like this file reaper for deleting a whole subdirectory and everything in it:

public final class Reaper extends SimpleFileVisitor<Path> ({

public FileVisitResult visitFile (Path p, BasicFileAttributes a)
throws IOException {
Files.delete (p)
return FileVisitResult.CONTINUE;

public FileVisitResult visitFileFailed(Path p, IOException x)
throws IOException {
Files.delete (p)
return FileVisitResult.CONTINUE;

public FileVisitResult postVisitDirectory(Path p, IOException x)
throws IOException {
if (x == null) ({
Files.delete (p);
return FileVisitResult.CONTINUE;
} else {

throw x;

This is an extension of an existing class—and of course lambdas can only be used for interfaces,
not for classes (even abstract classes with a single abstract method). As a result, this is a clear

use case for an inner class, not a lambda.

Another major use case to consider is that of stateful lambdas. As there is nowhere to declare
any fields, it would appear at first glance that lambdas cannot directly be used for anything that

involves state—the syntax only gives the opportunity to declare a method body.

However, a lambda can refer to a variable defined in the scope that the lambda is created in, so

we can create a closure, as discussed in Chapter 4, to fill the role of a stateful lambda.

Lambdas Versus Method References

The question of when to use a lambda and when to use a method reference is largely a matter of
personal taste and style. There are, of course, some circumstances where it is essential to create

a lambda. However, in many simple cases, a lambda can be replaced by a method reference.

One possible approach is to consider whether the lambda notation adds anything to the
readability of the code. For example, in the streams API, there is a potential benefit in using the
lambda form, as it uses the —> operator. This provides a form of visual metaphor—the stream

API is a lazy abstraction that can be visualized as data items “flowing through a functional

pipeline.” For example:

List<kathik.Person> ots = null;
double aveAge = ots.stream()
.mapToDouble (o -> o.getAge())

.reduce (0, (x, y) -> x + vy) / ots.size();

The idea that the mapToDouble () method has an aspect of motion, or transformation, is

strongly implied by the usage of an explicit lambda. For less experienced programmers, it also

draws attention to the use of a functional API.

For other use cases (e.g., dispatch tables) method references may well be more appropriate. For

example:

public class IntOps ({
private Map<String, BinaryOperator> table =
Map.of ("add", :add, "subtract", :sub) ;

private static int add(int x, int y) {

return x + y;

private static int sub (int x, int y) {

return x - y;

public int eval (String op, int x, int y) {
return table.get (op) .apply(x, Vy):

In situations where either notation could be used, you will come to develop a preference that fits
your individual style over time. The key consideration is whether, when returning to reread code

written several months (or years) ago, the choice of notation still makes sense and the code is

easy to read.

Exceptions and Exception Handling

We met checked and unchecked exceptions in “Checked and Unchecked Exceptions”. In this

section, we discuss some additional aspects of the design of exceptions, and how to use them in

your own code.

Recall that an exception in Java is an object. The type of this object is
java.lang.Throwable, or more commonly, some subclass of Throwable that more
specifically describes the type of exception that occurred. Throwable has two standard
subclasses: java.lang.Error and java.lang.Exception. Exceptions that are
subclasses of Error generally indicate unrecoverable problems: the virtual machine has run
out of memory, or a class file is corrupted and cannot be read, for example. Exceptions of this
sort can be caught and handled, but it is rare to do so—these are the unchecked exceptions

previously mentioned.

Exceptions that are subclasses of Exception, on the other hand, indicate less severe
conditions. These exceptions can be reasonably caught and handled. They include such
exceptions as java.io.EOFException, which signals the end of a file, and
java.lang.ArrayIndexOutOfBoundsException, which indicates that a program has
tried to read past the end of an array. These are the checked exceptions from Chapter 2 (except
for subclasses of RuntimeException, which are also a form of unchecked exception). In
this book, we use the term “exception” to refer to any exception object, regardless of whether

the type of that exception is Exception or Error.

Because an exception is an object, it can contain data, and its class can define methods that
operate on that data. The Throwalb1e class and all its subclasses include a St ring field that
stores a human-readable error message that describes the exceptional condition. It’s set when
the exception object is created and can be read from the exception with the getMessage ()
method. Most exceptions contain only this single message, but a few add other data. The
java.io.InterruptedIOException, for example, adds a field named
bytesTransferred that specifies how much input or output was completed before the

exceptional condition interrupted it.

When designing your own exceptions, you should consider what other additional modeling
information is relevant to the exception object. This is usually situation-specific information
about the aborted operation, and the exceptional circumstance that was encountered (as we saw

with java.io.InterruptedIOException).

There are some trade-offs in the use of exceptions in application design. Using checked
exceptions means that the compiler can enforce the handling (or propagation up the call stack)
of known conditions that have the potential of recovery or retry. It also means that it’s more
difficult to forget to actually handle errors—thus reducing the risk that a forgotten error

condition causes a system to fail in production.

On the other hand, some applications will not be able to recover from certain conditions—even
conditions that are theoretically modeled by checked exceptions. For example, if an application
requires a config file to be placed at a specific place in the filesystem and can’t locate it at
startup, it may have no option but to print an error message and exit—despite the fact that
java.io.FileNotFoundException is a checked exception. Forcing exceptions that
cannot be recovered from to be either handled or propagated is, in these circumstances,

bordering on perverse.

When designing exception schemes, there are some good practices that you should follow:

¢ Consider what additional state needs to be placed on the exception—remember that it’s also

an object like any other.

e Exception has four public constructors—under normal circumstances, custom exception
classes should implement all of them—to initialize the additional state or to customize

messages.

e Don’t create many fine-grained custom exception classes in your APIs—the Java I/O and
reflection APIs both suffer from this and it needlessly complicates working with those

packages.

e Don’t overburden a single exception type with describing too many conditions; for example,
the Nashorn JavaScript implementation (new with Java 8) originally had overly coarse-

grained exceptions, although this was fixed before release.

Finally, two exception-handling antipatterns that you should avoid:

// Never just swallow an exception
try {

someMethodThatMightThrow () ;
} catch (Exception e) {

}

// Never catch, log, and rethrow an exception
try {

someMethodThatMightThrow () ;
} catch (SpecificException e) {

log(e);

throw e;

The former of these two just ignores a condition that almost certainly required some action

(even if just a notification in a log). This increases the likelihood of failure elsewhere in the

system—potentially far from the original, real source.

The second one just creates noise. We’re logging a message but not actually doing anything
about the issue; we still require some other code higher up in the system to actually deal with

the problem.

Safe Java Programming

Programming languages are sometimes described as being type safe; however, this term is used
rather loosely by working programmers. There are a number of different viewpoints on and
definitions for type safety, not all of which are mutually compatible. The most useful view for
our purposes is that type safety is the property of a programming language that prevents the type
of data being incorrectly identified at runtime. This should be thought of as a sliding scale—it is
more helpful to think of languages as being more (or less) type safe than each other, rather than

a simple binary property of safe/unsafe.

In Java, the static nature of the type system helps prevent a large class of possible errors, by
producing compilation errors if, for example, the programmer attempts to assign an
incompatible value to a variable. However, Java is not perfectly type safe, as we can perform a
cast between any two reference types—this will fail at runtime with a

ClassCastException if the value is not compatible.

In this book, we prefer to think of safety as inseparable from the broader topic of correctness.
This means that we should think in terms of programs, rather than languages. This emphasizes
the point that safe code is not guaranteed by any widely used language, and instead considerable
programmer effort (and adherence to rigorous coding discipline) must be employed if the end

result is to be truly safe and correct.

We approach our view of safe programs by working with the state model abstraction as shown

in Figure 5-1. A safe program is one in which:

All objects start off in a legal state after creation

Externally accessible methods transition objects between legal states

Externally accessible methods must not return with objects in an inconsistent state

Externally accessible methods must reset objects to a legal state before throwing

In this context, “externally accessible” means pub1 i c, package-private, or protected. This

defines a reasonable model for safety of programs, and as it is bound up with defining our

abstract types in such a way that their methods ensure consistency of state, it’s reasonable to
refer to a program satisfying these requirements as a “safe program,” regardless of the language

in which such a program is implemented.

WARNING

Private methods do not have to start or end with objects in a legal state, as they

cannot be called by an external piece of code.

As you might imagine, actually engineering a substantial piece of code so that we can be sure
that the state model and methods respect these properties can be quite an undertaking. In
languages such as Java, in which programmers have direct control over the creation of

preemptively multitasked execution threads, this problem is a great deal worse.

Creation Live Dead

Figure 5-1. Program state transitions

Moving on from our introduction of object-oriented design, there is one final aspect of the Java
language and platform that needs to be understood for a sound grounding. That is the nature of
memory and concurrency—one of the most complex of the platform, but also one that rewards

careful study with large dividends. It is the subject of our next chapter and concludes Part 1.

Chapter 6. Java’s Approach to Memory and
Concurrency

This chapter is an introduction to the handling of concurrency (multithreading) and memory in

the Java platform. These topics are inherently intertwined, so it makes sense to treat them

together. We will cover:

Introduction to Java’s memory management

The basic mark-and-sweep Garbage Collection (GC) algorithm

How the HotSpot JVM optimizes GC according to the lifetime of the object

Java’s concurrency primitives

Data visibility and mutability

Basic Concepts of Java Memory Management

In Java, the memory occupied by an object is automatically reclaimed when the object is no
longer needed. This is done through a process known as garbage collection (or automatic
memory management). Garbage collection is a technique that has been around for years in
languages such as Lisp. It takes some getting used to for programmers accustomed to languages

such as C and C++, in which you must call the free () function or the delete operator to

reclaim memory.

NOTE

The fact that you don’t need to remember to destroy every object you create is one
of the features that makes Java a pleasant language to work with. It is also one of
the features that makes programs written in Java less prone to bugs than those

written in languages that don’t support automatic garbage collection.

Different VM implementations handle garbage collection in different ways, and the
specifications do not impose very stringent restrictions on how GC must be implemented. Later
in this chapter, we will discuss the HotSpot JVM (which is the basis of both the Oracle and
OpenJDK implementations of Java). Although this is not the only JVM that you may encounter,
it is the most common among server-side deployments, and provides a good example of a

modern production JVM.

Memory Leaks in Java

The fact that Java supports garbage collection dramatically reduces the incidence of memory
leaks. A memory leak occurs when memory is allocated and never reclaimed. At first glance, it
might seem that garbage collection prevents all memory leaks because it reclaims all unused

objects.

A memory leak can still occur in Java, however, if a valid (but unused) reference to an unused
object is left hanging around. For example, when a method runs for a long time (or forever), the
local variables in that method can retain object references much longer than they are actually

required. The following code illustrates:

public static void main(String args([]) {
int bigArray[] = new int[100000];

// Do some computations with bigArray and get a result.

int result = compute (bigArray);

// We no longer need bigArray. It will get garbage collected when

// there are no more references to it. Because bigArray is a local
// variable, it refers to the array until this method returns. But
// this method doesn't return. So we've got to explicitly get rid
// of the reference ourselves, so the garbage collector knows it can
// reclaim the array.

bigArray = null;

// Loop forever, handling the user's input

for (;;) handle input (result);

Memory leaks can also occur when you use a HashMap or similar data structure to associate
one object with another. Even when neither object is required anymore, the association remains
in the hash table, preventing the objects from being reclaimed until the hash table itself is
reclaimed. If the hash table has a substantially longer lifetime than the objects it holds, this can

cause memory leaks.

Introducing Mark-and-Sweep

To explain a basic form of the mark-and-sweep algorithm that appears in the JVM, let’s assume

that there are two basic data structures that the JVM maintains. These are:

Allocation table

Stores references to all objects (and arrays) that have been allocated and not yet collected

Free list

Holds a list of blocks of memory that are free and available for allocation

NOTE

This is a simplified mental model that is purely intended to help the newcomer start
thinking about garbage collection. Real production collectors actually work

somewhat differently.

With these definitions it is now obvious when GC must occur; it is required when a Java thread
tries to allocate an object (via the new operator) and the free list does not contain a block of
sufficient size. Also note that the JVM keeps track of type information about all allocations and
so can figure out which local variables in each stack frame refer to which objects and arrays in
the heap. By following references held by objects and arrays in the heap, the JVM can trace

through and find all objects and arrays are still referred to, no matter how indirectly.

Thus, the runtime is able to determine when an allocated object is no longer referred to by any
other active object or variable. When the interpreter finds such an object, it knows it can safely
reclaim the object’s memory and does so. Note that the garbage collector can also detect and
reclaim cycles of objects that refer to each other, but are not referenced by any other active

objects.

We define a reachable object to be an object that can be reached by starting from some local

variable in one of the methods in the stack trace of some application thread, and following

references until we reach the object. Objects of this type are also said to be live.

NOTE

There are a couple other possibilities for where the chain of references can start,
apart from local variables. The general name for the root of a reference chain

leading to a reachable object is a GC root.

With these simple definitions, let’s look at a simple method for performing garbage collection

based on these principles.

The Basic Mark-and-Sweep Algorithm

The usual (and simplest) algorithm for the collection process is called mark-and-sweep. This

occurs in three phases:
1. Iterate through the allocation table, marking each object as dead.

2. Starting from the local variables that point into the heap, follow all references from all
objects we reach. Every time we reach an object or array we haven’t seen yet, mark it as
live. Keep going until we’ve fully explored all references we can reach from the local

variables.

3. Sweep across the allocation table again. For each object not marked as live, reclaim the
memory in heap and place it back on the free list. Remove the object from the allocation

table.

NOTE

The form of mark-and-sweep just outlined is the usual simplest theoretical form of
the algorithm. As we will see in the following sections, real garbage collectors do
more work than this. Instead, this description is grounded in basic theory and is

designed for easy understanding.

As all objects are allocated from the allocation table, GC will trigger before the heap gets full. In
this description of mark-and-sweep, GC requires exclusive access to the entire heap. This is
because application code is constantly running, creating, and changing objects, which could

corrupt the results.

In a real JVM, there will very likely be different areas of heap memory and real programs will
make use of all of them in normal operation. In Figure 6-1 we show a typical layout of the heap,

with two threads (T1 and T2) holding references that point into the heap.

Eden Survivor Tenured
L1C]
(0]

OO0]

O

11 12

Figure 6-1. Heap structure

This shows that it would be dangerous to move objects that application threads have references

to while the program is running.

To avoid this, a simple GC like the one just shown will cause a stop-the-world (STW) pause
when it runs—because all application threads are stopped, then GC occurs, and finally

application threads are started up again. The runtime takes care of this by halting application

threads as they reach a safepoint—for example, the start of a loop or just before a method call.
At these execution points, the runtime knows that it can stop an application thread without a

problem.

These pauses sometimes worry developers, but for most mainstream usages, Java is running on
top of an operating system that is constantly swapping processes on and off processor cores, so
this slight additional stoppage is usually not a concern. In the HotSpot case, a large amount of
work has been done to optimize GC and to reduce STW times, for those cases where it is
important to an application’s workload. We will discuss some of those optimizations in the next

section.

How the JVM Optimizes Garbage Collection

The weak generational hypothesis (WGH) is a great example of one of the runtime facts about
software that we introduced in Chapter 1. Simply put, it is that objects tend to have one of a

small number of possible life expectancies (referred to as generations).

Usually objects are alive for a very short amount of time (sometimes called transient objects),
and then become eligible for garbage collection. However, some small fraction of objects live
for longer, and are destined to become part of the longer-term state of the program (sometimes
referred to as the working set of the program). This can be seen in Figure 6-2 where we see

volume of memory (or number of objects created) plotted against expected lifetime.

Volume of
memory

Lifetime >

Figure 6-2. Weak generational hypothesis

This fact is not deducible from static analysis, and yet when we measure the runtime behavior of

software, we see that it is broadly true across a wide range of workloads.

The HotSpot JVM has a garbage collection subsystem that is designed specifically to take
advantage of the weak generational hypothesis, and in this section, we will discuss how these
techniques apply to short-lived objects (which is the majority case). This discussion is directly

applicable to HotSpot, but other server-class JVMs often employ similar or related techniques.

In its simplest form, a generational garbage collector is simply one that takes notice of the
WGH. They take the position that some extra bookkeeping to monitor memory will be more
than paid for by gains obtained by being friendly to the WGH. In the simplest forms of
generational collector, there are usually just two generations—usually referred to as young and

old generation.

Evacuation

In our original formulation of mark-and-sweep, during the cleanup phase, we reclaimed
individual objects, and returned their space to the free list. However, if the WGH is true, and on
any given GC cycle most objects are dead, then it may make sense to use an alternative

approach to reclaiming space.

This works by dividing the heap up into separate memory spaces. Then, on each GC run, we

locate only the live objects and move them to a different space, in a process called evacuation.
Collectors that do this are referred to as evacuating collectors, and they have the property that

the entire memory space can be wiped at the end of the collection, to be reused again and again.

Figure 6-3 shows an evacuating collector in action, with solid blocks representing surviving

objects, and hatched boxes representing allocated, but now dead (and unreachable) objects.

Eden Survivor Tenured

X o o
X | OO0

=]

=
[x] X1 x|
[x]
I

FEEE EEEE

Figure 6-3. Evacuating collectors

¥

This is potentially much more efficient than the naive collection approach, because the dead
objects are never touched. GC cycle length is proportional to the number of live objects, rather
than the number of allocated objects. The only downside is slightly more bookkeeping—we
have to pay the cost of copying the live objects, but this is almost always a very small price

compared to the huge gains realized by evacuation strategies.

An alternative to an evacuating collector is a compacting collector. The chief defining feature of
these is that at the end of the collection cycle, allocated memory (i.e., surviving objects) is

arranged as a single contiguous area within the collected region.

The normal case is that all the surviving objects have been “shuffled up” within the memory
pool (or region) usually to the start of the memory range and there is now a pointer indicating
the start of empty space that is available for objects to be written into once application threads

restart.

Compacting collectors will avoid memory fragmentation, but typically are much more

expensive in terms of amount of CPU consumed than evacuating collectors. There are design

trade-offs between the two algorithms (the details of which are beyond the scope of this book),
but both techniques are used in production collectors in Java (and in many other programming

languages).

NOTE

HotSpot manages the JVM heap itself, completely in user space, and does not need
to perform system calls to allocate or free memory. The area where objects are
initially created is usually called Eden or the Nursery, and most production JVMs

(at least in the SE/EE space) will use an evacuating strategy when collecting Eden.

The use of an evacuating collector also allows the use of per-thread allocation. This means that
each application thread can be given a contiguous chunk of memory (called a thread-local
allocation buffer) for its exclusive use when allocating new objects. When new objects are
allocated, this only involves bumping a pointer in the allocation buffer, an extremely cheap

operation.

If an object is created just before a collection starts, then it will not have time to fulfill its
purpose and die before the GC cycle starts. In a collector with only two generations, this short-
lived object will be moved into the long-lived region, almost immediately die, and then stay
there until the next full collection. As these are a lot less frequent (and typically a lot more

expensive), this seems rather wasteful.

To mitigate this, HotSpot has a concept of a survivor space an area that is used to house
objects that have survived from previous collections of young objects. A surviving object is
copied by the evacuating collector between survivor spaces until a _tenuring threshold is

reached, when the object will be promoted to the old generation.

A full discussion of survivor spaces and how to tune GC is outside the scope of this book. For

production applications, specialist material should be consulted.

The HotSpot Heap

The HotSpot JVM is a relatively complex piece of code, made up of an interpreter and a just-in-
time compiler, as well as a user-space memory management subsystem. It is composed of a

mixture of C, C++, and a fairly large amount of platform-specific assembly code.

At this point, let’s summarize our description of the HotSpot heap, and recap its basic features.

The Java heap is a contiguous block of memory, which is reserved at JVM startup, but only

some of the heap is initially allocated to the various memory pools. As the application runs,

memory pools are resized as needed. These resizes are performed by the GC subsystem.

OBJECTS IN THE HEAP

Objects are created in Eden by application threads, and are removed by a nondeterministic
garbage collection cycle. The GC cycle runs when necessary (i.e., when memory is getting
low). The heap is divided into two generations, young and old. The young generation is
made up of Eden and survivor spaces, whereas the old generation is just one memory
space.

After surviving several GC cycles, objects get promoted to the old generation. Collections
that only collect the young generation are usually very cheap (in terms of computation
required). HotSpot uses a more advanced form of mark-and-sweep than we have seen so
far, and is prepared to do extra bookkeeping to improve GC performance.

—
When discussing garbage collectors, there is one other important terminology distinction that

developers should know:

Parallel collector

A garbage collector that uses multiple threads to perform collection

Concurrent collector

A garbage collector that can run at the same time as application threads are still running

In the discussion so for, the collection algorithms we have been describing have implicitly all

been parallel, but not concurrent, collectors.

NOTE

In modern approaches to GC there is a growing trend toward using partially
concurrent algorithms. These types of algorithms are much more elaborate and
computationally expensive than STW algorithms and involve trade-offs. However,

they are believed to be a better path forward for today’s applications.

Not only that, but in Java version 8 and below, the heap has a simple structure: each memory
pool (Eden, survivor spaces, and Tenured) is a contiguous block of memory. The default

collector for these older versions is called Parallel. However, with the arrival of Java 9, a new

collection algorithm known as G/ becomes the default.

The Garbage First collector (known as G1) is a new garbage collector that was developed during
the life of Java 7 (with some preliminary work done in Java 6). It became production quality and
officially fully supported with the release of Java 8 Update 40, and is the default from Java 9

onward (although other collectors are still available as an alternative).

WARNING

G1 uses a different version of the algorithm in each Java version and there are some
important differences in terms of performance and other behavior between versions.
It is very important that, when upgrading from Java 8 to a latter version and

adopting G1, you undertake a full performance retest.

G1 has a different heap layout and is an example of a region-based collector. A region is an area
of memory (usually 1M in size, but larger heaps may have regions of 2, 4, 8, 16, or 32M in size)
where all the objects belong to the same memory pool. However, in a regional collector, the
different regions that make up a pool are not necessarily located next to each other in memory.
This is unlike the Java 8 heap, where each pool is contiguous, although in both cases the entire

heap remains contiguous.

G1 focuses its attention on regions that are mostly garbage, as they have the best free memory
recovery. It is an evacuating collector, and does incremental compaction when evacuating

individual regions.

G1 was orignally designed to take over from a previous collector, CMS, as the low-pause
collector, and it allows the user to specify pause goals in terms of how long and how often to

pause for when doing GC.

The JVM provides a command-line switch that controls how long the collector will aim to pause
for: -XX:MaxGCPauseMillis=200. This means that the default pause time goal is 200ms,

but you can change this value depending on your needs.

There are, of course, limits to how far the collector can be pushed. Java GC is driven by the rate
at which new memory is allocated, which can be highly unpredictable for many Java
applications. This can limit G1’s ability to meet the user’s pause goals, and in practice, pause

times under <100ms are hard to achieve reliably.

As noted, G1 was origially intended to be a replacement low-pause collector. However, the

overall characteristics of its behavior have meant that it has actually evolved into a more

general-purpose collector (which is why it has now become the default).

Note that the development of a new production-grade collector that is suitable for general use is
not a quick process. In the next section, let’s move on to discuss the alternative collectors that

are provided by HotSpot (including the parallel collector of Java 8).

Other Collectors

This section is completely HotSpot-specific, and a detailed treatment is outside the scope of the
book, but it is worth knowing about the existence of alternate collectors. For non-HotSpot users,

you should consult your JVM’s documentation to see what options may be available for you.

ParallelOld

By default, in Java 8 the collector for the old generation is a parallel (but not concurrent) mark-
and-sweep collector. It seems, at first glance, to be similar to the collector used for the young
generation. However, it differs in one very important respect: it is not an evacuating collector.
Instead, the old generation is compacted when collection occurs. This is important so that the

memory space does not become fragmented over the course of time.

The Parallel0O1d collector is very efficient, but it has two properties that make it less

desirable for modern applications. It is:

e Fully STW

e Linear in pause time with the size of the heap

This means that once GC has started, it cannot be aborted early and the cycle must be allowed to
finish. As heap sizes increase, this makes ParallelO1d a less attractive option than G1,
which can keep a constant pause time regardless of heap size (assuming the allocation rate is

manageable).

At the time of writing, G1 gives acceptable performance on a large majority of applications that
previously used ParallelOld—and in many cases will perform better. The ParallelOld
collector is still available as of Java 11, for those (hopefully few) apps that still need it, but the

direction of the platform is clear—and it is toward using G1 wherever possible.

CONCURRENT MARK-AND-SWEEP

The most widely used alternate collector in HotSpot is Concurrent Mark-and-Sweep (CMS).
This collector is only used to collect the old generation—it is used in conjunction with a parallel

collector that is responsible for cleaning up the young generation.

NOTE

CMS is designed for use only in low-pause applications, those that cannot deal with
a stop-the-world pause of more than a few milliseconds. This is a surprisingly small
class—very few applications outside of financial trading have a genuine need for

this requirement.

CMS is a complex collector, and often difficult to tune effectively. It can be a very useful tool in
the developer’s armory, but should not be deployed lightly or blindly. It has the following basic
properties that you should be aware of, but a full discussion of CMS is beyond the scope of this
book. Interested readers should consult specialist blogs and mailing lists (e.g., the “Friends of

jClarity” mailing list quite often deals with GC-performance-related questions).
e CMS only collects the old generation.
e CMS runs alongside application threads for most of the GC cycle, reducing pauses.
e Application threads don’t have to stop for as long.
e It has six phases, all designed to minimize STW pause times.
e [t replaces main STW pause with two (usually very short) STW pauses.
e [t uses considerably more bookkeeping and lots more CPU time.
¢ GC cycles overall take much longer.
¢ By default, half of CPUs are used for GC when running concurrently.
¢ It should not be used except for low-pause applications.
e [t definitely should not be used for applications with high-throughput requirements.

e [t does not compact, and in cases of high fragmentation will fall back to the default (parallel)

collector.

Finally, HotSpot also has a Serial collector (and SerialOld collector) and a collector known as

“Incremental CMS.” These collectors are all considered deprecated and should not be used.

Finalization

There is one old technique for resource management known as finalization that the developer
should be aware of. However, this technique is extremely heavily deprecated and the vast

majority of Java developers should not directly use it under any circumstances.

NOTE

Finalization has only a very small number of legitimate use cases, and only a tiny
minority of Java developers will ever encounter them. If in any doubt, do not use

finalization—t r y-with-resources is usually the correct alternative.

The finalization mechanism was intended to automatically release resources once they are no
longer needed. Garbage collection automatically frees up the memory resources used by objects,
but objects can hold other kinds of resources, such as open files and network connections. The
garbage collector cannot free these additional resources for you, so the finalization mechanism
was intended to allow the developer to perform cleanup tasks as closing files, terminating

network connections, deleting temporary files, and so on.

The finalization mechanism works as follows: if an object has a finalize () method (usually
called a finalizer), this is invoked some time after the object becomes unused (or unreachable)
but before the garbage collector reclaims the space allocated to the object. The finalizer is used

to perform resource cleanup for an object.
In Oracle/OpenJDK the technique used is as follows:

1. When a finalizable object is no longer reachable, a reference to it is placed on an internal
finalization queue and the object is marked, and considered live for the purposes of the GC

run.

2. One by one, objects on the finalization queue are removed and their finalize () methods

are invoked.

3. After a finalizer is invoked, the object is not freed right away. This is because a finalizer
method could resurrect the object by storing the this reference somewhere (for example,

in a public static field on some class) so that the object once again has references.

4. Therefore, after finalize () has been called, the garbage collection subsytem must

redetermine that the object is unreachable before it can be garbage collected.

5. However, even if an object is resurrected, the finalizer method is never invoked more than

once.

6. All of this means that objects with a finalize () will usually survive for (at least) one

extra GC cycle (and if they’re long-lived, that means one extra full GC).

The central problem with finalization is that Java makes no guarantees about when garbage
collection will occur or in what order objects will be collected. Therefore, the platform can
make no guarantees about when (or even whether) a finalizer will be invoked or in what order

finalizers will be invoked.

Finalization Details

For the few use cases where finalization is appropriate, we include some additional details and

caveats:

e The JVM can exit without garbage collecting all outstanding objects, so some finalizers may
never be invoked. In this case, resources such as network connections are closed and
reclaimed by the operating system. Note, however, that if a finalizer that deletes a file does

not run, that file will not be deleted by the operating system.

e To ensure that certain actions are taken before the VM exits, Java provides
Runtime: :addShutdownHook—it can safely execute arbitrary code before the JVM

exits.

e The finalize () method is an instance method, and finalizers act on instances. There 1s no

equivalent mechanism for finalizing a class.

¢ A finalizer is an instance method that takes no arguments and returns no value. There can be

only one finalizer per class, and it must be named finalize ().

e A finalizer can throw any kind of exception or error, but when a finalizer is automatically
invoked by the garbage collection subsystem, any exception or error it throws is ignored and

serves only to cause the finalizer method to return.

The finalization mechanism is an attempt to implement a similar concept present in other
languages and environments. In particular, C++ has a pattern known as RAII (Resource
Acquisition Is Initialization) that provides automatic resource management in a similar way. In
that pattern, a destructor method (which would be called finalize () in Java) is provided by

the programmer, to perform cleanup and release of resources when the object is destroyed.

The basic use case for this is fairly simple: when an object is created, it takes ownership of some

resource, and the object’s ownership of that resource is tied to the lifetime of the object. When

the object dies, the ownership of the resource is automatically relinquished, as the platform calls

the destructor without any programmer intervention.

While finalization superficially sounds similar to this mechanism, in reality it is fundamentally
different. In fact, the finalization language feature is fatally flawed, due to differences in the

memory management schemes of Java versus C++.

In the C++ case, memory is handled manually, with explicit lifetime management of objects
under the control of the programmer. This means that the destructor can be called immediately
after the object is deleted (the platform guarantees this), and so the acquisition and release of

resources is directly tied to the lifetime of the object.

On the other hand, Java’s memory management subsystem is a garbage collector that runs as
needed, in response to running out of available memory to allocate. It therefore runs at variable
(and nondeterministic) intervals and so finalize () is run only when the object is collected,

and this will be at an unknown time.

Ifthe finalize () mechanism was used to automatically release resources (e.g., filehandles),
then there is no guarantee as to when (if ever) those resources will actually become available.
This has the result of making the finalization mechanism fundamentally unsuitable for its stated
purpose—automatic resource management. We cannot guarantee that finalization will happen

fast enough to prevent us from running out of resources.

NOTE

An automatic cleanup mechanism for protecting scarce resources (such as

filehandles), finalization is broken by design.

The only real use case for a finalizer is the case of a class with native methods, holding open
some non-Java resource. Even here, the block-structured approach of t ry-with-resources is
preferable, but it can make sense to also declare a public native finalize () (which
would be called by the close () method); this would release native resources, including off-
heap memory that is not under the control of the Java garbage collector. This would enable the
finalization mechanism to act as a “Hail Mary” protection in case a programmer fails to call
close (). However, even here, TWR provides a better mechanism and automatic support for

block-structured code.

Java’s Support for Concurrency

The idea of a thread is that of a lightweight unit of execution—smaller than a process, but still
capable of executing arbitrary Java code. The usual way that this is implemented is for each
thread to be a fully fledged unit of execution to the operating system but to belong to a process,
with the address space of the process being shared between all threads comprising that process.
This means that each thread can be scheduled independently and has its own stack and program

counter but shares memory and objects with other threads in the same process.

The Java platform has had support for multithreaded programming from the very first version.

The platform exposes the ability to create new threads of execution to the developer.

To understand this, first we must consider what happens in detail when a Java program starts up

and the original application thread (usually referred to as main thread) appears:

—

. The programmer executes java Main.

2. This causes the Java Virtual Machine, the context within which all Java programs run, to

start up.

3. The JVM examines its arguments, and sees that the programmer has requested execution

starting at the entry point (the main () method) of Main.class.

4. Assuming that Main passes classloading checks, a dedicated thread for the execution of the

program is started (main thread).

5. The JVM bytecode interpreter is started on main thread.

6. Main thread’s interpreter reads the bytecode of Main: :main () and execution begins, one

bytecode at a time.

Every Java program starts this way, but this also means that:

e Every Java program starts as part of a managed model with one interpreter per thread.

e The JVM has a certain ability to control a Java application thread.

Following on from this, when we create new threads of execution in Java code, this is usually as

simple as:

Thread t = new Thread(() -> {System.out.println("Hello Thread");}):
t.start (),

This small piece of code creates and starts a new thread, which executes the body of the lambda

expression and then executes.

NOTE

For programmers coming from older versions of Java, the lambda is effectively
being converted to an instance of the Runnable interface before being passed to

the Thread constructor.

The threading mechanism allows new threads to execute concurrently with the original

application thread and the threads that the JVM itself starts up for various purposes.

For mainstream implementations of the Java platform, every time we call Thread: :start ()
this call is delegated to the operating system, and a new OS thread is created. This new OS
thread exec () ’s a new copy of the JVM bytecode interpreter. The interpreter starts executing

at the run () method (or, equivalently, at the body of the lambda).

This means that application threads have their access to the CPU controlled by the operating
system scheduler—a built-in part of the OS that is responsible for managing timeslices of

processor time (and that will not allow an application thread to exceed its allocated time).

In more recent versions of Java, an increasing trend toward runtime-managed concurrency has
appeared. This is the idea that for many purposes it’s not desirable for developers to explicitly
manage threads. Instead, the runtime should provide “fire and forget” capabilities, whereby the
program specifies what needs to be done, but the low-level details of how this is to be

accomplished are left to the runtime.

This viewpoint can be seen in the concurrency toolkit contained in
java.util.concurrent, a full discussion of which is outside the scope of this book. The
interested reader should refer to Java Concurrency in Practice by Brian Goetz et al. (Addison-
Wesley).

For the remainder of this chapter, we will introduce the low-level concurrency mechanisms that

the Java platform provides, and that every Java developer should be aware of.

Thread Lifecycle

Let’s start by looking at the lifecycle of an application thread. Every operating system has a
view of threads that can differ in the details (but in most cases is broadly similar at a high level).

Java tries hard to abstract these details away, and has an enum called Thread. State, which

wrappers over the operating system’s view of the thread’s state. The values of Thread.State

provide an overview of the lifecycle of a thread:

NEW

The thread has been created, but its start () method has not yet been called. All threads

start in this state.

RUNNABLE

The thread is running or is available to run when the operating system schedules it.

BLOCKED

The thread is not running because it is waiting to acquire a lock so that it can enter a
synchronized method or block. We’ll see more about synchroni zed methods and

blocks later in this section.

WAITING

The thread is not running because it has called Object.wait () or Thread.join ().

TIMED WAITING

The thread is not running because it has called Thread.sleep () or has called

Object.wait () or Thread.join () with a timeout value.

TERMINATED

The thread has completed execution. Its run () method has exited normally or by throwing

an exception.

These states represent the view of a thread that is common (at least across mainstream operating

systems), leading to a view like that in Figure 6-4.

Object.notify();
Object.notify.All();

1
Sleeping Waiting
Thread.sleep(); Thread.wait();
vy Vv Chosen by
scheduler -
start(); Ready I E— Running __Done Dead
to run Scheduler (executing) (finished)
SWap Data/sync
received
Blocked on
10 or sync Another thread
closes socket

Figure 6-4. Thread lifecycle

Threads can also be made to sleep, by using the Thread.sleep () method. This takes an

argument in milliseconds, which indicates how long the thread would like to sleep for, like this:

try {
Thread.sleep (2000) ;
} catch (InterruptedException e) {

e.printStackTrace () ;

NOTE

The argument to sleep is a request to the operating system, not a demand. For
example, your program may sleep for longer than requested, depending on load and

other factors specific to the runtime environment.

We will discuss the other methods of Thread later in this chapter, but first we need to cover
some important theory that deals with how threads access memory, and that is fundamental to
understanding why multithreaded programming is hard and can cause developers a lot of

problems.

Visibility and Mutability

In mainstream Java implementations, all Java application threads in a process have their own
call stacks (and local variables) but share a single heap. This makes it very easy to share objects
between threads, as all that is required is to pass a reference from one thread to another. This is

illustrated in Figure 6-5.

This leads to a general design principle of Java—that objects are visible by default. If I have a
reference to an object, I can copy it and hand it off to another thread with no restrictions. A Java
reference is essentially a typed pointer to a location in memory—and threads share the same

address space, so visible by default is a natural model.

In addition to visible by default, Java has another property that is important to fully understand
concurrency, which is that objects are mutable—the contents of an object instance’s fields can
usually be changed. We can make individual variables or references constant by using the

final keyword, but this does not apply to the contents of the object.

As we will see throughout the rest of this chapter, the combination of these two properties—
visibility across threads and object mutability—gives rise to a great many complexities when

trying to reason about concurrent Java programs.

Eden Survivor Tenured

k=N

III!Ii-i
hS

—
—

12

Figure 6-5. Shared memory between threads

CONCURRENT SAFETY

If we’re to write correct multithreaded code, then we want our programs to satisfy a certain

important property.

In Chapter 5, we defined a safe object-oriented program to be one where we move objects from
legal state to legal state by calling their accessible methods. This definition works well for
single-threaded code. However, there is a particular difficulty that comes about when we try to

extend it to concurrent programs.

TIP

A safe multithreaded program is one in which it is impossible for any object to be
seen in an illegal or inconsistent state by any another object, no matter what
methods are called, and no matter in what order the application threads are

scheduled by the operating system.

For most mainstream cases, the operating system will schedule threads to run on particular
processor cores at seemingly random times, depending on load and what else is running in the

system. If load is high, then there may be other processes that also need to run.

The operating system will forcibly remove a Java thread from a CPU core if it needs to. The
thread is suspended immediately, no matter what it’s doing—including being partway through a
method. However, as we discussed in Chapter 5, a method can temporarily put an object into an

illegal state while it is working on it, providing it corrects it before the method exits.

This means that if a thread is swapped off before it has completed a long-running method, it
may leave an object in an inconsistent state, even if the program follows the safety rules.
Another way of saying this is that even data types that have been correctly modeled for the
single-threaded case still need to protect against the effects of concurrency. Code that adds on

this extra layer of protection is called concurrently safe, or (more informally) threadsafe.

In the next section, we’ll discuss the primary means of achieving this safety, and at the end of
the chapter, we’ll meet some other mechanisms that can also be useful under some

circumstances.

Exclusion and Protecting State

Any code that modifies or reads state that can become inconsistent must be protected. To

achieve this, the Java platform provides only one mechanism: exclusion.

Consider a method that contains a sequence of operations that, if interrupted partway through,
could leave an object in an inconsistent or illegal state. If this illegal state was visible to another

object, incorrect code behavior could occur.

For example, consider an ATM or other cash-dispensing machine:

public class Account {
private double balance = 0.0; // Must be >= 0

// Assume the existence of other field (e.g., name) and methods

// such as deposit (), checkBalance (), and dispenseNotes ()

public Account (double openingBal) {

balance = openingBal;

public boolean withdraw (double amount) {
if (balance >= amount) {
try {
Thread.sleep (2000); // Simulate risk checks
} catch (InterruptedException e) {
return false;

}
balance = balance - amount;
dispenseNotes (amount) ;

return true;

}

return false;

The sequence of operations that happens inside withdraw () can leave the object in an
inconsistent state. In particular, after we’ve checked the balance, a second thread could come in
while the first was sleeping in simulated risk checks, and the account could be overdrawn, in

violation of the constraint that balance >= 0.

This is an example of a system where the operations on the objects are single-threaded safe--
(because the objects cannot reach an illegal state (balance < 0)if called from a single

thread)--but not concurrently safe.

To allow the developer to make code like this concurrently safe, Java provides the
synchronized keyword. This keyword can be applied to a block or to a method, and when it

is used, the platform uses it to restrict access to the code inside the block or method.

NOTE

Because synchronized surrounds code, many developers are led to the
conclusion that concurrency in Java is about code. Some texts even refer to the code
that is inside the synchronized block or method as a critical section and consider
that to be the crucial aspect of concurrency. This is not the case; instead, it is the

inconsistency of data that we must guard against, as we will see.

The Java platform keeps track of a special token, called a monitor, for every object that it ever

creates. These monitors (also called locks) are used by synchronized to indicate that the
following code could temporarily render the object inconsistent. The sequence of events for a

synchronized block or method is:

1. Thread needs to modify an object and may make it briefly inconsistent as an intermediate

step
2. Thread acquires the monitor, indicating it requires temporary exclusive access to the object
3. Thread modifies the object, leaving it in a consistent, legal state when done
4. Thread releases the monitor

If another thread attempts to acquire the lock while the object is being modified, then the
attempt to acquire the lock blocks, until the holding thread releases the lock.

Note that you do not have to use the synchronized statement unless your program creates
multiple threads that share data. If only one thread ever accesses a data structure, there is no

need to protect it with synchronized.

One point is of critical importance—acquiring the monitor does not prevent access to the object.
It only prevents any other thread from claiming the lock. Correct concurrently safe code requires
developers to ensure that all accesses that might modify or read potentially inconsistent state

acquire the object monitor before operating on or reading that state.

Put another way, if a synchronized method is working on an object and has placed it into an
illegal state, and another method (which is not synchronized) reads from the object, it can still

see the inconsistent state.

NOTE

Synchronization is a cooperative mechanism for protecting state and it is very
fragile as a result. A single bug (such as missing a single synchronized
keyword from a method it’s required on) can have catastrophic results for the safety

of the system as a whole.

The reason we use the word synchronized as the keyword for “requires temporary exclusive
access” is that in addition to acquiring the monitor, the JVM also rereads the current state of the

object from main memory when the block is entered. Similarly, when the synchronized

block or method is exited, the JVM flushes any modified state of the object back to main

memory.

Without synchronization, different CPU cores in the system may not see the same view of
memory, and memory inconsistencies can damage the state of a running program, as we saw in

our ATM example.

The simplest example of this is known as lost update, as demonstrated in the following code:

public class Counter {

private int i = 0;

public int increment () {

return 1 = i + 1;

This can be driven via a simple control program:

Counter ¢ = new Counter();
int REPEAT = 10 000 _000;
Runnable r = () -> {

for (int i = 0; i < REPEAT; i++) {

c.increment () ;

}i
Thread tl new Thread(r);
Thread t2 = new Thread(r) ;

tl.start ()

t2.start () ;

tl.join ()

t2.join () ;

int anomaly = (2 * REPEAT + 1) - c.increment();

double perc = ((anomaly + 0.0) * 100) / (2 * REPEAT);
System.out.println ("Lost updates: "+ anomaly +" ; % = " + perc);

If this concurrent program was correct, then the value for lost update should be exactly zero. It

is not, and so we may conclude that unsynchronized access is fundamentally unsafe.

By contrast, we also see that the addition of the keyword synchronized to the increment
method is sufficient to reduce the lost update anomaly to zero—that is, to make the method

correct, even in the presence of multiple threads.

volatile

Java provides another keyword for dealing with concurrent access to data. This is the
volatile keyword, and it indicates that before being used by application code, the value of
the field or variable must be reread from main memory. Equally, after a volatile value has been
modified, as soon as the write to the variable has completed, it must be written back to main

memory.

One common usage of the volatile keyword is in the “run-until-shutdown” pattern. This is
used in multithreaded programming where an external user or system needs to signal to a
processing thread that it should finish the current job being worked on and then shut down
gracefully. This is sometimes called the “graceful completion” pattern. Let’s look at a typical
example, supposing that this code for our processing thread is in a class that implements

Runnable:

private volatile boolean shutdown = false;

public void shutdown () {

shutdown = true;

public void run() {
while (!shutdown) {

// ... process another task

All the time that the shutdown () method is not called by another thread, the processing
thread continues to sequentially process tasks (this is often combined very usefully with a
BlockingQueue to deliver work). Once shutdown () is called by another thread, the
processing thread immediately sees the shutdown flag change to true. This does not affect
the running job, but once the task finishes, the processing thread will not accept another task and

instead will shut down gracefully.

However, useful as the volatile keyword is, it does not provide a complete protection of
state—as we can see by using it to mark the field in Counter as volatile. We might
naively assume that this would protect the code in Counter. Unfortunately, the observed value
of the anomaly (and therefore, the presence of the lost update problem) indicates that this is not

the case.

Useful Methods of Thread

The Thread class has a number of methods on it to make your life easier when you’re creating

new application threads. This is not an exhaustive list—there are many other methods on

Thread, but this is a description of some of the more common methods.

GETID()

This method returns the ID number of the thread, as a 1ong. This ID will stay the same for the
lifetime of the thread.

GETPRIORITY() AND SETPRIORITY()

These methods are used to control the priority of threads. The scheduler decides how to handle
thread priorities—for example, one strategy could be to not have any low-priority threads run
while there are high-priority threads waiting. In most cases, there is no way to influence how the
scheduler will interpret priorities. Thread priorities are represented as an integer between 1 and
10, with 10 being the highest.

SETNAME() AND GETNAME()

These methods allow the developer to set or retrieve a name for an individual thread. Naming
threads is good practice, as it can make debugging much easier, especially when using a tool

such as jvisualvm, which we will discuss in “Introduction to JShell”.

GETSTATE()

This returns a Thread . State object that indicates which state this thread is in, as per the

values defined in “Thread Lifecycle”.

ISALIVE()

This method is used to test whether a thread is still alive.

START()

This method is used to create a new application thread, and to schedule it, with the run ()
method being the entry point for execution. A thread terminates normally when it reaches the

end of its run () method or when it executes a return statement in that method.

INTERRUPT()

If a thread is blocked ina sleep (), wait (), or join () call, then calling interrupt ()
on the Thread object that represents the thread will cause the thread to be sent an

InterruptedException (and to wake up).

If the thread was involved in interruptible 1/O, then the I/O will be terminated and the thread
will receive a ClosedByInterruptException. The interrupt status of the thread will be

set to true, even if the thread was not engaged in any activity that could be interrupted.

JOIN()

The current thread waits until the thread corresponding to the Thread object has died. It can be

thought of as an instruction not to proceed until the other thread has completed.

SETDAEMON()

A user thread is a thread that will prevent the process from exiting if it is still alive—this is the
default for threads. Sometimes, programmers want threads that will not prevent an exit from
occurring—these are called daemon threads. The status of a thread as a daemon or user thread

can be controlled by the setDaemon () method and checked using i sDaemon ().

SETUNCAUGHTEXCEPTIONHANDLER()

When a thread exits by throwing an exception (i.e., one that the program did not catch), the
default behavior is to print the name of the thread, the type of the exception, the exception
message, and a stack trace. If this isn’t sufficient, you can install a custom handler for uncaught

exceptions in a thread. For example:

// This thread just throws an exception
Thread handledThread =
new Thread(() -> { throw new UnsupportedOperationException(); 1});

// Giving threads a name helps with debugging
handledThread.setName ("My Broken Thread");

// Here's a handler for the error.
handledThread.setUncaughtExceptionHandler ((t, e) -> {
System.err.printf ("Exception in thread %d '%s':" +

"%s at line %d of %s%n",

t.getId(), // Thread id

t.getName (), // Thread name

e.toString (), // Exception name and message
e.getStackTrace () [0] .getLineNumber (),

e.getStackTrace () [0] .getFileName()); 1});
handledThread.start () ;

This can be useful in some situations—for example, if one thread is supervising a group of other

worker threads, then this pattern can be used to restart any threads that die.

There is also setDefaultUncaughtExceptionHandler (), a static method that sets

a backup handler for catching any thread’s uncaught exceptions.

Deprecated Methods of Thread

In addition to the useful methods of Thread, there are a number of unsafe methods that you

should not use. These methods form part of the original Java thread API, but were quickly found

to be not suitable for developer use. Unfortunately, due to Java’s backward compatibility
requirements, it has not been possible to remove them from the API. Developers simply need to

be aware of them, and to avoid using them under all circumstances.

STOP()

Thread.stop () is almost impossible to use correctly without violating concurrent safety, as
stop () kills the thread immediately, without giving it any opportunity to recover objects to
legal states. This is in direct opposition to principles such as concurrent safety, and so should

never be used.

SUSPEND(), RESUME(), AND COUNTSTACKFRAMES()

The suspend () mechanism does not release any monitors it holds when it suspends, so any
other thread that attempts to access those monitors will deadlock. In practice, this mechanism
produces race conditions between these deadlocks and resume () that render this group of

methods unusable.

DESTROY()

This method was never implemented—it would have suffered from the same race condition

issues as suspend () if it had been.

All of these deprecated methods should always be avoided. A set of safe alternative patterns that
achieve the same intended aims as the preceding methods have been developed. A good

example of one of these patterns is the run-until-shutdown pattern that we have already met.

Working with Threads

In order to work effectively with multithreaded code, it’s important to have the basic facts about
monitors and locks at your command. This checklist contains the main facts that you should
know:

Synchronization is about protecting object state and memory, not code.

e Synchronization is a cooperative mechanism between threads. One bug can break the

cooperative model and have far-reaching consequences.

e Acquiring a monitor only prevents other threads from acquiring the monitor—it does not

protect the object.

e Unsynchronized methods can see (and modify) inconsistent state, even while the object’s

monitor is locked.

e Locking an Object [] doesn’t lock the individual objects.
e Primitives are not mutable, so they can’t (and don’t need to) be locked.
e synchronized can’t appear on a method declaration in an interface.

e Inner classes are just syntactic sugar, so locks on inner classes have no effect on the

enclosing class (and vice versa).

e Java’s locks are reentrant. This means that if a thread holding a monitor encounters a

2
synchronized block for the same monitor, it can enter the block.

We’ve also seen that threads can be asked to sleep for a period of time. It is also useful to go to
sleep for an unspecified amount of time, and wait until a condition is met. In Java, this is

handled by the wait () and notify () methods that are present on Object.

Just as every Java object has a lock associated with it, every object maintains a list of waiting
threads. When a thread calls the wait () method of an object, any locks the thread holds are
temporarily released, and the thread is added to the list of waiting threads for that object and

stops running. When another thread calls the notifyA1ll () method of the same object, the

object wakes up the waiting threads and allows them to continue running.

For example, let’s look at a simplified version of a queue that is safe for multithreaded use:

/*
* One thread calls push() to put an object on the queue.
* Another calls pop() to get an object off the queue. If there 1is no
* data, pop() waits until there is some, using wait()/notify().
74
public class WaitingQueue<E> ({

LinkedList<E> g = new LinkedList<E>(); // storage

public synchronized void push(E o) {
g.add (o) ; // Append the object to the end of the 1list
this.notifyAll(); // Tell waiting threads that data is ready

}
public synchronized E pop () {
while (g.size () == 0) {
try { this.wait(); }
catch (InterruptedException ignore) {}

}

return g.remove () ;

This class uses a wait () on the instance of WaitingQueue if the queue is empty (which

would make the pop () fail). The waiting thread temporarily releases its monitor, allowing
another thread to claim it—a thread that might push () something new onto the queue. When
the original thread is woken up again, it is restarted where it originally began to wait—and it

will have reacquired its monitor.

NOTE

wait () and notify () must be used inside a synchronized method or block,

because of the temporary relinquishing of locks that is required for them to work

properly.

In general, most developers shouldn’t roll their own classes like the one in this example—

instead, make use of the libraries and components that the Java platform provides for you.

Summary

In this chapter, we’ve discussed Java’s view of memory and concurrency, and seen how these
topics are intrinsically linked. As processors develop more and more cores, we will need to use
concurrent programming techniques to make effective use of those cores. Concurrency is key to

the future of well-performing applications.

Java’s threading model is based on three fundamental concepts:

Shared, visible-by-default mutable state

This means that objects are easily shared between different threads in a process, and that

they can be changed (“mutated”) by any thread holding a reference to them.

Preemptive thread scheduling

The OS thread scheduler can swap threads on and off cores at more or less any time.

Object state can only be protected by locks
Locks can be hard to use correctly, and state is quite vulnerable—even in unexpected places

such as read operations.

Taken together, these three aspects of Java’s approach to concurrency explain why

multithreaded programming can cause so many headaches for developers.

1The process whereby we exhaustively explore from the GC roots produces what is known as
the transitive closure of live objects—a term that is borrowed from the abstract mathematics

of graph theory.

2Outside of Java, not all implementations of locks have this property.

Part Il. Working with the Java Platform

Part II is an introduction to some of the core libraries that ship with Java and some programming
techniques that are common to intermediate and advanced Java programs.

e Chapter 7, Programming and Documentation Conventions

o Chapter 8, Working with Java Collections

e Chapter 9, Handling Common Data Formats

e Chapter 10, File Handling and 1/O

e Chapter 11, Classloading, Reflection, and Method Handles

e Chapter 12, Java Platform Modules

e Chapter 13, Platform Tools

Chapter 7. Programming and
Documentation Conventions

This chapter explains a number of important and useful Java programming and documentation

conventions. It covers:
¢ General naming and capitalization conventions
e Portability tips and conventions

e javadoc documentation comment syntax and conventions

Naming and Capitalization Conventions

The following widely adopted naming conventions apply to modules, packages, reference types,
methods, fields, and constants in Java. Because these conventions are almost universally
followed and because they affect the public API of the classes you define, you should adopt

them as well:

Modules

As modules are the preferred unit of distribution for Java applications from Java 9 onward,

you should take special care when naming them.

Module names must be globally unique—the modules system is essentially predicated on
this assumption. As modules are effectively super-packages (or aggregates of packages) the
module name should be closely related to the package names that are grouped into the
module. One recommended way to do this is to group together the packages within a

module, and use the root name of the packages as the module name.

Packages

It is customary to ensure that your publicly visible package names are unique. One common

way of doing this is by prefixing them with the inverted name of an internet domain that you

own (e.g., com.oreilly.javanutshell).

This convention is now followed less strictly than it used to be, with some projects merely
adopting a simple, recognizable, and unique prefix instead. All package names should be

lowercase.

Classes

A type name should begin with a capital letter and be written in mixed case (e.g., String).
If a class name consists of more than one word, each word should begin with a capital letter
(e.g., StringBuffer). If a type name, or one of the words of a type name, is an acronym,

the acronym can be written in all capital letters (e.g., URL, HTMLParser).

Because classes and enumerated types are designed to represent objects, you should choose

class names that are nouns (e.g., Thread, Teapot, FormatConverter).

Enum types are a special case of a class where there are only finitely many instances. They
should be named as nouns in all but highly exceptional circumstances. The constants defined
by enum types are also typically written in all capital letters, as per the rules for constants

below.

Interfaces

Java programmers typically use interfaces in one of two ways: either to convey that a class
has additional, supplementary aspects or behaviors; or to indicate that the class is one
possible implementation of an interface for which there are multiple valid implementation

choices.

When an interface is used to provide additional information about the classes that implement
it, it is common to choose an interface name that is an adjective (e.g., Runnable,

Cloneable, Serializable).

When an interface is intended to work more like an abstract superclass, use a name that is a

noun (e.g., Document, FileNameMap, Collection).

Methods

A method name always begins with a lowercase letter. If the name contains more than one
word, every word after the first begins with a capital letter (e.g., insert (),

insertObject (), insertObjectAt ()). This is usually referred to as camel case.

Method names are typically chosen so that the first word is a verb. Method names can be as
long as is necessary to make their purpose clear, but choose succinct names where possible.
Avoid overly general method names, such as performAction (), go (), or the dreadful

doIt ().

Fields and constants

Nonconstant field names follow the same capitalization conventions as method names. A

field name should be chosen to best describe the purpose of the field or the value it holds.

Ifafieldisa static final constant, it should be written in all uppercase. If the name of
a constant includes more than one word, the words should be separated with underscores

(e.g., MAX VALUE).

Parameters

Method parameters follow the same capitalization conventions as nonconstant fields. The
names of method parameters appear in the documentation for a method, so you should
choose names that make the purpose of the parameters as clear as possible. Try to keep
parameter names to a single word and use them consistently. For example, if a
WidgetProcessor class defines many methods that accept a Widget object as the first

parameter, name this parameter widget.

Local variables

Local variable names are an implementation detail and never visible outside your class.
Nevertheless, choosing good names makes your code easier to read, understand, and
maintain. Variables are typically named following the same conventions as methods and
fields.

In addition to the conventions for specific types of names, there are conventions regarding
the characters you should use in your names. Java allows the $ character in any identifier,
but, by convention, its use is reserved for synthetic names generated by source-code
processors. For example, it is used by the Java compiler to make inner classes work. You

should not use the $ character in any name that you create.

Java allows names to use any alphanumeric characters from the entire Unicode character set.
While this can be convenient for non-English-speaking programmers, this has never really

taken off and this usage is extremely rare.

Practical Naming

The names we give to our constructs matter—a lot. Naming is a key part of the process that
conveys our abstract designs to our peers. The process of transferring a software design from
one human mind to another is hard—harder, in many cases, than the process of transferring our

design from our mind to the machines that will execute it.

We must, therefore, do everything we can to ensure that this process is eased. Names are a
keystone of this. When reviewing code (and all code should be reviewed), pay particular

attention to the names that have been chosen:

e Do the names of the types reflect the purpose of those types?

e Does each method do exactly what its name suggests? Ideally, no more, and no less?

e Are the names descriptive enough? Could a more specific name be used instead?

e Are the names well suited for the domain they describe?

e Are the names consistent across the domain?

¢ Do the names mix metaphors?

¢ Does the name reuse a common term of software engineering?

Mixed metaphors are common in software, especially after several releases of an application. A
system that starts off perfectly reasonably with components called Receptionist (for
handling incoming connections), Scribe (for persisting orders), and Auditor (for checking
and reconciling orders) can quite easily end up in a later release with a class called Watchdog
for restarting processes. This isn’t terrible, but it breaks the established pattern of people’s job

titles that previously existed.

It is also incredibly important to realize that software changes a lot over time. A perfectly
apposite name on release 1 can become highly misleading by release 4. Care should be taken
that as the system focus and intent shifts, the names are refactored along with the code. Modern
IDEs have no problem with global search and replace of symbols, so there is no need to cling to

outdated metaphors once they are no longer useful.

One final note of caution: an overly strict interpretation of these guidelines can lead the
developer to some very odd naming constructs. There are a number of excellent descriptions of

some of the absurdities that can result by taking these conventions to their extremes.

In other words, none of the conventions described here is mandatory. Following them will, in

the vast majority of cases, make your code easier to read and maintain. However, you should not

be afraid to deviate from these guidelines if it makes your code easier to read and understand.

Break any of these rules rather than say anything outright barbarous.
George Orwell

Above all, you should have a sense of the expected lifetime of the code you are writing. A risk
calculation system in a bank may have a lifetime of a decade or more, whereas a prototype for a
startup may only be relevant for a few weeks. Document accordingly—the longer the code is

likely to be live, the better its documentation needs to be.

Java Documentation Comments

Most ordinary comments within Java code explain the implementation details of that code. By
contrast, the Java language specification defines a special type of comment known as a doc

comment that serves to document the API of your code.

A doc comment is an ordinary multiline comment that begins with /** (instead of the usual
/*) and ends with */. A doc comment appears immediately before a type or member definition
and contains documentation for that type or member. The documentation can include simple

HTML formatting tags and other special keywords that provide additional information.

Doc comments are ignored by the compiler, but they can be extracted and automatically turned
into online HTML documentation by the javadoc program. (See Chapter 13 for more

information about javadoc.)

Here is an example class that contains appropriate doc comments:

/**
* This immutable class represents <i>complex numbers</i>.
*
* @author David Flanagan
* @version 1.0
*/
public class Complex {
/**
* Holds the real part of this complex number.
* @see #y
*/
protected double x;

/**
* Holds the imaginary part of this complex number.
* @see #x

*/

protected double y;

/**
* Creates a new Complex object that represents the complex number
* x+yi. @param x The real part of the complex number.
* @param y The imaginary part of the complex number.
*/
public Complex (double x, double y) {
this.x = x;

this.y = y;

* Adds two Complex objects and produces a third object that
* represents their sum.
* @param cl A Complex object
* @param c2 Another Complex object
* @return A new Complex object that represents the sum of
* <code>cl</code> and <code>c2</code>.
* @exception java.lang.NullPointerException
b If either argument is <code>null</code>.
274
public static Complex add(Complex cl, Complex c2) {

return new Complex(cl.x + c2.x, cl.y + c2.y);

Structure of a Doc Comment

The body of a doc comment should begin with a one-sentence summary of the type or member
being documented. This sentence may be displayed by itself as summary documentation, so it
should be written to stand on its own. The initial sentence may be followed by any number of

other sentences and paragraphs that describe the class, interface, method, or field in full detail.

After the descriptive paragraphs, a doc comment can contain any number of other paragraphs,
each of which begins with a special doc-comment tag, such as @author, @param, or
@returns. These tagged paragraphs provide specific information about the class, interface,
method, or field that the javadoc program displays in a standard way. The full set of doc-

comment tags is listed in the next section.

The descriptive material in a doc comment can contain simple HTML markup tags, such as <i>
for emphasis; <code> for class, method, and field names; and <pre> for multiline code
examples. It can also contain <p> tags to break the description into separate paragraphs and
, <11i>, and related tags to display bulleted lists and similar structures. Remember,
however, that the material you write is embedded within a larger, more complex HTML

document. For this reason, doc comments should not contain major structural HTML tags, such

as <h2> or <hr>, that might interfere with the structure of the larger document.

Avoid the use of the <a> tag to include hyperlinks or cross-references in your doc comments.
Instead, use the special { @1ink} doc-comment tag, which, unlike the other doc-comment tags,
can appear anywhere within a doc comment. As described in the next section, the {@1ink} tag
allows you to specify hyperlinks to other classes, interfaces, methods, and fields without

knowing the HTML-structuring conventions and filenames used by javadoc.

If you want to include an image in a doc comment, place the image file in a doc-files
subdirectory of the source code directory. Give the image the same name as the class, with an
integer suffix. For example, the second image that appears in the doc comment for a class

named Circle can be included with this HTML tag:

Because the lines of a doc comment are embedded within a Java comment, any leading spaces
and asterisks (*) are stripped from each line of the comment before processing. Thus, you don’t
need to worry about the asterisks appearing in the generated documentation or about the
indentation of the comment affecting the indentation of code examples included within the

comment with a <pre> tag.

Doc-Comment Tags

The javadoc program recognizes a number of special tags, each of which begins with an @
character. These doc-comment tags allow you to encode specific information into your
comments in a standardized way, and they allow javadoc to choose the appropriate output
format for that information. For example, the @param tag lets you specify the name and
meaning of a single parameter for a method. javadoc can extract this information and display

it using an HTML <d1> list, an HTML <table>, or whatever it sees fit.

The following doc-comment tags are recognized by javadoc; a doc comment should typically

use these tags in the order listed here:

@Qauthor name

Adds an “Author:” entry that contains the specified name. This tag should be used for every
class or interface definition but must not be used for individual methods and fields. If a class

has multiple authors, use multiple @author tags on adjacent lines. For example:

Ben Evans

David Flanagan

List the authors in chronological order, with the original author first. If the author is
unknown, you can use “unascribed.” javadoc does not output authorship information

unless the ~author command-line argument is specified.

@Qversion text

Inserts a “Version:” entry that contains the specified text. For example:

1.32, 08/26/04

This tag should be included in every class and interface doc comment but cannot be used for
individual methods and fields. This tag is often used in conjunction with the automated
version-numbering capabilities of a version control system, such as git, Perforce, or SVN.
javadoc does not output version information in its generated documentation unless the -

version command-line argument is specified.

@param parameter—-name description

Adds the specified parameter and its description to the “Parameters:” section of the current
method. The doc comment for a method or constructor must contain one @param tag for
each parameter the method expects. These tags should appear in the same order as the
parameters specified by the method. The tag can be used only in doc comments for methods

and constructors.

You are encouraged to use phrases and sentence fragments where possible to keep the
descriptions brief. However, if a parameter requires detailed documentation, the description
can wrap onto multiple lines and include as much text as necessary. For readability in
source-code form, consider using spaces to align the descriptions with each other. For

example:

o) the object to insert

index the position to insert it at

@return description

Inserts a “Returns:” section that contains the specified description. This tag should appear in
every doc comment for a method, unless the method returns void or is a constructor. The

description can be as long as necessary, but consider using a sentence fragment to keep it

short. For example:

<code>true</code> if the insertion is successful, or

<code>false</code> if the list already contains the object.

@exception full-classname description

Adds a “Throws:” entry that contains the specified exception name and description. A doc
comment for a method or constructor should contain an @exception tag for every

checked exception that appears in its throws clause. For example:

java.io.FileNotFoundException

If the specified file could not be found

The @exception tag can optionally be used to document unchecked exceptions (i.e.,
subclasses of Runt imeException) the method may throw, when these are exceptions
that a user of the method may reasonably want to catch. If a method can throw more than
one exception, use multiple @exception tags on adjacent lines and list the exceptions in
alphabetical order. The description can be as short or as long as necessary to describe the
significance of the exception. This tag can be used only for method and constructor

comments. The @throws tag is a synonym for @exception.

@throws full-classname description

This tag is a synonym for @exception.

@see reference

Adds a “See Also:” entry that contains the specified reference. This tag can appear in any
kind of doc comment. The syntax for the re ference is explained in “Cross-References in

Doc Comments™.

@deprecated explanation

This tag specifies that the following type or member has been deprecated and that its use
should be avoided. javadoc adds a prominent “Deprecated” entry to the documentation
and includes the specified explanation text. This text should specify when the class or
member was deprecated and, if possible, suggest a replacement class or member and include

a link to it. For example:

As of Version 3.0, this method is replaced
by { #setColor}.

The @deprecated tag is an exception to the general rule that javac ignores all
comments. When this tag appears, the compiler notes the deprecation in the class file it
produces. This allows it to issue warnings for other classes that rely on the deprecated

feature.

@since version

Specifies when the type or member was added to the API. This tag should be followed by a

version number or other version specification. For example:

JNUT 3.0

Every doc comment for a type should include an @since tag, and any members added after

the initial release of the type should have @since tags in their doc comments.

@serial description

Technically, the way a class is serialized is part of its public API. If you write a class that
you expect to be serialized, you should document its serialization format using @serial
and the related tags listed next. @serial should appear in the doc comment for any field

that is part of the serialized state of a Serializable class.

For classes that use the default serialization mechanism, this means all fields that are not
declared transient, including fields declared private. The description should be

a brief description of the field and of its purpose within a serialized object.

You can also use the @serial tag at the class and package level to specify whether a

“serialized form page” should be generated for the class or package. The syntax is:

include

exclude

@serialField name type description

A Serializable class can define its serialized format by declaring an array of
ObjectStreamField objects in a field named serialPersistentFields. For

such a class, the doc comment for serialPersistentFields should include an

@serialField tag for each element of the array. Each tag specifies the name, type, and

description for a particular field in the serialized state of the class.

@serialData description

A Serializable class can define a writeObject () method to write data other than
that written by the default serialization mechanism. An Externalizable class defines a
writeExternal () method responsible for writing the complete state of an object to the
serialization stream. The @serialData tag should be used in the doc comments for these
writeObject () and writeExternal () methods, and the description should

document the serialization format used by the method.

Inline Doc-Comment Tags

In addition to the preceding tags, javadoc also supports several inline tags that may appear
anywhere that HTML text appears in a doc comment. Because these tags appear directly within
the flow of HTML text, they require the use of curly braces as delimiters to separate the tagged
text from the HTML text. Supported inline tags include the following:

{@link reference }

The {@1ink} tag is like the @see tag except that instead of placing a link to the specified
reference in a special “See Also:” section, it inserts the link inline. An {@1ink} tag
can appear anywhere that HTML text appears in a doc comment. In other words, it can
appear in the initial description of the class, interface, method, or field and in the
descriptions associated with the @param, @returns, @exception, and @deprecated
tags. The reference for the {@1ink} tag uses the syntax described next in “Cross-

References in Doc Comments”. For example:

regexp The regular expression to search for. This string
argument must follow the syntax rules described for

{ java.util.regex.Pattern}.

{@linkplain reference }

The {@linkplain} tagis just like the {@1ink} tag, except that the text of the link is
formatted using the normal font rather than the code font used by the {@1ink} tag. This is
most useful when re ference contains both a feature to link to and a Iabe that
specifies alternate text to be displayed in the link. See “Cross-References in Doc

Comments” for more on the feature and 1abel portions of the re ference argument.

{@inheritDoc}

When a method overrides a method in a superclass or implements a method in an interface,
you can omit a doc comment, and javadoc automatically inherits the documentation from
the overridden or implemented method. You can use the { @inheritDoc} tag to inherit
the text of individual tags. This tag also allows you to inherit and augment the descriptive

text of the comment. To inherit individual tags, use it like this:

index { }

{@docRoot}

This inline tag takes no parameters and is replaced with a reference to the root directory of
the generated documentation. It is useful in hyperlinks that refer to an external file, such as

an image or a copyright statement:

This is Copyrighted material.

{@literal text }

This inline tag displays text literally, escaping any HTML in it and ignoring any
javadoc tags it may contain. It does not retain whitespace formatting but is useful when

used within a <pre> tag.

{Q@code text }

This tag is like the {@1iteral} tag, but displays the literal text in code font. Equivalent

to:

<code> { <replaceable>text</replaceable>}</code>

{@value}

The {@value} tag, with no arguments, is used inline in doc comments for static

final fields and is replaced with the constant value of that field.

{@value reference }

This variant of the {@value} tagincludes a referencetoa static final field and

is replaced with the constant value of that field.

Cross-References in Doc Comments

The @see tag and the inline tags {@1ink}, {@linkplain}, and {@value} all encode a
cross-reference to some other source of documentation, typically to the documentation comment

for some other type or member.

reference can take three different forms. If it begins with a quote character, it is taken to be
the name of a book or some other printed resource and is displayed as is. If re ference begins
with a < character, it is taken to be an arbitrary HTML hyperlink that uses the <a> tag and the
hyperlink is inserted into the output documentation as is. This form of the @see tag can insert

links to other online documents, such as a programmer’s guide or user’s manual.

If reference is not a quoted string or a hyperlink, it is expected to have the following form:

feature [labell]

In this case, javadoc outputs the text specified by 1abel and encodes it as a hyperlink to the
specified feature. If 1abel is omitted (as it usually is), javadoc uses the name of the

specified feature instead.

feature can refer to a package, type, or type member, using one of the following forms:

pkgname

A reference to the named package. For example:

java.lang.reflect

pkgname.typename

A reference to a class, interface, enumerated type, or annotation type specified with its full

package name. For example:

java.util.List

typename

A reference to a type specified without its package name. For example:

List

javadoc resolves this reference by searching the current package and the list of imported

classes for a class with this name.

typename # methodname

A reference to a named method or constructor within the specified type. For example:

java.io.InputStream#reset

InputStreamficlose

If the type is specified without its package name, it is resolved as described for t ypename.
This syntax is ambiguous if the method is overloaded or the class defines a field by the same

name.

typename # methodname (paramtypes)

A reference to a method or constructor with the type of its parameters explicitly specified.

This is useful when cross-referencing an overloaded method. For example:

InputStreamfread (byte[], int, int)

methodname

A reference to a nonoverloaded method or constructor in the current class or interface or one
of the containing classes, superclasses, or superinterfaces of the current class or interface.

Use this concise form to refer to other methods in the same class. For example:

#setBackgroundColor

methodname (paramtypes)

A reference to a method or constructor in the current class or interface or one of its
superclasses or containing classes. This form works with overloaded methods because it lists

the types of the method parameters explicitly. For example:

#setPosition (int, int)

typename # fieldname

A reference to a named field within the specified class. For example:

java.io.BufferedInputStream#buf

If the type is specified without its package name, it is resolved as described for t ypename.

fieldname

A reference to a field in the current type or one of the containing classes, superclasses, or

superinterfaces of the current type. For example:

#x

Doc Comments for Packages

Documentation comments for classes, interfaces, methods, constructors, and fields appear in
Java source code immediately before the definitions of the features they document. javadoc
can also read and display summary documentation for packages. Because a package is defined
in a directory, not in a single file of source code, javadoc looks for the package
documentation in a file named package. html in the directory that contains the source code for

the classes of the package.

The package.html file should contain simple HTML documentation for the package. It can also
contain @see, @1ink, @deprecated, and @since tags. Because package.html is not a file
of Java source code, the documentation it contains should be HTML and should not be a Java

comment (1.e., it should not be enclosed within /** and */ characters). Finally, any @see and

@1ink tags that appear in package.html must use fully qualified class names.

In addition to defining a package. html tile for each package, you can also provide high-level
documentation for a group of packages by defining an overview.html file in the source tree for
those packages. When javadoc is run over that source tree, it uses overview.html as the

highest-level overview it displays.

Doclets

The javadoc tool that is used to generate HTML documentation is based upon a standard API.

Since Java 9, this standard interface has been delivered in the module jdk . javadoc and tools
leveraging this API are typically called doclets (with javadoc being referred to as the standard
doclet).

The Java 9 release also included a major upgrade of the standard doclet. In particular, it now (as
of Java 10) generates modern HTMLS5 by default. This allows for other impovements—such as
implementing the WAI-ARIA standard for accessibility. This standard makes it easier for
people with visual or other impairments to access javadoc output using tools such as screen

readers.

NOTE

javadoc has also been enhanced to understand the new platform modules, and so
the semantic meaning of what constitutes an API (and so what should be

documented) is now aligned with the modular Java definition.

The standard doclet now also automatically indexes the code as documentation is generated, and
creates a client-side index in JavaScript. The resulting web pages have a search capability to

allow developers to easily find some common program components, such as the names of:

Modules

Packages

Types and members

Method parameter types

The developer can also add search terms or phrases using an @index inline javadoc tag.

Conventions for Portable Programs

One of the earliest slogans for Java was “write once, run anywhere.” This emphasizes that Java
makes it easy to write portable programs, but it is still possible to write Java programs that do
not automatically run successfully on any Java platform. The following tips help to avoid

portability problems:

Native methods

Portable Java code can use any methods in the core Java APIs, including methods
implemented as nat ive methods. However, portable code must not define its own native
methods. By their very nature, native methods must be ported to each new platform, so they

directly subvert the “write once, run anywhere” promise of Java.

The Runtime.exec () method

Calling the Runtime.exec () method to spawn a process and execute an external
command on the native system is rarely allowed in portable code. This is because the native
OS command to be executed is never guaranteed to exist or behave the same way on all

platforms.

The only time it is legal to use Runtime.exec () in portable code is when the user is
allowed to specify the command to run, either by typing the command at runtime or by

specifying the command in a configuration file or preferences dialog box.

If the programmer wishes to control external processes, then this should be done through the
enhanced ProcessHandle capability introduced in Java 9, rather than by using
Runtime.exec () and parsing the output. This is not fully portable, but at least reduces

the amount of platform-specific logic necessary to control external processes.

The System.getenv () method

Using System.getenv () is inherently nonportable.

Undocumented classes

Portable Java code must use only classes and interfaces that are a documented part of the
Java platform. Most Java implementations ship with additional undocumented public classes

that are part of the implementation but not part of the Java platform specification.

The modules system prevents a program from using and relying on these implementation
classes, but as of Java 11 it is still possible to circumvent this protection by using reflection

or runtime switches.

However, doing so is not portable because the implementation classes are not guaranteed to
exist in all Java implementations or on all platforms, and they may change or disappear in

future versions of the implementation that they target.

Of particular note is the sun.misc.Unsafe class, which provides access to a number of

“unsafe” methods, which can allow developers to circumvent a number of key restrictions of

the Java platform. Developers should not make direct use of the Unsafe class under any

circumstances.

Implementation-specific features

Portable code must not rely on features specific to a single implementation. For example, in
the early years of Java, Microsoft distributed a version of the Java runtime system that
included a number of additional methods that were not part of the Java platform as defined
by the specifications. Any program that depends on such extensions is obviously not

portable to other platforms.

Implementation-specific bugs

Just as portable code must not depend on implementation-specific features, it must not
depend on implementation-specific bugs. If a class or method behaves differently than the
specification says it should, a portable program cannot rely on this behavior, which may be

different on different platforms, and ultimately may be fixed.

Implementation-specific behavior

Sometimes different platforms and different implementations present different behaviors, all
of which are legal according to the Java specification. Portable code must not depend on any
one specific behavior. For example, the Java specification does not indicate whether threads
of equal priority share the CPU or if one long-running thread can starve another thread at the
same priority. If an application assumes one behavior or the other, it may not run properly

on all platforms.

Defining system classes

Portable Java code never attempts to define classes in any of the system or standard
extension packages. Doing so violates the protection boundaries of those packages and
exposes package-visible implementation details, even in those cases where it is not

forbidden by the modules system.

Hardcoded filenames

A portable program contains no hardcoded file or directory names. This is because different
platforms have significantly different filesystem organizations and use different directory
separator characters. If you need to work with a file or directory, have the user specify the
filename, or at least the base directory beneath which the file can be found. This

specification can be done at runtime, in a configuration file, or as a command-line argument

to the program. When concatenating a file or directory name to a directory name, use the

File () constructor or the File.separator constant.

Line separators

Different systems use different characters or sequences of characters as line separators. Do
not hardcode \n, \ r, or \ r\n as the line separator in your program. Instead, use the
println () method of PrintStreamor PrintWriter, which automatically
terminates a line with the line separator appropriate for the platform, or use the value of the
line.separator system property. You can also use the “%n” format string to

printf () and format () methods of java.util.Formatter and related classes.

Chapter 8. Working with Java Collections

This chapter introduces Java’s interpretation of fundamental data structures, known as the Java
Collections. These abstractions are core to many (if not most) programming types, and form an
essential part of any programmer’s basic toolkit. Accordingly, this is one of the most important
chapters of the entire book, and provides a toolkit that is essential to virtually all Java

programmers.

In this chapter, we will introduce the fundamental interfaces and the type hierarchy, show how
to use them, and discuss aspects of their overall design. Both the “classic” approach to handling
the Collections and the newer approach (using the Streams API and the lambda expressions

functionality introduced in Java 8) will be covered.

Introduction to Collections API

The Java Collections are a set of generic interfaces that describe the most common forms of data
structure. Java ships with several implementations of each of the classic data structures, and
because the types are represented as interfaces, it is very possible for development teams to

develop their own, specialized implementations of the interfaces for use in their own projects.

The Java Collections define two fundamental types of data structures. A Collectionisa
grouping of objects, while a Map is a set of mappings, or associations, between objects. The

basic layout of the Java Collections is shown in Figure 8-1.

Within this basic description, a Set is a type of Collection with no duplicates, and a List

is a Collection in which the elements are ordered (but may contain duplicates).

Collection

extends implements

Figure 8-1. Collections classes and inheritance

SortedSet and SortedMap are specialized sets and maps that maintain their elements in a

sorted order.

Collection, Set, List, Map, SortedSet, and SortedMap are all interfaces, but the
java.util package also defines various concrete implementations, such as lists based on
arrays and linked lists, and maps and sets based on hash tables or binary trees. Other important
interfaces are Tterator and Iterable, which allow you to loop through the objects in a

collection, as we will see later on.

The Collection Interface

Collection<E> is a parameterized interface that represents a generalized grouping of

objects of type E. We can create a collection of any kind of reference type.

NOTE

To work properly with the expectations of collections, you must take care when

defining hashCode () and equals () methods, as discussed in Chapter 5.

Methods are defined for adding and removing objects from the group, testing an object for
membership in the group, and iterating through all elements in the group. Additional methods

return the elements of the group as an array and return the size of the collection.

NOTE

The grouping within a Collection may or may not allow duplicate elements and

may or may not impose an ordering on the elements.

The Java Collections Framework provides Collection because it defines the features shared
by all common forms of data structure. The JDK ships Set, List, and Queue as subinterfaces
of Collection. The following code illustrates the operations you can perform on

Collection objects:
// Create some collections to work with.
Collection<String> ¢ = new HashSet<>(); // An empty set

// We'll see these utility methods later. Be aware that there are

// some subtleties to watch out for when using them

Collection<String> d Arrays.asList ("one", "two");

Collection<String> e = Collections.singleton ("three");

// Add elements to a collection. These methods return true
// 1f the collection changes, which is useful with Sets that
// don't allow duplicates.

c.add ("zero"); // Add a single element

c.addAll (d) ; // Add all of the elements in d

// Copy a collection: most implementations have a copy constructor

Collection<String> copy = new ArrayList<String>(c);

// Remove elements from a collection.

// All but clear return true 1if the collection changes.

c.remove ("zero") ; // Remove a single element

c.removeAll (e) ; // Remove a collection of elements
c.retainAll (d) ; // Remove all elements that are not in d
c.clear(); // Remove all elements from the collection

// Querying collection size
boolean b = c.isEmpty(); // ¢ is now empty, so true

int s = c.size(); // Size of ¢ is now 0.

// Restore collection from the copy we made
c.addAll (copy) ;

// Test membership in the collection. Membership is based on the equals

// method, not the == operator.
b = c.contains ("zero"); // true
b = c.containsAll (d); // true

// Most Collection implementations have a useful toString() method

System.out.println(c);

// Obtain an array of collection elements. If the iterator guarantees
// an order, this array has the same order. The array 1s a copy, not a
// reference to an internal data structure.

Object[] elements = c.toArray();

// If we want the elements in a String[], we must pass one in

String[] strings = c.toArray(new Stringlc.size()]);

// Or we can pass an empty String[] just to specify the type and
// the toArray method will allocate an array for us

strings = c.toArray(new String[0]);

Remember that you can use any of the methods shown here with any Set, List, or Queue.
These subinterfaces may impose membership restrictions or ordering constraints on the

elements of the collection but still provide the same basic methods.

NOTE

Methods such as addAll (), retainAll (), clear (), and remove () that
alter the collection were conceived of as optional parts of the API. Unfortunately,
they were specified a long time ago, when the received wisdom was to indicate the
absence of an optional method by throwing
UnsupportedOperationException. Accordingly, some implementations

(notably read-only forms) may throw this unchecked exception.

Collection, Map, and their subinterfaces do not extend the interfaces Cloneable or
Serializable. All of the collection and map implementation classes provided in the Java

Collections Framework, however, do implement these interfaces.

Some collection implementations place restrictions on the elements that they can contain. An
implementation might prohibit nul1l as an element, for example. And EnumSet restricts

membership to the values of a specified enumerated type.

Attempting to add a prohibited element to a collection always throws an unchecked exception
suchas NullPointerException or ClassCastException. Checking whether a
collection contains a prohibited element may also throw such an exception, or it may simply

return false.

The Set Interface

A set is a collection of objects that does not allow duplicates: it may not contain two references
to the same object, two references to null, or references to two objects a and b such that
a.equals (b). Most general-purpose Set implementations impose no ordering on the
elements of the set, but ordered sets are not prohibited (see SortedSet and
LinkedHashSet). Sets are further distinguished from ordered collections like lists by the
general expectation that they have an efficient contains method that runs in constant or

logarithmic time.

Set defines no additional methods beyond those defined by Collection but places
additional restrictions on those methods. The add () and addA11 () methods of a Set are
required to enforce the no-duplicates rules: they may not add an element to the Set if the set
already contains that element. Recall that the add () and addA11 () methods defined by the
Collection interface return t rue if the call resulted in a change to the collection and
false ifit did not. This return value is relevant for Set objects because the no-duplicates

restriction means that adding an element does not always result in a change to the set.

Table 8-1 lists the implementations of the Set interface and summarizes their internal
representation, ordering characteristics, member restrictions, and the performance of the basic
add (), remove (), and contains operations as well as iteration performance. You can read
more about each class in the reference section. Note that CopyOnWriteArraySet is in the
java.util.concurrent package; all the other implementations are part of java.util.
Also note that java.util.BitSet isnota Set implementation. This legacy class is useful

as a compact and efficient list of boolean values but is not part of the Java Collections

Framework.
Table 8-1. Set implementations
Class Internal Since Element Member Basic
representation order restric-tions opera-
tions
HashSet Hashtable 1.2 None None o(1)
LinkedHashSet Linked 1.2 Insertion None o(1)

hashtable order

EnumSet Bit fields 5.0 Enum Enum o(1)

declaration values

TreeSet Red-black 1.2 Sorted Comparable O(log(n))
tree ascending
CopyOnWriteArraySet Array 5.0 Insertion None O(n)
order

The TreeSet implementation uses a red-black tree data structure to maintain a set that is
iterated in ascending order according to the natural ordering of Comparable objects or
according to an ordering specified by a Comparator object. TreeSet actually implements

the SortedSet interface, which is a subinterface of Set.

The SortedSet interface offers several interesting methods that take advantage of its sorted

nature. The following code illustrates:

public static void testSortedSet (String[] args) {
// Create a SortedSet
SortedSet<String> s = new TreeSet<> (Arrays.aslList (args));

// Iterate set: elements are automatically sorted
for (String word : s) {

System.out.println (word) ;

// Special elements
String first = s.first(); // First element
String last = s.last(); // Last element

// all elements but first
SortedSet<String> tail = s.tailSet (first + '\0');
System.out.println(tail) ;

// all elements but last
SortedSet<String> head = s.headSet (last);
System.out.println (head) ;

SortedSet<String> middle = s.subSet (first+'\0', last);
System.out.println (middle) ;

WARNING

The addition of \ 0 characters is needed because the tailSet () and related
methods use the successor of an element, which for strings is the string value with a

NULL character (ASCII code 0) appended.

From Java 9 onward, the API has also been upgraded with a helper static method on the Set

interface, like this:

Set<String> set = Set.of ("Hello", "World");

This API has several overloads that each take a fixed number of arguments, and also a varargs
overload. The latter is used for the case where arbitarily many elements are wanted in the set,
and falls back to the standard varargs mechanism (marshaling the elements into an array before
the call).

The List Interface

A List is an ordered collection of objects. Each element of a list has a position in the list, and
the Li st interface defines methods to query or set the element at a particular position, or index.
In this respect, a List is like an array whose size changes as needed to accommodate the

number of elements it contains. Unlike sets, lists allow duplicate elements.

In addition to its index-based get () and set () methods, the List interface defines methods
to add or remove an element at a particular index and also defines methods to return the index of
the first or last occurrence of a particular value in the list. The add () and remove () methods
inherited from Collection are defined to append to the list and to remove the first
occurrence of the specified value from the list. The inherited addA11 () appends all elements
in the specified collection to the end of the list, and another version inserts the elements at a
specified index. The retainAll () and removeAll () methods behave as they do for any

Collection, retaining or removing multiple occurrences of the same value, if needed.

The List interface does not define methods that operate on a range of list indexes. Instead, it
defines a single subList () method that returns a Li st object that represents just the
specified range of the original list. The sublist is backed by the parent list, and any changes
made to the sublist are immediately visible in the parent list. Examples of subList () and the

other basic List manipulation methods are shown here:

// Create 1lists to work with

List<String> 1 = new ArrayList<String> (Arrays.aslList (args)):;
List<String> words = Arrays.asList ("hello", "world");
List<String> words2 = List.of ("hello", "world");

// Querying and setting elements by index

String first = 1l.get(0); // First element of 1list
String last = l.get(l.size -1); // Last element of 1list

l.set (0, last); // The last shall be first

// Adding and inserting elements. add can append or insert
l.add(first); // Append the first word at end of 1list

l.add (0, first); // Insert first at the start of the list again
1.addAll (words) ; // Append a collection at the end of the list
l.addAall (1, words); // Insert collection after first word

// Sublists: backed by the original list

List<String> sub = l.subList(1,3); // second and third elements

sub.set (0, "hi"); // modifies 2nd element of 1

// Sublists can restrict operations to a subrange of backing list
String s = Collections.min(l.subList (0,4));

Collections.sort (l.subList (0,4));

// Independent copies of a sublist don't affect the parent 1list.

List<String> subcopy = new ArraylList<String> (l.subList (1,3));

// Searching lists

int p = 1.indexOf (last); // Where does the last word appear?

p = l.lastIndexOf (last); // Search backward

// Print the index of all occurrences of last in 1. Note subList
int n = 1l.size();

p = 0;

do {

// Get a view of the 1list that includes only the elements we
// haven't searched yet.

List<String> list = l.subList(p, n);

int g = list.indexOf (last);

if (g == -1) break;
System.out.printf ("Found '%s' at index %d%n", last, p+q);
p t= gtl;

} while(p < n);

// Removing elements from a 1list
l.remove (last) ; // Remove first occurrence of the element

1.remove (0) ; // Remove element at specified index

l.subList (0,2).clear(); // Remove a range of elements using subList
l.retainAll (words) ; // Remove all but elements in words
1l.removeAll (words) ; // Remove all occurrences of elements in words
l.clear(); // Remove everything

FOREACH LOOPS AND ITERATION

One very important way of working with collections is to process each element in turn, an
approach known as iteration. This is an older way of looking at data structures, but is still very
useful (especially for small collections of data) and is easy to understand. This approach fits
naturally with the for loop, as shown in this bit of code, and is easiest to illustrate using a

List:

ListCollection<String> ¢ = new ArrayList<String>();

// ... add some Strings to c

for (String word : c) {

System.out.println (word) ;

The sense of the code should be clear—it takes the elements of c one at a time and uses them as
a variable in the loop body. More formally, it iterates through the elements of an array or
collection (or any object that implements java.lang.Iterable). On each iteration it
assigns an element of the array or Tterable object to the loop variable you declare and then
executes the loop body, which typically uses the loop variable to operate on the element. No
loop counter or Tterator object is involved; the loop performs the iteration automatically,

and you need not concern yourself with correct initialization or termination of the loop.

This type of for loop is often referred to as a foreach loop. Let’s see how it works. The
following bit of code shows a rewritten (and equivalent) for loop, with the method calls

explicitly shown:

// Iteration with a for loop
for (Iterator<String> 1 = c.iterator(); i.hasNext();) {

System.out.println (i.next ());

The Iterator object, i, is produced from the collection, and used to step through the

collection one item at a time. It can also be used with while loops:

//Iterate through collection elements with a while loop.
//Some implementations (such as lists) guarantee an order of iteration

//Others make no guarantees.

Iterator<String> iterator () = c.iterator();
while (iterator.hasNext ()) {

System.out.println (iterator.next());

Here are some more things you should know about the syntax of the foreach loop:

e Asnoted earlier, expression must be either an array or an object that implements the
java.lang.Iterable interface. This type must be known at compile time so that the

compiler can generate appropriate looping code.

e The type of the array or Tterable elements must be assignment-compatible with the type
of the variable declared in the declaration. If youuse an Iterable object that is not

parameterized with an element type, the variable must be declared as an Object.

e The declaration usually consists of just a type and a variable name, but it may include a
final modifier and any appropriate annotations (see Chapter 4). Using £inal prevents the
loop variable from taking on any value other than the array or collection element the loop
assigns it and serves to emphasize that the array or collection cannot be altered through the

loop variable.

e The loop variable of the foreach loop must be declared as part of the loop, with both a type
and a variable name. You cannot use a variable declared outside the loop as you can with the

for loop.

To understand in detail how the foreach loop works with collections, we need to consider two

interfaces, java.util.Iterator and java.lang.Iterable:

public interface Iterator<E> {
boolean hasNext () ;
E next ();

void remove () ;

Iterator defines a way to iterate through the elements of a collection or other data structure.
It works like this: while there are more elements in the collection (hasNext () returns true),
call next to obtain the next element of the collection. Ordered collections, such as lists,
typically have iterators that guarantee that they’ll return elements in order. Unordered
collections like Set simply guarantee that repeated calls to next () return all elements of the

set without omissions or duplications but do not specify an ordering.

WARNING

The next () method of Tterator performs two functions—it advances through
the collection and also returns the old head value of the collection. This
combination of operations can cause problems when you are programming in a

functional or immutable style, as it mutates the underlying collection.

The Iterable interface was introduced to make the foreach loop work. A class implements

this interface in order to advertise that it is able to provide an ITterator to anyone interested:

public interface Iterable<E> {

java.util.Iterator<E> iterator () ;

If an object is Tterable<E>, that means that it has an iterator () method that returns an

Iterator<E>, which has a next () method that returns an object of type E.

NOTE

If you use the foreach loop with an Tterable<E>, the loop variable must be of

type E or a superclass or interface.

For example, to iterate through the elements of a List<String>, the variable must be
declared String or its superclass Object, or one of the interfaces it implements:

CharSequence, Comparable, or Serializable.

RANDOM ACCESS TO LISTS

A general expectation of Li st implementations is that they can be efficiently iterated, typically
in time proportional to the size of the list. Lists do not all provide efficient random access to the
elements at any index, however. Sequential-access lists, such as the LinkedList class,
provide efficient insertion and deletion operations at the expense of random-access
performance. Implementations that provide efficient random access implement the
RandomAccess marker interface, and you can test for this interface with instanceof if

you need to ensure efficient list manipulations:

// Arbitrary list we're passed to manipulate

List<?> 1 = ...;

// Ensure we can do efficient random access. If not, use a copy
// constructor to make a random-access copy of the list before
// manipulating it.

if (! (1 instanceof RandomAccess)) 1 = new ArrayList<?>(1l);

The Tterator returned by the iterator () method of a List iterates the list elements in
the order that they occur in the list. List implements Tterable, and lists can be iterated with

a foreach loop just as any other collection can.

To iterate just a portion of a list, you can use the subList () method to create a sublist view:

List<String> words = ...; // Get a list to iterate

// Iterate just all elements of the 1list but the first
for (String word : words.subList(l, words.size))

System.out.println (word) ;

Table 8-1 summarizes the five general-purpose List implementations in the Java platform.
Vector and Stack are legacy implementations and should not be used.
CopyOnWriteArrayList is part of the Java.util.concurrent package and is only

really suitable for multithreaded use cases.

Table 8-2. List implementations

Class Representation Since Random Notes
access
Arraylist Array 1.2 Yes Best all-around
implementation.
LinkedList Double-linked 1.2 No Efficient insertion and
list deletion.
CopyOnWriteArrayList Array 5.0 Yes Threadsafe; fast

traversal, slow

modification.

Vector Array 1.0 Yes Legacy class;
synchronized methods.

Do not use.

Stack Array 1.0 Yes Extends vector; adds
push (), pop (), peek ().
Legacy; use Deque

instead.

The Map Interface

A map is a set of key objects and a mapping from each member of that set to a value object. The
Map interface defines an API for defining and querying mappings. Map is part of the Java
Collections Framework, but it does not extend the Col lection interface, so a Map is a little-c
collection, not a big-C Collection. Map is a parameterized type with two type variables.
Type variable K represents the type of keys held by the map, and type variable V represents the
type of the values that the keys are mapped to. A mapping from String keys to Integer

values, for example, can be represented with a Map<String, Integer>.

The most important Map methods are put (), which defines a key/value pair in the map;
get (), which queries the value associated with a specified key; and remove (), which
removes the specified key and its associated value from the map. The general performance
expectation for Map implementations is that these three basic methods are quite efficient: they

should usually run in constant time and certainly no worse than in logarithmic time.

An important feature of Map is its support for “collection views.” These can be summarized

simply:

A MapisnotaCollection

The keys of a Map can be viewed as a Set

The values can be viewed asa Collection

The mappings can be viewed as a Set of Map . Entry objects.

NOTE

Map.Entry is a nested interface defined within Map: it simply represents a single

key/value pair.

The following sample code shows the get (), put (), remove (), and other methods of a

Map and also demonstrates some common uses of the collection views of a Map:

// New, empty map
Map<String, Integer> m = new HashMap<> () ;

// Immutable Map containing a single key/value pair

Map<String, Integer> singleton = Collections.singletonMap ("test", -1);

// Note this rarely used syntax to explicitly specify the parameter
// types of the generic emptyMap method. The returned map 1s immutable
Map<String, Integer> empty = Collections.<String, Integer>emptyMap () ;

// Populate the map using the put method to define mappings

// from array elements to the index at which each element appears

String[] words = { "this", "is", "a", "test" };
for(int i = 0; i < words.length; i++) {
m.put (words[i], i); // Note autoboxing of int to Integer

// Each key must map to a single value. But keys may map to the
// same value
for(int i = 0; i < words.length; i++) {

m.put (words[i].toUpperCase (), 1i);

// The putAll () method copies mappings from another Map
m.putAll (singleton) ;

// Query the mappings with the get () method
for(int i = 0; i < words.length; i++) {

if (m.get(words[i]) != i) throw new AssertionError () ;

// Key and value membership testing
m.containsKey (words[0]) ; // true

m.containsValue (words.length); // false

// Map keys, values, and entries can be viewed as collections
Set<String> keys = m.keySet();
Collection<Integer> values = m.values|();

Set<Map.Entry<String, Integer>> entries = m.entrySet();

// The Map and its collection views typically have useful
// toString methods
System.out.printf ("Map: %$s%nKeys: %s%nValues: $s%nEntries: %s%n",

m, keys, values, entries);

// These collections can be iterated.
// Most maps have an undefined iteration order (but see SortedMap)
for (String key : m.keySet()) System.out.println (key):;

for (Integer value: m.values()) System.out.println (value);

// The Map.Entry<K,V> type represents a single key/value pair in a map
for (Map.Entry<String, Integer> pair : m.entrySet()) {
// Print out mappings
System.out.printf ("'%$s' ==> %d%n", pair.getKey (), pair.getValue()):;
// And increment the value of each Entry

pair.setValue (pair.getValue () + 1);

// Removing mappings

m.put ("testing", null); // Mapping to null can "erase" a mapping:
m.get ("testing") ; // Returns null

m.containsKey ("testing"); // Returns true: mapping still exists
m.remove ("testing") ; // Deletes the mapping altogether

m.get ("testing") ; // Still returns null

m.containsKey ("testing"); // Now returns false.

// Deletions may also be made via the collection views of a map.
// Additions to the map may not be made this way, however.

m.keySet () .remove (words[0]); // Same as m.remove (words[0]) ;

// Removes one mapping to the value 2 - usually inefficient and of
// limited use

m.values () .remove (2) ;

// Remove all mappings to 4

m.values () .removeAll (Collections.singleton (4));

// Keep only mappings to 2 & 3

m.values () .retainAll (Arrays.asList (2, 3));:

// Deletions can also be done via iterators
Iterator<Map.Entry<String, Integer>> iter = m.entrySet () .iterator();
while (iter.hasNext ()) {

Map.Entry<String, Integer> e = iter.next();

if (e.getValue() == 2) iter.remove();

// Find values that appear in both of two maps. In general, addAll()
// and retainAll () with keySet () and values () allow union and

// intersection

Set<Integer> v = new HashSet<>(m.values()):;

v.retainAll (singleton.values());

// Miscellaneous methods
m.clear () ; // Deletes all mappings

m.size(); // Returns number of mappings: currently 0

m.isEmpty () ; // Returns true

m.equals (empty) ; // true: Maps implementations override equals

With the arrival of Java 9, the Map interface has also been enhanced with factory methods for

spinning up collections easily:

Map<String, Double> capitals =
Map.of ("Barcelona", 22.5, "New York", 28.3);

The situation is a little more complicated as compared to Set and List, as the Map type has
both keys and values, and Java does not allow more than one varargs parameter in a method
declaration. The solution is to have fixed argument size overloads, up to 10 entries and also to
provide a new static method, entry (), that will construct an object to represent the key/value

pair.

The code can then be written to use the varargs form like this:

Map<String, Double> capitals = Map.ofEntries(entry("Barcelona", 22.5),
entry ("New York", 28.3));

Note that the method name has to be different from of () due to the difference in type of the

arguments—this is now a varargs method in Map .Entry.

The Map interface includes a variety of general-purpose and special-purpose implementations,
which are summarized in Table 8-2. As always, complete details are in the JDK’s
documentation and javadoc. All classes in Table 8-2 are in the java.util package except
ConcurrentHashMap and ConcurrentSkipListMap, which are part of

java.util.concurrent.

Table 8-3. Map implementations

Class Representation Since null null Notes

keys values

HashMap Hashtable 1.2 Yes Yes General-purpose

implementation.

ConcurrentHashMap Hashtable 5.0 No No General-purpose

ConcurrentSkipListMap

EnumMap

LinkedHashMap

TreeMap

IdentityHashMap

WeakHashMap

Hashtable

Properties

Hashtable

Array

Hashtable

plus list

Red-black

tree

Hashtable

Hashtable

Hashtable

Hashtable

6.0

5.0

1.4

1.4

1.2

1.0

1.0

No

No

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

threadsafe impleme
S€€ ConcurrentMarg

interface.

Specialized threads:
implementation; sec
ConcurrentNaviga

interface.

Keys are instances «

cnum.

Preserves insertion

access order.

Sorts by key value.
Operations are O(lo

See SortedMap inte

Compares with == 1

Ofequals(L

Doesn’t prevent gar

collection of keys.

Legacy class; synch

methods. Do not us:

Extends Hashtable

String methods.

The ConcurrentHashMap and ConcurrentSkipListMap classes of the
java.util.concurrent package implement the ConcurrentMap interface of the same
package. ConcurrentMap extends Map and defines some additional atomic operations that
are important in multithreaded programming. For example, the put I fAbsent () method is

like put () but adds the key/value pair to the map only if the key is not already mapped.

TreeMap implements the SortedMap interface, which extends Map to add methods that take
advantage of the sorted nature of the map. SortedMap is quite similar to the SortedSet
interface. The firstKey () and lastKey () methods return the first and last keys in the
keySet (). And headMap (), tailMap (), and subMap () return a restricted range of the

original map.

The Queue and BlockingQueue Interfaces

A queue is an ordered collection of elements with methods for extracting elements, in order,
from the head of the queue. Queue implementations are commonly based on insertion order as

in first-in, first-out (FIFO) queues or last-in, first-out (LIFO) queues.

NOTE

LIFO queues are also known as stacks, and Java provides a Stack class, but its use

is strongly discouraged—instead, use implementations of the Deque interface.

Other orderings are also possible: a priority queue orders its elements according to an external
Comparator object, or according to the natural ordering of Comparable elements. Unlike a
Set, Queue implementations typically allow duplicate elements. Unlike List, the Queue
interface does not define methods for manipulating queue elements at arbitrary positions. Only
the element at the head of the queue is available for examination. It is common for Queue
implementations to have a fixed capacity: when a queue is full, it is not possible to add more
elements. Similarly, when a queue is empty, it is not possible to remove any more elements.
Because full and empty conditions are a normal part of many queue-based algorithms, the
Queue interface defines methods that signal these conditions with return values rather than by
throwing exceptions. Specifically, the peek () and poll () methods return null to indicate
that the queue is empty. For this reason, most Queue implementations do not allow null

elements.

A blocking queue is a type of queue that defines blocking put () and take () methods. The
put () method adds an element to the queue, waiting, if necessary, until there is space in the
queue for the element. And the take () method removes an element from the head of the
queue, waiting, if necessary, until there is an element to remove. Blocking queues are an
important part of many multithreaded algorithms, and the B1ockingQueue interface (which

extends Queue) is defined as part of the java.util.concurrent package.

Queues are not nearly as commonly used as sets, lists, and maps, except perhaps in certain
multithreaded programming styles. In lieu of example code here, we’ll try to clarify the different

possible queue insertion and removal operations.

Adding Elements to Queues
add ()

This Collection method simply adds an element in the normal way. In bounded queues,

this method may throw an exception if the queue is full.

offer ()

This Queue method is like add () but returns false instead of throwing an exception if

the element cannot be added because a bounded queue is full.

BlockingQueue defines a timeout version of of fer () that waits up to a specified
amount of time for space to become available in a full queue. Like the basic version of the

method, it returns t rue if the element was inserted and false otherwise.

put ()

This BlockingQueue method blocks: if the element cannot be inserted because the queue
is full, put () waits until some other thread removes an element from the queue, and space

becomes available for the new element.

Removing Elements from Queues
remove ()

In addition to the Collection.remove () method, which removes a specified element
from the queue, the Queue interface defines a no-argument version of remove () that
removes and returns the element at the head of the queue. If the queue is empty, this method

throws a NoSuchElementException.

poll ()
This Queue method removes and returns the element at the head of the queue, like

remove () does, but returns null if the queue is empty instead of throwing an exception.

BlockingQueue defines a timeout version of pol1 () that waits up to a specified

amount of time for an element to be added to an empty queue.

take ()

This BlockingQueue method removes and returns the element at the head of the queue.

If the queue is empty, it blocks until some other thread adds an element to the queue.

drainTo ()

This BlockingQueue method removes all available elements from the queue and adds
them to a specified Collection. It does not block to wait for elements to be added to the

queue. A variant of the method accepts a maximum number of elements to drain.

QUERYING

In this context, querying refers to examining the element at the head without removing it from

the queue.

element ()

This Queue method returns the element at the head of the queue but does not remove that

element from the queue. It throws NoSuchElementException if the queue is empty.

peek ()

This Queue method is like e lement but returns null if the queue is empty.

NOTE

When using queues, it is usually a good idea to pick one particular style of how to
deal with a failure. For example, if you want operations to block until they succeed,
then choose put () and take (). If you want to examine the return code of a
method to see if the queue operation suceeded, then offer () and poll () are an

appropriate choice.

The LinkedList class also implements Queue. It provides unbounded FIFO ordering, and
insertion and removal operations require constant time. LinkedList allows null elements,

although their use is discouraged when the list is being used as a queue.

There are two other Queue implementations in the Java.util package. PriorityQueue
orders its elements according to a Comparator or orders Comparable elements according
to the order defined by their compareTo () methods. The head of a PriorityQueue is
always the smallest element according to the defined ordering. Finally, ArrayDeque is a

double-ended queue implementation. It is often used when a stack implementation is needed.

The java.util.concurrent package also contains a number of BlockingQueue
implementations, which are designed for use in multithreaded programing style; advanced

versions that can remove the need for synchronized methods are available.

Utility Methods

The java.util.Collections class is home to quite a few static utility methods designed
for use with collections. One important group of these methods are the collection wrapper
methods: they return a special-purpose collection wrapped around a collection you specify. The
purpose of the wrapper collection is to wrap additional functionality around a collection that
does not provide it itself. Wrappers exist to provide thread-safety, write protection, and runtime
type checking. Wrapper collections are always backed by the original collection, which means
that the methods of the wrapper simply dispatch to the equivalent methods of the wrapped
collection. This means that changes made to the collection through the wrapper are visible

through the wrapped collection and vice versa.

The first set of wrapper methods provides threadsafe wrappers around collections. Except for
the legacy classes Vector and Hashtable, the collection implementations in java.util
do not have synchronized methods and are not protected against concurrent access by
multiple threads. If you need threadsafe collections and don’t mind the additional overhead of

synchronization, create them with code like this:

List<String> list =
Collections.synchronizedList (new ArrayList<>());
Set<Integer> set =
Collections.synchronizedSet (new HashSet<>());
Map<String, Integer> map =
Collections.synchronizedMap (new HashMap<>());

A second set of wrapper methods provides collection objects through which the underlying

collection cannot be modified. They return a read-only view of a collection: an

UnsupportedOperationException will result from changing the collection’s content.
These wrappers are useful when you must pass a collection to a method that must not be

allowed to modify or mutate the content of the collection in any way:

List<Integer> primes = new ArrayList<>();

List<Integer> readonly = Collections.unmodifiablelList (primes) ;
// We can modify the 1list through primes

primes.addAll (Arrays.aslist (2, 3, 5, 7, 11, 13, 17, 19));

// But we can't modify through the read-only wrapper
readonly.add(23); // UnsupportedOperationException

The java.util.Collections class also defines methods to operate on collections. Some

of the most notable are methods to sort and search the elements of collections:

Collections.sort (list);
// list must be sorted first

int pos = Collections.binarySearch(list, "key");

Here are some other interesting Collections methods:

// Copy list2 into 1listl, overwriting listl
Collections.copy(listl, 1list2);

// Fill list with Object o
Collections.fill (list, o);

// Find the largest element in Collection c
Collections.max (c) ;

// Find the smallest element in Collection c

Collections.min (c) ;

Collections.reverse(list); // Reverse 1list
Collections.shuffle(list); // Mix up list

It is a good idea to familiarize yourself fully with the utility methods in Collections and

Arrays, as they can save you from writing your own implementation of a common task.

SPECIAL-CASE COLLECTIONS

In addition to its wrapper methods, the Java.util.Collections class also defines utility
methods for creating immutable collection instances that contain a single element and other
methods for creating empty collections. singleton (), singletonList (), and
singletonMap () return immutable Set, List, and Map objects that contain a single
specified object or a single key/value pair. These methods are useful when you need to pass a

single object to a method that expects a collection.

The Collections class also includes methods that return empty collections. If you are
writing a method that returns a collection, it is usually best to handle the no-values-to-return

case by returning an empty collection instead of a special-case value like nul1l:

Set<Integer> si = Collections.emptySet();
List<String> ss = Collections.emptyList();
Map<String, Integer> m = Collections.emptyMap () ;

Finally, nCopies () returns an immutable Li st that contains a specified number of copies of

a single specified object:

List<Integer> tenzeros = Collections.nCopies (10, 0);

Arrays and Helper Methods

Arrays of objects and collections serve similar purposes. It is possible to convert from one to the

other:

String[] a ={ "this", "is", "a", "test" }; // An array
// View array as an ungrowable list

List<String> 1 = Arrays.aslList (a);

// Make a growable copy of the view

List<String> m = new ArrayList<>(1l);

// asList() is a varargs method so we can do this, too:
Set<Character> abc =

new HashSet<Character> (Arrays.asList('a', 'b', 'c'));

// Collection defines the toArray method. The no-args version creates
// an Object[] array, copies collection elements to it and returns it
// Get set elements as an array

Object[] members = set.toArray():;

// Get list elements as an array

Object[] items = list.toArray():;

// Get map key objects as an array

Object[] keys = map.keySet () .toArray();

// Get map value objects as an array

Object[] values = map.values () .toArray();

// If you want the return value to be something other than Object[],
// pass 1in an array of the appropriate type. If the array 1s not

// big enough, another one of the same type will be allocated.

// If the array is too big, the collection elements copied to it

// will be null-filled

String[] ¢ = l.toArray(new String[O0]);

In addition, there are a number of useful helper methods for working with Java’s arrays, which

are included here for completeness.

The java.lang.System class defines an arraycopy () method that is useful for copying
specified elements in one array to a specified position in a second array. The second array must

be the same type as the first, and it can even be the same array:

char|[] text = "Now is the time".toCharArray():;

char|[] copy = new char[100];

// Copy 10 characters from element 4 of text into copy,
// starting at copy[0]

System.arraycopy (text, 4, copy, 0, 10);

// Move some of the text to later elements, making room for insertions
// If target and source are the same,
// this will involve copying to a temporary

System.arraycopy (copy, 3, copy, 6, 7);

There are also a number of useful static methods defined on the Arrays class:

int[] intarray = new int[] { 10, 5, 7, -3 }; // An array of integers
Arrays.sort (intarray) ; // Sort it in place

// Value 7 is found at index 2

int pos = Arrays.binarySearch (intarray, 7);

// Not found: negative return value

pos = Arrays.binarySearch (intarray, 12);

// Arrays of objects can be sorted and searched too
String[] strarray = new String[] { "now", "is", "the", "time" };

Arrays.sort (strarray) ; // sorted to: { "is", "now", "the", "time" }

// Arrays.equals compares all elements of two arrays
String[] clone = (String[]) strarray.clone();

boolean bl = Arrays.equals(strarray, clone); // Yes, they're equal

// Arrays.fill initializes array elements
// An empty array,; elements set to 0
byte[] data = new byte[100];

// Set them all to -1

Arrays.fill (data, (byte) -1);

// Set elements 5, 6, 7, 8, 9 to -2
Arrays.fill (data, 5, 10, (byte) -2);

Arrays can be treated and manipulated as objects in Java. Given an arbitrary object o, you can
use code such as the following to find out if the object is an array and, if so, what type of array it

is:

Class type = o.getClass();
if (type.isArray()) {
Class elementType = type.getComponentType () ;

Java Streams and Lambda Expressions

One of the major reasons for introducing lambda expressions in Java 8 was to facilitate the
overhaul of the Collections API to allow more modern programming styles to be used by Java
developers. Until the release of Java 8, the handling of data structures in Java looked a little bit
dated. Many languages now support a programming style that allows collections to be treated as

a whole, rather than requiring them to be broken apart and iterated over.

In fact, many Java developers had taken to using alternative data structures libraries to achieve

some of the expressivity and productivity that they felt was lacking in the Collections API. The
key to upgrading the APIs was to introduce new classes and methods that would accept lambda
expressions as parameters—to define what needed to be done, rather than precisely 2ow. This is

a conception of programming that comes from the functional style.

The introduction of the functional collections—which are called Java Streams to make clear
their divergence from the older collections approach—is an important step forward. A stream
can be created from a collection simply by calling the st ream () method on an existing

collection.

NOTE

The desire to add new methods to existing interfaces was directly responsible for
the new language feature referred to as default methods (see “Default Methods™ for
more details). Without this new mechanism, older implementations of the
Collections interfaces would fail to compile under Java 8, and would fail to link if

loaded into a Java 8 runtime.

However, the arrival of the Streams API does not erase history. The Collections API is deeply
embedded in the Java world, and it is not functional. Java’s commitment to backward
compatibility and to a rigid language grammar means that the Collections will never go away.
Java code, even when written in a functional style, will never be full of boilerplate, and will

never have the concise syntax that we see in languages such as Haskell or Scala.

This is part of the inevitable trade-off in language design—Java has retrofitted functional

capabilities on top of an imperative design and base. This is not the same as designing for
functional programming from the ground up. A more important question is: are the functional
capabilities supplied from Java 8 onward what working programmers need to build their

applications?

The rapid adoption of Java 8 over previous versions and the community reaction seem to
indicate that the new features have been a success, and that they have provided what the

ecosystem was looking for.

In this section, we will give a basic introduction to the use of Java streams and lambda
expressions in the Java Collections. For a fuller treatment, see Java 8§ Lambdas by Richard
Warburton (O’Reilly).

Functional Approaches

The approach that Java 8 Streams wished to enable was derived from functional programming
languages and styles. We met some of these key patterns in “Nonstatic Member Classes”—let’s

reintroduce them and look at some examples of each.

FILTER

The idiom applies a piece of code (that returns either true or false) to each element in a
collection, and builds up a new collection consisting of those elements that “passed the test”

(i.e., the bit of code returned t rue when applied to the element).

For example, let’s look at some code to work with a collection of cats and pick out the tigers:

String[] input = {"tiger", "cat", "TIGER", "Tiger", "leopard"};
List<String> cats = Arrays.asList (input);

String search = "tiger";

String tigers = cats.stream()

.filter (s -> s.equalsIgnoreCase (search))
.collect (Collectors.joining (", ")),

System.out.println(tigers);

The key piece is the call to filter (), which takes a lambda expression. The lambda takes in
a string and returns a Boolean value. This is applied over the whole collection cats, and a new

collection is created, which only contains tigers (however they were capitalized).

The filter () method takes in an instance of the Predicate interface, from the package
java.util.function. This is a functional interface, with only a single nondefault method,

and so is a perfect fit for a lambda expression.

Note the final call to collect () ; this is an essential part of the API and is used to “gather up”

the results at the end of the lambda operations. We’ll discuss it in more detail in the next

section.

Predicate has some other very useful default methods, such as for constructing combined
predicates by using logic operations. For example, if the tigers want to admit leopards into their

group, this can be represented by using the or () method:

Predicate<String> p = s -> s.equalsIgnoreCase (search);
Predicate<String> combined = p.or(s -> s.equals("leopard")):;
String pride = cats.stream()

.filter (combined)
.collect (Collectors.joining (", "))
System.out.println (pride) ;

Note that it’s much clearer if the Predicate<String> object p is explicitly created, so that
the defaulted or () method can be called on it and the second lambda expression (which will

also be automatically converted to a Predicate<String>) passed to it.

MAP

The map idiom in Java 8 makes use of a new interface Function<T, R> in the package
java.util.function. Like Predicate<T>, this is a functional interface, and so only
has one nondefaulted method, apply (). The map idiom is about transforming a stream of one
type into a stream of a potentially different type. This shows up in the API as the fact that
Function<T, R> has two separate type parameters. The name of the type parameter R

indicates that this represents the return type of the function.

Let’s look at a code example that uses map () :

List<Integer> namesLength = cats.stream()
.map (:length)
.collect (Collectors.toList ());

System.out.println (namesLength) ;

This is called upon the previous cats variable (which is a St ream<String>) and applies
the function String: : length (a method reference) to each string in turn. The result is a new
stream—but of Integer this time. Note that unlike the collections API, the map () method
does not mutate the stream in place, but returns a new value. This is key to the functional style

as used here.

FOREACH

The map and filter idioms are used to create one collection from another. In languages that are
strongly functional, this would be combined with requiring that the original collection was not
affected by the body of the lambda as it touched each element. In computer science terms, this

means that the lambda body should be “side-effect free.”

In Java, of course, we often need to deal with mutable data, so the Streams API provides a way
to mutate elements as the collection is traversed—the forEach () method. This takes an
argument of type Consumer<T>, which is a functional interface that is expected to operate by
side effects (although whether it actually mutates the data or not is of lesser importance). This
means that the signature of lambdas that can be converted to Consumer<T>1is (T t) —

void. Let’s look at a quick example of forEach () :

List<String> pets =
Arrays.asList ("dog", "cat", "fish", "iguana", "ferret");

pets.stream() .forEach (System.out: :println) ;

In this example, we are simply printing out each member of the collection. However, we’re
doing so by using a special kind of method reference as a lambda expression. This type of
method reference is called a bound method reference, as it involves a specific object (in this
case, the object System. out, which is a static public field of System). This is equivalent to

the lambda expression:

s -> System.out.println(s);

This is of course eligible for conversion to an instance of a type that implements Consumer<?

super String> asrequired by the method signature.

WARNING

Nothing prevents amap () or filter () call from mutating elements. It is only a
convention that they must not, but it’s one that every Java programmer should

adhere to.

There’s one final functional technique that we should look at before we move on. This is the
practice of aggregating a collection down to a single value, and it’s the subject of our next

section.

REDUCE

Let’s look at the reduce () method. This implements the reduce idiom, which is really a

family of similar and related operations, some referred to as fold, or aggregation, operations.

In Java 8, reduce () takes two arguments. These are the initial value, which is often called the
identity (or zero), and a function to apply step by step. This function is of type
BinaryOperator<T>, which is another functional interface that takes in two arguments of
the same type, and returns another value of that type. This second argument to reduce () is a

two-argument lambda. reduce () is defined in the Javadoc like this:

T reduce (T identity, BinaryOperator<T> aggregator);

The easy way to think about the second argument to reduce () is that it creates a “running
total” as it runs over the stream. It starts by combining the identity with the first element of the
stream to produce the first result, then combines that result with the second element of the

stream, and so on.

It can help to imagine that the implementation of reduce () works a bit like this:

public T reduce (T identity, BinaryOperator<T> aggregator) ({
T runningTotal = identity;
for (T element : myStream) {

runningTotal = aggregator.apply(runningTotal, element);

return result;

NOTE

In practice, implementations of reduce () can be more sophisticated than these,
and can even execute in parallel if the data structure and operations are amenable to

this.

Let’s look at a quick example of a reduce () and calculate the sum of some primes:

double sumPrimes = ((double)Stream.of (2, 3, 5, 7, 11, 13, 17, 19, 23)
.reduce (0, (x, y) -> {return x + y;}));

System.out.println ("Sum of some primes: " + sumPrimes);

In all of the examples we’ve met in this section, you may have noticed the presence of a
stream () method call on the Li st instance. This is part of the evolution of the Collections—
it was originally chosen partly out of necessity, but has proved to be an excellent abstraction.

Let’s move on to discuss the Streams API in more detail.

The Streams API

The fundamental issue that caused the Java library designers to introduce the Streams API was
the large number of implementations of the core collections interfaces present in the wild. As
these implementations predate Java 8 and lambdas, they would not have any of the methods
corresponding to the new functional operations. Worse still, as method names such as map ()
and filter () have never been part of the interface of the Collections, implementations may

already have methods with those names.

To work around this problem, a new abstraction called a St ream was introduced. The idea is
that a St ream object can be generated from a collection object via the st ream () method.
This St ream type, being new and under the control of the library designers, is then guaranteed
to be free of collisions. This then mitigates the risk of clash, as only Collections

implementations that contained a stream () method would be affected.

A Stream object plays a similar role to an Tterator in the new approach to collections
code. The overall idea is for the developer to build up a sequence (or “pipeline”) of operations
(such as map, filter, or reduce) that need to be applied to the collection as a whole. The
actual content of the operations will usually be expressed by using a lambda expression for each

operation.

At the end of the pipeline, the results usually need to be gathered up, or “materialized” back into
an actual collection again. This is done either by using a Collector or by finishing the
pipeline with a “terminal method” such as reduce () that returns an actual value, rather than

another stream. Overall, the new approach to collections looks like this:

Stream() filter () map () collect ()

Collection -> Stream -> Stream -> Stream -> Collection

The Stream class behaves as a sequence of elements that are accessed one at a time (although
there are some types of streams that support parallel access and can be used to process larger
collections in a naturally multithreaded way). In a similar way to an Tterator, the Streamis

used to take each item in turn.

As is usual for generic classes in Java, St ream is parameterized by a reference type. However,

in many cases, we actually want streams of primitive types, especially ints and doubles. We
cannot have Stream<int>, so instead in Java.util.stream there are special
(nongeneric) classes such as IntStream and DoubleStream. These are known as primitive
specializations of the St ream class and have APIs that are very similar to the general St ream

methods, except that they use primitives where appropriate.

For example, in the reduce () example, we’re actually using primitive specialization over

most of the pipeline.

LAZY EVALUATION

In fact, streams are more general than iterators (or even collections), as streams do not manage
storage for data. In earlier versions of Java, there was always a presumption that all of the
elements of a collection existed (usually in memory). It was possible to work around this in a
limited way by insisting on the use of iterators everywhere, and by having the iterators construct

elements on the fly. However, this was neither very convenient nor that common.

By contrast, streams are an abstraction for managing data, rather than being concerned with the
details of storage. This makes it possible to handle more subtle data structures than just finite
collections. For example, infinite streams can easily be represented by the St ream interface,
and can be used as a way to, for example, handle the set of all square numbers. Let’s see how

we could accomplish this using a Stream:

public class SquareGenerator implements IntSupplier {

private int current = 1;

public synchronized int getAsInt () {
int thisResult = current * current;
current++;

return thisResult;

IntStream squares = IntStream.generate (new SquareGenerator()):;
PrimitiveIterator.OfInt stepThrough = squares.iterator();
for (int i = 0; 1 < 10; 1i++) |
System.out.println (stepThrough.nextInt ())
}

System.out.println("First iterator done...");

// We can go on as long as we like...
for (int i = 0; i < 10; i++) {

System.out.println (stepThrough.nextInt ()) ;

One significant consequence of modeling the infinite stream is that methods like collect ()
won’t work. This is because we can’t materialize the whole stream to a collection (we would run
out of memory before we created the infinite amount of objects we would need). Instead, we
must adopt a model in which we pull the elements out of the stream as we need them.
Essentially, we need a bit of code that returns the next element as we demand it. The key
technique that is used to accomplish this is lazy evaluation. This essentially means that values

are not necessarily computed until they are needed.

NOTE

Lazy evaluation is a big change for Java, as until JDK 8 the value of an expression
was always computed as soon as it was assigned to a variable (or passed into a
method). This familiar model, where values are computed immediately, is called
“eager evaluation” and it is the default behavior for evaluation of expressions in

most mainstream programming languages.

Fortunately, lazy evaluation is largely a burden that falls on the library writer, not the developer,
and for the most part when using the Streams API, Java developers don’t need to think closely
about lazy evaluation. Let’s finish off our discussion of streams by looking at an extended code

example using reduce (), and calculate the average word length in some Shakespeare quotes:

String[] billyQuotes = {"For Brutus 1is an honourable man",
"Give me your hands if we be friends and Robin shall restore amends",
"Misery acquaints a man with strange bedfellows"};

List<String> quotes = Arrays.asList(billyQuotes)

// Create a temporary collection for our words
List<String> words = quotes.stream/()
.flatMap (line -> Stream.of (line.split (" +")))
.collect (Collectors.toList ());

long wordCount = words.size();

// The cast to double is only needed to prevent Java from using

// integer division

double avelength = ((double) words.stream/()

.map (:length)

.reduce (0, (x, y) -> {return x + y;})) / wordCount;
System.out.println ("Average word length: " + avelLength);

In this example, we’ve introduced the £1atMap () method. In our example, it takes in a single

string, 1 ine, and returns a stream of strings, which is obtained by splitting up the line into its

component words. These are then “flattened” so that all the sub-streams from each string are

just combined into a single stream.

This has the effect of splitting up each quote into its component words, and making one
superstream out of them. We count the words by creating the object words, essentially
“pausing” halfway through the stream pipeline, and rematerializing into a collection to get the

number of words before resuming our stream operations.

Once we’ve done that, we can proceed with the reduce, and add up the length of all the words,
before dividing by the number of words that we have, across the quotes. Remember that streams
are a lazy abstraction, so to perform an eager operation (like getting the size of a collection that

backs a stream) we have to rematerialize the collection.

STREAMS UTILITY DEFAULT METHODS

Java 8 takes the opportunity to introduce a number of new methods to the Java Collections
libraries. Now that the language supports default methods, it is possible to add new methods to

the Collections without breaking backward compatibility.

Some of these methods are scaffold methods for the Streams abstraction. These include methods
suchas Collection: :stream, Collection: :parallelStream, and
Collection::spliterator (which has specialized forms List: :spliterator and

Set::spliterator).

Others are “missing methods,” such as Map: : remove and Map: : replace. Some of these
have been backported from the java.util.concurrent package where they were
originally defined. As an example, this includes the List : : sort method, which is defined in

List like this:

// Essentially just forwards to the helper method in Collections
public default void sort (Comparator<? super E> c) {
Collections.<E>sort (this, c¢);

Another example is the missing method Map: : put I fAbsent, which has been adopted from

the ConcurrentMap interface in java.util.concurrent.

We also have the method Map: : getOrDefault, which allows the programmer to avoid a lot

of tedious null checks, by providing a value that should be returned if the key is not found.

The remaining methods provide additional functional techniques using the interfaces of

java.util.function:

Collection: :removelf

This method takes a Predicate and iterates internally over the collection, removing any

elements that satisfy the predicate object.

Map::forEach

The single argument to this method is a lambda expression that takes two arguments (one of
the key’s type and one of the value’s type) and returns void. This is converted to an

instance of BiConsumer and is applied to each key/value pair in the map.

Map: :computeIfAbsent

This takes a key and a lambda expression that maps the key type to the value type. If the
specified key (first parameter) is not present in the map, then it computes a default value by

using the lambda expression and puts it in the map.

(See also Map: : computeIfPresent, Map: :compute, and Map: :merge.)

Summary

In this chapter, we’ve met the Java Collections libraries, and seen how to start working with
Java’s implementations of fundamental and classic data structures. We’ve met the general
Collection interface, as well as List, Set, and Map. We’ve seen the original, iterative
way of handling collections, and also introduced the new Java 8 style, based on ideas from
fundamental programming. Finally, we’ve met the Streams API and seen how the new approach
is more general, and is able to express more subtle programming concepts than the classic

approach.

We’ve only scratched the surface—the Streams API is a fundamental shift in how Java code is
written and architected. There are inherent design limitations in how far the ideals of functional
programming can be implemented in Java. Having said that, the possibility that Streams

represent “just enough functional programming” is compelling.

Let’s move on. In the next chapter, we’ll continue looking at data, and common tasks like text

processing, handling numeric data, and Java 8’s new date and time libraries.

Chapter 9. Handling Common Data Formats

Most of programming is handling data in various formats. In this chapter, we will introduce
Java’s support for handling two big classes of data—text and numbers. The second half of the
chapter will focus on handling date and time information. This is of particular interest, as Java 8
ships a completely new API for handling date and time. We cover this new interface in some

depth, before finishing the chapter by briefly discussing Java’s original date and time API.

Many applications are still using the legacy APIs, so developers need to be aware of the old way
of doing things, but the new APIs are so much better that we recommend converting as soon as
possible. Before we get to those more complex formats, let’s get under way by talking about

textual data and strings.

Text

We have already met Java’s strings on many occasions. They consist of sequences of Unicode
characters, and are represented as instances of the St ring class. Strings are one of the most
common types of data that Java programs process (a claim you can investigate for yourself by

using the Jmap tool that we’ll meet in Chapter 13).

In this section, we’ll meet the St ring class in some more depth, and understand why it is in a
rather unique position within the Java language. Later in the section, we’ll introduce regular
expressions, a very common abstraction for searching text for patterns (and a classic tool in the

programmer’s arsenal).

Special Syntax for Strings

The String class is handled in a somewhat special way by the Java language. This is because,
despite not being a primitive type, strings are so common that it makes sense for Java to have a
number of special syntax features designed to make handling strings easy. Let’s look at some

examples of special syntax features for strings that Java provides.

STRING LITERALS

As we saw in Chapter 2, Java allows a sequence of characters to be placed in double quotes to

create a literal string object. Like this:

String pet = "Cat";

Without this special syntax, we would have to write acres of horrible code like this:

char[] pullingTeeth = {'c', 'a', 't'};
String pet = new String(pullingTeeth);

This would get tedious extremely quickly, so it’s no surprise that Java, like all modern
programming languages, provides a simple string literal syntax. The string literals are perfectly

sound objects, so code like this is completely legal:

System.out.println ("Dog".length());

TOSTRING()

This method is defined on Object, and is designed to allow easy conversion of any object to a
string. This makes it easy to print out any object, by using the method
System.out.println (). This method is actually PrintStream: :println because

System.out is a static field of type PrintStream. Let’s see how this method is defined:

public void println(Object x) {
String s = String.valueOf (x);
synchronized (this) ({
print(s);

newlLine () ;

This creates a new string by using the static method String: :valueOf ():

public static String valueOf (Object obj) {
return (obj == null) ? "null" : obj.toString();

NOTE

The static valueOf () method is used instead of toString () directly, to avoid

aNullPointerException in the case where obj is null.

This construction means that toString () is always available for any object, and this turns
out to come in very handy for another major syntax feature that Java provides: string

concatenation.

STRING CONCATENATION

Java allows us to create new strings by “adding” the characters from one string onto the end of
another. This is called string concatenation and uses the operator +. In versions of Java up to
and including Java 8, it works by first creating a “working area” in the form of a

StringBuilder object that contains the same sequence of characters as the original string.

NOTE

Java 9 introduced a new mechanism that uses the invokedynamic instruction
instead of StringBuilder directly. This is an advanced piece of functionality
and out of scope for this discussion, but it doesn’t change the behavior visible to the

Java developer.

The builder object is then updated and the characters from the additional string are added onto
the end. Finally, toString () is called on the StringBuilder object (which now contains
the characters from both strings). This gives us a new string with all the characters in it. All of
this code is created automatically by javac whenever we use the + operator to concatenate

strings.

The concatenation process returns a completely new St ring object, as we can see in this

example:
String sl = "AB";
String s2 = "CD";

String s3 = sl;
System.out.println (sl == s3); // Same object?

s3 = sl + s2;

System.out.println (sl == s3); // Still same?
System.out.println(sl);
System.out.println(s3);

The concatentation example directly shows that the + operator is not altering (or mutating) s1
in place. This is an example of a more general principle: Java’s strings are immutable. This
means that once the characters that make up the string have been chosen and the St ring object
has been created, the St ring cannot be changed. This is an important language principle in

Java, so let’s look at it in a little more depth.

String Immutability

In order to “change” a string, as we saw when we discussed string concatenation, we actually
need to create an intermediate St ringBuilder object to act as a temporary scratch area, and
then call toString () onit, to bake it into a new instance of String. Let’s see how this

works in code:

String pet = "Cat";

StringBuilder sb = new StringBuilder (pet);
sb.append ("amaran") ;

String boat = sb.toString();
System.out.println (boat) ;

Code like this behaves equivalently to the following, although in Java 9 and above the actual

bytecode sequences will differ:

String pet = "Cat";
String boat = pet + "amaran";

System.out.println (boat) ;

Of course, as well as being used under the hood by javac, the StringBuilder class can

also be used directly in application code, as we’ve seen.

WARNING

Along with StringBuilder, Java also has a StringBuffer class. This comes
from the oldest versions of Java, and should not be used for new development—use
StringBuilder instead, unless you really need to share the construction of a

new string between multiple threads.

String immutability is an extremely useful language feature. For example, suppose the +
changed a string instead of creating a new one; then, whenever any thread concatenated two
strings together, all other threads would also see the change. This is unlikely to be a useful

behavior for most programs, and so immutability makes good sense.

HASH CODES AND EFFECTIVE IMMUTABILITY

We have already met the hashCode () method in Chapter 5, where we described the contract
that the method must satisfy. Let’s take a look at the JDK source code and see how the method
String: :hashCode () is defined:

public int hashCode () {
int h = hash;

if (h == 0 && value.length > 0) {
char val[] = value;
for (int i = 0; i < value.length; i++) {

(

h =31 * h + val[i];
}
hash = h;

}

return h;

The field hash holds the hash code of the string, and the field value is a char [] that holds
the characters that actually make up the string. As we can see from the code, Java computes the
hash by looping over all the characters of the string. It therefore takes a number of machine
instructions proportional to the number of characters in the string. For very large strings, this
could take a bit of time. Rather than pre-compute the hash value, Java only calculates it when it

is needed.

When the method runs, the hash is computed by stepping through the array of characters. At the
end of the array, we exit the for loop and write the computed hash back into the field hash.
Now, when this method is called again, the value has already been computed, so we can just use

the cached value and subsequent calls to hashCode () return immediately.

NOTE

The computation of a string’s hash code is an example of a benign data race. In a
program with multiple threads, they could race to compute the hash code. However,

they would all eventually arrive at exactly the same answer—hence the term benign.

All of the fields of the St ring class are final, except for hash. So Java’s strings are not,
strictly speaking, immutable. However, because the hash field is just a cache of a value that is
deterministically computed from the other fields, which are all immutable, then provided
String has been coded correctly, it will behave as if it were immutable. Classes that have this
property are called effectively immutable—they are quite rare in practice, and working
programmers can usually ignore the distinction between truly immutable and effectively

immutable data.

Regular Expressions

Java has support for regular expressions (often shortened to regex or regexp). These are a
representation of a search pattern used to scan and match text. A regex is a sequence of
characters that we want to search for. They can be very simple—for example, abc means that
we’re looking for a, followed immediately by b, followed immediately by ¢, anywhere within
the text we’re searching through. Note that a search pattern may match an input text in zero,

one, or more places.

The simplest regexes are just sequences of literal characters, like abc. However, the language
of regexes can express more complex and subtle ideas than just literal sequences. For example, a

regex can represent patterns to match like:

¢ A numeric digit

e Any letter

e Any number of letters, which must all be in the range a to j but can be upper- or lowercase
¢ g followed by any four characters, followed by b

The syntax we use to write regular expressions is simple, but because we can build up complex
patterns, it is often possible to write an expression that does not implement precisely what we
wanted. When using regexes, it is very important to always test them fully. This should include

both test cases that should pass and cases that should fail.

To express these more complex patterns, regexes use metacharacters. These are special
characters that indicate that special processing is required. This can be thought of as similar to
the use of the * character in operating system shells. In those circumstances, it is understood
that the * 1s not to be interpreted literally but instead means “anything.” If we wanted to list all

the Java source files in the current directory on Unix, we would issue the command:

1ls *.java

The metacharacters of regexes are similar, but there are far more of them, and they are far more
flexible than the set available in shells. They also have different meanings than they do in shell

scripts, so don’t get confused.

Let’s meet a couple of examples. Suppose we want to have a spell-checking program that is
relaxed about the difference in spelling between British and American English. This means that
honor and honour should both be accepted as valid spelling choices. This is easy to do with

regular expressions.

Java uses a class called Pattern (from the package java.util. regex) to represent a

regex. This class can’t be directly instantiated, however. Instead, new instances are created by
using a static factory method, compile (). From a pattern, we then derive a Matcher for a
particular input string that we can use to explore the input string. For example, let’s examine a

bit of Shakespeare from the play Julius Caesar:

Pattern p = Pattern.compile ("honou?xr");

String caesarUK = "For Brutus is an honourable man";
Matcher mUK = p.matcher (caesarUK) ;

String caesarUS = "For Brutus is an honorable man";
Matcher mUS = p.matcher (caesarUs) ;

System.out.println ("Matches UK spelling? " + mUK.find())
System.out.println ("Matches US spelling? " + mUS.find())

NOTE

Be careful when using Matcher, as it has a method called matches (). However,
this method indicates whether the pattern can cover the entire input string. It will

return false if the pattern only starts matching in the middle of the string.

The last example introduces our first regex metacharacter ?, in the pattern honou?r. This
means “the preceding character is optional”—so both honour and honor will match. Let’s
look at another example. Suppose we want to match both minimize and minimise (the latter
spelling is more common in British English). We can use square brackets to indicate that any

character from a set (but only one alternative) [] can be used—Iike this:

Pattern p = Pattern.compile("minimi[sz]e");

Table 9-1 provides an expanded list of metacharacters available for Java regexes.

Table 9-1. Regex metacharacters

Metacharacter Meaning Notes
? Optional character—zero or one instance
* Zero or more of preceding character
+ One or more of preceding character
{M, N} Between M and N instances of preceding
character
\d A digit
\D A nondigit character
\w A word character Digits, letters, and
\W A nonword character
\'s A whitespace character

\s A nonwhitespace character

\n Newline character

\t Tab character
Any single character Does not include newline in
Java
[] Any character contained with the Called a character class
brackets
[~] Any character not contained with the Called a negated character
brackets class
() Build up a group of pattern elements Called a group (or capturing
group)
Define alternative possbilities Implements logical or
" Start of string
$ End of string

There are a few more, but this is the basic list, and from this, we can construct more complex

expressions for matching such as the examples given earlier in this section:

// Note that we have to use \\ because we need a literal \
// and Java uses a single \ as an escape character

String pStr = "\\d"; // A numeric digit

String text = "Apollo 13";

Pattern p = Pattern.compile (pStr);

Matcher m = p.matcher (text);

System.out.print (pStr + " matches " + text + "? " + m.find());
System.out.println (" ; match: " + m.group()):;

pStr = "[a..zA..Z]"; //Any letter

p = Pattern.compile (pStr) ;

m = p.matcher (text);

System.out.print (pStr + " matches " + text + "? " + m.find());
System.out.println (" ; match: " + m.group());

// Any number of letters, which must all be in the range 'a' to 'j'
// but can be upper- or lowercase

pStr = "([a..jA..J]*)";

p = Pattern.compile (pStr);

m p.matcher (text) ;
System.out.print (pStr + " matches " + text + "? " + m.find());

System.out.println (" ; match: " + m.group());

text = "abacab";

// 'a' followed by any four characters, followed by 'b'

pStr = "a....b";

p = Pattern.compile (pStr);

m = p.matcher (text);

System.out.print (pStr + " matches " + text + "? " + m.find());
System.out.println (" ; match: " + m.group());

Let’s conclude our quick tour of regular expressions by meeting a new method that was added
to Pattern as part of Java 8: asPredicate (). This method is present to allow us to easily
bridge from regular expressions to the Java Collections and their new support for lambda

expressions.

For example, suppose we have a regex and a collection of strings. It’s very natural to ask the
question: “Which strings match against the regex?”” We do this by using the filter idiom, and by

converting the regex to a Predicate using the helper method, like this:

String pStr = "\\d"; // A numeric digit
Pattern p = Pattern.compile (pStr);

String[] inputs = {"Cat", "Dog", "Ice-9", "99 Luftballoons"};
List<String> 1ls = Arrays.asList (inputs);
List<String> containDigits = ls.stream()
.filter (p.asPredicate())
.collect (Collectors.toList ()) ;

System.out.println (containDigits) ;

Java’s built-in support for text processing is more than adequate for the majority of text

processing tasks that business applications normally require. More advanced tasks, such as the

search and processing of very large data sets, or complex parsing (including formal grammars)
are outside the scope of this book, but Java has a large ecosystem of helpful libraries and

bindings to specialized technologies for text processing and analysis.

Numbers and Math

In this section, we will discuss Java’s support for numeric types in some more detail. In
particular, we’ll discuss the two’s complement representation of integral types that Java uses.
We’ll introduce floating-point representations, and touch on some of the problems they can
cause. We’ll work through examples that use some of Java’s library functions for standard

mathematical operations.

How Java Represents Integer Types

Java’s integer types are all signed, as we first mentioned in “Primitive Data Types”. This means
that all integer types can represent both positive and negative numbers. As computers work with
binary, this means that the only really logical way to represent this is to split the possible bit

patterns up and use half of them to represent negative numbers.

Let’s work with Java’s byte type to investigate how Java represents integers. This has 8 bits,
so can represent 256 different numbers (i.e., 128 negative and 128 non-negative numbers). It’s
logical to use the pattern 0b0000 0000 to represent zero (recall that Java has the syntax
Ob<binary digits> to represent numbers as binary), and then it’s easy to figure out the bit

patterns for the positive numbers:
byte b = 0b0000_0001;
System.out.println(b); // 1

b = 0b0000 0010;
System.out.println(b); // 2

b = 0b0000_0011;
System.out.println(b); // 3

/Y ooc
b = 0b0111 1111;

System.out.println(b); // 127

When we set the first bit of the byte, the sign should change (as we have now used up all of the
bit patterns that we’ve set aside for non-negative numbers). So the pattern 001000 0000

should represent some negative number—but which one?

NOTE

As a consequence of how we’ve defined things, in this representation we have a
very simple way to identify whether a bit pattern corresponds to a negative number:
if the high-end bit of a bit pattern is a 1, then the number being represented is

negative.

Consider the bit pattern consisting of all set bits: 01111 1111.If we add 1 to this number,
then the result will overflow the 8 bits of storage that a byte has, resulting in

Obl 0000 0000. If we want to constrain this to fit within the byte data type, then we
should ignore the overflow, so this becomes 00000 0000, otherwise known as zero. It is
therefore natural to adopt the representation that ““all set bits is —1.” This allows for natural

arithmetic behavior, like this:

b = (byte) 0bl111 1111; // -1
System.out.println (b);
b++;

System.out.println (b);

b = (byte) 0Obl111 1110; // -2
System.out.println (b) ;
b++;

System.out.println (b);

Finally, let’s look at the number that 01000 0000 represents. It’s the most negative number
that the type can represent, so for byte:

b = (byte) 0b1000 _0000;
System.out.println(b); // -128

This representation is called two’s complement, and is the most common representation for

signed integers. To use it effectively, there are only two points that you need to remember:
e A bit pattern of all 1’s is the representation for —1.
e If the high bit is set, the number is negative.

Java’s other integer types (short, int, and 1ong) behave in very similar ways but with more
bits in their representation. The char data type is different because it represents a Unicode

character, but in some ways behaves as an unsigned 16-bit numeric type. It is not normally

regarded as an integer type by Java programmers.

Java and Floating-Point Numbers

Computers represent numbers using binary. We’ve seen how Java uses the two’s complement
representation for integers. But what about fractions or decimals? Java, like almost all modern
programming languages, represents them using floating-point arithmetic. Let’s take a look at
how this works, first in base-10 (regular decimal) and then in binary. Java defines the two most

important mathematical constants, e and 1 (pi), as constants in java.lang.Math like this:

public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;

Of course, these constants are actually irrational numbers and cannot be precisely expressed as
a fraction, or by any finite decimal number. 1 This means that whenever we try to represent
them in a computer, there is always rounding error. Let’s suppose we only want to deal with
eight digits of m, and we want to represent the digits as a whole number. We can use a

representation like this:

314159265 e 10~°

This starts to suggest the basis of how floating-point numbers work. We use some of the bits to
represent the significant digits (314159265, in our example) of the number and some bits to
represent the exponent of the base (-8, in our example). The collection of significant digits is
called the significand and the exponent describes whether we need to shift the significand up or

down to get to the desired number.

Of course, in the examples we’ve met until now, we’ve been working in base-10. Computers
use binary, so we need to use this as the base in our floating-point examples. This introduces

some additional complications.

NOTE

The number 0. 1 cannot be expressed as a finite sequence of binary digits. This
means that virtually all calculations that humans care about will lose precision when

performed in floating point, and rounding error is essentially inevitable.

Let’s look at an example that shows the rounding problem:

double d = 0.3;

System.out.println(d); // Special-cased to avoid ugly representation

double d2 0.2;
// Should be -0.1 but prints -0.09999999999999998
System.out.println(d2 - d);

The official standard that describes floating-point arithmetic is IEEE-754, and Java’s support for
floating point is based on that standard. The standard uses 24 binary digits for standard precision

and 53 binary digits for double precision.

As we mentioned briefly in Chapter 2, Java can be more accurate than the standard requires, by
using hardware features if they are available. In extremely rare cases, usually where very strict
compatability with other (possibly older) platforms is required, we can switch off this behavior
by using st rictfp to mandate perfect compliance with the IEEE-754 standard. This is almost
never necessary and the vast majority of programmers will never need to use (or even see) this

keyword.

BIGDECIMAL

Rounding error is a constant source of headaches for programmers who work with floating-point
numbers. In response, Java has a class java.math.BigDecimal that provides arbitrary
precision arithmetic, in a decimal representation. This works around the problem of 0. 1 not
having a finite representation in binary, but there are still some edge conditions when converting

to or from Java’s primitive types, as you can see:

double d = 0.3;
System.out.println (d) ;

BigDecimal bd = new BigDecimal (d) ;
System.out.println (bd) ;

bd = new BigDecimal ("0.3");
System.out.println (bd) ;

However, even with all arithmetic performed in base-10, there are still numbers, such as 1 /3,
that do not have a terminating decimal representation. Let’s see what happens when we try to

represent such numbers using BigDecimal:

bd = new BigDecimal (BigInteger.ONE) ;
bd.divide (new BigDecimal (3.0));
System.out.println(bd); // Should be 1/3

As BigDecimal can’t represent 1 /3 precisely, the call to divide () blows up with
ArithmeticException. When you are working with BigDecimal, it is therefore
necessary to be acutely aware of exactly which operations could result in a nonterminating
decimal result. To make matters worse, ArithmeticException is an unchecked, runtime

exception and so the Java compiler does not even warn about possible exceptions of this type.

As as a final note on floating-point numbers, the paper “What Every Computer Scientist Should
Know About Floating-Point Arithmetic” by David Goldberg should be considered essential
further reading for all professional programmers. It is easily and freely obtainable on the

internet.

Java’s Standard Library of Mathematical Functions

To conclude this look at Java’s support for numeric data and math, let’s take a quick tour of the
standard library of functions that Java ships with. These are mostly static helper methods that

are located on the class java.lang.Math and include functions like:

abs ()

Returns the absolute value of a number. Has overloaded forms for various primitive types.

Trigonometric functions

Basic functions for computing the sine, cosine, tangent, and so on. Java also includes

hyperbolic versions and the inverse functions (such as arc sine).

max (), min ()

Overloaded functions to return the greater and smaller of two arguments (both of the same

numeric type).

floor ()

Used to return the largest integer smaller than the argument (which is a double). ceil ()

returns the smallest integer larger than the argument.

pow (),exp (), Log ()

Functions for raising one number to the power of another, and for computing exponentials
and natural logarithms. 10g10 () provides logarithms to base-10, rather than the natural

base.

Let’s look at some simple examples of how to use these functions:

System.
System.

double
double
System.

System.
System.
System.

System.
System.
System.

System.
System.
System.
System.

System.
System.

System.
System.
System.
System.
System.
System.

System.

out.println (Math.abs (2));
out.println (Math.abs (-2));

cosp3
sinp3

out
out

out

out
out

out

out
out
out

out

out

out

out
out
out
out
out

out

out

.println

.println

.println (Math.
.println (Math.
.println (Math.

.println (Math.
.println (Math.
.println (Math.

.println (Math.
Math.
.println (Math.
.println (Math.

(
(
(
(

.println (Math.
.println (Math.

.println (Math.
.println (Math.
Math.
.println (Math.
.println (Math.
.println (Math.

(
(
(
(
(
(

.println (Math.

Math.cos (0.3) ;
Math.sin (0.3);
out.println((cosp3 * cosp3 + sinp3 * sinp3));

// Always 1.0

max (0.3,
max (0.3,

max (-0.3,

min (0.3,
min (0.3,

min (-0.3,

round (1.3));
round (7.5));

// Returns long
// Returns long

(2.0, 10.0));
(1))

exp(2));

log(2.718281828459045)) ;

logl0 (100 _000));

loglO (Integer.MAX VALUE)) ;

pow

exp

random ()) ;

System.out ")

if (Math.random ()

.println("Let's toss a coin:
> 0.5) {

System.out.println("It's heads");
} else {

System.out.println("It's tails");

To conclude this section, let’s briefly discuss Java’s random () function. When this is first
called, it sets up a new instance of java.util.Random. This is a pseudorandom number

generator (PRNG)—a deterministic piece of code that produces numbers that look random but
2

are actually produced by a mathematical formula. In Java’s case, the formula used for the

PRNG is pretty simple, for example:

// From java.util.Random
public double nextDouble () {

return (((long) (next(26)) << 27) + next(27)) * DOUBLE UNIT;

If the sequence of pseudorandom numbers always starts at the same place, then exactly the same
stream of numbers will be produced. To get around this problem, the PRNG is seeded by a value
that should contain as much true randomness as possible. For this source of randomness for the

seed value, Java uses a CPU counter value that is normally used for high-precision timing.

WARNING

While Java’s built-in pseudorandom numbers are fine for most general applications,
some specialist applications (notably cryptography and some types of simulations)
have much more stringent requirements. If you are working on an application of

that sort, seek expert advice from programmers who are already working in the area.

Now that we’ve looked at text and numeric data, let’s move on to look at another of the most

frequently encountered kinds of data: date and time information.

Java 8 Date and Time

Almost all business software applications have some notion of date and time. When modeling
real-world events or interactions, collecting a point at which the event occurred is critical for
future reporting or comparison of domain objects. Java 8 brings a complete overhaul to the way
that developers work with date and time. This section introduces those concepts for Java 8. In
earlier versions, the only support is via classes such as java.util.Date that do not model

the concepts. Code that uses the older APIs should move as soon as possible.

Introducing the Java 8 Date and Time API

Java 8 introduces the new package java.time, which contains the core classes that most

developers work with. It also contains four subpackages:

java.time.chrono

Alternative chronologies that developers using calendaring systems that do not follow the

ISO standard will interact with. An example would be a Japanese calendaring system.

java.time.format

Contains the DateTimeFormatter used for converting date and time objects into a

String and also for parsing strings into the data and time objects.

java.time.temporal

Contains the interfaces required by the core date and time classes and also abstractions (such

as queries and adjusters) for advanced operations with dates.

java.time.zone

Classes used for the underlying time zone rules; most developers won’t require this package.

One of the most important concepts when representing time is the idea of an instantaneous point
on the timeline of some entity. While this concept is well defined within, for example, Special
Relativity, representing it within a computer requires us to make some assumptions. In Java 8§,

we represent a single point in time as an Instant, which has these key assumptions:

e We cannot represent more seconds than can fit into a 1ong.

e We cannot represent time more precisely than nanosecond precision.

This means that we are restricting ourselves to modeling time in a manner that is consistent with
the capabilities of current computer systems. However, there is another fundamental concept

that should also be introduced.

An Instant is about a single event in space-time. However, it is far from uncommon for
programmers to have to deal with intervals between two events, and so Java 8 also introduces
the java.time.Duration class. This class ignores calendar effects that might arise (e.g.,
from daylight saving time). With this basic conception of instants and durations between events,

let’s move on to unpack the possible ways of thinking about an instant.

THE PARTS OF A TIMESTAMP

In Figure 9-1, we show the breakdown of the different parts of a timestamp in a number of

possible ways.

29 Mar 2014 09:00 AM GMT
ZonedDatelime

LocalDatelTime

LocalDate

LocalTime

Zonedld I

Figure 9-1. Breaking apart a timestamp

The key concept here is that there are a number of different abstractions that might be
appropriate at different times. For example, there are applications where a LocalDate is key
to business processing, where the needed granularity is a business day. Alternatively, some
applications require subsecond, or even millisecond, precision. Developers should be aware of

their domain and use a suitable representation within their application.

EXAMPLE

The date and time API can be a lot to take in at first glance, so let’s start by looking at an
example, and discuss a diary class that keeps track of birthdays. If you happen to be very
forgetful about birthdays, then a class like this (and especially methods like
getBirthdaysInNextMonth ()) might be very helpful:

public class BirthdayDiary {
private Map<String, LocalDate> birthdays;

public BirthdayDiary () {
birthdays = new HashMap<> () ;

public LocalDate addBirthday(String name, int day, int month,
int year) {
LocalDate birthday = LocalDate.of (year, month, day);
birthdays.put (name, birthday);

return birthday;

public LocalDate getBirthdayFor (String name) {

return birthdays.get (name) ;

public int getAgeInYear (String name, int year) {
Period period = Period.between (birthdays.get (name),
birthdays.get (name) .withYear (year)) ;

return period.getYears();

public Set<String> getFriendsOfAgelIn (int age, int year) {
return birthdays.keySet () .stream()
.filter(p -> getAgelnYear (p, year) == age)
.collect (Collectors.toSet ())

public int getDaysUntilBirthday (String name) {
Period period = Period.between (LocalDate.now(),
birthdays.get (name)) ;

return period.getDays() ;

public Set<String> getBirthdaysIn (Month month) {
return birthdays.entrySet () .stream()
.filter(p -> p.getValue () .getMonth () == month)

.map(p -> p.getKey())
.collect (Collectors.toSet())

public Set<String> getBirthdaysInCurrentMonth () {
return getBirthdaysIn (LocalDate.now () .getMonth());

public int getTotalAgeInYears () {
return birthdays.keySet () .stream()
.mapToInt (p -> getAgelnYear (p,
LocalDate.now () .getYear ()))

.sum () ;

This class shows how to use the low-level API to build up useful functionality. It also uses
innovations such as the Java Streams API, and demonstrates how to use LocalDate as an

immutable class and how dates should be treated as values.

Queries

Under a wide variety of circumstances we may find ourselves wanting to answer a question

about a particular temporal object. Some example questions we may want answers to are:

e [s the date before March 1st?

e Is the date in a leap year?

e How many days is it from today until my next birthday?

This is achieved by the use of the TemporalQuery interface, which is defined like this:

public interface TemporalQuery<R> {

R queryFrom (TemporalAccessor temporal);

The parameter to queryFrom () should not be null, but if the result indicates that a value

was not found, null could be used as a return value.

NOTE

The Predicate interface can be thought of as a query that can only represent
answers to yes-or-no questions. Temporal queries are more general and can return a

value of “How many?”” or “Which?” instead of just “yes” or “no.”

Let’s look at an example of a query in action, by considering a query that answers the following
question: “Which quarter of the year is this date in?”” Java 8 does not support the concept of a

quarter directly. Instead, code like this is used:

LocalDate today = LocalDate.now () ;
Month currentMonth = today.getMonth () ;
Month firstMonthofQuarter = currentMonth.firstMonthOfQuarter () ;

This still doesn’t give quarter as a separate abstraction and instead special case code is still

needed. So let’s slightly extend the JDK support by defining this enum type:

public enum Quarter {
FIRST, SECOND, THIRD, FOURTH;

Now, the query can be written as:

public class QuarterOfYearQuery implements TemporalQuery<Quarter> {

public Quarter queryFrom(TemporalAccessor temporal) {

LocalDate now = LocalDate.from(temporal);

if (now.isBefore (now.with (Month.APRIL) .withDayOfMonth (1))) {
return Quarter.FIRST;
} else if (now.isBefore (now.with (Month.JULY)
.withDayOfMonth (1))) {
return Quarter.SECOND;
} else if (now.isBefore (now.with (Month.NOVEMBER)
.withDayOfMonth(1))) {
return Quarter.THIRD;
} else {
return Quarter.FOURTH;

TemporalQuery objects can be used directly or indirectly. Let’s look at an example of each:

QuarterOfYearQuery g = new QuarterOfYearQuery()

// Direct
Quarter quarter = g.queryFrom(LocalDate.now());

System.out.println (quarter) ;
// Indirect

quarter = LocalDate.now () .query(q)

System.out.println (quarter) ;

Under most circumstances, it is better to use the indirect approach, where the query object is

passed as a parameter to query (). This is because it is normally a lot clearer to read in code.

Adjusters

Adjusters modify date and time objects. Suppose, for example, that we want to return the first

day of a quarter that contains a particular timestamp:

public class FirstDayOfQuarter implements TemporalAdjuster ({
public Temporal adjustInto (Temporal temporal) ({

final int currentQuarter = YearMonth.from(temporal)
.get (IsoFields.QUARTER OF YEAR);

switch (currentQuarter) {
case 1:
return LocalDate.from(temporal)
.with (TemporalAdjusters.firstDayOfYear()):;
case 2:
return LocalDate.from(temporal)
.withMonth (Month.APRIL.getValue())
.with (TemporalAdjusters.firstDayOfMonth()) ;
case 3:
return LocalDate.from(temporal)
.withMonth (Month.JULY.getValue ())
.with (TemporalAdjusters.firstDayOfMonth()) ;
case 4:
return LocalDate.from(temporal)
.withMonth (Month.OCTOBER.getValue ())
.with (TemporalAdjusters.firstDayOfMonth()) ;
default:
return null; // Will never happen

Let’s look at an example of how to use an adjuster:

LocalDate now = LocalDate.now() ;
Temporal fdog = now.with (new FirstDayOfQuarter());
System.out.println (fdoq) ;

The key here is the with () method, and the code should be read as taking in one Temporal
object and returning another object that has been modified. This is completely usual for APIs

that work with immutable objects.

Legacy Date and Time

Unfortunately, many applications are not yet converted to use the superior date and time
libraries that ship with Java 8. So, for completeness, we briefly mention the legacy date and time

support (which is based on java.util.Date).

WARNING

The legacy date and time classes, especially java.util.Date, should not be
used in modern Java environments. Consider refactoring or rewriting any code that

still uses the legacy classes.

In older versions of Java, Java.time is not available. Instead, programmers rely upon the
legacy and rudimentary support provided by java.util.Date. Historically, this was the
only way to represent timestamps, and although named Date this class actually consisted of

both a date and a time component—and this led to a lot of confusion for many programmers.
There are many problems with the legacy support provided by Date, for example:

e The Date class is incorrectly factored. It doesn’t actually refer to a date, and instead is more
like a timestamp. It turns out that we need different representations for a date, versus a date

and time, versus an instantaneous timestamp.

e Date is mutable. We can obtain a reference to a date, and then change when it refers to.

e The Date class doesn’t actually accept ISO-8601, the universal ISO date standard, as being

as valid date.

Date has a very large number of deprecated methods.

The current JDK uses two constructors for Date—the void constructor that is intended to be

the “now constructor,” and a constructor that takes a number of milliseconds since epoch.

Summary

In this chapter, we’ve met several different classes of data. Textual and numeric data are the
most obvious examples, but as working programmers we will meet a large number of different
sorts of data. Let’s move on to look at whole files of data, and new ways to work with I/O and
networking. Fortunately, Java provides good support for dealing with many of these

abstractions.

In fact, they are actually two of the known examples of transcendental numbers.
1

It is very difficult to get computers to produce true random numbers, and in the rare cases
2

where this is done, specialized hardware is usually necessary.

Chapter 10. File Handling and I/O

Java has had input/output (I/O) support since the very first version. However, due to Java’s
strong desire for platform independence, the earlier versions of I/O functionality emphasized

portability over functionality. As a result, they were not always easy to work with.

We’ll see later in the chapter how the original APIs have been supplemented—they are now
rich, fully featured, and very easy to develop with. Let’s kick off the chapter by looking at the

original, “classic” approach to Java I/O, which the more modern approaches layer on top of.

Classic Javal/O

The File class is the cornerstone of Java’s original way to do file I/O. This abstraction can
represent both files and directories, but in doing so is sometimes a bit cumbersome to deal with,

and leads to code like this:

// Get a file object to represent the user's home directory

File homedir = new File (System.getProperty ("user.home"));

// Create an object to represent a config file (should
// already be present in the home directory)

File £ = new File (homedir, "app.conf");

// Check the file exists, really is a file, and 1is readable
if (f.exists () && f.isFile() && f.canRead()) {

// Create a file object for a new configuration directory
File configdir = new File(f, ".configdir");
// And create it

configdir.mkdir () ;

// Finally, move the config file to its new home

f.renameTo (new File (configdir, ".config")):;

This shows some of the flexibility possible with the File class, but also demonstrates some of

the problems with the abstraction. It is very general, and so requires a lot of methods to

interrogate a Fi1le object in order to determine what it actually represents and its capabilities.

Files

The File class has a very large number of methods on it, but some basic functionality (notably

a way to read the actual contents of a file) is not, and never has been, provided directly.

Here’s a quick summary of File methods:

// Permissions management

boolean canX = f.canExecute();
boolean canR = f.canRead();
boolean canW = f.canWrite();

boolean ok;

ok = f.setReadOnly();
ok = £

ok = f.setReadable (true) ;
ok = f.setWritable (false) ;

.setExecutable (true) ;

// Different views of the file's name
File absF = f.getAbsoluteFile() ;
File canF = f.getCanonicalFile();
f.getAbsolutePath () ;

String absName
String canName = f.getCanonicalPath()

String name = f.getName () ;

String pName = getParent ()

URI fileURI = f.toURI(); // Create URI for File path

// File metadata

boolean exists = f.exists();

boolean isAbs = f.isAbsolute () ;

boolean isDir = f.isDirectory();

boolean isFile = f.isFile();

boolean isHidden = f.isHidden () ;

long modTime = f.lastModified(); // milliseconds since epoch

boolean updateOK = f.setLastModified (updateTime); // milliseconds
long filelen = f.length();

// File management operations
boolean renamed = f.renameTo (destFile);
boolean deleted = f.delete();

// Create won't overwrite existing file

boolean createdOK = f.createNewFile();
// Temporary file handling
File tmp = File.createTempFile ("my-tmp", ".tmp"):;

tmp.deleteOnExit () ;

// Directory handling

boolean createdDir = dir.mkdir();
String[] fileNames = dir.list();
File[] files = dir.listFiles();

The File class also has a few methods on it that aren’t a perfect fit for the abstraction. They
largely involve interrogating the filesystem (e.g., inquiring about available free space) that the

file resides on:

long free, total, usable;

free = f.getFreeSpace();
total = f.getTotalSpace();
usable = f.getUsableSpace() ;

File[] roots = File.listRoots(); // all available Filesystem roots

Streams

The I/O stream abstraction (not to be confused with the streams that are used when dealing with
the Java 8 Collection APIs) was present in Java 1.0, as a way of dealing with sequential streams

of bytes from disks or other sources.

The core of this API is a pair of abstract classes, InputStream and OutputStream. These
are very widely used, and in fact the “standard” input and output streams, which are called
System.in and System. out, are streams of this type. They are public, static fields of the

System class, and are often used in even the simplest programs:

System.out.println ("Hello World!");

Specific subclasses of streams, including FileInputStreamand FileOutputStream,
can be used to operate on individual bytes in a file—for example, by counting all the times

ASCII 97 (small letter @) occurs in a file:

try (InputStream is = new FileInputStream("/Users/ben/cluster.txt")) {
byte[] buf = new byte[4096];
int len, count = 0;
while ((len = is.read(buf)) > 0) {

for (int 1=0; i<len; 1i++)
if (buf[i] == 97) count++;
}
System.out.println("'a's seen: "+ count);
} catch (IOException e) {
e.printStackTrace () ;

This approach to dealing with on-disk data can lack some flexibility—most developers think in
terms of characters, not bytes. To allow for this, the streams are usually combined with the
higher-level Reader and Writer classes, which provide a character-stream level of
interaction, rather than the low-level byte stream provided by ITnputStream and

OutputStream and their subclasses.

Readers and Writers

By moving to an abstraction that deals in characters, rather than bytes, developers are presented
with an API that is much more familiar, and that hides many of the issues with character

encoding, Unicode, and so on.

The Reader and Writer classes are intended to overlay the byte stream classes, and to
remove the need for low-level handling of I/O streams. They have several subclasses that are

often used to layer on top of each other, such as:

FileReader

e BufferedReader

e TnputStreamReader

e FileWriter

e PrintWriter

e BufferedWriter

To read all lines in from a file and print them out, we use a Buf feredReader layered on top

of a FileReader, like this:

try (BufferedReader in =
new BufferedReader (new FileReader (filename))) {

String line;

while((line = in.readLine()) !'= null) {
System.out.println(line);
}
} catch (IOException e) {
// Handle FileNotFoundException, etc. here

If we need to read in lines from the console, rather than a file, we will usually use an
InputStreamReader applied to System. in. Let’s look at an example where we want to
read in lines of input from the console, but treat input lines that start with a special character as
special—commands (“metas”) to be processed, rather than regular text. This is a common
feature of many chat programs, including IRC. We’ll use regular expressions from Chapter 9 to

help us:

Pattern SHELL META START = Pattern.compile (" # (\\w+)\\s* (\\w+)?2");

try (BufferedReader console =
new BufferedReader (new InputStreamReader (System.in))) {

String line;

while((line = console.readLine()) != null) {

// Check for special commands ("metas")
Matcher m = SHELL META START.matcher (line);
if (m.find()) {

String metaName = m.group (1) ;

String arg = m.group(2);

doMeta (metaName, arqg):;

continue READ;

System.out.println(line) ;

}
} catch (IOException e) {
// Handle FileNotFoundException, etc. here

To output text to a file, we can use code like this:

File f = new File(System.getProperty ("user.home")

+ File.separator + ".bashrc");

try (PrintWriter out =

new PrintWriter (new BufferedWriter (new FileWriter (f)))) {

out.println ("## Automatically generated config file. DO NOT EDIT") ;
//

} catch (IOException iox) {
// Handle exceptions

This older style of Java I/O has a lot of other functionality that is occasionally useful. For
example, to deal with text files, the FilterInputStream class is quite often useful. Or for
threads that want to communicate in a way similar to the classic “piped” I/O approach,

PipedInputStream, PipedReader, and their write counterparts are provided.

Throughout this chapter so far, we have used the language feature known as “try-with-
resources” (TWR). This syntax was briefly introduced in “The try-with-resources Statement”,
but it is in conjunction with operations like I/O that it comes into its fullest potential, and it has

granted a new lease on life to the older I/O style.

try-with-resources Revisited

To make the most of Java’s I/O capabilities, it is important to understand how and when to use
TWR. It is very easy to understand when code should use TWR—whenever it is possible to do

SO.

Before TWR, resources had to be closed manually, and complex interactions between resources

that could fail to close led to buggy code that could leak resources.

In fact, Oracle’s engineers estimate that 60% of the resource handling code in the initial JDK 6
release was incorrect. So, if even the platform authors can’t reliably get manual resource

handling right, then all new code should definitely be using TWR.

The key to TWR is a new interface—AutoCloseable. This interface is a direct
superinterface of Closeable. It marks a resource that must be automatically closed, and for

which the compiler will insert special exception-handling code.

Inside a TWR resource clause, only declarations of objects that implement AutoCloseable

objects may appear—but the developer may declare as many as required:

try (BufferedReader in = new BufferedReader (
new FileReader ("profile"));
PrintWriter out = new PrintWriter (
new BufferedWriter (
new FileWriter ("profile.bak")))) {
String line;
while ((line = in.readLine()) != null) {
out.println(line);
}
} catch (IOException e) {
// Handle FileNotFoundException, etc. here

The consequences of this are that resources are automatically scoped to the t ry block. The
resources (whether readable or writable) are automatically closed in the correct order, and the

compiler inserts exception handling that takes dependencies between resources into account.

TWR is related to similar concepts in other languages and environments—for example, RAII in

C++. However, as discussed in the finalization section, TWR is limited to block scope. This
minor limitation is due to the fact that the feature is implemented by the Java source code
compiler—it automatically inserts bytecode that calls the resource’s close () method when

the scope is exited (by whatever means).

As a result, the overall effect of TWR is more similar to C#’s using keyword, rather than the
C++ version of RAIIL. For Java developers, the best way to regard TWR is as “finalization done
right.” As noted in “Finalization”, new code should never directly use the finalization
mechanism, and should always use TWR instead. Older code should be refactored to use TWR

as soon as is practicable, as it provides real tangible benefits to resource handling code.

Problems with Classic 1/0

Even with the welcome addition of t ry-with-resources, the File class and friends have a
number of problems that make them less than ideal for extensive use when performing even

standard I/O operations. For instance:

e “Missing methods” for common operations

e Does not deal with filenames consistently across platforms

e Fails to have a unified model for file attributes (e.g., modeling read/write access)
e Difficult to traverse unknown directory structures

¢ No platform- or OS-specific features

e Nonblocking operations for filesystems not supported

To deal with these shortcomings, Java’s I/O has evolved over several major releases. It was

really with the release of Java 7 that this support became truly easy and effective to use.

Modern Javal/O

Java 7 brought in a brand new [/O API—usually called NIO.2—and it should be considered
almost a complete replacement for the original File approach to I/O. The new classes are

contained in the java.nio. file package.

The new API that was brought in with Java 7 is considerably easier to use for many use cases. It
has two major parts. The first is a new abstraction called Path (which can be thought of as
representing a file location, which may or may not have anything actually at that location). The

second piece is lots of new convenience and utility methods to deal with files and filesystems.

These are contained as static methods in the Files class.

Files

For example, when you are using the new Files functionality, a basic copy operation is now

as simple as:

File inputFile = new File("input.txt");

try (InputStream in = new FilelInputStream(inputFile)) {
Files.copy(in, Paths.get ("output.txt"));

} catch (IOException ex) {

ex.printStackTrace () ;

Let’s take a quick survey of some of the major methods in Files—the operation of most of
them is pretty self-explanatory. In many cases, the methods have return types. We have omitted
handling these, as they are rarely useful except for contrived examples, and for duplicating the

behavior of the equivalent C code:

Path source, target;
Attributes attr;
Charset cs = StandardCharsets.UTF 8;

// Creating files

//

// Example of path --> /home/ben/.profile
// Example of attributes —--> rw-rw—-rw-

Files.createFile (target, attr);

// Deleting files
Files.delete (target);
boolean deleted = Files.deletelfExists (target);

// Copying/moving files
Files.copy(source, target);

Files.move (source, target);

// Utility methods to retrieve information

long size = Files.size(target);

FileTime fTime = Files.getLastModifiedTime (target) ;
System.out.println (fTime.to (TimeUnit.SECONDS)) ;

Map<String, ?> attrs = Files.readAttributes (target, "*");
System.out.println(attrs);

// Methods to deal with file types

boolean isDir = Files.isDirectory(target);

boolean isSym = Files.isSymbolicLink(target);
// Methods to deal with reading and writing
List<String> lines = Files.readAllLines(target, cs);

byte[] b = Files.readAllBytes (target);

BufferedReader br = Files.newBufferedReader (target, cs);

BufferedWriter bwr = Files.newBufferedWriter (target, cs);
InputStream is = Files.newlnputStream(target)

OutputStream os = Files.newOutputStream (target) ;

Some of the methods on Files provide the opportunity to pass optional arguments, to provide

additional (possibly implementation-specific) behavior for the operation.

Some of the API choices here produce occasionally annoying behavior. For example, by default,
a copy operation will not overwrite an existing file, so we need to specify this behavior as a

copy option:

Files.copy(Paths.get ("input.txt"), Paths.get ("output.txt"),
StandardCopyOption.REPLACE EXISTING) ;

StandardCopyOption is an enum that implements an interface called CopyOption. This
is also implemented by LinkOption. So Files.copy () can take any number of either
LinkOption or StandardCopyOption arguments. LinkOption is used to specify how
symbolic links should be handled (provided the underlying OS supports symlinks, of course).

Path

Path is a type that may be used to locate a file in a filesystem. It represents a path that is:
¢ System dependent

e Hierarchical

e Composed of a sequence of path elements

e Hypothetical (may not exist yet, or may have been deleted)

It is therefore fundamentally different to a Fi 1e. In particular, the system dependency is
manifested by Path being an interface, not a class, which enables different filesystem providers
to each implement the Path interface, and provide for system-specific features while retaining

the overall abstraction.

The elements of a Path consist of an optional root component, which identifies the filesystem
hierarchy that this instance belongs to. Note that, for example, relative Path instances may not
have a root component. In addition to the root, all Path instances have zero or more directory

names and a name element.

The name element is the element farthest from the root of the directory hierarchy and represents
the name of the file or directory. The Path can be thought of as consisting of the path elements

joined together by a special separator or delimiter.

Path is an abstract concept; it isn’t necessarily bound to any physical file path. This allows us
to talk easily about the locations of files that don’t exist yet. Java ships with a Paths class that

provides factory methods for creating Path instances.

Paths provides two get () methods for creating Path objects. The usual version takes a
String, and uses the default filesystem provider. The URT version takes advantage of the
ability of NIO.2 to plug in additional providers of bespoke filesystems. This is an advanced
usage, and interested developers should consult the primary documentation. Let’s look at some

simple examples of how to use Path:

Path p = Paths.get ("/Users/ben/cluster.txt");
Path p Paths.get (new URI ("file:///Users/ben/cluster.txt™));

System.out.println (p2.equals (p));

File f

p.toFile () ;
System.out.println (f.isDirectory()):;
Path p3 = f.toPath();
System.out.println (p3.equals (p))

This example also shows the easy interoperation between Path and Fi1le objects. The addition
ofa toFile () method to Path and a toPath () method to File allows the developer to
move effortlessly between the two APIs and allows for a straightforward approach to refactoring

the internals of code based on File to use Path instead.

We can also make use of some useful “bridge” methods that the Files class also provides.
These provide convenient access to the older I/O APIs—for example, by providing convenience

methods to open Writer objects to specified Path locations:

Path logFile = Paths.get ("/tmp/app.log");
try (BufferedWriter writer =
Files.newBufferedWriter (logFile, StandardCharsets.UTF 8,
StandardOpenOption.WRITE)) {

writer.write ("Hello World!");

/).
} catch (IOException e) {
/).

We’re making use of the StandardOpenOption enum, which provides similar capabilities

to the copy options, but for the case of opening a new file instead.

In this example use case, we have used the Path API to:

Create a Path corresponding to a new file

Use the Files class to create that new file

Open aWriter to that file

Write to that file

Automatically close it when done

In our next example, we’ll build on this to manipulate a JAR file as a FileSystem in its own

right, modifying it to add an additional file directly into the JAR. Recall that JAR files are

actually just ZIP files, so this technique will also work for .zip archives:

Path tempJar = Paths.get ("sample.jar");

try (FileSystem workingFS =
FileSystems.newFileSystem (tempJar, null)) {
Path pathForFile = workingFS.getPath("/hello.txt");
List<String> 1ls = new ArrayList<>();
ls.add ("Hello World!");

Files.write (pathForFile, 1ls, Charset.defaultCharset (),
StandardOpenOption.WRITE, StandardOpenOption.CREATE) ;

This shows how we use a FileSystem to make the Path objects inside it, via the

getPath () method. This enables the developer to effectively treat Fi1leSystem objects as
black boxes.

Files also provides methods for handling temporary files and directories, which is a surprisingly

common use case (and can be a source of security bugs). For example, let’s see how to load a

resources file from within the classpath, copy it to a newly created temporary directory, and then

clean up the temporary files safely (using the Reaper class we introduced in Chapter 5):

Path tmpdir = Files.createTempDirectory (Paths.get ("/tmp"), "tmp-test");
try (InputStream in =

FilesExample.class.getResourceAsStream (" /res.txt")) {

Path copied = tmpdir.resolve ("copied-resource.txt");
Files.copy (in, copied, StandardCopyOption.REPLACE EXISTING) ;
// ... work with the copy

}
// Clean up when done...

Files.walkFileTree (tmpdir, new Reaper());

One of the criticisms of Java’s original I/O APIs was the lack of support for native and high-
performance I/O. A solution was initially added in Java 1.4, the Java New /O (NIO) API, and it

has been refined in later Java versions.

NIO Channels and Buffers

NIO buffers are a low-level abstraction for high-performance I/O. They provide a container for
a linear sequence of elements of a specific primitive type. We’ll work with the ByteBuffer

(the most common case) in our examples.

ByteBuffer

This is a sequence of bytes, and can conceptually be thought of as a performance-critical
alternative to working with a byte []. To get the best possible performance, ByteBuffer
provides support for dealing directly with the native capabilities of the platform the JVM is

running on.

This approach is called the direct buffers case, and it bypasses the Java heap wherever possible.
Direct buffers are allocated in native memory, not on the standard Java heap, and they are not

subject to garbage collection in the same way as regular on-heap Java objects.

To obtain a direct ByteBuffer, call the allocateDirect () factory method. An on-heap

version, allocate (), is also provided, but in practice this is not often used.

A third way to obtain a byte buffer is to wrap an existing byte []—this will give an on-heap

buffer that serves to provide a more object-oriented view of the underlying bytes:
ByteBuffer b = ByteBuffer.allocateDirect (65536);
ByteBuffer b2 = ByteBuffer.allocate (4096);

byte[] data = {1, 2, 3};
ByteBuffer b3 = ByteBuffer.wrap (data);

Byte buffers are all about low-level access to the bytes. This means that developers have to deal
with the details manually—including the need to handle the endianness of the bytes and the

signed nature of Java’s integral primitives:

b.order (ByteOrder.BIG ENDIAN) ;

int capacity = b.capacity();
int position = b.position();
int limit = b.limit();

int remaining = b.remaining () ;

boolean more = b.hasRemaining() ;

To get data in or out of a buffer, we have two types of operation—single value, which reads or
writes a single value, and bulk, which takes a byte [] or ByteBuf fer and operates on a
(potentially large) number of values as a single operation. It is from the bulk operations that

we’d expect to realize performance gains:

b.put ((byte) 42) ;
.putChar ('x");
b.putInt (Oxcafebabe) ;

o

b.put (data) ;
b.put (b2) ;

double d = b.getDouble () ;
b.get (data, 0, data.length);

The single value form also supports a form used for absolute positioning within the buffer:

b.put (0, (byte)9);

Buffers are an in-memory abstraction. To affect the outside world (e.g., the file or network), we
need to use a Channel, from the package java.nio.channels. Channels represent
connections to entities that can support read or write operations. Files and sockets are the usual
examples of channels, but we could consider custom implementations used for low-latency data

processing.

Channels are open when they’re created, and can subsequently be closed. Once closed, they
cannot be reopened. Channels are usually either readable or writable, but not both. The key to

understanding channels is that:

¢ Reading from a channel puts bytes into a buffer

e Writing to a channel takes bytes from a buffer

For example, suppose we have a large file that we want to checksum in 16M chunks:

FileInputStream fis = getSomeStream() ;

boolean fileOK = true;

try (FileChannel fchan = fis.getChannel()) {
ByteBuffer buffy = ByteBuffer.allocateDirect (16 * 1024 * 1024);
while (fchan.read (buffy) !'= -1 || buffy.position() > 0 || £ileOK) {
fileOK = computeChecksum (buffy) ;
buffy.compact () ;

}
} catch (IOException e) {
System.out.println ("Exception in I/0");

This will use native I/O as far as possible, and will avoid a lot of copying of bytes on and off the
Java heap. If the computeChecksum () method has been well implemented, then this could

be a very performant implementation.

Mapped Byte Buffers

These are a type of direct byte buffer that contain a memory-mapped file (or a region of one).
They are created from a FileChannel object, but note that the Fi1le object corresponding to
the MappedByteBuf fer must not be used after the memory-mapped operations, or an
exception will be thrown. To mitigate this, we again use t ry-with-resources, to scope the

objects tightly:

try (RandomAccessFile raf =
new RandomAccessFile (new File ("input.txt"), "rw");
FileChannel fc = raf.getChannel();) {

MappedByteBuffer mbf =
fc.map (FileChannel.MapMode.READ WRITE, O, fc.size());
byte[] b = new byte|[(int) fc.size()];
mbf.get (b, 0, b.length);
for (int i=0; i<fc.size(); i++) {
bli] = 0; // Won't be written back to the file, we're a copy
}
mbf.position (0) ;
mbf.put (b); // Zeros the file

Even with buffers, there are limitations of what can be done in Java for large I/O operations

(e.g., transferring 10G between filesystems) that perform synchronously on a single thread.

Before Java 7, these types of operations would typically be done by writing custom
multithreaded code, and managing a separate thread for performing a background copy. Let’s

move on to look at the new asynchronous I/O features that were added with JDK 7.

Async /O

The key to the new asynchronous functionality are some new subclasses of Channel that can
deal with I/O operations that need to be handed off to a background thread. The same

functionality can be applied to large, long-running operations, and to several other use cases.

In this section, we’ll deal exclusively with AsynchronousFileChannel for file I/O, but
there are a couple of other asynchronous channels to be aware of. We’ll deal with asynchronous

sockets at the end of the chapter. We’ll look at:
e AsynchronousFileChannel for file /O
e AsynchronousSocketChannel for client socket I/O

e AsynchronousServerSocketChannel for asynchronous sockets that accept

incoming connections

There are two different ways to interact with an asynchronous channel—Future style and

callback style.

Future-Based Style

We’ll meet the Future interface in detail in Chapter 11, but for the purpose of this chapter, it
can be thought of as an ongoing task that may or may not have completed yet. It has two key

methods:

isDone ()

Returns a Boolean indicating whether the task has finished.

get ()

Returns the result. If finished, returns immediately. If not finished, blocks until done.

Let’s look at an example of a program that reads a large file (possibly as large as 100 Mb)

asynchronously:

try (AsynchronousFileChannel channel =

AsynchronousFileChannel.open (Paths.get ("input.txt"))) {
ByteBuffer buffer = ByteBuffer.allocateDirect (1024 * 1024 * 100);
Future<Integer> result = channel.read(buffer, 0);

while (!result.isDone()) {

// Do some other useful work....

System.out.println ("Bytes read: " + result.get()):;

Callback-Based Style

The callback style for asynchronous I/O is based on a CompletionHandler, which defines
two methods, completed () and failed (), that will be called back when the operation

either succeeds or fails.

This style is useful if you want immediate notification of events in asynchronous I/O—for
example, if there are a large number of I/O operations in flight, but failure of any single

operation is not necessarily fatal:

byte[] data = {2, 3, 5, 7, 11, 13, 17, 19, 23};
ByteBuffer buffy = ByteBuffer.wrap(data);

CompletionHandler<Integer,Object> h =
new CompletionHandler () {
public void completed(Integer written, Object o) {

System.out.println ("Bytes written: " + written);

public void failed(Throwable x, Object o) {
System.out.println ("Asynch write failed: "+ x.getMessage());

}i
try (AsynchronousFileChannel channel =
AsynchronousFileChannel.open (Paths.get ("primes.txt"),

StandardOpenOption.CREATE, StandardOpenOption.WRITE)) {

channel.write (buffy, 0, null, h);
Thread.sleep (1000); // Needed so we don't exit too quickly

The AsynchronousFileChannel object is associated with a background thread pool, so

that the I/O operation proceeds, while the original thread can get on with other tasks.

By default, this uses a managed thread pool that is provided by the runtime. If required, it can be

created to use a thread pool that is managed by the application (via an overloaded form of

AsynchronousFileChannel.open ()), but this is not often necessary.

Finally, for completeness, let’s touch upon NIO’s support for multiplexed I/O. This enables a
single thread to manage multiple channels and to examine those channels to see which are ready
for reading or writing. The classes to support this are in the java.nio.channels package

and include SelectableChannel and Selector.

These nonblocking multiplexed techniques can be extremely useful when you’re writing
advanced applications that require high scalability, but a full discussion is outside the scope of
this book. In general, the nonblocking API should only be used for advanced use cases when

high performance or other NFRs are genuinely required.

Watch Services and Directory Searching

The last class of asynchronous services we will consider are those that watch a directory or visit
a directory (or a tree). The watch services operate by observing everything that happens within a

directory—for example, the creation or modification of files:

try {

WatchService watcher = FileSystems.getDefault () .newWatchService () ;

Path dir = FileSystems.getDefault () .getPath ("/home/ben");

WatchKey key = dir.register (watcher,
StandardWatchEventKinds. ENTRY CREATE,
StandardWatchEventKinds. ENTRY MODIFY,
StandardWatchEventKinds.ENTRY DELETE) ;

while (!shutdown) {
key = watcher.take();
for (WatchEvent<?> key.pollEvents()) {
Object o = event.context();
if (o instanceof Path) {
System.out.println ("Path altered: "+ o0);

}

key.reset () ;

By contrast, the directory streams provide a view into all files currently in a single directory. For

example, to list all the Java source files and their size in bytes, we can use code like:

try (DirectoryStream<Path> stream =

Files.newDirectoryStream (Paths.get ("/opt/projects"), "*.java")) {

for (Path p : stream) {
System.out.println(p +": "+ Files.size(p)):

One drawback of this API is that this will only return elements that match according to glob
syntax, which is sometimes insufficiently flexible. We can go further by using the new
Files.find () and Files.walk () methods to address each element obtained by a

recursive walk through the directory:

final Pattern isJava = Pattern.compile(".*\\.javas$");
final Path homeDir = Paths.get ("/Users/ben/projects/");
Files.find (homeDir, 255,
(p, attrs) -> isJava.matcher(p.toString()).find())
.forEach (g -> {System.out.println(g.normalize());});

It is possible to go even further, and construct advanced solutions based on the FileVisitor
interface in java.nio. file, but that requires the developer to implement all four methods

on the interface, rather than just using a single lambda expression as done here.

In the last section of this chapter, we will discuss Java’s networking support and the core JDK

classes that enable it.

Networking

The Java platform provides access to a large number of standard networking protocols, and
these make writing simple networked applications quite easy. The core of Java’s network
support lives in the package java.net, with additional extensibility provided by javax.net

(and in particular, javax.net.ssl).

One of the easiest protocols to use for building applications is HyperText Transmission Protocol

(HTTP), the protocol that is used as the basic communication protocol of the Web.

HTTP

HTTP is the highest-level network protocol that Java supports out of the box. It is a very simple,
text-based protocol, implemented on top of the standard TCP/IP stack. It can run on any

network port, but is usually found on port 80.

Java has two separate APIs for handling HTTP—one of which dates back to the earliest days of
the platform, and the other of which is a more modern API that arrived in incubator form in Java
9.

Let’s take a quick look at the older API, for the sake of completeness. In this API URL is the key
class—it supports URLs of the form http://, ftp://, file://,and https:// out of
the box. It is very easy to use, and the simplest example of Java HTTP support is to download a

particular URL. With Java 8, this is just:

URL url = new URL ("http://www.google.com/") ;

try (InputStream in = url.openStream()) {
Files.copy(in, Paths.get ("output.txt"));

} catch (IOException ex) {

ex.printStackTrace () ;

For more low-level control, including metadata about the request and response, we can use

URLConnection to give us more control, and achieve something like:

try |

URLConnection conn = url.openConnection() ;

String type = conn.getContentTypel() ;
String encoding = conn.getContentEncoding () ;
Date lastModified = new Date (conn.getlLastModified())
int len = conn.getContentLength () ;
InputStream in = conn.getInputStream() ;
} catch (IOException e) {
// Handle exception

HTTP defines “request methods,” which are the operations that a client can make on a remote
resource. These methods are called GET, POST, HEAD, PUT, DELETE, OPTIONS, and
TRACE.

Each has slightly different usages, for example:

e GET should only be used to retrieve a document and never should perform any side effects.

e HEAD is equivalent to GET except the body is not returned—useful if a program wants to

quickly check whether a URL has changed.

e POST is used when we want to send data to a server for processing.

By default, Java always uses GET, but it does provide a way to use other methods for building
more complex applications; however, doing so is a bit involved. In this next example, we’re

using the search function provided by the BBC website to search for news articles about Java:

var url = new URL ("http://www.bbc.co.uk/search");

var encodedData = URLEncoder.encode ("g=java", "ASCII");
var contentType = "application/x-www-form-urlencoded";
HttpURLConnection conn = (HttpURLConnection) url.openConnection();

conn.setInstanceFollowRedirects (false) ;

conn.setRequestMethod ("POST") ;

conn.setRequestProperty ("Content-Type", contentType);

conn.setRequestProperty ("Content-Length",
String.valueOf (encodedData.length()));

conn.setDoOutput (true) ;
OutputStream os = conn.getOutputStream() ;

os.write(encodedData.getBytes ())

int response = conn.getResponseCode () ;
if (response == HttpURLConnection.HTTP MOVED PERM
|| response == HttpURLConnection.HTTP MOVED TEMP) {
System.out.println ("Moved to: "+ conn.getHeaderField ("Location"));
} else {
try (InputStream in = conn.getInputStream()) {
Files.copy(in, Paths.get ("bbc.txt"),
StandardCopyOption.REPLACE EXISTING) ;

Notice that we needed to send our query parameters in the body of a request, and to encode
them before sending. We also had to disable following of HTTP redirects, and to treat any
redirection from the server manually. This is due to a limitation of the Ht tpURLConnection

class, which does not deal well with redirection of POST requests.

The older API definitely shows its age, and in fact only implements version 1.0 of the HTTP
standard, which is very inefficient and considered archaic. As an alternative, modern Java
programs can use the new API, which was added as a result of Java needing to support the new
HTTP/2 protocol.

It was added as an incubator module in Java 9, but has been made into a fully supported module,

java.net.http, inJava 11. Let’s see a simple example of using the new API:

import static java.net.http.HttpResponse.BodyHandlers.ofString;

var client = HttpClient.newBuilder () .build() ;

var uri = new URI ("https://www.oreilly.com") ;
var request = HttpRequest.newBuilder (uri) .build();
var response = client.send(request,

ofString (Charset.defaultCharset()));

var body = response.body()

System.out.println (body) ;

Note that this API is designed to be extensible, with interfaces such as
HttpResponse.BodySubscriber being available to be implemented for custom
handling. The interface also seamlessly hides the differences between HTTP/2 and the older
HTTP/1.1 protocol, meaning that Java applications will be able to migrate gracefully as web

servers adopt the new version.

Let’s move on to look at the next layer down the networking stack, the Transmission Control
Protocol (TCP).

TCP

TCP is the basis of reliable network transport over the internet. It ensures that web pages and
other internet traffic are delivered in a complete and comprehensible state. From a networking
theory standpoint, the protocol properties that allow TCP to function as this “reliability layer”

for internet traffic are:

Connection based

Data belongs to a single logical stream (a connection).

Guaranteed delivery

Data packets will be resent until they arrive.

Error checked

Damage caused by network transit will be detected and fixed automatically.

TCP is a two-way (or bidirectional) communication channel, and uses a special numbering
scheme (TCP sequence numbers) for data chunks to ensure that both sides of a communication
stream stay in sync. In order to support many different services on the same network host, TCP
uses port numbers to identify services, and ensures that traffic intended for one port does not go

to a different one.

In Java, TCP is represented by the classes Socket and ServerSocket. They are used to
provide the capability to be the client and server side of the connection, respectively—meaning
that Java can be used both to connect to network services and as a language for implementing

new services.

As an example, let’s consider reimplementing HTTP. This is a relatively simple, text-based

protocol. We’ll need to implement both sides of the connection, so let’s start with an HTTP
client on top of a TCP socket. To accomplish this, we will actually need to implement the details
of the HTTP protocol, but we do have the advantage that we have complete control over the
TCP socket.

We will need to both read and write from the client socket, and we’ll construct the actual
request line in accordance with the HTTP standard (which is known as RFC 2616, and uses

explicit line-ending syntax). The resulting code will look something like this:

String hostname = "www.example.com";
int port = 80;

String filename = "/index.html";

try (Socket sock = new Socket (hostname, port);
BufferedReader from = new BufferedReader (
new InputStreamReader (sock.getInputStream()))
PrintWriter to = new PrintWriter (

new OutputStreamWriter (sock.getOutputStream()));) {

// The HTTP protocol
to.print ("GET " + filename +

" HTTP/1.1\r\nHost: "+ hostname +"\r\n\r\n");
to.flush () ;

for (String 1 = null; (1 = from.readLine()) != null;)
System.out.println(l);

On the server side, we’ll need to receive possibly multiple incoming connections. To handle
this, we’ll need to kick off a main server loop, then use accept () to take a new connection
from the operating system. The new connection then will need to be quickly passed to a separate
handler class, so that the main server loop can get back to listening for new connections. The

code for this is a bit more involved than the client case:

// Handler class

private static class HttpHandler implements Runnable {
private final Socket sock;
HttpHandler (Socket client) { this.sock = client; }

public void run() {
try (BufferedReader in =
new BufferedReader (
new InputStreamReader (sock.getInputStream())):;
PrintWriter out =
new PrintWriter (

new OutputStreamWriter (sock.getOutputStream()));) {

out.print ("HTTP/1.0 200\r\nContent-Type: text/plain\r\n\r\n");
String line;
while((line = in.readLine()) != null) {
if (line.length() == 0) break;
out.println(line) ;
}
} catch (Exception e) {

// Handle exception

// Main server loop

public static void main (String[] args) {

try |
int port = Integer.parselnt (args[0]);
ServerSocket ss = new ServerSocket (port);
for(;;) |

Socket client = ss.accept();
HTTPHandler hndlr = new HTTPHandler (client) ;
new Thread (hndlr) .start () ;

}

} catch (Exception e) {
// Handle exception

When designing a protocol for applications to communicate over TCP, there’s a simple and
profound network architecture principle, known as Postel’s Law (after Jon Postel, one of the
fathers of the internet) that you should always keep in mind. It is sometimes stated as follows:
“Be strict about what you send, and liberal about what you will accept.” This simple principle
means that communication can remain broadly possible in a network system, even in the event

of quite imperfect implementations.

Postel’s Law, when combined with the general principle that the protocol should be as simple as
possible (sometimes called the KISS principle), will make the developer’s job of implementing

TCP-based communication much easier than it otherwise would be.

Below TCP is the internet’s general-purpose haulage protocol—the Internet Protocol (IP) itself.

IP

IP is the “lowest common denominator” transport, and provides a useful abstraction over the

physical network technologies that are used to actually move bytes from A to B.

Unlike TCP, delivery of an IP packet is not guaranteed, and a packet can be dropped by any

overloaded system along the path. IP packets do have a destination, but usually no routing data
—it’s the responsibility of the (possibly many different) physical transports along the route to
actually deliver the data.

It is possible to create “datagram” services in Java that are based around single IP packets (or
those with a UDP header, instead of TCP), but this is not often required except for extremely
low-latency applications. Java uses the class DatagramSocket to implement this

functionality, although few developers should ever need to venture this far down the network

stack.

Finally, it’s worth noting some changes that are currently in-flight in the addressing schemes
that are used across the internet. The current dominant version of IP in use is IPv4, which has a
32-bit space of possible network addresses. This space is now very badly squeezed, and various

mitigation techniques have been deployed to handle the depletion.

The next version of IP (IPv6) is being rolled out, but it is not fully accepted and has yet to
displace IPv4, although steady progress toward it becoming the standard continues. In the next
10 years, IPv6 is likely to overtake IPv4 in terms of traffic volume, and low-level networking
will need to adapt to this radically new version. However, for Java programmers, the good news
is that the language and platform have been working for many years on good support for IPv6
and the changes that it introduces. The transition between IPv4 and IPv6 is likely to be much

smoother and less problematic for Java applications than in many other languages.

Chapter 11. Classloading, Reflection, and
Method Handles

In Chapter 3, we met Java’s Class objects, as a way of representing a live type in a running
Java process. In this chapter, we will build on this foundation to discuss how the Java
environment loads and makes new types available. In the second half of the chapter, we will
introduce Java’s introspection capabilities—both the original Reflection API and the newer

Method Handles capabilities.

Class Files, Class Objects, and Metadata

Class files, as we saw in Chapter 1, are the result of compiling Java source files (or, potentially,
other languages) into the intermediate form used by the JVM. These are binary files that are not

designed to be human readable.

The runtime representation of these class files are the class objects that contain metadata, which

represents the Java type that the class file was created from.

Examples of Class Objects

You can obtain a class object in Java in several ways. The simplest is:
Class<?> myCl = getClass()

This returns the class object of the instance that it is called from. However, as we know from
our survey of the public methods of Object, the getClass () method on Object is public,

so we can also obtain the class of an arbitrary object o:
Class<?> ¢ = o.getClass();

Class objects for known types can also be written as “class literals™:

// Express a class literal as a type name followed by ".class"

c int.class; // Same as Integer.TYPE

c = String.class; // Same as "a string".getClass/()

c = byte[].class; // Type of byte arrays
For primitive types and void, we also have class objects that are represented as literals:

// Obtain a Class object for primitive types with various

// predefined constants

c = Void.TYPE; // The special "no-return-value" type

c = Byte.TYPE; // Class object that represents a byte

c = Integer.TYPE; // Class object that represents an int

c = Double.TYPE; // etc.,; see also Short, Character, Long, Float

For unknown types, we will have to use more sophisticated methods.

Class Objects and Metadata

The class objects contain metadata about the given type. This includes the methods, fields,
constructors, and the like that are defined on the class in question. This metadata can be
accessed by the programmer to investigate the class, even if nothing is known about the class

when it is loaded.

For example, we can find all the deprecated methods in the class file (they will be marked with

the @Deprecated annotation):

Class<?> clz = getClassFromDisk() ;
for (Method m : clz.getMethods()) {
for (Annotation a : m.getAnnotations()) {
if (a.annotationType () == Deprecated.class) {

System.out.println (m.getName ()) ;

We could also find the common ancestor class of a pair of class files. This simple form will

work when both classes have been loaded by the same classloader:

public static Class<?> commonAncestor (Class<?> cll, Class<?> cl2) {

if (cll == null || cl2 == null) return null;
if (cll.equals(cl2)) return cll;
if (cll.isPrimitive() || cl2.isPrimitive()) return null;

List<Class<?>> ancestors = new ArrayList<>();

Class<?> ¢ = cll;

while (!c.equals (Object.class)) {
if (c.equals(cl2)) return c;
ancestors.add(c) ;
c = c.getSuperclass();

}

c = cl2;

while (!c.equals(Object.class)) {
for (Class<?> k : ancestors) {

if (c.equals(k)) return c;

}
c = c.getSuperclass();

return Object.class;

Class files have a very specific layout that they must conform to if they are to be legal and
loadable by the JVM. The sections of the class file are (in order):

e Magic number (all class files start with the four bytes CA FE BA BE in hexadecimal)
e Version of class file standard in use

e Constant pool for this class

e Access flags (abstract, public, etc.)

e Name of this class

¢ Inheritance info (e.g., name of superclass)

e Implemented interfaces

e Fields

e Methods

o Attributes

The class file is a simple binary format, but it is not human readable. Instead, tools like javap

(see Chapter 13) should be used to comprehend the contents.

One of the most often used sections in the class file is the Constant Pool, which contains
representations of all the methods, classes, fields, and constants that the class needs to refer to

(whether they are in this class or another). It is designed so that bytecodes can simply refer to a

constant pool entry by its index number—which saves space in the bytecode representation.

There are a number of different class file versions created by various Java versions. However,
one of Java’s backward compatibility rules is that JVMs (and tools) from newer versions can

always use older class files.

Let’s look at how the classloading process takes a collection of bytes on disk and turns it into a

new class object.

Phases of Classloading

Classloading is the process by which a new type is added to a running JVM process. This is the
only way that new code can enter the system, and the only way to turn data into code in the Java

platform. There are several phases to the process of classloading, so let’s examine them in turn.

Loading

The classloading process starts with loading a byte array. This is usually read in from a

filesystem, but can be read from a URL or other location (often represented as a Path object).

The Classloader::defineClass () method is responsible for turning a class file
(represented as a byte array) into a class object. It is a protected method and so is not accessible

without subclassing.

The first job of defineClass () is loading. This produces the skeleton of a class object,
corresponding to the class you’re attempting to load. By this stage, some basic checks have been
performed on the class (e.g., the constants in the constant pool have been checked to ensure that

they’re self-consistent).

However, loading doesn’t produce a complete class object by itself, and the class isn’t yet
usable. Instead, after loading, the class must be linked. This step breaks down into separate

subphases:
e Verification
e Preparation and resolution

e Initialization

Verification

Verification confirms that the class file conforms to expectations, and that it doesn’t try to

violate the JVM’s security model (see “Secure Programming and Classloading” for details).

JVM bytecode is designed so that it can be (mostly) checked statically. This has the effect of

slowing down the classloading process but speeding up runtime (as checks can be omitted).

The verification step is designed to prevent the JVM from executing bytecodes that might crash
it or put it into an undefined and untested state where it might be vulnerable to other attacks by
malicious code. Bytecode verification is a defense against malicious hand-crafted Java

bytecodes and untrusted Java compilers that might output invalid bytecodes.

NOTE

The default methods mechanism works via classloading. When an implementation
of an interface is being loaded, the class file is examined to see if implementations
for default methods are present. If they are, classloading continues normally. If
some are missing, the implementation is patched to add in the default

implementation of the missing methods.

Preparation and Resolution

After successful verification, the class is prepared for use. Memory is allocated and static

variables in the class are readied for initialization.

At this stage, variables aren’t initialized, and no bytecode from the new class has been executed.
Before we run any code, the JVM checks that every type referred to by the new class file is
known to the runtime. If the types aren’t known, they may also need to be loaded—which can

kick off the classloading process again, as the JVM loads the new types.

This process of loading and discovery can execute iteratively until a stable set of types is

1
reached. This is called the “transitive closure” of the original type that was loaded.

Let’s look at a quick example, by examining the dependencies of java.lang.Object.
Figure 11-1 shows a simplified dependency graph for Object. It only shows the direct
dependencies of Object that are visible in the public API of Object, and the direct, API-
visible dependencies of those dependencies. In addition, the dependencies of Class on the
reflection subsystem, and of PrintStreamand PrintWriter on the I/O subsystems, are

shown in very simplified form.

In Figure 11-1, we can see part of the transitive closure of Object.

{
I Reflection

/ Serializable /[- :L_j_a_f;i._l_agg_}
l —
""" I A T Class
Throwable l \
| \
[\ ClassLoader
| \
Cremtin |
| \
i \ % 7/Comparable /
\

\
CloneNotSupportedException) 1 N
¥ / CharSequence /

@ruptedExce@

Figure 11-1. Transitive closure of types

Initialization
Once resolved, the JVM can finally initialize the class. Static variables can be initialized and

static initialization blocks are run.

This is the first time that the JVM is executing bytecode from the newly loaded class. When the
static blocks complete, the class is fully loaded and ready to go.

Secure Programming and Classloading

Java programs can dynamically load Java classes from a variety of sources, including untrusted
sources, such as websites reached across an insecure network. The ability to create and work
with such dynamic sources of code is one of the great strengths and features of Java. To make it
work successfully, however, Java puts great emphasis on a security architecture that allows

untrusted code to run safely, without fear of damage to the host system.

Java’s classloading subsystem is where a lot of safety features are implemented. The central

idea of the security aspects of the classloading architecture is that there is only one way to get

new executable code into the process: a class.

This provides a “pinch point”—the only way to create a new class is to use the functionality
provided by Classloader to load a class from a stream of bytes. By concentrating on making

classloading secure, we can constrain the attack surface that needs to be protected.

One extremely helpful aspect of the JVM’s design is that the JVM is a stack machine, so all
operations are evaluated on a stack, rather than in registers. The stack state can be deduced at
every point in a method, and this can be used to ensure that the bytecode doesn’t attempt to

violate the security model.

Some of the security checks that are implemented by the JVM are:

e All the bytecode of the class has valid parameters.

e All methods are called with the right number of parameters of the correct static types.

e Bytecode never tries to underflow or overflow the JVM stack.

e Local variables are not used before they are initialized.

e Variables are only assigned suitably typed values.

¢ Field, method, and class access control modifiers must be respected.

¢ No unsafe casts (e.g., attempts to convert an int to a pointer).

e All branch instructions are to legal points within the same method.

Of fundamental importance is the approach to memory, and pointers. In assembly and C/C++,
integers and pointers are interchangeable, so an integer can be used as a memory address. We

can write it in assembly like this:

mov eax, [STAT] ; Move 4 bytes from addr STAT into eax

The lowest level of the Java security architecture involves the design of the Java Virtual
Machine and the bytecodes it executes. The JVM does not allow any kind of direct access to
individual memory addresses of the underlying system, which prevents Java code from
interfering with the native hardware and operating system. These intentional restrictions on the

JVM are reflected in the Java language itself, which does not support pointers or pointer

arithmetic.

Neither the language nor the JVM allow an integer to be cast to an object reference or vice
versa, and there is no way whatsoever to obtain an object’s address in memory. Without

capabilities like these, malicious code simply cannot gain a foothold.

Recall from Chapter 2 that Java has two types of values—primitives and object references.
These are the only things that can be put into variables. Note that “object contents” cannot be
put into variables. Java has no equivalent of C’s st ruct and always has pass-by-value

semantics. For reference types, what is passed is a copy of the reference—which is a value.

References are represented in the JVM as pointers, but they are not directly manipulated by the

bytecode. In fact, bytecode does not have opcodes for “access memory at location X.”

Instead, all we can do is access fields and methods; bytecode cannot call an arbitrary memory
location. This means that the JVM always knows the difference between code and data. In turn,

this prevents a whole class of stack overflow and other attacks.

Applied Classloading

To apply knowledge of classloading, it’s important to fully understand

java.lang.ClassLoader.

This is an abstract class that is fully functional and has no abstract methods. The abstract
modifier exists only to ensure that users must subclass ClassLoader if they want to make use

of it.

In addition to the aforementioned defineClass () method, we can load classes via a public
loadClass () method. This is commonly used by the URLC1lassLoader subclass, which

can load classes from a URL or file path.

We can use URLClassLoader to load classes from the local disk like this:

String current = new File(".").getCanonicalPath();

try (URLClassLoader ulr =
new URLClassLoader (new URL[] {new URL("file://"+ current + "/")})) {
Class<?> clz = ulr.loadClass("com.example.DFACaller") ;

System.out.println(clz.getName ()) ;

The argument to 1oadClass () is the binary name of the class file. Note that in order for the

URLClassLoader to find the classes correctly, they need to be in the expected place on the

filesystem. In this example, the class com.example.DFACaller would need to be found in

the file com/example/DFACaller.class relative to the working directory.

Alternatively, Class provides Class.forName (), a static method that can load classes that

are present on the classpath but that haven’t been referred to yet.

This method takes a fully qualified class name. For example:

Class<?> jdbcClz = Class.forName ("oracle.jdbc.driver.OracleDriver");

It throws a ClassNotFoundException if class can’t be found. As the example indicates,
this was commonly used in older versions of JDBC to ensure that the correct driver was loaded,

while avoiding a direct import dependency on the driver classes.
With the advent of JDBC 4.0, this initialization step is no longer required.

Class.forName () has an alternative, three-argument form, which is sometimes used in

conjunction with alternative class loaders:

Class.forName (String name, boolean inited, Classloader classloader);

There are a host of subclasses of ClassLoader that deal with individual special cases of

classloading—which fit into the classloader hierarchy.

Classloader Hierarchy

The JVM has a hierarchy of classloaders; each classloader in the system (apart from the initial,

“bootstrap” classloader) has a parent that it can delegate to.

NOTE

The arrival of modules in Java 9 has affected the details of the way that classloading
operates. In particular, the classloaders that load the JRE classes are now modular

classloaders.

The convention is that a classloader will ask its parent to resolve and load a class, and will only
perform the job itself if the parent classloader is unable to comply. Some common classloaders

are shown in Figure 11-2.

Platform
Classloaders

Bootstrap

Application

User and Application
User defined

Classloaders
Figure 11-2. Classloader hierarchy

BOOTSTRAP CLASSLOADER

This is the first classloader to appear in any JVM process, and is only used to load the core
system classes. In older texts, it is sometimes referred to as the primordial classloader, but

modern usage favors the bootstrap name.

For performance reasons, the bootstrap classloader does no verification, and relies on the boot
classpath being secure. Types loaded by the bootstrap classloader are implicitly granted all

security permissions and so this group of modules is kept as restricted as possible.

PLATFORM CLASSLOADER

This level of the classloader hierarchy was originally used as the extension classloader, but this

mechanism has now been removed.

In its new role this classloader (which has the bootstrap classloader as its parent) is now known
as the platform classloader. 1t is available via the method
ClassLoader::getPlatformClassLoader and appears in (and is required by) the Java
specification from version 9 onward. It loads the remaining modules from the base system (the

equivalent of the old rt . jar used in version 8 and earlier).

In the new modular implementations of Java, far less code is required to bootstrap a Java
process and accordingly, as much JDK code (now represented as modules) as possible has been

moved out of the scope of the bootstrap loader and into the platform loader instead.

APPLICATION CLASSLOADER

This was historically sometimes called the system classloader, but this is a bad name, as it
doesn’t load the system (the bootstrap and platform classloaders do). Instead, it is the
classloader that loads application code from either the module path or the classpath. It is the

most commonly encountered classloader, and it has the platform classloader as its parent.

To perform classloading, the application classloader first searches the named modules on the
module path (the modules known to any of the three built-in classloaders). If the requested class
is found in a module known to one of these classloaders then that classloader will load the class.
If the class is not found in any known named module, the application classloader delegates to its
parent (the platform classloader). If the parent fails to find the class, the application classloader
searches the classpath. If the class is found on the classpath, it is loaded as a member of the

application classloader’s unnamed module.

The application classloader is very widely used, but many advanced Java frameworks require
functionality that the main classloaders do not supply. Instead, extensions to the standard
classloaders are required. This forms the basis of “custom classloading”—which relies on

implementing a new subclass of ClassLoader.

CUSTOM CLASSLOADER

When performing classloading, sooner or later we have to turn data into code. As noted earlier,
the defineClass () (actually a group of related methods) is responsible for converting a

byte[] into a class object.

This method is usually called from a subclass—for example, this simple custom classloader that

creates a class object from a file on disk:

public static class DiskLoader extends ClassLoader {
public DiskLoader () {

super (DiskLoader.class.getClassLoader()) ;

public Class<?> loadFromDisk(String clzName) throws IOException {
byte[] b = Files.readAllBytes (Paths.get (clzName)) ;

return defineClass (null, b, 0, b.length);

Notice that in the preceding example we didn’t need to have the class file in the “correct”

location on disk, as we did for the URLClassLoader example.

We need to provide a classloader to act as parent for any custom classloader. In this example,
we provided the classloader that loaded the DiskLoader class (which would usually be the

application classloader).

Custom classloading is a very common technique in Java EE and advanced SE environments,
and it provides very sophisticated capabilities to the Java platform. We’ll see an example of

custom classloading later on in this chapter.

One drawback of dynamic classloading is that when working with a class object that we loaded
dynamically, we typically have little or no information about the class. To work effectively with
this class, we will therefore usually have to use a set of dynamic programming techniques

known as reflection.

Reflection

Reflection is the capability of examining, operating on, and modifying objects at runtime. This

includes modifying their structure and behavior—even self-modification.

WARNING

The Java modules system introduces major changes to how reflection works on the
platform. It is important to reread this section after you have gained an

understanding of how modules work, and how the two capabilities interact.

Reflection is capable of working even when type and method names are not known at compile
time. It uses the essential metadata provided by class objects, and can discover method or field

names from the class object—and then acquire an object representing the method or field.

Instances can also be constructed reflexively (by using Class: :newInstance () or another
constructor). With a reflexively constructed object and a Method object, we can call any

method on an object of a previously unknown type.

This makes reflection a very powerful technique—so it’s important to understand when we

should use it, and when it’s overkill.

When to Use Reflection

Many, if not most, Java frameworks use reflection in some capacity. Writing architectures that
are flexible enough to cope with code that is unknown until runtime usually requires reflection.
For example, plug-in architectures, debuggers, code browsers, and REPL-like environments are

usually implemented on top of reflection.

Reflection is also widely used in testing (e.g., by the JUnit and TestNG libraries) and for mock
object creation. If you’ve used any kind of Java framework you have almost certainly been

using reflective code, even if you didn’t realize it.

To start using the Reflection API in your own code, the most important thing to realize is that it
is about accessing objects where virtually no information is known, and that the interactions can

be cumbersome because of this.

If some static information is known about dynamically loaded classes (e.g., that the classes
loaded all implement a known interface), this can greatly simplify the interaction with the

classes and reduce the burden of operating reflectively.

It is a common mistake to try to create a reflective framework that attempts to account for all
possible circumstances, instead of dealing only with the cases that are immediately applicable to

the problem domain.

How to Use Reflection

The first step in any reflective operation is to get a Class object representing the type to be
operated on. From this, other objects, representing fields, methods, or constructors, can be

accessed and applied to instances of the unknown type.

To get an instance of an unknown type, it is simplest to use the no-arg constructor, which is

made available directly via the Class object:

Class<?> clz = getSomeClassObject () ;

Object rcvr = clz.newlInstance ()

For constructors that take arguments, you will have to look up the precise constructor needed,

represented as a Constructor object.

The Method objects are one of the most commonly used objects provided by the Reflection
API. We’ll discuss them in detail—the Constructor and Field objects are similar in many

respects.

METHOD OBJECTS

A class object contains a Method object for each method on the class. These are lazily created

after classloading, and so they aren’t immediately visible in an IDE’s debugger.

Let’s look at the source code from Method to see what information and metadata is held for

each method:

private Class<?> clazz;
private int slot;
// This is guaranteed to be interned by the VM in the 1.4

// reflection implementation

private String name;

private Class<?> returnType;
private Class<?>[] parameterTypes;
private Class<?>[] exceptionTypes;
private int modifiers;

// Generics and annotations support
private transient String signature;
// Generic info repository; lazily initialized

private transient MethodRepository genericInfo;

private byte[] annotations;

private byte[] parameterAnnotations;
private byte[] annotationDefault;
private volatile MethodAccessor methodAccessor;

This provides all available information, including the exceptions the method can throw,

annotations (with a retention policy of RUNTIME), and even the generics information that was

otherwise removed by javac.

We can explore the metadata contained on the Method object by calling accessor methods, but

by far the single biggest use case for Method is reflexive invocation.

The methods represented by these objects can be executed by reflection using the invoke ()

method on Method. An example of invoking hashCode () on a String object follows:

Object rcvr = "a";
try {
Class<?>[] argTypes = new Class|[] { };

Object[] args = null;

Method meth = rcvr.getClass () .getMethod ("hashCode", argTypes):;
Object ret = meth.invoke (rcvr, args);

System.out.println (ret);

} catch (IllegalArgumentException | NoSuchMethodException |
SecurityException e) {
e.printStackTrace();

} catch (IllegalAccessException | InvocationTargetException x) {

x.printStackTrace () ;

To get the Method object we want to use, we call getMethod () on the class object. This

will return a reference to a Method corresponding to a public method on the class.

Note that the static type of rcvr was declared to be Object. No static type information was
used during the reflective invocation. The invoke () method also returns Object, so the

actual return type of hashCode () has been autoboxed to Integer.

This autoboxing is one of the aspects of Reflection where you can see some of the slight

awkwardness of the API—which is the subject of the next section.

PROBLEMS WITH REFLECTION

Java’s Reflection API is often the only way to deal with dynamically loaded code, but there are

a number of annoyances in the API that can make it slightly awkward to deal with:

e Heavy use of Object [] to represent call arguments and other instances.

e Also Class[] when talking about types.

e Methods can be overloaded on name, so we need an array of types to distinguish between

methods.

e Representing primitive types can be problematic—we have to manually box and unbox.

void is a particular problem—there is a void. class, but it’s not used consistently. Java
doesn’t really know whether void is a type or not, and some methods in the Reflection API use

null instead.

This is cumbersome, and can be error prone—in particular, the slight verbosity of Java’s array

syntax can lead to errors.

One further problem is the treatment of non-pub1ic methods. Instead of using
getMethod (), we must use getDeclaredMethod () to get a reference to a non-public
method, and then override the Java access control subsystem with setAccessible () to

allow it to be executed:

public class MyCache {
private void flush () {
// Flush the cache...

Class<?> clz = MyCache.class;

try {
Object rcvr = clz.newlInstance () ;
Class<?>[] argTypes = new Class[] { };
Object[] args = null;

Method meth = clz.getDeclaredMethod ("flush", argTypes):
meth.setAccessible (true) ;
meth.invoke (rcvr, args);
} catch (IllegalArgumentException | NoSuchMethodException |
InstantiationException | SecurityException e) {
e.printStackTrace();
} catch (IllegalAccessException | InvocationTargetException x) {

x.printStackTrace () ;

However, it should be pointed out that reflection always involves unknown information. To
some degree, we just have to live with some of this verbosity as the price of dealing with

reflective invocation, and the dynamic, runtime power that it gives to the developer.

As a final example in this section, let’s show how to combine reflection with custom
classloading to inspect a class file on disk and see if it contains any deprecated methods (these

should be marked with @Deprecated):

public class CustomClassloadingExamples ({

public static class DiskLoader extends ClassLoader ({

public DiskLoader () {

super (DiskLoader.class.getClassLoader())

public Class<?> loadFromDisk (String clzName)
throws IOException {
byte[] b = Files.readAllBytes (Paths.get (clzName)) ;

return defineClass (null, b, 0, b.length);

public void findDeprecatedMethods (Class<?> clz) {
for (Method m : clz.getMethods()) {
for (Annotation a : m.getAnnotations()) {
if (a.annotationType () == Deprecated.class) {

System.out.println (m.getName ()) ;

public static void main (String[] args)
throws IOException, ClassNotFoundException {
CustomClassloadingExamples rfx =

new CustomClassloadingExamples () ;

if (args.length > 0) {
DiskLoader dlr = new DiskLoader () ;
Class<?> clzToTest = dlr.loadFromDisk(args[0]);
rfx.findDeprecatedMethods (clzToTest) ;

Dynamic Proxies

One last piece of the Java Reflection story is the creation of dynamic proxies. These are classes
(which extend java.lang.reflect.Proxy) that implement a number of interfaces. The
implementing class is constructed dynamically at runtime, and forwards all calls to an

invocation handler object:

InvocationHandler h = new InvocationHandler () {

public Object invoke (Object proxy, Method method, Object[] args)
throws Throwable {
String name = method.getName () ;
System.out.println("Called as: "+ name);
switch (name) {
case "isOpen":
return false;
case '"close":

return null;

return null;
)i

Channel c¢ =
(Channel) Proxy.newProxyInstance (Channel.class.getClassLoader (),
new Class|[] { Channel.class }, h);

c.isOpen();

c.close () ;

Proxies can be used as stand-in objects for testing (especially in test mocking approaches).

Another use case is to provide partial implementations of interfaces, or to decorate or otherwise

control some aspect of delegation:

public class RememberinglList implements InvocationHandler ({

private final List<String> proxied = new ArrayList<>();

public Object invoke (Object proxy, Method method, Object[] args)
throws Throwable {
String name = method.getName () ;
switch (name) ({
case '"clear":
return null;
case '"remove":
case "removeAll":

return false;

return method.invoke (proxied, args);

RememberingList hList = new RememberingList () ;

List<String> 1 =

(List<String>) Proxy.newProxyInstance (List.class.getClassLoader(),

new Class[] { List.class },
hList) ;

l.add("cat");

1l.add ("bunny") ;

l.clear():;

System.out.println(1l);

Proxies are an extremely powerful and flexible capability that are used within many Java

frameworks.

Method Handles

In Java 7, a brand new mechanism for introspection and method access was introduced. This
was originally designed for use with dynamic languages, which may need to participate in
method dispatch decisions at runtime. To support this at the JVM level, the new
invokedynamic bytecode was introduced. This bytecode was not used by Java 7 itself, but
with the advent of Java 8, it was extensively used in both lambda expressions and the Nashorn

JavaScript implementation.

Even without invokedynamic, the new Method Handles API is comparable in power to
many aspects of the Reflection API—and can be cleaner and conceptually simpler to use, even

standalone. It can be thought of as Reflection done in a safer, more modern way.

MethodType

In Reflection, method signatures are represented as Class []. This is quite cumbersome. By
contrast, method handles rely on MethodType objects. These are a typesafe and object-

oriented way to represent the type signature of a method.

They include the return type and argument types, but not the receiver type or name of the
method. The name is not present, as this allows any method of the correct signature to be bound

to any name (as per the functional interface behavior of lambda expressions).

A type signature for a method is represented as an immutable instance of MethodType, as

acquired from the factory method MethodType .methodType (). For example:

MethodType m2Str = MethodType.methodType (String.class); // toString()

// Integer.parselnt ()
MethodType mtParselnt =
MethodType.methodType (Integer.class, String.class);

// defineClass () from ClassLoader
MethodType mtdefClz = MethodType.methodType (Class.class, String.class,
byte[] .class, int.class,

int.class) ;

This single piece of the puzzle provides significant gains over Reflection, as it makes method
signatures significantly easier to represent and discuss. The next step is to acquire a handle on a

method. This is achieved by a lookup process.

Method Lookup

Method lookup queries are performed on the class where a method is defined, and are dependent
on the context that they are executed from. In this example, we can see that when we attempt to
look up the protected Class: :defineClass () method from a general lookup context, we
fail to resolve it with an T11egalAccessException, as the protected method is not

accessible:

public static void lookupDefineClass (Lookup 1) {
MethodType mt = MethodType.methodType (Class.class, String.class,
byte[].class, int.class,

int.class);

try {
MethodHandle mh =
1.findVirtual (ClassLoader.class, "defineClass", mt);
System.out.println (mh) ;
} catch (NoSuchMethodException | IllegalAccessException e) {

e.printStackTrace();

Lookup 1 = MethodHandles.lookup () ;
lookupDefineClass (1) ;

We always need to call MethodHandles. lookup () —this gives us a lookup context object

based on the currently executing method.

Lookup objects have several methods (which all start with £ind) declared on them for method

resolution. These include findvVirtual (), findConstructor (), and findStatic ().

One big difference between the Reflection and Method Handles APIs is access control. A
Lookup object will only return methods that are accessible to the context where the lookup was
created—and there is no way to subvert this (no equivalent of Reflection’s

setAccessible () hack).

Method handles therefore always comply with the security manager, even when the equivalent
reflective code does not. They are access-checked at the point where the lookup context is
constructed—the lookup object will not return handles to any methods to which it does not have

proper access.

The lookup object, or method handles derived from it, can be returned to other contexts,
including ones where access to the method would no longer be possible. Under those
circumstances, the handle is still executable—access control is checked at lookup time, as we

can see in this example:

public class Sneakyloader extends ClassLoader {
public SneakyLoader () {

super (SneakylLoader.class.getClassLoader()) ;

public Lookup getLookup () {
return MethodHandles.lookup () ;

SneakyLoader snLdr = new Sneakyloader();
1 = snLdr.getLookup() ;
lookupDefineClass (1) ;

With a Lookup object, we’re able to produce method handles to any method we have access to.
We can also produce a way of accessing fields that may not have a method that gives access.

The findGetter () and findSetter () methods on Lookup produce method handles that

can read or update fields as needed.

Invoking Method Handles

A method handle represents the ability to call a method. They are strongly typed and as typesafe
as possible. Instances are all of some subclass of java.lang.invoke.MethodHandle,

which is a class that needs special treatment from the JVM.

There are two ways to invoke a method handle—invoke () and invokeExact (). Both of
these take the receiver and call arguments as parameters. invokeExact () tries to call the

method handle directly as is, whereas invoke () will massage call arguments if needed.

In general, invoke () performs an asType () conversion if necessary—this converts

arguments according to these rules:

e A primitive argument will be boxed if required.

A boxed primitive will be unboxed if required.

Primitives will be widened is necessary.

A void return type will be massaged to 0 or null, depending on whether the expected

return was primitive or of reference type.

null values are passed through, regardless of static type.

With these potential conversions in place, invocation looks like this:

Object rcvr = "a";

try {
MethodType mt = MethodType.methodType (int.class) ;
MethodHandles.Lookup 1 = MethodHandles.lookup () ;

MethodHandle mh = 1.findVirtual (rcvr.getClass (), "hashCode", mt);
int ret;
try |

ret = (int)mh.invoke (rcvr);

System.out.println (ret);
} catch (Throwable t) {
t.printStackTrace () ;
}

} catch (IllegalArgumentException |
NoSuchMethodException | SecurityException e) ({
e.printStackTrace () ;

} catch (IllegalAccessException x) {

x.printStackTrace () ;

Method handles provide a clearer and more coherent way to access the same dynamic
programming capabilities as Reflection. In addition, they are designed to work well with the
low-level execution model of the JVM and thus hold out the promise of much better

performance than Reflection can provide.

As in Chapter 6, we’re borrowing the expression transitive closure from the branch of
1

mathematics called graph theory.

Chapter 12. Java Platform Modules

With the release of Java 9, the platform finally gained the long-awaited modules system. This
feature had originally been intended to ship as part of Sun’s Java 7 release, before the
acquisition by Oracle. However, the task proved to be far more complex and subtle than

anticipated.

When Oracle acquired Java (as part of the technology they received from Sun Microsystems)
Mark Reinhold, Java’s Chief Architect, proposed “Plan B”, which reduced the scope of Java 7

to allow for a quicker release.

Java platform modules (“Project Jigsaw”) was pushed back, along with lambdas, to Java 8.
However, during the development of Java 8, the size and complexity of the feature led to a
decision that, rather than delay Java 8 (and availability of lambdas and other highly desired

features), it would be better to defer modules to Java 9.

The end result was that the modules capability was delayed first to Java 8 and then to Java 9.
Even then, the scope of the work led to substantial delays in the release of Java 9, and so

modules did not actually ship until September 2017.

In this chapter we will provide a basic introduction to the Java Platform Modules System
(JPMS). However, this is a large and complex subject—interested readers may well require a

more in-depth reference, such as Java 9 Modularity by Sander Mak and Paul Bakker (O’Reilly).

WARNING

Modules are a relatively advanced feature that are primarily about packaging and
deploying entire applications and their dependencies. It is not necessary for a new
Java programmer to fully understand this topic while still learning how to write

simple Java programs.

Due to the advanced nature of modules, this chapter assumes you are familiar with a modern
Java build tool, such as Gradle or Maven. If you are new to Java, you can safely ignore

references to those tools and just read the chapter to get a first, high-level overview of JPMS.

Why Modules?

There were several major motivating reasons for wanting to add modules to the Java platform.

These included a desire for:
e Strong encapsulation

e Well-defined interfaces
e Explicit dependencies

These are all language (and application design) level, and they were combined with the promise

of new platform-level capabilities as well:

Scalable development

Improved performance (especially startup time) and reduced footprint

Reduced attack surface and better security

Evolvable internals

On the encapsulation point, this was driven by the fact that the original language specification
only supports private, public, protected, and package-private visibility levels. There is no way to

control access in a more fine-grained way to express concepts such as:

e Only specified packages are available as an API—others are internal and may not be

accessed

e Certain packages can be accessed by this list of packages but no others

e Defining a strict exporting mechanism

The lack of these and related capabilities has been a significant shortcoming when architecting
larger Java systems. Not only that, but without a suitable protection mechanism, it would be
very difficult to evolve the internals of the JDK—as nothing prevents user applications from

directly accessing implementation classes.

The modules system attempts to address all of these concerns at once and to provide a solution

that works both for the JDK and for user applications.

Modularizing the JDK

The monolithic JDK that shipped with Java 8 was the first target for the modules system, and
the familiar rt . jar was broken up into modules. This built upon work done in Java 8 before

modules were pushed back into Java 9—the Compact Profiles feature.

java.base is the module that represents the minimum that’s actually needed for a Java

application to start up. It contains core packages, such as:

java.io
java.lang
java.math
java.net
java.nio
java.security
java.text
java.time
Jjava.util
javax.crypto
javax.net

javax.security

along with some subpackages and non-exported implementation packages such as
sun.text.resources. Some of the differences in compilation behavior between Java 8 and
modular Java can be seen in this simple program, which extends an internal public class

contained in java.base:

import java.util.Arrays;

import sun.text.resources.FormatData;

public final class FormatStealer extends FormatData ({
public static void main (String[] args) {
FormatStealer fs = new FormatStealer ()

fs.run();

private wvoid run () {
String[] s = (String[]) handleGetObject ("japanese.Eras");
System.out.println (Arrays.toString(s));

Object[][] contents = getContents();
Object[] eraData = contents[14];
Object[] eras = (Object[])eraDatalll];

System.out.println (Arrays.toString(eras));

When compiled and run under Java 8, this produces a list of Japanese eras:

[, Meiji, Taisho, Showa, Heisei]

[, Meiji, Taisho, Showa, Heisei]

However, attempting to compile the code on Java 11 produces this error message:

$ javac javanut7/chl2/FormatStealer.java
javanut7/chl2/FormatStealer.java:4:
package sun.text.resources is not visible
import sun.text.resources.FormatData;
(package sun.text.resources is declared in module
java.base, which does not export it to the unnamed module)
javanut7/chl2/FormatStealer.java:14: cannot find symbol
String[] s = (String[]) handleGetObject ("japanese.Eras");
method handleGetObject (String)
class FormatStealer
javanut7/chl2/FormatStealer.java:17: cannot find symbol
Object[][] contents = getContents();
method getContents ()
class FormatStealer

3 errors

With a modular Java, even classes that are public cannot be accessed unless they are explicitly
exported by the module they are defined in. We can temporarily force the compiler to use the
internal package (basically reasserting the old access rules) with the ——add-exports switch,
like this:

$ javac --add-exports java.base/sun.text.resources=ALL-UNNAMED \
javanut7/chl2/FormatStealer.java
javanut7/chl2/FormatStealer.java:5:
FormatData is internal proprietary API and may be
removed in a future release
import sun.text.resources.FormatData;
javanut7/chl2/FormatStealer.java:7:
FormatData is internal proprietary API and may be
removed in a future release
public final class FormatStealer extends FormatData {

A

2 warnings

We need to specify that the export is being granted to the unnamed module, as we are compiling
our class standalone and not as part of a module. The compiler warns us that we’re using an

internal API and that this might break with a future release of Java.

Interestingly, if our code is run on Java 11, then the output produced is slightly different:

[, Meiji, Taisho, Showa, Heisei, NewEra]

[, Meiji, Taisho, Showa, Heisei, NewEra]

This is because the Japanese era will change from Heisei (the current era) to a new one on May
1, 2019. By tradition, the name of the new era is not known ahead of time, so “NewEra” is a
placeholder for the name that will be replaced by the official name in a future release. Unicode

code point U+32FF has been reserved for the character that will represent the new era name.

Although java.base is the absolute minimum that an application needs to start up, at compile

time we want the visible platform to be as close to the expected (Java 8) experience as possible.

This means that we use a much larger set of modules, contained under an umbrella module,

java.se. This module has a dependency graph, shown in Figure 12-1.

java.se

I
4 3 3
v v v v v
: : java.
] jaVa.5q] | rOWS £ java.xml.crypto management rmi

v v\

— javasal java.desktop maniei';:fnent \ java.security.jgss

A 4 A 4 h 4 A 4 A 4
java.scripting Iljava.naming Ijava.logging || java.xml I

_ \ \4’ javﬂ.base < J J 2 . 2 J Z__/

java.prefs java.security.sas|

java.compiler java.instrument java.rmi

java.datatransfer l

Figure 12-1. Module dependency graph of java.se

This brings in almost all of the classes and packages that most Java developers expect and use.
However, the modules defining the CORBA and Java EE APIs are not required by java. se,

but they are required by the java. se.ee module.

WARNING

This means that any project that depends on the Java EE APIs (or CORBA) will not

compile by default on Java 9 onward and a special build config must be used.

This includes APIs like JAXB—to make such projects compile, java.se.ee must be

explicitly included in the build.

As well as these changes to compilation visibility, due to the modularization of the JDK, the

modules system is also intended to allow developers to modularize their own code.

Writing Your Own Modules

In this section, we will discuss the basic concepts needed to start writing modular Java

applications.

Basic Modules Syntax

The key to modularizing is the new file module-info.java, which contains a description of a

module. This is referred to as a module descriptor.
A module is laid out for compilation correctly on the filesystem in the following way:

e Below the source root of the project (src), there needs to be a directory named the same as

the module (the moduledir).

e Inside the moduledir is the module-info.java, at the same level as where the packages start

from.

The module info is compiled to a binary format, module-info.class, which contains the metadata
that will be used when a modular runtime attempts to link and run our application. Let’s look at

a simple example of a module-info.java:

module kathik {

requires java.net.http;

exports kathik.main;

This introduces some new syntax: module, exports, and requires—but these are not

really full keywords in the accepted sense. As stated in the Java Language Specification SE 9:

A further ten character sequences are restricted keywords: open, module, requires,
transitive, exports, opens, to, uses, provides, and with. These character
sequences are tokenized as keywords solely where they appear as terminals in the

ModuleDeclaration and ModuleDirective productions.

This means that these keywords can only appear in the module metadata and are compiled into

the binary format by javac. The meaning of the major restricted keywords is:

module

Starts the module’s metadata declaration

requires

Lists a module on which this module depends

exports

Declares which packages are exported as an API
The remaining keywords will be introduced throughout the rest of the chapter.

In our example, this means that we’re declaring a module kathik that depends upon the
module java.net.http that was standardized in Java 11 (as well as an implicit dependency
on java.base). The module exports a single package, kathik.main, which is the only

package in this module that will be accessible from other modules at compile time.

Building a Simple Modular Application

As an example, let’s build a simple tool that checks whether websites are using HTTP/2 yet,
using the API that we met in Chapter 10:

import static java.net.http.HttpResponse.BodyHandlers.ofString;

public final class HTTP2Checker {
public static void main (String[] args) throws Exception {
if (args.length == 0) {
System.err.println ("Provide URLS to check");
}

for (final var location : args) {
var client = HttpClient.newBuilder () .build() ;
var uri = new URI (location);

var req = HttpRequest.newBuilder (uri) .build() ;

var response = client.send(req,

ofString (Charset.defaultCharset()));

System.out.println(location +": "+ response.version());

This relies on two modules—7java.net.http and the ubiquitous java.base. The module

file for the app is very simple:

module http2checker {

requires java.net.http;

Assuming a simple, standard module layout, this can be compiled like this:

$ javac -d out/http2checker\
src/http2checker/javanut7/chl2/HTTP2Checker. java\

src/http2checker/module-info.java

This creates a compiled module in the out/ directory. For use, it needs to be packaged as a JAR
file:

$ jar -cfe httpchecker.jar javanut7.chl2.HTTP2Checker\
-C out/http2checker/

We used the —e switch to set an entry point for the module—that is, a class to be executed when

we use the module as an application. Let’s see it in action:

$ java -jar httpchecker.jar //www.google.com
//www.google.com: HTTP 1 1
$ java -jar httpchecker.jar //www.google.com

//www.google.com: HTTP 2

This shows that, at the time of writing, Google’s website was serving its main page over HTTPS
using HTTP/2, but still over HTTP/1.1 for legacy HTTP service.

Now that we have seen how to compile and run a simple modular application, let’s meet some

more of the core features of modularity that are needed to build and run full-size applications.

The Module Path

Many Java developers are familiar with the concept of the classpath. When working with

modular Java applications, we instead need to work with the module path. This is a new concept

for modules that replaces the classpath wherever possible.

Modules carry metadata about their exports and dependencies—they are not just a long list of
types. This means that a graph of module dependencies can be built easily and that module

resolution can proceed efficiently.

Code that is not yet modularized continues to be placed on the classpath. This code is loaded
into the unnamed module, which is special and can read all other modules that can be reached
from java. se. Using the unnamed module happens automatically when classes are placed on

the classpath.

This provides a migration path to adopting a modular Java runtime without having to migrate to
a fully modular application path. However, it does have two major drawbacks: none of the
benefits of modules will be available until the app is fully migrated, and the self-consistency of

the classpath must be maintained by hand until modularization is complete.

Automatic Modules

One of the constraints of the modules system is that we can’t reference JARs on the classpath
from named modules. This is a safety feature—the designers of the module system wanted the
module dependency graph to utilize full metadata. However, there may be times when modular
code needs to reference packages that have not yet been modularized. The solution for this is to
place the unmodified JAR onto the module path directly (and remove it from the classpath).

This has the following features:

A JAR on the module path becomes an automatic module

Module name derived from JAR name (or read from MANIFEST . MF)

Exports every package

Requires all other modules (including the unnamed module)

This is another feature designed to mitigate and help with migration, but some safety is still

being given up by using automatic modules.

Open Modules

As noted, simply marking a method pub11c no longer guarantees that the element will be
accessible everywhere. Instead, accessibility now depends also upon whether the package

containing that element is exported by its defining module. Another major issue in the design of

modules is the use of reflection to access classes.

Reflection is such a wide-ranging, general-purpose mechanism that it is difficult to see, at first
glance, how it can be reconciled with the strong encapsulation goals of JPMS. Worse yet, so
many of the Java ecosystem’s most important libraries and frameworks rely on reflection (e.g.,
unit testing, dependency injection, and many more) that not having a solution for reflection

would make modules impossible to adopt for any real application.

The solution provided is twofold. First, a module can declare itself an open module, like this:

open module kathik {
exports kathik.api;

This declaration has the effect that:

e All packages in the module can be accessed via reflection

e Compile-time access is not provided for non-exported packages

This means that the configuration behaves like a standard module at compile time. The overall

intent is to provide simple compatibility with existing code and frameworks and ease migration
pain. With an open module, the previous expectation of being able to reflectively access code is
restored. In addition, the setAccessible () hack that allows access to private and other

methods that would not normally permit access is preserved for open modules.

Finer-grained control over reflective access is also provided via the opens restricted keyword.
This selectively opens specific packages for reflective access by explicitly declaring packages to

be accessible via reflection:

module kathik {
exports kathik.api;

opens kathik.domain;

This type of usage is likely to be useful when, for example, you are providing a domain model
to be used by a module-aware object-relational mapping (ORM) system that needs full

reflective access to the core domain types of a module.

It is possible to go further and restrict reflective access to specific client packages, using the to

restricted keyword. Where possible, this can be a good design principle, but of course such a

technique will not work well with a general-purpose framework such as an ORM.

NOTE

In a similar way, it is possible to restrict the export of a package to only specific
external packages. However, this feature was largely added to help with the

modularization of the JDK itself, and it has limited applicability to user modules.

Not only that, but it is also possible to both export and open a package, but this is not
recommended—during migration, access to a package should ideally be either compile-time or

reflective but not both.

In the case where reflective access is required to a package now contained in a module, the
platform provides some switches to act as band-aids for the transitional period. In particular, the
java option -—add-opens module/package=ALL-UNNAMED can be used to open a
specific package of module for reflective access to all code from the classpath, overriding the

behavior of the modules system.

TIP

For code that is already modular, it can also be used to allow reflective access to a

specific module.

When you are migrating to modular Java, any code that reflectively accesses internal code of

another module should be run with that switch at first, until the situation can be remediated.

Related to this issue of reflective access (and a special case of it) is the issue of widespread use

of internal platform APIs by frameworks. This is usually characterized as the “Unsafe problem’

and we will encounter it toward the end of the chapter.

Services

The modules system includes the services mechanism, to mitigate another problem with the
advanced form of encapsulation. This problem is simply explained by considering a familiar

piece of code:

import services.Service;

Service s = new ServicelImpl ();

Even if Service lives in an exported API package, this line of code still will not compile
unless the package containing ServiceImpl is also exported. What we need is a mechanism
to allow fine-grained access to classes implementing service classes without needing the entire

package to be imported. For example, we could write something like this:

module kathik {
exports kathik.api;

requires othermodule.services;

provides services.Service;

with kathik.services.ServicelImpl;

Now the ServiceImpl class is accessible at compile time as an implementation of the
Service interface. Note that the services package must be contained in another module,

which is required by the current module for this provision to work.

Multi-Release JARs

To explain the problem that is solved by multi-release JARs, let’s consider a simple example:
finding the process ID (PID) of the currently executing process (i.e., the JVM that’s executing

our code).

NOTE

We didn’t use the HTTP/2 example from earlier on, as Java 8 doesn’t have an
HTTP/2 API—so we would have had to do a huge amount of work (essentially a
full backport!) to provide the equivalent functionality for 8.

This may