Java

Projects

Second Edition

By Peter Verhas

Java Projects
Second Edition

Learn the fundamentals of Java 11 programming by building
industry grade practical projects

Peter Verhas

BIRMINGHAM - MUMBAI

Java Projects
Second Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Denim Pinto

Content Development Editor: Nikhil Borkar
Technical Editor: Mehul Singh

Copy Editor: Safis Editing

Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Tom Scaria

Production Coordinator: Nilesh Mohite

First published: April 2017
Second edition: August 2018

Production reference: 1300818
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78913-189-5

www.packtpub.com

http://www.packtpub.com

Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Peter Verhas is a senior software engineer and software architect with an electrical
engineering and economics background from TU Budapest (MsC) and PTE Hungary
(MBA), and he also studied at TU Delft and TU Vienna. He created his first programs in
1979, and since then he has authored several open source programs. He has worked in
several positions in the telecommunications and finance industries.

Peter works for EPAM Systems in Switzerland, participating in software development
projects at various customer sites, and he supports talent acquisition by interviewing
candidates, running training programs for developers, and internal mentoring programs.
He regularly talks at various international conferences.

About the reviewer

Aristides Villarreal Bravo is a Java developer, a member of the NetBeans Dream Team,
and a Java User Groups leader. He lives in Panama. He has organized and participated in
various conferences and seminars related to Java, JavaEE, NetBeans, the

NetBeans platform, free software, and mobile devices. He is the author of jmoordb and
tutorials and blogs about Java, NetBeans, and web development. Aristides has participated
in several interviews on sites about topics such as NetBeans, NetBeans DZone, and
JavaHispano. He is a developer of plugins for NetBeans.

I would like to thank my mother, father, and all my family and friends.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Acknowledgments

Acknowledgment is the section of a book that everybody ignores by turning the pages. This
time, this section is a bit different. I will mention a few people and their roles in the making
of this book but, at the same time, I will explain why and how it is important to rely on
people, being a software developer.

Doing professional work is not possible without having a life. It is quite obvious if you take
that literally, but it is just as true figuratively. If you do not find the balance between your
personal and professional life, you will burn out and will not operate professionally. This is
the place to mention my family, my parents whom I am lucky to still have around, my
brother who introduced me Java itself the first place, my wife, and my already adult kids
who never stopped believing in me being able to do this work, who know more than well
what a hypocrite I am, advocating personal-professional life balance, and who continually
pushed me closer to this equilibrium point in life so that I could keep performing
professionally.

For professional work, coworkers are almost as important as family support. It is important
that you support your colleagues as much as you ask them for their support. You learn a lot
from books and from experience, but you learn the most from other people. Pay attention to
senior developers. You can, however, learn just as much from juniors. No matter how ace
you are, from time to time, a rookie may shed light on a topic. During the years, I learned a
lot from juniors who brought a fresh view to the table, asking shocking questions that were
absolutely valid. I cannot name each and every junior who aided my work with fresh out-
of-the-box thinking.

I can, and should, however, name some peer professionals who actively participated in the
creation of this book with their advice, discussions, and suggestions.

I should certainly mention Karoly Oldh who was very enthusiastic about my project, and he
represented, supported, and encouraged the idea inside EPAM systems. He actively
discussed with the upper management that the support for writing a book well fits the
innovation line and development of the company and the people who work together.
Without the official support from the company providing extra time for the task, I would
not have been able to create this book.

A good company attracts good people who are clever and also good to work with. I had
many discussions about the book, topics, and how to explain certain aspects with my
fellow EPAMers: Krisztidn Sallai, Peter Fodor, Sandor Szildgyi, Mantas Aleknavicius, Gidbor
Lénard, and many others.

I will separately mention Istvin Attila Kovics from our Budapest office with whom I
discussed Chapter 5 in detail, and who gave me very valuable feedback about the topic. If
he does not know something about Java parallel computing, then that something does not
exist.

As a summary and takeaway for the patient reader who read this section till the end,
technology, knowledge, skills, and experience are extremely important for being a
professional Java developer, but it is the people who really matter.

Table of Contents

Preface

Chapter 1: Getting Started with Java 11
Getting started with Java
Version numbers
Installing Java
Installation on Windows
Installation on macOS
Installation on Linux
Setting JAVA_HOME
Executing jshell
Looking at the bytecode
Packaging classes into a JAR file
Managing the running Java application
Using an IDE
NetBeans
Eclipse
IntelliJ
IDE services
IDE screen structure
Editing files
Managing projects
Building the code and running it
Debugging Java
Summary

Chapter 2: The First Real Java Program - Sorting Names
Getting started with sorting
Bubble sort
Getting started with project structure and build tools
Make
Ant
Installing Ant
Using Ant
Maven
Installing Maven
Using Maven
Gradle
Installing Gradle
Setting up the project with Maven
Coding the sort

11
12
14
17
22
23
24
36
38
39
40
41
42
43
43
44
45
47

51
53

54
54
55
56
57
59

61
63
65
66
72
73
74

76

Table of Contents

Understanding the algorithm and language constructs 78
Blocks 79
Variables 80
Types 80
Arrays 81
Expressions 82
Loops 84
Conditional execution 87
Final variables 88
Classes 89
Inner, nested, local, and anonymous classes 91
Packages 93
Methods 94
Interfaces 96
Argument passing 98
Fields 98
Modifiers 100
Object initializers and constructors 101

Compiling and running the program 101

Summary 102

Chapter 3: Optimizing the Sort - Making Code Professional 103

The general sorting program 104

A brief overview of various sorting algorithms 107
Quicksort 110

Project structure and build tools 111
Maven dependency management 112

Coding the sort 115
Creating the interfaces 116
Creating BubbleSort 116
Architectural considerations 119

Creating unit tests 121
Adding JUnit as a dependency 121
Writing the BubbleSortTest class 122
Good unit tests 124

A good unit test is readable 125
Unit tests are fast 126
Unit tests are deterministic 126
Assertions should be as simple as possible 126
Unit tests are isolated 127
Unit tests cover the code 127
Refactoring the test 128

Collections with wrong elements 130

Handling exceptions 131

Generics 135

Test-Driven Development 141

[ii]

Table of Contents

Implementing QuickSort
The partitioning class
Recursive sorting
Non-recursive sorting
Implementing the API class

Creating modules
Why modules are needed
What is a Java module?

Summary

Chapter 4: Mastermind - Creating a Game
The game
The model of the game
Java collections
Interface collection
Set
Hash functions
The equals method
The hashCode method
Implementing equals and hashCode
HashSet
EnumSet
LinkedHashSet
SortedSet
NavigableSet
TreeSet
List
LinkedList
ArrayList
Queue
Deque
Map
HashMap
IdentityHashMap
Dependency injection
Implementing the game
ColorManager
The class color
JavaDoc and code comments
Row
Table
Guesser
UniqueGuesser
GeneralGuesser
The Game class

Creating an integration test

142
142
148
150
152
153
154
154
158

159
160
161
167
168
169
170
172
172
173
174
175
175
175
176
176
176
176
177
177
178
179
180
181
181
183
183
186
187
189
194
195
199
201
201
202

[iii]

Table of Contents

Summary 208
Chapter 5: Extending the Game - Run Parallel, Run Faster 209
How to make Mastermind parallel 210
Refactoring 214
Processes 225
Threads 226
Fibers 228
java.lang.Thread 229
Pitfalls 233
Deadlocks 233
Race conditions 234
Overused locks 234
Starving 235
ExecutorService 235
Completable future 238
ForkJoinPool 241
Variable access 242
The CPU heartbeat 244
Volatile variables 245
Synchronized block 245
Wait and notify 248
Lock 249
Condition 250
ReentrantLock 251
ReentrantReadWriteLock 251
Atomic variables 252
BlockingQueue 253
LinkedBlockingQueue 255
LinkedBlockingDeque 255
ArrayBlockingQueue 255
LinkedTransferQueue 256
IntervalGuesser 256
ParallelGamePlayer 258
Microbenchmarking 261
Summary 266
Chapter 6: Making Our Game Professional - Do it as a Web App 268
Web and network 269
P 270
TCP/IP 271
DNS 273
The HTTP protocol 274
HTTP methods 276
Status codes 278

[iv]

Table of Contents

HTTP/2
Cookies
Client server and web architecture
Writing a servlet
Hello world servlet
JavaServer Pages
HTML, CSS, and JavaScript
Mastermind servlet
Storing state
HTTP session
Storing state on the client
Dependency injection with Guice
The MastermindHandler class
Storing state on the server
The GameSessionSaver class
Running the Jetty web servlet
Logging
Configurability
Performance
Log frameworks
Java logging
Logging practice
Other technologies
Summary

Chapter 7: Building a Commercial Web Application Using REST

The MyBusiness web shop

Sample business architecture

Microservices

Service interface design

JSON

REST

Model View Controller

Spring framework
Architecture of Spring
Spring core

Service classes

Compiling and running the application

Testing the application
Integration tests
Application tests
Servlet filters
Audit logging and AOP
Dynamic proxy-based AOP

[v]

279
280
281
283
284
288
290
292
293
294
295
299
303
305
308
310
312
312
314
315
315
318
319
320

321
322
322
325
326
329
330
331
332
333
334
342
348
351
351
353
358
361
366

Table of Contents

Summary 368
Chapter 8: Extending Our E-Commerce Application 370
The MyBusiness ordering 371
Setting up the project 372
Order controller and DTOs 372
Consistency checker 375
Annotations 376
Annotation retention 378
Annotation target 378
Annotation parameters 378
Repeatable annotations 381
Annotation inheritance 382
@Documented annotation 382
JDK annotations 383
Using reflection 384
Getting annotations 384
Invoking methods 389
Setting fields 394
Functional programming in Java 395
Lambda 397
Streams 399
Functional interfaces 401
Method references 405
Scripting in Java 412
Summary 421
Chapter 9: Building an Accounting Application Using Reactive
Programming 422
Reactive... what? 423
Reactive programming in a nutshell 423
Reactive systems 429
Responsive 429
Resilient 430
Elastic 431
Message-driven 432
Back-pressure 433
Reactive streams 434
Reactive programming in Java 435
Implementing the inventory 438
Summary 444
Chapter 10: Finalizing Java Knowledge to a Professional Level 445
Java deep technologies 445
Java agent 446

[vi]

Table of Contents

Polyglot programming 449
Polyglot configuration 450
Polyglot scripting 451
Business DSL 452
Problems with polyglot 453

Annotation processing 454

Programming in the enterprise 460

Static code analysis 462

Source code version-control 463

Software versioning 467

Code review 468

Knowledge base 471

Issue tracking 471

Testing 472
Types of tests 473
Test automation 477
Black box versus white box 478

Selecting libraries 479
Fit for the purpose 479
License 480
Documentation 481
An alive project 481
Maturity 482
Number of users 482
The "l like it" factor 482

Continuous integration and deployment 483

Release management 485

The code repository 486

Walking up the ladder 487

Summary 489
Other Books You May Enjoy 490
Index 493

[vii]

Preface

Java drastically changed with the introduction of Java 8, and this change has been elevated
to a whole new level with the new version, Java 9 and then further with Java 10 and 11.
Java has a well-established past, being more than 20 years old, but at the same time, it is
new, functional, reactive, and sexy. This is a language that developers love, and at the same
time, it is the number one choice of developer language for many enterprise projects.

It is probably more lucrative to learn Java now than ever before, starting with Java 11. We
encourage you to start your professional developer career by learning Java, and we have
done our best in this book to help you along this road. We assembled the topics of the book
so that it is easy to start, and you can feel the things working and moving very quickly.

At the same time, we have tried to reach very far, signaling the road ahead for a
professional developer.

The sands of time kept moving, and I discovered functional programming.

I could very well see why writing side-effect-free code worked! I was hooked and started
playing with Scala, Clojure, and Erlang. Immutability was the norm here. However, I
wondered how traditional algorithms would look in a functional setting and started
learning about it.

A data structure is never mutated in place. Instead, a new version of the data structure is
created. The strategy of copy and write with maximized sharing was an intriguing one! All
that careful synchronization is simply not needed! The languages come equipped with
garbage collection. So, if a version is not needed anymore, the runtime would take care of
reclaiming the memory. All in good time, though! Reading this book will help you see that
we need not sacrifice algorithmic performance while avoiding in-place mutation!

Who this book is for

This book is for anyone who wants to learn the Java programming language. No
programming experience is required. If you have prior experience, it will help you get
through the book more easily.

Preface

What this book covers

Chapter 1, Getting Started with Java 11, gives you a jump start in Java, helping you install it
on your computer and run your first interactive programs using the new Jshell.

Chapter 2, The First Real Java Program - Sorting Names, teaches you how to create a
development project. We will create program files and compile the code.

Chapter 3, Optimizing the Sort - Making Code Professional, it develops the code further so that
the code is reusable and not only a toy.

Chapter 4, Mastermind - Creating a Game, is when the fun starts. We develop a game
application that is interesting and not as trivial as it first seems, but we will do it.

Chapter 5, Extending the Game - Run Parallel, Run Faster, shows you how to utilize the
multi-processor capabilities of modern architecture. This is a very important chapter that
details technologies that only a few developers truly understand.

Chapter 6, Making Our Game Professional - Do it as a Web App, transforms the user interface
from command-line to web browser-based, delivering a better user experience.

Chapter 7, Building a Commercial Web Application Using REST, takes you through the
development of an application that has the characteristics of many commercial applications.
We will use the standard REST protocol, which has gained ground in enterprise computing.

Chapter 8, Extending Our E-Commerce Application, helps you develop the application
further, utilizing modern language features such as scripting and lambda expressions.

Chapter 9, Building an Accounting Application Using Reactive Programming, teaches you how
to approach some problems using reactive programming.

Chapter 10, Finalizing Java Knowledge to a Professional Level, gives a bird's-eye view
of developer topics that play an important role in the life of a Java developer, and that will
guide you further in working as a professional developer.

[2]

Preface

To get the most out of this book

To immerse yourself into the content of this book and to soak up the skills and knowledge,
we assume that you already have some experience of programming. We do not assume too
much but hope that you already know what a variable is, that computers have memory,
disk, network interfaces, and what they generally are.

In addition to these basic skills, there are some technical requirements you need to try out
the code and the examples in the book. You need a computer—something that is available
today and can run Windows, Linux, or OS X. You need an operating system and, probably,
that is all you need to pay for. All other tools and services that you will need are available
as open source and free of charge. Some of them are also available as commercial products
with an extended feature set, but for the scope of this book, starting to learn Java 9
programming, those features are not needed. Java, a development environment, build tools,
and all other software components we use are open source.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
athttps://github.com/PacktPublishing/Java-Projects. In case there's an update to the
code, it will be updated on the existing GitHub repository.

[3]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/
http://www.packt.com
https://github.com/PacktPublishing/Java-Projects

Preface

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/JavaProjects_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "The simplest way to do that is to initiate new Thread () and then call

the start () method on the thread."”

A block of code is set as follows:

private boolean isNotUnique (Color[] guess) {
final var alreadyPresent = new HashSet<Color>();
for (final var color : guess) {
if (alreadyPresent.contains(color)) {

return true;

}

alreadyPresent.add(color);

}

return false;

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

@Override

public boolean equals (Object o) {
if (this == 0) return true;
if (o == null || getClass() !'= o.getClass()) return false;
MyObjectJava7 that = (MyObjectJava7) o;

return Objects.equals(fieldl, that.fieldl) &&
Objects.equals (field2, that.field2) ¢&&
Objects.equals (field3, that.field3);

[4]

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaProjects_ColorImages.pdf

Preface

Any command-line input or output is written as follows:

Benchmark (nrThreads) (queueSize) Score Error
playParallel 1 -1 15,636 =+ 1,905
playParallel 1 1 15,316 =+ 1,237
playParallel 1 10 15,425 + 1,673
playParallel 1 100 16,580 =+ 1,133
playParallel 1 1000000 15,035 + 1,148
playParallel 4 -1 25,945 + 0,939

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"If you start up Visual VM, you can select the Threads tab of any JVM process and see the
actual threads that are in the JVM."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

[5]

http://www.packtpub.com/submit-errata

Preface

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[6]

http://authors.packtpub.com
https://www.packtpub.com/

Getting Started with Java 11

You want to learn Java and you have a good reason for it. Java is a modern and well-
established application programming language, which is widely used in many industries,
such as telecommunication, finance, and much more. Java developer positions are the most
numerous and, probably, the best paid. This, among other things, makes the language
lucrative for young professionals to learn.

On the other hand, this is not without reason. The Java language, the tools, and the whole
infrastructure around it is complex and sophisticated. Becoming a Java professional does
not happen in a day or a week; it is a work of many years. To be a Java expert, you need to
know not only about the programming language but also about object-oriented
programming principles, open source libraries, application servers, network, databases,
and many other things. Nevertheless, learning the language is an absolute minimum. All
other practices build on it. Throughout this book, you will learn Java version 18.9, also
known as Java 11, and other things. You will learn not only the language but also the most
important tools like maven, gradle, spring, Guice, SoapUI; protocols like http/2, SOAP,
REST; how to work in an agile professional team; and what tools the team should use to
cooperate. In the last chapter, you will even learn how you can plan your career that you
intend to start as a Java developer.

In this chapter, you will be introduced to the Java environment, and you will be given step-
by-step instructions on how to install it, edit the sample code, compile, and run Java. You
will get acquainted with the basic tools that help in development, whether a part of Java or
provided by other vendors. We will cover the following topics in this chapter:

¢ Introduction to Java

Installing on Windows, Linux, and macOS

Executing jshell

Using other Java tools
¢ Using an integrated development environment

Getting Started with Java 11 Chapter 1

Getting started with Java

It is like going through a path in a forest. You can focus on the gravel of the road, but it is
pointless. Instead, you can enjoy the view, the trees, the birds, and the environment around
you, which is more enjoyable. This book is similar, as I won't be focusing only on the
language. From time to time, I will cover topics that are close to the road and will give you
some overview and directions on where you can go after you finish this book. I will not
only teach you the language but also talk a bit about algorithms, object-oriented
programming principles, tools that surround Java development, and how professionals
work. This will be mixed with the coding examples that we will follow. Lastly, the final
chapter will be fully devoted to the topic, what to learn next, and how to go further to
become a professional Java developer.

By the time this book gets into print, Java will have completed 22 years
(http://www.oracle.com/technetwork/java/javase/overview/javahistory-index—-19835
5.html). The language has changed a lot during this period and got better. The real
question to ask is not how long it has been here, but how long will it stay? Is it still worth
learning this language? There are numerous new languages that have been developed since
Java was born (http://blog.takipi.com/java-vs-net-vs—python-vs—-ruby-vs—node-js—
who-reigns-the-job-market/). These languages are more modern and have functional
programming features, which, by the way, Java has also had since version 8. Many say that
Java is the past—the future is Scala, Swift, Go, Kotlin, JavaScript, and so on. You can add
many other languages to this list, and for each, you can find a blog article that celebrates the
burial of Java. There are two answers to this concern: one is a pragmatic business approach,
and the other is more regarding engineering:

¢ Considering that COBOL is still actively used in the finance industry and
COBOL developers are perhaps better paid than Java developers, it is not too
risky to say that, as a Java developer, you will find positions in the next 40 years.
Personally, I would bet more than 100 years, but considering my age, it will not
be fair predicting more than 20 to 40 years ahead.

e Javais not only a language, it is also a technology that you will learn a bit about
from this book. The technology includes the Java Virtual Machine (JVM), which
is usually referred to as JVM, and gives the runtime environment for many
languages; Kotlin and Scala, for example, cannot run without JVM. Even if Java
will be adumbrated, JVM will still be a number one player in the enterprise
scene.

To understand and learn the basic operation of JVM is almost as important as the language
itself. Java is a compiled and interpreted language. It is a special beast that forges the best of
both worlds. Before Java, there were interpreted and compiled languages.

[8]

http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/

Getting Started with Java 11 Chapter 1

Interpreted languages are read from the source code by the interpreter, and then the
interpreter executes the code. In each of these languages, there is some preliminary lexical
and syntax analysis steps; however, after that, the interpreter, which, as a program itself, is
executed by the processor, and the interpreter continuously interprets the program code to
know what to do. Compiled languages are different. In such a case, the source code is
compiled to binary (. exe file on Windows platforms), which the operating system loads
and the processor directly executes. Compiled programs usually run faster, but there is
usually a slower compilation phase that may make the development slower, and the
execution environment is not so flexible. Java combined the two approaches.

To execute a Java program, the Java source code has to be compiled to the JVM bytecode
(.class file), which is loaded by JVM and is interpreted or compiled. Hmm.. .is it
interpreted or compiled? The thing that came with Java is the Just in Time (JIT) compiler.
This makes the phase of the compilation that is calculation-intensive and the compilation
for compiled languages relatively slow. JVM first starts to interpret the Java bytecode and,
while doing that, it keeps track of execution statistics. When it gathers enough: statistics
about code executions, it compiles to native code (for example, x86 code on an Intel/ AMD
platform) for direct execution of the parts of the code that are executed frequently and
keeps interpreting the code fragments that are rarely used. After all, why waste expensive
CPU time to compile some code that is hardly ever used? (For example, code that reads
configuration during startup and does not execute again unless the application server is
restarted.) Compilation to the bytecode is fast, and code generation is done only for the
segments that pay off.

It is also interesting that JIT uses the statistics of the code execution to optimize the code. If,
for example, it can see that some conditional branch is executed in 99% of the cases and the
other branch is executed only in 1%, it will generate native code that runs fast, thus
favoring the frequent branch. If the behavior of that part of the program changes by time
and the statistic shows that the ratios changed, the JIT automatically recompiles the
bytecode from time to time. This is all automatic and behind the scenes.

In addition to the automatic compilation, there is also an extremely important feature of
JVM—it manages the memory for the Java program. The execution environment of modern
languages does that, and Java was the first mainstream language that had an automatic
garbage collection (GC). Before Java, I was programming in C for 20 years, and it was a
great pain to keep track of all memory allocation and not to forget to release the memory
when the program no longer needed it. Forget memory allocation at a single point in the
code, and the long-running program eats up all memory slowly. Such problems practically
ceased to exist in Java. There is a price that we have to pay for it—GC needs processor
capacity and some extra memory, but that is something we are not short of in most of the
enterprise applications. Some special programs, like real-time embedded systems that
control the brakes of a heavy-duty lorry, may not have that luxury.

[9]

Getting Started with Java 11 Chapter 1

Those are still programmed in assembly or C. For the rest of us, we have Java, and though it
may seem strange for many professionals, even almost-real-time programs, such as high-
frequency trading applications, are written in Java.

These applications connect through the network to the stock exchange, and they sell and
buy stock responding to market changes in milliseconds. Java is capable of doing that. The
runtime environment of Java that you will need to execute a compiled Java code, which
also includes the JVM itself, contains code that lets Java programs access the network, files
on disks, and other resources. To do this, the runtime contains high-level classes that the
code can instantiate, execute, and which do the low-level jobs. You will also do this. It
means that the actual Java code does not need to handle IP packets, TCP connections, or
even HTTP handling when it wants to use or provide a REST service in some microservices
architecture. It is already implemented in the runtime libraries, and all the application
programmer has to do is include the classes in the code and use the APIs they provide on
an abstraction level that matches the program. When you program in Java, you can focus
on the actual problem you want to solve, which is the business code and not the low-level
system code. If it is not in the standard library, you will find it in some product in some
external library, and it is also very probable that you will find an open source solution for
the problem.

This is also a strong point of Java. There are a vast number of open source libraries
available for all the different purposes. If you cannot find a library fitting your problem and
you start to code some low-level code, then you are probably doing something wrong.
There are topics in this book that are important, such as class loaders or reflection, not
because you have to use them every day but because they are used by frameworks, and
knowing them helps you understand how these frameworks work. If you cannot solve your
problem without using reflection or writing your own class loader or program multithread
directly, then you probably chose the wrong framework. There is almost certainly a good
one; Apache project, Google, and many other important players in the software industry
publish their Java libraries as open source.

This is also true for multithread programming. Java is a multithread programming
environment from the very beginning. The JVM and the runtime support programs that
execute the code. The execution runs parallel on multiple threads. There are runtime
language constructs that support the parallel execution of programs. Some of these
constructs are very low level, and others are at a high abstraction level. Multithread code
utilizes the multicore processors, which are more effective. These processors are more and
more common. 20 years ago, only high-end servers had multiple processors and only
Digital Alpha processors had 64-bit architecture and CPU clock above 100 MHz. 10 years
ago, a multiprocessor structure was common on the server side, and about 5 years ago,
multicore processors were on some desktops and on notebooks; today, even mobile phones
have them. When Java was started in 1995, the geniuses who created it had seen this future.

[10]

Getting Started with Java 11 Chapter 1

They envisioned Java to be a write once, run anywhere language. At that time, the first target
for the language was applet running in the browser. Today, many think (and I also share
this opinion) that applets were a wrong target, or at least things were not done in the right
way. As of now, you will meet applets on the internet less frequently than Flash
applications or dinosaurs. What's more, the applet interface was deprecated already in Java
9, creating the opinion that applets are not good officially.

However, at the same time, the Java interpreter was also executing server and client
applications without any browser. Furthermore, as the language and the executing
environment developed, these application areas became more and more relevant. Today,
the main use of Java is enterprise computing and mobile applications mainly for the
Android platform. For the future, the use of the environment is growing in embedded
systems as the Internet of things (IoT) comes more and more into the picture.

Version numbers

Java versioning is constantly changing. It does not only mean that the version numbers are
changing from one release to the other. That is kind of obvious; that is what version
numbers are for, after all. In the case of Java, however, the structure of the version numbers
is also changing. Java started with version 1.0 (surprise!) and then version 1.1 shortly
followed. The next release was 1.2, and it was so much different from the previous versions
that people started calling it Java 2. Then, we had Java 1.3 till Java 1.8. This was a stable
period as far as we consider the structure of the version number. However, the next Java
version was named Java 9 instead of 1.9 last year, in 2017. It makes sense, because after 22
years of development and nine releases, the 1. part of the version number did not really
make much sense. Nobody was expecting a "real" Java 2.0 that is so much different from
any other releases that it deserved the 2. version prefix. In reality, the Java versions were
really 1, 2, 3 and so on; they were just named as 1.1, 1.2, 1.3, and so on.

You could expect that after this huge change in the release number format, the next release

of Java would be Java 10. Not at all. Oracle decided to use date-based release numbers. The
first part of the release number before the dot will be the two digit year, like 18 for versions
released in 2018. The part after the dot is the number of the month, usually 3 for March and
9 for September. Thus, when you look at Java version number 18.3, you immediately know
that this version was released March 2018, which is actually Java 10 when following the old
nomenclature.

[11]

Getting Started with Java 11 Chapter 1

Installing Java

To develop, compile, and execute Java programs, you will need the Java execution
environment. As the operating systems that we usually use for software development do
not contain the language preinstalled, you will have to download it. Although there are
multiple implementations of the language, I recommend that you download the official
version of the software from Oracle. The official site for Java is http://java.com, and this is
the site from where the latest release of the language can be downloaded. At the time of
writing this book, the 11th version of Java has not yet been released. An early pre-release
version is accessible via http://jdk.java.net/11/ to download. Later, the release versions
will also be available from here:

jdk.java.net JDK 11 Early-Access Builds

GA Releases

JOK 10 Schedule, status, & features (Open)DK)
Early-Access

feleases Documentation

:;: ;1 = Release notes

OpenjFX = Test results

e = API Javadoc

Reference .

Implementations Latest build: 25 (2018/8/2)

Java SE 1

» Changes in this build

] = Issues addressed in this build
Feedback

Report & bug OPEHJDK builds

Archive _ . ~ .
These early-access, open-source builds are provided under the GNU General Public

License, version 2, with the Classpath Exception.

Linux/x&4 Lar.gz (sha256) 187599632 bytes
mac0S/x64 tar.gz (sna256) 182050291
Windows/x64 Zip (sha256 187368712

Alplne Linux/x64 Tar.gz (sna256) 186738581

Oracle JDK builds

Thank you for accepting the Early Adopter Development License Agreement. You
may now download this software.

Linux/xé4 Lar.gz (sha256) 180869456 bytes

macOS/x64 dmg (sna256) 174786244
Solarls/SPARC tar.gz (sna2s6) 196935830
Windows/x64 exe (sha256) 159419752

APl Javadoc Zip {sna236) 53179697

[12]

http://java.com
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/
http://jdk.java.net/11/

Getting Started with Java 11 Chapter 1

What you can download from here is a so-called early access version of the code that is
available only to experiment with it, and no professionals should use it for commercial
purposes.

On the page, you have to click on the radio button to accept, but the license. After that, you
can click on the link that directly starts the download of the installation kit. The license is a
special early access license version that you, as a professional, should carefully read,
understand, and accept only if you are agreeable to the terms.

There is a separate installation kit for Windows 32 and 64 bit systems, macOS, Linux 32,
and 64-bit versions, Linux for ARM processor, Solaris for SPARC processor systems, and
Solaris x86 versions. As it is not likely that you will use Solaris, I will detail the installation
procedure only for Windows, Linux, and macOS. In the later chapters, the samples will
always be macOS, but since Java is a write once, run anywhere language, there is no
difference after the installation. The directory separator may be slanted differently, the
classpath separator character is a semicolon on Windows instead of a colon, and the look
and feel of the Terminal or command application is also different. However, where it is
important, I will try not to forget to mention it.

To confuse you, the Java download for each of these operating system versions lists a link
for the JRE and one for the JDK. JRE stands for Java Runtime Environment, and it contains
all the tools and executables that are needed to run Java programs. JDK is the Java
Development Kit that contains all the tools and executables needed to develop Java
programs, including the execution of the Java program. In other words, JDK contains its
own JRE. For now, all you need to do is download the JDK.

There is one important point of the installation that is the same on each of the three
operating systems, which you have to be prepared for before the installation—to install
Java, you should have administrative privileges.

[13]

Getting Started with Java 11 Chapter 1

Installation on Windows

The installation process on Windows starts by double-clicking on the downloaded file. It
will start the installer and will present you with a welcome screen. Windows 10 may ask

you the admin permission to install Java:

ﬂ Java(TM) SE Development Kit 11 (64-bit) - Setup

Welcome to the Installation Wizard for Java SE Development Kit 11

This wizard will guide you through the installation process for the Java SE Development
Kit 11.

Pressing the Next button gets a window where you can select the parts you want to install,
and also, we can change the location where Java will be installed:

ﬁ Java(TM] SE Development Kit 11 (84-bit) - Custom Setup

Select optional features to install from the list below. You can change your choice of features after
installation by using the Add/Remove Programs utility in the Control Panel

Feature Description

./ =3 =| Development Tools Java(TM) SE Development Kit 11
=3~ | Source Code (54-bit), induding a private JRE.
This will require 420MB on your
hard drive.
Install to:
C:'Program Files\Javaljdk-11} change...

[14]

Getting Started with Java 11 Chapter 1

Let's leave the default settings here, which means that we install all the downloaded parts
of Java and press Next:

ﬁ Java(TM] 5E Development Kit 11 (64-bit) - Progress —

Status: Copying new files

We get to a progress screen while Java is installing. This is a fairly fast process, no more
than a 10-second process. After Java has been installed, we get a confirmation screen:

ﬁ Java(TM) SE Development Kit 11 (84-bit) - Complete *

Java(TM) SE Development Kit 11 {64-bit) Successfully Installed

Click Mext Steps to access tutorials, API documentation, developer guides, release notes
and more to help you get started with the JDK.

Mext Steps

We can press Close. It is possible to press the Next Steps button, that opens the browser
and brings us to a page that describes the next steps we can do with Java. Using the
prerelease version results in an HTTP 404 error. This will hopefully be fixed when you read
this book.

[15]

Getting Started with Java 11

Chapter 1

The last step is to set the environment variable JAVA_HOME. To do that, in Windows, we
have to open the control center and select the Edit environment variables for your account

menu:

System Properties

Computer Name Hardware Advanced System Protection

You must be logged on as an Administrator to make most of these changes.

Peformance

Remote

Visual effects, processor scheduling, memory usage, and virtual memory

lser Profiles

Desktop settings related to your sign-n

Startup and Recovery

System startup, system failure, and debugging information

OK

Settings ..

Settings...

Settings...

Environment Variables...

Cancel

This will open a new window that we should use to create a new environment variable for

the current user:

[16]

Getting Started with Java 11 Chapter 1

Environment Variables *

User variables for Peter_Verhas

Variable Value

OneDrive Ch\Users\peter_verhas\OneDrive

Path C\Users\peter_verhas\AppData\Local\Programs\Python\Python37...
TEMP Ch\Users\peter_verhas\AppData'\Local\Temp

TMP Ch\Users\peter_verhas\AppData‘Local\Temp

System wvariables

Variable Value 2
PSModulePath %ProgramFiles%\WindowsPowerShell\Modules; CAWINDOWS\syst... Ik
TEMP CAWINDOWS\TEMP
TMP CAWINDOWS\TEMP
UATDATA CAWindows\CCM\UATData\DIFBC395-CABS-491d-BBAC-179A1FE...
USERNAME SYSTEM
windir CAWINDOWS
v
Mew... Edit... Delete
oK Cancel

The name of the new variable has to be JaAvA_HOME, and the value should point to the
installation directory of the JDK:

Variable name: | JAVA_ HOME |
Variable value: | CAProgram Files\Java'jdk-11 |
Browse Directory... Browse File... 0K Cancel

This value on most systems is C: \Program Files\Java\jdk-11. This is used by many
Java programs and tools to locate the Java runtime.

[17]

Getting Started with Java 11 Chapter 1

Installation on macOS

In this section, we will take look at how to install Java step by step on a macOS platform. I

will describe the installation process for the released version available at the time of writing
this book. As of now, the Java 18.9 early access version is a bit tricky to install. It is probable
that the release version of Java 18.9 will have similar or the same installation steps as Java 9.

The macOS version of Java comes in the form of a . dmg file. This is a packaging format of
macOS. To open it, simply double-click on the file in the Download folder where the
browser saves it, and the operating system will mount the file as a read-only disk image:

| JDK 11

2 items —

Java Development Kit
Double-click on icon to install

b

\ y

JDK 11.pkg

.background

L JDK 11

[18]

Getting Started with Java 11

Chapter 1

There is only one file on this disk—the installation image. Double-click on the filename or
icon in the Finder application and the installation process will start:

‘e Install JDK 11

Welcome to the JDK 11 Installer

Introduction
Destination Select
Installation Type

Installation This program will guide you though the installation

Summary process for the Java SE Development Kit 11.

)

—

Javar

ORACLE Continue

The first screen is a welcome screen. Click on Continue, and you will see the Summary
page that displays what will be installed.

[19]

Getting Started with Java 11 Chapter 1

It is not a surprise that you will see a standard Java installation. This time, the button is
called Install. Click on it and you will see the following:

o @ Install JDK 11 a
Standard Install on “Macintosh HD"
. his wi 3 A
TieEEiem This will take 293,1 MB of space on your computer.
Destination Select Click Install to perform a standard installation of this software
; for all users of this computer. All users of this computer will be
Installation Type able to use this software.
Installation
Summary
g,
o
—
Q—-—/
~/
ORACLE" Go Back Install

This is the time when you have to provide the login parameters for the administrative
user—a username and password:

= Installer is trying to install new software.

o a a

Enter an administrator’s name and password to allow this.
User Name: admin

Introductiol Password: eeeeeeccecccecscccccccccccccce

Destination vare

- e lill DE
Installatiol Cancel nstall Software
Installation

Summary -

ey

S
—

oracLe Go Back

[20]

Getting Started with Java 11 Chapter 1

When provided, installation starts and, in a few seconds, you will see a Summary page:

o « Install JDK 11 a
The installation was completed successfully.
Introduction
Destination Select InSta” Succeeded
Installation Type
. Visit the Java SE Documentation to access tutorials, API
Installation " -
documentation, developer guides, release notes and more to
Summary help you get started with the JDK.
)
e
S
[
~ s
ORACLE | Close |

Click on Close and you are ready. You have Java installed on your Mac. Optionally, you
can dismount the installation disk and, sometime later, you can also delete the . dmg file.
You will not need that, and in case you do, you can download it any time from Oracle.

The last thing is to check whether the installation was okay. The proof of the pudding is in
eating it. Start a Terminal window and type java -version at the prompt; Java will tell
you the version that's been installed.

In the following screenshot, you can see the output on my workstation and also the macOS
commands that are handy to switch between the different versions of Java:

& @ 2y verhasp — -bash — 68x24

~% java -version =]
java version "1l-ea" 281B-89-25

Java(THM) SE Runtime Environment 18.9 (build 1l-ea+25)

Java HotSpot{TM) B4-Bit Server VM 1B.9 (build 11-ea+25, mixed mode)

il l

In the preceding screenshot, you can see that I have installed the Java 11 version and, at the
same time, I also have a Java 18.9 early release installation, which I will use to test the new
features of Java for this book.

[21]

Getting Started with Java 11 Chapter 1

Installation on Linux

There are several ways to install Java on Linux, depending on its flavor. Here, I will
describe an installation method that works more or less the same way on all flavors. The
one I used is Debian.

The first step is the same as in any other operating system—download the installation kit.
In the case of Linux, you should select a package that has a tar.gz ending. This is a
compressed archive format. You should also carefully select the package that matches the
processor in your machine and the 32/64 bit version of the operating system. After the
package is downloaded, you have to switch to root mode, issuing the su command. This is
the first command you can see in the following screenshot, that shows the installation
commands:

B S G root@test-Veriton-M200-H110: /home/test/Downloads
test@test-Veriton-M200-H110:~5 su 1

The tar command uncompressed the archive into a subfolder. In Debian, this subfolder
has to be moved to /opt /jdk, and the mv command is used for this purpose. The two
update-alternatives commands are Debian-specific. These tell the operating system to
use this newly installed Java in case there is already an older Java installed. The Debian I
was using to test and demonstrate the installation process on a virtual machine came with a
7-year-old version of Java.

The final step of the installation is the same as any other operating system—checking
whether the installation was successful in issuing the java -version command. In the
case of Linux, this is even more important. The installation process does not check that the
downloaded version matches the operating system and the processor architecture.

[22]

Getting Started with Java 11 Chapter 1

Setting JAVA_ HOME

The JAVA_HOME environment variable plays a special role in Java. Even though the JVM
executable, java.exe or java, is on the PATH (thus, you can execute it by typing the name
java without specifying the directory in the Command Prompt) (Terminal), it is
recommended that you use the correct Java installation to set this environment variable.
The value of the variable should point to the installed JDK. There are many Java-related
programs, Tomcat or Maven for example, that use this variable to locate the installed and
currently used Java version. In macOS, setting this variable is unavoidable.

In macOS, the program that starts to execute when you type java, is a wrapper that first
looks at JAVA_HOME to decide which Java version to start. If this variable is not set, macOS
will decide on its own, selecting from the available installed JDK versions. To see the
available versions, you can issue the following command:

~$ /usr/libexec/java_home -V
Matching Java Virtual Machines (13):
11, x86_64: "Java SE ll-ea"
/Library/Java/JavaVirtualMachines/jdk-11. jdk/Contents/Home
10, x86_64: "Java SE 10"
/Library/Java/JavaVirtualMachines/jdk-10. jdk/Contents/Home

9.0.1, x86_64: "Java SE 9.0.1"
/Library/Java/JavaVirtualMachines/jdk-9.0.1.jdk/Contents/Home
9, x86_64: "Java SE 9-ea"
/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home
1.8.0_92, x86_64: "Java SE 8"
/Library/Java/JavaVirtualMachines/jdk1.8.0_92.jdk/Contents/Home
1.8.0_20, x86_64: "Java SE 8"
/Library/Java/JavaVirtualMachines/jdk1.8.0_20.jdk/Contents/Home
1.8.0_05, x86_64: "Java SE 8"
/Library/Java/JavaVirtualMachines/jdk1.8.0_05.jdk/Contents/Home
1.8.0, x86_64: "Java SE 8"
/Library/Java/JavaVirtualMachines/jdk1l.8.0.jdk/Contents/Home
1.7.0_60, x86_64: "Java SE 7"
/Library/Java/JavaVirtualMachines/jdk1l.7.0_60.jdk/Contents/Home
1.7.0_40, x86_64: "Java SE 7"
/Library/Java/JavaVirtualMachines/jdk1.7.0_40.jdk/Contents/Home
1.7.0_21, x86_64: "Java SE 7"
/Library/Java/JavaVirtualMachines/jdk1l.7.0_21.jdk/Contents/Home
1.7.0_07, x86_64: "Java SE 7"
/Library/Java/JavaVirtualMachines/jdk1.7.0_07.jdk/Contents/Home
1.7.0_04, x86_64: "Java SE 7"

/Library/Java/JavaVirtualMachines/1.7.0.jdk/Contents/Home

/Library/Java/JavaVirtualMachines/jdk-11. jdk/Contents/Home

[23]

Getting Started with Java 11 Chapter 1

You will then get the list of installed JDKs. Note that the command is lowercase, but the
option is capitalized. If you do not provide any options and argument to the program, it
will simply return the JDK it thinks is the newest and most appropriate for the purpose. As
I copied the output of the command from my Terminal window, you can see that I have
quite a few versions of Java installed on my machine.

The last line of the program response is the home directory of JDK, which is the default.
You can use this to set your JAVA_HOME variable using some bash programming;:

export JAVA_HOME=$ (/usr/libexec/java_home)

You can place this file in your . bashrc file, which is executed each time you start

a Terminal application, and thus JAVA_HOME will always be set. If you want to use a
different version, you can use -v, with the lowercase option this time, to the same utility, as
follows:

export JAVA_HOME=S$ (/usr/libexec/java_home -v 1.8)

The argument is the version of Java you want to use. Note that this versioning becomes the
following;:

export JAVA_HOME=$ (/usr/libexec/java_home -v 11)

If you want to use the Java JDK Early Access version and not 1.11, there is not an
explanation for the same—fact of life.

Note that there is another environment variable that is important for Java—CLASSPATH. We
will talk about it later.

Executing jshell

Now that we have spent a lot of time installing Java, it's time to get your fingers burnt a bit.
As we are using Java 18.9, there is a new tool that helps developers play around with the
language. This is a Read-Eval-Print-Loop (REPL) tool that many language toolsets contain
and there were also implementations from Java, but version 9 is the first that contains this
feature off the shelf.

REPL is a tool that has interactive prompt and language commands that can be directly
entered without editing some standalone file. The entered commands are executed directly
and then the loop starts again, waiting for the user to type in the next command.

[24]

Getting Started with Java 11 Chapter 1

This is a very effective tool to try out some language constructs without the delay of
editing, compiling, and loading. The steps are automatically and transparently done by the
REPL tool.

The REPL tool in Java 18.9 is called jshell. To start it, just type its name. If it is not on the
PATH, then type the full path to jshell that comes installed with Java 18.9, as shown in the
following example:

$ jshell | Welcome to JShell —-- Version ll-ea | For an introduction type:
/help intro jshell>

The jshell starts up in an interactive way and the prompt it displays is jshell> to help you
recognize that jshell is running. What you type is read by the program and not the
operating system shell. As this is the first time you will start jshell, it tells you to type /help
intro. Let's do it. It will print out a short text about what jshell is, as shown in the
following code:

jshell> /help intro

The jshell tool allows you to execute Java code, getting immediate
results.
| You can enter a Java definition (variable, method, class, etc), like:
int x = 8
or a Java expression, like: x + x
or a Java statement or import.
These little chunks of Java code are called 'snippets'.

There are also the jshell tool commands that allow you to understand and
control what you are doing, like: /list

For a list of commands: /help

Okay, so we can type Java snippets and /1ist, but that is only one example of the available
commands. We can hope for more information by typing /help, as demonstrated in the
following code:

jshell> /help
Type a Java language expression, statement, or declaration.
Or type one of the following commands:
/list [<name or id>|-all|-start]
list the source you have typed
/edit <name or id>
edit a source entry

[25]

Getting Started with Java 11 Chapter 1

| /drop <name or id>

| delete a source entry

| /save [-all|-history|-start] <file>
| Save snippet source to a file

What you get is a long list of commands. Most of it is not presented here to save paper and
your attention. We will use many of these commands on our journey through the next few
pages. Let's start with a small Java snippet, that is, the ageless Hello World example:

jshell> System.out.println("Hello, World!")
Hello World!

This is the shortest ever Hello World program in Java. Till Java 9, if you wanted to do
nothing more than print out Hello World!, you had to create a program file. It had to
contain the source code of a class, including the public static main method, which
contained the one line we had to type in with Java 9 jshell. It was cumbersome just for a
simple printout of sample code. Now it is much easier, and jshell is also lenient. It forgives
us the regarding missing semicolon at the end of the line.

The next thing we should try is declaring a variable, as follows:

jshell> var a = 13
a ==> 13

We declared a variable, named a, and assigned the value to it—13. The type of the variable
is int, which is an abbreviation for integer types in Java. Now, we have this variable
already in our snippet, so we can print it out if we want to, as shown here:

jshell> System.out.println(a)
13

It's time to write something more complex into jshell than a one-liner:

jshell> void main(String[] args){
..> System.out.println("Hello, World")
..> }

Error:

';' expected

System.out.println("Hello, World")

I
I
I
| A

The jshell recognizes that this is not a one-liner and that it cannot process what we typed so
far when we press Enter at the end of the first line, and it signals that it expects more
characters from us, so it displays . . . > as a continuation prompt. We type in the commands
that make up the whole hello world main method.

[26]

Getting Started with Java 11 Chapter 1

However, this time, jshell does not let us miss the semicolon; that is allowed only in the
case of one-line snippets. As jshell is interactive, it is easy to correct the mistake—press the
up arrow key a few times to get back the previous lines and, this time, add the semicolon at
the end of the second line:

jshell> void main(String[] args){
...> System.out.println("Hello, World"),;
Lo>)

| created method main(String[])

This method was created for us as a snippet, and now we can call it:

jshell> main(null)
Hello, World

It works. You can list all the snippets that were created, as follows:

jshell> /list

1 System.out.println("Hello World!"™)

2 : var a = 13;

3 System.out.println (a)

4 : void main(String[] args){
System.out.println("Hello, World");
}

5 : main(null)

Also, as we want to go on writing a full Java version of hello world, we can save our work
from jshell to a file, as follows:

jshell> /save HelloWorld.java

Finally, we exit from jshell by typing /exit. As you get back to the system prompt, type
cat HelloWorld.java (or type HelloWorld.java on Windows) to see the content of
the file. It is as follows:

$ cat HelloWorld.java
System.out.println("Hello, World!")

var a = 13;
System.out.println (a)
void main(String[] args) {

System.out.println("Hello, World");
}

main (null)

[27]

Getting Started with Java 11 Chapter 1

The file contains all the snippets that we typed in, one after the other. If you think that you
have messed up the shell with lots of variables and code snippets that you do not need
anymore, you can issue the /reset command:

jshell> /reset
| Resetting state.

After this command, the jshell is as clean as when it was started earlier:

jshell> /list
jshell>

Listing just does not produce anything, as we deleted it all. Fortunately, we saved the state
of jshell to a file, and we can also loaded the content of the file by issuing the /open
command:

jshell> /open HelloWorld.java
Hello, World!

13

Hello, World

It loads the line from the file and executes it, just as the characters were typed into the
Command Prompt.

You may recall that the /1ist command printed a number in front of each snippet. We can
use it to edit the snippets individually. To do so, issue the /edit command, followed by
the number of the snippet:

jshell> /edit 1

You may recall that the first command we entered was the System.out .print1ln system
call that prints out the argument to the console. When you press Enter after the /edit 1
command, you do not get the prompt back. Instead, jshell opens a separate graphical editor
that contains the snippet to edit, as shown:

0@ JShell Edit Pad
System.out.printin("Hello World!")

Cancel Accept Exit

[28]

Getting Started with Java 11 Chapter 1

Edit the text in the box so that it will look like this:

void printf (String format, Object... args) { System.out.printf (format,
args); }
printf ("Hello World!")

Click on Accept and then Exit. When you click on Accept, the Terminal will execute the
snippet and display the following result:

| created method printf (String,Object...) Hello World!

The method that we used, printf, stands for formatted printing. This may be well-known
from many other languages. It was first introduced by the C language and though cryptic,
the name survived. This is also part of the standard Java class, Print St ream, just like
println. In case of print1ln, we had to write System. out in front of the method name.
To avoid that, we defined the snipped in the editor, and it got executed and defined the
printf method for us.

Jshell also defines a few snippets that are automatically loaded when jshell starts or resets.
You can see these if you issue the /1ist command with the -start option, as follows:

jshell> /list -start

sl : import java.io.¥;

s2 : import java.math.¥*;
s3 : import java.net.¥;
s4 : import java.nio.file.*;

s5 : import java.util.¥*;
s6 : import java.util.concurrent.¥*;

s7 : import java.util.function.¥*;

s8 : import java.util.prefs.*;

s9 : import java.util.regex.*;
s10 : import java.util.stream.*;

These predefined snippets help in the use of jshell. Most users will import these classes.

If you want to list all the snippets you entered as well as the predefined snippets, and also
those that contained some error and thus were not executed, you can use the -a11l option
on the /1ist command, as follows:

jshell> /list -all
sl : import java.io.*;
s2 : import java.math.¥*;
s3 : import java.net.*;
s4 : import java.nio.file.¥*;
s5 : import java.util.¥;
s6 : import java.util.concurrent.¥*;

[29]

Getting Started with Java 11 Chapter 1

s7 : import java.util.function.*;

s8 : import java.util.prefs.*;

s9 : import java.util.regex.*;

s10 : import java.util.stream.¥*;
1 : System.out.println("Hello, World!")

2 : var a = 13;
3 : System.out.println(a)

4 : void main(String[] args){

System.out.println("Hello, World");

}
5 : main(null)
6 : void printf (String format, Object... args) {

System.out.printf (format, args); }
7 : System.out.println("Hello, World!");

The lines that are preloaded are numbered with the s prefix. The snippets that contain an
error have a number prefixed with e. (We have none in this printout.)

If you want to execute some of the snippets again, you only have to type /n, where n is the
number of the snippet, as follows:

jshell> /1
System.out.println("Hello, World!"™)
Hello, World!

You cannot re-execute the preloaded snippets or snippets that contained errors. There is no
need for any of those anyway. Preloaded snippets declare some imports; erroneous
snippets do not execute because they are, well...erroneous.

You need not rely on the number of jshell when you want to re-execute a snippet. When
you already have a lot of snippets in your jshell session, listing them all would be too
cumbersome; there is a shortcut to re-execute the last n-th snippet. You have to write /-n.
Here, n is the number of the snippet counting from the last one. So, if you want to execute
the very last snippet, you have to write /-1. If you want to execute the one before the last
one, you have to write /-2. Note that if you already typed /-1, the last one is the re-
execution of the last snippet, and snippet number -2 will become number -3.

Listing all the snippets can also be avoided in other ways. When you are interested only in
certain types of snippets, you can have special commands.

If we want to see only the variables that we defined in the snippets, we can issue the /vars
command, as follows:

jshell> /vars
| int a = 13

[30]

Getting Started with Java 11 Chapter 1

If we want to see only the classes, the /types command will do that:

jshell> class s {}
| created class s

jshell> /types
| class s

Here, we just created an empty class and then we listed it.

To list the methods that were defined in the snippets, the /methods command can be
issued:

jshell> /methods

| void main(String[])
| void printf (String,Object...)

You can see in the output that there are only two methods, which are as follows:

e main: Which is the main class of the program
e printf: This, we defined when using the editor

If you want to see everything you typed, you have to issue the /history command for all
the snippets and commands that you typed. (I will not copy the output here; I do not want
to shame myself showing all of my typos and failures. You should try yourself and see your
own history!)

Recall that we can delete all the snippets by issuing the /reset command. You can also
delete snippets individually. To do so, you should issue the /drop n command, where n is
the snipped number:

jshell> /drop 1
jshell> /list

2 : var a = 13;

3 : System.out.println(a)

4 : void main(String[] args){
System.out.println("Hello, World");

}
5 : main(null)
6 : void printf (String format, Object... args) {

System.out.printf (format, args); }
7 : System.out.println("Hello, World!");
8 : System.out.println("Hello, World!")

[31]

Getting Started with Java 11 Chapter 1

We can see that we dropped the first snippet:

jshell> /drop 2
| dropped variable a

jshell> /drop 4
| dropped method main (String[])

The jshell error message asks us to see the output of the /types,
/methods, /vars, or /1ist commands. The problem with this is that
/types, /methods, and /vars do not display the number of the snippet.
This is most probably a small bug in the jshell prerelease version and may
be fixed by the time the JDK is released.

When we were editing the snippets, jshell opened a separate graphical editor. It may
happen that you are running jshell using ssh on a remote server and where it is not possible
to open a separate window. You can set the editor using the /set command. This
command can set quite a few configuration options of the jshell. To set the editor to use the
ubiquitous vi, issue the following command:

jshell> /set editor "vi"
| Editor set to: vi

After this, jshell will open the snipped-in vi in the same Terminal window where you issue
the /edit command.

It is not only the editor that you can set. You can set the startup file, and also the way jshell
prints the feedback to the console after a command was executed.

If you set the startup file, the commands listed in the startup file will be executed instead of
the built-in commands of jshell after the /reset command. This also means that you will
not be able to use the classes that are imported by default directly, and you will not have
the print £ method snippet, unless your own startup file contains the imports and the
definition of the snippet.

Create the sample. startup file with the following content:

void println(String message) { System.out.println (message); }
Starting up a new jshell, execute it as follows:

jshell> /set start sample.startup

jshell> /reset
| Resetting state.

[32]

Getting Started with Java 11 Chapter 1

jshell> println("wuff")
wuff

jshell> printf("This won't work...")

| Error:

| cannot find symbol

| symbol: method printf (java.lang.String)
| printf("This won't work...")

I

A A

The print 1n method is defined, but the print £ method, which we defined earlier, is not.

The feedback defines the prompt jshell prints and then waits for the input, the prompt for
the continuation lines, and the message details after each command. There are predefined
modes, which are as follows:

e Normal
o Silent

e Concise
e Verbose

Normal is selected by default. If you issue /set feedback silent, prompt becomes >,
and jshell will not print details about the commands. The /set feedback concise code
prints a bit more information, and /set feedback verbose prints verbose information
about the commands executed:

jshell> /set feedback verbose
| Feedback mode: verbose

jshell> int z = 13
z ==> 13

| created variable z : int

jshell> int z = 13

z ==> 13
| modified wvariable z : int
| update overwrote variable z : int

You can also define your own modes, giving a name to the new mode using the /set mode
xyz command, where xyz is the name of the new mode. After this, you can set prompt,
truncation, and format for the mode. When the format is defined, you can use it in the same
way as the built-in modes.

Last but not least, the most important command of jshell is /exit. This will just terminate
the program, and you will return to the operating system shell prompt.

[33]

Getting Started with Java 11 Chapter 1

Now, let's edit the HelloWorld. java file to create our first Java program. To do so, you
can use vi, notepad, Emacs, or whatever is available on your machine and fits you. Later
on, we will use some integrated development environment (IDE), NetBeans, Eclipse, or
Intelli]; however, for now, a simple text editor is enough.

Edit the file so that the content will be as follows:

public class HelloWorld {
public static void main(String[] args){
System.out.println ("Hello World");
3
}

To compile the source code to bytecode, which is executable by JVM, we have to use the
Java compiler named javac:

javac HelloWorld.java

This generates the java.class file in the current directory. This is a compiled code that
can be executed as follows:

$ java HelloWorld
Hello World

With this one, you have created and executed your first full Java program. You may still
wonder what we were doing; everything will be clear later. Here and now, I wanted you to
get a feeling that it works.

The file we edited contained only the snippet, and we deleted most of the lines, except for
the declaration of the main method, and inserted the declaration of the class around it.

In Java, you cannot have standalone methods or functions, like in many other languages.
Every method belongs to some class, and every class should be declared in a separate file
(well, almost, but for now, let's skip the exceptions). The name of the file has to be the same
as the name of the class. The compiler requires this for public classes. Even for non-public
classes, we usually follow this convention. If you renamed the file from HelloWorld. java
to Hello. java, the compiler will display an error when you try to compile the file with the
new name:

$ mv HelloWorld.java Hello.java
~/Dropbox/java_9-by_Example$ javac Hello.java
Hello.java:2: error: class HelloWorld is public, should be declared in a
file named HelloWorld. java
public class HelloWorld {
A

1 error

[34]

Getting Started with Java 11 Chapter 1

So, let's move it back to the original name, that is, mv Hello.Jjava HelloWorld.java.

The declaration of the class starts with the class keyword, then the name of the class, an
opening curly brace, and lasts until the matching closing brace. Everything in-between
belongs to the class.

For now, let's skip why I wrote public in front of the class and focus on the main method
in it. The method does not return any value; therefore, its return value is void. The
argument, named args, is a string array. When JVM starts the main method, it passes the
command-line arguments to the program in this array. However, this time, we do not use
it. The main method contains the line that prints out Hello World. Now, let's examine this
line a little more.

In other languages, printing something to the console requires only a print statement, or a
very similar command. I remember that some BASIC interpreters even allowed us to type 2
instead of print, because printing to the screen was so common. This has changed a lot
during the last 40 years. We use graphical screens, internet, and many other input and
output channels. These days, it is not very common to write to the console.

Usually, in professional large-scale enterprise applications, there is not even a single line
that does that. Instead, we will direct the text to log files, send messages to message queues,
and send requests and reply with responses over TCP/IP protocol. As this is so infrequently
used, there is no reason to create a shortcut for the purpose in the language. After the first
few programs, when you get acquainted with the debugger and logging possibilities, you
will not print anything directly to the console yourself.

Still, Java has features that let you send text directly to the standard output of a process the
good old way, as it was invented originally for UNIX. This is implemented in a Java way,
where everything has to be an object or class. To get access to the system output, there is a
class named System, and it, among other things, has the following three variables:

e in: This is the standard input stream
e out: This is the standard output stream
e crr: This is the standard error stream

To refer to the output stream variable, because it is not in our class but in System, we will
have to specify the class name, so we will refer to it as System. out in our program. The
type of this variable is Print St ream, which is also a class. Class and type are synonyms in
Java. Every object that is of the Print Stream type has a method named print1n that
accepts a String. If the actual print stream is the standard output, and we are executing
our Java code from the command line, the string is sent to the console.

[35]

Getting Started with Java 11 Chapter 1

The method is named main, and this is a special name in Java programs. When we start a
Java program from the command line, JVM invokes the method named main from the class
that we specify on the command line. It can do that because we declared this method
public so that anyone can see and invoke it. If it was private, it would be seen and
callable only from within the same class, or classes that are defined in the same source file.

The method is also declared as st atic, which means it can be invoked without an actual
instance of the class that contains the methods. Using static methods is usually not seen as a
good practice these days, unless they are implementing functions that cannot really ever be
related to an instance, or have different implementations such as the functions in the
java.lang.Math class. However, somewhere, the code execution has to start, and the Java
runtime will not usually create instances of classes for us automatically.

To start the code, the command line should be as follows:

java —cp . HelloWorld

The -cp option stands for classpath. The classpath is a fairly complex idea for Java, but, for
now, let's make it simple and say that it is a list of directories and JAR files that contain our
classes. The list separator for the classpath is : (colon) on UNIX-like systems and ;
(semicolon) on Windows. In our case, the classpath is the actual directory, as that is the
place where the Java compiler created HelloWorld. class. If we do not specify classpath
on the command line, Java will use the current directory as a default. That is the reason our
program was working without the —cp option in the first place.

Both java and javac handle many options. To get a list of the options, type javac -help
or java -help. We use the IDE to edit the code and, many times, to compile, build, and
run it during development. The environment, in this case, sets the reasonable parameters.
For production, we use build tools that also support the configuration of the environment.
Due to this, we rarely meet these command-line options. Nevertheless, professionals have
to understand their meanings at least and know where to learn their actual use, in case it is
needed.

Looking at the bytecode

The class file is a binary file. The main role of this format is to be executed by the JVM and
to provide symbolic information for the Java compiler when a code uses some of the classes
from a library. When we compile our program that contains System.out .println, the
compiler looks at the compiled . class files and not at the source code. It has to find the
System class, the out field, and the print 1n method.

[36]

Getting Started with Java 11 Chapter 1

When we debug a piece of code or try to find out why a program does not find a class or
method, we will need a way to look into the binary of the . class files. This is not an
everyday task, and it takes some advanced knowledge.

To do so, there is a decompiler that can display the content of a . class file in a more or less
readable format. This command is called javap. To execute it, you can issue the following
command:

$ javap HelloWorld.class
Compiled from "HelloWorld.java"
public class HelloWorld {
public HelloWorld();
public static void main(java.lang.Stringl[]);

}

The output of the program shows that the class file contains a Java class that has something
called HelloWorld (); it seems to be a method having the same name as the class, and it
also contains the method we have written.

The method that has the same name as the class is the constructor of the class. As every class
in Java can be instantiated, there is a need for a constructor. If we do not give one, the Java
compiler will create one for us. This is the default constructor. The default constructor does
nothing special, but returns a new instance of the class. If we provide a constructor on our
own, the Java compiler will not have bothered creating one.

The javap decompiler does not show what is inside the methods or what Java code it
contains unless we provide the —c option:

$ javap -c HelloWorld.class

Compiled from "HelloWorld.java"

public class HelloWorld {
public HelloWorld();

Code:
0: aload_0
1: invokespecial #1 // Method
java/lang/Object."<init>": ()V

4: return
public static void main(java.lang.Stringl[]);

Code:
0: getstatic #2 // Field
java/lang/System.out:Ljava/io/PrintStream;
3: 1ldc #3 // String hali
5: invokevirtual #4 // Method

java/io/PrintStream.println: (Ljava/lang/String;)V
8: return

}

[371]

Getting Started with Java 11 Chapter 1

It is very cryptic and is not for ordinary humans. Only a few experts who deal with the Java
code generation can fluently read that. However, taking a look at it helps you get a glimpse
of what bytecode means. It is something like a good old assembly. Although this is binary
code, there is nothing secret in it: Java is open source, and the class file format is well
documented and debuggable for the experts.

Packaging classes into a JAR file

When you deliver a Java application, usually the code is packaged into JAR, WAR, EAR, or
some other packaged format. We learn something again that seems to be obscure at first
sight, but in reality, this is not that complex. They are all ZIP files. You can open any of
these files using WinZip or some other ZIP manager that you have a license for. The extra
requirement is that, for example, in the case of a JAR file, the archive should contain a
directory named META-INF and inside it a file named MANIFEST . MF. This file is a text file
and contains meta information in the format, which is as follows:

Manifest-Version: 1.0
Created-By: ll-ea (Oracle Corporation)

There can be a lot of other information in the file, but this is the minimum that the Java
provided tool jar puts there if we package our class file into a JAR, issuing the following
command:

jar —cf hello.jar HelloWorld.class

The -c option tells the JAR archiver to create a new JAR file and the £ option is used to
specify the name of the new archive. The one we specified here is hello. jar, and the file
added to it is the class file.

The packaged JAR file can also be used to start the Java application. Java can read directly
from JAR archives and load classes from there. The only requirement is that they are on the
classpath.

You cannot put individual classes on the classpath, only directories. As
JAR files are archives with an internal directory structure in them, they
behave like a directory.

Check that the JAR file was created using 1s hello.jar, and remove the rm
HelloWorld.class class file just to ensure that when we issue the command line, the code
is executed from the JAR file and not the class:

[38]

Getting Started with Java 11 Chapter 1

$ java -cp hello.jar HelloWorld
Hello World

To see the content of the JAR file, however, it is recommended that you use the JAR tool
and not WinZip, even though that may be cozier. Real professionals use the Java tools to
handle Java files:

$ jar -tf hello.jar META-INF/ META-INF/MANIFEST.MF HelloWorld.class

Managing the running Java application

The Java toolset that comes with the JDK supports the execution and management of
running Java applications as well. To have some program that we can manage while
executing, we will need a code that runs not only for a few milliseconds but, while it runs, it
also prints something to the console. Let's create a new program called

HelloWorldLoop. java, with the following content:

public class HelloWorldLoop {
public static void main(String[] args) {
for(;;)
System.out.println ("Hello World");
}

}

The program contains a for loop. Loops allow repeated execution of a code block, and we
will discuss them in chapter 2, The First Real Java Program - Sorting Names. The loop we
created here is a special one that never terminates but repeats the printing method call,
printing Hello World until we kill the program by pressing Ctrl + C or issuing a ki1l
command on Linux or on macOS X, or terminate the program in the task manager under
Windows.

Compile and start it in one window and open another Terminal window to manage the
application.

The first command that we should get familiar with is jps. To get more familiar with jps,
you can read some content
here—http://docs.oracle.com/javase/7/docs/technotes/tools/share/jps.html, It lists
the Java processes that run on the machine, which are as follows:

$ Jps

21873 sun.tools.jps.Jdps

21871 HelloWorldLoop

[39]

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jps.html

Getting Started with Java 11 Chapter 1

You can see that there are two processes: one is the program we execute and the other is the
jps program itself. Not surprisingly, the jps tool is also written in Java. You can also pass

options to jps, which are documented on the web.

There are many other tools, and we will examine one of them, which is a very powerful and
easy-to-use tool—Java VisualVM:

eCe Java Visual VM
8 il
Applications £ | = | & HelloworldLoop (pid 23141)
v & Local [Overview m Threads &3 Sampler (&) Profiler
2 intellj IDEA (pid 6163)
|#] Visualvm C HelloworldLoop (pid 23141)
‘éorg.je(brains.\dea.maven.sewer.Re Moniter cPU Memory Classes Threads
& org.jetbrains.jps.cmdline.Launcher
é org.sonatype.nexus.bootstrap.jsw.) Uptime: 1 min 14 sec Perform GC Heap Dump
F=YHelloworldLoop (pid 23141)
& Remore cpu x| [Heap | Metaspace x
E]EVM Coredumps
(=) Snapshots CPU usage: 9,9% GC activity: 0,0% Size: 251 658 240 B Used: 25 593 624 B
100% Max: 4 294 967 296 B
250 MB
B0%
200 MB:
60%
150 ME-
Ao 100 MB
20% 50 ME-
0% 0 MB:
17:58:45 17:59:00 17:59:15 17:59:30 17:58:45 17:53:00 17:59:15 17:39:30
ECPU usage B GC activity O Heap size W Used heap
Classes x| Threads x
Total loaded: 1 532 Shared loaded: 0 Live: 10 Daemon: 9
Total unloaded: 0 Shared unloaded: 0 Live peak: 10 Total started: 10
1500 10
8
1000 :
4
500
2
i i
17:58:45 17:39:00 17:59:15 17:59:30 17:58:45 17:39:00 17:59:15 17:59:30
[Total loaded classes M Shared loaded classes O Live threads B Daemon threads

VisualVM is a command-line graphical tool that connects to the running Java process and
displays the different performance parameters. To start the VisualVM tool, you will issue
the jvisualvm command without any parameters. Soon, a window will appear with an
exploring tree on the left-hand side and a welcome pane on the right. The left shows all the
running Java processes under the branch named Local. If you double-click on
HelloWorldLoop, it will open the details of the process on the right pane. On the header
tabs, you can select Overview, Monitor, Threads, Sampler, and Profiler. The first three

tabs are the most important and give you a good view of what is happening in JVM
regarding the number of threads, CPU usage, memory consumption, and so on.

[40]

Getting Started with Java 11 Chapter 1

Using an IDE

Integrated development environments are outstanding tools that help the development by
offloading the mechanical tasks from the developer's shoulders. They recognize many of
the programming errors as we type the code, help us find the needed library methods,
display the documentation of the libraries, and provide extra tools for style checking,
debugging, and such.

In this section, we will look at some IDEs and how to leverage the functions they provide.

To get an IDE, you will have to download and install it. It does not come with the Java
development tools, because they are not part of the language environment. However, don't
worry, they can be downloaded free of charge and are easy to install. They may be more
complex to start up than a notepad editor, but even after a few hours of work, they will pay
back the time you devote to learning them. After all, it is not without reason that no
developer is coding Java in notepad or vi.

The three topmost IDEs are NetBeans, Eclipse, and Intelli]. All are available in community
versions, which means you need not pay for them. Intelli] has a full version that you can
also buy. The community edition will be used for learning the language. In case you do not
like Intelli], you can use Eclipse or NetBeans. These are all free of charge. Personally, I use
the Intelli] community edition for most of my projects, and the screen samples that show an
IDE in this book will feature this IDE. However, it does not necessarily mean that you have
to stick to this IDE.

In the developer community, there are topics that can be heavily debated.
These topics are about opinions. Were they about facts, the debate would
easily be soon over. One such topic is "Which is the best IDE?". It is a
matter of taste. There is no definite answer. If you learn how to use one,
you will like that, and you will be reluctant to learn another one unless
you see that the other one is so much better. That is the reason developers
love the IDE they use (or just hate, depending on their personality), but
they keep using the same IDE, usually for a long time. There is no best
IDE.

To download the IDE of your choice, you can visit either one of the following websites:

® nttps://netbeans.org/ for NetBeans
® nttp://www.eclipse.org/ for Eclipse
® https://www.jetbrains.com/idea/ for Intelli]

[41]

https://netbeans.org/
http://www.eclipse.org/
https://www.jetbrains.com/idea/

Getting Started with Java 11 Chapter 1

NetBeans

NetBeans is supported by Oracle and is continuously developed. It contains components,
such as the NetBeans profiler, that became part of the Oracle Java distribution. You may
note that when you start Visual VM and start the profiling, the Java process started has
netbeans in its name.

Generally, NetBeans is a framework to develop rich client applications, and the IDE is only
one application of the many that are built on top of the framework. It supports many
languages, not only Java. You can develop PHP, C, or JavaScript code using NetBeans and
have similar services for Java. For the support of different languages, you can download
plugins or a special version of NetBeans. These special versions are available from the
download page of the IDE, and they are nothing more than the basic IDE with some
preconfigured plugins. In the C package, the developers configure the plugins that are
needed when you want to develop C; in the PHP version, the developers configure for
PHP.

Eclipse

Eclipse is supported by IBM. Similar to NetBeans, it is also a platform for rich-client
application, and it is built around the OSGi container architecture, which itself is a topic
that can fill a book like this. Most of the developers use Eclipse and, almost exclusively, it is
the choice when developers create code for the IBM WebSphere application server. The
Eclipse special version contains a developer version of WebSphere.

Eclipse also has plugins to support different programming languages and also has different
variations that are similar to NetBeans. The variations are plugins prepackaged with the
basic IDE.

[42]

Getting Started with Java 11 Chapter 1

IntelliJ

The last one in the preceding enumeration is Intelli]. This IDE is the only one that does not
want to be a framework. Intelli] is an IDE. It also has plugins, but most of the plugins that
you will need to download to use in NetBeans or Eclipse are preconfigured. When you
want to use some more advanced plugins, it may, however, be something you have to pay
for, which should not be a problem when you are doing professional, paid work, should it?
These things are not that expensive. To learn the subjects in this book, you won't need any
plugin that is not in the community edition. As in this book, I will develop the samples
using Intelli], and I recommend that you follow me during your learning experience.

I want to emphasize that the examples in this book are independent of the
actual IDE to be used. You can follow the book using NetBeans, Eclipse, or
even Emacs, notepad, or vi.

IDE services

Integrated development environments provide us with services. The most basic service is
that you can edit files with them, but they also help build the code, find bugs, run the code,
deploy to the application server in development mode, debug, and so on. In the following
sections, we will look at these features. I will not give an exact and precise introduction on
how to use one or the other IDE. A book like this is not a good medium for such a tutorial.

IDEs differ on menu placement, keyboard shortcuts, and they may even change as newer
versions are released. It is best to look at the actual IDE tutorial video or online help. Their
features, on the other hand, are very similar. Intelli] has the video documentation at
https://www.jetbrains.com/idea/documentation/.

[43]

https://www.jetbrains.com/idea/documentation/

Getting Started with Java 11 Chapter 1

IDE screen structure

The different IDEs look similar, and they have the same screen structure more or less. In the
following screenshot, you can see an Intelli] IDE:

o ® ¥ Main.java - stackwalk - [~/Dropbox/java_9-by_Example/projects/helloworld]
DHO ¢« XOD0 QARAAE DK b FE Kaw ? Q
helloworld
& . - @ Maini w
E Packages‘ » [T - 2 | c” Main.java x ¥
M L Gl LN CEIG TGV I JOIEVE! b public class Main { vz
o .idea) . X g
rs src » public static void main(String[] args) { g
. System.out.print1ln("Hello World");
main
§ java L
g & & Main } §
@ Aresources 5
N~ ?
v test s
. [a}
[java b
[target
& HelloWorld.iml
m pom.xml
il External Libraries
g
S
>
£
il
U co——
“» 6:TODO [m@] Terminal Event Log
O 81 LF: UTF-8: & &

On the left, you can see the file structure of a Java project. A Java project typically contains
many files in different directories, which we will discuss in the next chapter. The simple
HelloWorld application contains a pom.xml project description file. This file is needed for
the Maven build tool, which is also a topic for the next chapter. For now, you should only
know that it is a file that describes the project structure for maven. The IDE also keeps track
of some administrative data for itself. It is stored in HelloWorld. iml. The main program
file is stored in the src/main/java directory and named HelloWorld. java.

On the right, you can see the files. In the preceding screenshot, we have only one file
opened. In case there is more than one file opened, there are tabs, one for each file. Now,
the active file is HelloWorld. java, which can be edited in the source code editor.

[44]

Getting Started with Java 11 Chapter 1

Editing files

When editing, you can type in characters or delete characters, words, and lines, but this is
something that all editors can do. IDEs offer extra—they analyze the source code and
format it, which, in turn, automatically indents the lines. It also continuously compiles the
code in the background while you edit it, and if there is some syntax error, it underlines
that with a red waiving line. When you fix the error, the red underlining disappears:

& Mainjava x
public class Main {

public static void main(String[] args) {

System.o
} ¥ & out PrintStream §

4n & setOut (PrintStream out) void
¥ 4 runFinalizersOnExit(boolean—value) void
gn & arraycopy (Object src, int srcPos, Object dest, int destP.. void
gn & clearProperty (String key) String
g & console() Console
i & getProperties () Properties
4n & getProperty (String key) String
4m & getProperty (String key, String def) String
i & identityHashCode (Object x) int
47 & lineSeparator() String
47 & load (String filename) void
@ & loadLibrary (String libname) void
Prlr‘essin"gm’:g;;?gt’v;ice without a class qualifier would show all accessible static methc;é\sm T

The editor also automatically gives suggestions for further characters as you type. You can
ignore the window that pops up and continue typing. However, many times, it is easier to
stop after a character and use the up and down arrows to select the word that needs
finishing before pressing Enter; the word will be inserted into the source code
automatically.

In the preceding screenshot, you can see that I wrote System. o, and the editor immediately
suggested that I wanted to write out. The other alternatives are the other static fields and
methods that are in the System class and which contain the letter o.

[45]

Getting Started with Java 11 Chapter 1

The IDE editor gives you hints, not only when it can type for you, but also when it cannot
type instead of you. In the following screenshot, the IDE tells you to type some expression
as an argument to the println () method that is boolean, char, int, and so on. The IDE
has absolutely no idea what to type there. You have to construct the expression. Still, it can
tell you that it needs to be of a certain type:

public static void main(String[] args) {
System.out.println(]);
} AN

<no parameters>
boolean x

char x

int x

long x

float x

double x

@NotNull char[] x
String x

@Nullable Object x

It is not only the built-in types that the editor knows. The editor integrated with the JDK
continuously scans the source files and knows what classes, methods, and fields are there in
the source code and which of those are usable at the place of editing.

This knowledge is also heavily used when you want to rename a method or variable. The
old method was to rename the field or method in the source file and then do an exhaustive
search for all references to the variable. Using the IDE, the mechanical work is done by it. It
knows all the uses of a field or method and automatically replaces the old identifier with
the new one. It also recognizes whether a local variable happens to have the same name as
the one that we rename, and the IDE only renames those occurrences that are really
referring to the one we are renaming.

You can usually do more than just renaming. There are more or less mechanical tasks that
programmers call refactoring. These are supported by the IDEs using some keyboard
shortcut and context-sensitive menu in the editor—right-click on the mouse and click

on Menu:

[46]

Getting Started with Java 11 Chapter 1

Main java * §
public class Main { v ;
public static void main{String[] args) { ;
System.out.prip+init.
Copy Reference N{8C m
} [H Paste BV z
Paste from History... RV 3
Paste Simple NOEv T
Column Selection Mode {38 £
Find Usages XF7 =
Refactor = ename....
Change Signature...
Folding > Type Migration...
Analyze 4 Make Static...
Convert To Instance Method...
Go To >
Cenerate... #N Move...
. L Copy...
Compile 'Main.java' 4+38F9
i . Safe Delete...
P Run 'Main.main()' ~{R
[3 Debug 'Main.main() S0 Extract
¥ Run 'Main.main()' with Coverage Inline...

Find and Replace Code Duplicates

'E1 Create 'Main.main()'...
| & 0 Invert Boolean...

The IDE also helps you read the documentation of the libraries and source code, as shown
here:

class AllDefaultPossibilitiesBuilder extends RunnerBuilder {
private final boolean fCanUseSuiteMethod;

[< 1.8 =] java.lang
public AllDefaultPossibilitiesBuilder({booleipyblic class Throwable extends Object
implements Serializable

@0verride v
public Runner runnerForClass(Class<?7> testClass) throws Throwable {
List<RunnerBuilder> builders = Arrays.aslList(
ignoredBuilder{),
annotatedBuilder(),

Libraries provide Javadoc documentation for the public methods, and you should also
write Javadoc for your own method. Javadoc documentation is extracted from special
comments in the source code, and we will learn how to create those in chapter 4,
Mastermind - Creating a Game. These are located in comments in front of the actual method
head. As creating compiled documentation is part of the compilation flow, the IDE also
knows the documentation, and it displays as a hovering box over the method names, class
names, or whatever element you want to use in the source file when you position the cursor
on the element.

[47]

Getting Started with Java 11 Chapter 1

Managing projects

To the left of the IDE window, you can see the directory structure of the project. The IDE
knows the different types of files and shows them in a way that is meaningful from the
programming point of view. For example, it does not display Main. java as a filename.
Instead, it displays Main and an icon that signals that Main is a class. It can also be an
interface still in a file named Main. java, but, in that case, the icon will show that this is an
interface. This is again done by the IDE continuously scanning and compiling the code.

The files are structured into subdirectories when we develop a Java code. These
subdirectories follow the packaging structure of the code. Many times, in Java, we use
compound and long package names, and displaying it as a deep and nested directory
structure will not be so easy to handle.

Packages are used to group the source files. The source files for classes
that are related in some way should go into one package. We will discuss
the notion of packages and how to use them in the next chapter.

The IDE is capable of showing the package structure instead of the nested directories for
those directories of the project that contain source files:

Jjunit
Ei | Project - [¥]
src
main
java

junit.extensions
junit.framework
junit.runner
junit.textui
org.junit
org.junit.experimental
org.junit.experimental.categorie
org.junit.experimental.max
org.junit.experimental.results
org.junit.experimental.runners
org.junit.experimental.theories
org.junit.experimental.theories
org.junit.experimental.theories
org.junit.internal
org.junit.internal.builders
org.junit.internal.matchers

]l

- 1Y

[48]

Getting Started with Java 11 Chapter 1

When you move a class or an interface from one package to another, it happens in a similar
to how renaming or any other refactoring action takes place. All references to the class or
interface in the source files get renamed to the new package. If a file contains an import
statement referring to the class, the name of the class in the statement is corrected. To move
a class, you can open the package and use the good old drag and drop technique.

Package hierarchy is not the only hierarchy displayed in the IDE. The classes are in
packages but, at the same time, there is an inheritance hierarchy. Classes may implement
interfaces and can extend other classes. The Java IDEs help us by showing type hierarchies
where you can navigate across a graphical interface along the inheritance relations.

There is another hierarchy that IDEs can show to help us with development—method call
hierarchy. After analyzing the code, the IDE can show us the graph displaying the relations
between the methods: which method calls which other methods. Sometimes, this call graph
is also important in showing the dependencies of methods on each other.

Building the code and running it

The IDEs usually compile the code for analysis to help us spot syntax errors or undefined
classes and methods on the fly. This compilation is usually partial, covering a part of the
code, and as it runs all the time, the source code changes and is never actually complete. To
create the deployable file, that is, the final deliverable code of the project, a separate build
process has to be started. Most of the IDEs have some built-in tool for that, but it's not
recommended to use these, except for the smallest projects. Professional development
projects use Ant, Maven, or Gradle instead.

[49]

Getting Started with Java 11 Chapter 1

Here's an example of Maven:

helloworld]
Q
Maven Projects - 1 ¥
VOGa + PRO® T E]
: : : s
_ o
@ Lifecycle
4 clean m
£ validate z
£ compile 2
4 test 3
¥ package 7
£ verify 1
£ install
£ site
4 deploy
@ Plugins

#% clean (org.apache.maven.plugins:maven-clean-plugin:2.4.1)
compiler (org.apache.maven.plugins:maven-compiler-plugir
#% deploy (org.apache.maven.plugins:maven-deploy-plugin:2.7
#%install (org.apache.maven.plugins:maven-install-plugin:2.3.
#% jar (org.apache.maven.plugins:maven-jar-plugin:2.3.2)

#% resources (org.apache.maven.plugins:maven-resources -plug
#% site (org.apache.maven.plugins:maven-site-plugin:3.0)

#% surefire (org.apache.maven.plugins:maven-surefire-plugin:2

The IDEs are prepared to use such an external tool, and they can help us start them. This
way, the build process can run on the developer machine without starting a new shell
window. IDEs can also import the settings from the configuration file of these external
build tools to recognize the project structure, where source files are, and what to compile to
support error checking while editing.

The building process usually contains the execution of certain checks on the code. A bunch
of the Java source file may compile nice and smooth. Still, the code may contain a lot of
bugs and may be written in a terrible style. Those things make the project unmaintainable
in the long run. To avoid these problems, we will use unit tests and static code analysis
tools. These do not guarantee error-free code, but the chances are much slimmer.

IDEs have plugins to run the static code analysis tools as well as unit tests. Being integrated
into the IDE has a huge advantage. When there is any problem identified by the analysis
tool, or by some unit tests, the IDE provides an error message that also functions like a link
on a web page. If you click on the message, which is usually blue and underlined, exactly
like on a web page, the editor opens the problematic file and places the cursor where the
issue is.

[50]

Getting Started with Java 11 Chapter 1

Debugging Java

Developing code needs debugging. Java has very good facilities to debug code during
development. JVM supports debuggers via the Java Platform Debugger Architecture. This
lets you execute code in debug mode, and JVM will accept external debugger tools to attach
to it via a network, or it will try to attach to a debugger depending on command-line
options. JDK contains a client, the jdb tool, which contains a debugger; however, it is so
cumbersome to use when compared to the graphical client built into the IDEs that I have
never heard of anyone using it for real work.

To start a Java program in debug mode so that JVM will accept a debugger client to attach
the options to it, execute the following command:

—Xagentlib: jdwp=transport=dt_socket, server=y, suspend=y, address=7896

The Xagent1ib option instructs the Java runtime to load the jdwp agent. The part of the
option that follows -Xagent1lib: jdwp= is interpreted by the debugger agent. These
options are as follows:

e transport: This should specify which transport to use. It can be a shared
memory (dt_shmem) socket or a TCP/IP socket transport but, in practice, you will
always use the latter. This is specified in the preceding dt_socket sample.

e server: This specifies if the debugged JVM starts in server mode or client mode.
When you start the JVM in server mode, it starts to listen on a socket and accepts
the debugger to connect to it. If it is started in client mode, it tries to connect a
debugger that is supposed to be started in server mode, listening on a port. The
value of the option is y, meaning server mode, or n, meaning nonserver, which is
client mode.

e suspend: This can also be y or n. If JVM is started in suspend mode, it will not
start the Java code until a debugger is attached to it. If it is started with
suspend=n, the JVM starts and when a debugger attaches, it stops as soon as a
break point is reached. If you start a standalone Java application, you will usually
start the debugging with suspend=y, which is the default. If you want to debug
an application in an application server or servlet-container environment, it is
better to start with suspend=n; otherwise, the server does not start until the
debugger attaches to it. Starting the Java process in the suspend=y mode in case
servlet application is only useful when you want to debug the servlet static
initializer code, which is executed when the server is starting up. Without the
suspend mode, you will be required to attach the debugger very fast. It is better
that JVM just waits for you in that situation.

[51]

Getting Started with Java 11 Chapter 1

e address: This should specify the address that JVM communicates with. If the
JVM started in client mode, it will start to connect to this address. If the JVM runs
in server mode, it will accept connections from the debugger on that address. The
address may specify only the port. In this case, the IP address is that of the local
machine.

The other options the debugger agent may handle are for special cases. For the topics
covered in this book, the preceding options are enough.

The following screenshot shows a typical debugging session where we debug the simplest
program in Intelli] IDE:

[] @ s Main.java - stackwalk - [~/Dropbox/java_9-by_Example/projects/helloworld]
BHO ¢» XOF QR &> M M- P BB FBELEM ? Q
+ helloworld src main) [7] java " Main
E. Packages | 0 = | % I+ (" Mainjava x T HelloWorld % ¢
E = helloworld [HelloWorld] ~/Dropbox/java_9-by_Examp p public class Main { v 5
=i .idea =
s sre » public static void main{(String[] args) { args: {} =
. [*3 | System.out.println();
main 1 —
o
5 [Cjava m
2 % Main } g
= m
o Zresources 3
= test f
L] o,
[djava g
Bl target
= HelloWarld.iml
m pom.xml
il External Libraries
L ____________________________________
Debug EMain - L
(k| Debugger [[] Console +* k= i Ay Am H
@ ; |5l Frames +" Variables ~= L3 watches -+
S Il B'man'@lingrou.f + 3+ 7 © args = {String[0]@438} No watches
(e - b .
~ 1 AT
R + — a v
4, 5: Debug » 6: TODO Terminal Event Log
[Ali files are up-to-date (a minute ago) 3:1 LF* UTF-8% & &

When you start a program from the IDE in debug mode, all of these options are
automatically set for you. You can set a break point just by clicking on the source code in
the editor. You can have a separate form to add, remove, and edit break points. Break
points can be attached to specific lines or specific events, like when an exception is thrown.
Break points attached to a specific line can also have conditions that tell the debugger to
stop the execution of the code, but only when the condition is true; for example, if a
variable has some predefined value.

[52]

Getting Started with Java 11 Chapter 1

Summary

In this chapter, we were introduced to each other with Java. We do not know too much
about each other but we got acquainted. We installed the Java environment: Java, JDK, and
integrated development environment. We wrote a small program and took a brief look at
what can be done using the development tools. This is far from mastery, but even the
longest journey starts with a first step, which is sometimes the hardest to take. We have
done it in our Java journey. We started rolling and, for the enthusiasts that we are, nothing
can stop us walking all the way along.

[53]

The First Real Java Program -
Sorting Names

In the previous chapter, we got acquainted with Java, and especially with using the REPL
tool and interactively executing some simple code. That is a good start, but we need more.
In this chapter, we will develop a simple program. Using this code as an example, we will
look at different build tools, which are frequently used for Java projects, and learn the basic
features of the Java language.

This chapter will cover the following topics:

e The sorting problem
¢ The project structure and build tools
e The Make, Ant, Maven, and Gradle build tools

e Java language features related to the code example

Getting started with sorting

The sorting problem is one of the oldest programming tasks that an engineer deals with.
We have a set of records and we know that we want to find a specific one sometime soon.
To find it, we sort the records in a specific order that helps us find the record we want
quickly.

As an example, we have the names of students with their marks on some cards. When
students come to the dean's cabin asking for their results, we look through all of the cards
one after the other to find the name of the inquiring student. However, it is better if we sort
the cards by the names of the students alphabetically. When a student makes an inquiry, we
can search the mark attached to the name much faster.

The First Real Java Program - Sorting Names Chapter 2

We can look at the middle card; if it shows the name of the student, then we are happy to
have found the name and the mark. If the card precedes the name of the student
alphabetically, then we will continue searching in the second half; otherwise, we will check
the first half.

By following this approach, we can find the name of the student in a few steps. The number
of steps cannot be more than the number as many times the pack of cards can be halved. If
we have two cards, then it is two steps at most. If it is four, then we will need three steps at
most. If there are eight cards, then we may need four steps, but not more. If there are 1,000
cards, then we may need at most 11 steps, while the original, nonsorted set will need 1,000
steps, as a worst case. That is, approximately, it speeds up the search by 100 times, so this is
worth sorting the cards unless the sorting itself takes too much time. The algorithm finding
an element in the already sorted set we just described is called binary search (https://en.
wikipedia. org/wiki/Binary_search_algorithm).

In many cases, it is worth sorting the dataset, and there are many sorting algorithms to do
that. There are simpler and more complex algorithms, and, as in many cases, more complex
algorithms are the ones that run faster.

As we are focusing on the Java programming part and not the algorithm forging, in this
chapter, we will develop a Java code that implements a simple and not-that-fast algorithm.

Bubble sort

The algorithm that we will implement in this chapter is well-known as bubble sort. The
approach is very simple. Begin at the start of the cards and compare the first and the second
card. If the first card is later in lexicographic order than the second one, then swap the two
cards. Then, repeat this for the card that is in the second place now, then the third, and so
on. There is a card that is lexicographically the latest, says Wilson. When we get this card
and start to compare it with the next one, we will always swap them; this way, Wilson's
card will travel to the last place where it has to be after the sort. All we have to do is repeat
this traveling from the start and do the occasional swapping of cards again, but this time
only to the last but one element. This time, the second latest element will get to its
place—say, Wilkinson will be right before Wilson. If we have n cards, and we repeat this
n-1 times, all the cards will get to their place.

In the upcoming sections, we will create a Java project that implements this algorithm.

[551]

https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm

The First Real Java Program - Sorting Names Chapter 2

Getting started with project structure and
build tools

When a project is more complex than a single class, and it usually is, then it is wise to
define a project structure. We will have to decide where we store the source files, where the
resource files (the ones that contain some resource for the program but are not Java source)
are, where the . class files should be written by the compiler, and so on. Generally, the
structure is mainly the directory setup and the configuration of the tools that perform the
build.

The compilation of complex programs cannot be feasibly done using the command line
issuing javac commands. If we have 100 Java source files, the compilation will require that
many javac commands to be issued. It can be shortened using wildcards, such as javac
*.java, or we can write a simple bash script or a BAT command file which does that. First,
it will be just 100 lines, each compiling one source Java file to the class file. Then, we will
realize that it is the only time that CPU and power are being consumed to compile the files
that have not changed since the last compilations, so we can add some bash programming
that checks the time stamp on the source and generated files. In the end, we will end up
with a tool that is essentially a build tool. Build tools are available ready-made; it is not
worth reinventing the wheel.

Instead of creating one, we will use a build tool that is ready. There are few of them that can
be found at https://en.wikipedia.org/wiki/List_of_build_automation_software. In
this chapter, we will use one called Maven; however, before jumping into the details of this
tool, we will look at some other tools that you are likely to meet as a Java professional in
enterprise projects.

In the upcoming sections, we will discuss a bit about the following four build tools:

o Make
e Ant

e Maven
Gradle

We will mention Make briefly because it is not used in Java environments these days.
However, Make was the first build tool, and many ideas that modern Java build tools are
based on are coming from the good old make. You, as a professional Java developer, should
also be familiar with Make so that you do not freak out if you happen to see the use of it in
a project for some purpose, and can know what it is and where its detailed documentation
can be found.

[561]

https://en.wikipedia.org/wiki/List_of_build_automation_software

The First Real Java Program - Sorting Names Chapter 2

Ant was the first build tool widely used for Java many years ago, and it is still used in
many projects.

Maven is newer than Ant, and it uses a different approach. We will look at it in detail.
Maven is also the official build tool of the Apache software foundation for the Java project.
We will also use Maven as a build tool in this chapter.

Gradle is even newer, and it has started to catch up to Maven these days. We will use this
tool in the later chapters of this book in more detail.

Make

The make program was originally created in April 1976, so this is not a new tool. It is
included in the Unix system, so this tool is available without any extra installation on
Linux, macOS X, or any other Unix-based system. Additionally, there are numerous ports
of this tool on Windows and some version is/was included in the Visual Studio compiler
toolset.

Make is not tied to Java. It was created when the major programming language was C, but
it is not tied to C or any other language. The make is a dependency description language
that has a very simple syntax. The make, just like any other build tool, is controlled by a
project description file. In the case of make, this file contains a rule set. The description file
is usually named Makefile, but in case the name of the description file is different, it can
be specified as a command-line option to the make command.

Rules in Makefile follow each other and consist of one or more lines. The first line starts at
the first position (there is no tab or space at the start of the line) and the following lines start
with a tab character. Thus, Makefile might look something like the following code:

run : hello.jar
java —cp hello.jar HelloWorld

hello.jar : HelloWorld.class
jar —cf hello.jar HelloWorld.class

HelloWorld.class : HelloWorld. java
javac HelloWorld.java

This file defines the three so-called targets: run, hello. jar, and HelloWorld.class. To
create HelloWorld.class, type the following line at Command Prompt:

make HelloWorld.class

[571

The First Real Java Program - Sorting Names Chapter 2

Make will look at the rule and see that it depends on HelloWorld. java. If the
HelloWorld.class file does not exist, or HelloWorld. java is newer than the Java class
file, make will execute the command that is written on the next line and it will compile the
Java source file. If the class file was created following the last modification of
HelloWorld. java, then make knows that there is no need to run the command.

In the case of creating HelloWorld.class, the make program has an easy task. The source
file was already there. If you issue the make hello.jar command, the procedure is more
complex. The make command sees that in order to create hello. jar, it needs
HelloWorld.class, which itself is also a target on another rule. Thus, we might have to
create it.

First, it starts the problem the same way as before. If HelloWorld.class is present and is
older than hello. jar, there is nothing we need to do. If it is not present or is newer than
hello.jar, then the jar -cf hello.jar HelloWorld.class command needs to be
executed, although not necessarily at the moment when it realizes that it has to be
performed. The make program remembers that this command has to be executed sometime
in the future when all the commands that are needed to create HelloWorld.class are
already executed successfully. Thus, it continues to create the class file in exactly the same
way as I described earlier.

In general, a rule can have the following format:

target : dependencies
command

The make command can create any target using the make target command by first
calculating which commands to execute and then executing them one by one. The
commands are shell commands executing in a different process and may pose problems
under Windows, which may render the Makefile files' operating system to be dependent.

Note that the run target is not an actual file that make creates. A target can be a file name or
just a name for the target. In the latter case, make will never consider the target to be readily
available.

As we do not use make for a Java project, there is no reason to get into more details.
Additionally, I cheated a bit by making the description of a rule simpler than it should be.
The make tool has many powerful features out of the scope of this book. There are also
several implementations that differ a little from each other. You will most probably meet
the one made by the Free Software Foundation—the GNU make. And, of course, just in
case of any Unix command-line tool, man is your friend. The man make command will
display the documentation of the tool on the screen.

[581]

The First Real Java Program - Sorting Names Chapter 2

The following are the important points that you should remember about make:

e It defines the dependencies of the individual artifacts (targets) in a declarative
way
e It defines the actions to create the missing artifacts in an imperative way

This structure was invented decades ago and has survived up until now for most of the
build tools, as you will see in the next few chapters.

Ant

The ant build tool was built especially for Java projects around the year 2000. The aim of
Java to be a write-once-run-anywhere language needed a tool that can also be used in
different environments. Although make is available on Unix machines, and Windows as
well, Makefiles were not always compatible. There was a small problem with the use of
the tab character that some editors replaced with space, rendering Makefile unusable, but
this was not the major reason. The main problem with make that ignited the development
of Ant is that the commands are shell commands. Even if the implementation of the make
program was made to be compatible, running on different operating systems, the used
commands were many times incompatible, and that was something make itself could not
change. Because make issues external commands to build the targets, developers are free to
use any external tool that is available for them on the development machine. Another
machine using the same operating system just may not have the same set of tools invoked
by make. This undermines the portability of the make built projects.

At the same time, Ant is following the major principles of make. There are targets that may
depend on each other and there are commands that need to be executed in an appropriate
sequence to create the targets one after the other, following the dependency order. The
description of the dependencies and the commands is XML (tab issue is solved) and the
commands are implemented in Java (system dependency is solved, well... more or less).

As Ant is neither part of the operating system nor the JDK, you will have to download and
install it separately if you want to use it.

Installing Ant

Ant can be downloaded from its official website (http://ant.apache.org). You can
download the source or the precompiled version. The easiest way is to download the
binary in a tar.gz format.

[591]

http://ant.apache.org

The First Real Java Program - Sorting Names Chapter 2

Whenever you download software from the Internet, it is highly recommended that you
check the integrity of the downloaded file. The HTTP protocol does not contain error
checking, and it may happen that a network error remains hidden or a malevolent internal
proxy modifies the downloaded file. Download sites usually provide checksums for the
downloadable files. These are usually MD5, SHA1, SHA512, or some other checksums.

When I downloaded the Apache Ant 1.9.7 version in tar. gz format, I also opened the page
that led to the MD5 checksum. The checksum value is
bcld9e5fe73eee5c50b26ed411£fb01109:

» .zip archive: apache-ant-1.9.7-bin.zip [PGP] [SHA1] [SHAS512] [MD5]
e .tar.gz archive: apache-ant-1.9.7-bin.tar.gz [PGP] [SHA1] [SHAS512] [MD5]
s .tar.bz2 archive: apache-ant-1.9.7-bin.tar.bz2 [PGP] [SHA1] [SHA512] [MD5]

The downloaded file can be checked using the following command line: $
md5 apache-ant-1.9.7-bin.tar.gz MD5 (apache-ant-1.9.7-
bin.tar.gz) = bcld9%e5fe73eee5c50b26ed411£fb0119 The calculated
MD?5 checksum is the same as the one on the website, which says that the

file integrity is not harmed. On the Windows operating system, there is no
8 tool to calculate MD5 digest. There is a tool that Microsoft provides, called

File Integrity Checksum Verifier Utility, which is available

at https://support.microsoft.com/en-us/help/841290/availability-a
nd-description-of-the-file-checksum-integrity-verifier-utility.
If you use Linux, it may happen that the md5 or md5sum utility is not
installed. In that case, you can install it using the apt ~get command or
whatever installation tool your Linux distribution supports.

After the file is downloaded, you can explode it into a subdirectory using the following
command:

tar xfz apache-ant-1.9.7-bin.tar.gz

The created subdirectory is the usable binary distribution of Ant. Usually, I move it under
~/bin, making it available only for my users on OS X. After that, you should set the
environment variable as ANT_HOME to point to this directory and also add the bin directory
of the installation to PATH. To do that, you should edit the ~/ .bashrc file and add the
following lines to it:

export ANT_HOME=~/bin/apache-ant-1.9.7/
export PATH=${ANT_HOME}bin:$PATH

[60]

https://support.microsoft.com/en-us/help/841290/availability-and-description-of-the-file-checksum-integrity-verifier-utility
https://support.microsoft.com/en-us/help/841290/availability-and-description-of-the-file-checksum-integrity-verifier-utility

The First Real Java Program - Sorting Names Chapter 2

Then, restart the terminal application, or just type . ~/.bashrc and test the installation of
Ant by typing the following command:

$ ant
Buildfile: build.xml does not exist!
Build failed

If the installation was correct, you should see the preceding error message.

Using Ant

When you see a project to be built by Ant, you will see a build.xml file. This is the project
build file, the one that Ant was missing when you checked that the installation was correct.
It can have any other name, and you can specify the name of the file as a command-line
option for Ant, but this is the default filename, as Makefile was for make. A b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>